JAVASCRIPT

in

Quick Steps, Quick Results
*Over 250 essential solutions
*Easy-to-follow instructions
Find it, do it—fast




avaScrint’

in 10 Simple Steps or Less

Arman Danesh

WILEY
Wiley Publishing, Inc.






avaScrint’

in 10 Simple Steps or Less

ll—l-—"_"':'":- \‘. !

II

b :ooog - !:t.i.}; 1 ; ::.

_—







avaScrint’

in 10 Simple Steps or Less

Arman Danesh

WILEY
Wiley Publishing, Inc.



JavaScript™ in 10 Simple Steps or Less

Published by

Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256

www.wiley.com

Copyright © 2004 by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

Library of Congress Control Number: 2003114066

ISBN: 0-7645-4241-9

Manufactured in the United States of America

10987654321

1Q/QZ/RS/QT/IN

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sec-
tions 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Cen-
ter, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447, E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a par-
ticular purpose. No warranty may be created or extended by sales representatives or written sales materials. The
advice and strategies contained herein may not be suitable for your situation. You should consult with a profes-
sional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other com-
mercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or to obtain technical support, please contact our
Customer Care Department within the U.S. at (800) 762-2974, outside the U.S. at (317) 572-3993 or fax (317)
572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

Trademarks: Wiley, the Wiley Publishing logo, and related trade dress are trademarks or registered trademarks
of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used
without written permission. JavaScript is a trademark of Sun Microsystems, Inc. All other trademarks are the
property of their respective owners. Wiley Publishing, Inc. is not associated with any product or vendor men-
tioned in this book.



To my beloved Tahirih for her support and encouragement.



Acquisitions Editor
Jim Minatel

Development Editor
Sharon Nash

Production Editor
Felicia Robinson

Technical Editor
Will Kelly

Copy Editor
Joanne Slike

Editorial Manager
Kathryn Malm

Vice President & Executive Group Publisher

Richard Swadley

Vice President and Executive Publisher

Robert Ipsen

Vice President and Publisher

Joseph B. Wikert

Project Coordinator
Courtney Maclntyre

Graphics and Production Specialists
Elizabeth Brooks, Joyce Haughey, Jennifer Heleine,
LeAndra Hosier, Heather Pope, Mary Gillot Virgin

Quality Control Technician
John Tyler Connoley, John Greenough,
Charles Spencer

Proofreading and Indexing
Sossity R. Smith, Johnna VanHoose



About the Author

Arman Danesh is the Internet Coordinator for the Bahd’i International Community’s Office of Public
Information. In that capacity, he manages the development of numerous Web sites, including The Baha’i
World (www.bahai.org), the official Web site of the Bah4’{ Faith, and the Bahd’i World News Services
(www.bahaiworldnews.org), an online news service, both of which use JavaScript. Additionally, he is the
Technical Director for Juxta Publishing Limited (www.juxta.com). He has been working with JavaScript
since the mid-1990s and is the author of some of the earliest books on the subject, including Teach Yourself
FavaScript in a Week and JavaScript Developer’s Guide. Arman has authored more than 20 books on tech-
nology subjects, including ColdFusion MX Developer’s Handbook (Sybex), Mastering ColdFusion MX (Sybex),
SAIR Linux & Gnu Certified Administrator All-in-One Exam Guide (Osborne/McGraw-Hill), and Safe and
Secure: Secure Your Home Netrwork and Protect Your Privacy Online (Sams). He is pursuing an advanced
degree in computer science at Simon Fraser University outside Vancouver, British Columbia.






Acknowledgments

he task of writing these long computer books is a daunting one, and it is a process that requires

significant contributions from many people who help these projects see their way to completion.
For this project, I need to thank the entire team, including Sharon Nash and Jim Minatel at Wiley, as
well as all the myriad others involved in preparing, designing, and producing the books there.

I also need to thank my family for their patience during the writing of the book. In particular, my wife,
‘Tahirih, and son, Ethan, deserve credit for tolerating the time I had to devote to the preparation of
this book.






Credits

About the Author

Acknowledgments

Introduction

Part 1: JavaScript Basics

Task 1:

Task
Task
Task
Task
Task
Task
Task
Task

© 0 N O O &~ W N

Creating a script Block

: Hiding Your JavaScript Code

: Providing Alternatives to Your JavaScript Code

: Including Outside Source Code

: Commenting Your Scripts

: Writing a JavaScript Command

: Temporarily Removing a Command from a Script
: Using Curly Brackets

: Writing Output to the Browser

Task 10:
Task 11.:
Task 12:
Task 13:
Task 14:
Task 15:
Task 16:
Task 17:
Task 18:
Task 19:
Task 20:
Task 21:
Task 22:
Task 23:
Task 24:

Creating a Variable
Outputting a Variable
Creating a String

Creating a Numeric Variable
Performing Math
Concatenating Strings
Searching for Text in Strings
Replacing Text in Strings
Formatting Strings

Applying Multiple Formatting Functions to a String

Creating Arrays

Populating an Array

Sorting an Array

Splitting a String at a Delimiter
Calling Functions

vi

vii

iX

Xix

o o ~N B

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48



Xii

JavaScript in 10 Simple Steps or Less

Task 25:
Task 26:
Task 27:
Task 28:
Task 29:
Task 30:
Task 31:
Task 32:
Task 33:
Task 34:
Task 35:
Task 36:
Task 37:
Task 38:
Task 39:
Task 40:
Task 41:
: Calling Your JavaScript Code after the Page Has Loaded
Task 43:

Task 42

Alerting the User

Confirming with the User

Creating Your Own Functions

Passing an Argument to Your Functions
Returning Values from Your Functions

Passing Multiple Parameters to Your Functions
Calling Functions from Tags

Calling Your JavaScript Code after the Page Has Loaded
Using for Loops

Testing Conditions with if

Using Short-Form Condition Testing

Looping on a Condition

Looping through an Array

Scheduling a Function for Future Execution
Scheduling a Function for Recurring Execution
Canceling a Scheduled Function

Adding Multiple Scripts to a Page

Check If Java Is Enabled with JavaScript

Part 2: Outputting to the Browser

Task 44:
Task 45:
Task 46:
Task 47:
Task 48:
Task 49:
Task 50:
Task 51:
Task 52:
Task 53:
Task 54:
Task 55:
Task 56:

Accessing the document Object

Outputting Dynamic HTML

Including New Lines in Output

Outputting the Date to the Browser

Outputting the Date and Time in a Selected Time Zone
Controlling the Format of Date Output

Customizing Output by the Time of Day

Generating a Monthly Calendar

Customizing Output Using URL Variables

Dynamically Generating a Menu

Replacing the Browser Document with a New Document
Redirecting the User to a New Page

Creating a “Page Loading ...” Placeholder

Part 3: Images and Rollovers

Task 57:
Task 58:
Task 59:

Accessing an HTML-Embedded Image in JavaScript
Loading an Image Using JavaScript
Detecting MouseOver Events on Images

50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86

89
90
92
94
96
98
100
102
104
106
108
110
112
114

117
118
120
122



Contents xiii
Task 60: Detecting Click Events on Images 124
Task 61: Switching an Image Programatically 126
Task 62: Using Multiple Rollovers in One Page 128
Task 63: Displaying a Random Image 130
Task 64: Displaying Multiple Random Images 132
Task 65: Using a Function to Create a Rollover 134
Task 66: Using a Function to Trigger a Rollover 136
Task 67: Using Functions to Create Multiple Rollovers in One Page 138
Task 68: Creating a Simple Rollover Menu System 140
Task 69: Creating a Slide Show in JavaScript 142
Task 70: Randomizing Your Slide Show 144
Task 71: Triggering Slide Show Transitions from Links 146
Task 72: Including Captions in a Slide Show 148
Task 73: Testing If an Image Is Loaded 150
Task 74: Triggering a Rollover in a Different Location with a Link 152
Task 75: Using Image Maps and Rollovers Together 154
Task 76: Generating Animated Banners in JavaScript 156
Task 77: Displaying a Random Banner Ad 158

Part 4: Working with Forms 161
Task 78: Preparing Your Forms for JavaScript 162
Task 79: Accessing Text Field Contents 164
Task 80: Dynamically Updating Text Fields 166
Task 81: Detecting Changes in Text Fields 168
Task 82: Accessing Selection Lists 170
Task 83: Programmatically Populating a Selection List 172
Task 84: Dynamically Changing Selection List Content 174
Task 85: Detecting Selections in Selection Lists 176
Task 86: Updating One Selection List Based on Selection in Another 178
Task 87: Using Radio Buttons instead of Selection Lists 180
Task 88: Detecting the Selected Radio Button 182
Task 89: Detecting Change of Radio Button Selection 184
Task 90: Updating or Changing Radio Button Selection 186
Task 91: Creating Check Boxes 188
Task 92: Detecting Check Box Selections 190
Task 93: Changing Check Box Selections 192
Task 94: Detecting Changes in Check Box Selections 194
Task 95: Verifying Form Fields in JavaScript 196
Task 96: Using the onSubmit Attribute of the Form Tag to Verify Form Fields 198



Xiv

JavaScript in 10 Simple Steps or Less

Task 97: Verifying Form Fields Using INPUT TYPE="button”

Instead of TYPE="submit”

Task 98: Validating E-mail Addresses
Task 99: Validating Zip Codes

Task 100:
Task 101.:
Task 102:
Task 103:
Task 104:
Task 105:
Task 106:
Task 107:

Task 108:
Task 109:
Task 110:
Task 111:
Task 112:
Task 113:

Validating Phone Numbers

Validating Credit Card Numbers

Validating Selection List Choices

Validating Radio Button Selections

Validating Check Box Selections

Validating Passwords

Validating Phone Numbers with Regular Expressions

Creating Multiple Form Submission Buttons Using
INPUT TYPE="button” Buttons

Reacting to Mouse Clicks on Buttons

Using Graphical Buttons in JavaScript

Controlling the Form Submission URL

Validating a Numeric Text Field with Regular Expressions
Encrypting Data before Submitting It

Using Forms for Automatic Navigation Jumping

Part 5: Manipulating Browser Windows

Task 114:
Task 115:
Task 116:
Task 117:
Task 118:
Task 119:
Task 120:
Task 121.:
Task 122:
Task 123:
Task 124:
Task 125:
Task 126:
Task 127:
Task 128:
Task 129:
Task 130:
Task 131.:
Task 132:

Using the window Object

Popping Up an Alert Dialog Box

Popping Up Confirmation Dialog Boxes

Popping Up JavaScript Prompts

Creating New Browser Windows

Opening a New Browser Window from a Link

Setting the Size of New Browser Windows

Setting the Location of New Browser Windows
Controlling Toolbar Visibility for New Browser Windows
Determining the Availability of Scroll Bars for New Browser Windows
Restricting Resizing of New Browser Windows

Loading a New Document into a Browser Window
Controlling Window Scrolling from JavaScript

Opening a Full-Screen Window in Internet Explorer
Handling the Parent-Child Relationship of Windows
Updating One Window’s Contents from Another
Accessing a Form in Another Browser Window

Closing a Window in JavaScript

Closing a Window from a Link

200
202
204
206
208
210
212
214
216
218

220
222
224
226
228
230
232

235
236
238
240
242
244
246
248
250
252
254
256
258
260
262
264
266
268
270
272



Contents XV
Task 133: Creating Dependent Windows in Netscape 274
Task 134: Sizing a Window to Its Contents in Netscape 276
Task 135: Loading Pages into Frames 278
Task 136: Updating One Frame from Another Frame 280
Task 137: Sharing JavaScript Code between Frames 282
Task 138: Using Frames to Store Pseudo-Persistent Data 284
Task 139: Using One Frame for Your Main JavaScript Code 286
Task 140: Using a Hidden Frame for Your JavaScript Code 288
Task 141: Working with Nested Frames 290
Task 142: Updating Multiple Frames from a Link 292
Task 143: Dynamically Creating Frames in JavaScript 294
Task 144: Dynamically Updating Frame Content 296
Task 145: Referring to Unnamed Frames Numerically 298

Part 6: Manipulating Cookies 301
Task 146: Creating a Cookie in JavaScript 302
Task 147: Accessing a Cookie in JavaScript 304
Task 148: Displaying a Cookie 306
Task 149: Controlling the Expiry of a Cookie 308
Task 150: Using a Cookie to Track a User’s Session 310
Task 151: Using a Cookie to Count Page Access 312
Task 152: Deleting a Cookie 314
Task 153: Creating Multiple Cookies 316
Task 154: Accessing Multiple Cookies 318
Task 155: Using Cookies to Present a Different Home Page for New Visitors 320
Task 156: Creating a Cookie Function Library 322
Task 157: Allowing a Cookie to be Seen for all Pages in a Site 324

Part 7: DHTML and Style Sheets 327
Task 158: Controlling Line Spacing 328
Task 159: Determining an Object’s Location 330
Task 160: Placing an Object 332
Task 161: Moving an Object Horizontally 334
Task 162: Moving an Object Vertically 336
Task 163: Moving an Object Diagonally 338
Task 164: Controlling Object Movement with Buttons 340
Task 165: Creating the Appearance of Three-Dimensional Movement 342
Task 166: Centering an Object Vertically 344
Task 167: Centering an Object Horizontally 346



xvi

JavaScript in 10 Simple Steps or Less

Task 168:
Task 169:
Task 170:
Task 171.:
Task 172:
Task 173:
Task 174
Task 175:
Task 176:
Task 177:
Task 178:
Task 179:
Task 180:
Task 181.:
Task 182:
Task 183:
Task 184:
Task 185:
Task 186:
Task 187:
Task 188:
Task 189:
Task 190:
Task 191.:
Task 192:
Task 193:
Task 194:
Task 195:
Task 196:

Controlling Line Height in CSS

Creating Drop Shadows with CSS

Modifying a Drop Shadow

Removing a Drop Shadow

Placing a Shadow on a Nonstandard Corner
Managing Z-Indexes in JavaScript

Setting Fonts for Text with CSS

Setting Font Style for Text with CSS

Controlling Text Alignment with CSS

Controlling Spacing with CSS

Controlling Absolute Placement with CSS
Controlling Relative Placement with CSS
Adjusting Margins with CSS

Applying Inline Styles

Using Document Style Sheets

Creating Global Style Sheet Files

Overriding Global Style Sheets for Local Instances
Creating a Drop Cap with Style Sheets
Customizing the Appearance of the First Line of Text
Applying a Special Style to the First Line of Every Element on the Page
Applying a Special Style to All Links

Accessing Style Sheet Settings

Manipulating Style Sheet Settings

Hiding an Object in JavaScript

Displaying an Object in JavaScript

Detecting the Window Size

Forcing Capitalization with Style Sheet Settings
Detecting the Number of Colors

Adjusting Padding with CSS

Part 8: Dynamic User Interaction

Task 197

: Creating a Simple Pull-Down Menu
Task 198:
Task 199:
Task 200:
Task 201.:
Task 202:
Task 203:
Task 204:

Creating Two Pull-Down Menus

Detecting and Reacting to Selections in a Pull-Down Menu
Generating a Drop-Down Menu with a Function

Placing Menu Code in an External File

Inserting a Prebuilt Drop-Down Menu

Creating a Floating Window

Closing a Floating Window

348
350
352
354
356
358
360
362
364
366
368
370
372
374
376
378
380
382
384
386
388
390
392
394
396
308
400
402
404

407
408
410
412
414
416
418
420
422



Contents xvii
Task 205: Resizing a Floating Window 424
Task 206: Moving a Floating Window 426
Task 207: Changing the Content of a Floating Window 428
Task 208: Detecting Drag and Drop 430
Task 209: Moving a Dragged Object in Drag and Drop 432
Task 210: Changing Cursor Styles 434
Task 211: Determining the Current Scroll Position 436
Task 212: Creating an Expanding/Collapsing Menu 438
Task 213: Creating a Highlighting Menu Using Just Text and CSS—No JavaScript 440
Task 214: Creating a Highlighting Menu Using Text, CSS, and JavaScript 442
Task 215: Placing Content Offscreen 444
Task 216: Sliding Content into View 446
Task 217: Creating a Sliding Menu 448
Task 218: Auto-Scrolling a Page 450

Part 9: Handling Events 453
Task 219: Responding to the onMouseOver Event 454
Task 220: Taking Action When the User Clicks on an Object 456
Task 221: Responding to Changes in a Form’s Text Field 458
Task 222: Responding to a Form Field Gaining Focus with onFocus 460
Task 223: Taking Action When a Form Field Loses Focus with onBlur 462
Task 224: Post-Processing Form Data with onSubmit 464
Task 225: Creating Code to Load When a Page Loads with onlL.oad 466
Task 226: Executing Code When a User Leaves a Page for Another 468
Task 227: Taking Action When a User Makes a Selection in a Selection List 470

Part 10: Bookmarklets 473
Task 228: Downloading and Installing Bookmarklets 474
Task 229: Checking Page Freshness with a Bookmarklet 476
Task 230: Checking for E-mail Links with a Bookmarklet 478
Task 231: E-mailing Selected Text with a Bookmarklet in Internet Explorer 480
Task 232: E-mailing Selected Text with a Bookmarklet in Netscape 482
Task 233: Displaying Images from a Page with a Bookmarklet 484
Task 234: Changing Background Color with a Bookmarklet 486
Task 235: Removing Background Images with a Bookmarklet 488
Task 236: Hiding Images with a Bookmarklet 490
Task 237: Hiding Banners with a Bookmarklet 492
Task 238: Opening All Links in a New Window with a Bookmarklet 494
Task 239: Changing Page Fonts with a Bookmarklet 496



xviii

JavaScript in 10 Simple Steps or Less

Task 240:
Task 241.:
Task 242:
Task 243:
Task 244

Highlighting Page Links with a Bookmarklet

Checking the Current Date and Time with a Bookmarklet
Checking Your IP Address with a Bookmarklet

Searching Yahoo! with a Bookmarklet in Internet Explorer
Searching Yahoo! with a Bookmarklet in Netscape

Part 11: Cross-Browser Compatibility and Issues

Task 245:
Task 246:
Task 247:
Task 248:
Task 249:
Task 250:
Task 251.:
Task 252:
Task 253:
Task 254:
Task 255:
Task 256:

Task 257

Detecting the Browser Type

Detecting the Browser Version

Browser Detection Using Object Testing

Creating Browser Detection Variables

Dealing with Differences in Object Placement in Newer Browsers
Creating Layers with the div Tag

Controlling Layer Placement in HTML

Controlling Layer Size in HTML

Controlling Layer Visibility in HTML

Controlling Layer Ordering in HTML

Changing Layer Placement and Size in JavaScript
Changing Layer Visibility in JavaScript

: Changing Layer Ordering in JavaScript
Task 258:
Task 259:
Task 260:
Task 261.:
Task 262:
Task 263:
Task 264:
Task 265:
Task 266:
Task 267:
Task 268:

Fading Objects

Creating a Page Transition in Internet Explorer
Installing the X Cross-Browser Compatibility Library
Showing and Hiding Elements with X
Controlling Stacking Order with X

Changing Text Color with X

Setting a Background Color with X

Setting a Background Image with X
Repositioning an Element with X

Sliding an Element with X

Changing Layer Sizes with X

Appendix A: JavaScript Quick Reference

Appendix B: CSS Quick Reference

Index

498
500
502
504
506

509
510
512
514
516
518
520
522
524
526
528
530
532
534
536
538
540
542
544
546
548
550
552
554
556

559

593

601



Introduction

ince the mid-1990s when Netscape introduced version 2 of its flagship Netscape Navigator browser,

'JavaScript has been part of the Web development landscape. Providing a mechanism to implement
dynamic interactivity in the browser, without connecting to the server, JavaScript is at the core of the
Dynamic HTML model, which allows today’s modern browsers to host sophisticated applications and
user interfaces.

This book is a recipe book that provides you with quick, digestible examples of how to perform specific
tasks using JavaScript. These tasks range from simple tasks such as displaying dynamic output in the
browser window to complex tasks such as creating a dynamic, interactive menu system.

This book isn’t a tutorial in JavaScript. It is designed to be a useful reference when you are actively
engaged in building your Web applications and need quick answers to the question “How do I do this in
JavaScript?” For most tasks of low and medium complexity, you will likely find an example in this book.
Completing complex tasks can often be achieved by combining more than one sample tasks from the
book.

tip

If you don’t have any experi-
ence with JavaScript, you will
probably want to supplement
this book with a tutorial intro-
duction to programming in
JavaScript. For instance, you
might consider JavaScript for
Dummies by Emily A. Vander
Veer (John Wiley & Sons,
0-7645-0633-1).

About the Book
This book is divided into 11 parts:

Part 1: JavaScript Basics

This part provides tasks that illustrate some fundamental JavaScript techniques and skills. If you have
never used JavaScript before, this part is for you. It provides examples that illustrate the basics of creating
scripts and using JavaScript.

Part 2: Outputting to the Browser

This part covers some core techniques for using JavaScript to generate dynamic output to the browser
window, including outputting dynamic values such as dates.



XX JavaScript in 10 Simple Steps or Less

Part 3: Images and Rollovers

Using JavaScript, you can manipulate images, producing effects such as rollover effects and random slide
shows. The tasks in this part illustrate techniques for working with images from JavaScript.

Part 4: Working with Forms

Forms involve more than just submitting data to the server. This part illustrates how to create dynamic
client-side forms in the browser and to build forms that work with the user without contacting the server.

Part 5: Manipulating Browser Windows

This part provides tasks that illustrate the creation and closing of windows, how to manage the attributes
of those windows, and how to work with frames. All these features are key to developing sophisticated
user interfaces with JavaScript.

Part 6: Manipulating Cookies

Normally, cookies are created by your server and sent to the browser for storage. The browser then sends
them back to the server when the user connects to that server. Now with JavaScript, you can create cook-
ies and access them later without any interaction with the server.

Part 7: DHTML and Style Sheets

JavaScript is part of a threesome that forms Dynamic HI'ML. The other parts are the Domain Object
Model and cascading style sheets. The tasks in this part show you how to work with the DOM and style
sheets.

Part 8: Dynamic User Interaction

This part provides tasks that illustrate some of the most popular uses of JavaScript for dynamic user
interaction—from creating pull-down menus to producing floating windows and handling drag-and-drop
user interaction.

Part 9: Handling Events

JavaScript is an event-driven scripting language. This means you don’t create linear programs but instead
can write your programs to respond to events. Events might be the user clicking on a button or the com-
pletion of a task by the browser, such as completing loading of the current document.

Part 10: Bookmarklets

Bookmarklets are an interesting application of JavaScript that combines JavaScript with the bookmarks
or favorites feature of browser. Bookmarklets are short, self-contained JavaScript scripts that perform
some useful task that you can add to your favorites or bookmarks and then run at any time by selecting
the relevant favorite or bookmark.



Introduction xxi

Part 11: Cross-Browser Compatibility and Issues

As JavaScript has become more advanced and its features have expanded, browser compatibility has
become an issue. As would be expected, different browser vendors have different ideas about the right
way to do things in their implementations of JavaScript. The result is a plethora of browsers with subtle
differences in the way JavaScript works. The tasks in this part provide you with some techniques for
handling these browser differences in your applications.

The appendices provide you quick references to JavaScript and cascading style sheets you can consult
in developing your applications when you need reminders of the correct property, method, or style
attribute name.

Finally, the complete source code for each task can be found on the companion Web site at www.wiley.
com/10stepsorless. This makes it easy for you to try the code illustrated in the task or adapt the code for
your Own purposes.

Conventions Used in this Book

As you go through this book, you will find a few unique elements. We’ll describe those elements here so
that you’ll understand them when you see them.

Code

If a single line of code is too long to appear as one line in the printed book, we’ll add the following sym-
bol to indicate that the line continues: O

Text You Type and Text on the Screen
Whenever you are asked to type in text, the text you are to type appears in bold, like this:

Type in this address: 111 River Street.

When we are referring to URLs or other text you’ll see on the screen, we’ll use a monospace font,

like this:

Check out www.wiley.com.

Icons

A number of special icons appear in the margins of each task to provide additional information you might
find helpful.

note tlp caution cross-reference

The Note icon is used to provide TheTip icon is used to point out The Caution icon is used to alert Although this book is divided

additional information or help in an interesting idea or technique you to potential problems that into tasks to make it easy to find

working in JavaScript. that will save you time, effort, you might run into when working exactly what you're looking for,
money, or all three. in JavaScript. few tasks really stand completely

alone. The Cross-Reference icon
provides us the opportunity to
point out other tasks in the book
you might want to look at if
you're interested in this task.






Part 1:

JavaScript Basics

Task 1:
Task 2:
Task 3:
Task 4:
Task 5:
Task 6:
Task 7:
Task 8:
Task 9:

Task 10:
Task 11:
Task 12:
Task 13:
Task 14:
Task 15:
Task 16:
Task 17:
Task 18:
Task 19:
Task 20:
Task 21:
Task 22:
Task 23:
Task 24:
Task 25:
Task 26:
Task 27:
Task 28:
Task 29:
Task 30:
Task 31.:
Task 32:
Task 33:
Task 34:
Task 35:
Task 36:
Task 37:
Task 38:
Task 39:
Task 40:
Task 41.:
Task 42:
Task 43:

Creating a script Block

Hiding Your JavaScript Code

Providing Alternatives to Your JavaScript Code
Including Outside Source Code

Commenting Your Scripts

Writing a JavaScript Command

Temporarily Removing a Command from a Script
Using Curly Brackets

Writing Output to the Browser

Creating a Variable

Outputting a Variable

Creating a String

Creating a Numeric Variable

Performing Math

Concatenating Strings

Searching for Text in Strings

Replacing Text in Strings

Formatting Strings

Applying Multiple Formatting Functions to a String
Creating Arrays

Populating an Array

Sorting an Array

Splitting a String at a Delimiter

Calling Functions

Alerting the User

Confirming with the User

Creating Your Own Functions

Passing an Argument to Your Functions
Returning Values from Your Functions

Passing Multiple Parameters to Your Functions
Calling Functions from Tags

Calling Your JavaScript Code after the Page Has Loaded
Using for Loops

Testing Conditions with 1 f

Using Short-Form Condition Testing

Looping on a Condition

Looping through an Array

Scheduling a Function for Future Execution
Scheduling a Function for Recurring Execution
Canceling a Scheduled Function

Adding Multiple Scripts to a Page

Calling Your JavaScript Code after the Page Has Loaded
Check If Java Is Enabled with JavaScript




- Part 1

Creating a script Block

JavaScript is a dynamic scripting language that allows you to build interactivity
into otherwise static HT'ML pages. This is done by embedding blocks of
JavaScript code almost anywhere in your Web page.

"To make this work, blocks of JavaScript code are delineated by opening and clos-
ing script tags:

<script ...>
JavaScript code goes here
</script>

The script tag takes one important attribute: language. This attribute speci-
fies what scripting language you are using. Typically, its value will be either
JavaScript or JavaScriptl.0, JavaScriptl.1, JavaScriptl.2, and so
on. By specifying a specific JavaScript version number, you indicate to the
browser this script can only run on a browser that supports the specified version
of JavaScript. Without that, every JavaScript-capable browser will assume the
script is one it should try to run.

For instance, the following is an example of a complete script tag:

<script language="JavaScript”>
JavaScript code goes here
</script>

The following steps outline how to create a simple HTML document with a sin-
gle embedded script block. The script is responsible for outputting the word
“Hello” to the user’s browser:

1. Open a new HTML document in your preferred HI'ML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Inserta script block in the body of the document:
<body>

<script>

</script>
</body>



JavaScript Basics

4. Specify JavaScript as the language for the script tag: Task 1

<body>
<script language="JavaScript”>

</script>
</body>

5. Place any JavaScript code in the script block so that the final code
looks like Listing 1-1.

<body>
<script language="JavaScript”>

document .write(“Hello”) ;

</script>
</body>

Listing 1-1: Creating a script block.

6. Save the file.

7. Open the file in your browser. You should see the word “Hello” in
your browser, as in Figure 1-1.

S ———" |
i_t! I__|J1'-' [ 2 7

Figure 1-1: Script code can be placed anywhere in your document, including in
the body of the document.




- Part 1
Hiding Your JavaScript Code

ask 1 showed how to embed JavaScript code in your document. For instance,
the following embeds one line of JavaScript code in the body of an HTML

document:

<body>
<script language="JavaScript”>

document .write(“Hello”) ;

</script>
</body>

However, there is a fundamental problem with this code: If this page is opened in
a browser that doesn’t support JavaScript or if the user has disabled JavaScript in
his or her browser, the user may see the code itself, depending on the specific
browser he or she is using.

"To address this issue, you need to use HTML comments inside the script block
to hide the code from these browsers.

HTML comments work like this:

<!-- One or more lines of comments go here -->
Used in the context of a JavaScript script, you would see the following:

<body>
<script language="JavaScript”>

<!--
document .write(“Hello”) ;

/] —=>
</script>
</body>

The following steps show how to create a script block in the body of a document
that includes these comments:

1. Open a new HTML document in your preferred HI'ML or text editor.
2. Create the body of the document with opening and closing body tags:
<body>
</body>
3. Inserta script block in the body of the document:

<script>

</script>



JavaScript Basics

4. Specify JavaScript as the language for the script tag: Task 2

<script language="JavaScript”>

5. Place opening and closing HTML comments in the script block:

<!--

/] ==>

6. Place any JavaScript code in the script block so that the final code
looks like Listing 2-1.

<body>
<script language="JavaScript”>
<!--

document .write (“Hello”) ;
/] —=>

</script>
</body>

Listing 2-1: Creating a script block.

7. Save the file.

8. Open the file in a browser that supports JavaScript. You should see
the word “Hello” in your browser. Open it in a browser that doesn’t
support JavaScript, and you should see nothing, as in Figure 2-1.

re Shell

ty ) £

="' L ack.
: Left to go ba

1 2! for ac
ck .

0 move, L' Lo
to move, Right to follow a link

Arrow keys: Up and Dovm

from display.




Task

- Part 1

Providing Alternatives to Your
JavaScript Code

In Task 2 you saw how to hide JavaScript code from non-JavaScript browsers by
using HTML comments. The result is that browsers that don’t support
JavaScript see nothing at all where the script block normally would be. However,
there are cases where the purpose of the JavaScript code is essential to the page
and users of non-JavaScript capable browsers need to be told that they are miss-
ing this vital part of the page.

Luckily, there is a solution to this: the noscript tag. The noscript tag allows
you to specify HTML to display to the browser only for browsers that don’t sup-
port JavaScript. If a browser supports JavaScript, it will ignore the text in the
noscript block.

"To use this, you simply place any HTML for non-JavaScript browsers between
opening and closing noscript tags. The following steps show how to embed a
script in the body of a document and provide alternative HTML to display for
non-JavaScript browsers:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Insert a script block in the body of the document:
<script>
</script>

4. Specify JavaScript as the language for the script tag:
<script language="JavaScript”>

5. Place opening and closing HTML comments in the script block:

<!--

/]o==>



JavaScript Basics

6.

10.

Place any JavaScript code in the script block:

document .write(“Hello”) ;

Add a noscript block immediately after the script block:
<noscript>

</noscript>

In the noscript block, place any text to display to the non-
JavaScript-capable browser:

<noscript>
Hello to the non-JavaScript browser.

</noscript>

Save the file.

Open the file in a browser that supports JavaScript. You should see
the word “Hello” in your browser. Open it in a browser that doesn’t
support JavaScript, and you should see the alternate message, as in
Figure 3-1.

Hello To the non-JavaScript browser.

i 12! for

0 move, b, ‘gl Lo
to move, Right to follow a link

ty ) £

="' L ack.
: Left to go ba

ac
ck .

Arrow keys: Up and Dovm

Task




Task

AT

- Part 1

Including Outside Source Code

s you begin to work more extensively with JavaScript, you will likely find that

there are cases where you are reusing identical JavaScript code on multiple
pages of a site. For instance, you might be creating a dynamic menu common to
all pages in JavaScript.

In these cases, you don’t want to be maintaining identical code in multiple
HTML files. Luckily, the script tag provides a mechanism to allow you to
store JavaScript in an external file and include it into your HTML files. In this
way you can build and maintain one JavaScript file containing the common code
and simply include it into multiple HTML files.

"This is achieved using the src attribute of the script tag, which allows you to
specify a relative or absolute URL for a JavaScript file, as in the following:

<script language="JavaScript” src="filename.js"></script>

The following example uses this technique to include an external JavaScript file
in an HTML document:

1. Inyour editor, create a new file that will contain the JavaScript file’s
code.

2. In this file, enter any JavaScript code you want included in the
external JavaScript file:

// JavaScript Document

document .write (“Hello”) ;
3. Save the file as 4a. js and close the file.
4. In your editor, create a new file that will contain the HTML file.
5. Create the body of the document with opening and closing body tags:

<body>

</body>

6. In the body of the document, create a script block:

<body>
<script></script>
</body>



JavaScript Basics -

7. Specify JavaScript in the language attribute of the script tag: Task A

<body>
<script language="JavaScript”></script>
</body>

8. Use the src attribute of the script tag to include the JavaScript file
created earlier in Steps 1 to 3:

<body>
<script language="JavaScript” src="4a.js”></script>
</body>

9. Save the file and close it.

10. Open the HTML in your browser. The word “Hello” should appear
in the browser window, as illustrated in Figure 4-1.

Figure 4-1: Including an external script file.




- Part 1

Commenting Your Scripts

11 the script examples seen in the previous tasks have been short. At most

they have been a couple of lines long. However, as your skills advance, you
will likely build long, complicated scripts. To ensure that your scripts can be
understood by other developers and also to help remind you of your own think-
ing when you return to your code after a period of time, you should insert com-
ments into the code that explain why the code is designed the way it is.

JavaScript provides two types of comments:

* Single-line comments that start anywhere in the line and continue to
the end of the line. Therefore, both of the following are valid single-

line comments:

// This is a comment
document.write(“Hello”); // This is a comment

*  Multiline comments that start with /* and end with */. The follow-
ing is an example of a multiline comment:

/*
All of this
is a comment
*/

You can include as many or as few comments as you like in your JavaScript code.
The following example builds a simple HTML page with a JavaScript script con-
taining two comments:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>
3. Insert a script block in the body of the document:
<script>
</script>

4. Specify JavaScript as the language for the script tag:

<script language="JavaScript”>




JavaScript Basics -

5. Place any JavaScript code in the script block: Task 5

document .write(“Hello”) ;

6. Add a single-line comment before the document . write command:

// This is a one-line comment

document .write(“Hello”) ;

7. Add a multiline comment after the document .write command so
that the final script looks like Listing 5-1.

<body>
<script language="JavaScript”>

// This is a one-line comment
document .write(“Hello”) ;
/*
This is a multiline
comment

*/

</script>
</body>

Listing 5-1: Using comments.

8. Save the file.

9. Open the file in your browser. You should see the word “Hello” in
your browser, as in Figure 5-1.

.ﬂtml M

H:\Books w0142 himl

[gibene [ 11 [y Compuer
Figure 5-1: Only JavaScript code that is not part of a comment is executed.




- Part 1

Writing a JavaScript Command

n the previous tasks you have seen examples of JavaScript commands. All

JavaScript scripts are made up of a series of commands. In its most basic form, a
command is some set of JavaScript code ending with a semicolon. For instance,
all the following could be considered commands:

var a = “Yes”;
document .write(“Hello”) ;
result = window.confirm(a) ;

You can string these commands together in pretty much any way:

* Line-by-line:

var a = “Yes”;
document .write(“Hello”) ;
result = window.confirm(a) ;

®  On the same line:

var a = “Yes”; document.write(“Hello”); result = :)
window.confirm(a) ;

* Any combination:

var a = “Yes”; document.write(“Hello”);
result = window.confirm(a) ;

The following task illustrates a script with three commands:

1. Open a new HTML document in your preferred HT'ML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Inserta script block in the body of the document:

<script>

</script>

4. Specify JavaScript as the language for the script tag:

<script language="JavaScript”>

5. Place opening and closing HI'ML comments in the script block:

<!--

/] ==>



JavaScript Basics

6. Create the first command in the script block. Make sure the com-
mand ends with a semicolon:

document .write (“Hello”) ;
7. Create the second command, ending with a semicolon:

document .write (“Hello”) ;
document .write(“ there”);

8. Finally, add the third command to the script so that the final page
looks like Listing 6-1.

<body>
<script language="JavaScript”>
<!--

document .write (“Hello”) ;
document .write(“ there”);
document .write(“.”);

/] —=>
</script>
</body>

Listing 6-1: Placing three commands in a script.

9. Save the file.

10. Open the file in a browser that supports JavaScript. You should see
the phrase “Hello there.” in your browser, as in Figure 6-1.

Figure 6-1: The three commands ran in sequence.

Task




- Part 1

Temporarily Removing a Command
from a Script

SOmetimes when you are working on some particularly complicated JavaScript
code or are facing a bug that you just can’t locate, you need to remove lines
of code one at a time until you identify the line of code that is causing you grief.

However, you don’t want to really delete the line, because once you’ve identified
and fixed the problem, you will need to re-create any lines you deleted. That’s
where comments come in.

By way of example, in the following code, the second line will not be executed
because the document .write command is after the double slash:

var myVariable = “Hello”;
//document .write (“Hello”) ;

In fact, if this code alone were executed by the browser, nothing would be dis-
played, since the only command for outputting anything to the browser is com-
mented out.

The following task starts with an existing script and shows the effects of com-
menting out portions of the script. This task starts with the script from Task 6.

1. Open the script from Task 6.

2. Comment out the second command by placing a double slash in
front of it:

document .write(“Hello”) ;
// document.write(“ there”);
document .write(™.”);

3. Save the file and open it in a browser. You should see just the word
“Hello .” as in Figure 7-1. Because of the comment, the second com-
mand will not execute.

4. Continue editing the file, and comment out the first command as

well:
// document .write(“Hello”) ;
// document.write(“ there”);

document.write(™.”) ;



JavaScript Basics

Task 1

| I wer
Figure 7-1: The second command is commented out.

5. Save the file and open it in a browser. You should see just a dot, as in
Figure 7-2.

&7 H:\Books\wiley\ 0147 hired

[Epone [ [T Dy Computer
Figure 7-2: Two commands commented out.

6. Continue editing the file, and remove the two double slashes. Place
/* before the first command and */ after the last command:

/* document .write(“Hello”) ;
document .write (" there”);
document.write(“.”);*/

7. Save the file and open it in a browser. You should see an empty win-
dow, because all the commands are now contained in a multiline
comment.




- Part 1
Using Curly Brackets

In addition to simple commands that end with a semicolon, such as those you
saw in Task 7, JavaScript supports the notion of a compound command. A comz-
pound command is a group of commands that together are treated as a single com-
mand and can be used wherever JavaScript calls for a single command.

As an example, consider a condition in JavaScript. You build a conditional opera-
tion in JavaScript as follows:

if (condition) command

"The basic logic of this statement is this: If the condition is true, then execute the
command.

For the command, you have two choices: Use a single command ending in a
semicolon or use multiple commands bundled together as one.

With a single command, you might have the following:
if (condition) document.write(“Hello”);
Here, if the condition is true, then document .write is executed.

Similarly, the following example groups together three document .write com-
mands as a single compound command:

if (condition) {
document .write(“Hello”) ;
document .write(“ there”);
document .write(“.");

The following example shows how to build a compound command using curly
brackets:

1. Open a new HT'ML document in your preferred HT'ML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>
3. Insert a script block in the body of the document:

<script>

</script>



JavaScript Basics

10.

Specify JavaScript as the language for the script tag:
<script language="JavaScript”>

Place opening and closing HT'ML comments in the script block:

<!--

/] —=>

Create the first command in the script block. Make sure the com-
mand ends with a semicolon:

document.write(“Hello”) ;
Create the second command, ending a semicolon:

document .write(“Hello”) ;
document.write(“ there”);

Finally, place opening and closing curly brackets before and after the
two commands so that the final script looks like Listing 8-1:

<body>
<script language="JavaScript”>

<!--

{
document .write(“Hello”) ;
document .write (™ there”);
}
/] —=>
</script>
</body>

Listing 8-1: A compound command built out of two commands.

Save the file.

Open the file in a browser that supports JavaScript. You should see
the phrase “Hello there” in your browser.

Task




- Part 1
Writing Output to the Browser

ne of the most practical aspects of JavaScript is the ability to output text and

HTML into the browser output stream from within your scripts so that the
text and HTML appears in the browser as if it were part of the actual HTML of
the document.

The key to this is the document . write method. The document.write
method outputs any text or HTML contained in its argument to the browser.
For instance, if you issue the following document .write command:

document .write (“<strong>Hello</strong>") ;

the browser receives the following HT'ML and renders it:
<strong>Hello</strong>

An important point to remember is that document . write does not output any
end-of-line-type characters after the text it displays. This means that if you have
two document .write commands in a row, the output from those two com-
mands is right next to each other. To illustrate this, consider the following pair of

commands:

document .write(“Hello”) ;
document .write (“Good-bye”) ;

You might be inclined to think this will result in the following being sent to the
browser:

Hello
Good-bye

In reality, though, this is not the case. The following is sent:

HelloGood-bye

"To solve this problem, the document object also includes the writeln method.
This method outputs the text followed by a new-line character. Consider the fol-

lowing JavaScript code:

document .writeln(“a”) ;
document .write(“b) ;

This would be sent to the browser as:



JavaScript Basics -

The following task illustrates the use of the document .write and Task 9

document .writeln methods:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags, and inside it specify pre tags:

<body><pre>
</pre></body>

3. Insert a script block in the body of the document:

<script>
</script>
4. Specify JavaScript as the language for the script tag:
<script language="JavaScript”>

5. Place opening and closing HTML comments in the script block:

<!--

/)==>

6. Create a series of document .write and document .writeln com-

mands in the script block. The final page should look like Listing 9-1.

<body><pre>
<script language="JavaScript”>

<!--

document .write(“He”) ;
document .writeln(“1lo”) ;
document .write(“there”) ;

/] —=>
</script>
</pre></body>

Listing 9-1: Using document .write and document .writeln.

7. Save the file.

8. Open the file in a browser that supports JavaScript. You should see
the phrase “Hello there” in your browser.




- Part 1

Creating a Variable

key programming concept is the notion of a variable. Like many other pro-

gramming languages, JavaScript has variables. Variables can be thought of as
named containers. You can place data into these containers and then refer to the
data simply by naming the container. You create a variable by a simple assign-
ment operation:

variable name = some data;

For instance, you might create a variable named day and assign the value
Tuesday to it:

day = “Tuesday”;

As a matter of good programming practice, you will also want to declare your
variables the first time you use them. Declaring a variable helps the browser effi-
ciently and accurately process and manage your variables. To declare a variable,
simply use the JavaScript statement var:

var myVariable;

This declares a variable named myvariable but doesn’t assign any values to it.
You can proceed to assign a value to it in a subsequent JavaScript command:

var myVariable;
myVariable = “some value”;

If you want to declare a variable and assign a value to it right away, you can use a
shortcut to do this in one step:

var myVariable = “some value”;

You can also assign values to variables multiple times and each time the value of
the variable is replaced with the new value. For instance, consider the following:

var day = “Tuesday”;
day = “Thursday”;
day = “Monday”;

At the end of this code, the value of the day variable is Monday.

The following steps show the creation of an actual variable in the header of an
HTML document:

1. Create a new HTML document in your editor.



JavaScript Basics

2. In the header of the document, create a script block:

<head>
<script language="JavaScript”>

</script>
</head>

3. In the script block, create the variable named myvariable and
assign a value to it:

var myVariable = “Hello”;

4. Create a body for the document to display any HTML you want to
present in the browser. The final page looks like Listing 10-1.

<head>
<script language="JavaScript”>

var myVariable = “Hello”;

</script>
</head>

<body>
We created a variable in the header.
</body>

Listing 10-1: Creating variables.

5. Save the file and close it.

6. Open the file in a browser. You should only see the body of the docu-
ment, as illustrated in Figure 10-1.

& H:\Bockshwiky V0141 Dbeml

We created a variable in the header.

| T
Figure 10-1: Creating a variable in JavaScript does not cause any output to be directed
to the browser.




- Part 1
Outputting a Variable

ariables, introduced in Task 10, are containers that hold values. You can use
them wherever you would normally use the same values. A perfect example of
this is text strings.

You can use the document . write method to output strings of text to the
browser, for instance. There is no reason why a string of text could not be
assigned to a variable and then the variable be used to output that text. You just
use the variable in place of the string of text as the argument to the

document .write method:

document .write (myVariable) ;
"This will output the contents of the variable myvariable.
The following example shows how to set a variable and the output it in a script:

1. Open a new HT'ML document in your preferred HT'ML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:
<body>
<script>
</script>
</body>
4. Specify JavaScript as the language for the script tag:
<body>
<script language="JavaScript”>
</script>
</body>
5. Place opening and closing HT'ML comments in the script block:

<body>
<script language="JavaScript”>
<!--

/] —=>
</script>
</body>



JavaScript Basics -

6. Create a variable named myvariable and assign a text string to it:

<body>
<script language="JavaScript”>

<!--
var myVariable = “Hello”;

/] —=>
</script>
</body>

7. Use document .write to output the content of the variable so that
the final code looks like Listing 11-1.

<body>
<script language="JavaScript”>
<!--

var myVariable = “Hello”;
document .write (myVariable) ;

/] ==
</script>
</body>

Listing 11-1: Qutputting a variable.

8. Save the file.

9. Open the file in a browser that supports JavaScript. You should see
the word “Hello” in your browser, as in Figure 11-1.

[Ebone [ | [y Computer
Figure 11-1: The contents of the variable, not its name, are output.




- Part 1
Creating a String

hen working with data and variables in JavaScript, you need to be aware of
the data types you are using. Different data types are managed in different
ways, and it is important to understand a few fundamental data types.

One such data type is a string. A string refers to any sequence of text that can
contain letters, numbers, and punctuation. When specifying a text string in
JavaScript, you need to enclose the string in single or double quotes. For
instance, the following are valid strings:

“Hello there”
‘My Phone number is 123-456-7890°

But the following are not valid text strings:

“Hello’
What is your name?

In the first case, the opening quote is a double quote, but the closing one is a sin-
gle quote; you can use either single or double quotes, but the opening and clos-
ing ones must match.

You use these strings in different contexts—for instance, as arguments to a func-
tion or method:

document.write(“"This is a string”);

You also use them as values assigned to variables:

var avVar = “This is a string”;

In both these cases, failure to enclose the string in quotes will actually cause the
browser to display an error, because it will treat the string as JavaScript code and

the text in the string is not valid JavaScript code.

The following task shows the creation of a variable containing a string value in a
script:

1. Open a new HI'ML document in your preferred HTML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>



JavaScript Basics

3. Insert a script block in the body of the document:
<body>

<script>

</script>
</body>

4. Specify JavaScript as the language for the script tag:
<body>

<script language="JavaScript”>

</script>
</body>

5. Place opening and closing HT'ML comments in the script block:

<body>
<script language="JavaScript”>
<!--

/] —=>
</script>
</body>

6. Create a variable named myvariable and assign a text string to it:

<body>
<script language="JavaScript”>
<!--

var myVariable = “Hello”;

/] ==>
</script>
</body>

7. Save the file and close it.




- Part 1

Creating a Numeric Variable

hen working with data and variables in JavaScript, you need to be aware of
the data types you are using. Different data types are managed in different
ways, and it is important to understand a few fundamental data types.

One such data type is a number. A number refers to any number, positive or nega-
tive, that contains only numbers, minus signs, and decimal points. When specify-
ing a number in JavaScript, you should not enclose the string in single or double
quotes; if you do, it will be treated as a text string and not a number. For
instance, the following are valid numbers:

100
-152.56

But the following are not valid text strings:

“250.3"
ab32

In the first case, the quotes make the value a text string, and in the second, the
letters mean this is not a valid numeric value.

You use these numbers in different contexts—for instance, as arguments to a
function or method:

document .write(375) ;
You also use them as values assigned to variables:
var aVar = 375;

The following task shows how to create a variable containing a numeric value in
a script:

1. Open a new HTML document in your preferred HI'ML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>



JavaScript Basics

3.

Insert a script block in the body of the document:
<body>

<script>

</script>
</body>

Specify JavaScript as the language for the script tag:
<body>

<script language="JavaScript”>

</script>
</body>

Place opening and closing HI'ML comments in the script block:

<body>
<script language="JavaScript”>
<!--

/] —=>
</script>
</body>

Create a variable named myVariable and assign a number to it:

<body>
<script language="JavaScript”>
<!--

var myVariable = 100;

/] ==>
</script>
</body>

Save the file and close it.




- Part 1
Performing Math

hen working with numeric values in JavaScript, you can perform mathemat-
ics with the numbers. Not only can you add, subtract, multiply, and divide
numbers, but you can also perform other advanced mathematical calculations.

The four basic mathematical operations are as follows:

e Addition: For instance, 10 + 20
¢ Subtraction: For instance, 20 — 10
®  Multiplication: For instance, 10 * 20

¢ Division: For instance, 20 / 10

In addition, you can build complex mathematical expressions using combinations
of these operations. For instance, the following expression subtracts 10 from the
result of 100 divided by 5:

100 / 5 - 10

You can override the order of operation with parentheses. Consider the following
mathematical expression:

100 /7 (5 - 10)
This will calculate the value of 100 divided by the result of subtracting 10 from 5.

There are two important points to note about these sorts of mathematical
expressions:

*  You can use them wherever JavaScript expects a single numeric value.
For instance, you can assign the results of an expression to a variable:

var myVariable = 100 / 5;

*  You can use variables containing numeric values anywhere in your
mathematical expressions in place of actual numbers. For instance, if
thisvVar is a variable with the value 5, then the results of the follow-
ing JavaScript code are the same as the preceding example:

var myVariable = 100 / thisVar;

The following task calculates and displays the result of adding 100 and 200
through the use of variables and mathematical operations:

1. Open a new HTML document in your preferred HI'ML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>



JavaScript Basics

3. Insert a script block in the body of the document:

<script language="JavaScript”>

<!--

/] ==>
</script>
4. Create a variable named myvariable and assign the value 100 to it:

var myVariable = 100;

5. Create a second variable named anothervariable and assign the
value 200 to it:

var anotherVariable = 200;

6. Add the values of myvariable and anothervariable and assign
the results to a third variable named anothervariable:

var finalResults = myVariable + anotherVariable;

7. Display the results so that the final page looks like Listing 14-1:

<body>
<script language="JavaScript”>

<!--

var myVariable = 100;

var anotherVariable = 200;

var finalResults = myVariable + anotherVariable;
document .write (finalResults) ;

/] ==>
</script>
</body>

Listing 14-1: Performing mathematical operations.

8. Save the file and close it.

9. Open the file in a browser. You should see the number 300 displayed
in the browser.




- Part 1

Concatenating Strings

ith text strings you cannot perform mathematical operations like those

described for numbers in Task 14. The most common operation performed
with text strings is concatenation. Concatenation refers to the act of combining
two text strings into one longer text string. For instance, the following combines
the strings “ab” and “cd” into the combined string “abcd”:

wab” + “cd”

As with numeric mathematical operations, there are two points to note about
concatenation:

*  You can use concatenation wherever JavaScript expects a single string
value. For instance, you can assign the results of a concatenation to a
variable:

var myVariable = “ab” + “cd”;

*  You can use variables containing string values anywhere in your con-
catenation in place of actual strings. For instance, if thisvarisa
variable with the value “cd” then the results of the following
JavaScript code are the same as the preceding example:

var myVariable = “ab” + thisVar;

The following task concatenates two strings stored in variables and displays the
results:

1. Open a new HTML document in your preferred HT'ML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Insert a script block in the body of the document:

<script language="JavaScript”>

<!--

/] ===
</script>

4. Create a variable named myvariable and assign the value “Hello”
to it:

var myVariable = “Hello”;



JavaScript Basics -

5. Create a second variable named anothervariable and assign the Task 15

value “there” toit:

var anotherVariable = “there”;

6. Concatenate the values of myVariable and anothervariable,
along with a space between them, and assign the results to a third
variable named finalResults:

var finalResults = myVariable + “ “ + O
anotherVariable;

7. Display the results so that the final page looks like Listing 15-1.

<body>
<script language="JavaScript”>

<!--

var myVariable = “Hello”;
var anotherVariable = “there”;
var finalResults = myVariable + “ “ + anotherVariable;

document .write(finalResults) ;

//==>
</script>
</body>

Listing 15-1: Using concatenation.

8. Save the file and close it.

9. Open the file in a browser. You should see the string “Hello there”
displayed in the browser as in Figure 15-1.

Internet

& H:\Bockshwiky V01415 bml

Hello there

TE
Figure 15-1: Displaying the results of concatenation.




- Part 1

Searching for Text in Strings

hen working with text strings, sometimes you need to determine if a string
contains some specific substring, and if it does, you need to determine
where in the string that substring occurs.

For instance, if you have the string “what is happening here” and you
search for the substring “is”, you want to know that the string contains “is” but
also where “is” occurs. You can perform this type of search with the search
method of the string object.

To perform this search is simple. If *what is happening here” is stored in
the variable testvariable, you would search for “is” with the following:

testVariable.search(“is”) ;

This method returns a numeric value indicating the position in the string where
it found “is”. In this case, that position is 5.

The following task searches for a substring in another string stored in a variable
and displays the position where that substring is found:

1. Open a new HTML document in your preferred HT'ML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Inserta script block in the body of the document:

<script language="JavaScript”>
<!--

/] ===
</script>

4. Create a variable named myvariable and assign the value “Hello
there” toit:

var myVariable = “Hello there”;

5. Create a second variable named therePlace and assign the results
of searching for “there” to it:

var therePlace = myVariable.search(“there”);



JavaScript Basics -

6. Display the results of the search so that the final page looks like
Listing 16-1.

<body>
<script language="JavaScript”>
<!--

var myVariable = “Hello there”;
var therePlace = myVariable.search(“there”);
document .write (therePlace) ;

/] —=>
</script>
</body>

Listing 16-1: Searching for a substring.

7. Save the file and close it.

8. Open the file in a browser. You should see the number 6 displayed in
the browser as in Figure 16-1.

= [ [T [Emyc : _;
Figure 16-1: Displaying the results of searching for a substring.




- Part 1
Replacing Text in Strings

n Task 16 you saw that it is possible to search for text in strings. Sometimes,
though, you will want to search for, find, and replace text in a string. The
string object provides the replace method for just such purposes.

Consider a variable named thisVar containing the string “Today is
Monday”. You could search and replace “Monday” with “Friday” with the
following:

thisvVar.replace(“*Monday”, "Friday”) ;

When you use the replace method, the method returns a new string containing
the results of performing the replacement. The original string is not altered. For
instance, consider assigning the results of the replacement above to a new variable:

var newVar = thisVar.replace(“Monday”, ”"Friday"”) ;

In this case, thisvar will continue to contain *Today is Monday” but
newVar will contain “Today is Friday”.

The following task creates a variable and assigns text to it, replaces that text with
new text, and then displays the results in a browser:

1. Open a new HT'ML document in your preferred HT'ML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Inserta script block in the body of the document:

<script language="JavaScript”>

<!--

/] —=>
</script>

4. Create a variable named myvariable and assign the value “Hello
there” toit:

var myVariable = “Hello there”;



JavaScript Basics -
5. Create a second variable named newvariable and assign the results

of replacing “there” with “Arman” to it: Task 1 1

var newVariable = )
myVariable.replace(“there”, "Arman”) ;

6. Display the results of the search and replace so the final page looks
like Listing 17-1.

<body>
<script language="JavaScript”>
<!--

var myVariable = “Hello there”;

var newVariable = &)
myVariable.replace(“there”, "Arman”) ;

document .write (newVariable) ;

/] ==>
</script>
</body>

Listing 17-1: Search and replace in a string.

7. Save the file and close it.

8. Open the file in a browser. You should see the text “Hello Arman”
displayed in the browser as in Figure 17-1.

[gibone [ [ AMyCompuer
Figure 17-1: Displaying the results of searching for a substring and replacing it.




- Part 1
Formatting Strings

hen you create a text string in JavaScript, a string object is associated
with that string. The string object provides a series of methods you can
use to adjust the format of the string. This can be useful when you want to dis-
play a string and quickly apply some formatting to it. The methods are as follows:
* Dbig: Returns the string in big tags
* Dblink: Returns the string in blink tags
® bold: Returns the string in b tags
* fixed: Returns the string in tt tags (for fixed-width display)

* fontcolor: Returns the string in font tags with the color
attribute set to the color you specify as an argument

* fontsize: Returns the string in font tags with the size attribute
set to the size you specify as an argument

* italics: Returns the string in i tags
* small: Returns the string in small tags

* strike: Returns the string in strike tags (for a strikethrough
effect)

* sub: Returns the string in sub tags (for a subscript effect)
* sup: Returns the string in sup tags (for a superscript effect)
* toLowerCase: Returns the string with all lowercase characters

® toUpperCase: Returns the string with all upper case characters
Assuming you have assigned a string to a variable, you call these methods as follows:

variableName.big() ;
variableName. fontcolor (“red”) ;
variableName.toLowerCase() ;
etc.

The following task displays the same string using each of these methods:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>



JavaScript Basics

3. Insert a script block in the body of the document: Task 8
<script language="JavaScript”>
<!--
/] —=>
</script>

4. Create a variable named myvariable and assign the value “Hello
there” toit:

var myVariable = “Hello there”;

5. Use the document .write method to display the value of the variable
as altered by each of the formatting methods, as shown in Listing 18-1.

<body>

<script language="JavaScript”>

<!--
var myVariable = “Hello there”;
document .write (myVariable.big() + “<br>");
document .write (myVariable.blink() + “<br>");
document .write (myVariable.bold() + “<br>");
document.write (myVariable.fixed() + “<br>");
document .write (myVariable. fontcolor (“red”) + “<br>");
document .write (myVariable.fontsize(“18pt”) + “<br>");
document .write (myVariable.italics () + “<br>");
document .write (myVariable.small () + “<br>");
document .write (myVariable.strike() + “<br>");
document .write (myVariable.sub() + “<br>");
document .write (myVariable.sup() + “<br>");
document .write (myVariable.toLowerCase () + “<br>");
document .write (myVariable.toUpperCase() + “<br>");

/] =-=>

</script>

</body>

Listing 18-1: Using string formatting functions.

6. Open the file in a browser. You should see the text “Hello there” dis-
played once for each of the formatting methods.




- Part 1

Applying Multiple Formatting Functions
to a String

n Task 18, you saw how to apply formatting functions to a string manually.
However, you can apply multiple formatting if you want. An obvious way to do
this is by assigning the new string to a variable at each step of the way:

var firstString = “My String”;

var secondString = firstString.bold();

var thirdString = secondString.toLowerCase() ;
etc.

You can shortcut this by relying on the fact that each of these formatting meth-
ods returns a string that is an object that, in turn, has its own set of formatting
methods that can be called. This allows you to string together the functions like
this:

var firstString = “My String”;
var finalString = firstString.bold().toLowerCase () .fontcolor (“red”);

The end result of this is the following HTML stored in finalString:
<font color="red”><b>my string</b></font>

In the following task you take a string and apply bolding, italicization, coloring,
and sizing to it before displaying it:
1. Open a new HTML document in your preferred HTML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Insert a script block in the body of the document:

<script language="JavaScript”>

<!--

/]o==>
</script>

4. Create a variable named myvariable and assign the value “Hello
there” toit:

var myVariable = “Hello there”;



JavaScript Basics -

5. Apply bolding, italicization, coloring, and sizing to the string and
assign the results to newvariable:

var newVariable = )
myVariable.bold() .italics () .fontcolor (“blue”).fontsize)
(\\24ptll) ;

6. Use the document .write method to display the final string so that
the final page looks like Listing 19-1.

<body>
<script language="JavaScript”>

<!--

var myVariable = “Hello there”;

var newVariable = &)
myVariable.bold().italics () .fontcolor (“blue”) .fontsize )
(“24pt”);

document .write (newvVariable) ;

/] —=>
</script>
</body>

Listing 19-1: Applying multiple styles.

7. Open the file in a browser. You should see the text “Hello there” dis-
played with the formatting applied as in Figure 19-1.

Figure 19-1: Displaying a string with multiple formats applied.




- Part 1

Creating Arrays

In addition to simple data types such as text strings and numbers, JavaScript sup-
ports a more complicated data type known as an array. An array is a collection
of individual values grouped together. An array essentially contains a series of
numbered containers into which you can place values. Each container can con-
tain a string, a number, or any other data type.

You refer to containers in the array as arrayName [0], arrayName[1],
arrayName[2], and so on. Each of these individual containers can be manipu-
lated and used just like a regular variable. You can imagine an array as illustrated
in Figure 20-1; here you see a set of boxes where each box is numbered and each
box has something inside it. The box numbers are the indexes for each box, and
the value inside is the value of each array entry.

1 | Contents of element 1

2 | Contents of element 2

3 | Contents of element 3

4 | Contents of element 4
5 | Contents of element 5
° ®
° ®
° ®

Figure 20-1: Visualizing an array.
To create a new array, you create a new instance of the Array object:
var arrayName = new Array (number of elements) ;
The number of elements is just the initial number of elements in the array; you
can add more on the fly as you work with the array, but it is a good idea to initial-

ize the array with the likely number of elements you will use. The array is then
accessed through arrayName.



JavaScript Basics -

The following task creates an array in a script in the header of a document:

1. Open a new HTML document in your preferred HI'ML or text editor.

2. Create the head of the document with opening and closing head
tags:

<head>

</head>
3. Insert a script block in the head of the document:

<head>
<script language="JavaScript”>

<!--

/] —=>
</script>
</head>

4. Create a variable named myArray and initialize it as a new array with
five elements:

<body>
<script language="JavaScript”>
<!--

var myArray = new Array(5);

/] ==>
</script>
</body>

5. Save the file and close it.




- Part 1
Populating an Array

ask 21 showed you how to create an array. An array isn’t very useful, however,

unless you can populate its elements with values. You populate the elements
of an array by assigning values to the elements just as you assign values to normal
variables:

arrayName[0] = value 1;
arrayName[l] = value 2;
etc.

In addition, you can actually populate the array at the time you create it; instead
of specifying the number of elements to create in the array when you create it,
you can specify a comma-separated list of values for the elements of the array:

var arrayName = new Array(value 1, value 2, value 3, etc.)

The following task illustrates the creation of two arrays that will contain an iden-
tical set of five elements. The two arrays are created and populated using these
two different techniques.

1. Open a new HT'ML document in your preferred HTML or text
editor.

2. Create the head of the document with opening and closing head
tags:

<head>

</head>

3. Inserta script block in the head of the document:

<head>
<script language="JavaScript”>
<!--

/] ==>
</script>
</head>

4. Create a variable named myaArray and initialize it as a new array with
five elements:

var myArray = new Array(5);



JavaScript Basics

5. Assign values to the five elements: Task
myArray[0] = “First Entry”;
myArray[l] = “Second Entry”;
myArray[2] = “Third Entry”;
myArray[3] = “Fourth Entry”;
myArray[4] = “Fifth Entry”;

6. Create a second array named anotherArray and assign five values to
it at the time it is created. The final script should look like Listing 21-1.

<head>
<script language="JavaScript”>

<!--

var myArray = new Array(5);

myArray[0] = “First Entry”;
myArray[l] = “Second Entry”;
myArray[2] = “Third Entry”;
myArray[3] = “Fourth Entry”;
myArray[4] = “Fifth Entry”;

var anotherArray = new Array (“First Entry”, ”Second :)
Entry”, ”Third Entry”, ”Fourth Entry”,”Fifth Entry”);

//==>
</script>
</head>

Listing 21-1: Two methods for creating arrays.

7. Save the file and close it.




- Part 1
Sorting an Array

Once you have populated an array as outlined in Task 21, you might find it
useful to sort the elements in the array. Sometimes you will want to output
the elements of the array in the order in which they were created and added to
the array, but at others times you will want them sorted.

The array object provides a sort method that does just this: It returns a comma-
separated list of the elements in sorted order. Sorting is performed in ascending
order alphabetically or numerically as appropriate.

To use the method, simply call it:
arrayName.sort () ;

The following task creates an array with five elements and then displays the ele-
ments in sorted order:

1. Open a new HT'ML document in your preferred HT'ML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Insert a script block in the body of the document:

<script language="JavaScript”>

<!--

/]o==>
</script>

4. Create a variable named myArray, and initialize it as a new array
with five elements:

var myArray = new Array(5);

5. Assign values to the five elements:

myArray[0] = “z”;
myArray[l] = “c”;
myArray[2] = “d”;
myArray[3] = “a”;

myArray[4] = “q”;



JavaScript Basics

6. Use the document .write method and the sort method to output the

sorted list of elements so that the final script looks like Listing 22-1.

<body>

<!--

var myArray = new Array

myArray[0] = “z”;
myArray[l] = “c”;
myArray[2] = “d”;
myArray[3] = “a”;
myArray[4] = “q”;
document .write (myArray.

/] ==>

</script>

</body>

<script language="JavaScript”>

(5);

sort());

Listing 22-1: Displaying a sorted array.

Save the file and close it.

Open the file in a browser, and you should see a comma-separated
list of elements sorted in alphabetical order, as in Figure 22-1.

] H:\Booka wilay\ D122 bl

Figure 22-1: Displaying a sorted list of elem

ents from the array.

e 2




- Part 1
Splitting a String at a Delimiter

n programming, it is not uncommon to deal with data represented in delimited
lists. A delimited list is typically a string that contains a number of substrings
separated by a specific character; each of the substrings is an element in the list.

For instance, the following string has three elements separated by commas:
“First element, Second element,Third element”

The string object provides the split method, which you can use to split a
string into elements at a specified delimiter. These elements are then placed in an
array, and that array is returned by the method.

For instance, consider the following:

var thisVar = “First element, Second element,Third element”;
var anotherVar = thisVar.split(“,”);

anotherVar is now an array containing three elements.

The following task illustrates this by splitting a string containing a list into its
component elements and then outputting those elements from the resulting
array:

1. Open a new HTML document in your preferred HI'ML or text editor.

2. Create the body of the document with opening and closing body
tags:

<body>
</body>

3. Inserta script block in the body of the document:

<script language="JavaScript”>

<!--

/] —=>
</script>

4. Create a variable named myvariable and assign a comma-
separated text string to it:

var myVariable = “a,b,c,d”;



JavaScript Basics -

5. Use the split method to split the string at the commas and assign the
resulting array to the variable stringArray:

var stringArray = myVariable.split(“,”);

6. Use the document .write method to output the elements of the
array so that the final script looks like Listing 23-1.

<body>
<script language="JavaScript”>
<!--

var myVariable = “a,b,c,d”;
var stringArray = myVariable.split(“,”);

document.write(stringArray([0]) ;
document .write(stringArray([1]) ;

document .write

(
(
(stringArrayl[2]);
(

document .write(stringArray[3]);
/] —=>

</script>
</body>

Listing 23-1: Splitting a list into an array.

7. Save the file and close it.

8. Open the file in a browser, and you should see the text “abed”, as in
Figure 23-1.

] H:\Booka wilay\ 1423 bl

Figure 23-1: Displaying elements from an array built from a comma-separated list.




- Part 1

Calling Functions

In many tasks throughout the book, you will see examples of calling functions
or methods. A function is a self-contained procedure or operation that you

can invoke by name. In invoking it, you can provide data to the function (known
as arguments), and then the function, in turn, can return a result based on its
operations.

To call a function, you simply use the following form:
functionName (argument 1, argument 2, etc.);

If a function expects no arguments, you still need the parentheses:
functionName () ;

Also, if a function returns a value, you can use that function call wherever you
would use any other text or numeric value. For instance, you can assign the value
to a variable:

var variableName = functionName () ;

Similarly, you could use the results of one function as an argument to another

function:

functionlName (function2Name () ) ;

The following task calls the JavaScript Escape function and then displays the
results that are retuned in the browser:

1. Open a new HT'ML document in your preferred HT'ML or text
editor.

2. Create the body of the document with opening and closing body
tags:

<body>

</body>

3. Insert a script block in the body of the document:

<body>
<script language="JavaScript”>

<!--

/] —=>
</script>
</body>




JavaScript Basics

4. Call the Escape function and pass a text string as an argument.
Assign the string that is returned to the myVariable variable:

<head>
<script language="JavaScript”>

<!--
var myVariable = Escape(“This is a test.”);

/] ==>
</script>
</head>

5. Use the document .write method to output the value of
myVariable so that the final script looks like Listing 24-1.

<body>
<script language="JavaScript”>

<!--

var myVariable = Escape(“This is a test.”);
document .write (myVariable) ;

/] ==>
</script>
</body>

Listing 24-1: Escaping a text string.

6. Save the file and close it.

7. Open the file in a browser, and you should see the text string in its
URL-encoded representation as in Figure 24-1.

] H:\Booka wilay\ 01424, bl

Thas%200s%02 a4 20test.

Figure 24-1: A URL-encoded text string.




- Part 1
Alerting the User

he window object provides the alert method, which allows you to display a
simple dialog box containing a text message followed by a single button the
user can use to acknowledge the message and close the dialog box.

Figure 25-1 illustrates an alert dialog box in Microsoft Internet Explorer; Figure
25-2 shows the same dialog box in Netscape.

Figure 25-2: An alert dialog box in Netscape.
The following steps show how to display an alert dialog box:

1. Open a new HTML document in your preferred HI'ML or text editor.

2. Create the header of the document with opening and closing header
tags:

<head>

</head>




JavaScript Basics

3. Insert a script block in the header of the document:

<head>
<script language="JavaScript”>

<!--

/] —=>
</script>
</head>

4. Call the window.alert method to display a message in a dialog box:

<head>
<script language="JavaScript”>

<!--
window.alert (“Hello”) ;

/] —=>
</script>
</head>

5. Save the file and close it.

6. Open the file in a browser, and you should see a dialog box like the
one in Figure 25-3.

Figure 25-3: Displaying an alert dialog box.




- Part 1

Confirming with the User

In addition to the alert method discussed in Task 25, the window object
also provides the confirm method, which allows you to display a dialog
box containing a text message followed by two buttons the user can use to
acknowledge or reject the message and close the dialog box. Typically these
buttons are labeled OK and Cancel.

Figure 26-1 illustrates a confirmation dialog box in Microsoft Internet Explorer;
Figure 26-2 shows the same dialog box in Netscape.

Figure 26-2: A confirmation dialog box in Netscape.

The following steps show how to display a confirmation dialog box and then dis-
play the user’s selection in the browser:

1. Open a new HTML document in your preferred HI'ML or text editor.
2. Create the body of the document with opening and closing body tags:

<body>

</body>

3. Inserta script block in the body of the document:

<body>
<script language="JavaScript”>

<!--

/] —=>
</script>
</body>




JavaScript Basics -

4. Call the window. confirm method to display a message in a dialog
box; assign the selection of the user, which is returned by the
method, to the result variable:

<body>
<script language="JavaScript”>
<!--

var result = window.confirm(“Click OK to continue”) ;

/] ===
</script>
</body>

5. Save the file and close it.

6. Open the file in a browser, and you should see a dialog box like the
one in Figure 26-3.

1 H:\Bookawilay\ 1425 bl

Figure 26-3: Displaying a confirmation dialog box.

7. Ifyou click on OK, you should see “true” in the browser window as
in Figure 26-4.

Figure 26-4: Displaying the user’s selection in the browser window.




- Part 1

Creating Your Own Functions

N ot only does JavaScript have a large body of built-in functions and methods,
it also allows you to create your own functions. Creating a function is fairly
straightforward:

function functionName () {
Your function code goes here

}

The code in the function can be any valid JavaScript code that you would use
elsewhere in your scripts.

The following task creates a function that outputs “Hello” to the browser and the
proceeds to call that function in order to display the text:

1. Open a new HTML document in your preferred HTML or text
editor.

2. Create the header of the document with opening and closing head
tags:

<head>
</head>

3. Inserta script block in the header of the document:

<script language="JavaScript”>
<!--

/] ==>
</script>

4. Create a function named hello that takes no arguments:

function head() {

}

5. In the function, use document .write to output “Hello” to the
browser:

document .write(“Hello”) ;

6. Create the body of the document with opening and closing body
tags:

<body>

</body>



JavaScript Basics

7. Insert a script block in the body of the document:
<script language="JavaScript”>

<!--

/] —=>
</script>

8. In the script block, call the hello function so that the final page
looks like Listing 27-1.

<head>
<script language="JavaScript”>

<!--

function head() {
document .write(“Hello”) ;

/] ==>
</script>
</head>

<body>
<script language="JavaScript”>

<!--
hello();
/] —=>

</script>
</body>

Listing 27-1: Creating and calling your own function.

9. Save the file.

10. Open the file in a browser, and you should see “Hello” in the
browser.




- Part 1

Passing an Argument to Your Functions

Task 27 showed you how to create a function, but the function created in that
task did not accept any arguments. To create a function that accepts argu-
ments, you must specify names for each argument in the argument definition:

function functionName (argumentNamel, argumentName?2,etc.) {
Your function code goes here

The following task creates a function that accepts a single numeric argument,
squares that number, and outputs the result:

1. Open a new HTML document in your preferred HI'ML or text editor.
2. Create the header of the document with opening and closing head tags:

<head>

</head>

3. Inserta script block in the header of the document:

<script language="JavaScript”>
<!--

/] ==>
</script>

4. Create a function named square that takes one argument named
number:

function square (number) {

}

5. In the function, square the number and assign the results to a vari-
able, and then use document .write to output that result:

var result = number * number;
document .write(result) ;

6. Create the body of the document with opening and closing body tags:

<body>

</body>



JavaScript Basics

7. Insert a script block in the body of the document:

<script language="JavaScript”>

<!--

/]o==>
</script>

8. In the script block, call the square function and pass in a value of
100 so that the final page looks like Listing 28-1.

<head>
<script language="JavaScript”>

<!--

function square (number) {

var result = number * number;
document .write(result) ;

/)=
</script>
</head>

<body>
<script language="JavaScript”>
<!--

square (100) ;
/] ==>

</script>
</body>

Listing 28-1: Creating and calling your own function with a single argument.

9. Save the file.
10. Open the file in a browser, and you should see 10000 in the browser.




- Part 1

Returning Values from Your Functions

In Task 28, you created a function that squares numbers and then outputs the
result.

The problem with this function is that it isn’t very practical. Instead of outputting
the result of the operation, what you really want to do is return the result so
that the result can be assigned to a variable or used in a mathematical expression.

"To do this, you use the return command as the last command in a function:

function functionName() {
some code
return value;

To illustrate this, the following task creates a function for squaring numbers that
returns the result instead of outputting it. The function is then called, the result
is stored in a variable, and then that variable is used to output the results:

1. Open a new HTML document in your preferred HTML or text editor.
2. Create the header of the document with opening and closing head tags:

<head>

</head>

3. Insert a script block in the header of the document:

<script language="JavaScript”>

<!--

/]o==>
</script>

4. Create a function named square that takes one argument named

function square (number) {

}

5. In the function, square the number and assign the results to a vari-
able; then use return to return that result:

var result = number * number;
return result;



JavaScript Basics -

6. Create the body of the document with opening and closing body tags: Task 29

<body>

</body>
7. Insert a script block in the body of the document:

<script language="JavaScript”>

<!--

/)==>
</script>

8. In the script block, call the square function, pass in a value of 10,
and assign the results to the variable mySquare. Next, output that
with document .write so that the final page looks like Listing 29-1.

<head>
<script language="JavaScript”>
<!--

function square (number) {

var result = number * number;
return result;

//==>
</script>
</head>

<body>
<script language="JavaScript”>

<!--

var mySquare = square(10);
document .write (mySquare) ;

/] ==>
</script>
</body>

Listing 29-1: Creating and calling your own function, which returns a result.

9. Save the file.
10. Open the file in a browser, and you should see 100 in the browser.




- Part 1

Passing Multiple Parameters
to Your Functions

In Tasks 28 and 29, you created functions that took single arguments. You also
can create functions that take multiple arguments. To do so, you must specify
names for each argument in the argument definition:

function functionName (argumentNamel, argumentName2,etc.) {

Your function code goes here

The following task creates a function that accepts two numeric arguments, multi-
plies them, and returns the result:

[=N

. Open a new HTML document in your preferred HTML or text editor.
2. Create the header of the document with opening and closing head tags:

<head>

</head>

3. Insert a script block in the header of the document:

<script language="JavaScript”>

<!--

/] —=>
</script>

4. Create a function named multiple that takes two arguments named
numberl and number2:

function multiple (numberl, number2) {

}

5. In the function, multiply the numbers and assign the results to a vari-
able; then use return to output that result:

var result = numberl * number2;
return result;



JavaScript Basics -

6. Create the body of the document with opening and closing body tags.

7. Insert a script block in the body of the document.

8. In the script block, call the multiply function and pass in the values
10 and 20; assign the result that is returned to a variable, and then
output that variable so that the final page looks like Listing 30-1.

<head>
<script language="JavaScript”>

<!--

function multiple (numberl, number2) {

var result = numberl * number2;
return result;

/] —=>
</script>
</head>

<body>
<script language="JavaScript”>
<!--

var result = multiply(10,20);
document .write(result) ;

/] ==>
</script>
</body>

Listing 30-1: Creating and calling your own function with multiple arguments.

9. Save the file.
10. Open the file in a browser, and you should see 200 in the browser.




- Part 1

Calling Functions from Tags

ne of the benefits of JavaScript is to be able to tie interactivity to elements of
the HTML page. One way you can do this is to set up links in HTML that
actually trigger calls to JavaScript functions when the link is clicked.

There are two ways to do this:

1. Use the onClick attribute of the a tag to call the function:

<a href="#" onClick="functionName ()">Link text</a>

2. Usea javascript: URL in the href attribute of the a tag to call
the function:

<a href="javascript: functionName () ”">Link text</a>

The following task illustrates these two methods of calling a function from a link
by creating a function that displays an alert dialog box to the user and then pro-
viding two separate links for the user to use to call the function:

1. Open a new HTML document in your preferred HI'ML or text editor.
2. Create the header of the document with opening and closing head tags:

<head>

</head>

3. Inserta script block in the header of the document:

<script language="JavaScript”>

<!l--

/] ==>
</script>

4. Create a function named hello that takes no arguments:

function hello() {

}

5. In the function, use the window.alert method to display an alert
dialog box:

window.alert (“Hello”) ;




JavaScript Basics -

10.

Create the body of the document with opening and closing body tags. Task 3" ‘
In the final page create two links that call the hello function using

onClick and the javascript: URL techniques so that the final
page looks like Listing 31-1.

<head>
<script language="JavaScript”>
<!--

function hello() {

window.alert (“Hello”) ;

/] =-=>
</script>
</head>

<body>

<a href="#" onClick="hello();”>Call hello() from :)
onClick.</a>g)

<br>)

<a href="javascript:hello();”>Cal hello() from href.</a>

</body>

Listing 31-1: Calling a function from a link.

Save the file.

Open the file in a browser, and you should see two links in the
browser.

Click on either link and you should see a dialog box.




- Part 1

Calling Your JavaScript Code
after the Page Has Loaded

SOmetimes you will want to execute JavaScript code only once the HTML
page has fully loaded.

Doing this requires two steps:

1. Place the code you want to execute after the page has completed
loading into a function.

2. Use the onLoad attribute of the body tag to call the function.

This results in code like the following:

<head>
<script language="JavaScript”>
function functionName() {
Code to execute when the page finishes loading
}
</script>
</head>

<body onLoad=" functionName() ;">
Body of the page
</body>

The following task creates a function that displays a welcome message in a dialog
box and then only invokes that function once the page has completed loading:

1. Open a new HTML document in your preferred HTML or text editor.

2. Create the header of the document with opening and closing head tags.

3. Insert a script block in the header of the document:

<head>
<script language="JavaScript”>

<!--

/]o==>
</script>
</head>



JavaScript Basics

4.

10.

Create a function named hello that takes no arguments:

- 32

function hello() {

}

In the function, use the window.alert method to display an alert
dialog box:

window.alert (“Hello”) ;
Create the body of the document with opening and closing body tags.
In the body tag, use the onLoad attribute to call the hello function:
<body onLoad="hello();”>

In the body of the page, place any HTML or text that you want in
the page so that the final page looks like Listing 32-1.

<head>
<script language="JavaScript”>
<!--

function hello() {

window.alert (“*Hello”) ;

/] ==>
</script>
</head>
<body onLoad="hello() ;">

The page’s content.

</body>

Listing 32-1: Using onLoad to call a function after the page loads.

Save the file.

Open the file in a browser, and you should see the page’s content, as
well as the alert dialog box.




- Part 1

Using for Loops

ometimes you will not want your code to proceed in a straight, linear fashion.

In these situations you will want to make use of flow control techniques to
adjust the way that the processing of your code proceeds. One such technique is
looping, which allows you to specify that a section of code repeats one or more
times before proceeding with the rest of your script.

Typically, loops are created with a for statement:
for (conditions controlling the loop) command

The command, of course, can be a single command or multiple commands com-
bined with curly brackets:

for (conditions controlling the loop) {
JavaScript command
JavaScript command
etc.

Typically, for loops use an index variable to count, and on each iteration of the
loop, the index variable’s value changes (usually incrementing) until the index
variable reaches some limit value. For instance, the following loop counts from 1
to 10 using the variable i as the index variable:

for (1 = 1; 1 <= 10; 1 ++) {
Code to execute in the loop

Condition controlling the loop breaks down into three parts separated by
semicolons:

1. The first part specifies the initial value of the index variable. This will
be the value on the first iteration of the loop.

2. The second part specifies the condition that the index variable must
meet for the next iteration of the loop to occur. Basically, this test
occurs before each iteration of the loop, including the first.

3. The third part indicates how to change the value of the index variable
at the end of each iteration of the loop. In this case, the index vari-
able is incremented by one.

Inside the body of the loop, the index variable is available and will contain the
appropriate value for the current iteration.




JavaScript Basics

To illustrate this, the following steps use a for loop to count from 1 to 10 and
display the numbers to the browser:

1.
2.
3.

Create a new HTML document in your preferred editor.
In the body of the document, create a script block.
In the script block, create a for loop:

for () {

}

Use the appropriate conditions to count from 1 to 10 in the loop,
using i as the index variable:

for (1 = 1; 1 <= 10; i++) {

}

In the loop, display the current value of the index variable followed
by a br tag so each number displays in a separate line in the browser.
The final page should look like Listing 33-1.

<body>
<script>
<!--
for (1 = 1; 1 <= 10; 1i++) {
document .write(i + “<br>");
}
/] ==
</script>
</body>

Listing 33-1: Using a for loop.

Save the file and close it.

Open the file in a browser, and you should see the numbers 1 to 10
on separate lines.

e 33



- Part 1

Testing Conditions with if

As mentioned in the previous task, sometimes you will not want your code to
proceed in a straight, linear fashion. In these situations you will want to make
use of flow control techniques to adjust the way that processing of your code pro-
ceeds. One such technique is conditional branching looping, which allows you to
specify that a certain section of code executes only when a certain condition
exists.

Conditional branching is performed with the if statement:
if (condition) command

The command, of course, can be a single command or multiple commands com-
bined with curly brackets:

if (condition) {
JavaScript command
JavaScript command
etc.

To illustrate the effective use of 1 £ statements, the following presents a dialog
box asking the user to click on OK or Cancel, and then tests the user’s response
and displays an appropriate message in the browser window:

1. Create a new HTML document in your preferred editor.
2. In the body of the document, create a script block.

3. In the script block, use the window. confirm method to ask the user
to click on OK or Cancel and to store the result in a variable named
userChoice.

var userChoice = window.confirm(“Choose OK or )
Cancel”) ;

4. Create an if statement to test if the value of userChoice is true.
If it is, the user has clicked on OK, and you need to display an appro-
priate message in the browser:

if (userChoice == true) {
document .write (“OK”) ;

}

5. Create an if statement to test if the value of userChoice is false.
If it is, the user has clicked on Cancel, and you need to display an



JavaScript Basics -

appropriate message in the browser. The final page should look like

Listing 34-1.
<body>
<script>
<!--
var userChoice = window.confirm(“Choose OK or )
Cancel”) ;
if (userChoice == true) {
document .write (“OK”) ;
}
if (userChoice == false) {
document .write (“Cancel”) ;
}
/] —=>
</script>
</body>

Listing 34-1: Using window.confirm

6. Save the file and close it.

7. Open the file in a browser. You should see a confirmation dialog box
like the one in Figure 34-1.

g || &My Compute
Figure 34-1: Letting the user choose between OK and Cancel.

8. Click on OK or Cancel, and an appropriate message should display
in the browser window.




- Part 1
Using Short-Form Condition Testing

JavaScript provides a short-form method of testing a condition and then
returning a value based on that condition. It is useful when you want to assign
a value to a variable: If a condition is true, it gets one value; otherwise, it gets
another value.

This type of short-cut evaluation and assignment looks like the following:

var myVar = (condition) ? value to assign if condition is true : &
value to assign if condition is false;

"The key syntactical components of this are as follows:
* The condition must evaluate to true or false just like for an if state-
ment (as mentioned in Task 34).
* The question mark indicates this is short-form condition testing.

* The colon separates the value to return if the condition is true from
the value to return in a false condition. The value for true is always
on the left of the colon.

To illustrate effective use of short-form condition testing, the following presents
a dialog box asking the user to click on OK or Cancel and stores the choice in a
variable. Based on that a second variable is created with an output message
dependant on the user’s choice; this is done with short-form testing. Finally, the
message is displayed to the user.

1. Create a new HTML document in your preferred editor.
2. In the body of the document, create a script block.

3. In the script block, use the window. confirm method to ask the user
to click on OK or Cancel and store the result in a variable named
userChoice:

var userChoice = window.confirm(“Choose OK or o)
Cancel”) ;

4. Use short-form condition testing on the value of userChoice to
assign either “OK” or “Cancel” to a new variable called result:

var result = (userChoice == true) ? “OK” : “Cancel”;



JavaScript Basics -

5. Display the value of result so that the final page looks like 5
Listing 35-1. Task

<body>
<script>
<!--

var userChoice = window.confirm(“Choose OK or )

Cancel”) ;
var result = (userChoice == true) ? “OK” : “Cancel”;
document .write (result) ;

/] ==>
</script>
</body>

Listing 35-1: Using short-form conditional testing.

6. Save the file and close it.
7. Open the file in a browser. You should see a confirmation dialog box.

8. Click on OK or Cancel, and an appropriate message should display
in the browser window. Figure 35-1 shows the message that appears
when the user clicks on Cancel.

Figure 35-1: Clicking on Cancel.




- Part 1

Looping on a Condition

n Task 33 you saw an example of a for loop; this loop was used for counting.
Another useful type of loop is a conditional loop. The form of the loop is simple:

while (condition) command

The command, of course, can be a single command or multiple commands com-
bined with curly brackets so that you get the following:

while (condition) {
JavaScript command
JavaScript command
etc.

}

This task illustrates this by repeatedly presenting a dialog box asking the user to
click OK or Cancel until such a time as the user clicks on OK:

1. Create a new HTML document in your preferred editor.
2. In the body of the document, create a script block.

3. In the script block, use the window. confirm method to ask the user
to click on OK or Cancel, and store the result in a variable named
result:

var result = window.confirm(“Choose OK or Cancel”);

4. Create a while loop:

while () {

}

5. As the condition for the loop, test if the user clicked on Cancel by
comparing result to false:

while (result == false) {

}

6. Inside the loop, call window. confirm again, and save the user’s
selection in result:

while (result == false) {

result = window.confirm(“Choose OK or Cancel”);



JavaScript Basics -

7. After the loop, output a message indicating the user finally clicked on
OK. The final page should look like Listing 36-1.

<body>
<script>
<!--
var result = window.confirm(“Choose OK or Cancel”);

while (result == false) {

result = window.confirm(“Choose OK or Cancel”);

document .write(“You finally chose OK!”);

/] —=>
</script>
</body>

Listing 36-1: Using a conditional loop.

8. Save the file and close it.
9. Open the file in a browser. You should see a confirmation dialog box.

10. The dialog box will keep reappearing until the user clicks on OK,
and then a message will be displayed in the browser as illustrated in
Figure 36-1.

55 €] H:\Books\wilay\ 01435 heml

Teu finally chose CFI

Figure 36-1: Clicking on OK.




- Part 1
Looping through an Array

Task 22 introduced the notion of an array: a set of numbered containers for
storing values. Sometimes you will want to be able to loop through each ele-
ment in the array. This can be done using a £or loop so that the index variable of
the loop matches one of the array indexes for each iteration through the loop.
for loops were illustrated in Task 33.

"To do this, you want to be able to dynamically determine the length of the array
so that you can set the conditions for the for loop. You do this with the length
property of the array object. The following loop, for instance, loops through
each of the indexes from the myArray array:

for (1 = 0; 1 < myArray.length; 1i++)

The following task creates an array and then loops through it to display each
element of the array in the browser window:

1. Create a new HI'ML document in your preferred editor.

2. In the body of the document, create a script block:

<body>
<script>
<!--

/] -=>
</script>
</body>

3. In the script block, create a new three-element array named
myArray:

var myArray = new Array(3);

4. Populate the elements of the array:

myArray[0] = “Item 0”;
myArray[1l] = “Item 1”;
myArray[2] = “Item 2”;

5. Create a for loop to loop through the array:

for (i = 0; i1 < myArray.length; i++) {



JavaScript Basics

6. In the loop, display the current element of the array to the browser

window with document .write. The final page should look like
Listing 37-1.

<body>
<script>
<!--

var myArray = new Array(3);

myArray[0] = “Item 0”;
myArray[l] = “Item 1”;
myArray[2] = “Item 2”;

for (i = 0; i1 < myArray.length; i++) {
document .write (myArray[i] + “<br>");

/] —=>
</script>
</body>

Listing 37-1: Looping through an array.

. Save the file and close it.

. Open the file in a browser, and a list of the elements should be dis-
played as in Figure 37-1.

55 [£] H:\Bocks wiley\ 01437, Hml

Ttem 0
Trem 1
Ttem 2

| [ [ &y Compute .
Figure 37-1: Looping through an array to display its elements.

oY |




- Part 1

Scheduling a Function for
Future Execution

ometimes you will want to execute a function in an automated, scheduled

way. JavaScript provides the ability to schedule execution of a function at a
specified time in the future. When the appointed time arrives, the function auto-
matically executes without any user intervention.

Scheduling is done with the window. setTimeout method:
window.setTimeout (“function to execute”,schedule time) ;

"The function to execute is specified as if you were calling the function normally
but in a text string; the text string contains the actual text of the command to exe-
cute. The schedule time specifies the number of milliseconds to wait before exe-
cuting the function. For instance, if you want to wait 10 seconds before executing
the function, you need to specify 10000 milliseconds.

To illustrate this, the following script creates a function that displays an alert dia-
log box and then schedules it to execute five second later:

1. Create a new HTML document in your preferred editor.
2. In the header of the document, create a script block:

<head>
<script>

<!--

/] —=>
</script>
</head>

3. In the script block, create a function named hello that takes no
arguments:

<head>
<script>

<!--

function hello() {

/] ==>
</script>
</head>



JavaScript Basics

4. In the function, use window.alert to display a dialog box:

<head>
<script>

<!--

function hello() {
window.alert (“Hello”) ;

/] ===
</script>
</head>

5. After the function, schedule the function to execute five seconds in

the future:

<head>
<script>

<!--

function hello() {
window.alert (“*Hello”) ;

window.setTimeout (“hello()”,5000) ;

/) —=>
</script>
</head>

6. Save the file and close it.

7. Open the file in a browser. Wait five seconds, and then an alert dialog
box should appear, as in Figure 38-1.

Figure 38-1: Scheduling a function to execute.




- Part 1

Scheduling a Function for
Recurring Execution

Task 38 showed you how to schedule a function for a single automatic execu-
tion in the future. But what if you wanted to schedule the same function to
execute repeatedly at set intervals?

"To do this, you need to do two things:
® As the last command in the function, use window. setTimeout to
reschedule the function execute again.
* Use window.setTimeout outside the function to schedule initial exe-
cution of the function.

The results look something like this:

function functionName() {
some JavaScript code
window.setTimeout (“ functionName()”,schedule time) ;
}
window.setTimeout (“functionName ()", schedule time) ;

To illustrate this, the following script creates a function that displays an alert dia-
log box and then schedules it to execute every five seconds:

1. Create a new HTML document in your preferred editor.

2. In the header of the document, create a script block.

3. In the script block, create a function named hello that takes no
arguments:

function hello() {

}

4. In the function use window.alert to display a dialog box:

function hello() {
window.alert (“Hello”) ;

}

5. Complete the function by using window. setTimeout to schedule
the function to run every five seconds:

function hello() {
window.alert (“Hello”) ;
window.setTimeout (“hello()”,5000) ;



JavaScript Basics -

6. After the function, schedule the function to execute five seconds in Task 9
the future. The final page should look like Listing 39-1.

<head>
<script>
<!--

function hello() {
window.alert (“*Hello”) ;
window.setTimeout (“hello()”,5000) ;

window.setTimeout (“*hello()”,5000) ;

/] —=>

</script>
</head>

Listing 39-1: Scheduling a function to execute.

7. Save the file and close it.

8. Open the file in a browser. Wait five seconds, and then an alert dialog
box should appear, as in Figure 39-1. After you close the dialog box,
another should reappear after five seconds. This should continue
indefinitely.

Figure 39-1: Scheduling a function to execute.




- Part 1

Canceling a Scheduled Function

In Task 38 you saw how to schedule a function for future execution using win-
dow. setTimeout. Using a related method, window. clearTimeout, you can
cancel a scheduled execution event before it occurs.

When you create a scheduled event, the window. setTimeout method returns a
pointer to that event. You can then use the pointer to cancel the scheduled event.
You simply pass that pointer to window.clearTimeout:

var pointer = window.setTimeout(...);
window.clearTimeout (pointer) ;

The following task illustrates this by creating a function and scheduling it to exe-
cute five seconds after the page loads, but then immediately canceling that sched-
uled execution so that nothing happens:

1. Create a new HTML document in your preferred editor.

2. In the header of the document, create a script block:

<head>
<script>

<!--

/]o==>
</script>
</head>

3. In the script block, create a function named hello that takes no
arguments:

function hello() {

}
4. In the function use window.alert to display a dialog box:
window.alert (“Hello”) ;

5. After the function, schedule the function to execute five seconds in
the future, and save the pointer in a variable:

var myTimeout = window.setTimeout (“*hello()”,5000) ;



JavaScript Basics -

6. Cancel the scheduled event so that the final page looks like Task 40
Listing 40-1.

<head>
<script>

<!--

function hello () {
window.alert (“Hello”) ;

var myTimeout = window.setTimeout (“*hello()”,5000) ;

window.clearTimeout (myTimeout) ;

/] ==>
</script>
</head>

Listing 40-1: Canceling a scheduled event.

7. Save the file and close it.

8. Open the file in a browser. Nothing should appear except a blank
browser window, as in Figure 40-1.

).l - Wi

Figure 40-1: Scheduling a function to execute and then canceling it.




- Part 1
Adding Multiple Scripts to a Page

avaScript integrates into your HTML documents in a flexible way. In fact,

there is nothing preventing you from having multiple script blocks wherever
you need them in the header and body of your document. The script blocks will
be processed by the browser in order with the rest of the HTML in the page.

The following task illustrates two script blocks in a single document:

1. Create a new HTML document.
2. In the body of the document, create a script block:

<body>
<script language="JavaScript”>

<!--

/] —=>
</script>
</body>

3. In the script block, output some text with document .write:
document.write(“The first script”);
4. After the script block, place some regular HTML code:
<hr>
5. Create another script block:

<script language="JavaScript”>

<!--

/] ==>
</script>

6. In the second script block, output some more text so that the final
page looks like Listing 41-1.

7. Save the file and close it.




JavaScript Basics

<body>
<script language="JavaScript”>

<!--
document .write(“The first script”);

/] —=>
</script>

<hr>

<script language="JavaScript”>

<!--
document .write (“The second script”);

/1 ==>
</script>
</body>

Listing 41-1: Multiple scripts in a page.

8. Open the file in a browser. You should see the results of both scripts,
as illustrated in Figure 41-1.

] H:\Booka wilay\ D14 el

The frst scrpt

The second scrpt

Figure 41-1: Using multiple script blocks.




- Part 1

Calling Your JavaScript Code
after the Page Has Loaded

SOmetimes you will want to execute JavaScript code only when the user tries
to leave your page. You might want to do this because you want to bid the
user farewell or remind the user he or she is leaving your site.

Doing this requires two steps:
* Place the code you want to execute after the page has completed
loading into a function.

* Use the onunload attribute of the body tag to call the function.
This results in code like the following:

<head>
<script language="JavaScript”>
function functionName() {
Code to execute when the page finishes loading
}
</script>
</head>

<body onUnload="functionName() ;">
Body of the page
</body>

The following task creates a function that displays a goodbye message in a dialog
box and then only invokes that function when the user leaves the page:

1. Open a new HTML document in your preferred HI'ML or text editor.
2. Create the header of the document with opening and closing head tags.
3. Inserta script block in the header of the document.

4. Create a function named bye that takes no arguments:

function bye() {



JavaScript Basics -

5. In the function, use the window.alert method to display an alert
dialog box:

window.alert (“Farewell”) ;
6. Create the body of the document with opening and closing body tags.
7. In the body tag, use the onUnload attribute to call the bye function:
<body onUnload="bye() ;">

8. In the body of the page, place any HT'ML or text that you want in
the page so that the final page looks like Listing 42-1.

<head>
<script language="JavaScript”>
<!--

function bye () {

window.alert (“Farewell”) ;

/] —=>
</script>
</head>
<body onUnload="bye() ;">

The page’s content.

</body>

Listing 42-1: Using onunload to call a function after the user leaves a page.

9. Save the file.

10. Open the file in a browser, and you should see the page’s content.
Navigate to another site and you should see the farewell dialog box.




- Part 1

Check If Java Is Enabled
with JavaScript

SOmetimes it is useful to know whether or not Java is enabled and to use that
information in composing your pages. For instance, based on that informa-
tion, you could dynamically adjust the content of your page to include or not
include Java-based content.

Luckily, JavaScript provides a simple mechanism for determining this: the navi-
gator.javaEnabled method. This method returns true if Java is enabled in
the browser and false otherwise.

"The following task displays a message in the browser window indicating whether
or not Java is enabled:

1. Create a new HTML document.
2. In the body of the document, create a script block:

<body>
<script language="JavaScript”>

<!--

/] —=>
</script>
</body>

3. In the script block, call navigator.javaEnabled and assign the
results to a variable:

<body>
<script language="JavaScript”>

<!--
var haveJava = navigator.javaEnabled() ;
/] —=>

</script>
</body>



JavaScript Basics

4. Use document .write to display a relevant message to the user:

<body>
<script language="JavaScript”>

<!--

var haveJava = navigator.javaEnabled() ;
document .write(“Java is enabled: “ + haveJava) ;

/] ==>
</script>
</body>

5. Save the file and close it.

6. Open the file in a browser. You should see an appropriate message

based on the Java status in your browser. In Figure 43-1, Java is
enabled.

Figure 43-1: Testing if Java is enabled.

e 43







Part 2:

Outputting to the Browser

Task 44:
Task 45:
Task 46:
Task 47:
Task 48:
Task 49:
Task 50:
Task 51:
Task 52:
Task 53:
Task 54:
Task 55:
Task 56:

Accessing the document Object

Outputting Dynamic HTML

Including New Lines in Output

Outputting the Date to the Browser

Outputting the Date and Time in a Selected Time Zone
Controlling the Format of Date Output

Customizing Output by the Time of Day

Generating a Monthly Calendar

Customizing Output Using URL Variables

Dynamically Generating a Menu

Replacing the Browser Document with a New Document
Redirecting the User to a New Page

Creating a “Page Loading ...” Placeholder




- Part 2

Accessing the document Object

he document object is an extremely powerful and important object in

JavaScript that allows you to output data to the browser’s document stream,
as well as to access elements in the current document rendered in the browser.
Using this object, you can generate dynamic output in your document, and you
can manipulate the state of the document once rendered. The document object
provides a lot of information, methods, and access to objects reflecting the cur-
rent document, including the following:

* Arrays containing anchors, applets, embedded objects, forms, layers,
links, and plug-ins from the current document.

* Properties providing information about the current page, including
link colors, page background color, associated cookies, the domain of
the page, the modification date, the referring document, the title, and
the URL of the current document.

* Methods to allow outputting text to the document stream, events to
handle events, and an event to return text currently selected in the
document.

The following example illustrates a simple use of the document object by dis-
playing the domain of the current page in a dialog box:

1. Create a script block with opening and closing script tags:

<script language="JavaScript”>
</script>

2. Assign the current URL to a temporary variable called myURL with
the following command:

<script language="JavaScript”>
var myURL = document.URL;

</script>



Outputting to the Browser -

3. Include the window.alert method to display a dialog box: Task AA

<script language="JavaScript”>

var myURL = document.URL;
window.alert () ;

</script>

4. Pass the myURL variable to window.alert as its argument so that
the final script looks like Listing 44-1.

<script language="JavaScript”>

var myURL = document.URL;
window.alert (myURL) ;

</script>

Listing 44-1: A script to display the current URL.

5. Save the script in an HT'ML file, and open the HT'ML in your
browser. You should see a dialog box like Figure 44-1.

Figure 44-1: Displaying the current URL in a dialog box.




- Part 2
Outputting Dynamic HTML

henever you need to output dynamic HTML content into your document

stream, you can do this using the document .write method. This method
allows you to specify any text to be included in the document stream rendered by
the browser.

The concept is simple. Consider the following simple partial HTML document:

<p>The following value is dynamic output from JavaScript:</p>
<script language="JavaScript”>

document .write (“<p><strong>Dynamic Content</strong></p>");
</script>
<p>Thus ends the dynamic output example.</p>

The result is that the browser will render output as if the following plain HTML
source code had been sent to the browser:

<p>The following value is dynamic output from JavaScript:</p>
<p><strong>Dynamic Content</strong></p>
<p>Thus ends the dynamic output example.</p>

Using the document . write method, you can output any dynamic strings gen-
erated in HTML to the document stream. The following example outputs the
referring page, the domain of the current document, and the URL of the current
document using properties of the document object to obtain those values:

1. Start a script block with the script tag:
<script language="JavaScript”>
2. Display an introductory message using document .write:

document .write (“<p>Here’s some information about this
document:</p>") ;

3. Outputa ul tag to start an unordered list:
document .write(“<ul>") ;

4. Output the referring document as a list entry:

document .write(“<li>Referring Document: “ + :)
document.referrer + “</1i>");



Outputting to the Browser -

5. Output the domain of the current document as a list entry:

Task A-

document .write(“<li>Domain: “ + document.domain + )
“</1i>") ;

6. Output the URL of the current document as a list entry:

document.write(“<1i>URL: “ + document.URL + “</1i>");

7. Close the script by outputting a closing ul tag; the resulting script
should look like Listing 45-1.

<script language="JavaScript”>

document .write (“<p>Here’s some information about this )
document:</p>") ;

document .write(“<ul>") ;

document .write(“<li>Referring Document: “ + :)
document.referrer + “</1i>");

document .write(“<li>Domain: “ + document.domain + )
“</1i>") ;

document .write (“<1i>URL: “ + document.URL + “</1li>");

document .write(“</ul>");
</script>

Listing 45-1: A script to dynamic information in the document stream.

8. Save the script in an HTML file, and open the file in a browser. The
result should look like Figure 45-1.

tml - Microsofi Internet Exp..

Here's some nformation about this document:

» Beferring Diocument:
+ Domain: lecalhost
» TTEL: hitp/flocalhost: 8 500/test/45 html

Figure 45-1: Dynamic content displayed in the browser.




- Part 2

Including New Lines in Output

he document .write method is useful, but on occasion, it has limitations. In
particular, the document .write method doesn’t output new-line characters
at the end of each string it outputs.

Consider the following JavaScript extract:

document .write (“<strong>a</strong>") ;
document.write(“b”) ;

In essence, this is the same as the following HTML code:

<strong>a</strong>b

Notice that the “b” is on the same line as the “a”; although they are output in two
document .write commands on separate lines of the JavaScript code. This means
the output is displayed without a space between the letters, as in Figure 46-1.

Figure 46-1: document .write does
not output new-line characters

tml - Micr... |9

Of course, this is a little different than if you had the HTML on two separate
lines as:

<strong>a</strong>
b

In this case, the new line after the first line of code would be rendered as a space
by the browser.

This problem becomes more acute in blocks of preformatted text (text inside pre
tags).

To rectify the problem, the document object also offers the document
.writeln method. This method is exactly the same as the document .write
method, except that it outputs a new-line character to the browser at the end of
the string. This means that the following code

document .writeln (“<strong>a</strong>") ;
document .writeln(“b”) ;

is essentially the same as the following HTML code:

<strong>a</strong>
b



Outputting to the Browser -

"This is useful in situations where new lines are important and you want to ensure
that a new line is output at the end of each line of text displayed through
JavaScript.

To illustrate the use of document .writeln, the following example is a variation
of the example in Task 45, except that the data is output as preformatted text
using the document . writeln method:

1. Start a script block with the script tag:
<script language="JavaScript”>
2. Display an introductory message using document .write:

document .writeln (“<p>Here’s some information about this )
document:</p>") ;

3. Output a pre tag to start a section of preformatted text:
document .writeln (“<pre>") ;
4. Output the referring document:

document .writeln (" Referring Document: “ + )
document .referrer) ;

5. Output the domain of the current document:
document .writeln (" Domain: “ + document.domain) ;
6. Output the URL of the current document:
document.writeln(* URL: “ + document.URL) ;

7. Close the script by outputting a closing pre tag followed by a closing
script tag:
document .writeln(“</pre>");

</script>

8. Save the script in an HTML file, and open the file in a browser. The
result is as shown in Figure 46-2.

tml - Microsoft Internet Explorer

Here's some infermation about this decument:
Peferring Document: http://localhost:S500/test/test.himl

Damain: localhast
URL: htcp://localhost:8500/test/46. homl

Figure 46-2: Dynamic content displayed in the browser in a preformatted text block.

e 46




- Part 2
Outputting the Date to the Browser

sing document .write and document .writeln becomes useful when

there is a genuine need to display dynamic content in the browser that can-
not be pregenerated but must be generated at the time the document is to be dis-
played.

A good example of this is displaying the current date and time within a page. For
instance, a site that delivers time-sensitive news probably wants people to know
that the news on the site is up-to-date as of the current time and could do that by
always displaying the current time in the page.

Luckily, JavaScript provides a Date object with which you can quickly and easily
obtain the current date and then output that date to the browser. Basic use of the
Date object for these purposes is straightforward, and the following script can be
inserted in an HTML file wherever you want to display the current date and
ume:

1. Start a script block with the script tag:
<script language="JavaScript”>
2. Create a new Date object and assign it to the variable thisDate:

<script language="JavaScript”>
var thisDate = new Date();

3. Display the date using the toString method of the Date object:

<script language="JavaScript”>
var thisDate = new Date();
document .write(thisDate.toString()) ;

4. Close the script with a closing script tag; the final source code for
this script should look like Listing 47-1.

<script language="JavaScript”>

var thisDate = new Date();

document .write (thisDate.toString()) ;
</script>

Listing 47-1: A script for displaying the current date.



Outputting to the Browser

5. Include this script anywhere in an HI'ML document that you want
to display the current date. For instance, Listing 47-2 is a simple
HTML document that includes the script; when displayed in the
browser, this page looks like Figure 47-1.

<html>
<body>
<p>
The current date is:
<script language="JavaScript”>
var thisDate = new Date();
document .write(thisDate.toString()) ;
</script>
</p>
</body>
</html>

Listing 47-2: Including the script in the body of a document.

The current date 151 Sun Apr 20 10:3%:51 PDT 2003

|| €] Don = My Compute ,
Figure 47-1: The date displayed in an HTML document.




- Part 2

Outputting the Date and Time
in a Selected Time Zone

Using Greenwich Mean Time (also known as Universal Time Coordinate) as a
common starting point, you can create a script that will always be able to dis-
play the time in your time zone regardless of the time zone of the user’s com-
puter. This is made possible because of two facts:

* The Date object can tell you the offset of the user’s time zone from
GMT time. So, if the user is five hours earlier than GMT, you can
find this out.

*  You know your offset from GMT when you write your script.

Combining these, you can always calculate the number of hours’ difference
between your time zone and the user’s time zone and can adjust the time from
the user’s time zone to yours before manipulating that data or displaying it for
the user.

Doing this requires the use of two methods of the Date object:

* getTimezoneOffset: This method returns the number of minutes’
difference between the current browser’s time zone and GMT time.

* setHours: This method is used to determine the hours part of the
time in the current Date object. Using this you could reset the time
to the time in your time zone.

The following script displays the current time in Central European Time ( two
hours later than Greenwich Mean Time). This will work regardless of the time
zone of the user’s computer.

1. Start a script block with the script tag:

<script language="JavaScript”>

2. Set the time zone offset from GMT in the myOf fset variable. This
value should be the number of hours’ change needed to change the
target time zone into GMT. For the case of Central European Time,
which in the summer is two hours later than GMT, this means a

value of -2 to indicate that it is necessary to move two hours back
from CET to reach GMT:

var myOffset = -2;

3. Create a new Date object with the current date and time, and assign
it to the currentDate variable:

var currentDate = new Date() ;



Outputting to the Browser -

4. Use getTimezoneOffset to extract the offset for the user’s time

zone; since this will be in minutes and this script is going to work in Task AS
hours, this value should be divided by 60. The final value is stored in
the useroffset variable:

var userOffset = currentDate.getTimezoneOffset()/60;

5. Calculate the time zone difference between the target time zone and
the user’s time zone, and assign the number of hours’ difference to
the variable timeZoneDifference.:

var timeZoneDifference = userOffset - myOffset;

6. Reset the hours part of the time using the setHours method. The
new time should be the current hours (using getHours) plus the
time zone difference. Luckily, using setHours like this will accom-
modate cases where the time zone difference pushes the date into the
previous or next day and will adjust the date accordingly.

currentDate.setHours (currentDate.getHours () + :)
timeZoneDifference) ;

7. Display the current date and time in the browser window with the
document .write method:

document .write (“"The time and date in Central Europe is: :)
“ + currentDate.toLocaleString());

8. Close the script block with a closing script tag. The final script
looks like Listing 48-1.

<script language="JavaScript”>

var myOffset = -2;

var currentDate = new Date();

var userOffset = currentDate.getTimezoneOffset()/60;

var timeZoneDifference = userOffset - myOffset;

currentDate.setHours (currentDate.getHours () + )
timeZoneDifference) ;

document .write (“The time and date in Central Europe is: )
“ + currentDate.toLocaleString()) ;
</script>

Listing 48-1: A script for displaying the date in another time zone.

9. Save the script in an HT'ML file and open that file in a browser to
see the date and time in Central Europe displayed, as in Figure 48-1.




- Part 2
Controlling the Format of Date Output

In addition to the toString method, the Date object also offers the following
methods for quickly outputting the current date and time:

® toGMTString: Returns the time as a string converted to Greenwich
Mean Time. The results look like this:

Thu, 17 Apr 2003 17:47:44 UTC

® toLocaleString: Returns the time as a string using the date for-
matting conventions of the current locale. The results look like this
in Canada:

April 17, 2003 10:47:44 AM

® toUTCString: Returns the time as a string converted to Universal
Time. The results look like this in North America:

Thu, 17 Apr 2003 17:47:44 UTC
In addition, the Date object has a series of methods to return specific informa-
tion about the current date that you can then combine into a fully customizable
presentation of the date and time:
* getDate: Returns the current day of the month as a number

® getDay : Returns the current day of the week as a number between 0
(Sunday) and 6 (Saturday)

® getFullvear: Returns the four-digit year

® getHours: Returns the hour from the current time as a number
between 0 and 23

® getMinutes: Returns the minutes from the current time as a num-
ber between 0 and 59

® getMonth: Returns the current month as a number between 0
(January) and 11 (December)

Using these methods, for instance, it is possible to output the current date in a
custom form such as:

22:00 on 2003/4/15
The following code outputs the date in just this way:

1. Start a script block with the script tag:
<script language="JavaScript”>
2. Create a new Date object and assign it to the variable thisDate:

var thisDate = new Date() ;



Outputting to the Browser -

3. Build a string containing the time by using the getHours and Task Ag

getMinutes methods; this string is assigned to the variable
thisTimeString:

var thisTimeString = thisDate.getHours() + “:” + :)
thisDate.getMinutes() ;

4. Build a string containing the date by using the getFullvear,
getMonth, and getDate methods; this string is assigned to the vari-
able thisDateString:

var thisDateString = thisDate.getFullYear() + “/" + :)
thisDate.getMonth() + “/” + thisDate.getDate() ;

5. Display the date and time to the browser using the
document .write method:

document .write(thisTimeString + “ on “ + thisDateString) ;

6. Close the script with a closing script tag. The final source code looks
like Listing 49-1.

<script language="JavaScript”>

var thisDate = new Date() ;

var thisTimeString = thisDate.getHours() + “:” + &
thisDate.getMinutes() ;

var thisDateString = thisDate.getFullYear() + “/” +
thisDate.getMonth() + “/” + thisDate.getDate();

document .write(thisTimeString + “ on “ + thisDateString) ;
</script>

Listing 49-1: A script for displaying the current date in a custom format.

7. Include the script in an HTML document where you want to display
the date, and then open that document in a Web browser. The date
displays as shown in Figure 49-1.

9_html - Microsoft Inters

|goene T E
Figure 49-1: The custom formatted date displayed in a Web browser.




- Part 2
Customizing Output by the Time of Day

Rather than just presenting this time information to the user and trusting the
user not to attempt to use the chat application during the time in question,
you can customize the output of the relevant support page based on the time of
day so that a link to the chat application only appears during the appropriate
hours of the day.

The following example is a script that could be included in such an application.
Between 9 A.M. and 5 P.M. on weekdays, a link to the chat application is displayed
to the user, but outside those hours, a notice indicating that live Web support is
closed is presented.

1. Start a script block with the script tag:

<script language="JavaScript”>

2. Create a new Date object and assign it to a variable named
thisDate:

var thisDate = new Date() ;

3. Test the current date to see if it represents a weekday and is in the
correct time range using an if statement (refer to Task 34 for an
introduction to the if statement):

if ((thisDate.getDate() >= 1 && thisDate.getDate() <= 6) :)
&& (thisDate.getHours() >= 9 && thisDate.getHours() <= :)
15)) |

4. Display the HTML for the case where the support desk is open:

document .write(“"The support desk is open. Click <a :)
href='http://my.url/’>here</a> for live Web support.”);

5. Use the else statement to provide an alternative action:
} else {
6. Display HT'ML for the case where the support desk is closed:

document .write (“The support desk is closed now. Come :)
back between 9 a.m. and 5 p.m. Monday to Friday.”);

7. Close the if block with a closing curly bracket:
}

8. Close the script block with a closing script tag. The final code
should look like the following:

<script language="JavaScript”>
var thisDate = new Date();




Outputting to the Browser -

if ((thisDate.getDate() >= 1 && thisDate.getDate() <= &) Task 50
6) && (thisDate.getHours() >= 9 && thisDate.getHours/() :)
<= 15)) {
document .write (“The support desk is open. Click <a :)
href='http://my.url/’>here</a> for live Web support.”);
} else {
document .write (“The support desk is closed now. o)
Come back between 9 a.m. and 5 p.m. Monday to Friday.”);
}

</script>

9. Include this script in an HI'ML document, and open the document
in a browser. Between 9 A.M. and 5 P.M. on weekdays, you should see
the message shown in Figure 50-1. At other times you will see the
message shown in Figure 50-2.

The support desk 15 open. Chick here for lve Web support.

T B ;
Figure 50-1: When the support desk is open, users can link to live Web support.

£ H:\Bodkshwiley\ D20 bl | &

The support desk 1s closed now. Come back between $am and 5 pom.
Idenday to Friday.

Figure 50-2: When the support desk is closed, users are told when to return.




Part 2

Generating a Monthly Calendar
tis simple to leverage the Date object, using looping (as discussed in Task 33)

Iand the output capabilities of the document . write method to generate a
calendar for the current month.

Use the following steps to create a script to generate a calendar in a table in your
documents:

1. In a script block, create an array containing the names of months:

var months =
months[0] =
months[2] =
months[4] =
months[6] =
months[8] =
months[10] =

new Array();
“January”; months[1l] =
“March”; months[3]

“May”; months[5] =

“July”; months[7] =
“September” ;
“November” ;

“Feburary”;
= “April”;

“June”;

“August”;
months[9] = “October”;
months[11] = “December”;

Create a new Date object for the current date, and store it in the
currentDate variable. Take the month from the current date and
store it in the currentMonth variable; then set the day of the month
to the first day using the setDate method of the Date object:

var currentDate = new Date() ;

var currentMonth = currentDate.getMonth() ;

currentDate.setDate (1) ;

Output the top of the table plus the first row, which contains the day
of the month. The second row of the table, after the month name,
should be column headers indicating the days of the week:

document .write(“<table border=1 cellpadding=3 :)
cellspacing=0>") ;

document .write(“<tr>") ;

document .write (“<td colspan=7 align='center’>" + )

months [currentMonth] + “</td>");

document .write (“<tr>") ;

document .write(“<td align='center’>S</td>");
document.write(“<td align=’'center’>M</td>");
document .write(“<td align='center’>T</td>");
document.write(“<td align='center’>W</td>") ;
document.write(“<td align='center’>T</td>");
document.write(“<td align='center’>F</td>");
document .write(“<td align='center’>S</td>");
document .write(“</tr>");



Outputting to the Browser -

4. 'The next step is to handle the case where the first day of the month is
not a Sunday. The result, for instance, is a first row of the table dates
like the one illustrated in Figure 51-1, when the first day of the
month falls on a Tuesday:

if (currentDate.getDay () != 0) {
document .write (“<tr>") ;
for (i = 0; i1 < currentDate.getDay(); i++) {
document .write (“<td>&nbsp;</td>");

}

LI [tl2]3]4]5]

Figure 51-1: Blank table cells may be needed to pad the first row of the month.

5. The next step is a while loop to display each day’s individual cell:

while (currentDate.getMonth() == currentMonth) {

6. Inside the loop, check if the current date is a Sunday, and if it is, then
start a new row with a tr tag. Next, display a cell with the current
date. If the current date is a Saturday, finish the row with a closing
tr tag. Finally, add one to the value of the current day of the month
using setDate to move to the next day.

while (currentDate.getMonth() == currentMonth) {

if (currentDate.getDay == 0) {
document .write (“<tr>");

}

document .write(“<td align='center’>" +

currentDate.getDate() + “</td>");

if (currentDate.getDay () == 6) {
document.write(“</tr>");

}

currentDate.setDate (currentDate.getDate() + 1);

}

7. After all the days have been displayed, you need to see if any more
empty cells are necessary to complete the last row of the table. This
is done with another for loop:

for (i = currentDate.getDay(); i <= 6; i++) {
document .write (“<td>&nbsp;</td>") ;

}

8. Finally, close the table by outputting a closing table tag. When the
script is executed, you will see the current month’s calendar displayed
in your browser.

document .write(“</table>") ;




- Part 2

Customizing Output Using
URL Variables

hen you build a URL for a page, you can add a series of name-value pairs
to the end of the URL in the following form:

http://my.url/somepage.html?namel=valuel&name2=valuel2&. . .

Essentially, these parameters are like variables: named containers for values.

In JavaScript, the document object provides the URL property that contains the
entire URL for your document, and using some manipulation on this property,
you can extract some or all of the URL parameters contained in the URL. The
following code displays all URL parameters for the current document:

1. In a script block in the body of a document, separate the current
document’s URL at the question mark and store the two parts in the
array urlParts:

var urlParts = document.URL.split(“?”);

2. Split the part of the URL to the right of the question mark into one
or more parts at the ampersand. This places each name-value pair
into an array entry in the parameterbarts array.

var parameterParts = urlParts([l].split(“&”);

3. Output the HTML code to set up a table and display column headers
for the table using the document . write method:

document .write (“<table border=1 cellpadding=3 )
cellspacing=0>") ;

document .write (“<tr>") ;
document.write(“<td><strong>Name</strong></td><td>:)
<strong>Value</strong></td>") ;

4. Starta for loop that loops through each element in the
parameterParts array. This means the loop should start at 0 and
count up to one less than the length of the array; this is because in an
array of 10 elements, the first index is 0 and the last index is 9.

for (1 = 0; 1 < parameterParts.length; i ++) {
5. Output HTML to start a table row for each name-value pair:

document .write (“<tr>") ;

6. Separate the name-value pair at the equal sign, and store the results
in the pairParts array. The first entry (at index 0) contains the
name of the pair, and the second entry (at index 1) contains the value

of the entry:

var pairParts = parameterParts([i].split(“=");




Outputting to the Browser -

7. Display the name and value in table cells. Make sure the value of the
pair is unencoded with the unescape function:

document.write(“<td>” + pairParts[0] + “</td>");
document.write(“<td>” + unescape(pairParts[1]) + “</td>");

8. Output HTML to close the table row, and close the loop with a clos-
ing curly bracket:

document.write(“</tr>");

}

9. Output HTML to complete the table, and then close the script
with a closing script tag. The final source code should look like
Listing 52-1, and when viewed in the browser, if the URL has para-
meters, they will be displayed in a table like the one illustrated in
Figure 52-1.

<script language="JavaScript”>
var urlParts = document.URL.split(“?”);
var parameterParts = urlParts[1l].split(“&”);
document .write(“<table border=1 cellpadding=3 :)
cellspacing=0>") ;
document .write(“<tr>");
document .write (“<td><strong>Name</strong></td><td>)
<strong>Value</strong></td>") ;
for (i = 0; 1 < parameterParts.length; i ++) {
document.write(“<tr>");
var pairParts = parameterParts[i].split(“=");
“<td>” + pairParts[0] + “</td>");
“<td>” + unescape(pairParts[1]) + :)

document .write (
document .write (
“</td>") ;

document .write(“</tr>");

}
document .write(“</table>") ;

</script>

Listing 52-1: A script to display URL parameters in a table.

IZnamei=valuel&name2=value 2 - ... |_l'_|—'|

Figure 52-1: Displaying URL parameters as name-value pairs in a table.




- Part 2

Dynamically Generating a Menu

To illustrate some of the power of dynamic output combine with URL parame-
ters, this task shows how to build a simple menu system. In this example, a
single JavaScript page handles a menu of five choices and renders appropriate
output for each of the five choices.

"This script assumes that the user’s current selection is passed to the script
through the URL parameter named choice. The actual practical implementa-
tion is as follows; this code assumes the script is in a file called menu . html:

1. Start a script block with the script tag:

<script language="JavaScript”>

2. Create a variable called choice to hold the user’ selection; by
default, the value is zero, which indicates no selection:

var choice = 0;
3. Split the URL into the array urlParts at the question mark:
var urlParts = document.URL.split(“?”);

4. Use the if statement to check if, in fact, there are any URL parame-
ters. If there are, then the length of the urlParts array should be
greater than I:

if (urlParts.length > 1) {

5. Split the list of URL parameters into their parts, and check if the pair
is named choice; if it is, store the value of the pair in the choice
array created earlier:

var parameterParts = urlParts([l].split(“&”);

for (i = 0; i1 < parameterParts.length; i++) {
var pailrParts = parameterParts([i].split(“=");
var pairName = pairParts[0];
var pairValue = pairParts[1];

if (pairName == “choice”) {

choice = pairValue;

}
6. Close the if statement with a closing curly bracket:

}




Outputting to the Browser -

7. The next step is to display the menu itself. This requires five 1 £
statements: one for each menu entry. Each if statement looks like
the following, adjusted for a particular choice and the appropriate
output for that choice. The result is a menu that might look like
Figure 53-1.

if (choice == 1) {
document .write (“<strong>Choice 1</strong><br>");
} else {
document .write(“<a href:’menu.html?choice:l'>:)
Choice 1</a><br>");

] htip:/flocalhost Aest'menu.himl - Microsofl Internet Explorer

a [ Elecalinvanet |
Figure 53-1: The menu as displayed when no choice is selected.

8. Display a divider to separate the menu from the body text of the page
using the document . write method:

document .write (“<hr>");

9. Use five if statements, which test the value of the choice variable to
display the appropriate body content. Each if statement should look
like the following but be adjusted for the appropriate choice value
and output:

if (choice == 1) {
document .write (“Body content for choice 17);

}

10. Close the script with a closing script tag; when viewed in a
browser, a page might look like Figure 53-2:

</script>

[ 3 hip://localhost:B500/est/menu. himl? chaice=3 - Microsoft Internet E... [l B4 |

Figure 53-2: A completed page with Choice 3 selected.




- Part 2

Replacing the Browser Document
with a New Document

ou can replace the browser document with a new document by using two
main methods of the document object:

* document.open: Opens a new document stream

* document.close: Closes a document stream opened by
document . open

To use these methods, you use a structure like the following:

document .open () ;
One or more document.write or document.writeln commands
document.close() ;

The following example creates a page with a JavaScript function that displays a
new document using document . open and document . close. The user can
click on a link to trigger the function and display the new page without accessing
the server.

1. Starta script block with the script tag:
<script language="JavaScript”>

2. Start a new function called newDocument:
function newDocument () {

3. Open a new document stream with document . open:
document.open () ;

4. Write out the content of the new document:
document .write(“<p>This is a New Document.</p>");

5. Close the document stream with document . close:
document.close() ;

6. Close the function with a closing curly bracket:
}

7. Close the script with a closing script tag:

</script>



Outputting to the Browser -

8. In the body of the HI'ML document, include a link with an onClick
event handler that calls the newDocument function; a sample final
page is shown in Listing 54-1.

<head>
<script language="JavaScript”>
function newDocument () {
document .open () ;
document .write(“<p>This is a New Document.</p>") ;
document.close() ;
}
</script>
</head>
<body>
<p>This is the original document.</p>
<p><a href="#" onClick="newDocument () ”>Display New :)
Document</a></p>
</body

Listing 54-1: This code displays a second document stream to the browser.

9. Open the document in a browser. Initially you will see the body text
of the HTML document as in Figure 54-1. After clicking on the link,
you should see the content output by the newDocument function.

Lhtml - Microsoft Internet

F

| Address [E] Aok w025t i =]

Ths 15 the ongnal document.

Diisplay Mew Document

Figure 54-1: The original HTML page.




- Part 2

Redirecting the User to a New Page

Unlike the document . URL property, which is static, the window. location
property allows you to actually reset the location associated with a window
and effectively redirect users to a new URL.

For instance, consider the following simple page:

<head>

<script language="JavaScript”>
window.location = “http://www.yahoo.com/”;

</script>

</head>

<body>
<p>You are here now</p>

</body>

In this case, the text “You are here now” will not even display in the browser;
as soon as the page loads, the user will immediately be directed to the Yahoo!
Web site.

The following script leverages the window. location property to allow users
to enter the location they would like to visit in a form field and then takes them
there when they click on the Go button:

1. Start a form with the form tag. This form will never be submitted
anywhere, so it doesn’t actually need method or action attributes:

<form>
2. Create a text box named url:

Enter a URL: <input type="text” name="url”>

3. Create a button with the label “Go”. This form control should be
of type button and not type submit, since the button is not being
used to submit the form anywhere:

<input type="button” value="Go”>

4. Add an onClick attribute to the button’s tag. The value of this
attribute is HTML code to assign the value stored in the url text
field to the window. location property:

<input type="button” value="Go” onClick="window.location :)
= this.form.url.value”>

5. Close the form with a closing form tag so that the complete form
looks like the following:

<form>

Enter a URL: <input type="text” name="url”>



Outputting to the Browser

<input type="button” value="Go” )
onClick="window.location = this.form.url.value”>

</form>

6. Store the form in an HTML file, and open that file in a Web
browser. You will see a form.

7. Enter a URL in the form’s text field, as illustrated in Figure 55-1.

Figure 55-1: Entering a URL in the form.

8. Click on the Go button, and you will be redirected to the URL you
entered, as shown in Figure 55-2.

BRINGINGBOOKS-TO*THE-WORLD

(® BOOKS FOR THE W#?RLD
The Bocks for the VWiorld Saries iz a unigue non-profil series of books and e-
i+ Iterature gobal audience. ==hore
E-BOOKS PRINTED BOOKS
Bahd for Hewt [R=NT)
Children Bahd'i Prayere for
Human Righte, Faith  Coming Youth
and Culture Sotn A Story of Peace for  Coring 1
Blessings of Service the Children of God  Sgansh
The Peychology of
il

Figure 55-2: Redirecting to the new URL.

e 55




- Part 2

Creating a “Page Loading ...”
Placeholder

his task looks at how to create a “page loading” placeholder that pops up in a
separate window while the main document is loading. When the main docu-
ment finishes loading, the placeholder window will close.

"This task uses two methods of the window object plus one event handler:

* window.open: Opens a new window and loads a document in
that window

® window.close: Closes a window

* onLoad: Used in the body tag to trigger JavaScript to execute when
a document continues loading

The following steps create the placeholder window:

1. Create an HTML file to serve as the content of the “page loading”
placeholder window. Any content you want the user to see in that
window should be placed in this file. Name the file holder.html.
The following is a simple file that tells the user the main page is
loading:

<html>
<head>
<title>Page Loading ...</title>
</head>
<body>
<strong>
Page Loading ... Please Wait
</strong>
</body>
</html>

2. Create the HTML file for your main document in the same direc-
tory. For this task, the file is named mainpage.html. A simple
mainpage.html file might look like this:

<html>
<head>
<title>The Main Page</title>
</head>
<body>
<p>This is the main page</p>
</body>
</html>




Outputting to the Browser

3. Inmainpage.html, add a script block to the header of the
document:

<script language="JavaScript”>

</script>

4. In the script block, open a new window with window. open.
This method takes three arguments: the file to load in the window,
the name of the window, and a series of parameters that define the
features of the window—in this case, the width and height of the
window are set to 200 pixels. The method returns a reference to
the window’s objects so that it is possible to manipulate the window
later. This reference is stored in the variable placeHolder:

var placeHolder = window.open(“holder.html",":)
holderWindow, "width=200, height=200") ;

5. Add an onLoad attribute to the body tag:
<body onLoad="">

6. As the value of the onLoad attribute, use placeHolder.close().
This closes the placeholder window once the main document finishes
loading. The final mainpage.html code looks like Listing 56-1.

<html>
<head>
<script language="JavaScript”>
var placeHolder = )
window.open (“*holder.html”, “placeholder”, "width=200, O
height=200") ;
</script>
<title>The Main Page</title>
</head>
<body onLoad="placeHolder.close() ">
<p>This is the main page</p>
</body>
</html>

Listing 56-1: Integrating the placeholder code into an HTML document.

7. Make sure holder.html and mainpage.html are in the same
directory and then load mainpage.html in your browser window.
A window with the contents of holder.html should appear above
the main window and then disappear as soon as the main window
finishes loading.







Part 3:

Images and Rollovers

Task 57:
Task 58:
Task 59:
Task 60:
Task 61:
Task 62:
Task 63:
Task 64:
Task 65:
Task 66:
Task 67:
Task 68:
Task 69:
Task 70:
Task 71:
Task 72:
Task 73:
Task 74:
Task 75:
Task 76:
Task 77:

Accessing an HTML-Embedded Image in JavaScript
Loading an Image Using JavaScript

Detecting MouseOver Events on Images

Detecting Click Events on Images

Switching an Image Programatically

Using Multiple Rollovers in One Page

Displaying a Random Image

Displaying Multiple Random Images

Using a Function to Create a Rollover

Using a Function to Trigger a Rollover

Using Functions to Create Multiple Rollovers in One Page
Creating a Simple Rollover Menu System

Creating a Slide Show in JavaScript

Randomizing Your Slide Show

Triggering Slide Show Transitions from Links

Including Captions in a Slide Show

Testing if an Image Is Loaded

Triggering a Rollover in a Different Location with a Link
Using Image Maps and Rollovers Together

Generating Animated Banners in JavaScript

Displaying a Random Banner Ad




- Part 3

Accessing an HTML-Embedded
Image in JavaScript

avaScript makes it easy to access and manipulate images in your HTML pages.

Accessing images in JavaScript is done through the Image object. An Image
object is created for each image you include in your HT'ML code. You either
access these Image objects through the images array of the document object or
directly by name.

If you specify a name for an image using the name attribute of the img tag, then
you can directly refer to the image as document . imageName. For example, con-
sider the following image in your HTML document:

<img src="myImage.jpg” name="myImage”>
You could refer to this in JavaScript with document . myImage.

Each Image object has numerous properties that can be used to access informa-
tion about an image. These include height (the height of the image in pixels),
width (the width of the image in pixels), src (the value of the src attribute of
the img tag), hspace (the size of horizontal image padding in pixels), and
vspace (the size of vertical image padding in pixels).

The following task illustrates how to use these properties to display an image and
then provide links to display the height and width of the image in dialog boxes:

1. Use an img tag to include an image in the page; name the image
myImage using the name attribute:

<img src="imagel.jpg” name="myImage”>

2. Include a link for displaying the width, and add an onClick event
handler to the a tag; this event handler will use the window.alert
method to display the image’s width in a dialog box. Notice how the
image’s width is obtained by referring to document .myImage
.width:

<a href="#" onClick="window.alert (document.myImage.width)
">Width</a><br>

3. Include a link for displaying the height, and add an onClick event
handler to the a tag; this event handler will use the window.alert
method to display the image’s height in a dialog box. Notice how the
image’s height is obtained by referring to document .myImage
.height. Add any necessary HI'ML for your preferred layout, and
your final code might look something like the following:

<img src="imagel.jpg” name="myImage”>

<br>

<a href="#" onClick="window.alert (document .myImage.width)
">Width</a><br>



Images and Rollovers -

<a href="#" onClick="window.alert (document.myImage.height)

">Height</a>

4. Save the code in an HTML file, and open it in a Web browser; you
should see a page with links for displaying the width and height.

5. Click on the Width link, and the dialog box in Figure 57-1 appears.

Figure 57-1: Displaying an image’s width.

6. Click on the Height link, and the dialog box in Figure 57-2 appears.

LTk
Figure 57-2: Displaying an image’s height.




- Part 3

Loading an Image Using JavaScript

In addition to creating Image objects by loading an image in HTML, you can
create an Image object programmatically in JavaScript. Loading an image in
JavaScript is a two-step process:
1. Create an Image object and assign it to a variable:
var myImage = new Image;
2. Assign a source image URL to the src attribute of the object:
myImage.src = “image URL goes here”;
The following task illustrates the programmatic loading of an image by loading
an image in this way and then providing links to display the height and width of
the image in dialog boxes as in Task 57:
1. Create a script block with opening and closing script tags.
2. In the script, create a new Image object named myImage:

myImage = new Image;

3. Load the image by assigning its URL to the src attribute of

myImage:
myImage.src = “imagel.jpg”;

4. In the body of the page’s HT' ML, include a link for displaying the
width and add an onC1ick event handler to the a tag; this event
handler will use the window.alert method to display the image’s
width in a dialog box. The image’s width is obtained by referring to

document .myImage.width:

<a href="#" onClick:”window.alert(document.myImage.width):)
7>Width</a><br>

5. Include a link for displaying the height, and add an onClick event
handler to the a tag; this event handler will use the window.alert
method to display the image’s height in a dialog box. The image’s
width is obtained by referring to document .myImage.height. The
final page should look like the following:

<script language="JavaScript”>

myImage = new Image;
myImage.src = “Tellersl.jpg”;

</script>

<body>




Images and Rollovers -

<a href="#" onClick="window.alert (myImage.width) Task 8
">Width</a><br>

<a href="#" onClick="window.alert(myImage.height):)
">Height</a>
</body>

6. Save the code in an HTML file, and open the file in your browser;
the page with two links should appear, but the image itself won’t be
displayed, as shown in Figure 58-1.

lbone| | | [ My Computes
Figure 58-1: Displaying Width and Height links.

7. Click on the Width link, and a dialog box like the one in Figure 58-2

appears, showing the width of the image. Click on the Height link,
and a dialog box for displaying the image’s height appears.

MPme3dtf3jzr

Figure 58-2: Displaying an image’s width.




- Part 3

Detecting MouseOver Events on Images

Using the onMouseOver event handler, you can detect when the mouse
pointer is over an image. You can then trigger actions to occur only when the
mouse moves into the space occupied by the image. Typically, this is used to cre-
ate rollover effects, as shown in the following tasks.

"To specify an event handler, you need to use the onMouseOver attribute of the
img tag to specify JavaScript to execute when the mouse rolls over the image.
For example:

<img src="image file” onMouseOver="JavaScript code”>

In the case where you are using an image as a link—for instance, an image serving
as a button in a menu—you typically place the onMouseOver attribute in the a
tag that encompasses the img tag:

<a href="URL” onMouseOver="JavaScript code”>
<img src="image file”>

</a>

The following shows the use of onMouseOver in both the img and a tags and
causes an appropriate message to display in a dialog box when the mouse pointer
moves Over an image:

1. In the body of your document, place an img tag to display the first
image:
<img src="imagel.jpg”>

2. Add an onMouseOver attribute to the img tag:

<img src="imagel.jpg” onMouseOver="">

3. As the value for the onMouseOver attribute, use the window.alert
method to display a message when the mouse pointer moves over the
image:

<img src="imagel.jpg” onMouseOver="window.alert (‘Over D
the Image’);”>

4. Add asecond img tag to display another image:
<img src="image2.jpg”>

5. Place opening and closing a tags around the second image; no URL
needs to be specified, and you should add an onMouseOver attribute
to the a tag. As the value for the onMouseOver attribute, use the
window.alert method again to display a message when the mouse

pointer moves over the second image. The resulting code should
look like this:



Images and Rollovers -

<body> T k 9
<img src="imagel.jpg” onMouseOver="alert (‘Over the D as

Image’) ; "><br>

<a href="#" onMouseOver="window.alert (‘'Over the :)
Link’);”><img src="image2.jpg”></a>
</body>

6. Save the code to an HTML file, and open the file in a browser. The
page will look like Figure 59-1.

Figure 59-1: Displaying two images.
7. Move the mouse pointer over the first image, and a dialog box like

Figure 59-2 appears. Move the mouse over the send image, and a
dialog box indicating you are over the link appears.

3 H:\htm

Figure 59-2: Displaying a dialog box when the mouse moves over an image.




- Part 3

Detecting Click Events on Images

In much the same way as code can be specified to respond to onMouseover
events (see Task 59), you can specify action to take only when the user clicks
on an image. This is done with the onclick event handler of the img tag or the
a tag, depending on the situation.

You can specify an onClick attribute of the img tag:
<img src="image file” onClick="JavaScript code”>

In the case where you are using an image as a link, as in an image serving as a
button in a menu, you typically place the onC1lick attribute in the a tag that
encompasses the img tag:

<a href="URL” onClick="JavaScript code”>
<img src="image file">
</a>

The following shows the use of onClick in both the img and a tags and causes
an appropriate message to display in a dialog box when the mouse clicks on an
image:

1. In the body of your document, place an img tag to display the first
image:

<img src="imagel.jpg”>
2. Add an onClick attribute to the img tag:
<img src="imagel.jpg” onClick="">

3. As the value for the onC1lick attribute, use the window.alert
method to display a message when the mouse pointer moves over the
image:

<img src="imagel.jpg” onClick="window.alert (Clicked on &)
the Image’);”>

4. Add asecond img tag to display another image:
<img src="image2.jpg”>

5. Place opening and closing a tags around the second image; no URL
needs to be specified, and you should add an onC1ick attribute to
the a tag. As the value for the onClick attribute, use the
window.alert method again to display a message when the mouse
pointer moves over the second image. The resulting code should

look like this:

<body>
<img src="imagel.jpg” onClick="window.alert ('Click :)
on the Image’);”><br>



Images and Rollovers -
<a href="#" onClick="window.alert (‘Clicked on the

Link’);”><img src="image2.jpg”></a> TaSK 60

</body>

6. Save the code to an HTML file, and open the file in a browser. The
page will look like Figure 60-1.

Figure 60-1: Displaying two images.

7. Click on the first image, and a dialog box indicating you clicked on
the image without the link appears.

8. Click on the second image, and a dialog box like Figure 60-2 appears.

Figure 60-2: Displaying a dialog box when the mouse clicks on an image link.




- Part 3

Switching an Image Programatically

his task illustrates how to combine the JavaScript-based loading of images

with the onMouseover event handler to create a rollover effect. This rollover
effect is typically used in the context of image-based buttons, as well as menus
containing menu items built out of images.

Consider Figure 61-1. Here a single image is displayed in a Web page and the
mouse pointer is not over the image. When the mouse pointer moves over the
image, a rollover image replaces the original image, as in Figure 61-2. When the
mouse pointer moves off the image, the image returns to the original illustrated
in Figure 61-1.

Figure 61-1: When the mouse pointer is not over an image, the original image is
displayed.

e |||
Figure 61-2: When the mouse pointer is over an image, an alternate image is
displayed.

The principle of producing rollover effects in JavaScript is straightforward and
involves three key pieces:

*  Specify the default image in your img tag.

e Create two Image objects; in one load the default image, and in the
other load the rollover image.

*  Specify onMouseOver and onMouseOut event handlers to manage
changing the displayed image as the mouse moves onto the image or
off the image.




Images and Rollovers -
The following steps outline how to create a simple rollover effect for a single

image in a page: Task 61

1. In the header of your page, create a script block with opening and
closing script tags.

2. In the script, create an Image object named rollImage, and load
the alternate, rollover image into it by assigning the image to the src
property of the rollImage object:

rollImage = new Image;
rollImage.src = “rollImagel.jpg”;

3. In the script, create an Image object named defaultImage, and
load the default image to display into it.

4. In the body of your script, place the default image with an img tag.
Use attributes of the tag to control the size and border of the image
as desired, and use the name attribute to assign the name myImage to
the image.

5. Wrap the img tag in opening and closing a tags, and specify the
URL where you want users to be directed when they click on the
image in the href attribute of the a tag. Add an onMouseOver
attribute to the a tag, and use this to display the rollover image to the
myImage object. This will cause the rollover image to be displayed
when the mouse moves over the image. Also add an onMouseOut
attribute to the a tag, and use this to display the default image when
the mouse moves off the image. The final script should look like this:

<head>
<script language="JavaScript”>
rollImage = new Image;

rollImage.src = “rollImagel.jpg”;
defaultImage = new Image;
defaultImage.src = “imagel.jpg”;
</script>
</head>

<body>

<a href="myUrl” onMouseOver="document.myImage.src = :)
rollImage.src;”

onMouseOut="document .myImage.src = defaultImage.src;"”>

<img src="imagel.jpg” name="myImage” width=100 )

height=100 border=0>

</a>
</body>

7. Save the code in an HTML file, and load it in a browser. When the
mouse rolls over the image, the rollover effect should replace it with
the rollover image and then switch it back to the default image when
the mouse pointer leaves the space occupied by the image.




- Part 3

Using Multiple Rollovers in One Page

Building on the rollover effect illustrated in Task 61, this task shows how the
principle can be extended to support multiple rollovers in a single page. This
is useful when you are building a menu out of rollover images.

The following steps illustrate the creation of two rollover images on a single page:

1. In a script block in the header of a new page, create an Image object
named rollImagel, and load the alternate rollover image for the
first image into it by assigning the image to the src property of the
rollImagel object. Also create an Image object named
defaultImagel, and load the default image for the first image into
it by assigning the image to the src property of the
defaultImagel object:

rollImagel = new Image; rollImagel.src = “rollImagel.jpg”;
defaultImagel = new Image; defaultImagel.src = :)
“imagel.jpg”;

2. Repeat the process for the second image by creating and loading
rollImage2 and defaultImage2 so that the resulting script is as
follows:

rollImage2 = new Image; rollImage2.src = “rollImage2.jpg”;
defaultImage2 = new Image; defaultImage2.src = :)
“image2.jpg”;

3. In the body of your script, place the two default images with img
tags; use attributes of the tags to control the size and border of the
image as desired, and use the name attribute to assign the names
myImagel and myImage2 to the images:

<img src="imagel.jpg” name="myImagel” width=100 :)
height=100 border=0>
<img src="image2.jpg” name="myImage2” width=100 )
height=100 border=0>

4. Wrap each img tag in opening and closing a tags, and specify the
URL where you want the users to be directed when they click on the
image in the href attribute of the a tag. Add an onMouseOver
attribute to each a tag, and use this to display the rollover images.
"This will cause the rollover image to be displayed when the mouse
moves over the relevant image. Also add an onMouseOut attribute to
each a tag, and use this to display the default image when the mouse
moves off the relevant image. The final script should look like this:

<head>
<script language="JavaScript”>
rollImagel = new Image; rollImagel.src = :)
“Tellersl.jpg”;
defaultImagel = new Image; defaultImagel.src = :)
“lotus.jpg”;
rollImage2 = new Image; rollImage2.src = “hedi.jpg”;




Images and Rollovers -
defaultImage2 = new Image; defaultImage2.src = :)

“ArcRV1.1l.jpg”; TaSk 6

</script>
</head>
<body>
<a href="#" onMouseOver="document.myImagel.src = :)
rollImagel.src;”
onMouseOut="document .myImagel.src = :)
defaultImagel.src;”>
<img src="lotus.jpg” name="myImagel” width=100 :)
height=100 border=0>
</a>
<a href="#" onMouseOver="document.myImage2.src = :)
rollImage2.src;”
onMouseOut="document .myImage2.src = :)
defaultImage2.src;”>
<img src="ArcRV1.1l.jpg” name="myImage2” width=100 :)
height=100 border=0>
</a>
</body>

5. Save the code in an HTML file and load it in a browser. Two possible
states exist: when the mouse is not over an image (Figure 62-1) and
when the mouse is over the first image (Figure 62-2).

e [ || SMyComputer

Figure 62-2: The mouse is over the first image.




- Part 3

Displaying a Random Image

ne application of the combination of JavaScript and images is to load a ran-

dom image in a location on the page rather than the same image every time.
One approach to this is to display the image entirely using JavaScript. That is,
you need to use JavaScript to specify a list of possible images, select one at ran-
dom, and then generate the img tag to display that image.

The script created in the following steps illustrates this process:

1. Create a script block with opening and closing script tags; the
script block should be in the body of your HI'ML document where
you want the image to be displayed:

<script language="JavaScript”>
</script>

2. In the script, create an array named imageList:
var imagelList = new Array;

3. Create an entry in the array for each image you want to make avail-
able for random selection. For instance, if you have four images,
assign the path and names of those images to the first four entries in

the array:

imageList[0] = “imagel.jpg”;
imageList[1l] = “image2.jpg”;
imageList[2] = “image3.jpg”;
imageList[3] = “image4.jpg”;

4. Create a variable named imageChoice:

var imageChoice;

5. Assign a random number to imageChoice using the Math.random
method, which returns a random number from 0 to 1 (that is, the
number will be greater than or equal to 0 but less than 1):

var imageChoice = Math.random() ;

6. Extend the expression assigned to imageChoice by multiplying the
random number by the number of entries in the imageList array to
produce a number greater than or equal to 0 but less than 4:

var imageChoice = Math.random() * imageList.length;

7. Extend the expression assigned to imageChoice further by remov-
ing any part after the decimal point with the Math. £loor method;
the result is an integer from 0 to one less than the number of entries
in the array—in this case that means an integer from 0 to 3:

var imageChoice = Math.floor (Math.random() *
imageList.length) ;




Images and Rollovers

8. Use the document .write method to place an img tag in the Task 3
HTML data stream sent to the browser. As the value of the src

attribute of img tag, the random image is specified as
imageList [imageChoice]. The final script looks like this:

<script language="JavaScript”>

var imagelList = new Array;

imageList[0] = “imagel.jpg”;
imageList[1l] = “image2.jpg”;
imageList[2] = “image3.jpg”;

imageList[3]

“imaged.jpg”;

var imageChoice = Math.floor (Math.random() * :)
imagelList.length) ;

document.write('<img src="' + imageList[imageChoice] :)
+ \\\>I)I.
</script>

9. Save the code in an HTML file, and display the file in a browser.
A random image is displayed, as in Figure 63-1. Reloading the file
should result in a different image, as illustrated in Figure 63-2
(although there is always a small chance the same random number
will be selected twice in a row).

TR m

Figure 63-2: Reloading the page will usually result in a different random image.




- Part 3
Displaying Multiple Random Images

he process of displaying a random image in a Web page can easily be extended
to displaying multiple random images out of the same set of random images.
The result is a script like the following, which displays three random images:

1. In a script block in the header of a new document, create an array
named imageList:

var imagelList = new Array;

2. Create an entry in the array for each image you want to make avail-
able for random selection. For instance, the following specifies the
path to four images:

imageList[0] = “imagel.jpg”;
imageList[1l] = “image2.jpg”;
imageList[2] = “image3.jpg”;
imageList[3] = “imaged.jpg”;

3. Create a function called showImage with the function keyword:

function showImage() {

}

4. In the function, create a variable named imageChoice. Assign a ran-
dom number to imageChoice using the Math.random method,
which returns a random number from 0 to 1 (that is, the number will
be greater than or equal to 0 but less than 1). Extend the expression
assigned to imageChoice by multiplying the random number by the
number of entries in the imageList array to produce a number
greater than or equal to zero but less than 4:

var imageChoice = Math.random() * imageList.length;

5. Extend the expression assigned to imageChoice further by remov-
ing any part after the decimal point with the Math. f1loor method.
The result is an integer from 0 to one less than the number of entries
in the array—in this case that means an integer from 0 to 3:

var imageChoice = Math.floor (Math.random() * :)
imageList.length) ;

6. Use the document.write method to place an img tag in the
HTML data stream sent to the browser. As the value of the src
attribute of img tag, the random image is specified as
imageList [imageChoice]. The final function looks like this:

function showImage () {

var imageChoice = Math.floor (Math.random() * &
imagelList.length) ;

document .write('<img src="' + imageList[imageChoice] :)
+ N>

}




Images and Rollovers -

7. In the body of the document, create a script block wherever you want Task 6 A
to place a random image, and then invoke the showImage function
there. You can invoke multiple showImage functions in the same
script block. The following page shows how to display three random
images in a row. Typically, the results will look like Figure 64-1.
Depending on how many images are available in your array and how
many random images you are displaying, there is always a chance that
you will see repeat images as in Figure 64-2.

<head>
<script language="JavaScript”>
var imagelList = new Array;

imageList[0] = “Tellersl.jpg”;
imageList[1l] = “lotus.jpg”;
imageList[2] = “hedi.jpg”;
imagelList[3] = “ArcRV1.1l.jpg”;
function showImage() {

var imageChoice = Math.floor (Math.random() *
imageList.length) ;
document .write(‘<img src="' +
imagelList[imageChoice] + '“>’);
}
</script>
</head>
<body>
<script language="JavaScript”>
showImage () ;
showImage () ;
showImage () ;
</script>
</body>

Figure 64-2: Images may repeat.




- Part 3

Using a Function to Create a Rollover

his task shows how to encapsulate the creation of Image objects for a rollover
image into a function. The following steps show how to create the necessary
function and use it to create a rollover effect for an image:

1. In the header of the document, create a script block with opening
and closing script tags:

<script language="JavaScript”>
</script>

2. In the script, create two variables: a source and a replacement con-
taining the values 0 and 1, respectively. These variables allow the
Image objects of each rollover array to be referred to by name:
source for the default image and replacement for the rollover

image.
var source = 0;
var replacement = 1;

3. Create a function named createRollOver with the function key-
word. This function should take two parameters—originalImage,
containing the path and name of the default image, and
replacementImage, containing the path and name of the rollover
image:

function createRollOver (originalImage, replacementImage) {

}
4. In the function, create an array named imageArray:

var imageArray = new Array;

5. Create a new Image object in the first element of the array, using
source to specify the index, and assign originalImage as the
source of that image:

imageArray|[source] = new Image;
imageArray[source] .src = originalImage;

6. Create a new Image object in the second element of the array, using
replacement to specify the index, and assign replacementImage
as the source of that image:

imageArray[replacement] = new Image;
imageArray[replacement] .src = replacementImage;

7. Return the array as the value returned by the function:

return imageArray;




Images and Rollovers -

8. After the function, invoke the createRol10ver function to create
the necessary rollover array, and assign the array returned by the func-
tion to rollImagel. The final script looks like this:

<script language="JavaScript”>
var source = 0;
var replacement = 1;
function createRollOver(originalImage,replacement:)
Image) {
var imageArray = new Array;
imageArray|[source] = new Image;
imageArray|[source] .src = originallmage;
imageArray[replacement] = new Image;
imageArray[replacement].src = replacementImage;
return imageArray;
}
var rollImagel = createRollOver(“imagel.jpg”,”:)
rollImagel.jpg”) ;
</script>

9. In the body of the HT'ML, use the img tag to place the image, name
the image myImagel with the name attribute, and place the image
in an a block. The a tag must have onMouseOver and onMouseOut
attributes that assign the appropriate images based on the mouse
movement. The resulting source code for the body of the document

looks like this:

<body>

<a href="#" onMouseOver="document.myImagel.src = :)
rollImagel [replacement] .src;”

onMouseOut="document .myImagel.src = :)
rollImagel [source] .src; ">
<img src="imagel.jpg” width=100 name="myImagel” :)

border=0>

</a>
</body>

10. Save the HTML file and open it in a browser. The default image is
displayed as in Figure 65-1. Move the mouse over the image to see
the rollover image.

jiley TP, .. =] E3
z N |

Figure 65-1: When the mouse pointer is not over the image, the original image
is displayed.




- Part 3

Using a Function to Trigger a Rollover

In addition to creating a function to handle the creation of rollover Image

objects, you can encapsulate the code for handling the actual switching of
images in rollovers within an event handler. This task extends the example

illustrated in Task 65 and adds a function for this purpose.

"The following steps show how to add the function to the code from Task 65 and
build and trigger rollovers using both functions:

1. Ina script block in the header of a new document, create two
variables—a source and a replacement containing the values 0 and 1,
respectively. These variables allow the Image objects of each rollover
array to be referred to by name—source for the default image and
replacement for the rollover image.

var source = 0;
var replacement = 1;

2. Create a function named createRollOver in the same way as in
Task 65:

function createRollOver (originalImage, replacementImage) {
var imageArray = new Array;
imageArray|[source] = new Image;
imageArray|[source] .src = originalImage;
imageArray[replacement] = new Image;
imageArray[replacement].src = replacementImage;
return imageArray;

}

3. Create a function named roll with the function keyword. This
function takes two parameters—targetImage, which will be the
Image object associated with the img tag for the image in question,
and displayImage, which will be the Image object for the image to
display:

function roll (targetImage,displayImage) {
}

4. In the function, assign the image from displayImage to the image
location associated with targetImage so that the final function

looks like this:

function roll (targetImage,displayImage) {
targetImage.src = displayImage.src;

}

5. After the roll function, invoke the createRoll0ver function to
create the necessary rollover array and assign the array returned by
the function to rollImagel. The final script looks like this:

var rollImagel = createRollOver(“imagel.jpg",":)
rollImagel.jpg”) ;




Images and Rollovers

6. In the body of the HTML, create an image with the img tag and
name the image myImagel:

<img src="imagel.jpg” width=100 name="myImagel” border=0>

7. Surround the image with opening and closing a tags:

<a href="myUrl”>

<img src="imagel.jpg” width=100 name="myImagel” :)
border=0>
</a>

8. Specify the onMouseOver and onMouseOut attributes of the a tag.
These use the roll function to handle the switching of images.

<a href="#" onMouseOver="roll(myImagel,rollImagel:)
[replacement])”:)
onMouseOut="roll (myImagel, rollImagel [source])”>
<img src="imagel.jpg” width=100 name="myImagel” :)
border=0>
</a>

9. Save the HTML file and open it in a browser. The default image is
displayed as in Figure 66-1. Move the mouse over the image to see
the rollover image, as in Figure 66-2.

Figure 66-1: When the mouse pointer is not over the image, the original image
is displayed.

Figure 66-2: When the mouse pointer is over the image, the rollover image is displayed.




- Part 3

Using Functions to Create Multiple
Rollovers in One Page

he real benefits of using functions for rollovers become apparent when you

try to create multiple rollover effects in a page. The following example shows
how to use the functions created in Tasks 65 and 66 to create two rollover images
in the same document:

1. In the script block in the header of a new document, create two
variables—a source and a replacement containing the values 0 and 1,
respectively. These variables allow the Image objects of each rollover
array to be referred to by name: source for the default image and
replacement for the rollover image:

var source = 0;
var replacement = 1;

2. Create a function named createRollOver in the same way as in
Task 65:

function createRollOver (originallmage, replacementImage) {
var imageArray = new Array;
imageArray|[source] = new Image;
imageArray|[source] .src = originalImage;
imageArray[replacement] = new Image;
imageArray[replacement].src = replacementImage;
return imageArray;

}
3. Create a function named rol1 in the same way as in Task 66:

function roll (targetImage,displayImage) {
targetImage.src = displayImage.src;

}

4. After the roll function, invoke the createRollOver function
twice to create the arrays for the two rollovers. The results are
returned and stored in rollImagel and rollImage2:

var rollImagel = createRollOver (“imagel.3jpg”,” )
rollImagel.jpg”) ;
var rollImage2 = createRollOver (“image2.jpg”, "
rollImage2.jpg”) ;

5. In the body of the document, create an image with the img tag for
the first rollover, and enclose it in opening and closing a tags; use the
roll function to specify appropriate image switches for the
onMouseOver and onMouseOut event handlers of the a tag, and
name the image myImagel with the name attribute of the img tag:

<a href="#" onMouseOver:”roll(myImagel,rollImagelZ)
[replacement])":D
onMouseOut="roll (myImagel, rollImagel [source]) ">



Images and Rollovers -

<img src="Tellersl.jpg” width=100 name="myImagel” )
border=0>

</a>

6. In the body of the document, create an image with the img tag for
the second rollover, and enclose it in opening and closing a tags; use
the rol1l function to specify appropriate image switches for the
onMouseOver and onMouseOut event handlers of the a tag, and
name the image myImagel with the name attribute of the img tag.

The final script should look like this:

<a href="#" D
onMouseOver="roll(myImage2,rollImage2[replacement])":)
onMouseOut="roll (myImage2,rollImage2 [source]) ">
<img src="lotus.jpg” width=100 name="myImage2” :)
border=0>
</a>

7. Save the HTML file and open it in a browser. Two images are dis-
played. When the mouse pointer is not over either image, the default
images are displayed, as in Figure 67-1. Move the mouse pointer over
the first image to display the first rollover, as in Figure 67-2, and
move over the second image to display the second rollover.

Figure 67-2: The mouse is over the first image.

Task @ 1




- Part 3

Creating a Simple Rollover
Menu System

ou have seen how moving the core rollover logic into functions can facilitate

the creation of multiple rollover images. To fully leverage this, you should
place the functions in a separate JavaScript file that can then be included in any
document you build.

The following example illustrates how to take the functions used in Task 67,
move them to an external JavaScript file, and then build a page that uses the
file to create two rollover images in a page:

1. In a blank text file, create a JavaScript script, but without using script
tags to open and close the script. Start the script by creating the
source and replacement variables:

var source = 0;
var replacement = 1;

2. Create a function named createRollover, as in Task 65:

function createRollOver (originalImage, replacementImage) {
var imageArray = new Array;
imageArray|[source] = new Image;
imageArray|[source] .src = originalImage;
imageArray|[replacement] = new Image;
imageArray[replacement].src = replacementImage;
return imageArray;

}
3. Create a function named rol1 in the same way as in Task 66:

function roll (targetImage,displayImage) {
targetImage.src = displayImage.src;
}

4. Save the file as rollover.js.

5. Ina new text file, include the rollover. js file by using the src
attribute of the script tag; place this script tag in the document
header:

<script language="JavaScript” src="rollover.js”></script>

6. Create a second script block in the document header.




Images and Rollovers -

7. In this script, invoke the createRollOver function twice to create Task 8
the arrays for the two rollovers. Assign the resulting arrays to
rollImagel and rollImage2:

<script language="JavaScript”>

var rollImagel = createRollOver (“imagel.jpg”,” )
rollImagel.jpg”) ;

var rollImage2 = createRollOver(“image2.jpg",":)
rollImage2.jpg”) ;
</script>

8. In the body of the document, create an image with the img tag for
the second rollover, and enclose it in opening and closing a tags.
Use the roll function to specify appropriate image switches for the
onMouseOver and onMouseOut event handlers of the a tag, and
name the image myImagel with the name attribute of the img tag.
The final script should look like this:

<body>
<a href="#" onMouseOver:"roll(myImagel,rollImagel:)
[replacement])”:)
onMouseOut="roll (myImagel,rollImagel [source]) ">
<img src="imagel.jpg” width=100 name="myImagel” )
border=0>
</a>
<a href="#" onMouseOver:"roll(myImageZ,rollImageZ:)
[replacement])”:)
onMouseOut="roll (myImage2,rollImage2 [source]) ">
<img src="image2.jpg” width=100 name="myImage2” )
border=0>
</a>
</body>

9. Save the HTML file and open it in a browser. When the mouse
pointer is not over either image, the default images are displayed as
in Figure 68-1.

2 H:\htm!

@ [T 1| :

Figure 68-1: The mouse is not over any image.




- Part 3
Creating a Slide Show in JavaScript

In addition to rollover effects for images, another popular use of JavaScript with
images is to create slide shows in HTML pages. These slide shows can be auto-
matic or manually controlled by the user.

"This task illustrates the creation of an automatic slide show in which the image
transitions happen every three seconds. The result is a slide show that starts on
an initial image and then switches every three seconds. The third image is dis-

played after the slide show has been running for six seconds.

The following steps create the specified automatic slide show:

1. Inascript block in the header of a new HI'ML document, create an
array named imageList; this array will hold the Image objects for

the slide show:

var imagelList = new Array;

2. Create a new element of the array for each slide show image and
assign the path and filename of the image to the src attribute of the

object:

imageList[0] = new Image;
imageList[0] .src = “imagel.jpg”;
imageList[1l] = new Image;
imageList[1l].src = “image2.jpg”;
imageList[2] = new Image;
imageList[2] .src = “image3.jpg”;
imageList[3] = new Image;
imageList[3].src = “imaged.jpg”;

3. Create a function named s1ideShow that takes a single parameter
named imageNumber: the number of the image to display. This
number is the index of a given image in the imageList array, and
the function will display the image and then schedule the display of
the next image to occur three seconds later.

function slideShow (imageNumber) {

}

4. In the function, display the image specified in imageNumber in the
place of the image named s1ideShow:

document.slideShow.src = imageList[imageNumber] .src;
5. Increment imageNumber by one:
imageNumber += 1;

6. Use an if statement to test if the new image number indicates there
is another image to display; that is, imageNumber should be less than
the length of the imageList array after being incremented:

if (imageNumber < imagelList.length) {
}




Images and Rollovers -

7. Inside the if block, use the window. setTimeout method to sched-
ule a call to the s1ideShow function with the new value of
imageNumber passed as a parameter. This will display the next
image in three seconds:

window.setTimeout (*slideShow (" + imageNumber + “)”,3000);

8. Add an onLoad event handler to the body tag, and call s1ideShow
with a parameter value of zero (for the first slide) from inside the
event handler:

<body onLoad="slideShow (0) ">

9. In the body of the document, display the first image of the slide show
with an img tag, and use the name attribute to name the image
slideShow. The final page should look like Listing 69-1.

<head>
<script language="JavaScript”>
var imagelList = new Array;
imageList[0] = new Image;
imageList[0] .src = “imagel.jpg”;
imageList[1l] = new Image;
imagelList[1l].src = “image2.jpg”;
imageList[2] = new Image;
imageList[2].src = “image3.jpg”;
imageList[3] = new Image;
imageList[3].src = “imaged.jpg”;
function slideShow (imageNumber) {
document .slideShow.src = )
imagelList [imageNumber] .src;
imageNumber += 1;
if (imageNumber < imageList.length) {
window.setTimeout (“*slideShow (" + imageNumber :)

+ “)”,3000);
}
}
</script>
</head>

<body onLoad="slideShow (0) ">
<img src="imagel.jpg” width=100 name="slideShow”>
</body>

Listing 69-1: Creating a slide show.




- Part 3

Randomizing Your Slide Show

A s an extension to the slide show created in Task 69, this task shows how to
produce a randomized slide show. The slide show continues to display ran-
dom images for the list of available images as long as the page is being displayed
in the browser.

The following steps create just such a random slide show:

1. In a script block in the header of a new document, create an array
named imageList; this array will hold the Image objects for the
slide show:

var imageList = new Array;

2. Create a new element of the array for each slide show image, and
assign the path and filename of the image to the src attribute of the

object:

imageList[0] = new Image;
imageList[0].src = “imagel.jpg”;
imageList[l] = new Image;
imageList[1l].src = “image2.jpg”;
imageList[2] = new Image;
imageList[2].src = “image3.jpg”;
imageList[3] = new Image;
imageList[3].src = “imaged.jpg”;

3. Create a function named s1ideShow that takes a single parameter
named imageNumber: the number of the image to display. This
number is the index of a given image in the imageList array, and
the function will display the image and then schedule the display of
the next image to occur three seconds later.

function slideShow (imageNumber) {

}

4. In the function, display the image specified in imageNumber in the
place of the image named s1ideShow:

document.slideShow.src = imagelList[imageNumber].src;

5. Create a variable named imageChoice, and assign it a random num-
ber from 0 to the last index in the imageList array by using
Math.floor, Math.random and imageList.length:

var imageChoice = Math.floor (Math.random() * :)
imageList.length) ;

6. Use the window.setTimeout method to schedule a call to the
slideShow function with the value of imageChoice passed as a
parameter. This will display the next random image in three seconds:

window.setTimeout (“*slideShow (" + imageChoice + “)”,3000);



Images and Rollovers -

7. Add an onLoad event handler to the body tag, and call s1ideShow Task 0
with a parameter value of zero (for the first slide) from inside the
event handler:

<body onLoad="slideShow(0) ">

8. In the body of the document, display the first image of the slide show
with an img tag, and use the name attribute to name the image
slideshow. The final page should look like this:

<head>
<script language="JavaScript”>
var imagelList = new Array;
imageList[0] = new Image;
imageList[0].src = “imagel.jpg”;
imageList[1l] = new Image;
imageList[l].src = “image2.jpg”;
imageList[2] = new Image;
imageList[2] .src = “image3.jpg”;
imagelList[3] = new Image;
imageList[3].src = “imaged.jpg”;
function slideShow (imageNumber) {
document .slideShow.src = &
imageList [imageNumber] .src;
var imageChoice = Math.floor (Math.random() * :)
imagelList.length) ;
window.setTimeout (*slideShow (" + imageChoice )

+ “)”,3000);
}

</script>
</head>

<body onLoad="slideShow(0) ">
<img src="imagel.jpg” width=100 name="slideShow”>
</body>

9. Save the page in an HTML file, and open it in a browser to display a
slide show like the one in Figure 70-1.

Figure 70-1: A random slide show.




- Part 3

Triggering Slide Show Transitions
from Links

nother useful extension of the slide show illustrated in Task 69 is to allow

the user to move the slide show forward and backward by clicking on links
instead of automating the transition of slides as in Tasks 69 and 70. The result
is a slide show presentation that looks something like Figure 71-1.

Figure 71-1: Controlling a slide show with links in the document.

The following example creates a slide show application with these manual links
for the user to control the progression of the slides:

1. In a script block in the header of a new document, create an array
named imageList; this array will hold the Image objects for the
slide show:

var imageList = new Array;

2. Create an a variable named currentSlide, and set its default value
to 0; this variable will be used to track the slide the user is currently
viewing:

var currentSlide = 0;

3. Create a new element of the array for each slide show image, and
assign the path and filename of the image to the src attribute of the

object:

imageList[0] = new Image;
imageList[0] .src = “imagel.jpg”;
imageList[1l] = new Image;
imagelList[1l].src = “image2.jpg”;
etc.

4. Create a function named nextS1lide with the function keyword;
this function will be invoked when the user wants to move forward to
the next slide:

function nextSlide() {

}




Images and Rollovers -

5. In the function, use an if statement to check whether or not the user
is already at the last slide. This is done by comparing the value stored
in currentSlide plus 1 (for the next slide) to the length of the
imageList array. If this is not the last slide, then there is another
slide and you increment currentSlide:

if (currentSlide + 1 < imageList.length) {

currentSlide += 1;

document.slideShow.src = imageList[currentSlide].src;
}

6. Create a function named previousSlide with the function key-
word; this function will be invoked when the user wants to move
back to the previous slide:

function previousSlide() {

}

7. In the function, use an if statement to check whether or not the user
is already at the first slide. This is done by comparing the value
stored in currentsSlide less 1 (for the previous slide) to zero:

if (currentSlide - 1 >= 0) {
}

8. If the previous slide is greater than or equal to zero, then the user has
another slide to see and that slide is displayed and the current
Slide value is reduced by one:

currentSlide -= 1;
document.slideShow.src = imagelList[currentSlide].src;

9. In the body of the document, create two links for the previous
and next slide, and in the href attribute, use javascript
:previousSlide () and javascript:nextSlide() to invoke
the appropriate functions when the user clicks on the links. Finally,
include an img tag that displays the first image from the slide show
with the name s1ideShow specified with the name attribute.




- Part 3

Including Captions in a Slide Show

n addition to rotating the images when a user clicks on a link, you can also
display and rotate captions associated with the images.

"This task builds on the manually controlled slide show from Task 71 and adds
a caption so that the slide show looks like Figure 72-1. When the user changes
images, the caption will change to match.

Caprion 1

| L}

[
Figure 72-1: Displaying a caption with an image.

The following steps add the caption to the slide show as outlined previously:

1. In ascript block in the header of a new document, create an array
named imageList; this array will hold the Image objects for the
slide show. At the same time, create an array named captionList
to hold the corresponding captions:

var imageList = new Array;
var captionList = new Array;

2. Create an a variable named currentSlide and set its default value
to 0; this variable will be used to track the slide the user is viewing:

var currentSlide = 0;

3. Create a new element of the imageList array for each slide show
image, and assign the path and filename of the image to the src
attribute of the object. At the same time, assign a relevant caption to
the appropriate entry in the captionList array:

imageList[0] = new Image;
imageList[0] .src = “imagel.jpg”;
captionList[0] = “Caption 1”;
imageList[1l] = new Image;
imageList[1l].src = “image2.jpg”;
captionList([1l] = “Caption 2”;

etc.




Images and Rollovers

4.

Create the nextSlide function as outlined in Task 71:

function nextSlide() {
if (currentSlide + 1 < imageList.length) {
currentSlide += 1;
document .slideShow.src = imageList[currentSlide].src;

}

In the i £ block, assign the appropriate caption to the caption text
field to go along with the image:

function nextSlide() {
if (currentSlide + 1 < imageList.length) {
currentSlide += 1;
document .slideShow.src = imageList[currentSlide].src;
document.captionForm.caption.value = :)
captionList[currentSlide];
}
}

Create the previousSlide function as outlined in Task 71, and add

the same command as in the nextS1lide function to handle captions.

The final script should be as follows:

function previousSlide() {
if (currentSlide - 1 >= 0) {
currentSlide -= 1;
document.slideShow.src = imageList[currentSlide].src;
document.captionForm.caption.value = :)
captionList[currentSlide];
}
}

In the body of the document, add the previous and next links and the
image itself as in Task 71:

<a href="javascript:previousSlide()”>&lt; PREV</a> |
<a href="javascript:nextSlide () ">NEXT &gt;</a><br>
<img src="Tellersl.jpg” width=100 name="slideShow”>

Add a form to the document and name the form captionForm. In
the form, create a multiline text field named caption, and display
the caption for the initial image in the text field:

<form name="captionForm”>

<textarea name="caption” rows=3 cols=40>Caption :)
1</textarea>
</form>

Task




Task

3

- Part 3

Testing If an Image Is Loaded

ometimes when you load an image, either through the ing tag or in

JavaScript by creating an Image object, the loading of the image can take a
long time. In these circumstances, you may want to prevent certain actions from
occurring if the appropriate images have not yet loaded.

For instance, in a slide show, it might be appropriate to skip an image if it is not
fully loaded when the user tries to display it. Similarly, it might be better to dis-
able rollover effects until all relevant images have successfully loaded so that
rollovers don’t cause switches to incomplete or unloaded images.

"This task illustrates the use of the complete property of the Image object by
extending the random slide show from Task 70 so that the slide show doesn’t
start until all the images have fully loaded.

The following steps create this slide show application:

1. In a script block in the header of a new document, create an array
named imageList; this array will hold the Image objects for the
slide show. Load all the images into the array:

var imagelList = new Array;
imageList[0] = new Image;
imageList[0] .src = “imagel.jpg”;
imageList[1l] = new Image;
imageList[1l].src = “image2.jpg”;
imageList[2] = new Image;
imageList[2].src = “image3.jpg”;
imageList[3] = new Image;
imageList[3].src = “imaged.jpg”;

imageList[0] = new Image;
imageList[0].src = “imagel.jpg”;
imageList[1l] = new Image;
imageList[1l].src = “image2.jpg”;
imageList[2] = new Image;
imageList[2] .src = “image3.jpg”;
imageList[3] = new Image;
imageList[3].src = “imaged.jpg”;

2. In the same way as in Task 70, create a function named slideShow
that takes a single parameter named imageNumber, displays the
specified image, randomly chooses another image, and then sched-
ules a call to s1ideShow to display that image in three seconds:

function slideShow (imageNumber) {
document.slideShow.src = imageList[imageNumber] .src;

var imageChoice = Math.floor (Math.random() * :)
imagelList.length) ;



Images and Rollovers -

window.setTimeout (“*slideShow (* + imageChoice + )

) 7,3000) ; Task 73

}
Create a function named checkImages with the function keyword:

function checkImages() {
}

In the function create a variable called result and setit to false:

var result = false;

In the function, create a for loop to loop through the imageList
array:

for (1 = 0; Ii < imagelList.length; 1i++) {

}

In the loop, check if that image has completed loading, and if it has,
make sure the result is true. This can be done by combining the
current value of result with the value of the complete property
of the related Image object using a boolean OR operation:

for (i = 0; i1 < imageList.length; i++) {
result = (result || imageList[i].complete);

}

Test the result in an if statement, and if the result is true, call the
slideShow function to start the show; otherwise, use the window.
setTimeout method to call the checkImages function in one
second to perform the check again:

if (result) {
slideShow (0) ;
} else {
window.setTimeout (“checkImages () ”,1000) ;

}

In the body of the document, display the initial image with the img
tag, and then set the onLoad attribute of the body tag to call the
checkImages function:

<body onLoad="checkImages () ">
<img src="imagel.jpg” width=100 name="slideShow”>

</body>




- Part 3

Task A- Triggering a Rollover in a
Different Location with a Link

R ollovers are typically triggered when a user moves the mouse over the image
itself; all the examples of rollovers seen so far have worked this way. But
there is nothing to prevent rollover effects to be displayed in a different place
than where the mouse movement is detected.

For instance, it is possible to trap the mouse moving over a link but use this event
to switch an image in a different location on the page.

This example shows how to trigger an image switch when the user moves the
mouse pointer over a separate link:

1. In a script block in the header of a new document, create an Image
object named originalImage and load the default image for the
rollover into the object:

var originalImage = new Image;
originalImage.src = “imagel.jpg”;

2. Create an Image object named replacementImage, and load the
rollover image for the rollover into the object. The final script block
should look like this:

<script language="JavaScript”>
var originalImage = new Image;
originalImage.src = “imagel.jpg”;

var replacementImage = new Image;
replacementImage.src = “rollImagel.jpg”;
</script>

3. In the body of the document, create a link that will be used for trig-
gering the rollover; it doesn’t matter what URL is specified for the
purposes of triggering the rollover:

<a href="myUrl”>ROLLOVER THIS TEXT</a>

4. Add an onMouseOver attribute to the a tag, and switch the myTImage
object to the image in the replacementImage object; this will trig-
ger the rollover when the mouse moves over the link:

<a href="#" onMouseOver="document.myImage.src = :)
replacementImage.src; ”>ROLLOVER THIS TEXT</a>

5. Add an onMouseOut attribute to the a tag, and switch the myImage
object to the image in the originalImage object; this will return
the image to the original state when the mouse moves off the link:

<a href="#" onMouseOver="document.myImage.src = :)
replacementImage.src;”

onMouseOut="document .myImage.src = :)
originalImage.src; ”>ROLLOVER THIS TEXT</a>




Images and Rollovers -

6. Add an img tag to the body, and display the default image. Name the
image myImage with the name attribute. The final page should look
like this:

<head>

<script language="JavaScript”>
var originalImage = new Image;
originalImage.src = “imagel.jpg”;

var replacementImage = new Image;
replacementImage.src = “rollimagel.jpg”;
</script>

</head>

<body>

<a href="#" onMouseOver="document.myImage.src = :)
replacementImage.src;”

onMouseOut="document .myImage.src = )
originalImage.src;”>ROLLOVER THIS TEXT</a><br>

<img src="Tellersl.jpg” width=100 name="myImage”>
</body>

7. Save the page in an HT'ML file, and open the file in a browser. This
displays a page like Figure 74-1. When the mouse moves over the
link, the rollover image will be displayed as in Figure 74-2.

— _

Figure 74-1: Initially, the default image is displayed.

MPng... =]

ROLL OVER THIS TEXT

Figure 74-2: When the mouse moves over the link, the rollover image is displayed.




- Part 3

Using Image Maps and
Rollovers Together

R ollovers can also be used with image maps. For instance, in Figure 75-1, an
image is used to create a complex graphical menu. The individual ovals are
specified in an image map and, therefore, are clickable links.

When rollovers are used with the image map, whenever the user rolls over the
first oval, the image map is replaced with an alternate image highlighting that
oval and providing descriptive text, as in Figure 75-2.

Figure 75-2: The rollover image for when the mouse pointer is over the first oval in
the image map.




Images and Rollovers -

The following steps create a rollover effect on an image map: Task 5

(=Y

. In a script block in the header of a new document, create an Image
object named originalImage, and load the default image for the
rollover into the object:

var originalImage = new Image;
originalImage.src = “imagel.jpg”;

2. Create an Image object named replacementImage, and load the

rollover image for the rollover into the object. The final script block
should look like this:

var replacementImage = new Image;
replacementImage.src = “rollImagel.jpg”;

3. In the header of the document, create an image map block with
opening and closing map tags. Specify the name of the image map as
imageMap with the name attribute of the map tag:

<map name="imageMap”>
</map>

4. Use an area tag to specify a rectangular block for a link in the image
map; use the shape attribute with the value rect and the coords
attribute to specify the coordinates of the rectangle:

<area shape="rect” coords="0,0,100,100">

5. Add an onMouseOver attribute to the area tag to replace the image
named myImage with replacementImage when the mouse rolls
over the specified area. Also add an onMouseoOut attribute to the
area tag to replace the image named myImage with the
originalImage image when the mouse rolls over the specified area:

<area shape="rect” coords="0,0,100,100"
onMouseOver="document .myImage.src = :)
replacementImage.src;”

onMouseOut="document .myImage.src = originalImage.src;”>

6. In the body of the document, display the default image using an img
tag and name the image myImage with the name attribute. Use the
usemap attribute to associate the image with the imageMap image
map:

<img src="imagel.jpg” width=200 name="myImage” :)
usemap="#imageMap” >

7. Save the code in an HTML file, and open it in a browser. When the
mouse moves over the 100-pixel-wide and 100-pixel-deep square in
the top-left corner of the image, the entire image map is replaced by
the rollover image. When the mouse moves out of this area, the orig-
inal image is displayed.




- Part 3

Generating Animated Banners
in JavaScript

M any of the banner ads you see on the Web are animated. Sometimes these
are done with animated GIF files, which provide a simple way to generate
an animated image without resorting to any custom code.

However, GIFs have their limitations, not least of which they are not well suited
to displaying photographic-style images with high color depth. That’s when

JPEG images come in handy. The problem is that JPEG images cannot be
animated.

Using JavaScript you can animate a JPEG-based banner in much the same way
that a slide show allows multiple images to be displayed. This is done by creating
one JPEG image for each frame of the animation and then rotating them using
JavaScript.

"This task shows how you can create an animated banner with JavaScript and
provide control over the amount of time between each frame transition:

1. In a script block in the header of a new document, create two arrays:
imageList to hold the individual Image objects for the frames of
the banner and transitionList to hold a list of transition times in
milliseconds, specifying how long to wait after displaying one frame
before displaying the next:

var imageList = new Array;
var transitionList = new Array;

2. Populate the imageList array with Image objects for the frames,
and specify transition times in the transitionList array:

imageList[0] = new Image;
imageList[0].src = “framel.jpg”;
transitionList[0] = 2000;
imageList[1l] = new Image;
imageList[1l].src = “frame2.jpg”;
transitionList([1] = 500;
imageList[2] = new Image;
imageList[2].src = “frame3.jpg”;
transitionList[2] = 5000;
imageList[3] = new Image;
imageList[3].src = “framed.jpg”;

transitionList[3] = 3000;

3. Create a rotateBanner function that takes a single parameter
frameNumber to indicate the frame that needs to be displayed:

function rotateBanner (frameNumber) {

}



Images and Rollovers -

4. In the function, display the specified frame in the place of the Image
object named banner:

document .banner.src = imagelList[frameNumber].src;

5. Next, increment the frame number and assign it to a new variable
called imageChoice:

var imageChoice = frameNumber + 1;

6. Check the value of imageChoice. If it is the same as the length of
the imageList array, reset it to 0. This way the banner will rotate
when it hits the last frame:

if (imageChoice == imageList.length) D
{ imageChoice = 0; }

7. As the last step of the function, schedule the rotateBanner func-
tion to run again after the appropriate display specified in the
transitionList array:

window.setTimeout (“rotateBanner (* + imageChoice + :)
V)" ,transitionList [frameNumber]) ;

8. In the body of the document, display the first frame of the image
with the img tag, and name the image banner:

<img src="framel.jpg” name="banner”>
9. In the body tag, specify the onLoad attribute to invoke

rotateBanner when the document loads, passing a value of 0 to the
rotateBanner function:

<body onLoad="rotateBanner (0) ">

10. Save the code in an HTML, and open the file in a browser to see an
animated banner as in Figure 76-1.

Figure 76-1: Displaying rotating JPEG banners with JavaScript.




- Part 3
Displaying a Random Banner Ad

ne application of the combination of JavaScript and images is to load a ran-

dom image in a location on the page rather than the same image every time.
You can apply this to presenting random banner ads that link to the appropriate
site for the ad. To do this you need to use JavaScript to specify both the location
of the images and URL:s associated with the images. With this data you can select
one at random and display it.

The script created in the following steps illustrates this process:

1. Create a script block with opening and closing script tags; the
script block should be in the body of your HI'ML document where
you want the image to be displayed:

<script language="JavaScript”>
</script>

2. In the script, create an array named imageList:
var imagelList = new Array;

3. Create an entry in the array for each banner’s image you want to
make available for random selection. For instance, if you have four
images, assign the path and names of those images to the first four
entries in the array:

imagelList[0] = “bannerl.jpg”;
imagelList[1l] = “banner2.jpg”;
imageList[2] = “banner3.jpg”;
imageList[3] = “bannerd.jpg”;

4. Create another array to hold the URLSs for each banner. The indexes
in this array should correspond to the imageList array:

var urllList = new Array;

urlList[0] = “http://some.host/”;
urlList[1] = “http://another.host/”;
urlList[2] = “http://somewhere.else/”;
urlList[3] = “http://right.here/”;

5. Create a variable named imageChoice:

var imageChoice;

6. Assign a random number to imageChoice using the Math.random
method, which returns a random number from 0 to 1 (that is, the
number will be greater than or equal to 0 but less than 1):

var imageChoice = Math.random() ;

7. Extend the expression assigned to imageChoice by multiplying the
random number by the number of entries in the imageList array to
produce a number greater than or equal to 0 but less than 4:

var imageChoice = Math.random() * imageList.length;




Images and Rollovers

8. Extend the expression assigned to imageChoice further by remov-
ing any part after the decimal point with the Math. £loor method;
the result is an integer from 0 to one less than the number of entries

10.

in the array—in this case that means an integer from 0 to 3:

var imageChoice = Math.floor (Math.random() *
imageList.length) ;

Use the document .write method to place an img tag surrounded

by an a tagin the HTML data stream sent to the browser. As the

value of the src attribute of img tag, the random image is specified

as imageList [imageChoice]l, and as the value of the href

attribute of the a tag, use urlList [imageChoice]. The final script

looks Listing 77-1.

<script language="JavaScript”>

var imagelList = new Array;

imageList[0] = “imagel.jpg”;
imagelList[1l] = “imagel2.jpg”;
imageList[2] = “image3.jpg”;
imageList[3] = “image4.jpg”;

var urlList = new Array;

urlList[0] = “http://some.host/”;
urlList[1l] = “http://another.host/”";
urlList([2] = “http://somewhere.else/”;
urlList[3] = “http://right.here/”;

var imageChoice = Math.floor (Math.random() * :)
imageList.length) ;

document.write('‘<a href="' + urlList[imageChoice]
‘“><img src="' + imageList[imageChoice] + ‘“></a>');
</script>

Listing 77-1: Displaying a random banner ad.

Save the code in an HT'ML file, and display the file in a browser.
A random banner is displayed. Reloading the file should resultin a
different banner (although there is always a small chance the same
random number will be selected twice in a row).

Task







Part 4:

Working with Forms

Task 78:
Task 79:
Task 80:
Task 81.:
Task 82:
Task 83:
Task 84:
Task 85:
Task 86:
Task 87:
Task 88:
Task 89:
Task 90:
Task 91:
Task 92:
Task 93:
Task 94:
Task 95:
Task 96:

Task 97:

Task 98:
Task 99:

Task 100:
Task 101:
Task 102:
Task 103:
Task 104:
Task 105:
Task 106:
Task 107:

Task 108:
Task 109:
Task 110:
Task 111:
Task 112:
Task 113:

Preparing Your Forms for JavaScript
Accessing Text Field Contents

Dynamically Updating Text Fields

Detecting Changes in Text Fields

Accessing Selection Lists

Programmatically Populating a Selection List
Dynamically Changing Selection List Content
Detecting Selections in Selection Lists
Updating One Selection List Based on Selection in Another
Using Radio Buttons instead of Selection Lists
Detecting the Selected Radio Button
Detecting Change of Radio Button Selection
Updating or Changing Radio Button Selection
Creating Check Boxes

Detecting Check Box Selections

Changing Check Box Selections

Detecting Changes in Check Box Selections
Verifying Form Fields in JavaScript

Using the onSubmi t Attribute of the Form Tag to Verify Form 00000600
Fields

Verifying Form Fields Using INPUT TYPE="button” Instead
of TYPE="submit”

Validating E-mail Addresses

Validating Zip Codes

Validating Phone Numbers

Validating Credit Card Numbers . —
Validating Selection List Choices
Validating Radio Button Selections
Validating Check Box Selections ————
Validating Passwords

Validating Phone Numbers with Regular Expressions

Creating Multiple Form Submission Buttons using INPUT
TYPE="button” Buttons

Reacting to Mouse Clicks on Buttons

Using Graphical Buttons in JavaScript

Controlling the Form Submission URL

Validating a Numeric Text Field with Regular Expressions
Encrypting Data before Submitting It

Using Forms for Automatic Navigation Jumping




- Part 4
Preparing Your Forms for JavaScript

n JavaScript, you can access and manipulate the content and state of fields in

forms on the page. To do this, you need to give some attention to the minimum
requirements needed to make your forms easily accessible in JavaScript.
Primarily, you must focus on providing names for your forms and elements. The
following steps walk you through the process of naming your forms and elements
so you can access them using JavaScript:

1. Create a new document in your preferred editor.

2. Create a form in the body of the document. Add an input text field, a
selection list, and a command button to your form:

<body>
<form method="post” action="target.html”>
<input type="text”>
<select>
<option value="1">First Choice</option>
<option value="2">Second Choice</option>
</select>
<br>
<input type="submit” value="Submit Me”>
</form>
</body>

This form is shown in Figure 78-1.

Fle Edt View Favorkes Took  Help
O O BB QP frron @nn @35
nddes= | €] - Decuments and SerengsigradiDeskiopiparaet. bl | Bl uns *
|[Fretchoice -
Submit hde
| o | Gwewe |

Figure 78-1: A standard HTML form.




Working with Forms -

3. Name the form by adding a name attribute. The following code
names the form thisform. As shown in bold, the name attribute is
added within the form tag:

Task

<body>
<form method="post” action="target.html” :)
name="thisForm”>
<input type="text”>
<select>
<option value="1">First Choice</option>
<option value="2">Second Choice</option>
</select>
<br>
<input type="submit” value=”"Submit Me”>
</form>
</body>

4. Name the elements within the form. Just like naming the form, this
is done by adding an attribute called name to each field’s tag. This
attribute is then set to the name of the element as shown in Listing
78-1. Once you've assigned the name attributes, your form is ready to
be easily used with JavaScript.

<body>
<form method="post” action="target.html” name="thisForm”>
<input type="text” name="myText”>
<select name="mySelect”>
<option value="1">First Choice</option>
<option value="2">Second Choice</option>

</select>

<br>
<input type="submit” value=”Submit Me”>

</form>
</body>

Listing 78-1: A JavaScript-ready form.




- Part 4

Accessing Text Field Contents

hen you create an HTML form, you are creating a series of objects, which

can be accessed from within JavaScript. The form itself is an object, and
then each of the fields in the form is represented by an object in JavaScript.
Using these objects, you can access the values stored in form fields such as text
input fields.

You can check the text that is displayed in a text input field—whether it is text
that is a part of the form or text that a user has entered. To be able to access a
field in JavaScript, use the following steps:

1. Create a new document in your preferred editor.

2. In the body of the document, create the form named myForm that
contains a text input field named myText:

<body>
<form name="myForm”>
<input type="text” name="myText”>
</form>
</body>

3. Create a link in your form. This link is used to display the value of the
text input element in a dialog box. Specify # as the URL for the link:

<body>

<form name="myForm”>
<input type="text” name="myText”>
</form>

<a href="#">Check Text Field</a>

</body>

4. Use the onClick event handler in the link element to specify
JavaScript code to execute when the user clicks on the link. To access
a form field, you use the following syntax:

document . formName. £ieldName

"This references the object associated with the field. The object has
several properties, including:

® name: The name of the field (as specified in the name attribute)
* value: The text displayed in the field

* form: A reference to the form object for the form in which the
field exists




Working with Forms -

Therefore, the property document . formName . formField.value
would contain a string of text as displayed in the field.

In this example, document . myForm.myText . value would repre-
sent the text in the text input field, so this is passed as an argument to
window.alert. The resultis that the text in the myText text input
box is displayed in a dialog box. Listing 79-1 shows the complete list-
ing with the JavaScript added.

<body>
<form name="myForm”>
<input type="text” name="myText”>

</form>

<a href="#" onClick="window.alert,)
(document .myForm.myText .value) ;”>Check Text Field</a>

</body>

Listing 79-1: Accessing the value of a form text field.

5. Save the file and close it.

6. Open the file in your browser. Enter some text in the text field, and
then click the link to see that text displayed in a dialog box, as illus-
trated in Figure 79-1.

a H: \Bockawdlay 0447 himl

ilaodin the field

Checlk: Tezz Field

Figure 79-1: Displaying the text field’s value.

o 719




- Part 4
Dynamically Updating Text Fields

U sing JavaScript, you can change the values in a text input field. The easiest time
to make this update is when a user does something on your form. This task
shows you how to dynamically update the text that is displayed in a text input field:

1. Create a new document in your preferred editor.
2. Create a form in the body of your document. Name your form myForm.

3. Add two text input fields to your form. Name one myText, which
will be used to enter text. Call the other copyText. It will have its
value dynamically changed. The following is the completed form:

<body>

<form name="myForm”>
Enter some Text: <input type="text” :)
name="myText”><br>
Copy Text: <input type="Text” name="copyText”>
</form>

</body>

4. Create a link that will be used to dynamically change the text. The
user can enter text into the myText field and then click on the link to
copy that text into the second text field; the copying is done with
JavaScript. Although a link is used in this example, you could just as
easily use a button click or any other event to dynamically change the
text. Specify # as the URL for the link.

5. Add an onClick event handler to the link. This will specify the
JavaScript code to execute when the user clicks on the link. The
property document . formName . formField.value contains
the value of a field in the form of a string of text. If you assign a value
to the value property, the new value will be displayed in the text
field. In this case, the value from the myText field will be assigned to
the copyText field. This is done by assigning document .myForm.
myText.value to document .myForm.copyText.value. Listing
80-1 shows the final form with the link and JavaScript added. Figure
80-1 shows the form.

<body>

<form name="myForm”>
Enter some Text: <input type="text” name="myText”><br>
Copy Text: <input type="text” name="copyText”>

</form>

(continued)




Working with Forms

<a href="#" onClick="document.myForm.copyText.value =
document .myForm.myText .value; ”>Copy Text Field</a>

</body>

Listing 80-1: Assigning a value to a form text field.

55 €] H:\Bockshwiky! 00480 iml

Enter some Text I |

Cepy Text:

Copy Text Field

L A N =1
Figure 80-1: A form with two text fields.

6. Save the file and close it.

7. Open the file in your browser. You should see the form and link as
shown in Figure 80-1. Enter some text in the first text field, and then
click the link to see the text copied and displayed in the second field,
as illustrated in Figure 80-2.

nl - Microsoft Inter

c=lelall
5 aﬂaﬁm:.‘Buo‘k&«NWﬂWﬂMMB

Enter some Text Itmin the first fizld |

Copy Text: [text in the first field

Copy Text Field

Figure 80-2: Assigning text to a text field.




- Part 4
Detecting Changes in Text Fields

hen you create an HTML form, you are creating a series of objects that
can be accessed from within JavaScript. Using these objects, you can detect
changes in form fields such as text input fields.

"This task shows you how to react to a change in a text input field. Text input
fields are created with the input tag and by setting the type attribute equal to
text. To make the field accessible in JavaScript, it is also best to assign a name to
the field with the name attribute:

<input type="text” name="myField”>

You can specify code to execute when a change occurs in the field with the
onChange event handler:

<input type=“text” name="myField” onChange="JavaScript code to )
execute when the value of the field changes”>

The following steps create a form with a text field. When a change is detected
in the field, a dialog box is displayed telling the user the value in the field.

1. Create a new document in your preferred editor.
2. In the body of the document, create a form named myForm.

<body>
<form name="myForm”>
</form>

</body>

3. In the form, create a text input field with the name myText:

<body>
<form name="myForm”>
Enter some Text: <input type="text” name="myText”>
</form>
</body>

4, Assign an onChange event handler to the field. The handler should
display this.value in a dialog box with the window.alert
method. The final page should look like Listing 81-1.

5. Save the file and close it.

6. Open the file in your browser. You should see the form as in
Figure 81-1.

7. Enter some text in the text field and then click outside the field to
remove focus from the field. You should see the dialog box shown in
Figure 81-2.




Working with Forms

<body>
<form name="myForm”>
Enter some Text: <input type="text” name="myText” :)
onChange="window.alert (this.value) ;">

</form>
</body>

Listing 81-1: Detecting changes in text fields.

Figure 81-1: A form with a text field.

Figure 81-2: Detecting change in the text field.




- Part 4

Accessing Selection Lists

hen you create an HTML form, you are creating a series of objects that

can be accessed from within JavaScript. The form itself is an object, and
then each form field is represented by an object in JavaScript. Using these
objects, you can access the values stored in form fields such as selection lists.
"This task shows you how to check the current selection in a selection list.

The following steps create a form with a single selection list and then provide a
link the user can click to display the value of the currently selected option in a
dialog box. JavaScript is used to display this information in the dialog box.

1. Create a new document in your preferred editor.
2. In the body of the document, create a form named myForm.

3. In the form, create a selection list named mySelect and add a num-
ber of options:

<body>

<form name="myForm”>
<select name="mySelect”>
<option value="First Choice”>1</option>
<option value="Second Choice”>2</option>
<option value="Third Choice”>3</option>
</select>
</form>

</body>

4. After the form, create a link with # as the URL. The link will be used
to display the form field’s selected value in a dialog box:

<body>

<form name="myForm”>
<select name="mySelect”>
<option value="First Choice”>1</option>
<option value="Second Choice”>2</option>
<option value="Third Choice”>3</option>
</select>
</form>

<a href="#">Check Selection List</a>

</body>

5. Use the onClick event handler to specify JavaScript code to execute
when the user clicks on the link. In this case, document .myForm.
mySelect.value, which represents the value of the selection
option in the list, is passed as an argument to window.alert in




Working with Forms -

order to display the text in a dialog box. The final page looks like
Listing 82-1.

<body>

<form name="myForm”>
<select name="mySelect”>
<option value="First Choice”>1</option>
<option value="Second Choice”>2</option>
<option value="Third Choice”>3</option>
</select>
</form>

<a href="#" onClick="window.alert (document . )
myForm.mySelect.value) ; “>Check Selection List</a>

</body>

Listing 82-1: Accessing the value of a selected option in a selection list.

6. Save the file and close it.

7. Open the file in your browser. You should see the form and link as in
Figure 82-1.

£ H:\Bookshwiky! 00482 himl

Checle Selectien List

Figure 82-1: A form with a selection list.

8. Select an option from the selection list and then click the link to see
the value of that selection displayed in a dialog box.




- Part 4

Programmatically Populating a
Selection List

You can dynamically add entries to a selection list through JavaScript without
ever using an option tag in HTML to create the selection entry. The prin-
ciple is simple. The selection list object has a 1ength property indicating the
number of entries in the selection list. Increasing this value by 1 creates an empty
entry at the end of the list, as illustrated in Figure 83-1.

Figure 83-1: Adding a new entry to a selection list.

Once the new entry is created, you use the options property of the selection list
to assign display text and a value to the new entry. This property is an array con-
taining one object for each element in the array. Each of these objects has a text
and a value property. To populate an entry with values, you would use the
following:

document . formName.selectionObject.options[index of new entry].text :)
= “Display text”;

document . formName.selectionObject.options[index of new entry].:)
value = “Entry value”;

The following task creates a form with a selection list with two entries and is
immediately followed by JavaScript code to create a third element in the list:

1. Create a new document in your preferred editor.

2. In the body of the document, create a form named myForm that
contains a selection list named mySelect with three options:

<form name="myForm”>
<select name="mySelect”>
<option value="First Choice”>1</option>




Working with Forms -

<option value=”Second Choice”>2</option> T k 3
</select> as

</form>

3. After the form, create a script.
4. In the script, add one to the length of the selection list:

<script language="JavaScript”>
document .myForm.mySelect.length++;
</script>

5. In the script, set the display text for the new entry:

document.myForm.mySelect.options[document.myForm.:)
mySelect.length - 1].text = “3”;

6. Set the display value for the new entry. The final page looks like
Listing 83-1.

<body>
<form name="myForm”>
<select name="mySelect”>
<option value="First Choice”>1</option>
<option value="Second Choice”>2</option>
</select>
</form>

<script language="JavaScript”>
document .myForm.mySelect.length++;

document.myForm.mySelect.options[document.myForm.mySelect.:)
length - 1].text = “3”";

document.myForm.mySelect.options[document.myForm.mySelect.:)
length - 1].value = “Third Choice”;

</script>
</body>

Listing 83-1: Dynamically adding an entry to a selection list.

7. Save the file and open it in a browser. Expand the selection list, and
you see three entries.




- Part 4

Dynamically Changing Selection
List Content

Acommon feature in some interactive Web forms is to change the contents of
a selection list dynamically. This allows you to create intelligent forms in
which a user’s actions can determine what should appear in a selection list.

This is easy to do in JavaScript. The selection list object has a 1ength property
indicating the number of entries in the selection list. You can reset this number
to the length needed based on a user’s choice in another list and then populate
each entry in the options array appropriately.

"The following steps create a form with a selection list followed by a link. When
the user clicks the link, the contents of the selection list changes.

1. In the header of a new selection list, create a script with a function
called changeList. This function populates a selection list with new
options. It takes as an argument the object associated with the selec-
tion list to change:

<script language="JavaScript”>
function changeList(list) {

}

</script>

2. In the function, set the length of the list to 3:

list.length = 3;

3. Create three entries in the list:

function changeList(list) {

list.length = 3;

list.options[0] .text = “First List 1”;
list.options[0] .value = “First Value 1”;
list.options[l] .text = “First List 2”;
list.options[l] .value = “First Value 2”;
list.options[2] .text = “First List 3”;
list.options[2] .value = “First Value 3”;

}

4. In the body of the document, create a form named myForm that con-
tains a selection list named mySelect with two options:

<body>
<form name="myForm”>
<select name="mySelect”>
<option value="1">First Choice</option>
<option value="2">Second Choice</option>
</select><br>
</form>
</body>



Working with Forms -

5. After the form, create a link the user will use to change the items in Task 8 A
the selection list. The link should include an onC1lick event handler.
The onClick event handler will call changeList and pass the
selection list object to the function:

<body>
<form name="myForm”>
<select name="mySelect”>
<option value="1">First Choice</option>
<option value="2">Second Choice</option>
</select><br>
</form>

<a href="#" onClick="changeList,)
(document .myForm.mySelect) ; ”>Change the List</a>

</body>

6. Save the file and open it in a browser. The list appears, as illustrated
in Figure 84-1.

Change the List

[

Figure 84-1: A selection list.

7. Click on the link, and the list changes to the new entries.




- Part 4

Detecting Selections in Selection Lists

hen you create an HTML form, you are creating a series of objects that

can be accessed from within JavaScript. The form itself is an object, and
then each form field is represented by an object in JavaScript. Using these
objects, you can detect selections made in form fields such as selection lists.

This task shows you how to react to the user selecting an option in a selection list
that was created with the select tag. You can specify code to execute when a
selection occurs in the field with the onChange event handler:

<select name="myField” onChange=Tﬁnw&W¢tmdeu7wwawewbmzwe:)
value of the field changes" >

The following steps create a form with a selection list. When a new selection is
detected in the field, a dialog box is displayed that tells the user the value of the
selected option.

1. Create a new document in your preferred editor.
2. In the body of the document, create a form named myForm:

<body>
<form name="myForm”>

</form>
</body>

3. In the form, create a selection list with the name mySelect thatis
populated with some options:

<body>
<form name="myForm”>
<select name="mySelect”>
<option value="First Choice”>1</option>
<option value="Second Choice”>2</option>
<option value="Third Choice”>3</option>
</select>
</form>
</body>

4. Assign an onChange event handler to the field; the handler should

display this.value in a dialog box with the window.alert
method. The final page should look like Listing 85-1.

<body>
<form name="myForm”>

<select name="mySelect” onChange=":)
window.alert (this.value) ;">
<option value="First Choice”>1</option>
(continued)




Working with Forms

<option value="Second Choice”>2</option>
<option value="Third Choice”>3</option>
</select>
</form>
</body>

Listing 85-1: Detecting new selections in selection lists.

5. Save the file and close it.

6. Open the file in your browser. You should see the form as in
Figure 85-1.

html - Microsoft Int

Figure 85-1: A form with a selection list.

7. Make a new selection in the list, and you should see the dialog box
shown in Figure 85-2.

Figure 85-2: Detecting new selections.




- Part 4

Updating One Selection List Based
on Selection in Another

Acommon feature in some interactive Web forms is for selections in one selec-
tion list to cause dynamic entries to appear in the second. This allows you to
create intelligent forms in which a user’s choice in one selection list can determine
the available choices in a second selection list.

The following steps create a form with two selection lists. Based on the user’s
selection in the first list, a different set of items is displayed in the second list.

1. In the header of a new selection list, create a script that has a function
called firstList. This function will populate the second list with
an appropriate set of items. This function will execute if the user
selects the first option in the first selection list. It takes as an argu-
ment the object associated with the second selection list.

2. In the function, set the length of the list to 3.
3. Create three entries in the list to complete the function:

function firstList (list) {
list.length = 3;

list.options[0].text = “First List 1”;
list.options[0].value = “First Value 1”;
list.options[1l].text = “First List 2”";
list.options[1l].value = “First Value 2”;
list.options[2].text = “First List 3”;
list.options[2].value = “First Value 3”;

}

4. Create a second function named secondList. This function works
the same as firstList, except that it creates a different set of
entries for when the user chooses the second option in the first selec-
tion list:

function secondList(list) {
list.length = 3;

list.options[0].text = “Second List 1”;
list.options[0].value = “Second Value 1”;
list.options[1l].text = “Second List 2”;
list.options[1l].value = “Second Value 2”";
list.options[2].text = “Second List 3”;
list.options[2] .value = “Second Value 3”;

}

5. Create a third function named updateSecondSelect. It takes a
form object as an argument and is called when the user makes a




Working with Forms -

selection in the first selection list. This function checks the selection
that has been made and calls either firstList or secondList.

6. In the function, check if the first option is selected. If so, call
firstList;if not, call secondList:

function updateSecondSelect (thisForm) {
if (thisForm.firstSelect.selectedIndex == 0) {
firstList (thisForm.secondSelect) ;
} else {
secondList (thisForm.secondSelect) ;

}

7. Create a form to use your functions. In the body of the document,
create a form with two selection lists named firstSelect and
secondSelect. Populate the first list with two entries, and leave
the second list blank. In the body tag, use the onLoad event
handler to call firstList to populate the second list initially,
and in the first select tag, use the onChange event handler
to call updateSecondSelect

<body onLoad="firstList (document.myForm.secondSelect) ;">
<form name="myForm”>
<select name="firstSelect” onChange=
“updateSecondSelect (this.form) ;">
<option value="1">First Choice</option>
<option value="2">Second Choice</option>
</select><br>

<select name="secondSelect”>
</select>
</form>

<script language="JavaScript”>
document .myForm.mySelect.length = firstList.length;
document .myForm.mySelect.options = firstList;
</script>
</body>

8. Save the file and open it in a browser. You now see two lists. The first
has the first option selected, and the second displays the appropriate
list for the first option.

9. Select the second option in the first list. You see the second list change.




- Part 4

Using Radio Buttons instead of
Selection Lists

ypically, selection lists, such as drop-down lists, are used to allow users to

make a single selection from a list of options. However, selection lists are not
the only choice of form fields available. If you plan to ask the user to make a sin-
gle selection from a group of options, you can also use radio buttons. Radio but-
tons display a series of check box-like buttons; however, only one in a group can
be selected at any time.

To create a group of radio buttons, do the following:

1. To create a radio buttons, start by creating an input tag, using
radio as the value of the type attribute:

<input type="radio”>
2. Create a radio button for each option in the group:

<input type="radio” value="1"> Option l<br>
<input type="radio” value="2"> Option 2<br>
<input type="radio” value="3"> Option 3

3. Now assign a common name to all the input tags for your group of
radio buttons. This common name allows the browser to associate
the buttons and to ensure that the user can only select one of the
radio buttons in the group:

<input type="radio” name="myField”> Option l<br>
<input type="radio” name="myField”> Option 2<br>
<input type="radio” name="myField”> Option 3

If you assign different names to each input tag, then the radio but-
tons are no longer a group and the user could easily select all three
options, as shown in Figure 87-1.

& First Chouce
@ Second Chotce
© Thrd Chewce

| = ;I'
Figure 87-1: Selecting multiple radio buttons if the name is specified incorrectly.



Working with Forms -

4. Compare the use of radio buttons to a selection list. The remaining
steps show you how to create a form that displays both a selection list
and a set of radio buttons that show the same options. You'll see how
these can be used interchangeably.

5. In a form, create a selection list named mySelect:

<select name="mySelect”>

</select>

6. Populate the list with some options:

<select name="mySelect”>
<option value="Y”>Yes</option>
<option value="N”">No</option>
</select>

7. Create a radio button for the Yes option in a radio group named
myRadio:

<input type="radio” name="myRadio” value="Y”" checked> Yes
8. Create a second radio button for the No option in the same group:

<input type="radio” name="myRadio” value="Y”" checked> Yes
<input type="radio” name="myRadio” wvalue="N"> No

9. Save the form in an HTML file.

10. Open the file in the form. You now see the same choices presented as
a selection list and as a pair of radio buttons, as in Figure 87-2.

Figure 87-2: Selection lists and radio buttons can often be used for the same tasks.




- Part 4
Detecting the Selected Radio Button

hen you create an HTML form, you are creating a series of objects that

can be accessed from within JavaScript. The form itself is an object, and an
object in JavaScript also represents each form field. Using these objects, you can
access the selected radio button in a group of radio buttons.

"This task shows you how to check which radio button the user has selected. To
access the radio button group, you use this syntax:

document . formName . groupName

"This references the object associated with the radio button group. This object is
actually an array containing an entry for each button in the group, and each of
these entries has several properties, including two critical ones for this task:

* checked: Indicates if the radio button is currently selected

* value: Reflects the value of the value attribute for the radio button

Therefore, the property document . formName . formField[0] .value would
contain the value of the first radio button in a radio button group.

The following steps create a form with a group of radio buttons. The value of the
currently selected radio button is displayed by clicking a link that is provided.

1. In the header of a new HTML document, create a script block with a
function named whichButton that takes no arguments:

<script language="JavaScript”>
function whichButton() {
}

</script>

2. In the function, create a variable named buttonvalue that is ini-
tially an empty string:

var buttonvValue = “”;

3. Loop through the document .myForm.myRadio array of radio but-
ton objects:

for (1 = 0; 1 < document.myForm.myRadio.length; i++) {

}

4. In the loop, check if the current radio button item is selected:

if (document.myForm.myRadio[i].checked) {

}



Working with Forms -

5. If the current button is checked, assign its value to buttonvalue: Task 88

buttonValue = document.myForm.myRadio[i].value;

6. After the loop, return the value of buttonvalue. Listing 88-1 pre-
sents the completed function.

<script language="JavaScript”>
function whichButton() {
var buttonvalue = “7;
for (1 = 0; i < document.myForm.myRadio.length; i++) {
if (document.myForm.myRadio[i].checked) {
buttonValue = document.myForm.myRadio[i].value;

}

return buttonValue;

}

</script>

Listing 88-1: The whichButton function.

7. In the body of the document, create a form named myForm that will
call your function. This should have a radio button group named
myRadio and a link. The link should use an onClick event handler
to display the result of calling whichButton in an alert dialog box.
The final form should look like Listing 88-2.

<body>
<form name="myForm”>
<input type="radio” name="myRadio”
value="First Button”> Button l<br>
<input type="radio” name="myRadio”
value="Second Button”> Button 2

</form>

<a href="#" onClick:”window.alert(whichButton());">:)
Which Radio Button?</a>
</body>

Listing 88-2: Detecting the selected radio button.

8. Save the file and open the file in your browser. You should see the
form and link.

9. Select a radio button, and click the link to see the value displayed.




- Part 4

Detecting Change of Radio
Button Selection

hen you create an HT'ML form, you are creating a series of objects that

can be accessed from within JavaScript. The form itself is an object, and
then an object in JavaScript represents each form field. Using these objects, you
can make changes in the selection of a radio button in a group of radio buttons.

This task shows you how to react to the user selecting a new radio button. To
detect selection of a radio button, you can use the onC1lick event handler in
each of the radio buttons in your group:

<input type="radio” name="myField” wvalue="1" onClick="JavaScript :)
code”> Option 1
<input type=“radio” name="myField” value="2" onClick="JavaScript )
code”> Option 2

The following steps create a form with a group of radio buttons and then display
an appropriate dialog box when the user selects each radio button. JavaScript is
used to display these dialog boxes.

1. Create a new document in your preferred editor.
2. In the body of the document, create a form named myForm:

<body>
<form name="myForm”>
</form>

</body>

3. Create a group of radio buttons called myRadio:

<body>
<form name="myForm”>
<input type="radio” name="myRadio”
value="First Button”> Button l<br>
<input type="radio” name="myRadio”
value="Second Button”> Button 2
</form>
</body>

4. Add an onClick event handler to each of the first radio buttons. Use
the event handlers to display a dialog box when the user selects that
radio button. The final page looks like Listing 89-1.

<body>
<form name="myForm”>
<input type="radio” name="myRadio”
value="First Button”
(continued)




Working with Forms

onClick="window.alert (‘First Button selected’);”>Button )
1<br>
<input type="radio” name="myRadio”
value="Second Button” :)
onClick="window.alert (‘Second Button selected’);”>Button 2
</form>
</body>

Listing 89-1: Responding to Selection of a Radio Button.

5. Save the file and close it.

6. Open the file in a browser, and you should see the form with radio
buttons, as in Figure 89-1.

Figure 89-1: A form
with radio buttons.

7. Click on one of the radio buttons to see the associated dialog box, as
in Figure 89-2.

Figure 89-2: Reacting to the
selection of a radio button.

© Button 1
@ Button 2




- Part 4

Updating or Changing Radio
Button Selection

hen you create an HT'ML form, you are creating a series of objects that

can be accessed from within JavaScript. The form itself is an object, and
then an object in JavaScript represents each form field. Using these objects, you
can dynamically select a radio button in a group of radio buttons.

"This task shows you how to select a radio button based on another action that
occurs. To access the radio button group, you use the following syntax:

document . formName . groupName

"This references the object associated with the radio button group. This object is
actually an array containing an entry for each button in the group, and each of
these entries has several properties, including two critical ones for this task:

* checked: Indicates if the radio button is currently selected

® value: Reflects the value of the value attribute for the radio button

Therefore, the property document . formName . formField[0] .value would
contain the value of the first radio button in a radio button group.

The following steps create a form with a pair of radio buttons and then provide
two links the user can click to select the radio buttons without actually clicking
directly on the radio buttons. Selecting the radio buttons is done with JavaScript.

1. In the header of a new HTML document, create a script block with a
function named selectButton that takes a single argument con-
taining the index of a specific radio button in the group.

2. In the function, set the checked property of the radio button to
true:

<script language="JavaScript”>
function selectButton (button) {
document .myForm.myRadio[button] .checked = true;
}

</script>

3. In the body of the document, create a form named myForm with a
radio button group named myRadio:

<form name="myForm”>
<input type="radio” name="myRadio”
value="First Button”> Button l<br>
<input type="radio” name="myRadio”
value="Second Button”> Button 2
</form>

4. After the form, create a link that uses an onC1ick event handler to
call the selectButton function to select the first radio button:



Working with Forms

<a href="#" onClick="selectButton(0);”>Select First )

Radio Button</a><br> TaSk 90

5. Create another link for selecting the second radio button so that the
final page looks like Listing 90-1.

<head>
<script language="JavaScript”>
function selectButton (button) {
document .myForm.myRadio (button) .checked = true;
}
</script>
</head>
<body>
<form name="myForm”>
<input type="radio” name="myRadio”
value="First Button”> Button l<br>
<input type="radio” name="myRadio”
value="Second Button”> Button 2
</form>

<a href="#" onClick="selectButton(0);”>Select First )
Radio Button</a><br>

<a href="#" onClick="selectButton(l);”>Select Second )
Radio Button</a>
</body>

Listing 90-1: Selecting Radio Buttons from Links.

6. Save the file and open the file in your browser. You should see the
form and links as in Figure 90-1.

55 €7 H:\Bocksiwiky! 04490 iml

 Button 1
© Button 2

Select First Radio Bullen
Select Second Radio Butten

Figure 90-1: A form with radio buttons.

7. Select either link to select a radio button.




- Part 4
Creating Check Boxes

imilar to radio buttons, check boxes allow yes/no-type selections: Either the

box is checked or it is not. Unlike radio buttons, however, groups of check
boxes are not mutually exclusive: None can be selected, all can be selected, or any
subset can be selected.

Check boxes are often used to allow users to make selections in a long list where
they can choose any number of options. These lists look like Figure 91-1.

¥ Choice 7
7 Cheice 8
7 Choice 3
W Choice 10

Figure 91-1: Using check boxes for long lists.

Check boxes are created with the input tag using checkbox as the value of the
type attribute:

<input type="checkbox”>

You can set whether a check box is selected (checked) by setting a checked prop-
erty. Setting this property to true will check the box.

The following steps display a form with a series of check boxes in a list:

1. Create a new document in your editor.
2. In the body of the document, create a form:
<body>
<form>
</form>
</body>
3. In the form create a series of check boxes:

<body>
<form>



Working with Forms -

<input type="checkbox” value="1"> First Choice<br>
<input type="checkbox” value="2"> Second Choice<br>
<input type="checkbox” value=”3"> Third Choice

</form>
</body>

4. Set the checked property so that the third option is selected by
default. The final page looks like Listing 91-1.

<body>
<form>

<input type="checkbox” value="1"> First Choice<br>

<input type="checkbox” value="2"> Second Choice<br>

<input type="checkbox” value="3" checked = “true”> :)
Third Choice

</form>
</body>

Listing 91-1: A series of check boxes.

5. Save the file and close it.

6. Open the file in the form, and check boxes in a list appear, as shown
in Figure 91-2.

File Edit View Favorites Tools Help

Q- © B[ G Prt Foroe @ @3- % B-LJE B
aiidress | ] ibocumanis and htmi Be

[ First Chence
[ Second Cheice
Third Cheice

CED S e
Figure 91-2: The form with a series of check boxes.

Task 9




- Part 4

Detecting Check Box Selections

hen you create an HTML form, you are creating a series of objects that

can be accessed from within JavaScript. The form itself is an object, and
then an object in JavaScript represents each form field. Using these objects, you
can access the selection status of check boxes.

"This task shows you how to check selection status of a check box. To access the
check box, you use the following syntax:

document . formName. fieldName

"This references the object associated with the check box, which has several prop-
erties, including

* checked: Indicates if the check box is currently selected

* value: Reflects the value of the value attribute for the check box

Therefore, the property document . formName . formField.value would con-
tain the value of a check box.

The following steps create a form with a check box and a link. The user can click
the link to display the status of the check box selection in a dialog box. JavaScript
is used to display this information in the dialog box:

1. Create a new document in your preferred editor.

2. In the body of your document, create a form named myForm:

3. In the form create a check box named myCheck:

<input type=”checkbox” name="myCheck”
value="My Check Box”> Check Me

4. After the form create a link with the href attribute set to #. The
user will use the link to check the status of the check box:

<a href="#">Am I Checked?</a>

5. Set the onClick event handler of the link to display the current
selection status by checking the checked property of the checkbox
object. The final page will look like Listing 92-1.

6. Save the file and close it.

7. Open the file in your browser, and the form and link appears, as
shown in Figure 92-1.

8. Click on the link to see the current selection status in a dialog box, as
shown in Figure 92-2.



Working with Forms

<body>

<form name="myForm”>
<input type="checkbox” name="myCheck”
value="My Check Box”> Check Me
</form>

<a href="#" onClick="window.alert (document .
myForm.myCheck.checked ? ‘Yes’ : '‘No’);”>Am I Checked?</a>

</body>

Listing 92-1: Checking a check box’s selection status.

[T Check Me

Am T Checked?

html - Microsoft Interr

[T Check Me

Am [ Checked?

Figure 92-2: Displaying the check box’s selection status.




- Part 4
Changing Check Box Selections

hen you create an HTML form, you are creating a series of objects that

can be accessed from within JavaScript. The form itself is an object and
then an object in JavaScript represents each form field. Using these objects you
can change the selection status of check box.

"This task shows you how to control selection status of a check box. To access the
check box, you use the following syntax:

document . formName. fieldName

"This references the object associated with the check box that has several proper-
ties including:

* checked: Indicates if the check box is currently selected

* value: Reflects the value of the value attribute for the check box

Therefore, the property document . formName . formField.value would con-
tain the value of a check box.

The following steps create a form with a check box. A link is provided that the
user can click to check or uncheck the check box. JavaScript is used to change the
selection status of the check box.
1. Create a new document in your preferred editor.
2. In the body of your document, create a form named myForm:
<body>

<form name="myForm”>

</form>
</body>

3. In the form, create a check box named myCheck:

<input type="checkbox” name="myCheck”
value="My Check Box”> Check Me

4. After the form, create a link with the href attribute set to #. The
user will use the link to select the check box:

<a href="#">Check the box</a>

5. Set the onC1lick event handler of the link to assign true to the
checked property of the check box:

<a href="#" onClick="document.myForm.myCheck.checked = :)
true; ”>Check the box</a>



Working with Forms -

6. Create a similar, second link to uncheck the check box but (set

checked to false instead of true). The final page will look like Task 93
Listing 93-1.

<body>
<form name="myForm”>
<input type="checkbox” name="myCheck”
value="My Check Box”> Check Me
</form>

<a href="#" onClick="document.myForm.myCheck.checked :)
= true;”>Check the box</a><br>

<a href="#" onClick="document.myForm.myCheck.checked :)
= false; ”>Uncheck the box</a>
</body>

Listing 93-1: Controlling a check box’s selection status.

7. Save the file and close it.

8. Open the file in your browser, and the form and links appear, as illus-
trated in Figure 93-1.

[T Check Me

Check the bez
Uncheck the box

Figure 93-1: A form with a check box.

9. Click on the first link to select the check box. Click on the second
link to unselect the check box.




- Part 4

Detecting Changes in Check
Box Selections

hen you create an HT'ML form, you are creating a series of objects that

can be accessed from within JavaScript. The form itself is an object, and
then an object in JavaScript represents each form field. Using these objects, you
can detect changes in the selection of a check box.

"This task shows you how to react to the user clicking on a check box. Check
boxes are created with input tags, with the type specified as checkbox:

<input type=”checkbox” name="myField”
value="Some Value”> Check box text

To detect selection of a check box, you can use the onC1ick event handler:

<input type="checkbox” name="myField” value="Some Value” :)
onClick="JavaScript code to execute when the user clicks on the :)
checkbox”> Check box text

The following steps create a form with a checkbox. A dialog box is displayed each
time the user clicks on the check box. JavaScript is used to display these dialog
boxes.
1. Create a new document in your preferred editor.
2. In the body of the document, create a form named myForm:
<body>

<form name="myForm”>

</form>
</body>

3. Create a group of check box named myCheck:
<body>

<form name="myForm”>

<input type="checkbox” name="myCheck”
value="My Check Box”> Check Me

</form>
</body>

4. Add an onClick event handler to check box, and use it to display a
dialog box when the user clicks the check box:

<body>
<form name="myForm”>



Working with Forms -

<input type=”checkbox” name="myCheck” value="My D Task A
Check Box” onClick="window.alert (‘'You clicked the check ¢
box’) ;”> Check Me
</form>
</body>

5. Save the file and close it.

6. Open the file in a browser, and you should see the form with the
check box, as in Figure 94-1.

html - M

Figure 94-1: A form with a check box.

7. Click on the check box to see the associated dialog box, as in
Figure 94-2.

Figure 94-2: Reacting to the user clicking on the check box.




- Part 4

Verifying Form Fields in JavaScript

One of the main applications of JavaScript is to perform validation of the data
entered into a form. One approach to form validation is to check the data
entered in a field when the user attempts to move out of the field. Until valid data
is entered, you prevent the user from leaving the field. The approach is simple:

* In the form field you want to validate, use the onBlur event handler
to call a JavaScript function to test your form field.

* In the function, check the validity of the data entered. If the data is

not valid, then inform the user and force the focus back to the field.
The following steps provide an example of this type of validation:

1. Create a script block in the header of a new HTML document that
contains a function called checkField. The function takes the form
field’s object as an argument:

<script language="JavaScript”>
function checkField(field) {
}

</script>

2. In the function, check if the field is empty:

if (field.value == “") {

3. If the field doesn’t contain text, alert the user to enter text:
window.alert (“You must enter a value in the field”);
4. If the field contains no text, reset the focus to the field:

field. focus() ;

5. In the body of the document, create a form named myForm:
6. In the form, create a text field named myField and a submit button:

<form name="myForm” action="target.html”>
Text Field: <input type="text” name="myField”><br>
<input type="submit”>

</form>

7. In the onBlur event handler of the text field, call the checkField
function so that the final page looks like Listing 95-1.

8. Save the file with the name target.html and close it.

9. Open the file in a browser. The form in Figure 95-1 appears.



Working with Forms

10.

<head>
<script language="JavaScript”>
function checkField(field) {
if (field.value == “7) {
window.alert (“You must enter a value in the field”);
field. focus() ;

}
</script>
</head>

<body>
<form name="myForm” action="target.html”>
Text Field: <input type="text” name="myField”
onBlur="checkField(this) "><br>
<input type="submit”>
</form>
</body>

Listing 95-1: Validating a form field when the user leaves the field.

€1 H:\Bookshwky! 04495 himl

Text Field:

| Do [

Figure 95-1: A form with a text field.

Click into the text field and then try to click outside the field without
entering any text. An alert appears, warning you to enter text in the
field, as shown in Figure 95-2, and then focus is returned to the field.

Figure 95-2: Forcing the user to enter text in a field.




- Part 4

Using the onSubmit Attribute of the
Form Tag to Verify Form Fields

One of the main applications of JavaScript is to perform validation of the data
entered in forms. One approach to form validation is to check the data
entered in a form when the user attempts to submit the form. The approach is
simple:

* In the form you want to validate, use the onSubmit event handler to
call a JavaScript function to test your form when it is submitted.

* In the function, check the validity of the data entered in the form.
If the data is not valid, then inform the user and cancel the form
submission.

The following task provides an example of this type of validation. If the user
attempts to submit the form without entering text in a single text field, the
user will be informed that he or she must enter text or the submission will be
canceled.

1. In the header of a new HTML document, create a script block with a
function called checkForm that receives the form’s object
(formOb3):

function checkForm(formObj) {

}

2. In the function, create a variable named formoOK that is set to true:

var formOK = true;

3. In the function, check if the field is the empty string:

if (formObj.myField.value == “") {
}

4. If the field contains no text, alert the user that he or she must enter
text to continue. Return focus to the field and set formOK to false:

window.alert (“You must enter a value in the field”);
formObj.myField. focus () ;
formOK = false;

5. Return the value of formoOK from the function:

return formOK;

6. In the body of the document, create a form named myForm that has a
text field named myField: and a submit button:

7. In the onSubmit event handler of the form, call the checkForm
function. The final page looks like Listing 96-1.



Working with Forms

<head>

<script language="JavaScript”>
function checkForm(formObj) {
var formOK = true;
if (formObj.myField.value == “") {
window.alert (“You must enter a value in the field”);
formObj .myField. focus () ;
formOK = false;
}
return formOK;
}
</script>
</head>

<body>

<form name="myForm” action=“target.html” onSubmit=")
return checkForm(this) ;">
Text Field: <input type="text” name="myField”><br>
<input type="submit”>
</form>
</body>

Listing 96-1: Validating a form when the user submits it.

8. Save the file with the name target .html and close it.

9. Open the file in a browser, and the form in Figure 96-1 appears.

html - Microsoft Interr

10. Try to submit the form without entering any text. You see an alert,
and then focus will be returned to the field.




- Part 4

Verifying Form Fields Using INPUT
TYPE="button” Instead of
TYPE="submit”

One of the main applications of JavaScript is to perform validation of the data
entered in forms. One approach is to check the data entered when the user
attempts to submit the form, but to not use any actual submit buttons. The
approach is simple:

* In the form you want to validate, use a regular button instead of a
submit button to control form submission.

* In the onClick event handler of the button, call a JavaScript func-
tion to test your form when it is submitted.

* In the function, check the validity of the data entered by the user in
the form. If the data isn’t valid, inform the user; otherwise, submit
the form.

The following task provides an example of this type of validation. If the user
attempts to submit the form without entering text in a text field, an alert will
state that text must be entered in the field; otherwise, the form is submitted.

1. In the header of a new HTML document, create a script block with a
function called checkForm that receives the form’s object (formOb3):

function checkForm(formObj) {

}

2. In the function, create a variable named formoOK that is set to true:

var formOK = true;

3. In the function, check to see if the text entered is the empty string:

if (formObj.myField.value == “") {
}

4. If the field is empty, alert the user that he or she must enter text to
continue and then return mouse focus to the field, and set formoOK to
false:

window.alert (“You must enter a value in the field”);
formObj.myField. focus () ;
formOK = false;

5. Check to see if formOK is true, and if it is, submit the form:

if (formOK) { formObj.submit(); };



Working with Forms -

6.

10.

In the body of the document, create a form named myForm with a

text field named myField and a regular button—not a submit Task 9
button:

<form name="myForm” action="target.html”>
Text Field: <input type="text” name="myField”><br>
<input type="button” value="Submit”>

</form>

In the onC1ick event handler of the button, call the checkForm
function. The final page looks like Listing 97-1.

<head>
<script language="JavaScript”>
function checkForm(formObj) {
var formOK = true;
if (formObj.myField.value == “") {
window.alert (“You must enter a value in the field”);
formObj.myField. focus () ;
formOK = false;
}
if (formOK) { formObj.submit(); }
}
</script>
</head>
<body>
<form name="myForm” action="target.html”>
Text Field: <input type="text” name="myField”><br>
<input type="button” value="Submit”
onClick="checkForm(this.form) ;">
</form>
</body>

Listing 97-1: Validating a form when the user submits it.

Save the file with the name target.html and close it.
Open the file in a browser.

Try to submit the form without entering any text. An alert appears,
and then focus is returned to the field.




- Part 4

Validating E-mail Addresses

hen validating information on a form, you may want to test if the text in a

text field conforms to a format of a valid e-mail address. This task illus-
trates how to do this. The method of validating an e-mail address that is used
applies the following logic:

® Check if the e-mail address is empty; if it is, the field is not valid.

*  Check for illegal characters, and if they occur, the field is not valid.

Check if the @ symbol is missing; if it is, the field is not valid.

Check for the occurrence of a dot; if there is none, the field isn’t valid.
e Otherwise, the field is valid.

The following steps create a form with a single field for entering an e-mail
address. When the user submits the form, the field is validated prior to submis-
sion. If validation fails, the user is informed and submission is canceled.

1. In the header of a new HI'ML document, create a script block con-
taining the function checkEmail that receives a text string.

2. In the function, check if the e-mail address has no length, and if it
does, inform the user and return false from the function.

3. Next, check if the following illegal characters exist: /, :, ,, or ;. If
any of these characters exist, inform the user and return false.

4. Next, check if the @ symbol exists. If not, inform the user and return
false.

5. Now check if a dot exists. If not, inform the user and return false:

6. Finally, return true from the function if the e-mail address passed all
the tests so that the complete function looks like Listing 98-1.

7. Create another function named checkForm that takes a form object
as an argument. The function should call checkEmail and pass it
the value of the field containing the e-mail address and then return
the result returned by the checkEmail function:

function checkForm(formObj) {
return checkEmail (formObj.myField.value); }

8. In the body of the document, create a form that contains a field for
entering the e-mail address and uses the onSubmit event handler to
call the checkForm function:

<body>
<form name="myForm” action="target.html”
onSubmit="return checkForm(this) ;">
E-mail: <input type="text” name="myField”><br>
<input type="submit”>
</form>
</body>




Working with Forms

function checkEmail (email) {

if (email.length == 0) {
window.alert (“You must provide an e-mail address.”);
return false;

if (email.indexOf (“/") > -1) {
window.alert (*E-mail address has invalid character: /”);
return false;

}

if (email.indexOf(“:”) > -1) {
window.alert (“E-mail address has invalid character: :”);
return false;

}

if (email.indexOf (“,”) > -1) {
window.alert (*E-mail address has invalid character: ,”);
return false;

}

if (email.indexOf (“;”) > -1) {
window.alert (*E-mail address has invalid character: ;”);
return false;

if (email.indexOf (“@”) < 0) {
window.alert (“E-mail address is missing @”);
return false;

if (email.indexOf (“\.”) < 0) {
window.alert (“E-mail address is missing .”);
return false;

return true;

Listing 98-1: Function for validating an e-mail address.

9. Save the file with the name target.html, and open it in a browser.

10. Try to submit the form without a valid e-mail address and you should
see an appropriate error message.




- Part 4
Validating Zip Codes

n some cases when validating a form, you may want to test if the text in a text
field conforms to a format of a zip code. This task illustrates how to validate a
zip code, using the following logic:

* Check if the zip code is empty; if it is, the field is not valid.
* Remove any dashes from the zip code.

* Check the length of the zip code; if it is not 5 or 9, the field isn’t
valid.

* Check for any nonnumeric characters; if any occur, the field is not
valid.

e Otherwise, the field is valid.

The following steps create a form with a single field for entering a zip code.
When the user submits the form, the field is validated prior to submission, and if
validation fails, the user is informed and submission is canceled.

1. In the header of a new HTML document, create a script block with a
function called checkzip that takes a text string as an argument.

2. In the function check if the zip code has no length, and if it does,
inform the user and return false from the function.

3. Next, remove any dashes from the zip code.

4. Next, check if the length of the zip code is either 5 or 9 characters. If
not, inform the user and return false from the function:

5. Now check if any character is not a number. If any character is not a
number, inform the user and return false. To test for nonnumeric
characters, loop through each character in the string and test it.

6. Finally, return true from the function if the zip code passed all the
tests. The complete function should look like Listing 99-1.

7. Create another function named checkForm that receives a form
object. The function should call checkzip, and pass it the value of
the field containing the zip code, and then return the result returned
by the checkzip function:

function checkForm(formObj) {
return checkZip (formObj.myField.value) ;

}




Working with Forms

function checkZip(zip) {
if (zip.length == 0) {
window.alert (“You must provide a ZIP code.”);

return false;

mny .
7

zip = zip.replace(“-",

if (zip.length != 5 && zip.length != 9) {
window.alert (*ZIP codes must take the form 12345 or
12345-6789") ;

return false;

for (i=0; i<zip.length; i++) {
if (zip.charAt(i) < “0” || zip.charAt(i) > “97) {
window.alert (“ZIP codes must only contain numbers.”);
return false;

}

return true;

Listing 99-1: Validating ZIP Codes.

8. In the body of the document, create a form that contains a field for
entering the zip code and uses the onSubmit event handler to call
the checkForm function

<body>

<form name="myForm” action="target.html”
onSubmit="return checkForm(this) ;">

ZIP: <input type="text” name="myField”><br>
<input type="submit”>

</form>

</body>
9. Save the file as target . html and open it in a browser.

10. ‘Iry to submit the form without a valid zip code, and you should see
an appropriate error message.




- Part 4

Task 100 Validating Phone Numbers

1.

n some cases when validating a form, you may want to test if the text in a text
field conforms to a format of a valid phone number. This task illustrates how to
validate a phone number using the following logic:

Check if the phone number is empty; if it is, the field is not valid.

Remove phone number punctuation (parentheses, dashes, spaces, and

dots).

Check the length of the phone number; if it is not 10 digits, the field
is not valid.

Check for nonnumeric characters; if any occur, the field is not valid.
Otherwise, the field is valid.

The following steps create a form with a single field for entering a phone num-
ber. When the user submits the form, the field is validated prior to submission.
If validation fails, the user is informed and submission is canceled.

In the header of a new HTML document, create a script block con-
taining the function checkPhone that receives a text string.

In the function, check if the phone number has no length. If it has no
length, inform the user and return false from the function.

Next, remove any phone number punctuation from the phone num-
ber. Specifically, remove dashes, spaces, parentheses, and dots.

Next, check if the length of the phone number is 10 characters. If
not, inform the user and return false from the function.

Now check if any character is not a number. If any character is not a
number, inform the user and return false from the function. To test
for nonnumeric characters, loop through each character in the string
and test it individually.

Finally, return true from the function if the phone number passed
all the tests. The complete function looks like Listing 100-1.

Create another function named checkForm that takes a form object
as an argument. The function should call checkPhone, pass it the
value of the field containing the phone number, and then return the
result returned by the checkPhone function:

function checkForm(formObj) {
return checkPhone (formObj.myField.value); }



Working with Forms

10.

function checkPhone (phone) {

if (phone.length == 0) {
window.alert (“You must provide a phone number.”) ;
return false;

phone = phone.replace(“-","");
phone = phone.replace(“ “,"");
phone = phone.replace(“(“,"");
phone = phone.replace(“)”,"");
phone = phone.replace(“.”,"");

if (phone.length != 10) {
window.alert (“*Phone numbers must only include a )
3-digit area code and a 7-digit phone number.”) ;
return false;

for (i=0; i<phone.length; i++) {
if (phone.charAt(i) < “0” || phone.charAt(i) > “97)
window.alert (“Phone numbers must only contain )
numbers.”) ;
return false;

return true;

{

Listing 100-1: The function to validate a phone number.

In the body of the document, create a form that contains a field for
entering the phone number and uses the onSubmit event handler to
call the checkForm function:

<body>
<form name="myForm” action="target.html” :)
onSubmit="return checkForm(this) ;">

Phone: <input type="text” name="myField”><br>
<input type="submit”>

</form>
</body>

Save the file as target . html and open it in a browser.

Try to submit the form without a valid phone number, and you
should see an appropriate error message.




Part 4

rask 4 QX Validating Credit Card Numbers

1.

Check if the credit card number is empty; if it is, the field is not valid.
Remove any spaces.

Check the length of the credit card number; valid lengths are dis-
cussed in this task. If the length is wrong, the field is not valid.

Check for nonnumeric characters; if any occur, the field is not valid.
Otherwise, the field is valid.

In the header of a new HTML document, create a script block with a
function checkCreditCard that takes a text string as an argument.

In the function, check if the credit card number has no length. If it
has no length, inform the user and return false from the function.

Next, remove any spaces from the credit card number.

Now check if the length of the credit card number is appropriate for
the type of card. If not, inform the user and return false.

Next, check if any character is not a number. If any character isn’t,
inform the user and return false. To test for nonnumerics, loop
through each character in the string and test it individually.

Finally, return true from the function if the credit card number
passed all the tests. The complete function looks like Listing 101-1.

Create another function named checkForm that receives a form
object. The function should call checkCreditCard, pass it the
value of the field containing the credit card number, and then return
the result returned by the checkCreditCard function:

function checkForm(formObj) {
return checkCreditCard(formObj.myField.value); }

Create a form that contains a field for entering the credit card num-
ber and uses the onSubmi t event handler to call the checkForm

function:

<body>
<form name="myForm” action="target.html”
onSubmit="return checkForm(this);”>
Credit Card: <input type="text” name="myField”><br>
<input type="submit”>
</form>
</body>

This task illustrates how to validate a credit card number by the following logic:

The following steps create a form with a single field for entering a credit card
number. When the user submits the form, the field is validated prior to submis-
sion. If validation fails, the user is informed and submission is canceled.



Working with Forms -

function checkCreditCard(card) {

if (card.length == 0) {
window.alert (“You must provide a credit card number.”) ;
return false;

card = card.replace(™ “,"");

if (card.substring(0,1) == “4") {
if (card.length != 13 && card.length != 16) {
window.alert (“Not enough digits in Visa number.”);
return false;

}
} else if (card.substring(0,1) == “5" && :)
(card.substring(1,2) >= “1” && card.substring(1l,2) <= “5"))
{
if (card.length != 16) {
window.alert (“Not enough digits in MasterCard.”);
return false;
}
} else if (card.substring(0,1) == “3" && :)
(card.substring(1l,2) == “4” || card.substring(l,2) == “77"))
{
if (card.length != 15) {
window.alert (“Not enough digits in American Expr.”);
return false;
}
} else {
window.alert (“This is not a valid card number.”);
return false;
}

for (i=0; i<card.length; i++) {
if (card.charAt(i) < “0” || card.charAt(i) > “97) {
window.alert (“CCard must only contain numbers.”);
return false;

}
return true;

}

Listing 101-1: The completed credit card validation function.

9. Save the file with the name target.html and open it in a browser.

10. 'Try to submit the form without a valid credit card number, and you
should see an appropriate error message.




- Part 4
Task 102 Validating Selection List Choices

In some cases when validating a form, you may want to test if the user has made
a selection in a selection list.

A common approach to selection lists is to have a blank first element so as not to
force the user into a default selection and then have the user choose one of the
other options. Sometimes you will want to ensure the user has chosen one of
those options instead of leaving the blank first choice selected.

The following steps create a form with a single selection list. When the user sub-
mits the form, the field is validated prior to submission, and if validation fails, the
user is informed and submission is canceled.

1. In the header of a new HTML document, create a script block con-
taining the function checkList that receives a text string:

function checkList (selection) {

}

2. In the function, check if the selected item’s value has no length. If it
has no length, inform the user and return false from the function:

if (selection.length == 0) {
window.alert (“You must select from the list.”);
return false;

}

3. Finally, return true from the function if the selected item passed the
test so that the complete function looks like Listing 102-1.

function checkList (selection) {

if (selection.length == 0) {
window.alert (“You must make a selection from the :)
list.”);
return false;

return true;

Listing 102-1: The completed checkList function.

4. Create another function named checkForm that takes a form object
as an argument. The function should call checkList, pass it the
value of the selected item in the selection list, and then return the
result returned by the checkList function:

function checkForm(formObj) ({
return checkList (formObj.myField.value) ;




Working with Forms -

5. Create a form that contains a selection list and uses the onSubmit Task 0
event handler to call the checkForm function:

<body>

<form name="myForm” action="target.html” :)
onSubmit="return checkForm(this) ;">

Choose:

<select name="myField”>
<option value=""></option>
<option value=”"1">One</option>
<option value="2">Two</option>
<option value="3">Three</option>

</select><br>

<input type="submit”>

</form>
</body>

6. Save the file as target .html and open it in a browser. The form in
Figure 102-1 appears.

Figure 102-1: A form with a selection list.

7. Ity to submit the form without choosing from the selection list. You
should see an appropriate error message, as in Figure 102-2.

Figure 102-2: Validating the user’s selection.




- Part 4
Task 103 Validating Radio Button Selections

In some cases when validating a form, you may want to test if the user has made

a selection in a radio button group. A common approach to radio button groups
is to have a radio button already selected by default. Sometimes you will want to

ensure the user has chosen one of the options. The following steps create a form

with a radio button group:

1. In the header of a new HTML document, create a script block con-
taining the function checkRadio that takes a radio button:

function checkRadio (buttons) {

}

2. In the function, create a variable named radioEmpty thatis
assigned the value true. This assumes the user has not selected
a radio button:

var radioEmpty = true;

3. Check each radio button to see if it is selected, and adjust the value of
radioEmpty accordingly:

for (i1i=0; i<buttons.length; i++) {
if (buttons[i].checked) {
radioEmpty = false;

}

4. Check the value of radioEmpty, and if it is true, inform the user
and return false from the function:

if (radioEmpty) {

window.alert (“You must select from the radio
buttons.”) ;

return false;

}

5. Finally, return true from the function if the selected item passed the
test so that the complete function looks like Listing 103-1.

6. Create another function named checkForm that receives a form
object. The function calls checkRadio and passes it the value of the
selected radio button. The checkRadio function returns the result:

function checkForm(formObj) {
return checkRadio (formObj.myField.value) ;

}

7. Create a form that contains a radio button group and that uses the
onSubmit event handler to call the checkForm function:

<body>
<form name="myForm” action="target.html”
onSubmit="return checkForm(this) ;">
Choose:




Working with Forms -

<input type="radio” name="myField” value="1"> 1 T k 3
<input type="radio” name="myField” value="2"> 2 as

<input type="radio” name="myField” value="3"> 3<br>

<input type="submit”>
</form>
</body>

function checkRadio (buttons) {
var radioEmpty = true;
for (i=0; i<buttons.length; i++) {
if (buttons[i].checked) {
radioEmpty = false;

if (radioEmpty) {

window.alert (“You must select from the radio buttons.”);
return false;

}

return true;

Listing 103-1: The complete checkradio function.

8. Save the file and open it in a browser. Figure 103-1 shows the form.

Choose: © 1 C 20 3

Figure 103-1: A form with radio buttons.

9. Try to submit the form without choosing a radio button, and you
should see an appropriate error message.




- Part 4

Task 10A‘ Validating Check Box Selections

In some cases when validating a form, you may want to test if the user has
selected a check box. A common approach used by forms is to have the user
select an optional item with a check box, and if they select the check box, require
them to fill in an additional text field.

The following steps create a form with a check box and a text field. When the
user submits the form, a check is made prior to submission to see if the text field
is filled in if the check box is selected; if validation fails, the user is informed and
submission is canceled.

In a new HTML document, create a script block containing the
function checkCheckbox that receives a check box object:

function checkCheckbox (check) {
}

In the function, check if the check box is checked or not:

if (check.checked) {
}

If the check box is checked, check the length of the text field’s text. If
the length is 0, inform the user and return false from the function:

if (check.checked) ({
if (check.form.myText.value.length == 0) {
window.alert (“You have checked the check box; you :)
must provide your name.”);
return false;

Finally, return true from the function if the form passed the test so
that the complete function looks like this:

function checkCheckbox (check) {
if (check.checked) {
if (check.form.myText.value.length == 0) {
window.alert (“You have checked the check box; :)
you must provide your name.”);
return false;

}

return true;

}

Create another function named checkForm that receives a form
object. The function should call checkCheckbox and pass it the
check box object. The checkCheckbox function should return the
following result:



Working with Forms -
function checkForm(formObj) { A
return checkRadio (formObj.myCheck) ; TaSk

6. Create a form containing a check box and a text field. Use the
onSubmit event handler to call the checkForm function:

}

<body>
<form name="myForm” action="target.html”
onSubmit="return checkForm(this) ;">
<input type="checkbox” name="myCheck”
value="Checked”> Check Here<br>
If checked, enter your name:
<input type="text” name="myText”><br>
<input type="submit”>
</form>
</body>

7. Save the file and open it in a browser. The form in Figure 104-1
appears.

[T Check Here

Edmdw&mmxwwmmml

8. Select the check box and try to submit the form without entering any
text in the text field. You should see an appropriate error message, as
in Figure 104-2.

Figure 104-2: Validating the user's selection.




- Part 4

Task 105 Validating Passwords

1.

In some cases when validating a form, you may want to test the password pro-
vided by the user. A common approach is to ask the user to specify a password
of a certain length twice to ensure he or she has entered it correctly.

"The following creates a form with two password fields. A check is made when the
user submits to see if the two entered fields match and are at least six characters.
If the checks fail, the user is informed and submission is canceled.

In the header of a new HTML document, create a script block con-
taining the function checkPassword that receives two text strings:

function checkPassword (password, confirm) {

}

In the function, check if the passwords match, and if not, inform the
user and return false from the function:

if (password != confirm) {
window.alert (“Passwords don’t match.”);
return false;

}

Next, check if the length of the string is fewer than six characters; if
it is, inform the user and return false from the function:

if (password.length < 6) {
window.alert (“Passwords must be 6 or more characters);
return false;

}

Finally, return true from the function if the password passed the
tests so that the complete function looks like this:

function checkPassword (password, confirm) {
if (password != confirm) {
window.alert (“Passwords don’t match.”);
return false;
}
if (password.length < 6) {
window.alert (“Passwords must be 6 or more )
characters) ;
return false;

}

Create another function named checkForm that takes a form object
as an argument. The function should call checkPassword and pass
it both passwords, and then return the result returned by the
checkPassword function:



Working with Forms

function checkForm(formObj) ({ T k
return checkPassword (formObj.myPassword.value, as
formObj.myConfirm.value) ;

}

6. Create a form that contains two password fields and uses the
onSubmit event handler to call the checkForm function:

<body>
<form name="myForm” action="target.html”
onSubmit="return checkForm(this) ;">
Enter Password: <input type="password”
name="myPassword” ><br>
Confirm Password: <input type="password”
name="myConfirm”><br>
<input type="submit”>
</form>
</body>

7. Save the file and open it in a browser. The form in Figure 105-1
appears.

Enter Password: I
Cenfirm Password: I

Figure 105-1: A form with two password fields.

8. Enter two mismatched passwords and submit the form. You should
see an appropriate error message, as in Figure 105-2.

Figure 105-2: Validating the user's selection.




- Part 4

Validating Phone Numbers with
Regular Expressions

n Task 100 you saw an example of how to validate a phone number in JavaScript.

At the core was the checkPhone function. Unfortunately, this function shows
a long, complex, and roundabout way to validate a phone number. It does have
the benefit of using only a small set of simple, common JavaScript commands and
constructs such as if statements and for loops, but it requires too many steps
and, therefore, is prone to error: If you get the logic wrong, the validation will be
incorrect.

Using regular expressions, you can greatly simplify the amount of code needed
for this task. Regular expressions provide a powerful extension of the wildcard
concept to allow you to specify text patterns and search for matches for those
patterns. Unfortunately, regular expressions are an advanced topic beyond the
scope of this task, but I will show you how to perform phone number validation
using regular expressions.

Use of the regular expression is simple once you have created it. You will use it in
the following format:

var someString ="string to test”;
var regularExpression = /pattern to match/modifiers;
if (regularExpression.test (someString)) {

Code to execute if there is a match;

}

The following steps create a form with a field to enter a phone number that is
validated with regular expressions:

1. In the header of a new HI'ML document, create a script block con-
taining the function checkPhone that returns a text string:

function checkPhone (phone) {

}

2. In the function, create a regular expression for matching against a
phone number. Enter the following exactly as it is presented:

var check = /"\({0,1}[0-91{33\){0,1}[ \-\.1{0,1}[0-91{3}
[ \-\.1{0,1}[0-91{4}$/;

3. Next, test for a failure to match this pattern against the phone num-
ber. Notice that the result returned by the test method is negated.
In this way, the if statement is true only when no match is found:

if (!check.test (phone)) {
}



Working with Forms

If no match is found, inform the user and return false from the

function:

if (!check.test (phone)) {
window.alert (“You must provide a valid phone number.”) ;
return false;

}

Finally, return true from the function if the phone number passed
the test so that the complete function looks like this:

function checkPhone (phone) {
var check = /~\({0,1}[0-91{3}\){0,1}[ \-\.19
{0,1300-91{3}[ \-\.1{0,1}[0-9]1{4}s/;
if (!check.test (phone)) {
window.alert (“Provide a valid phone number.”) ;
return false;
}
return true;

}

Create another function named checkForm that takes a form object
as an argument. The function should call checkPhone and pass it
the value of the field containing the phone number and then return
the result returned by the checkPhone function:

function checkForm(formObj) {
return checkPhone (formObj.myField.value) ;

In the body of the document, create a form that contains a field for
entering the phone number and uses the onsubmi t event handler to
call the checkForm function:

<body>
<form name="myForm” action="target.html”
onSubmit="return checkForm(this) ;">
Phone: <input type="text” name="myField”><br>
<input type="submit”>
</form>
</body>

Save the file as target . html and open it in a browser.

Try to submit the form without a valid phone number, and you
should see an appropriate error message.




Part 4

Creating Multiple Form Submission
Buttons Using INPUT TYPE=
"button” Buttons

On some Web sites you will see a form with multiple buttons that appear to be
submission buttons. A common example of this is a login form: One button
logs the user in, one button creates a new user account using the username
entered by the user, and the third e-mails the user’s password to the user in case
he or she has forgotten it.

In all cases, the same form is being used, but the form is being submitted to a dif-
ferent URL.

By default, submit buttons always submit the form to the URL specified in the
action attribute of the form tag regardless of how many appear in the form.
The way around this is to use regular buttons for the extra buttons and to use the
onClick event handlers for these buttons to reset the target URL for the form
and then submit the form.

Form objects have an action property that indicates the URL where the form
will be submitted. You can change this URL by assigning a new URL to the

property:
document . formName.action = “new URL”;

Form objects also have the submit method, which submits the form just as if the
user had clicked on a submit button.

The following steps use these principles to create a login form with three buttons
just like the one described previously:

1. Create a new document in your preferred browser.

2. In the body of the document, create a form; as the action, specify the
page where the form should be submitted if the user is logging in:

<body>
<form name="myForm” action="login.html”>
</form>

</body>
3. In the form create a username field:
Username: <input type="text” name="username”><br>
4. In the form create a password field:

Password: <input type="password” :)
name="password”><br>



Working with Forms -

5. Create a submit button for the login process:

Task 10

<input type="button” value="Login” :)
onClick="this.form.submit ();”>

6. Create a regular button for users who want to register new accounts:

<input type="button” value="Register”>

7. In the onClick event handler for the button, set the action URL to
the register page and then submit the form:

<input type="button” value="Register” :)
onClick="this.form.action = ‘register.html’;
this.form.submit () ;">

8. Create a regular button for users who want to retrieve their
passwords:

<input type="button” value="Retrieve Password”>

9. In the onClick event handler for the button, set the action URL to

the page for retrieving passwords and then submit the form. The
final page looks like Listing 107-1.

<body>
<form name="myForm” action="login.html”>
Username: <input type="text” name="username”’><br>

Password: <input type="password” name="password”><br>
<input type="button” value="Login” :)

onClick="this.form.submit () ;">

<input type="button” value="Register” )
onClick="this.form.action = ‘register.html’;
this.form.submit () ;">

<input type="button” value="Retrieve Password” :)
onClick="this.form.action = ‘password.html’;
this.form.submit () ;">

</form>

</body>

Listing 107-1: Multiple buttons for submitting a form.

10. Save the file and open it in your browser. You should see a form with
multiple buttons for submitting to different pages.




- Part 4
Task 108 Reacting to Mouse Clicks on Buttons

Acommon use of JavaScript, as evidenced by many of the tasks in this section
of the book, is to perform JavaScript tasks when the user clicks on a form
button. You do this using the onC1ick event handler of a form button:

<input type="button” value="Button Label”

onClick="JavaScript code to execute when the user clicks the
button”>
"This task illustrates using the onClick event by creating a form with a button.
When the user clicks on the button, a dialog box is displayed informing the user
that he or she has clicked on the button.

1. Create a new HTML document in your preferred editor.
2. Create a form in the body of the document:

<body>
<form name="myForm” action="target.html”>
</form>

</body>

3. In the form, create a regular button:

<body>
<form name="myForm” action="target.html”>
<input type="button” value="Click Me”>
</form>

</body>

4. In the button, use an onClick event handler to display an alert dia-
log box when the user clicks on the button:

<body>
<form name="myForm” action="target.html”>

<input type="button” value="Click Me”
onClick="window.alert (‘You clicked the button.’);”>

</form>

</body>




Working with Forms

5. Save the file as target .html and close it.

6. Open the file in a browser, and a button appears, as shown in
Figure 108-1.

> - @ [ | Bises
5= [ H:\Backstwiky\ 01102 Pt

Figure 108-1: A button in a form.

7. Click on the button, and the dialog box in Figure 108-2 appears.

Figure 108-2: Reacting when the user clicks on the button.




- Part 4

Using Graphical Buttons in JavaScript

TML provides a form element type called image that lets you place images

within a form as elements. You can apply event handlers to these images to
make them a dynamic, integral part of your forms. To include an image in a form
as a form element, use the image value for the type attribute of the input tag:

<input type="image” src="path to image”>

As with other form buttons, you can specify event handlers in image buttons.
For instance, the following button uses an onC1lick event handler to specify
JavaScript code to execute when the user clicks on the image:

<input type="image” src="path to image” onClick="JavaScript code :)
to execute”>

To illustrate the user of graphical buttons, the following form uses an image as a
submit button. When the user clicks the button, an alert dialog box is displayed
before the form is submitted.

1. Create or select an image file you will use for the image button.
2. Create a new HT'ML document in your preferred editor.
3. In the body of the document, create a form.

4. Place any fields you want in the form; do not include a submit
button:

<body>
<form name="myForm” action="login.html”>
Username: <input type="text” name="username”><br>
Password: <input type="password”
name="password”><br>
</form>
</body>

5. Create an image tag that references the image from Step 1 earlier:

<body>
<form name="myForm” action="login.html”>
Username: <input type="text” name="username”><br>
Password: <input type="password”
name="password”><br>
<input type="image” src="login.gif” value="Login”>
</form>
</body>

6. Use an onClick event handler for the image to display a dialog box
when the user clicks on the image:

<body>
<form name="myForm” action="login.html”>



Working with Forms

Username: <input type=”"text” name="username”><br>
Password: <input type="password” name="password”>
<input type="image” src="login.gif” value="Login”
onClick="window.alert (‘'You clicked on the image.’);”>
</form>
</body>

7. Save the file as 1ogin.html and close it.

8. Open the file in a browser. The form in Figure 109-1 appears,
including the image button.

Figure 109-1: A form with an image button for submission.

9. Click on the image and the dialog box in Figure 109-2 appears.

Figure 109-2: Reacting to users clicking on the image.

Task




Part 4

Controlling the Form Submission URL

hen you create a form in HTML, you specify what page the form should
be submitted to with the action property of the form tag:

<form action="URL to submit the form to”>
"This is reflected in JavaScript as the action property of the form object:
document . formName.action

You can change this target URL dynamically at any point by assigning a new
URL to this property:

document . formName.action = “new URL”";

The following task creates a form as well as a link. If the link is clicked, the target
action URL of the form is changed. When the user submits the form, the target
URL is displayed in a dialog box before the form is submitted.

1. Create a form named myForm in a new document:

<body>
<form name="myForm” action="target.html”>

</form>
</body>

2. In the form, create any fields you need, as well as a submit button:

<body>
<form name="myForm” action="target.html”>
Enter Some Text: <input type="text”
name="myField”><br>
<input type="submit”>
</form>
</body>

3. In the submit button, use the onClick event handler to display the
action URL in a dialog box before submitting the form:

<input type="submit” onClick:":)
window.alert (this.form.action) ;">

4. After the form, create a link that targets # as the URL:

<a href="#">Change Form Action Target</a>



Working with Forms -

5. Use an onClick event handler to change the target URL when the
link is clicked. The complete page is presented in Listing 110-1.

<body>
<form name="myForm” action="target.html”>
Enter Some Text: <input type="text” )
name="myField”><br>
<input type="submit” :)
onClick="window.alert (this.form.action) ;">
</form>

<a href="#" onClick="document.myForm.action = )
‘alternate.html’;”>Change Form Action Target</a>
</body>

Listing 110-1: The completed page.

6. Save the file and close it.

7. Open the file in a browser and you now see the form you created.

8. Submit the form without clicking on the link. It will submit to the
original URL, as illustrated in Figure 110-1.

Eoter Seme Test[ |

Change Form Achion Target

Figure 110-1: Submitting the form to the original URL.

9. Reload the file in a browser. Click on the link and then submit the
form, and the form will submit to the new URL.

Task 110




- Part 4

rask A 4X Validating a Numeric Text Field with
Regular Expressions

SOmetimes you will have a form where you need to limit the text entered into
a text field to only particular characters. For instance, you might want to
limit the text to numbers. Using regular expressions, you can easily perform this
check when the user submits the form.

Regular expressions provide a powerful extension of the wildcard concept to
allow you to specify text patterns and search for matches for those patterns.
Unfortunately, regular expressions are an advanced topic beyond the scope of this
book; however, this task shows how to perform number validation using regular
expressions.

The following steps create a form with a field to enter a phone number that is
validated with regular expressions:

1. In the header of a new HTML document, create a script block con-
taining the function checkNumber that receives a text string:
<script language="JavaScript”>

function checkNumber (number) {

}

</script>

2. In the function, create a regular expression for matching against a
numeric value:

var check = /~[0-91+\.?[0-91+$/;

3. Next, test for a failure to match this pattern against the number:

if (!check.test (number)) {

}

4. If no match is found, inform the user and return false from the
function:

if (!check.test (number)) {
window.alert (“*You must provide a valid number.”) ;
return false;

}

5. Finally, return true from the function if the number passed the test,
so that the complete function looks like this:

function checkNumber (number) ({
var check = /~[0-9]1+\.?2[0-9]1+S/;
if (!check.test (number)) {
window.alert (“You must provide a valid number.”) ;




Working with Forms -

return false;
} Task 1

return true;

}

6. Create another function named checkForm that takes a form object
as an argument. The function should call checkNumber and pass it
the value of the field containing the number and then return the
result returned by the checkNumber function:

function checkForm(formObj) ({
return checkNumber (formObj.myField.value) ;
}

7. Create a form that contains a field for entering the phone number
and uses the onSubmi t event handler to call the checkForm

function:

<body>
<form name="myForm” action="target.html”
onSubmit="return checkForm(this) ;">
Enter a number: <input type="text”
name="myField”><br>
<input type="submit”>
</form>
</body>

8. Save the file and open it in a browser. The form in Figure 111-1
appears.

Figure 111-1: A form with a text field.

9. 'Try to submit the form without a valid number, and you should see
an appropriate error message.




- Part 4
Encrypting Data before Submitting It

By encrypting the data in a form before submitting it across the Internet, you
add a small layer of privacy to the data being transmitted. This can be
achieved in JavaScript if desired by passing each form field through an encryption
function before submitting the form. The principle is simple:

1. Inthe form tag, use onSubmit to call the encryption function
before submitting the form.

2. The encryption form should work through each field in the form and
encrypt the value of each field.

The encryption process can use the elements property of the form tag to easily
access all the fields in a form without knowing what those fields will be in
advance. This property is an array containing one entry for each object in the
form. Therefore, the first field in the form can be referenced as:

document . formName.elements[0]

The following task creates a form, which is encrypted using a simple algorithm
before it is transmitted. The encryption algorithm simply converts each letter in
the form’s fields to their numeric Unicode equivalents:

1. In the header of a new HTML document, create a script block with a
function named encrypt. This function should take a text string as a
single argument. This string will be encrypted:

<script language="JavaScript”>
function encrypt(item) {

}

</script>

2. In the function, create a variable named newItem that will hold the
encrypted string. Initially this should be an empty string:

var newltem = “”;

3. Loop through each character in the original text string:

for (i=0; i < item.length; i++) {

}

4. For each character in the string, use the charCodeat method of the
string object to obtain the numerical Unicode representation of
the letter and add it to the newItem string. Note that a dot is added
after each character. This separates the characters cleanly to make it
easier to decrypt later.



Working with Forms -

5. Return the encrypted string from the function. The encrypt func-
tion should look like the following:

function encrypt(item) {
var newltem = “”;

for (i=0; i < item.length; i++) {
newltem += item.charCodeAt (i) + “.”;
}

return newltem;

6. Create a second function named encryptForm that takes a form
object as an argument.

7. In the function, loop through the elements array. For each element,
encrypt the value of the field with the encrypt function, and store the
result back into the field’s value:

function encryptForm(myForm) {

for (i=0; i < myForm.elements.length; i++) {
myForm.elements[i] .value =
encrypt (myForm.elements[i] .value) ;

}

8. In the body of the document, create a form with any needed fields.
Use the onSubmit event handler to submit the form to the
encryptForm function:

<form name="myForm” action="target.html” onSubmit=")
encryptForm(this); window.alert (this.myField.value) ;">

Enter Some Text: <input type="text” name="myField”><br>
<input type="submit”>
</form>

9. Save the file and open it in a browser.

10. Click on the submit button. The form is encrypted, and the
encrypted value of the field is displayed in a dialog box before the
form is submitted.




- Part 4

Task 13 Using Forms for Automatic
Navigation Jumping

SOmetimes you will see form selection lists used as a mechanism for providing
navigation to different URLSs for a page. The drop-down list will include
multiple URLs, as shown in Figure 113-1. When the user selects an entry in the
list, the browser is automatically sent to that URL.

it bahaiwoldnews arg
Wi OECAUNTY org
et bic-unoehai.org

Figure 113-1: A selection list for navigating to URLs.

"This navigation is achieved using two principles:

* 'The onChange event handler can detect changes in the selected item
in a selection list.

e Setting window.location to a new URL redirects the browser.

The following task shows how to build a simple selection list with URLs.
JavaScript code will redirect the user to the selected URL.

1. Create a form in the body of a new document.

2. Create a selection list with the URLSs you want to allow the user to
navigate to:

<select name="url”>

<option></option>
<option value="http://www.juxta.com/”>)
www . juxta.com</a>
<option value="http://www.anis.cc/”>www.anis.cc</a>
<option value="http://www.hatcher.org/”>)
www.hatcher.org</a>
</select>




Working with Forms -

3. Use the onChange event handler of the select tag to redirect the Task 13
browser to the URL of the selected entry (the URL is the value of

each entry). Listing 113-1 shows the code.

<body>
<form>
Select a Site:

<select name="url” onChange="window.location = )
this.value;”>

<option></option>
<option value="http://www.juxta.com/”>www.juxta.com</a>
<option value="http://www.anis.cc/”>www.anis.cc</a>
<option value:"http://www.hatcher.org/">:)
www.hatcher.org</a>
</select>
</form>
</body>

Listing 113-1: The selection list with URLs.

4. Save the file and close it.

5. Open the file in your browser. A selection list appears, as illustrated
in Figure 113-2.

i juada.com
WO OIS 0
st hatcher. org

Figure 113-2: Using a selection list for user navigation.

6. Select an entry from the list. The browser is redirected to that site.







Part 5:

Manipulating Browser Windows

Task 114: Using the window Object

Task 115: Popping Up an Alert Dialog Box

Task 116: Popping Up Confirmation Dialog Boxes

Task 117: Popping Up JavaScript Prompts

Task 118: Creating New Browser Windows

Task 119: Opening a New Browser Window from a Link

Task 120: Setting the Size of New Browser Windows

Task 121: Setting the Location of New Browser Windows

Task 122: Controlling Toolbar Visibility for New Browser Windows

Task 123: Determining the Availability of Scroll Bars for New Browser
Windows

Task 124: Restricting Resizing of New Browser Windows
Task 125: Loading a New Document into a Browser Window
Task 126: Controlling Window Scrolling from JavaScript

Task 127: Opening a Full-Screen Window in Internet Explorer
Task 128: Handling the Parent-Child Relationship of Windows
Task 129: Updating One Window’s Contents from Another
Task 130: Accessing a Form in Another Browser Window
Task 131: Closing a Window in JavaScript

Task 132: Closing a Window from a Link

Task 133: Creating Dependent Windows in Netscape

Task 134: Sizing a Window to Its Contents in Netscape -
Task 135: Loading Pages into Frames
Task 136: Updating One Frame from Another Frame : e ————
Task 137: Sharing JavaScript Code between Frames

Task 138: Using Frames to Store Pseudo-Persistent Data
Task 139: Using One Frame for Your Main JavaScript Code
Task 140: Using a Hidden Frame for Your JavaScript Code
Task 141: Working with Nested Frames

Task 142: Updating Multiple Frames from a Link

Task 143: Dynamically Creating Frames in JavaScript
Task 144: Dynamically Updating Frame Content

Task 145: Referring to Unnamed Frames Numerically




- Part 5
Task 11A‘ Using the window Object

he window object provides access to properties and methods that can be used
to obtain information about open windows, as well as to manipulate these
windows and even open new windows.

"This object offers properties that allow you to access frames in a window, access
the window’s name, manipulate text in the status bar, and check the open or
closed state of the window. The methods allow the user to display a variety of
dialog boxes, as well as to open new windows and close open windows.

Among the features of the window object are the following:

* Creating alert dialog boxes

* Creating confirmation dialog boxes

* Creating dialog boxes that prompt the user to enter information
* Opening pages in new windows

* Determining window sizes

*  Controlling scrolling of the document displayed in the window

* Scheduling the execution of functions
The window object can be referred to in several ways:

*  Using the keyword window or self to refer to the current window
where the JavaScript code is executing. For instance, window.alert
and self.alert refer to the same method.

* Using the object name for another open window. For instance, if a
window is associated with an object named myWindow,
myWindow.alert would refer to the alert method in that window.

The following steps illustrate how to access the window object by changing the
text displayed in the current window’s status bar:

1. In the body of the document, create a script block with opening and
closing script tags:

<script language="JavaScript”>
</script>

2. In the script block, access the window. status property:

<script language="JavaScript”>
window.status
</script>

3. Assign new text to display to the window. status property in the
same way as assigning a text string to a variable, so that the final doc-
ument looks like Listing 114-1.




Manipulating Browser Windows

<body>
<script language="JavaScript”>
window.status = “A new status message”;

</script>

</body>

Listing 114-1: Displaying text in the status bar.

4. Save the file.

5. Open the page in a browser. A blank HTML page appears with
“A new status message” displayed in the status bar, as illustrated
in Figure 114-1.

Figure 114-1: Displaying custom text in the status bar.




238 Part 5
Popping Up an Alert Dialog Box

he window object provides the alert method, which allows you to display
a simple dialog box containing a text message followed by a single button the
user can use to acknowledge the message and close the dialog box.

Figure 115-1 illustrates an alert dialog box in Microsoft Internet Explorer;
Figure 115-2 shows the same dialog box in Netscape.

Figure 115-2: An alert dialog box in Netscape.

Creating alert dialog boxes is one of many features of the window object, which
can also be used to create confirmation and prompting dialog boxes, as well as
other capabilities. These include the following:

*  Opening pages in new windows

* Determining window sizes

¢ Controlling scrolling of the document displayed in the window

* Scheduling the execution of functions
The following steps show how to display two alert dialog boxes in succession:

1. In the body of a new HT'ML document, create a script block with
opening and closing script tags:

<script language="JavaScript”>
</script>

2. Use the window.alert method to display the first dialog box:
window.alert (“This is a dialog box”) ;

3. Use the window. alert method to display the second dialog box, so
that the final script looks like this:

<script language="JavaScript”>

window.alert (“This is a dialog box”) ;



Manipulating Browser Windows -

window.alert (“This is another dialog box”);

Task 115

</script>

4. Save the file.

5. Open the file in a Web browser. The first dialog box, shown in
Figure 115-3, appears. Once the user closes the first dialog box, the
second, shown in Figure 115-4, is displayed.

[Ty Computs

[

Figure 115-4: The second dialog box.




- Part 5
Task 16 Popping Up Confirmation Dialog Boxes

In addition to the alert method discussed in Task 115, the window object also
provides the confirm method, which allows you to display a dialog box con-
taining a text message followed by two buttons the user can use to acknowledge

the message or reject it and close the dialog box. Typically these buttons are
labeled OK and Cancel.

Figure 116-1 illustrates a confirmation dialog box in Microsoft Internet Explorer;
Figure 116-2 shows the same dialog box in Netscape.

Figure 116-2: A confirmation dialog box in Netscape.

The following steps show how to display a confirmation dialog box, and then
based on the user’s choice, display the choice in the body of the page:

1. In the body of a new HT'ML document, create a script block with
opening and closing script tags:

<script language="JavaScript”>
</script>

2. Use the window. confirm method to display the first dialog box;
the value returned by the dialog box is stored in the variable
userChoice:

var userChoice = window.confirm(“Click OK or Cancel”);

3. Use an if statement to test the user’ response to the dialog box by
checking the userChoice variable:

if (userChoice) {

4. If the user has selected the OK button, display an appropriate mes-
sage using the document .write method:

document .write(“You chose OK”);




Manipulating Browser Windows

5. If the user has selected the Cancel button, display an appropriate
message. The final page should look like this:

<body>
<script language="JavaScript”>

var userChoice = window.confirm(“Click OK or )
Cancel”) ;
if (userChoice) {
document .write(“You chose OK”);
} else {
document .write(“You chose Cancel”);

</script>

</body>

6. Save the file and open it in a browser. The browser displays a confir-
mation dialog box like Figure 116-3. Based on the user’s selection in
the dialog box, the browser window will contain an appropriate mes-
sage, as in Figure 116-4, where the user selected the OK button.

Figure 116-4: The user selected OK.




- Part 5
Popping Up JavaScript Prompts

In addition to the alert method discussed in Task 115 and the confirm
method discussed in Task 116, the window object also provides the prompt
method, which allows you to display a dialog box containing a text message fol-
lowed by a text field, where the user can provide some input before closing the
dialog box.

Figure 117-1 illustrates a prompt dialog box in Microsoft Internet Explorer;
Figure 117-2 shows the same dialog box in Netscape.

Figure 117-2: A prompt dialog box in Netscape.

The window.prompt method takes two arguments: The first is the text message
to display, and the second is the default text to display in the text field. If you
want the text field to be empty, simply use an empty string. For instance, the fol-
lowing example of the window.prompt method displays the dialog box illustrated
in Figure 117-1:

window.prompt (“Enter a value from 1 to 10”,”");

The following steps show how to use a prompt dialog box to ask the user to enter
his or her name and then display the name in the body of the HTML page:

1. In the body of a new HT'ML document, create a script block with
opening and closing script tags:

<script language="JavaScript”>
</script>

2. Use the window.prompt method to display the dialog box; the value
returned by the dialog box is stored in the variable userName:

var userName = window.prompt (“Please Enter Your
Name” , "Enter Your Name Here”) ;

3. Display the user’s name using the document . write method, so that
the final page looks like the following:



Manipulating Browser Windows

<body>
<script language="JavaScript”>

var userName = window.prompt (“Please Enter Your :)
Name”, "Enter Your Name Here”) ;
document .write(“Your Name is “ + userName) ;

</script>

</body>
4. Save the file.

5. Open the file in a browser. A prompt dialog box appears, as shown in
Figure 117-3. After the user enters his or her name, it is displayed in
the browser window, as in Figure 117-4.

Erber ‘fow Narre Hers

Figure 117-4: Displaying the user's name.

Task




Part 5

Creating New Browser Windows

he window object provides the open method, which can be used to open a
new browser window and display a URL in that window. In its most basic
form, the open method works as follows:

window.open (url, window name) ;

Here, the URL is a text string of a relative or absolute URL to display in the
window. The window name is a name for the window that can be used later in
the target attribute of the a tag to direct a link to that window.

Opening new windows is one of many features of the window object, which can
also be used for several other purposes:

e Displaying a variety of dialog boxes

* Determining window sizes

¢ Controlling scrolling of the document displayed in the window

* Scheduling the execution of functions
The following steps illustrate how to open a window with JavaScript. The main
document will open in the current browser window, and the new window will
open and display another URL:

1. In the header of a new HTML document, create a script block:

<head>

<script language="JavaScript”>

</script>
</head>

2. In the script block, use the window. open method to display the
URL of your choice in a new window, and name the window
myNewWindow:

<head>
<script language="JavaScript”>

window.open (“http://www.bahai.org/”, "myNewWindow”) ;

</script>
</head>

3. In the body of the document, enter any HTML or text you want to
be displayed in the initial window, so that the final page looks like
Listing 118-1.



Manipulating Browser Windows

<head>

<script language="JavaScript”>

window.open (“*http://www.bahai.org/”, "myNewWindow”) ;

</script>

</head>

<body>
The site has opened in a new window.

</body>

Listing 118-1: Opening a new window.

4. Save the file.

5. Open the file in a browser. The page displays, and then a new window
opens to display the URL specified in the window. open method, as
illustrated in Figure 118-1.

We are Bahd'is - members of the Bah
k| Faith, the second most widespread of t_he_.

English | Espaiiol | Francais 8 yvnzrlad;s ind e treligions, o=} hed
Portuguis | ¥ | 2 6| in countries and territories throughou
Ld Pl the weorld. We come from over 2,100
ethnic, racial, and tribal groups and
A Brief Introduction number some 5 million worldwide.
A ovarciaw of fha Bahai Faith. including it main figures .,
thutions, bane teachings, history and cammunity For more than a century, Baha'l
communities around the globe have been

Figure 118-1: Opening a new window.




- Part 5

Opening a New Browser Window
from a Link

One application of the window. open method described in Task 118 is to use
it to open a new window when a user clicks on a link. Although it is possible
to do this by simply specifying a new window name in the target attribute of
the a tag, there may be reasons why this is insufficient. For instance, you may
need to programmatically build the URL that needs to be displayed in a new
window, and this is easier to achieve in JavaScript at the time the user clicks on

the link.

"To do this, you can use the window. open command in the onClick event han-
dler of the a tag:

<a href="#" onClick="window.open (url, window name”>Link text</a>

The following task illustrates how to open a window from a link using JavaScript:

1. In the body of a new HT'ML document, create a link:

<body>

<a href="">Click here</a> to open a site in a new :)
window
</body>

2. Use # as the URL for the link in the a tag:

<body>

<a href="#">Click here</a> to open a site in a new :)
window
</body>

3. Specify an onClick attribute to call the window. open method to

open the desired URL:
<body>

<a href="#"
onClick:’window.open(“http://www.ca.bahai.org/",":)
newWindow”) ; *>Click here</a>

to open a site in a new window
</body>

4. Save the file.

5. Open the file in a browser. Initially, the page with the link displays, as
in Figure 119-1. When the user clicks on the link, a new window is
displayed with the specified URL, as in Figure 119-2.



Manipulating Browser Windows

Clek here to open a site 1 a new window usmg an onChek event handler

of Canada welcomes you
ahéd'ie du Canada vous accueille

on be world-embracing..”
(e votre vivion devienne universelle...

DBahit Communty of Canada'D Commamaué bahid'ie du Canada

@b e
Figure 119-2: Opening a new window when the user clicks the link.



- Part 5

Setting the Size of New
Browser Windows

hen using the window. open method, introduced in Task 118, you can

actually control a number of aspects of the appearance and behavior of the
window. Among the features that can be controlled is the size of the window at
the time the window. open method opens it.

To control these features, the window. open method takes an optional third
argument. The argument takes this form:

“property name=value,property name=value,etc.”

For instance, the following example would create a window that is 500 pixels
wide and 200 pixels deep, as shown in Figure 120-1:

window.open(“http://www.onecountry.org/","myNewWindow","width:500,:)
height=200") ;

COUNTRY - Microsoft Internet Explorer

ONE COUNTRY

The online newslerter of the Bahi'i International Community

Figure 120-1: Controlling the height and width of a new window.

The following task illustrates the use of the height and width properties of
new windows to open a new window that is exactly 300 pixels wide and 300 pixels
tall:

1. In the header of a new HTML document, create a script block:

<script language="JavaScript”>
</script>

2. In the script block, use the window. open method to display the
URL of your choice in a new window, and name the window
myNewWindow. Use the height and width properties to control the
size of the window and set it to 300 by 300 pixels:

<script language="JavaScript”>

window.open(“http://www.bahai.org/”,”myNewWindow”,”:)
height=300,width=300") ;

</script>



Manipulating Browser Windows -

3. In the body of the document, include any HTML or text you want to Task 2
display in the initial window, so that the final document looks like
Listing 120-1.

<head>

<script language="JavaScript”>

window.open (“*http://www.juxta.com/”, “newWindow” , ”
height=300,width=300") ;

</script>
</head>

<body>
The new window is 300 by 300 pixels.

</body>

Listing 120-1: Controlling the size of a new window.

4. Save the file.

5. Open the file in a browser. The new window opens at the specified
size, as in Figure 120-2.

R INGING g
L] IOOI(S FOR '|'||i w@!l.b

The Bocks for the Vilrld Series is & urigue nonprofl series of bocks and e
Herature

anadisnce, s=hore
E-BOOKS PRINTED BOOKS
Hurman Rights, Faith — Newd Minimalism he]
and Cuttuen Bahi'i Prayers for
The Poetry of Roger  New/ Youlh
ksl A Story of Peace for - Coring in
Blessings in Teaching e the Children of God  Sparish
Chifran The Psychology of
Bali'i Education Tor Spirituality

Figure 120-2: Opening a 300-by-300-pixel window.




- Part 5

Task 21 Setting the Location of New

Browser Windows

hen using the window. open method, introduced in Task 118, you can

actually control a number of aspects of the appearance and behavior of
the window. Among the features that can be controlled is the placement on the
screen of the window at the time the window. open method opens it.

"To control the placement, the window. open method takes an optional third
argument. The argument takes the following form:

“property name=value,property name=value,etc.”

"To control placement of the window, you set different properties for different
browsers. For Internet Explorer, you set the top and 1eft properties. For
Netscape, you set the screenX and screeny properties. For instance, the fol-
lowing places a new window 200 pixels in from the left of the screen and 100 pix-
els down from the top of the screen, as illustrated in Figure 121-1:

window.open(“http://www.juxta.com/","myNewWindow","width:300,:)
height=200,1eft=200, screenX=200, top=100, screenY=100") ;

Figure 121-1: Controlling the placement of a new window.

The following task illustrates the use of these properties of new windows to open
a new window that is exactly 400 pixels away from the top and left of the screen:



Manipulating Browser Windows -

1. In the header of a new HTML document, create a script block: Task 2

<script language="JavaScript”>
</script>

2. In the script block use the window. open method to display the URL
of your choice in a new window, and name the window
myNewWindow.[kethetop,left,screenX,andscreenYInopeb
ties to control the position of the window and set it to 400 pixels
from the left and top sides of the screen:

<script language="JavaScript”>

window.open(“http://www.juxta.com/","newWindow",":)
height:BOO,width:SOO,screenX:400,screenY:400,top:400,:)
left=400") ;

</script>

3. In the body of the document, include any HTML or text you want to
display in the initial window, so that the final document looks like
Listing 121-1.

<head>

<script language="JavaScript”>

window.open (“http://www.juxta.com/”, “newWindow” , ” )
height=300,width=500, screenX=400, screen¥=400, top=400, L
left=400");

</script>
</head>

<body>

The new window is 400 pixels from the top-left corner :)
of the screen.

</body>

Listing 121-1: Controlling placement of a new window.

4. Save the file.

5. Open the file in a browser. The new window opens at the specified
location




- Part 5

Task 4 ‘22 Controlling Toolbar Visibility for
New Browser Windows

hen using the window. open method, introduced in Task 118, you can

actually control a number of aspects of the appearance and behavior of the
window. Among the features that can be controlled is whether the toolbar of the
window is displayed when it is opened.

"To control the size of the window, you need to set the toolbar property value
by assigning a yes or no value to it. For instance, the following example creates a
window with no toolbar:

window.open (“http://www.bahai.org/”, "myNewWindow” , "toolbar=no”) ;

The following steps show how to create a page with two links. Both links open
the same page in a new window, but one link opens the new window with no
toolbar and the other opens it with a toolbar.

1. In the body of a new HI'ML document, create a link for opening a

new window without a toolbar:

<a href="7>Click here</a> for a window without a toolbar

2. Use # as the URL in the a tag:

<a href="#">Click here</a> for a window without a toolbar

3. Use the onclick attribute to call the window. open method to open
a URL of your choice, and specify toolbar=no in the third argument:

<a href='#' D
onClick:’window.open(“http://www.juxta.com/",":)
newWindowl”, "toolbar=no”); '>Click here</a> for a window :)
without a toolbar

4. Create another link for opening a new window with a toolbar:
<a href="7>Click here</a> for a window with a toolbar
5. Use # as the URL in the a tag:
<a href="#">Click here</a> for a window with a toolbar

6. Use the onClick attribute to call the window. open method to open
a URL of your choice, and specify toolbar=yes in the third argu-
ment. The final document should look like Listing 122-1.




Manipulating Browser Windows -

<body>

<a href="#" onClick:'window.open(“http://www.juxta.com/:)
", "newWindowl” , “toolbar=no”); '>Click here</a> for a window )
without a toolbar

<p>
<a href="#" onClick=’window.open(“http://www.juxta.com/",":)
newWindow2”, "toolbar=yes”); '>Click here</a> for a window :)
with a toolbar

</body>

Listing 122-1: Controlling the appearance of the toolbar in new windows.

7. Save the file and open it in a browser. When the user clicks on the
first link, a new window with no toolbar will open, as in Figure 122-1.
When the user clicks on the second link, a new window with a tool-
bar will open.

l Juxta Publishing Limited - Microsaft Internet Ex

JUXTA PUBLISHING

BRINGING

® BOOKS FOR THE W®RLD
The Books Tor the World Series is & unigue non-profi series of books and e- AN Is

hocks bringing diverse Heralure 10 & brosd globsl sudience . ==hiore

K S

OQ+THE-WORLD

E-BOOKS PRINTED BOOKS
Humman Rights, Faith Pew! Minimalism My
and Culture Bahi'i Prayers for
The Poetry of Roger  Pew! Youth
White A Slory of Peace for  Coming in
EBlessings in Teaching Mew! the Children of God  Spanish
‘Children The Peychology of
Bahd'i for
Children
Blessings of Service
The Hew Garden
Bahd'i-inspired
Pergpectives on
Human Rights
A Brief Courge onthe Comng i
Eah&'i Fabth French
COMPUTER BOOKS Bahi'iWorldNewsService

RECENT COMPUTER BOOKS BY JUKTA'S ARMAN DAHESH Iysnduountiumple fobsboibin Lhile

[ | [ emem | -
Figure 122-1: Opening a window with no toolbar.




Part 5

Determining the Availability of Scroll
Bars for New Browser Windows

hen using the window. open method, introduced in Task 118, you can

actually control a number of aspects of the appearance and behavior of the
window. Among the features that can be controlled is whether the scroll bars of
the window are displayed when it is opened.

To control these features, the window. open method takes an optional third
argument. This argument is a text string that contains a list of values separated
by commas. These values allow you to set properties of the window that is being
opened.

"To control the size of the window, you need to set the scrollbars property
value by assigning a yes or no value to it. For instance, the following example
creates a window with no scroll bars:

window.open (“http://www.bahai.org/”, "myNewWindow” , “scrollbars=no”) ;

The following steps show how to create a page with two links. Both links open
the same page in a small new window, but one link opens the new window with
no scroll bars and the other opens it with scroll bars.

1. In the body of a new HTML document, create a link for opening a
new window without a toolbar:

<a href=7">Click here</a> for a window without scrollbars

2. Use # as the URL in the a tag:

<a href="#">Click here</a> for a window without scrollbars

3. Use the onClick attribute to call the window. open method to open
a URL of your choice, and specify scrollbars=no in the third
argument:

<a href='#' O
onClick:’window.open(“http://www.juxta.com/",":)
newwindowl","scrollbars=no,width=300,height=300");’>:)
Click here</a> for a window without scrollbars

4. Create another link for opening a new window with scroll bars:
<a href="7>Click here</a> for a window with scrollbars
5. Use # as the URL in the a tag:
<a href="#">Click here</a> for a window with scrollbars

6. Use the onClick attribute to call the window. open method to open
a URL of your choice, and specify scrollbars=yes in the third
argument. The final document should look like Listing 123-1.



Manipulating Browser Windows

<body>

<a href="#" onClick:'window.open(“http://www.juxta.com/:)
", "newWindowl” , “scrollbars=no, width=300,height=300"); >
Click here</a> for a window without scrollbars

<p>
<a href="#" :)
onClick:’window.open(“http://www.juxta.com/”,”newwindowz:)
7, "scrollbars=yes,width=300,height=300");’'>Click here</a> :)
for a window with scrollbars

</body>

Listing 123-1: Controlling the appearance of scroll bars in new windows.

7. Save the file and open it in a browser. When the user clicks on the
first link, a new window with no scroll bars will open, as in Figure
123-1. When the user clicks on the second link, a new window with
scroll bars will open.

2 Juxta Publishing Limited - Micros... [MIEE3

JUXTA D!

BRINGING+«BOO |

(® BOOKS FOR THE |

The Books for the World Series is a unigue non-profit s
books bringing diverse iterature to a broad global au

E-BOOKS PRINTED BOOKS
Human Rights, Faith  New! Minimalism
and Culture Bahi'i Prayers
The Poetry of Roger  Mew! Youth

Vihite A Story of Peac
Blessings in Teaching Mew! the Children of

Children The Psych
Baha'i Education for Spirituality I

Figure 123-1: Opening a window with no scroll bars.




Part 5

Restricting Resizing of New
Browser Windows

hen using the window. open method, introduced in Task 118, you can

actually control a number of aspects of the appearance and behavior of the
window. Among the features that can be controlled is whether the window can be
resized by the user after it is opened.

To control these features, the window. open method takes an optional third
argument. This argument is a text string that contains a list of values separated
by commas. These values allow you to set properties of the window that is being
opened.

"To control the size of the window, you need to set the resizable property value
by assigning a yes or no value to it. For instance, the following example creates a
window that cannot be resized:

window.open (“http://www.bahai.org/”, "myNewWindow” , "resizable=no") ;

The following steps show how to create a page with two links. Both links open
the same page in a small new window, but one link opens the new window so that
it cannot be resized and the other opens it so that it is resizable.

1. In the body of a new HTML document, create a link for opening a
new window without a toolbar:

<a href="">Click here</a> for a window which cannot be
resized

2. Use # as the URL in the a tag:

<a href="#">Click here</a> for a window which cannot be
resized

3. Use the onClick attribute to call the window. open method to open
a URL of your choice, and specify resizable=no in the third
argument:

<a href="#" :)
onClick:’window.open(“http://www.juxta.com/”,":)
newwindowl”,”resizable:no,width:300,height:BOO");'>:)
Click here</a> for a window which cannot be resized

4. Create another link for opening a new window that can be resized:

<a href="">Click here</a> for a window which can be
resized

5. Use # as the URL in the a tag:

<a href="#">Click here</a> for a window which can be
resized



Manipulating Browser Windows -

6. Use the onClick attribute to call the window. open method to open Task A
a URL of your choice, and specify resizable=yes in the third

argument. The final document should look like Listing 124-1.

<body>

<a href="#" onClick=’window.open(“http://www.juxta.com/:)
","newwindowl","resizable=no,width=300,height=300");'>:)
Click here</a> for a window which cannot be resized

<p>
<a href='#' O
onClick='window.open (*http://www.juxta.com/”, "newWindow2
", "resizable=yes,width=300,height=300");'>Click here</a> )
for a window which can be resized

</body>

Listing 124-1: Controlling the resizing of new windows.

7. Save the file and open it in a browser. When the user clicks on the
first link, a new window that cannot be resized will open, as in Figure
124-1. When the user clicks on the second link, a new window that is
resizable will open.

A Juxta Publishing Limited - Micros... M= E3

JUXTA D!

BERINGING+BOO |

[ BOOKS FOR THE |

The Books for the World Series is a unigue non-profit s
books bringing diverse iterature to a broad global au

E-BOOKS PRINTED BOOKS
Human Rights, Faith  New! Minimalism
and Culture Bahd'i Prayers
The Poetry of Roger  Mew! Youth

Vihite A Story of Peac
Blessings in Teaching Mew! the Children of

Figure 124-1: Opening a nonresizable window.




Part 5

Loading a New Document
into a Browser Window

Typically, you use an a tag when you want a user to load a new document in
the current browser window. However, there are times when a simple a tag is
not enough. In particular, you may need to dynamically determine which page
should be loaded into the browser at the time the user clicks the link. To do this,
you want to use JavaScript at the time the user clicks on a link by using the
onClick attribute of the a tag to set the document . location property to a
new URL. For example:

<a href="#" onClick="document.location = new URL;"”>1ink text</a>

Using JavaScript to redirect the user’s browser, this task shows how to build a
simple page that takes the user to a new page when he or she clicks on a link:

1. In the body of a new HTML document, create a link:
<a href="">0Open New Document</a>
2. Use # as the URL in the a tag:

<a href="#">Click here</a> for a window which cannot be
resized

3. Add an onClick event handler to the a tag. In the event handler, use
JavaScript to assign the URL of the new document to the document .
location property. The final document should look like this:

<body>

<a href="#" onClick="document.location = :)
*125a.html’; “>Open New Document</a>

</body>

4. Save the file and close it.

5. Create a new file containing the HTML for the second page the user
will visit when he or she clicks on the link in the first document:

<body>
This is a new document.

</body>

6. Save this file in the location specified by the URL in Step 3.

7. Open the first file in a browser. The browser displays a page with a
link, as illustrated in Figure 125-1.



Manipulating Browser Windows

52 | o] H:\Zooks\wiley\ 05\ 25 himitl

Open New Document

Figure 125-1: Displaying a JavaScript-based link.

Click on the link. The window updates to display the second page, as
illustrated in Figure 125-2.

- D 2 | A

Address €] H:\Books\wiley\ 0541 25a bl

Thus 12 a new document.

Figure 125-2: Directing the user to a new page using JavaScript.




Part 5

Controlling Window Scrolling
from JavaScript

ontrolling the scroll position of a document requires a different method

depending on the browser being used. In Internet Explorer, the scroll posi-
tion is controlled with the document . body . scrollTop property. The property
specifies the number of pixels down the document to place the scroll bar. The
property is set with the following:

document .body.scrollTop = number of pixels;

In Netscape, the scroll position is similarly set in pixels, but the property that
controls this is the window. pageYOffset property:

window.pageYOffset = number of pixels;

To illustrate this, the following steps show how to automatically scroll down the
page by 200 pixels once the page loads:

1. Inascriptin the header of a new document, create a function named
scrollDocument that takes no arguments:

function scrollDocument () {

}

2. In the function statement, use an if statement to test if the
document .all object exists:

if (document.all) {

}

3. If the browser is Internet Explorer, set
document .body . scrollTop to 200 pixels:

if (document.all) {
document .body.scrollTop = 200;
}

4. If the browser is not Internet Explorer, set window.pageYOffset
to 200 pixels, so that the final function looks like the following:

if (document.all) {

document .body.scrollTop = 200;
} else {

window.pageYOffset = 200;
}

5. In the body tag, use the onLoad event handler to call the
scrollDocument function:

<body onLoad="scrollDocument () ;”>



Manipulating Browser Windows -

be sufficient content to not fit in a single browser screen. The final

6. In the body of the document, place your page content; there should Task 1
page should look like Listing 126-1.

<html>
<head>
<script language="JavaScript”>
function scrollDocument () {
if (document.all) {
document .body.scrollTop = 200;
} else {
window.pageYOffset = 200;

}
</script>
</head>
<body onLoad="scrollDocument () ;">
<p>
Put lots of text here.
Put lots of text here.
Put lots of text here.
etc.
</p>
</body>
</html>

Listing 126-1: Automatically scrolling a document.

7. Save the file and open it in a browser. The page should display and
automatically jump down by 200 pixels, as shown in Figure 126-1.

| Adiress [£) i oskwioywsizenmt_~] B | Links | Ner
lots of test here, Put lots of test here. Put lots of text here. Putlots of text
here. Put lots of text here. Put lots of textt here. Put lots of text here. Put lots
oftext here. Putlots of text here. Put lots of texs hers. Put lots of text here.
Futlots of text here. Putlots of tezt here. Pus lots of text here. Putlots of
text here. Put lots of text here. Put lots of test here. Put lots of tezt here. Put
lots of textt here. Put lots of text here. Put lots of text here. Put lots of text
here. Putlots of text here. Putlobs of text here. Put lots of text here. Put lots
of text here. Putlots of text here. Put lots of rexz hers. Put lots of text here.
Putlots of text here. Putlots of text here. Pus lots of text here. Putlots of
text here. Pus lots of text here. Put lots of test here. Put lots of tezt here, Put
lots of text here, Put lots of test here. Put lots of text here. Put lots of text
here Publots of text here. Put lots of testt here, Put lots of text here. Put lots
of testt here. Put lots of text here. Pub lote of text here. Put lots of test here.
Putlots of text here. Putlots of text here. Put lots of text here. Put lots of
ezt here. Put lots of text here. Put lots of test here. Put lots of text here. Put
lots of text here, Put lots of test here. Put lots of text here. Put lots of text

R L
Figure 126-1: Scrolling down 200 pixels on loading.




- Part 5

Opening a Full-Screen Window
in Internet Explorer

Internet Explorer supports some interesting additional properties you can use
when opening new windows with the window. open method. One such prop-
erty allows for the creation of a full-screen window.

Typically, when you open a window with window. open, the new window is the

same size as the window that opened it and, at a minimum, has a title bar. When
you open a full-size window, it will have no window controls except scroll bars if
needed and will fill the entire display.

To create a full-size window in Internet Explorer, you need to use the
fullScreen property when opening the window:

window.open (“URL” , "window name”,”fullScreen=yes”) ;

Unlike other window. open properties thath work in Internet Explorer and
Netscape, this property is available only in Internet Explorer browsers.

This task illustrates the use of the fullScreen property by creating a page with
a link in it that the user can use to open a full-screen window:

1. Create a new HTML document.

2. In the body of the document, create a link that will be used for open-
ing the full-screen window:

<body>
<a href="#">0Open a full-screen window</a>
</body>

3. In the onClick event handler of the a tag, call the window. open
method to open the new window. Make sure you specify the
fullScreen property for the window:

<body>

<a href="#" D
onClick="window.open (‘http://www.juxta.com/’, 'newWindowe)
', "fullScreen=yes’);”>0Open a full-screen window</a>
</body>

4. Save the file and close it.

5. Open the file in Internet Explorer. A window with a link appears, as
in Figure 127-1.



Manipulating Browser Windows

H:\Bookz\wilew. 051 27 himi

Open a full-sereen window

Figure 127-1: Displaying a link to open a full-screen window.

6. Click on the link, and the new full-screen window displays, as in
Figure 127-2. You can close the new window with Ale+F4.

Let your wisian be workd-embmacing. — Bahd'ullih

LATEST HEADLINES

= BRUSSELS: Exhibiion opens n Eurcpe (11 Jure}

= LONDOMN: dward winnes Inks science snd spritudisg (11
Jure}

® UMITED STATES: Solden arniversary for temple of
lght {3 June)

® LINTTER KINGDOM: Meyar opens new cerfer (1 Tune)

| HEWS
Baha'i UN Representative elected
to head women's committee

MEWY YORE, 13 June: The principal
represantative of the Bana'i
Internabonal Community 1o e United
Maticns was vestarday eleced o
chair 2 major committee on women's ssues,

= FULL STORY
| NEws
> SEARCH
Translucent temple t0 yisiors to rerraces number 1.4
be built in Chile million
ISRAEL, 13 June: Mearly ane and a
HAIFA, Ieragl, 13 June (BAWNS) — A half million peooke hava vsted the
termple of light is to grace the continent  garden terracss surrounding the
of South America, Shrine of the Bah on Mourt Carmel since tey
=GOTOSTORY e first openad to the public on 4 June 2001,
= FULL STORY

Figure 127-2: Opening a full-screen window.




- Part 5

Handling the Parent-Child
Relationship of Windows

hen the window. open method is used to open a new window from
JavaScript, a relationship exists between the original window and the new
window so that it is possible to refer to both windows from within JavaScript.

"To do this, simply assign the object returned from the window. open method to
a variable:

var newWindow = window.open (URL, window name) ;
Once this is done, newWindow refers to the window object for the new window.

At the same time, in the new window the window. opener property references
the window object of the original window where window. open was called.

To illustrate this, the following example opens a new window from the first page
and then provides links so that you can close the new window from the original
window or close the original window from the new window:

1. In ascript block in the header of a new document, open the second
document in a new window and assign the object that is returned to
the newWindow object. The final script looks like this:

<script language="JavaScript”>
var newWindow = window.open (“128a.html”, "newWindow”) ;

</script>

2. In the body of the document, create a link for closing the new
window:

<a href="#">Close the new window</a>

3. In the onClick event handler for the link, call the close method of
the newWindow object:

<a href="#" onClick="newWindow.close();”>Close the new :)
window</a>

4. Save the file and close it.

5. Inasecond new file, create a link in the body for closing the original
window:

<a href="#">Close the original window</a>



Manipulating Browser Windows

6. In the onClick event handler for the link, call the close method of
the window. opener object:

<a href="#" onClick="window.opener.close();”>Close the :)
original window</a>

N

Save the file at the location specified in the window. open method in
Step 2.

8. Open the first file in the browser. The second new window automati-
cally opens. The first window contains a link to close the new win-
dow, as in Figure 128-1. The second window contains a link to close
the original window, as in Figure 128-2.

Close the neve wandow

Figure 128-1: The original window.

Figure 128-2: The new window.

9. Click on the link in the first window, and the new window closes.
Click on the link in the new window, and the original window closes.




Part 5

Updating One Window’s Contents
from Another

A s mentioned in Task 128, when the window. open method is used to open
a new window from JavaScript, a relationship exists between the original
window and the new window so that it is possible to refer to both windows from
within JavaSeript.

For instance, it is possible for the original window, where the window. open
method is called, to access the window object for the new window. This is made
possible because the method returns a window object that can be stored in a
variable and then used to reference the new window from JavaScript code in
the original window. To do this, simply assign the object returned from the

window. open method to a variable:
var newWindow = window.open (URL, window name) ;

This task illustrates how to open a new window with no page loaded and then to
populate that window with content that is all created by JavaScript code in the
original window.

1. In the header of a new HTML document, create a script block with
opening and closing script tags:

<script language="JavaScript”>
</script>

2. In the script, open a new window with no page loaded initially and
store the object returned in the newWindow variable:

var newWindow = window.open (“”, "newWindow”) ;

3. Open a new document stream in the new window with the
document . open method:

newWindow.document.open () ;

4. Output the desired content to the new window with the document .
write method:

newWindow.document.write (“*This is a new window”) ;

5. Close the document stream in the new window with the document .
close method. The final script should look like Listing 129-1.




Manipulating Browser Windows

<head>
<script language="JavaScript”>
var newWindow = window.open (“”, “newWindow”) ;
newWindow.document.open () ;
newWindow.document . .write (“*This is a new window”) ;
newWIndow.document.close() ;
</script>
</head>
<body>

This is the original window.

</body>

Listing 129-1: Writing a document stream to a new window.

6. Save the file and close it.

7. Load the file in a browser. The new window automatically opens, and
the text specified in the JavaScript code is displayed in the new win-
dow, as illustrated in Figure 129-1.

Thas 15 a newe window

C— T —

Figure 129-1: The new window’s content comes from JavaScript in the original window.




Part 5

Accessing a Form in Another
Browser Window

hen you are opening a new window in JavaScript, it is possible for the

original window, where the window. open method is called, to access the
window object for the new window. To do this, simply assign the object returned
from the window. open method to a variable:

var newWindow = window.open (URL, window name) ;

Using this new object, you can access any part of the window or document in the
new window just as you would access the original window or document.

This task illustrates how to open a new window containing a form and then pro-
vide a link in the original window, which displays the content of a field in the
form in a dialog box:

1. In the body of a new HTML document, create a form and name the
form myForm with the name attribute of the form tag:

<form name="myForm”>
</form>

2. In the form, create a text field and name the field myField:

<form name="myForm”>
<input type="text” name="myField”>

</form>

Save the file and close it.
4. In another new HTML file, create a script in the header of the file:

<script language="JavaScript”>
</script>

5. In the script, use the window. open method to open the previous
document in a new window; make sure to specify the URL for the
file created in the previous steps and assign the object returned to the
newWindow variable:

<script language="JavaScript”>
var newWindow = window.open(“130a.html”, "newWindow”) ;

</script>

6. In the body of the document, create a link for accessing the value of
the form field in the new window:

<a href="#">Check Form Field in New Window</a>




Manipulating Browser Windows

7.

10.

Use the onClick event handler of the a tag to call the
window.alert method:

<a href="#" onClick="window.alert ();”>Check Form Field
in New Window</a>

As the value to display in the alert dialog box, provide the value of
the myField text field in the myForm form in the new window, so

that the final page looks like this:

<a href="#" D

onClick="window.alert (newiindow.document .myForm.myField.
value) ; ”>Check Form Field in New Window</a>

<head>

<script language="JavaScript”>

var newWindow = :)
window.open (“130a.html”, "newWindow”) ;

</script>
</head>
<body>

<a href="#" D
onClick="window.alert (newWindow.document .myForm.myField.
value) ; “>Check Form Field in New Window</a>

</body>

Save the file and open it in a browser. The first window containing
the link is displayed and the second window containing the form
automatically opens.

Enter some text in the form in the new window, and then click on the
link in the new window. An alert dialog box is displayed, containing
the text you entered in the text field.




- Part 5
Task 31 Closing a Window in JavaScript

E very browser window has a window object associated with it. As mentioned
in Task 114, this object offers properties that allow you to access frames in a
window, access the window’s name, manipulate text in the status bar, and check
the open or closed state of the window. The methods allow you to display a vari-
ety of dialog boxes, as well as to open new windows and close open windows.

Among the features of the window object are the following:

* Creating alert dialog boxes

* Creating confirmation dialog boxes

* Creating dialog boxes that prompt the user to enter information
* Opening pages in new windows

* Determining window sizes

* Controlling scrolling of the document displayed in the window

* Scheduling the execution of functions
The window object can be referred to in several ways:

*  Using the keyword window or self to refer to the current window
where the JavaScript code is executing. For instance, window.alert
and self.alert refer to the same method.

*  Using the object name for another open window. For instance, if a
window is associated with an object named myWindow, myWindow.
alert would refer to the alert method in that window.

Closing a window is straightforward; just call the close method. For instance:
self.close();

This task illustrates this by creating a page that simply closes the current window
as soon as the page is opened:

1. Create a new HTML document.

2. In the header of the document, create a script block with opening
and closing script tags:

<script lanauge="JavaScript”>
</script>

3. In the script call the window.close method. The page should look
like Listing 131-1.




Manipulating Browser Windows

<head>

<script lanauge="JavaScript”>

window.close() ;

</script>

</head>

<body>

This page will be closed before you see this.

</body>

Listing 131-1: Closing a window as soon as the document loads.

4. Save the file and close it.

5. Open the file in a browser window; the window closes immediately.




272 Part 5

Closing a Window from a Link

E very browser window has a window object associated with it. As mentioned
in Task 114, this object offers properties that allow you to access frames in a
window, access the window’s name, manipulate text in the status bar, and check
the open or closed state of the window. The methods allow you to display a vari-
ety of dialog boxes, as well as to open new windows and close open windows.

Among the features of the window object are the following:

* Creating alert dialog boxes

* Creating confirmation dialog boxes

* Creating dialog boxes that prompt the user to enter information
* Opening pages in new windows

* Determining window sizes

¢ Controlling scrolling of the document displayed in the window

*  Scheduling the execution of functions
The window object can be referred to in several ways:

*  Using the keyword window or self to refer to the current window
where the JavaScript code is executing. For instance, window.alert
and self.alert refer to the ssme method.

* Using the object name for another open window. For instance, if a
window is associated with an object named myWindow, myWindow.
alert would refer to the alert method in that window.

Sometimes Web pages include a link on the page so that the user can close the
page by clicking on the link, as opposed to using the window’s own controls for
closing the window. This is especially common in cases where a Web site pops up
a new window for some specific purpose and wants to allow the user to close that
new window easily. Figure 132-1 illustrates a window with this type of link from
the Internet.

A Self-Closing Wind... [IE E3

Figure 132-1: Offering a close link inside a window.



Manipulating Browser Windows -

Providing such a “close window” link is easy to do using a javascript: URL Task 3 z

in a link to call the window.close method:

<a href="javascript:window.close() ;">

The following steps show how to create a simple page with a link to close the
window:

1. Create a new HT'ML document.

2. In the body of the document, create a link for closing the window.

3. Usea javascript: URL in the href attribute of the a tag to call
the window. close method when the user clicks on the link, so that
the final page looks like Listing 132-1.

<body>

<a href="javascript:window.close();”>Close this
Window</a>

</body>

Listing 132-1: Closing a window from a link.

4. Save the file and open it in a browser. A page containing a link like
the one in Figure 132-2 is displayed.

H:\Bookz\wilp' 0541 32,

Close this Windew

[€iDane e

Figure 132-2: Offering a close link inside a window.

5. Click on the link and the window closes.




- Part 5

Creating Dependent Windows
in Netscape

N etscape 7 (and Mozilla, on which it is built) supports some interesting addi-
tional properties you can use when opening new windows with the window.
open method. One such property allows for the creation of dependent windows.

"Typically, when you open a window with window. open, the new window is
essentially independent of the window that opened it. You can minimize the win-
dows independently, and more important, you can close windows independently.
For instance, if you close the original window that issued the window. open
command, the new window continues to stay open.

Things work differently with dependent windows, however. When you open

a dependent window, its state is tied to the state of the window that opened it:
Minimize the original window and the new window minimizes with it; close the
original window and the new window closes with it.

Dependent windows allow you to create multiwindow applications in JavaScript
in much the same way that traditional Windows or Macintosh applications may
have multiple associated windows. You could use dependent windows to display
control panels, data entry forms, and other tools associated with an application
running in the main window, and then close them all by closing the main window.

Of course, you need to consider the fact that dependent windows don’t exist in
Internet Explorer, so this solution will only be of use in Netscape browsers.

"To create a dependent window in Netscape, you need to use the dependent prop-
erty when opening the window:

window.open (“URL"”, "window name”,”dependent”) ;

"This task illustrates the principle by creating a page with a link in it that the user
can use to create a dependent window:

1. Create a new HTML document.

2. In the body of the document create a link that will be used for open-
ing the dependent window:

<a href="#">Open a dependent window</a>

3. In the onClick event handler of the a tag, call the window. open
method to open the new window. Make sure you specify the
dependent property for the window:

<a href="#" D
onclick="window.open(‘http://www.juxta.com/’,’newwindow:)
', 'width=300,height=300,dependent’) ; ">0Open a dependent :)
window</a>



Manipulating Browser Windows -

4. Save the file and close it.

rask 4 33

5. Open the file in Netscape. A window with a link appears, as in Figure
133-1. Click on the link, and the new window displays, as in Figure
133-2. Minimize the original window, and you see the new window
minimize with it. Close the original window, and you see the new
window close with it.

& BOOKS FOR THE |
The Baoks for the Vierld Ssries iz a urique non-protit sel
e-books beinging dverse Ikersbure to & broad giobs] &)
E-BOOKS PRINTED BOOKS
Human Rights, Faith e Minimalisem
A Cunure; Bahdi Prayers 1
The Poetry of Roger  hew! Youlh
White: A Story of Peaci
Blesgings in Teaching hews the Children of
Children The Peychology
Bah&'l Education Tor Spirtuality
Children
e

Figure 133-2: Opening a dependent window.




Part 5

Sizing a Window to Its Contents
in Netscape

N etscape 7 (and Mozilla, on which it is built) supports some interesting addi-
tional methods you can use with windows. One such method allows for the
resizing of windows based on the content they contain.

Using this capability, you can reduce the size of the window to the content it
contains when you can’t be sure how much space the content will take up until it
renders. This is useful when you want content to be perfectly framed in the win-
dow but can’t predict, for instance, the size of fonts the user may be using in his
or her browser.

Of course, you need to consider the fact that this window-resizing capability
doesn’t exist in Internet Explorer, so this solution will only be of use in Netscape
browsers.

To resize window in this way with Netscape, use the sizeToContent method of
the window object:

window.sizeToContent () ;

This task illustrates this method by creating a page that includes a link the user
can use to call the sizeToContent method:
1. Create a new HTML document.

2. In the body of the document, create a link that will be used for resiz-
ing the window:

<a href="#"> Resize window to the content</a>

3. In the onClick event handler of the a tag, call the
window.sizeToContent method to resize the window:

<a href="#" onClick="window.sizeToContent ();”>Resize )
window to the content</a>

4. Add any content to be displayed in the document. The final docu-
ment could look like this:

<body>
<a href="#" onClick="window.sizeToContent ();”>Resize )
window to the content</a>

<p>
Put some content here for testing.

</body>



Manipulating Browser Windows -

5. Save the file and close it. Task 13A

6. Open the file in Netscape. A window with a link appears, as shown in
Figure 134-1. Click on the link and the window resizes to the con-
tent, as in Figure 134-2.

—=r
Bookmarks Tools Window gei_p_

Eesize window to the content

Fut some content here for testmg,

|| Besize window to the conteny
| Put some content here for testing.

e
Figure 134-2: Resizing the window to its content.




Part 5

Loading Pages into Frames

TML offers a concept called frumes that allows you to divide the available
space in a given window into subpanels into which you can load different
documents.

"To create frames, you use the frameset and frame tags:

<frameset rows="50%,*”>
<frame src="framel.html”>
<frame src="frame2.html”>
</frameset>

This creates a window with two horizontal frames of equal size.

The window object provides a way for you to access these frames in JavaScript.
Each frame is associated with an object. These objects are in the window.
frames array, so that the first array specified in your frameset code is
window. frames [0], the second is window. frames [1], and so on.

In addition, frames can be named using the name attribute of the frame tag, as
in the following:

<frameset rows="50%,*">
<frame src="framel.html” name="framel”>
<frame src="frame2.html” name="frame2”>
</frameset>

Here, the frame objects can be referenced as window. framel and
window. frame2.

The following example builds a frameset with two columns in a window. The
right-hand frame is initially blank, while the left-hand frame contains JavaScript
code to load a new document in the right-hand frame.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols="50%,*">

2. In the frameset, create a frame tag to load the left-hand frame with
the document containing the code to load a new document in the
right-hand frame:

<frame name="framel” src="135a.html”>



Manipulating Browser Windows -

3. In the frameset, create a second frame tag to load a blank page in the Task 35
right-hand frame, so that the entire document looks like this:

<frameset cols="50%,*">
<frame name="framel” src="135a.html”>
<frame name="frame2” src="about:blank”>
</frameset>

4. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

5. In the script block, set the document location of the right-hand
frame to the URL of the new document to load in the right-hand
frame:

parent. frame2.document.location = “135b.html”;

6. Provide any relevant text in the body of the document and save the
file. The page should look like Listing 135-1.

<head>
<script language="JavaScript”>
parent.frame2.document.location = “135b.html”;
</script>
</head>
<body>

This is frame 1.
</body>

Listing 135-1: Accessing the right-hand frame from the left frame.

7. Save the file in the correct location for the URL specified in the left
frame in Step 3 earlier and close it. Open a new HTML file, and place
the content to be loaded in the right-hand frame, as in Listing 135-2.

<body>
This is frame 2.
</body>

Listing 135-2: The final content of the right-hand frame.

8. Save the file so that it is in the correct location for the URL specified
in Step 5 earlier and close it.

9. Load the frameset file. The page loads and the code in the left-hand
frame loads the second file into the right-hand frame, so that the
final window looks like Figure 135-1.

fi Internet Explorer

EE—

Flgure 135-1: Loading a frame with JavaScript.




- Part 5

Updating One Frame from
Another Frame

A s outlined in Task 135, HTML offers a concept called frumes that allows you
to divide the available space in a given window into subpanels into which
you can load different documents. To create frames, you use the frameset and
frame tags:

<frameset rows="50%,*”>
<frame src="framel.html”>
<frame src="frame2.html”>
</frameset>

This creates a window with two horizontal frames of equal size.

The window object provides a way for you to access these frames in JavaScript.
Each frame is associated with an object. These objects are in the window. frames
array, so that the first array specified in your frameset code is window.

frames [0], the second is window. frames [1], and so on. In addition, frames
can be named using the name attribute of the frame tag, as in the following:

<frameset rows="50%,*">
<frame src="framel.html” name="framel”>
<frame src="frame2.html” name="frame2”>
</frameset>

Here, the frame objects can be referenced as window. framel and
window. frame2.

The following example builds a frameset with two columns in a window. The
right-hand frame is initially blank, while the left-hand frame contains JavaScript
code to write content directly into the right-hand frame.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols="50%, *">

2. In the frameset, create a frame tag to load the left-hand frame with
the document that will write output to the right-hand frame:

<frame name="framel” src="136a.html”>

3. In the frameset, create a second frame tag to load a blank page in the
right-hand frame, so that the entire document looks like this:

<frameset cols="50%,*">
<frame name="framel” src="136a.html”>
<frame name="frame2” src="about:blank”>
</frameset>



Manipulating Browser Windows

Save the file and close it. Create a new HTML document, and in the
header, create a script block.

In the script block, open a document output stream in the right-hand
frame:

parent . frame2.document.open() ;

Using the document . write method, output any desired content for
the second window:

parent.frame2.document.write(“"This is frame 2”);

Close the document stream, so that the script looks like this:

<script language="JavaScript”>
parent. frame2.document.open() ;
parent.frame2.document .write (“This is frame 2”);
parent. frame2.document.close() ;

</script>

In the body of the document, place any content for the left-hand
frame. The final page should look like Listing 136-1.

<head>
<script language="JavaScript”>
parent. frame2.document.open() ;
parent . frame2.document .write(“This is frame 27);
parent. frame2.document.close() ;
</script>
</head>
<body>
This is frame 1.
</body>

Listing 136-1: Writing output to another frame.

Save the file in the location specified for the left-hand frame in Step 3
and close it.

Load the frameset in a browser. The right-hand frame initially loads
blank, and then immediately the left frame writes output into the
frame, so that the final window looks like Figure 136-1.

Figure 136-1: Writing output into another frame.




- Part 5

Sharing JavaScript Code
between Frames
A s outlined in Task 135, HTML offers a concept called frumes that allows you

to divide the available space in a given window into subpanels into which
you can load different documents.

"To create frames, you use the frameset and frame tags:

<frameset rows="50%,*”>
<frame src="framel.html”>
<frame src="frame2.html”>
</frameset>

This creates a window with two horizontal frames of equal size.

The window object provides a way for you to access these frames in JavaScript.
Each frame is associated with an object. These objects are in the window. frames
array, so that the first array specified in your frameset code is window.
frames[0], the second is window. frames[1], and so on.

In addition, frames can be named using the name attribute of the frame tag, as
in the following:

<frameset rows="50%,*”>
<frame src="framel.html” name="framel”>
<frame src="frame2.html” name="frame2”>
</frameset>

Here, the frame objects can be referenced as window. framel and
window. frame2.

The following example builds a frameset with two columns in a window. The
left-hand frame contains JavaScript code to display a dialog box. The right-hand
frame calls the code in the left-hand frame in order to display the dialog box.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols="50%,*">

2. In the frameset, create a frame tag to load the left-hand frame with
the document containing the JavaScript code to display a dialog box:

<frame name="framel” src="137a.html”>



Manipulating Browser Windows

10.

In the frameset, create a second frame tag to load the document that
calls the dialog box code in the right-hand frame, so that the entire
document looks like this:

<frameset cols="50%,*">
<frame name="framel” src="137a.html”>
<frame name="frame2” src="137b.html”>
</frameset>

Save the file and close it. Create a new HTML document, and in the
header, create a script block.

In the script block, create a function called doalert that takes no
arguments:

function doAlert () {
}

In the function, display a dialog box with your preferred message:

function doAlert () {
window.alert (“Frame 2 is loaded”) ;

}

In the body of the document, place any output desired for the left
frame, and save the file in the location specified for the left-hand
frame in Step 2.

In a new HTML document, use the onLoad event handler of the
body tag to call the doAlert method in the left-hand frame:

<body onLoad="parent.framel.doAlert();”>
This is frame 2.
</body>

Save the file in the location indicated for the right-hand frame in
Step 2 and close it.

Open the frameset. The two frames load as illustrated in Figure 137-1,
and then the dialog box shown in Figure 137-2 appears immediately.

Figure 137-2: Calling between frames to display a dialog box.




- Part 5

Using Frames to Store
Pseudo-Persistent Data

N ormally, if you store a variable using JavaScript code in a given document in
a frame, when the user leaves that document and navigates to another in the
frame, the variables are lost.

However, consider a frameset with two frames. In this case, there are three docu-
ments: the frameset document and the two documents loaded in each frame. No
matter how the user navigates within the two documents, the frameset document
continues to exist. Referring to variables in the frameset from code in the individ-
ual frames is straightforward:

parent.variableName

This example illustrates the use of persistent variables in the frameset document
by creating a frameset in which you define a variable. In the left-hand frame, you
display a document that simply outputs the persistent variable using JavaScript.
In the right-hand frame, you display a document with a link that will take the
user to another document that outputs the persistent variable:

1. Create a new HTML document to hold the frameset. Start the
document with a script block, and set a variable named
persistentVariable with the text of your choice in the script:

<script language="JavaScript”>
var persistentVariable = “This is a persistent value”;
</script>

2. Following the script, create a frameset with two vertical frames. Load
a document in the left-hand frame and a document in the right-hand
frame; you will create those documents later. The final page looks

like this:
<script language="JavaScript”>

var persistentVariable = “This is a persistent value”;
</script>

<frameset cols="50%,*">
<frame name="framel” src="138a.html”>
<frame name="frame2” src="138b.html”>
</frameset>

3. Save the file and close it. Create a new HTML file for loading in the
left frame. In the body of the document, create a script and use the
document .write method to output the value of
persistentvVariable in the frameset:

<body>
This is frame 1. The persistent variable contains:
<p>



Manipulating Browser Windows

<strong>
<script language="JavaScript”>
document .write (parent.persistentVariable) ;
</script>
</strong>
</body>

Save the file in the location specified in the frameset for the left-hand
frame and close it. Create a new HTML file for initial loading in the
right-hand frame. The body of the document should simply contain a
link to a third document:

<body>

This is frame 2.

<a href="138c.html”>Click here</a> to load a new )
document in this frame
</body>

Save the file in the location specified in the frameset for the right-
hand frame and close it. Create a new HTML for to be displayed
when the user clicks on the link in the right-hand frame. The body of
the document should look similar to the document loaded in the left-
hand frame and display the persistent variable using the

document .write method:

<body>
This is a new document in frame 2. The persistent :)
variable contains:

<p>
<strong>
<script language="JavaScript”>
document .write (parent.persistentVariable) ;
</script>
</strong>
</body>

Save the file in the location indicated in the link in Step 4, and then
close the file.

Open the frameset in a browser. Initially, the persistent variable is
displayed in the left-hand frame and a link appears in the right-hand
frame. When the user clicks on the link in the right-hand frame, the
value of the variable will be displayed there as well, as illustrated in
Figure 138-1.

2 H:\Books himl - Microsoft Internet Explorer

This iz frame 1. The persistent This iz a new document in frame 2.
wariable contains: The persistent variable containg:

This is a persistent value This is a persistent value

Figure 138-1: The variable is still accessible after navigating in one of the frames.




- Part 5

Task 139 Using One Frame for Your
Main JavaScript Code

A s outlined in Task 135, HTML offers a concept called frumes that allows you
to divide the available space in a given window into subpanels into which
you can load different documents. Referring to functions in documents from
other frames is easy:

parent. frameName.variableName

This example illustrates two frames. The left-hand frame contains two JavaScript
functions, as well as links so the user can call the functions. The right-hand frame
just contains two links so the user can call the functions from there as well.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols="50%,*">

2. In the frameset, create a frame tag to load the left-hand frame with
the document containing the JavaScript code containing the functions:

<frame name=”"framel” src="139a.html”>

3. In the frameset, create a second frame tag to load the document for
the right-hand frame:

<frameset cols="50%,*">
<frame name="framel” src="139%9a.html”>
<frame name="frame2” src="139b.html”>
</frameset>

4. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

5. In the script block, create a function called firstFunction that
takes no arguments.

6. In the function, use window.alert to display to users that they have
called the first function:

function firstFunction() {
window.alert (“This is the first function”);

}

7. Create a second function called secondFunction that is similar to
the first:

function secondFunction() {
window.alert (“This is the second function”);




Manipulating Browser Windows

8. In the body of the document, create links that use the onC1ick event
handler to call the functions, and then save the file in the location
specified in the frameset for the left-hand frame:

<body>

<a href="#" onClick="firstFunction();”>First )
Function</a>

<p>

<a href="#" onClick="secondFunction();”>Second )
Function</a>
</body>

9. Create a new HTML file that simply contains two links that use the
onClick event handler to call the two functions in the left-hand
frame, and then save the file in the location specified for the right-
hand frame in the frameset:

<body>

<a href="#" D
onClick="parent.framel.firstFunction();”>First :)
Function</a>

<p>

<a href="#" D
onClick="parent.framel.secondFunction() ;”>Second :)
Function</a>
</body>

10. Open the frameset in the browser. Links appear in both frames, as
illustrated in Figure 139-1. Click on the first link in the left-hand
frame, and the relevant dialog box appears, as shown in Figure 139-2.
Similarly, click on the second link in the right-hand frame, and the
dialog box from the second function appears.

First Function First Function

Zecond Function Second Funcion

=, T |
= P ey computer
Figure 139-1: Displaying links to call functions in the left-hand frame.

Figure 139-2: Calling a function in the left frame from a link in the left-hand frame.




Task

A0

- Part 5

Using a Hidden Frame for
Your JavaScript Code

ometimes you will want to use an additional “hidden” frame to store a docu-

ment containing nothing but your JavaScript code. Creating a hidden frame
is easy. Simply specify 0 pixels as the width or height of the frame in the cols or
rows attribute of the frameset tag:

<frameset cols="0,50%,*">

<frame ...>
<frame ...>
<frame ...>

</frameset>
In this example, the first frame is effectively hidden.

This task is a variation of Task 139 in that the JavaScript functions are moved to
a third hidden frame and the left-hand and right-hand frames continue to offer
links to allow the user to call the functions:

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols="0,50%, *”>

2. In the frameset, create a £rame tag to load the hidden frame with the
document containing the JavaScript code containing the functions:

<frame name="codeFrame” src="140code.html”>

3. In the frameset, create second and third frame tags to load the docu-
ments for the visible left-hand and right-hand frames:

<frameset cols="0,50%,*">
<frame name="codeFrame” src="140code.html”>
<frame name="framel” src="140a.html”>
<frame name="frame2” src="140b.html”>
</frameset>

4. Save the file and close it. Create a new HTML document, and in the
header, create a script block.

5. In the script block, create a function called firstFunction that
takes no arguments.

6. In the function, use window.alert to display to users that they have
called the first function:

function firstFunction() {
window.alert (“This is the first function”);



Manipulating Browser Windows -

7.

10.

Create a second function called secondFunction that is similar to
the first. Save the file in the location indicated in the frameset for the
code document:

function secondFunction() {
window.alert (“This is the second function”);

}

Create a new document for the left-hand frame, and in the body of
the document, create links that use the onC1ick event handler to
call the functions, and then save the file in the location specified in
the frameset for the visible left-hand frame:

<body>

<a href="#" D
onClick="onClick="parent.codeFrame.firstFunction() ;”>¢)
First Function</a>

<p>

<a href="#" D
onClick="onClick="parent.codeFrame.secondFunction () ;">

Second Function</a>
</body>

Create another new HTML file that looks the same as the document
for the left-hand frame, and then save the file in the location specified
for the visible right-hand frame in the frameset.

Open the frameset in the browser. Links appear in both frames, as
illustrated in Figure 140-1. Click on the first link in the left-hand
frame, and the relevant dialog box appears, as shown in Figure 140-2.
Similarly, click on the second link in the right-hand frame, and the
dialog box from the second function appears.

First Function First Function

Second Function Second Function
e[ [OnyCompuer
Figure 140-1: Displaying links to call functions in the hidden frame.

Figure 140-2: Calling a function in the hidden frame from a link in the left-hand frame.




- Part 5

Working with Nested Frames

1 the examples of frames in this part of the book have dealt with a single

layer of frames. That is, the window is either divided into rows or columns
and that’ it. But it is possible to nest framesets. For instance, start by considering
a simple frameset:

<frameset cols="50%,*">
<frame src="framel.html” name="framel”>
<frame src="frame2.html” name="frame2”>
</frameset>

"This creates two simple vertical frames. But what if you wanted the right-hand
frame to be further divided into two horizontal frames? This could be done by
making frame2.html into a frameset itself:

<frameset rows="50%,*">
<frame src="subframel.html” name="subframel”>
<frame src="subframe2.html” name="subframe2”>
</frameset>

Once you start to nest framesets in this way, the job of cross-referencing between
frames using JavaScript is more complicated than you saw in simple one-level
framesets. For instance, to refer to subframe?2 from framel, you would use the
following:

parent . frame2.subframe2

This task illustrates the steps to create a nested frame layout like the one
described previously. In subframe2, you will place a function called doalert,
and then you will provide a link in framel for the user to invoke that function.

1. Create a new document for the top-level frameset. In that document
create a frameset with two vertical frames named frame1 and
frame2:

<frameset cols="50%,*">
<frame src="framel.html” name="framel”>
<frame src="frame2.html” name="frame2”>
</frameset>

2. Save the file and close it.

3. Create a new document for framel .html. In that document, place a
link in the body of the document that calls the doalert function in
subframe2:

<body>

This is framel.

<a href="#" D
onClick="parent.frame2.subframe2.doAlert ();”>Click to
see alert from subframe2.</a>
</body>



Manipulating Browser Windows

10.

Save the file and close it.

Create a new document for frame2.html. In that document, create
a frameset for the nested horizontal frames in the right-hand frame,
and name the frames subframel and subframe2:

<frameset rows="50%,*”>
<frame src="subframel.html” name="subframel”>
<frame src="subframe2.html” name="subframe2”>
</frameset>

Save the file and close it.

Create a new document for subframel.html, and include any con-
tent to display in that frame:

<body>
This is subframel.
</body>

Save the file and close it.

Create a new document for subframe2 . html. In the header of the
document, create a script block containing the function doalert,
which displays an alert dialog box to the user indicating the frame
where it was executed:

<head>

<script language="JavaScript”>

function doAlert() { window.alert(“This is O

subframe2.”); 1}

</script>
</head>
<body>

This is subframe2.
</body>

Save the file and close it. Open the top-level frameset in a browser,
and you will see the frame layout If the user clicks on the link in the
left-hand frame, he or she will see a dialog box like Figure 141-1.

Figure 141-1: Calling a function in a nested frame.




Task

- Part 5
A-z Updating Multiple Frames from a Link

f you have a frameset layout with multiple frames, you may want to allow

several frames to update when the user clicks on a link. In this case, it is not
possible to target two URLs to two frames at the same time using a simple link.
Instead, it becomes necessary to leverage JavaScript to load URLs into the frames
by setting the document . location property of each of the frames. This task
shows how to build a frameset with three horizontal frames. A link in the top
frame causes new documents to load in both of the bottom frames.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the rows attribute set to create three rows:

<frameset cols="10%,45%,45%">

2. In the frameset, create three frame tags to load the three initial
documents; framel will contain the link and the others will just
contain content:

<frameset rows="10%,45%,45%">
<frame name="framel” src="142a.html”>
<frame name="frame2” src="142b.html”>
<frame name="frame3” src="142c.html”>
</frameset>

3. Save the file and close it. Create a new HT'ML document, and in the
header, create a script block.

4. In the script block, create a function named twoLinks that takes no
arguments. In this function, set the document . location properties
for frame2 and frame3 to new documents:

function twoLinks () {
parent.frame2.document.location = “142bnew.html”;
parent . frame3.document.location = “142cnew.html”;

}

5. In the body of the document, create a link to call the twoLinks
function:

<body>

<a href="#" onClick="twoLinks ();”>Update frame2 and )
frame3</a>
</body>

6. Save the file in the location indicated for framel in the frameset ear-
lier. Next, create two simple HT'ML files for the initial documents

for frame2 and frame3. For instance, frame2’s document could
look like this:

<body>
This is frame 2.
</body>

7. Next, create two simple HTML files for the new documents for
frame2 and frame3. These are the documents that are loaded in the



Manipulating Browser Windows -

twoLinks function discussed earlier. For instance, frame3’s docu- Task A z

ment could look like this:

<body>
This is a new document in frame3.
</body>

8. Load the frameset file. The page loads as shown in Figure 142-1.
Click on the link, and the two bottom frames update as shown in
Figure 142-2.

net Explorer

H:\Books\wiky\ 05T 42 hir

Update Fame? and frame3

Thas 1= frame2.

This is frame 3.

&

55 €] H:\Books\wiley\ 0641 42 bl

Update Fame? and frame3

Thas is a new document in frame 2,

This is a new document in frames.

Figure 142-2: Updating the two bottom frames from a link.




Task

a3

- Part 5

Dynamically Creating Frames
in JavaScript

In the previous tasks dealing with frames, all the examples have statically defined
a frameset. This task shows that you can use JavaScript to create a frameset so
that, ultimately, you can make programmatic decisions about the layout and doc-
uments displayed in a frameset.

The principle is simple: In a script, use document .write to output the
frameset and frame tags, and if necessary, dynamically specify the value of
attributes when doing this. For instance, if the name of a document to display
in a frame is contained in a variable, you could output that frame’s tag with the
following:

document .write(“<frame src='" + frameUrl + “'>");

The following steps illustrate creating a frameset in JavaScript that then displays
two simple HTML files in the frames:

1. Create a new document to hold the frameset code. In that document,
create a script block:

<script language="JavaScript”>

2. In the script, open a new document output stream with
document . open:

document.open () ;

3. Use document .write to output the frameset code to the browser,
and close the stream with document . close, so the script looks like
Listing 143-1.

<script language="JavaScript”>

7

“<frameset cols='50%,*'>");

document . open (
document .write
document .write(“<frame src='143b.html’'>");
“</frameset>") ;

) ;

)
(

document .write(“<frame src=’'143a.html’'>");
(
document .write (
(

document.close

</script>

Listing 143-1: Creating a frameset using JavaScript.

4. Save the file and close it.



Manipulating Browser Windows -

5. Create an HTML document for displaying in the left-hand frame: Task A3

<body>
This is frame 1.

</body>

6. Save the file in the location specified in the frameset for the left-hand
frame and close it.

7. Create an HTML document for displaying in the left-hand frame:

<body>
This is frame 2.

</body>

8. Save the file in the location specified in the frameset for the right-
hand frame and close it.

9. Open the frameset file in your browser, and you see the two docu-
ments loaded in the two frames, as illustrated in Figure 143-1.

Thus 1= frame 1. This 15 frame 2.

[ ey Computs
Figure 143-1: Creating two frames in a script.




Task

AL

- Part 5
Dynamically Updating Frame Content

hen working inside a document in a frame, you are essentially working in
exactly the same environment you would be working in if your document
was loaded straight into a window.

For instance, documents loaded into a window have a document object associ-
ated with them, and you access them with the following:

document .method ()
or
document .property

Similarly, when a document is loaded in a frame, the document also has a docu-
ment object associated with it, and accessing it from code within that page is
exactly the same.

To illustrate this principle, this task shows how to load documents into two
frames. Each document has a link that invokes JavaScript to change the content
displayed in the frame using document .write.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the cols attribute set to create two equal-
sized columns:

<frameset cols="50%,*">

2. In the frameset, create a frame tag to load the document for the left-
hand frame:

<frame name="framel” src="144a.html”>

3. In the frameset, create a second £rame tag to load the documents for
the right-hand frame:

<frameset cols="50%,*">
<frame name="framel” src="144a.html”>
<frame name="frame2” src="144b.html”>
</frameset>

4. Save the file and close it. Create a new HTML document, and in the
body, create a link for the user to click to display new content:

<a href="#">Click here for new content</a>



Manipulating Browser Windows

5. In the onClick event handler for the a tag, use document .write
to write new content to the window:

<a href="#" onClick="document.write('New )
Content<br>’);”>Click here for new content</a>

6. Save the file in the location specified for the left-hand frame and
close it.

7. Create a new HI'ML document for the right-hand frame, and dupli-
cate the content of the document specified for the left-hand frame:

<body>

<a href="#" onClick="document.write (‘New )
Content<br>’);”>Click here for new content</a>
</body>

8. Save the file in the location specified for the right-hand frame and
close it.

9. Open the frameset file in your browser. You should see two identical
frames, as illustrated in Figure 144-1. Click on either of the links,
and that frame should update with new content. In Figure 144-2, the
user has clicked the right-hand link, and the right-hand frame was
updated.

t 2 H:\Books'wil ey A4.html - Microsoft Internet Explorer

Chele here for new content Chek here for new content

e

t 2 H:\Books'wil ey A4.html - Microsoft Internet Explorer

Chele here for new content Mew Content

LT e Gee
Figure 144-2: Updating the right-hand frame with new content.




- Part 5

Referring to Unnamed
Frames Numerically

n all the previous examples in this part of the book, we have referred to frames
by the names specified in the name attribute of the frame tag. For instance,
consider the following frameset:

<frameset rows="50%,*">
<frame src="framel.html” name="framel”>
<frame src="frame2.html” name="frame2”>
</frameset>

Here, the first frame is referred to as window. framel from within the frameset
document or parent . framel from within one of the two frames. But what if no
name attributes were specified? Consider the following frameset:

<frameset rows="50%,*">
<frame src="framel.html”>
<frame src="frame2.html”>
</frameset>

Here, the frame name approach used in the previous example will not work. So
you need another approach. The following task shows how to create two frames;
in each frame there is a function called doalert that displays a dialog box. You
call these functions through links from the other frame using the frames array
instead of frame names.

1. Create a new HTML document to hold the frameset, and create a
frameset block with the rows attribute set to create two equal-
sized columns:

<frameset rows="50%,*”">

2. In the frameset, create a £rame tag to load the document for the top
frame:

<frame name="framel” src="145a.html”>

3. In the frameset, create a second £rame tag to load the documents for
the bottom frame:

<frameset rows="50%,*”>
<frame name="framel” src="145a.html”>
<frame name="frame2” src="145b.html”>
</frameset>

4. Save the file and close it. Create a new HTML document for the top
frame. In the header of the document, create a script block, and in
the script block, place a function called doalert to display a mes-
sage to the user indicating the current frame:



Manipulating Browser Windows

<script language="JavaScript”>

function doAlert() { window.alert(“This is the top :)
frame”); }
</script>

In the body of the text, create a link for calling the function in the
bottom frame:

<a href="#">Call the bottom frame</a>

In the onC1lick event handler for the a tag, call the doalert func-
tion in the bottom frame:

<a href="#" onClick="parent.frames[1].doAlert();”>Call O
the bottom frame</a>

Save the file in the location specified in the frameset for the top
frame. Create a similar document for the bottom frame, but alter the
message displayed in the dialog box and make the link call the func-
tion in the top frame:

<script language="JavaScript”>
function doAlert() { window.alert (“This is the )
bottom frame”); 1}

</script>
<body>
<a href="#" onClick:"parent.frames[o].doAlert();”>:)
Call the top frame</a>
</body>

Save the file in the location specified in the frameset for the bottom
frame.

Open the frameset in a browser. You see two frames with links, as
illustrated in Figure 145-1. Click on the link in the top frame to see
the dialog box shown in Figure 145-2.

Call the bottom frame

Call the top frame

Figure 145-2: Calling the bottom frame from the top.







Part 6:

Manipulating Cookies

Task 146:
Task 147:
Task 148:
Task 149:
Task 150:
Task 151:
Task 152:
Task 153:
Task 154:
Task 155:

Task 156:
Task 157:

Creating a Cookie in JavaScript
Accessing a Cookie in JavaScript
Displaying a Cookie

Controlling the Expiry of a Cookie

Using a Cookie to Track a User’s Session
Using a Cookie to Count Page Access
Deleting a Cookie

Creating Multiple Cookies

Accessing Multiple Cookies

Using Cookies to Present a Different Home Page
for New Visitors

Creating a Cookie Function Library

Allowing a Cookie to be Seen for all Pages in a Site




Task

AG

- Part 6

Creating a Cookie in JavaScript

avaScript cookies are stored in the document . cookie object and are created

by assigning values to this object. When creating a cookie, you typically spec-
ify a name, value, and expiration date and time for that cookie. The cookie will
then be accessible in your scripts every time the user returns to your site until the
cookie expires. These cookies will also be sent to your server every time the user
requests a page from your site.

The simplest way to create a cookie is to assign a string value to the
document . cookie object, which looks like this:

name=value;expires=date

The name is a name you assign to the cookie so that you can refer to it later
when you want to access it. The value is any text string that has been escaped as
if it were going to appear in a URL (you do this in JavaScript with the escape
function).

The following steps outline how to create a new cookie in JavaScript:

1. In the header of a new document, create a script block with opening
and closing script tags:
<head>

<script language="JavaScript”>

</script>
</head>

2. In the script, type document.cookie followed by an equal sign to
begin assigning a value to the document . cookie object:

document.cookie =

3. Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myCookie:

document.cookie = “myCookie=

4. Close the double quotation, and type a plus sign:

document.cookie = “myCookie=" +

5. Enter the value you wish to assign to the cookie as the argument to
the escape function. In this case, the value of the cookie is *This
is my Cookie”:

document.cookie = “myCookie=”" + escape(“This is my :)
Cookie”)



Manipulating Cookies

6. Type a semicolon to end the command. The final result is that you

will have JavaScript code like that in Listing 146-1.

<head>

<script language="JavaScript”>

Cookie”) ;

</script>
</head>

document.cookie = “myCookie=" + escape(“This is my :)

Listing 146-1: Creating a Cookie.

For testing purposes, you can see the exact string you are assigning to
the document . cookie object by using the window.alert method
to display the same string in a simple dialog box. The result looks
like Figure 146-1.

<head>
<script language="JavaScript”>

document .cookie = “myCookie=" + escape(“This is my:)
Cookie”) ;
window.alert (“myCookie=" + escape(“This is my pD)
Cookie”));
</script>
</head>

Figure 146-1: Displaying a cookie in a dialog box.

Task 1A-6




- Part 6

Accessing a Cookie in JavaScript

f the current document has a single cookie associated with it, then the
document . cookie object contains a single string with all the details of the
cookie. A typical document . cookie string looks like this:

myCookie=This%20is%20my%20Cookie

You probably noticed that there is no indication of the expiration date. When
you access the document . cookie object, it contains a cookie only if there is a
cookie available for the site in question that has not expired. This determination
is handled automatically in the background, and it is unnecessary to include the
actual expiration date in the string returned by the document . cookie object.

"To access a cookie, you need to separate the name and value using the split
method of the String object, as outlined in the following steps:

1. In the header of a new HTML document, create a script block with
opening and closing script tags:

<head>
<script language="JavaScript”>

</script>
</head>

2. Assign the document . cookie object to a new variable. In this case,
the object is assigned to the string newCookie:

var newCookie = document.cookie;

3. Split the cookie at the equal sign and assign the resulting array to a
new variable. You do this with the split method of the String
object, which takes as an argument the character that serves the
delimiter where you want to split the string. The resulting parts of
the string are returned in an array. In this case, the array is stored in
a variable called cookieParts:

var cookieParts = newCookie.split(“=");

4. Assign the first entry in the array to a variable; this entry in the array
contains the name of the cookie. In this case, the name is stored in
the variable cookieName:

var cookieName = cookieParts[0];

5. Assign the second entry in the array to a variable; this entry in the
array contains the value of the cookie. At the same time, unescape the
string with the unescape function. In this case, the end result is that
the unescaped value of the cookie stored in the cookievalue vari-
able. The resulting JavaScript code is shown in Listing 147-1.



Manipulating Cookies

<head>

<script language="JavaScript”>
var newCookie = document.cookie;
var cookieParts = newCookie.split(“=");
var cookieName = cookieParts[0];
var cookieValue = unescape (cookieParts[1]);
</script>
</head>

Listing 147-1: Splitting a cookie into its name and value parts.

6. You can test the cookie results by using the window.alert method
to display each variable in turn in a simple dialog box; these dialog
boxes are illustrated in Figures 147-1 and 147-2.

<head>
<script language="JavaScript”>
var newCookie = document.cookie;
var cookieParts = newCookie.split(“=");
var cookieName = cookieParts[0];
var cookieValue = unescape (cookieParts[1]);
window.alert (cookieName) ;
window.alert (cookievValue) ;

</script>
</head>

Figure 147-1: Displaying the cookie name in a dialog box.

Figure 147-2: Displaying the cookie value in a dialog box.




Task

- Part 6

A-s Displaying a Cookie

A

1.

common use of a cookie is to include the value in the Web page being dis-
played. If a cookie stores a user’s username, you might want to display a login
form with the username field filled in with the user’s username. The following
illustrates this by creating a simple login form with two fields for the username
and password and displaying the username in the username field, if available.
The username will be stored in a cookie named 1oginName, if it has been set:

In a separate script block at the start of the body of your page, extract
the name and value of the cookie to two variables; refer to Task 147
for a summary of this process. In this case, the name of the cookie is
stored in cookieName, and the value in cookievValue and the
script block should look like Listing 148-1.

<script language="JavaScript”
var newCookie = document.cookie;
var cookieParts = newCookie.split(“=");
var cookieName = cookieParts[0];
var cookieValue = unescape (cookieParts[1l]);
</script>

Listing 148-1: Extract the cookie’s name and value in separate script block.
After the script, enter a form tag to start the form; make sure the
form is being submitted to an appropriate location for processing:
<form method="post” action="doLogin.cgi”>

Start a new script block with the script tag:

<script language="JavaScript”>

Enter an if command to test that the name of the cookie is
loginName and the value is not the empty string:

if (cookieName == “loginName” && cookieValue != “") {

Display a username text field that includes the user’s username from
the cookie. Display this with the document . write command:

document.write(‘Username: <input type="text” :)
name="username” value="' + cookieValue + ‘“>');

Enter an else command:

} else {

Display a username text field without the user’s username for the case
where no cookie is available. Display this with the document .write
command:

document .write (‘Username: <input type="text” :3
name="username”>") ;




Manipulating Cookies

8. Close the if block, and close the script block with a closing As
script tag: TaSk

}

</script>
9. Enter an input tag to create a password entry field:
Password: <input type="password” name="password”>

10. Close the form with a closing form tag. The resulting form code
should look like Listing 148-2, and the form, when displayed, should
look like Figure 148-1.

<form method="post” action="doLogin.cgi”>
<script language="JavaScript”>
if (cookieName == “loginName” && cookieValue != “7) {
document .write (‘Username: <input type="text” :)
name="username” value="' + cookieValue + ‘“>');
} else {
document .write(‘'Username: <input type="text” :)
name="username”>"’) ;
}
</script>
Password: <input type="password” name="password”>
</form>

Listing 148-2: The code to dynamically display a username in a form.

Username:
Password:

Figure 148-1: Dynamically displaying a username in a form.




Task

49

- Part 6
Controlling the Expiry of a Cookie

hen you create a cookie, you may want to set an expiration date and time.

If you set a cookie without an expiry, the cookie will expire at the end of
the user’s browser session and you will lose the ability to access the cookie across
multiple user sessions. To create a cookie with an expiration date, you need to
append an expiration date to the cookie string so that the cookie string looks like
the following:

name=value; expires=date

The expiration date is optional and is typically represented as a string in
Greenwich Mean Time, which you can generate with the toGMTString method
of the Date object.

The following steps outline the process of creating a cookie with an expiration
date:

1. Create a Date object for the date and time when you want the cookie
to expire; this is done by assigning a new instance of the Date object
to a variable and passing the date information as an argument to the
Date object. In this case, the resulting Date object is stored in the
variable myDate and the date for the object is set to April 14, 2005,
at 1:15 P.M.:

var myDate = new Date(2005,03,14,13,15,00);

2. Type document.cookie followed by an equal sign to begin assigning
a value to the document . cookie object:

document .cookie =

3. Iype an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myCookie:

document.cookie = “myCookie=

4. Close the double quotation, and type a plus sign:

document.cookie = “myCookie=" +

5. Enter the value you wish to assign to the cookie as the argument to
the escape function, and follow the escape function with a plus
sign. In this case, the value of the cookie is *This is my Cookie”:

document.cookie = “myCookie=" + escape(“This is my :)
Cookie”) +

6. Type an opening double quotation following by a semicolon followed
by expires, and follow this with an equal sign, a closing quotation
mark, and then another plus sign:

document.cookie = “myCookie=”" + escape(“This is my :)
Cookie”) + “;expires=" +



Manipulating Cookies -

7. Type myDate.toGMTString() to add the specified date and time as Task Ag
a properly formatted string to the cookie, and end the command with

a semicolon. Your code should now look like Listing 149-1.

<head>
<script language="JavaScript”>
var myDate = new Date(2005,03,14,13,15,00) ;

document.cookie = “myCookie=" + escape(“This is my :)
Cookie”) + “;expires=" + myDate.toGMTString() ;
</script>
</head>

Listing 149-1: Creating a cookie in JavaScript.

8. For testing purposes, you can see the exact string you are assigning to
the document . cookie object by using the window.alert method
to display the same string a simple dialog box. The result looks like
Figure 149-1.

<head>
<script language="JavaScript”>
var myDate = new Date(2005,03,14,13,15,00) ;
document.cookie = “myCookie=" + escape(“This is my :)
Cookie”) + “;expires=" + myDate.toGMTString() ;
window.alert (“myCookie=" + escape(“This is my Cookie”)
+ “;expires=" + myDate.toGMTString()) ;
</script>
</head>

Figure 149-1: Displaying a cookie in a dialog box.




Part 6

Using a Cookie to Track
a User’s Session

A common application of cookies is to track user-specific information across
a user’s session with a Web site. This might mean tracking the user’s latest
preference selections, a user’s search query, or a session ID, which allows your
script to determine additional information for displaying the page appropriately
for the user. In all cases, a session is considered to have ended after a certain
amount of time without user activity has expired.

The way this is done is to set the appropriate cookie with an expiration date and
time that will cause the cookie to elapse when the session should end. For instance,
if a session should end after a 20-minute period of inactivity, the cookie’s expiry
should be 20 minutes in the future. Then, on each page the user accesses in the
site, the session cookie should be reset with a new expiry 20 minutes in the
future.

To do this, include the following code at the start of each page in your Web
application; this example is generic and works for any single cookie that needs
to be maintained across a user’s session:

1. Obtain the name and value of the cookie as outlined in Task 147;
here the name and value will be stored in the variables cookieName
and cookievalue:

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=");
var cookieName = cookieParts[0];

var cookieValue = unescape (cookieParts[1]);

2. Create a new Date object, but don’t set the date. Here the Date
object is assigned to the variable newDate:

var newDate = new Date() ;

3. Set the expiration date to the appropriate number of minutes in the
future. You do this by using the setTime method of the newDate
object. This method takes the time as a number of milliseconds. To
set the time into the future, get the current time with the getTime
method and then add the number of milliseconds. For instance,

20 minutes is 1200000 milliseconds:

newDate.setTime (newDate.getTime () + 1200000) ;

4. Type document.cookie followed by an equal sign to begin assigning
a value to the document . cookie object:

document.cookie =



Manipulating Cookies

5. Type cookieName followed by a plus sign followed by an equal sign
in quotation marks:

document.cookie = cookieName + “="

6. Type a plus sign followed by the escape function with
cookieValue as the argument, followed by a plus sign:

document.cookie = cookieName + “=" + escape(cookieValue) +

7. 'Type an opening double quotation followed by a semicolon followed
by expires; then follow this with an equal sign and a closing quotation
mark and then another plus sign:

document .cookie = cookieName + “=" + escape (cookieValue) + &
“;expires=" +

8. Type newDate.toGMTString() to add the specified date and time as
a properly formatted string to the cookie, and end the command with
a semicolon. Your JavaScript code should look like Listing 150-1.

<head>
<script language="JavaScript”>
var newCookie = document.cookie;
var cookieParts = newCookie.split(“=");
var cookieName = cookieParts[0];
var cookieValue = unescape (cookieParts[1l]);
var newDate = new Date() ;
newDate.setTime (newDate.getTime () + 1200000) ;
document.cookie = cookieName + “=" + )
escape (cookieValue) + “;expires=" + newDate.toGMTString() ;
</script>
</head>

Listing 150-1: Creating a new session cookie at the start of every page in an
application.




Part 6

Task 51 Using a Cookie to Count Page Access

1.

One use of cookies is to provide a personal page counter. This is different than

a global access counter, which displays the total number of visits to a site by

Create a script block at the start of your page with an opening
script tag:

<script language="JavaScript”>

Obtain the name and value of the cookie as outlined in Task 147,
here the name and value will be stored in the variables cookieName
and cookievValue:

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=");

var cookieName = cookieParts[0];

var cookieValue = unescape (cookieParts[1]);

Assign the cookie value to a variable named previousCount:

var previousCount cookievalue;

Use an if statement to check if the cookieName is not myHits or
the cookievalue is a null value (in other words, no cookie existed),
and if either condition is true, set previousCount to zero:

if (cookieName != “myHits” || cookieValue null) {

0;

previousCount

}

Increment the value of previousCount by 1, and assign it the vari-
able newCount:

var newCount + 1;

parselnt (previousCount)

Create a new Date object, but don’t set the date. Here the Date
object is assigned to the variable newDate:

var newDate new Date() ;

Set the expiration date to the appropriate number of minutes in the
future. You do this by using the setTime method of the newDate
object. This method takes the time as a number of milliseconds. To
set the time into the future, get the current time with the getTime
method and then add the number of milliseconds. For instance,

30 days is 30 days times 24 hours per day times 60 minutes per hour
times 60 seconds per minute times 1000 milliseconds per second, or
2592000000 milliseconds:

newDate.setTime (newDate.getTime () + 2592000000) ;

any visitor. Instead, a personal hit counter displays the user’s personal access
count. The approach is simple: Create a cookie with a long expiration date, and
each time the user accesses the page, retrieve the cookie, increment it by 1, dis-
play the value, and then resave the cookie with a new expiration date and time.
The following generates a personal hit counter using a cookie named myHi ts:



Manipulating Cookies -

8. Reset the cookie by assigning the value of newCount to the Task
document . cookie object with an expiration date as specified in
newDate. (This process was described in Task 149.)

document.cookie = “myHits=" + newCount + “;expires=’ + )
newDate.toGMTString () ;

9. Close the script block with a closing script tag, so that the result-
ing script block looks like Listing 151-1.

<script language="JavaScript”>
var newCookie = document.cookie;
var cookieParts = newCookie.split(“=");
var cookieName = cookieParts[0];
var cookieValue = unescape (cookieParts[1]);
var previousCount = cookieValue;
if (cookieName != “myHits” || cookieValue == null) {
previousCount = 0;
}
var newCount = parselnt (previousCount) + 1;
var newDate = new Date() ;
newDate.setTime (newDate.getTime () + 2592000000) ;
document.cookie = “myHits=" + newCount + “;expires=" + :)
newDate.toGMTString () ;
</script>

Listing 151-1: Incrementing and resaving a counter cookie at the start of a page.

10. In the body of your text, when you want to display the current count,
create a new script block and use the document . write method to
display the value of the newCount variable. You will see the results in
your browser.

<script language="JavaScript”>

document.write(“You have visited this page “ + :)
newCount + “ time(s).”);
</script>




- Part 6
Task 52 Deleting a Cookie

SOmetimes you will want to delete a cookie so that subsequent attempts to
read the cookie return nothing. For instance, you may want to remove a
username cookie if the user logs out or explicitly asks not to save his or her user-
name in a cookie. To do this, you reset the cookie but set the expiration date to a
time in the past. This causes the browser to drop the cookie and the cookie will
cease to be returned, effectively deleting it.

The following example illustrates how to delete a cookie name myCookie:

1. In the head of a new HTML document, create a script block with
opening and closing script tags:

<head>
<script language="JavaScript”>

</script>
</head>

2. In the script, create a new Date object, but don’t set the date. Here
the Date object is assigned to the variable newDate:

<head>
<script language="JavaScript”>

var newDate = new Date() ;

</script>
</head>

3. Set the expiration date to some time in the past; for instance, you
might set the date to one day in the past. You do this by using the
setTime method of the newDate object. This method takes the
time as a number of milliseconds. To set the time into the past,
get the current time with the getTime method and then subtract
the number of milliseconds. For instance, one day is 86400000
milliseconds:

<head>

<script language="JavaScript”>

var newDate = new Date() ;
newDate.setTime (newDate.getTime () - 86400000) ;

</script>
</head>

4. Type document.cookie followed by an equal sign to begin assigning
a value to the document . cookie object:

document.cookie =




Manipulating Cookies

5.

"Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myCookie:

document.cookie = “myCookie=

"Type a semicolon followed by expires, and follow this with an equal
sign and a closing quotation mark, and then a plus sign:

document.cookie = “myCookie=;expires=" +

‘Type newDate.toGMT String() to add the specified date and time
as a properly formatted string to the cookie, and end the command

with a semicolon. Your JavaScript code should look like Listing 152-1.

<head>
<script language="JavaScript”>

var newDate = new Date() ;

newDate.setTime (newDate.getTime () - 86400000) ;

document .cookie = “myCookie=;expires=" + )
newDate.toGMTString () ;

</script>
</head>

Listing 152-1: Deleting a cookie.

For testing purposes, you can display the current cookie using the
window.alert method to ensure no cookie exists with the name
myCookie:

<head>
<script language="JavaScript”>

var newDate = new Date() ;

newDate.setTime (newDate.getTime () - 86400000) ;

document.cookie = “myCookie=;expires=" + :)
newDate.toGMTString () ;

window.alert (document.cookie) ;

</script>
</head>

Task 5




- Part 6
Creating Multiple Cookies

w ithin limits, it is possible to create multiple cookies for a Web page. This
allows you to set and track multiple values throughout your Web applica-
tion or between user sessions. There are limitations, however. Most Web
browsers set limits on the number of cookies that can be set or the total number
of bytes that can be consumed by the cookies from one site. When these thresh-
olds are set, the oldest cookies for a site are automatically expired as you attempt
to create new ones even if their expiration date and time has not been reached.

To create multiple cookies from JavaScript, you simply assign each cookie in turn
to the document . cookie object and ensure that each cookie has a different
name. The same ability to set expiration date and time exists for each cookie as
when setting a single cookie, and each cookie may have a different expiration
date and time.

The following example illustrates the creation of two cookies named
myFirstCookie and mySecondCookie:

1. Type document.cookie followed by an equal sign to begin assigning
a value to the document . cookie object:

document.cookie =

2. 'Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myFirstCookie:

document.cookie = “myFirstCookie=
3. Close the double quotation and type a plus sign:

document.cookie = “myFirstCookie=" +

4. Enter the value you wish to assign to the first cookie as the argument
to the escape function. In this case, the value of the cookie is *This
is my first Cookie”:

document.cookie = “myFirstCookie=" + escape(“This is my :)
first Cookie”)

5. "Type a semicolon to end the command. For the first cookie, your
JavaScript code should look like Listing 153-1.

document .cookie = “myFirstCookie=" + escape (“This is my &)
first Cookie”);

Listing 153-1: Creating the first cookie in JavaScript.



Manipulating Cookies -

6. Continue to create the second cookie on a new line of your script by
typing document.cookie followed by an equal sign to begin assigning
a value to the document . cookie object:

rask 4 53

document.cookie =

7. 'Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is mySecondCookie:

document.cookie = “mySecondCookie=

8. Close the double quotation and type a plus sign:

document.cookie = “mySecondCookie=" +

9. Enter the value you wish to assign to the first cookie as the argument
to the escape function. In this case, the value of the cookie is “This
is my first Cookie”:

document.cookie = “mySecondCookie=" + escape(“This is :)
my second Cookie”)

10. ‘Type a semicolon to end the command. Your JavaScript code for the
two cookies should now look like Listing 153-2.

<script language="JavaScript”>

document.cookie = “myFirstCookie=" + escape(“This is :)
my first Cookie”);

document.cookie = “mySecondCookie=" + escape(“This is :)
my second Cookie”);
</script>

Listing 153-2: Creating two cookies from a single script in JavaScript.




Part 6

Accessing Multiple Cookies

f a page has multiple cookies associated with it, then accessing one, or all, of
those cookies is a little more complicated than illustrated in Task 147. This is
because when you access document . cookie, you will now see a series of cook-

ies separated by semicolons like this:

firstCookieName=firstCookieValue; secondCookieName=secondCookieValue;
etc.

This means to extract a cookie from a page with multiple cookies requires two
steps: separating the string returned by document . cookie into multiple pieces
using the semicolon to determine where to break the string, and then treating
each cookie individually.

The following example assumes you have two cookies on the page:
myFirstCookie and mySecondCookie. These steps extract both cookies and
display them in dialog boxes using the window.alert method.

1. Use the indexOf method of the String object to locate the charac-
ter where the string “myFirstCookie=" appears in the string
returned by the document . cookie object. This value is assigned to
the variable first:

var first = document.cookie.indexOf (“myFirstCookie=") ;

2. Use the index0f method once more to find where the cookie ends
(by looking for a semicolon), and assign this location to the variable
firstEnd. Searching starts after the location where
*myFirstCookie=" was found:

var firstEnd = document.cookie.indexOf (“;”, first + 1);

3. Check to see whether or not a semicolon was found by checking if
firstEnd has the value -1. If the value is -1, it means that this
cookie is the last cookie and firstEnd should be set to the last char-
acter in the document . cookie string:

if (firstEnd == -1) { firstEnd = document.cookie.length; }

4. Extract the value of the first cookie by taking the substring starting at
the character after “myFirstCookie=" and ending at the semicolon.
"This is done with the substring method of the String object, and
the resulting substring is passed to unescape to remove any escaped
characters. The results are stored in the variable firstCookie.
Note that first + 14 isused as the first character of the substring;
this represents the first character after the equal sign after
myFirstCookie (since “myFirstCookie=" is 14-characters long).
The resulting code for extracting myFirstCookie looks like
Listing 154-1.



Manipulating Cookies

var first = document.cookie.indexOf (*myFirstCookie=") ;
var firstEnd = document.cookie.indexOf (“;”, first + 1);

if (firstEnd == -1) { firstEnd = document.cookie.length; }
var firstCookie = &

unescape (document .cookie.substring (first+14, firstEnd)) ;

Listing 154-1: Extracting a cookie from multiple cookies.

5. Repeat the process for the second cookie, but search for
mySecondCookie and store the results in new variables named
second, secondEnd and secondCookie

var second = document.cookie.indexOf (“mySecondCookie=") ;

var secondEnd = document.cookie.indexOf (“;”, second + 1);
if (secondEnd == -1) { secondEnd = document.cookie.length;
}

var secondCookie =
unescape (document .cookie.substring (second+15, secondEnd) ) ;

6. Display each of the cookie values in turn using the window.alert
method. You should see dialog boxes like Figures 154-1 and 154-2.

window.alert (firstCookie) ;

window.alert (secondCookie) ;

Figure 154-2: Displaying the second cookie.




- Part 6

Using Cookies to Present a Different
Home Page for New Visitors

ith cookies you can track if a user has visited your site previously (or, at

least, if he or she has visited recently). This can be done by simply setting
a cookie indicating the user has visited and then giving it a long expiration time.
Then each time the user returns to the site, you can update the expiration time to
ensure that the cookie is unlikely to ever expire.

Meanwhile, each time a user accesses a page in your site, you can test for the exis-
tence of the cookie, and if it isn’t there, you can direct the user to a default start
page where you want new users to begin their experience of your site. Alternately,
you can test the cookie only when a user accesses the home page and direct new
users to a specialized home page just for them.

The following outlines the code you need to build into every page on your site,
or just into your home page, to achieve this. In this example, the cookie named
visitCookie will exist and be set to a value of 1 if the user has previously vis-
ited the site.

1. Create a new Date object, but don’t set the date. Here the Date
object is assigned to the variable newDate:

var newDate = new Date() ;

2. Set the expiration date to be an appropriate distance in the future; for
instance, you might set the date to six months in the future. You do
this by using the setTime method of the newDate object. This
method takes the time as a number of milliseconds. To set the time
into the future, get the current time with the getTime method and
then add the number of milliseconds. For instance, six months (or
26 weeks) is 26 weeks times 7 days per week times 24 hours per day
times 60 minutes per hour times 60 seconds per minute times 1000
milliseconds per seconds, for a total of 15724800000 milliseconds:

newDate.setTime (newDate.getTime () + 15724800000) ;

3. Search the document . cookie string to see whether or not
“visitCookie=" exists. This is done with the index0f method of
the String object, and the return value is the index of the first
occurrence of “visitCookie=", which is stored here in the variable
firstvisit:

var firstVisit = document.cookie.indexOf (“*visitCookie=") ;
4. Use an if command to test if a visitCookie cookie exists:

if (firstvisit == -1) {



Manipulating Cookies -

5. If the cookie does not exist, you want to set a visitCookie cookie, Task
using the date and time stored in newDate to set the expiration date
for the cookie:

document.cookie = “visitCookie=1;expires=" + :)
newDate.toGMTString () ;

6. After setting the visitCookie cookie for new visitors, redirect
them to the special home page for new visitors by setting a new value
for the window. location property:

window.location = “http://myurl.com/new.html”
7. Close the 1f block with a closing curly bracket:
}

8. If processing reaches this point, then the user is a returning user and
has not been redirected to the new page. In this case, the
visitCookie needs to be reset with the new expiration date and
time indicated in newDate. The final script looks like Listing 155-1.

<script language="JavaScript”>
var newDate = new Date() ;
newDate.setTime (newDate.getTime () + 15724800000) ;
var firstvVisit = document.cookie.indexOf (“visitCookie=");

if (firstvisit == -1) {
document.cookie = “visitCookie=1;expires=" + )
newDate.toGMTString () ;
window.location = “http://myurl.com/new.html”
}
document .cookie = “visitCookie=1;expires=" + )

newDate.toGMTString () ;
</script>

Listing 155-1: Redirecting new users to a custom home page.




- Part 6
Task 56 Creating a Cookie Function Library

A s you probably noted in the previous tasks dealing with cookies, working
with cookies requires a lot of string and date manipulation, especially when
accessing existing cookies when multiple cookies have been set. To address this,
you should create a small cookie function library for yourself so that you can cre-
ate, access, and delete cookies without needing to rewrite the code to do this
every time.

Most cookie libraries include three functions:

® getCookie: Retrieves a cookie based on a cookie name passed in as
an argument.

® setCookie: Sets a cookie based on a cookie name, cookie value, and
expiration date passed in as arguments.

* deleteCookie: Deletes a cookie based on a cookie name passed in
as an argument.

The following steps outline how to create these functions for yourself. You
can then include them in any pages where you need to work with cookies in
JavaScript.

1. Start the getCookie function with the function keyword, and
define a single argument named cookieName:

function getCookie (cookieName) {

2. Based on the technique outlined in Task 154, retrieve the text for
the cookie named in the cookieName argument, as shown in
Listing 156-1.

function getCookie (cookieName) {
var cookievalue = “”;
if (document.cookie.length > 0) {
var cookieStart = document.cookie.indexOf (cookieName )

if (cookieStart != -1) {
var cookieEnd = document.cookie.indexOf (“;”, O
cookieStart + 1);
if (cookieEnd == -1) { cookieEnd =
document.cookie.length; }
var cookieValue =
unescape (document . cookie. substring (cookieStart+cookieName. )
length+1, cookieEnd)) ;
}
}

return cookievValue;

Listing 156-1: The getCookie function.




Manipulating Cookies -

Start the setCookie function with the function keyword, and Task 56

define three arguments named cookieName, cookievValue, and
expiryDate:

function setCookie (cookieName, cookieValue, expiryDate) {

Based on the technique outlined in Task 147, create the cookie by
assigning the appropriate string to the document . cookie object, so

that the final function looks like Listing 156-2.

function setCookie (cookieName, cookieValue, expiryDate) {

document.cookie = cookieName + “=" + escape:)
(cookievValue) + “;expires=" + expiryDate.toGMTString() ;
}

Listing 156-2: The setCookie function.
Start the deleteCookie function with the function keyword, and
define a single argument named cookieName:

function deleteCookie (cookieName) {

Based on the technique outlined in Task 152, delete the cookie
named in the cookieName argument, so that the final function looks
like Listing 153-3.

function deleteCookie (cookieName) {

var newDate = new Date() ;

newDate.setTime (newDate.getTime () - 86400000) ;

document .cookie = cookieName + “=deleted;expires=" + )
newDate.toGMTString () ;
}

Listing 156-3: The deleteCookie function.

Include these three functions in pages that must manipulate cookies,
and then simply invoke the functions. For instance, the following
code sets a new myCookie function, retrieves it, displays the value,
and then deletes it:

var newDate = new Date();

newDate.setTime (newDate.getTime () + 86400000) ;
setCookie (“myCookie”, ”"This is My Cookie”,newDate) ;
var cookieValue = getCookie(“myCookie”) ;
window.alert (cookievalue) ;

deleteCookie (“myCookie”) ;




Part 6

Allowing a Cookie to be Seen
for all Pages in a Site

hen a cookie is created by JavaScript, by default it is only accessible from
other pages in the same directory on the server. You can, however, define
which directory path on the server is allowed to access a cookie you create.

For instance, you could create a cookie in the page /dir/subdir/mypage.
html and do any number of things, including the following:

* That the cookie is accessible from the parent directory and from all
its children (in other words, everywhere below /dir)

¢ Indicate that the cookie is accessible only in the current directory and
in its children (in other words, everywhere below /dir/subdir/)

¢ Indicate that the cookie is accessible anywhere on the same site (in
other words, everywhere below /).

You do this by extending your cookie definition when you create the cookie and
adding a path clause to the cookie, so that the cookie now looks like this:

name=value; expires=expiryDate;path=accessPath

For example, the following steps create the cookie myCookie and make it acces-
sible to all pages on the same site:

1. Create a Date object for the date and time when you want the cookie
to expire; this is done by assigning a new instance of the Date object
to a variable and passing the date information as an argument to the
Date object. In this case, the resulting Date object is stored in the
variable myDate and the date for the object is set to April 14, 2005,
at 1:15 P.M.:

var myDate = new Date(2005,03,14,13,15,00) ;

2. Type document.cookie followed by an equal sign to begin assigning
a value to the document . cookie object:

document.cookie =

3. Type an opening double quotation followed by a name for the cookie
followed by an equal sign. In this case, the name is myCookie:

document.cookie = “myCookie=

4. Close the double quotation and type a plus sign:

document.cookie = “myCookie=" +



Manipulating Cookies

Enter the value you wish to assign to the cookie as the argument to
the escape function, and follow the escape function with a plus
sign. In this case, the value of the cookie is “This is my Cookie”:

document.cookie = “myCookie=" + escape(“This is my :)
Cookie”) +

Type an opening double quotation following by a semicolon followed
by expires, and follow this with an equal sign and a closing quotation
mark and then another plus sign:

document.cookie = “myCookie=" + escape(“This is my :)
Cookie”) + “;expires=" +

Type myDate.toGMTString () to add the specified date and time as
a properly formatted string to the cookie, and follow that with a plus

sign:
document.cookie = “myCookie=" + escape(“This is my :)
Cookie”) + “;expires=" + myDate.toGMTString() +

Type an opening double quotation followed by a semicolon followed
by path, and follow this with an equal sign and a forward slash, and
finally close the double quotation and end the command with a semi-
colon:

document.cookie = “myCookie=”" + escape(“This is my :)
Cookie”) + “;expires=" + myDate.toGMTString() + “;path=/";

On another page in another directory on the site, attempt to retrieve
the cookie and display it in a dialog box with the window.alert
method. Figure 157-1 shows the result.

var newCookie = document.cookie;

var cookieParts = newCookie.split(“=");
var cookieName = cookieParts[0];

var cookieValue = unescape (cookieParts[1]);
window.alert (cookieValue) ;

Figure 157-1: Displaying a cookie set in a different directory.







Part 7: DHTML and Style Sheets

Task 158:
Task 159:
Task 160:
Task 161:
Task 162:
Task 163:
Task 164:
Task 165:
Task 166:
Task 167:
Task 168:
Task 169:
Task 170:
Task 171:
Task 172:
Task 173:
Task 174:
Task 175:
Task 176:
Task 177:
Task 178:
Task 179:
Task 180:
Task 181:
Task 182:
Task 183:
Task 184:
Task 185:
Task 186:
Task 187:

Task 188:
Task 189:
Task 190:
Task 191:
Task 192:
Task 193:
Task 194:
Task 195:
Task 196:

Controlling Line Spacing

Determining an Object’s Location

Placing an Object

Moving an Object Horizontally

Moving an Object Vertically

Moving an Object Diagonally

Controlling Object Movement with Buttons
Creating the Appearance of Three-Dimensional Movement
Centering an Object Vertically

Centering an Object Horizontally

Controlling Line Height in CSS

Creating Drop Shadows with CSS

Modifying a Drop Shadow

Removing a Drop Shadow

Placing a-Shadow on a Nonstandard Corner
Managing Z-Indexes in JavaScript

Setting Fonts for Text with CSS

Setting Font Style for Text with CSS

Controlling Text Alighment with CSS

Controlling Spacing with CSS

Controlling Absolute Placement with CSS
Controlling Relative Placement with CSS
Adjusting Margins with CSS

Applying Inline Styles

Using Document Style Sheets

Creating Global Style Sheet Files

Overriding Global Style Sheets for Local Instances
Creating a Drop Cap with Style Sheets
Customizing the Appearance of the First Line of Text
Applying a Special Style to the First Line of Every Element
on the Page

Applying a Special Style to All Links

Accessing Style Sheet Settings

Manipulating Style Sheet Settings

Hiding an Object in JavaScript

Displaying an Object in JavaScript

Detecting the Window Size

Forcing Capitalization with Style Sheet Settings
Detecting the Number of Colors

Adjusting Padding with CSS




- Part 7

Controlling Line Spacing

very element of your page has an object associated with it that can be accessed
through JavaScript. For instance, you can manipulate an element’s line spac-
ing window using this object.

The line spacing information is part of the style property of the object. The
style property is an object reflecting all the cascading style sheet (CSS) style
settings for an object, including the 1ine-height attribute. This means you
can specify the line height of an object, typically in pixels, with the following

property:
object.style.line-height

To reference the element’s object, you use the document . getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
For instance, the following has the ID myLayer:

<div id="myLayer”> </div>
From this, you can obtain a reference to the layer’s object with the following:
var layerRef = document.getElementById(“myLayer”) ;

layerRef would then refer to the object for the layer element (myLayer) of
your document, and you could change its line height with this:

layerRef.style.lineHeight = “15px”;

"The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the line height in the layer increases.

1. In the header of a new document, create a script block containing a
function named moreSpace. The function should take one argument
containing the ID of the element to work with:

function moreSpace (objectID) {

}

2. Create a variable named thisObject, and associate it with the ID
object specified in the function’s argument. Use
document .getElementById

var thisObject = document.getElementById(objectID) ;

3. Increase the value of the 1ineHeight attribute of the element’s
style object so that the final function looks like:

thisObject.style.lineHeight =
parselnt (thisObject.style.lineHeight) + 5 + “px”;



DHTML and Style Sheets 329

4. In the body of the document, create a layer and position it where you Task 8
are using the style attribute of the div tag. Specify an initial line

height for the object, and specify myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: :)
50px; top: 50px; width: 150px; font-size: 14px; line-g)
height: 18px; background-color: #cccccc;”>This is my :)
object and it has lots of text for us to experiment )
with.</div>

Create a link the user can click to call the moreSpace function, so
the final page looks like Listing 158-1.

<head>
<script language="JavaScript”>
function moreSpace (objectID) {
var thisObject = document.getElementById(objectID) ;
thisObject.style.lineHeight =
parselnt (thisObject.style.lineHeight) + 5 + “px”;
}
</script>
</head>
<body>

<div id="myObject” style="position: absolute; left: :)
50px; top: 50px; width: 150px; font-size: 14px; line—:)
height: 18px; background-color: #cccccc;”>This is my :)
object and it has lots of text for us to experiment )
with.</div>

<a href:"javascript:moreSpace(‘myObject’);”>:)
Increase the line spacing.</a>
</body>

Listing 158-1: Changing an element’s line height.

Save the file and close it.
Open the file in a browser, and you see the link and the text object.

Click on the link, and the layer’s line height increases. Keep clicking
and the line height keeps increasing.




- Part 7

Determining an Object’s Location

very element of your page has an object associated with it that can be accessed
through JavaScript. For instance, you can determine an object’s location in
the browser window using this object.

The location information is part of the style property of the object. The style
property includes the 1eft and top attributes. You can determine the location of
an object with the following two properties:

object.style.left
object.style.top

"To reference the element’s object, you use the document . getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
For instance, the following image has the ID myImage:

<img src="image.gif” id="myImage”>
Then, you could obtain a reference to the image’s object with the following:
var imageRef = document.getElementById(“myImage”) ;

This means imageRef would then refer to the object for the image element of
your document, and you could reference the position of the image with this:

imageRef.style.left
imageRef.style.top

"The following steps show how to build a page with a layer element and a link.
When the user clicks the link, he or she sees a dialog box reporting the coordi-
nate locations of the object.

1. In the header of a new document, create a script block containing a
function named getLocation. The function should take one argu-
ment containing the ID of the element to work with:

function getLocation (objectID) {

}

2. Create a variable named thisObject, and associate it with the ID
object specified in the function’s argument. Use
document .getElementById:

var thisObject = document.getElementById(objectID) ;

3. Create the variables x and y and store the 1eft and top properties
of the object in them:

var x = thisObject.style.left;
var y = thisObject.style.top;




DHTML and Style Sheets 331

4.

Display the information in a dialog box for the user using

window.alert so that the final function looks like this: Task 59

window.alert (“Object Location: (™ + x + “,” + y + “)");

In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: )
50px; top: 200px; background-color: #cccccc;”>My Object:)
</div>

Create a link the user can click to call the getLocation function, so
the final page looks like Listing 159-1.

<head>
<script language="JavaScript”>
function getLocation (objectID) {

var thisObject = document.getElementById(objectID) ;
var x = thisObject.style.left;
var y = thisObject.style.top;

window.alert (“Object Location: (“ + X + “,” + y + )
)7
}
</script>
</head>

<body>

<div id="myObject” style="position: absolute; left: )
50px; top: 200px; background-color: #cccccc;”>My :)
Object</div>

<a href="javascript:getLocation(‘myObject’) ;”>Where is :)
the object?</a>
</body>

Listing 159-1: Determining the location of an object.

Save the file and close it.
Open the file in a browser, and you see the link and object.

Click on the link to see the object’s location in a dialog box.




- Part 7
Placing an Object

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s
location in the browser window using this object.

The location information is part of the style property of the object. The style
property includes the left and top attributes. You can specify the location of an
object, typically in pixels, with the following two properties:

object.style.left
object.style.top

"To reference the element’s object, you use the document . getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
For instance, the following image has the ID myImage:

<img src="image.gif” id="myImage”>
Then, you could obtain a reference to the image’s object with the following:
var imageRef = document.getElementById(“myImage”) ;

This means imageRef would then refer to the object for the image element
of your document, and you could assign a new location to the picture with the
following:

imageRef.style.left = 100;
imageRef.style.top = 200;

"This code positions the image at 100 pixels from the left of the browser window
and 200 pixels from the top of the browser window.

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object moves to a new location.

1. In the header of a new document, create a script containing a func-
tion named moveObject. The function should take one argument
that contains the ID of the element to work with:

function moveObject (objectID) {

}

2. Create a variable named thisoObject, and associate it with the
object specified in the function’s argument. Use
document .getElementById:

var thisObject = document.getElementById (objectID) ;



DHTML and Style Sheets 333

3. Assign new locations to the 1eft and top attributes of the element’s Task 160

style object:

thisObject.style.left = 300;
thisObject.style.top = 100;

4. In the body of the document, create a layer and position it wherever
you want, using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My :)
Object</div>

5. Create a link the user can click to call the moveObject function, so
the final page looks like Listing 160-1.

<head>
<script language="JavaScript”>

function moveObject (objectID) {
var thisObject = document.getElementById(objectID) ;

thisObject.style.left = 300;
thisObject.style.top = 100;
}
</script>
</head>

<body>
<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My Object</div>

<a href="javascript:moveObject (‘myObject’) ; “>Move :)
Object to (300,100).</a>
</body>

Listing 160-1: Moving a page element.

6. Save the file and close it.
7. Open the file in a browser, and you see the link and object.

8. Click on the link, and the element moves to a new location




- Part 7
Task 161 Moving an Object Horizontally

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s
location in the browser window using this object. The location information is
part of the style property of the object.

"To reference the element’s object, you use the document . getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to the object with the following:

var tagRef = document.getElementById(“TagID”) ;

With this, objRef refers to the object for the TagID element of your document.
You could assign a new location to the element using the 1eft and top attributes:

objRef.style.left = 100;
objRef.style.top = 200;

This code positions the element at 100 pixels from the left of the browser window
and 200 pixels from the top of the browser window.

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object moves 10 pixels to the right; the user
can click on the link repeatedly to keep moving the object further to the right.

1. In the header of a new document, create a script block containing a
function named moveRight. The function should take one argument
that contains the ID of the element to work with:

function moveRight (objectID) {
}

2. Create a variable named thisObj, and associate it with the object
specified in the function’s argument. Use
document .getElementById

var thisObj = document.getElementById(objectID) ;

3. Assign a new location to the left attribute of the element’s style
object:

thisObj.style.left = parseInt(thisObj.style.left) + 10;

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: 50px; :)
top: 200px; background-color: #cccccc;”>My Object</div>




DHTML and Style Sheets 335

5. Create a link the user can click to call the moveRight function, so Task 6
the final page looks like Listing 161-1.

<head>
<script language="JavaScript”>
function moveRight (objectID) {

var thisObj = document.getElementById(objectID);
thisObj.style.left = parselInt (thisObj.style.left) + 10;
}

</script>

</head>

<body>

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My :)
Object</div>

<a href="javascript:moveRight (‘myObject’) ; ">Move :)
Object to the right.</a>
</body>

Listing 161-1: Moving a page element.

6. Save the file and close it.

7. Open the file in a browser, and you see the link and object, as shown
in Figure 161-1.

U PR

5= | €] H\Socks\wisy\ 74151 him-

Idove Object to the nght.

Figure 161-1: A layer and a link.

8. Click on the link several times, and the element moves progressively
further to the right.




- Part 7
Moving an Object Vertically

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s
location in the browser window using this object. The location information is
part of the style property of the object.

"To reference the element’s object, you use the document . getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to an object with the following:

var objRef = document.getElementById(“TagID") ;

With this, objRef would then refer to the object for the TagID element of your
document. You could assign a new location to the element using the left and
top attributes:

objRef.style.left = 100;
objRef.style.top = 200;

"This code positions the image at 100 pixels from the left of the browser window
and 200 pixels from the top of the browser window.

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object moves 10 pixels down; the user can click
on the link repeatedly to keep moving the object further down.

1. In the header of a new document, create a script block containing a
function named moveDown. The function should take one argument,
which contains the ID of the element to work with:

function moveDown (objectID) {

}

2. Create a variable named thisObj, and associate it with the object
specified in the function’s argument. Use
document .getElementById:

var thisObj = document.getElementById(objectID) ;

3. Assign a new location to the top attribute of the element’s style
object:

thisObj.style.top = parselnt (thisObj.style.top) + 10;

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My :)
Object</div>



DHTML and Style Sheets 337

5. Create a link the user can click to call the moveDown function, so the Task 6
final page looks like Listing 162-1.

<head>
<script language="JavaScript”>
function moveDown (objectID) {

var thisObj = document.getElementById(objectID);
thisObj.style.top = parselInt (thisObj.style.top) + 10;
}
</script>
</head>

<body>
<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My Object</div>

<a href="javascript:moveDown (‘myObject’) ; ">Move )
Object down.</a>
</body>

Listing 162-1: Moving a page element.

6. Save the file and close it.

7. Open the file, and you see the link and object, as shown in
Figure 162-1.

tml - Microsoft In

= |81 H\Books \wiey\I7VE2 himi.

Idowe Obgect down.

‘ﬁ [T

Figure 162-1: A layer and a link.

8. Click on the link several times, and the element moves progressively

further down.




- Part 7
Moving an Object Diagonally

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s
location in the browser window using this object. The location information is
part of the style property of the object.

"To reference the element’s object, you use the document . getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to the object with the following:

var objRef = document.getElementById(“TagID") ;

With this, objRef would then refer to the object for the TagID element of your
document, and you could assign a new location to the element with this:

objRef.style.left = 100;
objRef.style.top = 200;

This code positions the image at 100 pixels from the left of the browser window
and 200 pixels from the top of the browser window.

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object moves 10 pixels down and 10 pixels to
the right; the user can click on the link repeatedly to keep moving the object.

1. In the header of a new document, create a script block containing a
function named moveDiagonally. The function should take one
argument that will contain the ID of the element to work with:

function moveDiagonally (objectID) {

}

2. Create a variable named thisObj, and associate it with the object
specified in the function’s argument. Use
document .getElementById

var thisObj = document.getElementById(objectID) ;

3. Assign a new location to the left attribute of the element’s style
object:

thisObj.style.left = parseInt(thisObj.style.left) + 10;

4. Assign a new location to the top attribute of the element’s style
object so that the final function looks like this:

thisObj.style.top = parselnt (thisObj.style.top) + 10;



DHTML and Style Sheets

5. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: 50px; ¢
top: 200px; background-color: #cccccc;”>My Object</div>

6. Create a link the user can click to call the moveDiagonally function,
so the final page looks like Listing 163-1.

<head>
<script language="JavaScript”>
function moveDiagonally (objectID) {
var thisObj = document.getElementById(objectID) ;

thisObj.style.left = parselInt(thisObj.style.left) + 10;
thisObj.style.top = parselnt (thisObj.style.top) + 10;
}

</script>

</head>

<body>
<div id="myObject” style="position: absolute; left: :)

<a href="javascript:moveDiagonally (‘myObject’) ;”">Move :)
Object diagonally.</a>
</body>

50px; top: 200px; background-color: #cccccc;”>My Object</div>

Listing 163-1: Moving a page element.

7. Save the file and close it.
8. Open the file in a browser, and you see the link and object.

9. Click on the link several times, and the element moves progressively
further along the diagonal.




- Part 7

Task 16A‘ Controlling Object Movement

1.

with Buttons

he following steps show how to build a page with a layer element and four
buttons. The buttons move the layer element up, down, right, or left.

In the header of a new document, create a script block containing a
function named moveUp. The function should take one argument
that contains the ID of the element to work with and should subtract
10 pixels from the top property of the element’s style object:

function moveUp (objectID) {
var thisObj = document.getElementById(objectID);
thisObj.style.top = parselnt (thisObj.style.top) - 10;
}

Create another function called moveDown. The function should work
just like moveUp, except that it adds 10 pixels to the top property:

thisObj.style.top = parselnt (thisObj.style.top) + 10;

Create another function called moveRight. The function should
work just like moveUp, except that it adds 10 pixels to the left

property:

thisObj.style.left = parseInt(thisObj.style.left) + 10;

Create another function called moveLeft. The function should
work like moveUp, except that it subtracts 10 pixels from the left

property:

thisObj.style.left = parseInt(thisObj.style.left) - 10;

In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: 50px; )
top: 200px; background-color: #cccccc;”>My Object</div>

Create four buttons using the input tag. Each button should display
a symbol (using the value attribute), indicating which direction it
moves the object in and should use the onClick event handler to
call the appropriate function specified earlier.

Use a table to position the buttons in a diamond layout so that the
final page looks like Listing 164-1.

<head>
<script language="JavaScript”>
function moveUp (objectID) {
var thisObj = document.getElementById(objectID);
(continued)




DHTML and Style Sheets

thisObj.style.top = parseInt(thisObj.style.top) - 10;
}
function moveDown (objectID) {
var thisObj = document.getElementById(objectID) ;
thisObj.style.top = parselnt (thisObj.style.top) + 10;
}
function moveRight (objectID) {
var thisObj = document.getElementById(objectID) ;
thisObj.style.left = parseInt(thisObj.style.left) + 10;
}
function moveLeft (objectID) {
var thisObj = document.getElementById(objectID) ;
thisObj.style.left = parseInt (thisObj.style.left) - 10;
}
</script>
</head>

<body>
<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My Object</div>
<table>
<tr valign="bottom”>
<td colspan="2" align="center”>
<input type="button” value=""" :)
onClick="moveUp (‘myObject’) ;">
</td></tr>
<tr valign="middle”>
<td align="right”>
<input type="button” value="<" )
onClick="moveLeft (‘myObject’) ;">
</td>
<td align="left”>
<input type="button” value=">" :)
onClick="moveRight ( ‘myObject’) ;">
</td></tr>
<tr valign="top”>
<td colspan="2" align="center”>
<input type="button” value="v” :)
onClick="moveDown ( ‘myObject’) ;">
</td></tr>
</table>
</body>

Listing 164-1: Controlling element placement using buttons.
8. Save the file and open it in a browser. You now see the buttons and
object.

9. Click repeatedly on the buttons, and the element moves in the direc-
tions indicated by the buttons.




- Part 7

Task 65 Creating the Appearance of

E

1.

Three-Dimensional Movement

very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s
location in the browser window using this object as well as its size.

The following steps show how to build a page with a layer element that starts in
the top left at 100 by 100 pixels and moves down and to the right while progres-
sively increasing in size, until it has moved 100 pixels from its original starting
position. The result is an effect of a square moving closer to the user.

In the header of a new document, create a script block containing a
function named moveObject. The function should take one argu-
ment that contains the ID of the element to work with:

function moveObject (objectID) {

}

Create a variable named thisOb3j, and associate it with the object
specified in the function’s argument. Use
document .getElementById:

var thisObj = document.getElementById(objectID) ;

Assign new locations to the 1eft and top attributes of the style
object:

thisObj.style.left = parselInt (thisObj.style.left) + 10;
thisObj.style.top = parselnt (thisObj.style.top) + 10;

Assign new values to the height and width attributes of the ele-
ment’s style object. Increase the size by 10 percent in each direc-
tion each time by multiplying the current height and width by 1.1:

thisObj.style.width = parseInt (thisObj.style.width) * 1.1;
thisObj.style.height = parseInt (thisObj.style.height) * :)
1.1;

As the last step in the function, you have to decide if the object
should move again. Test the current location, and if the left position
of the object is less than 200 pixels, use the window. setTimeout
method to schedule the function run again. The final function looks
like this:

function moveObject (objectID) {
thisObj = document.getElementById(objectID) ;
thisObj.style.left = parseInt(thisObj.style.left) + 10;
thisObject.style.top = parseInt(thisObject.style.:)
top) + 10;
thisObj.style.width = parseInt (thisObj.style.width)
* 1.1;



DHTML and Style Sheets

thisObj.style.height = parseInt (thisObj.style.height) *
1.1;

if (parseInt (thisObj.style.left) < 200) {
window.setTimeout (“*moveObject (' + objectID +
“v) 7, 150) ;
}
}

6. In the body of the document, create a layer named myObject, and
position it wherever you want using the style attribute of the
div tag:

<div id="myObject” style="position: absolute; left: 50px;
top: 200px; background-color: #cccccc;”>My Object</div>

7. In the onLoad event handler of the body tag, call the moveObject
function to start the animation. The final page is in Listing 165-1.

<head>
<script language="JavaScript”>
function moveObject (objectID) {
thisObj = document.getElementById (objectID) ;
thisObj.style.left = parseInt(thisObj.style.left) + 10;
thisObj.style.top = parselnt (thisObj.style.top) + 10;
thisObj.style.width = parseInt (thisObj.style.width) :)
*1.1;
thisObj.style.height = parselInt (thisObj.style.height) :)
*1.1;

if (parseInt (thisObj.style.left) < 200) {

window.setTimeout (*moveObject (' + objectID + :)
“v) 7, 150) ;
}
}
</script>
</head>

<body onLoad="moveObject (‘myObject’) ;">

<div id="myObject” style="position: absolute; left: 50px; :)
top: 50px; height: 50px; width: 50px; background-color: :)
#ccceec; "></div>

</body>

Listing 165-1: Animating an object in apparent three dimensions.

8. Save the file and open it in a browser. You now see the initial page
block element. The element animates, moving down and to the right
and growing larger until it reaches its final position.

rask 4 6D



- Part 7
Centering an Object Vertically

ith JavaScript, you can determine the dimensions of the working area of

the browser window. Using this information, you can precisely position
elements in the center of the browser window. This means you can center a page
element vertically if needed.

"To do this, you need to know the height of the working area of the window. The
way you do this depends on the browser you are using:

* In Netscape 6 and higher, the window. innerHeight property indi-
cates the height of the working area of the browser window in pixels.

* In Internet Explorer, the document . body.clientHeight property
indicates the height in pixels.

"To center an object vertically, you will also need to know its height and be able to
reset its height. The height of a page element is obtained from the height prop-
erty of the style object associated with the element.

"To reference the element’s object, you use the document . getElementById
method. You obtain a reference to an object with the following:

var objRef = document.getElementById(“elementName”) ;

This means objRef would then refer to the object for the element named
elementName, and you could reference its height with this:

objRef.style.height

The following task creates a layer on the page along with a link. When the user
clicks the link, the object will be centered vertically in the browser window:

1. In the header of a new document, create a script block containing a
function named centervertically. The function should take one
argument called objectID, which contains the ID of the element to
work with.

2. Create a variable named thisObj, and associate it with the object ID
specified in the function’s argument. Use
document .getElementById

var thisObj = document.getElementById (objectID) ;

3. Create a variable named height, and store the height of the working
area of the browser window in a variable:

var height = (window.innerHeight) ? window.:)
innerHeight : document.body.clientHeight;



DHTML and Style Sheets 345

4. Assign the height of the object to it a variable named
objectHeight:

var objectHeight = parselInt (thisObject.style.height) ;

5. Calculate the correct placement of the top of the object, and store it
in the variable newLocation:

var newLocation = (height - objectHeight) / 2;

6. Assign this new location to the height attribute of the element’s
style object:

thisObj.style.top = newLocation;

7. In the body of the document, create a layer named myObject, and
position it wherever you want using the style attribute of the
div tag:

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc; ”>My :)
Object</div>

8. Create a link the user can click to call the centervertically func-
tion, so the final page looks like Listing 166-1.

<head>
<script language="JavaScript”>
function centerVertically (objectID) ({
var thisObj = document.getElementById(objectID);
var height = (window.innerHeight) ? window.innerHeight:)
document .body.clientHeight;
var objectHeight = parselInt (thisObj.style.height) ;
var newLocation = (height - objectHeight) / 2;
thisObj.style.top = newLocation;
}
</script>
</head>

<body>
<div id="myObject” style="position: absolute; left: 50px; :)
top: 200px; background-color: #cccccc;”>My Object</div>

<a href="javascript:centerVertically (‘myObject’);”>Center :)
object vertically.</a>
</body>

Listing 166-1: Centering an object vertically.

9. Open the file in a browser, and you now see the link and object. Click
on the link and the object repositions to the vertical center of the
document area of the browser window.

rask 4 66




- Part 7

Centering an Object Horizontally

ith JavaScript, you can determine the dimensions of the working area of

the browser window. Using this information, you can precisely position
elements in the center of the browser window. This means you can center a page
element horizontally if needed.

"To do this, you need to know the width of the working area of the window. The
way you do this depends on the browser you are using:

* In Netscape 6 and higher, the window. innerwidth property indi-
cates the width of the working area of the browser window in pixels.

* In Internet Explorer, the document .body . clientwidth property
indicates the width in pixels.

"To center an object horizontally, you will also need to know its width and be able
to reset its width. The width of a page element is obtained from the width prop-
erty of the style object associated with the element.

"To reference the element’s object, you use the document . getElementById
method. You could obtain a reference to an object with the following:

var objRef = document.getElementById(“elementName”) ;

This means objRef would then refer to the object for the element named
elementName, and you could reference the width of the layer with this:

objRef.style.width

The following task creates a layer on the page along with a link. When the user
clicks the link, the object will be centered horizontally in the browser window.

1. In the header of a new document, create a script block containing a
function named centerHorizontally. The function should take
one argument called objectID, which contains the ID of the element
to work with.

2. Create a variable named thisObj, and associate it with the object ID
specified in the function’s argument. Use
document .getElementById

var thisObj = document.getElementById (objectID) ;

3. Create a variable named width, and store the height of the working
area of the browser window in the variable:

var height = (window.innerWidth) ? window.innerWidth :
document .body.clientWidth;



DHTML and Style Sheets 347

4. Assign the width of the object to a variable named objectwidth:

var objectWidth = parseInt (thisObj.style.width);

5. Calculate the correct placement of the left of the object, and store it
in the variable newLocation:

var newlLocation = (width - objectwidth) / 2;

6. Assign this new location to the width attribute of the element’s
style object:

thisObj.style.left = newLocation;

7. Create a layer and position it wherever you want using the style
attribute of the div tag. Specify myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: )
50px; top: 200px; background-color: #cccccc;”>My :)
Object</div>

8. Create a link the user can click to call the centerHorizontally
function, so the final page looks like Listing 167-1.

<head>
<script language="JavaScript”>
function centerHorizontally (objectID) {
var thisObj = document.getElementById(objectID) ;
var width = (window.innerWidth) ? window.innerWidth
document .body.clientWidth;
var objectWidth = parseInt (thisObj.style.width) ;
var newlLocation = (width - objectwidth) / 2;
thisObj.style.left = newLocation;
}
</script>
</head>

<body>
<div id="myObject” style="position: absolute; left: 50px; )
top: 200px; background-color: #cccccc;”>My Object</div>

<a href= “javascript:centerHorizontally (‘myObject’) ;"> :)
Center object horizontally.</a>
</body>

Listing 167-1: Centering an object horizontally.

9. Open the file in a browser, and you now see the link and object. Click
on the link, and the object repositions to the horizontal center of the
document area of the browser window.




- Part 7
Controlling Line Height in CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance
through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the line spacing used for text. This is controlled with the
line-height attribute:

<div style="line-height: 20px; ">
Text goes here
</div>

The following task illustrates this attribute by displaying text with a variety of
spacing set:

1. Create a new HI'ML document in your preferred editor.

2. In the body of your document, create a layer containing text. Set the
line spacing tightly:

<div style="font-size: 24px; line-height: 18px;”>This )
is a paragraph with really tight line spacing as you &)
can see.</div>

3. Create another layer, and set the line spacing moderately:

<div style="font-size: 24px; line-height: 30px;”>This
is a paragraph with pretty standard line spacing as you :)
can see.</div>

4. Create another layer, and set the line spacing loosely. The final page
should look like Listing 168-1.

<body>

<div style="font-size: 24px; line-height: 18px;”>This )
is a paragraph with really tight line spacing as you can :)
see.</div>

<hr>
(continued)




DHTML and Style Sheets 349

rask 4 68

<div style="font-size: 24px; line-height: 30px;”>This )
is a paragraph with pretty standard line spacing as you :)

can see.</div>

<hr>

<div style="font-size: 24px; line-height: 48px;”>This )
is a paragraphy with pretty loose line spacing as you can )

see.</div>

</body>

Listing 168-1: Changing line spacing.

5. Save the file and close it.

6. Open the file in your browser, and you should see three blocks of text
with different line spacing, as in Figure 168-1.

This is a paragraph with really tight line
spacing 4s you carn see.

This is a paragraph with pretty standard
line spacing as you can see.

This ig a paragraph with pretty loose line

spacing as you can see.

Figure 168-1: Changing line spacing




Task

69

- Part 7
Creating Drop Shadows with CSS

A s browser support for cascading style sheets has improved, so too has the
ability for you to implement special visual effects purely in Dynamic HTML
code. One such effect is a drop shadow, such as the one in Figure 169-1.

e
Figure 169-1: A drop shadow down with absolute positioning.

Drop shadows on rectangular page elements is simple: You need one layer to be
positioned behind and slightly offset from another. For example, the following
creates a block box with a 5-pixel-wide gray shadow:

<div style="background-color: #cccccc; width: 100px; height: :)
100px; position: absolute; left: 105px; top: 105px;”> </div>
<div style="background-color: #000000; width: 100px; height: )
100px; position: absolute; left: 100px; top: 100px;”> </div>

The problem with this approach is that it requires absolute and precise position-
ing of both the shadow and the main layer. Relative positioning in the flow of a
document is not possible. Consider the following code:

<div style="background-color: #cccccc; width: 100px; height: :)
100px; position: relative; left: 105px; top: 105px;”> </div>
<div style="background-color: #000000; width: 100px; height: :)
100px; position: relative; left: 100px; top: 100px;”> </div>

"This fails to create the drop shadow, as illustrated in Figure 169-2.

The solution lies in embedded layers. The outer div tag specifies the dimensions
and color of the shadow. Inside the div block, a second div block specifies the
dimensions, color, and relative placement of the front layer. Then, the outer div
tag can be positioned using absolute or relative positioning, and the entire unit
will be placed together. A drop shadow is illustrated in the following steps:



DHTML and Style Sheets

@3 i .
£ 1 H:\Bockshuiley\07best 163 Heml

Figure 169-2: Relative positioning may not work for drop shadows.

1. Inanew document, create a body block with a layer for the shadow.

Specify the height, width, and color of the shadow:

<body>

<div style="width: 100px; height: 100px; position: :)
relative; background: #cccccc;”> </div>

</body>

2. Inside the layer for the shadow, create the layer to sit on top of the
shadow. In addition to the dimensions and color of the layer, use rela-
tive positioning to position that layer to the left and slightly up from
the shadow, so that the final document looks like Listing 169-1.

<body>
<div style="width: 100px; height: 100px; position: :)

relative; background: #cccccc;”>

<div style="width: 100px; height: 100px; background: :)
#00ffff; position: relative; left: -4px; top: -4px;”">

This box has a drop shadow.

</div>

</div>

</body>

Listing 169-1: Creating a drop shadow.

3. Save the file and close it.

4. Open the file in a browser, and you now see a box with a drop shadow.




- Part 7
Modifying a Drop Shadow

he ability of Web designers to implement visual effects purely in their

Dynamic HTML code has improved thanks to browser support for cascading
style sheets. One such effect is a drop shadow, such as the one shown in Figure
170-1.

est170. himl - M

7] ot
|1 H:\Bocks\wily\ 07 sbest] 70 beml

Figure 170-1: A displayed drop shadow.

In this task, you will see how to manipulate the visual attributes of your drop
shadow from JavaScript once the shadow is in place. You can manipulate any
style attribute of the shadow by providing an ID for the shadow’s layer and then
accessing the style property of the layer’s object.

This task creates a drop shadow and then provides two links: When the user
clicks the first link, the color of the shadow changes, and when the user clicks the
second link, the width of the shadow changes.

1. In the header of a new document, create a script block containing a
function named changeDropColor. The function should take one
argument, which contains the ID of the element to work with:

function changeDropColor (dropID) {
}

2. Create a variable named dropObject, and associate it with the
object specified in the function’s argument. Use
document .getElementById:

var dropObject = document.getElementById (droplID) ;

3. Change the color assigned to the background attribute of the
element’s style object:

dropObject.style.background = “#000000";



DHTML and Style Sheets 353

4. Create another function named changeDropwidth. The function
should take one argument containing the ID of the element to work
with. The function should work in the same way as
changeDropColor, except that the dimensions of the element are
changed instead of the background color (see Listing 170-1).

Task 1 0

5. In the body of the document, create your drop shadow. Make sure
the outer layer has the ID myDrop.

6. Create a link the user can click to call the changeDropColor
function.

7. Create another link the user can click to call the changeDropwidth
function, so the final page looks like Listing 170-1.

<head>
<script language="JavaScript”>
function changeDropColor (dropID) {
var dropObject = document.getElementById (droplD) ;
dropObject.style.background = “#000000";
}
function changeDropWidth (dropID) {
var dropObject = document.getElementById (droplD) ;
dropObject.style.width = 105;
dropObject.style.height = 105;
}
</script>
</head>

<body>
<div id="myDrop” style="width: 100px; height: 100px; :)
position: relative; left: Opx; top: Opx; background: :)
#ccceec; ">
<div style="width: 100px; height: 100px; background: :)
#00ffff; position: relative; left: -4px; top: -4px;”>
This box has a drop shadow.

</div>
</div>
<a href="javascript:changeDropColor (‘myDrop’) ;”>Change :)
Color of the Drop Shadow</a><br>
<a href="javascript:changeDropWidth (‘myDrop’) ; “>Change :)
Width of the Drop Shadow</a>
</body>

Listing 170-1: Changing the appearance of a drop shadow.

8. Save the file and open it in a browser. You now see the drop shadow
that was illustrated in Figure 170-1.

9. Clicking the first link changes the shadow’s color to black. Clicking
the second increases the width of the shadow by 5 pixels.




- Part 7
Task 11 Removing a Drop Shadow

he ability of Web designers to implement visual effects purely in their

Dynamic HTML code has improved thanks to browser support for cascading
style sheets. One such effect is a drop shadow, such as the one shown in Figure
171-1.

Figure 171-1: A displayed drop shadow.

In this task, you will see how to manipulate the visual attributes of your drop
shadow from JavaScript in order to remove the shadow. You can manipulate any
style attribute of the shadow by providing an ID for the shadow’s layer and then
accessing the style property of the layer’s object.

This task creates a drop shadow and then provides a link. When the user clicks
the link, the drop shadow disappears.

1. In the header of a new document, create a script block containing a
function named removeDrop. The function should take one argu-
ment that contains the ID of the element to work with:

function removeDrop (dropID) {

}

2. Create a variable named dropObiject, and associate it with the
object specified in the function’s argument. Use
document .getElementById:

var dropObject = document.getElementById(dropID) ;

3. Change the color assigned to the background attribute of the ele-
ment’s style object to none so that the final function looks like this:

function changeDropColor (dropID) {
var dropObject = document.getElementById (dropID) ;
dropObject.style.background = “none”;




DHTML and Style Sheets 355

4. In the body of the document, create your drop shadow. Make sure

the outer layer has the ID myDrop: Task ‘

<div id="myDrop” style="width: 100px; height: 100px; :)
position: relative; left: Opx; top: Opx; background: :)
#ccccec; ">

<div style="width: 100px; height: 100px; background: :)
#00ffff; position: relative; left: -4px; top: -4px;”>

This box has a drop shadow.

</div>

</div>

5. Create a link the user can click to call the removeDrop function, so
the final page looks like Listing 171-1.

<head>
<script language="JavaScript”>
function removeDrop (dropID) {
var dropObject = document.getElementById (droplID) ;

dropObject.style.background = “none”;
}
</script>
</head>
<body>

<div id="myDrop” style="float: left; width: 100px; :)
height: 100px; position: relative; background: #cccccc;”>
<div style="float: left; width: 100px; height: )
100px; background: #00ffff; position: relative; left:
-4px; top: -4px;”>
This box has a drop shadow.
</div>
</div>

<a href="javascript:removeDrop (‘myDrop’) ; “>Remove Drop :)
Shadow</a>
</body>

Listing 171-1: Removing a drop shadow.

6. Save the file and open it in a browser. You now see the drop shadow.

7. Click on the link and the shadow disappears.




- Part 7

Placing a Shadow on a
Nonstandard Corner

A s browser support for cascading style sheets has improved, so too has the
ability for you to implement special visual effects purely in their Dynamic
HTML code. One such effect is a drop shadow. In this task, you will see how you
can make the “drop” shadow actually protrude from any corner of the element
simply by adjusting the style attributes assigned to the inner layer of your drop
shadow effect.

Task 169 shows how the typical drop shadow effect is created. In that task, you
can see that the critical attributes that control the way the drop shadow works
are the left and top style attributes on the inner div tag. The inner div tag
specifies the front layer, which is positioned relative to the position of the shadow.
Therefore, the following positioning rules apply to these two attributes:

* Use a negative value for the left attribute to make the shadow
appear on the right of the element.

* Use a positive value for the left attribute to make the shadow
appear on the left of the element.

* Use a negative value for the top attribute to make the shadow appear
on the bottom of the element.

* Use a positive value for the top attribute to make the shadow appear
on the top of the element.

The following task applies these principles to create three identical drop shadow
effects, except that the shadow appears on a different, nonstandard corner of the
element in each instance:

1. Create an element with a drop shadow in the top left using positive
values for the 1eft and top style attributes on the inner layer:

<div style="width: 100px; height: 100px; position: )
relative; background: #cccccc;”>
<div style="width: 100px; height: 100px; )
background: #00ffff; position: relative; left: 4px; :)
top: 4px;”>
This box has a drop shadow.
</div></div>

2. Create an element with a drop shadow in the bottom left using a pos-
itive value for the left style attribute and a negative value for the
top style attribute on the inner layer.

3. Finally, create an element with a drop shadow in the top right using a
negative value for the left style attribute and a positive value for the
top style attribute on the inner layer. The final page should look like
Listing 172-1.



DHTML and Style Sheets 357

<body>
<div style="width: 100px; height: 100px; position: :)
relative; background: #cccccc;”>
<div style="width: 100px; height: 100px; background: )
#00ffff; position: relative; left: 4px; top: 4px;”>
This box has a Top/Left drop shadow.
</div></div> <br>
<div style="width: 100px; height: 100px; position: :)
relative; background: #cccccc;”>
<div style="width: 100px; height: 100px; background: )
#00ffff; position: relative; left: 4px; top: -4px;”>
This box has a Bottom/Left drop shadow.
</div></div> <br>
<div style="width: 100px; height: 100px; position: :)
relative; background: #cccccc;”>
<div style="width: 100px; height: 100px; background: )
#00ffff; position: relative; left: -4px; top: 4px;”>
This box has a Top/Right drop shadow.
</div></div>
</body>

Listing 172-1: Placing the shadow on any nonstandard corner.

4. Save the file and close it.

5. Open the file in a browser, and you now see the drop shadow effects,
as illustrated in Figure 172-1.

File Edit View Favorites Tools Heln

Q- O - Elﬁﬁm-ﬁzwmcwem %=

2l | ] cHibecumenis and

[Eloe

Figure 172-1: The drop shadow can be placed on any corner of the element.




Part 7

Managing Z-Indexes in JavaScript

sing cascading style sheets, you can control the relative stacking order of
layers. The stacking order of layers determines which layers appear on top
of other layers when they overlap with each other. You control this stacking order
with the z-index style attribute, which takes a numeric value. The larger the
value, the higher a layer is in the stack.

The layer ordering information is part of the style property of the object. You
can determine the layer order position of an object by using object.style.
zindex. The following steps create two overlapping layers with links to adjust
which layer is on top:

1. In the header of a new document, create a script block containing
a function named swapLayer that takes two arguments named
topTarget (which will contain the layer ID for the layer to move to
the top) and bot tomTarget (which will contain the layer ID for the
layer to move to the bottom):

function swapLayer (topTarget,bottomTarget) { }

2. In the function, set the stacking order for the desired top layer to
2 and for the bottom layer to 1:

document .getElementById (topTarget) .style.zIndex = 2;
document .getElementById (bottomTarget) .style.zIndex = 1;

3. In the body of the document, create a layer named firstLayer with
a stacking order of 1:

<div id="firstLayer” style=" ... z-index: 1;”> </div>

4. In the layer, create a link to call swapLayer designed to move the
layer to the top of the stack; specify *firstLayer’ as the first argu-
ment and *secondLayer’ as the second argument:

<p><a href= :)
“javascript:swapLayer (‘firstLayer’,b 'secondLayer’)”>
Move to top</a></P>

5. Create a second layer named secondLayer with a stacking order
of 2:

<div id="secondLayer” style=" ... z-index: 2;"> </div>

6. In the layer, create a link to call swapLayer design to move the layer
to the top of the stack; specify ‘secondLayer’ as the first argument
and ‘firstLayer’ as the second argument. The final page should
look like Listing 173-1.




DHTML and Style Sheets

<head>
<script language="JavaScript”>
function swaplLayer (topTarget,bottomTarget) {
document .getElementById (topTarget) .style.zIndex = 2;
document .getElementById (bottomTarget) .style.zIndex = 1;
}
</script>
</head>
<body>
<div id="firstLayer” style="position: absolute; left: )
10px; top: 10px; width: 100px; height: 100px; background-¢)
color: yellow; z-index: 1;”>
<p><a href= :)
“javascript:swapLayer(‘firstLayer','secondLayer')">:)
Move to top</a></P> </div>
<div id="secondLayer” style="position: absolute; left: )
60px; top: 60px; width: 100px; height: 100px; background-)
color: lightgrey; z-index: 2;”">
<p><a href=:)
“javascript:swapLayer(‘secondLayer’,'firstLayer')">:)
Move to top</a></P> </div>
</body>

Listing 173-1: Changing stacking order with JavaScript.

7. Save the file and close it. Open the file in a browser, and you now see
two overlapping layers, as illustrated in Figure 173-1.

Figure 173-1: Overlapping layers.

8. Click on the Move to Top link in the bottom layer, and it moves to
the top of the stack. Click on the Move to Top link in the other layer,
and you should return to the original state of the page.




- Part 7
Setting Fonts for Text with CSS

A s browser support for cascading style sheets has improved, so too has the
ability for you to control all aspects of your pages’ appearance through
Dynamic HTML. One of the aspects of the appearance of your pages that can be
controlled through style sheets is the font used for text. You can control this with
the font-family style attribute. For instance, the following sets all text in a
layer to Arial:

<div style="font-family: Arial;”>
Text goes here
</div>

Similarly, you can change a font inline using the span tag:
<p>

This is text. Some of it <span style=”font-family: Arial;”>is
in Arial.</span>

</p>

This results in the text shown in Figure 174-1.

i |IltﬁlI'IHTEY-:UII.I!...E:'_-”_:. |

= E H:\Bookshwiley\ 07 et 74wl

This i text. Some of #1510 Arial

Figure 174-1: Changing font inline with a style sheet.

When specifying fonts, you have no way to guarantee the user will have the fonts
on his or her browser. For this reason, you typically specify a list of fonts such as
the following:

font-family: Arial, Helvetica, SANS-SERIF;

Here, if the user doesn’t have Arial installed, his or her browser will use
Helvetica. If Helvetica isn’t installed, then SANS-SERIF is used. SANS-SERIF
is one of a special group of font names provided in cascading style sheets. It indi-
cates that the browser should use its default sans serif font instead of a specific
font.



DHTML and Style Sheets 361

The following task illustrates the font-family attribute by displaying text in Task 1 A
three different fonts:

1. In the body of your document, create a layer containing text. Specify
Times, SERIF asthe font-family style:

<div style="font-family: Times, SERIF;”>This type is &
Times</div>

2. Create another layer containing text. This time specify Arial,
SANS-SERIF:

<div style="font-family: Arial, SANS-SERIF;”>This type :)
is Arial</div>

3. Create another layer containing text. This time specify Courier,
MONOSPACE. The final page should look like Listing 174-1.

<body>

<div style="font-family: Times, SERIF;”>This type is &)
Times</div>

<div style="font-family: Arial, SANS-SERIF;”>This type :)
is Arial</div>

<div style="font-family: Courier, MONOSPACE;”>This type )
is Courier</div>
</body>

Listing 174-1: Changing font family.

4. Save the file and close it.

5. Open the file in your browser, and you should see three blocks of text
in different fonts, as in Figure 174-2.

E H: \Books\wiksy\ 071 74 kil

This type 15 Times
Thistype is Arial
This type is Courier

Figure 174-2: Changing fonts with font-family.




- Part 7
Task 15 Setting Font Style for Text with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance
through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the style used for text. For instance, you can control the
following:

* Use the font-style style attribute to control the italicization of
text. The following makes text italic:

<div style="font-style: italic;”">
Text goes here
</div>

* Use the font-weight style attribute to control the boldness of text.
The following makes text bold:

The following text is bold: <span style="font-weight: :)
bold; ”>This is bold</span>

* Use the font-size style attribute to control the size of text. You
can specify sizes in points (such as 24pt), in pixels (such as 18px), or
as some fraction of the default font size (such as 1. 5em). Typically,
you will use points or pixels (which are more consistent between
browsers and operating systems), as in the following:

<div style="font-size: 18px;”">
Text goes here
</div>

* Use the text-decoration attribute to control underlining of text.
The following makes text underlined:

The following text is underlined: <span style:”text—:)
decoration: underline;”>This is underlined</span>

The following task illustrates these attributes by displaying text in all four styles,
as well as combining the styles:

1. In the body of your document, create a layer containing text. Make
the text italic:

<div style="font-style: italic;”>This type is
Italics</div>

2. Create another layer and make the text bold:

<div style="font-weight: bold;”>This type is Bold</div>




DHTML and Style Sheets 363

3. Create another layer and make the text 24 point: Task 1 5

<div style="font-size: 24pt;”>This type is 24pt</div>

4. Create another layer and make the text underlined:

<div style="text-decoration: underline;”>This type is )
Underlined</div>

5. Create another layer containing text, and apply all four styles from
the previous layers. The final page should look like Listing 175-1.

<body>
<div style="font-style: italic;”>This type is
Italics</div>
<div style="font-weight: bold;”>This type is Bold</div>
<div style="font-size: 24pt;”>This type is 24pt</div>
<div style="text-decoration: underline;”>This type is :)
Underlined</div>
<div style="font-style: italic; font-weight: bold;
font-size: 24pt; text-decoration: underline;”>This type &)
has all four styles</div>
</body>

Listing 175-1: Changing font styles.

6. Save the file and close it.

7. Open the file in your browser, and you should see five blocks of text
in different styles, as in Figure 175-1.

This bupe 15 liahc
This type is Bold

This type 1s 24 pt
Thas type 15 Underlned

This type has all four styles

Figure 175-1: Changing font styles.




Part 7

Controlling Text Alignment with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance
through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is alignment of text. You can control this with the text-
align style attribute. For instance, the following sets all text in a layer to be
centered:

<div style="text-align: center;”>
Text goes here

</div>

This results in the text shown in Figure 176-1.

oft Internet E

£ H:\Books\wiley\ 07 tes] 75 bl

Text goes here

Figure 176-1: Changing font alignment to centered.

The following task illustrates the text-align attribute by displaying text in
three different alignments:
1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text. Specify
left as the text-align style:

<div style="text-align: left;”>This type is left-¢)
aligned</div>

3. Create another layer containing text. This time specify center:

<div style="text-align: center;”>This type is :)
centered</div>



DHTML and Style Sheets

4. Create another layer containing text. This time specify right. The
final page should look like Listing 176-1.

<body>

<div style="text-align: left;”>This type is left-)
aligned</div>

<div style="text-align: center;”>This type is :)
centered</div>

<div style="text-align: right;”>This type is right-o)
aligned</div>

</body>

Listing 176-1: Changing text alignment.

5. Save the file and close it.

6. Open the file in your browser, and you should see three blocks of text
with different alignments, as in Figure 176-2.

This type 15 lef-aligned
This bype 15 centered
This type 15 right-aligned

Figure 176-2: Changing alignment with text-align.




Part 7

Controlling Spacing with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance
through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the spacing used for text. For instance, you can control
the following:

* Use the letter-spacing style attribute to control the spacing of
letters. You can specify spacing in pixels (such as 10px) or as some
fraction of the width of the letter “m” in the font you are using (such
as 2. 0em):

<div style="letter-spacing: 20px;”>
Text goes here
</div>

* Use the word-spacing style attribute to control the spacing
between words in pixels or em units:

The following text has larger word spacing: <span :)
style="word-spacing: 3.0em;”>This has bigger word :)
spacing</span>

The following task illustrates these attributes by displaying text with a variety of
spacing set:
1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text. Set the
letter spacing using pixels:

<div style="letter-spacing: 10px;”>These letters are 10 :)
pixels apart</div>

3. Create another layer and set the letter spacing as a fraction of the
width of the letter “m”™:

<div style="letter-spacing: 2em;”>These letters are :)
2 m’'s apart</div>

4. Create another layer and set the word spacing using pixels:

<div style="word-spacing: 30px;”>These words are 30 :)
pixels apart</div>



DHTML and Style Sheets 367

5. Create another layer and set the word spacing as a fraction of the Task 1

width of the letter “m.” The final page should look like Listing 177-1.

<body>

<div style="letter-spacing: 10px;”>These letters are o)
10 pixels apart</div>

<div style="letter-spacing: 2em;”>These :)
letters are 2 m's apart</div>

<div style="word-spacing: 30px;”>These words are 30 )
pixels apart</div>

<div style="word-spacing: 5em;”>These words are 5 m’'s :)

apart</div>

</body>

Listing 177-1: Changing text spacing.

6. Save the file and close it.

7. Open the file in your browser, and you should see four blocks of text
with different spacing, as in Figure 177-1.

A

dress ] H:\Bocks\wily\ 0741 77 btml

These letters are 10
prrels apart

T h 3 5 3

I e t t e roos

a T e 2 m ! B

a P a r ot

Theze words are 30 poels apart
These words are 5
ms apart

Figure 177-1: Changing text spacing.




- Part 7

Controlling Absolute Placement
with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance
through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the placement of layers. You can place layers in an absolute
fashion by using the position: absolute style setting. You then use the left
and top style attribute to specify the position of a layer relative to the top left
corner of the document section of the browser window. Typically, you will set
these values in pixels. For instance, consider the following layer:

<div style="position: absolute; left: 100px; right: 100px;”>
Text goes here
</div>

"This results in text positioned 100 pixels below and to the right of the top left
corner, as illustrated in Figure 178-1.

Tezt goes hers

Figure 178-1: Changing layer positioning.

The following task illustrates absolute positioning by displaying two absolutely
positioned layers:

1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text and
place it 200 pixels in and down from the top left corner:

<div style="position: absolute; top: 200px; left: :)
200px; ">This text is placed 200 pixels from the top and :)
300 pixels from the left of the window</div>



DHTML and Style Sheets 369

3. Create another layer containing text, and place it right at the top left
corner. The final page should look like Listing 178-1.

Task 1 8

<body>

<div style="position: absolute; top: 200px; left: )
200px; “>This text is placed 200 pixels from the top and
300 pixels from the left of the window</div>

<div style="position: absolute; top: Opx; left: :)
Opx; ”>This text is placed right in the top-left corner of :)

the window</div>

</body>

Listing 178-1: Controlling layer positioning.

4. Save the file and close it.

5. Open the file in your browser, and you should see the two layers, as
in Figure 178-2.

This texst is placed right in the top left comer of the window

Tris text ts placed 200 pixels
from the top and 300 pels from
the lef of the window

Figure 178-2: Controlling layer positioning with absolute positioning.




- Part 7

Controlling Relative Placement
with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance
through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the placement of layers. Layers are created with div tags
and can contain any valid HTML in them. They are simply containers for the
HTML to which you can apply styles for the whole layer.

You can place layers in a relative fashion by using the position: relative
style setting. This means that any positioning you specify is relative to where you
would normally have expected the layer to appear in your document given its
placement in the flow of HT'ML in your document.

You then use the 1left and top style attribute to specify the position of a layer
relative to its normal place in the flow of the document. Typically, you will set
these values in pixels. For instance, consider the following layer:

<div style="position: relative; left: 100px; right: 100px;”>
Text goes here
</div>

The following task illustrates relative positioning by creating a document that
starts with a paragraph and then follows that with a relatively positioned layer:
1. Create a new HTML document in your preferred editor.
2. In the body of your document, create a paragraph:

<p>
Here is some text
</p>

3. Create a relatively positioned layer to follow the paragraph. The final
page should look like Listing 179-1.



DHTML and Style Sheets

<body>
<p>Here is some text</p>

<div style="position: relative;
left: 50px;
top: 100px;”>
This text is indented 50 pixels relative to the text
before it and shifted down by 100 pixels
</div>

</body>

Listing 179-1: Controlling layer positioning.

4. Save the file and close it.

5. Open the file in your browser, and you should see the two layers, as
in Figure 179-1.

Here 1z some text

Thas text is mdented 50 pivels relative to the text before it and
shifted down by 100 poels

Figure 179-1: Controlling layer positioning with relative positioning.




- Part 7
Task 180 Adjusting Margins with CSS

A s browser support for cascading style sheets has improved, so too has the
ability for you to control all aspects of your pages’ appearance through
Dynamic HTML. One of the aspects of the appearance of your pages that can
be controlled through style sheets is the margin of a layer.

"To understand margins and their meaning in style sheets, you need to learn about
the box model used in cascading style sheets. The box model defines a layer’s
outer components, as shown in Figure 180-1.

1 < Outer boundary of the layer
: (not visible)

_______________________________ 1
<b— Margin
1
<—— Border (may be visible)
1
: Padding (background color or
<t—L— image will fill padding, as well

1
\ 1 as the content)
1
$ Actual content of the layer
1

Figure 180-1: The CSS box model.

You control the width of the margin in one of several ways:

* Use the margin attribute to set the same margin width for all sides.
The following creates 5-pixel margins on all sides of the layer:

<div style="margin: 5px;”>
Text goes here
</div>

e Use the margin attribute to set different widths for the different
sides:

<div style="margin: 5px 10px 15px 20px;”>
Text goes here
</div>

* Specify distinct margins individually using the margin-top,
margin-bottom, margin-right, and margin-left attributes.
For instance, the following only creates margins on the top and to
the right of the layer:

<div style="margin-top: 5px; margin-right: 5px;”>
Text goes here
</div>




DHTML and Style Sheets 313

The following task illustrates how margins work by displaying the same layer
with two different margin settings:

1. In the body of your document, create a layer with a border:

<div style="border-style: solid; border-width: 1lpx;”>
</div>

2. In this layer, create another layer with a margin:

<div style="background-color: #cccccc; margin: lOpx;">:)
10 pixel margins</div>

3. Create another layer with a border, and inside that, create a layer
without a margin, so that the final page looks like Listing 180-1.

<body>

<div style="border-style: solid; border-width: 1lpx;”>
<div style="background-color: #cccccc; margin: 10px;”:)

>10 pixel margins</div>

</div>

<br>

<div style="border-style: solid; border-width: 1lpx;”>

</div>
</body>

<div style="background-color: #cccccc;”>No margins</div>

Listing 180-1: Using margins.

4. Save the file and close it.

5. Open the file in your browser, and you should see the two layers, as
in Figure 180-2.

Figure 180-2: Controlling margins.

Task 180




Part 7

Applying Inline Styles

w ith cascading style sheets, there are a number of ways you can apply styles
to text. One way is to use inline style definitions. These allow you to spec-
ify styles in the style attribute of any HTML tag.

For instance, you might specify a style attribute specifically for one paragraph:
<p style="style definition”>A paragraph<p>

Similarly, you might specify style settings for a layer that can contain lots of
HTML:

<div style="style definition”>Lots of HTML</div>

Finally, you can specify inline styles that override styles just for a given span of
text, as in the following:

<p>

This is text and <span style="style definition”>this is :)
inline</span>
</p>

The following task illustrates the use of inline style assignments:

1. Create a new HTML document in your preferred editor.
2. In the body of your document, create a level 1 heading:

<hl>A Stylized Headline</hl>

3. Apply styles to the heading:

<hl style="font-family: Arial; font-size: 18px;”>A )
Stylized Headline</hl>

4. After the heading, create a layer with some HTML in it:

<div>

<hl>A Layer</hl>

This layer has <strong>style</strong>. It also has :)
some inline text.
</div>

5. Add a style specification to the layer:

<div style="background-color: #cccccc; color: red;”>
<hl>A Layer</hl>
This layer has <strong>style</strong>. It also has
some inline text.

</div>



DHTML and Style Sheets [ 815

6. Specify a style definition for some of the text in the layer, using a Task 8 ‘

span tag, so that the final document looks like Listing 181-1.

<body>

<hl style="font-family: Arial; font-size: 18px;”>A )
Stylized Headline</hl>

<div style="background-color: #cccccc; color: red;”>
<hl>A Layer</hl>
This layer has <strong>style</strong>. It also has :)
some <span style="color: white; background-color: :)
black;”>inline text</span>.

</div>

</body>

Listing 181-1: Using inline style definitions.

7. Save the file and close it.

8. Open the file in a browser to see the styles, as in Figure 181-1.

A Stylized Headline

Figure 181-1: Applying inline styles.




Part 7

Using Document Style Sheets

With cascading style sheets, there are a number of ways you can apply styles
to text. One way is to use a style sheet specified in the header of your docu-
ment. You can then refer to and reuse these styles throughout your document.

A document style sheet is specified between opening and closing style tags in
the header of your document:

<head>
<style type="text/css”>
</style>

</head>

"To build your style sheet, just define the styles in the style block. You can define
three types of style definitions:

* HTML element definitions, which specify a default style for different
HTML elements (in other words, for different HTML tags)

* Class definitions, which can be applied to any HTML tag by using
the class attribute common to all tags

¢ Identity definitions, which apply to any page elements that have a
matching ID

The following steps show you how to create a style sheet in a document and then
use the styles:

1. In the header of a new document, create a style block:

<style type="text/css”>
</style>

2. In the style block, create a style definition for the p tag:

P {
font-family: Arial, Helvetica, SANS-SERIF;
color: #£f£0000; }

3. Next, create a style definition for the myClass class:

.myClass {
font-size: 24pt;
font-style: italic; }

4. Finally, create a style definition for elements with the myID ID:
#myID { background-color: #cccccc; }

5. In the body of your document, create a level 1 heading and apply the
myClass class to it:

<hl class="myClass”> This is a headline </hl>



DHTML and Style

Sheets

6. Createap

aragraph:

<p>This is a plain old paragraph. </p>

7. Finally, create a layer with the ID myID and place some HTML in it,

so that the final page looks like Listing 182-1.

<head>

<style type="text/css”>

P { font-family: Arial, Helvetica, SANS-SERIF;
color: #£f£0000; }
.myClass { font-size: 24pt;
font-style: italic; }
#myID { background-color: #cccccc; }

</style>
</head>
<body>
<hl class="myClass”>This is a headline</hl>
<p>This is a plain old paragraph.</p>
<div id="myID”>

This layer has the ID myID.

</div>
</body>

Listing 182-1: Using a document style sheet.

8. Save the file and close it.

9. Open the
applied to

file in your browser, and you now see the document styles
the displayed text, as in Figure 182-1.

&7 H:\Books\wiley\ 071 B2 bl

This is

Thisis a plain old paragraph.

a headline

Figure 182-1: Using a document style sheet.

rask 4 B2




- Part 7
Creating Global Style Sheet Files

T ypically, you will not only want to reuse styles with different elements on
your page, but you will also want to use the same style definitions in different
documents. You can do this by defining your styles in a global style sheet file and
then including that file in any of the documents in your site that need to use the

styles.

To build a global style sheet file, just define the styles in a separate file. You can
define three types of style definitions:

* HTML element definitions, which specify a default style for different
HTML elements (in other words, for different HTML tags). For
instance, the following defines a style for level 1 headers in HTML.:

hl {
font-family: Arial, Helvetica, SANS-SERIF;
font-size: 18px; }

* Class definitions, which can be applied to any HTML tag by using
the class attribute common to all tags:

.className {
font-family: Arial, Helvetica, SANS-SERIF;
font-size: 18px; }

¢ Identity definitions, which apply to any page elements that have a
matching ID:

#ID {
font-family: Arial, Helvetica, SANS-SERIF;
font-size: 18px; }

Once you have a style sheet file, the easiest way to include it in your documents is
with the 1ink tag in the header of your document:

<link rel="stylesheet” href="path to style sheet file">

The following steps show how to create a global style sheet file and then include
itand use it in an HTML file:

1. Create a new document in your preferred editor. This file will be the
style sheet file.
2. In the file, create a style definition for the p tag:

P { background-color: #cccccc;
font-size: 24pt; }

3. In the file, also create a style definition for a class named myClass:

.myClass {
font-weight: bold;
font-family: Arial, Helvetica, SANS-SERIF; }



DHTML and Style Sheets

. Save the file as style.css.

. Inanew HTML file, create a 1ink tag in the header to include the
style sheet file you just saved:

<head>
<link rel="stylesheet” href="style.css”>
</head>

. In the body of the document, create a plain paragraph of text:
<p>This is a paragraph with some style.</p>

. Follow the paragraph with a layer that uses the myClass class, so
that the final page looks like Listing 183-1.

<head>
<link rel="stylesheet” href="style.css”>
</head>
<body>
<p>This is a paragraph with some style.</p>
<div class="myClass”>This is a layer with some :)
style.</div>
</body>

Listing 183-1: Using a global style sheet file.

. Save the file and close it.

. Open the HTML file, and you should see the styles from the global
style sheet file applied to your document as in Figure 183-1.

55 €] Ho\Bookstwiley\ 0741 B3 bl

This is a layer with some style.

Figure 183-1: Styles from the global style sheet file apply to your documents.

rask 4 83




Part 7

Overriding Global Style Sheets
for Local Instances

ypically, you will not only want to reuse styles with different elements on

your page, but you will also want to use the same style definitions in different
documents. You can do this by defining your styles in a global style sheet file and
then including that file in any of the documents in your site that need to use the

styles.

"To build a global style sheet file, just define the styles in a separate file. Task 183
shows you how to define three types of style definitions:

e HTML element definitions, which specify a default style for different
HTML elements (in other words, for different HTML tags)

* Class definitions, which can be applied to any HTML tag using the
class attribute common to all tags

¢ Identity definitions, which apply to page elements having a matching ID

One you have a style sheet file, the easiest way to include it in your documents is
with the 1ink tag in the header of your document:

<link rel="stylesheet” href="path to style sheet file">

You can then use the styles in your document, but also override individual style
attributes as needed by using the style attribute in any tag. For instance, the fol-
lowing layer uses a style class but then specifies a local font size that overrides
any font size that may be specified in the class:

<div class="class name” style="font-size: 24pt;”>
Text goes here </div>

The following steps show how to create a global style sheet file, and then include
itand use it in an HTML file and override individual style attributes:
1. In anew file create a style definition for the p tag:

P { background-color: #cccccc;
font-size: 24pt; 1}

2. In the file also create a style definition for a class named myClass:

.myClass {
font-weight: bold;
font-family: Arial, Helvetica, SANS-SERIF; }

3. Save the file as style.css. This will be your style sheet file.

4. Inanew HTML file, create a 1ink tag in the header to include the
style sheet file you just saved:

<head><link rel="stylesheet” href="style.css”></head>



DHTML and Style Sheets 381

In the body of the document, create a plain paragraph of text:

Task 18A‘

<p>This is a paragraph with some style.</p>

Set a local style for the paragraph to specify the font size and make
the text italic:

<p style="font-size: 14pt; font-style: italic;”>This is )
a paragraph with some style.</p>

Follow the paragraph with a layer that uses the myClass class:

<div class="myClass”>This is a layer with some :)
style.</div>

Opverride the font weight for the layer. Listing 184-1 shows the page.

<head><link rel="stylesheet” href="style.css”></head>

<body>

<p style="font-size: 1l4dpt; font-style: italic;”>This :)
is a paragraph with some style.</p>

<div class="myClass” style="font-weight: normal;”>This :)
is a layer with some style.</div>
</body>

Listing 184-1: Overriding global styles.

Save the file and open it in your browser. You should see the styles
from the global style sheet file, with the specific local styles overrid-
ing them, applied to your document, as in Figure 184-1.

&7 H:\Baoks\wiley\ 07184 bl

This is a layer with some stde.

Figure 184-1: Individual style attributes overridden with local style definitions.




- Part 7
Creating a Drop Cap with Style Sheets

ne of the aspects of the appearance of your pages that can be controlled

through style sheets is the appearance of the first letter of a block of text.
Using this ability, you can create special effects such as drop caps (large first
letters of a paragraph, page, or document).

"To control this, you typically use a document style sheet in the header of your
document. In the style sheet, a style for a class should be defined; it should spec-
ify the normal appearance of text for the class.

Next, a special selector can be used to override the appearance of just the first
letter of text to which this class is applied. The class and selector style definitions
are defined as follows:

.myClass { style definition }
.myClass:first-letter { style definition for the first letter only }

The following task creates a paragraph of text with a drop cap:

1. In the header of a new HTML document, create a style block:

<style type="text/css”>

</style>

2. Create a style definition for the myClass class. This defines the nor-
mal text appearance for the paragraph:

.myClass {
font-size: 24px;

}
3. Create a style definition for the first letter of the myClass class:

.myClass:first-letter {
float: left;
font-size: 72px;
margin-right: 10px;
margin-bottom: 10px;

}

4. In the body of the document, create a layer that is assigned the
myClass class, and put a paragraph of text in the layer. The final
page should look like Listing 185-1.



DHTML and Style Sheets

<head>
<style type="text/css”>

.myClass {
font-size: 24px;

}

.myClass:first-letter ({
float: left;
font-size: 72px;
margin-right: 10px;
margin-bottom: 10px;

}

</style>
</head>

<body>
<div class="myClass”>
This is a big paragraph with lots of text. The goal
is to see what happens to the first character as a :)
so-called drop cap. Should be interesting.
</div>
</body>

Listing 185-1: Creating a drop cap.

5. Save the file and close it.

6. Open the file in your browser, and you should see the paragraph with
the drop cap, as in Figure 185-1.

his is a big paragraph with lots of

text. The goal is to see what happens
to the first character as a so-called drop
cap. Should be interesting.

Figure 185-1: A drop cap on the first letter.




- Part 7

Customizing the Appearance
of the First Line of Text

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance
through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled through
style sheets is the appearance of the first line of a block of text. To control this,
you typically use a document style sheet in the header of your document. In the
style sheet, a style for a class should be defined; it should specify the normal
appearance of text for the class.

Next, a special selector can be used to override the appearance of just the first
line of text to which this class is applied. The class and selector style definitions
are defined as follows:

.myClass { style definition }
.myClass:first-1ine { style definition for the first line only }

The following task creates a paragraph of text with a special first-line style:

1. In the header of a new HTML document, create a style block:

<style type="text/css”>
</style>

2. Create a style definition for the myClass class. This will define the
normal text appearance for the paragraph:

.myClass {
font-size: 24px;

}

3. Create a style definition for the first line of the myClass class:

.myClass:first-letter ({
font-size: 48px;
color: #999999;
font-style: italic;

}

4. In the body of the document, create a layer that is assigned the
myClass class, and put a paragraph of text in the layer. The final
page should look like Listing 186-1.

5. Save the file and close it.

6. Open the file in your browser, and you should see the paragraph with
the drop cap, as in Figure 186-1.



DHTML and Style Sheets

<head>
<style type="text/css”>
.myClass {
font-size: 24px;
}
.myClass:first-1line {
font-size: 48px;
color: #999999;
font-style: italic;
}
</style>
</head>

<body>
<div class="myClass”>
This is a big paragraph with lots of text.
The goal is to see what happens to the first
line of the paragraph. Should be interesting.
</div>
</body>

Listing 186-1: Creating a first-line effect.

7] 2

55 €] H:\Books\wikey\ 0741 26 himi

This is a big paragraph
with lots of text. The goal is to see what
happens to the first line of the paragraph.
Should be interesting.

Figure 186-1: A special style on the first line.

7. Resize your browser window to a different width. Even though the
number of words on the first line changes, it is always just the first
line that displays the special style.




- Part 7

Applying a Special Style to the First
Line of Every Element on the Page

ne of the aspects of the appearance of your pages that can be controlled

through style sheets is the appearance of the first line of a block of text.
"To control this, you typically use a document style sheet in the header of your
document.

A special selector can be used to override the appearance of just the first line of
any element in the page as follows:

:first-line { style definition for first line of all elements }

The following task creates a document with a special first-line style and shows
how it applies to any element in the page:
1. In the header of a new HTML document, create a style block:

<style type="text/css”>
</style>

2. Create a style definition for the first line of elements:

:first-letter {
font-size: 48px;
color: #999999;
font-style: italic;

}

3. Create a layer with a paragraph of text in the body of the document:

<div>
This is a big paragraph with lots of text. The goal :)
is to see what happens to the first line of the :)
paragraph. Should be interesting.

</div>

4. Create a paragraph and place text in it:
<p>This is a big paragraph...</p>

5. Create a level 1 header and place text in it:
<hl>This is a big paragraph...</hl>

6. Finally, place a paragraph of text outside any element. The final page
should look like Listing 187-1.

<head>
<style type="text/css”>
:first-line {
(continued)




DHTML and Style Sheets

font-size: 48px;
color: #999999;
font-style: italic; }
</style>
</head>

<body>
<div>
This is a big paragraph with lots of text. The goal :)
is to see what happens to the first line of the
paragraph. Should be interesting.
</div>
<p>This is a big paragraph with lots of text. The goal :)
is to see what happens to the first line of the :)
paragraph. Should be interesting.</p>
<hl>This is a big paragraph with lots of text. The )
goal is to see what happens to the first line of
the paragraph. Should be interesting.</hl>
This is a big paragraph with lots of text. The goal :)
is to see what happens to the first line of the :)
paragraph. Should be interesting.
</body>

Listing 187-1: Creating a first-line effect.

7. Save the file and close it.

8. Open the file in your browser, and you should see the four para-
graphs, as in Figure 187-1.

(& H:\Bocks\wiky\ 074167 himil

This is a big paragraph with

lots of tezt. The poal is to see what happens to the first lme of the paragraph. Should be interestmg,
This is a big paragraph with

lots of test. The goal is to see what happens to the first line of the paragraph. Should be interesting.
This is a big paragraph with
lots of text. The goal is to see what happens
to the first line of the paragraph. Should be
interesting.

Thus 1= a big paragraph with lots of text. The goalis to see what happens to the first Ine of the
paragraph. Should be meerestng

2| Don

Figure 187-1: A special style on the first line.




- Part 7
rask 4 8  Applying a Special Style to All Links

ne of the aspects of the appearance of your pages that can be controlled

through style sheets is the appearance of all links in the document. To
control this, you typically use a document style sheet in the header of your
document.

A special selector can be used to override the appearance of any link in the page
as follows:

:1link { style definition for all links }

The following task creates a document with a special link style and shows how it
applies to any link in the page:
1. In the header a new HTML document, create a style block:

<style type="text/css”>

</style>

2. Create a style definition for links:

:link {
background-color: #999999;
color: red;
font-style: italic;

}

3. In the body of the document, create a layer with a link in it:

<div>
This is a layer with <a href="#">a link</a>.
</div>

4. Create a level 1 header and put a link in it:

<hl>
This is a header with <a href="#">a link</a>.
</hl>

5. Finally, place a paragraph of text outside any element and include a
link in it. The final page should look like Listing 188-1.




DHTML and Style Sheets

<head>
<style type="text/css”>
:link {
background-color: #999999;
color: red;
font-style: italic;
}
</style>
</head>
<body>
<div>

This is a layer with <a href="#">a link</a>.

</div>

<hl>
This is a header with <a href="#">a link</a>.
</hl>

This is floating text with <a href="#">a link</a>.
</body>

Listing 188-1: Creating a link effect.

6. Save the file and close it.

7. Open the file in your browser, and you should see the links with the
special style, as in Figure 188-1.

55 ] H:\Bockswilay, 07182 hiral

This i a layer with SHE.

This is a header with -

This is floating text with e

Figure 188-1: A special style for links.




- Part 7
Accessing Style Sheet Settings

he beauty of Dynamic HTML is that it allows you to integrate JavaScript and

cascading style sheets. Your styles are not just static visual definitions that are
fixed once the page is rendered. Instead, you can actually access all these style
attributes from within your JavaScript code.

Every page element has an object associated with it that you can access in
JavaScript. These objects have a style property. The style property is actually
an object reflecting all the CSS style settings for an object.

To reference the element’s object, you use the document . getElementById
method. You obtain a reference to the object with the following:

var objRef = document.getElementById(“elementID”) ;
This means objRef would then refer to the object for the elementID element.

The following steps show how to build a page with a layer element and a form
that can be used to enter the name of any style attribute and then display that
attribute’s value in a dialog box:

1. In the script block of a new document, create a function named
displayStyle that takes two arguments—the ID of the element to
work with and a style name:

function displayStyle(objected, styleName) { 1}

2. In the function, create a variable named thisObj, and use document .
getElementById to associate this with the object for the ID speci-
fied in the function’s argument:

var thisObj = document.getElementById(objectID) ;

3. Create a variable named stylevalue, and assign the style’s value
to it:

var stylevValue = eval (“thisObj.style.” + styleName) ;
4. Display the information in a dialog box using window.alert:
window.alert (styleName + “=" + styleValue);

5. Create a layer and position it wherever you want using the style
attribute of the div tag. Specify myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My :)
Object</div>

6. Create a form with a text input field named styleText:

<form>Style: <input type="text” name="styleText”> </form>



DHTML and Style Sheets 391

7. In the form, add a button. Use the onC1ick event handler to invoke Task 89
the displayStyle function, so that the final page looks like Listing
189-1.

<head>
<script language="JavaScript”>
function displayStyle(objectID, styleName) {
var thisObj = document.getElementById(objectID);
var styleValue = eval (“thisObj.style.” + styleName) ;
window.alert (styleName + “=" + styleValue);
}
</script>
</head>
<body>
<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My Object</div>
<form>
Style: <input type="text” name="styleText”>
<input type="button” value="Display Style” :)
onClick="displayStyle(‘myObject’,this.form.styleText.:)
value) ; ">
</form>
</body>

Listing 189-1: Displaying a layer’s style attributes.

8. Save the file and open it in a browser. You now see the form and
object, as illustrated in Figure 189-1.

L N
Figure 189-1: A layer and a form.

9. Enter a style name in the form (such as backgroundColor), and
click the button to see the style value displayed in a dialog box.




- Part 7
Manipulating Style Sheet Settings

he beauty of Dynamic HTML is that it allows you to integrate JavaScript and

cascading style sheets. Your styles, therefore, are not just static visual defini-
tions that are fixed once the page is rendered. Instead, you can actually manipu-
late all these style attributes from within your JavaScript code.

Every page element has an object associated with it that you can access in
JavaScript. These objects have a style property. The style property is actually
an object reflecting all the CSS style settings for an object.

To reference the element’s object, you use the document . getElementById
method. You could obtain a reference to the object with the following:

var objRef = document.getElementById(“elementID”) ;
This means objRef would then refer to the object for the elementID element.

The following steps show how to build a page with a layer element and a form
the user can use to enter the name of any style attribute and a value, and then
apply it to the layer:

1. In the script block of a new document, create a function named
changeStyle. The function should take three arguments that con-
tain the ID of the element to work with, a style name, and a style
value, respectively:

function changeStyle(objected, styleName, stylevalue) { }

2. In the function, create a variable named thisObj, and use docu-
ment .getElementById to associate this with the object for the ID
specified in the function’s argument:

var thisObj = document.getElementById(objectID) ;

3. Assign the new value to the specified style:

eval (“thisObj.style.” + styleName + “='" + styleValue :)
+ \\\\\)’,

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer.

5. Create a form with two text input fields named styleText and
styleValue

<form>
Style: <input type="text” name="styleText”><br>
Value: <input type="text” name="styleValue”><br>
</form>



DHTML and Style Sheets 393

6. In the form add a button. Use the onC1ick event handler to invoke

the changeStyle function, so that the final page looks like Listing Task 190

190-1.

<head>
<script language="JavaScript”>
function changeStyle (objectID, styleName, stylevValue) {
var thisObj = document.getElementById(objectID);

eval (“thisObj.style.” + styleName + “='" +
stylevalue + “'%); 3}
</script>
</head>
<body>

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My Object</div>
<form>
Style: <input type="text” name="styleText”><br>
Value: <input type="text” name="styleValue”><br>
<input type="button” value="Display Style” :)
onClick="changeStyle(‘myObject’,this.form.styleText.:)
value, this.form.stylevValue.value) ;">
</form>
</body>

Listing 190-1: Changing a layer’s style attributes.

7. Save the file and open it in a browser, and you now see the form and
object, as illustrated in Figure 190-1.

L N
Figure 190-1: A layer and a form.

8. Enter a style name and value in the form, and click the button to see
the style value applied to the layer.




- Part 7

Task 191 Hiding an Object in JavaScript

very element of your page has an object associated with it that can be accessed

through JavaScript. For instance, you can determine an object’s visibility in
the browser using this object. The visibility information is part of the style
property of the object.

"To reference the element’s object, you use the document . getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to an object with the following:

var objRef = document.getElementById(“TagID") ;

This means objRef would then refer to the object for the TagID element of
your document, and you could reference the visibility of the image with this:

objRef.style.visibility

The following steps show how to build a page with a layer element and a link.
When the user clicks the link, the object disappears.

1. In the header of a new document, create a script block containing a
function named hideObject that takes one argument containing
the ID of the element to work with:

function hideObject (objectID) {
}

2. Create a variable named thisObject, and associate it with the
object specified in the function’s argument. Use
document .getElementById:

var thisObject = document.getElementById(objectID) ;

3. Setthe visibility property of the element’s style object to
hidden, so that final function looks like this:

function hideObject (objectID) {
var thisObject = document.getElementById(objectID) ;
thisObject.style.visibility = “hidden”;

}

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer:

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My :)
Object</div>



DHTML and Style Sheets 395

5. Create a link the user can click to call the hideObject function, so Task 9
the final page looks like Listing 191-1.

<head>
<script language="JavaScript”>
function hideObject (objectID) {
var thisObject = document.getElementById(objectID) ;
thisObject.style.visibility = “hidden”;
}
</script>
</head>

<body>
<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc;”>My Object</div>

<a href="javascript:hideObject (‘myObject’);”>Hide the :)
object</a>
</body>

Listing 191-1: Hiding an object.

6. Save the file and close it.

7. Open the file in a browser, and you now see the link and object, as
illustrated in Figure 191-1.

= £ H:\Bocke\wiky\ 0741 51 hirl

Hide the object

Figure 191-1: A layer and a link.

8. Click on the link to see the object disappear.




- Part 7
Displaying an Object in JavaScript

E very element of your page has an object associated with it that can be
accessed through JavaScript. For instance, you can determine an object’s visi-
bility in the browser using this object. The visibility information is part of the
style property of the object.

"To reference the element’s object, you use the document . getElementById
method. For each object in your document that you want to manipulate through
JavaScript, you should assign an ID using the id attribute of the element’s tag.
Then, you could obtain a reference to an object with the following:

var objRef = document.getElementById(“TagID”) ;

This means objRef would then refer to the object for the TagID element of
your document, and you could reference the visibility of the image with this:

objRef.style.visibility

The following steps show how to build a page with a layer element and a link.
The layer element will initially not be visible, and when the user clicks the link,
the object will appear.

1. In the header of a new document, create a script block containing a
function named showObject. The function should take one argu-
ment that contains the ID of the element to work with:

function showObject (objectID) {
}

2. Create a variable named thisobject, and associate it with the
object specified in the function’s argument. Use
document .getElementById:

var thisObject = document.getElementById (objectID) ;

3. Setthe visibility property of the element’s style object to vis-
ible, so that final function looks like this:

function showObject (objectID) {
var thisObject = document.getElementById (objectID) ;
thisObject.style.visibility = “visible”;

}

4. In the body of the document, create a layer and position it wherever
you want using the style attribute of the div tag. Specify
myObject as the ID for the layer; make sure that the layer is hidden:

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc; visibility: :)
hidden; ”>My Object</div>



DHTML and Style Sheets 397
5. Create a link the user can click to call the showObject function, so

the final page looks like Listing 192-1. Task 92

<head>

<script language="JavaScript”>
function showObject (objectID) {
var thisObject = document.getElementById(objectID) ;
thisObject.style.visibility = “visible”;
}
</script>
</head>

<body>

<div id="myObject” style="position: absolute; left: :)
50px; top: 200px; background-color: #cccccc; visibility: :)
hidden; ”">My Object</div>

<a href="javascript:showObject (‘myObject’) ; ”>Show )
the object</a>
</body>

Listing 192-1: Showing an object.

6. Save the file and close it.

7. Open the file in a browser, and you now see the link, as illustrated in
Figure 192-1.

[y Computer
Figure 192-1: A link, but the layer is hidden.

8. Click on the link to see the object appear.




398
Task 93 Detecting the Window Size

Part 7

sing JavaScript, you can determine the dimensions of the working area of the
browser window. The way you do this depends on the browser you are using:

* In Netscape 6 and higher, the window. innerHeight property indi-
cates the height of the working area of the browser window in pixels.
Similarly, window. innerWidth indicates the width.

* In Internet Explorer, the document .body.clientHeight prop-
erty indicates the height in pixels. Similarly, the
document .body.clientwWidth property indicates the width.

Create a new HI'ML document in your preferred editor.
. In the body of the document, include any introductory text:

<body>
The window has the following dimensions:

</body>

Create a script block after the introductory text:

<script language="JavaScript”>

</script>

. In the script, create a variable named width, and assign the width of
the window to it:

var width = (window.innerWidth) ? window.innerWidth : :)
document .body.clientWidth;

. Next, create the variable named height, and assign the height of the
window to it:

var height = (window.innerHeight) ? window.innerHeight : &)
document .body.clientHeight;

. Finally, use the document .write method to display the dimensions
in the browser window. The final page should look like Listing
193-1.

The following task shows you how to display this information in the browser
window:



DHTML and Style Sheets

<body>
The window has the following dimensions:

<script language="JavaScript”>

var width = (window.innerWidth) ? window.)
innerwWidth : document.body.clientWidth;
var height = (window.innerHeight) ? window.:)

innerHeight : document.body.clientHeight;
document .write(width + “ by “ + height + “ pixels”);

</script>

</body>

Listing 193-1: Obtaining the browser's dimensions.

7. Save the file and close it.

8. Open the file in a browser, and you now see the window’s dimensions,
as illustrated in Figure 193-1.

= £ H:\Bocke\wiky\ 0741 93 hirnl

The windew has the followng dunensions. 427 by 268 pmele

Figure 193-1: The browser’s dimensions.




- Part 7

Forcing Capitalization with
Style Sheet Settings

A s browser support for cascading style sheets has improved, so too has the
ability for you to control all aspects of your pages’ appearance through
Dynamic HI'ML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the capitalization used for text. You can control this with
the text-transform style attribute. For instance, the following sets all text in
a layer to uppercase:

<div style="text-transform: uppercase;”>
Text goes here
</div>

Similarly, you can change to all lowercase inline using the span tag:

<p>

This is text. Some of it <span style="text-transform: :)
lowercase; ”>1s in Arial.</span>
</p>

The text-transform attribute has three possible values:

* uppercase: All letters are converted to uppercase.
* lowercase: All letters are converted to lowercase.
® capitalize: Capitalization is converted to a title style where the

first letter of each word is capitalized.

The following task illustrates the text-transform attribute by displaying text
in all three capitalization styles:
1. Create a new HTML document in your preferred editor.

2. In the body of your document, create a layer containing text. Specify
uppercase as the text-transform style:

<div style="text-transform: uppercase;”>This text is :)
uppercase</div>

3. Create another layer containing text. This time specify capitalize:

<div style="text-transform: capitalize;”>This
text is capitalized</div>




DHTML and Style Sheets 401

4.

Create another layer containing text. This time specify lowercase:

<div style="text-transform: lowercase;”>This text is )
lowercase</div>

Create another layer containing text. This time don’t specify the
text-transform attribute. The final page should look like Listing
194-1.

<body>

<div style="text-transform: uppercase;”>This text is :)
uppercase</div>

<div style="text-transform: capitalize;”>This text is :)
capitalized</div>

<div style="text-transform: lowercase;”>This text is :)
lowercase</div>

<div>This text is normal</div>

</body>

Listing 194-1: Changing capitalization.

Save the file and close it.

Open the file in your browser, and you should see four blocks of text
in different capitalization styles, as in Figure 194-1.

2o BB
= £ H:\Bocke\wiky\ 074154 hirl

THIS TEXT IS UPPERCASE
This Text Is Capitalized

this text is lewercase

This texzt is nermal

Figure 194-1: Changing capitalization with text-transform.

Task 19A‘




Part 7

Detecting the Number of Colors

very user’s display settings has a color depth associated with it. The color

depth is usually specified in bits (such as 8-bit or 16-bit) and refers to the size
of the number used to specify each pixel’s color: the larger the color depth, the
more colors the display can render.

Using JavaScript, you can determine the color depth of the user’s display. This is
done with the window. screen.colorDepth property, which returns the num-

ber of bits of the color depth.

The following task shows you how to display this information in the browser
window:

1. Create a new HTML document in your preferred editor.
2. In the body of the document, include any introductory text:

<body>
The display has the following color depth:

</body>
3. Create a script block after the introductory text:

<script language="JavaScript”>

</script>

4. In the script, create a variable named depth, and assign the color
depth to it:

var depth = window.screen.colorDepth;

5. Next, create the variable named colors, and assign the number of
colors to it:

var colors = Math.pow(2,depth) ;

6. Finally, use the document .write method to display the depth and
number of colors in the browser window. The final page should look
like Listing 195-1.




DHTML and Style Sheets

<body>

The display has the following color depth:
<script language="JavaScript”>

var depth = window.screen.colorDepth;
var colors = Math.pow(2,depth) ;

document .write (depth + “ bits which means “ + O
colors + ™ colors”);

</script>

</body>

Listing 195-1: Obtaining the color depth.

7. Save the file and close it.

8. Open the file in a browser, and you now see the display’s color infor-
mation, as illustrated in Figure 195-1.

= BBl
= £ H:\Bocke\wiky\ 0741 565 hirl

The dusplay has the following color depth: 32 buts, which means
4224967298 colors

Figure 195-1: The display’s color depth information.




- Part 7
sk 4 90 Adjusting Padding with CSS

A s browser support for cascading style sheets has improved, so too has the
ability of Web designers to control all aspects of their pages’ appearance
through Dynamic HTML.

One of the aspects of the appearance of your pages that can be controlled
through style sheets is the padding of a layer. To understand padding and its
meaning in style sheets, you need to learn about the box model used in cascading
style sheets. The box model defines a layer’s outer components, as shown in
Figure 196-1.

1 < Outer boundary of the layer
: (not visible)
1

<— Margin

1
1
«—— Border (may be visible)
1
: Padding (background color or
<t—L— image will fill padding, as well

as the content)

:

[~ Actual content of the layer

Figure 196-1: The CSS box model.
You control the width of the padding in one of several ways:

* Use the padding attribute to set the same padding width for all
sides. The following creates 5-pixel padding on all sides of the layer:

<div style="padding: 5px; ">
Text goes here
</div>

* Use the padding attribute to set different margin widths for the dif-
ferent sites:

<div style="padding: 5px 10px 15px 20px; ">
Text goes here
</div>

* Specify distinct margins individually using the padding-top,
padding-bottom, padding-right, and padding-1left attrib-
utes. For instance, the following only creates padding on the top and
to the right of the layer:

<div style="padding-top: 5px; padding-right: 5px;”>
Text goes here
</div>




DHTML and Style Sheets 405

The following task illustrates how margins work by displaying the same layer Task 9 6
with two different padding settings:

1. Create a new HTML document in your preferred editor.
2. Create a layer with padding in the body of the document:

<div style="background-color: #cccccc; padding: lOpx;":)
>10 pixel margins</div>

3. Create another layer without any padding, so that the final page
looks like Listing 196-1:

<body>

<div style="background-color: #cccccc; padding: 10px;”:)
>10 pixel padding</div>

<br>
<div style="background-color: #cccccc;”>No padding</div>

</body>

Listing 196-1: Using padding.

4. Save the file and close it.

5. Open the file in your browser, and you should see the two layers, as
in Figure 196-2.

55 ] H:\Bockswilay, 074196 hiral

Figure 196-2: Controlling padding.







Part 8:

Dynamic User Interaction

Task 197:
Task 198:
Task 199:
Task 200:
Task 201:
Task 202:
Task 203:
Task 204:
Task 205:
Task 206:
Task 207:
Task 208:
Task 209:
Task 210:
Task 211:
Task 212:
Task 213:

Task 214:
Task 215:
Task 216:
Task 217:
Task 218:

Creating a Simple Pull-Down Menu

Creating Two Pull-Down Menus

Detecting and Reacting to Selections in a Pull-Down Menu
Generating a Drop-Down Menu with a Function
Placing Menu Code in an External File
Inserting a Prebuilt Drop-Down Menu

Creating a Floating Window

Closing a Floating Window

Resizing a Floating Window

Moving a Floating Window

Changing the Content of a Floating Window
Detecting Drag and Drop

Moving a Dragged Object in Drag and Drop
Changing Cursor Styles

Determining the Current Scroll Position
Creating an Expanding/Collapsing Menu

Creating a Highlighting Menu Using Just Text and CSS—No
JavaScript

Creating a Highlighting Menu Using Text, CSS, and JavaScript
Placing Content Offscreen

Sliding Content into View

Creating a Sliding Menu

Auto-Scrolling a Page




- Part 8

Creating a Simple Pull-Down Menu

With JavaScript, you can create dynamic user interfaces. One interface is a
pull-down menu that might initially appear closed in a Web page. But
when the user moves the mouse pointer over the menu, the pull-down menu

appears, as in Figure 197-1.

Figure 197-1: The menu in its open position.

This task outlines how to build an extremely simple pull-down menu. The prin-
ciple is simple. Given an object named myObject, you can specify the top of the
object in pixels relative to the browser window with the following:

myObject.top = pixel placement relative to top of window;

The following steps show how to create a simple pull-down menu in the top left
corner of the browser window with three menu items in the menu:

1. In the header of your HT'ML document, create a script block with
opening and closing script tags.

2. In the script block, create a function named menuToggle that takes a
single attribute called target, which is the name of the object con-
taining the menu:

function menuToggle (target) {
}

3. In the function, create a variable named targetMenu and set it to
the appropriate object with the specified object name in target:

targetMenu = (document.getElementById) ? :)
document .getElementById (target) .style : eval:)
(“document.” + target);

4. Finish the function by assigning the appropriate top value to the top
property of the targetMenu object:

targetMenu.top = (parselnt(targetMenu.top) == 22) :)
? -2000 : 22;

5. Also in the header, create a style sheet block with opening and clos-
ing style tags:



Dynamic User Interaction -

6. Create three style classes: menu, menuTitle, and menuLink. menu
is for the menu block itself and should have an absolute top position
of -2000 pixels so the menu is initially hidden. menuTit1le is for the
menu header and should have an absolute position of 0 pixels to place
the menu’s header at the top of the screen. Finally, menuEntry speci-
fies the appearance and behavior of individual items in the menu.

.menu { position:absolute;

font:15px arial, helvetica, sans-serif;

background-color:#020A33;

line-height: 20px; top: -2000px; }
.menuTitle { position:absolute;

font:15px arial, helvetica, sans-serif;

background-color:#020A33;

line-height: 21px; top: 0px;

text-decoration:none; color:#FFFFFF; }
.menuEntry { text-decoration:none; color:#FFFFFF; }
.menuEntry:1link { color:#FFFFFF; }
.menuEntry:hover { background-color:#CCCCCC; :)

color:#020A33; 1}

7. In the body of the document, use opening and closing div tags to
create the menu title block:

<div class="menuTitle” style="left:0px; width:100px; "
onMouseover="menuToggle ( ‘myMenu’) ; ”
onMouseout="menuToggle (‘myMenu’) ; ">My Menu</div>

8. In the body of the document, use opening and closing div tags to
create the menu block:

<div id="myMenu” class="menu” style="left:0px; :)
width:100px;”

onMouseout="menuToggle (‘myMenu’) ">

</div>

9. In the div block create one link for each entry. The link should use
the menuEntry style class and should be followed by a br tag. This
div block can be placed anywhere in the body of the document:

<div id="myMenu” class="menu” style="left:0px; :)
width:100px;”
onMouseout="menuToggle (‘myMenu’) ">

<a href="http://someurl/” class="menuEntry”>First :)
Entry</a><br>

<a href="http://anotherurl/” class="menuEntry”>Second )
Entry</a><br>

<a href="http://onemoreurl/” class="menuEntry”>Third :)
Entry</a>
</div>




- Part 8
Task 198 Creating Two Pull-Down Menus

In Task 197 you saw how to create a simple pull-down menu. In this task, this is
extended to displaying two pull-down menus simultaneously. Here the same
principle is repeated, allowing the same JavaScript and style sheets to be used for
multiple menus and, in fact, can be extended to any number of menus.

The result is that two menus are displayed. Either one of the menus can be
expanded at a given time, as illustrated in Figure 198-1.

Figure 198-1: Opening the second menu.

Use the following steps to create two menus in the top left corner of the browser
window:

1. In the header of your HI'ML document, create a script block and
place the menuToggle function from Task 197 in the block:

<script language="JavaScript”>
<!--
function menuToggle (target) {
targetMenu = (document.getElementById) ? :)
document .getElementById(target) .style : eval:)
(“document.” + target);
targetMenu.top = (parselnt(targetMenu.top) == 22) :)
? -2000 : 22;
}
/] ===
</script>

2. In the header of your HI'ML document, create a style block and

include the same menu, menuTitle, and menuEntry styles as in

Task 197:

.menu { position:absolute;
font:15px arial, helvetica, sans-serif;




Dynamic User Interaction

background-color:#020A33;

line-height: 20px; top: -2000px; }
.menuTitle { position:absolute;

font:15px arial, helvetica, sans-serif;

background-color: #020A33;

line-height: 21px; top: Opx;

text-decoration:none; color:#FFFFFF; }
.menuEntry { text-decoration:none; color:#FFFFFF; }
.menuEntry:1link { color:#FFFFFF; }
.menuEntry:hover { background-color:#CCCCCC; :)

color:#020A33; 1}

In the body of the document, create the title block for the first
menu’s header:

<div class="menuTitle” style="left:0px; width:100px; "
onMouseover="menuToggle(‘myMenu');":)
onMouseout="menuToggle (‘myMenu’) ; ”>My Menu</div>

In the body of the document, create the menu block for the first
menu:

<div id="myMenu” class="menu” style="left:0px; :)
width:100px; "
onMouseout="menuToggle ( ‘myMenu’) ">

<a href="http://someurl/” class="menuEntry”>First :)
Entry</a><br>

<a href="http://anotherurl/” class="menuEntry”>Second :)
Entry</a><br>

<a href="http://onemoreurl/” class="menuEntry”>Third )
Entry</a>
</div>

In the body of the document, create the title block for the second
menu’s header; notice that the left side of the menu is placed at 100
pixels, which is just to the right of the first, 100-pixel-wide menu:

<div class="menuTitle” style="1left:100px; width:lOOpx;":)
onMouseover:"menuToggle(‘otherMenu’);":)
onMouseout="menuToggle (‘otherMenu’) ; ”>Other Menu</div>

In the body of the document, create the menu block for the second
menu and, again, set the left side of the menu to 100 pixels:

<div id="otherMenu” class="menu” style="left:100px; )
width:100px; "
onMouseout="menuToggle (‘otherMenu’) ">

<a href="http://someurl/” class="menuEntry”>First :)
Entry</a><br>

<a href="http://anotherurl/” class="menuEntry”>Second :)
Entry</a><br>

<a href="http://onemoreurl/” class="menuEntry”>Third :)
Entry</a>
</div>




Part 8

Detecting and Reacting to Selections
in a Pull-Down Menu

n Tasks 197 and 198, you saw how to create simple pull-down menus in which

the individual menu items point to URLSs for other pages. Two techniques can
be used to trigger JavaScript code from a menu entry in these menus: Use a
javascript: URL in the href attribute of each menu entry’s link, or use the
onClick event handler for each menu entry’s link. This task uses the first tech-
nique to extend the simple menu from Task 197 to cause a dialog box to be dis-
played when the user selects a menu entry instead of following a URL.

1. In the header of your HTML document, create a script block and
place the menuToggle function from Task 197 in the block:

<script language="JavaScript”>
<!--

function menuToggle (target) {

targetMenu = (document.getElementById) 7 :)
document .getElementById(target) .style : eval (“*document.” :)
+ target);

targetMenu.top = (parselnt (targetMenu.top) == 22) :)

? -2000 : 22;
}

/] ==

</script>

2. In the header of your HT'ML document, create a style block and
include the same menu, menuTitle, and menuEntry styles as in

Task 197:

<style type="text/css”>

.menu {
position:absolute; background-color:#020A33;
font:15px arial, helvetica, sans-serif;
line-height: 20px; top: -2000px;

}

.menuTitle {
position:absolute; background-color:#020A33;
font:15px arial, helvetica, sans-serif;
line-height: 21px; top: Opx;
text-decoration:none; color:#FFFFFF;

}

.menuEntry {
text-decoration:none; color:#FFFFFF;

}

.menuEntry:link {
color:#FFFFFF;

}

.menuEntry:hover ({




Dynamic User Interaction

background-color:#CCCCCC; color:#020A33;
}
</style>

In the body of the document, create the title block for the menu’s
header:

<div class="menuTitle” style="left:0px; width:100px; ")
onMouseover="menuToggle(‘myMenu’);”:D
onMouseout="menuToggle (‘myMenu’) ; “>My Menu</div>

In the body of the document, create the menu block for the menu:

<div id="myMenu” class="menu” style="left:0px;:)
width:100px;” onMouseout="menuToggle (‘myMenu’) ">
</div>

Create the menu links, using the menuEntry style class. For each
link, use a javascript: URL to display a dialog box when the user
selects the menu entry:

<div id="myMenu” class="menu” style="left:0px;
width:100px;” onMouseout="menuToggle (‘myMenu’)”>
<a href="javascript:alert(‘You chose the first )

entry’);” class="menuEntry”>First Entry</a><br>

<a href="javascript:alert (‘'You chose the second :)
entry’);” class="menuEntry”>Second Entry</a><br>

<a href="javascript:alert ('You chose the third
entry’);” class="menuEntry”>Third Entry</a>
</div>

Save the file and open it in a browser. The menu is displayed closed,
as in Figure 199-1.

html - Micro...

Figure 199-1: The menu displays closed by default.

Select an entry from the menu. The browser displays a dialog box, as
illustrated in Figure 199-2.

Figure 199-2: Displaying a dialog box when a user selects an entry.




- Part 8

Task 00 Generating a Drop-Down Menu
with a Function

his task shows how to simplify the creation of menus by encapsulating most of

the work into functions and then simply invoking the functions. The follow-
ing steps outline how to extend the basic menu from Task 197 to use a function
to create the menu:

1. In the header of your HTML document, create a script block and
place the menuToggle function from Task 197 in the block:

<script language="JavaScript”>
<!--

function menuToggle (target) {

targetMenu = (document.getElementById) ? :)
document .getElementById(target) .style : eval (“document.” :)
+ target) ;

targetMenu.top = (parselnt(targetMenu.top) == 22) :3

? -2000 : 22;
}

/] ===

</script>

2. In the script block, create a second function named createMenu.
This function takes five parameters: a name for the menu object, a
display title for the menu, an array containing menu entries, and the
horizontal placement and width of the menu in pixels:

function
createMenu (menuName, menuTitle, menuEntries, left,width) {

}

3. In the function, create a variable named numEntries containing the
number of entries in the menuEntries array:

numEntries = menuEntries.length;

4. Use the document .write method to output the menu title block;
use the menuName variable to pass the name of the menuObject in
the calls to menuToggle in the onMouseover and onMouseout
event handlers, as well as menuTit1le as the title text in the block:

document .write('<div class="menuTitle” style="left:0px; :)
width:100px;"” ") ;

document .write (‘onMouseover="menuToggle (\’’ + menuName :)
+ N
document .write (‘onMouseout="menuToggle (\’'’ + menuName + :)
N>

document .write (menuTitle) ;
document .write(‘</div>");




Dynamic User Interaction -

5. To finish the function, use the document .write method to output
the menu block. You will need to use a for loop to output one link
for each entry in the menuEntries array:

document .write('<div id="myMenu” class="menu’” )
style="left:0px; width:100px;”"');
document .write (‘onMouseout="menuToggle (\’'’ + menuName + :)

\\I)II>I)’,
for (i = 0; i < numEntries; i++) {
document .write(‘<a href="' + menuEntries[i].url + ‘" :)

class="menuEntry”>’ + menuEntries[i].entry + ‘</a><br>');
}

document .write(‘</div>");

6. In the header of your HI'ML document, create a style block and

include the same menu, menuTitle, and menuEntry styles as in

Task 197.

7. In the body of the document, create a script block with opening and
closing script tags.

8. In the script, create an array named myMenu:

var myMenu = new Array () ;

9. Create array entries for each entry in the menu. Notice that each
entry is an object containing two properties named entry (the dis-
play text for the entry) and url (the URL for the entry’s link):

myMenu[0] = { entry: “Entry 1”, url: “http://someurl/” };
myMenu[l] = { entry: “Entry 2”7, url: “http://anotherurl/:)
"}

myMenu[2] = { entry: “Entry 3”, url: “http://otherurl/” };

10. As the last line of the script, call the createMenu function, provid-
ing myMenu as the object name for the menu, *My Menu” as the dis-
play header for the menu, the myMenu array as the array of entries,
and positioning to place the menu at the left side of the window. This
code produces a menu like Figure 200-1.

createMenu (“myMenu”, "My Menu”,myMenu, 0,100) ;

Figure 200-1: The menu in its expanded state.




- Part 8

Task 0 Placing Menu Code in an External File

n Task 200, you saw how to encapsulate the creation of a menu into functions.

However, for the task to be really useful, you will want to be able to reuse the
menu system in any of your HTML files and applications. To do this, you need
to move the relevant JavaScript code and style sheets to external files that can
simply be included in your HI'ML documents. The following steps outline how
to do this:

1. Create a new file to contain the JavaScript code, and place the code
for the createMenu and menuToggle functions in that file. The
code looks like Listing 201-1.

function
createMenu (menuName,menuTitle, menuEntries, left,width) {
numEntries = menuEntries.length;
document .write ('<div class="menuTitle” style="left:0px; &)
width:100px;" ") ;
document .write (onMouseover="menuToggle (\’’ + menuName :)

+ \) )
document .write (‘onMouseout="menuToggle (\’'’ + menuName :)
+ N)T>T) g

document .write (menuTitle) ;

document.write(‘</div>") ;

document .write('<div id="myMenu” class="menu” :)
style="1left:0px; width:100px;"");

document .write (‘onMouseout="menuToggle (\’'’ + menuName :)
+ \\I)II>I);
for (i = 0; i < numEntries; i++) {
document .write(‘'<a href="' + menuEntries[i].url + ‘* O

class="menuEntry”>’' + menuEntries[i].entry + ‘</a><br>');
}

document .write(‘'</div>");

function menuToggle (target) {

targetMenu = (document.getElementById) ? :)
document .getElementById(target) .style : eval (“document.” :)
+ target);

targetMenu.top = (parselnt(targetMenu.top) == 22) ? :)
-2000 : 22;

}

Listing 201-1: The menu. js file.




Dynamic User Interaction -

2. Save the file as menu. js and close it. Task 0

3. Create a new file to contain the styles for the menu, and place the
style sheet code in it.

4. Save the file as menu. css and close it. Make sure it is in the same
directory as menu. js.

5. Create a new file for the main HTML document that will display
the menu.

6. In the header of the document, use the script tag to include
menu. js:

<gscript language="JavaScript” src="menu.js”>
</script>

7. In the header of the document, use the 1ink tag to include menu. css:

<link rel="stylesheet” href="menu.css”>

8. In the body of the document, include a script block to build an array
of menu entries and call the createMenu function:

<body>
<script language="JavaScript”>
var myMenu = new Array();
myMenu[0] = { entry: “Entry 1”, url: :)
“http://someurl/” };
myMenu[l] = { entry: “Entry 2”, url: :)
“http://anotherurl/” };
myMenu[2] = { entry: “Entry 3”, url: :)
“http://otherurl/” };
createMenu (“myMenu” , "My Menu”,myMenu, 0,100) ;
</script>
</body>




- Part 8

Inserting a Prebuilt Drop-Down Menu

n Tasks 197 to 201, you saw how to build and manage your own simple
drop-down menu system. However, the menus created in these tasks are quite
simple. Using more advanced JavaScript, it is possible to create extremely sophis-
ticated menu systems. These menus can offer improved visual effects, can create

multitiered menus, and can do much more.

In this task, you will see how to use a complex prebuilt menu system. The
menu in question is Top Navigational Bar IV from dynamicdrive.com and
can be downloaded from www . dynamicdrive.com/dynamicindexl/
topmend/index.htm.

"This system offers a flexible, robust system for creating navigation menu bars
across the top of the page. These menus can be two levels deep and offer the
ability to include icons in the menu entries and apply fading effects to the dis-
playing of menus. The menu looks like Figure 202-1. Figure 202-2 illustrates one
of the menus in the open state.

| 3 H:\Books\wiley'08:202. him| Microsoft Internet Explorer M= ES |

&

Figure 202-2: Opening a menu.

Creating this type of menu is quite complex. This menu system has more than
900 lines of dense code, which makes it clear that you are better off using a pre-
built system than creating your own.

The following steps outline how to build your own simple menu using this menu
system:

1. Download the Top Navigation Bar IV; the code comes in a ZIP file.

2. Unzip the file to a directory in your Web site. The menu includes a
number of image files, plus two JavaScript files (mmenu. js and
menu_array.js), plus a sample HTML file (menu. htm).

3. Inyour HTML file, use script tags to include the two JavaScript
files; these tags should be the first ones to appear in the body of your
document:



Dynamic User Interaction

<script language=JavaScript src="menu_array.js” )
type=text/javascript></script>

<script language=JavaScript src="mmenu.js” :)
type=text/javascript></script>

Open the file menu_array. js in your editor.
Scroll down to the section that starts with the following text:

1177777777 77771777777717777771777717777
// Editable properties START here //
1117777777 7777777777777777771717777777

Make any changes to the visual style settings in this section of the
file. The role of these settings is well documented in the file itself.

In the next section of the file, replace the series of addmenu function
calls with your own to create your own hierarchy of menus. The
meaning of the parameters to addmenu is described in the menu_
array . js file. The following calls create a menu bar with two
menus.

addmenu(menu=[:)

“mainmenu”,20,200,,l,,stylel,l,"left",effect,,l,,,,,,,,,,:)
, "Menu 1&nbsp;&nbsp;","show-menu:menul”,,””,l:)
, "Menu 2&nbsp;&nbsp;”,”show—menu:menuZ”,,””,l:)

1)
addmenu(menu:[“menul”,:)

,,120,1, 7", stylel,,"left”, effect, ,,, v/ 1i/11ed
,"Entry 1”,"http://someurl/”,,, 1

, "Entry 2","http://0therurl/",,,l:)

, "Entry 3”,”show—menu:submenul",,,l:)

1)

addmenu(menu:[“submenul”,:)

,,170,1, 7", stylel,,"left”, effect, ,,, v/ ///11ed
,"SubEntryl","http://anotherurl/",,,O:)

1)

addmenu(menu:[“menuZ”,:)

,,170,1, 7", stylel,,"left”, effect, ,,, v, 11111 e
,"<img src=newsimage.gif border=0>&nbsp;Entry :)
17, "http://someurl/”,,, 10D

,"<img src=newsimage.gif border=0>&nbsp;Entry
27, "http://otherurl/”,,, 1D

1)

Ensure the last line of the file is as follows:
dumpmenus ()

Save the file and open the main HTML file in your browser to view
the menu.

Task




- Part 8
Task 203 Creating a Floating Window

At times, it is necessary to create a window that floats above another window
at all times; even if the user attempts to bring the rear window to the fore-
ground, you want the floating window to remain in front.

Creating these floating windows is fairly easy. From your main document, you
create the new floating window, and then in the floating window, you trap any
attempt to remove focus from the floating window and return focus to the win-
dow. The following steps outline the creation of a simple floating window:

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called £loatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function:

function floatingWindow () {

}

4. In the function, use the window. open method to open a new win-
dow of your preferred height; in the window, load the file
floatingWindow.html. Here the window is 300 by 175 pixels, and
the resulting window object is stored in the variable floater:

function floatingWindow () {

floater = :)
window.open(“floatingwindow.html”,””,”height:l75,:)
width=300, scrollbars=no”) ;
}

5. In the onLoad event handler of the body tag, call the

floatingWindow function so that the final document looks
like Listing 203-1.

6. Save and close the file, and open a new file in your editor to contain
the content of the floating window.

7. In the body tag of file, use the onBlur event handler to call the
self. focus method to force the window to come back to the front
if the user attempts to remove focus from the window:

<body onBlur="self.focus()”>
Floating Window

</body>




Dynamic User Interaction

<head>

<script language="JavaScript”>

<l--

function floatingWindow () {
floater = O

window.open(“floatingwindow.html”,””,”height=l75,:)

width=300, scrollbars=no”) ;

}

//==>

</script>

</head>

<body onLoad="floatingWindow () ">
Main Document Goes Here.
</body>

Listing 203-1: Creating a floating window.

8. Save the file as floatingWindow.html.

9. Open the background file and you should see the floating window
displayed in the front, as in Figure 203-1.

= - DA

5 ] v i)

Tfam Drecument Goes Here.

Figure 203-1: Displaying a floating window.




- Part 8
Task ZOA' Closing a Floating Window

As described in Task 203, sometimes the goal of a floating window is to pre-
sent a temporary placeholder while a larger, time-consuming document loads
in a rear window. In this situation, it is necessary to be able to close the floating
window programmatically once the rear window is ready.

JavaScript makes this easy by allowing you to reference the floating window from
the main window that created it. This task shows how to close the floating win-
dow from the main window by automatically closing the floating window five
seconds after it is displayed.

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called £loatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function. In the function, use the window. open
method to open a new window of your preferred height; in the win-
dow, load the file floatingWindow.html. Here the window is 300
by 175 pixels, and the resulting window object is stored in the vari-
able floater:

function floatingWindow () {

floater = :)
window.open(“floatingwindow.html","","height:l75,:)
width=300, scrollbars=no”) ;

}

4. In the onLoad event handler of the body tag, call the
floatingWindow function, and then use the setTimeout
function to call floater.close five seconds after the floating
window is displayed:

<body onLoad="floatingWindow () ; setTimeout:)
(‘floater.close()’,5000) ;">

Main Document Goes Here.
</body>

5. Save and close the file, and open a new file in your editor to contain
the content of the floating window.

6. In the body tag of file, use the onBlur event handler to call the
self.focus method to force the window to come back to the front
if the user attempts to remove focus from the window:

<body onBlur="self.focus()”>
Floating Window
</body>




Dynamic User Interaction

7. Save the file as floatingWindow.html.

8. Open the background file and you should see the floating window
displayed in the front, as in Figure 204-1. Five seconds later the
floating window should disappear, as illustrated in Figure 204-2.

55 | ] Hi\Bockswiley\ 03421

Iam Docunent Goes Here.

[ [ &y Computer
Figure 204-2: Closing the floating window.

Task ZOA‘




- Part 8
Task 205 Resizing a Floating Window

In Task 203, you saw how to create a floating window. Sometimes you will want
to manipulate that floating window after it has been displayed. Among the ways
in which a floating window can be manipulated is to resize it.

In this task, you learn how to resize a floating window using JavaScript code exe-
cuted in the main, rear window. To do this, you rely on the resizeTo method of
the window object.

The following task shows how to automatically resize the floating window to 400
by 300 pixels five seconds after it is displayed:

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called £loatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function. In the function, use the window. open method
to open a new window of your preferred height; in the window, load
the file floatingWindow.html. Here the window is 300 by 175
pixels, and the resulting window object is stored in the variable
floater:

function floatingWindow () {

floater = O
window.open (“floatingWindow.html”, ", "height=175, O
width=300, scrollbars=no”) ;

}

4. In the script, create a second function called
resizeFloatingWindow. The function should call
floater.resizeTo to resize the floating window:

function resizeFloatingWindow () {
floater.resizeTo (400,300);
}

5. In the onLoad event handler of the body tag, call the
floatingWindow function, and then use the setTimeout function
to call resizeFloatingWindow five seconds after the floating win-

dow is displayed:
<body onLoad="floatingWindow () ; setTimeout(resize:)
FloatingWindow () ’,5000) ;">

Main Document Goes Here.
</body>




Dynamic User Interaction -

6. Save and close the file, and open a new file in your editor to contain Task 205

the content of the floating window.

7. In the body tag of file, use the onBlur event handler to call the
self. focus method to force the window to come back to the front
if the user attempts to remove focus from the window:

<body onBlur="self.focus()”>
Floating Window
</body>

8. Save the file as floatingWindow.html.

9. Open the background file and you should see the floating window
displayed in the front, as in Figure 205-1. Five seconds later the
floating window should resize, as illustrated in Figure 205-2.

Figure 205-2: Resizing the floating window.




- Part 8

Moving a Floating Window

n the last task, you saw how to resize a floating window programatically.

Sometimes you will want to manipulate that floating window in other ways
after it has been displayed. Among the other ways in which a floating window can
be manipulated is that you can move the window to a new location in the display.

In this task, you learn how to move a floating window using JavaScript code exe-
cuted in the main, rear window. To do this, you rely on the moveBy method of
the window object.

The following task shows how to automatically move the floating window to the
right and down by 200 pixels in each direction five seconds after it is displayed:

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called £1oatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function. In the function, use the window. open
method to open a new window of your preferred height; in the win-
dow, load the file floatingWindow.html. Here the window is 300
by 175 pixels, and the resulting window object is stored in the vari-
able floater:

function floatingWindow () {

floater = O
window.open (“floatingWindow.html”, ", "height=175, O
width=300, scrollbars=no”) ;

}

4. In the script, create a second function called moveFloatingWindow.
The function should call £loater.moveBy to move the floating
window:

function moveFloatingWindow () {
floater.moveBy (200,200) ;
}

5. In the onLoad event handler of the body tag, call the
floatingWindow function, and then use the setTimeout function
to call moveFloatingWindow five seconds after the floating window

is displayed:
<body onLoad="floatingWindow () ; setTimeout(‘move:)
FloatingWindow () ’,5000) ;">

Main Document Goes Here.
</body>

6. Save and close the file, and open a new file in your editor to contain
the content of the floating window.




Dynamic User Interaction -

7. In the body tag of file, use the onBlur event handler to call the Task 06
self.focus method to force the window to come back to the front

if the user attempts to remove focus from the window:

<body onBlur="self.focus()”>
Floating Window
</body>

8. Save the file as floatingWindow.html.

9. Open the background file and you should see the floating window
displayed in the front, as in Figure 206-1. Five seconds later the
floating window should move, as illustrated in Figure 206-2.

Iamn Document Goes Here.

Floating Window

Figure 206-2: Moving the floating window.




- Part 8

Changing the Content of a Floating
Window

In Task 205 you learned how to resize a floating window, and in Task 206 you
saw how to move a floating window. Another useful manipulation of a floating
window is to be able to change the contents of the window programmatically as
events occur in the main, background window.

In this task, you learn how to change the content of a floating window using
JavaScript code executed in the main, rear window. To do this, you rely on three
methods of the document object: open, write, and close.

The following task shows how to automatically change the content of the
floating window five seconds after it is displayed:

1. Create a new document in your HTML editor. This document will
serve as the document for the main, background window.

2. In the document header, create a new script block with opening and
closing script tags.

3. In the script, create a function called £loatingWindow, which will
be used to display the floating window. Use the function keyword
to create the function. In the function, use the window. open
method to open a new window of your preferred height; in the win-
dow, load the file floatingWindow.html. Here the window is 300
by 175 pixels, and the resulting window object is stored in the vari-
able floater:

function floatingWindow () {

floater = :)
window.open(“floatingwindow.html","","height:l75,:)
width=300, scrollbars=no”) ;

}

4. In the script, create a second function called newFloatingWindow.
The function should use the document object to display new content
in the floating window:

function newFloatingWindow () {
floater.document.open () ;
floater.document.write (“*New Floating Window Content”) ;
floater.document.close() ;

}

5. In the onLoad event handler of the body tag, call the
floatingWindow function, and then use the setTimeout
function to call newFloatingWindow five seconds after the floating
window is displayed:




Dynamic User Interaction

<body onLoad="floatingWindow(); setTimeout (newe)
FloatingWindow () ’,5000) ;">

Main Document Goes Here.
</body>

6. Save and close the file, and open a new file in your editor to contain
the content of the floating window.

7. In the body tag of file, use the onBlur event handler to call the
self. focus method to force the window to come back to the
front if the user attempts to remove focus from the window:

<body onBlur="self.focus()”>
Floating Window
</body>

8. Save the file as floatingWindow.html. Open the background file
and you should see the floating window displayed in the front, as in
Figure 207-1. Five seconds later the floating window should display
the new content, as illustrated in Figure 207-2.

Figure 207-1: Displaying a floating window.

3 H:\Books 7.html - Micro... [ SIE E3

WNew Floating Window Content

Figure 207-2: Changing the content of the floating window.




- Part 8
Detecting Drag and Drop

M icrosoft Internet Explorer provides a special set of events for detecting and
responding to drag-and-drop events. This task discusses the basic applica-
tion of these events to detecting drag-and-drop events in Internet Explorer.

The Microsoft event model provides seven events related to drag-and-drop activity:

* onDragStart: This event fires when the user presses the mouse
button and begins dragging an object. This event is specified and
trapped in the source object that is being dragged, and this is where
you want to save information about the object that is being dragged.

* onDrag: This event fires repeatedly as an object continues to be
dragged. It is specified and trapped in the source object that is being
dragged.

* onDragEnter: This event fires when an object is dragged over a pos-
sible drop target. It is specified and trapped in the drop target object.

* onDragOver: This event fires repeatedly as an object is being
dragged over a possible drop target. It is specified and trapped in the
drop target object.

* onDragLeave: This event fires when an object is dragged out of a pos-
sible drop target. It is specified and trapped in the drop target object.

* onDragEnd: This event fires when an object that is being dragged is
dropped anywhere. It is specified and trapped in the source object
that is being dragged.

* onDrop: This event fires when an object is dropped in a possible
drop target. It is specified and trapped in the drop target object.

There are a few catches to using these events. First, unless you are dropping on a
text box, the onDrop event will not be triggered unless the default behavior for
the onDragLeave and onDragEnd event handlers is canceled. This is done by
setting event . returnvalue to false for these events in the tag for the drop
target object, as in the following:

<div onDragLeave="event.returnValue = false;” onDragEnd::)
"event.returnValue=false; ">

The following steps show how to create a simple drag-and-drop example. In this
example, the user can drag selected text over a target blue box. When the user
drops the object, a dialog box will confirm the name of the object that was
dragged and the name of the object where it was dropped.

1. Create a new document and create a script block in the header. In the
script block, define the variable sourceobject as a new Object
that will be a placeholder to store the object the user drags:

var sourceObject = new Object();



Dynamic User Interaction -

2. In the body of the document, use span tags to specify the text for
dragging. Name the block dragThis with the id attribute, and use
the onDragStart event handler to assign the source object to
sourceObject when the user starts dragging the text:

<span id="dragThis”

onDragStart="sourceObject = event.srcElement; ">
Drag This

</span>

3. Create the blue target box, using a div tag. Name the box
dropHere, and cancel onDragEnter and onDragOver as outlined
earlier in this task. Finally, use onDrop to display a dialog box nam-
ing the object that was dragged and where it was dropped.

<div id="dropHere”
onDragEnter="event.returnvValue = false;”
onDragOver="event.returnvValue = false;”
onDrop="alert (sourceObject.id + ‘' was dropped on ‘ :)
+ event.srcElement.id) ;"
style="height:100;width:100;1left:500;position:absolute;
background-color:blue; ">
&nbsp;
</div>

4. Save the file and open it in your browser.

5. Select the text, and drag it and drop it on the blue box. A dialog box
like Figure 208-1 appears.

Figure 208-1: Dropping the text displays an alert dialog box.




- Part 8

Task 09 Moving a Dragged Object in
Drag and Drop

n Task 208 you saw the basics of drag and drop. This task shows you how to

move a dragged object in Internet Explorer. For instance, consider Figure
209-1. In this case, the goal is to allow the user to drag the text into the blue
square and drop it to leave it in the square and remove the original text, as in
Figure 209-2.

Figure 209-2: Moving the text after dragging and dropping.
Doing this requires several steps:

1. When the user starts dragging the object, save the object for
future use.

2. When the user drops the object on the blue box, insert the HTML
from the source object into the body of the blue box.

3. Remove the original object from the page.




Dynamic User Interaction -

The following steps build this example:

1. Create a new document and create a script block in the header. In the
script block, define the variable sourceobject as a new Object
that will be a placeholder to store the object the user drags:

var sourceObject = new Object();

2. Add a function to the script block named moveObject that takes two
arguments: source and destination, which are the source object
being dragged and the target object where the source object was
dropped:

function moveObject (source,destination) {

}

3. In the function, add the complete HTML of the source object to the
inside of the destination object, and then set the display style of
the source object to none to hide it. This duplicates the source object
in the inside of the destination drop target object and then hides the
original:

function moveObject (source,destination) {
destination.innerHTML += source.outerHTML;
source.style.display = “none”;

}

4. In the body of the document, use span tags to specify the text for
dragging. Name the block dragThis with the id attribute, and use
the onDragStart event handler to assign the source object to
sourceObject when the user starts dragging the text:

<span id:”dragThis”:)

onDragStart="sourceObject = event.srcElement;”>
Drag This

</span>

5. Create the blue target box, using a div tag. Name the box dropHere,
and cancel onDragEnter and onDragOver as outlined earlier in
this task. Finally, use onDrop to call the function moveObject with
sourceObject and event . srcElement as the two arguments.

<div id="dropHere”
onDragEnter="event.returnvValue = false;"”
onDragOver="event.returnvValue = false;"”
onDrop="moveObject (sourceObject, event.srcElement) ; ”
style="height:100;width:100;1left:500;position:absolute;
background-color:blue; ”">&nbsp; </div>

6. Save the file, and open it in a browser to test the drag-and-drop code.




- Part 8

Task 0 Changing Cursor Styles
21

SOmetimes it is useful to be able to override the default cursor to provide
information to the user about the object the mouse is over . This is achieved
in Internet Explorer using the cursor style attribute in cascading style sheets.
"This allows you to specify the state of the cursor while it is over an object, and
this is useful to control the cursor while an object is being dragged. The basic
syntax to use this attribute is as follows:

.styleName { cursor: cursorName; }
The possible cursor names include the following:

* auto: Allows the browser to automatically choose a cursor

* all-scroll (Internet Explorer 6): Arrows pointing in all four direc-
tions with a dot in the middle

* col-resize (Internet Explorer 6): Arrows pointing left and right
separated by a vertical bar

* crosshair: A simple crosshair
* default: The default cursor (usually an arrow)

* hand: The hand cursor, which is typically used when the pointer
hovers over a link

® help: An arrow with a question mark
* move: Crossed arrows

* no-drop (Internet Explorer 6): A hand with a small circle with a line
through it

* not-allowed (Internet Explorer 6): A circle with a line through it

* pointer (Internet Explorer 6): The hand cursor, which is typically
used when the pointer hovers over a link

* progress (Internet Explorer 6): An arrow with an hourglass next
to it

* row-resize (Internet Explorer 6): Arrows pointing up and down
separated by a horizontal bar

* text:An I-bar
* vertical-text (Internet Explorer 6): A horizontal I-bar

* wait: An hourglass



Dynamic User Interaction -

The following example shows three boxes on the page, and each displays a
different cursor (a hand, an hourglass, and a crosshair) when the mouse rolls
over the box:

1. Create a new document in your editor.

2. In the body of the document, use a div tag to create a box. Set the
cursor attribute to hand. In this example, the box has a border and is
100 pixels by 100 pixels:

<div style="border-style: solid; width: 100; height: :)
100; cursor: hand;”>&nbsp;</div>

3. Create a second box and set the cursor attribute to wait for an
hourglass:

<div style="border-style: solid; width: 100; height: )
100; cursor: wait;”>&nbsp;</div>

4. Create a third box and set the cursor attribute to crosshair.

<div style="border-style: solid; width: 100; height:
100; cursor: crosshair;”>&nbsp;</div>

5. Save the file and open it in a browser. The page shows three boxes, as
in Figure 210-1. Move the mouse over the three boxes to view the
three cursors.

Figure 210-1: Each box is associated with a different cursor.

Task 210




- Part 8

Determining the Current Scroll Position

Using JavaScript, you can determine how far down the page the user has
scrolled. Consider Figure 211-1, for example. Here the window is quite nar-
row, so the user must scroll further down the window to see the same text as in a
wide window, where scrolling would be minimized.

Putlots of text here. Put lots of text here. Putlots of text

here. Putlots of test here. Putlots of text here. Put lots
aftext here. Put lots of temt here. Put lots of text here.
Put lots of text here. Put lots of tezt here. Put lots of text
here. Put lots of text here, Put lots of test here. Put lots
of textt here. Put lots of text here, Put lots of text here.
Putlots of text here. Put lots of test here. Put lots of lext
here. Put lots of tesn here, Put lots of text here. Put lots
oftext here. Putlots of tmt hers. Put lots of text here.
Putlots of text here. Put lots of text here. Put lots of text
here Put lots of teat here, Put lots of text here. Put Jots
of text here. Put lots of bext here. Put lots of text here.
Putlats of text here. Put lots of test here. Put lots of text
here. Put lots of test here. Put lots of text here. Put lots
aftext here. Put lots of vt here. Put lots of text here.
Put lots of test here. Put lots of text here. Put lots of text
here. Put lots of text here, Put lots of test here. Put lots

[ [ :
Figure 211-1: A long document in a narrow window.

"To determine the vertical position of the scroll bar, you need to use different
techniques in Internet Explorer and Netscape. In Internet Explorer, the
scrollTop property of the body object points to the current scroll position:

document .body.scrollTop

In Netscape, the pageYOffset property of the window object provides the
same information:

window.pageYOffset

The following steps illustrate how to use this capability to create a two-frame
HTML page in which the bottom frame contains a document the user can scroll
and the top frame contains a button the user can click to view the current scroll
position in a dialog box:

1. Create a new document to hold the contents of the bottom frame.

2. In the header of the document, create a script block. In the script block,
create a function named scrollCheck that doesn’t take any arguments:

function scrollCheck() {

}

3. In the function, use an if statement to check if the user is using
Internet Explorer; this is achieved by checking if document .all



Dynamic User Interaction -

exists (it won’t exist in Netscape). Based on this, use the alert
method to display the current vertical scroll position:

function scrollCheck() {
if (document.all) {
alert (document.body.scrollTop) ;
} else {
alert (window.pageYOffset) ;

}

4. In the body of the document, put lots of text so that the document is
likely to stretch beyond the bottom of the average browser window.

5. Save the file as scrol1Frame.html and close it. Create another
new file to hold the top frame.

6. Create a button in the body of the document, using the input tag,
and display the text “Scroll Position”.

<input type="button” value="Scroll Position”>

7. Add an onClick event handler to the button, and use that to call the
scrollCheck function in the other frame:

<input type="button” value="Scroll Position” :)
onClick="parent.frames[1].scrollCheck() ;">

8. Save the file as scrol1Button.html and close it. Create another
new file to hold the frameset.

9. Create a frameset with scrol1Button.html in the top frame and
scrollFrame.html in the bottom frameset:

<frameset rows="50,*”>

<frame src="scrollButton.html”>

<frame src="scrollFrame.html” id="mainFrame”>
</frameset>

10. Save the file and open it in your browser. The two frames are displayed.
Scroll the bottom frame to the desired location, and then click the
Scroll Position button in the top frame. The current scroll position of
the bottom frame is displayed in a dialog box, as in Figure 211-2.

Figure 211-2: Checking the scroll position of the bottom frame.




- Part 8
Task 12 Creating an Expanding/Collapsing Menu

his task shows how to quickly build a simple expanding/collapsing menu with

a minimum of JavaScript code required. The menu you will build allows for a
hierarchical menu to be defined as a series of embedded unordered lists. In fully
expanded form, the menu might look like Figure 212-1, but it is possible to
expand or collapse any tree of the hierarchy.

[ I :
Figure 212-1: The menu fully expanded.

The principle behind this task is two-fold:
1. Objects on the page have parents and children. If one object is contained
within another’s opening and closing tags, then the object is the child.
2. Objects can have a style attribute named display that controls
whether the object is displayed.
The following task builds a page containing such an expanding and collapsing menu:
1. Create a new file and place a script block in the header of the docu-
ment, using opening and closing script tags:

2. In the script block, create a function called toggleMenu that takes a
single argument—the name of the object to display or hide:

function toggleMenu (target) {
}

3. In the function, create a variable named targetLayer to select the
appropriate object to use in manipulating the display style attribute:

targetLayer = (document.getElementById) ? document.)
getElementById(target) .style : eval (“document.” + target);




Dynamic User Interaction -

4.

Use a conditional expression to hide or display the object in question. Task 212
"This is done by checking if the display attribute is set to none. If it

is, the attribute is set to an empty string. Otherwise, it is set to none.
The result of this logic is that the display attribute toggles between

none and an empty string each time the function is called. The
resulting function is as follows:

function toggleMenu (target) {
targetLayer = (document.getElementById) ? document.:)
getElementById(target) .style : eval (“document.” + target);
targetLayer.display = (targetLayer.display == “none”) )
? “” : “none”;

}

In the body of the document, create your menu hierarchy with
unordered lists:

<ul>
<1li>
Menu 1
<ul>
<li>Entry 1</1i>
<li>Entry 2</1i>
</ul>
</li>
<1li>
Menu 2
<ul>
<li>Entry 1</1i>
<li>Entry 2</1i>
</ul>
</1li>
</ul>

In the ul tags for the child lists, assign names with the id attribute,
and use the style attribute to set display to none. For the first
menu, you might use the following:

<ul id="menul” style="display:none”>

Turn the entries in the parent list into links. Each link should use a
javascript: URL to call toggleMenu and pass it the name of the
appropriate child list. As an example, the entry for the first menu
might be as follows:

<a href="javascript:toggleMenu (‘menul’) ;”>Menu 1l</a>

Save the file and open it in a browser to test the menu.




Task 213

- Part 8

Creating a Highlighting Menu Using Just
Text and CSS—No JavaScript

SOmetimes the simplest interactive menus are those that require the least
effort to create. This task shows how to create a simple menu bar where
the menu entries highlight when the mouse hovers over them—without any
JavaScript or other dynamic scripting. Instead, only the cascading style sheets
side of Dynamic HTML is used.

"This task relies on effective use of style sheets. The key is that any style entry, such
as a class, can have a special case defined for when the mouse hovers over an ele-
ment on the page as a link. For instance, consider the following simple example:

<head>
<style type="text/css”>
.item { text-decoration: none; }
.item:hover {text-decoration: underline; }
</style>
</head>

<body>
<a href="http://someurl” class="item”>The Link</a>
</body>

Here one style class named item is created. It is defined so that when a link
using that class is in its normal state, it is not underlined, as shown in Figure
213-1. However, when the mouse hovers over the link, the underlining appears.

[Ebene [T et
Figure 213-1: The link is normally not underlined.



Dynamic User Interaction -

The following steps show how to create a menu bar consisting of three gray but- Task 213

tons. When the mouse pointer is over the button, it switches color to a dark blue.

1. Create a new HTML document in your editor.

2. In the header of the document, create a style block with opening and
closing style tags.

3. In the style block, create a style class named menuEntry. Make sure
the height and width and background color of the style are specified.
Here the buttons will be 100 by 25 pixels with a gray background. In
addition, you can optionally set a border style, text styles, and so on.

.menuEntry {
width: 100px;
height: 25px;
background-color: #CCCCCC;
border-style: solid;
border-width: 1px;
border-color: black;
text-align: center;
text-decoration: none;
color: #020A33;

}

4. In the style block, create a special hover style for the menuEntry
class. This should change the color of the background and text to
create the highlighting effect:

.menuEntry:hover ({
background-color: #020A33;
color: yellow;

}

5. In the body of the document, create three links that use the
menuEntry class. Use the style attribute to position these links at
even intervals across the top of the page:

<a href="http://someurl/” class="menuEntry” style::)
"top: 1; left: 1;”>Entry l</a>

<a href="http://someurl/” class="menuEntry” style=:)
“top: 1; left: 52;”>Entry 2</a>

<a href="http://someurl/” class="menuEntry” style::)
"top: 1; left: 103;”>Entry 3</a>

6. Save the file and open it in a browser to use the menu.




- Part 8

Task 1A‘ Creating a Highlighting Menu Using
Text, CSS, and JavaScript

his task shows how to use JavaScript to implement a hover effect instead of

simply using CSS. The possible advantages of this include being able to exe-
cute any JavaScript code that is necessary when the mouse pointer hovers over an
entry in the menu.

"This task relies on the borderStyle property of objects in JavaScript, which
allows you to reset the border style of an object programmatically in code. When
set to outset, the object will have a three-dimensional border as in Figure
214-1. Setting the property to none removes the border.

4.himl - M Mt Internet Explorer _ = 3 | Figure 214-1: ngh“ghtlng a
menu element with a three-
dimensional border.

o]

Enitry 1 Ertry 3

The following steps build the menu illustrated previously:

1. Create a new document.

2. In the header of the document, create a style block. In the style
block, define a menuItems class with the visual style that is desired.
Make sure border color and size is specified but that the border style
is set to none:

<style type="text/css”>
.menuitems {
border-size:2.5px;
border-style:none;
border-color: #FFF2BF;
text-decoration:none;
color:blue;
font-family:Arial,Helvetica, SANS-SERIF;
}
</style>




Dynamic User Interaction -

3. In the header of the document, create a script block with opening Task A

and closing script tags.

4. In the script, create a function called toggleMenu. The function
should take two arguments: target, which contains the name of the
object to toggle, and border, which contains the desired border style
as a string:

function toggleMenu (target,border) {

}

5. In the function, define a variable named targetLayer that will
point to the object you can use to manipulate the visual style of the
object named in target:

targetLayer = (document.getElementById) °? :)
document .getElementById(target) .style : eval:)
(“document.” + target); @

6. Complete the function by setting the object’s border style to the style
specified in the border argument:

function toggleMenu (target,border) {
targetLayer = (document.getElementById) ? :)
document .getElementById(target) .style : eval:)
(“document.” + target);
targetLayer.borderStyle = border;
}

7. In the body of the document, create a layer with a div tag:

<div style="background-color:#FFF2BF; ">
</div>

8. Inside the layer, create one or more links that use the class
menuItems and are named with the id attribute. Use the
onMouseover and onMouseout event handlers to call toggleMenu
to switch the border style:

<div style="background-color:#FFF2BF; ">

<a href="http://someurl/” class="menultems” id=,)
"entryl” onMouseover="toggleMenu (‘entryl’, ‘outset’);” :)
onMouseout="toggleMenu (‘entryl’, ‘'none’);”">Entry 1l</a>
&nbsp; &nbsp;

<a href="http://someurl/” class="menultems” id=¢)
"entry2” onMouseover="toggleMenu (‘entry2’, ‘outset’);” :)
onMouseout="toggleMenu (‘entry2’, ‘'none’) ; ">Entry 2</a>
&nbsp; &nbsp;

<a href="http://someurl/” class="menultems” id=g)

"entry3” onMouseover="toggleMenu (‘entry3’, ‘outset’);” :)
onMouseout="toggleMenu (‘entry3’, ‘'none’) ; ">Entry 3</a>
</div>

9. Save the file and open it in a browser to test the menu.




- Part 8

Placing Content Offscreen

With JavaScript it is easy to hide content offscreen until you need it. This is
an alternative to using the visibility of layers to hide and display content.
Using JavaScript, in fact, you can control the placement of the top and left of any
element on your page. With this in mind, you can use a negative pixel value to
place an element off the top of the screen.

The principle is simple. Given an object named myOb3ject, you can specify the
top of the object in pixels relative to the browser window with the following:

myObject.top = pixel placement relative to top of window;

For instance, if you want the object to be placed 100 pixels down from the top of
the window, use this:

myObject.top = 100;

Similarly, you can specify the left of the object, as in the following example,
which places an object 2000 pixels off the left side of the browser window:

myObject.left = -2000;

The question at hand is how to identify the appropriate object to apply the top
or left property to. In Internet Explorer, objects have a style property that
contains a style object. Therefore, for an object on the page named myObject,
in Internet Explorer, you refer to myObject.style.top and
myObject.style.left. In Netscape, the top and left properties are directly
accessible from the object as myObject . top and myObject . left.

The following task shows how to display text in a layer and allow users to hide
the text when they click on a link:

1. Create a new document.

2. In the header of the document, create a script block with opening
and closing script tags.

3. In the script, create a function named hideLayer that takes a single
attribute target; target will represent the name of the object that
will by hidden when the user clicks on the link:

function hidelayer (target) {

}

4. In the function, create a variable named targetLayer to hold the
object you will work with; this will be dependent on the browser
being used:

targetLayer = (document.getElementById) ? document.:)
getElementById(target) .style : eval (“document.” + target);



Dynamic User Interaction -

5. Use the targetLayer object to set the top of the object to -2000
pixels to move it off the screen. The function looks like this:

function hidelayer (target) {

targetLayer = (document.getElementById) °? :)
document .getElementById(target) .style : eval:)
(“document.” + target);

targetLayer.top = -2000;
}

6. In the body of the document, use opening and closing div tags to
create a layer named myLayer:

<div id="myLayer” style="position: absolute;”>
</div>

7. In the layer, place any text you want to display, followed by a link that
uses a javascript: URL to call the hideLayer function, and pass
in the name of the layer as string:

<div id="myLayer” style="position: absolute;”>
<p>Here is some text in a layer.</p>
<p><a href:"javascript:hideLayer(‘myLayer')”>:)
Click here to hide the layer</a></P>
</div>

8. Save the file and open it in your browser. The text and link appears,
as in Figure 215-1.

< -39
55 | ] iy \ 02121 Skl = |

Here 15 some text in a layer.

Click here te bude the layer

Figure 215-1: Displaying text in a layer.

9. Click on the link, and the text and link in the layer disappears.




- Part 8
Sliding Content into View

By extending the principle of hiding objects offscreen, you can build a system
to slide an object into view from outside the browser window. The idea is
simple: Place an object offscreen and then gradually change its placement until it
is fully displayed in the window.

The simple approach to this would be to place the object offscreen and then use a
loop to move the object onto the screen pixel by pixel. For instance, you could
use a simple for loop to move the object myObject onscreen from 200 pixels
above the top of the window into the window.

The problem with this is that the loop moves so quickly, the object effectively
appears onscreen instantly. Instead, it may be necessary to pause between each
change in the location of the object. This can be achieved using the setTimeout
method, which allows a scheduled call to a function. For instance, the following
code causes each move to happen one-tenth of a second apart:

function moveLayer (target,newTop) {

targetLayer = (document.getElementById) °? document.:)
getElementById(target) .style : eval (“document.” + target);

targetLayer.top = newTop;

if (newTop < 0) {

setTimeout (“‘moveLayer (‘'Y + target + “',” + :)

(newTop+1) + “)~”,100);

}
}
moveLayer (‘myObject’,-200) ;

The following task shows a complete page where the text of the page scrolls onto
the screen using this technique:

1. Create a new document in your editor.

2. In the header of the document, create a script block with opening
and closing script tags.

3. In the script, create a variable named s1ideSpeed that indicates the
speed at which the content should slide onto the screen. The lower
the value of s1ideSpeed, the faster the content will move when
sliding:

var slideSpeed = 1;

4. Create the moveLayer function as outlined earlier in this task.
Notice that the time specified in the setTimeout function uses
slideSpeed as a multiplier to set the number of milliseconds
between each call to the moveLayer function:

function movelayer (target,newTop) {
targetLayer = (document.getElementById) ? document.:)
getElementById(target) .style : eval (“document.” + target);



Dynamic User Interaction -

targetLayer.top = newTop;
if (newTop < 0) {
setTimeout(“moveLayer(‘“+target+”’,”+(newTop+1)+")”,:)
slideSpeed * 25);
}

}

5. In the body tag, use the onLoad event handler to call moveLayer
when the page loads. The sliding animation will start at 100 pixels
above the top of the window, since this is where the layer in question
will be placed initially:

<body onLoad="moveLayer (‘myLayer’,-100) ;">

6. Create a layer using opening and closing div tags, and name the
layer myLayer with the id attribute.

7. Set the style attribute of the div tag to apply absolute positioning,
and position the layer 100 pixels beyond the top of the window:

<div id="myLayer” style="position: absolute; top: -100;">

8. Place any text desired in the layer:

<div id="myLayer” style="position: absolute; top: -100;">
<p>
Place the text of the page here.
Place the text of the page here.
Place the text of the page here.
Place the text of the page here.
Place the text of the page here.
</p>
</div>

9. Save the file and open it in your browser. Initially, nothing will be
displayed. Gradually, the content of the page will slide down into the
window, as illustrated in Figure 216-1. Finally, the entire text will be
displayed, and sliding will stop when the text reaches the top of the
window.

Figure 216-1: The content will slide down.




- Part 8
Creating a Sliding Menu

Extending the technique outlined in Task 216, you can create a menu that
slides into view when it is needed and then is hidden when it is not needed.
This task shows how to create a menu that only displays a small link initially.
When the user clicks the link, the menu slides into view horizontally, as shown in
Figure 217-2. When the user is finished with the menu, he or she can click on
the link at the far right to hide the menu and it will slide back to the left to be
hidden.

Figure 217-1: The menu slides into view when it is needed.

The following steps create a page that implements this menu:

1. In the header of the HTML file, create a script block and define
three variables: s1ideSpeed (the delay factor between slide incre-
ments; the lower the number the faster the slide effect), menuwidth
(the width in pixels the menu will require), and leftPosition (the
left position where the menu should end up after sliding into the
window):

var slideSpeed = 1;
var menuWidth = 300;
var leftPosition = 51;

2. Create a function called showLayer designed to slide the menu into
view; this function will resemble the function used in Task 216. The
function takes two arguments—the name of the layer containing the
menu and the left position where the layer should be moved to:

function showlLayer (target,newLeft) {
targetLayer = (document.getElementById) ? document.)
getElementById(target) .style : eval (“document.” + target);
targetLayer.left = newLeft;
if (newLeft < leftPosition) {
setTimeout(“showLayer(‘“+target+"',"+:)
(newLeft+1)+”)”,slideSpeed * 10);
}
}

3. Create a function called hideLayer designed to slide the menu out
of view:

function hideLayer (target,newLeft) ({
targetLayer = (document.getElementById) ? document.:)
getElementById(target) .style : eval (“document.” + target);



Dynamic User Interaction

targetLayer.left = newLeft;
if (newLeft > -menuwWidth) {
setTimeout(“hideLayer(‘“+target+”’,"+:)
(newLeft-1)+")"”,slideSpeed * 10);
}
}

In the body of the document, create a layer with a div tag to display
the link users will use to slide the menu into view:

<div style="position: absolute; top: 0; left: 0; width: :)
50; background: #020A33; z-index: 1;">
</div>

In the layer, create a link to call the showLayer function when it is
clicked; start moving from the negative value of menuwidth:

<div style="position: absolute; top: 0; left: 0; width:
50; background: #020A33; z-index: 1;”">

<a style="color: yellow; text-decoration: none;” :)
href="javascript:showLayer(‘myLayer’,—menuWidth);:)
”>SHOW</a>
</div>

Create a layer with a div tag to hold the menu itself. The layer
should be named myLayer:

<div id="myLayer” style="position: absolute; top: 0; )
left: -300; width: 300; background: #CCCCCC; color: )
black; z-index: 0;”>

</div>

In the layer, create your menu and include a link that uses a
javascript: URL to call the hideLayer function so the user can
hide the menu:

<div id="myLayer” style="position: absolute; top: 0; :)
left: -300; width: 300; background: #CCCCCC; color: ¢
black; z-index: 0;”>

My Menu Goes Here. Place all links here.

<a style="text-decoration: none;"” href=”javascript::)
hideLayer (‘myLayer’,leftPosition) ; ">HIDE</a>
</div>

Save the file and open it in a browser to use the menu.

Task




Part 8

Task 218 Auto-Scrolling a Page

1.

Create a new document and place a script block in the header of the
document:

<script language="JavaScript”>
</script>

In the script, create a function named scrollPage that takes no
arguments. This function will move the scroll bar down 1 pixel, and
if the page is not yet at the bottom schedule, it will make another call
to itself to move the scroll bar further down:

function scrollPage() {

}

Start the scroll by creating the variables origScroll and
newScroll to hold values later in the function:

var origScroll = 0;
var newScroll = 0;

Test for the existence of document .all to determine whether or
not the browser is Internet Explorer:

if (document.all) {

If the browser is Internet Explorer, first store the current scroll posi-
tion in origScroll, then add 1 to document .body.scrollTop to
move the scroll bar down 1 pixel, and, finally, store the new scroll
position in newScroll:

if (document.all) {
origScroll = document.body.scrollTop;
document .body.scrollTop += 1;
newScroll = document.body.scrollTop;

his task extends the ability to read a page’s scroll position outlined in Task 211

and provides a simple mechanism to automatically scroll a page from top to
bottom once it is loaded. This task relies on the principle that not only can the
scroll position be read, it can also be written.

In Internet Explorer, the scroll position is controlled through the document.
body . scrollTop property, while in Netscape, it is controlled by window.
pageYOffset.

The following steps set up a page that automatically scrolls from top to bottom
once loaded:



Dynamic User Interaction -

6. If the browser is Netscape, perform the same steps as for Internet Task
. P as
Explorer but use window.pageYOf£fset for the scroll position:

if (document.all) {
origScroll = document.body.scrollTop;
document .body.scrollTop += 1;
newScroll = document.body.scrollTop;
} else {
origScroll = window.pageYO