
TEAMFL
Y

Team-Fly®

Dear Valued Customer,

We realize you’re a busy professional with deadlines to hit. Whether your goal is to learn a new
technology or solve a critical problem, we want to be there to lend you a hand. Our primary objective is
to provide you with the insight and knowledge you need to stay atop the highly competitive and ever-
changing technology industry.

Wiley Publishing, Inc. offers books on a wide variety of technical categories, including security, data
warehousing, software development tools, and networking - everything you need to reach your peak.
Regardless of your level of expertise, the Wiley family of books has you covered.

• For Dummies – The fun and easy way to learn
• The Weekend Crash Course –The fastest way to learn a new tool or technology
• Visual – For those who prefer to learn a new topic visually
• The Bible – The 100% comprehensive tutorial and reference
• The Wiley Professional list – Practical and reliable resources for IT professionals

Our commitment to you does not end at the last page of this book. We’d like to open a dialog with you
to see what other solutions we can provide. Please be sure to visit us at www.wiley.com/compbooks to
review our complete title list and explore the other resources we offer. If you have a comment,
suggestion or any other inquiry, please locate the “contact us” link at www.wiley.com.

Sincerely,

Richard K. Swadley
Vice President & Executive Group Publisher
Wiley Publishing, Inc.

WILEY
advantage

The

In the book that you now hold in your hands, Darren Broemmer shares best practices and lessons
learned for J2EE development. As you design and build a banking application with J2EE and design
patterns, you'll also utilize metadata-driven configurable foundation components to help automate
much of the development for Web-based business applications. And of course, the tools and
technologies used to construct the sample application are not from any one vendor, but best of
breed—Jakarta Struts, Servlets, JSP, XML, EJB, UML, WebLogic, WebSphere, and many more.

Thank you for your support and we look forward to hearing from you and serving your needs again in
the future.

J2EETM Best Practices
JavaTM Design Patterns,

Automation, and
Performance

Darren Broemmer

Wiley Publishing, Inc.

Publisher: Bob Ipsen
Editor: Theresa Hudson
Developmental Editor: Kenyon Brown
Editorial Manager: Kathryn A. Malm
Managing Editor: Pamela Hanley
New Media Editor: Brian Snapp
Text Design & Composition: Interactive Composition Corporation

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where Wiley Publishing, Inc., is aware of a claim, the product names
appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should contact the ap-
propriate companies for more complete information regarding trademarks and registration.

This book is printed on acid-free paper.

Copyright © 2003 by Darren Broemmer. All rights reserved.

Published by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470. Requests to the
Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspointe Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4447,
E-mail: permcoordinator@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best
efforts in preparing this book, they make no representations or warranties with respect to
the accuracy or completeness of the contents of this book and specifically disclaim any
implied warranties of merchantability or fitness for a particular purpose. No warranty may
be created or extended by sales representatives or written sales materials. The advice and
strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss
of profit or any other commercial damages, including but not limited to special, incidental,
consequential, or other damages.

For general information on our other products and services please contact our Customer
Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears
in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data:

ISBN 0-471-22885-0

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

This book is dedicated to my mother, Joan,
and in loving memory of my father, Gary,

for all of their love, support,
and encouragement.

vii

Acknowledgments x

About the Author xi

Introduction xii

Overview of the Book and Technology xii

How This Book Is Organized xx

Who Should Read This Book xxiii

Tools You Will Need xxiii

What’s on the Web Site xxiv

Summary xxiv

Chapter 1 Building Business Applications with J2EE 1

Elements of Transactional,
Web-Based Business Applications 2

The Reference Architecture 4

The J2EE Platform Approach 9

The Model-View-Controller Architecture Approach 16

Best Practices for Building Business Applications
with J2EE 20

Summary 21

Chapter 2 The Business Object Architecture: Design Considerations 23

Business Objects in a Banking Application 25

Elements of Business Objects 26

Contents

Design Considerations 29

Best Practices for Designing Business Objects 50

Summary 53

Chapter 3 Building Business Objects: Managing Properties
and Handling Errors 55
Managing Properties 55

Value Objects and Lightweight Business Objects 83

Object Validation and Error Handling 87

Best Practices for Implementing Business Objects: Part One 102

Summary 103

Chapter 4 Building Business Objects: Persistence, Relationships,
and the Template Method Pattern 105
Object Persistence 105

The Base Class as a Template 159

Overall Business Object Metadata Approach 168

Data Caching 174

Best Practices for Implementing Business Objects: Part Two 185

Summary 188

Chapter 5 The Service-Based Architecture: Design Considerations 189
Elements of Service-Based Components 193

Design Considerations 196

Best Practices for Designing Service-Based Components 207

Summary 208

Chapter 6 Building Service-Based Components 209
The Actual Service Interface 209

An Implementation for Argument Lists 210

The Session Bean as a Component Wrapper to the Service 215

Responsibilities of the Service Component 221

Update Service Examples 225

Updating Multiple Business Objects 233

The New Customer Service 234

Data Retrieval Services 240

Building Generic, Reusable Services 251

Implementing the Controller Pattern in Services 253

Best Practices for Implementing Service-Based
Components 255

Summary 257

viii Contents

Chapter 7 The User Interaction Architecture: Design
Considerations and an Overview of Jakarta Struts 259
Elements of the User Interaction Architecture 261

Design Considerations 265

An Overview of Jakarta Struts 284

Best Practices for Designing the User
Interaction Architecture 298

Summary 300

Chapter 8 Building the User Interaction Architecture 301
The Change Address Page 301

The Change Address JSP 307

The View Accounts Page 332

The New Customer Wizard 342

A Template for the Action Class 362

Web Services 369

Best Practices for Implementing the
User Interaction Architecture 371

Summary 372

Chapter 9 Strengthening the Bank Application: Adding Security
and Advanced Functionality 375
Application Security 375

Interesting Aspects of the Bank Application 392

Best Practices for Advanced Web Application Development 417

Summary 418

Chapter 10 Performance 421
Overall Performance Approach 421

Performance in J2EE Applications 430

Best Practices for J2EE Performance Engineering 440

Summary 442

Chapter 11 Moving toward Reuse in the Reference Architecture 443
Common Roadblocks and Corresponding Best Practices 444

Reuse in the Reference Architecture 452

The Strategic View of the Architecture 454

Best Practices for Moving toward Reuse 456

Summary 457

Bibliography 459

Index 461

Contents ix

I owe countless thanks to my parents, John and Joan, Shirley and my late father Gary,
for always being there and giving so much of themselves to help me. Without question,
this book would not have been possible without everything that they have done for
me. Special thanks also goes to John Abbey, Jeff Nelms, and Ken Young for reviewing
the chapters, providing their insight, and contributing to this effort. John and I have
collaborated for years on J2EE development and had many a lively and entertaining
discussion on the topic. Likewise, Jeff and I have debated the finer points of business
objects many times and much of the performance slant in this book can be traced back
to his influence. Ken’s early feedback helped to shape the perspective that the book
eventually took. I would also like to recognize Ron Carden for his influence in my
work and the development of this material. Another person who made this book pos-
sible is my wife Caroline who enthusiastically supported me throughout the effort. I
would also like to acknowledge Bill Hough who unquestionably supported this effort.
Special thanks to Jack Greenfield, Terri Hudson, and all the folks at Wiley for their sup-
port and help in putting this book together. Finally, thanks to God through whom all
things are made possible.

Darren Broemmer

September 2002

Acknowledgments

x

TEAMFL
Y

Team-Fly®

xi

Darren Broemmer is an application architect working on next-generation J2EE soft-
ware solutions in the mortgage industry at Freddie Mac. His previous work includes
architecture, development, and management experience in Internet and client-server
systems implementations for consulting clients in North America, Europe, and the
Middle East. Darren specializes in Java and J2EE technology and is the coinventor of a
Java application development framework called jPylon, a set of reusable, extensible
software components based on J2EE. JPylon was chosen to be a part of the Sun
Microsystems ONE Studio Developer Resources program (formerly Forte for Java
Extension Partners Program). Throughout his career, Darren has regularly consulted
with projects on best practices for J2EE development and has spoken at corporate con-
ferences about jPylon and J2EE technology. When he is not busy thinking of ways to
abstract and automate software development, Darren tries to stay in shape by playing
basketball and running, although he will never be able to keep up with his wife at
Ultimate Frisbee.

About the Author

Java 2 Enterprise Edition (J2EE) technology is becoming a pervasive platform for
the development of Internet-based, transactional business applications. It provides a
robust development platform upon which to build flexible, reusable components and
applications. It is a powerful standard that is well-suited for Internet-based applica-
tions because it provides many of the underlying services such as HTTP request pro-
cessing (Java servlet API), transaction management (Enterprise JavaBeans), and
messaging (Java Message Service), just to name a few. However, J2EE is also a complex
and changing standard that leaves the technologist with many design decisions and
performance considerations. Each component service adds a level of overhead to the
application processing that must be considered. Additionally, there are a number of
common business logic functions, such as error handling, that must be designed and
developed for each component and application.

An application development effort using J2EE should give careful consideration to
the services provided by the platform and how application components can best utilize
them. There are a number of best practices one should consider in order to be highly
effective in building J2EE components and integrating them into applications. These
practices include evaluating and selecting the right set of software components and
services to do the job. This is no different than in other professions; a carpenter or a
steelworker both use an architecture plan to build things, although the tools they use
to do so are quite different. A scalable, modular architecture built upon J2EE will likely
comprise a selection of the appropriate set of J2EE services combined with a custom
foundation of common business logic functions.

Overview of the Book and Technology

This book will supply a set of best practices for J2EE software development and
then use them to construct an application architecture approach referred to as the ref-
erence architecture. The reference architecture will provide a basis for rapidly building

Introduction

xii

transactional business applications using J2EE technology. The design and implemen-
tation of the reference architecture is based on a set of guiding principles that will be
used to optimize and automate J2EE development.

Guiding Principles of the
Reference Architecture
The goal of constructing the reference architecture is to create a development environ-
ment that can be used to build applications faster and with better performance, qual-
ity, and reusability. The following set of guiding principles are used to accomplish
these goals:

Applying proven design patterns to J2EE

Automating common functions

Using metadata-driven, configurable foundation components

Considering performance and scalability

These principles are essential in driving the architecture and building the founda-
tion for development. These concepts will be discussed throughout this book in detail
and applied to each segment of the J2EE architecture. Much of software development
in general and J2EE development in particular can be optimized and automated
through these concepts and their realization in the form of common foundation logic.
Solid analysis of design choices as input to the architecture and application compo-
nents is essential in order to provide solutions that balance the needs of rapid devel-
opment, faster performance, higher quality, and greater reusability.

Figure I.1 shows the inputs and outputs of the architecture. This diagram essentially
represents the guiding principles and the benefits that can be derived from applying
them to application development.

These principles provide the motivation and the basis for the approach to this study
of developing applications using J2EE. Each aspect of the enterprise architecture within
J2EE will be studied for its behavior and characteristics. By using this information and
applying the development principles and best practices, you can create an approach to
effectively use the technology to reach our application development goals.

The goals at the right side of Figure I.1, such as flexibility and reusability, should be
considered and addressed from the beginning of any software development project.
These types of goals are realized at two different levels: the software architecture level
described earlier and the application component design. The reference architecture
will guide much of the application design, so it is important to understand and distin-
guish these levels before undertaking enterprise software development. Each of the
two levels will provide different types of benefits to both the end users and the devel-
opment organization.

Applying Proven Design Patterns

A design pattern is a defined interaction of objects to solve a recurring problem
in software development. There are a number of documented design patterns (E.

Building Business Applications with J2EE xiii

xiv J2EE Best Practices: Java Design Pattens, Automation, and Performance

Gamma, R. Helm, R. Johnson, J. Vlissides, 1995. Design Patterns. Boston, MA:
Addison-Wesley) that represent proven solutions that you can use to solve common
problems in object-oriented (OO) development. You can also apply many of these pat-
terns to the J2EE architecture. One example is the concept of a service within the
Service-Based Architecture. The service component layer of the reference architecture
will resemble both the Façade and Mediator patterns (Gamma et al. 1995). The service
component provides a simple interface to the client and decouples the presentation
components (JavaServer Pages or servlets) from the back-end business logic compo-
nents. This provides the benefit of increased reusability and a simplified view of the
world from the client perspective. If you add a standard interface to the service com-
ponents, you can now implement the Command pattern (Gamma et al. 1995) from a
front-end component. This allows you to build a generic, configurable controller com-
ponent in the front end that invokes these standardized back-end services.

If you apply these well-documented, proven design patterns to J2EE architecture,
you will see that the stateless Session Bean is the perfect implementation for the
Service-Based Architecture. This becomes the Session-Façade pattern (D. Alur, J. Crupi,
D. Malks. 2001. Core J2EE Patterns. Mountain View, CA: Sun Java Center), an imple-
mentation of the Façade pattern applied to a Session Enterprise Java Bean. If you con-
sider a Session Bean component merely to be a wrapper around your service object
that adds the ability to distribute the service and manage transactions around it, you

Figure I.1 Architecture Principles and Benefits.

Business Logic Foundation

Java/J2EE Application Server

Application Components

End-User Applications

Software
Architecture

Applying Design
Patterns

Automating Common
Functions

Metadata-Driven
Components

Consider Performance
Throughout the Process

Analysis of Design
Choices

Best
Practices

Application
Development

Benefits

Flexibility

Reusability

High-Performance
Applications

Quality Product

Rapid Application
Development

Building Business Applications with J2EE xv

utilize the J2EE component-based services without changing the object-oriented view
of the world very much at all. In the case of stateless Session Beans, you also gain these
benefits without adding much overhead to the processing time. The session façade act-
ing as an EJB component wrapper around a service implementation object is referred
to as the Service Component pattern in the reference architecture.

Figure I.2 illustrates the UML representation of this service component pattern.
The business objects and presentation components also contain numerous examples

of proven design patterns that can be applied. The Template Method pattern (Gamma
et al. 1995) provides an excellent mechanism for providing extensible foundation com-
ponents for both business objects and service objects. In the case of business objects, it
provides a template for common operations such as a save operation to cause the
object’s data to persist in the database. The base class, or template, provides hooks for
subclasses, the specific business objects, to implement validation rules and presave or
postsave logic. Enterprise JavaBeans uses a number of design patterns applied to the
Java language. Some of them are variations of existing patterns that use Java interfaces,
such as with Entity Beans. Entity Beans must implement a common interface
javax.ejb.EntityBean that provides hooks for insert, update, and delete logic.
Each architecture layer discussed builds on these existing patterns and looks at some
additional patterns that provide flexibility and reusability within the software archi-
tecture on top of J2EE.

Figure I.2 UML Diagram of Service Component Pattern.

MyBusinessObject1

Attribute1:String
Attribute2:String

businessMethod1()
businessMethod2()

MyBusinessObject2

Attribute1:String
Attribute2:String

businessMethod1()
businessMethod2()

ServiceImpl

doService()

ServiceEJBWrapper

executeService()

Business Object
Packages

xvi J2EE Best Practices: Java Design Pattens, Automation, and Performance

Automating Common Functions

The approach of automating common functions provides a number of benefits:

Time is not wasted on monotonous, error-prone tasks.

A higher-quality product through better-tested software; there is less total code
to run through and it gets hit on every request; in essence, the foundation of
much of the processing becomes a black box process with inputs.

Automated functions and their common interfaces make it easier to develop
and maintain consistent software across the application.

Even with easy-to-use APIs such as the Java servlet API, there are still many func-
tions that must always be done in an application. For example, one of the common
elements of business applications is the ability to process user form submissions. On
each of these requests, the data from the form submission needs to be read out of the
HttpServletRequest object, packaged in some data structures, and sent to the
requested service or back-end function. One alternative is to write a custom servlet or
JSP to handle every form on all pages. This usually isn’t very efficient because the num-
ber of forms in a typical business application is relatively high. You might find that the
logic to handle each form is repetitive and even has the same blocks of code in it. The
other alternative is to abstract the basic flow of handling a form request and put it into
a common servlet that can be used by all of the Web pages that have forms. Using a
configuration service, you could define each form, its input data, and a service that
should be used to process the request. Almost any function or process that is repeatable
is a candidate for automation. This book looks at the nature of transactional Web ap-
plications in order to define a set of common elements that can be automated. As it
turns out, due to the nature of Web applications and J2EE application architectures,
many of these common elements need to be implemented for any given application. A
set of configurable foundation components that implement these functions will
increase both the quality and quantity of application functionality built on the
reference architecture. As this book goes through the process of discussing the set of
common elements and applying them to the Java platform, additional requirements
for this foundation layer will be flushed out. Some basic work can be done at this level
that provides immense value in meeting the overall goals of a scalable, modular
architecture.

A set of configurable foundation components that automate basic elements of an ap-
plication is often referred to as a framework. Building upon an earlier principle, many
of these foundation components will be implemented using proven object-oriented
design patterns. These framework components and patterns are what make up the ref-
erence architecture that will be used to rapidly develop quality J2EE applications. As
many developers know, there is a gap between the total sum of services needed to de-
velop just purely application-specific logic and those that are currently provided with
the development platform. A software layer, referred to in this book as the Business
Logic Foundation (BLF), will attempt to bridge this gap. The Java and J2EE platform
continues to evolve and close the gap. However, it still remains even as a large number
of people and organizations are working to add services to the platform. Due to the
complexity of enterprise development, the widely varying set of requirements that dif-

Building Business Applications with J2EE xvii

ferent businesses and organizations have, and the many design considerations, it will
take a significant amount of time for the standard to mature to the point where it ad-
dresses all of these needs. In fact, even as the underlying platforms and standards
evolve, technology and problem domains also grow, thus making it likely that closing
the gap will resemble a calculus equation represented by a curve which slowly ap-
proaches zero, but never actually gets there.

The automation capabilities within technical frameworks provide a high level of
reusability across applications. Reusability is of course the “Holy Grail” of object-
oriented software development. However, it has been very hard to achieve in many
practical settings. Given a strategic application architecture and the set of guiding
principles, you can position yourself to benefit from software reuse. The Enterprise
JavaBean specification goes a long way toward having standard, reusable business
components across applications. However, it is the role of the application architecture
on top of J2EE to enable those components to be reused. It is important to have an ap-
plication architecture that easily allows components to be plugged in to the rest of the
system without adding significant overhead.

One way to plug in different components is through a messaging layer that buffers
the different interfaces and systems. In complex architectures, this is the right solution,
but for many applications, the overhead is too much of a price to pay. Two primary
strategies to promote and enable the reuse of domain components are realized through
the first two principles, design patterns and automated foundation components. One
such example is that of the Service-Based Architecture layer that provides a standard
interface for process-based components. By creating a standard interface that is used
by the user presentation layer, a service such as Retrieve Account Data can be reused
from different screens that require customer data. Services such as Account Deposit
and Account Withdrawal can be reused as building blocks in an overall service, Trans-
fer Funds. The fact that there is a service layer at all in the architecture allows the ser-
vices themselves to be reused from different client devices. Finally, the standard
interface of the service components allows you to automate their invocation through a
configurable foundation layer within the reference architecture.

Use Metadata-Driven Components

Metadata is usually defined as data that describes other data. This book also uses the
term “metadata” to refer to the many data elements that define the attributes and
behaviors of various software components. Some examples of this could be the list of
properties and their respective data types for a given business object, or it could be the
form name and associated configuration information for a Web page. Much of the
metadata that defines these components comes from design models described in UML.

The principle of using metadata to drive components again builds upon a previous
principle, that of automating the tasks of software development. Metadata is used as
an input to the “framework” services that automate and drive the behavior of J2EE
components. This is applicable at all levels of the architecture. In the case of business
objects, metadata can be used to define the business entities and their attributes. At the
workflow or transaction level, metadata can be used to drive the process flow of
complicated tasks. At the user interface level, it can define a particular Web page form

xviii J2EE Best Practices: Java Design Pattens, Automation, and Performance

and how it should be processed. All of these elements of applications can be abstracted
and defined using metadata. The J2EE specifications themselves rely on different
forms of metadata to configure and deploy components. A perfect example is the ab-
stract approach taken by EJB 2.0 toward Container-Managed Persistence (CMP). The
EJB deployment descriptors contain the metadata that maps the bean’s properties to
database tables, as well as defining any relationships that the bean may have with
other components.

Not every process or function should be defined using metadata (everything in
moderation, as they say). There are some drawbacks to this approach that should be
considered and that may not make it the right approach for every task. A metadata-
driven abstraction usually will add some overhead to the execution of the task when
compared to explicit lines of code used to do the same job. This overhead is typically
negligible when compared to something like a single database I/O request. However,
it should be considered nonetheless in the overall approach to software development,
especially where transaction throughput is essential to the success of an application.

Another potential drawback of this approach is the fact that it can make reading and
debugging code a bit more difficult. A separate file or repository that contains the
metadata determines portions of the flow through the code. There are a number of ar-
guments to counteract this point, some of which have been mentioned here already.
The primary argument is that these foundation components, which are configurable
through metadata, become highly tested components that become almost like a black
box to the rest of the application. Once you have these components working correctly,
very little time is spent looking at the “framework” code. The behavior of an applica-
tion can be determined simply by looking at the client code and the metadata inputs
to the service. Consistent use of these foundation components rapidly makes this
contention less of an issue. Another less structured argument is that well-written
object-oriented code is difficult to sit down and read in the first place because the meth-
ods are typically very small and you often have to jump back and forth from object
to object anyway in order to decipher what is going on. This issue was dealt with on a
different level when software development moved in large part from procedural code
to object-oriented development. It is usually easier to read and understand a contigu-
ous block of procedural code than it is object-oriented code, but the many benefits
found in OO development far outweigh this minor and perhaps even debatable disad-
vantage. Some of these same arguments apply to a metadata-driven approach as well.

As in many aspects of the J2EE architecture, both the pros and the cons must be
weighed for a given design decision before making a choice. As is the case with so
many architecture decisions you will see, the solution is often a middle-of-the-road
choice in which metadata is used for key components that provide the maximum ben-
efit. Elements of business applications that are data intensive and heavily used, such as
forms processing and business object persistence, will use metadata to rapidly develop
quality implementations.

The industry seems to be moving to storing many pieces of data in XML format, and
metadata is no exception. Storing metadata as XML provides a number of benefits:

XML data provides a standard format that can be stored either in a file or in a
database table.

Building Business Applications with J2EE xix

Most design tools can generate XML data from their models; many tools now
support XMI (XML Metadata Interchange), a standard XML format for object
metadata.

XML can be created or modified using a number of different tools including
XML editors, custom-written tools, or in many cases, even a simple text editor.

An interesting effect of using metadata is that it separates pieces of the application
design from the code. This is helpful for a number of reasons:

A higher number of application functions driven by the design imply that
fewer application changes will require actual code changes. This increases the
speed of maintenance cycles and deployment.

XML supports a model-driven development approach; the design models
become accurate pieces of documentation for the system and are used to
generate application components or the metadata input to foundation
components.

Much of the input to application code can originate from design models.
The object models for the business entities contain the properties and the
relationships between the entities. This metadata can be exported from design
tools into XML. The XMI specification provides one such format to do so, and
design tools are starting to support it. If a configurable business object base
class can manage the properties and relationships for a business object, you
have now automated this portion of the business object through metadata
input almost completely through the design process. Of course, specific
business methods and other application components will also modify the
properties of the business object and create instances of relationships, but the
logic to do so has been automated through the metadata-driven process.

Practicality: Performance and Scalability

The last principle, essentially performance engineering, is one that underlies all else.
Avoiding this topic until the final phases of any project can have serious consequences.
The quickest thing (no pun intended!) that will keep people from using your system is
poor performance, especially in today’s fast-paced Internet world. Business application
users are accustomed to the performance of client-server applications over private net-
works and consumers or Internet users are very impatient when it comes to waiting for a
Web-site page to load. Thus, although it is true that computers are getting faster and more
hardware is always an option (if you built a scalable solution), you must keep a watchful
eye and build performance into the development process from the very beginning. It
must be a part of the design process because it often involves trade-offs with other as-
pects of a system, most often the flexibility that an application provides to the user.

Java, the language itself, can quickly approach the performance of C/C++ in many
situations, a language widely regarded as a high-performance choice for even the most
demanding applications. This is primarily due to the evolution of just-in-time (JIT) com-
pilers that now aggressively translate Java byte code and perform code optimizations.

xx J2EE Best Practices: Java Design Pattens, Automation, and Performance

This is particularly true on the server side, where you typically have a large set of
Java classes that will be executed many times. The initial overhead of performing the
translation into native instructions is usually not worth mentioning, and thus in theory,
the majority of the code should be comparable to compiled C++ code. One weakness
that Java still has when compared to C++ is the garbage collection process, which adds
some overhead. However, the programming benefits are well worth the minimal cost
involved in terms of memory allocation and management, so this really does not even
become an issue. In fact, as processor speeds continue to increase, the difference
between the two languages themselves is likely to become almost insignificant. How-
ever, component services provided by J2EE add another layer on top of the language,
and you must look very closely at the impact that component services have on the
application’s overall performance. While J2EE provides many valuable services, such
as object persistence and naming and directory services, their benefits must be
weighed against their costs.

Many solutions will involve using Enterprise Java services in cases in which they
provide the most benefit, but not as a standard across the board. This is a common ten-
dency of building J2EE architectures, to use the enterprise components across the
board from front-to-back in the software architecture. A key example of this is the use
of Entity Beans. Relatively speaking, Entity Beans are fairly heavyweight components,
and thus should not be used to model every business object in an application, particu-
larly if each business object maps to a row in the database. Doing this can quickly
degrade the scalability, and thus the usability, of an application. A scalable architecture
is a must for almost any system, and design guidelines discussed in this book for each
layer of the architecture must be applied when deciding on the foundation for software
components as well as in building the individual components themselves.

How This Book Is Organized

The structure of this book starts with a conceptual view of business applications and
moves all the way to the realization of a corresponding application architecture and
sample application. An introduction is first given to the reference architecture ap-
proach and how it is applied to J2EE technology. The three basic layers of the reference
architecture (business objects, services/processes, and user interaction) are each built
from the ground up, starting with design concepts, moving to relevant J2EE best prac-
tices, and ending with a J2EE implementation. Each layer is discussed as a general
foundation for development in addition to its practical use in the form of a sample
bank application that is constructed throughout the book. After having moved through
the architecture vision, best practices, and implementation, the last set of chapters then
take a step back and look deeper into topics such as application security, performance,
and reuse.

Chapter 1, “Building Business Applications with J2EE,” introduces and discusses
the common elements of business applications. The common characteristics are
abstracted out as a foundation for an application architecture approach. The layers of
the reference architecture are introduced, and the components within each layer are de-
fined. The J2EE platform is briefly covered, and the reference architecture is mapped to
its implementation as J2EE components. The Model-View-Controller architecture pat-

TEAMFL
Y

Team-Fly®

Building Business Applications with J2EE xxi

tern, also commonly known as the Model 2 approach in Web development, is presented
as an overarching aspect of both J2EE technology and the reference architecture.

Chapter 2, “The Business Object Architecture: Design Considerations,” covers
design elements of the business object layer of the reference architecture. This chapter
introduces the bank application’s object model as an example to study. The elements of
business object components are discussed and the implementation options in J2EE are
considered. Design elements discussed include stateful versus stateless, Entity Beans
versus regular Java objects, persistence mechanisms, and transaction concurrency.

Chapter 3, “Building Business Objects: Managing Properties and Handling
Errors,” walks through an implementation of the first half of business object responsibil-
ities, which include property management, business validations, and handling error con-
ditions. Due to the amount of functionality within business objects, their implementation
is divided into chapters 3 and 4. An explicit implementation of the Account business ob-
ject is discussed and then a generic property management approach is introduced. A
metadata-driven base class implementation is described that can be used for all business
objects. A standard interface for business objects is introduced so that all objects can be
dealt with generically and consistently. Value objects and bulk accessor methods are also
discussed. An error list mechanism is introduced and implemented that manages a set of
configurable business errors for an object. General error and exception-handling tech-
niques are discussed and applied to the business object implementation.

Chapter 4, “Building Business Objects: Persistence, Relationships, and the
Template Method Pattern,” walks through an implementation of the second half of
business responsibilities, which include persistence of the object’s data to a database,
management of interactions with other objects, and the use of the Template Method pat-
tern to build extensible, reusable business logic templates. Options for persistence that
are discussed include the explicit use of JDBC, a metadata-driven JDBC framework,
third-party and open-source persistence frameworks, and Entity Bean Container-Man-
aged Persistence. Sample implementations are shown and discussed for each of the op-
tions. The business object lifecycle is abstracted through the construction of a business
object factory, and implementations are shown for JDBC, Entity Beans, and Castor, a
popular open-source persistence framework for Java. Object collection services are also
discussed as a faster alternative to using business objects for read-only operations, and
best practices are provided for using JDBC if that alternative is chosen. Data caching
and a JMS-based refresh mechanism are also addressed as an option to prevent unnec-
essary database I/O. The responsibilities of aggregated business objects are discussed
and corresponding methods are added to the standard business object interface. The
Template Method pattern, which enables a key concept of the reference architecture, au-
tomation with extensibility, is discussed. Implementations of a save template, an object
creation template, and an aggregated object template are constructed to automate basic
business object functionality. The overall metadata DTD and implementation are then
discussed. At the end of this chapter, readers will have a set of design concepts and code
that can be used to quickly build robust business object components.

Chapter 5, “The Service-Based Architecture: Design Considerations,” covers
design elements and the rationale behind the service component layer of the reference
architecture. The basic elements of these process-oriented objects are discussed, and
implementation options are considered. Services are categorized as either update or
data retrieval. The concept of the Session Bean as a component wrapper to regular

xxii J2EE Best Practices: Java Design Pattens, Automation, and Performance

Java implementation classes is introduced. The majority of the chapter then covers the
interface of the service components, the benefits of choosing a standard interface, and
the considerations for different data structures such as XML, value objects, and
argument lists.

Chapter 6, “Building Service-Based Components,” walks you through the imple-
mentation of service components in the reference architecture. Examples are given for
both explicit interfaces and a standard interface. A service data class is created that en-
capsulates value objects, argument lists, and error data in order to create a standard
service interface. The implementation of an EJB wrapper around a regular Java class
implementation is constructed. A service component base class is introduced for stan-
dard error handling, transaction management, and the invocation of the implementa-
tion classes. The general responsibilities of both data retrieval and update services are
discussed. Some service implementations from the bank application are constructed
such as TransferFunds, ChangeAddress, and GetAccountList. Strategies for building
generic reusable services, invoking services within other services, and using the con-
troller pattern are also discussed.

Chapter 7, “The User Interaction Architecture: Design Considerations and an
Overview of Jakarta Struts,” covers design elements and the common aspects of the
user interaction layer of the reference architecture. The key aspects of web-based user
interaction are abstracted as events, actions, services, and Web pages. These abstrac-
tions and the design considerations are used so that the core responsibilities of the con-
troller architecture can be broken down into eight steps. These steps are automated to
the extent possible and partitioned effectively between the controller and the action
classes. Design considerations for state management are discussed with a brief
overview of scope within the JSP/servlet architecture. Best practices for applying the
Model-View-Controller architecture to J2EE are discussed including managing the ses-
sion size, and JSP templates and encapsulating presentation logic in reusable custom
tags. The last part of this chapter provides an overview of the Jakarta Struts project, an
open-source implementation of the Model 2 architecture. The controller architecture of
Struts is discussed, but the real power is shown to be within the JSP tag library that eas-
ily integrates request-handling functionality into dynamic Web pages.

Chapter 8, “Building the User Interaction Architecture,” walks through the imple-
mentation of the user interaction layer using Struts. Implementation aspects are dis-
cussed and illustrated through practical examples of constructing the bank’s Web site.
The change address and view accounts pages are constructed as examples of simple
update and data retrieval functions. The new customer wizard is constructed as an
example of a multipage form. Strategies for the implementation of the user interaction
components are discussed. Options are shown for implementing the event object and
service data objects both independently and separately. Integrating error handling
from front to back in the reference architecture is discussed and implemented. Some
custom tags are created to illustrate the power of reusable presentation logic that inte-
grates with the reference architecture, such as the drop-down tag, which automatically
gets its data from a specified object cache. The implementation of the JSP template
mechanism, as used by the bank’s pages, is defined and discussed. The creation of
extensible base action classes for standard logic is discussed and implemented. At the
end of this chapter, readers have a complete set of tools and design concepts to rapidly
build transactional Web sites using J2EE technology and a Business Logic Foundation.

Building Business Applications with J2EE xxiii

Chapter 9, “Strengthening the Bank Application: Adding Security and Advanced
Functionality,” gives a brief overview of application security in J2EE and its use in the
bank application. Some of the more interesting design aspects of Web-based applica-
tions are discussed through advanced pages within the bank application. A set of ad-
ministrative pages that introduce implementation strategies for multiple submit
buttons on a form and multiple objects being updated on the same form are developed.

Chapter 10, “Performance,” presents an approach to performance engineering that
balances the focus throughout the software development lifecycle. An emphasis is
placed on scalable architectures and benchmark testing up front to determine the
validity of proposed solutions. Strategies for measuring and optimizing performance
are discussed including object instantiation, object caching, and the use of J2EE com-
ponents such as Entity Beans.

Chapter 11, “Moving toward Reuse in the Reference Architecture,” focuses on
common roadblocks to reuse and best practices that can be used to offset these hurdles.
Roadblocks range from the social aspects all the way to technical limitations. Both J2EE
and the reference architecture are positioned as key aspects of a reuse architecture
based on configuration and extensibility, the use of standard interfaces, and a layered
modular architecture. Reuse and adaptability are considered in a strategic view of the
reference architecture.

Who Should Read This Book

This book is intended for those who have already had some exposure to J2EE tech-
nologies such as EJB and JSP/servlets, although architects and software engineers of
all skill levels will find the design considerations, implementation techniques, and
reusable code useful. Technically astute managers and other information technology
professionals will also find many sections of the book, such as the chapters on security,
performance engineering, and reuse and strategic architecture, helpful.

This material will be of interest to any Java technologist building business applica-
tions using J2EE because it provides concepts and examples of how to build applica-
tions faster and with greater quality. Many J2EE books on the market provide basic API
examples but do not go into detail about the design implications of different J2EE ar-
chitectures or how to automate the development of J2EE components. This book does
those things on both a theoretical and practical level.

Tools You Will Need

To run the sample application and use the business logic foundation software, you will
need the following:

Any J2EE 1.3–compliant application server such as BEA Weblogic 6.1

Jakarta Struts v1.0 or greater, which is available at
http://jakarta.apache.org/struts

(Optional) The Castor Data Binding Framework, part of the ExoLab project,
which is available at http://castor.exolab.org/

What’s on the Web Site

The companion Web site contains all of the code from the Business Logic Foundation
that is discussed as part of the reference architecture. It also contains the code for the
sample bank application. You will also find links to relevant Web sites, open-source
projects, and industry information on:

J2EE and J2EE Blueprints

The Jakarta Struts project

The Jakarta Commons project

The Castor project

Performance testing

Summary

The concepts and principles that are discussed here provide a foundation for a set of
best practices that will be used effectively to build Internet applications using J2EE
technology. These design and development guidelines feed into the creation of a pow-
erful architecture that is used to develop Internet applications faster and with greater
performance, quality, and reusability. J2EE provides a powerful standard upon which
you can build components and applications; with the right set of development prac-
tices and software assets, Web-based business application development moves closer
to a process known as software fabrication, in which applications are built using pre-
fabricated components and frameworks.

xxiv J2EE Best Practices: Java Design Pattens, Automation, and Performance

11

Building Business Applications
with J2EE

C H A P T E R

1

The approach to developing Web applications with J2EE (Java 2 Enterprise Edition) is
based on a number of factors, which include:

The common elements of business applications

The vision of the software architecture; that is, the definition of the components
and their interaction

The J2EE technology platform used to implement the software

Business applications share a number of common elements because they are all used
to implement business processes and manage the information of a business. Conse-
quently, business entities and processes can be modeled as software components. In
today’s world, users access many business applications and their underlying compo-
nents through the Internet, usually by using a Web browser but increasingly through
wireless and other Internet devices. The vision of the software architecture should in-
tegrate the common elements into a component structure that models the business
today and positions it for the future. On the technical side, the architecture should po-
sition the development organization to meet the requirements of flexibility, perfor-
mance, and time-to-market constraints. The execution of the software architecture
vision is driven by the guiding principles discussed in the introduction and a number
of J2EE best practices described in this book.

2 J2EE Best Practices: Java Design Patterns, Automation, and Performance

This chapter defines a set of fundamental elements that are common among Web-
based business applications. This set of key elements drives the definition of a refer-
ence architecture that comprises three layers: business objects, process-oriented or
service-based objects, and user interaction components. The basic theory behind the
J2EE platform approach is briefly discussed and followed by an introduction to a cen-
tral design pattern that is predominantly used to implement J2EE applications, the
Model-View-Controller (MVC) architecture pattern.

Elements of Transactional, Web-Based
Business Applications

Business applications, especially Web-based transactional applications, share many
common characteristics. It is important to take a step back and look at these character-
istics because they form the basis of many application architectures. In fact, these
elements are the model on which the software architecture is based. From these char-
acteristics, you derive the different types of application components and services that
are required. The architectures discussed in the remainder of this book are based on
these elements. These elements map to software layers and components, and a thor-
ough analysis of how the mapping should be done is given in the following chapters.
In short, these elements provide the foundation of the architecture, and they drive the
software layers that enable flexibility and reusability.

Business Entities
Businesses deal with different entities all of the time. These range from higher-level
entities such as a customer or a supplier down to lower levels such as purchase orders
or even perhaps individual line items on a contract. These entities share a number of
common characteristics:

Behaviors

Properties

Relationships with other entities

Rules or policies

An example used throughout the book is a bank. Two primary entities that banks
deal with are customers and accounts. Accounts have properties, such as a current bal-
ance and minimum allowed balance, as well as rules that enforce policies of what hap-
pens when the current balance falls below the minimum. Accounts also have behaviors
such as deposit and withdrawal, and they interact with customers, the other entity in
the bank example.

Entities become participants in business processes. They often have different sets of
business policies or rules that must be enforced. An application will likely be interested
in the persistence of the state of the entities, for example, the status of a purchase order
or the current balance of a bank account.

Building Business Applications with J2EE 3

Business entities are of course the foundation of object-oriented design and devel-
opment. While this book is not meant to be a discussion of object-oriented theory, it is
important to take note of these primary characteristics to motivate further discussion
on their place in the software architecture and on how a technical solution can address
this element of business applications.

Business Processes
Businesses use many processes to carry out the work of their business. These processes
often have some sort of specified workflow and often involve one or more business en-
tities. They must be executed in a secure manner, and they involve units of work that
cannot be broken apart. One example that illustrates both points is the process of trans-
ferring money from a checking account to a money market account. The bank provid-
ing the service does not want the deposit credited without also accounting for the
withdrawal, or it loses money.

The accessibility of these business processes, or services, is becoming ever more of
an issue. In the example, a bank’s customer may want the ability to transfer the funds
from a home PC through a browser or from a wireless device while on the road. Busi-
nesses exchange funds all of the time, and a Web service for a transfer of funds through
a secure, B2B (business-to-business) Internet client provides another potential access
point.

Based on the bank example, business processes share the following characteristics:

Include some flow of activities

Involve business entities as participants

Need to be executed in a secure manner

Comprise units of work essential to the business

Need to be accessible from different clients:

Browser-based applications

Wireless devices

B2B Web services

Other Internet clients

User Interaction
Many business processes would not be very helpful or effective if end users could not
access them. As described in the previous section, the types of access points are grow-
ing, and the requirements can vary widely based on how the information or service
should be presented to each access device.

The user interaction portions of applications typically share the following charac-
teristics:

Application presentation, such as HTML or XML over HTTP

Access to business functions and services

4 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Static and dynamic content

Screen flow, or page navigation

Forms processing

Error handling

The sample bank Web site exhibits these characteristics. There are both static content
(account holder policies) and dynamic content (list of customer accounts and detailed
information about each). In order to transfer funds between accounts, the user must fill
out a quick form to select the amount and the from and to accounts. Any data entry
mistakes, such as entering an amount greater than the balance, must be handled ac-
cordingly and the user must be given the opportunity to retry the transaction.

A bank customer accessing this service from a handheld wireless device would en-
counter all of the same elements. The application itself would need to tailor the content
to fit onto the smaller screen and communicate using WML instead of HTML, but the
same issues exist.

A Web service that can be used by a B2B partner to transfer funds would
share many of the same characteristics except for the content-generation and
screen-navigation elements, but all of the forms-processing and error-handling
logic would still be needed. A Web service is actually a simpler example than the
first two, although it does introduce its own set of challenges. For the most part,
the user interaction layer in the case of a Web service is an HTTP wrapper
around the business process.

The Reference Architecture

The primary elements of business applications naturally fit into layers, starting with
the business entities themselves. They are at the core of what the business deals
with every day. Every business has processes or transactions that involve these entities.
Finally, these processes and transactions need to be accessible to users or business
partners. Figure 1.1 shows how these layers fit together in a reference architecture.
Once you move toward technical solutions to implement these layers, you will see that
your software architecture diagrams closely resemble this diagram.

The software architecture models the three primary elements of business applica-
tions and provides technical implementations for each of them. Each of these cate-
gories is a conceptual layer in the architecture: business entities, business processes,
and user interaction. This book defines a set of terms to describe these software layers
in relation to the reference architecture. Note that these are not standard J2EE terms,
simply a shorthand notation used to communicate the vision of the application archi-
tecture and describe how the components fit together.

Business Object Architecture. The business entities become the core of the
“Business Object Architecture.” This term is used to describe the layer of
business object components that model these entities and interact with
enterprise information systems. This typically involves some combination of

NOTE

Building Business Applications with J2EE 5

Figure 1.1 The Structure of a Business Application.

Web
Browser

Wireless
Device

B2B Web
Service
Client

Thick-Client
Application Transfer

Funds

Purchase
Product

Account

Product

Customer

User
Interaction

Business
Processes

Business
Entities

Change
Address

123 Main.
St.

regular Java classes and Entity Beans in J2EE architectures. Business entities
within the bank example include a Customer and an Account.

Service-Based Architecture. The business processes become a part of the
“Service-Based Architecture.” This term is used to describe the layer of
the business components that implement the processes and workflows of the
business. The typical incarnation of a “service” in this reference architecture is
a stateless Session Bean, although your definition is not limited to this. In this
book, “service” describes a process-oriented object as opposed to an object
that models a particular business entity. A Session Bean can act simply as a
component wrapper to one of your process-oriented objects, although these
objects could be invoked directly from another service or business component
as well. Business processes within the bank example include TransferFunds and
ChangeAddress.

User Interaction Architecture. The user interface and client interaction aspects
are simply called the “User Interaction Architecture.” In a J2EE architecture, this
is typically implemented under the Model 2 approach, which uses servlets and
JavaServer Pages (JSP) to implement a Model-View-Controller (MVC) Web
architecture. User interaction within the bank example includes Web pages with
which the user can transfer funds and change their address.

As described in this book, these layers define interaction points in the software archi-
tecture. Note that at this point you should not consider network or hardware

6 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 1.2 The Basic Architecture Layers Diagram.

Web
Browser

Wireless
Device

B2B Web
Service
Client

Thick-Client
Application

Enterprise
Application

Application
Databases

User Interaction
Architecture

Service-Based
Architecture

Business Object
Architecture

architecture. These software layers could reside on the same physical tier or be distrib-
uted across a network. For now, this is somewhat irrelevant. The interaction of the soft-
ware components and the partitioning of functionality is the key point to be drawn
from this view of the architecture.

Figure 1.2 illustrates the software architecture diagram, which closely resembles the
diagram that represents the flow of business application characteristics.

Business Object Architecture
The Business Object Architecture contains the components that implement the busi-
ness entities in the system. Each of these components manages the data and business
logic associated with a particular business entity. This includes the persistence of that
object’s data, typically to a relational database. This database access can be imple-
mented by the container in the case of CMP (Container-Managed Persistence) Entity
Beans or by the developer in the case of BMP (Bean-Managed Persistence) Entity Beans
or regular Java classes. In the last two cases, in which the developer does the work, it is
a best practice to isolate the database access into a separate data-access layer. If there
is any data access outside of the business object model, this should also be included in
this layer. This includes database queries that are run in order to retrieve read-only
data for presentation to the user.

In the bank application, a business object could represent entities such as a customer,
a bank account, or even an individual transaction on the bank account such as a with-
drawal. These business objects can be implemented either as Java classes, Entity Beans,
or some combination of the two. The persistence of each business object is abstracted

TEAMFL
Y

Team-Fly®

Building Business Applications with J2EE 7

out to the extent possible so that separate data objects, persistence frameworks, or
Container-Managed Persistence services can be used to have the object data persist in
the database.

Service-Based Architecture
The Service-Based Architecture contains the components that implement the business
processes and transactions of an application. These typically are process-oriented
objects that represent units of work or implement a business workflow. Many of the
service components are relatively small in content because the business objects are
used to do much of the work. Other services are quite complicated in nature. Not all
software architectures include a service-based layer; however, it can add tremendous
value in terms of flexibility, reusability, and component design. The concept of services
allows the front end to be decoupled from the back-end business object components.
Service objects are used to coordinate transactions that involve multiple business com-
ponents and provide a simple interface to the user interaction layer. Services them-
selves become reusable across screens, applications, and different client access points.
As you will see, a simple stateless Session Bean wrapper around a service object allows
you to easily distribute the service and manage the transaction as well, one of the great-
est benefits of the EJB (Enterprise JavaBeans) architecture.

One important aspect of the Service-Based Architecture is that services typically fall
into one of two categories: read-only and update. Remember that in the architecture
diagram, all the back-end functionality that is required to create the presentation layer
needs to be provided by a service. Thus, many services within the application archi-
tecture will be data retrieval services.

Depending on the technical architecture, the presentation layer may or
may not be able to contact the data-access layer directly. Some configurations will
separate the user interaction layer (Web container) and the Business Object Archi-
tecture (EJB container) onto different physical tiers with no direct path from the
user interaction layer to the database. Other architectures combine the two layers
on one physical tier. Thus, for maximum efficiency, you would not need a service
to retrieve a result set. This issue is hotly contested in the industry, and will be
covered later in the chapters on User Interaction and Service-Based Architecture.

In the bank application, the business processes include allowing customers access to
their account information, transferring funds between accounts, and changing the cus-
tomer address. These services are implemented as process-oriented objects and then
wrapped with stateless Session Beans to implement the service component pattern dis-
cussed in the introduction. They are initially deployed as remote EJB components so
that the services can be potentially accessed from a number of different clients. How-
ever, a deployment with local interfaces would work equally well in cases where the
Web tier and EJB tiers are colocated on the same physical machine. The J2EE platform
section later in this chapter discusses the different tiers and the nature of the respective
J2EE components in more detail.

NOTE

8 J2EE Best Practices: Java Design Patterns, Automation, and Performance

User Interaction Architecture
The User Interaction Architecture contains components that process user requests, in-
voke application services, and generate responses sent back to the user. In a Web-based
application, this layer would process HTML form submissions, manage state within a
user session, generate Web-page content, and control navigation between pages. It is
easy to see that the user interaction layer has a large number of responsibilities. Thus,
it is not surprising that the User Interaction Architecture has more types of components
than the other two layers combined. Whereas there are only service components in the
Service-Based Architecture and only data and business objects in the Business Object
Architecture, the User Interaction Architecture contains page components, request-
processing components, state management, tag libraries, and user action components
just to name a few. And that doesn’t count content generation, personalization, portals,
and other complexities that factor into many business applications.

The point is that this layer encompasses a lot of functions. The good news is, how-
ever, that many of the functions within this layer can be automated through config-
urable foundation components. Web design will always require people skilled in
graphics design and human factors, but integrating business functionality into Web
pages can be done in a flexible, robust manner through the Model 2 paradigm, the
MVC (Journal of Object-Oriented Programming 1988) architecture pattern applied to
the J2EE Web tier architecture. Both Java Swing and the J2EE Blueprints (Kassem and
the Enterprise Team 2000) sample applications are based on this architecture pattern. A
major portion of the reference architecture discussed in this book is a generic, config-
urable implementation of the Model 2 architecture. This allows you to automate the
processing of user requests and page navigation, a major portion of the responsibilities
within the User Interaction Architecture. Reusable libraries can be used for many of
the other functions, such as tag libraries and style sheets for the purpose of content
generation.

For each layer of the architecture and each element of the business application
within these layers, design choices will be considered that impact the overall goals of
the system, such as performance and flexibility. The four guiding principles discussed
in the introduction will be applied to each element in order to use proven design pat-
terns and automate as much of the processing as possible. The Business Logic Founda-
tion will cut across these different elements to provide configurable, metadata-driven
components to automate the work.

The User Interaction Architecture encompasses any application components resi-
dent on the client device as well. In the case of client-server applications, this would
include the entire thick-client, Java Swing GUI (graphical user interface) application.
However, in the case of thin-client Web applications, this is typically limited to some
amount of JavaScript that runs within the browser. The JavaScript code comes from the
Web server, although it is actually run on the client side. Java applets are an additional
possibility, although they are not often used in enterprise Web development. Thus,
the majority of the user interaction processing for Web applications is handled on the
server.

In the bank application, user interaction is primarily through a set of pages for the
bank’s Web site, which provides customers with access to accounts and Internet bank-
ing functions. There is also a set of Web pages for bank administrators to facilitate

Building Business Applications with J2EE 9

management of some aspects of the application as well as provide the ability to make
adjustments to account transactions. Almost every page pulls in dynamic content from
the application database and provides secure access to the appropriate set of service
components.

The J2EE Platform Approach

As defined in the J2EE Blueprints, the Java 2 Enterprise Edition platform provides a
component-based approach to implementing a multitiered software architecture. This
architecture can be used to model the elements that typically characterize business
applications. The components that make up the architecture are executed in run-time
environments called containers. Containers are used to provide infrastructure-type
services such as lifecycle management, distribution, and security. In a Web-based, thin-
client application, the majority of the software resides on two containers running in-
side of an application server. J2EE application servers provide both a Web container
and an Enterprise JavaBean container. These two environments provide the basis of an
excellent foundation on which to build transactional business applications.

Containers and components in the J2EE architecture are divided into three tiers. The
tiers are defined as:

Client Tier. The Web browser or Java application client.

Middle Tier. Comprising the Web container and the EJB container, the middle
tier contains the business logic of the application and provides any services
available to the client tier.

Enterprise Information Systems Tier. The rest of the enterprise information
architecture including databases and existing applications.

Figure 1.3 shows how the tiers and containers fit together in the J2EE platform.
Note that multiple containers and software layers in the architecture are housed

on the middle tier of the J2EE architecture. This is where the bulk of the work resides;
thus the focus of this book is on this tier. The client tier for a Web application is typically
a Web browser. Other types of clients include a thick-client Java GUI application, Java
applet, and B2B Web service clients. The enterprise information tier consists primarily
of data sources and other existing applications. J2EE provides a number of interfaces
and APIs (application programming interfaces) to access resources in this tier.

The two primary containers of the J2EE architecture, both found on the middle tier,
are the Web container and the EJB container. The function of the Web container is to
process client requests and generate a response, while the function of the EJB container
is to implement the business logic of the application.

Table 1.1 provides a summary of the primary software components that are found
on the middle tier of the J2EE architecture. Note that this list excludes J2EE interfaces
to enterprise tier resources, which are discussed in detail later in this chapter.

It is important to note, and your study of the entire architecture will demonstrate,
that not all of these components are required for every application. In fact, you will
find that many applications are better off using only those components that provide
substantial value for the type of solution being addressed.

10 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 1.3 Basic J2EE Architecture.

Web
Container

HTTP
Request

HTTP
Response

RMI/
Local
Inter-
face

RMI

JDBC

EJB
Container

Service-
Based

Architecture

Business
Object

Architecture

User
Interaction

Architecture

Middle
Tier

Client
Tier

Enterprise
Information

Tier

Enterprise
Application

Servlet

JSP

Session
Bean

Entity
Bean

J2EE
Connector

Web
Browser

Wireless
Device

B2B Web
Service
Client

Database

Table 1.1 J2EE Containers and Components

CONTAINER COMPONENT DESCRIPTION

Web Servlet Component that processes HTTP
requests and generates HTML or
XML responses

JSP Text-based document used to generate
dynamic content that can contain both
HTML content, scriptlets of Java code,
and JSP custom tags

EJB Session Bean Provides a service to a single client

Entity Bean Persistent object that represents an
instance of data across all clients

Message-Driven Bean A consumer of asynchronous messages

Building Business Applications with J2EE 11

Figure 1.4 Elements of Business Applications in the J2EE Architecture.

HTTP
Request

HTTP
Response

RMI/
Local
Inter-
face

RMI

Service-
Based

Architecture

Business
Object

Architecture

User
Interaction

Architecture

JSP
Screens

and
Content

Session
Bean

Business
Objects

J2EE
Connector

Data Access
Objects

Web
Browser

Wireless
Device

B2B Web
Service
Client

Page Flow,
Handle
Forms

Enterprise
Application

JDBC
Database

Entity Bean/
Java Class

Service
Components

Servlet

Figure 1.4 shows the elements of business applications that were discussed previ-
ously. These elements are overlaid on top of the J2EE architecture and components.

The following gives you a look at how the primary J2EE components provide
implementations for the different layers of the business application architecture.

Entity Bean EJBs as Business
Object Components
Entity Beans are meant to represent persistent data entities within an application. An
instance of an Entity Bean typically represents a “row” in a database, but is not neces-
sarily limited to this definition. You can also implement much more coarse-grained
Entity Beans that use either dependent objects (regular Java classes) or other local
Entity Beans to encapsulate logic for a number of related business entities. One of the
major component services that are provided to Entity Beans is that of Container-
Managed Persistence, where the container causes the component’s data to persist in a
relational database. In the EJB 2.0 specification, however, CMP persistence is limited to
one table. Any object-relational mapping scheme more complicated than a one-to-one
table-object mapping is not explicitly supported by the EJB specification except
through Bean-Managed Persistence (BMP), in which you write the persistence code
yourself. It turns out that there are few compelling reasons to take the BMP Entity Bean
approach, but this is only one of a number of persistence options that will be discussed
thoroughly in the upcoming chapters on the Business Object Architecture.

12 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Entity Beans are provided the following services to aid in the development of busi-
ness object components:

Container-Managed Persistence (Bean-Managed Persistence is also an option.)

Management of transaction concurrency through transaction isolation settings

Container-managed transactions (Bean-managed transactions are also an
option.)

Lifecycle management; object pooling

Distribution services; naming and directory services

Security (access control lists)

The primary aspect that makes the Entity Bean model suitable for imple-
menting business entities is that an Entity Bean represents a shared instance of
a persistent data entity that is deployable in a transactional, high-availability
environment.

Session Bean EJBs as Service-Based
Components
A Session Bean represents a service provided to a client, which makes it a natural fit for
a service-based model. Unlike Entity Beans, Session Beans do not share data across
multiple clients. Each user requesting a service or executing a transaction invokes a
Session Bean to process the request.

Session Beans can be either stateful or stateless. Stateless Session Beans do not main-
tain any state between method calls for a given client, and a given instance is typically
multithreaded, servicing multiple clients. After a stateless Session Bean processes a
given request, it goes on to the next client and next request without maintaining or
sharing any data. Stateful Session Beans are often constructed for a particular client
and can maintain state across method invocations for a single client until the compo-
nent is removed.

Session Beans are provided the following services to aid in the development of busi-
ness processes or service-based components:

Container-managed transactions (Bean-managed transactions are also an
option.)

Lifecycle management; object pooling

Distribution services; naming and directory services

Security (access control lists)

JavaServer Pages and Java Servlets as
the User Interface
JavaServer Pages (JSP) and Java servlets are the two primary components of the Web
tier in the J2EE architecture. The primary job of the Web tier and these two components
is to process and respond to Web user requests. Thus, aspects of the User Interaction

NOTE

Building Business Applications with J2EE 13

Architecture such as forms processing and content generation are handled by these
components. The servlet API provides an easy-to-use set of objects that process HTTP
requests and generate HTML/XML responses. The concept of a servlet is to provide a
Java-centric approach to programming Web tier functionality.

JavaServer Pages provide an HTML-centric version of servlets. JSP components are
document-based rather than object-based, but they provide the ability to integrate any-
thing that can be done in Java as well as some other nice conveniences. JSP documents
have built-in access to servlet API objects such as the request and response objects, as
well as the user session object. JSP also provides a very powerful custom tag mecha-
nism that enables you to encapsulate a reusable piece of Java presentation code in an
HTML tag that can be placed directly into the JSP document.

JSP and servlets provide the following user presentation services:

HTTP request processing

HTTP response generation

State management at different context levels:

Application

User session

Request

Page

Integration of HTML/XML content with presentation logic through Java
scriptlets and custom tags in a JSP

Java environment to invoke back-end components such as EJBs through RMI
(Remote Method Invocation) and databases through JDBC (Java Database
Connectivity)

Distributed Java Components
Two core services provided by the Java platform that overlap all of these layers of the
architecture are:

Java Naming and Directory Interface (JNDI)

Remote Method Invocation (RMI) protocol

The JNDI service allows you to name and distribute components within the archi-
tecture. Any Java object can be stored and retrieved using JNDI; however, you will
most often use it for looking up component interfaces to enterprise beans. The compo-
nents and resources that you look up can be either local or remote.

Look at the case of a distributed enterprise component. The client uses JNDI to look
up the corresponding EJB Home interface. This is a special type of interface in Enter-
prise Java that lets you create, access, and remove instances of Session and Entity Beans.
After using the Home interface to gain access to a remote interface of a particular
enterprise bean, you can invoke the exposed methods using RMI. The remote interface
takes the local method call, serializes the objects that will be passed as arguments, and
invokes the corresponding remote method on the distributed object. The serialized

14 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 1.5 Use of JNDI and RMI with EJB
Components.

JNDI
Context

Client EJB Home
Interface

EJB
Component

Interface

EJB Bean
Implementation

lookup

create, find,
remove

business
methods

Pass-by-value
RMI/Serialization

(remote)

Pass-by-reference
(local)

objects passed as arguments are converted back to normal Java objects, and the method
invocation continues as normal until the method returns its value, upon which the
same process occurs in reverse going back to the remote interface client. This process
of using JNDI and RMI with EJB is illustrated in Figure 1.5.

In the case of local Entity Beans, the local Home interface is discovered using a JNDI
lookup. This interface lets you create, access, and remove instances of local Entity
Beans that you then can access through the corresponding bean’s local interface. A
method invocation on a local interface is proxied directly to the bean’s implementation
class and does not go through RMI.

J2EE Access to the Enterprise
Information Systems (EIS) Tier
J2EE provides a number of different interfaces and APIs to access resources in the EIS
tier. Table 1.2 shows the different resource types and the J2EE interface mechanism.

The use of the JDBC API is encapsulated primarily in the data-access layer or within
the Container-Managed Persistence classes of an Entity Bean. Data sources that map
connections to a database are defined in JDBC. A client who wishes to access a partic-
ular database resource uses JNDI to look up the corresponding data source. The J2EE
application server uses this mechanism to provide connection pooling to the different
data resources. It is crucial that clients using these connections close them as soon as

Building Business Applications with J2EE 15

Table 1.2 J2EE Interfaces and APIs to Access EIS Tier Resources

EIS RESOURCE J2EE API DESCRIPTION

Relational Java Database Database-independent APIs to manage
databases Connectivity connections, transactions, and all SQL

(JDBC) and stored procedure execution.

Legacy and Java Connector Provides a standard adapter mechanism
other enterprise Architecture for integrating enterprise applications.
applications

Email server JavaMail API Java API to send and receive email.

Enterprise Java Message A Java messaging architecture that
messaging Service (JMS) supports both point-to-point and

publish/subscribe mechanisms. Also
provides for asynchronous processing
within J2EE environment.

they are done to prevent bottlenecks. For this reason, a data-access layer should
encapsulate all JDBC access.

The logic to access the database connections and close all
of the JDBC resources properly, especially during any error conditions, should be
implemented in one place and used throughout the application.

The Java Connector Architecture provides a standard way in Java to build adapters
to access existing enterprise applications. Another standard interface, the JavaMail API,
provides a nice way to access mail server functions.

The Java Message Service (JMS) provides a standard interface to enterprise messag-
ing systems. It is used within the J2EE architecture to provide asynchronous commu-
nication with other distributed components in a reliable manner. One other interesting
thing to note about JMS is that it is the only mechanism provided in the EJB tier to
perform asynchronous processing. Message-Driven Beans, the third type of EJB, are
consumers of JMS messages and can be used to perform asynchronous or parallel
processing.

As you can see, the J2EE platform provides a wide array of services and components
that can be used to build Web applications. The commonly used Model-View-
Controller design pattern structures the interaction of these components, particularly
on the Web tier. Servlets and JSP naturally fit into the controller and view roles,
respectively, within this pattern. Their usage in this pattern is now commonly referred
to as the Model 2 architecture. MVC has been used within the paradigm of a thick-client
application to tie controls on a screen to their data source within the model. The state-
less nature of Web applications, however, does present some interesting challenges to
applying this pattern in J2EE. Nonetheless, the MVC pattern still provides the best way
to modularize components that handle the user interaction. The next section describes
the MVC approach and applies it to the J2EE architecture.

BEST PRACTIC E

16 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The Model-View-Controller
Architecture Approach

The Model 2 architecture is based on the Model-View-Controller design pattern,
referred to earlier in this chapter. MVC is a cornerstone of software development best
practices, especially in terms of developing the user interface. The pieces of this pattern
are defined as follows:

View. The screens presented to the user

Controller. A component that controls the flow and processing of user actions

Model. The application business logic components

The benefit of using the MVC pattern is that you isolate the different portions of an
application in order to provide greater flexibility and more opportunity for reuse. A
primary isolation point is between the presentation objects and the application back-
end objects that manage the data and business rules. This allows a user interface to
have many different screens that can be changed to a large degree without impacting
the business logic and data components.

Use the MVC, or Model 2, architecture pattern to isolate
and modularize screen logic, control logic, and business logic. A generic MVC
implementation is a key component of the reference architecture as it provides
a flexible and reusable foundation for rapid Web application development.

A view needs to have application data in order to present it to the user. However,
views do not contain the definitive source of data. The model contains and manages the
definitive source of data for all application objects. Thus, when the model updates
its data, it must inform the view that the data has changed. The MVC architecture uses
this notification concept of informing the view of any data that has changed so it can
rerender the display to the user with the accurate and up-to-date information.

Java Swing uses this pattern throughout all of its GUI components. Each screen
widget, such as a JTable, has a model behind it, and the GUI widgets are notified when
the model has been updated so that it can redraw its display with the new data. A Web
application can be thought of in the same way. View objects live in the JSP container,
while model objects live in the EJB container. If view objects persist for the life of a
user’s session within an application, they would need to be notified when the corre-
sponding model objects on the EJB tier are updated.

The controller component isolates how a user’s actions on the screen are handled by
the application. This allows for an application design to flexibly handle things such as
page navigation and access to the functionality provided by the application model in
the case of form submissions. This also provides an isolation point between the model
and the view. Because the controller component handles the user requests and invokes
functions on the model as necessary, it allows for a more loosely coupled front and
back end. Interaction between the model and the view is only through an event-based
mechanism that informs the view of changes to the model’s data.

BEST PRACTIC E

TEAMFL
Y

Team-Fly®

Building Business Applications with J2EE 17

Figure 1.6 MVC Components Mapped to J2EE.

Web
Container

HTTP
Request

HTTP
Response

RMI

EJB
Container

Controller

View

Web
Browser

Wireless
Device

B2B Web
Service
Client

Can Be
Controller

and/or
Model

EntityBean/
Java Classes

JDBC

Servlet

JSP

Session Bean

Model
Database

This and the previous section have discussed how some of the MVC patterns apply
to the Web architecture. Figure 1.6 gives a complete picture of how objects in the MVC
architecture are mapped to the J2EE architecture.

Note that in architectures that do not use Enterprise JavaBeans, the model objects
could just as easily live in the JSP container. MVC is only a software pattern and does
not restrict where components live in the technical architecture. As you look at differ-
ent design patterns and architecture considerations, note that model components may
actually live in both the JSP and EJB containers in the case of value objects or light-
weight business objects. Value objects are primarily objects that act as data structures,
and they may be used as a means to transport data from the EJB tier to the Web tier. In
some cases, they contain a small amount of validation logic, which qualifies them for
the title of “lightweight” business objects. In this sense, they are a part of the model.
The rest of the application logic of the model may be found in stateless or stateful com-
ponents that live on the EJB tier.

Data from the model may be sent to the Web tier either as value objects, XML data,
event objects, or any kind of data structure that you can imagine. The MVC architec-
ture is based on an event notification scheme in which, after the data is initially
retrieved, updates can be received either to inform the view of the change or provide
the new data at the same time. If the new data is not provided, the view or controller is
required to go back to the model to get the new data when a change is made. However,
does the data need to persist on the Web tier or can it be just temporary for the life of a
given transaction, unit-of-work, or screen? This is the topic of a lengthy debate that will
be discussed throughout the chapters of this book. A Web application is different from
a client-server application in that it presents a page of content to a thin-client browser.
It does not need to have data resident on the Web tier any longer at that point. A Web
application typically does not rerender screen components or data without going

18 J2EE Best Practices: Java Design Patterns, Automation, and Performance

back to the Web tier, in which case the view or controller component can make another
call to the application model in order to get the data. This approach makes the data on
the Web tier “temporary.” It resides there for as long as it is needed, usually to render
a given Web page or set of pages.

In any case, performance benefits can be derived from having data on the Web tier.
Data that is cached on this tier and that is used throughout the application can save
you from invoking methods on the application model. This typically saves network
trips, EJB component access, and database processing, all of which can be costly in the
grand scheme of things for high-throughput applications. In most cases, this ends up
being an application-by-application design decision as to determine what, if any, data
should be cached on the Web tier. The HttpSession provides a place to store data for a
given user’s session. This can be easily accessed from the view JSP components. How-
ever, you want to keep the size of an individual user session fairly small.

A large session size can quickly degrade the scalability and
performance of an application. It is recommended that the size of the session be
kept fairly small. How small is small enough? Well, remember that the session
size multiplied by a number of users gives an amount of memory that will be
consumed on the Web tier. Taking into consideration that this amount is only a
portion of the memory needed to run the application, you can get a rough idea of
the number of concurrent users that will be supported by a single instance of a
JSP container. Multiply this number by the number of JSP container instances in
your production cluster, and this gives you a rough limit on the total number of
concurrent users your application can support.

Another benefit of the Web tier “temporary” data approach is that of application
data shared across users. If multiple users can potentially update a certain object, how
do you notify each user session of the change? It is fairly easy to notify the view objects
within the session where the update occurred; however, how do you get hold of the
other user sessions? Now the scenario is getting a bit more complex. JMS could be used
to implement the publish/subscribe mechanism that notifies the view of updates to the
model. However, is this the best option for data stored in a session? Well, it would cer-
tainly seem to work, but you would have a lot of different JMS clients going in and out
of scope as user sessions came and went. This seems like it might be a bit excessive.

The use of JMS as a publish/subscribe mechanism for updating cached
data with changes is actually an excellent approach for systemwide data, and this
is discussed in the Business Object Architecture chapter.

As you can see, there are a number of variations on how this pattern can be applied
to Web architectures. The common variations will be studied in detail in the User
Interaction Architecture chapter. Whether data in the tier containing the View is
persistent or temporary, there is tremendous value in isolating the three MVC aspects
of an application. The architecture discussed in this book also isolates the front
end from the back end. There actually is not a contradiction between the two, but a

NOTE

BEST PRACTIC E

Building Business Applications with J2EE 19

complementary relationship. All of the same components can exist, but at the high
level the distinction between the architecture layers is different. The two overlap in a
couple of different ways:

The User Interaction Architecture includes both the view and controller
components.

In some architecture designs, the controller component may overlap both the
user interaction layer and the service-based layer.

The model includes both the Service-Based Architecture and the Business
Object Architecture.

Figure 1.7 shows how the two architectures overlap.
The controller component can have different functions in the Web architecture on the

different tiers. A controller component in the Web tier can be used for processing HTTP
requests, both form submissions and, potentially, navigation links. A controller com-
ponent on the EJB tier can control the flow of business object functionality. In some
sense, a service-based component that contains workflow type logic implements a
“controller” on the EJB side. A benefit of having a controller component on the EJB side
goes back to a point discussed earlier about the controller being an isolation point
between the View and the Model. This allows the controller components on both tiers
to pass data back and forth and act as an intermediary between the view and the

Figure 1.7 MVC and the Business Application Architecture.

HTTP
Request

HTTP
Response

RMI/
Local
Inter-
face

RMI

Service-
Based

Architecture

Business
Object

Architecture

User
Interaction

Architecture

Model

Controller

View

Session
Bean

Service
Components

Web
Browser

Wireless
Device

B2B Web
Service
Client

Business
Objects

Entity Bean/
Java Classes

Data Access
Objects

JDBC

Controller

Servlet

View

JSP

Database

20 J2EE Best Practices: Java Design Patterns, Automation, and Performance

model. The component layer can then act as a broker for update events when the model
is updated. It is easier to implement this if the update events are represented in a stan-
dard fashion, such as an event object, or with objects that implement a standard inter-
face. Value objects, “lightweight” business objects, and actual business objects can all
implement standard interfaces in order to enable this. There are many other benefits of
this approach that will be discussed in the chapter on the Business Object Architecture.

One option for implementing some of the controller logic is to use a standard base
class for all service-based components. The base class could handle communication of
update event-type functionality. A data structure that combines object data and update
events will be needed to handle this design. If a standard interface is used between the
two controller components (or one Web-tier controller and one service-based compo-
nent, depending on how you look at it), this is made even easier. The benefits of using
a standard interface for service-based components is discussed in detail later on, but
the data structure needs to include these things, as well as things like error information
from the transaction.

Best Practices for Building Business
Applications with J2EE

This section summarizes the best practices discussed within this chapter. A corre-
sponding section is used throughout the chapters of this book to break down the key
concepts and provide a synopsis of the relevant best practices for J2EE development.
At this point, the reference architecture and J2EE technology have only been intro-
duced, so the list of best practices only scratches the surface of what will eventually be
covered. The majority of the best practices will be flushed out in the remainder of the
book as it goes in-depth into each of the architecture layers. For now, a few key best
practices have been highlighted that are summarized here.

Implementing Database Access
In J2EE applications, database access can be implemented either through CMP Entity
Beans or with JDBC in BMP Entity Beans or regular Java classes. For performance rea-
sons, a combination of the two approaches may also be used: Entity Beans for transac-
tional updates and JDBC for read-only queries that are used to present data to the user.
If JDBC is used, the database logic should be isolated into a separate data-access layer
to minimize the impact to the application if either the database schema or vendor
changes. The business objects then use the data-access layer to implement the persis-
tence logic. Remember that in the case of CMP Entity Beans, the container implements
this layer for you.

Managing JDBC Resources
It is crucial that JDBC resources, such as database connections, be closed properly to
prevent resource contention and provide the maximum throughput possible for your
application. The logic to access the database connections and close all of the JDBC

Building Business Applications with J2EE 21

resources properly, especially during any error conditions, should be implemented
in one place and used throughout the application. This logic is typically encapsulated
in some type of JDBC utility class that is used by the entire data access layer.

Structuring Your Application Using
the MVC Architecture Pattern
The MVC architecture pattern should be used to isolate and modularize screen logic,
control logic, and business logic. A generic MVC implementation provides a flexible
and reusable foundation for the rapid development of Web applications. J2EE compo-
nents naturally fit into this pattern to form the Model 2 architecture where a controller
servlet processes requests and dispatches them to JSP view components. This forms the
basis of the user interaction aspect of the reference architecture. Business logic within
the model portion of MVC is implemented using service-based components and busi-
ness objects within the reference architecture.

Keeping the HTTP Session Size
to a Minimum
A large session size can quickly degrade the scalability and performance of high-
throughput applications. It is recommended that the size of the session be kept fairly
small. Exactly how small depends on the characteristics of your particular application.
Early load testing can be done on key architecture scenarios to verify that target con-
current user levels can be adequately supported with any given approach. In general,
use the session to store a minimal amount of state needed to maintain future opera-
tions. Also remember that data stored in the session is not aware of any simultaneous
updates made to the database by other users, so it usually does not make sense to cache
global data in the session.

Summary

With J2EE as the development platform, you have a portable, scalable framework on
which to build applications. However, the technologies are complex with many poten-
tial pitfalls. There is also still a large amount of coding that must be done in order to
create a robust application. Each component must be able to manage its data accurately
and enforce all of the business rules and constraints. The User Interaction Architecture
must be able to drive the user experience, provide dynamic content, process all form
transactions, and handle any errors gracefully. To do this all quickly and with great
quality, you will use the four guiding principles of design patterns, automation,
metadata, and performance considerations to drive the study of advanced J2EE
development.

These software development principles applied together can be used to form the
foundation of a generic Model 2 architecture implementation. This will be the basis of
the reference architecture that will be used to speed the development of quality busi-
ness applications. Additional services such as error handling will also be added to this

22 J2EE Best Practices: Java Design Patterns, Automation, and Performance

foundation. These principles can be equally applied to application components that are
built on top of the business logic foundation. The use of proven design patterns, the
automation of service components, and the use of metadata to drive business process-
ing are all examples of a robust application design.

The next few chapters look at the composition of each layer of the architecture in
detail, apply these principles to the elements of business applications implemented
using the architecture, and examine the ramifications of the design decisions on the
overall application.

2323

The Business Object
Architecture: Design

Considerations

2

The Business Object Architecture is the cornerstone of business application develop-
ment. The majority of the business logic of a given application is found in this layer.
Business object components are the building blocks around which business transac-
tions and processes are built. The other portion of the architecture that makes up the
model of the MVC architecture pattern is the Service-Based Architecture. The service-
based components typically only provide a transactional or process wrapper around
these components. The bulk of the work is still done here within the business object
components. This chapter discusses the common elements of business objects and de-
sign considerations for their implementation in a J2EE environment. Business objects
make up the first layer of the reference architecture that will be discussed and imple-
mented. The central debate within this chapter revolves around two things: options for
object persistence to a database and the criteria for using Entity Beans to implement
business objects. These design considerations are crucial to the next two chapters, in
which the Business Object Architecture is implemented.

One of the core aspects of online transactional applications is managing the persis-
tent state of the business entities. It is the responsibility of the business objects to do
this. Typically, business object data is persistent in a database. The responsibility of
object persistence can be delegated either to the EJB container or to a separate layer
of data-access objects, depending on the business object implementation. Access to
read-only data does not necessarily need to go through the business objects (see debate

C H A P T E R

24 J2EE Best Practices: Java Design Patterns, Automation, and Performance

continued below), but all update operations must go through the business objects in
order to ensure data integrity, because that is where the business rules and validations
exist for a particular object.

Now, the topic of accessing the database outside of the business object model could
easily start a lengthy debate between object-oriented purists and those who value
every CPU cycle in terms of performance. The opinion of this author is that it is quite
all right to do so when the database access is for a read-only operation. If any updates
are being made, it is imperative that the business object model be used because this is
where the business rules and validations that maintain data integrity exist. As it turns
out, a common approach is that of the factory, which ends up being somewhat of a
hybrid of the two. It uses the concept of value objects that act primarily as a data struc-
ture. The data-access layer then provides a result set as a collection of the value objects.
Depending on the implementation of business objects in the architecture, this can be
more efficient than always using the business objects themselves. Of course, the most
efficient approach is iterating through a JDBC result set, a table of rows read directly
from the database. When using this approach, the concept of smart instantiation can be
a helpful one if the read-only operation can lead to an update operation. In this case, a
database query is executed, and the result set is iterated without using the business
object model. However, when it is time for an update operation to occur, a business
object is instantiated from the particular row in the result set.

Figure 2.1 shows the high-level components within the Business Object Architecture
and how they fit into the overall architecture. Keep in mind that in some implementa-
tions, the data objects are not required because the EJB container implements them.

Figure 2.1 High-level Business Object Architecture.

HTTP
Request

HTTP
Response

RMI/
Local
Inter-
face

RMI

Service-
Based

Architecture

Business
Object

Architecture

User
Interaction

Architecture

JSP
Screens

and
Content

Session
Bean

Web
Browser

Wireless
Device

B2B Web
Service
Client

Page Flow,
Handle
Forms

JDBC
Database

Business
Objects

Data Access
Objects

Entity Bean/
Java Class

Service
Components

Servlet

The Business Object Architecture: Design Considerations 25

Figure 2.2 Bank’s Business Object Model.

1 . . M

1

1

0 . . 1

Customer

id:String
firstName:String
lastName:String
customerNumber:int
pin:int

getAddress()
setAddress()
getAccounts()
setAccounts()

Account

id:String
number:String
currentBalance:Decimal
lastModifiedDate:Date
type:String

deposit()
withdraw()

Address

id:String
line1:String
line2:String
city:String
state:String
zip:String
country:String

Transaction

id:String
type:String
transactionDate:Date
amount:Decimal
description:String

Business Objects in a Banking Application

This book uses a banking application as an example to illustrate the elements and best
practices of J2EE applications. In order to determine the business objects within this
domain, it is important to first define a business object. A business object itself models a
business entity. A business entity is loosely defined as something that the business
deals with and that has a set of corresponding data and behaviors. Thus, in the bank-
ing application, a business object could represent things such as a customer, a bank ac-
count, or even an individual transaction on the bank account such as a withdrawal. For
the bank application in this book, the business object model consists of four primary
entities:

Customer

Address

Account

Transaction

The overall business object model is shown in the class diagram in Figure 2.2.
In this object model, the Customer has a single Address that is used for corre-

spondence with the bank. The model may have many Accounts, each of which has a
defined type such as a checking or savings account. ATransaction object is created

26 J2EE Best Practices: Java Design Patterns, Automation, and Performance

each time a deposit, withdrawal, or other transaction affects a particular account. Such
transactions might also include things such as a bank fee or accumulated interest. Con-
sequently, instances of Transaction are usually created by the Account object.
This relationship was not noted as a pure aggregation relationship in the object model,
however, to show the possibilities for modeling the transaction at a higher level. An
aggregated object is owned by another object and shares a similar lifecycle. The
bank application could be designed such that when a customer transfers funds from
one account to another, it is a single business transaction that affects two different
accounts. In this approach, it would not make sense to have the Account aggregate
the Transaction because you would have to choose which of the two accounts is the
“owner.” In the sample application, however, each account object logs a transaction for
this event, so it primarily behaves like an aggregated object in the examples.

This banking example refers to these objects throughout the study of
the Business Object Architecture. Throughout the remainder of the book, you
will build services and Web pages on top of these business objects in order to
construct a transactional Web site for the bank. This J2EE Web application allows
customers to access their accounts, transfer funds, change their addresses, and
perform a number of other functions. You also build Web pages to allow adminis-
trators of the Web site to perform some basic tasks such as recording transaction
adjustments.

Elements of Business Objects

A study of the structure of overall business applications shows that there are many
common elements, with business objects being at the heart of many applications. In
fact, business objects in general drive many of the characteristics of applications be-
cause they are at the foundation of business functionality. They represent the entities
that a business deals with day in and day out. The common characteristics of business
objects are derived from the concepts of object-oriented development. It is important to
take a brief look again at these characteristics because they form the basis of the dis-
cussion of how to implement business objects in the J2EE architecture. The business
object component structure will be based on these elements.

As defined earlier, a business object itself models a business entity, which has a set
of corresponding data and behaviors. Business objects can represent both high-level
entities, such as the account that encompasses large amounts of data, as well as low-
level entities, such as individual transactions against that account. This is enabled by
the fact that business objects can encompass, or aggregate, other business objects. As
another example, a Contract business object could aggregate many LineItem
business objects. At each level of the hierarchy, you can view the objects as potentially
reusable business objects that encapsulate the management of that entity’s data and
business rules.

Consequently, business objects must be able to handle the following basic constructs:

Behaviors, or business methods

Properties

NOTE

TEAMFL
Y

Team-Fly®

The Business Object Architecture: Design Considerations 27

Business rules and data validations

Relationships with other business objects (aggregation, association, and
specialization)

Properties
Every business object has data that it must manage. In the case of a Customer busi-
ness object, these properties include the customer’s first name and last name. To man-
age the state of these properties, business objects have methods to set and get the value
of each property. Thus, the Customer object has a setFirstName method and a
getFirstName method. The state of a business object is made up of the values of all
of its properties.

The state of a business object often persists in a relational database. The business
object needs to be able somehow to map its data to the schema of the relational data-
base being used. Each property usually maps to a database column in a given table.
The simple approach to take (dare I say, keep it simple . . .) is to have the entire set of
properties map to the same database table. There are, however, many more complex
options to object-relational mapping that can be used as well. These options include
mapping a single class to multiple tables as well as mapping inheritance hierarchies to
the same table. Object-relational mapping and other persistence design considerations
are discussed in detail later in this chapter.

Business Methods
Most business objects have a set of operations, or methods, that implement functional-
ity related to the object. Business methods often change the state of the business object
and invoke functionality on other business objects. These changes of state and method
invocations on other objects typically become part of a unit-of-work and thus should
be included as a part of an overall transaction declared by the application.

Business methods contain the business logic that is associated with the given
business entity. For the Account object, the methods include operations such as
withdraw and deposit. Other methods may not be exposed to the client and may
be used only internally, for example, a validate method that gets called when the
object’s data is about to be set to persist in a database.

Business Rules and Validation Logic
Business objects must enforce the data integrity of the entity they represent. All update
operations must go through the business objects for this reason. This includes many
levels of validation. The property values must all be validated. For example, the state
field in an Address component must be a valid state in the United States. This is
referred to as field-level validation. Other types of validation occur at the level of the
entire business object, going across the different properties of the object. Validations
also often go across aggregated objects of a given business component; this type is
discussed next.

28 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Relationships with Other
Business Objects
Many business objects relate to other business objects in a number of ways. There are
three primary categories of relationships: aggregation, association, and specialization.

Aggregation

A business object can contain, or aggregate, another business object. From the earlier
discussion of the bank object, the Customer component contains an Address
component. The Account component contains zero to many Transaction objects.
Aggregation can be either a one-to-one (1:1) or a one-to-many (1:M) relationship. In
object terms, the aggregated object is stored as a member variable or, in the case of a
one-to-many, as a collection of instances. A business object client usually can access
data or methods of the aggregated component through the parent, or containing, com-
ponent. In this example, the Customer component may have a changeAddress
method rather than the client having to get hold of the Address object and call an
individual method on it in order to change the address. In many cases, the design calls
for encapsulation of this type of functionality. You may not want the business object
client to be required to have knowledge of the Customer underlying object model.
Consequently, you may not want to expose the Address component to the client, so
you’ll need to provide a wrapper function on the primary entity. This type of decision
is often determined by whether the business entity being encapsulated is meaningful
when it stands on its own or whether it really makes sense only as a part of the parent
business object.

Aggregated business objects typically share a common lifecycle. For instance, when
an object that aggregates other objects is deleted, the aggregated object may also be
removed in the same manner. In this example, if an instance of the Customer compo-
nent was deleted from the database, you would also want to delete the aggregated
Address instance. Otherwise, you would leave an Address instance in the database
that belongs to a nonexistent customer leading to data integrity problems.

The delete operation of a business object should also
encapsulate the deletion of any aggregated objects in order to ensure data
integrity.

Many business applications do not physically delete records from the
database in order to keep a history of transactions and entities. Instead, they
“inactivate” records through an end date or some other indicator on the record.
The same concept applies for this kind of a delete operation. If you inactivate the
parent business object, you also want to inactivate the child object that was
aggregated.

Likewise, some aggregated objects may not be created until the parent is created.
This object creation may happen either immediately after the parent has been created
or at some point in the future based on a particular behavior. Aggregated objects that

NOTE

BEST PRACTIC E

The Business Object Architecture: Design Considerations 29

share the same lifecycle boundaries as their parent are often referred to as dependent
objects. In the customer example, the corresponding Address object should be
created at the same time as the customer if the business requirement dictates that all
customers must have an address on file. In this case, the customer create operation
should also create the address object for that customer.

The create operation of a business object should also
encapsulate the creation of any required aggregated objects such as a Customer
and the corresponding Address. Other aggregated objects are created later in
the parent lifecycle by corresponding business methods, such as the aggregated
Transaction object that is created by the deposit method on an Account
object.

Association

Business objects often refer to other business objects that are not aggregated compo-
nents. They may invoke business methods on other objects or create instances of other
business objects that have a different object lifecycle. In these cases, the objects are said
to be associated. An example of an association relationship might be between the
Account and an InterestRate object that models a rate of return for a bank
account. The account uses the interest rate object to calculate monthly interest; how-
ever, there is no aggregation relationship between the two objects.

Specialization

Business objects may specialize or, in object terms, inherit from other business objects.
Specialized business objects share the data and behaviors of the inherited business
object, although they may override these behaviors and add additional behaviors and
properties. One example of this might be the Account object. There are different types
of accounts, such as a checking account and a savings account. Instead of making the
account type a property of Account, it could be modeled as the specialized business
objects CheckingAccount and SavingsAccount. These subclasses, or special-
ized classes, could add additional properties that are specific to the account type as
well as additional behaviors that do not exist for a normal account. In other cases, the
Account may have defined methods that are overridden by the specific account
classes because they implement them differently.

Design Considerations

Because the Business Object Architecture is such an integral part of the application
architecture, it must be modeled carefully. There are a number of issues to look at in
creating the implementation model for business objects. First, look at the issue of busi-
ness objects maintaining their own state. In most object-oriented viewpoints, it is a
given that business objects are stateful, that is, they maintain their instance data across
multiple method invocations. However, the concept is worth briefly discussing in

BEST PRACTIC E

30 J2EE Best Practices: Java Design Patterns, Automation, and Performance

order to look at the ramifications of this on the EJB container. Then, look at how to
implement your business objects in the J2EE environment. The primary options are as
follows:

Regular Java classes

Entity Beans

Stateful Session Beans

This book will refer to the use of regular Java classes to implement busi-
ness objects as Java business objects as a shorthand notation throughout the
remainder of the chapters. This is not a new concept, but rather simply refers to
concrete Java classes that store their state as member variables and contain the
business logic related to a particular business entity. These classes are not EJB
components and cannot use standard enterprise bean services in and of them-
selves. However, they can still realize some of the benefits, such as partaking in
container-managed transactions, if wrapped by an EJB component.

Stateful versus Stateless
Business Objects
Two different approaches to business application development have been used in the
past, each with a unique set of advantages and disadvantages.

Stateful. The object maintains its instance data across business logic method
invocations.

Stateless. The object requires that the instance data be passed in as an argument
to business logic methods. No state is maintained within the object itself.

The more object-oriented approach of the two is the concept of stateful business
objects that encapsulate both the application data and its particular business logic. All
of the object’s properties are stored as members of the object, and a given instance of
the object represents a particular instance of a business entity. This is the general
approach taken with Entity EJB. In fact, any time the state of the business object is
changed, it persists in the database as part of an overall transaction. This allows a purer
view of the object-oriented world, in which application service components and busi-
ness methods can modify the state of business objects without being concerned about
the persistence of that state. It is automatically taken care of by the Business Object
Architecture.

A ramification of the stateful approach is that only one client can use an instance of
the business object at a particular time. You cannot multithread operations of a stateful
business object, because the member variables can hold the data for only one instance
at a time. Partially for this reason, Entity Beans are pooled in an application server and
given out to clients as they are requested. However, for each client, the application
server must load the state of the object into its member variables before it is safe for the
client to use it. Another part of the reason an EJB container pools instances is because
Entity Beans are fairly heavyweight components that have a high cost of instantiation.

NOTE

The Business Object Architecture: Design Considerations 31

A straight Java object implementation of stateful business objects would not necessarily
need to pool instances because of a lower cost of instantiation, and thus they might not
need to be shared among clients. Nonetheless, a straight Java business object approach
requires the instantiation of different instances for each client because the multi-
threaded limitation still holds true.

This leads to one of the primary advantages of the stateless approach. In general,
stateless services usually compare quite favorably to stateful services in terms of
scalability and performance. You will see in the discussion of the Service-Based Archi-
tecture that stateless services are favored over stateful services partially for this reason.
A stateless business object does not need multiple instances to handle multiple clients
because it does not store the state of a business object in its member variables. This allows
stateless business objects to be multithreaded and saves time on object instantiation and
garbage collection, one of the keys to increasing the performance of Java applications.

A stateless business object has the state of a given instance passed into the business
methods, usually with a value object that acts as a data structure for the object. It is
easy to see why stateful business objects represent the true object-oriented view of the
world. Stateless business objects are really like process-oriented objects that deal with
a particular entity and the business methods related to it. Business methods of a state-
less business object take in the data object, or value object, manipulate the properties
on the value object, and perform the business logic. They can then have the data per-
sist in the database typically by passing the modified value object to a data-access
object. Some developers find this model works quite well, although it does violate ob-
ject-oriented theory a bit in terms of encapsulating the data and behaviors of an object
in order to accomplish the goal. This technique can be used when performance consid-
erations are taken to the extreme in order to avoid extra object instantiations. However,
it is not used as a regular practice.

Object Lifecycle

The fact that an instance of a stateful business object can be used by only one client at
a time drives the concept of object lifecycle. An instance of an object is instantiated at
some point, initially not containing the state of any given business entity instance. To
be used by a client, the object is first given the state of a particular business object
instance. These first two steps may or may not happen at the same time. After being
used by a client, the business object will at some point either be marked for garbage
collection or put back into an object pool to be reused by another client who repeats the
process of setting the state and invoking business methods. The Enterprise JavaBeans
model handles this lifecycle for you. It manages the creation and instantiation of
objects, the pooling of component instances, and the pooling process of handing them
out to business object clients with the state of the requested object. This functionality is
handled through the EJB Home interface, which also provides APIs to create and
remove instances of particular business objects.

Choosing between the Two

So which approach is better? Stateful business objects are widely used in the industry.
In fact, the folks who wrote the Enterprise JavaBeans specification felt that stateful

32 J2EE Best Practices: Java Design Patterns, Automation, and Performance

business objects made sense in the case of Entity Beans. They are inherently stateful,
and this fact allows the container to easily provide the service of Container-Managed
Persistence. It maps the member variables to columns in a database through the de-
ployment step. The fact that stateful business objects require object lifecycle manage-
ment was also handled by the Enterprise JavaBeans specification. The EJB container
manages the lifecycle of a component, and the client interaction with this lifecycle is
handled through the EJB Home interface.

Table 2.1 describes the pros and cons of both business object approaches.
Either approach can and has been used with great success. However, the use of

stateful business objects is much more prevalent in the industry due to its adherence to
object-oriented theory, primarily the encapsulation of both the data and the behaviors
of an entity within an object. These issues are very closely tied in to the implementation
model that is used for business objects, which is the next design consideration.

Stateful business objects are the approach used throughout the remain-
der of this book. They adhere to the object-oriented theory of encapsulation and
are a predominantly used approach. The Entity Bean model fully supports this
paradigm, and it can also be easily implemented using regular Java classes.

Implementation Model: Entity Bean,
Session Bean, or Java Object
The J2EE architecture provides a number of options for implementing business objects.
As in standard Java development, you can always build your business objects as regu-
lar Java objects, but in the J2EE architecture, there are also two types of enterprise
beans that can be used. The advantage of using an EJB is that a number of additional
component services are provided, as well as a standard deployment model if the busi-
ness object is to be reused across applications or organizations.

Entity Beans are components designed to represent shared instances of persistent
data entities within an application. An instance of an Entity Bean typically represents
a row in a database, but it is not necessarily limited to this definition. Session Beans
are modeled more like process-oriented objects, particularly stateless Session Beans,
although stateful Session Beans are a possibility for business object implementation.

NOTE

Table 2.1 Stateful versus Stateful Business Objects

STATEFUL STATELESS

Pure object-oriented view; Enables Business objects are more process-
encapsulation of data and behaviors oriented; no encapsulation of data and

behaviors

Higher performance cost Multithreaded efficient implementation;
increased performance

Requires object lifecycle Simplified object lifecycle
management

The Business Object Architecture: Design Considerations 33

Because Session Beans, similar to Entity Beans, provide many component services,
they are fairly heavyweight objects and usually have a high instantiation cost within
the container. A stateful Session Bean must be instantiated for each client that re-
quires the use of the business object, as opposed to Entity Bean instances, which can be
pooled by the container and handed out for the use of each client. For this reason,
Entity Beans are around a third faster on some application servers than their stateful
Session Bean counterparts when used as stateful business objects. Consequently, this
book will consider only Entity Beans and Java objects as the primary alternatives from
this point.

Two primary concepts of the business component implementation decision are the
persistence model and the transaction model. Take a detailed look at each for the
different options.

Object Persistence

Business objects implemented as regular Java classes do not have any built-in frame-
work to manage object persistence. An application framework that automates much of
the JDBC processing and ties in to the business object model can make this less of an
issue. While the construction of basic JDBC frameworks can be done fairly quickly, the
creation of highly optimized JDBC frameworks is not a trivial task. Persistence frame-
works that can be used by either BMP Entity Beans or Java business objects are dis-
cussed later in this chapter.

Entity Bean Persistence

One of the primary component services provided with Entity Beans is Container-
Managed Persistence (CMP). In this option, the container uses a deployment configu-
ration to map a set of beans to their respective database tables in order to automatically
manage the selects, inserts, updates, and deletes to the database. The EJB 2.0 persis-
tence model, unlike EJB 1.1, uses an abstract persistence schema.

The abstract persistence schema used by EJB 2.0 refers to the fact that a
bean developer implements only abstract getter and setter methods for both CMP
and CMR (container-managed relationships) fields. The container, upon deploy-
ment, generates a subclass that implements these abstract methods for all of the
properties of the bean. This is vastly different from the EJB 1.1 model, which
required public member variables. The EJB 2.0 model allows the container to
optimize much of the database access because it has greater control over when
to load data and more information about what data was modified. These control
points are provided through the implementation of the abstract getter and setter
methods. For example, the container can choose either to aggressively load a col-
lection of beans or to wait until a getter method is invoked to load the state of an
individual bean. It can also update only those properties of the bean that were
modified in a given transaction because it can take note of this during the setter
methods.

NOTE

34 J2EE Best Practices: Java Design Patterns, Automation, and Performance

EJB 2.0 CMP Entity Beans provide the following persistence services:

Persistence of each Entity Bean’s properties to a single database table (CMP
fields).

Container-managed relationships between related Entity Beans (CMR fields).

Database queries to return individual components or collections of them. This
is done both through the use of finder methods on the EJB Home interfaces as
well as ejbSelect methods within an Entity Bean class.

It is important to note that the EJB specification provides explicit support only for a
one-to-one bean to table mapping. It does not specify a standard mechanism for map-
ping properties of a single Entity Bean to multiple database tables. In terms of more
complicated object-relational mapping with Entity Beans, J2EE container vendors and
object-relational mapping tools vendors compete to provide more flexible persistence
engines built into the Entity Bean component mechanism as a value-added service
within their products.

Entity Beans can also manage their own persistence using the Bean-Managed
Persistence (BMP) option. In this option, the developer uses the EJB hook methods
(ejbStore, ejbLoad, ejbCreate, ejbRemove) as placeholders to implement
persistence on its own. The object lifecycle is still managed by the container because
these hooks are called as determined by the container at various points within a
transaction.

Because Entity Beans are fairly heavyweight components, you might not want to
use a large number of them in a given transaction. The EJB 2.0 specification attempts to
address this by providing local interfaces to access related components in the same
JVM (Java Virtual Machine) without the overhead of RMI. For the purposes of this dis-
cussion, you will see that local interfaces do provide a slightly more efficient way to
use colocated Entity Beans as helper classes that can be used solely for the persistence
of data aggregated within a more complex business object.

An EJB 2.0 component can have a local interface, a remote interface, or
both. Because the interface to an Entity Bean can now be either local or remote,
these are referred to as component interfaces in the specification. Thus, this term
is used when no distinction is required between the two.

In EJB 1.1, every component was assumed to be location independent. This means
that the component could be colocated in the same JVM or it could reside on a remote
server. Thus, every remote call to the Entity Bean was required to go through RMI,
which adds a layer of overhead. All method invocations were pass-by-value requiring
the arguments to be copied, serialized, and sent through the RMI protocol. Well, in
order to efficiently model the concept discussed earlier of aggregated business
objects, you would naturally want to colocate them in the same container instance so
that the method calls between the two aggregated business objects did not actually
have to go over a network. However, the method invocations were still required to go
through RMI because of the location independence feature. Local interfaces in EJB 2.0

NOTE

The Business Object Architecture: Design Considerations 35

provide a mechanism through which a component can invoke another EJB that does
not go through RMI through its local interface. This is essentially equivalent to a
normal method call. However there is still an interface class implementation (the
component interface), generated by the container, that intercepts and proxies the
method invocation. The local component must be resident in the same JVM, and
the arguments are now passed by reference. This changes the programming paradigm
a bit because developers must be aware that objects passed as arguments to EJB
through the local interface can be modified. However, you can now avoid the RMI
overhead on these method calls, allowing yourself to build more fine-grained compo-
nents such as aggregated or dependent objects. Thus, local interfaces should be used
wherever possible.

Comparing Container-Managed
and Bean-Managed Persistence

Following is a comparison between the CMP and BMP approaches. Using CMP actu-
ally has a number of distinct advantages over the BMP approach. The first one is sim-
ple; it is one less component service that you are responsible for developing. If you
consider things such as database optimizations, object relationships, and concurrency
issues, this is a major benefit to application developers. The second reason is that the
EJB 2.0 specification’s abstract persistence schema has provided containers with the
ability to optimize much of the bean’s database access. Although the two options
might be relatively equal with regards to individual database calls, a CMP Entity Bean
usually outperforms a BMP Entity Bean within a transactional application context. An
individual database interaction with either a CMP or BMP Entity Bean, or a regular
Java class for that matter, exhibits similar characteristics on its own because all of the
options execute generally the same JDBC operations. The only noteworthy difference
to this may come with containers that use native calls underneath the hood rather than
JDBC calls. For the most part, however, this has not taken place in the application
server market as products strive to be 100% Java. It is, in fact, the behavior of the com-
ponent implementation model within a transactional application where you see the
differences emerge. For example, consider a finder method invoked on a BMP Entity
Bean’s Home interface. The finder method itself causes a database lookup to get the
primary key. Once a business method is invoked on the component interface, the con-
tainer calls the ejbLoad method to load the state of the instance from the database
prior to the bean’s business method being executed. Thus, the simple operation of
locating an instance of a business object required two database interactions as opposed
to one. It should be noted that CMP Entity Beans have the potential to exhibit the same
behavior if run in a container that does not optimize database access. However, newer
versions of EJB containers are providing much more robust persistence engines, and
the amount of optimization being done has greatly increased. EJB containers are now
also providing much more control over these types of operations in the deployment
configuration so that the application deployer can tune the behavior of Entity Beans.
This can make a significant difference in terms of performance, particularly when
defined data-access patterns exist.

For all of these reasons, there are few compelling reasons to use BMP Entity Beans as
a persistence approach. You get the additional overhead of Entity Beans without

36 J2EE Best Practices: Java Design Patterns, Automation, and Performance

deriving many of the benefits. CMP Entity Beans can provide better performance if
deployed correctly. As you will see, however, the transaction model and general com-
ponent overhead can also greatly affect the overall performance of your applications.
In particular, the Entity Bean model has the potential to increase the amount of data-
base interaction and disk I/O under a heavy user load, which of course decreases the
overall performance and then becomes a factor in the overall decision. One situation
in which this can happen is when there are enough concurrent transactions with
EJB clients that the entire pool of Entity Bean instances is being used at once. In these
cases, the container is often forced to activate and passivate bean instances in order to
balance the load and meet the throughput demands being placed on it. Each of these
operations adds additional I/O, which can slow down the application. This topic is
discussed in detail in the chapter on performance.

Another such example of the component implementation model increasing the
number of database interactions is that of finder methods in Entity Beans. A finder
method declared on a Home interface can return a collection of Entity Bean component
interfaces if the associated database query can return more than one instance. The
client can then iterate through the collection of component interfaces invoking meth-
ods on each one. Similar to the BMP/CMP comparison scenario, if you say the number
of objects found with the query is n, then the number of database interactions used by
the Entity Bean model to call the finder and iterate through the collection can actually
be (n + 1). If the container is using a lazy-loading approach, this is the number of
actual database calls that would be made, which would be horribly inefficient. This
results from the following steps that take place:

1. The finder method is called to run the initial query. This returns a list of primary
keys to the container that translates into component interfaces.

2. As the collection returned from the finder method is iterated, each method
invocation on the Entity Beans can result in another database query (ejbLoad)
if the state of the instance has not already been loaded into the Entity Bean
component. This occurs if either BMP or a lazy-loading CMP implementation
is used.

In many early application server implementations, this inefficient behavior was the
result. Some application servers now allow some control over this behavior by giving
the container a hint to use an aggressive-loading approach. This would populate the
Entity Beans on the initial finder method query. This provides a much more efficient
database interaction, one that you would expect from a high-performance transac-
tional application. However, this approach is also not without its potential problems.
Because Entity Beans are fairly heavyweight components, you can have a large num-
ber of instances that are used for a particular query. If more than a few users are hitting
this particular data retrieval operation at the same time, you could quickly reach the
limit on the pool size for your particular Entity Bean. Once this happens, a pending
client request could cause some of the beans that were just retrieved to passivate. This
causes another level of overhead to be applied to the application when the client iter-
ates through the list, although managing a pool of shared component instances is one
of the EJB container’s specialties, so this may be less of an issue.

TEAMFL
Y

Team-Fly®

The Business Object Architecture: Design Considerations 37

Do not use Entity Bean finder methods to iterate through a
result set of business objects unless you can enforce either a read-only caching
strategy or an aggressive-loading approach by the container. For a result set of
n objects using lazy loading, this can actually cause (n + 1) database interac-
tions. Use a JDBC wrapper component to run the database query and either hold
the result set for iteration or return a set of value objects. This limits the operation
to one database interaction.

For read-only operations, the client can also easily iterate through the data using a
JDBC wrapper component. If transactional update operations are required, a business
object can be instantiated from a given row in the result set. This JDBC wrapper can
become a generic, smart-instantiation list service that is a part of the Business Logic
Foundation. This concept is discussed in full in the next section on building the
Business Object Architecture.

Object-Relational Mapping

There are many different approaches to object-relational mapping, which defines how
an object’s properties map to database tables and columns. As discussed earlier, CMP
Entity Beans are limited to persistence to one table. Any object-relational mapping
scheme more complicated than a one-to-one table-object mapping is not currently sup-
ported specifically by the EJB specification. To implement a more complex approach,
you are required to use either Bean-Managed Persistence, vendor-specific persistence
mechanisms, or your own Java business objects and JDBC. You have already seen that
there are potential performance issues with BMP Entity Beans, so this is not an ideal
approach. The one nice thing about using vendor-specific mechanisms here is that it
largely does not affect the portability of your code. The mapping between object prop-
erties and database columns is done in the deployment step and container-managed
relationships abstract the database specifics of foreign key relationships. Thus, your
bean’s code can operate without specific knowledge of the persistence strategy or data-
base schema. There are a number of object-relational mapping tools that integrate both
into EJB and Java components to cause persistence of the business object data in a data-
base. All of these tools, of course, add some overhead to the processing but provide
additional flexibility in terms of abstracting the object model from the data model.

It is sometimes best to start with the simple approach and see if that works to some
degree of satisfaction. The one-to-one table-object mapping is straightforward and pro-
vides a decent level of performance compared to some of the more complicated
schemes available. The trade-off comes in terms of the object-oriented design. Assume
that for data architecture reasons, the data for a Customer component is actually
stored in four different database tables. Conceptually speaking, a customer is a single
business entity, and thus you would like to represent it with a single business object.
With the one-to-one table mapping, this presents a bit of a problem.

Short of using an object-relational mapping tool, there are some things that you can
do to alleviate this type of problem. The primary tool is that of encapsulation. If you
use a lightweight business object implementation, you can define “business objects”

BEST PRACTIC E

38 J2EE Best Practices: Java Design Patterns, Automation, and Performance

for each table, although some will be used only for database purposes. These could be
called “helper” objects because they really are used only for persistence. The business
logic, in this case, is contained within the “super” business objects that aggregate the
helper objects. In the banking example, you create a Customer business object and
three helper classes, which although technically are business objects in this particular
implementation, will be used only by the primary Customer object for the persistence
of the additional data to those tables. All of the actual business logic associated with
the customer entity resides in the primary Customer object. From the perspective of
a business object client, it looks as if there is a single business object that deals with the
customer, and that is all it needs to know about. The rest of the database logic is
encapsulated within the Customer component. This approach is particularly appeal-
ing if you already have code-generation capabilities for business objects based on the
data model. You can then generate all of the business objects to deal with persistence
and then code business logic in your primary entities.

This approach does have the disadvantage of moving the knowledge of your data
model into the business object layer. However, this is the trade-off for simplicity and,
in many cases, performance. It might not bring a smile to the face of an object purist,
but it is a very commonly used approach. The other model to use is encapsulating this
knowledge in the data-access layer. Thus, you would have only one Customer busi-
ness object and a single data-access object whose data is persistent. Once inside the
data access object, the data fields are moved to the appropriate database tables. This
removes any knowledge of the data model from the business object, although it is dif-
ficult to generate this type of data object through standard code generation. In order to
go to this level, you would either need to hand-code these data objects or use an object-
relational mapping tool.

Transaction Model

The transaction model used by the different implementations is important to under-
stand. If not used correctly, it can greatly affect the overall performance of the compo-
nents in an application.

This section uses the term transaction model to cover not only the transac-
tion management service itself (that is, begin transaction, commit/rollback), but
also how the component behaves throughout the life of a transaction (that is, how
and when it is read from the database, stored back to the database, and so on).

Entity Bean Transaction Model

First, take a look at the model used by Entity Beans. Bean developers can either man-
age the transaction demarcation themselves using bean-managed transactions, or they
can use the container’s transaction management service. This second option, called
container-managed transactions, relies on the transactional nature of Entity Bean meth-
ods to be declared in the deployment process. There are a couple different transaction
settings for a method, REQUIRES, REQUIRES_NEW, and SUPPORTS being the pri-
mary ones. If a method is declared to require a transaction, the container automatically

NOTE

The Business Object Architecture: Design Considerations 39

starts one if the method call is not already part of an overall transaction. Any container-
managed operations or Bean-Managed Persistence code sharing the same JDBC
data source can participate in the database transaction. The transaction is committed
after the highest level method that started the transaction completes, unless any one
of the components participating in the transaction invokes the EJBContext.
setRollbackOnly() method.

Once in a transaction, a client usually makes a request to obtain a particular instance
of an object. An Entity Bean client uses a finder method to locate an instance by the pri-
mary key or some other defined finder method on the Home interface. This requires a
database lookup unless the container has previously cached the primary keys in mem-
ory. The container then grabs a free instance of the component from the pool and loads
the state from the database through an invocation of the ejbLoad method. This must
be done before any component-method invocations are processed by the container.
Although instances of Entity Beans can be cached by the container, it is important to
note that the container must still load the state at the beginning of every transaction in
a clustered environment. Why? Because although the container knows that the state
has not changed in this application server instance, it may have changed on any of the
other server instances in the cluster. Thus, to be safe, it always loads the state from the
database before a client can use the object. Thus, there is very little benefit to be gained
from caching with regards to Entity Beans. In addition to this, each remote method
invocation must go through RMI and serialize all of the arguments in order to make
the method call. Thus, it is recommended that in most cases, Entity Beans be exposed
through their local interface and fronted with a Session Bean component. This concept
is discussed in detail in the Service-Based Architecture chapter. If the Entity Beans do,
in fact, require remote access, they should be designed to be coarse-grained so that it is
not necessary to make a large number of remote method calls to the component.

With regards to the timing of the persistence methods, it is partly up to the discre-
tion of the container when the ejbLoad and ejbStore methods are invoked, as
long as transactional integrity is maintained. However, the normal case and mini-
mum requirement is to invoke ejbLoad at the beginning of every transaction and
ejbStore at the end of every committed transaction, although these methods have
the potential to be invoked more frequently. Once an Entity Bean is loaded for a client
in a transaction, the state of the object may be modified, and it is basically used as a
cache until that transaction completes. No other client can use that particular instance
unless the state is passivated so that it can be restored to complete the transaction.
This can happen under periods of heavy transaction volume if all of the beans in a
given EJB pool are being used. When an Entity Bean is passivated, the state of the
bean is temporarily saved either to disk or to the database in order to ensure transac-
tional integrity and failover. This is something to look out for when sizing the Entity
Bean pools in the container, because the additional I/O can start to really affect the
overall application performance under heavy user loads.

As EJB container implementations mature, developers are starting to see more
optimized database reads and writes within the CMP engine implementations. This
includes optimizing theejbStore logic so that only modified fields are updated to the
database, or else no update at all takes place in the case where no properties have been
modified. Many vendors also offer some level of control over the read and write strate-
gies the container uses regarding its ejbLoad and ejbStore behavior. These

40 J2EE Best Practices: Java Design Patterns, Automation, and Performance

strategies can be adjusted for particular access patterns such as read-only, read-mostly,
and updatable entities. However, the majority of business objects in transactional ap-
plications fall into the last category, and thus exhibit the same behavior previously
described, in which at least one call to ejbLoad and ejbStore is required at the
beginning and end of every transaction. This minimum pattern of database access is, of
course, what you would expect from a transactional application and is the same for
objects implemented as regular Java classes.

Figure 2.3 illustrates the behavior of this Entity Bean transaction model for a single
client invoking a transactional business method. This diagram represents a simple
case. Remember that the Entity Bean could also be a part of a larger transaction already
started by a Session Bean or another Entity Bean.

In its optimized form, the Entity Bean transaction model is comparable to the Java
business object equivalent in which state is loaded at the beginning of the transaction
(ejbLoad) and saved at the end (ejbStore). In nonoptimized or extreme conditions
in a clustered environment, Entity Beans can be very database and disk intensive be-
cause of the need to manage the free pool and activate and passivate instances in a
transactional manner. Other points to consider are that Entity Beans are still fairly
heavyweight components and that local interfaces should be used wherever possible
to avoid RMI overhead.

If you can model your Entity Beans as coarse-grained components, these issues
become less of a consideration, but this has been very difficult to do in practice, espe-
cially because Entity Beans using Container-Managed Persistence have a one-to-one
object-relational mapping limitation. Most business object interaction also requires
multiple method calls. Using only one method invocation takes away many of the

Figure 2.3 Entity Bean Transaction Model: Example of Single Client, Single
Transactional Method.

Entity Bean
Instance

Remote
Interface

Home
Interface

Client

Executed in EJB
Transactional Context

Finder Method
1

ejbFind<Method>
2

Business Method
Invocation

3

ejbLoad4

Business Method Invocation5

ejbStore6

Database

The Business Object Architecture: Design Considerations 41

advantages of having a stateful business object. EJB 2.0 has addressed many of these
issues with local interfaces, although you still must rely on vendor-specific services or
third-party object-relational mapping tools to fully address the persistence issues. The
next sections compare the Entity Bean transaction model against that of regular Java
business objects.

Java Business Object Transaction Model

The transaction model using regular Java classes as business objects depends on the
particular implementation. It does not include declarative transactions on the business
object itself, although they can participate in existing EJB transactions, particularly
those started by a Session Bean. In general, the Java business object approach uses a
similar approach to dealing with business objects within transactions with two notice-
able differences:

Instances of Java business objects are not usually pooled; typically, Java objects
are instantiated for a particular client from the database to represent an instance
of the business entity. Thus, the trade-off is cost of object instantiation versus
cost of activation/passivation under heavy user loads.

Java business objects require participation in a Session Bean transaction,
whether it is a container-managed transaction or a bean-managed transaction.
In either case, it is recommended to wrap business objects with a Session Bean
layer, so there is not much of a trade-off on this point.

Business object persistence within a transaction follows the same pattern under nor-
mal circumstances in either option. A business object is either instantiated or grabbed
from the pool, and the state of that particular instance is loaded from the database.
Methods are invoked on the business objects, and the state is modified. This can hap-
pen for a number of business objects in memory at a time within a transaction. Either
at different points along the way or when all of the work is completed, each business
object can save its data to the database. As long as the data-access objects or Entity
Beans being used share the same data source provided by the application server, the
business objects can participate in the same overall transaction. This works for either
a container-managed transaction declared by a Session Bean or for a user-managed
transaction that is executed specifically in the code. The pattern of using Session Beans
to declare transactions and wrap the business objects in a service is explored in detail
in the chapter on Service-Based Architecture.

One nice benefit provided by the Entity Bean model is that it has a built-in mecha-
nism to handle transaction concurrency. There are different transaction isolation
settings that can be used to prevent multiple users from updating the same instance of
the same business object at the same time. The strictest setting for Entity Beans,
TRANSACTION_SERIALIZABLE, allows only one client at a time to execute a method
on a given instance as defined uniquely by the Entity Bean’s primary key. Note that,
however, this is also the most expensive setting and that a looser setting is more com-
monly used for better performance. A Java business object implementation is required
to implement its own mechanism for transaction concurrency, commonly known as
locking. This topic is discussed in detail in the next design consideration about
handling transaction concurrency.

42 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Overall Comparison of Entity Beans
versus Java Business Objects

So what is the best implementation model to use for business objects? Well, this
depends on your particular situation. You have seen that the performance of the Entity
Bean model is greatly improved in EJB 2.0, although it still presents potential issues
with regard to its behavior under heavy user loads. It is a more heavyweight imple-
mentation model when compared to the Java equivalent, although the container pools
the Entity Bean instances. Again, the issue is how the container is managing the free
pool given the nature of the application and the access patterns it is using. As in most
cases, it is best to do a proof-of-concept in the early stages of developing your architec-
ture by performing some basic load tests. This gives you some general benchmarks to
consider with regards to meeting your performance requirements. This process is dis-
cussed in detail in the Performance chapter. With regard to the straight Java option,
keep in mind that there are a number of infrastructure services, such as persistence and
transaction concurrency, that you must either build on your own or for which you
must use third-party frameworks. Transaction management itself is not really an issue
because Java business objects can participate in a transaction declared by a Session
Bean service component, but an optimized JDBC framework presents a much bigger
challenge. There are a number of JDBC persistence frameworks available including
Webgain’s TopLink, Thought Inc.’s CocoBase, and the open-source Castor project that
will be used in some of the examples in chapter 4. If you have these key services pro-
vided in a Java foundation layer and there are strict performance requirements for
your application, consider the prospect of using Java business objects. However, Entity
Beans can also be an effective solution if you do not have the resources to build these
other services and you can mitigate the performance risks. How do you do this? Well,
with the emergence of the EJB 2.0 specification and more robust CMP engine imple-
mentations from the application server vendors, the J2EE community is seeing higher
levels of optimization, more controls over the persistence strategy, and an increased
ability to effectively model fine-grained components. Mitigating performance risks
with Entity Beans used to be an extremely difficult task under the EJB 1.1 specification,
although it is now starting to get a bit easier.

Thus, the two keys points to look at when considering Entity Beans and Java busi-
ness objects are:

1. Application performance requirements.

2. Ability to develop a Business Logic Foundation layer (or have access to an
existing one) to provide key component services.

When you look at point number two, you may ask yourself, “Why would I want to
develop or use a separate framework when I have the EJB container to provide many
of these services for me?” Well, it really comes down to the first item, performance, and
the maturity of the Entity Bean implementation you are using. EJB 2.0 goes a long way
toward addressing these key points. However, it still does not include the lightweight
persistence option that many people are looking for. The EJB specification group ini-
tially looked at the idea of dependent objects with a different implementation model,
one that was more lightweight, similar to the search for a more lightweight persistence

The Business Object Architecture: Design Considerations 43

option. However, in the end, the approach was simply too awkward, and the group
settled on the local interface approach. The Java Data Objects (JDO) specification is also
out there being addressed separately, outside of the J2EE specification for now, and
may provide an eventual solution for this problem. However, within the J2EE specifi-
cation, the EJB 2.0 abstract persistence schema approach has provided vendors with
the ability to create highly optimized containers, so the focus now changes to execu-
tion. It is your responsibility as a solution provider to put these containers to the test in
your own application environments to see if they meet the challenge.

The major new change introduced in EJB 2.0 was the concept of local interfaces,
which explicitly allow you to avoid the overhead of RMI for colocated beans.

For the most part, Entity Beans will likely have either a local interface or
a remote interface because of the difference in programming paradigm (pass-by-
value versus pass-by-reference) and the nature of remotely distributed compo-
nents versus dependent, or aggregated, components.

Although the local interface approach is good, many EJB container vendors have
already solved part of the problem of inefficient remote method invocations. Many
pre-EJB 2.0 containers, either implicitly under the covers or explicitly through deploy-
ment steps, can optimize RMI calls when EJBs are located in the same JVM. With EJB
2.0, you have a standardized method of controlling this behavior. One thing to note is
that a JNDI (Java Naming and Directing Interface) lookup is still required to locate a
local Entity Bean. This adds some overhead, but can be mitigated through caching of
the Home interface. This topic is discussed in detail in the Performance chapter.

The whole discussion of local and remote Entity Beans also begs the question Why
would I want to expose the business object (in this case, an Entity Bean) remotely any-
way? The architecture described in this book includes a Service-Based Architecture
layer in front of the business objects that addresses this issue. However, even for archi-
tectures without this formal layer, you can always put the Entity Bean behind a state-
less Session Bean component in order to distribute the functionality and manage the
transaction.

Look to the additional performance gains that are being realized through the fact
that J2EE vendors are focused on providing more robust CMP engines to ensure that
the Entity Bean implementation model is a success. A well-optimized CMP engine
implementation can make a big difference in the overall performance of an application.
J2EE application server vendors are providing much more of this in their products, and
they are also allowing more control over some of the optimizations through the de-
ployment step. You have already learned one such optimization with regards to using
finder methods for returning collections of Entity Beans. Using the lazy-loading ap-
proach, you would end up hitting the database once to return the set of primary keys
and then again for each object in the collection. An aggressive-loading approach would
populate all of the Entity Beans at the time the finder method was invoked, thus saving
potentially numerous database calls depending on the size of the collection. Optimized
writes, in which only fields that are modified (if any) are updated as part of the trans-
action, are another improvement.

NOTE

44 J2EE Best Practices: Java Design Patterns, Automation, and Performance

With the new specification and more robust implementations, Entity Beans become
a very viable option for application development. With either option that you choose,
you may want to plan for a potential migration path between Java objects and EJB 2.0
Entity Beans once you see how they behave in your particular application environ-
ment, particularly with robust implementations of the EJB 2.0 specification.

Migrating from Java Objects to Entity Beans

A positive aspect of using standard Java classes as business objects is that it does not
inhibit you from migrating to Entity Beans at some point in the future. This migration
is made even easier if you plan the business object APIs to correspond to functions
provided by the Entity Bean model. Because you need to address the same common
elements of business objects with either approach, an Entity Bean component wrapper
could be added later to an existing Java business object implementation. A business
object factory abstraction, which is used to create, locate, and delete instances, can
make a migration even easier. These topics are addressed in the next chapters on build-
ing the Business Object Architecture. The component wrapper idea follows the same
pattern as the Service-Based Architecture, which is to implement the service as a Java
object and then wrap it with a Session Bean to take advantage of all of the EJB services.
This allows for reuse outside of having you go through the EJB layer.

Comparing Entity Bean and Regular Java Business
Object Implementation Models

So, after all of this discussion, what is the verdict? Well, as it stands currently, Java busi-
ness objects may be better for extremely high-performance applications; however, EJB
2.0 has very closely narrowed the gap and provides a large number of services that you
would have to implement yourself otherwise. One of the primary services to imple-
ment is object persistence. As you will see through the discussion of building the Busi-
ness Object Architecture, you can develop a fairly simple, but effective, persistence
layer without much trouble. However, it will not have all of the optimization features
built in to it as some of the EJB containers would. You can add these features to your
own persistence layer, but this can be an intense endeavor. There are also a number of
other component services that you need to develop that would otherwise be provided
by the EJB container. The next two chapters deal with building the business object
foundation and its corresponding services. After going through this exercise and see-
ing what all is required, you will have a better appreciation for how much work is
involved if you choose not to use EJB to implement business objects. At the end of this
discussion, there is a table that summarizes these component services and how they
can be implemented in either model.

A third hybrid option exists, which is to use a combination of the two. When would
you want to do this? One possible situation might be if you want to take advantage of
the distribution and transaction management features of Entity Beans for a set of
related business objects. This usually happens in a business object hierarchy in which
a business object aggregates many smaller business objects. For example, a Contract
business object might aggregate many LineItem business objects. It may be too

The Business Object Architecture: Design Considerations 45

costly to implement each LineItem as an Entity Bean, even with local interfaces.
However, they may make sense as Java business objects within a Contract Entity
Bean. In this sense, you can build more coarse-grained components that encapsulate a
larger set of functionality. To do this, you would likely use Bean-Managed Persistence
and implement the store and load methods yourself to manage the parent-child busi-
ness objects. You would also want to design the interfaces of the Contract business
object to take all of the data needed to perform a given operation, rather than model it
as a number of smaller method calls.

Table 2.2 compares the two primary models and the hybrid option at a high level,
taking a look at the key aspects of business objects in transactional applications.

When to Use an Entity EJB
over a Java Object

Because Entity Beans add some level of overhead, you should use them where there is
an advantage to do so. As in many design decisions, it is the cost/benefit analysis that
provides the answer to the question. Some possible factors or system requirements that
would drive an implementation toward Entity Beans include:

Coarse-grained component design

Need to distribute the component directly to remote clients, outside of a
service-based component wrapper

Lack of available or planned component framework, including an optimized
JDBC layer for object persistence (that is, use of Container-Managed
Persistence and other Entity Bean services)

Managing transaction concurrency using Entity Bean transaction isolation
setting (noting the associated performance implications)

Desire for industry standard component interfaces and deployment for all
business objects

The last bullet point is one that has not been discussed yet but is worth mentioning.
There is some value to having business objects implemented as Entity Beans because
it provides the basis for an industry-standard component interface. For example, all
Entity Beans have a Home interface that is used to locate, create, and delete instances
of business objects. A Java-based business object approach would need to create its
own object lifecycle mechanism analogous to the features of the Home interface,
although it would still not use the exact mechanism. So, is the Java-based approach
taking away component reusability? To a large extent, no, this is not a limiting factor.
Object lifecycle is but one aspect of a business object. The set of business methods is
always application specific. Additionally, reuse can be achieved at the object level
just as it can at the component level. In many cases, you can reuse services imple-
mented as EJB components that provide remote access to business object functionality
with most of the same benefits. Thus, there is not a distinct argument for wanting to
switch based on this reason alone, but it does provide some standardization that is
worth mentioning.

Ta
b

le
 2

.2
C

om
pa

ris
on

 o
f E

nt
ity

 B
ea

n
an

d
Re

gu
la

r
Ja

va
 B

us
in

es
s

O
bj

ec
t I

m
pl

em
en

ta
tio

n
M

od
el

s

B
U

S
I N

ES
S

H
Y

B
R

I D
:

E
N

TI
TY

 B
EA

N
S

 A
N

D
O

B
J E

C
T

E
LE

M
E

N
T

E
N

TI
TY

 B
EA

N
J A

V
A

 O
B

J E
C

T
A

G
G

R
EG

A
TE

D
 J

A
V

A
 O

B
J E

C
TS

Pe
rs

is
te

nc
e

C
on

ta
in

er
-M

an
ag

ed
 (

ex
pl

ic
it

su
pp

or
t

N
ee

d
ot

he
r

JD
B

C

N
ee

d
to

 u
se

 B
M

P
an

d
ot

he
r

JD
B

C

fo
r

on
e-

to
-o

ne
 o

bj
ec

t-
ta

bl
e

m
ap

pi
ng

,
fr

am
ew

or
k

fr
am

ew
or

k
fo

r
ag

gr
eg

at
e

ve
nd

or
-s

pe
ci

fic
 s

up
po

rt
 fo

r
m

or
e

co
m

pl
ex

ob
je

ct
-r

el
at

io
na

l m
ap

pi
ng

)
or

 B
ea

n-
M

an
ag

ed
Pe

rs
is

te
nc

e

Tr
an

sa
ct

io
ns

C
on

ta
in

er
-m

an
ag

ed
 o

r
us

er
 tr

an
sa

ct
io

ns
C

an
 in

te
gr

at
e

w
ith

Ja
va

 o
bj

ec
ts

 c
an

 in
te

gr
at

e
w

ith
Se

ss
io

n
B

ea
n

tr
an

sa
ct

io
ns

En
tit

y
B

ea
n

tr
an

sa
ct

io
n

or
 u

se
 u

se
r

tr
an

sa
ct

io
ns

Tr
an

sa
ct

io
n

Tr
an

sa
ct

io
n

is
ol

at
io

n
se

tt
in

g
ca

n
be

 u
se

d
to

N
ee

d
ow

n
m

ec
ha

ni
sm

C

an
 u

se
 tr

an
sa

ct
io

n
is

ol
at

io
n

co
nc

ur
re

nc
y

ha
nd

le
 c

on
cu

rr
en

cy
in

 fr
am

ew
or

k
or

se
tt

in
g

as
 lo

ng
 a

s
pa

re
nt

 o
bj

ec
t

ap
pl

ic
at

io
n

is
 a

lw
ay

s
up

da
te

d

Pe
rf

or
m

an
ce

H
ea

vy
w

ei
gh

t c
om

po
ne

nt
 s

tr
uc

tu
re

; h
as

 p
ot

en
tia

l
Fa

irl
y

lig
ht

w
ei

gh
t

M
id

dl
e

gr
ou

nd
 b

et
w

ee
n

th
e

tw
o

to
 b

e
da

ta
ba

se
 a

nd
 d

is
k

in
te

ns
iv

e
in

 e
xt

re
m

e
co

m
pa

re
d

to
 E

nt
ity

pr
im

ar
y

op
tio

ns
si

tu
at

io
ns

, a
lth

ou
gh

 g
en

er
al

ly
 b

en
ef

its
 fr

om
 C

M
P

B
ea

ns
en

gi
ne

 o
pt

im
iz

at
io

ns

D
is

tr
ib

ut
io

n
In

he
re

nt
ly

 u
se

s
JN

D
I a

nd
 R

M
I t

o
pr

ov
id

e
N

ee
d

to
 e

xp
lic

itl
y

us
e

Sa
m

e
as

 E
nt

ity
 B

ea
n

re
m

ot
e

ac
ce

ss
R

M
I o

r,
m

or
e

co
m

m
on

ly
,

(J
N

D
I a

nd
 R

M
I)

w
ra

p
w

ith
 a

 S
es

si
on

 B
ea

n
se

rv
ic

e-
ba

se
d

co
m

po
ne

nt
TEAMFL

Y

Team-Fly®

The Business Object Architecture: Design Considerations 47

Perform some amount of load testing early on in your
projects to determine if Entity Beans provide an acceptable level of performance
in your application environment. As a general rule, you may want to consider
using Java business objects instead of Entity Beans for extremely high throughput
application components. If performance is acceptable, use Entity Beans to take
advantage of a standard component model that provides services such as object
persistence and transaction concurrency. Also, use Entity Beans if you want to
distribute business objects directly to remote clients. When using either
implementation model, consider planning for a migration path between the two.
Application requirements or transaction volumes may change. Robust EJB 2.0
container implementations will likely provide a much increased boost from earlier
versions; however, test in your environment before making a decision to commit
to the Entity Bean model.

Remember that even if you decide not to implement your business objects as Entity
Beans, you can still take advantage of many of the EJB container-provided services
through the use of the service-based components implemented as Session Beans that
sit in front of the business objects in the architecture. For example, the Session Bean
façade can declare the transaction using container-managed transactions and distrib-
ute the functionality with a service wrapper using JNDI and RMI. This is, in fact, a best
practice that is discussed in detail in the chapter on Service-Based Architecture.

Handling Transaction Concurrency

The majority of transactional applications require protection from two users updating
the same business entity at the same time. This can result in one user’s changes over-
riding the other’s and incorrect updates being made because the data was changing
underneath a user during execution of the transaction. In general, there are many pos-
sible conflicts when this occurs. Although unlikely, it can happen and must be handled
in the application architecture. The concept of handling this potential transaction
concurrency is commonly referred to as locking.

There are two general approaches to handling this problem, optimistic or pessimistic
locking.

Optimistic Locking

The optimistic locking strategy focuses on preventing the update collision at the time
that it may occur. When an update collision is actually caught, the first user to get there
is successful, and the second user trying to make an update is informed that the trans-
action failed because of a previous update. The second user usually is allowed to make
a retry attempt after refreshing on the screen the data that was changed during the
other user’s transaction.

Pessimistic Locking

The pessimistic locking strategy focuses on preventing two users from ever getting to
the point at which they could both update the entity at the same time. It prevents users

BEST PRACTIC E

48 J2EE Best Practices: Java Design Patterns, Automation, and Performance

from update collisions by marking each instance that has been opened for update. Any
subsequent attempt by a user to open that instance for edit results in a notification that
another user has the object open, and the second user typically is only allowed to view
the data. Once the original user has released the lock on the object, another user can
open it for update.

Choosing a Locking Strategy and Implementation

The optimistic approach is usually the preferred approach if the chances of an update
collision are slim. Many business applications have users who are “owners” of partic-
ular sets of data. In other cases there is a small group of users who are allowed to
update certain sets of data. In these cases, the chance of two users updating the same
instance of the same business entity at the same time is fairly slim. If this is the case, the
optimistic approach is favored because it typically has less overhead associated with it,
mainly because it does not require a separate lock table or threading mechanism. The
downside of this approach is that when a collision does occur, the second user has to
resubmit the transaction. If optimistic locking is used, it is a good idea to build into the
user interface framework the ability to redraw form fields with the data from the pre-
vious submission so the user does not have to retype the information before resubmit-
ting the form. In other cases, the business requirements dictate a more conservative
approach, and the pessimistic approach should be used when one user opening an
object for update should prevent other users from being able to do the same.

Entity Beans provide a container-managed mechanism for implementing the opti-
mistic locking approach through the transaction isolation setting. This deployment
setting manages the relationship between different transactions using the same Entity
Bean. The strictest setting, TRANSACTION_SERIALIZABLE, allows only one client
to execute a method at a time on a given instance of the Entity Bean. An instance is
defined uniquely by the primary key class for the Entity Bean. Note that using this
technique adds extra overhead to any method defined on your component to be trans-
actional; however, it is a nice service to use that is built in to your EJB. One thing to
watch for when using this technique is not to use Entity Beans to model a small set of
commonly used reference objects, because this will cause a bottleneck. All transactions
will try to invoke methods on these reference objects, and the transactions will be
lining up waiting for their turn because method invocation on an instance of the entity
is single-threaded. When using this technique, it is also important to mark as transac-
tional only methods that actually require it.

There are two primary drawbacks of using the Entity Bean transaction isolation
approach to solve the locking problem. The first of these is that it requires your busi-
ness objects to be implemented as Entity Beans, which, as discussed earlier, is not the
proper approach for all solutions because of the overhead that is incurred by the Entity
Bean model. If you have an application that for reasons discussed stands to benefit
from using Entity Beans, there is still one more thing to consider. The second drawback
is that there is no built-in mechanism to inform users of the fact that another user
updated the business entity underneath them. In terms of update conflicts, the likely
scenario is that two users would navigate to an update screen for the given business
entity. The first user’s transaction would be successful; however, the second user
would now have updated the entity without knowing that the first update is taking

The Business Object Architecture: Design Considerations 49

place. There may be a data conflict between the two changes, and the second user
needs to be made aware of this. If there is a data conflict and the business rules catch
the problem, the error comes back to the second user causing confusion because there
was no problem when the user first viewed the data. This drawback of not providing a
mechanism to inform the user of semiconcurrent updates may not be a problem for all
applications. However, in many cases, it is a system requirement to prevent the second
user’s update from happening and inform the second user that someone else has up-
dated this entity. The best course of action then usually is to send the second user back
to the update screen with the new data for review and resubmission of the transaction
if it still makes sense.

This leads to a solution that works both for regular Java classes and can also cause
the second transaction to fail in the case of an update collision. A commonly used tech-
nique for this is to add an integer property to business objects for which locking is re-
quired. This property is retrieved along with the rest of the object’s data and sent to the
client. In a Web-based application, it might be sent as a hidden HTML field in the form.
When the object is updated (that is, the form is submitted), this property is sent back
and passed along to the data-access layer. The UPDATE SQL includes this property in
the WHERE clause and increments the value by one. If the row in the database is not
found, this means that from the time the object was retrieved and displayed on the
screen, another user updated that instance of the entity. In the case where the UPDATE
statement does not find the row, an Optimistic Lock exception can be thrown. This
would also occur in the case in which another user physically deleted the row; how-
ever, this is really the same business condition as when another user somehow
changed the entity in the time period after the initial data retrieval. By signifying this
condition with a particular exception or error, the User Interaction Architecture layer
can either react to it in some defined manner, or it can treat it as any other error mes-
sage. It is best to use a standard property name for all optimistic lock columns so the
Business Logic Foundation can handle them generically.

For a lightweight optimistic locking solution, use an integer
property with a standardized name on business objects as an optimistic lock col-
umn to handle transaction concurrency. The data access objects can generically
increment the property’s value and include it in the WHERE clause on UPDATE
and DELETE statements. If no rows are found from the SQL statement, an
Optimistic Lock exception is thrown. Many J2EE containers and object-relational
mapping vendors provide support to make implementing optimistic locking quite
easy by allowing the developer to designate an optimistic locking column.

A pessimistic locking approach is much more heavyweight than an optimistic solu-
tion; however, it provides a solid solution for conservative system requirements. The
approach is more complex and usually involves some kind of application lock table in
the database. When a user opens an entity for update, an entry is put in the lock table.
Another user is prevented from opening the entity for update if a lock entry is found
for the given instance. This approach usually requires some application-specific coding
in the user interaction layer as well as some extra logic in the data retrieval services;

BEST PRACTIC E

50 J2EE Best Practices: Java Design Patterns, Automation, and Performance

however, this part can be generalized to some extent. A pessimistic data retrieval ser-
vice always checks the lock table first and returns an extra indicator denoting that the
entity is available for “view-only.” Note that this solution does create a potential bot-
tleneck on the lock table in the database for high-throughput applications.

Best Practices for Designing
Business Objects

A summary of the best practices for designing the Business Object Architecture is given
in this section.

Deciding between Entity Beans and
Regular Java Objects as the Business
Object Implementation
Entity Beans offer a number of compelling component services for business objects
such as Container-Managed Persistence; however, you should load-test early in your
development project to ensure that the use of Entity Beans meets the performance
requirements of your application. Applications with many fine-grained objects or a
large number of business objects in a given transaction should pay particular attention
to the widespread use of Entity Beans. Business objects implemented as Java classes
provide a more lightweight alternative, although you lose the standard component
model and you need to implement the equivalent component services on your own.
Many applications also involve a combination of the two. Use Entity Beans where they
provide the most value in terms of optimized persistence and standard component
deployment and distribution.

Designing Business Objects with a
Potential Migration as an Alternative
If you are unsure of the best option, implement the business objects with a potential
migration in mind between the two models. Your application requirements or transac-
tion volumes may dictate a change at some point. The interface to business objects can
be defined in a similar way for either Entity Beans or Java classes. This includes the use
of template methods on Java objects for create and save operations that correspond to
the ejbCreate and ejbStore methods. This approach facilitates any future migra-
tions between the two implementation models.

Configuring the Entity
Bean Deployment
In its optimized form, the Entity Bean transaction model is comparable to the Java
business object equivalent for which state is loaded at the beginning of the transaction

The Business Object Architecture: Design Considerations 51

(ejbLoad) and saved at the end (ejbStore). In nonoptimized or extreme condi-
tions in a clustered environment, Entity Beans can be very database and disk intensive
because of the need to manage the free pool and activate and passivate instances in a
transactional manner. Use a number of load tests to try and determine the optimal pool
size for the Entity Beans in your particular application.

Using CMP Entity Beans Instead
of BMP Where Possible
CMP Entity Beans should typically be used instead of BMP in order to take advantage
of container optimizations and avoid two database hits when using a business object
(that is, one on the finder method and another on the ejbLoad operation). BMP can
be used to support object-relational mapping strategies not supported by the con-
tainer or to manage the persistence of dependent Java business objects used within an
Entity Bean.

Be Aware of Entity Bean Finder
Implementation Strategies
Do not use Entity Bean finder methods to iterate through a collection of objects unless
you can enforce either a read-only caching strategy or an aggressive-loading approach
by the container. This avoids the (n + 1) database access problem that also appears
on a single BMP Entity Bean lookup. Check your application server’s documentation
for the ability to enforce these strategies or consider the use of JDBC for read-only
operations.

Managing Aggregated
Business Objects
Create and delete operations of business objects should also encapsulate the corre-
sponding creation and deletion of aggregated objects that share the same lifecycle. This
logic can be placed in template methods of your own Java business object implemen-
tation or the equivalent Entity Bean hook methods. In the case of cascading deletes,
Entity Beans can be configured so the logic is accomplished by the container automat-
ically when the parent object is deleted.

Using EJB Local Interfaces
Wherever Possible
In many cases, EJB components do not need to be distributed. Thus, they are typically
deployed uniformly throughout a production application server environment. Local
interfaces should be used in these cases to avoid RMI and serialization overhead on
method invocations. Keep in mind that arguments are passed by reference using local
interfaces, so you must be aware that changes to objects passed as arguments are
visible to the client.

52 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Considering the Simple Case
of a One-to-One Object-Relational
Mapping Approach
There is a lot to be said for keeping the object-relational mapping approach simple and
using a one-to-one table mapping. This allows for a standard code-generation process
to create the data-access objects. Database normalization can still be hidden through
encapsulation on primary business objects. EJB 2.0 local interfaces provide an efficient
way to access related Entity Beans colocated in the same JVM. If a one-to-one table
mapping scheme is used and there are many fine-grained objects in your model, it is
important to use a lightweight business object implementation. You should carefully
consider using Entity Beans across the board in this type of architecture. A lighter-
weight Java object implementation or a combination of Entity Beans and Java objects
might be better in this case.

Implementing More Complex
Persistence Options
One option for implementing complex database mappings is to encapsulate the logic
within the data-access layer. This makes the data-access objects tougher to generate,
but this provides a purer approach to business object persistence. You may still be able
to generate a majority of the data-access layer and hand-code only the objects for
which complex mapping becomes an issue. A variation of this approach is to generate
data access objects that map one-to-one for each table and then implement business
object save logic that uses the appropriate set of data objects.

Considering the Use of
Persistence Tools
For both automation and complex database mapping, it is best to use an object-
relational mapping tool or vendor-specific persistence mechanism if you can afford the
additional overhead cost in terms of performance. Remember that Entity Beans and
Java objects using persistence frameworks are still largely portable even if a vendor-
specific mechanism is used at deployment. In all cases, it is best to do a short proof-of-
concept with some amount of load testing in order to see if an advanced persistence
schema meets your system requirements. While the tools and containers themselves
are fairly well optimized, your particular database schema and access patterns will
largely define the type of performance realized through this type of an approach.

Using an Optimistic Lock Column
for a Lightweight Solution
For a lightweight optimistic locking solution, use an optimistic lock column to detect
and notify users of concurrent updates to business objects. If you are using straight
JDBC, choose a standardized property name for this column. Persistence frameworks
and some J2EE containers already support this mechanism out of the box.

The Business Object Architecture: Design Considerations 53

Summary

Business objects are the implementation of business entities in the reference architec-
ture. In most cases, they are implemented as stateful objects that encapsulate both the
data and behaviors of a given entity. They manage relationships to other objects and
persistence to the database and enforce business rules related to a particular business
entity. The implementation model is typically regular Java classes, Entity Beans, or a
combination of the two.

With the design considerations and best practices from this chapter in mind, the
next two chapters walk through the implementation of business objects in the refer-
ence architecture. Implementations are shown for both Entity Beans and regular Java
classes as well as a number of different persistence options. Keep in mind that there is
no one-size-fits-all approach, so use the guidelines and principles discussed here to
choose the best implementation model for your application.

55

There are many important design decisions that should be factored into the construc-
tion of the Business Object Architecture. One of the primary considerations discussed
in the last chapter is the use of Java classes versus Entity Beans. This chapter gets into
the basics of building business object components using both regular Java classes as
well as EJB 2.0 Entity Beans. Basic elements of business objects such as managing prop-
erties and handling errors are discussed in this chapter, while the remainder of the
functionality, such as persistence and relationships, are discussed in the next chapter.

Managing Properties

Properties of a business object typically use individual getter and setter methods to
manage their values. Most explicit getter and setter methods follow the JavaBeans
specification. This specification states that, for example, a String property field1
will have methods defined as:

public String getField1();

public void setField1(String value);

C H A P T E R

3
Building Business Objects:

Managing Properties
and Handling Errors

56 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Many programs that use business objects refer explicitly to these methods in order
to get and set property values. A benefit of using this specific naming convention is
that the Java language can determine at run time what the properties of a given object
are. This allows a business object to have explicit methods for each property but also
allows a Java program to discover what the properties are at run time and then invoke
the methods to manage the property using introspection.

The JavaBeans specification is different from the Enterprise JavaBeans
specification. It is geared toward GUI components whereas the EJB specification is
geared toward business logic and server-side application components. However,
with regard to properties and the interface of business objects, the two basically
follow the same model. Previously, this was not the case in EJB 1.1 components,
but EJB 2.0 components that use Container-Managed Persistence are required to
do so. Note that the implementations of Entity Bean accessor methods are de-
clared as abstract. An example of this will be discussed in a moment.

Let’s take the sample Account business object and look at its implementation as
both a Java business object and an Entity Bean.

Properties on a Java Object
As a regular Java object, the Account business object stores its properties as private
member variables. The Account has properties that include an internal identifier, an
account number, and a current balance. With this set of properties, the class might start
out looking something like the following using the JavaBeans naming convention:

public class Account {

/*

* The account internal identifier

*/

private String id;

/*

* The external account number

*/

private String number;

/*

* The account current balance

*/

private BigDecimal currentBalance;

/*

* Default constructor to create a new account

*/

public Account() {

currentBalance = new BigDecimal(0);

}

NOTE

TEAMFL
Y

Team-Fly®

Building Business Objects: Managing Properties and Handling Errors 57

/*

* Get the account internal identifier.

*/

public String getId () {

return id;

}

/*

* Set the account internal identifier.

*/

public void setId (String value) {

id = value;

}

/*

* Get the external account number.

*/

public String getNumber () {

return number;

}

/*

* Set the external account number.

*/

public void setNumber (String value) {

number = value;

}

/*

* Get the account current balance.

*/

public BigDecimal getCurrentBalance () {

return currentBalance;

}

/*

* Set the account current balance.

*/

public void setCurrentBalance (BigDecimal value) {

currentBalance = value;

}

}

Code to manipulate these types of business objects is fairly straightforward. A
deposit method that adds money to the current balance of the account might look
like the following:

/*

* Deposit money into the account.

*/

public void deposit(BigDecimal value) {

58 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Get the current balance and add the new value.

BigDecimal balance = getCurrentBalance();

setCurrentBalance(balance.add(value));

}

It is a good practice always to use the getter and setter
methods of a given property, even within other methods in that business object.
This is the strictest form of encapsulation, in which only the getter and setter
methods actually refer to the member variable. The member variables are declared
as private to help enforce this concept, although use within the class itself
requires discipline by the programmer. This technique can be beneficial in many
ways. One example of when this comes in handy is the case in which a property
does not have an assigned value. If you referred directly to the member variable,
your code would get a NullPointerException in this case. However, use of
the getter method can protect you from this condition by checking for this and
initializing the value. This logic can then be implemented and encapsulated in one
place, and other methods do not need to worry about this condition. This concept
becomes even more powerful when the concept of lazy instantiation is used in
getter methods for aggregated objects.

Properties on an Entity Bean
If you are developing a BMP Entity Bean, it is up to you how you want to manage
the properties. In most cases, it is recommended to use the same JavaBeans naming
convention and implementation approach as was just discussed for regular Java
objects. However, a CMP Entity Bean uses abstract accessor methods that implement
the JavaBeans naming specification in order to implement the abstract persistence
approach. The same Account object implemented as an Entity Bean would start to
look like the following.

public abstract class AccountBean implements EntityBean {

//

// Property methods, that is, CMP fields

//

public abstract String getId();

public abstract void setId(String value);

public abstract String getNumber();

public abstract void setNumber(String value);

public abstract BigDecimal getCurrentBalance();

public abstract void setCurrentBalance(BigDecimal value);

//

// EJB methods to follow...

//

}

BEST PRACTIC E

Building Business Objects: Managing Properties and Handling Errors 59

Note that both the class itself and the accessor methods are declared as abstract.
This is because the container is responsible for creating a subclass that implements
these methods at deployment time. Because the container has control of the imple-
mentation of these methods, it can perform the CMP optimizations discussed earlier,
such as lazy loading or dirty checking.

Using a Standard Java Interface
Instead of using explicit methods, you can also use a generic property interface. This
approach uses a standard Java interface, which can be called BusinessObject to
retrieve and modify property values. Using a standard interface is a powerful concept
in the Java language and one that recurs throughout the study of the overall reference
architecture.

Use of a standard interface for business objects is a good
technique that can ensure consistency across business objects. In addition to
making code more maintainable, this standard interface enables you to automate
a number of business object functions and services because you can implement
them generically, referring only to the Java BusinessObject interface.

By using a standard interface, you can generically refer to a business object without
the knowledge of its specific type and method signatures. This concept allows you to
create generic services that refer to business objects only by their interface. You can in-
voke business object methods without knowing what specific business object you are
dealing with. This means you can implement a generic update service that calls a stan-
dard setProperty method and then saves the object to the database. Of course, you
still need to discover the exact properties at run time. You could do this by providing
the object with metadata that defines the properties and their data types. This some-
times can be easier than dealing with JavaBeans and introspection in application code
because you don’t need to write code to deal with an unknown method; you already
know that the setProperty method exists in the standard business object interface.
In the case of Entity Beans, you are required to have explicit accessor methods as shown
in the last example, although you could also additionally implement a generic interface
in order to gain some of the same benefits. The combination of a business object’s meta-
data and a generic property interface can still add value in an Entity Bean scenario by
acting as a helper method for easily iterating an object’s properties in a standard way.
For example, one situation in which this might be helpful is when you are getting all
string values from the front end for properties of different data types. A standard prop-
erty interface that accepts String values can hide the work of converting data types
to explicit setter methods. The details of this approach and the generic property inter-
face will be discussed as the next section studies the implementation of this concept.

Generic Property Interface for Java Objects

If you define a standard setProperty method for Java business objects, you need a
way to deal with different Java data types, such as String and BigDecimal. One
alternative is to use strings for everything and then convert to Java data types when

BEST PRACTIC E

60 J2EE Best Practices: Java Design Patterns, Automation, and Performance

you need to deal with the specific properties in your code. The other alternative is to
deal with the properties as their normal objects. You can define the setProperty
method to take an Object parameter and then allow either the specific data type or a
String as an input argument. One reason to do this is based on the fact that data from
the front end of an application usually originates in a string format, such as data from
an HTTP form submission. If you take this approach, the interface will look something
like the following:

public interface BusinessObject {

/*

* Property management methods

*/

public void setProperty(String propertyName, Object value);

public String getProperty(String propertyName);

public int getIntProperty(String propertyName);

public BigDecimal getDecimalProperty(String propertyName);

public Date getDateProperty(String propertyName);

}

The setProperty()methods need a property name and a value. The object value
can be converted to the String representation using either the basic toString()
method or a defined conversion routine. The latter option is discussed further in the
upcoming section on property formatting. The basic getter method,getProperty(),
returns a String. You can also provide some convenience methods so that business
object clients are not always required to do data type conversions when they know
what type they want to deal with. Thus, methods, such as getDecimalProperty()
and getDateProperty(), that automatically convert from the string to the desired
data type, are provided.

This type of data conversion logic is general to all business objects and can be
implemented in a base class for all business objects. This allows this logic to be imple-
mented once and reused across all business objects. This may not be enough of a rea-
son alone to use a common base class. However, there are other benefits as well, such
as the ability to use superclass methods as templates for common business object
behaviors. An example of this is the save operation that causes the object’s state to
persist in the database. You want the save operation to invoke any validations that
may be required for data integrity. You can implement a save method on the common
base class that provides this behavior as a template for all specific business object sub-
classes. As discussed earlier, Enterprise JavaBeans use a similar template concept for
their persistence mechanism as well.

With regards to properties, you can put the logic of managing the properties in a
common base class. As an added benefit, this also reduces the size of the code base
because the specific business objects require very little code to provide basic property
manipulation functionality.

Figure 3.1 shows the object design of the business objects using a standard interface
and generic property manipulation methods. The specific business object subclasses

Building Business Objects: Managing Properties and Handling Errors 61

Figure 3.1 Business Object Class Diagram.

<<realize>>

MyBusinessObjectBean

property1:<data type>
property2:<data type>

businessMethod1()
businessMethod2()

BaseBusinessObject

setProperty()
getProperty()

<<interface>>
MyBusinessObject

businessMethod1()
businessMethod2()

<<interface>>
BusinessObject

setProperty()
getProperty()

inherit from a common base class and implement the standard BusinessObject
interface.

In order to put the property management logic in the business object base class, you
need a generic scheme to store and manipulate property values. One way to implement
this is to store the property names and values in one of the Collections data structures,
such as a HashMap. The HashMapwould store the name of the property as the key and
the property value as the HashMap value. The value could be stored either as a
String in all cases or as the specific object type that represents that property. If the ap-
proach of storing the specific object is used, you would need to create wrapper objects
for primitive types, such as an Integer object to wrap an int value. Another option is
to define the member variables and explicit accessor methods as you normally would
and then use Java introspection and reflection to implement the generic property meth-
ods. This option provides less flexibility in terms of dynamically defining properties,
but it does provide a nice, straightforward implementation. In most cases, the proper-
ties of a business object are well defined, so this is not much of a consideration. The next
section considers the implementation of both approaches, but in the end, the dynamic
collection of properties will probably only be used as a solution for flexible value
objects. This concept of dynamic value objects will be expanded in the upcoming chap-
ters on the service-based components and the User Interaction Architecture.

Using Metadata to Implement
the Standard Interface

The business object base class can use a metadata configuration to define what the set
of properties is for a given object. The flexibility of XML can be used as a data structure
to define the business object metadata. The Account object might require metadata

62 J2EE Best Practices: Java Design Patterns, Automation, and Performance

that looks something like the following:

<Metadata>

<BusinessObject name="Account">

<Property name="id" type="String" />

<Property name="number" type="String" />

<Property name="currentBalance" type="Decimal" />

</BusinessObject>

</Metadata>

The constructor for the business object base class would need to know only the
name of the business object that is being instantiated. Using this, it could look up the
business object in the metadata file and deal with a set of properties accordingly that
can be managed by the standard setProperty and getPropertymethods. For the
setProperty method, the first option discussed is the implementation that stores
the collection of properties as a HashMap of String objects.

Storing Properties as a Collection of Strings

A basic implementation of the setProperty method would look like the code that
follows. Keep in mind that a more robust version of this method will be shown in the
next section using a structured data conversion routine, but for now, the example
simply uses the toString method.

public void setProperty(String propertyName, Object value)

throws PropertyException {

// Ensure that this is a property on this object.

if (!attributeMetadata.containsKey(propertyName)) {

throw new PropertyException(propertyName +

" is not a property of " + bom.getName());

}

// Set the property value.

attributes.put(propertyName, value.toString());

}

The corresponding getProperty methods would use the property name as a key
value to look up the value in the attributes HashMap. Using these methods, the
deposit method on the Account object would now look like this:

public void deposit(BigDecimal value)

{

/*

* Get the current balance and add the new value.

*/

BigDecimal balance =

getDecimalProperty("currentBalance");

setProperty("currentBalance", balance.add(value));

}

ThegetProperty method would then retrieve properties from the collection using
the property name as the key.

Building Business Objects: Managing Properties and Handling Errors 63

Generic Property Methods Using
Explicit Accessors

A more conventional approach is to define properties as members and have explicit
accessor methods. However, you can still use the generic property methods as a part of
the standard BusinessObject interface. The get/setProperty methods of the
generic interface should use introspection to accomplish this. Rather than go through
the work of coding the introspection yourself, an open-source utility can be used to
make this task very easy. The Jakarta Struts project, which will be looked at in detail in
an upcoming chapter, has a set of bean utilities for this purpose.

The Struts bean utility classes have now been deprecated and moved to
the Jakarta Commons Beanutils project, although they are currently still available
through Struts.

The primary methods used from this package are the corresponding methods on the
PropertyUtils class, which generically implement getter and setter functions on
classes that follow the JavaBeans naming convention.

public static void setProperty(Object bean,

String name,

Object value)

throws IllegalAccessException, InvocationTargetException,

NoSuchMethodException;

public static Object getProperty(Object bean,

String name)

throws IllegalAccessException, InvocationTargetException,

NoSuchMethodException;

An implementation of the setProperty method would look something like the
following using the PropertyUtils class. Note that this method will be revisited in
the next section with a full implementation using a set of data conversion routines.

public void setProperty(String propertyName, Object value)

throws PropertyException {

// Ensure that this is a property on this object.

if (!attributeMetadata.containsKey(propertyName)) {

throw new PropertyException(propertyName +

" is not a property of " + bom.getName());

}

// Validate the data type first because you

// are going to set the actual member variable.

PropertyMetadata prop =

getPropertyMetadata(propertyName);

String propType = prop.getType();

NOTE

64 J2EE Best Practices: Java Design Patterns, Automation, and Performance

try {

// Validate the data type first.

validatePropertyDataType(propType,value);

// Use the utility class to invoke the set method.

PropertyUtils.setProperty(this,propertyName,

value);

} catch (Exception ex) {

throw new PropertyException(ex.getMessage());

}

}

The validatePropertyDataType method will be explained in the
next section on field-level validation. Its primary purpose in these examples is to
ensure that the proper data type is being sent for the given property.

The getter methods for the different data types do not have to perform any conversion
such as would be required from a String stored in a generic collection. They can sim-
ply return the object value cast to its particular type. For example, a decimal property
that would otherwise have been stored as aString in a collection and then used to con-
struct a new BigDecimal object is now simply returned as the BigDecimal object
from the getter method. For example, the getDecimalProperty method can be
implemented as follows:

public BigDecimal getDecimalProperty(String propertyName)

throws PropertyException {

Object value = null;

try {

value =

PropertyUtils.getProperty(this,propertyName);

} catch (Exception e) {

throw new PropertyException(e.getMessage());

}

return (BigDecimal) value;

}

Metadata and the JavaBeans Property Model

Again, look at the JavaBeans approach compared to the metadata model. The JavaBeans
approach uses a standard naming convention to define the set of properties. These
properties can be discovered at run time using introspection. If this can be used, why
would you want to define a separate metadata mechanism for this purpose? Aside from
the convenience, the primary reason is that the metadata can store all of the other
aspects of properties needed to build the application, outside of just the property name
and data type.

NOTE

Building Business Objects: Managing Properties and Handling Errors 65

By using XML metadata to define the properties, you can define for
each property an entire set of information that can be used to further automate
business object functionality. For example, you can add things to the metadata
about each property such as an indicator for required fields and primary key fields.
This allows you to automatically check that all required fields have a value. You
could go beyond this and define the name of a validation class to use to ensure that
the property value is valid. There are endless possibilities to what could be defined
and used to automate business application functionality, especially with regard to
the common characteristics of business applications that show up time after time.

As the study of building the Business Object Architecture continues, you will see
things continually added to the business object metadata for the purposes of automa-
tion. The overall metadata approach for business objects and the resulting DTD (docu-
ment type definition) will be discussed in detail in the next chapter.

Comparing Explicit Property Methods
and Generic Interface Methods

For many developers, using the generic interface methods (setProperty,
getProperty) may seem a bit uncomfortable at first. The generic methods have their
drawbacks when compared to the explicit methods. One major drawback is that of
compile time type checking on the setProperty method. Because any property
value can be passed in as a generic Object argument, this type of edit would not
occur until run time. This drawback must be weighed against the benefit gained from
having all business objects implement a standard interface. There are also human fac-
tors to consider, such as getting your development staff used to the concept of using a
generic interface. On the positive side, service components and other business objects
can easily access data on the business objects if they implement a standard interface.
You can also easily build generic services, such as an update service, that can get and
set property values on an object by referring to objects only by their standard interface
and not by their specific object type.

One other negative point to make about the generic method approach is that it goes
against the JavaBeans specification discussed earlier. Although Java business objects
are not required to implement this specification for property methods, it does provide
a good standard that is commonly used in the industry. So, which approach is better
to use?

Although the business object interface is important, it is not the end
goal here in this discussion. The primary objective is to provide a mechanism that
generically deals with a set of properties. This mechanism should have some kind
of interface that can be used by other business objects and service components.
Thus, as long as you can generically store, manage, and validate properties, the
specific interface is not so important. This is true for either the JavaBeans explicit
getter/setter approach or a generic get/set property approach. A metadata-driven
approach can actually be used underneath either business object interface option.

THOUG HT

THOUG HT

66 J2EE Best Practices: Java Design Patterns, Automation, and Performance

One design that brings the best of both worlds is to actually have both sets of meth-
ods available to business objects. A standard interface can still be used as both helper
methods and standard hooks for validation and formatting logic. These concepts will
be discussed in the next section of this chapter. The explicit accessors in combination
with the generic setProperty and getProperty methods provide the benefits of
the JavaBeans interface while still allowing you to manage the properties generically
and automate data marshalling and validation.

The combination of the explicit and generic accessor methods is an inter-
esting concept that will be looked at further in the Entity Bean implementation.
In the case of CMP Entity Beans, the explicit accessor methods are required, and
they must be defined as abstract on the bean.

The combination approach works extremely well if you have code-generation capa-
bilities out of your design models. You can customize your business object templates to
generate specific getter and setter methods that follow this pattern based on the data
type of the property. This allows clients of the business object to use either method
while still achieving the automation of the property management. This logic can still
reside in the business object base class, so the core template for the business object sub-
class is just this set of getter and setter methods. In the case in which only the standard
interface is used for properties, the core template of the business object subclass is ac-
tually quite empty. To define a business object with properties using this method, you
simply need a constructor that indicates the object name and the metadata defined in
the configuration. Your core Account object (without any business logic added)
would consist of the following:

public class Account extends BaseBusinessObject {

/*

* Default constructor to create a new account

*/

public Account()

{

super("Account");

}

}

Here, the business object base class takes care of looking up the object in the meta-
data and dealing with the list of properties. The combined approach would add the set
of explicit setter and getter methods previously described. In either case, you would
now already have a business object that can manage its properties.

Standard Property Interface
with Entity Beans
In order for the generic property management implementation to work with Entity
Beans, you typically add the explicit accessor methods. The primary reason for this is

NOTE

TEAMFL
Y

Team-Fly®

Building Business Objects: Managing Properties and Handling Errors 67

the fact that Entity Beans require abstract accessor methods for each property in order
to use Container-Managed Persistence. This allows the generated container classes to
implement the CMP properties specified in the deployment descriptors. The container
is not able to access the properties if they are stored as member variables; thus, you are
required to use the explicit getter and setter methods to manipulate the properties.
The implementation of the get/setProperty methods is the same as the previous
example that used the PropertyUtils class to dynamically invoke accessor
methods using reflection.

If you wanted to expose the explicit property accessors of the Entity Bean to clients,
you would add them to their respective component interface. In most cases, Entity
Beans are accessed through a local interface, so the local version of the Account com-
ponent interface is shown here:

public interface AccountLocal extends EJBLocalObject {

// CMP methods

public String getId();

public void setId(String value);

public String getNumber();

public void setNumber(String value);

public BigDecimal getCurrentBalance();

public void setCurrentBalance(BigDecimal value);

}

Remember that there is very little overhead with the invocation of a local interface
method, so you are more likely to have a situation in which you would want to have
fine-grained access to your component’s properties. This is the opposite of how you
usually want to deal with a remote component. In these cases, you usually want to
avoid the RMI and network overhead by using a bulk getter method that returns a set of
the object’s properties through a value object or some analogous data structure. Bulk
getter methods and value objects are discussed in upcoming sections of this chapter. If
you are using the generic property interface, you can create a standard business object
interface that extendsEJBLocalObject for local access. The specific objects will then
extend this standard interface, which can be calledEntityLocalBusinessObject.
The code for this interface follows:

public interface EntityLocalBusinessObject

extends EJBLocalObject {

/**

* Property management methods

*/

public void setProperty(String propertyName, Object value)

throws PropertyException;

public String getProperty(String propertyName)

throws PropertyException;

public int getIntProperty(String propertyName)

throws PropertyException;

68 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public BigDecimal getDecimalProperty(String propertyName)

throws PropertyException;

public Date getDateProperty(String propertyName)

throws PropertyException;

}

Note that the methods are essentially equivalent to directly invoking the method on
the implementation class, as there is no additional RemoteException that can be
thrown. The actual AccountLocal interface is then implemented as follows:

public interface AccountLocal extends EntityLocalBusinessObject

{

}

You could also add the explicit accessors to this interface if you want clients of the
bean to have the ability to use either option.

Field Validation
Three basic types of validation take place at the individual property level:

Data type validation

Required field checking

Application-specific logic (for example, a valid Social Security number).

Business objects often have these validations coded into either the setter methods or
specific validation methods. Separate validation objects are also used in some cases to
isolate validation logic. This technique can be helpful either if the validations can be
reused across objects or if a business object is getting particularly large, and it helps to
move code out to “helper” objects. For business objects that use explicit setter methods,
most data type validation is done inherently through compile-time checking because
the methods take only specific Java data types. Thus, the business object client can pass
only a valid object or primitive type. As far as required field validations and application-
specific edits, you must write code to do that either in the setter method or in a validate
method of the business object.

In the implementation that uses the standard Java interface and the generic
setPropertymethod, you are required to do your own data type validations because
a genericObject is accepted as an argument. You can define both the data type and the
required status of properties in the property metadata. ThesetPropertymethod can
then automatically validate the data type based on the metadata. A general method
validateRequiredFields can be created that goes through the list of property
metadata and validates that each required field has a value.

Using Metadata and Reusable
Property Definitions

Much of the property-level validation logic will be redundant. If you use separate
validation classes to enforce these edits, you can reuse them across business objects. To

Building Business Objects: Managing Properties and Handling Errors 69

do this, you need to know the type of each property. Metadata can be used to define the
data types themselves and the name of a corresponding class to use to validate the value.
Thus, when you want to validate a given property, you pass it through the appropriate
validation class. If a standard interface is used for these classes, you can generically refer
to them and plug in new data types very easily.

An interface for the validator class might be as follows:

public interface PropertyValidator {

public void validateProperty(Object value)

throws ValidationException;

}

In the metadata file, you can add the following, which defines the data types and
handler classes:

<Metadata>

<PropertyDefinitions>

<PropertyType name="Decimal"

handler="blf.DecimalValidator" />

<PropertyType name="int"

handler="blf.NumberValidator" />

<PropertyType name="Date"

handler="blf.DateValidator" />

</PropertyDefinitions>

</Metadata>

The prefix blf will be used as the package name for the foundation layer
classes. This is an acronym for Business Logic Foundation. Any generic class used
as a foundation for the applications goes into this package.

In the foundation layer, you can create validation classes that implement this inter-
face for all of the standard data types. As an example, the decimal validator class
would look like this:

public class DecimalValidator implements PropertyValidator {

public void validateProperty(Object value)

throws ValidationException

{

// Since this method can be invoked with any

// object type, you need to check.

if (value instanceof BigDecimal) return;

if (value instanceof String) {

try {

BigDecimal decimal =

new BigDecimal((String)value);

} catch (Exception e) {

NOTE

70 J2EE Best Practices: Java Design Patterns, Automation, and Performance

throw new ValidationException(value +

" is not a valid property value.");

}

} else {

throw new ValidationException(

"Invalid object type for decimal property.");

}

}

}

For the time being, the PropertyValidator code examples throw a
ValidationException to report an error to the client. Later on in this chapter,
error and exception handling will be discussed and a more robust mechanism
called ErrorList will be implemented to handle and report business errors to
users.

The logic to invoke validator classes for each property can be embedded into the
business object base class. As a part of the validation routine, avalidateProperty-
Values method that loops through each property and calls the validation routine can
be invoked. This is illustrated in the following code:

public void validatePropertyValues()

throws ValidationException, PropertyException {

// For each attribute, validate the property value.

Iterator iter = attributeMetadata.values().iterator();

while (iter.hasNext()) {

PropertyMetadata pmd =

(PropertyMetadata) iter.next();

this.validatePropertyDataType(

pmd.getType(),

getProperty(pmd.getName()));

}

}

public void validatePropertyDataType(String type,

Object value)

throws ValidationException {

// If no value exists, you can’t validate it.

// Return with no error because either

// required checks or validation classes will get this.

if (value == null) {

return;

}

// Look up the property type, get an instance of the

// validator class based on the metadata, and

NOTE

Building Business Objects: Managing Properties and Handling Errors 71

// validate the value.

PropertyValidator validator = null;

try {

validator = (PropertyValidator)

CacheList.getInstance().getObject(

"PropertyTypeCache",type);

} catch (BlfException ignoreForNow) {}

if (validator == null) {

throw new ValidationException("Property type " +

type + " is not a defined type in " +

"the metadata.");

}

validator.validateProperty(value);

}

There is a reference to a CacheList object in this code snippet that
obtains a value of the PropertyValidator. It would seem like wasteful
overhead to create one of these validator classes for each method invocation of
setProperty, especially because it is a stateless service. A good practice for
these types of objects is to cache them and reuse the object instances, because
small, temporary objects are a major cause of performance degradation in Java
applications. This is the first of many reference-type objects that will be cached in
memory. It would be helpful if there was a general-purpose caching mechanism to
do this. Thus, in the next chapter, a CacheList mechanism will be created for
this purpose. This mechanism can be used to store the validator objects.

The last type of field-level validation is put into the category of application-specific
checks. These can be coded into the specific business object methods. However, you
can also put this logic in the property validator classes used to edit field values. This
allows you to define reusable properties, such as a Social Security number property. As
the earlier metadata example showed, you can define these custom property types and
their corresponding PropertyValidator class that should be used for editing their
values.

If you created a reusable Social Security property whose value was expected to be
xxx-xx-xxxx where x is an integer value between 0 and 9, its validation class might
look like this:

public class SSNValidator implements PropertyValidator

{

/*

* Validate a Social Security number string value.

*/

public void validateProperty(Object value)

throws ValidationException

{

NOTE

72 J2EE Best Practices: Java Design Patterns, Automation, and Performance

if (!(value instanceof String)) {

throw new ValidationException(

"Invalid object type for numeric property.");

}

String strValue = (String) value;

// You are expecting the format xxx-xx-xxxx.

int size = strValue.length();

// If it’s not the right length, it is invalid.

if (size != 11)

{

throw new ValidationException(strValue +

" is not a valid property value.");

}

// Loop through the characters and ensure that

// digits and dashes are in the correct positions.

for (int loop=0; loop < size; loop++)

{

if ((loop == 3) || (loop == 6))

{

if (strValue.charAt(loop) != ‘-’)

{

throw new ValidationException(strValue +

" is not a valid property value.");

}

}

else if (!Character.isDigit(

strValue.charAt(loop)))

{

throw new ValidationException(strValue +

" is not a valid property value.");

}

}

}

}

Thus, in some cases, you can combine both data type and application-specific checks
in the validator classes. But what if you had an integer property against which you also
wanted to perform an application-specific edit, such as validating the numeric value
against a valid range? You could create a validator called NumberRangeValidator
that extended NumberValidator and called the superclass method before doing the
range check. This class might look like the following:

public class RangeFieldValidator extends NumberValidator

implements PropertyValidator {

/*

* Validate the property value against a specific

Building Business Objects: Managing Properties and Handling Errors 73

* numeric range.

*/

public void validateProperty(Object value)

throws ValidationException

{

int intValue;

// First, validate that the value is numeric.

super.validateProperty(value);

// If numeric, validate that it falls within the

// given range.

// Get a common int value.

if (value instanceof Integer) {

intValue = ((Integer)value).intValue();

}

else if (value instanceof String) {

intValue =

(Integer.valueOf((String)value)).intValue();

} else {

// You should not ever get here because

// of superclass validation.

throw new ValidationException(

"Invalid object type for numeric property.");

}

if ((intValue < 0) || (intValue > 1000))

{

throw new ValidationException(value +

" is not a valid property value.");

}

}

}

Property Value Formatting
There may be times when you want to get a non-String property value as a String.
Perhaps you are retrieving a numeric or date value only to return it to the front end to
display to the user. In these cases, you want to format the property values appropriately
as a String. This formatting often involves converting a Java data type to a specific
string format. Many non-String properties require additional logic in order to do this
correctly. In other cases, there is also a general need to convert the other way, from a
String to the specific data type. For some data types, this conversion and formatting
is fairly straightforward. Integers and decimals have standard conversion routines
already provided by Java. For others such as a date field, there is not one standard for-
mat or conversion routine. A date can be specified as a string in a number of different
ways, often determined by the locale and internationalization. For example, the date of
July 14, 1972, could be displayed as ‘07/14/1972’, ‘1972-07-14’, or ‘Jul-14-1972’ just to
name a few options.

74 J2EE Best Practices: Java Design Patterns, Automation, and Performance

You may be thinking, why would you put a form of presentation logic in
your business objects? Well, this property-handling mechanism can also be used
to convert values between external formats and internal storage formats. This can
be seen as a business object function. This also provides a nice clean implementa-
tion to allow the standard setProperty interface to take String values for
any property type. Normally you would not put presentation logic in the business
objects, but you will see in the next section that business objects and value
objects are closely related. The value objects can definitely use this type of
presentation logic, and you may be able to reuse this same property-handling
mechanism in a value object base class.

A reusable property mechanism that provides validation has already been created.
You can extend this mechanism to include formatting also. In addition to implementing
aPropertyValidator interface, the property classes can also implement a standard
interface called PropertyHandler. The implementation classes for these interfaces
can be called property handlers now that they provide conversion and formatting rou-
tines in addition to validation. Thus, the validation classes can be renamed appropri-
ately and the corresponding property type metadata can be changed to reflect this. The
PropertyHandler interface can be specified as:

/**

* This interface is used for formatting and converting

* a property value.

*/

public interface PropertyHandler {

public Object convertToStringFormat(Object value)

throws PropertyException;

public Object convertToObjectFormat(Object value)

throws PropertyException;

public String convertToDisplayFormat(Object value)

throws PropertyException;

}

In essence, the primary purpose of this interface is to convert between Java data type
objects and their string representations. Note that the conversion methods could be
used conversely if a value object or business object base class stored properties as a col-
lection of String objects. In most cases however, the conversion to a String format
happens only for display purposes. Because this mechanism is used in many different
scenarios, each PropertyHandler takes an Object, and the implementations need
to deal with different object types.

For simplicity, assume that the application has settled on the date format
MM/dd/yyyy to be used throughout the application. The property handler class for
dates can now be specified as the following class. Note that this same class implements
the PropertyValidator and PropertyHandler interfaces; thus, you can encap-
sulate the property manipulation in one implementation class.

NOTE

Building Business Objects: Managing Properties and Handling Errors 75

package blf;

import java.text.SimpleDateFormat;

import java.util.Date;

/**

* This class is used to handle date properties.

*/

public class DateHandler

implements PropertyValidator, PropertyHandler {

public void validateProperty(Object value)

throws ValidationException {

// Since this method can be invoked with any

// object type, you need to check.

if (value instanceof Date) return;

if (value instanceof String) {

try {

SimpleDateFormat sdf =

new SimpleDateFormat("MM/dd/yyyy");

java.util.Date myDate =

sdf.parse((String)value);

} catch (java.text.ParseException pe) {

throw new ValidationException(value +

" is not a valid property value.");

}

} else {

throw new ValidationException(

"Invalid object type for date property.");

}

}

public Object convertToStringFormat(Object value)

throws PropertyException {

if (value instanceof String) {

return value;

}

else if (value instanceof Date) {

SimpleDateFormat sdf =

new SimpleDateFormat("MM/dd/yyyy");

return sdf.format((Date)value);

} else {

throw new PropertyException("Invalid date format");

}

}

public Object convertToObjectFormat(Object value)

throws PropertyException {

76 J2EE Best Practices: Java Design Patterns, Automation, and Performance

if (value instanceof String) {

SimpleDateFormat sdf =

new SimpleDateFormat("MM/dd/yyyy");

try {

Date myDate = sdf.parse((String)value);

return myDate;

} catch (Exception e) {

throw new PropertyException(e.getMessage());

}

}

else if (value instanceof Date) {

return value;

} else {

throw new PropertyException("Invalid date format");

}

}

public String convertToDisplayFormat(Object value)

throws PropertyException {

return convertToStringFormat(value).toString();

}

}

Effect on getProperty Method

The standard getProperty method that returns a String can be modified to
use these formatting classes to return the proper formatted value. Likewise, if the
setProperty method takes a String, it can use these classes to convert to the spe-
cific Java object. The code for getProperty would look like the following code snip-
pet that uses the generic property-handling mechanism:

/**

* The standard getProperty method that returns a string

*/

public String getProperty(String propertyName)

throws PropertyException {

// Ensure that this is a property on this object.

if (!attributeMetadata.containsKey(propertyName)) {

throw new PropertyException(propertyName +

" is not a property of " + bom.getName());

}

Object value = null;

try {

// Get the member variable value as an object.

Object obj =

PropertyUtils.getProperty(this,propertyName);

TEAMFL
Y

Team-Fly®

Building Business Objects: Managing Properties and Handling Errors 77

// Convert the object to a string using the

// property-handler mechanism.

PropertyMetadata prop =

getPropertyMetadata(propertyName);

String type = prop.getType();

value = convertToStringFormat(type,obj);

} catch (Exception ex) {

throw new PropertyException(ex.getMessage());

}

if (value == null) return null;

return value.toString();

}

/**

* A helper method to invoke the

* property-handling mechanism

*/

public Object convertToStringFormat(String type,

Object value)

throws PropertyException {

// If no value exists, you can’t convert it.

if (value == null) {

return null;

}

// Look up the property type, get an instance of the

// handler class based on the metadata, and

// convert the value.

PropertyHandler handler = null;

try {

handler = (PropertyHandler)

CacheList.getInstance().getObject(

"PropertyTypeCache",type);

} catch (BlfException ignoreForNow) {}

if (handler == null) {

throw new PropertyException("Property type " + type

+ " is not a defined type in the metadata.");

}

return handler.convertToStringFormat(value);

}

Thus, if the sample Account Entity Bean had a last-modified date property and the
following statement was executed:

System.out.println("The account was modified on: " +

account.getProperty("lastModifiedDate");

78 J2EE Best Practices: Java Design Patterns, Automation, and Performance

You would see the following written to standard out:

The account was modified on: 07/14/1972

If the property-handling mechanism was used generically as in the pre-
ceding example, you need to implement PropertyHandler classes for all of
the data types. This is not a problem or even a performance issue because of the
simplicity. However, it does require the implementation of some primitive
implementations in the business logic foundation.

For example, the StringHandler class would look like this:

public class StringHandler

implements PropertyValidator, PropertyHandler {

public void validateProperty(Object value)

throws ValidationException {

if (!(value instanceof String)) {

throw new ValidationException(

"Invalid object type for numeric property.");

}

}

public Object convertToStringFormat(Object value)

throws PropertyException {

return value;

}

public Object convertToObjectFormat(Object value)

throws PropertyException {

return value;

}

public String convertToDisplayFormat(Object value)

throws PropertyException {

return convertToStringFormat(value).toString();

}

}

The property-handler implementation for decimals is fairly simple as well. If
you are happy with the toString implementation of the object, as is the case for
BigDecimal, you can simply return the object when converting to the external for-
mat. Converting to internal format in this case only requires you to construct a
BigDecimal object, passing the string as an argument.

NOTE

Building Business Objects: Managing Properties and Handling Errors 79

Effect on setProperty Method

Similar to getProperty, you could allow the standard setProperty method to
take String representations for non-String properties. The setProperty
method can be modified to use the property-handler class to convert values into the ex-
plicit Java data types for Entity Beans and to strings for Java business objects. The code
for Entity Bean setProperty would be modified as such:

public void setProperty(String propertyName, Object value)

throws PropertyException {

// Ensure that this is a property on this object.

if (!attributeMetadata.containsKey(propertyName)) {

throw new PropertyException(propertyName +

" is not a property of " + bom.getName());

}

// Validate the data type first because you

// are going to set the actual member variable.

PropertyMetadata prop =

getPropertyMetadata(propertyName);

String propType = prop.getType();

try {

// Validate the data type first.

validatePropertyDataType(propType,value);

// Use the utility class to invoke the set method.

PropertyUtils.setProperty(this,propertyName,

convertToObjectFormat(propType,value));

} catch (Exception ex) {

throw new PropertyException(ex.getMessage());

}

}

/**

* Helper method to invoke the property-handling mechanism

*/

public Object convertToObjectFormat(String type,

Object value)

throws PropertyException {

// If no value exists, you can’t convert it.

if (value == null) {

return value;

}

80 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Look up the property type, get an instance of the

// handler class based on the metadata, and

// convert the value.

PropertyHandler handler = null;

try {

handler = (PropertyHandler)

CacheList.getInstance().getObject(

"PropertyTypeCache",type);

} catch (BlfException ignoreForNow) {}

if (handler == null) {

throw new PropertyException("Property type " + type

+ " is not a defined type in the metadata.");

}

return handler.convertToObjectFormat(value);

}

A corresponding Java business object implementation that stored
properties as a collection of String objects would invoke the convert-
ToStringFormat method instead within setProperty.

Use in Value Conversions

You can also use this mechanism for another purpose. Sometimes the storage format,
or internal format, is different than the input format (or external format). As a con-
trived example, take the Social Security number property. Assume the external format
is ‘xxx-xx-xxxx.’ However, you don’t want to store the extra dashes and waste two
characters, so you will store the SSN as ‘xxxxxxxxx.’ You can use the property-handler
mechanism to convert between the two. The convertToObjectFormat removes
the dashes and the convertToStringFormat adds the dashes. The SSNHandler
would look like this:

public class SSNHandler

implements PropertyValidator, PropertyHandler

{

/*

* Validation method from previous example

*/

public void validateProperty(Object value)

throws ValidationException {

// validation code here...

}

public Object convertToStringFormat(Object value)

throws PropertyException {

NOTE

Building Business Objects: Managing Properties and Handling Errors 81

// Ensure that you are dealing with a string.

if (!(value instanceof String)) {

throw new PropertyException(

"SSN must be a string value");

}

// Make sure the string is the right length.

String strValue = (String) value;

if (strValue.length() != 9) {

throw new PropertyException(

"SSN must be 9 digits");

}

// Construct the display string,

// adding the '-' characters.

StringBuffer buffer = new StringBuffer();

buffer.append(strValue.substring(0,3));

buffer.append('-');

buffer.append(strValue.substring(3,5));

buffer.append('-');

buffer.append(strValue.substring(5,9));

// Return the formatted string.

return buffer.toString();

}

public Object convertToObjectFormat(Object value)

throws PropertyException {

// Ensure that you are dealing with a string.

if (!(value instanceof String)) {

throw new PropertyException(

"SSN must be a string value");

}

// Convert to a string for convenience.

String strValue = (String) value;

// Make sure the string is the right length.

if (strValue.length() != 11) {

throw new PropertyException(

"Formatted SSN must be 11 characters");

}

// Construct the string storage format

// removing the '-' characters.

StringBuffer buffer = new StringBuffer();

buffer.append(strValue.substring(0,3));

buffer.append(strValue.substring(4,6));

buffer.append(strValue.substring(7,11));

82 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Return the formatted string.

return buffer.toString();

}

}

Variations on Property-Handling Approach

The SSN property may not come from the front end with the dashes in it. You may have
the user type the numbers in directly without the dashes. In this case, you could mod-
ify convertToObjectFormat to simply pass along the string. However, now you
have somewhat of a problem because a client of the business object with this property
would not be able to execute the following code:

busObj.setProperty("ssn",busObj.getProperty("ssn"));

This would fail because the getProperty would return the display format
(‘xxx-xx-xxxx’) but the setProperty is expecting a different format, one without the
dashes. Thus, you can use the convertToDisplayFormat method for this pur-
pose. The business object could expose this through a getDisplayProperty
method on the standard interface. This approach would clearly delineate between get-
ting the property for display and for usage in code. A third option is to have only the
value objects use this external conversion, because they are the ones that may be used
in the User Interaction Architecture as a data transport. Thus, this is where you would
want to have this type of presentation logic.

If the application architecture uses value objects as a data transport
between tiers, you may want to use this property handling mechanism only in the
value object base class. As a convenience, it is left in the business object base
class so that clients can deal with property values either as String objects or
their native Java objects. If this still bothers the purist out there, you can always
choose to keep this mechanism in the value object class so that the presentation-
type logic remains in the User Interaction Architecture.

There are a number of different ways to implement this. You can choose the best one
for your application. The concept is a powerful one that can reduce and encapsulate the
data conversion code that is often found interspersed throughout an application.

Bulk Getter and Setter Methods
It is sometimes desirable to use a single method invocation to set a number of proper-
ties on a given business object. In the case of distributed Entity Beans accessed through
a remote interface, the use of value objects is recommended for this purpose because of
the transactional and RMI overhead associated with a single remote method invoca-
tion. In the case of Java business objects and local Entity Beans, it can also be used as a
convenience to shorten the amount of code required to populate the properties of a

NOTE

Building Business Objects: Managing Properties and Handling Errors 83

business object. Often there are different combinations of fields that you want to set on
a business object. With explicit setter methods, you would likely have to provide a
couple different methods to group the properties or one large method that took all of
the values. This would result in an extremely large method signature in the case of
primary objects within a design model that may have a lot of properties. With the stan-
dard business object interface, you have a generic setPropertymethod that you can
wrap with a method that takes a collection of properties and values. This wrapper
method can then invoke setProperty repeatedly. In the case of remote Entity Beans,
this is extremely effective because each of the setProperty method invocations
would be local as opposed to individual remote method calls.

A bulk setter method like this might look like the following:

public void setProperties(Collection propertyNames,

Collection propertyValues);

If you are using property objects that encapsulate both, you could use a method like
this that takes a collection of property objects:

public void setProperties(Collection propertyObjects);

A more popular technique is the use of setter and getter methods that deal with
value objects. Value objects are basically objects used as data structures to hold all of
the property values for a given object. This interface might look like this for the
Account object:

public void setProperties(AccountData accountValueObject);

An implementation of this method is shown in the next section on value objects. The
code for the AccountData class could also have been listed here, but it would be very
similar to the first listing of the Account business object because no business logic has
been added to it yet. This comparison brings out an interesting point about value ob-
jects and business objects. They share the same core elements: the storage and manip-
ulation of a set of defined properties. Because they have these commonalities, perhaps
they should be modeled in a similar way.

Value Objects and Lightweight
Business Objects

You have just seen that value objects and business objects have an interesting relation-
ship. They both have the same state, or set of properties, although a value object is used
primarily to avoid RMI and network overhead with remote beans by transporting the
entire set of object properties at once. By comparison, a business object also contains
the business logic and persistence functions of the entity. A primary aspect of the busi-
ness object that has just been discussed is data validation at the field level. If you are
going to use value objects to transport data from the Web tier to the business objects on
the EJB tier, do you want to wait until that point to do some of this data validation?

84 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Wouldn’t it be better to perform some of this validation before you get to this point so
a network trip is not wasted? If the value objects could also perform the field-level
validation, this would allow these edits to be performed further up front, and time
would be saved in these cases. Now, the value objects are more than just data struc-
tures; they have some amount of “smarts” in them. This is the concept of lightweight
business objects. You don’t want a value object to have all of the logic of a business ob-
ject because a value object should have a smaller memory footprint and lower instan-
tiation cost. However, it sometimes makes sense to put this extra bit of logic in the
value objects.

Same Properties, Same Interface
Because the value objects share the same set of properties, it makes sense that they
should share the same interface with respect to property manipulation. In the case of
explicit getter and setter methods, this means that the two objects have the same set of
methods. In the standard business object interface example, the value objects can have
their own standard interface that performs the same property management functions.
And why not use the same method signatures so that you don’t need to learn a whole
new interface? Thus, the value object interface might also look like this:

public interface ValueObject {

/*

* Property management methods

*/

public void setProperty(String propertyName, Object value)

throws PropertyException;

public String getProperty(String propertyName)

throws PropertyException;

public int getIntProperty(String propertyName)

throws PropertyException;

public BigDecimal getDecimalProperty(String propertyName)

throws PropertyException;

public Date getDateProperty(String propertyName)

throws PropertyException;

}

The value objects can use the same PropertyHandler mechanism described ear-
lier for general formatting logic particular to a data type. Methods to retrieve proper-
ties as specific data types are provided in the value object interface. However, the
getProperty method, which returns a String, will likely be used by the presenta-
tion layer. This is where the formatting logic in the PropertyHandler classes is
used. Many non-String properties, such as date fields, will be formatted as strings in
order to be displayed on the screen. Although this general mechanism is also used
in the business objects, you normally would not use the presentation logic piece of it in
the business object. However, the value object, if used across the architecture as is

Building Business Objects: Managing Properties and Handling Errors 85

being discussed here, is in a unique situation in that it lives on both tiers. It can be cre-
ated within either architecture layer, and it is used to transport data between the two
tiers. Thus, general formatting logic particular to a data type can be done using the
PropertyHandler mechanism in the value object base class, and additional meth-
ods on a value object subclass are a possible placeholder for other presentation logic
that can be encapsulated and reused.

As mentioned earlier with regard to bulk getter and setter methods, the business
object base class can easily implement a standard method to populate the object from a
value object. The properties in the internal value object collection map directly to the
properties in the internal business object collection. The method could be implemented
as follows for both Java business objects and Entity Beans:

public void setProperties(ValueObject value)

throws BlfException {

// Get the collection of property metadata objects.

Iterator iter = attributeMetadata.values().iterator();

while (iter.hasNext()) {

// For each one except the key field,

// set the property from the value object.

PropertyMetadata prop =

(PropertyMetadata) iter.next();

if (!prop.isKey()) {

String propValue =

value.getProperty(prop.getName());

if ((propValue != null) &&

(!propValue.equals(""))) {

setProperty(prop.getName(), propValue);

}

}

}

}

The value of key fields is not modified here because their value can be
set only at the time the object instance is created. In fact, Entity Beans throw
an IllegalStateException if the set method for a primary key field is
invoked outside of the ejbCreate method. Thus, properties that are a part of
the primary key are only set based on either the create and finder methods in the
EJB Home interface or the ejbSelect methods invoked from within a bean.

A Unified Structure for Value Objects
and Business Objects
As you have seen, the interfaces and behaviors of value objects and business objects
share a common foundation in terms of managing the set of properties that define an
object. Thus, you can leverage the value object infrastructure when building the

NOTE

86 J2EE Best Practices: Java Design Patterns, Automation, and Performance

business objects. There are several options for structuring the value objects and
business objects:

Leave the two as separate object hierarchies.

Have the business object interface extend the value object interface.

Have the business object implementation classes extend their respective value
object implementation classes.

The first option does not allow as much reuse between the two, and thus is not the
preferred solution given their core similarities. You can, if you choose, implement
options two and three independently. A nice solution might also be to implement both
of them together.

By having a common interface hierarchy, you gain some flexibility when dealing
with business objects in common services or utilities. There will be cases in which you
don’t care whether you have the actual business object itself, or the lightweight version
of it (that is, the value object), you simply want to access or manage the data associated
with that object. The common interface hierarchy allows references to either type of
object as a ValueObject when you simply want to access the object’s set of proper-
ties. This modeling also works well to show the relationship between the two types of
objects in the application architecture.

The case for putting the implementation classes in a common hierarchy is a little less
clear. Because a value object simply manages the properties, you can easily have the
business object implementation classes extend their corresponding value classes. In
this case, the value object class handles the property management; the business object
subclass can extend (and override if necessary) to provide the specific business logic
functionality. This works in either the case of a standard property interface or explicit
getter and setter methods. However, if this is done, you start to dull the distinction
between the two. The business object base class can also include functionality such as
persistence and management of aggregated objects. If a common base class is shared,
this means that the value objects now have all of this functionality that goes with them,
a core set of the business object functionality aside from specific business logic meth-
ods. The concept of the value object being a “lightweight” business object gets lost a bit
because you want to be able to manage data as a set of thin objects with a small mem-
ory footprint. This becomes difficult to do if every value object carries around with it
this additional codebase, which may not even be applicable when used in the context
of the Web tier.

Thus, you may want to implement only the second option, that is, to have the busi-
ness object interface extend from the value object interface. The downside of this
approach is that the property management functionality is duplicated somewhat
between the value object base class and the business object base class. The choice of
approach can be different depending on the specifics of the project architecture. For
example, smaller applications that may not have an enterprise tier may put all of their
logic into the servlet/JSP container. In this case, there is not much need for a pure value
object. You may always want to have the actual business object, because you will
be modifying and specifying the persistence of the object’s state from within the same
context in which it is created. Architectures for larger scale implementations have a
separate Web tier and enterprise tier, and thus, they may want to distinguish between

TEAMFL
Y

Team-Fly®

Building Business Objects: Managing Properties and Handling Errors 87

Figure 3.2 UML Representation of Value Object and Business Object Structure.

<<realize>>

<<realize>>

BaseValueObject

setProperty()
getProperty()

PropertyValues:HashMap

<<interface>>
ValueObject

setProperty()
getProperty()
getDecimalProperty()
getDateProperty()

MyValueObject

method1()
method2()

MyBusinessObjectBean

property1:<data type>
property2:<data type>

businessMethod1()
businessMethod2()

BaseBusinessObject

setProperty()
getProperty()

<<interface>>
MyBusinessObject

businessMethod1()
businessMethod2()

<<interface>>
BusinessObject

create()
save()
delete()

the two as previously described. Either approach can work quite well depending on
the application requirements. For the purposes of the examples in this book, option
number two will be used where the value objects and business object share a common
interface hierarchy but have separate implementation hierarchies.

Figure 3.2 represents this design in UML (Unified Modeling Language).

Object Validation and Error Handling

Validation at the property level has already been discussed. The remaining sets of val-
idations for a given business object are:

Object-level validation

Cross object-level validation

Object-level validation edits require checking multiple property values in an object
and applying some business rule. An example of this might be a minimum balance
allowed for different account types. A savings account might have a higher minimum
balance than a checking account, so this edit would first look at the account type before

88 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Table 3.1 Types of Business Object Validation

VALIDATION TYPE EXAMPLE WHERE IMPLEMENTED

Data type Valid date format Business object base class
validate, setProperty

Required field Account number Business object base class
checks required validate

Application-specific SSN must have format PropertyHandler class
field level xxx-xx-xxxx where x is

integer 0–9

Object level If account type is Business object subclass
‘checking’, minimum template method
balance must be > $100 (i.e. blfValidate)

Cross-object level If an account is inactive, Business object method or
no transactions can be service component invoking
posted against it business objects

validating the current balance. Validation at this level is often encapsulated in one
method of a business object, aptly called validate. This method is always invoked
as part of a save operation. Both the save and validate methods are part of the
standard interface because they are common behaviors of a business object.

Cross object-level validation edits require applying business rules across multiple
business objects. This often occurs within a hierarchy of aggregated business objects.
An example of this might be a business rule edit that prevents any new transaction
objects from being posted against an inactive account. These types of validations are
typically implemented in another business method or in a service-based component
that uses the business objects, although they can also be a part of the parent object’s
validate method.

Table 3.1 summarizes all of the different types of validation within a business object
and where they occur. Note that there is a blfValidatemethod that is referred to for
object-level validation. This is a business object subclass method that will be discussed
in the next chapter on using the base class as a template for common behaviors.

The Account validation example might look like this if you assume that a checking
account has a $100 minimum balance and a savings account has a $50 dollar minimum
balance.

public void validate() throws ValidationException

{

BigDecimal balance = null;

try

{

// Get hold of the current balance.

balance = getDecimalProperty("currentBalance");

// If this is a checking account, compare the

// balance against its minimum.

Building Business Objects: Managing Properties and Handling Errors 89

if (getProperty("type").equals("C"))

{

if ((balance.compareTo(

new BigDecimal("100.00"))) == -1)

{

throw new ValidationException(

"Minimum balance is not met " +

"for checking account");

}

}

// If this is a savings account, compare the

// balance against its minimum.

if (getProperty("type").equals("S"))

{

if ((balance.compareTo(

new BigDecimal("50.00"))) == -1)

{

throw new ValidationException(

"Minimum balance is not met " +

"for savings account");

}

}

}

catch (PropertyException pe)

{

throw new ValidationException(pe.getMessage());

}

}

String literals in these code samples are kept for readability, but in
production code, these are often better kept as constants in the case of
property names and in resource files in the case of error messages.

There is a new class mentioned in this code snippet that has not been seen yet,
the ValidationException class. When a business error was encountered, a
ValidationException was thrown with the error message to be displayed to the
user. Luckily, this example had only one possible error condition in it. If more valida-
tions had been required, you might have noted the error condition and continued the
validation processing so that you could sum up all of the known errors and present the
user with the entire list for convenience.

Managing Business Errors
In the case where there are multiple validations, an error list utility would be helpful.
This utility class could manage a collection of business errors and integrate them with
their message definitions in resource files. This would provide a nice way to simplify
thesevalidatemethods, especially those where multiple validations are taking place.

NOTE

90 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Use an error utility class to consistently and effectively
manage business errors in your application.

This error utility would be able to do the following things:

Manage a list of business errors and informational messages

Integrate errors with their user message templates that include run-time data
substitution

Associate errors with particular properties if applicable

Report whether there are any business errors that warrant a transaction
rollback

This error mechanism will eventually integrate with a number of application ser-
vices, such as transaction management and logging, and possibly even page naviga-
tion for the Web front end. The error list utility class should first encapsulate the
functions previously defined and then it can be extended and used further within the
Business Object Architecture to accomplish the integration goals.

In the foundation layer metadata, a set of error keys that map to user messages in a
resource file can be defined. You may also want to define different types of errors that
get processed differently. For example, you could use this mechanism to transport in-
formational messages back to the user. On a successful transaction, you might want to
show a message that provides a confirmation number. You can use the ErrorList
utility to track this message, which also has a key and a substitution value. However,
you do not want this message to cause the transaction to fail because it is only for in-
formational purposes. If you use this utility to do this, perhaps a better name for it
would be MessageList, but the name ErrorList will be used to convey the idea
that it also integrates with error handling and transaction management. Remember
that if an actual error is held in the list, you will want to roll back the transaction.
Another type of error you might want is a critical type error. In most normal error
cases, you want to continue processing and possibly add more errors to the list so you
can show the user the entire set at once. But, what if an error is so severe that you don’t
want to continue processing any longer because it just doesn’t make sense? For exam-
ple, in a transferFunds business method, one of the two accounts may not exist. It
would not make sense to continue in this condition and check whether there were suf-
ficient funds for the transfer because the transaction couldn’t take place anyway. A crit-
ical error is closely related to an exception condition, and the error utility may want to
immediately throw a ValidationException if a critical error is added to the list.

Thus, the basic types of errors to be defined are:

Informational. Message to be sent to the user that does not affect the transaction

Error. Message to be sent to the user that eventually causes a transaction rollback

Critical. Message to be sent to the user that immediately causes a transaction
rollback

There may be other levels that might fit in between these that can be created, but
these represent the primary distinctions in processing.

BEST PRACTIC E

Building Business Objects: Managing Properties and Handling Errors 91

The ErrorList interface might look like this:

public class ErrorList

{

public void addError(String errorKey;

public void addError(String errorKey,

String arg1);

public void addError(String errorKey,

String arg1,

String arg2);

public void addError(String errorKey, String [] args);

public boolean isTransactionSuccess();

public int getNumberOfErrors();

public void throwExceptionIfErrors()

throws ValidationException;

}

The primary method is addError, which takes an array of arguments. The meth-
ods that take individual String arguments are added for convenience. You also want
a convenient method such as the isTransactionSuccess method to indicate
whether there are any errors in the list that warrant a transaction rollback.

How do you know what type a given error key represents? You can define the
error keys in the metadata and provide a type for them, or you can also override
the addError method and let the client provide the type at run time. A nice solution
is to combine the two and give the client the opportunity to override the default type
defined in the metadata. To do this, you would add the following method to your
ErrorList class:

public void addError(String errorKey,

String [] args,

int type);

You can define constants for the different error types for ease of use. The account
validate example could be rewritten using the error utility as follows:

ErrorList error = new ErrorList();

try

{

// Get hold of the current balance.

BigDecimal balance =

getDecimalProperty("currentBalance");

92 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Validations for a checking account

if (getProperty("type").equals("Checking"))

{

// Validate that the balance is above

// the minimum allowed.

if ((balance.compareTo(

new BigDecimal("100.00"))) == -1)

{

errorList.addError("CHECKING_MIN_BALANCE",

balance.toString());

}

}

// Validations for a savings account

if (getProperty("type").equals("Savings"))

{

// Validate that the balance is above

// the minimum allowed.

if ((balance.compareTo(

new BigDecimal("50.00"))) == -1)

{

errorList.addError("SAVINGS_MIN_BALANCE",

balance.toString());

}

}

}

catch (PropertyException pe)

{

errorList.addError("GEN_PROPERTY_ERROR",

pe.getMessage());

}

You can add the error definitions to the business object metadata. There are three
errors in the last code sample that could be defined as follows:

<BusinessErrors>

<BusinessError name="CHECKING_MIN_BALANCE" type="ERROR"

message="Minimum balance not met for checking account" />

<BusinessError name="SAVINGS_MIN_BALANCE" type="ERROR"

message="Minimum balance not met for checking account" />

<BusinessError name="GEN_PROPERTY_ERROR" type="ERROR"

message="A general property error occurred: {0}" />

</BusinessErrors>

The easiest substitution format to use is that of java.text.
MessageFormat because you can use this utility class in Java to do the
substitution for you. It simply states that each ordered substitution value with
the index x be specified as {x} in the message string.

NOTE

Building Business Objects: Managing Properties and Handling Errors 93

The ErrorList utility needs a data structure to hold each bit of error information.
You can define a BusinessError class that holds this data for a single error. It really
acts only as a data structure with getter and setter methods. Its definition is shown
as follows:

public class BusinessError {

private String errorKey;

// Default is standard error.

private int type = TYPE_ERROR;

private String [] substitutionValues;

public final static int TYPE_INFO = 1;

public final static int TYPE_ERROR = 2;

public final static int TYPE_CRITICAL = 3;

// Get and set methods to follow...

}

The eventual resulting list of these errors for a given transaction can be sent back to
the User Interaction Architecture. Within the presentation logic for displaying errors,
the error key can be used to look up the error messages from a resource file or config-
uration service. The corresponding arguments can be substituted into the message and
the error list can be displayed to the user.

When to Use Exceptions Instead of Errors

A general rule of thumb to follow regarding the use of exceptions and errors is sum-
marized by the following Best Practice statement.

Use exceptions whenever processing should halt immedi-
ately in a given method. Business errors should then be used wherever processing
may continue in the case of an error occurring.

An extension to this rule is that the ErrorList utility should be used anytime
there are multiple edits taking place in a method. It is used to manage a list of errors,
and it works well for this purpose. However, how should the business object client be
notified if errors have occurred in a given method? You don’t usually want to make the
ErrorList the return argument for a method because business methods usually
want to return some result. Rather than create return objects that encapsulate both an
ErrorList and a return value, you can use the ValidationException class to
hold the list of errors that occurred.

You can use the ValidationException to communicate a list of
errors back to a business object client.
THOUG HT

BEST PRACTIC E

94 J2EE Best Practices: Java Design Patterns, Automation, and Performance

If business errors are encountered in a method, you can throw a Validation-
Exception to notify users of the situation. This takes advantage of the power of ex-
ceptions in a programming language, which is the fact that your main body of code can
assume that operations are successful. A catch block at the bottom, outside of the main
processing logic, can be used to handle the error conditions. To use exceptions for com-
municating business errors, a method is added to the ErrorList utility that creates
a ValidationException with the list of errors already in it.

public ValidationException createValidationException()

{

// Add error list to ValidationException.

ValidationException ve =

new ValidationException(

"ValidationException: see error list",

getErrorList());

return ve;

}

The ValidationException class would look like this:

public class ValidationException extends Exception

{

/*

* The list of errors that occurred

*/

protected ArrayList errorList = null;

/*

* Default constructor

*/

public ValidationException(String message)

{

super(message);

}

/*

* Construct a validation exception with error list.

*/

public ValidationException(String message,

ArrayList errorList)

{

super(message);

this.errorList = errorList;

}

/*

* Returns the list of BusinessError objects that caused

* this validation exception

*/

public ArrayList getErrorList()

Building Business Objects: Managing Properties and Handling Errors 95

{

return errorList;

}

}

You can then use the throwExceptionIfErrors method on ErrorList to
communicate errors to the client. This method automatically creates the exception and
throws it if any errors occurred. It can be invoked at the end of all validate methods.

public void throwExceptionIfErrors()

throws ValidationException

{

if (!isTransactionSuccess())

{

ValidationException ve = createValidationException();

throw ve;

}

}

For each business method that requires validation, either you can create an instance of
ErrorList, or you can give all of the business objects anErrorList by adding it as a
member variable to the base class. In this case, you need to add a clear method to be
able to empty the list of errors so you can start fresh within a given method.You now have
all of the tools you need on the ErrorList to manage business errors successfully. So
that there is an example in which multiple errors can occur, assume also that the account
number must start with a ‘C’ for checking accounts (such as ‘C1234’) and an ‘S’ for sav-
ings accounts (such as ‘S5678’). The validate method code would now look like this:

public void validate() throws ValidationException

{

// Create an error list for the validation.

ErrorList error = new ErrorList();

try

{

// Get hold of the current balance.

BigDecimal balance =

getDecimalProperty("currentBalance");

// Validations for a checking account

if (getProperty("type").equals("C"))

{

// Validate that the account number starts

// with a 'C'.

if (!(getProperty("number").startsWith("C")))

{

errorList.addError("INVALID_ACCT_NUMBER",

getProperty("number"));

}

96 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Validate that the balance is above

// the minimum allowed.

if ((balance.compareTo(

new BigDecimal("100.00"))) == -1)

{

errorList.addError("CHECKING_MIN_BALANCE",

balance.toString());

}

}

// Validations for a savings account

if (getProperty("type").equals("S"))

{

// Validate that the account number starts

// with an 'S'.

if (!(getProperty("number").startsWith("S")))

{

errorList.addError("INVALID_ACCT_NUMBER",

getProperty("number"));

}

// Validate that the balance is above

// the minimum allowed.

if ((balance.compareTo(

new BigDecimal("50.00"))) == -1)

{

errorList.addError("SAVINGS_MIN_BALANCE",

balance.toString());

}

}

}

catch (PropertyException pe)

{

errorList.addError("GEN_PROPERTY_ERROR",

pe.getMessage());

}

// Use the error list utility to automatically throw

// an exception with the business errors

// if any occurred.

errorList.throwExceptionIfErrors();

}

The validate example can be used as a sort of template for all validation methods.
You start out by creating an ErrorList instance, applying the validation edits within
a try-catch block, and then calling the throwExceptionIfErrors method at the
end. The try-catch block is used primarily to catch system exceptions or other general
type exceptions. In this example, the PropertyException is thrown if a given
property name does not exist for a business object. This is an exception thrown by the
business logic foundation layer. It is analogous to a system level exception that you

TEAMFL
Y

Team-Fly®

Building Business Objects: Managing Properties and Handling Errors 97

would not normally expect. Note that the code maps this exception to one of the de-
fined business errors. This is a common technique you will want to use for system-level
exceptions such as a RemoteException or a SQLException. These exceptions that
have technical messages will not make much sense to a user, so they should be
wrapped with some kind of meaningful business error that has been defined.

Map system-level exceptions to defined business errors that
have more meaningful messages that can be presented to the users.

Note that if you allow a system-level or other run-time exception to be thrown
out of a transactional EJB method, the container automatically rolls back the transac-
tion and throws either a RemoteException or a TransactionRolledBack-
Exception depending on the transaction context. In these cases, the client needs to
handle these exceptions and extract the wrapped exception to determine the cause of
failure.

The addError method can automatically throw a ValidationException if a
critical level error is added to the bucket. Thus, you can use ValidationException
as the primary application-level exception. The other categories of exceptions already
mentioned include system-level exceptions such as database failures, resource unavail-
able, and other run-time Java exceptions. Many of these conditions can be handled in
try-catch blocks at the highest level of the application code on the EJB tier, usually the
service component. Again, these conditions need to be mapped to one of the defined
business errors so that consistent error messages can be provided to the user. You can
also provide the option to show or log the actual exception stack trace, which will be of
interest to any support staff, but not usually of much interest to the end user. Remember
that if you allow EJBException or other run-time exceptions to be thrown out of a
transactional method, the container rolls back the transaction automatically. If you use
an application exception, such as ValidationException, then you need to explic-
itly roll back the transaction using EJBContext.setRollbackOnly().

The Application Exception Hierarchy

Currently a ValidationException class is defined that holds a list of business
errors. However, you may have other types of application exceptions that have mes-
sages you want to display to the user. Thus, you can move the error list member variable
to a base class for the application exceptions. There are already two exception classes
that can extend from this base class, ValidationException and Property-
Exception. The base class can be called BlfException. This also allows you to
generically handle exceptions from the business logic foundation if you so choose. The
application exception hierarchy now looks like Figure 3.3.

Integrating Business Errors
with Transaction Management

Whenever a business error occurs, it means that a validation has failed and any data-
base updates that have already occurred should be rolled back to ensure data integrity.

BEST PRACTIC E

98 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 3.3 Application Exception Hierarchy.

Exception

getMessage()

Message:String

ValidationException PropertyException

BlfException

getErrorList()

errorList:ArrayList

The ErrorList utility uses a standard mechanism for communicating these business
errors back to the client, the ValidationException. You can easily integrate this
error-handling mechanism into the transaction management service by adding some
logic around the call to the validate method. This logic will actually be used in the
save template method in the business object base class, which is discussed in the next
chapter.

Here is the logic for an Entity Bean business object. The method getEntity-
Context is simply a convenience getter method added for the required Entity-
Context property of the bean. Remember that you need to explicitly vote to roll back
the transaction in the case of an application exception.

try {

// Perform the object validation.

validate();

} catch (BlfException ex) {

// If a business error occurred,

// vote to roll back the transaction

// and rethrow the exception that

// has the error list inside to

// communicate to the client.

getEntityContext().setRollbackOnly ();

throw ex;

}

If you were dealing with a Java business object, you would need to move this logic
back to the Session Bean service component that wrapped the business object, because
you would need to access the session context in order to vote for the transaction
rollback. When you look at the chapter on the Service-Based Architecture, you will see

Building Business Objects: Managing Properties and Handling Errors 99

that there may be cases in which you would want to move this logic out to the highest
level of the transaction anyway.

Revisiting Validation in the
Property-Handler Mechanism

There is now a mechanism for handling and communicating business errors to the
client. Earlier, a set of property-handling classes was created that included validation.
In the previous code examples, an exception was thrown with a message to describe
the error. In order to simplify the client code and provide consistency across the appli-
cation, the business error mechanism can also be used in the property-handler classes.

One thing to note in the property-handling classes is the fact that processing usually
halts after the first error. Thus, you might not normally be inclined to use the
ErrorList mechanism that provides more value for handling multiple errors. How-
ever, you still want to be able to use the standard error message and communication
mechanism. To do this now, you would need to create the ErrorList, add an error,
and then throw the exception. It seems as if it would be nice in this case to have a
convenience method for a single error. Thus, the following methods can be added to
ErrorList for this purpose.

public static ArrayList createSingleErrorList(String errorKey);

public static ArrayList createSingleErrorList(String errorKey,

String arg1);

public static ArrayList createSingleErrorList(String errorKey,

String [] args);

The DateHandler class, discussed earlier, that manages date properties might
look like this now using these new single error methods:

public class DateHandler

implements PropertyValidator, PropertyHandler {

public void validateProperty(Object value)

throws ValidationException {

// Since this method can be invoked with any

// object type, you need to check.

if (value instanceof Date) return;

if (value instanceof String) {

try {

SimpleDateFormat sdf =

new SimpleDateFormat("MM/dd/yyyy");

java.util.Date myDate =

sdf.parse((String)value);

} catch (java.text.ParseException pe) {

throw new ValidationException(pe.getMessage(),

ErrorList.createSingleErrorList(

"GEN_PROP_ERR", (String) value));

100 J2EE Best Practices: Java Design Patterns, Automation, and Performance

}

} else {

throw new ValidationException(

"Invalid object type for date property.",

ErrorList.createSingleErrorList(

"INVALID_PROP_TYPE"));

}

}

// Property handler methods to follow...

}

If this same error mechanism is used throughout the code, the front end of the
application and the service components become much simpler. This will be illustrated
in the upcoming chapters on these topics.

Cross Object Validation
Validation that goes across multiple business objects may reside either in a business
object method, a separate validator class, or in a service-based component that uses
multiple business objects. This type of validation logic can also use the error list utility.

This case presents some different challenges in terms of integrating the error list
with the overall transaction management service. There may be business errors occur-
ring in multiple business objects as well as in a service component. You need a way to
merge errors coming from different sources. If all of the components are using
ErrorList, you can put an add method that takes a collection of errors and adds
them to the list. This can be defined as:

public void addErrors(ArrayList errors);

As an example, assume you have theCustomer object that aggregates anAddress
object. The customer has a PIN number that must be a set of digits but cannot be a set of
repeating digits. The address, among other validations, requires that the state be one
of the valid fifty United States. The customer validation method might be implemented
by using the new add method on ErrorList:

public void validate() throws BlfException

{

// Initialize the error list.

ErrorList errorList = new ErrorList();

try

{

/*

* Validate the PIN value.

*/

String PIN = getProperty("pin");

// The PIN digits cannot be all of the same number

Building Business Objects: Managing Properties and Handling Errors 101

// (for example, 2222).

char c = pin.charAt(0);

int length = pin.length();

boolean bOtherCharFound = false;

for (int i = 1; i < length; i++)

{

if (pin.charAt(i) != c)

{

bOtherCharFound = true;

break;

}

}

if (!bOtherCharFound)

{

errorList.addError("PIN_SAME_NUMBER", pin);

}

// Validate the aggregated address object.

getAddress().validate();

}

catch (ValidationException ve)

{

// Add any business errors from the address

// in with your current list of errors.

errorList.add(ve.getErrorList());

}

catch (PropertyException pe)

{

errorList.addError("GEN_PROPERTY_ERROR",

pe.getMessage());

}

// Throw a validation exception if any

// errors occurred.

errorList.throwExceptionIfErrors();

}

Impact of EJB 2.0 on Exception Handling

There is one small side effect of the introduction of local interfaces into the EJB specifi-
cation. Method invocations through the remote interface always led to the possibility
of a RemoteException being thrown if a system-level error occurred. Well, a local
interface is not allowed to throw a RemoteException under any of these conditions.
Thus, there is an analogous, but separate, hierarchy of local exceptions that can be
thrown from a local method invocation. Applications using the EJB 2.0 specification
should be aware of this and handle such cases similarly to their corresponding system-
level exceptions.

102 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Best Practices for Implementing Business
Objects: Part One

This section summarizes the best practices discussed in this chapter for managing
properties and handling errors, two primary elements of implementing business
objects.

Use Strict Encapsulation
Use strict encapsulation by always accessing properties through their accessor method
in order to avoid conditions in which property values are not initialized. CMP Entity
Beans actually force this behavior due to the use of abstract accessor methods on
the bean implementation class.

Use a Standard Interface for
Business Objects
Have business objects implement a standard interface so that they may be referred to
generically throughout application and foundation layer code. Consider the use of a
generic property management interface to provide convenient methods for property
access. The standard business object interface can extend a standard value object inter-
face so that services can generically refer to either one when no distinction is required.

Consider the Use of Metadata-Driven
Components and Reusable
Property Definitions
Metadata can be used to define the validation and formatting of property values. A
business object base class can provide an extendible foundation that uses the metadata
to implement reusable property definitions. This approach or some equivalent mecha-
nism should be used where possible to avoid redundant code and ensure property
validation takes place.

Develop a Consistent Approach
for Managing Business Errors
A consistent, manageable approach to error handling is an important aspect of busi-
ness objects in transactional applications. Use a mechanism such as the error list utility
discussed in this chapter to manage a list of business errors and communicate them
back to clients in a standard way. A standard application exception can be used to com-
municate a list of errors back to a client. The error list utility should be integrated into
the transaction management service to ensure data integrity.

Building Business Objects: Managing Properties and Handling Errors 103

Using Exceptions
Use exceptions when processing should be halted or to communicate a list of errors to
a client. Use the error list utility and business errors when multiple validations are
taking place or processing should continue in the case of a business error.

Presenting Meaningful Error
Messages to the User
Map all system-level exceptions to defined business error codes. Each business error
code should have a defined error message that is meaningful to the user. The defined
messages can also be used as templates so that run-time values can be added to pro-
vide additional information.

Summary

Two primary responsibilities of business objects are to manage the properties of the
object and handle any errors that occur. Property management includes providing
accessor methods, formatting and converting property values, and validating basic
data. In addition to field-level validations, error handling as a whole includes business
logic validations at the object level and cross-object level, as well as general exception
handling. The approach for all of these responsibilities can be implemented in a simi-
lar way for either Java classes or Entity Beans.

These practices provide the basics for building business object components that can
manage data and handle errors. The next chapter builds on these concepts to provide
a complete business object implementation. The topics of persistence, object relation-
ships, and the use of the template method pattern are discussed next.

105

Building Business Objects:
Persistence, Relationships, and

the Template Method Pattern

C H A P T E R

4

This chapter first discusses the persistence implementation used by the business
objects. It then looks at how object relationships are implemented, in particular, aggre-
gated objects that are managed by their parent object. The Template Method pattern
will also be applied to the business object hierarchy in order to execute common busi-
ness logic that is customized for each object. A primary example of this is the save
template that is executed before the object is saved to the database.

Object Persistence

This section discusses four different options for implementing business object
persistence:

JDBC (Java Database Connectivity) using explicit data objects

JDBC using a metadata-driven approach

Use of persistence frameworks and object-relational mapping tools

CMP Entity Beans

106 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The first three options can be used with either Java business objects or BMP
Entity Beans. The fourth option is limited to persistence that is invoked through the
container’s Entity Bean mechanism. Keep in mind that persistence vendors are likely
to have products that work with both Java classes and Entity Beans, so the distinction
between options 3 and 4 can be viewed as the use of the Entity Bean CMP specification
to invoke the persistence service as opposed to Java Data Objects (JDO) or some other
specification.

Keep in mind that if you use a Java business object implementation, you must
implement your own persistence layer or else use a third-party solution. Even if you
use Entity Beans, you may still want to use your own collection and database query
services for efficiency. The JDBC utility class referred to in these chapters can be used
in either approach to perform regular database queries outside the scope of business
objects. For collections or lists of objects, there is a section in this chapter on collection
services. For now, however, the focus is on single business objects and their persistence
in a database.

JDBC in Explicit Data Objects
In this option, you can add methods to the standard business object interface to deal
with object persistence. As discussed earlier, the actual database logic is isolated in a
set of objects called the data-access layer. The actual implementation of the persistence
methods on the business object (for example, insert, update, and delete) will
delegate their responsibilities to the corresponding data-access object. A typical pattern
for implementing this logic involves populating a value object with the property
values and passing it as an argument to the corresponding data-access method. The
data object methods could take the individual property values as arguments, but it is
usually easier to wrap them all in a value object, especially if value objects are used
throughout the Business Object Architecture. Assume for the persistence examples that
the properties of the Account object (for example, ID, account number, and current
balance) are all stored in the same table named ‘account.’

The persistence methods of the Account object might look like this:

public class Account

{

public void insert() throws PersistenceException

{

// Construct a value object from the property values.

AccountData valueObject = new AccountData();

valueObject.setId(generateNewAccountId());

valueObject.setNumber(getNumber());

valueObject.setCurrentBalance(getCurrentBalance());

// Delegate the persistence to the data-access object.

AccountDataObject dataObject

= new AccountDataObject();

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 107

dataObject.insert(valueObject);

}

public void update() throws PersistenceException

{

// Construct a value object from the property values.

AccountData valueObject = new AccountData();

valueObject.setId(getId());

valueObject.setNumber(getNumber());

valueObject.setCurrentBalance(getCurrentBalance());

// Delegate the persistence to the data-access object.

AccountDataObject dataObject

= new AccountDataObject();

dataObject.update(valueObject);

}

public void delete() throws PersistenceException

{

// Construct a value object from the property values.

// You need only the key value to delete the instance.

AccountData valueObject = new AccountData();

valueObject.setId(getId());

// Delegate the persistence to the data-access object.

AccountDataObject dataObject

= new AccountDataObject();

dataObject.delete(valueObject);

}

}

The actual data object methods construct the proper SQL statement, marshal the
property values, and execute the statement. As an example, the update method
would look like this:

public int update(AccountData account)

throws PersistenceException

{

Connection conn = null;

Statement stmt = null;

PreparedStatement pStmt = null;

int result = 0;

try

{

// Obtain a database connection from

// a defined data source named 'txDataSource'.

InitialContext ctx = new InitialContext();

108 J2EE Best Practices: Java Design Patterns, Automation, and Performance

DataSource ds =

(DataSource) ctx.lookup("txDataSource");

conn = ds.getConnection();

// Create a prepared statement to update

// your object to the database.

pStmt = conn.prepareStatement("update account " +

"set number = ?, balance = ? where id = ?");

pStmt.setString(1, account.getNumber());

pStmt.setBigDecimal(2,

account.getCurrentBalance());

pStmt.setString(3, account.getId());

// Execute the statement.

result = pStmt.executeUpdate();

}

catch (SQLException sqlEx)

{

throw new PersistenceException("SQLException" +

" occured in account update. Message=> " +

sqlEx.getMessage());

}

catch (Exception ex)

{

throw new PersistenceException("General exception"

+ " occured in account update. Message => "

+ ex.getMessage());

}

finally

{

if (pStmt != null)

{

try {

pStmt.close();

} catch (SQLException sqlEx) {

sqlEx.printStackTrace();

}

}

if (conn != null)

{

try {

conn.close();

} catch (SQLException sqlEx) {

sqlEx.printStackTrace();

}

}

}

return result;

}

Persistence, Relationships, and the Template Method Pattern 109

Best Practices for Using JDBC within
an Application

If you choose to use straight JDBC code within your application, there are a few best
practices that are important to consider. The first of these is to isolate the JDBC logic in
one place.

Isolating JDBC Access

One reason to isolate JDBC access is to ensure that resources are properly managed. For
example, database connections are pooled by the application server and can be accessed
in J2EE application servers through the JDBC data source. It is important that these
resources be closed and returned to the pool immediately after being used by enterprise
components. Any resources that are left open can cause resource contention among
transactions and lead to degradations in scalability. Thus, it is a good practice to isolate
the actual JDBC code in one place so that it can be implemented correctly and handle all
error conditions appropriately.

Isolate the JDBC logic to execute a SQL statement in a com-
mon utility class. This prevents every application developer from having to write
this common logic and ensures that all resources are closed properly.

A JDBC utility class can be created that provides methods to execute prepared state-
ments. This utility can be used in the data object methods to actually perform the JDBC
operations. The logic to marshal the data and construct the proper prepared statements
is done in the particular data object, but the execution of the query or statement is del-
egated to the utility class. A core method used to execute a PreparedStatement within
the JDBCUtility follows:

public int executePreparedStatement(String sql,

ArrayList args)

throws ValidationException

{

int result = 0;

try

{

// Obtain a database connection from

// a defined data source named 'txDataSource'.

InitialContext ctx = new InitialContext();

DataSource ds =

(DataSource) ctx.lookup("txDataSource");

conn = ds.getConnection();

// Create a prepared statement from the given SQL.

pStmt = conn.prepareStatement(sql);

// Loop through the arguments and set them in

// the prepared statement according to object type.

int count = 1;

BEST PRACTIC E

110 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Iterator iter = args.iterator();

while (iter.hasNext())

{

Object arg = iter.next();

if (arg instanceof String)

{

pStmt.setString(count,

(String) arg);

}

if (arg instanceof BigDecimal)

{

pStmt.setBigDecimal(count,

(BigDecimal) arg);

}

//

// and so on for the other data types...

//

count++;

}

// Execute the statement.

result = pStmt.executeUpdate();

}

catch (SQLException sqlEx)

{

throw new PersistenceException("SQLException " +

" occured in account update. Message=> " +

sqlEx.getMessage());

}

catch (Exception ex)

{

throw new PersistenceException("General execption"

+ " occured in account update. Message => "

+ ex.getMessage());

}

finally

{

if (pStmt != null)

{

try {

pStmt.close();

} catch (SQLException sqlEx) {

sqlEx.printStackTrace();

}

}

if (conn != null)

{

try {

Persistence, Relationships, and the Template Method Pattern 111

conn.close();

} catch (SQLException sqlEx) {

sqlEx.printStackTrace();

}

}

}

return result;

}

This method takes a SQL prepared statement string and a collection of arguments to
be put into the prepared statement. It takes care of obtaining the connection, creating
the prepared statement, and setting all of the property values. It wraps all of this logic
in a try-catch block and closes all of the resources in a finally clause. In order to deal
with the different data types, it uses the instanceof operator to determine what
type of object each argument is. This small example only uses Strings and BigDecimals,
but the complete implementation would simply be expanded to check for all possible
data types.

The account data object update method that uses this utility would become much
simpler. In fact, it would be responsible only for creating the SQL and passing the
correct arguments from the object’s property values. Because the JDBC logic is imple-
mented in one place, the rest of the data objects now become simpler, and they will
have a smaller code base than if this logic was duplicated. It can also ensure that
exception conditions are handled properly in one place, and this does not have to be
implemented everywhere. This also makes your testing easier because this utility gets
used quite often.

The account data object update method would now look like this:

public int update(AccountData account)

throws ValidationException

{

// Create an instance of a database utility class.

JDBCUtility dbutil = new JDBCUtility();

// Populate a collection of arguments

// to go into the prepared statement.

ArrayList args = new ArrayList(3);

args.add(account.getNumber());

args.add(account.getCurrentBalance());

args.add(account.getId());

// Use the utility to execute the SQL update.

// The utility populates the prepared statement

// based on the object type of the argument.

return dbutil.executePreparedStatement(

"update account set number = ?, balance = ? "

+ "where id = ?", args);

}

112 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Externalizing the SQL from the Code

The data-access object for the Account business object has the update SQL string
directly in the update method code. This works fine; but what if you need to change
the column names in your database? You will need to go into the data-access object
code to make the change, recompile the application, and redeploy it to the application
server. In some organizations, the database schemas are relatively stable, and this does
not often become an issue. In other organizations and also in many software develop-
ment projects, the database schemas are often being changed quite frequently. Thus, it
can be beneficial to externalize the SQL from the data-access objects so that it does not
need to be hard-coded into the application.

Externalize the SQL from the Java code to minimize impacts
to the application if the database schema changes. The SQL strings could be
stored in a resource file or in the XML metadata and then referenced from the
application. This approach also makes it fairly easy to determine impacts to the
application if the database schema changes because the SQL is all in one
searchable repository.

It would be fairly easy to modify the executePreparedStatement method on
JDBCUtility to take a SQL identifier rather than the actual SQL string itself. The
SQL identifier could be used to look up the actual SQL string from a metadata file. This
allows you to simply make the change in the configuration file rather than in the code
itself.

JDBC Using a Metadata-Driven
Approach
Now that the majority of the JDBC logic is encapsulated in a utility class, the primary
responsibilities of the data-access object are to generate the correct SQL string and map
the property values to the database columns. If the business objects are configured
using metadata, as was described in the last chapter, you can accomplish both of these
tasks by using the metadata and a bit of extra logic in the business object base class.

To do this, you need to add the database information to the business object meta-
data. You need to know the corresponding database column names for each property.
You also need to know what the key fields are in order to construct the WHERE clause
for UPDATE and DELETE statements. At the business object level, you need to know
what database table this object is stored in.

The business object metadata will now look like this:

<Metadata>

<BusinessObject name="Account" table="account">

<Property name="id" dbname="id" type="String"

required="true" key="true" />

BEST PRACTIC E

Persistence, Relationships, and the Template Method Pattern 113

<Property name="number" dbname="number" type="String"

required="true" />

<Property name="currentBalance" dbname="balance"

type="Decimal" required="true" />

</BusinessObject>

</Metadata>

The property metadata can now do the mapping between object properties and
database columns. Previously, this knowledge was hard-coded into the data access
method. Given the set of column names and an indicator of which one is the key field,
you can generate INSERT, UPDATE, and DELETE SQL strings for the object. The logic
to do this can be done generically in the business logic foundation, because it is entirely
driven by the metadata.

The metadata is stored in memory in an object called BusinessObject-
Metadata. Because the SQL strings are the same every time, you can put the logic to
create the SQL at this level. That way, it needs to be generated only once and can then
be shared by all business object instances of the same type. Thus, BusinessObject-
Metadata has the following methods:

public String getSelectSQL();

public String getInsertSQL();

public String getUpdateSQL();

public String getDeleteSQL();

These methods construct the SQL string based on the metadata. As an example, in
the case of update, it creates a StringBuffer starting out with UPDATE <tablename>
SET and then iterates through the property list adding <columnName> = ? for each
property. Finally, a WHERE clause is added based on the key field indicated by the
property list.

You can now implement a generic updatemethod in the business object base class.
It will not have very much logic in it. It will simply instantiate a JDBCUtility class
and invoke the update method passing the business object itself as an argument. The
generic update method on JDBCUtility will implement the following logic:

1. Obtain the UPDATE SQL string from the business object metadata.

2. Iterate through the property metadata and map between property names and
database columns, setting the property value in the prepared statement. (Note
that the order of the property metadata must be the same for the SQL
generation and execution. Using ordered collections in the implementation of
the metadata classes takes care of this.)

3. Invoke the generic executePreparedStatement logic of the
JDBCUtility that is already encapsulated.

You now have a metadata-driven persistence layer that works with any business
object configured according to the metadata schema previously shown. This is a very
powerful utility that you can use in the development of the Business Object Architec-
ture if you want to write your own persistence.

114 J2EE Best Practices: Java Design Patterns, Automation, and Performance

There are also other ways to accomplish the same goal of automating the
business object persistence functions. One popular way is to code-generate each
of the data access objects for each business object based on the same set of
metadata. Either method works just fine. There are a number of development
tools that use code generation to build data-access objects given a database,
object model, or set of metadata. The metadata-driven utility classes previously
described are nice if you do not have one of these code-generation utilities
available to you. One other minor benefit of this approach is a smaller code
base due to repetitive code blocks being eliminated through isolation in one
place. However, the generated data objects may be slightly faster due to their
explicit nature, which requires slightly less processing to determine data types,
and so on.

Using Persistence Frameworks
and Object-Relational Mapping Tools
Before deciding to use you own JDBC persistence solution, keep in mind that it is
fairly easy to build a simple persistence layer to use with the business objects. Either a
metadata-driven approach or code generation can be used to rapidly implement one-
to-one object to table data objects. The difficult part is building a persistence layer that
is both highly optimized and uses more complex object-relational mapping schemes.
Optimization techniques such as preventing unnecessary updates, updating only
modified fields, and using aggressive- and lazy-loading strategies can greatly affect the
overall performance of an application. These things are not trivial to implement.
Outside of using Entity Beans, there are a handful of products available, both com-
mercial and open source, that can be used for this purpose. For the examples in this
book, a popular open-source package called Castor is used.

Castor is a part of the ExoLab project. Examples in this book are based on
version 0.9.3.9. Castor can be found on the Internet at http://castor.exolab.org/.

Persistence as a Component Service

Most Java-based persistence packages, including Entity Beans, use a similar approach.
After looking at the Entity Bean approach next, it will be evident that the two business
object implementations are actually quite similar in nature. A deployment configura-
tion is used to map object properties to database tables and columns. The persistent
objects are required to implement the JavaBeans naming convention for properties so
that reflection can be used to access them at run time. A layer of abstraction is usually
placed over the persistence functions, so that in most cases, an application developer
does not explicitly control when the persistence events are invoked. A factory or query
mechanism is usually used to locate object instances. The save, or update, to the data-
base is usually triggered by the container committing the transaction. The abstract
approach allows the tools to use different optimization strategies underneath the

NOTE

NOTE

Persistence, Relationships, and the Template Method Pattern 115

covers such as aggressive or lazy loading. Object creation and deletion is, however, still
an explicit event that is invoked by the application developer. A standard interface is
used to provide callback methods for persistence events. This allows the application
code to be informed of the event and react to it, if necessary. For example, these inter-
faces include notification methods for the object being loaded from the database and
stored to the database. This is analogous to the ejbLoad and ejbStore methods on
the EntityBean interface.

Persistence Using Castor

The Castor project provides data-binding from Java objects to SQL tables, XML docu-
ments, and a number of other sources. This chapter looks only at the SQL mapping
functionality, which is implemented in the org.exolab.castor.jdo package. An
object using Castor for persistence must implement the Persistent interface. This
standard interface has the callback methods for persistence events. In addition to the
notification methods described earlier, this includes a method to give the object a
reference to the Castor Database object. The Database object represents the con-
nection to the database and is used to add Java objects to the persistence engine for a
given transaction. It has methods to create, update, and remove Persistent objects.
Existing objects are located using the OQLQuery class. This class is used to implement
a subset of the object query language as defined by the Object Management Group
(OMG) 3.0 Object Query Language (OQL) Specification. OQL is used to select objects
from the database. The basic structure of OQL is similar to SQL, except that OQL refers
to objects and properties rather than tables and columns. For a full description of these
classes, please refer to the production documentation available on the OMG Web site.

Because persistent objects must implement a Castor-specific interface, a version of
the business object base class, called CastorBaseBusinessObject, is created
specifically for the Castor implementation. This base class, as well as all of the founda-
tion classes related to Castor, is put in the blf.castor package of the reference
architecture. The application business objects now implement both the Business-
Object interface and Castor’s Persistent interface. A basic outline of the base
class, CastorBaseBusinessObject, is shown here:

package blf.castor;

import org.exolab.castor.jdo.Database;

import org.exolab.castor.jdo.Persistent;

import blf.*;

public class CastorBaseBusinessObject

implements Persistent, BusinessObject {

protected HashMap attributeMetadata;

protected BusinessObjectMetadata bom;

protected ErrorList errorList;

protected String objectName;

private Database _db;

116 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public CastorBaseBusinessObject(String objectName) {

try {

bom =

MetadataManager.getBusinessObject(objectName);

attributeMetadata = bom.getPropertyMap();

this.objectName = objectName;

} catch (BlfException be) {

be.printStackTrace();

}

}

public CastorBaseBusinessObject(String objectName,

ValueObject valueObject) {

try {

bom =

MetadataManager.getBusinessObject(objectName);

attributeMetadata = bom.getPropertyMap();

setProperties(valueObject);

this.objectName = objectName;

} catch (Exception e) {

e.printStackTrace();

}

}

//

// Implementation of business object methods to follow,

// that is, standard property management methods, and so on

//

//

// Castor JDO callbacks

//

public void jdoPersistent(Database db) {

_db = db;

}

public void jdoTransient() {

_db = null;

}

public Database getDatabase() {

return _db;

}

public Class jdoLoad(short accessMode) {

return null;

}

public void jdoBeforeCreate(Database db) {

}

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 117

public void jdoAfterCreate() {

}

public void jdoStore(boolean modified){

}

//

// Rest of JDO callbacks to follow...

//

}

In this code snippet, you see that no real work is being done in the
persistence callbacks. One reason for this is that the create methods cannot be
overloaded as is the case with ejbCreate methods on Entity Beans. In the next
section on object creation and instantiation, you will see that some of these
lifecycle events for Castor business objects are handled by the business object
factory mechanism. This pattern will be used to abstract the persistence mecha-
nism and simplify its integration into the Business Object Architecture. Once the
Entity Bean implementation is discussed, you will see the persistence callbacks
being used to implement business logic template methods.

The Account business object using Castor as an object-relational mapping tool then
extends CastorBaseBusinessObject and implements the JavaBeans convention
for properties. The basic code for the Account object is shown here:

package bank.castor;

import blf.*;

import org.exolab.castor.jdo.Database;

import org.exolab.castor.jdo.Persistent;

import java.math.BigDecimal;

import java.util.Date;

public class Account extends CastorBaseBusinessObject

implements java.io.Serializable, Persistent, BusinessObject

{

private String id;

private String number;

private String type;

private BigDecimal currentBalance;

private Date lastModifiedDate;

public Account() {

super("Account");

}

NOTE

118 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public Account(ValueObject values) {

super("Account",values);

}

public String getId() {

return id;

}

public void setId(String value) {

id = value;

}

public String getNumber() {

return number;

}

public void setNumber(String value) {

number = value;

}

public String getType() {

return type;

}

public void setType(String value) {

type = value;

}

public BigDecimal getCurrentBalance() {

return currentBalance;

}

public void setCurrentBalance(BigDecimal value) {

currentBalance = value;

}

public Date getLastModifiedDate() {

return lastModifiedDate;

}

public void setLastModifiedDate(Date value) {

lastModifiedDate = value;

}

//

// Business methods to follow...

//

}

The deployment configuration to map the account’s properties to the database is
shown here. In this case, it maps all of the properties to a single table named ‘account.’
Note that the ‘field’ and ‘sql’ types have different values in some cases to properly map

Persistence, Relationships, and the Template Method Pattern 119

between SQL data types and Java data types. The mapping.xml file for the example
is as follows:

<!DOCTYPE databases PUBLIC

"-//EXOLAB/Castor Mapping DTD Version 1.0//EN"

"http://castor.exolab.org/mapping.dtd">

<mapping>

<class name="bank.castor.Account"

identity="id">

<description>Account</description>

<map-to table="account" />

<field name="id" type="string" >

<sql name="id" type="varchar"/>

</field>

<field name="type" type="string">

<sql name="type" type="char" dirty="check" />

</field>

<field name="number" type="string">

<sql name="number" type="char" dirty="check" />

</field>

<field name="currentBalance" type="big-decimal">

<sql name="balance" type="decimal" dirty="check" />

</field>

<field name="lastModifiedDate" type="date">

<sql name="last_modified_date" type="date"

dirty="check" />

</field>

</class>

</mapping>

Entity Bean Container-Managed
Persistence
The abstract persistence approach used by EJB 2.0 CMP has already been discussed. It
follows a very similar pattern to the Castor business object implementation. A common
base class for Entity Beans, called EntityBaseBusinessObject, which imple-
ments the EntityBean interface, is created. Rather than having explicit property
members, abstract accessor methods are declared on the business object subclasses that
adhere to the JavaBeans property specification. The shell of the base class is shown
here:

package blf.entity;

import blf.*;

import javax.ejb.*;

public class EntityBaseBusinessObject implements EntityBean {

120 J2EE Best Practices: Java Design Patterns, Automation, and Performance

protected HashMap attributeMetadata;

protected BusinessObjectMetadata bom;

protected ErrorList errorList;

protected EntityContext myContext;

public EntityBaseBusinessObject(String objectName) {

try {

bom =

MetadataManager.getBusinessObject(objectName);\

attributeMetadata = bom.getPropertyMap();

} catch (BlfException be) {

be.printStackTrace();

}

}

public EntityBaseBusinessObject(String objectName,

ValueObject valueObject) {

try {

bom =

MetadataManager.getBusinessObject(objectName);

attributeMetadata = bom.getPropertyMap();

setProperties(valueObject);

} catch (BlfException be) {

be.printStackTrace();

}

}

//

// Entity Bean callback methods

//

public void ejbActivate() {

}

public void ejbPassivate() {

}

/**

* Creates a new instance of the business object

* and generates a new unique object identifier

*

*/

public String ejbCreate()

throws CreateException, BlfException {

blfCreate(null);

return null;

}

public void ejbPostCreate() throws BlfException {

Persistence, Relationships, and the Template Method Pattern 121

blfPostInsert();

}

public String ejbCreate(ValueObject initialValues)

throws CreateException, BlfException {

try {

blfCreate(initialValues);

} catch (BlfException be) {

// NOTE: This should be called only if

// the create was done in a transactional

// context. Your architecture always has

// business objects wrapped with a

// transactional service object, but

// you may want to check here first

// if there is a transaction running.

getEntityContext().setRollbackOnly();

throw be;

}

return null;

}

public void ejbPostCreate(ValueObject initialValues)

throws BlfException {

blfPostInsert(initialValues);

}

public void ejbLoad() {

}

public void ejbRemove() {

}

public void ejbStore() {

}

public void setEntityContext (EntityContext newContext) {

myContext = newContext;

}

public void unsetEntityContext() {

myContext = null;

}

public EntityContext getEntityContext() {

return myContext;

}

}

122 J2EE Best Practices: Java Design Patterns, Automation, and Performance

In this implementation, there are not business logic template methods for
all of the entity callbacks, as is the case with ejbCreate which calls a template
method blfCreate. You could easily add hook methods for all of these, or you
can always override any of these methods in the subclass if you want to
implement functionality at these points.

The Account Entity Bean extends this base class and declares the accessor methods
as abstract.

package bank.entity;

import java.math.BigDecimal;

import java.sql.Date;

import blf.entity.*;

import blf.*;

public abstract class AccountBean

extends EntityBaseBusinessObject {

public AccountBean() {

super("Account");

}

//

// Property methods, that is, CMP fields

//

public abstract String getId();

public abstract void setId(String value);

public abstract String getNumber();

public abstract void setNumber(String value);

public abstract String getType();

public abstract void setType(String value);

public abstract BigDecimal getCurrentBalance();

public abstract void setCurrentBalance(BigDecimal value);

public abstract Date getLastModifiedDate();

public abstract void setLastModifiedDate(Date value);

//

// Business methods to follow...

//

}

The ejb-jar.xml standard deployment file is used to define the CMP fields.

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD

Enterprise JavaBeans 2.0//EN'

'http://java.sun.com/j2ee/dtds/ejb-jar_2_0.dtd'>

NOTE

Persistence, Relationships, and the Template Method Pattern 123

<ejb-jar>

<description>

<![CDATA[Bank Sample Application]]>

</description>

<display-name>Bank Sample Application</display-name>

<entity>

<description>

<![CDATA[Models a bank account]]>

</description>

<ejb-name>Account</ejb-name>

<local-home>bank.entity.AccountLocalHome</local-home>

<local>bank.entity.AccountLocal</local>

<ejb-class>bank.entity.AccountBean</ejb-class>

<persistence-type>Container</persistence-type>

<prim-key-class>java.lang.String</prim-key-class>

<reentrant>False</reentrant>

<cmp-version>2.x</cmp-version>

<abstract-schema-name>Account</abstract-schema-name>

<cmp-field>

<field-name>id</field-name>

</cmp-field>

<cmp-field>

<field-name>type</field-name>

</cmp-field>

<cmp-field>

<field-name>number</field-name>

</cmp-field>

<cmp-field>

<field-name>currentBalance</field-name>

</cmp-field>

<cmp-field>

<field-name>lastModifiedDate</field-name>

</cmp-field>

<cmp-field>

<field-name>customerId</field-name>

</cmp-field>

<primkey-field>id</primkey-field>

<ejb-local-ref>

<ejb-ref-name>Transaction</ejb-ref-name>

<ejb-ref-type>Entity</ejb-ref-type>

<local-home>bank.TransactionLocalHome</local-home>

<local>bank.TransactionLocal</local>

<ejb-link>Transaction</ejb-link>

</ejb-local-ref>

</entity>

The specific mapping from the bean’s properties to database tables is done in a
vendor-specific manner in another XML deployment descriptor.

124 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Business Object Creation
and Instantiation
It is a good idea to abstract the particular persistence mechanism you are using from
your business object client code. Enterprise JavaBeans enforce a similar abstraction
through the use of the Home interface. The EJB Home interface is used to create new
instances of enterprise beans, discover existing instances, and delete existing instances.
In the case of Castor, the Object Query Language (OQLQuery) object is used to dis-
cover existing instances and the Database object is used to add and remove in-
stances. If you were using Java business objects, you could create an analogous factory
object that was used to access and create business objects. There are a couple benefits
to this approach. The primary reason is to simplify the code that uses your business
objects. For example, the service components can use an EJBFactory class to handle
the JNDI lookup of the Home interface and the invocation of the finder method. In the
case of Castor, you can create some standard methods that encapsulate the use of OQL
to look up existing objects. This speeds up the development of the service components
by factoring out redundant code. It also allows you the opportunity to optimize these
steps if you choose to do so. For example, in some cases, you can cache the Home in-
terface and save yourself a JNDI lookup. This technique will be discussed in detail in
the Performance chapter. Another benefit of this approach is that it isolates the client
code as much as possible so that there is less of an impact if you choose to change your
persistence implementation. Finally, you can also standardize the error handling for
cases for which an existing business object is not found.

Whether you are using Entity Beans or regular Java business
objects, use a factory method (Erich Gamma et al. 1995) abstraction to create and
discover instances of business objects. This simplifies the client code and provides
a hook for potential future optimizations such as caching EJB Home interfaces.
You can create a BusinessObjectFactory utility class to do this. In the case
of EJBs, the BusinessObjectFactory can use the EJB Home interface to look
up the Entity Bean. In the case of Java business objects, you can instantiate and
populate the proper business object within the BusinessObjectFactory.

Figure 4.1 represents the object model for this pattern.

This pattern as shown can be used to create both EJB, Java, and
Castor business object implementations. Three implementation classes,
EJBFactoryImpl, JavaFactoryImpl, or CastorFactoryImpl, can either
implement the same interface or extend from a common base class. This can be
helpful if a project uses both Java business objects and Entity Beans or if there is
consideration for future migrations between the different options. This additional
flexibility may not be required on projects in which a clear direction has been set
on the business object implementation model.

NOTE

BEST PRACTIC E

Persistence, Relationships, and the Template Method Pattern 125

Figure 4.1 BusinessObjectFactory Object Model.

BusinessObjectFactory

create()
find()
findByPrimaryKey()
delete()

<<interface>>
BusinessObject

setProperty()
getProperty()

creates

EJBFactoryImpl CastorFactoryImplJavaFactoryImpl

The business object factory can also help automate some common steps in compo-
nents that update or create business objects. On both insert and update operations, you
will often have data that you want to use to populate the business object coming from
the User Interaction Architecture. One common data structure used for this is the
value object. Thus, you can overload your factory method for creation to take a value
object, and the BusinessObjectFactory can populate it using the setProper-
ties(ValueObject valueObject) method. Another common operation you
need to perform is to create an existing instance, represented by a value object, into a
business object instance that you can use. This function can also be provided by the
BusinessObjectFactory.

The factory methods are sometimes used to invoke Template Methods for insert and
update operations. The Template Method pattern, described later in this chapter, is a
complimentary technique that is used with the object factory to automate common
steps while also providing extensibility for object specific logic.

The methods for the base factory might look like this:

/*

* Create a new instance of a business object.

*/

public static Object create(String objectName)

throws BlfException;

/*

* Create a new instance of a business object with initial

* values.

*/

126 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public static Object create(String objectName,

ValueObject initialValues)

throws BlfException;

/*

* Discover an instance of a business object

* with the given key object.

*/

public static Object findByPrimaryKey(String objectName,

Object keyObject)

throws BlfException;

/*

* Discover an instance of a business object using

* the given query and arguments.

*/

public static Object find(String objectName,

String queryId,

ArrayList args)

throws BlfException;

Each method takes the business object name as an argument. In the business logic
foundation, this equates to the name of the object in the metadata. In the case of Entity
Beans, this can then be mapped to the JNDI name. It is a good idea to make the JNDI
name and the metadata name the same if you are using the foundation layer with
Entity Beans. In the case of Java objects, the factory uses the metadata to determine the
business object class name so that it can instantiate the object. In the EJB implementa-
tion, it uses a JNDI lookup to find the Home interface and call the appropriate method.

Creating New Instances

The create methods for a Castor implementation will now be discussed. To create a
new object instance, you add a method to your business object interface, create, that
sets any initial values and creates any generated key fields values for the new instance.
Thus, the factory create methods would look like this:

public class CastorFactoryImpl extends BusinessObjectFactory {

/*

* Create a new instance of a business object.

*/

public static BusinessObject create(String objectName,

Database db)

throws BlfException {

return create(objectName, null, db);

}

/*

* Create a new instance of a business object

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 127

* with initial values.

*/

public static BusinessObject create(String objectName,

ValueObject valueObject, Database db)

throws BlfException {

// Obtain the business object metadata.

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(objectName);

// Determine the business object class name.

String busObjectClass = bom.getBusObjClass();

// Use a helper method to create an instance

// of the given class.

BusinessObject instance =

createObjectInstance(busObjectClass);

// Invoke the business object create template method.

if (valueObject != null) {

instance.create(valueObject);

} else {

instance.create();

}

try {

// Add to the persistence engine.

db.create(instance);

} catch (PersistenceException pe) {

throw new BlfException(pe.getMessage());

}

// Invoke the postCreate business object method.

if (valueObject != null) {

instance.postCreate(valueObject);

} else {

instance.postCreate();

}

// Return the newly created instance to the client.

return instance;

}

/*

* Helper method to create an instance of a class and

* cast to BusinessObject interface

*/

private static BusinessObject createObjectInstance(

String className) throws BlfException {

128 J2EE Best Practices: Java Design Patterns, Automation, and Performance

BusinessObject busObject = null;

try {

busObject = (BusinessObject)

(Class.forName(className)).newInstance();

} catch(Exception e) {

throw new BlfException(e.getMessage());

}

return busObject;

}

}

The new business object create method looks like this:

public void create() throws BlfException {

create(null);

}

public void create(ValueObject initialValues)

throws BlfException {

// If initial values were supplied, populate

// the properties from the value object.

if (initialValues != null) {

setProperties(initialValues);

}

// From the business object metadata (bom), get the

// key field and check to see if you need to automatically

// generate a key value.

PropertyMetadata prop = bom.getKeyField();

if (prop.isAutogen()) {

// Use primitive algorithm - value of

// current milliseconds.

String keyValue = getNextKeyValue();

setProperty(prop.getName(),keyValue);

}

// Call the template method for preinsert logic.

if (initialValues == null) {

blfPreInsert();

} else {

blfPreInsert(initialValues);

}

}

There is now a fair amount of logic in the process. This accomplishes the goal of
encapsulating the process of object creation and simplifying the business object
client logic.

Persistence, Relationships, and the Template Method Pattern 129

This example also needs to implement a unique primary key generation
mechanism in the getNextKeyValue method. There has been much written
about this topic, so this section won’t go into detail, but a few thoughts on the
topic are appropriate. If you don’t mind locking in on a database, database se-
quences can work well. Otherwise, your factory implementation can grab a block
of numbers to allocate in the case of sequential numeric key values. The blocks
can be centrally defined by a database table. This avoids going to the database for
the purpose of getting a key value on every create operation. Most persistence
tools also support a variety of mechanisms for primary key generation. Castor
supports a ‘max’ key value, UUIDs, and database sequences in addition to a few
other popular techniques. You can specify the usage of these techniques in the
mapping.xml configuration file.

The business object interface now looks like this with regards to persistence:

public interface BusinessObject extends ValueObject {

/*

* Persistence methods

*/

// The create methods are invoked by BusinessObjectFactory.

// They do not need to be invoked directly by business

// object clients, but they do need to be in the standard

// interface so they can be referred to in the factory.

public void create() throws BlfException;

public void create(ValueObject initialValues)

throws BlfException;

public void postCreate() throws BlfException;

public void postCreate(ValueObject initialValues)

throws BlfException;

// A template method for saving an object. This method

// is invoked directly by business object clients.

public void save() throws BlfException;

// This method is invoked by the BusinessObjectFactory

// to remove an instance.

public void delete() throws BlfException;

}

One thing to note is that the save method does not actually trigger the update to
the database in the case of Castor business objects and Entity Beans. As mentioned ear-
lier, this event is triggered by the transaction being committed. The save method,
however, acts as a template method for business logic, which is discussed in the next
section. It encapsulates any validation and presave logic that you want executed before
the object is saved to the database.

NOTE

130 J2EE Best Practices: Java Design Patterns, Automation, and Performance

There is a bit more flexibility when you use standard Java objects rather
than Entity Beans in regard to object creation. Regular Java classes can be
instantiated in memory and populated throughout the course of a transaction
without touching the database until the end. You can create the instance, generate
key field values, and call additional business methods to populate other proper-
ties of the object before invoking the actual database INSERT operation. Persis-
tence engines like the Entity Bean model can cause a SQL INSERT after the
ejbCreate method concludes. From this point, additional business methods
that update object properties require that the ejbStore method be used when
the transaction commits. This can be inefficient if you want to perform additional
logic to populate other properties when creating this object. In the Java model,
you can wait and perform one INSERT when you call save as opposed to the
Entity Bean model which might require an INSERT and UPDATE operation to
accomplish the same thing.

Finding Existing Instances

The lookup methods to find existing business object instances are a bit simpler than the
creation methods. In the case of regular Java objects, they can simply use utility meth-
ods on the JDBCUtility object to query the database and instantiate the populated
business object. For the Castor objects, however, these methods can encapsulate basic
object queries used to locate existing instances. A query in OQL is very similar to a SQL
query. For example, the query to locate an Account object by its primary key is as
follows:

SELECT a FROM Account a WHERE id = $1

The dollar signs represent placeholders for run-time values to be bound to the query.
Remember that the WHERE clause in OQL queries refers to actual property names
rather than database columns. OQL queries automatically take care of database joins
when the WHERE clause refers to associated objects. As an example, the Account
object has a ‘customer’ property that links it back to the owner of the account.
The query to obtain the collection of accounts for a given customer would then be as
follows:

SELECT a FROM Account a WHERE customer = $1

This query would take the primary key property of the customer as an argument.

Find by Primary Key

From these examples, you can see that these queries can easily be generated if you
have the information in the business object metadata. Thus, you have the findBy-
PrimaryKey method on the CastorFactoryImpl class. This is a static method, so
you pass in the Database instance being used by the transaction in order to create the
query object. This is needed on all of the persistence methods that use Castor.

NOTE

Persistence, Relationships, and the Template Method Pattern 131

/*

* Discover an instance of a business object with the

* given key object.

*/

public static BusinessObject findByPrimaryKey(

String objectName, Object keyObject, Database db)

throws BlfException {

// Obtain the business object metadata.

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(objectName);

try {

// Create the arguments for the

// OQL string.

Object [] args = new Object[2];

args[0] = bom.getBusObjClass();

args[1] = bom.getKeyField().getName();

// Create a standard OQL string

// to look up by primary key.

String oqlString = MessageFormat.format(

"SELECT b FROM {0} b WHERE {1} = $1", args);

// Create the query and bind the

// arguments.

OQLQuery busobjOql = db.getOQLQuery(oqlString);

busobjOql.bind(keyObject);

QueryResults results = busobjOql.execute();

// There should be only one object found.

if (results.hasMore()) {

Object obj = results.next();

return (BusinessObject) obj;

} else {

throw new ObjectNotFoundException(objectName,

keyObject);

}

} catch (PersistenceException pe) {

pe.printStackTrace();

throw new BlfException(pe.getMessage());

}

}

This method took the query by primary key example discussed earlier and parame-
terized it into an OQL string template. From the business object metadata, this method
fills in the name of the business object and the key field property name. The run-time
argument is bound to the query, and it is executed. A singular object is returned to the
client, or an ObjectNotFoundException is thrown if no object is found. This
exception is a subclass of BlfException and is used as a standardized way to report

132 J2EE Best Practices: Java Design Patterns, Automation, and Performance

this condition. Usually, a search by primary key assumes the existence of an object, so
you can regard this as an error condition. The ObjectNotFoundException code is
shown here:

package blf;

public class ObjectNotFoundException extends BlfException {

public ObjectNotFoundException(String objectName,

Object keyObject) {

super(objectName + " object not found");

// Map to a standard application error.

setErrorList(ErrorList.createSingleErrorList(

"OBJ_NOT_FOUND", objectName, keyObject.toString()));

}

}

You can then customize the definition of the OBJ_NOT_FOUND error message for
your application. A basic definition might be defined as follows:

OBJ_NOT_FOUND=The {0} object with primary key {1} was not found.

You can see how the findByPrimaryKey factory method could also
easily be implemented using straight JDBC as well. You could easily generate the
SQL just like you generated the OQL. The reference architecture isolates this type
of logic in the JDBCUtility class.

This example assumed that the object had an object identifier as a primary key field.
In most cases, this is the recommended approach for managing objects; however,
you may have objects with a more complicated key structure. In lieu of a primary
key object, you could use a value object to represent the key structure for the
findByPrimaryKey method. You could also easily create a specific PrimaryKey
base class to represent a key object. If you look at what that class would contain, it
would have a set of properties that it would need to manage. This is the same thing
that a value object does, and it has already been implemented. It generically manages
a set of properties. You could use it for this purpose rather than create a bunch of spe-
cific key classes for the business objects. Now, if you were using Entity Beans, you
would still need that type of artifact (that is, a primary key object with explicit prop-
erties) in order to use the component correctly. For the Java implementations, this is
not necessary and the standard value object suffices. This approach may make the
object purist a bit uncomfortable, and there may be a yearning for creating a subclass
of PrimaryKeyObject that extends ValueObject. This is certainly an option.
However, it requires you to convert value objects that come from the front end to a
subclass in order to use them for this purpose. This is applicable, of course, only if you
are using a value object approach to transport data between tiers. This topic will be
discussed in detail in the next chapter on Service-Based Architecture. The eventual

NOTE

Persistence, Relationships, and the Template Method Pattern 133

decision to have a specific primary key class is purely a design preference, and either
choice works well. For the examples in this book, all of the objects have a single object
identifier as a primary key.

A General Find Method

You would also like to be able to define different queries for a business object so that
you can look up the object by non–key fields or combinations of values. This is analo-
gous to additional finder methods being added to an EJB Home interface. The unique
queries for a particular business object are defined by the WHERE clause portion of
the SQL or OQL. According to the same principle of isolating JDBC and SQL from the
application code, you can define these queries in the business object metadata.

As an example, say you want to look up an account based on the account number. The
account number is an external identifier sometimes given as input data from the user as
opposed to the primary key identifier in the database. You can define the following in
the metadata:

<BusinessObject name="Account"

busObjClass="bank.castor.Account"

valueObjClass="bank.AccountData" >

<Property name="id" type="String"

required="true" key="true" autogen="true" />

<Property name="number" type="String"

required="true" />

<Property name="currentBalance" type="Currency"

required="true" />

<Property name="lastModifiedDate" type="Date" />

<Property name="type" type="String" required="true" />

<Collection name="byCustomer"

query="where customer = $1" />

<Collection name="byNumber" query="where number = $1" />

</BusinessObject>

A <Collection> tag was added that defines a WHERE clause for the particular query.
The collection has the name ‘byNumber’ so that you can refer to it in the call to the
factory method. The factory appends this query to the base SELECT string, runs
the query, and returns the populated business object. For queries that return multiple
instances, there are a few options as to how you can handle these cases. You can throw
an exception if more than one business object is found. You can also add an additional
method to the BusinessObjectFactory such as findCollection, which
returns a collection of business objects. This type of operation may be better handled
by a collection service if you don’t want to deal with all of the results as business
objects. Some operations are geared more toward running queries and possibly instan-
tiating business objects from the results. This concept will be discussed in detail in the
section on object collection services later in this chapter.

For the example, imagine you have an account search function in your application.
It might use the factory as follows to get a handle to an instance of the Account

134 J2EE Best Practices: Java Design Patterns, Automation, and Performance

business object identified by the particular account number:

ArrayList args = new ArrayList(1);

args.add(accountData.getProperty("number"));

Account account = (Account)

BusinessObjectFactory.find("Account",

"byNumber",

args,

getDatabase());

This code snippet takes an account value object and uses the account number prop-
erty as an argument to the query. The ‘byName’ string references the collection defined
in the metadata. The number of arguments must match up with the number of refer-
ences in the query’s WHERE clause. The factory could return a null if not found or
throw an exception if more than one customer record is found in this case.

You can also create a findCollection method that returns a collection of busi-
ness objects. An example of this would be if you want to retrieve the accounts for a
given customer. The byCustomer query was defined in the metadata that selects the
accounts by customer. The following code snippet takes a customer value object and
uses the identifier as an argument to the query. The factory returns a collection of
business objects that matched the query.

ArrayList args = new ArrayList(1);

args.add(customerData.getProperty("id"));

Collection accountList =

BusinessObjectFactory.findCollection("Account",

"byCustomer",

args);

The code to implement these two general find functions follows. The primary work
is done in findCollection. The individual find method simply delegates the call
to findCollection and throws an exception if more than one object is found. This
typically is considered an error condition, since the application using the findmethod
expects a single object in return. If no object is found, a null is returned. On the other
hand, a search on some set of nonprimary key fields does not necessarily imply the
existence of objects, so the application code can be allowed to directly handle this con-
dition. Here is the code from CastorFactoryImpl for these methods.

/*

* Discover an instance of a business object using the

* given query and arguments.

*/

public static BusinessObject find(String objectName,

String queryId, ArrayList args, Database db)

throws BlfException {

Object obj = null;

// Run the collection query and then

// pick off the first element. There

// should be only one object

Persistence, Relationships, and the Template Method Pattern 135

// in the result set.

Collection coll =

findCollection(objectName,queryId,args,db);

if (coll.size() > 1) {

throw new BlfException("Multiple Objects Found",

ErrorList.createSingleErrorList(

"MULTIPLE_OBJECTS_FOUND", objectName));

}

Iterator iter = coll.iterator();

if (iter.hasNext()) {

obj = iter.next();

} else {

return null;

}

return (BusinessObject) obj;

}

/*

* Discover a collection of business objects using the

* given query and arguments.

*/

public static Collection findCollection(String objectName,

String queryId, ArrayList args, Database db)

throws BlfException {

// Obtain the business object metadata.

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(objectName);

// Create the result collection.

ArrayList results = new ArrayList();

try {

// Create the arguments for the

// OQL string.

Object [] objArgs = new Object[1];

objArgs[0] = bom.getBusObjClass();

// Create a standard OQL string

// to look up with the given WHERE clause.

StringBuffer buffer = new StringBuffer(

MessageFormat.format(

"SELECT b FROM {0} b", objArgs));

buffer.append(' ');

buffer.append(bom.getQuery(queryId));

// Create the query and bind the

// arguments.

String oqlString = buffer.toString();

OQLQuery busobjOql = db.getOQLQuery(oqlString);

136 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 4.2 EJB Business
Object Interface Hierarchy.

<<interface>>
EntityLocal

BusinessObject

setProperty()
getProperty()

<<interface>>
EJBLocalObject

<<interface>>
MyBusinessObject

businessMethod1()
businessMethod2()

int endLoop = args.size();

for (int loop = 0; loop < endLoop; loop++) {

busobjOql.bind(args.get(loop));

}

// There should be only one object found.

QueryResults queryResults = busobjOql.execute();

while (queryResults.hasMore()) {

results.add(queryResults.next());

}

} catch (PersistenceException pe) {

throw new BlfException(pe.getMessage());

}

return results;

}

BusinessObjectFactory and Entity Beans

One big advantage to using a factory for Entity Beans is that it greatly simplifies the
process of obtaining a component interface to the EJB. You can encapsulate the context
and JNDI lookup operations and simply provide the business object interface. If you
are using a standard business object interface as discussed in this chapter, you can have
it extend the EJBLocalObject interface so that it can also act as an EJB component
interface. The interface hierarchy is shown in Figure 4.2.

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 137

Because this is encapsulating the EJB lookup process, you can also make the process
more efficient. JNDI operations can be relatively expensive if used for every business
object lookup in a transaction. Thus, the factory can cache the EJB Home interface in
order to save a JNDI lookup for each client that obtains a business object. This gives a
significant boost to performance for applications that have a large number of business
objects involved in a given transaction. This concept is explained fully in the chapter
on Performance. This concept also applies to the service components implemented as
Session Beans, although there is a slightly different interface for this because the
factory operations have a different meaning when referring to stateless components as
opposed to specific business object instances.

The factory methods map up directly to the EJB Home interfaces required for Entity
Beans. The create method and ejbCreate methods correspond directly. The
create interface that takes a value object can be implemented as an override of the
ejbCreatemethod that takes the same argument. ThefindByPrimaryKeymethod
is the same, and the find method would map up to the specific additional finder
methods that are added to the EJB Home interface.

Finding Existing Instances

This section discusses locating an Entity Bean business object by its primary key. The
first thing thatEJBFactoryImplmust be able to do for all of its operations is to obtain
hold of the EJB Home interface. This logic can be isolated to a single method so that it can
cache the home interfaces later on if you need to do some performance optimizations. It
has everything needed to do this except the actual EJB Home interface class itself, which
is required in the narrow operation. Thus, this class name needs to be added to
the business object metadata. As an example, here is the Account metadata with the
addition in bold:

<Metadata>

<BusinessObject name="Account" busObjClass="bank.Account"

valueObjClass="bank.AccountData"

ejbHomeClass="bank.entity.AccountLocalHome">

<Property name="id" dbname="id" type="String"

required="true" key="true" autogen="true" />
...

<Property name="type" dbname="type" type="String"

required="true" />

</BusinessObject>

</Metadata>

The EJB factory implementation always returns the local interface. Based
on previous design discussions, local Entity Beans are used most of the time. The
implementation, however, could be easily extended to deal with both local and
remote beans.

Here is the getHomeInterface method in the EJB factory:

/*

* Helper method to get the EJBHome interface

*/

NOTE

138 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public static EJBHome getHomeInterface(String objectName,

BusinessObjectMetadata bom) throws BlfException

{

EJBHome home = null;

try {

// Get a naming context.

InitialContext jndiContext = new InitialContext();

// Get a reference to the Interest Bean.

Object ref = jndiContext.lookup(objectName);

// Get hold of the Home class.

Class homeClass =

Class.forName(bom.getEJBHomeClass());

// Get a reference from this to the

// Bean’s Home interface.

home = (EJBHome) PortableRemoteObject.narrow(

ref, homeClass);

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

return home;

}

That takes care of getting the Home interface, but it still needs to invoke the
findByPrimaryKey method. Well, to do this generically, you won’t know the spe-
cific home interface class ahead of time, so you have to be able to invoke this method
on the fly using reflection methods. You couldn’t make a generic base interface for all
the business objects because, although you could create a common set of arguments
(such as a generic value object as a key structure), each method needs to return the spe-
cific business object home interface. Thus, it is probably safer to use reflection methods
to accomplish this. The findByPrimaryKey method that has a single key property
would look like this:

/*

* Discover an instance of a business object with the given

* key object.

*/

public static Object findByPrimaryKey(String objectName,

Object keyObject)

throws BlfException {

// Obtain the business object metadata.

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(objectName);

// Get the home interface.

EJBLocalHome home = getHomeInterface(objectName, bom);

Persistence, Relationships, and the Template Method Pattern 139

// Invoke by findByPrimaryKey method.

PropertyMetadata keyProp = bom.getKeyField();

EJBLocalObject busObject = null;

try {

// Define the parameter types.

Class[] parameterTypes = new Class[1];

if (keyProp.getType().equals("String")) {

parameterTypes[0] =

Class.forName("java.lang.String");

}

if (keyProp.getType().equals("Number")) {

parameterTypes[0] =

Class.forName("java.lang.Long");

}

//

// and so on for the other data types...

//

Object[] args = new Object[1];

args[0] = keyObject;

// Get a handle to the finder method and invoke it.

Class homeClass = home.getClass();

Method findByPK =

homeClass.getMethod("findByPrimaryKey",

parameterTypes);

busObject = (EJBLocalObject)

findByPK.invoke(home, args);

} catch (InvocationTargetException ite) {

Throwable t = ite.getTargetException();

if (t instanceof BlfException) {

throw (BlfException)t;

} else if (t instanceof FinderException) {

throw new ObjectNotFoundException(objectName,

keyObject);

} else {

throw new BlfException(ite.getMessage());

}

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

return busObject;

}

To handle objects with multiple key fields, you can extend this logic to implement
this method:

public static Object findByPrimaryKey(String objectName,

ValueObject keyObject) throws BlfException;

140 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The second argument would be a subclass of ValueObject, or alternatively, you
could have this method take a subclass of a PrimaryKeyClass that you created.

The AccountLocalHome interface also had a few finder methods defined specific
to the Account bean. They were findByNumber and findByCustomer, which
were analogous to the previous examples using the Castor persistence framework.
Again, you can see the similarity of the two approaches. Rather than using OQL, J2EE
uses an EJB QL to define a portable query language for enterprise beans. EJB QL is also
very similar to SQL. These two queries are defined in the ejb-jar.xml deployment
descriptor as follows:

<entity>

<description>

<![CDATA[Models a bank account]]>

</description>

<ejb-name>Account</ejb-name>

...

<query>

<query-method>

<method-name>findByNumber</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM Account a

WHERE a.number = ?1]]>

</ejb-ql>

</query>

<query>

<query-method>

<method-name>findByCustomer</method-name>

<method-params>

<method-param>java.lang.String</method-param>

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(a) FROM Account a,

IN (a.customer) AS c WHERE c.id = ?1]]>

</ejb-ql>

</query>

</entity>

There are a few options with regard to exposing these finder methods. The first
option is to allow the business object client to use the factory’s helper method to get
the EJB’s Home interface. The client can then invoke the finder methods directly. A
second option would be to implement a find method on EJBFactory that used
reflection to invoke the finder method. This continues the theme of abstracting the
persistence layer, similar to what was done with the findByPrimaryKey method.
In either case, you will want to keep the getHomeInterface method public so that

Persistence, Relationships, and the Template Method Pattern 141

clients can use it to invoke any static business methods available on the home
interface.

Creating New Instances

To create new object instances, the EJBFactoryImpl can call the createmethod on
the Home interface for a given Entity Bean. Just like calling the finder method, it will
use Java reflection to invoke the method. Because a database INSERT is normally
executed by the container at the end of the ejbCreate method for CMP beans, you
want to make sure you provide the ability to provide all of the initial values so that you
can avoid an UPDATE of this row in the same transaction. Thus, you should always
provide an additional create method that takes a set of initial values. You can use the
generic value object structure to hold these properties. Thus, for the Account Entity
Bean, the local home interface includes these methods:

public interface AccountLocalHome extends EJBLocalHome

{

public AccountLocal create ()

throws CreateException, BlfException;

public AccountLocal create (ValueObject initialValues)

throws CreateException, BlfException;

public AccountLocal findByPrimaryKey(String id)

throws FinderException;

//

// Additional finder methods

//

public AccountLocal findByNumber(String number)

throws FinderException;

public Collection findByCustomer(String customerId)

throws FinderException;

}

The factory method to invoke the create methods follows. This code shows the
EJBFactoryImpl method that takes the initial values. The first method without
arguments is just a simpler version of this one.

/*

* Create a new instance of a business object

* with initial values.

*/

public static Object create(String objectName,

ValueObject valueObject)

throws BlfException {

// Obtain the business object metadata.

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(objectName);

142 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Get the home interface.

EJBLocalHome home = getHomeInterface(objectName, bom);

EJBLocalObject busObj = null;

try {

// Define the parameter types.

Class[] parameterTypes = new Class[1];

parameterTypes[0] =

Class.forName("blf.ValueObject");

Object[] args = new Object[1];

args[0] = valueObject;

// Get a handle to the finder method and invoke it.

Class homeClass = home.getClass();

Method createWithInitValues =

homeClass.getMethod("create", parameterTypes);

busObj = (EJBLocalObject)

createWithInitValues.invoke(home, args);

} catch (InvocationTargetException ite) {

Throwable t = ite.getTargetException();

if (t instanceof BlfException) {

throw (BlfException)t;

} else {

throw new BlfException(ite.getMessage());

}

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

return busObj;

}

One interesting thing to note about this code sample is the catch block for
InvocationTargetException. Because it is using reflection to invoke the method,
any exception that occurs is wrapped with this exception. You want the Blf-
Exception with its list of errors to be the actual exception thrown back to the client
so that the error handling works as it normally does.

And finally, you have the ejbCreate implementation on the Entity Bean base
class, which delegates its work to its corresponding method, blfCreate. The method
getEntityContext is simply a convenience getter method added for the required
EntityContext property of the bean.

public String ejbCreate(ValueObject initialValues)

throws RemoteException, CreateException, BlfException

{

try {

blfCreate(initialValues);

} catch (BlfException be) {

Persistence, Relationships, and the Template Method Pattern 143

// NOTE: This should be called only if

// the create was done in a transactional

// context. Your architecture always has

// business objects wrapped with a

// transactional service object, but

// you may want to check here first

// if there is a transaction running.

getEntityContext().setRollbackOnly();

throw be;

}

return null;

}

public void blfCreate(ValueObject initialValues)

throws BlfException, RemoteException

{

// If initial values were supplied, populate

// the properties from the value object.

if (initialValues != null) {

setProperties(initialValues);

}

// From the business object metadata (bom), get the

// key field and check to see if you need to automatically

// generate a key value.

PropertyMetadata prop = bom.getKeyField();

if (prop.isAutogen()) {

// Generate the new key value and set the

// property.

String keyValue = getNextKeyValue();

setProperty(prop.getName(),keyValue);

}

// Call the template method for preinsert logic.

blfPreInsert();

}

public void ejbPostCreate(ValueObject initialValues)

throws RemoteException

{

blfPostInsert();

}

// Template method - Base class implementation is empty.

public void blfPreInsert() throws BlfException {

}

// Template method - Base class implementation is empty.

public void blfPostInsert() {

}

144 J2EE Best Practices: Java Design Patterns, Automation, and Performance

There are a couple of things to note in this bit of code:

It explicitly votes to roll back the transaction if the ejbCreate fails due to an
application exception thrown during validation. In most cases, the Entity Beans
are wrapped by a transactional Session Bean, although you can optionally vote
to roll back the transaction if you catch the exception in the Session Bean. This
code snippet shows how to create a self-contained component that makes no
assumptions about the transactional context of the client. In either case, make
sure that the home interface create methods are declared to be transactional.

To set the initial values, it reuses the same bulk setter method
(setProperties) that takes a ValueObject.

In the ejbCreate and ejbPostCreate, it invokes the template methods
blfPreInsert and blfPostInsert, which can be optionally
implemented by the specific business object subclasses.

Delete Operations

The delete operation should also be invoked through the business object factory. These
method implementations are fairly straightforward and follow a similar pattern as did
their predecessors. Like some of the earlier methods, the deletemethods take the ob-
ject name and key object as parameters. They then invoke the corresponding remove
method on either the EJB Home interface or the persistence engine interface.

Aggregated Objects
Business objects often aggregate other business objects. In object designs with good en-
capsulation, it is the responsibility of the parent business object to manage instances of
child objects. For example, refer back to the bank’s object model. The Account object
may aggregate zero-to-many Transaction business objects that represent different
types of account transactions such as deposits, withdrawals, and fees incurred against
an account. Thus, when the deposit method on the Account object is invoked, it is
the responsibility of the Account object to create a new Transaction instance and
have its state persist in the database. If the Account is required to calculate total
deposits for a given month, it may need to iterate through all of its Transaction
instances and sum up the total of all deposit-type transactions.

Managing Aggregated Objects

The parent object is often responsible for the following actions:

Providing accessors (get and set methods) and maintaining referential integrity

Cascading validation and persistence (a ‘save’ template) within a transaction

Cascading deletes

The EJB implementation of container-managed relationships (CMR) is discussed
first. Other Java persistence frameworks such as the Castor examples handle the concept
of aggregated objects in a similar manner. The EJB 2.0 specification provides component

Persistence, Relationships, and the Template Method Pattern 145

services to manage the aspects of aggregated objects described earlier, including local
interfaces as a lightweight mechanism to communicate between the components.

Access Methods

Just as Entity Beans define get and set methods for CMP fields, they also define acces-
sor methods for aggregated business objects. These properties are defined as CMR
fields in the ejb-jar.xml deployment descriptor. Most containers offer get methods
that use the concept of lazy instantiation to make using the parent object more efficient.
This means that the object does not instantiate the aggregated objects until the get
method is invoked, that is, until it is needed. Otherwise, instantiating an Account ob-
ject just to manipulate the account type would also mean instantiating all of its
aggregated Transaction objects.

As an example, take the Customer object, which aggregates a single Address
object. The CustomerBean is defined to have an address property with the following
methods for this one-to-one relationship:

public abstract CustomerLocal getCustomer();

public abstract void setCustomer(CustomerLocal customer);

The Customer object also has zero-to-many aggregated Account objects. In this
relationship, the Account object has a customer property that points back to its
owner. For this one-to-many relationship, accessors are defined that use collections. In
practice, the set method that takes a collection is rarely used. Typically, the client gets
the collection and then adds or removes objects from it. The accessor methods follow:

public abstract Collection getTransactions();

public abstract void setTransactions(

Collection transactions);

The code to implement these accessor methods on an Entity Bean is supplied by the
container in its generated subclasses.

If you want the business object clients to be able to access the
aggregated components, you need to define these methods in the local interface
as well. For convenience, you can also define standard get and set methods for
related objects in the base class and the standard business object interface. This
allows you to deal with aggregated objects in a generic manner, similar to the way
properties are handled. You can also add these relationships to the business
object metadata to verify that you are dealing with a valid relationship.

You can add the get and set relationship methods to the version of the standard
business object interface for Entity Beans. This interface now looks like this

public interface EntityLocalBusinessObject

extends EJBLocalObject {

/**

* Template methods

THOUG HT

146 J2EE Best Practices: Java Design Patterns, Automation, and Performance

*/

public void save() throws BlfException;

public void delete() throws BlfException;

public void validate() throws BlfException;

/**

* Property management methods

*/

public void setProperty(String propertyName, Object value)

throws PropertyException;

public String getProperty(String propertyName)

throws PropertyException;

public int getIntProperty(String propertyName)

throws PropertyException;

public BigDecimal getDecimalProperty(String propertyName)

throws PropertyException;

public Date getDateProperty(String propertyName)

throws PropertyException;

public void setProperties(ValueObject valueObject)

throws BlfException;

public ValueObject getValueObject();

/**

* Relationships management methods

*/

public void setRelationship(String cmrName,

EntityLocalBusinessObject object)

throws BlfException;

public void setRelationship(String cmrName,

Collection coll)

throws BlfException;

public EntityLocalBusinessObject getOneToOneRelationship(

String cmrName)

throws BlfException;

public Collection getOneToManyRelationship(String cmrName)

throws BlfException;

}

You can add a <Relationship> tag to the metadata to define the relationship. The
account metadata for Entity Beans might look like the following:

<BusinessObject name="Account"

valueObjClass="bank.AccountData"

ejbHomeClass="bank.entity.AccountLocalHome">

<Property name="id" type="String" required="true"

key="true" autogen="true" />

...

<Property name="type" type="String" required="true" />

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 147

<Relationship name="transactions" multiplicity="many" />

</BusinessObject>

The name of the relationship should be the same as the name of the CMR field. This
metadata defines the relationship in the similar manner to what you must do in the
ejb-jar.xml deployment descriptor. As another example, the Customer object has
two different relationships that would be defined as follows:

<BusinessObject name="Customer"

valueObjClass="bank.CustomerData"

ejbHomeClass="bank.entity.CustomerLocalHome">

<Property name="id" type="String" required="true"

key="true" autogen="true" />

...

<Relationship name="address" multiplicity="one" />

<Relationship name="accounts" multiplicity="many" />

</BusinessObject>

The standard get and set methods on EntityBaseBusinessObject are fairly
straightforward. They can be treated basically like any other property, although you
get to ignore the formatting and validation aspects. These methods would be imple-
mented as follows:

public void setRelationship(String cmrName,

EntityLocalBusinessObject object)

throws BlfException {

try {

// Invoke the CMR set method.

PropertyUtils.setProperty(this,cmrName,object);

} catch (Exception ex) {

throw new BlfException(ex.getMessage());

}

}

public void setRelationship(String cmrName,

Collection coll)

throws BlfException {

try {

// Invoke the CMR set method.

PropertyUtils.setProperty(this,cmrName,coll);

} catch (Exception ex) {

throw new BlfException(ex.getMessage());

}

}

148 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public EntityLocalBusinessObject

getOneToOneRelationship(String cmrName)

throws BlfException {

try {

// Invoke the CMR set method.

Object obj =

PropertyUtils.getProperty(this,cmrName);

return (EntityLocalBusinessObject)obj;

} catch (Exception ex) {

throw new BlfException(ex.getMessage());

}

}

public Collection getOneToManyRelationship(String cmrName)

throws BlfException {

try {

// Invoke the CMR set method.

Object obj =

PropertyUtils.getProperty(this,cmrName);

return (Collection)obj;

} catch (Exception ex) {

throw new BlfException(ex.getMessage());

}

}

Cascading Save and Validation Operations

Whenever you save a parent object that aggregates another business object, you want
to validate and save any instantiated child objects as well. In the Entity Bean model, all
updates to aggregated objects are also saved because all Entity Bean methods and ob-
ject creations can be defined as transactional. However, if you are using dependent
Java objects, you also want to trigger their persistence to the database when the Entity
Bean is being saved. You can perform this logic in the ejbStore method. If you are
using the relationship metadata approach described earlier, you can also automate this
process. This concept can be used for object validation as well as persistence. This tech-
nique will be discussed in detail in the next section when the save template is
discussed.

Cascading Deletes

A similar concept applies also to delete operations. EJB 2.0 allows you to define cas-
cading deletes as a deployment property of Entity Beans that have container-managed
relationships. This means that any aggregated objects will also be deleted when the
parent object is removed. If you are using dependent Java objects, you would be
responsible for this yourself, although you could use a similar pattern to the one
described above for updates and validation.

Persistence, Relationships, and the Template Method Pattern 149

The Account and Transaction Example

The withdraw and deposit methods on AccountBean each create a Transac-
tion object to record the corresponding event. They use the getTransactions
method to obtain the collection of transaction objects in order to add a new one. The
code for the withdraw method follows. It is overloaded to allow a transaction
description to be supplied.

public void withdraw(BigDecimal value)

throws BlfException {

withdraw(value,null);

}

public void withdraw(BigDecimal value,

String transactionDescription)

throws BlfException {

// Ensure that this account will not be

// overwithdrawn.

BigDecimal currBalance =

getDecimalProperty("currentBalance");

if (currBalance.compareTo(value) < 0) {

throw new ValidationException("Insufficient Funds",

ErrorList.createSingleErrorList(

"INSUFFICIENT_FUNDS",currBalance.toString()));

}

// Remove the amount from the balance.

setProperty("currentBalance",

currBalance.subtract(value));

// Create a record of the transaction.

TransactionData transData = new TransactionData();

transData.setProperty("type","W");

transData.setProperty("amount",value.negate());

if (transactionDescription == null) {

transData.setProperty("description",

"Normal Withdraw");

} else {

transData.setProperty("description",

transactionDescription);

}

TransactionLocal transaction = (TransactionLocal)

EJBFactoryImpl.create("Transaction",transData);

Collection coll = getTransactions();

coll.add(transaction);

// Invoke the save template.

save();

}

150 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Object Collection Services
The previous example dealt with a collection ofTransaction business objects in order
to add one to the Account. This is just one case of many in which you end up dealing
with a list of business objects in an application. In other situations, the circumstances
could be different. You may need to deal with these collections outside of the scope of an
individual business object or within a service component. Or in many other cases, it may
be for a read-only operation, or else you may need to go through the collection and
update only some subset of the list. These types of operations are so common that it
makes sense to provide a utility to easily manage collections of objects.AnObjectList
JDBC utility class can be created that provides a consistent way to implement these
operations more efficiently than might normally be done throughout an application.

Whether the business objects are implemented as Java classes or Entity Beans, busi-
ness objects are usually more heavyweight than just a data structure such as a value
object. Thus, the ObjectList can provide a collection of value objects that can be
iterated. If you are only going to read the list, this becomes especially important for
Entity Beans because of the potential performance issues. Even if you are only going to
update a subset of the list, you might want to get the list as value objects and then only
instantiate the respective business objects when you determine an update is necessary.

Managing a list of objects for data retrieval or for selective
updates is a common operation in business applications. Consider the use of a
utility class that consistently and effectively manages collections of objects for
you. If Entity Beans are used as the business object implementation, you can also
use the collection utility to get a list of value objects and have it instantiate corre-
sponding Entity Beans for any transactional updates.

Implementing the ObjectList Utility

Sometimes you want the entire set of an object from the database, but in most cases,
you want a specific collection. Earlier in the section on finder methods in the
BusinessObjectFactory interface, a mechanism was discussed in the reference
architecture through which a named collection was defined in the business object
metadata. These collections were tied to a defined SQL or OQL WHERE clause. This
same mechanism can be used to define the collections for the ObjectList utility. As
an example, assume that you wanted to retrieve active accounts for a customer. You
could define another Account collection for this as follows:

<Collection name="activeByCustomer"

query="where customer_id = ? and last_modified_date > ?" />

ObjectList is a JDBC wrapper utility, so it needs the database column
and table names specified in the business object metadata in order to generate
the correct SQL. This was otherwise not required in the reference architecture
metadata for Entity Beans or other persistence framework options. Also note that
the query is defined using regular SQL and Java’s PreparedStatement format
of question marks as placeholders for run-time bindings.

NOTE

BEST PRACTIC E

Persistence, Relationships, and the Template Method Pattern 151

Figure 4.3 ObjectList UML Model.

EntityObjectList

getAsBusinessObject()

CastorObjectList

getAsBusinessObject()

ObjectList

getValueObjects()
size()
hasNext()
next()

objects:Collection
objectName:String
counter:int

The ObjectList utility can be constructed for a given object type. You can then
use it to retrieve various defined collections of the corresponding value objects. It can
hold a retrieved list until a new collection is retrieved. You can provide an interface
similar to Iterator for navigating the list. You also want to have a method that can
be used to get the current object as a business object; however, this will be imple-
mented differently based on your particular business object implementation model.
Thus, subclasses of ObjectList can be created, such as EntityObjectList, that
add a getAsBusinessObject method. The overall object design for this utility is
shown in Figure 4.3.

The code for ObjectList is shown next. The getValueObjectsmethod is used
to retrieve the collection. It returns the collection but also stores it to be potentially iter-
ated using the hasNext and next methods. A getSelectAllSQL method is used
on the business object metadata class that returns the ‘select field1, field2,...
from tableName’ for the object. The complete SQL string for the query is formed by
appending the WHERE clause for the collection to this string.

public class ObjectList {

// The collection of objects

protected ArrayList collection = null;

// The business object metadata

protected BusinessObjectMetadata bom = null;

// The name of the object in the list

protected String objectName = null;

// An index of the current object

// being iterated

protected int counter = 0;

152 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// The size of the list

protected int collectionSize = 0;

/*

* Constructor for a given object

*/

public ObjectList(String objectName) {

this.objectName = objectName;

try {

bom =

MetadataManager.getBusinessObject(objectName);

} catch (Exception ex) {

ex.printStackTrace();

}

}

/*

* The default constructor should not be used.

*/

private ObjectList() {

}

/*

* Get the entire list of objects for this type.

*/

public Collection getValueObjects() throws BlfException {

return getValueObjects(null, null);

}

/*

* Get a named collection of value objects.

*/

public Collection getValueObjects(String queryId,

ArrayList args)

throws BlfException {

try {

JDBCUtility dbutil = new JDBCUtility();

if (queryId == null) {

// If no query defined, get the entire list

collection = dbutil.getValueObjects(objectName,

bom.getSelectAllSQL());

collectionSize = collection.size();

} else {

// Build the SQL string

// core select + defined query (where clause)

StringBuffer buffer =

new StringBuffer(bom.getSelectAllSQL());

buffer.append(' ');

buffer.append(bom.getQuery(queryId));

String sql = buffer.toString();

Persistence, Relationships, and the Template Method Pattern 153

collection = dbutil.getValueObjects(objectName,

sql , args);

collectionSize = collection.size();

}

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

return collection;

}

/*

* Returns an indicator of whether there

* is another object in the list

*/

public boolean hasNext() {

if (counter > (collectionSize - 1)) {

return false;

}

return true;

}

/*

* Return the next object in the list.

*/

public ValueObject next() {

return (ValueObject) collection.get(counter++);

}

/*

* Return the size of the list.

*/

public int size() {

return collectionSize;

}

/*

* Accessor for business object metadata

*/

protected BusinessObjectMetadata getMetadata() {

return bom;

}

}

The EntityObjectList subclass then just adds the getAsBusinessObject
method. The code for this class is as follows:

public class EntityObjectList extends ObjectList {

public EntityObjectList(String objectName) {

super(objectName);

}

154 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public Object getAsBusinessObject() throws BlfException {

if (counter == 0) {

throw new BlfException("You need to invoke next()"

+ "before you can invoke getAsBusinessObject().");

}

ValueObject valueObj = (ValueObject)

collection.get(counter - 1);

String keyProperty =

getMetadata().getKeyField().getName();

Object obj = EJBFactoryImpl.findByPrimaryKey(

valueObj.getObjectName(),

valueObj.getProperty(keyProperty));

return obj;

}

}

The primary code used from JDBCUtility follows:

public ArrayList getValueObjects(String object,

String sql)

throws BlfException {

return getObjects(object,sql,emptyArgs,true);

}

public ArrayList getValueObjects(String object,

String sql,

ArrayList args)

throws BlfException {

return getObjects(object,sql,args,true);

}

public ArrayList getObjects(String object,

String sql,

ArrayList args,

boolean createValueObjects)

throws ValidationException {

ArrayList results = new ArrayList();

try {

// Determine the collection class name.

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(object);

HashMap attributeMetadata = bom.getPropertyMap();

String objectClassName = null;

if (createValueObjects) {

objectClassName = bom.getValueObjClass();

} else {

objectClassName = bom.getBusObjClass();

}

Persistence, Relationships, and the Template Method Pattern 155

// Invoke a generic method that executes a

// prepared statement with arguments.

rs = executePreparedStatementQuery(sql, args);

while (rs.next()) {

// Use the common interface for the two:

// value objects and business objects.

ValueObject valueObject = (ValueObject)

(Class.forName(objectClassName)).newInstance();

Iterator propertyIterator =

attributeMetadata.values().iterator();

while (propertyIterator.hasNext()) {

PropertyMetadata prop =

(PropertyMetadata)propertyIterator.next();

String columnName = prop.getDBName();

// Not all properties are stored

// in the database.

if (columnName != null) {

// Call a generic method that uses

// the common value object interface to

// set the property value.

setField(rs, prop.getName(),

prop.getDBName(),

prop.getType(),

valueObject);

}

}

results.add(valueObject);

}

} catch (Exception e) {

throw new BlfException(e.getMessage();

}

close();

return results;

}

Using ObjectList

There will likely be cases in which you simply want to retrieve a list of objects for dis-
play to the user. You can use ObjectList for this purpose, but you can also use it if
you potentially need to update some of the objects and don’t want to incur the over-
head of using a collection of Entity Beans. As an example, assume you are using Entity
Beans to implement the business objects and you want to assess a fee to customers if
the total of all their account balances is less than $1,000. This is a contrived example,
but it could be anything that requires some business logic that you might not do di-
rectly in a SQL query. Thus, you can use ObjectList to run the previous search ex-
ample of active accounts by customer. You then want to iterate through the collection,
calculate the total balance of all the accounts, and if it is less than $1,000, assess a fee to
one of the accounts. To do this, the getValueObjects method is invoked to run the
query and create the list of value objects. You can then iterate through the collection
and, after calculating the total, use the getAsBusinessObject method to obtain a

156 J2EE Best Practices: Java Design Patterns, Automation, and Performance

handle to that particular Entity Bean if you want to perform an update. The code to do
this is as follows:

EntityObjectList eol = new EntityObjectList("Account");

ArrayList args = new ArrayList(2);

args.add(customerId);

args.add(cutoffDate);

eol.getValueObjects("activeByCustomer",args);

BigDecimal total = new BigDecimal(0);

while (eol.hasNext()) {

ValueObject valueObj = eol.next();

total = total.add(

valueObj.getDecimalProperty("currentBalance"));

}

if (total.compareTo(new BigDecimal(1000)) < 0) {

AccountLocal account = (AccountLocal)

eol.getAsBusinessObject();

account.withdraw(new BigDecimal(10), "bank fee");

}

Using EJB Select Methods

If you know that you want to deal with a number of business objects within a given
Entity Bean, you can also use an ejbSelectmethod to retrieve a collection of objects.
EJB Select methods can be used only within a bean implementation class; however,
they avoid the need to use JNDI and the Home interface in order to locate other beans.
A powerful aspect of these select methods is that they can return any object within the
same JAR file. The container implements these methods in a similar manner to EJB
finder methods.

As an example, assume there is an administrative function to mark all customer
transactions as fraudulent after a certain date. The corresponding method would be
invoked once it was determined that a customer’s PIN number, or analogous creden-
tials, had been compromised and money was withdrawn from accounts. From the per-
spective of the Customer object, the select method should return all transactions after
a given date for any of the customer’s accounts. The select method can be defined for
the customer Entity Bean in the ejb-jar.xml file as follows:

<query>

<query-method>

<method-name>

ejbSelectTransactionsByTypeAndDate

</method-name>

<method-params>

<method-param>java.lang.String</method-param>

<method-param>java.lang.String</method-param>

<method-param>java.util.Date</method-param>

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 157

</method-params>

</query-method>

<ejb-ql>

<![CDATA[SELECT OBJECT(t) FROM Customer c,

IN (c.accounts) as a, IN (a.transactions) as t

WHERE c.id = ?1 and t.type = ?2 and

t.transactionDate > ?3]]>

</ejb-ql>

</query>

On the CustomerBean implementation, the select method is defined as abstract.
The markWithdrawalsAsFraud business method is defined and added to the
CustomerLocal interface as well. This method executes the query for the customer
and marks all of the Transaction objects as fraudulent.

//

// Select method

//

public abstract Collection

ejbSelectTransactionsByTypeAndDate(String id,

String type, java.util.Date transactionDate)

throws FinderException;

//

// Business method

//

public void markWithdrawalsAsFraud(

java.util.Date beginDate) throws BlfException {

try {

Collection coll =

ejbSelectTransactionsByTypeAndDate(getId(),

"W",beginDate);

Iterator iter = coll.iterator();

while (iter.hasNext()) {

TransactionLocal transaction =

(TransactionLocal) iter.next();

// Instead of a fraud indicator, you will update

// the transaction description.

String description =

transaction.getProperty("description");

String fraudDescription = description +

" - FRAUD";

transaction.setProperty("description",

fraudDescription);

}

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

}

158 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Database Queries
Thus far, you have only seen database queries that access a single table. This is because
examples have always been referencing collections of a single object. There are many
cases in application development where a join query is required to efficiently access
the data. Object purists may argue that you should always use the object model when
accessing data. Although there are many benefits to doing this, it becomes quite ineffi-
cient for data retrieval operations when it traverses large table structures. The general
rule is to always use business objects when performing transactional updates because
they contain the validations to maintain data integrity. However, as you have seen for
read-only operations, you can use query mechanisms instead of objects if the associ-
ated risks can be mitigated. The EJB Select methods can return CMP fields; however,
they are somewhat limited in that they can only return single CMP fields for beans
within a given JAR file. A meaningful query often needs more widespread data to be
useful. Thus, this section looks at the option of using JDBC queries for this purpose.

Always use business objects for transactional updates to
ensure data integrity and avoid redundant business logic validation code. Straight
database queries can be used for read-only operations if they are more effective at
traversing large table structures. However, this should be done only if you can miti-
gate the risk of having database names permeate throughout the application code.

One of the primary risks of using queries directly in your application is that the
column names can start to appear all over the code if not managed well. This can be a
maintenance nightmare if the database schema changes or even if a few column names
change. Thus, if you are going to use database queries, try to adhere to the following
guidelines, many of which have already been mentioned during the discussion of
object persistence:

Externalize the SQL in a metadata or configuration file.

Isolate all JDBC code in utility class to ensure proper management of
database resources (JDBCUtility has generic methods to execute a
PreparedStatement).

Map the result set rows to some kind of value object; this can isolate or
eliminate references to database names in application code.

The first two points have already been discussed; it is the third point that is of inter-
est here. How can you avoid referencing the database column names in your code? If
you move the result set fields to the value object structure, you need to be able to map
between the database column names and the logical property names. You have this
information in the metadata; however, it is organized by business object, and the
majority of these database queries will be join queries. Currently, the value object
structure also assumes that all properties belong to the same business object.

There are a couple of options to address this issue. You can create either a subclass
of BaseValueObject or another implementation of the ValueObject interface
that allows for properties from different objects. This class could be called
ResultSetValueObject to clearly note that this is not strict object data. You could

BEST PRACTIC E

Persistence, Relationships, and the Template Method Pattern 159

put logic in it to reference metadata from multiple objects, although you would likely
need to add direct access to properties in the metadata classes to support this. Aside
from using application metadata, another option is to use the logical property names as
aliases in the SELECT statement. The SQL would be defined as follows in this case:

Select fieldName1 propertyName1, fieldName2 propertyName2, ...

From tableName1, tableName2, ...

The JDBCUtility could then look at the ResultSetMetaData to put the
property values into a generic ResultSetValueObject according to the logical
property name (from the result set column name due to the alias) and its data type
(from the ResultSetMetaData).

The Base Class as a Template

The Template Method design pattern can be applied to the business object base class to
provide a template for common business behaviors. A primary example of this is busi-
ness validation logic. In the last chapter, validation routines were developed to per-
form edits on individual fields and the object as a whole. You want these validation
methods to be executed when the object is saved to the database in order to preserve
data integrity. You can define a save method on the business object that acts as a tem-
plate for this validation. The save method in the base class can invoke a generic
validation method that performs required field checking and data type checking using
the PropertyHandler mechanism. The application-specific edits that occurred in
the previous validate method examples can then reside in the business objects
subclasses and be invoked as a part of the save template.

If you are implementing business objects as regular Java classes, it is also a good
idea to build the interface so that it easily maps to the Entity Bean interface methods.
This would be helpful to enable any future migrations from Java business objects to
Entity Beans. This can be accomplished without much extra effort because many of the
hook points will be the same between the two models. Enterprise JavaBeans provide
hook methods that get called prior to insert, update, and delete operations. The busi-
ness object base class can provide a corresponding set of template methods. Table 4.1
shows the mapping between the business object interface templates methods and
those of the Enterprise JavaBeans specification.

Table 4.1 Template Methods of Business Object Interface and Entity Beans

BUSINESS OBJECT INTERFACE ENTITY BEAN
OPERATION TEMPLATE METHODS INTERFACE METHODS

Create blfPreInsert, ejbCreate,
blfPostInsert ejbPostCreate

Save blfPreSave, blfValidate ejbStore

Delete blfPreDelete ejbRemove

160 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The Save Template
The save template is used typically for the following purposes:

Property and object-level validation integrated with transaction management

Manipulation of aggregated objects

Presave logic

In the case of CMP Entity Beans and other persistence frameworks, the
save method is not actually doing the work of causing the object to persist in
the database. This is taken care of by the respective EJB container or framework
when the transaction commits. Rather, the save template is used to execute
application code prior to saving the object to the database.

Some of the validation aspects of this template have already been touched on. The
last item, presave logic, is a helpful one. Many applications have standard fields that
get updated on each transaction. Other applications have business logic to execute each
time an entity is updated. There are a number of possibilities. One common occurrence
is standard auditing fields. The Account object has a lastModifiedDate property.
This property should always reflect the last date that the object was updated. You can
have this automatically occur in the presave template method. The Account imple-
mentation has this code:

public void blfPreSave() throws BlfException {

// Set the audit date to today’s date.

setProperty("lastModifiedDate",new Date());

}

As a part of the save template, this method always gets invoked and you do not
need to code this multiple times in every business method.

The implementation of the save method is now shown. This implementation is
common among the different business object implementation models.

public void save() throws BlfException {

// Initialize the error list for the business object.

getErrorList().clear();

// Call the presave template method.

blfPreSave();

try {

// Perform all of the object validation.

validate();

} catch (BlfException be) {

getErrorList().addErrors(be.getErrorList());

}

NOTE

Persistence, Relationships, and the Template Method Pattern 161

// Throw a validation exception if any

// errors occurred.

errorList.throwExceptionIfErrors();

}

/**

* Validation template for business object

*/

public void validate() throws BlfException {

validateRequiredFields();

validatePropertyValues();

blfValidate();

}

/**

* Helper method to validate

* (checks all required fields)

*/

protected void validateRequiredFields()

throws ValidationException {

Collection allFields = attributeMetadata.values();

Iterator iter = allFields.iterator();

while (iter.hasNext()) {

PropertyMetadata prop =

(PropertyMetadata)iter.next();

if (prop.isRequired()) {

String value = null;

try {

value = getProperty(prop.getName());

} catch (PropertyException ignore) {}

if ((value == null) || (value.equals(""))) {

getErrorList().addError("REQ_FIELD",

prop.getName());

}

}

}

}

/**

* Helper method to validate

* (iterates through all properties

* and runs the property validation routines)

*/

protected void validatePropertyValues()

throws BlfException {

Iterator iter = attributeMetadata.values().iterator();

while (iter.hasNext()) {

162 J2EE Best Practices: Java Design Patterns, Automation, and Performance

PropertyMetadata pmd =

(PropertyMetadata) iter.next();

try {

validatePropertyDataType(pmd.getType(),

getProperty(pmd.getName()));

} catch (ValidationException ve) {

getErrorList().addErrors(ve.getErrorList());

}

}

}

// Base class implementations are empty.

// Implemented by subclasses

public void blfValidate() throws BlfException {

}

public void blfPreSave() throws BlfException {

}

The save method first calls the validate method. The validate method
invokes other base class methods that perform required field checking and individual
field value edits. Both of these generic routines go through the list of property metadata
objects and perform the appropriate edit. In the case of property value checking, each
value is sent through its corresponding PropertyHandler validation class. The last
thing the validate method does is call a method called blfValidate.

The blf prefix is used to correspond to the ejb prefix found in front of
the EJB template methods (that is, ejbCreate). BLF stands for Business Logic
Foundation, the name of the foundation layer.

The blfValidate method has a default implementation in the base class that
does nothing, but its purpose is to provide a hook that specific business object sub-
classes can implement to provide object level validation logic. If there are no edits at
this level to perform, the subclass is not required to implement the method, and the
validate return will go on as normal.

Use the Template Method pattern to implement common
behaviors in the business object base class. A primary example of this is the save
method, which can call a hook method to perform data validation, specific object
validation, and any presave logic implemented in the subclass.

Managing Aggregated Objects

If there is a hierarchy of related objects, it would be nice to invoke the save method on
the parent object and have it deal with all of the child objects as well. This can be done
either with specific code in theblfPreSavemethods of the business object subclasses,

BEST PRACTIC E

NOTE

Persistence, Relationships, and the Template Method Pattern 163

or it can be addressed at the foundation level generically by the base class. In the latter
option, the base class can go through each relationship defined in the metadata and,
using the standard accessor methods, iterate through each aggregated object and invoke
its save method. This can be implemented as shown here:

/**

* Helper method to save (iterates

* through all aggregated objects and

* invokes the save routine)

*/

protected void saveAggregatedObjects()

throws BlfException {

Collection coll = bom.getRelationships();

Iterator iter = coll.iterator();

while (iter.hasNext()) {

RelationshipMetadata relation =

(RelationshipMetadata) iter.next();

if (relation.isAutoSave()) {

if (relation.isMultiple()) {

Collection relatedColl =

getOneToManyRelationship(

relation.getName());

Iterator relatedIter =

relatedColl.iterator();

while (relatedIter.hasNext()) {

try {

BusinessObject busObj =

(BusinessObject)

relatedIter.next();

busObj.save();

} catch (BlfException be) {

getErrorList().addErrors(

be.getErrorList());

}

}

} else {

try {

BusinessObject busObj =

getOneToOneRelationship(

relation.getName());

busObj.save();

} catch (BlfException be) {

getErrorList().addErrors(

be.getErrorList());

}

}

}

}

}

164 J2EE Best Practices: Java Design Patterns, Automation, and Performance

You might notice that an autoSave indicator was added to the relation-
ship metadata. This is used as a performance optimization so this feature can
be turned on or off for specific relationships.

Entity Beans, as well as many other persistence frameworks, do not indicate whether
an aggregated component has already been loaded from the database. Thus, iterating
through aggregated objects may cause the container to load objects that were not even
used in order to invoke the save method. In many cases, the object graph is small, or
it is known that the objects are already instantiated, so this concept can be used with-
out additional, unnecessary overhead. Optionally, an indicator could be added as an
argument to the save method as to whether it should be a “deep” save operation. As
the implementation is currently shown, you can configure this behavior in the meta-
data. For example, if you wanted to have the Customer component automatically run
the save template on its accounts, but not on the address, the relationships would be
defined as follows:

<BusinessObject name="Customer" >

...

<Relationship name="address" multiplicity="one"

autoSave="false" />

<Relationship name="accounts" multiplicity="many"

autoSave="true" />

</BusinessObject>

Save Template for Entity Beans

At first glance, you might think to use the ejbStore template method provided by
the container to invoke the save template logic. However, this method only throws an
EJBException or RemoteException, and there is no way to override it and
throw an application exception. The EJB specification explicitly defines how applica-
tion exceptions are handled when thrown out of business methods, but ejbStore is
a container-invoked callback, and it treats all exceptions the same. If you could throw
the ValidationException out of this method, it seems as if it still might behave as
you intended, but there is no way to do so given the ejbStoremethod signature. The
intent here was that only system-level exceptions would occur in these container-
invoked callback methods. You will see later that ejbCreate and ejbRemote do not
fall into this category because they are invoked directly as a result of a client invoking
the create or remove methods on the Home interface. They are still classified as
business methods.

Thus, the save logic needs to be explicitly invoked at the end of Entity Bean business
methods or service components that use the bean. You also need to consider transaction
management if the Entity Beans can be invoked directly from a client. In this case, the
transaction begins and ends with the Entity Bean business method so you need to vote
for a rollback if a business error occurs. In many cases, you can wrap the Entity Beans
with a Session Bean, and you can move this logic out to the Session Bean just as you will
need to do for Java business objects. For the time being, however, consider the case in
which you must manage the transaction in the business object. Every business method

NOTE

Persistence, Relationships, and the Template Method Pattern 165

like this will have a similar pattern: an encompassing try-catch block and asavemethod
invocation at the end. Consider, for example, a convertToCheckingAccount
method on the Account Entity Bean. It changes the account type and account number
accordingly and then calls the save method to verify that all business validations have
been met. Once the account is converted to a checking account, the minimum balance
requirement changes, and it may not meet the requirement. If a business exception such
as this occurs, aBlfException is thrown from thesave method and is caught by this
business method. The transaction is then set to roll back in the catch block of this
exception.

public void convertToCheckingAccount()

throws BlfException {

try {

// Change the account type

setProperty("type","C");

// All account numbers start

// with their type, for example, Cxxxxx.

// Change the account number

// accordingly.

setProperty("number",

"C" + getProperty("number").substring(1));

// Invoke the save template

// in case a minimum balance is

// not met, and so on.

save();

} catch (BlfException be) {

// If a business error occurred,

// vote to roll back the transaction

// and rethrow the exception that

// has the error list inside to

// communicate to the client.

getEntityContext().setRollbackOnly ();

throw be;

}

}

The Create Template
The create template actually appeared earlier in the discussion of the business object
factory. It is implemented by the base class method blfCreate, which is triggered by
a create operation on the factory. It has both pre and post creation methods. In the
Entity Bean implementation, these can be triggered by ejbCreate and
ejbPostCreate. In the case of the Castor business objects, this flow was controlled
directly from the object factory’s create method.

166 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The blfPreInsert method is often used to set properties that have application-
defined initial values. The blfPostInsert method can be used to create any
aggregated objects that have a dependent lifecycle. As an example, your Customer
component can take a customer value object that also contains address data. The create
template can then be used to insert the Address object as well. The code for this
method is shown here. It uses the Castor implementation, although any object factory
could be substituted here.

/**

* Template method called from create

*/

public void blfPostInsert(ValueObject initialValues)

throws BlfException {

//

// Create the aggregated address.

//

CustomerData custData = (CustomerData) initialValues;

AddressData addrData =

(AddressData) custData.getAddress();

Address address = (Address)

CastorFactoryImpl.create("Address",

addrData,

getDatabase());

setAddress(address);

}

Also note that the save template can be used from within the create template as
well in order to run the same business validations and presave logic. In many cases, the
same logic is still applicable to an insert operation. For example, you want to run vali-
dations when you create an Address to ensure you have a valid state and zip code,
and so on. The blfPreInsert method is currently used to default the country, in
case one is not specified. It can also be used to invoke the save method to run the val-
idations. The code for this is shown here.

/*

* This method is called by the create new instance

* template in the business object base class.

*/

public void blfPreInsert() throws BlfException {

//

// Default the country to the USA.

//

setProperty("country","USA");

// Run the validations.

save();

}

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 167

The Template Method for
Application-Specific Logic

The template pattern can be used for application-specific logic as well as common
foundation logic. If an object model for an application has an inheritance hierarchy in
which a common process is altered based on the specific subclass, the template method
can provide a nice flexible solution. In the Account examples thus far, a type prop-
erty was used to designate what type of account the object represents; however, you
could also have implemented this using specific subclasses for checking and savings
accounts. If there was a common business behavior that differed in some steps between
the two, you could implement the business method as a template in an application
account base class.

As an example, take account close-out as a process that differs for checking and
savings accounts. The close-out process at a high level is as follows:

1. Issue a money order to withdraw the remaining balance.

2. For checking accounts, send an email to ask customer to tear up old checks and
thank the customer for banking with you. For savings accounts, send an email
to thank the customer for banking with you.

3. Send the final statement.

4. Inactivate the account in the database.

The Account base class would have the following methods:

public void closeOut()

{

issueMoneyOrder();

sendCustomerEmail();

sendFinalStatement();

inactivateAccount();

}

public void sendCustomerEmail()

{

// Do nothing here; subclases will implement.

}

The CheckingAccount object would have the following method implementation:

public void sendCustomerEmail()

{

String message = "Please tear up old checks. " +

" Thank you for banking with us.";

sendEmail(message);

}

168 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The SavingsAccount object would have the following method implementation:

public void sendCustomerEmail()

{

String message = " Thank you for banking with us.";

sendEmail(message);

}

Although this example is oversimplified, the concept is a powerful one when used
appropriately. One thing to watch out for, however, is forcing the use of this pattern. If
your business entities are not modeled very well by inheritance, it is not a good idea to
force the issue so that you can use this pattern. Inheritance is a strict form of object
reuse compared to delegation, so you want to make sure that your object design fits the
application requirements well.

Overall Business Object Metadata Approach

The generic foundation layer for business objects has been using XML metadata to de-
fine the aspects of the business objects as well as other important pieces of information.
This section takes a look at the entire definition of the XML metadata now that all of the
pieces are defined.

The Metadata XML DTD
The metadata DTD (document type definition) is as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!--

Business Logic Foundation Metadata DTD

-->

<!--

A set of business logic foundation metadata.

This is the top level element.

-->

<!ELEMENT Metadata (BusinessObject*, PropertyDefinitions*,

DatabaseQueries?, BusinessErrors?, CacheList?)>

<!--

The definition of a business object, which includes

its properties, relationships to other business objects,

and defined collections.

-->

Persistence, Relationships, and the Template Method Pattern 169

<!ELEMENT BusinessObject (Property+, Relationship*, Collection*)>

<!ATTLIST BusinessObject

name CDATA #REQUIRED

busObjClass CDATA #IMPLIED

valueObjClass CDATA #IMPLIED

table CDATA #IMPLIED

ejbHomeClass CDATA #IMPLIED>

<!--

A property of an object. The property type is required and

refers to a type defined within the PropertyDefinitions element.

-->

<!ELEMENT Property EMPTY>

<!ATTLIST Property

name CDATA #REQUIRED

dbname CDATA #IMPLIED

type CDATA #REQUIRED

required (true|false) "false"

key (true|false) "false"

autogen (true|false) "false">

<!--

A relationship from the containing object to another. This

can be a 1-1 or a 1-M relationship. The name is a reference

to another business object. The autosave attribute defines

whether the save template is automatically applied to these

aggregated objects.

-->

<!ELEMENT Relationship EMPTY>

<!ATTLIST Relationship

name CDATA #REQUIRED

multiplicity (one|many) "one"

autoSave (true|false) "false">

<!--

A named collection of the object. This defines, in

essence, a 'where' clause for SQL, OQL, or EJB QL,

depending on the business object implementation that is

being used.

Collections can be used to locate business objects using

BusinessObjectFactory or to locate sets of value objects

using ObjectList. The name is any unique name you choose.

-->

<!ELEMENT Collection EMPTY>

<!ATTLIST Collection

name CDATA #REQUIRED

query CDATA #REQUIRED>

170 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<!--

A collection of property definitions

-->

<!ELEMENT PropertyDefinitions (PropertyType*)>

<!--

A PropertyType defines a category of properties

that use a specific handler class for validation

and formatting.

-->

<!ELEMENT PropertyType EMPTY>

<!ATTLIST PropertyType

name CDATA #REQUIRED

handler CDATA #REQUIRED>

<!--

Database queries are defined SQL queries to be

used by the DatabaseQuery utility class. They

are defined here to externalize the SQL from

the application.

-->

<!ELEMENT DatabaseQueries (Query*)>

<!--

A defined SQL query

-->

<!ELEMENT Query EMPTY>

<!ATTLIST Query

name CDATA #REQUIRED

sql CDATA #REQUIRED>

<!--

A set of business errors

-->

<!ELEMENT BusinessErrors (BusinessError*)>

<!--

Business errors are defined error codes that have

a type defined as warning, error, or critical errors.

They have a defined user message that acts as a

run-time template with substitution values.

-->

<!ELEMENT BusinessError EMPTY>

<!ATTLIST BusinessError

name CDATA #REQUIRED

type CDATA #REQUIRED

message CDATA #REQUIRED>

Persistence, Relationships, and the Template Method Pattern 171

<!--

A set of defined caches used by the CacheList

utility class

-->

<!ELEMENT CacheList (Cache*)>

<!--

A named cache that can be accessed by the

CacheList utility. A subclass of ObjectCache

can be used as the implementation of

ObjectCache foundation class itself.

-->

<!ELEMENT Cache EMPTY>

<!ATTLIST Cache

name CDATA #REQUIRED

class CDATA #REQUIRED>

There are efforts underway to standardize both the metadata XML formats and the
methods used to access the metadata. One format now commonly supported by mod-
eling tools is XML Metadata Interchange (XMI), a standard XML format used to repre-
sent UML models. Ideally, you would either use the XMI format itself or build a utility
to convert from the XMI format to our own. This would allow you to automate this
portion of the development process using UML design models and development tools
such as Rational Rose.

The XMI DTD is very verbose and thorough so that it can encompass all of the in-
formation from a UML model. A small portion of an XMI document for your Account
object might look like this:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE XMI SYSTEM "uml13.dtd">

<XMI xmi.version="1.0">

<XMI.header>

<XMI.metamodel xmi.name="UML" xmi.version="1.3"/>

</XMI.header>

<XMI.content>

<Model_Management.Model xmi.id="xmi.1"

xmi.uuid="-106--106-25-11--7e352540:e17838870b:-7fed">

<Foundation.Core.ModelElement.name>Bank Example Model

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isRoot

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isLeaf

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isAbstract

xmi.value="false"/>

<Foundation.Core.Namespace.ownedElement>

172 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<Foundation.Core.Class xmi.id="xmi.2"

xmi.uuid="-106--106-25-11--7e352540:e17838870b:-7fec">

<Foundation.Core.ModelElement.name>Account

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.isSpecification

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isRoot

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isLeaf

xmi.value="false"/>

<Foundation.Core.GeneralizableElement.isAbstract

xmi.value="false"/>

<Foundation.Core.Class.isActive xmi.value="false"/>

<Foundation.Core.ModelElement.namespace>

<Model_Management.Model xmi.idref="xmi.1"/>

</Foundation.Core.ModelElement.namespace>

<Foundation.Core.Classifier.feature>

<Foundation.Core.Attribute xmi.id="xmi.3">

<Foundation.Core.ModelElement.name>currentBalance

</Foundation.Core.ModelElement.name>

<Foundation.Core.ModelElement.visibility

xmi.value="public"/>

<Foundation.Core.ModelElement.isSpecification

xmi.value="false"/>

<Foundation.Core.Feature.owner>

<Foundation.Core.Class xmi.idref="xmi.2"/>

</Foundation.Core.Feature.owner>

<Foundation.Core.StructuralFeature.type>

<Foundation.Core.DataType xmi.idref="xmi.4"/>

</Foundation.Core.StructuralFeature.type>

</Foundation.Core.Attribute>

...

</Foundation.Core.Namespace.ownedElement>

</Model_Management.Model>

</XMI.content>

</XMI>

Use a metadata format that allows your design models to be
the original source of the metadata. Either build your metadata parser to read the
XMI format or use a conversion utility to create your own XML format from XMI,
which is generated by development tools from the design models.

Accessing the Metadata from
the Application
The foundation layer would be quite inefficient if it needed to read and parse the XML
metadata file from disk every time you needed to reference it. A better approach is to
parse the file once and cache the metadata in memory. To do this, you need an object

BEST PRACTIC E

Persistence, Relationships, and the Template Method Pattern 173

Figure 4.4 Metadata Class Diagram.

BusinessObjectMetadata

name:String
databaseTable:String
busObjClass:String 1
valueObjClass:String
queryList:HashMap

getName()
...
getKeyField()
getQuery()

RelationshipMetadata

name:String
multiple:boolean
autoSave:boolean

getName()
...
isAutoSave()

PropertyMetadata

name:String
type:String
required:boolean
databaseName:String
keyField:boolean
autogenerated:boolean

getName()
...
isAutoGenerated()

PropertyTypeMetadata

type:String
handlerClass:String

getType()
getHandlerClass()

1

0 . . M1

structure to hold the data and provide easy access to the information. Some of the
previous code samples have referenced the BusinessObjectMetadata class that
stores object-level information from the metadata, such as the database name. This
class aggregates a collection ofPropertyMetadata objects used to define each of the
properties of the business object. Each property has a type, which references a global
list of property definitions. These are stored as PropertyTypeMetadata objects.
The BusinessObjectMetadata also aggregates a collection of Relationship-
Metadata objects.

Figure 4.4 shows the entire object model for the metadata in a UML class diagram.
You will need two different caches to store this information:

Business object metadata cache: A collection of BusinessObjectMetadata
objects keyed by object name. Each of these objects contains its respective list of
PropertyMetadata and RelationshipMetadata objects.

Property type metadata cache: A collection of PropertyTypeMetadata
objects keyed by type name.

You can use the general-purpose cache mechanism, which is discussed in the next
section of this chapter, to store the metadata objects in memory. However, you proba-
bly want to wrap the general cache interface with a MetadataManager interface for
convenience because the metadata will be used so often throughout our business logic
foundation.

174 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Likewise, the business object base class will refer to the metadata so often that it is
probably best to add a member variable that references its particular Business-
ObjectMetadata object. Going even one step farther, you can add a member vari-
able that references the property list within that object, because there will be numerous
occasions on which you will wish to iterate through this collection.

Way back during the discussion of implementing properties for a business
object, the properties could have been stored as a collection of Property
objects that held both the metadata and the property value. This would have
allowed the business object to hold only one collection as opposed to the current
design, which has both a collection of property values and a collection of property
metadata objects. However, having these two separated is coming in handy now
for performance reasons. Because the property metadata is read-only, it can be
shared across all business objects. Thus, you don’t need to make a copy of the
property metadata objects for each new business object instance. You simply give
each business object a reference to the same shared object. This would have been
a bit more difficult if the property objects had both metadata and instance values.

Data Caching

Disk and database I/O are usually the most expensive operations that an application
performs. You can perform hundreds or perhaps thousands of CPU instructions in the
time that it takes to do one database query using JDBC. Thus, for high-performance
applications, you should look to cache data that is fairly static and used often through-
out an application. In the effort to build the Business Object Architecture, you have
already come across a number of places where you would like to cache data in mem-
ory of the application server. There are two types of caches for metadata, the business
object metadata and the property type metadata. There also is the option of caching EJB
Home interfaces encapsulated within the BusinessObjectFactory. Once you get
into developing actual applications, there likely will be a number of application objects
and lookup tables that can be cached to give the application a performance boost.

Cache Implementation Options
There are two primary options for caching data within a J2EE application server:

Java singleton class

Stateless Session Bean

The singleton pattern (Erich Gamma et al. 1995) is typically used to ensure that an
in-memory cache is not duplicated within a given JVM. This pattern provides a static
getter method that lazily instantiates a single static member within a synchronized
block to ensure that only one instance of the cache object is created. The cache object is
usually some type of collection that holds the objects to be stored. In many cases, this
is a very effective implementation for a cache because it has almost no overhead

NOTE

Persistence, Relationships, and the Template Method Pattern 175

associated with accessing the cache. A HashMap lookup is about the only operation
required to access a cached object given its key.

On some application servers, however, there is an issue with using a regular Java
singleton. The class loaders on some servers tend to drop and reload classes at differ-
ent intervals. This will occur on some implementations while it may not on others. You
can test for the occurrence of this on your platform fairly easily by putting some debug
statements in the data loading method. After doing this, run your application under a
load test and see how often, if at all, this happens in your environment. If the class
loading does not reoccur, then this approach will likely work quite well for you.

The other primary option for caching data is to use the same pattern wrapped by a
stateless Session Bean. This approach can be used if the class loading issue becomes
a problem. This is also a nice implementation if you wish to distribute your cache to a
remote client. These benefits, however, come at the cost of the additional RMI overhead
and possibly a network trip to access the cache. Nonetheless, this is almost assuredly
more efficient than a database query to get the same data. One additional benefit of
using an EJB for the cache implementation is that the management of your cache com-
ponent lifecycle is handled by the application server. This ensures it is highly available
and pooled according to the particular client load. It is up to the server’s discretion
whether it should make multiple instances available to EJB clients. This may not be
desirable for extremely large caches because of the memory consumption involved.
However, for most normal size caches, this usually does not become a problem.

Designing the Cache Objects
With either implementation, you are building a type of singleton cache. There are al-
ready three caches to be implemented, and it is almost a certainty that you will want to
cache application data. Should you build separate caching objects for each one of these
caches? You can do this; however, this would lead to a large number of components
being deployed by the server in the case of a Session Bean cache. It would also add a
large number of objects to the code base if you created specific objects for each cache.
You probably don’t need to do this. Each cache object will basically follow the same
singleton pattern that uses a HashMap to store the objects by a given key. You can
create an encompassing CacheList object that manages these caches and stores
each one of them in a master HashMap keyed by their cache name. The caches them-
selves can be implemented using an ObjectCache class that wraps the HashMap
collection.

HashMap is not a synchronized class, so if you need to protect your cache
with synchronized access, you should create a SynchronizedObjectCache
class that uses a hashtable. If the cache data is loaded all at once when the cache
is initialized, this usually is not an issue because clients are only reading data.
If data can be added to the cache during the life of an application, then this
becomes a consideration, although the normal implementation pattern usually
involves a cache “refresh” that reloads the entire set of data within a synchronized
block. One last issue to consider regarding this topic is to ensure that your cached

NOTE

176 J2EE Best Practices: Java Design Patterns, Automation, and Performance

objects are thread-safe because they will likely be accessed by multiple clients at
a time. Remember that the caches are not making copies of the data. They give all
clients a handle to the same object. There have been some problems, for example,
with caching XML documents using some earlier Document Object Model parser
implementations that were not thread-safe. In these cases, you would want to
move the data into a thread-safe data structure, such as strings in a hashtable.

The general cache mechanism should be able to manage a number of caches, thus
each method will require a cache name. You can expose the basic put and get opera-
tions on the CacheList itself so that the entire cache does not always need to be
returned to the client. In the Java singleton implementation, this would not be an issue.
However, in the stateless Session Bean model, this would cause unnecessary overhead
for simple lookup operations because it would need to serialize an entire cache object
rather than just the requested object. Exposing the access methods on the primary
CacheList object allows you to define an interface that will work with either the Java
singleton or Session Bean implementation.

The caches are implemented by a simple wrapper around HashMap, which is called
ObjectCache. They expose the put and get operations for that particular cache.
The CacheList utility stores a collection of these identified by a cache name. The
CacheList class will look something like this:

/*

* CacheList is a utility to manage a set of object caches.

* It stores a HashMap of cache objects keyed by a cache name.

*/

public class CacheList

{

// The singleton instance

public static CacheList instance = null;

// The "master" cache - a collection of caches

// keyed by cache name

private HashMap caches;

/*

* Default constructor that initializes the

* master collection

*/

public CacheList()

{

caches = new HashMap();

}

/*

* The singleton static accessor

*/

public static CacheList getInstance()

{

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 177

if (instance == null)

{

synchronized (CacheList.class)

{

if (instance == null)

{

instance = new CacheList();

}

}

}

return instance;

}

/*

* Return an object within the named cache

* identified by the key.

*/

public Object getObject(String cacheName, Object key)

{

ObjectCache cache = getCache(cacheName);

return cache.get(key);

}

/*

* Store an object in the named cache with the given key.

*/

public void putObject(String cacheName,

Object key,

Object value)

{

ObjectCache cache = getCache(cacheName);

cache.put(key, value);

}

/*

* Return the named cache.

*/

public ObjectCache getCache(String cacheName)

{

ObjectCache cache = null;

// Check to see if the cache has already

// been created.

Object obj = caches.get(cacheName);

// If not, go ahead and create it putting

// it in the 'master' cache.

if (obj == null)

{

cache = new ObjectCache(cacheName);

caches.put(cacheName,cache);

178 J2EE Best Practices: Java Design Patterns, Automation, and Performance

}

else

{

cache = (ObjectCache) obj;

}

return cache;

}

}

The caches need a method to load all of their data. This method will be called initially
and also when a refresh operation is needed. You can add a method loadData that is
responsible for loading all of the data into the cache. The default implementation on
ObjectCachewill not do anything because it is a general all-purpose cache. However,
you can create subclasses of ObjectCache that implement this method to load spe-
cific data. For example, you may have a cache of the fifty states keyed by their two-letter
abbreviations. This cache could be implemented as follows using the loadData
method:

public class StateCache extends ObjectCache

{

/*

* Construct the superclass giving the object name.

*/

public StateCache()

{

super("States");

}

/*

* Standard cache method to load the data

*/

public void loadData()

{

// Note that you could easily load from a JDBC or

// other data source, but you will simply add

// some values for the example.

put("CA", "California");

put("IL", "Illinois");

put("VA", "Virginia");

}

}

You can add the definition for each named cache into the metadata so the first call to
CacheList automatically instantiates and loads the data for the state cache. You can
add a cache list section in the metadata file such as the following:

<CacheList>

<Cache name="States" class="bank.StateCache">

</CacheList>

Persistence, Relationships, and the Template Method Pattern 179

The getCache method in CacheList is now a bit more complicated. It is imple-
mented as follows in order to account for the metadata and the initial loading of data
into the cache:

/*

* Return the named cache.

*/

public ObjectCache getCache(String cacheName)

throws BlfException

{

ObjectCache cache = null;

// Check to see if the cache has already

// been created.

Object obj = caches.get(cacheName);

// If not, go ahead and create it putting

// it in the 'master' cache.

if (obj == null)

{

// Look up in the metadata to see if there is a

// defined class for this cache. Note that you

// can’t do this for the cache metadata itself.

CacheMetadata cacheMetadata = null;

if (!(cacheName.equals("CacheTypeCache")))

{

cacheMetadata = (CacheMetadata)

getObject("CacheTypeCache", cacheName);

}

// If you have defined metadata for this cache,

// use it to instantiate the proper object.

// Otherwise, use the standard ObjectCache.

if (cacheMetadata == null)

{

cache = new ObjectCache(cacheName);

}

else

{

// Construct the cache implementation class and

// call the loadData method to initialize its

// data.

try

{

String cacheImplClass =

cacheMetadata.getImplClass();

cache = (ObjectCache)

(Class.forName(cacheImplClass)).newInstance();

cache.loadData();

}

catch (Exception e)

{

180 J2EE Best Practices: Java Design Patterns, Automation, and Performance

throw new BlfException(e.getMessage());

}

}

// Store the new cache in the ‘master’ cache.

caches.put(cacheName,cache);

}

else

{

// If the cache already exists, simply return

// the handle to it.

cache = (ObjectCache) obj;

}

return cache;

}

Lookup Tables

In addition to providing methods for loading data, there is another reason you may
want to have subclasses of ObjectCache. A subclass can allow you to extend the
functionality if you want to provide more specific types of caches. One such case that
recurs in almost all business applications is the lookup table. A lookup table is a col-
lection of codes and values that are commonly used as drop-down lists on a Web page.
The previous state cache really can be implemented as a lookup table. If you create a
subclass of ObjectCache called LookupCache, you can add methods that are
commonly used against lookups such as validating that a value exists in the list of
lookup values. If the cache is used heavily in the presentation logic, you might also add
methods to create a drop-down list from the LookupCache, although it might be
better to isolate this type of logic in a set of HTML utility classes. Going back to the
validation example, the Address business object could use this cache to validate that
the state given is a valid one. To implement this in the caching mechanism, the
LookupCache might be implemented like this:

public class LookupCache extends ObjectCache

{

/*

* Construct the cache with the given name.

*/

public LookupCache(String cacheName)

{

super(cacheName);

}

/*

* Override the put method to use strings

* instead of object.

*/

Persistence, Relationships, and the Template Method Pattern 181

public void put(String code, String value)

{

collection.put(code,value);

}

/*

* Override the get method to use strings

* instead of object.

*/

public String get(String code)

{

return (String) collection.get(code);

}

/*

* Check to see whether a given code exists

* as a key in this lookup cache.

*/

public boolean isValidCode(String code)

{

return collection.containsKey(code);

}

}

The isValidCode method was added as a convenience to perform valid value
edits in a business object against this cache. The validate method of the Address busi-
ness object could invoke this method to ensure a valid state was given. The code for
this is as follows:

public void blfValidate() throws BlfException {

ErrorList errorList = new ErrorList();

try {

// Validate the state.

StateCache states = (StateCache)

CacheList.getInstance().getCache("States");

if (!states.isValidCode(getProperty("state"))) {

errorList.addError("INVALID_STATE",

getProperty("state"));

}

// Other validations here...

} catch (PropertyException pe) {

errorList.addError("GEN_PROPERTY_ERROR",

pe.getMessage());

}

errorList.throwExceptionIfErrors();

}

182 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Configuration Cache

Another common occurrence of something you would like to cache in an application is
the configuration parameters. Most applications have a set of configuration properties,
usually stored in a Java properties file, that control how an application is set up to run.
These can be referred to quite often, and it would be very inefficient to have to read and
parse the properties file each time you wanted to use a configuration parameter.
Another subclass can be created called ConfigurationCache to hold these para-
meters. It would override the put and get methods to deal with strings as a conve-
nience, and also implement a loadData method that read the application’s
configuration properties file and loaded the values into the cache. The other important
part about this is to have a special named cache for the purpose of storing configuration
parameters that all application components use when necessary. In order to simplify
this for application components, you may want to create a wrapper class that uses the
CacheList underneath but always refers to the specific named configuration cache.
This prevents the possible mistake of referring to the wrong name and simplifies the
API for this purpose.

The primary code for ConfigurationCache is shown here. The properties file
was named BlfConfiguration.properties.

public class ConfigurationCache extends ObjectCache {

/*

* Construct the superclass giving the object name.

*/

public ConfigurationCache() {

super("Config");

}

/*

* Standard cache method to load the data

*/

public void loadData() {

try {

PropertyResourceBundle blfProperties =

(PropertyResourceBundle)

PropertyResourceBundle.getBundle(

"BlfConfiguration");

if (blfProperties == null) {

System.out.println("Error getting " +

"BlfConfiguration.properties file.");

}

Enumeration enum = blfProperties.getKeys();

while (enum.hasMoreElements()) {

String key = (String) enum.nextElement();

put(key,blfProperties.getString(key));

}

Persistence, Relationships, and the Template Method Pattern 183

Figure 4.5 Object Model for Caching Mechanism.

CacheList

putObject()
getObject()
getCache()

cacheList:HashMap

ObjectCache

getObject()
putObject()
loadData()

cache:HashMap

LookupCache

isValidCode()
loadData()

ConfigCache

loadData()

} catch (MissingResourceException e) {

System.out.println("Error getting " +

"BlfConfiguration.properties file.");

}

}

}

The convenience wrapper class to access configuration properties is shown here:

public class ConfigurationManager {

public static String getString(String key)

throws BlfException {

return (String)

CacheList.getInstance().getObject("Config",key);

}

}

Configuration parameters include things such as the level of debug output to write
to the log, what log files to use, and other similar application level parameters that con-
trol the flow or define application resources. For example, the location of the business
object metadata file could be specified in the configuration properties.

CacheList Object Model

The caching implementation is summed up by Figure 4.5.

184 J2EE Best Practices: Java Design Patterns, Automation, and Performance

When to Cache Data
Although data caching provides a great performance boost when used for frequently
accessed data, there are drawbacks and design considerations that should be taken into
consideration before you decide to cache a set of data. Two primary things to consider
are the amount of memory that is consumed in order to cache these objects and the rate
at which the data changes. As the entire cache mechanism consumes more and more
memory, there is less memory available for application objects, which can also slow an
application down because the JVM will be forced to collect garbage more often. The
other issue to consider is that frequently changed data will require a large amount of
effort to keep up to date in the cache, which will also consume resources.

Good candidates for cached data exhibit the following characteristics:

Fairly static or read-only data

Used frequently or predictably by the application

Small volumes of data

Data that does not meet one or more of these characteristics may be better accessed
through a database. Any data that is modified through transactional updates is usually
better off being handled by an RDBMS that specializes in that exact thing. Remember
that this is not trying to implement a database here, it is only trying to provide a simple
mechanism to speed access to commonly used, static data.

Refresh Mechanism
Notice that the criteria didn’t entirely limit data caching to read-only data. There are
cases in which data remains static for the majority of the time but can be changed dur-
ing the course of an application’s uptime. If it is not updated very frequently but is still
used quite often, it may still be beneficial to cache this data. In these cases, you need a
way to make a live update to the cache. In a single JVM environment, this is trivial. You
would simply get hold of the cache and invoke the loadData method after the
update operation that modified the cached data. In a clustered application server envi-
ronment, you have a CacheList instance running in each JVM in the cluster. Thus,
you need to notify each JVM of the update so that each CacheList instance can
obtain the correct data.

The Java Message Service (JMS) provides a nice way to link these instances so that
they can all be notified of an update. The publish/subscribe mechanism is used to cre-
ate a topic for the cached data. Each cache object subscribes to the appropriate topic
corresponding to its data. The business objects that update the cached data need to be
modified to publish a message to this topic when they update the data. When this
occurs, each cache object will receive the message and will need to immediately invoke
the loadData method before processing any further requests. Note that this still
provides some lag time in between the point where the update was committed to the
database and the cache objects receive and process the message. Although this time is
minimal, it should still be considered against the application requirements. In a stock
market application, those fractions of a second may make all the difference, although
in many applications this brief time interval would be acceptable.

Persistence, Relationships, and the Template Method Pattern 185

Figure 4.6 Using JMS as a Cache Refresh Mechanism.

JMS Topic

Business Object

CacheList

Application Server JVM 1

CacheList

Application Server JVM 2

Publish Update
Message

Subscribe Subscribe

Update Message Update Message

Figure 4.6 illustrates this approach. It shows how different cache objects in the
cluster subscribe to the same topic, which receives messages posted from the corre-
sponding business objects making the update.

In J2EE 1.3, JMS is required to be implemented by certified application server prod-
ucts, although many of the JMS implementations built into the application server
products are currently not industrial-strength messaging engines. However, they are
more than powerful enough to support the refresh mechanism due to the low volume
of updates that you should have based on the data caching criteria.

Cache frequently used data that is fairly static to speed
application performance. Use a consistent, extensible cache mechanism that can
be implemented either as a Stateless Session Bean or as a Java singleton class.
If the cached data can be updated and the application needs the latest data,
consider the use of a JMS solution for notifying caches across a cluster to refresh
their data.

Best Practices for Implementing Business
Objects: Part Two

This section summarizes the best practices discussed in this chapter for implementing
persistence, relationships, and the Template Method pattern in business objects.

Isolate and Encapsulate JDBC Logic
Isolate any JDBC logic to execute a SQL statement in a common utility class. This pre-
vents every application developer from having to write this common logic and ensures

BEST PRACTIC E

186 J2EE Best Practices: Java Design Patterns, Automation, and Performance

that all JDBC resources are closed properly. The implementation of regular Java
business objects and BMP Entity Beans can use the JDBC utility for object data persis-
tence in the database. In the case of CMP Entity Beans, this utility might still be used
for read-only operations such as executing join queries.

Externalize SQL from the
Application Code
If JDBC is used, externalize the SQL from the Java code to minimize impacts to the
application if the database schema changes. The SQL strings could be stored in a
resource file or in the XML metadata and then referenced from the application. This
approach also makes it fairly easy to determine impacts to the application if the data-
base schema changes, because the SQL is all in one searchable repository. Enterprise
JavaBeans enforce this concept by placing the EJB QL in the bean’s deployment
descriptor. Each finder method then uses the defined query that is abstracted out of the
application code.

Always Use Business Objects for
Transactional Updates
Always use business objects for transactional updates to ensure data integrity and
avoid redundant business logic validation code. Straight database queries can be used
for read-only operations if they are more effective at traversing large table structures.
However, this should be done only if you can mitigate the risk of having database
names permeate throughout the application code. This risk is addressed in the next
best practice.

Minimize Use of Database
Names in Code
One of the primary risks of using queries directly in your application is that the
database column names can start to appear all over the code if not managed well. This
can be a maintenance nightmare if the database schema changes or even if a few
column names change. Map the result set rows to some kind of value object with
logical property names in order to isolate or eliminate references to database names in
application code.

Use a Business Object Factory
Abstraction
Use a factory method abstraction to create and discover instances of business objects.
This simplifies the client code and provides a hook for potential future optimizations
such as caching EJB Home interfaces. A common interface or base class can be used to
create implementations for each type of business object. For example, an EJB factory, a
Castor object factory, and a regular Java business object factory can be used respectively

TEAMFL
Y

Team-Fly®

Persistence, Relationships, and the Template Method Pattern 187

for the different business object implementations. They can all share a common inter-
face that is used to invoke the create and delete templates on the business objects.
The find method on the factory interface encapsulates the logic necessary to look up
an object. In the case of Entity Beans, this prevents the developer from having to use
JNDI and the EJB Home interface every time an Entity Bean is needed. The factory
should still expose the underlying artifacts through getter methods so that they can be
used if necessary. For example, the EJB factory should provide a method to get the
Home interface of a bean so that any static business methods may be invoked.

Use an Object Collection Service
Managing a list of objects for data retrieval or for selective updates is a common oper-
ation in business applications. Consider the use of a utility class that consistently and
effectively manages collections of objects for you. If Entity Beans are used as the busi-
ness object implementation, you can also use the collection utility to get a list of value
objects and have it instantiate corresponding Entity Beans for any transactional
updates. Within an Entity Bean, ejbSelectmethods are used to retrieve other Entity
Beans deployed from the same JAR file. Use Entity Bean finder methods only if you
can mitigate the (n + 1) performance issue through CMP implementation strategies
such as aggressive loading.

Use the Template Method Pattern for
Common Business Behaviors
The Template Method pattern is an excellent mechanism for providing extensible busi-
ness object foundation classes that implement the common behaviors of business
objects. A primary example of the use of this technique is the save method, which can
call a hook method to perform data validation, specific object validation, and any
presave logic implemented in the subclass. Acreate template method can be used to
initialize object values and create any aggregated objects with a shared lifecycle. A
delete template method can be used to perform any predelete functionality. These
template methods map directly to the Entity Bean hook methods for an easy migration
path between a straight Java implementation of the business objects and an EJB imple-
mentation. The Entity Bean base class becomes merely a component wrapper of the Java
implementation that is used to take advantage of the many EJB component services.
The Template Method pattern is also very powerful when used for application-specific
functionality that has slight variations for different implementations.

Consider Metadata-Driven Business
Objects Derived from Design Models
Business objects that use metadata to configure properties, collections, and relation-
ships provide a powerful foundation for component development. EJB uses this con-
cept extensively to configure persistence and other services through the deployment
descriptor. The concept can be extended even further as a part of a reference architec-
ture to automate property management, relationship management, and many other

188 J2EE Best Practices: Java Design Patterns, Automation, and Performance

functions. If you choose to take this approach, use a metadata format that allows your
design models to be the original source of the metadata. Either build your metadata
parser to read the XMI format or use a conversion utility to create your own XML
format from XMI that is generated by development tools from the design models. A
configurable business object foundation that uses metadata derived from a design
model is a very powerful concept that can be used to automate business object
development.

Use a Consistent, Extensible Caching
Mechanism to Improve Performance
Cache frequently used data that is fairly static to speed application performance. Use a
consistent, extensible cache mechanism that can be implemented either as a stateless
Session Bean or as a Java singleton class. If the cached data can be updated and the
application needs the latest data, consider the use of a JMS solution for notifying
caches across a cluster to refresh their data. Keep in mind, however, that databases are
very good at what they do and that any caching mechanism should not try to replace
the database. If there are large volumes of data or if the data is updated frequently,
using the application database is likely to be just as efficient as a caching solution, if not
more efficient.

Summary

Two primary responsibilities of business objects are to manage database persistence
and relationships to other business objects. The Template Method pattern actually
helps to augment both of these functions in a consistent, extensible manner. There are
a number of options for implementing persistence including explicit JDBC, a metadata-
driven JDBC approach, third-party persistence frameworks, and CMP Entity Beans.
No matter what approach is taken, a business object factory should be used to abstract
the creation, deletion, and discovery of business objects. This simplifies the client code
and isolates the rest of the application from the implementation model to the extent
possible. Each of the factory operations should trigger the corresponding create,
save, or delete template methods. These methods ensure that the proper valida-
tions and business logic take place during these persistence events. This business logic
typically includes managing aggregated objects and executing standard audit logic on
database saves, although the possibilities are endless.

These practices round out the implementation of business object components in
J2EE. The business objects contain the majority of the business logic in a given applica-
tion and are at the core of the reference architecture. They are used to do the majority
of the work in the next architecture layer, which contains process-oriented objects
called service components. The design of these service-based components is the topic
of the next chapter.

189

The Service-Based Architecture:
Design Considerations

C H A P T E R

5

Stateless, service-based components have been a core element of business applications
for quite some time. Before J2EE application servers came into existence, transaction-
processing monitors such as BEA Tuxedo used stateless services to distribute function-
ality and manage transactions, somewhat similar to how Enterprise JavaBeans
provides these types of infrastructure services. The Enterprise JavaBeans model is built
around components. Software components can sometimes be viewed as wrappers
around either an individual object or a set of related objects. Thus, the EJB model is
based on an object-oriented programming paradigm. The prior transaction-processing
model was based on services, which can be viewed as global functions such as in a pro-
cedural programming language. These services typically could be either stateful or
stateless, although stateless was the recommended choice for scalability and perfor-
mance. A primary reason for this is the fact that a stateful service consumes resources
that could be shared across multiple clients in between different client requests. The
other problem with the stateful approach is the potential issue of users who walk away
from their desks during the use of a client-server application. This leaves the stateful
service hanging there, consuming resources until the session or application times out.
Thus, stateless services were often the solution that formed the basis of many of these
applications.

You can use the concept of a service within the J2EE architecture as a primary
option for distributing and managing business functionality. So why would you want

190 J2EE Best Practices: Java Design Patterns, Automation, and Performance

to regress to a model more accustomed to procedural programming languages rather
than use the newer paradigm of object-oriented development? Well, this is not really
an accurate way to look at it. Using service-based components is not really a complete
regression into the past although it does take advantage of the many benefits that
come with using this proven design pattern in the architecture. If you go back to the
loose definition of a component, you see that a service really provides an interface into
the service’s functionality, remotely distributing a particular method of the primary
object within the component. Most likely the component encapsulates a set of related
objects; this is often the case, because service-based components in the architecture
will use business objects to do the bulk of the work. In this sense, components in the
EJB tier build on each other, at different levels encapsulating larger and larger sets of
functionality. You have already seen how business objects themselves exhibit this
characteristic in the case of aggregated business objects. Based on this view, you can
look at each of these components as building blocks in your application architecture.
This allows for great levels of reusability across a portfolio of related applications, and
it will be discussed in full detail in later chapters on reusability and the strategic
architecture.

Many service-based components are actually nothing more than workflow man-
agers that invoke business methods across multiple Entity Beans or business objects.
Consequently, the implementation of these service-based components is actually quite
object-oriented underneath the covers. It is primarily the exposure to the client that is
still modeled as a stateless service, a single method call that holds no state across invo-
cations. These stateless services are much more scalable and provide a higher level of
throughput than their stateful equivalents. Enterprise JavaBeans containers are no ex-
ception to this rule. The nice part about this model in the J2EE architecture is that it fits
nicely into the Web-based application design. The Web tier contains a primary mecha-
nism, which is called the HttpSession, to maintain state in an application. For this
reason, there is seldom need to use stateful Session Beans to maintain state. Most J2EE
application servers already provide high-availability clustering with failover on the
Web tier, but they have been slower to do so with stateful Session Beans. A different
viewpoint may be taken, however, for Java Swing-based applications. A thick-client
application might likely use a stateful Session Bean to maintain a connection with the
server and make repeated method invocations based on user events. However, in a
thin-client application, this happens much less frequently because the state is main-
tained on the Web tier, and invoking stateless service-based components to access busi-
ness functionality is a much more natural fit to the architecture.

Service-based components represent the business processes and transactions of a
given application. They often implement a single unit-of-work, although they may also
be combined with other services as a portion of a larger transaction. Extending the
building block view of the world, the same concept that applied for business objects
also applies to service-based components. Some services are smaller and have meaning
individually, but they can also be used as a step in a larger workflow or service that gets
used somewhere else in the application, perhaps even across applications in a par-
ticular business. Take an order processing system on an electronic commerce Web site
as an example. One service in the back-end system might be named PurchaseNew-
Product. This service would be invoked when an existing customer purchases a new
product on the Web site. However, when a customer comes to the Web site for the first

The Service-Based Architecture: Design Considerations 191

time and makes a purchase, you can’t invoke this service yet because the customer
does not exist. Thus, in one transaction you would like to invoke the services Create-
NewCustomer and CreateNewBillingAccount first, and then invoke the
PurchaseNewProduct service. One design for implementing this would be to cre-
ate a “master” service that controls the flow of invoking these services. In the correct
order and within a single transaction, the master service would create the new cus-
tomer record, create an account for the customer in the system, and then process the
new purchase order. In this manner, services can be used as building blocks for other
services. Service-based components can encapsulate different levels of functionality as
they go up or down in this hierarchy. Keep in mind that all applications and businesses
are unique, and different levels of reusability will be achievable; however, the architec-
ture and component design should always take these things into account to provide for
the possibility of extending the functionality. Businesses often change their models and
processes, so the building blocks can also get shuffled around and extended, as is often
the case. Figure 5.1 illustrates how, in this example, services are being reused as build-
ing blocks within an application.

Figure 5.1 Services as Building Blocks in an Order Processing System.

User Interaction Architecture

Service-Based Architecture

New Customer
Purchase

Lower Level Service(s)/Building Blocks

Higher Level Service(s)

Create New
Customer

Create New
Billed Account

Purchase New
Product

New Customer
Shopping Cart

Checkout

Existing
Customer

Shopping Cart
Checkout

192 J2EE Best Practices: Java Design Patterns, Automation, and Performance

It is important to note that not all architectures have a service layer. Many designers
and architects implement the functionality found in the services as a business logic
method on one of the primary business objects involved in the transaction. In many
cases, this works just fine, and there is nothing wrong with doing this. However, there
are many benefits to adding a service-based layer in between the user interaction layer
and the business objects layer. The primary benefits of this design are based on two dif-
ferent thought patterns. The first of these is based on the ramifications of the overall
software architecture and how these services fit nicely into the Web-based application
architecture. The second basis point is that the study of businesses and business appli-
cations shows that business processes or transactions naturally fall out of the model.
There are numerous transactions in a typical business involving the same business en-
tities. This is the case in the recurring example of the bank account that can be a part of
many different interactions with a customer. In some cases, business entities might
even act or react differently based on which process they are currently involved in.

The first basis point deals with the rationale of the services layer in terms of software
architecture. It is based on a number of things including flexibility, reusability, and the
efficient use of Enterprise Java services. A primary benefit to note is that it isolates the
business object layer from the user interaction layer. It provides a wrapper that limits
what the front end needs to know about the back end. It simplifies the front end greatly
because the only things that it must do are package up the data for the service and in-
voke the correct service component. No knowledge of the business object model or its
interfaces is required to have access to the business functionality. This isolation point is
a primary benefit of the Model-View-Controller design pattern. This also allows the
back-end functionality to be reused across different client applications. It also allows
the client to drastically change its behavior without affecting the back end at all. To
summarize this in Enterprise Java terms, it reduces the coupling between the Web tier
and the EJB tier.

A secondary benefit of this reduced coupling is increased performance. Invoking an
Enterprise JavaBeans component can mean a network trip between the Web tier and
the EJB tier if the two tiers are physically distributed. This pattern usually reduces the
interactions between the presentation layer and the business logic layer to a single
remote method call. There may be some cases in which it is better to invoke multiple
services remotely. However, the majority of cases will be covered by a single service
invocation. Thus, this architecture layer reduces the amount of unnecessary network
and RMI overhead.

Another point to make about this model in terms of software architecture is that it pro-
vides an excellent way to take advantage of Enterprise Java services, such as distribution
and transaction management, through the most efficient type of Enterprise JavaBean,
the stateless Session Bean. This gives you the best of both worlds in a sense, the perfor-
mance and scalability of a stateless service combined with the container-provided infra-
structure services that allow you to quickly build and deploy enterprise applications.

After examining the architecture in depth, it will be argued that there is additional
benefit to be gained from creating a standard interface for these service components.
This allows the creation of a generic front-end component that invokes these services.
You can also easily plug in new services to the architecture. Taking this thought a step
further, you can also implement a common base class for these services if you want to
provide common hooks for application-level security, logging, or audit trail features.

The Service-Based Architecture: Design Considerations 193

Consequently, the rationale for the Service-Based Architecture can be summed up
by the following points:

Reduces the coupling between the Web tier (User Interaction Architecture) and
the EJB tier (Business Object Architecture)

Limits the number of remote method calls and RMI/network overhead

Distributes business functionality through a standard, service-based interface

Utilizes the most efficient Enterprise JavaBean, the stateless Session Bean, to
take advantage of container-managed services such as distribution and transac-
tion management

Is used to coordinate multiple business objects in a transaction; manages work-
flow between entity business methods

Provides the potential for a common base class to generically manage
application-level security, logging, and audit trail functions

Thus, there are many benefits to encapsulating business process functionality in a
stateless Session Bean. Figure 5.2 shows the high-level components within the Service-
Based Architecture and how they fit into the overall architecture.

Elements of Service-Based Components

A study of business applications shows that business processes are what drive busi-
ness functionality within an application. They represent the meaningful interactions or
events that occur between a business and its customers. They are often transactions or

Figure 5.2 High-level Service-Based Architecture.

HTTP
Request

HTTP
Response

RMI/
Local
Intf.

RMI

Service-
Based

Architecture

Business
Object

Architecture

User
Interaction

Architecture

JSP
Screens

and
Content

Session
Bean

Web
Browser

Wireless
Device

B2B Web
Service
Client

Page Flow,
Handle
Forms

JDBC
Database

Business
Objects

Data Access
Objects

Entity Bean/
Java Class

Service
Components

Servlet

194 J2EE Best Practices: Java Design Patterns, Automation, and Performance

units-of-work that are crucial to the integrity of the process and the business entities
involved.

A service-based component itself models a business process or transaction. A busi-
ness process here can be loosely defined as any element of work to be done within an
application. This includes services ranging from transactions initiated by a customer
on a Web page to any service required to provide information to the user interaction
layer. In these examples, the data access and updates to the business entities are dele-
gated to the Business Object Architecture. Note that data retrieval itself can be invoked
from the service component. However, any update functionality must go through the
business objects. Because much of the work of a service is done through the business
objects, services can come in all sizes and shapes. Many services will be fairly small
with the simplest ones executing a single method on a single business object. On the
other extreme, services can model complex business processes with rules of their own
that invoke many business objects and must coordinate all the work into one transac-
tion that is exposed to the client. These services must combine any potential error con-
ditions or failures into a unified response. Because services exist at different levels,
they can also be reused across other services and applications as building blocks of
functionality.

Consequently, services exhibit the following common characteristics:

Are used to model a business process or transaction

Use reusable business objects to update business entity data

Coordinate one or more business objects in a transaction

Are categorized as read-only or update services

Services Model Business Processes
and Transactions
Primary business functions in an application that are accessed by a client are modeled
as service-based components. These functions can represent an overall process or an
individual transaction. The service-based component is used to distribute and manage
the transaction provided by the service object. It provides a single interface for the
client to use to invoke the transaction and isolates the front end from the back end.

Examples of business processes include the recurring bank example. A customer
moving money from a checking account to a money market might invoke the
TransferFunds service. A customer of a Web-based retailer might be invoking
the PurchaseNewProduct service to buy a product from an Internet storefront.

Services Use Reusable
Business Objects
Service-based components often contain very little code because they use business
objects to do the majority of the work. Simple services usually invoke only a single
method on a business object. This is a result of the fact that either a single business

The Service-Based Architecture: Design Considerations 195

entity is affected or the business object actually aggregates related business objects that
are included in the transaction. Complex services or processes do require the service
component to contain business logic or rules that define how the service will use the
business objects.

The TransferFunds service in the bank example instantiates two instances of the
Account object and invokes the withdraw method on one and the deposit
method on the other. The service itself would not modify the account entities; it would
use the business objects to do so. Likewise, the CreateNewCustomer service for a
Web-based retailer would use the Customer object to create a new instance of a cus-
tomer in the database.

A single business object might get used in ten, twenty, or even a hundred different
processes or transactions within an application. The different services use the business
object in different contexts, often invoking different business methods on the object. In
a given process, the business rules or logic may differ as to how the business object is
manipulated. It is important to note that all updates to business entity data must go
through the business objects themselves rather than be updated directly through the
service component. Although there is nothing technically from preventing this, it ex-
poses places in the architecture where updates are allowed without going through the
proper data validation and business edits.

One of the primary responsibilities of the service component is to move the data re-
ceived from the interface to the different business objects involved in the transaction.
Services must be able to instantiate particular instances of business objects from the
data passed into the method. Likewise, any updated business object data or error in-
formation that results from the transaction must be returned from the business objects
and marshaled back into the form expected by the client.

Coordinating Multiple Business
Objects in a Transaction
One of the primary aspects of a service-based component is that it can encapsulate a
subset of functionality in a system. To do this, it is often necessary to instantiate and in-
voke multiple business objects within a process or transaction. Any update methods
invoked on these business objects are usually coordinated into an overall transaction.
Session Bean EJB components allow you to do this by declaring a transaction and then
having all of your business objects share in that same transaction.

The TransferFunds service example uses multiple instances of the same busi-
ness object, Account, to perform the work of the transaction. The two method invo-
cations, withdraw and deposit, must be executed as part of a single overall
transaction to ensure data integrity. In this case, even more importantly, a single trans-
action is required to ensure that the bank doesn’t lose money on the deal, which could
happen if the withdraw is successful, but the deposit is not. This is just as applica-
ble for services that invoke multiple types of business objects, such as when a new
customer comes in to open an account. A CreateNewCustomer service would use
the Customer object to create the customer record and the Account object to create
a new account.

196 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Service Categories: Data Retrieval
and Update
Services can be categorized either as data retrieval or update services. It is sometimes
helpful to distinguish between the two for modeling purposes and to understand the
overall purpose of services in the application architecture. Services that simply retrieve
data may not be viewed necessarily as a business process or transaction; however, they
are essential services in order to provide application functionality to a client. From a
modeling perspective, they provide information to a customer or client. Often they in-
volve complex logic to provide different views or calculations that involve data pre-
sented to the user.

Data retrieval services are not required to use the business objects in most cases. For
straight database access, the data-access objects can be invoked directly for better per-
formance. However, in update services, any time an actual update is going to occur, a
business object must be instantiated from the data and the proper business method
called to perform the update. An example of a data retrieval service is GetAccount-
Transactions for the banking Web site. This service returns a list of transactions for
a given account and time period for a customer who went onto the bank’s Web site to
see if a deposit was posted against his or her account.

Update services are designated such that they are marked as transactional when de-
ployed as Enterprise JavaBeans. They may involve one or more business objects in the
update and are usually coordinated into an overall transaction by the service compo-
nent. Most of the examples thus far, such as TransferFunds and ChangeAddress,
have been update services.

Although it occurs much less frequently, there is another type of service that doesn’t
necessarily fit nicely into either category. This type of service often performs some kind
of calculation or data validation and returns a result that does not persist in the data-
base. A service that performs a what-if kind of analysis or calculation and returns a re-
sult might be an example of this kind of service. Most of these types of services have
the result or scenario persist in the database and are thus considered update services;
however, there can be cases in which there is no database update. For purposes of cat-
egorization, any service that does not perform a database update can be considered a
data retrieval service. Although this does not fit the definition of a data retrieval service
perfectly, it does to a degree fit the spirit of the definition. In these cases, most likely the
service returns a result, or piece of data, that is given back to the client for the purpose
of supporting the User Interaction Architecture or another larger service that is reusing
this service as a building block. In this sense, it is in fact “retrieving” a piece of data for
the front end.

Design Considerations

The Service-Based Architecture is primary a design concept and pattern implementa-
tion within the overall software architecture. The components themselves typically
contain a small amount of code, but they act as an important isolation point between
the front end and back end of any application. Nonetheless, there are still a few

TEAMFL
Y

Team-Fly®

The Service-Based Architecture: Design Considerations 197

design issues to take into consideration when implementing a Service-Based
Architecture.

The Enterprise Java Implementation
Based on the earlier discussions, stateless Session Beans are a perfect fit for imple-
menting service-based components in J2EE.

Implement service-based components as stateless Session
Beans to take advantage of Enterprise Java services such as distribution and
transaction management while maximizing scalability and performance.

The service method defined for the component in the remote interface should be
marked as transactional for all update services. This method begins and ends the
transaction and is required to mark the transaction for rollback if any unhandled ap-
plication exception conditions are caught out of business object methods. To do this, all
service methods should have an overall try-catch block that catches any application
exceptions, executes EJBContext.setRollbackOnly in these conditions, and
gracefully handles the situation. Remember that the EJB container is required only to
fail a transaction when this method is called. An application exception being thrown
does not necessarily cause the transaction to roll back in all application servers; thus, it
is better to do this explicitly in the service component code (or business object code
based on the approach to error handling).

Remember that these services are stateless, so member variables of the service com-
ponent should be used only for data that is shared across all clients that will access the
service. Any data should be held using local variables in the method or objects that are
instantiated within the service.

Using the Session Bean as a Wrapper

Because services can be reused across other services, it may be desirable to invoke a
service without going through the Enterprise JavaBeans distribution method. RMI and
JNDI add an amount of overhead that can be avoided if you are already within another
service and would like to invoke a service. Thus, it is better to use the Session Bean
artifact as a wrapper only around the actual service object implementation. Figure 5.3
illustrates how a remote client invoking a service will go through the EJB wrapper
while the server-side component would like to invoke other services directly by in-
voking their methods. This technique still allows the services to share the same trans-
action if desired.

The Session Bean in this type of design is merely a required artifact that is used to
engage the container-managed services of transaction management, distribution, and
so on. The code to actually implement the business logic of the service is housed in a
regular Java object called by the Session Bean. The interface to the actual implementa-
tion object would be similar to the remote interface provided by the EJB to the client.
The interface itself is discussed in the next design consideration topic.

BEST PRACTIC E

198 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 5.3 Session Bean as a Component Wrapper to Service Implementation Objects.

User Interaction Architecture

Service-Based Architecture

Service B
Session Bean

Service A
Session Bean

Service Object Implementations
(Java Classes)

EJB Component
Wrappers

Service B
Implementation

Service A
Implementation

Remote
Client B

Remote
Client A

Service
Reuse

Put the actual workflow and transaction logic of the service
in a Java class. This implementation of the service can then be wrapped by the
Session Bean to engage the container-managed services of transaction manage-
ment, distribution, and so on. This allows services to be reused within other
services more efficiently because you have the option of avoiding another EJB
method invocation. Optionally, you can use a local interface of the Session Bean,
which is slightly less efficient but avoids the RMI and serialization overhead.

The common logic to invoke the service implementation object, handle errors, and
manage the transaction can be implemented in a standard Session Bean in the founda-
tion layer. Although there is not much to this, it will still be helpful to implement this
in a foundation Session Bean that can be called BlfService. If you isolate the logic
that just invokes the service implementation object in a separate method, you can make
this a template method that can be overridden by subclasses. This allows you to create

BEST PRACTIC E

The Service-Based Architecture: Design Considerations 199

specific subclasses with different deployment properties while reusing the basic trans-
action management logic in the BlfService base class. You may want to do this, for
example, if you don’t need a transactional context for a service. Because you need to
choose a transactional setting for BlfService, you need to deploy different in-
stances if you want to have a transactional service and a nontransactional service. Note
that you could also deploy the same code twice with different JNDI names and differ-
ent transactional settings, something to the effect of BlfTransactionalService
and BlfNonTransactionalService. However, there may be other types of
deployment settings for different application service components, and this concept
allows you to do that easily while still reusing foundation functionality.

Impact of the Business Object
Implementation

The actual implementation model used by the business objects in the overall architec-
ture has little bearing on the design of the Service-Based Architecture. However, there
are a few points worth noting in regard to this topic. The fact that a services layer ex-
ists at all helps to make this implementation choice less important for the overall ar-
chitecture. The services layer allows you to change the business object implementation
model with little impact to the User Interaction Architecture.

The service-based components allow for a potential migration be-
tween either Java-based business objects to Entity Beans or vice versa. Based on
the criteria defined in the Business Object Architecture, different applications
favor different solutions. For example, if Entity Beans were chosen as a business
object implementation and system performance became a problem, the back end
could be ported to regular Java classes without affecting any of the clients or User
Interaction Architecture.

If Entity Beans are used as the business object implementation, the Session Bean
service components implement the Facade pattern (Gamma et al. 1995) to the Entity
Bean business object components. This is a recommended pattern when you use Entity
Beans. It prevents a large number of remote method invocations on the Entity Bean
component using RMI. In EJB 2.0 containers, the Session Bean service component can,
and usually should, invoke Entity Bean business objects using their local interfaces.
Figure 5.4 illustrates the component interaction in this case.

The Java Interface to the
Service Component
Java interfaces provide a very powerful mechanism that not all programming lan-
guages have the luxury of using. The Enterprise JavaBeans specification dictates that
both the Home and Remote interfaces are actual Java interfaces. A powerful aspect of

THOUG HT

200 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 5.4 Services Using EJB 2.0 Entity Bean Business Objects.

User Interaction Architecture

Remote Client

Session Bean
Service

Business Object
Entity Bean 1

Business Object
Entity Bean 2

Service-Based Architecture

Business Object Architecture

Method Invocation/
EJB Local Interface

RMI/
EJB Remote Interface

interfaces is that they allow the client to deal with different implementation types with-
out having any knowledge of the actual implementation. The client deals only with the
interface class. Because they are similar to a class, Java interfaces can also extend from
other interfaces.

The design of the interface to the service-based components is
perhaps the most important decision to make in this portion of the architecture.

The interface is the piece of the service-based component that is exposed to the
client. It dictates the form and data structure that the front end is required to create in
order to invoke the service component. It also will drive what type, if any, of data mar-
shaling is required in the service component itself in order to take input data and then
instantiate and populate business objects. Likewise, it dictates how and in what form
any data and error information that results from the service is returned to the client.

There are two basic choices that drive the design of the interface. The first question
is do all service components have their own interface that takes specific data required

THOUG HT

The Service-Based Architecture: Design Considerations 201

for the transaction, or is there a decision to use a standard interface with a generic data
structure that can be used for all services? Second, what data structure is used in either
case to transport the data remotely from the client to the service and then back again?

Explicit versus Generic Interfaces

Similar to the business objects, the generic interface referred to here can be implemented
using a Java interface. However, there are a number of advantages to creating specific
interfaces based on the functionality of the service. It allows the reader of the interface
to determine exactly what data is required. It also simplifies the data-marshaling
process because data is probably already typed and organized based on business object.
For example, a ChangeAddress service might take a customer identifier and an
Address value object as arguments. This is the required data for the service compo-
nent to do its job. It can instantiate the correct instance of theCustomer object based on
the identifier and invoke the changeAddress method by passing in the Address
value object. The method signature might look like the following:

public void changeAddress(String customerId,

AddressData address);

These are good reasons to choose unique interfaces over a generic one. However, if
you look back at the guiding principles for building effective software architectures,
you see that automation and metadata-driven components are keys to creating a foun-
dation for rapid application development. These principles are very applicable to the
Service-Based Architecture. A generic service interface that is standardized across all
service-based components allows you to automate the invocation of service compo-
nents and data packaging that is required in the front end within the User Interaction
Architecture. A standard interface allows the front end to generically call the service
components given only the name of the service to invoke. This is metadata that can be
configured based on the user event that occurred. A standard interface also implies
that a standard data structure is used to pass data back and forth. A major responsibil-
ity of the front end of a Web-based application is to package data coming from the
HttpServletRequest into a usable form for the service components. A standard
interface allows for a level of automation in terms of data packaging in the front-end
components. Finally, a standard service interface allows for easy component integra-
tion into the architecture by providing a standard way to plug-in services.

To implement a standard interface for your services with a Session Bean component
wrapper, you need to create a standard Java interface for the EJB and for the imple-
mentation class. These interfaces should have corresponding method signatures so
that the Session Bean can delegate the service request to the implementation class.
Figure 5.5 shows a UML representation of the service components and their interfaces.

The Choice of Data Structure

The second issue to decide upon for your services is the data structure. This is even
more important for the standardized service interface because it drives the automation

202 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 5.5 UML Representation of Service Component Interfaces.

<<interface>>
EJBService

executeService()

doService()

<<interface>>
Service <<realize>>

<
<

re
al

iz
e>

>

<<interface>>
EJBObject

EJBServiceBean

executeService() doService()

ServiceImpl

and data marshaling steps that will occur for all service components. The choice of
data structures includes:

Individual Java data types and objects (that is, date, int, string, and so on)

Value objects

XML data

Argument (or parameter) list: A collection of name and value pairs (for exam-
ple, java.util.HashMap)

There are not necessarily right or wrong answers on this list. For unique method sig-
natures for each service component, the likely choice is the appropriate set of Java ob-
jects and primitive data types to represent the data for the service. For a standardized
service interface, the selection of data structure largely depends on the remainder of
the architecture decisions surrounding this component in the user interaction and
business object layers of the architecture.

Value Objects

If the Business Object Architecture uses value objects throughout to retrieve data from
the data-access layer and to populate instances of business objects, then a collection of

The Service-Based Architecture: Design Considerations 203

value objects might be the right choice for a generic service-based interface. You still
want to handle value objects generically, so you can require that value objects imple-
ment a standard Java interface as mentioned in the discussion on the Business Object
Architecture. One challenge with using value objects is that there are different types of
objects to transport and there are often multiple objects coming into services; thus, the
interface needs to handle a collection of value objects of different types. This requires
the service objects either to do object casting and typing in order to determine how to
handle different sets of object data or to assume some set of indices that represent dif-
ferent objects. Take, for example, a service that takes a Customer and an Address
object. A generic interface would require a collection of objects, thus, the client and ser-
vice would need to agree upon the fact that the 0th index in the collection contains a
Customer object and the 1st index in the collection contains an Address object. This
approach requires an agreed upon contract for the service beyond just the method sig-
nature, because it assumes an ordering of value objects within the collection. The num-
ber of cases in which indices are required can be reduced through the use of aggregated
value objects. In this example, the Address object can be aggregated by the
Customer and accessed using a getAddress method. However, cases that include
disparate objects and in which aggregation is not appropriate will still require an
agreement on the ordering. In any case, the value object approach will require the front
end to have the knowledge of mapping form fields to object properties in order to
initially populate the value objects. If an agreed upon order of objects is used, it will
also need to know in what order to put the value objects in the collection. Finally, one
big benefit of this approach mentioned earlier is that it easily handles multiple
instances of objects, a requirement that often occurs in transactional business applica-
tions. The next option, a single argument list, needs to do some additional work in
order to deal with this type of situation.

Argument List

A collection, equivalent to a Java HashMap, of name and value pairs is the simplest
choice because it mirrors the HttpServletRequest itself coming from the front
end. Both objects have a flat naming space in which to provide attributes and their val-
ues, although the HttpServletRequest allows for multiple parameter values for
the same parameter name. For this reason, the choice of a HashMap-type structure re-
duces the complexity of the data packaging to be done in the front end. Note, however,
that a copy must be made of the name and value pairs from the HttpServlet-
Request object into a separate HashMap object because it would not make sense to
send this servlet-based object to the EJB tier. The limitation of the HashMap approach
that is often encountered is that it does not work well for multiple instances of objects
or hierarchies of object data. Both value objects and XML data structures provide easy
solutions for aggregated objects and collections of objects. These patterns occur quite
often, as many update screens deal with a master-detail, or parent-child, relationship.
Two very simple examples of this might be Customer-Address or Purchase-
Order-LineItem. Data from both the parent and the set of child objects would
likely appear on the same Web page to be updated, and you would want to transfer
their data together to the service. Now, this of course is not impossible using a collec-
tion of name-value pairs; it just gets to be a bit more difficult to handle when there are

204 J2EE Best Practices: Java Design Patterns, Automation, and Performance

multiple instances of objects, and even more complex when the multiple instances go
down a couple levels. In these cases, the XML and value object approaches provide
much simpler solutions. However, it is important to note that no matter what option is
chosen, in a Web-based application, you will be starting from a flat name space of name
and value pairs, because this is what HTTP and the HttpServletRequest object
are based on. You are allowed to have multiple values for a given HTTP parameter
name. However, you also want to be able to ensure their correct order and association
with object instances in a given form.

You must also consider how data is returned from a service. In a data retrieval ser-
vice, you will often want to return a collection of object instances, the equivalent of a
result set. This would be a little tricky, but not impossible to do, using a flat namespace
of name and value pairs.

XML

XML is a very popular data structure that is generic enough to store any type of object
data including hierarchies of objects. This works very well for generically handling ob-
jects aggregated within other objects. XML data is typically used for data transfer be-
tween applications. However, it can also be used to transfer data to and from the
service components. This type of data structure adds some amount of overhead for
XML parsing, but might be a good choice if the front end is driven by XSL stylesheets
that expect XML data as input. If XSL transformations are to be used to generate much
of the Web page content in an application, an XML interface for service components
makes a lot of sense. Another reason might be if these services are also to be deployed
as Web services using SOAP (Simple Object Access Protocol). Web services based on
SOAP, as well as many other B2B interactions, send data across HTTP requests as XML.
Thus, if your services are based on XML interfaces, only a simple translation within the
User Interaction Architecture is required to wrap these services as Web services.

Evaluating Data Structures

Table 5.1 summarizes the advantages and disadvantages of each data structure for use
as a standardized service interface.

So which then is the best choice of data structure for the service component inter-
face? Well, there is no clear-cut winner, and the choice, again, depends on the rest of the
architecture decisions. However, the focus in this book is on both value objects and
argument lists throughout the implementation examples. The integration of value
objects with the Business Object Architecture all the way through to the data-access
layer presents a strong value proposition (no pun intended). Imagine the ease of creat-
ing data retrieval services if the data-access objects return collections of value objects.
Even if the data-access layer returns the equivalent of a result set, it would be easy to
write a generic routine to create value objects from a data retrieval service component.
In this regard, value objects provide a modest amount of data marshaling while using
a data structure that can be used pervasively throughout the architecture. Additionally,
not all of the input data to a service maps directly to an object property, so an argument
list will be quite helpful for many services. This argument list can implement the
same value object interface (get/setProperty); however, it will not be tied to the

The Service-Based Architecture: Design Considerations 205

Table 5.1 Evaluation of Data Structures for Service Interface

DATA STRUCTURE ADVANTAGES DISADVANTAGES

Individual Java objects Cannot be used for a Efficiently represents
and data types generic interface service data

Argument list Maps directly from Requires complex solution
(HashMap of name HttpServletRequest for hierarchies of objects
and value pairs) form fields and result sets

Value objects Integrates well with Requires a generic
Business Object collection of value objects
Architecture that must be typed and

handled

XML Most flexible data structure; Slowest data structure
handles hierarchies and due to XML parsing and
collections of objects well; number of objects
integrates with XSL on the required to represent
front end tree structure

metadata for a single business object. In terms of performance, either kind of value
object compares quite favorably to an XML data structure.

Although it is true that XML parsing adds overhead, especially for large data sets, it
is still worth consideration for certain architectures. If you consider that HTML is noth-
ing more than a subset of XML, it seems quite natural to send XML to the front end. If
your project team has a skillset in XSL, it is even more of a reason to consider it. As pre-
viously mentioned, it integrates well into a Web service model, although it is also true
that any service can be wrapped to provide an XML interface. This would be required,
for example, with service components that return a set of value objects. In fact, in a ro-
bust architecture, value objects would know how to transform themselves in and out
of XML, so this would not likely be an issue. Nonetheless, XML deserves consideration
for a generic interface because of its great flexibility and ease of handling hierarchies
and multiple sets of objects. In terms of automation, it is quite easy to create generic
routines to transform objects and results sets into XML and then back again.

The flexibility and self-describing nature of the XML data structure
provide a mechanism that is quite tempting to use within highly automated foun-
dation architectures. It is the performance aspect that must be kept in mind,
especially for large amounts of data.

XML parsers are becoming more efficient; however, they still use a large number of
objects underneath the covers in order to implement DOM (Document Object Model)
functionality. SAX (Simple API for XML) parsers are effective for handling XML data
in a service component. However, the DOM allows you to create an XML representa-
tion in memory, which is needed for so many application services. The DOM repre-
sents a tree structure that introduces a large number of additional objects on each XML

THOUG HT

206 J2EE Best Practices: Java Design Patterns, Automation, and Performance

tree that is parsed or created. Performance degradation can sometimes be worse than
linear for larger XML documents because of the time needed to create and navigate the
large tree structures. The XPath lookups can be especially time-consuming if the docu-
ment grows in size, which many business applications demand.

The more types of client devices that access the business services, the more likely
that XML is a solid choice for the format of data. A standard interface that needs to
interact with many different devices lends itself to XML. As mentioned earlier, HTML
itself is merely a form of XML. Web services operate using XML data, and wireless
clients can use a variant called Wireless Markup Language (WML). In all of these cases,
the user interaction layer would simply need to use different translations of the same
XML data coming from the service for the particular device. Many content manage-
ment tools are based on this concept of storing content as XML and using different
stylesheets, or transformations, for the particular view of the data or for the particular
device.

If performance engineering can be done to the XML parser as well as other parts of
the application to a degree that is acceptable for the application requirements, the XML
data structure choice is a powerful one for automated, configurable foundation com-
ponents. In many other cases, the use of value objects is highly effective due to its
better performance and integration with the Business Object Architecture.

Service components with specific interfaces for different
functions work well in many software architectures. Use a standard interface for
service-based components in order to enable highly automated front-end compo-
nents. Choose the generic data structure that best fits your needs for this interface.
XML data is the most flexible choice for automated components. However, it per-
forms the worst, especially for large amounts of data. For many cases, a collection
of value objects that implement a standard value object interface works well. For
simpler architectures that do not involve many hierarchies or collections of objects,
an argument list containing name and value pairs can also work quite well.

Integrating Service-Based
Architecture with the Business
Object Architecture
There are a few aspects of the Business Logic Foundation that should be shared or in-
tegrated between the Service-Based Architecture and the Business Object Architecture.
The most fundamental of these is error handling. There should be a uniform approach
to error handling across these two layers. Any business errors or exceptions that occur
within the service components should use the same error-handling framework that is
used by the business objects. Additionally, the service components are responsible for
aggregating all of the business errors that may have occurred across business compo-
nents during a transaction and presenting them uniformly to the user interaction layer.

The other aspect of error handling that can be integrated in relation to the service
components is transaction management. A method on the service component will
often be the point where you want to initiate a transaction. Thus, the highest-level

BEST PRACTIC E

TEAMFL
Y

Team-Fly®

The Service-Based Architecture: Design Considerations 207

service component in a transaction will typically start and end the transaction, usually
through a declarative step in the deployment of the Session Bean. Any error that occurs
in a business object or the service component itself should cause the transaction to fail.
It would be very helpful to be able to automate this step through the use of the error-
handling framework from within either a business object or a service component.

The other major integration point between the service components and the business
objects is the data. This has been discussed through the different interface options for
the service components. Data sent into the service must be used to instantiate and pop-
ulate business objects. Value objects used throughout the architecture provide an ex-
cellent way to do this. However, the options also include simple argument lists all the
way up to XML data. These approaches can be done just as easily by adding marshal-
ing methods on the business objects, although they come with their own set of costs
and benefits.

Best Practices for Designing
Service-Based Components

A summary of the best practices for designing the Service-Based Architecture is given
in this section.

Implementing Service-Based
Components
Implement service-based components as stateless Session Beans to take advantage of
Enterprise Java services such as distribution and transaction management while max-
imizing scalability and performance.

Using the Session Bean as a
Component Wrapper
Implement the actual workflow and transaction logic of the service in a regular Java
class. This implementation of the service can then be wrapped by a Session Bean to
engage the container-managed services of transaction management, distribution, and
so on. This allows services to be reused within other services more efficiently because
you have the option of avoiding another EJB method invocation. It also follows the
general design principle of implementing objects as normal and then packaging them
as EJB components when it is advantageous to do so. As an alternative, you could also
invoke other services within a service using a Session Bean local interface. This is
slightly less efficient than a pure method call, but it does avoid RMI and serialization
overhead. One thing to be aware of with this approach is that it may introduce both a
remote and local interface for the service component. If this fact is not considered
during the design phase, it could potentially cause problems later on because the
programming paradigm switches between pass-by-reference and pass-by-value.

208 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Designing the Service Interface
Service components with specific interfaces for different functions work well in many
software architectures. Use a standard interface for service-based components in order
to enable highly automated front-end components. Choose the generic data structure
that best fits your needs for this interface. XML data is the most flexible choice for au-
tomated components. However, it performs the worst, especially for large amounts of
data. For many cases, a collection of value objects that implement a standard value
object interface works well. For simpler architectures that do not involve many hierar-
chies or collections of objects, an argument list containing name and value pairs can
also work quite well.

Summary

Service-based components represent the business processes and transactions of a given
application. They often implement a single unit-of-work, although they may also be
combined with other services as a portion of a larger transaction. They make up an im-
portant layer in the reference architecture because they simplify the front-end logic and
isolate the business object implementation model. Service components provide Web-
tier components with a standard interface to invoke that encapsulates the overall trans-
action and manages the workflow between multiple business objects or Entity Beans.
The implementation model for service components is typically a stateless Session Bean
as a wrapper around a Java implementation object.

With the design considerations and best practices from this chapter in mind, the
next chapter walks through the implementation of service-based components in the
reference architecture. Services from the bank application are implemented that build
on the business objects implemented in earlier chapters. A service component founda-
tion class is also constructed for the Session Bean wrapper. This foundation is used to
standardize error handling and the invocation of service implementation objects.

209

Building Service-Based
Components

C H A P T E R

6

As discussed earlier, the service component layer in the architecture is largely a design
pattern in your application. Implementation of service components does not require a
large degree of foundation code, although the amount of actual business logic will vary.
Many services will be simple and elegant, although in some applications there may also
be complex services that implement intricate business processes. In many cases, the
service components act as a workflow manager between business objects.

The Actual Service Interface

For the specific interface of the TransferFunds service example, the two account
identifiers and an amount to transfer are required as arguments. Thus, the interface
looks like this:

public interface TransferFunds extends EJBObject {

public void executeService(String accountId1,

String accountId2,

BigDecimal amount)

throws BlfException, RemoteException;

}

210 J2EE Best Practices: Java Design Patterns, Automation, and Performance

For the ChangeAddress service, it might look like this:

public interface ChangeAddress extends EJBObject {

public void executeService(String addressId,

String line1,

String line2,

String city,

String state,

String zip,

String country)

throws BlfException, RemoteException;

}

Using a standard service interface, you need a generic way to encompass the data
for these services as well as any others that you can imagine. As concluded in the
design consideration discussion, value objects, and sometimes their implementation as
straight argument lists, provide an efficient and flexible mechanism to transport data.
Note that the data in these two service examples falls into two categories:

Object data

Service arguments

The address fields sent to ChangeAddress all map directly to object properties.
This type of data is well suited for value objects since it corresponds directly to an object.
However, some data sent to a service is simply a service argument. For example, the
dollar amount inTransferFundsdoes not map directly to any object property. It will,
of course, affect the current balance property of the account, but it does not correspond
directly. It is an argument to the business logic that will add or subtract from a given
account’s balance. Thus, it might be nice to have a data structure that supports both.

Use a service data structure that explicitly supports an argument list
as well as a collection of value objects so that both types of data can be easily
handled.

An Implementation for Argument Lists

It would simplify things if the argument list class implemented the same
ValueObject interface. Consequently, you can create a new implementation of
ValueObject called ArgumentList, that does not associate properties with any
specific business object metadata. It is required to store everything as a collection of
strings because it won’t know the data type. Specific get methods can still be used to ex-
tract argument values as different data types. The basic code for this class is as follows:

public class ArgumentList implements ValueObject {

/*

* Collection of string argument values. You can't deal

THOUG HT

Building Service-Based Components 211

* with specific types because you don't have the metadata.

*/

protected HashMap attributes;

/*

* Default constructor

*/

public ArgumentList() {

attributes = new HashMap();

}

/*

* Property management methods

*/

public void setProperty(String propertyName, Object value)

throws PropertyException {

attributes.put(propertyName,value.toString());

}

public String getProperty(String propertyName)

throws PropertyException {

return (String) attributes.get(propertyName);

}

public BigDecimal getDecimalProperty(String propertyName)

throws PropertyException {

String value = (String)attributes.get(propertyName);

BigDecimal decimal =

(BigDecimal) convertToObjectFormat("Decimal",value);

return decimal;

}

public Date getDateProperty(String propertyName)

throws PropertyException {

String value = (String)attributes.get(propertyName);

Date myDate =

(Date) convertToObjectFormat("Date",value);

return myDate;

}

public Object convertToObjectFormat(String type,

Object value)

throws PropertyException {

// If no value exists, you can't convert it.

if (value == null) {

212 J2EE Best Practices: Java Design Patterns, Automation, and Performance

return value;

}

// Look up the property type, get an instance of the

// handler class based on the metadata, and

// convert the value.

PropertyHandler handler = null;

try {

handler = (PropertyHandler)

CacheList.getInstance().getObject(

"PropertyTypeCache",type);

} catch (BlfException ignoreForNow) {}

if (handler == null) {

throw new PropertyException("Property type " +

type + " is not a defined type in the metadata.");

}

return handler.convertToObjectFormat(value);

}

}

Another alternative for implementing argument lists is to create specific
value object definitions in the metadata. In this option, the argument lists are re-
ally just instances of BaseValueObject. You can then use the specific named
value object in the metadata, just as you would for a particular business object,
when you want a specific argument list. This adds a bit to the metadata for all of
the services, but provides a nice alternative if you want the ability to deal with
setter methods specific to data types rather than deal with everything as a string.

A Unified Service Data Structure
and Interface
It would be nice to have one standard interface you can use for all services. This re-
quires a data structure wrapper that can hold the following items:

Argument list

Collection of value objects

Error list

Optionally, you can also store both the input and output data in a service data struc-
ture if you want a nice way to hold on to both for comparisons or for other purposes.
You can wrap all of these things in a single ServiceData class to simplify the stan-
dard interface. It is a simple wrapper class that could look like this:

package blf;

import java.util.*;

NOTE

Building Service-Based Components 213

/**

* A data structure for services

*/

public class ServiceData {

// The name of the service

private String serviceName;

// The argument list

private ValueObject argumentList;

// A collection of input value objects

private ArrayList inputData;

// A collection of output value objects

private ArrayList outputData;

// A list of errors or messages

private ErrorList errors;

/**

* Construct the data structure for a particular service.

*/

public ServiceData(String serviceName) {

this.serviceName = serviceName;

// Instantiate what you typically need.

// Most services have input data, output data,

// and potential for error messages, although

// you could have used lazy instantiation for these.

inputData = new ArrayList();

outputData = new ArrayList();

errors = new ErrorList();

}

/**

* Get the service name.

*/

public String getServiceName() {

return serviceName;

}

/**

* Get the argument list.

*/

public ValueObject getArgumentList() {

return argumentList;

}

/**

* Set the argument list.

*/

214 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public void setArgumentList(ValueObject value) {

argumentList = value;

}

/**

* Get the collection of input value objects.

*/

public ArrayList getInputData() {

return inputData;

}

/**

* Add an individual input value object.

*/

public void addInputData(ValueObject valueObject) {

inputData.add(valueObject);

}

/**

* Get an individual input object.

*/

public ValueObject getInputData(int index)

throws BlfException {

if (index > (inputData.size() - 1)) {

throw new BlfException("Service Data does not have "

+ index + " objects.");

}

return (ValueObject) inputData.get(index);

}

/**

* Get the collection of output value objects.

*/

public ArrayList getOutputData() {

return outputData;

}

/**

* Add an individual output value object.

*/

public void addOutputData(ValueObject valueObject) {

outputData.add(valueObject);

}

/**

* Get an individual output object.

*/

public ValueObject getOutputData(int index)

throws BlfException {

if (index > (outputData.size() - 1)) {

throw new BlfException("Service Data does not have "

Building Service-Based Components 215

+ index + " objects.");

}

return (ValueObject) outputData.get(index);

}

/**

* Get the error list.

*/

public ErrorList getErrorList() {

return errors;

}

}

Thus, this class holds everything needed for both update and data retrieval services.
The Java interface for services then can be defined as follows:

package blf;

import java.rmi.RemoteException;

public interface BlfServiceObject {

public void doService(ServiceData data)

throws BlfException, RemoteException;

}

Consider the use of a standard interface for service compo-
nents. This approach enables the reference architecture to automate the invoca-
tion of services to a large extent. Services can be generically invoked through their
interface, and standard data structures allow for the automated creation of input
data. A standard service data structure can be used to store arguments and object
data as input as well as the corresponding output data and error information from
the service.

The Session Bean as a Component
Wrapper to the Service

The BlfServiceObject interface is used for the actual implementation objects. As
discussed earlier, you can use a standard foundation Session Bean as an EJB compo-
nent wrapper to take advantage of container-managed services such as transactions
and security. The remote interface to this EJB component mirrors the service imple-
mentation interface. This component will be called BlfService. It is defined as:

package blf;

import javax.ejb.EJBObject;

import java.rmi.RemoteException;

BEST PRACTIC E

216 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public interface BlfService extends EJBObject {

public ServiceData executeService(ServiceData data)

throws BlfException, RemoteException;

}

The implementation of the foundation service component is quite simple. It uses a
new utility called ServiceObjectFactory, similar to BusinessObject-
Factory, to obtain a handle to the service implementation object. It uses the service
name stored in ServiceData to determine what actual service is being invoked. The
mapping between the service name and the implementation class can be added to
the overall business object metadata. As an example, you can define the following
service definitions in the metadata:

<Service name="ChangeAddress"

class="bank.entity.ChangeAddressServiceImpl" />

<Service name="TransferFunds"

class="bank.entity.TransferFundsServiceImpl" />

This is an implementation of the Command pattern (Gamma et al. 1995)
on the EJB tier. The name of the service is used to locate and execute an object
that implements a standard command interface, in this case the BlfService-
Object interface. The Command pattern certainly is not required here, but it does
provide a key benefit. It provides a nice mechanism that allows the service objects
to be implemented as Java classes so that they can be reused outside of the con-
text of an EJB. This can prevent unnecessary overhead caused by an additional EJB
when you are already in the context of a Session Bean.

A common base class for all services is BlfServiceBean. It provides the transac-
tion management functionality shared by all service components. It can act either as a
Command pattern to invoke service implementations or as a Template Method pattern
for specific deployments of service components. The code for BlfServiceBean is as
follows:

package blf;

import java.rmi.RemoteException;

import javax.ejb.*;

public class BlfServiceBean implements SessionBean {

/**

* EJB context variable

*/

protected SessionContext myContext;

public ServiceData executeService(ServiceData data)

throws BlfException, RemoteException {

NOTE

TEAMFL
Y

Team-Fly®

Building Service-Based Components 217

try

{

// This method is implemented by the base class to

// run the Command pattern to execute service.

// This method can also be implemented by

// specific services implemented as

// Session Bean subclasses.

doService(data);

// If errors are logged in the service itself

// (for example, in the ServiceData object),

// throw an exception to roll back

// and get the errors sent back to the client.

if (!(data.getErrorList().isTransactionSuccess())) {

throw new BlfException("Service Error");

}

}

catch (BlfException be) {

// Integrate errors from the service into

// your overall list.

be.addErrors(data.getErrorList().getErrorList());

// Vote to roll back the transaction.

getSessionContext().setRollbackOnly();

// Throw the same exception to communicate the

// error list that may be inside.

throw be;

}

catch (Exception e) {

// Vote to roll back the transaction.

getSessionContext().setRollbackOnly();

// Map the exception to a general

// application error.

throw new BlfException("General error: ",

ErrorList.createSingleErrorList(

"GEN_EXCEPTION_ERR", e.getMessage()));

}

// Return the service data object.

return data;

}

/**

* This method can be overriden by a subclass if you want to

* deploy a specific service

* (different transactional context, and so on).

*/

218 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public void doService(ServiceData data)

throws BlfException, RemoteException {

// Obtain an instance of the service object

// implementation for this service and invoke

// passing the service data as a parameter.

BlfServiceObject bso =

ServiceObjectFactory.getServiceObject(

data.getServiceName());

bso.doService(data);

}

// Empty implementation for EJB container methods

public void ejbCreate() {}

public void ejbPostCreate() {}

public void ejbRemove() {}

public void ejbActivate() {}

public void ejbPassivate() {}

/**

* Set the EJB session context.

*/

public void setSessionContext(SessionContext sc) {

myContext = sc;

}

/**

* Get the EJB context object.

*/

protected SessionContext getSessionContext () {

return myContext;

}

}

There are several interesting things to note about this code:

The primary method, executeService, consists only of a try-catch block to
invoke the service and manage the transaction. This topic is briefly revisited in
the next section.

The executeService method needs to integrate any errors occurring
directly in the service object with any business object errors that may have
occurred. It does this by adding any errors from the ErrorList in the
ServiceData object to the application exception thrown out of the service.
The application exception thrown out to the client is then guaranteed to have
the complete list. Note that to avoid duplicate errors using this approach, the
service object should add errors to the ErrorList in ServiceData and
then, if it wants to halt execution immediately, throw a blank BlfException
without errors because they will automatically be added in by the base class.

Building Service-Based Components 219

General exceptions are caught and mapped to a generic application error. This
should happen only in the case of system-level exceptions.

The main work is done in doService, which mirrors the BlfService-
Object interface. The base class implementation of this method uses the
Command pattern to invoke the corresponding service implementation.
This method can be overridden by a subclass and deployed as an additional
Session Bean in order to use different deployment settings than the standard
BlfService deployment.

Wrap service components with a stateless Session Bean to
manage the transaction and distribute the service. Use a common base class
to standardize the service error handling and integration with EJB transaction
management. Command pattern logic can be used to easily invoke services imple-
mented as regular Java objects while subclasses using the Template Method
pattern can be used in order to have specific EJB deployments of a service.

Figure 6.1 describes the UML model of the service components. As discussed, note
that BlfServiceBean can be used as a Command pattern to invoke services or as a
Template Method pattern to rapidly deploy specific service components.

BEST PRACTIC E

Figure 6.1 Class Diagram of Service Component Implementation.

<<interface>>
BLFService

executeService
(ServiceData)

<<realize>>
<<interface>>

EJBObject

doService
(ServiceData)

ServiceImpl

<<realize>>

BlfServiceBean

executeService
(ServiceData)
doService
(ServiceData)

Template Method Pattern
for Specific EJB

Deployment

<<interface>>
MyService

doService
(ServiceData)

MyServiceBean

doService
(ServiceData)

<<interface>>
BlfServiceObject

Command Pattern for
Service Invocation Wrapped
by Standard EJB Component

220 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Transaction Management Revisited
As alluded to earlier in the business object chapters, transaction management is often
done at the level of the service component. This occurs for a number of reasons. The
most common include leveraging Session Beans as the most efficient EJB component
regardless of the business object implementation as well as the fact that many services
require coordination between multiple business objects in a transaction. In the business
object chapter, there was an example of a call to EJBContext.setRollbackOnly
in the catch block after the save template within an Entity Bean business method. To
simplify things in the architecture, you probably want to remove this logic from busi-
ness methods because it confuses things when you want to roll back the transaction in
the service component. You could check to see whether the transaction has already
been voted for rollback; however, the simplest thing might be to have the business ob-
jects just throw the application exception containing the business errors and always
have the service component be the one to roll back the transaction. As long as you ac-
cess your business objects through a service, this pattern works quite well. Any busi-
ness objects that are invoked directly and originate transactions still need to include
their own try-catch block in business methods to catch application exceptions and call
setRollbackOnly.

Remember that the application exception is rethrown to the client to communicate the
error list. This is done because the EJB container is required to preserve any application
exceptions for the client. System or other unhandled run-time exceptions are wrapped
either by a RemoteException or a TransactionRolledBackException and
can make things more difficult to manage and communicate business errors.

When to Deploy Subclasses of
BlfServiceBean
The Command pattern in BlfServiceBean allows you to invoke any of the services
with an EJB component wrapper for distribution. However, being a single EJB, it
can have only one set of deployment properties. In most cases, this works fine. Almost
all services are stateless and run in a transactional context; thus you can define
BlfService as stateless and mark executeService as transaction required.
However, there is one common reason why you would want to deploy specific EJB
service components—security. If you are using EJB security services, you can use an
access control list (ACL) to control what user groups are allowed to invoke a particular
service. A singular deployment of BlfService does not allow the creation of differ-
ent security privileges for different services invoked through the command pattern of
this foundation component. There may also be a need to deploy specific service com-
ponents with different deployment settings in order to optimize performance or to
refer to other specific J2EE resources.

If you want to deploy specific service components with different deployment
settings, it is quite easy to do so using this design. The doService method can also
act as a Template Method pattern. This is why the service logic is isolated and has the
same method signature as the BlfServiceObject interface. The subclasses extend
BlfServiceBean and implement the doService method just like they would in a
separate service implementation class. You can then deploy this new bean with a
specific set of deployment properties.

Building Service-Based Components 221

The following example illustrates how to use BlfService as a template and
deploy a specific subclass. The service that requires the use of EJB security is a common
example.

public class MySecureServiceBean extends BlfServiceBean {

/**

* This method overrides the base class implementation

* and is invoked by the executeService method.

*/

public void doService(ServiceData data)

throws BlfException, RemoteException {

// Do the work of the service here, just like in

// a Java object implementation, or else call an

// implementation object.

}

}

Responsibilities of the Service Component

There are a few general responsibilities that most services undertake. For update ser-
vices, these responsibilities usually fall into the following general outline:

Instantiating business objects from input data

Invoking methods on the business objects

Managing the transaction and handling errors

For data retrieval services, the outline consists of the following responsibilities:

Executing queries based on input data

Formatting the results into output data

Instantiating Business Objects
The first responsibility of the update service is to get a handle to the proper instances
of the business object that is going to perform the work of the transaction. This requires
instantiating the right set of business objects or creating new ones based on the input
data sent to the service. When an existing instance of a business object is instantiated,
it usually has the current state already set from a trip to the database. Services then
often invoke methods on the business objects, passing in data that was sent to the
service.

In the case of data entry screens such as a change of address, the service may want
to set all or most of the properties of a given object. In this example, the correct instance
of the Address object is instantiated and all of the address fields, such as city and
state, are populated on the business object from the form data. The service would then
invoke the save Template Method to perform validations and have the data persist in

222 J2EE Best Practices: Java Design Patterns, Automation, and Performance

the database. In a more transaction-based service such as an account transfer, the
withdraw and deposit methods are called on the Account objects, but only a few
key data fields, such as the transfer amount, are passed to the method.

In architectures in which specific interfaces are used for each service, the method for
doing this will be determined on a case-by-case basis. For architectures that use a stan-
dard service interface, you can automate the majority of this process using the business
object metadata.

In a highly automated architecture, you want the instantiation and
population of business objects to be as easy as possible. In most cases, this can
be accomplished with a single line of code. This sticks to the goal of keeping the
service components simple and elegant.

Populating from Value Objects
and Argument Lists

This process can be done very easily using the business object metadata. In fact,
methods have already been defined on the business object that populate themselves
based on a value object such as setProperties. The popular choice of value objects
as a data structure does provide a nice, efficient way to implement this process. As
previously discussed, value objects that implement the same setProperty and
getProperty interfaces simplify this even further. The business object method
simply can iterate through the list of property metadata objects, get the property from
the value object, and set the property on itself. This code for the setProperties
method was shown in an earlier chapter on property manipulation.

Aggregated objects are sent either as aggregated objects within the value objects, sim-
ilar to the business objects, or as separate value objects in an overall collection sent to the
service. It can become fairly complex to deal with value objects in an aggregated hierar-
chy in your architecture because your User Interaction Architecture will often be con-
structing and populating them based on form data from the front end. It may be simpler
to have the front end move the data to a specific object and have the service components
map this data to the appropriate business object hierarchy. This, in fact, is a major bene-
fit of having a service layer in the architecture. It prevents the front end from having to
deal with all of the knowledge of the business components. It simplifies things by pro-
viding a single interface that takes the data and interacts with the proper business com-
ponents. Taking this argument further, this thought would support sending all of the
form data as a single argument list (in essence, a value object acting as a HashMap),
rather than separated into different value objects, so that the front end doesn’t even
need to know what object a given piece of data belongs to. This approach breaks down
because of complexities with a single namespace. If you need to process form data about
two (or more) Account objects, you need to send two identifier fields and two amount
fields. You can deal with this in HTTP form submissions as multiple occurrences of the
same parameter, or you can create a naming convention to separate them (amount1,
amount2 . . .). Either way, this logic is best left in the User Interaction Architecture
because it deals with specifics of the Web page construct. Thus, you find that a collection
of value objects can be a happy medium between the two approaches.

THOUG HT

Building Service-Based Components 223

A collection of value objects as a data transport provides a compro-
mise between isolating front-end knowledge from the back end, and vice versa. It
isolates logic to deal with multiple object instances on the front end. It minimizes
the required back-end knowledge to be the association between a form field and
an object. This can be eliminated by using a single argument list (that is, a value
object that is really a HashMap for all parameters), as long as namespace conflicts
do not become a problem, such as with multiple object instances.

XML Data as an Option

You could also create similar methods to populate a business object that takes a string
of XML data. If XML is used as the data structure for the service, this logic is slightly
more complicated and perhaps a bit less efficient. Nonetheless, it provides a powerful,
flexible mechanism to deal with application data. Because XML is self-describing data,
the process becomes easier if it is driven by traversing the XML document and then
setting properties as they are encountered. The first thing that must be decided on is
the representation of business object data in XML. A common approach is to use an
element to define the object itself and subelements to define properties of the object.
The Account object might look like this:

<Account>

<Number>C123456789</Number>

<Type>Checking</Type>

<CurrentBalance>1259.78</CurrentBalance>

</Account>

Another option is to use XML attributes to define properties of the object. In this
case, the example would look like:

<Account number="C123456789"

type="Checking"

currentBalance="1259.78" />

In either case, aggregated objects would be represented by a child element under-
neath the <Account> tag. The attribute-based approach uses less overhead for Docu-
ment Object Model (DOM) parsers because the data structure uses fewer objects. If a
Simple API for XML (SAX) parser is used, attributes are nice because they are given to
the document handler method at the same time as the element tag.

Instantiation and Population Mechanism

The actual tools to do this have already been discussed, so now it just needs to be put
together in a simple example. You can use the BusinessObjectFactory mecha-
nism created in an earlier chapter to look up or create the business object. The bulk set
method that takes a value object, setProperties, does the population of property
values. Thus, this process is quite simple in terms of the code.

THOUG HT

224 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// addressData is your Address data object.

String addressId = addressData.getProperty("id");

// Use BusinessObjectFactory to locate components.

Address address = (Address)

BusinessObjectFactory.findByPrimaryKey("Address",

addressId);

// Set all of the properties from the input data (value object).

address.setProperties(addressData);

You can simplify this even further because you know which property
is defined as the key field in your metadata. Thus, you could implement a
findByPrimaryKey method on the factory that takes a value object
without even having to code specifically for the id field.

Invoking Business Object Methods
Different services require different business method invocations to do the job. For
many services, the particular methods are specific to the transaction. However, there
are also many update services that simply take form data and save it. For these, you
can use the general savemethod. If the business objects are modeled such that the ob-
ject validation is automatically invoked on a save, the only thing you need to do here
is populate the business object and call save in order to fulfill the duties of the service.
Because there are so many general form-based applications that are like this that don’t
have additional logic in the service, this pattern tends to recur. It can actually be para-
meterized and implemented as a generic update service that follows this pattern. This
topic will be addressed in full detail later in this chapter in the “Building Generic,
Reusable Services.”

Managing the Transaction
and Handling Errors
The last major responsibility of an update service is to manage the transaction and han-
dle any error conditions. The foundation for the service components, BlfService-
Bean, handles most of this responsibility. The only additional thing to be aware of is
error conditions that could occur in the service itself.

Business Errors in the Service

Almost all services can generate business errors on their own. Even simple services can
encounter conditions such as the instance of the business object is not found. More
complicated services that implement business rules and logic will have normal valida-
tions and edits that can trigger business errors. You can reuse the ErrorList utility
created earlier for the business object foundation within the service layer. Remember
that the ServiceData object that is available to the service contains an instance of

NOTE

Building Service-Based Components 225

ErrorList, so you should use that for any business errors in the service. The base
class will take care of integrating any errors logged here to the overall error list sent
back to the client. If you want to terminate execution of a service immediately, remem-
ber to just throw a blank BlfException because the errors from the service data are
automatically added to any errors from the business objects. If you use the throw-
ExceptionIfErrors within the service, you get duplicate errors from the service
under the current implementation.

Update Service Examples

A good place to start is to look at some simple update service objects. The Transfer-
Funds example is fairly straightforward. First, the explicit implementation of this ser-
vice is shown that uses a unique interface. Next, the same service implemented is
shown using the standard interface and foundation class.

Explicit Transfer Funds Service
Implementation
If you implemented a TransferFunds service component with a specific interface
that used Entity Bean business objects, the Session Bean would look like this:

public class TransferFundsBean implements SessionBean

{

public void executeService(String fromAccountId,

String toAccountId,

BigDecimal amount)

throws BlfException, RemoteException {

try

{

// Use Entity BusinessObjectFactory to locate

// components.

Account fromAcct = (Account)

EJBFactoryImpl.findByPrimaryKey("Account",

fromAccountId);

Account toAcct = (Account)

EJBFactoryImpl.findByPrimaryKey("Account",

toAccountId);

toAcct.deposit(amount);

fromAcct.withdraw(amount);

}

catch (BlfException be) {

// Vote to roll back the transaction.

getSessionContext().setRollbackOnly();

226 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Throw the same exception to communicate the

// error list that may be inside.

throw be;

}

catch (Exception e) {

// Vote to roll back the transaction.

getSessionContext().setRollbackOnly();

// Map the exception to a general

// application error.

throw new BlfException("General error: ",

ErrorList.createSingleErrorList(

"GEN_EXCEPTION_ERR", e.getMessage()));

}

// Standard Session EJB methods to follow

}

Transfer Funds Implementation
with Standard Interface
The version of TransferFunds that uses the standard interface and base class is sim-
plified somewhat in that the transaction management is handled by the foundation
component. In fact, you do not need to create any additional EJB artifacts if you use the
standard BlfService deployment. The code for BlfServiceBean, which was
described earlier in the chapter, invokes this service object. You need only to create the
Java service object implementation. In this service, there are three data fields that fit
more into the category of service arguments than object data. The identifiers match up
to the account objects, but there are no other equivalent properties. As discussed
earlier, the amount argument does not correlate directly to a property value. Thus, the
argument list in the ServiceData is used to hold these values. The code for this
implementation is:

public class TransferFundsServiceImpl

implements BlfServiceObject {

public void doService(ServiceData data)

throws BlfException, RemoteException {

// Get the input data from the argument list.

ValueObject args = data.getArgumentList();

String fromAccountId = args.getProperty("fromAccount");

String toAccountId = args.getProperty("toAccount");

BigDecimal amount = args.getDecimalProperty("amount");

// Use Entity BusinessObjectFactory to locate

// components.

Account fromAcct = (Account)

EJBFactoryImpl.findByPrimaryKey("Account",

fromAccountId);

TEAMFL
Y

Team-Fly®

Building Service-Based Components 227

Account toAcct = (Account)

EJBFactoryImpl.findByPrimaryKey("Account",

toAccountId);

// Perform the transfer by depositing the amount

// into the to account and withdrawing from

// the from account.

toAcct.deposit(amount);

fromAcct.withdraw(amount);

}

}

Note that in this service, if a business error occurs in either Account object, such as
insufficient funds, a ValidationException (a subclass of BlfException),
which is caught by the try-catch block in BlfServiceBean, will be thrown. It is
BlfServiceBean that deals with the transaction rollback.

Change Address Service
The TransferFunds example was more of a transaction-based service. The next
example is a service that would process a data entry form like a ChangeAddress.
This service takes all of the properties of an address, such as if they came from a form
on a Web page, as an address value object and updates the address in the database.
This service requires that the address already exist. These types of services are quite
simple given the ability to easily instantiate and populate business objects.

Java Business Object Implementation

The code looks like this for an implementation that uses Java business objects and an
underlying JDBC framework:

public class ChangeAddressServiceImpl

implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

AddressData addressData =

(AddressData) serviceData.getInputData(0);

String addressId = addressData.getProperty("id");

// Use Java BusinessObjectFactory to locate components.

Address addr = (Address)

JavaFactoryImpl.findByPrimaryKey("Address",

addressId);

addr.setProperties(addressData);

addr.save();

}

}

228 J2EE Best Practices: Java Design Patterns, Automation, and Performance

All service objects that take form data and use it to update an object follow this
pattern. Note that the save method invocation automatically invokes the property-
level validation as well as object-level validation implemented in the blfValidate
Template Method.

Entity Bean Business Object
Implementation

The version of the ChangeAddress service that uses Entity Bean business objects is
identical to the straight Java version except that it uses the EJB version of Business-
ObjectFactory.

What If the Address Object Doesn’t Exist?

A general error condition almost every service needs to deal with is the nonexistence of
a particular business object. This can occur if faulty data is sent into a service or if an ap-
plication user deletes an entity while another user was viewing that object’s data. This
condition can happen in service components as well as in business object methods;
thus, you should have a general error-handling mechanism for this. The Business-
ObjectFactory classes need to be able to report this error condition, so the logic is
encapsulated in these factory implementations. For Entity Beans, a FinderExcep-
tion is thrown from the finder method on the Home interface. In the case of JDBC or
other persistence frameworks, you need to code logic into the foundation classes to
notify clients when no objects are found in a given result set.

To be able to handle all implementation models, you can create a subclass of
BlfException called ObjectNotFoundException that maps to a standard
busiess error. The exception code could take an object name and key object to auto-
matically create an error list containing the standard business error for “object not
found.”

public class ObjectNotFoundException extends BlfException {

public ObjectNotFoundException(String objectName,

Object keyObject) {

super(objectName + " object not found");

// Map to a standard application error.

setErrorList(ErrorList.createSingleErrorList(

"OBJ_NOT_FOUND",

objectName,

keyObject.toString()));

}

}

As an example, EJBFactoryImpl would throw this exception on a find method.
Remember that reflection is used to generically call a method on a Home interface, so

Building Service-Based Components 229

the EJB FinderException actually comes wrapped in an InvocationTarget-
Exception. The target exception could also be a ValidationException from a
failed edit, so you need to check what kind of exception it was. Looking back at the
implementation of findByPrimaryKey in EJBFactoryImpl, you can examine
the highlighted code to deal with these cases:

public static Object findByPrimaryKey(String objectName,

Object keyObject)

throws BlfException {

// Obtain the business object metadata.

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(objectName);

// Get the Home interface.

EJBLocalHome home = getHomeInterface(objectName, bom);

// Invoke by findByPrimaryKey method.

PropertyMetadata keyProp = bom.getKeyField();

EJBLocalObject busObject = null;

try {

// Define the parameter types.

Class[] parameterTypes = new Class[1];

if (keyProp.getType().equals("String")) {

parameterTypes[0] =

Class.forName("java.lang.String");

}

if (keyProp.getType().equals("Number")) {

parameterTypes[0] =

Class.forName("java.lang.Long");

}

//

// and so on for the other data types...

//

Object[] args = new Object[1];

args[0] = keyObject;

// Get a handle to the finder method and invoke it.

Class homeClass = home.getClass();

Method findByPK =

homeClass.getMethod("findByPrimaryKey",

parameterTypes);

busObject = (EJBLocalObject)

findByPK.invoke(home, args);

} catch (InvocationTargetException ite) {

Throwable t = ite.getTargetException();

if (t instanceof BlfException) {

throw (BlfException)t;

230 J2EE Best Practices: Java Design Patterns, Automation, and Performance

} else if (t instanceof FinderException) {

throw new ObjectNotFoundException(objectName,

keyObject);

} else {

throw new BlfException(ite.getMessage());

}

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

return busObject;

}

Thus, you do not need to specifically code for this exception case in every service
component. Just by using the BusinessObjectFactory class, the exception with
the correct error gets thrown out to base service class without any additional work by
the developer. Now, if you want to execute different logic based on this condition, you
will need to catch this exception within the service code and then react accordingly. For
example, in some services, you may want to go ahead and create an entity if one does
not exist. Thus, you would do something like this:

try {

// Use Java BusinessObjectFactory to locate components.

Address addr = (Address)

JavaFactoryImpl.findByPrimaryKey("Address",

addressId);

addr.setProperties(addressData);

addr.save();

} catch (ObjectNotFoundException onfe) {

// Perform exception case logic ...

}

The Castor Implementation
of Change Address

If you are using a persistence framework, such as Castor, there may be some slight mod-
ifications required to plug the business object components into the service. With Castor,
an instance of the Database class is used for all persistence events such as select and
update operations. Thus, the Database object for the service needs to be made avail-
able to the implementation classes. One way to do this is to create a base class for the
service implementation objects that creates theDatabase and closes it at the end of the
service. Since this will be standard logic, it makes sense to implement it once and extend
it to each service. Remember, this is a base class for the BlfServiceObject imple-
mentation classes. This is different from the BlfServiceBean base class used for the
Session Bean itself. The CastorBaseService class is shown here:

public abstract class CastorBaseService

implements BlfServiceObject {

Building Service-Based Components 231

// The Castor persistence engine

private Database db = null;

/**

* Helper method to get the persistence database engine

*/

protected Database getDatabase() {

if (db == null) {

try {

// Get the Castor database properties

// out of the configuration.

String castorConfigFile =

ConfigurationManager.getString(

"castorConfigFile");

String databaseName =

ConfigurationManager.getString(

"databaseName");

String transactionManagerName =

ConfigurationManager.getString(

"transactionManager");

// Create the Castor database object

// for persistence and add it to

// the service data so it can be

// used by the service implementations.

PrintWriter writer =

new Logger(

System.out).setPrefix("BlfService");

JDO jdo = new JDO();

jdo.setLogWriter(writer);

jdo.setConfiguration(castorConfigFile);

jdo.setDatabaseName(databaseName);

jdo.setTransactionManager(

transactionManagerName);

db = jdo.getDatabase();

} catch (PersistenceException pe) {

pe.printStackTrace();

} catch (BlfException be) {

be.printStackTrace();

}

}

return db;

}

/**

* Helper method to close the persistence engine

*/

protected void closeDatabase() throws BlfException {

// Close the database.

try {

232 J2EE Best Practices: Java Design Patterns, Automation, and Performance

if (db != null) {

db.close();

}

} catch (PersistenceException pe) {

throw new BlfException(pe.getMessage());

}

}

/**

* An implementation of the standard service interface

* that acts as an adapter for Castor-based services

*/

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Instantiate the persistence database engine.

getDatabase();

// Invoke the Template Method to execute the subclass

// implementation of the service.

doCastorService(serviceData);

// Close the persistence database engine.

closeDatabase();

}

/**

* The template method that subclasses must implement

*/

public abstract void doCastorService(ServiceData data)

throws BlfException, RemoteException;

}

In order to maintain the Command pattern and also implement the template logic of
maintaining the database, a new Template Method was created called doCastor-
Service. Specific service implementations that use Castor implement this method
rather than the doService method. This was done to provide the template function-
ality of creating the Database object, invoking the application-specific logic, and then
closing the database.

The Castor implementation of the ChangeAddress service then extends the
CastorBaseService class and implements the doCastorService method. The
doService method invoked directly by BlfServiceBean now implements
the Castor database template described earlier and uses the doCastorService
method as the application hook. The ChangeAddressServiceImpl uses the
getDatabasemethod as an input to the object factory because it is needed for Castor
persistence events.

public class ChangeAddressServiceImpl extends CastorBaseService

implements BlfServiceObject {

Building Service-Based Components 233

public void doCastorService(ServiceData serviceData)

throws BlfException, RemoteException {

AddressData addressData = (AddressData)

serviceData.getInputData(0);

String addressId = addressData.getProperty("id");

// Use CastorObjectFactory to locate components.

Address addr = (Address)

CastorFactoryImpl.findByPrimaryKey("Address",

addressId,getDatabase());

addr.setProperties(addressData);

addr.save();

serviceData.addOutputData(addr.getValueObject());

}

}

Aside from the structural changes, the Castor implementation of
ChangeAddress is still almost identical to the Java and Entity Bean versions.
The only difference, again, is the usage of the object factory.

Updating Multiple Business Objects

Many data-entry-type services update more than one business object. Take for exam-
ple, an UpdateCustomer service that updates both the customer entity and the cor-
responding address. This service might be used from a Web page that lets customers
update all of their personal information as well as their contact information. The code
for this service using Java business objects would look like this:

public class UpdateCustomerServiceImpl

implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input value objects.

CustomerData customerData =

(CustomerData) serviceData.getInputData(0);

AddressData addressData =

(AddressData) serviceData.getInputData(1);

String customerId = customerData.getProperty("id");

// Use Java BusinessObjectFactory to locate components.

Customer customer = (Customer)

JavaFactoryImpl.findByPrimaryKey("Customer",

customerId);

NOTE

234 J2EE Best Practices: Java Design Patterns, Automation, and Performance

customer.setProperties(customerData);

Address address = customer.getAddress();

address.setProperties(addressData);

// Save all changes to customer and aggregated address.

customer.save();

}

}

This service could also have been implemented where the address data
was aggregated within the customer value object.

Remember that from the study of aggregated objects in the business object chapters,
the save template can be used to invoke save on all aggregated objects, as is the case
in this example. If business objects in different hierarchies were updated (that is, non-
aggregated objects), then you would have needed to invoke save separately on each
of the business objects.

The New Customer Service

The bank application also has an application service that creates a new customer in the
system. There is a link on the bank home page that allows a visitor to open an account
with the bank. This link takes users through a series of screens to capture their name
and address information, the type of account they want to open, as well as an initial
deposit amount that will be wire-transferred into the account initially to meet the min-
imum balance requirement. You can create a NewCustomer service that processes all
of this information to create the new customer, and the new account and to make the
initial deposit. This service needs to perform the following tasks:

1. Create a new customer entity

2. Create a new aggregated address entity for the customer

3. Create an account

4. Deposit the initial amount into the account

This service takes input data for three different objects: customer, address, and
account. Rather than use three separate value objects and define indices for them in
the input collection, you can also implement the value objects to model the same
relationships as the business objects. Thus, the customer value object can aggregate a
single address and a collection of account value objects. The implementation of the
CustomerData value object that does this is shown here:

package bank;

import blf.*;

import java.util.Collection;

import java.util.ArrayList;

NOTE

Building Service-Based Components 235

public class CustomerData extends BaseValueObject

implements java.io.Serializable {

// Aggregated address

private AddressData address = null;

// Aggregated accounts

private Collection accounts;

/**

* Default constructor

*/

public CustomerData() {

super("Customer");

}

/**

* Aggregated address data

*/

public AddressData getAddress() {

if (address == null) {

address = new AddressData();

}

return address;

}

public void setAddress(AddressData value) {

address = value;

}

/**

* Aggregated account data

*/

public Collection getAccounts() {

if (accounts == null) {

accounts = new ArrayList();

}

return accounts;

}

public void setAccounts(Collection coll) {

accounts = coll;

}

}

The amount for the initial deposit is sent in the argument list because it does not
directly correspond to an object property value. In essence, it actually does end up
being the current balance because the initial value is 0, but you want to set this value
through an invocation of the deposit method to ensure that any other business logic
is executed. The code for the Entity Bean implementation of the NewCustomer
service is as follows:

public class NewCustomerServiceImpl

implements BlfServiceObject {

236 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input value objects.

CustomerData customerData =

(CustomerData) serviceData.getInputData(0);

// Use EJB factory to create the customer.

// This also creates the address,

// which is aggregrated in the value object.

CustomerLocal customer = (CustomerLocal)

EJBFactoryImpl.create("Customer",customerData);

// Create the account for this customer.

// The account type and initial deposit

// amount are given as input.

// The account ID and number are generated

// by the business object.

Collection inputAccounts = customerData.getAccounts();

if (inputAccounts.isEmpty()) {

throw new BlfException("Missing Account Data",

ErrorList.createSingleErrorList(

"GEN_SERVICE_ERROR",

"Missing Input Account Data Object"));

}

Iterator iter = inputAccounts.iterator();

// There will only be one account in the

// input data collection.

AccountData accountData = (AccountData) iter.next();

AccountLocal account = (AccountLocal)

EJBFactoryImpl.create("Account",accountData);

Collection accounts =

customer.getOneToManyRelationship("accounts");

accounts.add(account);

// Make the initial deposit.

ValueObject argumentList =

serviceData.getArgumentList();

BigDecimal amount =

argumentList.getDecimalProperty("amount");

account.deposit(amount, "Initial Deposit");

// Save all changes to the customer and aggregated

// address and account.

customer.save();

// Return the objects as output data.

CustomerData outputData =

(CustomerData) customer.getValueObject();

TEAMFL
Y

Team-Fly®

Building Service-Based Components 237

outputData.setAddress((AddressData)

customer.getAddress().getValueObject());

ArrayList outputAccounts = new ArrayList(1);

outputAccounts.add(account.getValueObject());

outputData.setAccounts(outputAccounts);

serviceData.addOutputData(outputData);

}

}

Invoking Services within Services
One of the benefits of isolating the service implementation objects (BlfService-
Object) is that you can easily reuse existing services as building blocks within larger
services. You do not need to go through the additional overhead of the JNDI lookup
and EJB component invocation.

As an example, assume you have a Withdraw service that simply subtracts from
the current balance of an account. Again, the Withdraw service takes an argument list
because it requires an amount value that does not map directly to an object property.
The code for the Withdraw service is quite simple because its main purpose is to
expose the withdraw business method through the service infrastructure. The code is
shown here:

public class WithdrawServiceImpl implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

ValueObject argumentList =

serviceData.getArgumentList();

String accountId =

argumentList.getProperty("accountId");

BigDecimal amount =

argumentList.getDecimalProperty("amount");

// Use Java BusinessObjectFactory to locate components.

Account account = (Account)

JavaFactoryImpl.findByPrimaryKey("Account",accountId);

account.withdraw(amount);

account.save();

}

}

Assume the bank Web site also has a link that allows the user to obtain a money
order. This new service, IssueMoneyOrder, will use a utility class to invoke a legacy
application to generate and mail a money order to the customer’s address. The service,
however, also needs to debit the account for the amount of the money order. To do this,
the Withdraw service can be reused as a building block for the new service. Although
this example is fairly simple and the reuse value is small, many services in business

238 J2EE Best Practices: Java Design Patterns, Automation, and Performance

applications become quite complex, and there can be significant value added from
using this technique. The IssueMoneyOrder takes a customer ID, account ID, and
an amount in the argument list. The customer’s address on file is used for security
purposes. The code for this service is as follows:

public class IssueMoneyOrderServiceImpl

implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

ValueObject argumentList =

serviceData.getArgumentList();

String customerId =

argumentList.getProperty("customerId");

String accountId =

argumentList.getProperty("accountId");

BigDecimal amount =

argumentList.getDecimalProperty("amount");

// Reuse the Withdraw service as a building block.

// This service takes a subset of the argument list,

// so you can simply pass on the same service data.

BlfServiceObject service =

ServiceObjectFactory.getServiceObject("Withdraw");

service.doService(serviceData);

// Use Java BusinessObjectFactory to locate components.

Customer customer = (Customer)

JavaFactoryImpl.findByPrimaryKey("Customer",

customerId);

Address address = customer.getAddress();

if (address == null) {

serviceData.getErrorList().addError(

"NO_ADDR_FOR_CUSTOMER",customerId);

} else {

// Use a legacy utility to actually create

// and mail the money order. This utility takes

// the dollar amount and address object.

BankUtils.createAndMailMoneyOrder(amount,address);

}

}

}

Reuse services as building blocks whenever applicable to
implement larger services. If all the logic is a part of the same transaction, invoke
the service implementation directly without going through an unnecessary EJB
method invocation.

BEST PRACTIC E

Building Service-Based Components 239

Combining Error Data from
Embedded Services

In the IssueMoneyOrder service, any errors that occurred within the Withdraw
service, such as insufficient funds, would be thrown as a BlfException all the way
out to the service foundation for the transaction. This works just fine as it is automati-
cally handled and communicated back to the client. However, imagine a situation in
which you want to invoke a service within a service and add any errors that came back
to the overall list, and then continue on with the original service to finish any valida-
tions so that a complete list of errors can be returned back to the user. In the money
order example, you could check for both a valid address on file as well as sufficient
funds and return both errors in case both validations fail.

To combine errors from an embedded service, you simply need to wrap the service
invocation with a try-catch block and add the errors using the addErrors method
on the ErrorList utility. The code snippet that invokes the Withdraw service is
rewritten as follows to do this:

// Reuse the Withdraw service as a building block.

// This service takes a subset of the argument list,

// so you can simply pass on the same service data.

try {

BlfServiceObject service =

ServiceObjectFactory.getServiceObject("Withdraw");

service.doService(serviceData);

} catch (BlfException be) {

serviceData.getErrorList().addErrors(

be.getErrorList());

}

The addErrors method on ErrorList is quite simple. It simply adds an
ArrayList of business errors to its existing list. The code for this method is as follows:

public void addErrors(ArrayList errors) {

// Add all of the errors list argument

// to your current error list.

Iterator iter = errors.iterator();

while (iter.hasNext()) {

getErrorList().add(iter.next());

}

}

Earlier you added a similar method to BlfException so that a method can also
catch an exception, add some errors to it, and then rethrow that exception with the
overall list of business errors. This provides another mechanism to ensure that an over-
all error list can be maintained and communicated to the client.

240 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Data Retrieval Services

Thus far, the examples were within a category defined as update services. These com-
ponents were primarily defined by the fact that they modified, or had the possibility to
modify, the state of the database through business objects. The other major category of
services, which includes almost everything else, is the data retrieval service. The pri-
mary function of these services is to return a specific set of data to the client. The most
common usage of these services is to populate a Web page with data within the User
Interaction Architecture.

Responsibilities of the
Data Retrieval Service
Earlier, the primary responsibilities of these two types of services were defined. This
section reviews them and studies the primary tasks within a data retrieval service.

Executing Queries Based on Input Data

The majority of data retrieval services have input arguments used to define the set of
data to be returned to the client. There are, of course, instances in which this is not the
case. Usually this involves returning some kind of reference data that is not particular
to any user or business entity, such as a service that would return the list of fifty states
from a reference table in the database. However, most services use application data to
narrow the result set, for example with a service called GetAccountList, which
returns a list of accounts for a particular customer.

The input data for queries usually comes in the form of an argument list. This occurs
because query parameters usually include only one or two fields from an individual
object or else fields from multiple objects or tables. In the GetAccountList example,
the argument list would consist only of a customer identifier, although more complex
services would require a number of arguments. Thus, you can use the argument list in-
side of the ServiceData class to hold the input data. The code to do this is similar to
what was seen at the beginning of the update services.

// Get hold of the input data.

ValueObject argumentList =

serviceData.getArgumentList();

String customerId =

argumentList.getProperty("customerId");

Remember that the ArgumentList implementation is interchangeable with the
value objects because it also implements the ValueObject interface. Thus, if your
client already has a particular value object, it is usually not necessary to convert it into
an ArgumentList object. In this case, the client would only have to ensure that the
value object is placed in the argument list holder in ServiceData.

In the Business Object Architecture chapters, different options were evaluated for
executing database queries. Much of the prior focus was on retrieving individual
business objects using the BusinessObjectFactory or collections of objects using

Building Service-Based Components 241

ObjectList. This covers some of the basic data retrieval services needed; however,
many services will require data from multiple tables and object structures. Thus, a
strategy is needed to handle these cases because they will occur quite frequently in all
but the most basic business applications. The set of options for executing database
queries now includes:

Use of business objects

Object list (collections of value objects)

Straight database queries

Formatting the Results into Output Data

The current ServiceData class holds a collection of ValueObject implementa-
tions. All of the query options need to be able to convert their data into one of the value
object implementations to work with this interface. The business objects already have
a getValueObject method, and ObjectList deals with collections of value ob-
jects, so these are already taken care of. The database query strategy needs to include a
new implementation of ValueObject called ResultSetValueObject. This is
done to differentiate a result set “row” from your regular value object, which maps to
an object’s properties. It also makes sense to differentiate this from ArgumentList,
because although there is not much difference in functionality, ArgumentList repre-
sents a collection of arguments versus a set of database fields from a result set. Thus,
the ValueObject class diagram now looks like Figure 6.2.

Figure 6.2 Value Object Class Diagram.

BaseValueObject

PropertyValues : HashMap

setProperty()
getProperty()
getDecimalProperty()
getDateProperty()

MyValueObject

method1()
method2()

ArgumentList

Arguments : HashMap

setProperty()
getProperty()
getDecimalProperty()
getDateProperty()

ResultSetValueObject

Fields : HashMap

setProperty()
getProperty()
getDecimalProperty()
getDateProperty()

setProperty()
getProperty()
getDecimalProperty()
getDateProperty()

<<interface>>
ValueObject

<<realize>>

<<realize>>

<<realize>>

242 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Some Example Data
Retrieval Services
This section will look at some data retrieval services. The Web page that invokes the
UpdateCustomer service shown earlier needs a data retrieval service to return the
customer and address data to display on the page. Thus, a GetCustomerData
service is created.

GetCustomerData Using Business Objects

The tools to do this using business objects have already been discussed. The code is as
follows:

public class GetCustomerDataServiceImpl

implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input data.

ValueObject argumentList =

serviceData.getArgumentList();

String customerId =

argumentList.getProperty("customerId");

// Use Java BusinessObjectFactory to locate components.

Customer customer = (Customer)

JavaFactoryImpl.findByPrimaryKey("Customer",

customerId);

Address address = customer.getAddress();

// Put results in output data.

serviceData.addOutputData(customer.getValueObject());

serviceData.addOutputData(address.getValueObject());

}

}

This service first gets the input data, the customer identifier, out of the argument list.
It uses the BusinessObjectFactory implementation to get the business object and
then invokes the getValueObject method to get the data in the form you need it to
transport back to the remote client. The address data for this customer is easy to retrieve
because the Customer business object aggregates the Address object, so you can just
call customer.getAddress(). Remember that you do not need to code for the con-
dition when the object does not exist in the database, because the factory implementa-
tions throw an ObjectNotFoundException in this case.

Business objects provide the safest way to access data because the business object
model already encapsulates the mapping between object data and the database. It
knows the underlying database table and column names, as well as the relationships
between objects such as between the customer and address in this example. Using
business objects is also the slowest method in most cases because it requires individual

Building Service-Based Components 243

database SELECTs for each instance, in addition to the fact that business objects are rel-
atively heavyweight objects compared to the other alternative, the value object.

GetCustomerData Using Database Queries

Another alternative is to use a straight database query to select this data. In the
GetCustomerData example, you can reduce the number of database calls from two
to one. In more complex data models with large object hierarchies, the number of data-
base calls can be drastically reduced using this technique. It has already been argued
that for performance and practicality reasons, you do not need to use the object model
to retrieve data as long as you do not make any transactional updates. Because data re-
trieval services do not update the database, it is safe to use a database query mecha-
nism if it makes sense rather than always use the business objects.

Remember, you want to do this only if you can mitigate the associated development
risk. For example, if the database column names permeated throughout the application
code and the data model changed, you have caused a major headache for the mainte-
nance developer. Earlier in the business object chapter, three goals were defined for
mitigating this risk, including externalizing the SQL from the application, isolating the
JDBC code, and mapping database column names to logical property names as soon as
possible.

If you are going to use straight database queries in your
application for performance reasons, mitigate the development risk by externaliz-
ing the SQL from the application, isolating the JDBC code in a reusable utility to
ensure that resources are properly managed, and mapping the database column
names to properties as soon as possible to ease code maintenance.

There are a couple of options for doing this. The first, and most basic option, is to
use the data retrieval service as the encapsulation mechanism for the database query.
Your GetCustomerData implementation could use JDBCUtility to execute the
specific SQL query, get the fields out of the result set, and put them into the proper
value object instances to be returned. This would isolate the SQL and the mapping
between the database columns and property names within the service component. You
could also externalize the SQL string and move it out to your metadata to meet your
first goal. This strategy can work well as it meets all three of your goals, noting that it
isolates the database column names to within the service component. While this would
work fine, you may want to take this further and make the exposure of the database
column names even more fine-grained so that you can use a database query as a stand-
alone component.

To do this, you can create a DatabaseQuery class that encapsulates the mapping
between columns and properties so that this utility can be used from anywhere within
a service or business object component. The DatabaseQuery utility has a few op-
tions for doing the property mapping. One interesting technique that was briefly de-
scribed in the business object chapter is to use aliases as the logical property names in
the SQL for the query. This takes the following form:

Select fieldName1 propertyName1, fieldName2 propertyName2, ...

From tableName1, tableName2, ...

BEST PRACTIC E

244 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The database utility can then retrieve the fields out of the result set by their logical
property names rather than their column names. This puts the mapping knowledge in
the query itself in the metadata, so it is fairly self-contained. The one missing piece of
this approach is the data type of each property. You could get this information from the
ResultSetMetaData, although this introduces a second source of metadata for
your application, the database itself. Remember that you don’t want to use the straight
toString version of the result set objects because of the property-handler mecha-
nism, which standardizes how different data types are converted and presented to the
user. Thus, if you don’t mind using the ResultSetMetaData to determine the field
types, this provides a nice approach. You can fairly easily write a generic routine to do
this logic given the foundation that already exists with JDBCUtility. Another op-
tion is to create specific value objects for each result set. These value objects can be de-
fined in your metadata to provide the database mapping and data type information.
The specific value objects would be implementations or specializations of Result-
SetValueObject, which implements the same ValueObject interface. This adds
quite a bit of data, some of which is redundant, to the application metadata but does
provide a nice explicit way to implement database queries and their result sets.

Either implementation option works nicely. As an example, you can use the first
alternative, using aliases in the SQL queries and the ResultSetMetaData to run
the query. First, you need to create a DatabaseQueryMetadata class to store the
queries defined in the metadata in the CacheList. The metadata class can simply
hold the query name and SQL string. You can also add a method to the Metadata-
Manager to access this metadata. For the get customer service, the metadata would
look like:

<DatabaseQueries>

<Query name="getCustomerData"

sql="select first_name firstName, last_name lastName,

cust_number customerNumber, pin, line_1 line1, line_2 line2,

city, state, zip, country from customer c, address a

where c.id = ? and c.address_id = a.id" />

</DatabaseQueries>

You notice that not all of the fields in the SELECT statement have an alias.
These fields happen to have the same logical and physical name, so an alias is not
necessary. The result set column name is already equal to the logical property
name.

The DatabaseQueryMetadata objects used to store this data can be put in a spe-
cial cache named DatabaseQueryCache. You can then add the getDatabaseQuery
method to MetadataManager to access this data. This class now looks like this:

public class MetadataManager {

public static BusinessObjectMetadata

getBusinessObject(String objectName) throws BlfException

{

NOTE

Building Service-Based Components 245

BusinessObjectMetadata bom = (BusinessObjectMetadata)

CacheList.getInstance().getObject(

"BusinessObjectCache",objectName);

return bom;

}

public static DatabaseQueryMetadata

getDatabaseQuery(String queryName) throws BlfException

{

DatabaseQueryMetadata qm = (DatabaseQueryMetadata)

CacheList.getInstance().getObject(

"DatabaseQueryCache",queryName);

return qm;

}

}

The JDBCUtility can use this class to map the query name into the appropriate
SQL string. In the last chapter, there was a general utility method on JDBCUtility
that executed a prepared statement with a generic collection of arguments. You can
use this method, executePreparedStatementQuery, to execute the query and
give the result set. From this point, you iterate through the ResultSetMetadata
and set the property values on the ResultSetValueObject. Remember that the
column names in the ResultSetMetadata are actually the logical property names
because of the aliases used in the query string. Based on the data type for each column
from the ResultSetMetadata, you can use the corresponding property handler to
format the data correctly. This is particularly important for data retrieval services
because the data often goes directly back to the client for presentation to the user. The
relevant JDBCUtility code is shown below:

public ArrayList getResultSetObjects(String queryId,

ArrayList args)

throws BlfException {

ArrayList results = new ArrayList();

try {

DatabaseQueryMetadata qm =

MetadataManager.getDatabaseQuery(queryId);

String sql = qm.getSQL();

rs = executePreparedStatementQuery(sql, args);

ResultSetMetaData metadata = rs.getMetaData();

while (rs.next()) {

ValueObject valueObject =

new ResultSetValueObject();

for (int i=1; i <= metadata.getColumnCount();

i++) {

int columnType =

metadata.getColumnType(i);

Object obj = rs.getObject(i);

246 J2EE Best Practices: Java Design Patterns, Automation, and Performance

if (obj == null) {

valueObject.setProperty(

metadata.getColumnName(i),"");

} else {

if ((columnType == Types.CHAR) ||

(columnType == Types.VARCHAR)) {

valueObject.setProperty(

metadata.getColumnName(i),

obj.toString());

}

if (columnType == Types.DATE) {

valueObject.setProperty(

metadata.getColumnName(i),

convertToStringFormat(

"Date",obj));

}

if (columnType == Types.DECIMAL) {

valueObject.setProperty(

metadata.getColumnName(i),

convertToStringFormat(

"Decimal",obj));

}

if (columnType == Types.INTEGER) {

valueObject.setProperty(

metadata.getColumnName(i),

convertToStringFormat(

"int",obj));

}

}

}

results.add(valueObject);

}

} catch (Exception e) {

throw new BlfException(e.getMessage();

}

close();

return results;

}

public Object convertToStringFormat(String type,

Object value)

throws PropertyException {

// If no value exists, you can't convert it.

if (value == null) {

return null;

}

// Look up the property type, get an instance of the

// handler class based on the metadata, and

// convert the value.

TEAMFL
Y

Team-Fly®

Building Service-Based Components 247

PropertyHandler handler = null;

try {

handler = (PropertyHandler)

CacheList.getInstance().getObject(

"PropertyTypeCache",type);

} catch (BlfException ignoreForNow) {}

if (handler == null) {

throw new PropertyException("Property type " +

type + " is not a defined type in the metadata.");

}

return handler.convertToStringFormat(value);

}

}

This method actually does most of the work to implement this technique. Because it
will be a commonly used service, it would be nice to have a wrapper class to use for
readability. This clearly delineates in the code when this type of retrieval option is
being used. The simple DatabaseQuery class is used for this purpose.

public class DatabaseQuery {

public static ArrayList runQuery(String queryId,

ArrayList args)

throws BlfException {

ArrayList results = null;

try {

JDBCUtility dbutil = new JDBCUtility();

results = dbutil.getResultSetObjects(queryId,args);

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

return results;

}

}

Now you have a mechanism you can use within your data retrieval services that
performs straight database queries while isolating all of the logic within a Database-
Query class and the application metadata. You can create a different implementation
of the GetCustomerData service called GetCustomerQuery to get the customer
and address data for a particular customer using the DatabaseQuery approach.

public class GetCustomerQueryServiceImpl

implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input data.

248 J2EE Best Practices: Java Design Patterns, Automation, and Performance

ValueObject argumentList =

serviceData.getArgumentList();

String customerId =

argumentList.getProperty("customerId");

// Use Java BusinessObjectFactory to locate components.

ArrayList args = new ArrayList(1);

args.add(customerId);

ArrayList results =

DatabaseQuery.runQuery("getCustomerData",args);

// Put the results, if any, in the output data.

if (results.size() > 0) {

serviceData.addOutputData(

(ValueObject)results.get(0));

}

}

}

GetAccountList Service Using ObjectList

Database queries can, of course, also be used for queries with multiple result set rows.
If your query retrieves data for a single object, you can use the object collection service,
ObjectList, to run the query. This utility returns a collection of value objects. Take
the service GetAccountList, which returns the collection of accounts for a particu-
lar customer. The collection, as seen earlier, is already defined in the metadata:

<BusinessObject name="Account" busObjClass="bank.Account"

valueObjClass="bank.AccountData" table="account"

ejbHomeClass="bank.entity.AccountHome">

<Property name="id" dbname="id" type="String"

required="true" key="true" autogen="true" />

...

<Property name="customerId" dbname="customer_id"

type="String" />

<Collection name="byCustomer"

query="where customer_id = ?" />

</BusinessObject>

The service code to use ObjectList and this defined object collection looks like
this:

public class GetAccountListServiceImpl

implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input data.

ValueObject argumentList =

Building Service-Based Components 249

serviceData.getArgumentList();

String customerId =

argumentList.getProperty("customerId");

// Use ObjectList to get the collection of accounts.

ObjectList accountsListObj = new ObjectList("Account");

ArrayList args = new ArrayList(1);

args.add(customerId);

ArrayList accountList =

accountsListObj.getValueObjects("byCustomer",args);

// Put the results in the output data.

Iterator iter = accountList.iterator();

while (iter.hasNext()) {

serviceData.addOutputData(

(ValueObject)iter.next());

}

}

}

Because the list of accounts is the only data to be returned in this
service and you already have the value objects in an ArrayList, you could add a
setOutputData method on ServiceData, which sets the entire output data
collection. You could optionally use this method rather than have to iterate
through the collection and add each one individually.

GetAccountList using Castor

The last example can be implemented using a persistence framework, such as Castor,
with the following slight modifications. The collection is defined using OQL as follows:

<Collection name="byCustomer" query="where customer = $1" />

The service implementation is the same except that it uses CastorObjectList,
which extends ObjectList.

public class GetAccountListServiceImpl

extends CastorBaseService implements BlfServiceObject {

public void doCastorService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input data.

ValueObject argumentList =

serviceData.getArgumentList();

String customerId =

argumentList.getProperty("customerId");

// Use ObjectList to get the collection of accounts.

CastorObjectList accountsListObj =

new CastorObjectList("Account",getDatabase());

NOTE

250 J2EE Best Practices: Java Design Patterns, Automation, and Performance

ArrayList args = new ArrayList(1);

args.add(customerId);

Collection accountList =

accountsListObj.getValueObjects("byCustomer",args);

// Put the results in the output data.

Iterator iter = accountList.iterator();

while (iter.hasNext()) {

ValueObject valueObj = (ValueObject)iter.next();

serviceData.addOutputData(valueObj);

}

}

}

Is the Data Retrieval Service
Mechanism Needed?
Now that the structure of a data retrieval service component has been shown, is it re-
ally needed within an application? Why can’t you just use the DatabaseQuery or
ObjectList mechanism from within a JSP or an action class in the User Interaction
Architecture? This would save the overhead of going through an EJB component,
albeit the most efficient type, the stateless Session Bean. Well, the technical answer to
this question is no (see the following note). You are not required to have a data retrieval
component wrapper to perform these functions, and you can invoke the collection and
database query utilities directly from a JSP or other Web component if you wish.

There should have been an asterisk by the “no” answer. You do not need
a data retrieval component wrapper if the physical tier on which the User Interac-
tion Architecture resides has a direct path within the hardware and network archi-
tecture to the database. This tends to be the case in most architectures, even if the
logical tiers are split onto different physical machines. If this was not true, then
yes, you would need to remotely invoke a data retrieval service on the EJB tier.

So, why would you want to have this design in your application? Well, you may not
need to create a data retrieval service component for every query, but it does make
sense in many cases for the following reasons:

The standard service interface plugs in to the automated User Interaction
Architecture. A data retrieval service can be automatically invoked as a result
of a user action in the front end.

The data retrieval examples shown here are fairly simple. They take data
directly from the database and return it. However, many services require
application logic to perform calculations or manipulations on the data before it
is returned to the client. A service component is a great place to isolate and
encapsulate this logic.

Services can be chained together, a topic that will be explored later in this
chapter. Thus, you can chain together an update service followed by a data

NOTE

Building Service-Based Components 251

retrieval service to return updated data to the User Interaction Architecture
through one remote service call.

Later in the study of the User Interaction Architecture, you will see that
JavaServer Pages can quickly become unmanageable if too much code is
placed within the HTML and other presentation logic. Putting this logic in a
data retrieval service helps to create a cleanly defined application with
maintainable code.

All of this said, if you need to squeeze every ounce of performance you can out of
your application, you can always run your database queries directly from a Web
component to get around an EJB invocation. This comes down to a design decision and
its trade-offs for your particular application. Try to design everything as cleanly as
possible and then go back later and optimize if necessary.

In some cases, more data is returned from a query than is displayed on a given Web
page at a time. You may want to allow the user to scroll through this data, one page at
a time. This can be done by saving the last key values and running another retrieval ser-
vice for each page request. However, a disconnected result set of value objects does not
always meet your applications needs. In these cases, you will not want to use the data
retrieval service as it has been described here. Instead, you may want to use a stateful
Session Bean or some other mechanism to maintain the connected result set to scroll
and fetch rows between page requests. Just be aware of the potential ramifications if
you are going to take this approach.

Building Generic, Reusable Services

A concept that can be used to automate and simplify the development of business ap-
plications is generic, reusable services. One common function that you can automate
within the Business Logic Foundation is the basic data entry form that retrieves data
and allows the user to update it. If the data is contained within a single object, or per-
haps even an object hierarchy, you can use a generic update service to do the actual
update with the form data. You will see this concept through the entire architecture
once you look at the User Interaction Architecture and forms processing. However, for
the time being, the focus is on the update and data retrieval service aspect of this.

If you go back and look at the ChangeAddress service, all services that update a
single business object will follow the same steps. These basic steps are:

1. Obtain the key value from the input data.

2. Use the BusinessObjectFactory to obtain the instance of the business
object.

3. Set the property values from the input data.

4. Call the save method.

If you parameterize the object name and key value, you can build a generic imple-
mentation of these steps to create a foundation service called BlfUpdate that updates
a particular business object. How can you do this? Well, the reference architecture has

252 J2EE Best Practices: Java Design Patterns, Automation, and Performance

positioned you to do this through the design of the Business Object Architecture. There
is a generic factory interface that locates a business object based on the object name and
a key value (or key object for multiple key fields). The business objects implement a
standard interface so that you can generically invoke the setProperties and save
methods. This is just one example in which you can utilize the power of Java interfaces.
Thus, the generic BlfUpdate service, in this case for Entity Bean implementations, is
implemented as follows:

public class BlfUpdateServiceImpl implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input values.

ValueObject argList = serviceData.getArgumentList();

String objectName = argList.getProperty("objectName");

String keyValue = argList.getProperty("keyValue");

ValueObject valueObject = serviceData.getInputData(0);

// Use Entity BusinessObjectFactory to locate objects.

EntityBusinessObject busObj = (EntityBusinessObject)

EJBFactoryImpl.findByPrimaryKey(objectName,keyValue);

busObj.setProperties(valueObject);

busObj.save();

}

}

There are a couple of things to note about this code snippet:

The service takes two arguments in the argument list, object name and
key value. These are the two values needed to parameterize the specific
ChangeAddress service. These values are passed to the
BusinessObjectFactory to locate the correct instance.

The business objects are referred to by their common interface,
EntityBusinessObject. This is the standard business object interface,
which contains the methods setProperties and save. In the case of
Entity Beans, this interface extends EJBLocalObject.

This concept reduces the amount of overall code and increases the overall quality of
the application by using standard foundation components to implement basic func-
tionality. You could also apply this same concept to simple data retrieval services that
use either ObjectList or DatabaseQuery to retrieve data from the database. On
an application level, there may also be recurring patterns in the business logic that
could be parameterized into generic, reusable services such as these.

Build and use generic, reusable services whenever appropri-
ate to realize the benefits of automation, rapid application development, and
increased code quality and maintainability.

BEST PRACTIC E

Building Service-Based Components 253

Implementing the Controller Pattern
in Services

All of the services you have seen thus far provide a single function to the application.
For example, UpdateCustomer is there to take data for a particular customer and
update the state of the object. This service is not used to perform other functions re-
lated to the customer entity such as creating a new account or getting the list of ac-
counts for this customer. This is beneficial for a couple of reasons. Each service is
explicit and easily understandable. You know from the name of the service what func-
tion is being provided, and the service code for each is simple and readable.

Should you build all services in this fashion? Well, not necessarily. You will see an
implementation of the controller pattern (of the MVC architecture) within the User
Interaction Architecture in the next chapter. However, you can also implement this
pattern on the EJB side as well in the service components. There are a number of
different ways this can manifest itself.

Object-Centric Services
Another way to design services is to create a service component that provides a number
of functions, usually for the same set of objects or data. For example, you could create a
CustomerController service that performs all of the functions mentioned earlier
for the customer entity. The particular function invoked within the service could be
based upon a particular argument passed into the service in the argument list. It
sometimes makes sense to build services in this fashion because there is a lot of com-
mon code shared among services that deal with the same business entities. For exam-
ple, the CustomerController component could implement the logic to get the
input arguments and obtain a handle to the correct Customer instance at the top of
the service. All business functions would execute this code, but then the particular busi-
ness methods or operations that are invoked would depend on the arguments passed
into the service. These types of service components can be partitioned by read-only and
update services, or you can group all of the functions together in one component.

Workflow-Type Services
Once you have built up a library of services for your application or business domain, you
will start to realize opportunities to reuse some of the lower-level services as building
blocks in higher-level services. This concept, discussed earlier in this chapter, provides
another mechanism for implementing more coarse-grained services while realizing the
benefits of reuse at the same time. Services like this typically control the flow between
the different functions based on business logic and input parameters. They use the tech-
nique of invoking services within services that was shown earlier to avoid the EJB over-
head on each service invocation. You can also easily pass along the sameServiceData
object to each service along the way. This actually is easier than creating new input for
each service because you can share the sameErrorList and you can also keep adding
to the output data as you go. This idea of adding to the output bucket is useful for ser-
vices that want to return data from multiple building block services.

254 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Service Chaining
This topic was referred to earlier in the discussion of the merits of the data retrieval
service. This concept extends from the Command pattern that was used to implement
services as well as the idea just discussed of passing the ServiceData along as a
bucket for errors and output data throughout the master service. Because each service
implementation object implements the BlfServiceObject interface, which takes a
ServiceData object and returns a ServiceData object, it is easy to chain services
together. To do this, you can use the output of one service as the input for the next
service in the chain until you reach the end. At that point, you simply return the
ServiceData back up to the service foundation base class for return to the client. In
some sense, this creates an assembly line of service components that act on input data,
perform business logic, and add to the collection of output data.

As an example, in the bank application, users may go directly from the transfer funds
screen to a list of their accounts with current balances to see the net result of the trans-
action. From the transfer funds form in the User Interaction Architecture, you would
invoke the TransferFunds update service. If you returned back to the client at this
point, you would eventually want to invoke the GetAccountList data retrieval ser-
vice so that you have the current account data, which lists the customer’s accounts with
their current balances, to present on a screen. If you chain these services together, you
can execute the account transfer and then run the data retrieval service to get the new
account information for presentation to the user. This saves an EJB invocation and
possibly a network trip by chaining the services together from one remote invocation.
This technique requires that all of the input data needed for both services be sent in the
initial service invocation. In this case, you will likely have all of the input data you need
for both services. The input data consists of a customer identifier, a from and a to
account, as well as a dollar amount. At the end of the TransferFunds service, the
object has been updated, and there is no output data yet. Then the GetAccountList
service, which fills the output data with the account objects, is executed.

If your next Web page only displays the form data that was just updated,
such as in a ChangeAddress form, the update service itself should populate the
output data with the state of the object at the end of the service. This saves the
overhead of a separate GetCustomerData service invocation. This pattern tends
to occur frequently; thus, you can parameterize the generic BlfUpdate service to
populate the object into the output data. In the example, more data is returned than
was actually sent into the service; thus, it is necessary to chain the services together.

There is one design consideration to be aware of when using the service chaining
technique. In the account transfer example, you may want to commit the transaction
after the account transfer has completed. If something fails in the data retrieval service,
you may not want to fail the first service, which successfully transferred the funds. The
data retrieval is an after-the-fact kind of thing that really is not relevant to the update
transaction. Thus, you could not chain the invocation of the two service implementa-
tion objects within the same EJB method using container-managed transactions. A
container-managed transaction encompasses an entire business method declared in

NOTE

Building Service-Based Components 255

the component interface. In the reference architecture, this usually is the execute-
Service method of BlfServiceBean. Thus, if you want unique transactions
between services in a chain, you need to implement one of the following two options:

Use a wrapper Session EJB called BlfServiceChain to control the invoca-
tion of multiple instances of BlfService. Each invocation of BlfService
works just as it did before with each instance requiring its own transaction.
The master EJB in this case, what controls the chaining, BlfServiceChain,
should not specify a transaction context so that a single transaction context is
not carried throughout the entire chain.

Use bean-managed transactions within the service component to start and end
transactions in between each invocation of the service implementation objects.
This type of logic can be put into the service base class or within specific ser-
vice implementations.

As mentioned in the second option, you could build the logic to chain the services
and manage the user transactions in the service base class. To do this, you would
define the chain of services in the metadata. This metadata might look like this:

<ServiceChain name="accountTransferAndView">

<Service name="TransferFunds" beginTransaction="true"

endTransaction="true" />

<Service name="GetAccountList" />

</ServiceChain>

In this metadata example, you define whether to start and end a transaction around
each service, with the default being false. This flexibility is added into the chaining de-
finition because you may have blocks of services in a chain that should be included in
individual transactions. This flexibility is not always possible using EJB container-
managed transactions because you can specify only one transaction setting for the
service component across the whole application.

Best Practices for Implementing
Service-Based Components

This section summarizes the best practices discussed in this chapter for implementing
service-based components in the reference architecture.

Consider the Use of a Standard
Service Interface
The use of a standard interface for service components enables the reference architec-
ture to automate the invocation of services to a large extent. Services can be generically
invoked through their interface, and standard data structures allow for the automated
creation of input data. A standard service data structure can be used to store arguments

256 J2EE Best Practices: Java Design Patterns, Automation, and Performance

and object data as input as well as the corresponding output data and error informa-
tion from the service. Services that explicitly take input data as arguments also work
quite well but provide less opportunity for automation of the service invocation and
creation of input data.

Use a Common Base Class
Wrap service components with a stateless Session Bean to manage the transaction and
distribute the service. Use a common base class for the Session Bean to standardize the
service error handling and integration with EJB transaction management. The base
class should enclose the actual service logic within a try-catch block that handles ap-
plication exceptions and maps system-level exceptions to defined business errors with
user-friendly messages. The implementation of the service can be structured to use the
base class in two different ways. The Command pattern can be implemented within
the base class to easily invoke services implemented as regular Java objects. This pro-
motes the use of process-oriented objects that can be used outside the context of an EJB.
The other option is to implement subclasses of the common base class that use the Tem-
plate Method pattern to wrap the service in the try-catch block. This approach is used
to enable specific deployments of Session Bean components that may have different
EJB deployment configurations.

Reuse Services as Building Blocks
Services can be fine-grained segments of business logic or they can implement entire
business processes. Design and implement your services as building blocks whenever
applicable so that lower-level services can be reused to implement larger services. In-
tegrate any errors returned from other services into the original service error-handling
mechanism. If the services are all part of the same transaction, invoke service imple-
mentations directly without going through unnecessary EJB method invocations. Op-
tionally, local interfaces to Session Bean components can also be used for this purpose,
but be aware that local interface method invocations are pass-by-reference.

Build Generic, Reusable Services
Build and use generic, reusable services whenever appropriate to realize the benefits of
automation, rapid application development, and increased code quality and maintain-
ability. These types of services become a part of the Business Logic Foundation of your
application. A generic update service is an example of a common pattern that can be
easily automated. Look for data retrieval patterns and other common business logic in
your application for other possibilities.

Implementing Data Retrieval Services
Use data retrieval services to isolate and encapsulate logic to retrieve data for presen-
tation to the user. Data retrieval services also provide a good isolation mechanism for
straight database queries if you are using them in your application for performance

TEAMFL
Y

Team-Fly®

Building Service-Based Components 257

reasons. Keep the JDBC best practices that were discussed in earlier chapters in mind.
These practices include externalizing the SQL from the application, isolating JDBC
code in a reusable utility, and mapping database column names to logical property
names as soon as possible to ease code maintenance. A data retrieval service typically
should not return value objects that refer to database column names.

Summary

Service components are typically implemented as process-oriented objects wrapped by
a Session Bean for transaction management and distribution. They typically act as
workflow managers between multiple Entity Beans or business objects, although they
range from fine-grained transactions to the implementation of entire business
processes. In fact, services often become building blocks for the construction of larger
services. A common base class and service interface provide the structure needed to
automate the development and integration of services into the reference architecture.
Generic services can also be built to implement common patterns such as basic update
and data retrieval services. Service components can also be used to implement the
controller pattern on the EJB tier.

Session Beans as a front to Entity Beans is a common pattern in J2EE. Services are the
realization of this concept, and Session Beans are a natural fit for their implementation
in the reference architecture. Service components manage the workflow of business
processes and coordinate the transaction between multiple business objects. They are
an important part of the reference architecture used to provide an interface to the busi-
ness logic. Service components simplify the design and implementation of the Web-tier
components that are the topic of the next chapter.

259

The User Interaction
Architecture: Design

Considerations and an
Overview of Jakarta Struts

C H A P T E R

7

In this study of the J2EE architecture, the first step was to look at building business
object components to model the business entities. In the last chapters, service compo-
nents were constructed that sit on top of the Business Object Architecture to implement
the business transactions and processes of an application. The last layer, which then
finally sits on top of the Service-Based Architecture, is what was defined as the User In-
teraction Architecture. This layer provides users with the ability to access and engage
these services, or in other words, it handles all of the interaction with the user. The im-
portance of this layer then goes without saying; the services that were just created are
of no use to anyone if application users or other systems cannot access those services.
Technically speaking, there are actually a few ways to access services without going
through the User Interaction Architecture. These include scheduled batch jobs that run
in the production environment or components of other applications running within
the same application server domain that have the ability to directly perform a JNDI
lookup and invoke your EJB service components. In fact, this is the only manner in
which some service components are accessed. However, the majority of services are
consumed through applications deployed to end users or external systems. Thus, the
focus here is primarily on end users accessing an application through a Web interface;
a brief look at external system-to-system access through a Web services type model is
also provided.

260 J2EE Best Practices: Java Design Patterns, Automation, and Performance

In a Web application, the majority of the User Interaction Architecture is running
within the JSP container on the application server. Components running within this
tier are referred to as Web components. The job of these Web components is to handle
all of the interaction with the user, or in more general terms, the client, of the applica-
tion services. What does this job consist of? Well, the basic flow at a high level can be
broken down into the following steps:

1. Process the user request.

2. Invoke any applicable application services (that is, service-based components).

3. Generate a response with the appropriate content.

For a browser-based application, the definition of these steps can be refined slightly
to be the following:

1. Process the HTTP requests (form submission or HTML link).

2. Invoke any applicable application services (that is, service-based components).

3. Generate the next appropriate Web page with HTML/XML content.

Already, you can see that the basic responsibilities map directly to the Model-
View-Controller pattern that will be used to effectively build this architecture. The
controller handles the request and the model represents the application services
and business objects underneath, while the view renders the dynamic content into
Web pages presented to the user. This pattern is at the core of the design considera-
tions and the implementation of the Web components. The rationale for this is to
separate the presentation logic, the flow control, and the back-end business logic. The
service layer already encapsulates the business logic and provides an access point that
the Web components can invoke. The remainder of this isolation of functionality is
implemented through the design of the User Interaction Architecture, which uses a
central controller servlet that abstracts the flow of the application and dispatches
requests to the appropriate Web components. The use of the MVC pattern in the J2EE
architecture is now commonly referred to as the JSP Model 2 architecture. Its use has
become widespread and has become almost a standard for designing Web applica-
tions in Java. There are a number of MVC framework implementations throughout
the industry. One of the leading ones is an excellent open-source implementation
called Jakarta Struts.

Struts can be found on the Web at http://jakarta.apache.org/
struts. This book is based on the final release of version 1.0.

The User Interaction Architecture is crucial to the development process for a num-
ber of reasons. The first reason is one that has been touched on already, the fact that it
provides the user’s view into an application. It is the user’s window into all of the un-
derlying functionality provided by the service and business object components. In
addition to creating the basic Web page representation of these services, many of the
other supplemental application requirements, such as security and personalization,
are funneled through the user interface. Different user groups typically have diverse
views into the same functions with different security privileges and data access rights.
Additionally, as mobile computing grows in popularity, the demand for access to these

NOTE

The User Interaction Architecture 261

application services from wireless devices grows with it. When moving beyond
browser-based clients, the basic responsibilities of the Web components remain the
same, but the flavor of XML content can vary (for example, HTML, WML, and so on)
and a slightly different set of challenges await regarding the different user interfaces.

A second reason to take note of this layer stems from the vast number of responsi-
bilities required to interact with a user and the many types of components used to im-
plement them. For example, there are JavaServer Pages components to create the
HTML content, action components to process specific user events, session objects to
maintain state, and tag libraries to encapsulate presentation logic. Additionally, many
Web applications integrate with content management and personalization products to
meet the needs of their users. Thus, there are many different types of components in
this layer as opposed to the service and business objects, which are the primary com-
ponents in their respective architecture layers. Along with this list of components
comes a host of options in terms of designing and implementing these responsibilities.
Mixed in with these choices, there are a number of places where decisions can be made
that greatly affect scalability and code maintainability.

Thus, these next few chapters will carefully study the elements of user interaction
and guidelines for their implementation. Note that the focus here is not on Web design,
but on integrating business functionality into the Web site. The end goal is the front-to-
back integration of the Web architecture through the three software layers. To accom-
plish this, the general development principles can be applied to automate the common
elements of the user interface and integrate service component functionality into the
user’s Web application experience.

Elements of the User
Interaction Architecture

Almost all Web-based applications share a number of common characteristics. These
elements of the User Interaction Architecture are derived from basic aspects of user
interfaces applied to the HTTP protocol and HTML interface. The common elements
include:

Application presentation (HTML/XML over HTTP) including both static and
dynamic content

Access to business functions and services

Screen flow, or page navigation

Forms processing

Error handling

State management

Application Presentation
As stated earlier, the User Interaction Architecture provides the window, or view, into
the application and its functionality for the user. In Web-based applications, this

262 J2EE Best Practices: Java Design Patterns, Automation, and Performance

involves generating both static and dynamic HTML/XML content over HTTP. Static
content can include text, images, or other multimedia files. The majority of the static
content is usually processed by the Web server that is used in conjunction with the
J2EE application server. In many architectures, the Web server is used to serve any
pages that might be completely static, such as help text pages, as well as page frag-
ments that are included in an overall Web page, such as image files. The Web server
acts as a proxy for any request for a dynamically generated page. This request is for-
warded through to the application server and processed by a Java servlet or JSP. The
majority of Web pages in business applications fall into this category. They contain ap-
plication data selected from the database as well as content based on business rules,
user preferences, and security requirements.

For the sample banking application, the corporate information pages can be static
content stored on the Web server as regular HTML files. The majority of the HTML
content is created through JavaServer Pages that integrate application data and busi-
ness functions into the presentation. This content includes pages such as a list of the
user’s accounts with current balances and a form page that allows the user to transfer
funds between accounts. Other banking applications might include dynamic content
ranging from personalized home pages to a list of special promotions based on mar-
keting information and that particular customer’s characteristics.

Access to Business Functions
and Services
Any application that acts as more than purely an informational Web site requires
access to the application’s business services and functions. These services are invoked
based on the particular user events, or HTTP requests, that are generated from the
application’s presentation. The context and form data from these user events are used
to invoke the Service-Based Architecture with the proper data to execute the business
services. The results of the service are then displayed appropriately back to the user as
either confirmation or error messages within the next page displayed. Which particu-
lar page is determined through the next common element, page navigation.

In the banking application, the majority of pages invoke services to access applica-
tion data for presentation or to update data based on a form submission. For example,
the TransferFunds and ChangeAddress services are invoked from their corre-
sponding Web pages. The view accounts page invokes the GetAccountList service
to retrieve the account data to create the HTML table for presentation to the user.

Screen Flow, or Page Navigation
Similar to any user interface application, Web-based applications have a defined
navigation path between Web pages based on user events, business rules, and security
privileges. Navigation between pages can be triggered from a browser by a user when
an HTML link is clicked or when an HTML form is submitted. A design model
describes the flow between pages in the user interface; the design model represents the
page entities and the conditions upon which the control is passed between them. This
page flow can vary at run time and often depends on the success or failure of an

The User Interaction Architecture 263

application service that was invoked. For example, it is quite common for applications
to navigate a user back to the same page when a form submission fails due to business
errors. In these cases, the lists of errors are often displayed along with the populated
form so that the user can retry the submission after correcting the data.

In the banking application, the user has links on the main page to go to a view
accounts page, a transfer funds request form, and an address change screen among
others. After a successful funds transfer, the user is sent to the accounts list page so that
the net result of the transaction can be seen in the update balances. If the transfer fails
for some reason, such as the user entering a dollar amount beyond the balance of the
from account (that is, insufficient funds), the transfer funds form page is redisplayed
with the submitted data as well as an error message to inform the user of the problem.

Forms Processing
A core element of business applications is the processing of HTML form submissions.
Form data must be used by the User Interaction Architecture to invoke the proper
application service. This responsibility includes taking the input data out of the HTTP
request and packaging it appropriately so that it can be sent to the service’s component
interface.

A basic form in the bank application is the form with the address fields for the
ChangeAddress service. There are also more complex variations on form handling
that typically occur in business applications. These include multipage forms, some-
times referred to as wizards, because they guide the user incrementally through a large
amount of data entry. The link on the bank’s home page to open a new account takes
the user through a number of sequential forms to capture personal information about
the customer as well as what type of account the user wishes to open. Some multipage
forms within applications save information to the database after each intermediate
form, whereas others aggregate the input data from each form until the end of the se-
quence when all of the data is used to invoke an application service. Other variations
on form submissions include functions such as an intermediate validation that simply
runs the form data through the business edits and reports any errors thus far without
actually saving the information to the database yet. This can be helpful for applications
that have large amounts of data entry to large transactions, such as a lengthy tax form.

Error Handling
An element of user interaction that is closely related to forms processing is error han-
dling. This element of the architecture is dealt with as its own topic both because of its
importance and for the fact that errors sometimes occur outside of forms processing.
For example, a system failure may occur when a user clicks on the View Accounts link
if the application database is unavailable. These type of errors are usually pretty rare
but still need to be handled gracefully. The vast majority of errors that occur within an
application are the result of incorrect data being entered into forms submissions, such
as the insufficient funds example.

The two primary aspects of error handling are error detection and error reporting
back to the user. Some basic edits such as data type validation can be handled on the

264 J2EE Best Practices: Java Design Patterns, Automation, and Performance

client side with a small amount of JavaScript running within the browser, although this
should be done with caution to avoid compatibility problems between different Web
browsers. The majority of data validation that occurs within the User Interaction Ar-
chitecture can be done on the server within the Web container. The error-handling
mechanism used here should integrate into what is used by the Service-Based Archi-
tecture in order to seamlessly report any errors that occurred within the business logic
of the application. Typically, the entire list of errors that occurred in a given transaction
is reported back to the user at once so that all of the corrections may be made. A help-
ful feature is to have the screen tie the errors back to the form field that caused the
error, if applicable. This is usually done through some notation or color scheme on the
fields within the Web page. This enables users to rapidly understand the problem and
resolve the error so that they can resubmit the form.

State Management
Because HTTP is a stateless protocol, the application must maintain state between page
requests. There are two general options for doing this, maintaining context on the
client or on the server. Context that is maintained on the client is typically done
through hidden input fields in an HTML form or parameters added to a URL link. Both
of these parameter types are created by the JSP that generates the HTML content for the
page. The technical implementation of managing state on the server is much more
complex than this due to failover requirements, but fortunately for developers, the un-
derlying infrastructure for this service is provided by the application server and the
servlet API. An HttpSession object is available within a servlet or JSP to store Java
objects for that particular user’s session. The responsibility of the User Interaction Ar-
chitecture is to use the session object wisely to manage the state of the application and
store data across page requests when appropriate. One advantage of storing state on
the server is that the user is not able to view the data. This means that application users
cannot simply go to the View Source function on their browsers and see any hidden
fields that might be in the HTML. For parameters in a URL, it is even easier because
they appear directly in the browser. Thus, using state management on the server can be
helpful if you want to manage state through internal identifiers, control parameters, or
other such information that you might not wish the user to have access to. This topic
will be explored in more detail in the design considerations section of this chapter.

In the bank application, the state management service is used in a number of places.
A prime example is the new account wizard that takes a user through a number of
pages to sign up for an account. This particular application does not save the data to
the application database after each intermediate form. Thus, it must store the input
data within the HttpSession object until the final form is submitted and the data is
sent to the corresponding application service. E-commerce Web sites that have a shop-
ping cart use state management to remember the list of items until the actual purchase
is made upon checkout. In addition to these types of scenarios, there is the basic ele-
ment of state management that remembers which customer is being dealt with from
page to page. Something as simple as this is needed so that when the user clicks on the
View Accounts link, the application knows the customer identifier to use to query the
database for a list of accounts.

The User Interaction Architecture 265

User Interaction in Web Services
In the Web services model, the client of your application is actually another system, or
application, rather than an end user sitting at a graphical interface. This actually makes
interacting with a Web service client a bit simpler because it reduces the elements of the
architecture to a subset of what you have just listed here. A Web service is basically an
HTTP-based mechanism for invoking component functionality. Thus, the primary
aspects of user interaction for Web services are:

Processing XML data and generating a response over HTTP

Error handling

Access to the business functions and services

The Web component in this case is generally a wrapper around one or more of the
business services provided by the Service-Based Architecture. Typically, the data is
sent as XML, as is the case with services based on SOAP (Simple Object Access Proto-
col). This protocol has quickly gained momentum as a standard for exchanging data
and invoking Web services over a heterogeneous, distributed environment such as the
Internet. Thus, the primary responsibility here is marshaling data from the HTTP or
SOAP request and using it to invoke an application service. Some amount of basic data
validation usually occurs within this layer, including the DTD or XML schema valida-
tion done by the XML parser. Again, the error-handling mechanism is integrated with
that of the business service, and any errors are reported back appropriately in the
response to the client.

Design Considerations

As was mentioned earlier, the User Interaction Architecture is largely based on the
Model-View-Controller (MVC) pattern. This architecture pattern can be used to struc-
ture the elements of the User Interaction Architecture such that portions of functional-
ity are isolated in order to provide greater flexibility, reuse, and ease of maintenance.

The Controller Architecture
The controller component can be thought of as the hub of the MVC architecture with
the model and view components acting as the spokes. The controller is the entry point
into the application for all HTTP form submissions. It invokes the components within
the model to access business logic and data as necessary, and it controls the flow back
to the appropriate view for the user. In Web architectures, the controller component is
usually implemented as a Java servlet. The controller servlet can become the single
entry point for all HTTP requests in some application architectures, processing both
form submissions and HTML links. In these cases, the anchor tags in an HTML page all
point to the aliased URL of the controller servlet that determines the next appropriate
view component to be used to render the page for the user.

Because the general request-handling logic of the controller servlet makes up a
foundation that all Web applications are built on, it must be extremely extensible and

266 J2EE Best Practices: Java Design Patterns, Automation, and Performance

flexible. The primary way in which this is done is through a number of abstractions.
The controller architecture is designed with a balance of two things in mind:

The desire to have robust, automated front-end processing

A flexible and extensible foundation to handle all types and sizes of
applications

The user interface is simply the most dynamic part of an application. There are
many, many variations on pages and their associated logic, and this foundation must
provide a way to support all of them, even if the involvement in the complex cases is
minimal. A key design goal has been to automate as much of the processing as possi-
ble. This occurs to a larger degree for the more standard, repeatable patterns that occur
within the User Interaction Architecture. However, the more complex, unique pages
require greater extensibility to implement their specific logic.

Use a generic MVC, or Model 2, implementation as the foun-
dation for the User Interaction Architecture. The Jakarta Struts project provides an
excellent, readily available implementation that you can use for this purpose. This
approach automates much of the front-end processing while providing a flexible
and extensible foundation to meet all types of application requirements. This also
adheres to a key design principle that permeates the reference architecture. This
principle is to make the normal case as simple as possible through automation
and configuration but give the application the ability to override automated, con-
figurable elements when necessary for complex cases.

The primary element of flexibility within the controller architecture is the delegation
of specific request handling to action classes.

Action Classes

As stated earlier, it is essential that the controller component be configurable and flex-
ible. For this reason, the controller usually delegates the request to a handler class to be
processed. Handler classes are commonly referred to as action classes. The action
classes are written specifically for each application to perform the requested action.
These action classes can implement a standard interface, again using the Command
pattern, so that the controller can determine which action class to use at run time and
then generically invoke it. The implementation of the action class should be a stateless,
thread-safe object so that instances can be pooled for performance optimizations.

The responsibilities of the action classes include preparing current or future pages
for presentation to the user. This includes accessing data and business functionality
and then preparing the results for inclusion into page content. The controller servlet
needs to make this data available to a JSP that it dispatches the request to. This is usu-
ally done through putting the data in either the request or session scope so that the JSP
has access to it. This concept is discussed further in the section on state management.

Controller Architecture. The term “controller architecture” is used to describe
the combination of the controller servlet and the action class components
invoked to handle specific application requests. This combination is a key part

BEST PRACTIC E

TEAMFL
Y

Team-Fly®

The User Interaction Architecture 267

of the User Interaction Architecture. The next section will abstract key aspects of
Web-based user interaction and define eight core responsibilities of the controller
architecture. These design steps are taken so that the core responsibilities can
be automated to the extent possible and partitioned correctly within the
controller architecture.

Overall Controller Logic

The controller architecture has eight core responsibilities that make up the basic flow
of processing. These eight responsibilities are:

1. Determine the user event and the appropriate action to take.

2. Create the event object.

3. Invoke the action class.

4. Perform any application validations and handle errors.

5. Invoke application services and handle errors.

6. Manage the user context.

7. Determine the next page.

8. Forward the request to the next page.

As you see, some of these steps can be omitted for simple events such as pure page
navigation events, but this list outlines the overall core of the controller architecture’s
responsibilities.

Abstracting HTTP Requests

The HTTP requests that the controller receives are specific to the user interface envi-
ronment in which they live, in this case, a Web application. Thus, you would not want
to forward this request directly to a service component or business object because these
components are independent of the user interface. A primary responsibility of the con-
troller servlet is to abstract the protocol-specific nature of an HTTP request by translat-
ing the user action into a business event. The business event is represented by an object
or set of objects that hold the appropriate data from the request as well as any other
parameters that define the particular user event. The data structure used for this can be
either application specific or a common data structure that is a part of the business
logic foundation. The reasoning for this choice largely resembles the discussion in the
previous chapters on the choice of data structure for the Service-Based Architecture.
Thus, the common choices include an argument list and value objects. In fact, it can be
advantageous to use the same structure chosen for the service interface to avoid un-
necessary data conversions and object instantiation. The downside of making this
choice is that you sacrifice some flexibility; thus, the business event and the service
invocation are kept as different abstractions. They can potentially be implemented
together, but they are abstracted separately for design purposes. Looking ahead in this
chapter to the Struts discussion, you will see that the Struts implementation of the
event object is very Web-centric. Thus, it is not ideal to use on both the Web tier and the
EJB tier. However, there is a strong value proposition for using a single value object

268 J2EE Best Practices: Java Design Patterns, Automation, and Performance

structure across the entire architecture. Subclasses that implement the standard
ValueObject interface can be created of the Struts event object, and thus they can be
used seamlessly across the entire architecture as long as the service code refers only to
the ValueObject interface. If the Web-centric nature of the Struts event objects both-
ers you, or if you need the flexibility to map between the event and service data ab-
stractions, you can always implement the event objects and value objects separately.
This topic will be discussed in detail in the next chapter on building the user interac-
tion components.

User Events

Abstracting the key elements of request processing is at the core of making the archi-
tecture flexible and extensible. The first abstraction is the user event, a representation
of what the user did on the page. A user event can be a form submission on a page or
the click of an HTML link. The user event is a driver for a number of things including:

The event object to create

The action class to use to process this request

The next page to navigate to depending on the success or failure of the action

Abstract the HTTP request as a user event to isolate the
specific protocol being used from as much of the front-end logic as possible. The
user event can then be used to drive the other key abstractions in the controller
architecture. These include the action, the service, and the next Web page. By
abstracting these key elements of user interaction, a good portion of the front-end
processing can be automated and defined through metadata.

The result of the action class usually involves invoking an application service. The
service itself was abstracted because the action class can decide what service to invoke.
This may depend on the input data and may need to be determined at run time. By
having the event, action, and service abstractions, a loose coupling is created in the
front end, thus giving the flexibility that is needed to cover both simple and complex
scenarios. Figure 7.1 illustrates the relationships between the abstractions of the user
interaction layer.

The controller typically determines the event that occurred through one of the
following mechanisms:

A specific HTTP parameter

The request URL

A portion of the URL path

The event directly determines what event object is created and what action class is
used to handle the request. It is a key determinant of the next Web page, but it is not the
only factor. The mapping between events and these other abstractions is defined in
application metadata. As you will see later in this chapter, Struts uses an XML config-
uration file to define metadata for the controller.

BEST PRACTIC E

The User Interaction Architecture 269

Figure 7.1 User Interaction Abstractions.

Browser Event

Action

Page

Service

The first core responsibility of the controller
architecture is to determine the event and action based on the request and
application metadata. This drives what event object will be created to capture
the user event.

Mapping between Events and Actions

In many cases, there is a one-to-one mapping between events and actions. The transfer
funds event is one example of this. The only time the transfer funds action is used is
when the actual transfer funds event (transfer funds form submission) is executed. In
other situations, you may have a single action that is used to process multiple events.
The arguments for designing your user interaction this way are similar to those dis-
cussed in the previous chapter on the Service-Based Architecture. Many times there is
common logic, especially around common business entities, that can be encapsulated
in the same action class. This prevents a large proliferation of action classes in your
code base because of the potential for large numbers of user events defined in applica-
tion Web pages. You will see an example of this in the new customer wizard set of
pages that process a bank application for a new customer. These pages don’t invoke the
application service until the final page of the wizard, so request handling for this entire
user process is captured in the NewCustomerAction class.

Pure Navigation Events

It is important to note that not every event is required to have an action. Many events
are simple navigation events in which the user just goes from one page to another. If
there is no setup or other presentation logic to execute prior to processing the JSP, there
is no need to have an action class. You can simply define the next page to navigate to
in the metadata. This might occur when you click on a link to go to the transfer funds
form. There is no setup work required for this page prior to the JSP, so no action is de-
fined for the event in the metadata. In this case, it is only linked to a navigation element
within the metadata.

CORE RESPONSI B I LITY ON E

270 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Mapping Input Data to Event Objects

After the controller first determines what user event occurred, it can then create the
appropriate objects to represent the business event.

The second core responsibility of the con-
troller architecture is to create and populate event objects from the request data.
A generic library function is usually used to implement this. Although the specific
event object to create is determined by the metadata, the actual mapping between
input data and event object properties is usually determined by the application.

If the service data structure is used as the event object, there are some ramifications to
this choice, most of which pertain to the flexibility of naming data elements. A data
element has many names throughout the application such as its database column
name and the business object property name. These are not required to be the same and
are mapped either in the EJB deployment descriptor or application metadata. On the
front end, there is also a name for the input field on the HTML form and the bean prop-
erty. In order to maintain flexibility and isolation between the application layers, you
may not want to require that all these names be the same. There is indeed an argument
to be made for keeping it simple and using a single common name throughout all of
these layers, but naming conventions and standards often prevent this from happening
anyway. There is also the potential for name collisions if multiple objects are involved
in the same form.

In most cases, it is realistic to make the HTML input field name be the same as the
event property or argument name. The JSP architecture is actually geared toward this
paradigm because it provides a <jsp:setProperty> tag that is based on the fact that the
form field names match the bean’s property names. This enables it to automatically
populate the Java objects when requested. Another option is to add logic within the
controller architecture to map the input data to event objects. Some amount of map-
ping logic is required if you want the event object to be more than just a single list of
properties (that is, an ArgumentList). This occurs in the case of multiple object in-
stances as well as different business objects used within the same form. Thus, in more
complex applications, there may be a recurring need for this type of functionality.

If you use an object structure such as value objects to abstract the HTTP request, the
data mapping at this level requires consideration of three things:

Mapping between HTML form input fields and property names

Mapping between form fields and their particular value object

Mapping between form fields and the particular instance of the value object

This level of mapping allows you to handle almost any scenario of mapping be-
tween form data and objects. Some of the more common scenarios follow. Figure 7.2
shows the simple case in which all of the form data maps to one value object.

Figure 7.3 illustrates an example in which a single form maps to multiple value
objects.

Figure 7.4 shows a more complex example in which a single form has data from
multiple instances of the same value object.

CORE RESPONSI B I LITY T WO

The User Interaction Architecture 271

Figure 7.2 Simple Form Scenario: One Value Object.

Update Customer Information

First Name

Last Name

SubmitCancel

CustomerData

firstName:String
lastName:String

Figure 7.3 Form Scenario with Multiple Value Objects.

Update Customer Information

First Name

Last Name

Address

SubmitCancel

CustomerData

firstName:String
lastName:String

AddressData

line1:String
line2:String
city:String
state:String

Invoking the Action

The action class uses the Command design pattern. All actions implement a standard
interface, which takes the event object as an argument as well as the HttpServlet-
Request and HttpServletResponse objects from the servlet API. This follows
the general rule of extensibility discussed earlier because the application developer is
not limited to the automated processing configured through metadata. There is still the
option to use the servlet request and response objects directly when necessary for
complex cases. This principle of declaration combined with extensibility is a very
important one throughout the reference architecture foundation.

272 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 7.4 Form Scenario with Multiple Instances of Same Value Object.

Update Address Information

Billing
Address

Shipping
Address

SubmitCancel

AddressData

line1:String
line2:String
city:String
state:String

AddressData

line1:String
line2:String
city:String
state:String

The third core responsibility of the
controller architecture is to delegate the handling of the request to an action
class if there is an action to invoke. This is true in most cases with the notable
exception of pure navigation events.

The next core responsibility is to execute any validations prior to invoking the ap-
plication service. This step exists for two reasons:

You may not be invoking a service yet, as in the case of a multipage form. Thus,
you need to execute validation here so that any mistakes on an intermediate
page can be communicated to the user and resolved.

You may want to do some preliminary validations to avoid the overhead of a
remote EJB invocation in the case of basic data validation errors. This is the
concept of lightweight business objects as discussed in the Business Object
Architecture chapter. The event objects or corresponding value objects can be
used for this type of validation.

The fourth core responsibility of the
controller architecture is to perform any validations before invoking an applica-
tion service. This can be done out of necessity if no service is used in the action
class or as an optimization to prevent unnecessary network trips to the EJB tier.

You can place action class validations into two categories:

Data-driven validations

Application-specific validations

CORE RESPONSI B I LITY FOU R

CORE RESPONSI B I LITY TH RE E

The User Interaction Architecture 273

The bank’s new customer wizard has examples of both of these types of edits. The
customer and address information goes through basic data validations while the initial
deposit must be checked against the minimum balance requirements for the specified
account type. The application-specific edits are usually coded in a validation method
of the value/event object or in the action class directly.

The phrase “value/event object” is used in this section to describe the
event object, the value object, or the combination of the two if they happen to be
implemented as the same object structure.

Data-driven edits can be handled by the value/event object foundation layer and its
associated metadata. An interesting difference between validation in the business ob-
jects and value objects is the number of properties that are actually validated. A busi-
ness object must validate all of its properties before having its data persist in a database
in order to maintain data integrity. However, a value object is only a first line of defense
used to catch data entry errors. Thus, you want to validate only those properties that
were passed from the front end. In some cases, you must validate only input data be-
cause some properties may not exist yet. This occurs in the case of a new customer. Nei-
ther the customer nor the address entity exists at the time the user is entering data into
the Web page, thus the user can’t possibly have a valid id or lastModifiedDate
property. This can be handled automatically by the value/event object infrastructure.
Each object can keep track of which properties were modified. When the validate
method is called from the action, only those properties that were set based on request
data are validated.

Invoking the Application Service

The first thing to consider regarding invoking an application service is the data and
how it is passed to the service interface. In some cases, you are working with existing
services and you need to map your event data to a given service data structure. In other
cases, you are creating new functionality and have the liberty to define both during
development. The manner in which this is done also depends on whether your event
objects and service data structure are implemented separately or together. If you sepa-
rate the two, you have more flexibility and a loosely coupled architecture. However,
you also introduce the need to do an additional data mapping.

There are many straightforward screens that fall into the simple mapping scenar-
ios described earlier. For these screens, a simple argument list is the best choice to cap-
ture the input data and invoke the service. Remember that the ArgumentList object
used by ServiceData also implements the generic ValueObject interface, so you
can use these two interchangeably to some degree. The decision was made, however,
to provide only one argument list to work with for a given transaction. Many business
applications tend to have a number of screens that cannot be categorized as simple
because they deal with aggregated objects or have multiple instances of objects.
For these cases, value objects provide a nice solution to capture the data. Again,
you should also look at using value objects as a standard across the board because of
the strong value proposition they provide in terms of integrating with the rest of the
architecture.

NOTE

274 J2EE Best Practices: Java Design Patterns, Automation, and Performance

A key differentiator for using value objects is that they are light-
weight data structures that integrate well with service components, business
objects, and database query mechanisms. A consistent, flexible implementation
of a value object enables front-to-back automation within the architecture.

A nice feature of value objects is that the business objects automatically know how
to get their data in and out of value objects using the application metadata. The power
of this is illustrated in a generic update service that can be written once and used for
any business object. You also have a number of database query services that can create
result sets of value objects. The value object is a lightweight data structure that can be
used across the tiers to easily integrate all facets of the architecture. This provides a
strong case for using them here to take event data and use it to invoke the application
service. Because you can integrate value objects throughout the architecture, this
enables greater automation across the tiers through configuration. By doing this, the
business logic foundation can provide basic data maintenance functions (read, insert,
update, and delete) for a given object with hardly any custom code except the HTML
to create the Web page. This is a very powerful concept that enables the rapid devel-
opment of Web applications. This has been a core concept of many development envi-
ronments, tools, and products for some time; however, this can be implemented while
maintaining the flexibility of building applications with straight Java code.

If you use the service data structure for the event object, then the step of invoking
the application service is extremely easy. If you choose to use a different data structure,
then you need to map the event object data to the service data objects. The code to
invoke the service can be implemented as a convenience method that obtains the EJB
component, or you could have the action class code directly invoke the EJB service
component. In the case of the business logic foundation, the ServiceData object has
the name of the actual service to execute, so you can simply pass this object to a con-
venience method and have it do the work.

In some cases, you may also want to use a value object that holds data for a larger
cross-section than a single business object. You could create object definitions in the
metadata that don’t have a corresponding business object in order to do this. However,
in many cases, application services use value objects that map directly to business
objects so that they can instantiate and populate them in order to execute business logic
particular to the entity.

The fifth core responsibility of the
controller architecture is to invoke any applicable services from the Service-Based
Architecture. This is the access point to the business logic, that is, the model in
the MVC pattern. Any errors that occur should be handled and integrated into the
presentation layer.

The service components throw a BlfException with a list of business
errors if any errors have occurred. Thus, the action classes should always wrap a call
to a service with a try-catch block. This logic is a part of the “manage user context”
responsibility.

CORE RESPONSI B I LITY F IVE

THOUG HT

The User Interaction Architecture 275

Managing the User Context

After the service is executed, the action must set the context for the next page and po-
tentially future pages if the data will be needed again. There are a number of options
within the Web tier for accomplishing this. The options will be discussed in detail later
in this section under the state management design consideration.

The sixth core responsibility of the controller
architecture is to manage the user context. This includes both communicating be-
tween Web components on a single page request as well as managing application
state across the many user events (that is, HTTP requests) of a user’s session
within the application.

The action class forms a loop with the JSP and its resulting HTML through which
HTTP requests travel. The JavaServer Pages typically expect a certain context that is set
by the action. The JavaServer Pages create the HTML for the browser to display. The
HTML is used to create the next request, which goes back through the controller archi-
tecture. This user event triggers an action that sets both the application data and error
context for the next page to be displayed. This cycle will be illustrated in the many
page examples discussed in the next chapter. In terms of page navigation, events can
have action classes that prepare data for the JSP, or else the page itself can create the
context. Figure 7.5 illustrates this loop between actions, JavaServer Pages, and the
resulting HTML.

Web-Page Navigation

It was stated earlier that the user event was a key determinant of page navigation. This
approach can be described as event-based navigation. In this approach, you map out
all of the pages of an application and define the events that cause the user to travel
from one page to another. In fact, this type of information can be captured in a UML
model that could potentially be used to generate event navigation metadata. In some
cases, a static model can define the default page flow, but it is usually not sufficient to

CORE RESPONSI B I LITY S IX

Figure 7.5 The User Interaction Loop.

Page HTML

Action

JSP

event
triggers

renders

sets
context

for

276 J2EE Best Practices: Java Design Patterns, Automation, and Performance

capture all of the navigation possibilities. For this reason, the action class is given the
flexibility to override the metadata and return the next page. Usually the action class
uses the metadata to determine the next page, but there will be instances in which this
is not the case. Thus, the general page navigation rule can be defined as:

Event + Action Result => Next Page

Navigation references in action class code should be to logical page names such as
changeAddress or transferFunds. This is done purposely so that you do not have to
hard-code URLs into the user interaction code. Page directory structures and physical
URLs can always change, so it is a good idea to abstract pages out to the metadata.

Abstract physical URLs out of the application into metadata
in order to enable automation, avoid broken links, and have more maintainable
pages.

Thus, the metadata maps logical page names to their physical URLs. As an example,
the logical page changeAddress could be mapped to the physical URL/Change-
Address.jsp.

The seventh core responsibility of the
controller architecture is to determine what page (that is, view component) to
display next. The majority of the page flow in an application can be captured in
the event metadata. You can abstract the page flow of an application using an
event-based navigation approach, in which the next page is determined by the
user event and the success or failure of the resulting action. This predefined page
flow can also be overridden by the action class for more dynamic scenarios in
which navigation is determined at run time.

The last core responsibility is actually to dispatch the request once the next page has
been determined. These two responsibilities are separated, because the navigation is
ultimately the decision of the action class, while the controller is used actually to dis-
patch the request to the corresponding JSP.

The last core responsibility of the
controller architecture is actually to perform the page forward to the
appropriate view component (that is, JSP).

The previous discussion begs the question of what components are used to imple-
ment all of the core responsibilities. This is discussed in the next design consideration.

Automation and the Partitioning of Responsibility

If you look at the core responsibilities listed within the controller architecture, there are
a number of things that can be automated through foundation components configured

CORE RESPONSI B I LITY E IG HT

CORE RESPONSI B I LITY SEVE N

BEST PRACTIC E

TEAMFL
Y

Team-Fly®

The User Interaction Architecture 277

by metadata. Thus, it is worthwhile to look at the partitioning of responsibilities
between the common controller component and the action classes written specifically
for each application. Many of these responsibilities are common across all application
requests, so perhaps you do not need to write them each time in every action class. For
example, many user actions trigger a service to be invoked. The logic to obtain a ser-
vice component, invoke it, and handle any error conditions can be generalized and im-
plemented in the foundation logic. The metadata could also potentially define which
service is invoked based on the user event that has taken place. The service component
invocation logic includes catching any application exceptions and putting the error list
in the request scope so that the next JSP can display the errors. Should this logic be in
every action class, or should it be implemented as part of a configurable controller
component? Well, for many simple forms such as the change address form, a standard
implementation of this works fine. However, for more complicated scenarios, you may
also want to store part of the output data from the service in the session for use in a
future page. There may also be other presentation logic you need to execute in order to
display the next page. If you limit the entire action to a standard implementation, you
lose the extensibility and flexibility needed to handle the many different cases that
arise out of the single controller servlet. This will likely be the case for a large number
of the action classes. Thus, rather than automate the entire process, you can encapsu-
late repeated functions in utility classes that take the same arguments (that is,
HttpServletRequest, HttpServletResponse) so that you can easily reuse
the object from within either a configurable controller servlet or a specific action class.

Another option to provide more reusability in terms of action class functionality is
to create an action base class that provides a template for handling requests. The hooks
that would probably be necessary are a preservice invocation method and a postser-
vice invocation method. The template could follow the basic pattern:

try {

// Validation of event already invoked by controller

// Convert event object to service data if necessary.

ServiceData data = createServiceData(formBean);

// hook method implemented by subclass

// before service invocation

preService(data, request, response);

// Invoke service.

data = executeService(data);

// Hook method implemented by subclass

// before service invocation

postService(data, request, response);

} catch (BlfException be) {

// Set error context.

}

278 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Another option is to continue to have action classes own their responsibilities but to
provide some set of foundation action classes that process the standard vanilla forms
covered by a large majority of pages. These standard actions would be parameterized
and could be configured by application metadata.

State Management
Core responsibility number six was to manage the user’s context within an application
across multiple HTTP page requests. The JSP and servlet specifications provide a num-
ber of choices for storing and accessing attributes, or objects, within a Web application.
The different scope levels available are:

Page: A single request in a single JSP

Request: A single request for any Web component that is forwarded the request

Session: All requests within a particular user’s session

Application: All requests for all users of a Web application

These scope levels provide places within the application server to store context for
an application. A fifth option that is outside of the J2EE specification, client-side HTTP
parameters, can be added to this list. You can use parameters in either a URL link or as
hidden input form fields to manage state across multiple HTTP requests. The JSP can
generate these parameters, which are then sent back to the browser when the user
either submits the form or clicks the link. This is an effective option with little overhead
if you don’t mind exposing the data to the user. Any parameters within the HTML are
visible to the end user either directly in the URL or through the view source function of
the browser.

As far as the server-side options specified by J2EE, the page scope is the equivalent
of instantiating an object in a scriptlet code within a JSP and then using it later in the
same page. Thus, the page scope is largely used in custom tags within a JSP. The re-
quest scope, however, is a widely used aspect of the servlet API because it provides a
means to communicate data between Web components within a single request. The re-
quest scope should be used wherever possible instead of the session or application
scope because it has almost no overhead, comparatively speaking. It exists only for a
single request and can be used to communicate between the controller servlet and the
JavaServer Pages used to render the page. For example, application data retrieved
through a service as well as error information can be set as attributes of the request so
that the JSP can easily access it and display it on the page.

Keep the session size fairly small, especially for applications
that need to scale to large numbers of users.

As was discussed earlier, it is extremely important to keep the session size small.
This can be tough to do in practice, but a large session size can quickly degrade the per-
formance and scalability of a Web application. Sessions can quickly eat up memory as
concurrent users are added, and if failover is a requirement, the overhead becomes
more significant. If one application server in a cluster goes down, the session must be

BEST PRACTIC E

The User Interaction Architecture 279

recoverable from either a replicated session in memory within the cluster or from a per-
sistent session in the database. This adds additional overhead to each request. Thus,
you should not store large amounts of data in the session. Before you decide to use the
session to store context, analyze how often the data will be used throughout the appli-
cation. If the answer is infrequently, store the minimum context used to perform a data-
base query to get the rest, if possible. For accessing and paging through large data sets,
it may be better to use the application database rather than the session object to manage
the result set. The application database is usually well-tuned for its access patterns and
may perform better than using the session, which consumes large amounts of memory
and potentially adds database access. The performance results seen by different appli-
cation servers can vary based on the failover mechanism used for sessions, so it is prob-
ably best to prototype and do some performance testing early on in your development
cycle if you have this type of situation in your application. Be sure to note how the ap-
plication scales as concurrent users are added toward your target levels, because this is
where a significant difference can be seen. The other danger of using the session is that
the data may change underneath you within another user’s session. This makes the
data you have stored in the user session outdated. This is discussed in more detail in the
next section on MVC and state management. One last thing to note about using the
session scope is that objects can also be taken out of scope. If you are done with a par-
ticular item in an application, for example, if the user closes out of a particular section
of an application, be sure to remove any applicable objects from the session scope.

The application scope is seen by every Web component across all user sessions, so it
is not a good option for managing state for a particular user. Thus, the primary options
for managing state are client-side HTTP parameters, the request scope, and the session
scope. Table 7.1 summarizes these primary options for state management with typical
data scenarios in an application.

MVC and State Management

In thick-client MVC architectures, the view has direct access to the model objects. For
example, a JTable GUI control is directly connected to the model object that holds its
data. If the model is updated, the JTable receives a notification and refreshes its view
so the up-to-date data is shown to the user. This connection between the view and the
model continues across user requests on the screen. In thin-client Web applications,
you do not have this long-lasting connection because the JSP implementation, which
has access to the model’s data, generates the page content and then goes on to process
another user’s request for that page. This occurs because the container converts
JavaServer Pages to servlets, multithreaded server components used to process multi-
ple users’ requests for that page. There is the option of using the session scope to store
model objects in order to emulate that connection; however, there are issues with this
approach. In addition to the overhead, there is also the issue of what to do if the data
stored in the session is updated in the database by another user of the application. If
the same user updates the object, you can use the same notification approach and
refresh the data in the session. However, if a different user performs the update, there
is no way to automatically notify all of the user session objects that may contain that
data. A JMS publish/subscribe mechanism is one of the only ways this could be
accomplished. This is another reason to consider using the session to store only the
minimal data needed to recreate the state from the database. The session can be used to

280 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Table 7.1 Primary State Management Options

CLIENT-SIDE
TYPE HTTP REQUEST SESSION
OF DATA EXAMPLE PARAMETERS SCOPE SCOPE

Data used Account data Not applicable Use the Do not use
for current retrieved from request scope the session
page service to communicate for this
request component between Web purpose

to be displayed components in
on next page a given request

Data used Presentation Use either Not applicable Can be
for next control hidden form used, but
page; can parameters fields or avoid if
be visible parameters possible
to user in URL so session

does not
become
overloaded

Data used Internal Do not use HTTP Not applicable Use session
for next account parameters for (see also
page; identifier this purpose; server-side
should not on change they are visible parameters
be visible address to the user section later
to user form through browser in this

view source chapter)
function

Data used User object Not practical Not applicable Use session,
across keeping
many page overall
requests session size

in mind

store data either if you do not care about concurrent updates or if only the current user
can modify the data. However, this is rarely the case in business applications. Usually
multiple users are allowed to update entities, although there are cases in which only
single users have update access to a particular set of objects. If a pessimistic locking
approach is used, only a single user would be able to update an object, and it would be
safe to store that data in that user’s session. Nonetheless, these exception cases provide
limited usefulness in terms of state management.

HTTP Parameters versus
Server-Side Parameters
Of the state management options, HTTP parameters provide a nice, efficient way to
manage state from one page request to another. It should also be noted that HTTP

The User Interaction Architecture 281

parameters stored in the HTML are unique across multiple frames or browser
instances that are spawned from a Web application. This is not the case when you use
the session scope on the server side. With these advantages, however, comes one major
disadvantage. Any HTML parameters can be seen by the end user. While this may not
seem that bad at first, consider also that this is a parameter that is sent from the client
to the server. Thus, it can be modified and resubmitted by a technically savvy user. The
application controls the value of data that is stored on the server; however, a client-side
parameter is sent to the server each time from the browser. Although the initial value
for this parameter is created and sent in the HTML content, it is still a named parame-
ter expected by an HTTP request sent over a network such as the Internet. As an
example, say that you place the account ID in the URL of a list of links to view the
account detail. A hacker can then modify the value of that parameter in the URL in an
attempt to view another customer’s account information. You then rely on the security
of the server to catch these types of conditions. Normally, you can handle all of these
conditions. In this example, the action class or JSP processing the request should first
check to see that the account identifier belongs to that particular customer identified by
a user object stored in the session. This would prevent any other user from successfully
viewing another user’s account data by modifying the HTML parameter. The risk level
for your particular application should be assessed if you are considering using client-
side parameters.

For the cases in which you do not want to expose these parameters to the end user,
you should have a mechanism to easily link a set of server-side parameters to a partic-
ular user event. This is not always as straightforward as just putting a value in the ses-
sion. On the view accounts page, there are a number of links for each page, and you
need to identify the particular account for each link. If you want to hide the internal or
external account ID from the URL, you need to use a server-side parameter that is
associated with each link. You can use the session to store the server-side parameters,
although you need an identifier to connect the link to the parameters in the session.
This identifier can be a random identifier; in fact, it is best if it is meaningless so that
the likelihood of faking a value is very low. The URL links would contain the random
identifier that is then used to extract the proper set of server-side parameters for the
user event. This provides a secure mechanism for managing state for different page
and event instances within a user session. The downside of this approach is that it can
quickly fill up the session object. It becomes necessary to remove parameters over time
to manage the size of the session, thus creating the possibility that older pages can
expire because no server-side context exists for them anymore. Thus, this approach
should be used only when it is deemed necessary to secure an application.

View Components: JavaServer Pages
The view components, typically JavaServer Pages in the J2EE architecture, are respon-
sible for taking the user context and application data in order to create the content for
the particular Web page requested. As stated earlier, JavaServer Pages are document-
based, HTML-centric servlets. Although you have the ability to put Java code directly
in JavaServer Pages in the form of scriptlets, you should try and minimize this as much
as possible so that you have readable, maintainable view components. Thus, the user
interaction chapters of this book look at moving the presentation logic more to action

282 J2EE Best Practices: Java Design Patterns, Automation, and Performance

components, additional JavaBeans components used in the pages, and custom JSP tags.
An action class that does some setup work can make a JSP much simpler to implement.
JSP tag libraries were also a magnificent addition to the JSP specification. They allow
developers to encapsulate presentation logic in a form that is native to the content, that
is, HTML tags. They can also be easily used by Web developers with HTML/XML
skillsets as opposed to Java programming. Simply put, they are an extremely powerful
mechanism for quickly building robust application pages with great quality and main-
tainability. Another technique that should be used to create modular, maintainable
pages is the concept of a JSP template mechanism. A template pulls in reusable page
fragments that make up the common look and feel of an application.

Minimize Java Code in a JSP

When JSP technology first became available, Java developers were given a powerful
HTML-centric way to create page content that allowed them to embed any Java code
directly into the presentation. This was a very tempting approach to use for all kinds of
presentation logic, and it was not unusual to see JavaServer Pages that went on for
pages and pages. If you compare this to good object-oriented programming practices,
such as the general rule that no method should be longer than a single page, you can
easily see that the JavaServer Pages were becoming too big to manage. On top of this,
the code is interspersed with HTML, which makes it significantly more difficult to read
and follow the logic of what is being done.

Minimize the amount of actual Java code in a JSP. Large
amounts of Java code interspersed with HTML in a JSP can quickly become
unreadable and unmanageable. Instead, use custom tags wherever possible to
encapsulate presentation logic and integrate with the controller architecture. You
can also move logic out to action classes that perform setup work for the page or
JavaBeans that are referenced by the page. If you do have scriptlets within the JSP,
try to use a few large scriptlets as opposed to interspersing Java code throughout
the entire HTML content.

You should minimize the amount of scriptlet code in a JSP. If possible, you should
primarily put presentation logic in either JavaBeans or JSP custom tags. This limits the
Java code to either expressions or small scriptlets that primarily invoke bean methods.
In the case of custom tags, no Java code is required. You can simply embed the tag in
the rest of the content. Introduced in the JSP 1.1 specification, this is a very powerful
mechanism that you should take advantage of. It is a great way to encapsulate presen-
tation logic and integrate it into the presentation. You will see numerous examples of
how this mechanism can be used in the next chapter on building the User Interaction
Architecture.

Use a JSP Template Mechanism

Web pages within an application normally share a common look and feel. This can
include standard headers and footers as well as navigation bars that appear on the left
of the page. The main content of the screen usually falls in the middle of the page. For

BEST PRACTIC E

The User Interaction Architecture 283

example, this would be the actual table of account data in a view accounts page or the
actual form with drop-down lists to choose accounts and enter a dollar amount in a
transfer funds page. In order to make the view components more manageable, a tem-
plate JSP can be created that pulls all of these common pieces together to create the over-
all page. Doing this prevents you from repeating common code in every JSP and makes
it easier to change or configure the look and feel of all the screens in an application.

Use a JSP template mechanism to apply a common look
and feel to your application Web pages. This approach makes it easy to globally
change common aspects of pages and reduces the amount of duplicated code.

For the sample bank application, a simple template that is used by most of the pages
was structured. The template contains a header and footer as well as a navigation bar
on the left-hand side. The main content of the screen, which is described by the next
page in the navigation approach described earlier, fills the majority of the space on the
page. Figure 7.6 shows the structure of the template.

Abstracting the Template

You will notice quickly that this template is fairly simplistic. Each section of the tem-
plate is parameterized and specified by a given page. The standard sections, such as
the header and footer, can be given default values for convenience, and the specific
page instances can override them if necessary. For example, the bank application has a
standard navigation bar that is used once a customer has logged on to the bank’s Web
site. However, when a user is going through the wizard to sign up as a new customer,
this navigation bar does not make sense because the user does not yet have an account
with the bank. Thus, the new customer pages would override the default navigation
bar to show one that has links between the different pages of the multipage form.

BEST PRACTIC E

Figure 7.6 A Simple Page Template Structure.

Header

Navigation
Bar

Main Content,
‘Body’

(that is, Next Page)

Footer

284 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The fact that the sections are parameterized provides a high level of maintainability,
but all of the pages use the same template structure of header, footer, and navigation
bar. For the sample application, this suffices just fine. However, for many complex
applications, you have different types of templates for different pages. You can remedy
this quite easily by abstracting the template. For example, perhaps some templates
have an informational bar going down the right side as well. One of the definitions for
each page can be what actual template to use. You could create <Template> tags in
the metadata to define the sections of each template. In this book, however, the tem-
plate as shown is used for simplicity, but you can easily see how to make this concept
much more flexible to suit your application’s needs.

An Overview of Jakarta Struts

Jakarta Struts is an open-source project launched by Craig Mclanahan to provide an
MVC-based Web application framework for use with Java servlets, JSP, and JavaBeans
components. This project embodies many of the best practices and design principles
discussed in this chapter. The foundation of Struts is a generic implementation of the
Model 2 architecture pattern applied to J2EE. This section looks at the elements of the
Struts framework. The next chapter walks through how you can implement pages
from the bank example using Struts.

The primary elements of Struts are:

A controller ActionServlet that delegates specific request handling to
Action classes

An extensive JSP custom tag library

A library of utility classes to support Web application development

If you look at the core responsibilities defined earlier for the controller architecture,
the basic controller component and the action paradigm can be fairly straightforward
to implement once you understand the relevant design patterns. A simple implemen-
tation of the controller architecture could probably be done with only a couple of pages
of code. Struts does provide a controller servlet implementation, but some of the
greatest value provided by a framework like Struts actually comes through the exten-
sive JSP tag library that integrates into the remainder of the presentation framework.
The power of JSP tag libraries is that they can greatly simplify JSP development and
maintenance. Struts provides a number of custom JSP tags to rapidly integrate forms
processing, error handling, and internationalization functionality into Web pages. The
internationalization functionality provided by the tag libraries is based on features of
the Java language such as Locale and ResourceBundle. The basic Struts architec-
ture is shown in Figure 7.7.

The primary focus of Struts is functionality contained within the User Interaction
Architecture. In particular, it provides a robust implementation of the controller and
view aspects of the MVC design pattern. The business logic is then implemented in
separate model components that can be either regular JavaBeans or Enterprise
JavaBeans. As will be discussed later in detail, the ActionServlet can be config-
ured to automatically populate HTML form data into JavaBeans that extend the Struts

The User Interaction Architecture 285

Figure 7.7 Basic Struts Architecture.

Web Browser

JSP
Components

(View)

JSP Custom Tag
Libraries

(bean, html,
logic, template)

State Management

Model
ComponentsAction ClassActionServlet

(Controller)

ActionFormstruts-
config.xml

HTTP
Request

HTTP
Response

class ActionForm. These classes are closely tied to the servlet architecture and the
controller’s configuration data. Thus, they really are comparable to event objects that
represent the data of a particular user event. If these were also used as the business ob-
ject components, they would be limited in scope to the JSP container. This is sufficient
for smaller applications; however, you can also use Struts as the user interaction layer
of an enterprise architecture that implements the model components using Enterprise
JavaBeans. The entry point into the model from Struts can be provided by the Service-
Based Architecture, which is then built on top of the business object components.

At the core of the Struts framework is ActionServlet, a controller servlet that is
the hub of the MVC implementation. It is a flexible metadata-driven component that
dispatches specific request handling to subclasses of the Struts Action class. The ap-
plication configuration of ActionServlet is controlled through an XML file called
struts-config.xml that defines how user events map to actions and how those
actions are processed. The controller is primarily used to process form submissions.
For the most part, links go directly to a JSP view component. Thus, the basic logic of the
controller is focused on forms processing. Each form maps to a particular Action in
the configuration file struts-config.xml. In this file, the action can be defined to
have an associated form bean (ActionForm). The controller logic can be summarized
as follows:

1. Check for the existence of a form bean in the configured page scope (request,
session, and so on).

2. Retrieve the existing form bean or instantiate one automatically if one is not
found.

286 J2EE Best Practices: Java Design Patterns, Automation, and Performance

3. Populate the form bean based on direct mapping from HTML parameter names
to bean property names.

4. Invoke the appropriate action class with the following arguments: the action
configuration, form bean, and servlet request and response objects.

5. Forward the request to the JSP defined by the ActionForward object returned
from the Action class.

Struts Actions
The standard action method overridden by subclasses and invoked by Action-

Servlet is:

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException;

The ActionMapping class holds all of the metadata for the particular action that
is being invoked. It also defines how a user event maps to this action.

The classes described here as a part of the Struts controller architecture
can be found in the org.apache.struts.action package.

Mapping User Events to Actions

The Struts framework does not explicitly define user events. Rather, it uses URLs to
indicate the particular user event that occurred. The URLs are referred to as action paths
in the configuration. This is just one example of the great flexibility that exists in terms
of implementing these concepts within J2EE technology. Rather than map a single URL
to the controller servlet, the sample Struts configuration and examples map a URL pat-
tern (http://<host:port>/*.do) to ActionServlet. Thus, any URL within the Web
server domain that has the extension .do will be processed by the controller servlet. The
actual servlet path can then be used to identify the event. For instance, consider the fol-
lowing HTML <form> elements. Each one will be processed by ActionServlet but
with different servlet paths that identify the event. ThechangeAddress event has the
following form definition:

<form name="changeAddressForm" method="POST"

action="/bank/struts/changeAddress.do">

Note that /bank is the root directory of the Web server. You place most of
the JSP files in the /bank/struts directory. Thus, the context-relative servlet path
(as given by the method HttpServletRequest.getServletPath) in this
example is /struts/changeAddress.do.

NOTE

NOTE

TEAMFL
Y

Team-Fly®

The User Interaction Architecture 287

Struts always strips off the extension for the purposes of mapping actions; thus, the
event can be thought of as the path /struts/changeAddress in this example. Likewise,
a transfer funds form defined by the following <form> tag will also be processed by
ActionServlet.

<form name="transferFundsForm" method="POST"

action="/bank/struts/transferFunds.do">

In this case, the event, as described by the servlet path, is /struts/transferFunds. The
Struts examples in this book happen to be placed into a struts subdirectory, but you
can easily see how the remaining path almost directly corresponds to the event names.
Struts uses the context-relative path names to map HTTP requests to actions. Each action
mapping instruts-config.xmldefines a path that causes a request to be processed
by this action. For example, look at the action mapping for the change address event:

<action path="/struts/changeAddress"

type="bank.struts.ChangeAddressAction"

name="addressForm"

scope="request"

input="/struts/changeAddress.jsp">

</action>

Thus, the first of the preceding HTML <form> examples would be processed by this
action because the servlet path /struts/changeAddress is defined as the path.

Action Mappings

The action configurations defined in the metadata are referred to as action mappings
and are represented by ActionMapping objects. The <action> elements in struts-
config.xml are actually located inside of an <action-mappings> element. Attributes
of each <action> include:

path: The servlet path that maps to this action. This is referenced from the
custom tag <html:form action="path">.

type: The class name of the Action subclass to handle the request.

name: The name of the form bean to use. This is referenced in the <form-beans>
section of the XML where the actual class name is defined. This is an optional
attribute.

scope: The JSP/servlet page scope (that is, request, session, and so on) to store
the form bean. If not specified, this defaults to session, so be sure to set it to
request whenever possible to avoid unnecessary overhead in the session.

validate: An indicator of whether the validate method of the form bean
should be automatically invoked by ActionServlet. This defaults to true.

input: The URL from which this action originated. This optional attribute can
be used in the case of errors to forward the request back to the original input
form so that the errors can be displayed and the form can be resubmitted.

unknown: This attribute can be set to true if you want this to be the default
action for requests if no other mapping can be found. This defaults to false.

288 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Page Navigation

Navigation from one page to another is represented as a forward within Struts. As
stated earlier, the Action subclasses return an instance of ActionForward which
represents the particular page to go to next. Forwards exist on two levels, a global level
and an action level. Both are defined within the configuration XML so that the actual
physical URLs are abstracted from the application code.

Global Forwards

Global forwards can be referenced from any action class or JSP and are defined in
struts-config.xml under a <global-forwards> element. They are equivalent to a
pure navigation event from the earlier design discussion. Some of the global forwards
for the bank sample are defined as follows:

<global-forwards>

<forward name="logon" path="/struts/login.jsp"/>

<forward name="main" path="/struts/main.jsp"/>

<forward name="viewAccounts"

path="/struts/viewAccounts.jsp"/>

<forward name="changeAddress"

path="/struts/changeAddress.jsp"/>

</global-forwards>

Action-Level Forwards

Action-level forwards can be used or seen only by the particular action in which they
are defined. They are defined as <forward> subelements of the <action> tag. A com-
mon use of this mechanism is an implementation of the event-based navigation con-
cept, which determines the next page based on the event and the success of the action.
For example, take the transfer funds example, which goes to different places based on
the result of the transaction. Its action mapping can be defined as follows:

<action path="/struts/transferFunds"

type="bank.struts.TransferFundsAction"

name="transferFundsForm"

scope="request"

<forward name="success"

path="/struts/viewAccounts.jsp" />

<forward name="failure"

path="/struts/transferFunds.jsp" />

</action>

These named forwards are then referenced by the Action class to communicate the
navigation information back to the controller servlet. There is also a special action-level
forward that is predefined by the framework, the input attribute of the <action> tag.
This is an optional attribute that can be used to define the page that triggered this
action. Notice that the actual URL of the page is different from the servlet path that
maps to ActionServlet, so this is a nice convenience if you want to use it within an

The User Interaction Architecture 289

Action implementation to return control back to the input form as is typically the
case when errors occur.

Form Beans

All form beans extend the Struts class ActionForm. Form beans are really event ob-
jects that store the data from HTML form input fields. These classes are implemented
like value objects and have explicit getter and setter methods for each form property so
that they may be manipulated using Java introspection. This is a critical aspect of the
framework that is used throughout the controller architecture as well as the custom tag
library that integrates well with these form beans. In addition to property management
methods, form bean classes typically also implement a few template methods, in par-
ticular one method for data validation.

Form beans are defined in struts-config.xml within a <form-beans> element.
For the two samples thus far, the form beans are defined as follows:

<form-beans>

<form-bean name="transferFundsForm"

type="bank.struts.TransferFundsForm"/>

<form-bean name="addressForm"

type="bank.struts.AddressForm"/>

</form-beans>

These form beans were referenced by the name attribute of the previous action map-
pings. Additionally, the name attribute of each form bean is used as the attribute name
in the defined page scope for the action (that is, request, session, and so on). The type
attribute defines the actual class name of the form bean.

Populating Form Beans

The controller servlet populates form beans automatically. In order for this to happen,
the beans’ property names must equal the HTML parameter names. As you will see
later, there is a complete tag library for creating the HTML input controls that map to
the form beans’ properties. Thus, you are really linking the parameters of the HTML
tag library to the form bean names. This is a primary linkage point between the custom
tag libraries and the controller architecture, and it provides a powerful basis for devel-
oping presentation functionality.

There are two reasons why you may want to use form beans as pure event objects.
One is the fact that form beans are tied to the servlet API. The other reason is the one
that you just encountered, the fact that the form beans’ property names must equal the
HTML parameter names. So that you do not have to tie the business object property
names to the front end, it is sometimes a good idea to use the event object and service
object abstractions. You can use the form bean data to create separate service data ob-
jects that are then actually serialized and sent to remote EJB method invocations within

290 J2EE Best Practices: Java Design Patterns, Automation, and Performance

the Service-Based Architecture. Thus, the abstractions in the front end can be mapped
as shown in Figure 7.8 with Struts.

Form Beans as a Template

Form beans have two template methods that can be overridden for each subclass. The
first is a validate method that can be used for basic data validation. In this sense,
form beans are the equivalent of value objects or lightweight business objects. They
have some additional functionality beyond just being data structures. Unless config-
ured otherwise (see the validate attribute of the action mapping), the validate
method is automatically invoked after the servlet populates the form bean but before
the action is invoked. If validate returns a list of errors through ActionErrors,
they are stored in the request scope, and control is forwarded to the input form for
that action mapping. Error handling and ActionErrors are described in the next
section. The interface for validate is defined as follows:

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request);

The second template method is reset, which is invoked before the servlet popu-
lates a form bean. It can be used to initialize property values of the bean, but be aware
that it is also invoked when the bean is repopulated; consequently, you can overwrite
the existing values if the bean was being stored in the session. The interface is defined
as follows:

public void reset(ActionMapping mapping,

HttpServletRequest request);

Aggregated Form Beans

You may have noticed that the action configuration lets you define only a single form
bean. If Struts stopped here, you would be limited to a single list of properties, analo-
gous to your ArgumentList. But this is not the case because you can aggregate, or

Figure 7.8 User Interaction Abstractions Using Struts.

Browser

Action

Page

ServiceEvent
(Request URI)

Form Beans
(ActionForm) Service

Data

Action
Forward

Action
Mapping

The User Interaction Architecture 291

have nested form beans, within the form bean defined in the action mapping. In fact,
you can go many levels deep as well. Form beans and their related html and bean tag
libraries can also use a nested object syntax that separates each property with a dot
notation. As an example, assume the AddressForm class described earlier was
aggregated inside of a CustomerForm class. Standard getter methods for the aggre-
gated object need to be defined on the customer such as the following example:

public class CustomerForm extends ActionForm {

// AddressForm member

private AddressForm address = new AddressForm();

// Rest of properties declared here

// Aggregated AddressForm

public AddressForm getAddress() {

return address;

}

// Rest of methods to follow

}

Assuming the AddressForm follows the normal JavaBeans naming standards, you
can then use the nested syntax to access address fields from the CustomerForm
object. The following examples show how the simple and nested syntax maps to
method invocations on the customer form bean:

firstName => getFirstName();

lastName => getLastName();

address.city => getAddress().getCity();

address.state => getAddress().getState();

For multipage forms such as wizards, you can define a single parent form bean that
can have many child form beans if you want to segregate the input data. This is actu-
ally the easiest way to implement pages within a wizard interface. Using nested form
beans also allows for pages in a wizard to change without greatly affecting the
remainder of the presentation logic.

Figure 7.9 represents the form beans within the controller architecture as a UML
class diagram.

Error Handling

Earlier you saw that the validate method on the form beans returned a class called
ActionErrors. This class implements the concept of an error bucket. Each individ-
ual error in the bucket is an instance of ActionError. Each ActionError is con-
structed with an error key and possibly some substitution arguments. This part is
analogous to your ErrorList construct; however, the error messages are interna-
tionalized through property resource bundles. The actual error messages are stored in

292 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 7.9 UML Representation of Struts Controller Architecture.

perform()

MyAction

doGet()
doPost()

ActionServlet

getPath()

path:String

ActionForward

validate()
reset()

ActionForm

Action

creates,
uses

creates,
uses

creates

uses get/setPropertyA()
get/setPropertyB()
validate()
reset()

formPropertyA
formPropertyB

MyActionForm

an application properties file that is configured by the application initialization
parameter to ActionServlet. Thus, you have an ApplicationResources.
properties file that defines all of the error messages, as well as other messages or
labels that can go on the page. This allows you to define what text to use based on the
Locale of the user. Some of the sample error messages are defined as follows in
the properties file:

INVALID_ZIP=The zip code {0} must be 5 digits..

CHECKING_MIN_BALANCE=Minimum balance of $100 is not met for

the checking account.

The messages themselves use java.text.MessageFormat to process substitu-
tion values. You notice that there is also HTML code surrounding the messages. This
text is placed directly into the HTML page content, so you can add some standard for-
matting here if you wish. The primary method that is used on ActionErrors is the
add method that puts errors in the bucket. This method is defined as follows:

public void add(String property, ActionError error);

Each error is linked to a form bean property that is indicated by the first argument.
Optionally, this can also be defined as a global error that is not directly tied to an

The User Interaction Architecture 293

individual field. The constant ActionErrors.GLOBAL_ERROR is used in this case.
For example, if you wanted to issue the invalid zip code error and tie it to the zip prop-
erty, you would use the following code:

ActionErrors errors = new ActionErrors();

// Edit the zip code property

if (zip.length() != 5) {

errors.add(“zip", new ActionError(“INVALID_ZIP",zip));

}

If you wanted to add the minimum balance as a global error, you could use the fol-
lowing code:

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError(“CHECKING_MIN_BALANCE"));

You can also ask the ActionErrors class if it is empty(), get the size(), or
access the errors in their entirety or by specific properties.

View Components
The powerful JSP tag libraries make up the second major portion of the Struts frame-
work. First, this section looks at the html tag library, which is focused on HTML forms
but also adds support for things such as creating links and rendering images. Struts
has created tags that also encapsulate the interaction with the form beans for each
aspect of the HTML form.

HTML Tag Library

The <html:form> tag is used to wrap the entire form. Its action attribute specifies the
context-relative path that is mapped to the appropriate action class as discussed earlier.
Within an <html:form>, you can use any of the HTML tags that represent the various
input controls, such as text fields, checkboxes, cancel buttons, and submit buttons, just
to name a few.

HTML Form Tags

The primary input control is the text field. The <html:text> tag has the following basic
format:

<html:text property="propertyName" />

This tag creates a text input field using the property name as the HTML name. It also
defaults the value to the bean property of the same name. Notice it does this automati-
cally to enforce the requirement that the HTML names and form bean property names
be the same. You can also override the initial value of the text field with the value
attribute. Similarly, <html:text> accepts most of the normal HTML <input> attributes,
such as size and maxlength. Also note that the property can be either a simple

294 J2EE Best Practices: Java Design Patterns, Automation, and Performance

reference or a nested syntax reference. Thus, if you had customer and address data
on the same form using an earlier example, you could have the following content in
your JSP:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<html:html>

<head><title>Update Customer Page</title></head>

<body>

<html:form action="/struts/updateCustomer" focus="firstName">

First Name: <html:text property="firstName" />

Last Name: <html:text property="lastName" />

Address: <html:text property="address.line1" />

City: <html:text property="address.city" />

State: <html:text property="address.state" />

Zip Code: <html:text property="address.zip" />

<html:submit property="submit" value="Update Customer"/>

<html:cancel />

</html:form>

</body>

</html:html>

There are a couple of things to note about this code snippet. This form is processed
by the action mapping that defines the path /struts/updateCustomer. On the
first submission of this form, the defined form bean is instantiated and stored in the
scope configured by the action mapping. Initially, the form bean might be empty and
no values would be shown in the text fields. After the form is submitted, the form bean
is populated by the servlet and stored again in the proper page context. Thus, if this
page is redisplayed with errors, the HTML tags automatically take care of retrieving
the property values from the form bean.

In this example, you also see for the first time the <html:submit> tag, which cre-
ates a submit button with the given value. You also see an <html:cancel> tag with
no additional attributes. This tag uses the value Cancel by default and uses a standard
parameter name that is recognized by the Action class. The Action subclasses can
actually ask isCancelled() to check for this user event. In addition to the HTML
tags you have seen already, there are others that work similarly to the <html:text>
tag for almost all input field types including checkboxes, hidden fields, password
fields, radio buttons, reset buttons, select lists, and text areas. You will see some of
these used in the upcoming examples. Finally, the <html:html> tag is used to wrap
the entire page.

If you wanted to display any errors that may have occurred on the form submission,
you could add the <html:errors> tag to display any ActionErrors that were
stored in the request scope.

The HTML Link Tag

The <html:link> tag can be used to create URL links within a JSP. It takes care of
encoding to ensure that URL rewriting will work if cookies are turned off. It also plugs

The User Interaction Architecture 295

into the navigation metadata defined in struts-config.xml. You must specify
one of the following attributes to define the link:

forward: Refers to a global forward defined in <global-forwards>.

href: Defines the URL for the link.

page: The context-relative path that can map to an action class.

linkName: An intrapage link.

Thus, if you wanted to create a link to the bank’s logon page, you could do so and
reference the global forward shown earlier named logon:

<html:link forward="logon">Go to the Bank's Home Page

and Logon</html:link>

This creates an anchor tag <A> without any additional query parameters. If you
want to add parameters to the URL, you can do so with additional tag attributes spec-
ifying either a single bean property or multiple parameters contained in a Java collec-
tion stored somewhere in the page context.

Bean Tag Library

The bean tag library provides access to beans and their properties as well as creates
internationalized messages for inclusion into JSP content. The <bean:write> tag is
used to retrieve the value of a specific bean property. Its format is similar to the core
format of <html:text>. As an example, this code puts the value of the address line1
field into the page content:

<bean:write name="customerForm" property="address.line1" />

Another often used tag in this library is the <bean:message> tag. This tag pulls
in content from an internationalized set of messages stored in property bundles. Inter-
nationalization uses the Locale object stored in the session. This can be set up auto-
matically by using the Locale attribute of the <html:html> tag. Thus, you can
modify the earlier JSP code snippet to internationalize the labels of each text field in the
following manner by using the <bean:message> tag.

<html:html locale="true">

<!-- BEGINNING OF PAGE CONTENT -->

<bean:message key="prompt.state" /> :

<html:text property="address.state" />

<bean:message key="prompt.zip" /> :

<html:text property="address.zip" />

<!-- REST OF PAGE CONTENT TO FOLLOW -->

</html:html>

296 J2EE Best Practices: Java Design Patterns, Automation, and Performance

In your ApplicationResources.properties file for English, you would
then have the following messages defined:

prompt.state=State

prompt.zip=Zip Code

In order to generate your Web pages in another language, you would create
additional versions of the properties file named ApplicationResources_xx.
propertieswhere xx is equal to the ISO language code. This would then get picked
up and used by Struts based on the request’s Accept-Language header, if any is
specified.

Template Tag Library

The Struts framework provides a template tag library to abstract the JSP template
concept discussed earlier in the design considerations section. It lets you create
template JavaServer Pages that have placeholders for content. The placeholders are
defined with the <template:get> tag. This tag takes a name attribute to identify

Figure 7.10 Struts Template Tag Design.

<template:insert template=”template.jsp ”>
<template:put name=”header ”

 content=”header.jsp” >
<template:put name=”body ”
 content=” applicationPageBody.jsp ”>
<template:put name=”footer ”

 content=” footer.jsp”>
</template>

<html>
<template:get name=”header ”>
<!--JSP CONTENT-->
<template:get name=”body ”>
<!--JSP CONTENT-->
<template:get name=”footer ”>

</html>

applicationPage.jsp

template.jsp

applicationPageBody.jsp header.jsp footer.jsp

<!--JSP CONTENT--><!--JSP CONTENT--><!--JSP CONTENT-->

TEAMFL
Y

Team-Fly®

The User Interaction Architecture 297

the page fragment. The JSP that invokes the template uses the <template:insert>
tag to pull in a template. Within the <template:insert> tag, you can place
<template:put> tags to define where the placeholders get their content. This
design is depicted in Figure 7.10.

The JSP template can be defined as follows using the Struts template tag library
to implement the basic design discussed earlier in this chapter. This design includes a
header at the top of the page, a navigation bar on the left, and a footer at the bottom, all
surrounding the main content in the middle.

<%@page import="blf.*"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri='/WEB-INF/struts-template.tld'

prefix='template' %>

<html:html>

<head><title><template:get name='title' /></title></head>

<body>

<template:get name='<%=PageConstants.TEMPLATE_HEADER%>' />

<table width="100%">

<tr>

<td width="20%" align="right" valign="top">

<template:get name='<%=PageConstants.TEMPLATE_NAVBAR%>' />

</td>

<td width="60%" >

<template:get name='<%=PageConstants.TEMPLATE_BODY%>' />

</td>

<td width="20%" align="right">

</td>

</tr>

</table>

<template:get name='<%=PageConstants.TEMPLATE_FOOTER%>' />

</body>

</html:html>

The PageConstants class is used to define string constants used
throughout the User Interaction Architecture. In this case, it is used to define the
parameters of the JSP template.

The actual JavaServer Pages then use this template using the<template:insert>
tag. For example, the bank’s main page uses the template and just displays a welcome
message. The main JSP looks like this:

<%@ taglib uri='/WEB-INF/struts-template.tld'

prefix='template' %>

<template:insert template='/struts/template.jsp'>

<template:put name='title' content='Bank Main Page'

direct='true'/>

NOTE

298 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<template:put name='header' content='/struts/header.jsp' />

<template:put name='navbar' content='/struts/navBar.jsp' />

<template:put name='body' content='/struts/mainContent.jsp'/>

<template:put name='footer' content='/struts/footer.jsp' />

</template:insert>

The name attribute identifies the page section, and the content attribute specifies
the URL to use for the section. In the case of the page title, the direct attribute, which
tells the template tags to put the text value directly in the page, is added. The example
pages follow the pattern shown in Figure 7.10. The overall page that contains this ref-
erence to the template uses what you might consider the normal page name (that is,
main.jsp). The main body of the page then is put in a JSP with a body prefix (that is,
mainBody.jsp). Thus, the majority of the presentation logic is in the body
JavaServer Pages. In this case, mainBody.jsp simply has the welcome message:

<table width=100%>

<tr><td witdh=100%>Welcome to the Main Bank Page</td></tr>

</table>

The template tag library provides a nice way to standardize the look and feel of
the pages in your application. It also greatly increases the maintainability of your JSP
code. You could also take the abstraction a step further and create a generic JSP to
invoke the templates. The specific content attributes could be defined in page meta-
data so that you do not need to create a high-level JSP for each page. The bank exam-
ples pages continue to have a pageName.jsp and a pageNameBody.jsp for each
logical page.

Logic Tag Library

The logic library provides tags to manage conditional flow in a page as well as iter-
ation over a collection of objects. This includes tags, such as <logic:equals>,
<logic:notEquals>, <logic:lessThan>, and <logic:greaterThan>,
which evaluate bean properties and, based on the tag’s meaning, evaluate the body of
the tag only if the conditional test was satisfied. These tags are typically used for con-
tent that is data-driven or based on control parameters sent into the page. A particu-
larly helpful tag is <logic:iterate>, which is used to iterate over a collection of
objects. This tag can simplify some pages that would otherwise use JSP scriptlets to
manage this. You will see an example of this tag being used in the upcoming Struts
version of the view accounts page.

Best Practices for Designing the User
Interaction Architecture

A summary of the best practices for designing the User Interaction Architecture is
given in this section.

The User Interaction Architecture 299

Use a Generic MVC Implementation
A generic MVC, or Model 2, implementation such as Jakarta Struts provides an excel-
lent foundation on which to build the User Interaction Architecture. This approach
automates much of the front-end processing while providing a flexible and extensible
foundation to meet all types of application requirements. This practice adheres to a key
design principle, which is to make the normal case as simple as possible through
automation and configuration but to give the application the ability to override auto-
mated, configurable elements when necessary for complex cases. The true value that
comes with a package like Struts is the tight integration between the controller archi-
tecture and the tag library used to rapidly create JSP components. This automates
much of the forms processing, keeps the JSP code relatively clean, and allows the con-
trol logic to be isolated in action classes.

Abstract the Key Elements
of User Interaction
The core responsibilities of the User Interaction Architecture revolve around four key
abstractions: the user event, action, service, and Web page. The HTTP request should
be abstracted as a user event in order to isolate the HTTP protocol from the business
logic. The user event can then be configured through metadata and the controller ar-
chitecture to drive the rest of the processing. The event determines the action class that
handles the request and influences the service used to invoke the business logic. The
event and the result of the action or service are then used to determine the next page to
display to the user. By abstracting these key elements of user interaction, a good por-
tion of the front-end processing can be automated and defined through metadata.

Don’t Hard-Code Physical URLs
into the Application
Abstract physical URLs out of the application into metadata in order to enable au-
tomation, avoid broken links, and have more maintainable pages. The controller archi-
tecture can use the metadata to resolve logical page names and forward control to the
corresponding physical URL, typically implemented by a JSP.

Keep the Session Size to a Minimum
Keep the session size fairly small, especially for applications that need to scale to large
numbers of users. Use the request scope wherever possible to pass data from the con-
troller architecture to JSP components.

Minimize the Amount of Java Code
in a JSP
Large amounts of Java code interspersed with HTML in a JSP can quickly become
unreadable and unmanageable. Use custom tags wherever possible to encapsulate

300 J2EE Best Practices: Java Design Patterns, Automation, and Performance

presentation logic and integrate with the controller architecture. You can also move
logic out to action classes that perform setup work for the page or JavaBeans that are
referenced by the page. If you do have scriptlets within the JSP, try to use a few large
scriptlets as opposed to interspersing Java code throughout the entire HTML content.

Use a JSP Template Mechanism
A JSP template mechanism is an excellent way to apply a common look and feel to your
application Web pages. This approach makes it easy to make global changes to com-
mon aspects of pages and it also reduces the amount of duplicated code. Jakarta Struts
includes a tag library that can be used to implement this mechanism.

Summary

The cornerstone of the User Interaction Architecture is a generic implementation of the
MVC architecture applied to J2EE. Jakarta Struts provides an excellent implementation
that is readily available for developers to use. It provides a powerful tag library that in-
tegrates well with the Struts controller architecture to rapidly build transactional Web
pages. The typical functionality provided by the controller architecture can be broken
down into eight core responsibilities that revolve around four key abstractions: the
user event, action, service, and Web page. The responsibilities center on the user-event
abstraction that can be configured through metadata to drive the rest of the processing.
The last step the controller servlet takes on each request is to forward to the next page,
typically implemented as a JSP component. JSP components use should tag libraries as
much as possible to encapsulate presentation logic and avoid large amounts of Java
code interspersed with HTML. A JSP template mechanism provides a powerful way to
apply a common look and feel to your application’s Web pages.

With the design considerations and best practices from this chapter in mind, the
next chapter walks through the implementation of the User Interaction Architecture.
Web pages from the bank application are implemented that build on the service com-
ponent and business object functionality implemented in previous chapters. User in-
teraction functionality is implemented on top of Jakarta Struts, which is the first best
practice that is discussed in this chapter.

301301

Building the User Interaction
Architecture

C H A P T E R

8

This chapter looks at how you can build pages from the bank application using the
Struts framework. The existing business logic components created in earlier chapters
are used for the implementation of the model in this MVC architecture. The Struts
action classes invoke the service components as an entry point to the back-end busi-
ness logic. The overall JSP content is constructed using the Struts template tag mecha-
nism as was discussed in the last chapter.

The Change Address Page

This section shows how to build a Web page that contains a simple update form. The
change address example is used to illustrate the implementation of the core responsi-
bilities of the controller architecture using Struts. The change address page allows bank
customers to change their address. It updates only one object, the Address object,
which must already exist in the database. In order to construct the page, the current ad-
dress information needs to be retrieved from the database and displayed on the page.
Once the user edits the information and submits the form, the data should be validated
and updated back to the database. In order to simplify the JSP, it is built to assume that
the page context has already been set up prior to the JSP being executed. Thus, the

302 J2EE Best Practices: Java Design Patterns, Automation, and Performance

navigation event that takes the user to the change address page invokes an action to do
the setup work. This user event, which is defined as goChangeAddress, will be
processed by a GoChangeAddressAction class that retrieves the user’s address
and makes the data available through a request attribute to the JSP for display. The ac-
tual form submission event is named changeAddress, which can then be processed
by a ChangeAddressAction class. The flow through this page-generation loop is
defined in Figure 8.1.

Each action class invokes an appropriate service component to access the data and
business logic. The GetCustomerData service returns the customer and address
value objects. The ChangeAddress service takes an address value object and uses the
corresponding business object to update the database.

The relevant configuration for the change address page is shown here from
struts-config.xml:

<struts-config>

<form-beans>

<form-bean name="addressForm"

type="bank.struts.AddressForm"/>

</form-beans>

<global-forwards>

<forward name="changeAddress"

path="/struts/changeAddress.jsp" />

</global-forwards>

<action-mappings>

<action path="/struts/goChangeAddress"

type="bank.struts.GoChangeAddressAction" />

Figure 8.1 Change Address Page Flow.

Change
Address Page

change
Address

success/
failure

Get
Customer

Data
Service

Go
Change
Address
Action

Change
Address
Action

Change
Address
Service

Main Page

goChangeAddress

Building the User Interaction Architecture 303

<action path="/struts/changeAddress"

type="bank.struts.ChangeAddressAction"

name="addressForm"

scope="request"

input="/struts/changeAddress.jsp" />

</action>

</action-mappings>

</struts-config>

The <action> path attribute defines the user events discussed earlier. In
the example, the customer pages are placed in the /struts directory, thus the last
portion of the action path, for all intents and purposes, defines the named event.
The path /struts/goChangeAddress defines the goChangeAddress event. This is
the metadata used to support the controller’s determination of the event that
occurred and the action class to invoke (core responsibility one).

As described earlier, the GoChangeAddressAction retrieves the initial data for
display on the form. From this point, the changeAddress.jsp form is processed by
the ChangeAddressAction that invokes the change address service, which results
in the update to the database. The page is then redisplayed with either a confirmation
message or a list of errors.

Displayed using the template, the change address page looks like Figure 8.2.

The Go Change Address Event
and Action
The change address process is initiated by the goChangeAddress navigation event
(core responsibility 1). There is no event object to create (core responsibility 2) or appli-
cation validations to perform (core responsibility 4) because this was a page navigation
event. There is, however, an action class to invoke (core responsibility 3). The
GoChangeAddressAction is implemented as shown later. It invokes an application
service to retrieve the address data (core responsibility 5), manages the context for the
change address page (core responsibility 6), and defines that page as the next page to
display (core responsibility 7). After the action class has been executed, the controller
servlet forwards the request to the next page (core responsibility 8). Even though
goChangeAddress is just a navigation event, the page flow is made much cleaner by
implementing the setup logic for the change address page in theGoChangeAddress-
Action class. This reduces the amount of code in the change address JSP and isolates
the call to the data retrieval service.

One technique that you can use to minimize the amount of
Java code in a JSP is to move page setup logic out to an action class. This isolates
the service invocation from the page and also simplifies the page implementation
in many cases by allowing the JSP to assume that a form bean is passed in as
context.

BEST PRACTIC E

NOTE

304 J2EE Best Practices: Java Design Patterns, Automation, and Performance

This implementation of GoChangeAddressAction uses a Struts form bean as the
event object and the AddressData value object as part of the service data.

package bank.struts;

import java.io.IOException;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import org.apache.struts.util.MessageResources;

import blf.*;

import bank.AddressData;

/**

* Action class that implements the go change address action

*/

public class GoChangeAddressAction extends Action {

Figure 8.2 The Change Address Page.

Building the User Interaction Architecture 305

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Get hold of the session.

HttpSession session = request.getSession(true);

// Validate the request parameters.

ActionErrors errors = new ActionErrors();

try {

// You need to run a data retrieval service

// to initially get the address data.

// This service takes an argument list

// of just the customer identifier.

ServiceData sdata =

new ServiceData("GetCustomerData");

ArgumentList argList = new ArgumentList();

// Get the customer out of the session.

// This was set by the logon action.

argList.setProperty("customerId",

(String)session.getValue("customerId"));

sdata.setArgumentList(argList);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Service output has two value objects:

// 0 - Customer, 1 - Address;

// You just want the address.

AddressData addrData =

(AddressData) sdata.getOutputData(1);

// Store the address ID as a server-side parameter.

session.setAttribute("addressId",

addrData.getProperty("id"));

// Set the context for the next page.

AddressForm formBean = new AddressForm();

BlfStrutsConverter.convertValueObjToFormBean(

addrData,formBean);

request.setAttribute("addressForm",formBean);

306 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Return the input page to redisplay the form.

return (mapping.findForward("changeAddress"));

} catch (BlfException be) {

// Map BLF errors to action errors.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (mapping.findForward("changeAddress"));

} catch (Exception e) {

// Create a general action error for the exception.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR"));

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (mapping.findForward("changeAddress"));

}

}

}

There are a few interesting things to note about this action implementation using
Struts. The first is the use of ActionErrors as the error bucket. No actual edits are
done explicitly in this action class, but errors can be received back from the service
invocation. However, the service returns the ErrorList business errors, not the ac-
tion errors that are particular to the front end of the architecture. Thus, the business er-
rors need to be converted to action errors. Because there is also a need to convert
between value objects and form beans, a utility class can be created to do these con-
versions. The utility used for this purpose is a class named BlfStrutsConverter.
The action class invokes the convertErrorListmethod to create a set of Action-
Errors from the list of business errors. Also notice that when the context is set for the
next page in the case of an error, the saveErrors method on the Action base class
is used to store the errors in the request scope. The BlfStrutsConverter class was
also used to convert the address value object returned from the service to its corre-
sponding form bean used by the Struts controller architecture. This conversion class
will be discussed in detail later in this section when the ChangeAddressAction
class is discussed.

The other interesting aspect of this action class is the portion that sets the context for
the change address JSP. The address identifier is set as a session attribute so that the
change address action is able to determine later on what address instance is being up-
dated. Alternatively, the identifier could have been placed as a hidden HTML form
field and then sent back to the server with the rest of the object’s properties. However,
you might not want to expose the internal identifier of the address entity in the HTML
based on security or other considerations. The strategy to mitigate this concern is to

TEAMFL
Y

Team-Fly®

Building the User Interaction Architecture 307

use server-side parameters that feed to the service. In the bank application, the
customer id is also already stored in the session from the login page. The login process
and security in general will be discussed in detail in the next chapter. However, for the
time being, assume that the customer id is available in the session from any page in
order to identify the user. Because the bank object model has only a single address for
each customer, you could easily identify the address instance with an extra database
lookup on the customer table. This functionality would go in the ChangeAddress
service rather than the action. In the current example, the action adds the customer id
from the session as another property in the AddressData input value object. These
kinds of decisions are related to trade-offs that are made for highly scalable, secure ap-
plications. Each case will likely have different considerations. In this example, another
string (the address id) adds very little to the session, so it makes sense to store it as a
server-side parameter in the session.

The other step to manage user context in the GoChangeAddressAction class is
related to the immediate rendering of the change address page. This is accomplished
by adding an address form bean to the request scope. Remember that the change ad-
dress action was defined as having the form bean named addressForm in the request
scope. This action creates the form bean from the data retrieval service and puts it in
the request scope so that it is automatically picked up by the Struts servlet and JSP ar-
chitecture. Lastly, the ActionMapping.findForward method is used to return a
reference to the changeAddress forward defined in the global forwards section of the
struts-config.xml.

The Change Address JSP

The GoChangeAddressAction class returns the next logical page, change-
Address. This logical page maps to the /struts/changeAddress.jsp URL in
the Struts metadata. The Struts controller forwards the request to this JSP, which is the
manifestation of the generic template for the change address page. The template in-
cludes the URL, /struts/changeAddressBody.jsp, as the main content. Now
the actual JSP is executed and it has the address bean to use to display the existing val-
ues in the form. The user can modify the values and then click the submit button. The
form is posted and processed by the controller servlet. It is determined that the event
is changeAddress from the form’s action. This is defined in the JSP by the action
parameter of the <html:form> custom tag.

The changeAddress.jsp, which uses the Struts template tag library, is shown
here:

<%@ taglib uri='/WEB-INF/struts-template.tld'

prefix='template' %>

<template:insert template='/struts/template.jsp'>

<template:put name='title' content='Change Address'

direct='true'/>

<template:put name='header' content='/struts/header.jsp' />

<template:put name='navbar' content='/struts/navBar.jsp' />

308 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<template:put name='body'

content='/struts/changeAddressBody.jsp'/>

<template:put name='footer' content='/struts/footer.jsp' />

</template:insert>

Use the Struts template tag library or an analogous
mechanism to simplify the development and maintenance of the common aspects
of application Web pages. A standard naming scheme can be used to distinguish
between JSP components that implement template instances and page content.

The main content is then found in changeAddressBody.jsp.

<%@page import="bank.struts.AddressForm"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<table width="100%">

<tr align="center"><td><html:errors/></td></tr>

</table>

<%

// You need to get the state value so you can pass it

// to your custom drop-down tag.

AddressForm formBean =

(AddressForm) request.getAttribute("addressForm");

String currentState = formBean.getState();

%>

<html:form action="/struts/changeAddress" focus="line1">

<table width="100%">

<tr>

<td align=right><bean:message key="prompt.line1" /></td>

<td><html:text property="line1" size="20" maxlength="30"/></td>

</tr>

<tr>

<td align=right><bean:message key="prompt.line2" /></td>

<td><html:text property="line2" size="20" maxlength="30"/></td>

</tr>

<tr>

<td align=right><bean:message key="prompt.city" /></td>

<td><html:text property="city" size="10" maxlength="20"/></td>

</tr>

<tr>

<td align=right><bean:message key="prompt.state" /></td>

<td><blf:dropDown htmlName="state" cache="States"

selectedOption='<%=currentState%>' /> </td>

</tr>

<tr>

<td align=right><bean:message key="prompt.zip" /></td>

BEST PRACTIC E

Building the User Interaction Architecture 309

<td><html:text property="zip" size="10" maxlength="20"/></td>

</tr>

<tr>

<td align=right><bean:message key="prompt.country" /></td>

<td><html:text property="country" size="10"

maxlength="20"/></td>

</tr>

</table>

<table width=100%>

<tr>

<td align="center"><html:submit property="submit"

value="Change Address"/></td>

</tr>

</table>

</html:form>

Note that the <HTML> and associated tags are not needed because this page is being
included inside of the master JSP template. The page itself is actually fairly straightfor-
ward. The <html:errors> tag is used to display any errors that occur on submis-
sions. All of the form controls except the select list are created using <html:text>
tags that directly reference the AddressForm bean defined for this action. The only
scriptlet here is used to ascertain the current value of the state field for the drop-down
tag. A Business Logic Foundation drop-down tag is used so that it can integrate directly
into the CacheList mechanism developed in the Business Object Architecture chap-
ters. If you wanted to use the Struts <html:select> tag to create this drop-down,
you could store the cached data as JavaBeans with getter methods for the values and
labels. It is important to note that the power of Struts is based on introspection and the
JavaBeans convention for properties. Consequently, if components in the reference ar-
chitecture use a different interface, you need to map these objects to JavaBeans in order
to take advantage of all of the functionality. Thus, in the case of value objects, you may
want to implement both the standard property interface and JavaBeans getters and set-
ters. Examples of this concept were shown in the business object chapters. In this ex-
ample, the BlfStrutsConverter class is used to convert between generic value
objects and JavaBeans in order to plug them into the Struts framework. A version of
this example using a combined value object and event object is discussed later. You
may still want to have some type of abstraction between the form beans and the value
objects because of the Web-centric nature of the form beans. As is the case here, you
would need an extra conversion to take full advantage of Struts.

The <blf:dropdown> tag used in changeAddressBody.jsp
illustrates the great power of custom JSP tag libraries. This tag seamlessly integrates
the cached data stored within the CacheListmechanism into a form field in the
page. It takes care of creating the HTML for the form field by accessing the state
cache and mapping the state code from the form bean to its corresponding display
value. This example also shows how you can create your own tag libraries and
easily integrate them into JavaServer Pages that have been created using Struts as a
foundation. The code for the drop-down tag is shown at the end of the example.

NOTE

310 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The Address Form Bean

The address form bean is implemented as follows. It is primarily a JavaBean used as a
data structure, but it also implements the two ActionForm template methods,
validate and reset. The validate method checks that required fields were pop-
ulated on the form and that the zip code is the proper length. In this example, 5 digits
were arbitrarily assumed to be the correct length of the zip code in order to demon-
strate a simple application-specific validation:

package bank.struts;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionError;

import org.apache.struts.action.ActionErrors;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

/**

* Form bean for the address entity

*/

public final class AddressForm extends ActionForm {

private String line1 = null;

private String line2 = null;

private String city = null;

private String state = null;

private String zip = null;

private String country = null;

public String getLine1() {

return line1;

}

public void setLine1(String value) {

line1 = value;

}

public String getLine2() {

return line2;

}

public void setLine2(String value) {

line2 = value;

}

public String getCity() {

return city;

}

public void setCity(String value) {

city = value;

}

Building the User Interaction Architecture 311

public String getState() {

return state;

}

public void setState(String value) {

state = value;

}

public String getZip() {

return zip;

}

public void setZip(String value) {

zip = value;

}

public String getCountry() {

return country;

}

public void setCountry(String value) {

country = value;

}

/**

* Reset all properties to their default values.

*/

public void reset(ActionMapping mapping,

HttpServletRequest request) {

this.line1 = null;

this.line2 = null;

this.city = null;

this.state = null;

this.zip = null;

this.country = null;

}

/**

* Validate the properties that have been set from this

* HTTP request and return any errors.

*/

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if ((line1 == null) || (line1.length() < 1))

errors.add("line1",

new ActionError("REQ_FIELD","line1"));

312 J2EE Best Practices: Java Design Patterns, Automation, and Performance

if ((city == null) || (city.length() < 1))

errors.add("city",

new ActionError("REQ_FIELD","city"));

if ((state == null) || (state.length() < 1))

errors.add("state",

new ActionError("REQ_FIELD","state"));

if ((zip == null) || (zip.length() < 1)) {

errors.add("zip",

new ActionError("REQ_FIELD","zip"));

} else if (zip.length() != 5) {

errors.add("zip",

new ActionError("INVALID_ZIP",zip));

}

if ((country == null) || (country.length() < 1))

errors.add("country",

new ActionError("REQ_FIELD",

"country"));

return errors;

}

}

The ChangeAddressAction in this example is triggered when the user submits
the change address form. In this case, the controller implements the first four core
responsibilities. It determines that the changeAddress event occurred and that the
request should be delegated to the ChangeAddressAction. It populates the
AddressForm bean shown earlier from the input data and invokes its validate
method to perform the validations required for the page. It is now the responsibility of
the ChangeAddressAction class to invoke the ChangeAddress service, manage
the user context, handle any errors that occur, and define the next page. In this case, the
change address form is always shown next with either confirmation or error messages.
The ChangeAddressAction class is implemented as follows:

package bank.struts;

import java.io.IOException;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import org.apache.struts.util.MessageResources;

import blf.*;

import bank.AddressData;

/**

* Action class that implements the go change address action

*/

public class ChangeAddressAction extends Action {

Building the User Interaction Architecture 313

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Get hold of the session.

HttpSession session = request.getSession(true);

// Get the request parameters.

ActionErrors errors = new ActionErrors();

String line1 = ((AddressForm) form).getLine1();

String line2 = ((AddressForm) form).getLine2();

String city = ((AddressForm) form).getCity();

String state = ((AddressForm) form).getState();

String zip = ((AddressForm) form).getZip();

String country = ((AddressForm) form).getCountry();

try {

// Create a service data object for this service.

ServiceData sdata =

new ServiceData("ChangeAddress");

AddressData addrData = new AddressData();

addrData.setProperty("line1",line1);

addrData.setProperty("line2",line2);

addrData.setProperty("city",city);

addrData.setProperty("state",state);

addrData.setProperty("zip",zip);

addrData.setProperty("country",country);

addrData.setProperty("id",

session.getAttribute("addressId"));

sdata.addInputData(addrData);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Add a confirmation message to inform the user

// that the update was successful.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("ADDR_CONFIRMATION"));

// Set the context so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (new ActionForward(mapping.getInput()));

314 J2EE Best Practices: Java Design Patterns, Automation, and Performance

} catch (BlfException be) {

// Map BLF errors to action errors.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (new ActionForward(mapping.getInput()));

} catch (Exception e) {

// Create a general action error for the exception.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR"));

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (new ActionForward(mapping.getInput()));

}

}

}

The validate method of the AddressForm bean was automatically invoked by
the controller servlet prior to this class being executed; thus, if any required fields are
missing or basic data validations fail, you automatically get the input form redisplayed
with the error messages. The change address JSP, which is the input form in this case,
is shown if the update is a success or a failure. After the call to the service, the
ADDR_CONFIRMATIONmessage is added to the error bucket to provide the confirma-
tion message. Note that this is only an informational message, but because this is the
action class and it is used after the call to the Session Bean, it could not have affected
the transaction anyway.

Using a Conversion Utility with
Separate Event and Value Objects
In the preceding ChangeAddressAction code, the service data was explicitly
populated from the form bean so that you could see the process. However, you can also
automate this process and encapsulate the logic in the BlfStrutsConverter class
that was introduced earlier. The relevant portion of the code could be rewritten to
create the service data using BlfStrutsConverter.

// Create a service data object for this service.

ServiceData sdata =

new ServiceData("ChangeAddress");

AddressData addrData = new AddressData();

BlfStrutsConverter.convertFormBeanToValueObj(

form,addrData);

sdata.addInputData(addrData);

Building the User Interaction Architecture 315

The code for the conversion method in BlfStrutsConverter uses the
PropertyUtils class and the list of attributes from the reference architecture meta-
data to populate the value object. The code for this method is shown here:

public static void convertFormBeanToValueObj(

ActionForm formBean, ValueObject valueObject)

throws BlfException {

try {

Set propNames =

valueObject.getAttributeMetadata().keySet();

Iterator iter = propNames.iterator();

while (iter.hasNext()) {

String propName = (String) iter.next();

try {

Object value =

PropertyUtils.getProperty(formBean,

propName);

valueObject.setProperty(propName,value);

// If the property does not exist

// on the form bean, it can be

// ignored. Sometimes, not all

// of the fields of an object

// are on a given form.

} catch (NoSuchMethodException ignore) {}

}

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

}

Validation
As mentioned earlier, the validate method of the form bean is automatically in-
voked to perform required field checking and data validation. As an example, say that
the user did not enter the line1 and city fields in the change address form. These
are required fields that should be caught by the value object’s validatemethod. One
such validation is shown here:

if ((line1 == null) || (line1.length() < 1))

errors.add("line1",

new ActionError("REQ_FIELD","line1"));

The REQ_FIELD error message is defined in the ApplicationResources.
properties file that Struts uses for action errors. This string is added to the message
list at run time to provide a helpful note to the user:

REQ_FIELD=The field {0} is required.

316 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Any errors that are either returned from the validate method or saved using the
saveErrors method in the action class are displayed using the <html:errors> tag. In
this validation example, in which the user fails to enter a value for line1 or city, the
form bean adds two REQ_FIELD errors to the list, which then get displayed on the
page as shown in Figure 8.3.

Using the Validation Template in the Form Bean

Although this example works fine as is shown earlier, there is a slight design problem
with the validation logic in that it is duplicated both in the form bean validate
method and the validate template of the value object. In earlier chapters, a validate
template was created that used the application metadata to perform required
field edits and data type validations. This template also called a blfValidate
method that was optionally implemented by the application developer to implement
application-specific edits. It would not make sense to have to implement this
validation logic all over again in each form bean. The same set of logic used in the base
value object and business object implementations can also be used within the Struts
form bean structure. The same inheritance structure can be used to provide this
functionality.

Figure 8.3 Change Address Page with Required Field Errors.

TEAMFL
Y

Team-Fly®

Building the User Interaction Architecture 317

Use the same Template Method pattern within form beans
to implement a validate template. This mechanism can reuse much of the property
validation and handling logic implemented for use with the business objects. This
prevents a duplication of code and effort.

A base class called BaseFormBean can act just like the base business object class.
The relevant code from the business object base class can be used almost exactly as is
because all of the property manipulation is based on introspection and the generic
property methods found in the ValueObject interface. In fact, it makes sense to
have BaseFormBean implement the ValueObject interface.

There is one minor difficulty with having BaseFormBean extend Strut’s
ActionForm class and implement the ValueObject interface. An earlier
version of Struts used a validate method with no arguments that returned an
array of strings. Thus, the validate method as it was defined in ValueObject
conflicts with the existing method signature. To resolve this issue, the validate
method needs to be moved up to the business object interface so that it does not
override the return type of the validate method. A StrutsValueObject
interface that extends ValueObject can be used to provide a validate-
FormBean method for this purpose that does not conflict with any other methods.
Only Web-tier components ever need to refer to the form beans by this interface. If
the form bean is used as both the event object and value object, the service
implementations still need to refer to them only by the ValueObject interface.

The class diagram for form beans as value objects is shown in Figure 8.4.
The StrutsValueObject interface simply contains the validateFormBean

method.

package blf.struts;

import blf.ValueObject;

import blf.BlfException;

import org.apache.struts.action.ActionErrors;

/**

* This interface is needed because the original

* value object interface overrode the return

* value of a deprecated validate method in

* the StrutsFormBean.

*/

public interface StrutsValueObject extends ValueObject {

/**

* Validate method.

*/

public ActionErrors validateFormBean() throws BlfException;

}

NOTE

BEST PRACTIC E

318 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 8.4 Class Diagram for Struts Form Beans as Value Objects.

<<realize>>

BaseFormBean

validate()
validateFormBean()
get/setProperty()

<<interface>>
ValueObject

setProperty()
getProperty()
getDecimalProperty()
getDateProperty()

ActionForm

validate()
reset()

MyFormBean

property1:<data type>
property2:<data type>

blfValidate()

<<interface>>
StrutsValueObject

validateFormBean()

The implementation of BaseFormBean calls the validateFormBean method,
which now becomes the validate Template Method for form beans used as value
objects. One interesting thing to note is that the generic validation methods such as
validateRequiredFields and validatePropertyValues should check
only those properties that have been modified. This is not true for business objects that
are required to check all properties specified in the object metadata. However, an event
object or value object does not necessarily populate all of the object’s properties. This is
true for two primary reasons:

Some properties are supplied through context management rather than the
input form. For example, the id property of the address is not specified on the
form because it is set in the action class from a value stored in the session.
Thus, you would not want to issue an error in this case.

Some pages allow a user to update only a subset of an object’s properties; thus,
you would not want to validate what has not been specified.

Optionally, you could define metadata specifically for event objects, in which case
you could always validate all of the properties of the bean. However, it is often much
easier to reuse object metadata, as is the case with the change address example. The
change address form contains all of the address fields; thus, you can point to the same
Address definition in the metadata to avoid duplication.

Building the User Interaction Architecture 319

How can you tell if a property was modified? It turns out that the form bean needs
to be refactored to capture this data. A collection of property names is maintained for
those properties that were modified. The generic setProperty method adds the
name to this list for each property if it has not already been modified. Because Struts
uses the regular setter methods through introspection, another mechanism is also
needed to track this. Thus, the setModified method, which will need to be called in
the subclass implementation of the setter methods, was added. The address form bean
later in this section will illustrate this concept.

The relevant code from BaseFormBean is shown here:

public class BaseFormBean extends ActionForm

implements StrutsValueObject, java.io.Serializable {

protected HashMap attributeMetadata;

protected String objectName;

// Collection of property names that were modified

protected ArrayList modifiedProperties;

// Error list to hold validation errors

protected ActionErrors errorList;

private BaseFormBean() {

}

public BaseFormBean(String objectName) {

try

{

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(objectName);

attributeMetadata = bom.getPropertyMap();

this.objectName = objectName;

modifiedProperties = new ArrayList();

}

catch (Exception e)

{

e.printStackTrace();

}

}

protected ActionErrors getErrorList() {

if (errorList == null) {

errorList = new ActionErrors();

}

return errorList;

}

/**

* Validate the properties that have been set from this

* HTTP request and return any errors.

*/

320 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {

try {

// Run the standard validate template.

validateFormBean();

// Run a validation template that takes

// the request object and action

// mapping.

blfValidate(mapping,request);

} catch (BlfException be) {

errorList.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR",

be.getMessage()));

}

return errorList;

}

/**

* Validation template method particular to form beans,

* which takes request object and action mapping

*/

public void blfValidate(ActionMapping mapping,

HttpServletRequest request) {

// Base class implementation does nothing.

}

/**

* Set that a property was modified.

*/

protected void setModified(String propertyName) {

if (!modifiedProperties.contains(propertyName)) {

modifiedProperties.add(propertyName);

}

}

/**

* Validate the value object's data.

*/

public ActionErrors validateFormBean()

throws BlfException {

// Initialize the error list.

errorList = new ActionErrors();

// Validate all required fields.

validateRequiredFields();

Building the User Interaction Architecture 321

// Validate data types.

validatePropertyValues();

// Invoke the Template Method for the application.

// Specific validation

blfValidate();

return errorList;

}

/**

* Template Method for application-specific validation;

* base class implementation is empty.

*/

public void blfValidate() throws BlfException {

}

/**

* For each modified property, check that a value exists

* if it is defined as required in the metadata.

*/

public void validateRequiredFields() throws BlfException {

// Validate only those that have been populated.

Iterator iter = modifiedProperties.iterator();

while (iter.hasNext()) {

// Get the properties metadata.

String propName = (String) iter.next();

PropertyMetadata prop =

getPropertyMetadata(propName);

if (prop.isRequired()) {

//

// Field is required, so check that it

// has a value.

//

String value = null;

try {

value = getProperty(prop.getName());

} catch (PropertyException ignore) {}

// Add an error to the bucket if no value.

if ((value == null) || (value.equals(""))) {

errorList.add(prop.getName(),

new ActionError("REQ_FIELD",

prop.getName()));

}

}

}

}

322 J2EE Best Practices: Java Design Patterns, Automation, and Performance

/**

* Use the property validator mechanism to validate

* data types for populated properties.

*/

public void validatePropertyValues() throws BlfException {

// Validate only those that have been populated.

Iterator iter = modifiedProperties.iterator();

while (iter.hasNext()) {

// Get the properties metadata.

String propName = (String) iter.next();

PropertyMetadata pmd =

getPropertyMetadata(propName);

String propValue = getProperty(pmd.getName());

// Invoke helper method to invoke

// appropriate property validator.

try {

validatePropertyDataType(pmd.getType(),

propValue);

} catch (BlfException be) {

// Add to the error bucket if an error

// was detected.

getErrorList().add(propName,

new ActionError("INVALID_VALUE",propValue));

}

}

}

/**

* Property management methods

*/

public void setProperty(String propertyName, Object value)

throws PropertyException {

// Mark that this property is modified.

// Only modified properties are validated,

// unlike business objects, due to incomplete

// data that can come from the front end.

setModified(propertyName);

// Validate the data type first because you

// are going to set the actual member variable.

PropertyMetadata prop =

getPropertyMetadata(propertyName);

String propType = prop.getType();

try {

// Use the utility class to invoke the set method.

PropertyUtils.setProperty(this,propertyName,

convertToObjectFormat(propType,value));

Building the User Interaction Architecture 323

} catch (BlfException ex) {

throw new PropertyException(ex.getMessage(),

ex.getErrorList());

} catch (Exception ex) {

throw new PropertyException(ex.getMessage());

}

}

public String getProperty(String propertyName)

throws PropertyException {

Object value = null;

try {

// Get the member variable value as an object.

Object obj =

PropertyUtils.getProperty(this,propertyName);

// Convert the object to a string using the

// property-handler mechanism.

PropertyMetadata prop =

getPropertyMetadata(propertyName);

String type = prop.getType();

value = convertToStringFormat(type,obj);

} catch (NoSuchMethodException ex) {

// This happens when a property specified

// in the metadata does not exist. Ignore it

// so that you can use the same metadata with

// Java business objects, Entity Beans,

// and form beans.

// Log a note just in case this is

// actually the cause of an error.

System.out.println("BaseFormBean missing getter "

+ propertyName);

return null;

} catch (Exception ex) {

throw new PropertyException(ex.getMessage());

}

if (value == null) return null;

return value.toString();

}

public BigDecimal getDecimalProperty(String propertyName)

throws PropertyException {

Object value = null;

try {

value =

PropertyUtils.getProperty(this,propertyName);

324 J2EE Best Practices: Java Design Patterns, Automation, and Performance

} catch (Exception e) {

throw new PropertyException(e.getMessage());

}

return (BigDecimal) value;

}

// Rest of property management methods to follow ...

}

The new AddressFormBean does not have to implement required field checking
in a validatemethod. Rather, it only has to implement the specific edits for the event
object in the blfValidate Template Method. The validate method is defined
with no arguments as was the case with business objects and regular value objects. It is
also defined to match the signature of the Struts form bean validate method that
takes the request object and the action mapping as arguments. The validate template in
BaseFormBean invokes both, so you can place your logic in either one.

With regards to properties, the setModified method is invoked in each setter
method because there is no other way to know if a given property was modified. This
is a small inconvenience that can be easily resolved if you are using code-generation
tools to create your form beans. Otherwise, be sure to add this method to each setter
method, or else the validate template as it was implemented earlier will not validate
the properties. The blfValidate Template Method is now automatically invoked
through the form bean’s validate template, which in turn was invoked by the Struts
controller servlet. The validate method in BaseFormBean runs the standard vali-
dation template first shown in the business object chapters. The code for Address-
FormBean is shown here. Again, note that the setModified method is used in
setter methods to track which properties are modified for validation purposes.

public class AddressFormBean extends BaseFormBean {

private String id = null;

private String line1 = null;

private String line2 = null;

private String city = null;

private String state = null;

private String zip = null;

private String country = null;

/**

* Default constructor

*/

public AddressFormBean() {

super("Address");

}

public String getId() {

return id;

}

Building the User Interaction Architecture 325

public void setId(String value) {

setModified("id");

id = value;

}

public String getLine1() {

return line1;

}

public void setLine1(String value) {

setModified("line1");

line1 = value;

}

// Rest of property accessors to follow...

/**

* Template Method for application-specific validation;

* base class implementation is empty.

*/

public void blfValidate() throws BlfException {

// Validate only fields that have

// been populated in value objects.

if (modifiedProperties.contains("zip")) {

String zip = getProperty("zip");

if (zip.length() != 5) {

getErrorList().add("zip",

new ActionError("INVALID_ZIP",zip));

}

}

}

}

Using the Form Bean as Both the
Event Object and Value Object
The version of the address form bean that implements the ValueObject interface
can be used as both the event object and the service data object. This eliminates the
data conversion between the two separate structures. However, the form bean does
have methods that would not be applicable as a pure value object. For example, the
validate method that takes the HttpServletRequest object would not be rele-
vant on the EJB tier. The ActionForm base class, in fact, has a reference to the servlet
as a member. However, it is marked as transient, so it is not serialized and sent to
a remote EJB, as is the case with the Session Bean service components. If your service
components are local Session Beans, the servlet reference would be available to the ser-
vice component but should not be used. Thus, the only reasons you may want to keep
the event and value objects separate is if you want the additional flexibility or if the
Web-centric nature of the form bean bothers you enough to forgo the option. Clearly, if
the form bean is used as a value object that is sent back and forth from the EJB tier,

326 J2EE Best Practices: Java Design Patterns, Automation, and Performance

there is a small amount of training or documentation needed to educate your develop-
ment staff on its proper use.

To implement this option in the change address example, you should make sure that
the ChangeAddress service refers only to the ValueObject interface, in which
case it does not matter what the actual implementation of the value object is. The rele-
vant lines of the ChangeAddressServiceImpl are shown here to illustrate the
insignificance of the value object implementation.

ValueObject addressData =

(ValueObject) serviceData.getInputData(0);

String addressId = addressData.getProperty("id");

Address addr = (Address)

BusinessFactoryImpl.findByPrimaryKey("Address",

addressId);

addr.setProperties(addressData);

addr.save();

The address metadata needs to be modified to define a version of the form bean
named AddressFormBean as the value object class. The action classes are not re-
quired to use the BlfStrutsConverter class in this case. They can directly refer-
ence the value object that is sent back from the GetCustomerData service. The
GoChangeAddressAction implementation now references only theValueObject
interface as shown here in the portion of the code that invokes the service and sets the
page context:

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Service output has two value objects:

// 0 - Customer, 1 - Address;

// You just want the address.

ValueObject addrData =

(ValueObject) sdata.getOutputData(1);

// Store the address ID as a server-side parameter.

session.setAttribute("addressId",

addrData.getProperty("id"));

// Set the context for the next page.

request.setAttribute("addressForm",addrData);

The ChangeAddressAction applies the same type of changes. It references the
form bean as a ValueObject and uses it to invoke the service. The relevant code
from ChangeAddressAction is shown below.

// Create a service data object for this service.

ServiceData sdata =

new ServiceData("ChangeAddress");

TEAMFL
Y

Team-Fly®

Building the User Interaction Architecture 327

ValueObject formBean = (ValueObject) form;

formBean.setProperty("id",

session.getAttribute("addressId"));

sdata.addInputData(formBean);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

The Drop-Down Tag
In the changeAddress.jsp, it was noted earlier that a custom tag was used to
create the drop-down list of states for the user to choose from on the form. This is a
common recurrence in business applications, so it makes sense for the logic to be en-
capsulated in a custom tag. It is also common for the values in the list to come from one
of the cache lists. Drop-down data commonly takes the form of relatively static data,
such as the fifty United States. Thus, you can integrate the tag with the CacheList
mechanism. The HTML to invoke the tag is the following:

<td><blf:dropDown htmlName="state" cache="States"

selectedOption='<%=currentState%>' /> </td>

The drop-down tag takes the HTML name of the input control, the name of the
cache to get the code/values from, and an optional preselected option. It uses the cache
keys as the values of the list with the cached objects being the labels. In this case, the
cache is usually implemented as a LookupCache that deals with all strings, although
it is not required to be a LookupCache. The cached objects can implement the
toString()method to represent their values in the list. The code for DropDownTag
is shown here. It is a bit more complex than the current illustration because it can also
support the creation of lists from any collection of value objects that is stored in the
page context. In this case, the property names to be used for the labels and values of the
list must be specified.

package blf;

import java.io.IOException;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpSession;

import javax.servlet.jsp.JspException;

import javax.servlet.jsp.JspWriter;

import javax.servlet.jsp.PageContext;

import javax.servlet.jsp.tagext.TagSupport;

import java.util.*;

/**

* Drop-down tag

*/

public class DropDownTag extends TagSupport {

328 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Name to make the HTML control.

private String htmlName = null;

// A name of a collection of value objects;

// either this or a cache name must be

// specified.

private String collection = null;

// For collections, the property name

// that is the label on the list

private String labelProperty = null;

// For collections, the property name

// that is the value on the list

private String valueProperty = null;

// The cache name to use for this

// drop-down

private String cache = null;

// For any configuration, the option

// that should be preselected

private String selectedOption = null;

public String getHtmlName() {

return htmlName;

}

public void setHtmlName(String value) {

htmlName = value;

}

public String getCollection() {

return collection;

}

public void setCollection(String value) {

collection = value;

}

public String getLabelProperty() {

return labelProperty;

}

public void setLabelProperty(String value) {

labelProperty = value;

}

public String getValueProperty() {

return valueProperty;

}

public void setValueProperty(String value) {

valueProperty = value;

}

public String getSelectedOption() {

return selectedOption;

}

Building the User Interaction Architecture 329

public void setSelectedOption(String value) {

selectedOption = value;

}

public String getCache() {

return cache;

}

public void setCache(String value) {

cache = value;

}

/**

* Process the start of this tag.

*/

public int doStartTag() throws JspException {

StringBuffer buffer = new StringBuffer();

buffer.append ("<select name=\"" + htmlName +

"\" size=\"1\">\n");

// Determine if you use a single collection

// of objects from a cache

// or two separate collections of labels and values.

if (collection != null) {

//

// Using a collection of value objects

//

Collection coll = (Collection)

pageContext.findAttribute(collection);

Iterator iter = coll.iterator();

while (iter.hasNext ()) {

ValueObject collObject =

(ValueObject) iter.next();

String label = null;

String value = null;

try {

label = (String)

collObject.getProperty(labelProperty);

value = (String)

collObject.getProperty(valueProperty);

} catch (PropertyException pe) {

throw new JspException(pe.getMessage());

}

if (selectedOption == null) {

writeOption(buffer,label,value,false);

} else {

if (value.equals (selectedOption)) {

writeOption(buffer,label,value,true);

} else {

writeOption(buffer,label,value,false);

}

330 J2EE Best Practices: Java Design Patterns, Automation, and Performance

}

}

} else {

//

// Using a cache

//

ObjectCache objCache = null;

try {

objCache =

CacheList.getInstance().getCache(cache);

} catch (BlfException be) {

throw new JspException(be.getMessage());

}

Iterator labelIter = objCache.valuesIterator();

Iterator valueIter = objCache.keysIterator();

while (labelIter.hasNext ()) {

String label = (String) labelIter.next();

String value = (String) valueIter.next();

if (selectedOption == null) {

writeOption(buffer,label,value,false);

} else {

if (value.equals (selectedOption)) {

writeOption(buffer,label,value,true);

} else {

writeOption(buffer,label,value,false);

}

}

}

}

// Close the HTML tag.

buffer.append ("</select>\n");

// Write out the HTML to the page.

JspWriter writer = pageContext.getOut();

try {

writer.print(buffer.toString());

} catch (IOException e) {

throw new JspException(e.getMessage());

}

// Evaluate the included content of this tag.

return (EVAL_BODY_INCLUDE);

}

/**

* Process the end of this tag.

*/

public int doEndTag() throws JspException {

Building the User Interaction Architecture 331

// Evaluate the remainder of this page.

return (EVAL_PAGE);

}

/**

* Release any acquired resources.

*/

public void release() {

}

/**

* Helper method to write HTML

* for an individual option

*/

public void writeOption(StringBuffer buffer, String label,

String value, boolean isSelected) {

if (isSelected) {

buffer.append ("<option selected value=\"");

} else {

buffer.append ("<option value=\"");

}

buffer.append(value);

buffer.append("\">");

buffer.append(label);

buffer.append("</option>\n");

}

}

The tag library descriptor referred to in the JavaService Pages is defined for this tag
as follows. The collection, labelProperty, and valueProperty tag attrib-
utes were not used in the change address example. They are used for the creation of
drop-down lists from any collection of value objects stored in the page context. Any
subsequent Business Logic Foundation tags are added to this descriptor.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE taglib PUBLIC

"-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"

"http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>

<tlibversion>1.0</tlibversion>

<jspversion>1.1</jspversion>

<shortname>blf</shortname>

<tag>

<name>dropDown</name>

<tagclass>blf.DropDownTag</tagclass>

<bodycontent>empty</bodycontent>

<attribute>

<name>htmlName</name>

332 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<required>true</required>

<rtexprvalue>false</rtexprvalue>

</attribute>

<attribute>

<name>selectedOption</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

<attribute>

<name>cache</name>

<required>false</required>

<rtexprvalue>true</rtexprvalue>

</attribute>

<attribute>

<name>collection</name>

<required>false</required>

<rtexprvalue>false</rtexprvalue>

</attribute>

<attribute>

<name>labelProperty</name>

<required>false</required>

<rtexprvalue>false</rtexprvalue>

</attribute>

<attribute>

<name>valueProperty</name>

<required>false</required>

<rtexprvalue>false</rtexprvalue>

</attribute>

</tag>

</taglib>

The drop-down tag illustrates a powerful concept used by Jakarta Struts and the
reference architecture. The custom tag integrates directly into the caching component
of the Business Logic Foundation. This adds reusable functionality to the page in a
straightforward manner that simplifies the JSP code and maintainability of the overall
application.

Use JSP custom tags to encapsulate presentation logic and
provide tight integration with the reference architecture. This simplifies the JSP
code through standards-based, reusable page components.

The View Accounts Page

The view accounts page invokes a data retrieval service to get the list of accounts for
the customer. It displays the list of accounts and their current balances in a table as
shown in Figure 8.5.

The viewAccounts event triggers the ViewAccountsAction, which prepares
for the JSP by retrieving the collection of account value objects for that customer. It

BEST PRACTIC E

Building the User Interaction Architecture 333

invokes the GetAccountList service to access the database that takes an argument
list with the customer id as a parameter. All it has to do then is set the output data
from the service, which is a collection of account value objects, in the request scope.
The page flow for view accounts is shown in Figure 8.6.

The Struts configuration data for this page is shown here. Notice that there is no
form bean or other associated information. This is analogous to a navigation event
being processed by an action class. In fact, the HTML link in the navigation bar to get
to this page is as follows:

View Accounts

The action mapping is defined like this:

<action path="/struts/viewAccounts"

type="bank.struts.ViewAccountsAction">

<forward name="viewAccounts"

path="/struts/viewAccounts.jsp"/>

</action>

Figure 8.5 The View Accounts Page.

334 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 8.6 View Accounts Page Flow.

Main Page
viewAccounts View

Accounts
Action

Get
Account

List
Service

View Accounts
Page

Because you have to execute the ViewAccountsAction before you can display
the JSP, you need to define the forward only at the action level. This enforces the fact
that you have to get to the JSP through the action class.

The View Accounts Action
The ViewAccountsAction is implemented as follows:

package bank.struts;

import java.io.IOException;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import org.apache.struts.util.MessageResources;

import blf.*;

import bank.CustomerData;

/**

* Action class that implements the view accounts action

*/

public class ViewAccountsAction extends Action {

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Get hold of the session.

HttpSession session = request.getSession(true);

// Create an empty list of errors.

ActionErrors errors = new ActionErrors();

Building the User Interaction Architecture 335

try {

// Run a data retrieval service

// to initially get the address data.

// This service takes an argument list

// of just the customer identifier.

ServiceData sdata =

new ServiceData("GetAccountList");

ArgumentList argList = new ArgumentList();

argList.setProperty("customerId",

(String)session.getValue("customerId"));

sdata.setArgumentList(argList);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

//

// Set context for the next page.

//

request.setAttribute(PageConstants.DATA,

sdata.getOutputData());

// Set next page to main page.

return (mapping.findForward("viewAccounts"));

} catch (BlfException be) {

// On an error, set an empty list in the context.

request.setAttribute(PageConstants.DATA,

new ArrayList());

// Map BLF errors to action errors

// and set so the next page can see them.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

saveErrors(request, errors);

// Go to the view accounts page and display

// the errors.

return (mapping.findForward("viewAccounts"));

} catch (Exception e) {

// On an error, set an empty list in the context.

request.setAttribute(PageConstants.DATA,

new ArrayList());

// Create a general action error for the exception

// and set so the next page can see them.

errors.add(ActionErrors.GLOBAL_ERROR,

336 J2EE Best Practices: Java Design Patterns, Automation, and Performance

new ActionError("GENERAL_SERVICE_ERROR",

e.getMessage()));

saveErrors(request, errors);

// Go to the view accounts page and display

// the errors.

return (mapping.findForward("viewAccounts"));

}

}

}

The account value object in this case is implemented as an extension of Base-
ValueObject, but explicit getters and setters are added so that the Struts tags can be
used within the JSP. A portion of AccountData is shown here to illustrate this. Note
that this is just one option; you could also use a Struts AccountFormBean that im-
plements the ValueObject interface, similar to the alternative shown for the change
address page.

public class AccountData extends BaseValueObject

implements java.io.Serializable {

/**

* Default constructor

*/

public AccountData() {

super("Account");

}

//

// JavaBean property methods

//

public String getId() throws PropertyException {

return getProperty("id");

}

public void setId(String value) throws PropertyException {

setProperty("id",value);

}

public String getNumber() throws PropertyException {

return getProperty("number");

}

public void setNumber(String value)

throws PropertyException {

setProperty("number",value);

}

//

// Rest of accessors to follow...

//

}

TEAMFL
Y

Team-Fly®

Building the User Interaction Architecture 337

The PageConstants.DATA key was used to designate the account data to the JSP.
The PageConstants class is shown here:

package blf;

/**

* This class defines constants to be used by actions and JavaServer Pages

* for dealing with attribute names of the request

* and session scope, and so on.

*/

public class PageConstants {

/**

* The application data from the service invocation

*/

public static final String DATA = "blfData";

//

// The sections of the JSP template

//

public static final String TEMPLATE_HEADER = "header";

public static final String TEMPLATE_FOOTER = "footer";

public static final String TEMPLATE_NAVBAR = "navbar";

public static final String TEMPLATE_BODY = "body";

}

The View Accounts JSP
The viewAccounts.jsp uses the standard JSP template. The interesting part is in
viewAccountBody.jsp. An implementation of this page using the Struts
<bean:write> tag to access properties is shown here:

<%@page import="blf.*"%>

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<html:errors/>

<table width=60% align=center>

<tr><td width=40%>Account Number</td>

<td width=30%>Current Balance</td>

<td width=30%>Last Transaction Date</td></tr>

<logic:iterate name="<%=PageConstants.DATA%>"

id="acctValueObject" scope="request"

type="bank.AccountData" >

338 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<tr><td><a href="/bank/struts/accountDetail.do?id=

<bean:write name="acctValueObject" property="id" />">

<bean:write name="acctValueObject" property="number" />

</td>

<td><bean:write name="acctValueObject"

property="currentBalance" /></td>

<td><bean:write name="acctValueObject"

property="lastModifiedDate" /></td></tr>

</logic:iterate>

</table>

The Struts <logic:iterate> tag is used to go through the output data of the
service and create the HTML for each account. The logic tag has a name attribute and
a scope, which points to the PageConstants.DATA stored in the request from
ViewAccountsAction. The data in this case is a collection of account value objects.
The id attribute of the <logic:iterate> tag is the name of a page scope attribute
that makes each iterated object available to the JSP body of the tag. Finally, the type is
the casting done to each object in the collection. This example actually casts each value
object to its implementation class and uses the <bean:write> tag to get the values.

View Accounts Using Custom Tags

There is actually one slight problem with the previous implementation of the
changeAddressBody.jsp. The <bean:write> tag uses the standard getter
method to get the values from the beans. Thus, the getCurrentBalancemethod on
AccountData that is invoked returns values such as 123.45 rather than values that are
formatted for display such as $123.45. The property-handling mechanism created
earlier in the business object chapters included a getDisplayProperty method
exactly for this purpose. A custom tag <blf:getProperty> can be created that uses
the getDisplayProperty method on the standard ValueObject interface rather
than the standard getter method as defined by introspection. The implementation of
changeAddress.jsp that uses this tag is shown here. Note that the value objects are
cast to the ValueObject interface rather than their specific implementation class.

<%@page import="blf.*"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<html:errors/>

<table width=60% align=center>

<tr><td width=40%>Account Number</td>

<td width=30%>Current Balance</td>

<td width=30%>Last Transaction Date</td></tr>

Building the User Interaction Architecture 339

<logic:iterate name="<%=PageConstants.DATA%>"

id="acctValueObject"

scope="request"

type="blf.ValueObject" >

<tr><td>

<a href="/bank/struts/accountDetail.do?id=

<blf:getProperty bean="acctValueObject" property="id" />">

<blf:getProperty bean="acctValueObject"

property="number" /></td>

<td><blf:getProperty bean="acctValueObject"

property="currentBalance" /></td>

<td><blf:getProperty bean="acctValueObject"

property="lastModifiedDate" />

</td></tr>

</logic:iterate>

</table>

The code for the <blf:getProperty> tag is quite simple and is as follows:

public class GetPropertyTag extends TagSupport {

/**

* The bean from which to get a property

*/

private String bean = null;

public String getBean() {

return bean;

}

public void setBean(String value) {

bean = value;

}

/**

* The property to get

*/

private String property = null;

public String getProperty() {

return property;

}

public void setProperty(String value) {

property = value;

}

/**

* Process the start of this tag.

*/

340 J2EE Best Practices: Java Design Patterns, Automation, and Performance

public int doStartTag() throws JspException {

try {

// First, get hold of the bean.

// This method searches request, session, ...

ValueObject obj =

(ValueObject) pageContext.findAttribute(bean);

// Get the value. If null, return

// empty string.

String value = obj.getDisplayProperty(property);

if (value == null) {

value = "";

}

// Write out the value.

JspWriter writer = pageContext.getOut();

writer.print(value);

} catch (Exception be) {

throw new JspException(be.getMessage());

}

// Skip the included content of this tag.

return (SKIP_BODY);

}

/**

* Process the end of this tag.

*/

public int doEndTag() throws JspException {

// Evaluate the remainder of this page.

return (EVAL_PAGE);

}

/**

* Release any acquired resources.

*/

public void release() {

}

}

The getDisplayProperty method of the value object uses the convertTo-
DisplayFormat method of the property handler. In this case, the current-
Balance property is defined as a Currency property. The property-handler class is a

Building the User Interaction Architecture 341

standard place to do value formatting. The CurrencyHandler class, which formats
it using a dollar sign and decimal places, is shown here:

package blf;

import java.math.BigDecimal;

import java.text.NumberFormat;

/**

* Currency handler is used to display currency properties.

*/

public class CurrencyHandler extends DecimalHandler

implements PropertyValidator, PropertyHandler {

public String convertToDisplayFormat(Object value)

throws PropertyException {

// Get the currency in the BigDecimal format.

BigDecimal amount = null;

if (value instanceof String) {

amount = (BigDecimal)

this.convertToObjectFormat(value);

} else if (value instanceof BigDecimal) {

amount = (BigDecimal) value;

} else {

throw new PropertyException(

"Invalid object type for currency property.");

}

// Use the currency formatter to display

// for presentation.

NumberFormat formatter =

NumberFormat.getCurrencyInstance();

return formatter.format(amount.doubleValue());

}

}

Integrate the property formatting mechanism originally
implemented for business objects into the User Interaction Architecture. This
avoids a duplication of effort and simplifies the JSP code.

Variations on the Account Detail Link

The previous example used a fairly straightforward approach to creating the detail link
for each account. The JSP explicitly created the <a> tag and added an id parameter to
identify the account. The first alternative is to use the <html:link> tag provided by
Struts. In this case, the link includes a dynamic query parameter, so you need to tell it

BEST PRACTIC E

342 J2EE Best Practices: Java Design Patterns, Automation, and Performance

to reference a property somewhere in the page scope. The relevant portion of a JSP that
uses the <html:link> tag is shown here:

<logic:iterate name="<%=PageConstants.DATA%>"

id="acctValueObject" scope="request"

type="bank.AccountData" >

<tr><td>

<html:link href="/bank/struts/accountDetail.do" paramId="id"

paramName="acctValueObject" paramProperty="id"

paramScope="page">

<bean:write name="acctValueObject"

property="number" />

</html:link></td>

<td><bean:write name="acctValueObject"

property="currentBalance" /></td>

<td><bean:write name="acctValueObject"

property="lastModifiedDate" /></td></tr>

</logic:iterate>

Another option is to use a server-side parameter if you do not want to expose the in-
ternal account identifier in the URL. You could create a custom tag that creates a link
identifier as a session key to store the actual account ID. The account detail page then
uses this link identifier to get the account ID out of the session for processing.

The New Customer Wizard

The new customer wizard is a multipage form that visitors of the bank Web site link to
from the logon page. It has three screens that collect customer data to be aggregated
together in the session until the final confirmation is made and the NewCustomer
service is invoked. At this point, the event data should have the customer, address, and
account information. Preliminary validations are performed after each intermediate
page, and then the service does complete business validations at the end once again to
ensure data integrity. Figure 8.7 shows the new customer pages and the flow between
them.

The Page Flow through the Wizard
The implementation flow for these pages is shown in Figure 8.8.

The Struts configuration metadata for these pages is defined as follows. Only global
forwards are defined for the first two pages because you can link directly to these
pages from the new customer navigation bar. The last two pages of the wizard can be
reached only by successfully completing the previous pages that are processed by the
NewCustomerAction class.

<global-forwards>

<forward name="newCustomer1"

path="/struts/newCustomer1.jsp"/>

Building the User Interaction Architecture 343

Figure 8.7 The New Customer Pages.

<forward name="newCustomer2"

path="/struts/newCustomer2.jsp"/>

</global-forwards>

<form-beans>

<form-bean name="customerForm"

type="bank.struts.CustomerForm"/>

</form-beans>

<action-mappings>

<action path="/strutslogon/newCustomer1"

type="bank.struts.NewCustomerAction"

name="customerForm"

scope="session"

validate="false" >

<forward name="success"

path="/strutslogon/newCustomer2.jsp" />

<forward name="failure"

path="/strutslogon/newCustomer1.jsp" />

</action>

344 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 8.8 New Customer Wizard Page Flow.

New Customer
Page One:

Personal Info

New
Customer

Action

New
Customer

Action

New
Customer

Action

New
Customer

Service

Logon Page

New Customer
Page Two:

Account Info

New Customer
Page Four:

Welcome Page

New Customer
Page Three:

Create Account

newCustomer

newCustomer
1

newCustomer
2

newCustomer
3

failure

success

failure

success

failure

success

newCustomer
4

<action path="/strutslogon/newCustomer2"

type="bank.struts.NewCustomerAction"

name="customerForm"

scope="session"

validate="false" >

Building the User Interaction Architecture 345

<forward name="success"

path="/strutslogon/newCustomer3.jsp" />

<forward name="failure"

path="/strutslogon/newCustomer2.jsp" />

</action>

<action path="/strutslogon/newCustomer3"

type="bank.struts.NewCustomerAction"

name="customerForm"

scope="session"

validate="false" >

<forward name="success"

path="/strutslogon/newCustomer4.jsp" />

<forward name="failure"

path="/strutslogon/newCustomer3.jsp" />

</action>

</action-mappings>

The page flow for this multipage form is as follows:

Page one collects the customer name and address information. The new-
Customer1 event is used to capture this data and store it in the Customer-
Form and AddressForm event objects. AddressForm is aggregated inside
of the CustomerForm object that is stored in the session and will be accessed
as a starting point for the remainder of the pages in the wizard. Basic data
validation is done on the submission, and any errors are displayed so the user
can correct the data.

Page two allows users to select the account type they want to open from a
drop-down list. They are also required to enter an amount for initial deposit to
meet the minimum balance requirements. The newCustomer2 event captures
the account type and amount in the AccountForm event object that is also
aggregated by CustomerForm. The deposit amount is validated against the
minimum balance requirement for the type of account selected, and the page is
redrawn with any error messages if necessary.

Page three is a confirmation page that displays the user-entered data and
allows users to click either the Create New Account or Cancel button. This
submission generates the newCustomer3 event. A positive confirmation here
causes the NewCustomer service to be invoked with ServiceData
containing the event data from the customer, address, and account beans.

Page four is a new customer information page. It displays a message that the
transaction was successful and provides the new customer number, account
number, and generated PIN number. It provides a link to the logon page so the
customer can immediately begin to bank online at the Web site.

A different navigation bar, which allows the user to go back and forth
between pages in the wizard, is used for the new customer pages. These links
are pure navigation events that use the global forwards newCustomer1 and
newCustomer2, respectively, for the first two pages. Pages three and four can
be reached only by successfully completing their predecessors.

346 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The Address and Account as
Aggregated Form Beans
The new customer multipage form exercises two aspects of Struts that have not been
utilized much thus far, action-level forwards and nested form beans. This section looks
at the use of nested form beans within the new customer pages. The CustomerForm
bean aggregates both the address and account form beans. The code for the
CustomerForm bean is shown here:

package bank.struts;

import javax.servlet.http.HttpServletRequest;

import org.apache.struts.action.ActionError;

import org.apache.struts.action.ActionErrors;

import org.apache.struts.action.ActionForm;

import org.apache.struts.action.ActionMapping;

public class CustomerForm extends ActionForm {

// Properties

private String firstName = null;

private String lastName = null;

// Relationships

private AddressForm address = null;

private AccountForm account = null;

/**

* Default constructor

*/

public CustomerForm() {

// Create aggregated objects

address = new AddressForm();

account = new AccountForm();

}

public String getFirstName() {

return firstName;

}

public void setFirstName(String value) {

firstName = value;

}

public String getLastName() {

return lastName;

}

TEAMFL
Y

Team-Fly®

Building the User Interaction Architecture 347

public void setLastName(String value) {

lastName = value;

}

public AddressForm getAddress() {

return address;

}

public void setAddress(AddressForm value) {

address = value;

}

public AccountForm getAccount() {

return account;

}

public void setAccount(AccountForm value) {

account = value;

}

/**

* Validate the properties that have been set from

* the HTTP request.

*

* @param mapping The mapping used to select this instance

* @param request The servlet request you are processing

*/

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

if ((lastName == null) || (lastName.length() < 1)) {

errors.add("lastName",

new ActionError("REQ_FIELD",

"lastName"));

}

return errors;

}

}

This implementation of CustomerForm validates only the customer
fields. The topic of validation, particularly the validation of nested form beans
within this example, will be revisited later in this section.

This implementation initializes all of the aggregated objects in the constructor, but
you could easily have used lazy instantiation as well in the getter methods. The Struts
nested syntax is used in the JSP to access the aggregated form beans.

NOTE

348 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Page One: The Customer and
Account Information
The first page, which has customer and address data, shows the use of nested form
beans in the HTML tags:

<%@page import="java.util.*,blf.*,bank.struts.*"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<table width=100%>

<tr><td align=center>

<H3> Please enter your contact information </H3>

</td></tr>

</table>

<table width="100%">

<tr align="center"><td><html:errors/></td></tr>

</table>

<%

// You need to get the state value so you can pass it

// to your custom drop-down tag.

String currentState = "";

CustomerForm formBean =

(CustomerForm) session.getAttribute("customerForm");

if (formBean != null) {

currentState = formBean.getAddress().getState();

}

%>

<html:form action="/strutslogon/newCustomer1"

focus="firstName">

<center>Name</center>

<table width=100%>

<tr>

<td align=right>First Name</td>

<td><html:text property="firstName" size="20"

maxlength="30"/></td>

</tr>

<tr>

<td align=right>Last Name</td>

<td><html:text property="lastName" size="20"

maxlength="30"/></td>

</tr>

</table>

<center>Address</center>

<table width="100%">

<tr>

<td align=right>Line 1</td>

Building the User Interaction Architecture 349

<td><html:text property="address.line1" size="20"

maxlength="30"/></td>

</tr>

<tr>

<td align=right>Line 2</td>

<td><html:text property="address.line2" size="20"

maxlength="30"/></td>

</tr>

<tr>

<td align=right>City</td>

<td><html:text property="address.city" size="10"

maxlength="20"/></td>

</tr>

<tr>

<td align=right>State</td>

<td><blf:dropDown htmlName="address.state" cache="States"

selectedOption='<%=currentState%>' /></td>

</tr>

<tr>

<td align=right>Zip Code</td>

<td><html:text property="address.zip" size="10"

maxlength="20"/></td>

</tr>

<tr>

<td align=right>Country</td>

<td><html:text property="address.country" size="10"

maxlength="20"/></td>

</tr>

</table>

<table width=100%>

<tr>

<td align=center><html:submit property="submit"

value="Continue..."/></td>

</tr>

</table>

</html:form>

The New Customer Action
Because the wizard’s events and actions are related, the controller delegates the han-
dling of all these requests to the same action class. The action mappings shown earlier
configured all of the new customer pages to be processed by the NewCustomer-
Action. This is done to simplify things for someone reading the code and trying to
understand it. This action class is responsible for handling the form submissions of all
four pages. This example shows how the different URLs used by each of the forms
signify the different events that are occurring. If you look at the action code, there is a
helper method that is used to derive the event name from the servlet path. This code
mirrors that of the code used byActionServlet; however, it is modified to take only

350 J2EE Best Practices: Java Design Patterns, Automation, and Performance

the text after the last slash (/) character. Thus, the request path /struts/newCustomer1
maps to the event newCustomer1. The action code for NewCustomerAction is
shown here:

package bank.struts;

import java.io.IOException;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import org.apache.struts.action.*;

import org.apache.struts.util.MessageResources;

import blf.*;

import bank.AccountValidator;

import java.math.BigDecimal;

import bank.CustomerData;

import bank.AddressData;

import bank.AccountData;

/**

* Action class that implements the new customer wizard

*/

public class NewCustomerAction extends Action {

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Get hold of the session.

HttpSession session = request.getSession(true);

// Create error bucket.

ActionErrors errors = new ActionErrors();

// Get the event.

String event = determineEvent(request);

if (event.equals("newCustomer1")) {

//

// Page One - Customer and Address Info

//

// Get the form beans out of the defined scope.

Building the User Interaction Architecture 351

CustomerForm custForm = (CustomerForm)

session.getAttribute("customerForm");

AddressForm addrForm = custForm.getAddress();

// Validate the input data.

errors = custForm.validate(mapping,request);

ActionErrors addrErrors =

addrForm.validate(mapping,request);

// If there were address errors, add

// them to the overall list.

if (!addrErrors.empty()) {

Iterator iter = addrErrors.get();

while (iter.hasNext()) {

ActionError error =

(ActionError) iter.next();

errors.add(ActionErrors.GLOBAL_ERROR,

error);

}

}

// If there were any errors, set error data in

// request scope and go back to first page.

if (errors.empty()) {

// Go to the next page.

return (mapping.findForward("success"));

} else {

saveErrors(request, errors);

// Return to the input page to redisplay

// the form.

return (mapping.findForward("failure"));

}

} else if (event.equals("newCustomer2")) {

//

// Page Two - Account Type and Initial Deposit

//

// Get the form bean out of the defined scope.

CustomerForm custForm = (CustomerForm)

session.getAttribute("customerForm");

// Validate input data.

AccountForm acctForm = custForm.getAccount();

errors = acctForm.validate(mapping,request);

if (!errors.empty()) {

saveErrors(request, errors);

return (mapping.findForward("failure"));

}

// Use the account validator class to verify the

// minimum balance.

352 J2EE Best Practices: Java Design Patterns, Automation, and Performance

try {

BigDecimal balance =

new BigDecimal(acctForm.getAmount());

AccountValidator.validateMinimumBalance(

acctForm.getType(), balance);

} catch (BlfException be) {

// Map BLF errors to action errors.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

saveErrors(request, errors);

return (mapping.findForward("failure"));

}

// Go to the next page.

return (mapping.findForward("success"));

} else if (event.equals("newCustomer3")) {

//

// Page Three - Confirmation

//

if (isCancelled(request)) {

// In case the user clicked the cancel

// button, go back to the logon page.

session.removeAttribute("customerForm");

return (mapping.findForward("logon"));

}

try {

// Get the form bean out of the defined scope.

CustomerForm custForm = (CustomerForm)

session.getAttribute("customerForm");

// Create the service data.

ServiceData sdata =

new ServiceData("NewCustomer");

// Populate the service data by

// converting form beans to value objects.

CustomerData custData = new CustomerData();

AccountData acctData = new AccountData();

ArgumentList argList = new ArgumentList();

argList.setProperty("amount",

custForm.getAccount().getAmount());

BlfStrutsConverter.convertFormBeanToValueObj(

custForm,custData);

BlfStrutsConverter.convertFormBeanToValueObj(

custForm.getAddress(),

custData.getAddress());

BlfStrutsConverter.convertFormBeanToValueObj(

custForm.getAccount(),acctData);

Building the User Interaction Architecture 353

custData.getAccounts().add(acctData);

sdata.addInputData(custData);

sdata.setArgumentList(argList);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Store the data so the final page can see it.

request.setAttribute(PageConstants.DATA,

sdata);

return (mapping.findForward("success"));

} catch (BlfException be) {

// Map BLF errors to action errors.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

// Set the errors so the next page can see them.

saveErrors(request, errors);

return (mapping.findForward("failure"));

} catch (Exception e) {

// Create a general action error

// for the exception.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR",

e.getMessage()));

// Set the errors so the next page can see them.

saveErrors(request, errors);

return (mapping.findForward("failure"));

}

}

// You should never get here.

return null;

}

/**

* Helper method to determine the event name

* from the servlet request path

*/

private String determineEvent(HttpServletRequest request) {

// Remove the extension and get the

// path after the last slash.

// This is the name of your event.

354 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// For example, /struts/newCustomer1.do

// becomes newCustomer1.

String path = request.getServletPath();

int slash = path.lastIndexOf("/");

int period = path.lastIndexOf(".");

if ((period >= 0) && (period > slash)) {

path = path.substring(slash + 1, period);

}

return (path);

}

}

The first thing the action does is use the helper method to determine what event
occurred, that is, which page had a form submitted. When processing the first page’s
form, there isn’t much to do. The ActionServlet automatically populates the
form beans. The automatic validation by the servlet is turned off in the configuration.
The validate methods on the form beans are called explicitly because the
CustomerForm bean could have been triggered by a number of different action map-
pings. Thus, there may be incomplete data in the aggregated form beans, or you may
want only errors from the data just entered. If there are any errors from the form, they
are saved in the request using saveErrors, and control is forwarded to the failure
page. Otherwise, the action forwards to the success page that is the second page in the
wizard. Remember that in the metadata, success and failure are defined as action-level
forwards for each step in the process.

An interesting thing to note about this action class is that it actually overrides the
navigation metadata when processing page three. At the point the user submits that
form, there are three possible outcomes:

User clicks Create New Account and no errors are detected (success).

User clicks Create New Account and errors are detected (failure).

User clicks Cancel.

The third possible outcome, cancel, really does not map to anything in the naviga-
tion scenarios. Thus, the action class overrides the metadata in this situation and re-
turns the logon page, which takes users back to the point where they originally started.
Note that this could also have been designed other ways. The situations of a form with
multiple submit buttons tends to recur periodically in business applications. An alter-
native way to design this type of situation would have been to equate different submit
buttons on the page to different events. You would need to change the event helper
method to additionally check for an HTTP parameter representing the submit button.
In the JSP, the name of the submit buttons could be “event,” and the different values
could represent the different event names. The HTML for this would be similar to the
following:

<table width=100%>

<tr>

<td align=center><input type="submit" name="event"

value="Create"/></td>

Building the User Interaction Architecture 355

</tr>

<tr>

<td align=center><input type="submit" name="event"

value="Cancel"/></td>

</tr>

</table>

The validation logic for page two is application specific and goes beyond straight
data type or required field edits. This validation logic checks to see that the initial de-
posit meets the required minimum balance for the account type chosen. This is done as
a preliminary edit at this point, but it is also logic that is shared by the business object.
For these types of situations, it is sometimes helpful to move the validation logic out to
a separate validation class that can be used both by the action class and the business
object. In this case, an AccountValidator class was created with a static method
that checks the minimum balance and throws a ValidationException with busi-
ness errors if any were detected.

The third page, which confirms all of the information and invokes the service,
shows how you can use the BlfStrutsConverter utility to create value objects
from each of the aggregated form beans to create an overall instance of Service-
Data. The output data of the service is saved in the request scope so that the welcome
page can display the new account numbers and PIN.

Page Two: The Account Information
The second page is only slightly different than the previous example. The implemen-
tation of newCustomer2Body.jsp is shown here:

<%@page import="java.util.*,blf.*,bank.struts.*"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<table width=100%>

<tr>

<td align=center><H3> Please choose an account type </H3></td>

</tr>

</table>

<table width="100%">

<tr align="center"><td><html:errors/></td></tr>

</table>

<%

// You need to get the type value so you can pass it

// to your custom drop-down tag.

String currentType = "";

CustomerForm formBean =

(CustomerForm) session.getAttribute("customerForm");

356 J2EE Best Practices: Java Design Patterns, Automation, and Performance

if (formBean != null) {

currentType = formBean.getAccount().getType();

}

%>

<html:form action="/strutslogon/newCustomer2"

focus="account.type">

<center>Select the type of account you wish to

open</center>

<table width=100%>

<tr>

<td align=right>Account Type</td>

<td><blf:dropDown htmlName="account.type" cache="AccountTypes"

selectedOption='<%=currentType%>' /></td>

</tr>

</table>

<center>You will be required to send a check for an

initial deposit (minimum $50 for savings, $100 for

checking)</center>

<table width="100%">

<tr>

<td align=right>Initial Deposit</td>

<td><html:text property="account.amount" size="10"

maxlength="20"/></td>

</tr>

</table>

<table width=100%>

<tr>

<td align=center><html:submit property="submit"

value="Continue..."/></td>

</tr>

</table>

</html:form>

Page Three: The Confirmation Page
The next JSP, newCustomer3Body.jsp, uses the <bean:write> tag simply to
display the values stored within the form beans. Two interesting things to note about
this page are:

The use of the Struts <html:cancel> tag. It creates a cancel button that is
checked by the isCancelled(request) method of the action class.

A new <blf:lookupValue> custom tag that takes a code value, in this case
the account type, and returns the full description from the specified cache.
Thus, the codes S and C would appear as Savings and Checking, respectively,
on the page.

TEAMFL
Y

Team-Fly®

Building the User Interaction Architecture 357

The third page, newCustomer3Body.jsp, is implemented as follows:

<%@page import="java.util.*,blf.*,bank.struts.*"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<table width=100%>

<tr>

<td align=center><H3> New Customer: Final Confirmation

</H3></td>

</tr>

</table>

<table width="100%">

<tr align="center"><td><html:errors/></td></tr>

</table>

<%

// You need to get the type value so you can pass it

// to your custom drop-down tag.

String currentType = "";

CustomerForm formBean =

(CustomerForm) session.getAttribute("customerForm");

if (formBean != null) {

currentType = formBean.getAccount().getType();

}

%>

<html:form action="/strutslogon/newCustomer3">

<center>Here is the information you entered. Please

verify and then click 'Create Account' to become a

customer.</center>

<table width="100%">

<tr><td align=right>First Name:</td>

<td><bean:write name="customerForm"

property="firstName" /></td></tr>

<tr><td align=right>Last Name:</td>

<td><bean:write name="customerForm"

property="lastName" /></td></tr>

<tr><td align=right>Line 1:</td>

<td><bean:write name="customerForm"

property="address.line1" /></td></tr>

<tr><td align=right>Line 2:</td>

<td><bean:write name="customerForm"

property="address.line2" /></td></tr>

<tr><td align=right>City:</td>

<td><bean:write name="customerForm"

property="address.city" /></td></tr>

358 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<tr><td align=right>State:</td>

<td><bean:write name="customerForm"

property="address.state" /></td></tr>

<tr><td align=right>Zip Code:</td>

<td><bean:write name="customerForm"

property="address.zip" /></td></tr>

<tr><td align=right>Country:</td>

<td><bean:write name="customerForm"

property="address.country" /></td></tr>

<tr><td align=right>Account Type:</td>

<td><blf:lookupValue cache="AccountTypes"

value='<%=currentType%>' /></td></tr>

<tr><td align=right>Initial Deposit:</td>

<td><bean:write name="customerForm"

property="account.amount" /></td></tr>

</table>

<table width=100%>

<tr>

<td align=center><html:submit property="submit"

value="Create Account"/></td>

</tr>

<tr>

<td align=center><html:cancel /></td>

</tr>

</table>

</html:form>

The Lookup Value Custom Tag

The code for the custom lookup tag is fairly straightforward. It obtains the cache by
name and gets the lookup value. The code for LookupValueTag is shown here:

public class LookupValueTag extends TagSupport {

// The name of the cache to get the lookup data

private String value = null;

public String getValue() {

return value;

}

public void setValue(String value) {

this.value = value;

}

// The name of the cache to get the lookup data

private String cache = null;

public String getCache() {

return cache;

Building the User Interaction Architecture 359

}

public void setCache(String value) {

cache = value;

}

/**

* Process the start of this tag.

*/

public int doStartTag() throws JspException {

String outputValue = null;

ObjectCache objCache = null;

try {

objCache = CacheList.getInstance().getCache(cache);

if (!(objCache instanceof LookupCache)) {

throw new JspException("Cache " + cache

+ " is not a lookup cache.");

}

outputValue = (String) objCache.get(value);

} catch (BlfException be) {

throw new JspException(be.getMessage());

}

// Write out the error HTML.

JspWriter writer = pageContext.getOut();

try {

writer.print(outputValue);

} catch (IOException e) {

throw new JspException(e.getMessage());

}

// Evaluate the included content of this tag.

return (EVAL_BODY_INCLUDE);

}

/**

* Process the end of this tag.

*/

public int doEndTag() throws JspException {

// Evaluate the remainder of this page.

return (EVAL_PAGE);

}

/**

* Release any acquired resources.

*/

public void release() {

}

}

360 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Page Four: The New Customer
Information Page
The fourth page, newCustomer4Body.jsp, retrieves the updated output data of the
service so that it can display the newly generated account numbers and PIN. The entire
ServiceData object is placed in the request so the page can access it:

<%@page import="java.util.*,blf.*,bank.*"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<table width=100%>

<tr>

<td align=center><H3> Welcome to our Bank! </H3></td>

</tr>

</table>

<table width="100%">

<tr align="center"><td><html:errors/></td></tr>

</table>

<%

// Get hold of the output data

// from the session.

ServiceData sdata = (ServiceData)

request.getAttribute(PageConstants.DATA);

CustomerData custData =

(CustomerData) sdata.getOutputData(0);

// There will only be one account returned.

AccountData acctData = (AccountData)

custData.getAccounts().iterator().next();

// Set the value objects in the page context

// so the <blf:getProperty> tag can see them.

pageContext.setAttribute("custData",custData);

pageContext.setAttribute("acctData",acctData);

%>

<center>You now have an account created with us.

Your information is below.

Please take note of this information.</center>

<table width="100%">

<tr><td align=right>Customer Number:</td>

<td><blf:getProperty bean="custData"

property="customerNumber" /></td></tr>

<tr><td align=right>PIN:</td>

<td><blf:getProperty bean="custData"

property="pin" /></td></tr>

<tr><td align=right>Account Number:</td>

Building the User Interaction Architecture 361

<td><blf:getProperty bean="acctData"

property="number" /></td></tr>

<tr><td align=right>Initial Deposit:</td>

<td><blf:getProperty bean="acctData"

property="currentBalance" /></td></tr>

</table>

<table width=100%>

<tr><td align=center><html:link href="/bank/struts/logon.do">

Go to the Bank's Home Page and Login</html:link></td></tr>

</table>

Using JSP Templates
One thing that you haven’t seen yet are the JavaService Pages that invoke the tem-
plates. They have one major difference from the earlier examples in that they pull in a
different navigation bar for the wizard. For example, look at newCustomer1.jsp:

<%@ taglib uri='/WEB-INF/struts-template.tld'

prefix='template' %>

<template:insert template="/struts/template.jsp'>

<template:put name='title'

content='New Customer: Page 1' direct='true'/>

<template:put name='header' content='/struts/header.jsp' />

<template:put name='navbar'

content='/struts/navBarNewCustomer.jsp' />

<template:put name='body'

content='/struts/newCustomer1Body.jsp'/>

<template:put name='footer' content='/struts/footer.jsp' />

</template:insert>

The navigation bar for this wizard uses the <html:link> tag and references the two
global forwards defined for the first two pages. In these cases, the request is forwarded
directly to the JSP without going through the controller servlet:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<table align="left" bgcolor="#c0c0c0" width="80%">

<tr><td>

<html:link forward="newCustomer1">

Page One - Contact Information</html:link>

</td></tr>

<tr><td>

<html:link forward="newCustomer2">

Page Two - Account Type and Initial Deposit</html:link>

</td></tr>

<tr><td>Page Three - Confirmation</td></tr>

</table>

362 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Refactoring to Use Form Beans
as Value Objects
The new customer example can also easily be implemented using the form beans as
value objects, similar to the alternative discussed for the change address page. Just like
AddressFormBean, the CustomerForm and AccountForm classes can be con-
verted to implement the ValueObject interface by extending BaseFormBean.
Neither the customer nor the account contains any application-specific edits. The nor-
mal validation template uses the application metadata to drive the data validations,
such as checking that a valid numeric was given for the initial deposit amount.

Validation of Aggregated Event Objects

In the business object chapter, a mechanism was created to automatically validate any
aggregated objects. If the helper methods such as getOneToOneRelationship are
added to ValueObject to access aggregated objects, the same code from the base
business object class can be used within the value object or form bean structure. If this
approach is taken, then the NewCustomerAction needs only to call validate on
the customer form bean, and it will also validate the address and account data.
Optionally, the metadata configuration could be set back to validate='true',
which is the default. You would need to implement lazy instantiation on the form
beans and validate aggregated objects only if they are already instantiated in order for
this to work. This step is necessary due to the first execution of the first page. In this
particular case, only the customer and address data are on the form, thus you should
not issue required field errors for account data that isn’t even on the page.

A Template for the Action Class

Many of the action implementations share a similar pattern, especially for simple up-
date and data retrieval scenarios. A foundation component can be created that imple-
ments this basic logic as a template pattern. This base class would have hooks before
the service is invoked as well as afterwards for both success and failure conditions. If
you look at the basic responsibilities of the action class, the most complicated respon-
sibility to implement in a general fashion is probably “manage user context.” Without
creating a wildly intricate mechanism for dealing with this, action metadata could be
defined that determines the servlet/JSP scope in which either the input or output data
should be stored. Typically this is either the request or session scope. As you have
seen, some services such as ViewAccountsAction store the whole collection of
value objects, whereas others such as ChangeAddressAction need only a single
object. Thus, the metadata can also define whether the collection of output data
should be used or just an individual value object. This concept can be called the “data
container” for lack of a better term. The metadata also needs to define the service to
be invoked.

Building the User Interaction Architecture 363

The base class can be called BasicAction. The action metadata for a version of the
change address that extends BasicAction would be defined as follows:

<Action name="changeAddress"

class="bank.BasicChangeAddressAction"

service="ChangeAddress" />

For an implementation of the view accounts action using this template, the meta-
data would be specified as follows:

<Action name="viewAccounts"

service="GetAccountList"

dataScope="R"

dataContainer="C" />

The name of the action corresponds to the event that triggers the action. The data
scope values are R for Request, S for Session, and A for application. The data container
values are C for collection and I for Individual. The code for BasicAction is shown
here:

package blf.struts;

import javax.servlet.*;

import javax.servlet.http.*;

import java.util.*;

import java.rmi.RemoteException;

import javax.ejb.RemoveException;

import java.io.IOException;

import org.apache.struts.action.*;

import bank.struts.BlfStrutsConverter;

import blf.*;

public class BasicAction extends Action {

public static final String REQUEST_SCOPE = "R";

public static final String SESSION_SCOPE = "S";

public static final String APPLICATION_SCOPE = "A";

public static final String COLLECTION_DATA = "C";

public static final String INDIVIDUAL_DATA = "I";

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

364 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Get hold of the session.

HttpSession session = request.getSession(true);

// The error bucket

ActionErrors errors = new ActionErrors();

// The service data

ServiceData sdata = null;

// The next page

ActionForward nextPage = null;

// The action metadata

ActionMetadata am = null;

try {

String event = determineEvent(request);

am = MetadataManager.getAction(event);

if (am == null) {

throw new BlfException(

"No action defined in metadata for event: "

+ event);

}

// Process the form input and

// create the service data structure.

ValueObject formBean = (ValueObject) form;

sdata = new ServiceData(am.getService());

sdata.addInputData(formBean);

// Template Method

preService(sdata,errors,form,

mapping,request,response);

// Invoke the application service.

sdata = executeService(sdata);

// Template Method

// This method returns the next page.

nextPage = postService(sdata,errors,

mapping,request,response);

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Manage state based on action metadata.

manageState(am, sdata, request);

// Use the next page returned from the subclass.

// Otherwise, return to the input form.

if (nextPage != null) return nextPage;

return (new ActionForward(mapping.getInput()));

} catch (BlfException be) {

Building the User Interaction Architecture 365

// Template Method for service failure

nextPage = serviceFailed(be,sdata,

request,response);

// Map BLF errors to action errors.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Manage application state based on metadata.

manageState(am, sdata, request);

// Use the next page returned from the subclass.

// Otherwise, return to the input form.

if (nextPage != null) return nextPage;

return (new ActionForward(mapping.getInput()));

} catch (Exception e) {

// Template Method for service failure

nextPage = serviceFailed(e,sdata,request,response);

// Create a general action error for the exception.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR",

e.getMessage()));

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Manage state based on action metadata.

manageState(am, sdata, request);

// Use the next page returned from the subclass.

// Otherwise, return to the input form.

if (nextPage != null) return nextPage;

return (new ActionForward(mapping.getInput()));

}

}

/**

* Template Method executed before service is invoked

*/

public void preService(ServiceData sdata,

ActionErrors errors, ActionForm form,

ActionMapping mapping, HttpServletRequest request,

HttpServletResponse response)

throws BlfException {

}

366 J2EE Best Practices: Java Design Patterns, Automation, and Performance

/**

* Template Method executed after service is invoked;

* return null to use standard

* navigation metadata.

*/

public ActionForward postService(ServiceData sdata,

ActionErrors errors, ActionMapping mapping,

HttpServletRequest request,

HttpServletResponse response)

throws BlfException {

return null;

}

/**

* Template Method executed if exception is caught

* out of action; return null to use standard

* navigation metadata.

*/

public ActionForward serviceFailed(Exception executeAction,

ServiceData sdata, HttpServletRequest request,

HttpServletResponse response) {

return null;

}

/**

* Helper method to invoke application service

*/

protected ServiceData executeService(ServiceData sdata)

throws BlfException, RemoteException, RemoveException {

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

return sdata;

}

/**

* Helper method to store service data in scope

* based on metadata

*/

protected void manageState(ActionMetadata am,

ServiceData sdata, HttpServletRequest request) {

try {

String dataScope = am.getDataScope();

String dataContainer = am.getDataContainer();

if (dataScope != null) {

if (dataScope.equals(REQUEST_SCOPE)) {

if (dataContainer.equals(COLLECTION_DATA)) {

TEAMFL
Y

Team-Fly®

Building the User Interaction Architecture 367

request.setAttribute(

PageConstants.DATA,

sdata.getOutputData());

} else {

request.setAttribute(

PageConstants.DATA,

sdata.getOutputData(0));

}

} else if (dataScope.equals(SESSION_SCOPE)) {

if (dataContainer.equals(COLLECTION_DATA)) {

request.getSession(true).setAttribute(

PageConstants.DATA,

sdata.getOutputData());

} else {

request.getSession(true).setAttribute(

PageConstants.DATA,

sdata.getOutputData(0));

}

}

}

} catch (BlfException ignore) {}

}

/**

* Helper method to determine the event name

* from the servlet request path

*/

private String determineEvent(HttpServletRequest request) {

// Remove the extension and get the

// path after the last slash.

// This is the name of your event.

// For example, /struts/newCustomer1.do

// becomes newCustomer1.

String path = request.getServletPath();

int slash = path.lastIndexOf("/");

int period = path.lastIndexOf(".");

if ((period >= 0) && (period > slash)) {

path = path.substring(slash + 1, period);

}

return (path);

}

}

Template Implementation
of Change Address Action
The BasicChangeAddressAction subclass has two responsibilities. The first is to
add the address identifier from the session to the service data. The second is to add a

368 J2EE Best Practices: Java Design Patterns, Automation, and Performance

confirmation message on a successful update. Because the change address page is
shown on success or failure, no navigation logic needs to be implemented because
BasicAction defaults the next page to the input form. The code for Basic-
ChangeAddressAction is shown here:

public class BasicChangeAddressAction extends BasicAction {

/**

* Template Method executed before service is invoked

*/

public void preService(ServiceData sdata,

ActionErrors errors, ActionForm form,

ActionMapping mapping, HttpServletRequest request,

HttpServletResponse response)

throws BlfException {

// Set the identifier that is stored in the session.

ValueObject formBean = (ValueObject) form;

formBean.setProperty("id",

request.getSession(true).getAttribute("addressId"));

}

/**

* Template Method executed after service is invoked;

* return null to use standard

* navigation metadata.

*/

public ActionForward postService(ServiceData sdata,

ActionErrors errors, ActionMapping mapping,

HttpServletRequest request,

HttpServletResponse response)

throws BlfException {

// Add a confirmation message to inform the user

// that the update was successful.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("ADDR_CONFIRMATION"));

// Use the default next page, which is the input form.

return null;

}

}

Template Implementation
of View Accounts Action
The subclass implementation of BasicViewAccountsAction is fairly straightfor-
ward. It uses the action metadata to store the results of the service in the request scope
so that it is available to the change address JSP. Its only responsibilities are to set the
input argument for the data retrieval service and return the next page. The code for

Building the User Interaction Architecture 369

BasicViewAccountsAction is shown here:

public class BasicViewAccountsAction extends BasicAction {

/**

* Template Method executed before service is invoked

*/

public void preService(ServiceData sdata,

ActionErrors errors, ActionForm form,

ActionMapping mapping, HttpServletRequest request,

HttpServletResponse response)

throws BlfException {

// Prepare the input data for the service.

ArgumentList argList = new ArgumentList();

argList.setProperty("customerId", (String)

request.getSession(true).getValue("customerId"));

sdata.setArgumentList(argList);

}

/**

* Template Method executed after service is invoked;

* return null to use standard

* navigation metadata.

*/

public ActionForward postService(ServiceData sdata,

ActionErrors errors, ActionMapping mapping,

HttpServletRequest request,

HttpServletResponse response)

throws BlfException {

// Set next page to view accounts page.

return (mapping.findForward("viewAccounts"));

}

}

If you have a lot of basic update and retrieval screens, this design pattern can be
used quite effectively. However, many business applications are more dynamic than
this and require additional presentation logic. The BasicAction concept can add
some value to repetitive applications, but clearly many action implementations will be
required to add logic to the hook methods. If nothing else, this pattern does add con-
sistency to the action implementations. Use it as you see fit, or consider creating other
base actions that implement repeatable patterns in your application to provide greater
quality and consistency in your code.

Web Services

The user interaction element of Web services is usually fairly simple. Most Web service
frameworks, particularly those that implement the SOAP protocol, provide an easy
way to map HTTP requests directly to method invocations on objects. These packages

370

Fi
gu

re
 8

.9
B

as
ic

 S
O

AP
 W

eb
 S

er
vi

ce
 A

rc
hi

te
ct

ur
e.

Se
ss

io
n

B
ea

n
Se

rv
ic

e
C

om
po

ne
nt

D
at

a
O

bj
ec

ts

B
us

in
es

s
O

bj
ec

t:
Ja

va
C

la
ss

 o
r

E
nt

it
y

B
ea

n

W
eb

 S
er

vi
ce

O
bj

ec
t

SO
A

P
Pa

ck
ag

e
D

at
ab

as
e

R
M

I

JD
B

C

C
li

en
t

W
eb

 C
on

ta
in

er
E

JB
 C

on
ta

in
er

B
2B

 W
eb

Se
rv

ic
e

C
lie

nt

H
T

T
PS

/
X

M
L

Building the User Interaction Architecture 371

wrap the HTTP protocol and allow developers to concentrate on the actual data han-
dling and application service invocations. The actual additional work of the Web ser-
vice is done in a proxy object that resides on the Web tier. Figure 8.9 shows how this
object exposes your application services as Web services.

Best Practices for Implementing
the User Interaction Architecture

A summary of the best practices for implementing the User Interaction Architecture is
given in this section.

Consider Minimizing Page Logic
through Action Classes
One technique that you can use to minimize the amount of Java code in a JSP is to move
page setup logic out to an action class. This isolates the service invocation from the
page and also simplifies the page implementation in many cases by allowing the JSP to
assume that a form bean is passed in as context. If you are going to include Java code
in a JSP, try to group logic into a few large scriplets rather than having it interspersed
throughout the HTML content. This makes the JSP code much easier to read and
maintain.

Use the Struts Template Tag Library
Use the Struts template tag library or an analogous mechanism to simplify the devel-
opment and maintenance of the common aspects of application web pages. A standard
naming scheme can be used to distinguish between JSP components that implement
template instances and page content. In the examples shown in this chapter, the nam-
ing scheme used was <logicalPageName>.jsp for the template instance and
<logicalPageName>Body.jsp for the page content. Standard headers and foot-
ers were used for most of the pages, although a different navigation bar was used for
the new customer wizard. You can also consider abstracting the JSP template itself and
using metadata to define the page fragments used for a given Web page.

Automate Data Validation
in Form Beans
The same Template Method pattern used by the business objects can also be used
within form beans to implement a validate template. This should reuse the same
property-handling and validation mechanism used by business objects to prevent du-
plication of code and effort. There should not be anything specific to the Web tier or
EJB tier about the property-handling mechanism that would cause a problem with this
approach. A base class for form beans that is similar in form and function to the busi-
ness object base classes can be implemented for this purpose.

372 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Encapsulate and Reuse Presentation
Logic through JSP Custom Tags
JSP custom tags can be used to encapsulate presentation logic and provide tight inte-
gration with the reference architecture. This technique simplifies JSP code through
standards-based, reusable page components. The JSP tags provided by J2EE are a very
powerful mechanism that developers should take advantage of. This does not mean
that you should necessarily implement all the features of a programming language with
custom tags, but you should look for opportunities to encapsulate presentation logic
with custom tags, particularly if they are reusable across pages in your application.

Integrate a Property Formatting
Mechanism into JSP Components
Integrate reusable property definitions and formatting routines into the user interac-
tion architecture. This mechanism should be tied in to custom tags used by the pages.
This approach avoids duplication of effort and simplifies the JSP code. Another option
is to encapsulate property-formatting logic in the data retrieval services. This approach
allows the JSP to put the property values directly into the HTML content.

Summary

Struts provide a robust implementation of the Model 2 architecture for JavaServer
Pages, servlets, and JavaBeans components. If you integrate a strong Business Logic
Foundation with Struts, you have an excellent architecture for developing quality Web-
based applications. The overall unified architecture diagram is shown in Figure 8.10.

The basic flow of the user interaction architecture is to determine the user event and
invoke the appropriate action class. Most action class implementations follow a similar
pattern that includes invoking an application service and managing page context for
the next JSP. Struts implementations are configured to map HTTP request data auto-
matically into form beans that are then passed to the action class through the standard
interface. The data from the form beans can be moved into value objects as service
input data, or the form beans themselves can be modified to implement the value
object interface. A small conversion utility can be used to convert between Web-centric
objects in Struts and reference architecture artifacts if necessary. For example, a conver-
sion utility is used in the examples to convert business errors from the application ser-
vice to action errors that are displayed on the page. The JSP template tags in Struts
provide a nice mechanism that can be used to structure your pages and standardize the
application’s look and feel. Java code should be minimized in your JSP components
through the use of action classes, custom tags, and JavaBeans where appropriate.

This chapter covered the implementation of basic update and data retrieval pages
using Jakarta Struts. Some of the main pages in the bank application were imple-
mented as examples. The next chapter will expand on these concepts and apply secu-
rity to the banking Web applications. Some of the more advanced design concepts that
come up frequently in Web applications will also be discussed.

373

Fi
gu

re
 8

.1
0

W
eb

 A
pp

lic
at

io
n

Ar
ch

ite
ct

ur
e

w
ith

 S
tr

ut
s.

W
eb

 B
ro

w
se

r

JS
P

V
ie

w
C

om
po

ne
nt

St
at

e
M

an
ag

em
en

t

JS
P

Ta
g

L
ib

ra
ri

es

A
ct

io
n

C
la

ss

Se
ss

io
n

B
ea

n
Se

rv
ic

e
C

om
po

ne
nt

D
at

a
O

bj
ec

ts

B
us

in
es

s
O

bj
ec

t:
Ja

va
C

la
ss

 o
r

E
nt

it
y

B
ea

n

Se
rv

le
t

C
on

tr
ol

le
r

A
ct

io
nF

or
m

st
ru

ts
-

co
nf

ig
.x

m
l

H
T

T
P

R
eq

ue
st

H
T

T
P

R
es

po
ns

e

D
at

ab
as

e

R
M

I

JD
B

C

C
li

en
t

W
eb

 C
on

ta
in

er
E

JB
 C

on
ta

in
er

375

Strengthening the Bank
Application: Adding Security
and Advanced Functionality

C H A P T E R

9

You have already seen many of the core functions of the sample bank application. This
chapter looks at some of the more interesting design and implementation aspects of this
application. First, the topic of J2EE security is discussed and then applied to the bank
application. Following this, some of the remaining pages and back-end functionality are
discussed to illustrate some of the more complex design aspects of Web applications.

Up to this point, you have seen two different sets of pages within the application.
The first set includes all of the customers’ pages when they log onto the bank’s Web
site. This includes pages such as view accounts and change address. The second set of
pages is part of the new customer wizard that takes a new user through the process of
becoming a customer. There is also a third set of pages within the sample application
for an administrative user. There are a few functions implemented here that help a
system administrator manage the Web site and the bank’s operations. The overall page
hierarchy is shown in Figure 9.1.

Application Security

There are a number of declarative and programmatic tools for security built into the
J2EE application environment throughout all of the tiers. This section first takes a look
at the application’s Web pages. This is a critical aspect of application security because

376 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 9.1 Overall Page Hierarchy.

View
Accounts

Customer
Main

Transfer
Funds

Change
Address

Update
Customer PIN

Transaction
Log

Logon

Admin
Main

New Customer
1

New Customer
2

New Customer
3

New Customer
4

the Web pages are the interface into all of the system functionality. In fact, some imple-
mentations can base their entire security model solely on this aspect of security. There
are three categories of access on the bank Web site:

Bank logon page and new customer wizard pages: Anyone is allowed to view
these pages to either log on or open an account with the bank.

Bank’s customer pages: Only bank customers can access their account pages.

Bank’s administrative pages: Only administrators of the bank’s Web applica-
tion can access these pages, which have functions to update transaction logs
and reset PINs for customers.

The basic security model is primarily based on the following concepts:

Authentication. Verifying that users are who they claim to be. This is usually
done with a username and password logon, although certificates or other
mechanisms can also be used. In J2EE, a user is roughly analogous to a
principal. Once authenticated, the principal’s profile consists of a set of roles
that the user participates in.

Authorization. Verifying that the user is allowed to perform a given function.
The authorization to invoke a particular function is usually based on the user’s
participation in a given role.

Confidentiality. Data is available only to authorized users and is protected
during transit over any networks.

TEAMFL
Y

Team-Fly®

Strengthening the Bank Application 377

Thus, there is a need for at least three roles within the bank’s security model. The
first of these is actually the absence of a role, an unauthenticated user. A new user is not
required to authenticate himself or herself with a username and password in order to
visit the new customer pages because new users do not have credentials with the bank
yet. Once they complete the new customer application, they will be given a customer
number and PIN, and at that point they can go to the logon page and authenticate
themselves. This second role is the Customer role, which allows users to access all
pages dealing with their bank accounts. When new customers create an account with
the bank, they automatically become a Customer. The third category is for Web site
administrators that have either the role of AdminUser or SuperUser. The adminis-
trator gets a completely different set of Web pages than the regular customers do. An
AdminUser is allowed to change a customer’s PIN while a SuperUser can also
update the transaction logs for an account.

Web Application Security
When looking at Web application security, the first choice is between using container-
managed security services or implementing them yourself within the application.
Security management services are available for almost every component type within
the J2EE architecture in most containers. For example, components that can be secured
include JSP, servlets, EJB, and JNDI lookups, and the list goes on. Do you need secure
controls on every single one of these components? Well, each one is like another layer
of an onion that someone has to peel in order to break into your system. Adding secu-
rity on each of these components can marginally increase the level of security provided
by the first line of defense.

This first layer, the Web tier, is of course critical to the overall security model, but at
some point underneath that in the architecture, the concept of the trusted server usu-
ally enters into the picture. For example, not every user of the bank application is as-
signed a database username and password. When a new customer number and PIN is
created, the application does not also create a new logon for the database. The applica-
tion server uses a pool of database connections to perform all database activity. Thus,
the database server trusts the application server to have authenticated and authorized
users for the particular activity they are about to perform. This concept can bubble up
as far as you want in a multi-tier Web architecture. For example, if users authenticate
at the Web tier, you may not feel it is necessary to either reauthenticate them or apply
EJB security at the service component level if you trust the JSP tier to have addressed
these issues. The controller architecture has already enforced access control on the
URL, and the action class may have already ensured that this user is authorized to in-
voke a given service. Typically, you would have the option to forgo authentication at
the EJB tier because of the network and hardware architecture. An EJB tier typically
would be behind a number of Internet firewalls that would prevent direct access from
all locations except the Web container.

For many applications, this type of security approach can work well; however, it
depends on the security risk of the application as well as its design. If there are a large
number of fine-grained services with different authorization requirements, it would

378 J2EE Best Practices: Java Design Patterns, Automation, and Performance

not make sense to program this logic into the application when you can have the con-
tainer manage this for you. As long as the security model is based on roles, you can use
declarative J2EE security measures to handle this. If other security requirements are
based on application data or additional business logic, you can still use the J2EE
authentication mechanisms to get the user’s profile (that is, what roles the user belongs
to), and then programmatically use the servlet or EJB APIs to access this information in
conjunction with the appropriate business logic.

Thus, at the Web tier, you can either implement the security yourself or use the
container’s security. The alternative of implementing the security in the application is
discussed first.

Examples are shown in this book of both application-managed security
and container-managed security. In either case, the user’s credentials are
specified by the Customer object, and hence the customer database table.
The customer number is the username and the PIN is the user’s password. The
database also has a table cust_roles that links customer numbers to security
roles. The entity is managed by a UserRole business object that maps to the
table.

A typical scenario for a Web application that manages its own security is to use a
logon form to validate the user’s ID and password and then store a token in the ses-
sion to identify the user. All secure pages then first check the session for that token be-
fore rendering the page. If that token is not present, then the application redirects the
user to the logon page. This logic is usually implemented at the beginning of the con-
troller servlet logic as well as in every JSP either as scriptlet code at the top of the page
or more preferably, as a reusable custom tag. The token within the session can also con-
tain role or user group information to implement authorization for application ser-
vices. In the bank application, the LogonAction stores a customerId attribute in
the session that is used throughout the application to identify the user and provide
input data for some of the service invocations. In this case, the session token provides
both security benefits and state management across page requests.

Application-Managed Web Security

This section looks at authentication in an application-managed scenario. A bank login
page is used as an example to illustrate this. The Struts configuration for the login
event is defined as follows:

<action path="/struts/login"

type="bank.struts.LogonAction"

name="logonForm"

scope="request"

input="/struts/login.jsp">

</action>

The logon.jsp is a simple HTML form with the two input fields previously
defined, custNumber and pin. The LogonAction code, which simply invokes the

NOTE

Strengthening the Bank Application 379

logon service, is shown here:

public class LogonAction extends Action {

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Validate the request parameters specified by the user.

ActionErrors errors = new ActionErrors();

String custNumber = ((LogonForm) form).getCustNumber();

String pin = ((LogonForm) form).getPin();

try {

// Create a service data object for this service.

ArgumentList argList = new ArgumentList();

argList.setProperty("custNumber",custNumber);

argList.setProperty("pin",pin);

ServiceData sdata = new ServiceData("Logon");

sdata.setArgumentList(argList);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Store the customer ID as a session token.

CustomerData custData =

(CustomerData) sdata.getOutputData(0);

HttpSession session = request.getSession(true);

session.putValue("customerId",

custData.getProperty("id"));

// Set next page to main page.

return (mapping.findForward("main"));

} catch (BlfException be) {

// Map blf errors to action errors.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (new ActionForward(mapping.getInput()));

} catch (Exception e) {

// Create a general action error for the exception.

380 J2EE Best Practices: Java Design Patterns, Automation, and Performance

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR"));

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (new ActionForward(mapping.getInput()));

}

}

}

The logon service is implemented as follows:

public class LogonServiceImpl implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input data.

ValueObject argumentList =

serviceData.getArgumentList();

String custNumber =

argumentList.getProperty("custNumber");

String pin = argumentList.getProperty("pin");

// Use ObjectList to locate the customer.

ObjectList customerListObj =

new ObjectList("Customer");

ArrayList args = new ArrayList(1);

args.add(custNumber);

ArrayList custList =

customerListObj.getValueObjects("byNumber",args);

// Put results in output data if any.

int size = custList.size();

if (size != 1) {

// If more than one or no customers are found,

// the customer number is invalid.

serviceData.getErrorList().addError(

"INVALID_CUST_NUMBER");

} else {

// If the customer number is valid,

// ensure that the PIN is valid.

CustomerData custData =

(CustomerData) custList.get(0);

if (!(custData.getProperty("pin").equals(pin))) {

serviceData.getErrorList().addError(

"INVALID_LOGON");

} else {

serviceData.addOutputData(custData);

}

}

}

}

Strengthening the Bank Application 381

If you also wanted to address authorization within this process, you would need to
store some type of customer bean in the session that also included role information for
that particular user. The logon action would need to differentiate between administra-
tive users and customers. Rather than going ahead and implementing this logic, the
container-managed model for accomplishing this action is discussed in the following
section.

Container-Managed Web Security

If you look back at the code for the application-managed user logon, the logic is fairly
straightforward. However that is only one part of the overall security scheme. Each
servlet and Web page must check the session token and possibly any role information
stored within it in order to safely protect the Web resources of the application. Any pro-
gramming mistake in this logic within any of the components can introduce a security
leak. Thus, this is one good reason to rely on the container’s security mechanism,
which has already been thoroughly tested and used in multiple production environ-
ments.

The other compelling reason not to implement this portion of the security in the ap-
plication code is portability across applications and across the enterprise. If you use the
container’s authentication mechanism, your application is easily portable across J2EE
deployment environments and enterprise security architectures. A typical single sign-
on scenario involves storing user credentials in an LDAP (lightweight directory access
protocol) repository that can then be accessed by authentication mechanisms on multi-
ple platforms and applications throughout the enterprise. Authentication information
that is stored in text files, databases, or other custom security modules can be accessed
by most J2EE application server products. This type of approach provides a robust,
reusable Web security model that is recommended over coding this portion of the
security directly into the application, unless there is an otherwise compelling reason to
do so.

Use J2EE security whenever possible to safely protect
application resources. Container-managed security is portable across J2EE envi-
ronments and integrates well with enterprise security architectures. Protecting
Web-tier resources is critical because they are the entry point to the application.
Consider the network security model and the trusted server concept when deter-
mining how many EJB tier resources you want explicitly secured using container-
managed security. For application-specific requirements, both the servlet and EJB
APIs offer programmatic access to information about user credentials.

If you look at the sample application, there are not a lot of fine-grained security
requirements. For the most part, once customers are authenticated, they are allowed to
access any page within their account and invoke any of the services behind those pages.
The examples still use acustomerId session token as a shortcut to avoid an extra data-
base lookup on many of the page requests. You can, in fact, get the user Principal
on each request from the HttpServletRequest.getUserPrincipal() API;

BEST PRACTIC E

382 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Table 9.1 Contents of Web Directories

DIRECTORY CONTENTS

/bank The root directory of the Web application.

/bank/struts Contains all the customer JavaServer Pages for the
bank application.

/bank/struts/admin Contains all the administration JavaServer Pages for
the bank application.

/bank/strutslogon Contains all pages for unauthenticated users
including the logon page and the new customer
wizard pages.

/bank/WEB-INF This directory contains all of the Web application
configurations files such as web.xml and
struts-config.xml, and all of the tag library
descriptor files such as blf.tld, struts-html.tld,
and so on.

Figure 9.2 Web Directory Structure.

however, this is the external customer number that was used as the username. The in-
ternal customer id is what is used in the relational database to link to other entities;
thus, the id is saved as a shortcut for input to some of the services. You may feel that
using the session token and the security roles overlaps the same function, in which case
you could easily omit the session token and pass the principal information to each ser-
vice. The services that require the customeridwould then perform the additional data-
base select or table join when it is required.

Much of the Web security model is based on controlling access to pages within
defined URL patterns. Earlier, three groups of users were identified for the bank appli-
cation: unauthenticated users, customers, and administrative users. Consequently, the
page URLs were structured according to Figure 9.2 so that they could correspond to
the user roles.

Table 9.1 describes the contents of each directory.
The web.xml file in the WEB-INF directory contains the J2EE configuration for

Web-tier components. In addition to defining servlets and tag libraries, it includes the
definition of container-managed security constraints. These constraints can force URL
patterns to require user authentication as well as define what roles are authorized to
view the pages. Thus, for the customer pages, security constraints that require authen-
tication and allow access to all of the customer roles and the admin user roles are

Strengthening the Bank Application 383

defined in the web.xml file. Note that /bank/ is defined as the root directory, so
URLs in this file start from that directory:

<security-constraint>

<web-resource-collection>

<web-resource-name>BankApp</web-resource-name>

<url-pattern>/struts/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>Customer</role-name>

<role-name>AdminUser</role-name>

<role-name>SuperUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

This constraint was defined to cover the collection of Web resources under the
/struts/* directory. This includes both HTTP GET and POST requests. The
<auth-constraint> tag lists the roles that have access to these resources, in this
case both the customer and admin roles. Finally, the <user-data-constraint> is
specified as NONE here because the example wasn’t run using SSL (Secure Socket
Layer), so this value would be set to CONFIDENTIAL in production. This will be dis-
cussed further in a moment.

You can define a separate security constraint for the administrative pages and allow
only the AdminUser or SuperUser role to access them:

<security-constraint>

<web-resource-collection>

<web-resource-name>BankApp</web-resource-name>

<url-pattern>/struts/admin/*</url-pattern>

<http-method>GET</http-method>

<http-method>POST</http-method>

</web-resource-collection>

<auth-constraint>

<role-name>AdminUser</role-name>

<role-name>SuperUser</role-name>

</auth-constraint>

<user-data-constraint>

<transport-guarantee>NONE</transport-guarantee>

</user-data-constraint>

</security-constraint>

What has not been specified yet is the method of authentication to use. This is de-
fined in the <login-config> section of web.xml. There are a couple of options avail-
able. The first and most primitive is basic authentication, although it is also quite
effective. Basic authentication causes the Web server to return a 401 Authentication

384 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 9.3 Example of Basic Authentication Logon.

Required HTTP response. This response is recognized by the browser and opens a pop-
up window to prompt the user for his or her username and password. If the user is au-
thenticated based on the credentials that are supplied, the original request for the
secured page is processed. This authentication actually happens on every page request
because HTTP is a stateless protocol, but the browser remembers the user’s credentials
and passes them along with each request. Once a user closes the browser, he or she
needs to retype the username and password, although some browsers offer the option
of remembering the credentials for future visits to the Web site. To use basic authenti-
cation, the web.xml file would include the following section:

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>Sample Bank App</realm-name>

</login-config>

The pop-up window displays the name of the security realm, but that is about it in
terms of customizing the look and feel. An example is shown in Figure 9.3.

Strengthening the Bank Application 385

The basic authentication mechanism does not address the confidentiality aspect of
security. In fact, the username and password are sent over the network by way of a
simple base64 encoding. Thus, you typically combine this with a secure transport layer
such as SSL through HTTP(S) or a secure network solution such as a VPN. There is an-
other authentication mechanism called digest authentication that works the same as
basic authentication except that it uses a stronger encryption scheme for sending the
username and password. This encryption, however, is still not as strong as SSL, and
thus it is not a required aspect of the servlet specification. In order to ensure that SSL is
being used in combination with these authentication mechanisms, configure your Web
server appropriately and specify the <user-data-constraint> as follows:

<user-data-constraint>

<transport-guarantee>CONFIDENTIAL</transport-guarantee>

</user-data-constraint>

As was mentioned earlier, you cannot customize the pop-up window used with
basic authentication. However, you can use your own HTML logon page when you use
form-based authentication. The HTML logon form that you use does require a certain
action string and predefined input fields for the username and password, but other
than that, the page is completely up to you. In the <login-config> section of
web.xml, you can simply define form-based authentication and supply the URL of
the logon page and an error page to use if the logon is incorrect. Thus, the configura-
tion can be changed to the following:

<login-config>

<auth-method>FORM</auth-method>

<realm-name>Sample Bank App</realm-name>

<form-login-config>

<form-login-page>/strutslogon/formlogon.jsp

</form-login-page>

<form-error-page>/strutslogon/formlogonerror.jsp

</form-error-page>

</form-login-config>

</login-config>

Note that the logon pages are placed with the rest of the unauthenticated content.
Making these pages secure can cause an infinite loop because the user can never au-
thenticate to get to the logon page. The form-based logon page is shown in Figure 9.4.

The form action of the logon page must be the string “j_security_check”.
The username and password input fields must be named “j_username” and
“j_password”, respectively. The formlogon.jsp page is shown here:

<form action="j_security_check" method="POST">

<table width=100%>

<tr>

<td width=40% align=right>Customer Number:</td>

<td width=60%><input type="text" name="j_username" size="10"

maxlength="20"/></td>

</tr>

386 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 9.4 Sample Form-Based Logon Page.

<tr>

<td align=right>PIN:</td>

<td><input type="password" name="j_password" size="10"

maxlength="20" /></td>

</tr>

</table>

<table width=100%>

<tr>

<td align=center><input type="submit" name="submit"

value="Logon"/></td>

</tr>

</table>

<P/>

<table width=100%>

<tr>

<td align=center><html:link forward="newCustomer1">

Not a customer yet? Click here to open an account with our

bank.</html:link></td>

</tr>

</table>

</form>

TEAMFL
Y

Team-Fly®

Strengthening the Bank Application 387

In many Web architectures, there is a separate Web server in front of
the J2EE application server that handles authentication and confidentiality. For
example, Apache can be used to handle authentication as well as the encryption
and decryption of a secure transport mechanism such as SSL. In these cases, it
may not be necessary to secure the transport internally within the architecture;
the Web server may choose to forward clear text to the JSP container.

The last authentication option is client authentication that requires a public key
certificate.

User Authentication Data

There are a number of options for storing and accessing the user and role information.
As mentioned earlier, many organizations use an LDAP repository to store the infor-
mation, although most products also support authentication data in properties files,
database tables, or custom security modules. For simplicity, the examples will use the
database to store the user information. There is already a customer table with the
customer number and PIN, so the only missing piece is a table to store the customer
roles. Thus, a cust_roles table was created with two columns, cust_number and
role_name. The cust_number column links to the customer table and the
role_name column specifies a role that the user participates in. This information is
broken out into a separate table so that a customer may belong to more than one role.
The same customer table will actually be used to store the administrative users as well.
In an enterprise environment, you would likely break out the user information to a
separate table and generalize the column names so that they apply to all types of users.
However, for the sample application, certain customer numbers will simply be picked
for the administrative users.

Access to different authentication data sources in products is commonly referred to
as a particular realm. For example, using the database is referred to as the JDBC realm,
whereas using a directory service would be called an LDAP realm. In either case, the
particular database or directory structures are defined in the configuration. For exam-
ple, this is what allows you to use the existing customer table as the source of the
username and password fields.

Bank Implementation of Container Security

The bank application has a home page located in the root directory so that unautho-
rized users can access it. This page has the following Enter link that goes to a protected
Web resource that will be processed by a ContainerLogonAction.

Click here to enter

The user first goes to the home page and then clicks on the link. Because the URL is
under the /struts/*URL pattern, the form-based authentication mechanism is trig-
gered and formlogon.jsp is shown. The user enters his or her username and pass-
word, and the container processes the form. Authentication is completed against
the customer and cust_roles database tables that are shown in the example. If the

NOTE

388 J2EE Best Practices: Java Design Patterns, Automation, and Performance

credentials are invalid, the formlogonerror.jsp is shown. Otherwise, if the
credentials are valid, the initial request to /bank/struts/logon.do is processed. This
path is mapped by the following action configuration:

<!— Process a user logon —>

<action path="/struts/logon"

type="bank.struts.ContainerLogonAction">

</action>

The ContainerLogonAction uses the isUserInRole method to determine if
this was an administrative user logging in to the application. In this case, the user is for-
warded to the main administrative page. In all other cases, the action looks up the cus-
tomer entity and stores the customer id in the session as a time-saver. Remember that
this is not necessary because you could alternatively use the getUserPrincipal
method in each action to get the customer number and perform a database join on sub-
sequent transactions. For authenticated users in a customer role, the action then for-
wards to the main customer page. The ContainerLogonAction code is as follows:

public class ContainerLogonAction extends Action {

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Create an error bucket.

ActionErrors errors = new ActionErrors();

// The customer number is the user

// principal, that is, the username

// from the authentication (basic or form).

Principal principal = request.getUserPrincipal();

String custNumber = principal.getName();

// If this is an admin user,

// go to the administrator's main page.

if (request.isUserInRole("AdminUser") ||

request.isUserInRole("SuperUser")) {

return (mapping.findForward("adminMain"));

}

try {

// Create the service data to invoke

// the logon service.

ArgumentList argList = new ArgumentList();

argList.setProperty("custNumber",custNumber);

Strengthening the Bank Application 389

ServiceData sdata =

new ServiceData("GetCustomerByNumber");

sdata.setArgumentList(argList);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Store the customer ID in the session.

CustomerData custData =

(CustomerData) sdata.getOutputData(0);

HttpSession session = request.getSession(true);

session.putValue("customerId",

custData.getProperty("id"));

// Set next page to main page.

return (mapping.findForward("main"));

} catch (BlfException be) {

// Map BLF errors to action errors.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (mapping.findForward("main"));

} catch (Exception e) {

// Create a general action error for the exception.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR"));

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (mapping.findForward("main"));

}

}

}

Use of Roles to Customize Content

In this last section, you saw the user roles used as a trigger to change the content of the
application. In this case, if the user was in an administrative role, he or she was sent to
an entirely different page. However, you can also use roles within a given JSP to pro-
vide dynamic content based on the type of user. One such example of this concept in
practice is provided by the Struts JSP template mechanism. You can specify that a page

390 J2EE Best Practices: Java Design Patterns, Automation, and Performance

fragment be included only if the user is in a certain role. For example, there are two
types of administrative roles, AdminUser and SuperUser. As you will see in the
next section, the administrative functions are triggered from the navigation bar. You
can use the admin template.jsp to pull in a different navigation bar based on the
user role. The changes to do this are shown in bold here:

<html:html>

<head><title><template:get name='title' /></title></head>

<body>

<template:get name='<%=PageConstants.TEMPLATE_HEADER%>' />

<table width="100%">

<tr>

<td width="20%" align="right" valign="top">

<template:get name='<%=PageConstants.TEMPLATE_NAVBAR%>'

role='AdminUser' />

<template:get name='supernavbar' role='SuperUser' />

</td>

<td width="60%" >

<template:get name='<%=PageConstants.TEMPLATE_BODY%>' />

</td>

<td width="20%" align="right">

</td>

</tr>

</table>

<template:get name='<%=PageConstants.TEMPLATE_FOOTER%>' />

</body>

</html:html>

Any admin page that uses this template can then add the following lines in bold to
show either navBar.jsp for someone in the AdminUser role or superNavBar.
jsp for someone in the SuperUser role. As an example, the template instance for the
administrative main page is shown here:

<%@ taglib uri='/WEB-INF/struts-template.tld'

prefix='template' %>

<template:insert template='/struts/admin/template.jsp'>

<template:put name='title' content='Administrative Main Page'

direct='true'/>

<template:put name='header' content='/struts/header.jsp' />

<template:put name='navbar'

content='/struts/admin/navBar.jsp' />

<template:put name='supernavbar'

content='/struts/admin/superNavBar.jsp' />

<template:put name='body'

content='/struts/admin/mainBody.jsp'/>

<template:put name='footer' content='/struts/footer.jsp' />

</template:insert>

The different pages for the two users are shown in Figure 9.5.

Strengthening the Bank Application 391

Figure 9.5 Customized Administrative Pages.

The example was structured such that a user is either an AdminUser or
a SuperUser. If the security roles were modeled such that a SuperUser was
also an AdminUser, the current implementation would give you two navigation
bars on the page because both conditions would be satisfied. In this case, you
would want to move the template and role-based content down to the navigation
bar JSP level. Within a navigation bar template, you could pull in the additional
content for the SuperUser role.

EJB Security
The bank Web application will use the container-managed security model described
earlier. There is also the option of adding security to the EJB tier. As was discussed ear-
lier, you can use the EJB tier as a trusted server, using the Web tier to enforce the secu-
rity constraints. You are not required to authenticate in order to use an EJB, although
you can do that as well. The Web tier can pass the user credentials (username and pass-
word) to the remote EJB method invocation. You also have the option of mapping prin-
cipals in the Web tier to different principals on the EJB tier if your two application areas
have modeled the security differently. EJB containers have the same kind of authenti-
cation mechanisms available to them as discussed earlier on the Web tier. On some
integrated JSP and EJB containers, it may not be necessary to explicitly pass the user
credentials as this may happen automatically. Method-level permissions can be placed
on EJB components to allow access only to certain roles. In the bank application, a stan-
dard Session Bean service component is used, so access would have to be granted to
the Customer, AdminUser, and SuperUser roles. This would ensure that the client
was authenticated, but it would not add any additional authorization functionality.
The bank application also does not make heavy use of Entity Beans, so the decision
was made simply to implement the security model using the Web tier and make the
EJB tier a trusted server.

NOTE

392 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 9.6 The Account Detail Page.

Interesting Aspects of the Bank Application

There are a number of interesting pages in the bank application that illustrate interest-
ing design aspects and implementation concepts not seen in the earlier examples. The
first of these is the account detail page that shows a data retrieval example including
the display of multiple object types in the same page.

The Account Detail Page and the
Transaction Object
Earlier you saw that the account list page had links for each account to a details screen.
The details page is interesting because it has both parent and child data on it. The
Account object contains the header information such as the account number, type,
and current balance while the remainder of the page is a list of Transaction objects
for that account. The account detail page is shown in Figure 9.6.

The implementation of the account detail page that is shown in this chapter uses
Entity Bean business objects and ObjectList to deal with the collection of
Transaction objects. The transaction object is defined in the metadata as follows.

Strengthening the Bank Application 393

Note that the database information is defined in the metadata so that the JDBC utility
underneath ObjectList can access the database:

<BusinessObject name="Transaction"

valueObjClass="bank.TransactionData"

ejbHomeClass="bank.entity.TransactionLocalHome"

table="transaction">

<Property name="id" dbname="id" type="String"

required="true" key="true" autogen="true" />

<Property name="type" dbname="type" type="String"

required="true" />

<Property name="transactionDate" dbname="transaction_date"

type="Date" />

<Property name="amount" dbname="amount" type="Currency"

required="true" />

<Property name="description" dbname="description"

type="String" />

<Collection name="byAccount"

query="where account_id = ? order by transaction_date desc" />

</BusinessObject>

The page is also interesting because it calculates a running total as it displays the
transactions so that the current balance can be shown after each transaction. Alterna-
tively, you could have created a balance property on the Transaction object that
captured the balance at the time of the transaction. However, this example does the
calculation for illustrative purposes.

The request for the account details page sends an id parameter in the URL to indi-
cate what account information to display. The AccountDetailAction that
processes this request is fairly straightforward. It uses the id to retrieve the account
information. The relevant portion of AccountDetailAction is shown here:

// You need to run a data retrieval service

// to get the transaction history.

// This service takes an argument list

// of just the account identifier

// that was passed in as a request

// parameter.

ServiceData sdata =

new ServiceData("GetAccountDetail");

ArgumentList argList = new ArgumentList();

argList.setProperty("accountId",

request.getParameter("id"));

sdata.setArgumentList(argList);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

394 J2EE Best Practices: Java Design Patterns, Automation, and Performance

//

// Set context for the next page.

//

request.setAttribute(PageConstants.DATA,

sdata.getOutputData());

return (mapping.findForward("accountDetail"));

In order to get the data for the account detail page, a new service was created called
GetAccountDetail. This service needs to return the account object and its transac-
tion objects. Because the service data structure returns a collection of value objects, the
output data of the service will have the 0th element be the AccountData object while
any additional objects are TransactionData objects. As input data, the service
takes either an account identifier or an account number, because as you will see, it ends
up being used in both the customer and administrative pages that have different con-
texts. The code for this service is as follows. It uses the business object factory to select
the individual account object and ObjectList to retrieve the list of transaction ob-
jects. This service also shows an example of directly using the EJB Home interface to in-
voke a finder method. Optionally, a general find method that uses reflection to
generically invoke finder methods could be implemented on EJBFactory. In this
example however, it is done explicitly. The FinderException is mapped to the
ObjectNotFoundException, a subclass of BlfException that communicates
the corresponding business error. This is an incarnation of a best practice described
earlier, which states that system-level exceptions should be mapped to application-
level exceptions with corresponding user-friendly error messages.

Map EJB-level exceptions to application exceptions with
defined business errors for user-friendly error messages. This approach also sim-
plifies the client code because there is only one high-level application exception
that needs to be handled. The application exception always contains the list of
errors in case any have occurred.

public class GetAccountDetailServiceImpl

implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Get hold of the input data.

ValueObject argumentList =

serviceData.getArgumentList();

String accountId =

argumentList.getProperty("accountId");

String accountNumber =

argumentList.getProperty("accountNumber");

//

// Depending on the input, use the appropriate

// database mechanism to get the account.

//

BEST PRACTIC E

Strengthening the Bank Application 395

if (accountId != null) {

// Use the findByPrimaryKey.

AccountLocal account = (AccountLocal)

EJBFactoryImpl.findByPrimaryKey("Account",

accountId);

serviceData.addOutputData(

account.getValueObject());

} else if (accountNumber != null) {

// Use the EJB finder method.

AccountLocalHome accountHome = (AccountLocalHome)

EJBFactoryImpl.getHomeInterface("Account",

MetadataManager.getBusinessObject(

"Account"));

try {

AccountLocal account = (AccountLocal)

accountHome.findByNumber(accountNumber);

ValueObject accountData =

account.getValueObject();

serviceData.addOutputData(accountData);

accountId = accountData.getProperty("id");

} catch (FinderException fe) {

throw new ObjectNotFoundException("Account",

accountNumber);

}

} else {

throw new BlfException("Account id or number " +

" required for GetAccountDetail service.");

}

// Use ObjectList to get the collection of accounts.

ObjectList accountsListObj =

new ObjectList("Transaction");

ArrayList args = new ArrayList(1);

args.add(accountId);

Collection accountList =

accountsListObj.getValueObjects("byAccount",args);

// Put the results in the output data.

Iterator iter = accountList.iterator();

while (iter.hasNext()) {

serviceData.addOutputData(

(ValueObject)iter.next());

}

}

}

The actual accountDetailBody.jsp uses a number of Struts custom tags to
iterate over the collection of output objects. There is a set of logic tags that evaluate the
body of the tag only if the test condition is met. As the page iterates over the collection
of output value objects from the service, the <logic:equal> and <logic:
notEqual> tags are used to determine what index is being processed. If it is the

396 J2EE Best Practices: Java Design Patterns, Automation, and Performance

0th index, this is the account value object and the header is displayed. If the index is not
equal to zero, then the page is processing one of the transaction value objects, and a
new row is created within an HTML table containing the transaction data. From the ac-
count object, a BigDecimal variable is initialized with the current balance that will
be used to keep track of the running account balance total after each transaction. Note
that the collection of transactions is defined in the metadata to be in descending date
order, so the transaction amount is subtracted each time from the running total. The
code for accountDetailBody.jsp is shown here:

<%@page import="java.util.*,blf.*,bank.TransactionData"%>

<%@page import="bank.AccountData,java.math.BigDecimal"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<%

//

// The service data has the following objects:

// 0 Account value object

// 1 - n Transaction value objects

//

// You are going to keep

// a running total of

// the current balance

// after each transaction.

BigDecimal tempBalance = null;

%>

<logic:iterate name="<%=PageConstants.DATA%>" id="data"

indexId="indexVar" scope="request" type="blf.ValueObject" >

<logic:equal name="indexVar" scope="page" value="0" >

<%

// The first item in the collection

// is the account object, so

// get the starting balance for

// your running total and display

// the header information.

tempBalance = data.getDecimalProperty("currentBalance");

tempBalance = tempBalance.setScale(2);

%>

<table width=100% align=center>

<tr><td width=35%>Account:

<blf:getProperty bean="data" property="number" /></td>

<td width=25%>Type:

<blf:lookupValue cache="AccountTypes"

value='<%=data.getProperty("type")%>' /></td>

<td width=40%>Current Balance:

<blf:getProperty bean="data" property="currentBalance" />

</td></tr>

</table>

TEAMFL
Y

Team-Fly®

Strengthening the Bank Application 397

<hr noshade>

<table width=80% align=center>

<tr><td width=25%>Date</td>

<td width=25%>Type</td>

<td width=30%>Amount</td>

<td width=20%>Balance</td></tr>

</logic:equal>

<logic:notEqual name="indexVar" scope="page" value="0" >

<tr><td><blf:getProperty bean="data"

property="transactionDate" /></td>

<td><blf:lookupValue cache="TransactionTypes"

value='<%=data.getProperty("type")%>' /></td>

<td><blf:getProperty bean="data" property="amount" /></td>

<td><%=tempBalance%></td></tr>

<%

// Calculate the resulting balance after this transaction.

// Note that you are going in descending date order, so

// substract to get the correct balance.

tempBalance =

tempBalance.subtract(data.getDecimalProperty("amount"));

%>

</logic:notEqual>

</logic:iterate>

</table>

The Transfer Funds Page
The transfer funds function has been mentioned many times throughout the earlier
chapters. This section takes a look at how this page is implemented. The transfer funds
form has two drop-down lists, each containing the customer’s accounts, as well as an
amount field as shown in Figure 9.7.

The page flow for the transfer funds function is shown in Figure 9.8. The next page
after a successful transfer is the view accounts page, while the form is redrawn if any
errors occurred.

The form data is captured using Struts into a TransferFundsForm bean that has
three corresponding properties. The only field-level data validations are on the amount
field because the user is forced to select valid accounts using the drop-down lists. Thus,
the form bean class is fairly simple except for the validate method, which checks
first that an amount was specified and second that it was a valid decimal value.
Because there is already a set of PropertyHandler classes that manipulate string
values for all data types, the decimal property validator can be used to ensure that it
has a valid value. The code for TransferFundsForm is shown here:

public class TransferFundsForm extends ActionForm {

private String fromAcct = null;

private String toAcct = null;

private String amount = null;

Figure 9.7 Transfer Funds Page.

Figure 9.8 Transfer Funds Page Flow.

Main Page
viewAccounts View

Accounts
Action

Transfer
Funds
Action

Get
Account

List
Service

Transfer
Funds
Service

View Accounts
Page

Transfer Funds
Page

successgoTransferFunds

failure

Strengthening the Bank Application 399

public String getFromAcct() {

return fromAcct;

}

public void setFromAcct(String value) {

fromAcct = value;

}

public String getToAcct() {

return toAcct;

}

public void setToAcct(String value) {

toAcct = value;

}

public String getAmount() {

return amount;

}

public void setAmount(String value) {

amount = value;

}

/**

* Reset all properties to their default values.

*/

public void reset(ActionMapping mapping,

HttpServletRequest request) {

}

/**

* Validate the properties that have been set from this

* form submission.

*/

public ActionErrors validate(ActionMapping mapping,

HttpServletRequest request) {

ActionErrors errors = new ActionErrors();

// Check that an amount was specified.

if ((amount == null) || (amount.length() < 1)) {

errors.add("amount",

new ActionError("TRANSFER_AMT_REQ"));

} else {

// Check that there is a valid decimal amount

// using your standard property validator.

try {

PropertyValidator validator =

(PropertyValidator)

CacheList.getInstance().getObject(

"PropertyTypeCache","Decimal");

validator.validateProperty(amount);

400 J2EE Best Practices: Java Design Patterns, Automation, and Performance

} catch (BlfException be) {

errors.add("amount",

new ActionError("INVALID_AMOUNT"));

}

}

return errors;

}

}

Rather than use the converter for the errors, this form bean simply catches Blf-
Exception and adds an ActionError for the user message. The error messages for
this page are defined as follows:

TRANSFER_AMT_REQ=You must specify an amount to transfer.

INVALID_AMOUNT=The amount is invalid.

INVALID_TRANSFER=You must choose another account to transfer

funds.

INSUFFICIENT_FUNDS=There are insufficient funds for the withdrawal.

The current balance is {0}.

You will see how the last two error messages are used later in this section.
For smaller development projects, this approach to form validation works just fine.

However, for larger projects, it may seem a bit tedious to have to code standard vali-
dation logic like this, such as required field and data type checking, in every form bean.
In the case of forms that correspond directly to objects, the form beans can implement
the ValueObject interface and use the standard validation template discussed ear-
lier. This was done for the address form bean in the change address example. However,
the transfer funds form data does not correspond directly to an object. If you still
wanted to use the automated validation provided by the reference architecture, you
could define an object in the metadata that corresponds to the transfer funds form. It
would have three properties, all of which are required, and their data type information
would be specified. You would not specify a business object class name, only a value
object class name. You could then handle all of the form’s basic data validation simply
by having the form bean extend BaseFormBean. In some situations, you may also
end up using a combination of explicit and metadata-driven techniques.

The other validation that needs to be performed is to check that the user did not select
the same account for both the from and the to accounts. This type of validation could
also easily go into the form bean validate method, but the decision was made to
move this edit to the action class and limit the form bean to straight data validation. This
is purely a design decision, and the consistency of the approach or guidelines used
throughout your application is probably more important than the individual choice
here. Form beans like this are usually particular to a page as compared to value objects
that easily can be reused across pages. This simply continues the value object paradigm
of performing field-level validation in these objects, although it was certainly not neces-
sary. Consequently, the TransferFundsAction performs this edit and then creates
an argument list to invoke the TransferFunds service. An interesting aspect of this
action class is page navigation. If an error occurs, the action class returns back to the

Strengthening the Bank Application 401

input form. However, on a successful transfer, the user is shown the new account
balances on the view accounts page. The account list page requires some setup work
done in theViewAccountsAction class. Thus, the concept of action chaining is used
and the request is forwarded on to that action class, similar to service chaining discussed
in the Service-Based Architecture chapter. The ActionForward class has previously
been constructed using the logical forwards defined in struts-config.xml;
however, it can be constructed using a servlet path that maps to the action class. Thus,
an ActionForward is returned that goes to /struts/viewAccounts.do, which gets
mapped to the next action class in the chain. The entire code for TransferFunds-
Action is shown here:

public class TransferFundsAction extends Action {

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Validate the request parameters.

ActionErrors errors = new ActionErrors();

try {

String fromAcct =

((TransferFundsForm) form).getFromAcct();

String toAcct =

((TransferFundsForm) form).getToAcct();

String amount =

((TransferFundsForm) form).getAmount();

// Verify that the transfer is between

// different accounts.

if (fromAcct.equals(toAcct)) {

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("INVALID_TRANSFER"));

} else {

// Process the form input and

// create the service data structure.

ServiceData sdata =

new ServiceData("TransferFunds");

ArgumentList argList = new ArgumentList();

argList.setProperty("fromAccount",fromAcct);

argList.setProperty("toAccount",toAcct);

argList.setProperty("amount",amount);

sdata.setArgumentList(argList);

402 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Chain actions together to get to the

// view accounts page.

return (

new ActionForward("/struts/viewAccounts.do"));

}

} catch (BlfException be) {

// Map blf errors to action errors.

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

} catch (Exception e) {

// Create a general action error for the exception.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR"));

}

// If you get here, an error occurred.

// Set the errors so the next page can see them.

saveErrors(request, errors);

// Return the input page to redisplay the form.

return (new ActionForward(mapping.getInput()));

}

}

In the case of the view accounts page, the setup logic was moved out to an action
class to simplify the JSP. Otherwise, this class could have forwarded directly to the
page itself. This separation of logic was done in order to minimize the amount of code
in the JSP for readability and maintainability. Should the design always have this type
of separation? Well, in some applications, the clean separation and modular design
might not seem worth it, or else you may have a very small amount of preparation
work to do that seems wasteful to create another action class. If this is the case, the rec-
ommendation is still to minimize the actual Java code in the JSP, but you can also use a
common technique and put a single scriptlet at the top of the page that performs this
logic. It usually defines any page variables that are referenced later in the JSP. Although
this introduces measurable amounts of Java code in the JSP, at least it is isolated to a
separate section at the top. This avoids the biggest danger of having large amounts of
HTML and Java code intertwined. The transferFundsBody.jsp uses this tech-
nique. The drop-down lists are created at run time from the customer’s account list. A
call is made to the GetAccountList service to get this data and store it in the page
context for the <blf:dropDown> custom tag. It also gets the form bean out of the
request in case this page is being redisplayed after an error. This needs to be done in
order to get the selected values for the drop-down list tags. This type of logic is auto-
matically handled for text fields by the <html:text> tag. The only context this

Strengthening the Bank Application 403

page expects is the customerId in the session that is used to call the service. The
transferFundsBody.jsp code is shown here:

<%@page import="java.util.*,blf.*"%>

<%@page import="bank.struts.TransferFundsForm"%>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%

// Get hold of existing values for drop-down lists.

String toAcct = null;

String fromAcct = null;

TransferFundsForm formBean = (TransferFundsForm)

request.getAttribute("transferFundsForm");

if (formBean != null) {

toAcct = formBean.getToAcct();

fromAcct = formBean.getFromAcct();

}

// Get the list of accounts for the drop-down.

ArrayList accountList = null;

try {

// Call the GetAccountList service.

ServiceData sdata = new ServiceData("GetAccountList");

ArgumentList argList = new ArgumentList();

argList.setProperty("customerId",

(String)session.getValue("customerId"));

sdata.setArgumentList(argList);

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

accountList = sdata.getOutputData();

// Set this so your drop-down tag can see it.

pageContext.setAttribute("accounts",accountList);

service.remove();

} catch (BlfException be) {

be.printStackTrace();

accountList = new ArrayList(0);

}

%>

<table width="100%">

<tr align="center"><td><html:errors/></td></tr>

</table>

<html:form action="/struts/transferFunds" focus="fromAcct">

<table width=100%>

<tr>

404 J2EE Best Practices: Java Design Patterns, Automation, and Performance

<td width=40% align=right>From Account:</td>

<td width=60%>

<blf:dropDown htmlName="fromAcct" collection="accounts"

labelProperty="number" valueProperty="id"

selectedOption='<%=fromAcct%>' />

</td>

</tr>

<tr>

<td align=right>To Account:</td>

<td>

<blf:dropDown htmlName="toAcct" collection="accounts"

labelProperty="number" valueProperty="id"

selectedOption='<%=toAcct%>' />

</td>

</tr>

<tr>

<td align=right>Amount</td>

<td><html:text property="amount" size="10"

maxlength="20"/></td>

</tr>

</table>

<table width=100%>

<tr>

<td align=center>

<html:submit property="submit" value="Transfer"/></td>

</tr>

</table>

</html:form>

Finally, the TransferFunds service implementation performs the business logic.
It uses the Entity Bean implementation of the Account and Transaction business
objects. The service object itself uses the EJBFactory to locate both of these account
components. It then invokes the deposit method on the to account and the
withdraw method on the from account. The logic to create the transaction records of
the transfer is encapsulated within the account object. If an error occurs within either
component, such as insufficient funds on the withdrawal, a BlfException is thrown
back out to the service component. The service base class handles this automatically.
This foundation class catches these exceptions, votes to roll back the transaction, and
then rethrows the exception to communicate the errors back to the action class. The
TransferFundsServiceImpl class is shown here:

package bank.entity;

import blf.*;

import java.math.BigDecimal;

import java.rmi.RemoteException;

public class TransferFundsServiceImpl

implements BlfServiceObject {

Strengthening the Bank Application 405

public void doService(ServiceData data)

throws BlfException, RemoteException {

// Get the input data from the argument list.

ValueObject args = data.getArgumentList();

String fromAccountId = args.getProperty("fromAccount");

String toAccountId = args.getProperty("toAccount");

BigDecimal amount = args.getDecimalProperty("amount");

// Use EJBFactory to locate components.

Account fromAcct = (Account)

EJBFactoryImpl.findByPrimaryKey("Account",

fromAccountId);

Account toAcct = (Account)

EJBFactoryImpl.findByPrimaryKey("Account",

toAccountId);

// Perform the transfer by depositing the amount

// into the to account and withdrawing from

// the from account.

toAcct.deposit(amount);

fromAcct.withdraw(amount);

}

}

The relevant portions of the AccountBean implementation of the Entity Bean are
shown here. The Transaction Entity bean that is used here does not contain any
additional business logic; it is primarily used for persistence to the database:

public void blfPreSave() throws BlfException {

// Initialize any fields.

setProperty("lastModifiedDate",

new java.sql.Date(System.currentTimeMillis()));

}

public void deposit(BigDecimal value) throws BlfException {

deposit(value,null);

}

public void deposit(BigDecimal value,

String transactionDescription)

throws BlfException {

// Add the amount to the balance.

setProperty("currentBalance",

getDecimalProperty("currentBalance").add(value));

// Create a record of the transaction.

TransactionData transData = new TransactionData();

transData.setProperty("type","D");

406 J2EE Best Practices: Java Design Patterns, Automation, and Performance

transData.setProperty("amount",value);

if (transactionDescription == null) {

transData.setProperty("description",

"Normal Deposit");

} else {

transData.setProperty("description",

transactionDescription);

}

TransactionLocal transaction = (TransactionLocal)

EJBFactoryImpl.create("Transaction",transData);

Collection coll = getTransactions();

coll.add(transaction);

// Invoke the save template.

save();

}

public void withdraw(BigDecimal value)

throws BlfException {

withdraw(value,null);

}

public void withdraw(BigDecimal value,

String transactionDescription) throws BlfException {

// Ensure that this account will not be

// overwithdrawn.

BigDecimal currBalance =

getDecimalProperty("currentBalance");

if (currBalance.compareTo(value) < 0) {

throw new ValidationException("Insufficient Funds",

ErrorList.createSingleErrorList(

"INSUFFICIENT_FUNDS",

currBalance.toString()));

}

// Remove the amount from the balance.

setProperty("currentBalance",

currBalance.subtract(value));

// Create a record of the transaction.

TransactionData transData = new TransactionData();

transData.setProperty("type","W");

transData.setProperty("amount",value.negate());

if (transactionDescription == null) {

transData.setProperty("description",

"Normal Withdraw");

} else {

transData.setProperty("description",

transactionDescription);

}

TEAMFL
Y

Team-Fly®

Strengthening the Bank Application 407

TransactionLocal transaction = (TransactionLocal)

EJBFactoryImpl.create("Transaction",transData);

Collection coll = getTransactions();

coll.add(transaction);

// Invoke the save template.

save();

}

public void blfValidate() throws ValidationException {

// Clear out the error list for the business object.

getErrorList().clear();

try {

// Get hold of the current balance.

BigDecimal balance =

getDecimalProperty("currentBalance");

// Validations for a checking account

if (getProperty("type").equals("C")) {

// Validate that the balance is above

// the minimum allowed.

if ((balance.compareTo(

new BigDecimal("100.00"))) == -1) {

errorList.addError("CHECKING_MIN_BALANCE",

balance.toString());

}

}

// Validations for a savings account

if (getProperty("type").equals("S")) {

// Validate that the balance is above

// the minimum allowed.

if ((balance.compareTo(new

BigDecimal("50.00"))) == -1) {

errorList.addError("SAVINGS_MIN_BALANCE",

balance.toString());

}

}

} catch (PropertyException pe) {

errorList.addError("GEN_PROPERTY_ERROR",

pe.getMessage());

}

// Use the error list utility to automatically throw

// an exception with the business errors if any

// occurred.

errorList.throwExceptionIfErrors();

}

408 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The Administration Pages
If an administrator logs on to the bank Web site, he or she sees a different screen and
navigation bar than customers do. The administrator’s home page was shown earlier
in the role-based customization example. Administrators can enter either a customer
number or an account number to access the administrative function for these entities.
Thus, the admin navigation bar is implemented as a form to capture this input data.
The admin functions available in the sample application are:

Change a customer’s PIN

Update an account transaction log

All of the administrative pages are configured to be processed by a single action,
AdminUserAction, as well as a single form bean, AdminForm. This was done for
simplicity to isolate the administrative functions as well as to illustrate the flexibility in
terms of designing the user interaction components.

Multiple Submit Buttons on a Form

The admin navigation bar actually is one HTML form with multiple submit buttons. So
how does it distinguish between the different events? The submit buttons are given
different names and then the existence of their parameter values is checked in the
action class. Only one submit button can be clicked, so if one of the parameters has a
value, you know that was the user event. The navigation bar JSP is shown here. The
input fields both map to properties of the AdminForm bean:

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<table align="left" bgcolor="#c0c0c0" width="80%">

<html:form action="/struts/adminUser" >

<tr><td>Enter the Customer Number and Choose a

Function</td></tr>

<tr><td>

<html:text property="customerNumber" size="10" maxlength="20"/>

</td></tr>

<tr><td>

<html:submit property="updatePINSubmit" value="Change PIN" />

</td></tr>

<tr><td>Enter the Account Number and Choose a

Function</td></tr>

<tr><td>

<html:text property="accountNumber" size="10" maxlength="20"/>

</td></tr>

<tr><td>

<html:submit property="updateTransactionSubmit"

value="Transaction Log" />

</td></tr>

</html:form>

</table>

Strengthening the Bank Application 409

The AdminUserAction is structured so that it determines the actual event and
then uses a helper method to process the request.

If multiple events are processed by the same action, as is
the case with multiple submit buttons on a form, first determine the event that
occurred using either the request URL or the submit button parameters. This type
of logic should be isolated from the code that handles each event. The processing
of each event can be broken out into a helper method.

AdminUserAction processes both the navigation events to get to the admin
pages as well as the actual update form submissions. The control logic to distinguish
between navigation events and update events is shown here. If neither submit button
was clicked, that means this is an update form submission and the determineEvent
helper method is used to get the event name from the last string token in the servlet
context path. This is the same helper method that is used in the NewCustomer-
Action class, which also processed multiple events based on the request URL:

/**

* The Struts action interface

*/

public ActionForward perform(ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response)

throws IOException, ServletException {

// Create error bucket.

ActionErrors errors = new ActionErrors();

try {

//

// Check to see if this was a navigation bar event.

//

if (request.getParameter("updatePINSubmit")

!= null) {

return processPINNavigation(mapping,form,

request,response,errors);

}

if (request.getParameter("updateTransactionSubmit")

!= null) {

return

processTransactionNavigation(mapping,

form,request,response,errors);

}

//

// Otherwise, this was an admin form submission.

// Determine the event by the URL.

//

String event = determineEvent(request);

BEST PRACTIC E

410 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Process the event accordingly.

if (event.equals("updatePIN")) {

return (processUpdatePIN(mapping,form,

request,response,errors));

}

if (event.equals("updateTransactions")) {

return (processUpdateTransactions(mapping,form,

request,response,errors));

}

} catch (BlfException be) {

BlfStrutsConverter.convertErrorList(

be.getErrorList(),errors);

saveErrors(request, errors);

return (mapping.findForward("adminMain"));

} catch (Exception e) {

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("GENERAL_SERVICE_ERROR"));

saveErrors(request, errors);

return (mapping.findForward("adminMain"));

}

// If all else fails...

return (mapping.findForward("adminMain"));

}

Update Form with Multiple
Object Instances

The account transaction log page is particularly interesting because it is the first update
form in the bank application that has multiple instances of the same object. In this case, a
single form can have zero to many transaction objects. The administrator can update the
transactionamount anddescription in order to make manual adjustments and cor-
rect mistakes. Remember that during the discussion of the User InteractionArchitecture,
the logic behind mapping HTML form parameters to multiple instances of the same
object was discussed. Struts handles this situation by using indexed nested form beans.
If you take the AccountForm bean, a collection member variable could be added and
exposed as an indexed property. An indexed property has the following methods:

getProperty(int index);

setProperty(int index, Object value);

If you named the indexed property transaction, you would use the following nested
syntax to refer to the description property of the first and second instance:

transaction[0].description

transaction[1].description

If you don’t know the number of items ahead of time, as is the case with the trans-
actions log, you need to dynamically generate the indices for each input tag within the

Strengthening the Bank Application 411

JSP. In the implementation of the transaction log page, the AccountForm bean is
aggregated inside of AdminForm, the form bean used by the entire set of administra-
tive pages. Thus, the nested syntax to refer to the description of the first transaction is
as follows:

account.transaction[0].description

The relevant code from AccountForm is shown here:

public class AccountForm extends ActionForm {

private ArrayList transactions = new ArrayList();

public TransactionForm getTransaction(int index) {

return (TransactionForm) transactions.get(index);

}

public void setTransaction(int index,

TransactionForm transaction) {

transactions.set(index,transaction);

}

public ArrayList getTransactions() {

return transactions;

}

public void setTransactions(ArrayList list) {

transactions = list;

}

}

Use aggregated, indexed form beans to manage forms with
Struts that update multiple instances of the same object. Struts takes care of map-
ping request data to the corresponding form bean instance. The list of form beans
can then easily be converted to value objects, or the form beans can be used as
value objects themselves as input data for an update service.

The function used by the AdminUserAction to prepare for the page is as follows.
It gets the account number from the form bean that the user entered and uses it to
invoke the account detail service. Note that this is the same service used by the
customer account detail page. The output data of this service is the account object
followed by zero to many transaction objects. This collection of objects is converted to
the aggregated form bean hierarchy and set in the session context so it is available
to the updateTransactions.jsp:

private ActionForward processTransactionNavigation(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

BEST PRACTIC E

412 J2EE Best Practices: Java Design Patterns, Automation, and Performance

HttpServletResponse response,

ActionErrors errors)

throws BlfException,RemoteException,RemoveException {

// Get the transaction list.

AdminForm adminForm = (AdminForm) form;

String accountNumber = adminForm.getAccountNumber();

ArgumentList argList = new ArgumentList();

argList.setProperty("accountNumber",accountNumber);

ServiceData sdata =

new ServiceData("GetAccountDetail");

sdata.setArgumentList(argList);

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Set context for the next page.

// Map value objects to form beans.

// 0 - account, 1-n transaction

ArrayList transactionList = sdata.getOutputData();

BlfStrutsConverter.convertValueObjToFormBean(

(ValueObject)transactionList.get(0),

adminForm.getAccount());

transactionList.remove(0);

Collection transactionFormBeanList =

BlfStrutsConverter.convertValueObjsToFormBeans(

transactionList,new TransactionForm());

adminForm.getAccount().setTransactions(

(ArrayList)transactionFormBeanList);

request.getSession(true).setAttribute("adminForm",

adminForm);

// Go to transaction log page.

return (mapping.findForward(

"adminUpdateTransactions"));

}

The updateTransactionsBody.jsp that uses the output data of the account
detail service is shown here. It uses Struts HTML tags to create input fields that corre-
spond to each instance of the TransactionForm bean. The logic iteration tag is used
to drive the processing of each transaction. Nested property strings are created on each
loop to refer to the indexed transaction’s properties. On the form submission, Struts
then takes care of mapping the input data to the AdminForm bean hierarchy contain-
ing the account and transaction objects:

<%@page import="bank.struts.AdminForm"%>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean" %>

Strengthening the Bank Application 413

<%@ taglib uri="/WEB-INF/struts-logic.tld" prefix="logic" %>

<%@ taglib uri="/WEB-INF/blf.tld" prefix="blf" %>

<table width="100%">

<tr align="center"><td><html:errors/></td></tr>

</table>

<html:form action="/struts/adminUser/updateTransactions">

<table width=100% align=center>

<tr><td width=35%>Account:

<bean:write name="adminForm"

property="account.number" /></td>

<td width=25%>Type:

<blf:lookupValue cache="AccountTypes"

value='<%=((AdminForm)

session.getAttribute("adminForm")).getAccount().getType()%>' />

</td>

<td width=40%>Current Balance:

<bean:write name="adminForm"

property="account.currentBalance" />

</td>

</tr>

</table>

<hr noshade>

<table width=80% align=center>

<tr><td width=25%>Date</td>

<td width=25%>Type</td>

<td width=30%>Amount</td>

<td width=20%>Description</td></tr>

<logic:iterate name="adminForm" property="account.transactions"

id="data" indexId="indexVar" scope="session"

type="bank.struts.TransactionForm" >

<%

// Define nested property strings to be

// used as attribute values of HTML tags.

String amtStr =

"account.transaction[" + indexVar + "].amount";

String descStr =

"account.transaction[" + indexVar + "].description";

String idStr = "account.transaction[" + indexVar + "].id";

%>

<tr><td><%=data.getTransactionDate()%></td>

<td><blf:lookupValue cache="TransactionTypes"

value='<%=data.getType()%>' /></td>

<td><html:text property='<%=amtStr%>' /></td>

<td><html:text property='<%=descStr%>' /></td></tr>

414 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 9.9 Update Transactions Log Page.

<html:hidden property='<%=idStr%>' />

</logic:iterate>

</table>

<table width=100%>

<tr>

<td align="center"><html:submit property="submit"

value="Update Transaction Log"/></td>

</tr>

</table>

</html:form>

This page ends up looking something like Figure 9.9.
The code in AdminUserAction uses a new method on BlfStrutsConverter

to convert the collection of TransactionForm beans to their corresponding
TransactionData value objects. Note that this example can also be implemented
easily by using TransactionForm as a value object as well. You can complete the
implementation by extending BaseFormBean. However, this implementation shows
a more complex mapping example between event objects and value objects. It still
turns out to be fairly simple due to the BlfStrutsConverter utility. The slightly

Strengthening the Bank Application 415

more complicated aspect is mapping the collection of value objects back into the form
bean hierarchy due to the fact that the first element in the collection is the account
value object. Another option would have been to implement the transaction value
objects as aggregated within the account value object. This option could also possibly
lead to a more automated conversion. Consequently, there are a number of options for
how this could be implemented. In any case, once the form beans are converted to a
collection of TransactionData objects, they are passed as input to an Update-
Transactions service. If the service is successful, a confirmation message is added
to the error list, and control is forwarded back to the transactions log page:

private ActionForward processUpdateTransactions(

ActionMapping mapping,

ActionForm form,

HttpServletRequest request,

HttpServletResponse response,

ActionErrors errors)

throws BlfException,RemoteException,RemoveException {

// Create service data from the multiple

// transaction objects on the form.

ServiceData sdata =

new ServiceData("UpdateTransactions");

AdminForm adminForm = (AdminForm)form;

ArrayList transactions =

adminForm.getAccount().getTransactions();

Iterator iter = transactions.iterator();

sdata.setInputData(

BlfStrutsConverter.convertFormBeansToValueObjs(

transactions, new TransactionData()));

// Invoke the application service.

BlfService service =

ServiceObjectFactory.getBlfService();

sdata = service.executeService(sdata);

service.remove();

// Set context for the next page.

// Map value objects to form bean:

// 0 - account, 1-n transaction.

ArrayList transactionList = sdata.getOutputData();

BlfStrutsConverter.convertValueObjToFormBean(

(ValueObject)transactionList.get(0),

adminForm.getAccount());

transactionList.remove(0);

Collection transactionFormBeanList =

BlfStrutsConverter.convertValueObjsToFormBeans(

transactionList,new TransactionForm());

adminForm.getAccount().setTransactions(

(ArrayList)transactionFormBeanList);

request.getSession(true).setAttribute("adminForm",

adminForm);

416 J2EE Best Practices: Java Design Patterns, Automation, and Performance

// Add a confirmation message to inform the user

// that the update was successful.

errors.add(ActionErrors.GLOBAL_ERROR,

new ActionError("TRANSACTION_LOG_CONFIRMATION"));

saveErrors(request, errors);

// Go to transaction log page.

return (mapping.findForward(

"adminUpdateTransactions"));

}

The UpdateTransactions service iterates through this collection and updates
each entity with the new data. As it processes each transaction, it checks whether the
amount was changed from the original amount. Any amount adjustments made on
the update form are tallied in a running total that is used at the end of the service to
update the current balance of the Account object itself. This service implementation
uses the Entity Bean implementation of the business objects to make the updates:

public class UpdateTransactionsServiceImpl

implements BlfServiceObject {

public void doService(ServiceData serviceData)

throws BlfException, RemoteException {

// Keep track of any balance adjustments made

// through this update.

BigDecimal currentBalanceAdjustment =

new BigDecimal(0);

// Keep hold of the output data separately.

ArrayList outputData = new ArrayList();

// Remember the account ID.

String accountId = null;

// Get hold of the input value objects.

Iterator iter = serviceData.getInputData().iterator();

while (iter.hasNext()) {

ValueObject data = (ValueObject) iter.next();

// Use EJB BusinessObjectFactory to

// locate component.

TransactionLocal transaction = (TransactionLocal)

EJBFactoryImpl.findByPrimaryKey("Transaction",

data.getProperty("id"));

// Calculate current adjustment value.

BigDecimal oldAmount =

transaction.getDecimalProperty("amount");

BigDecimal newAmount =

data.getDecimalProperty("amount");

TEAMFL
Y

Team-Fly®

Strengthening the Bank Application 417

if (oldAmount.compareTo(newAmount) != 0) {

currentBalanceAdjustment =

currentBalanceAdjustment.add(

newAmount.subtract(oldAmount));

}

// Make the update.

transaction.setProperty("amount",

data.getProperty("amount"));

transaction.setProperty("description",

data.getProperty("description"));

transaction.save();

// Add each transaction to the output data.

outputData.add(transaction.getValueObject());

AccountLocal account = transaction.getAccount();

accountId = account.getProperty("id");

}

// Adjust the current balance on the account.

AccountLocal account = (AccountLocal)

EJBFactoryImpl.findByPrimaryKey("Account",accountId);

BigDecimal currentBalance =

account.getDecimalProperty("currentBalance");

currentBalance =

currentBalance.add(currentBalanceAdjustment);

account.setProperty("currentBalance",currentBalance);

account.save();

// Set the order of the output to be:

// 0 Account

// 1 - n Transaction

outputData.add(0,account.getValueObject());

serviceData.setOutputData(outputData);

}

}

Best Practices for Advanced Web
Application Development

A summary of the best practices discussed in this chapter is given in this section.

Using Container-Managed Security
Whenever Possible
Use J2EE security whenever possible to safely protect application resources. Container-
managed security is portable across J2EE environments and integrates well with enter-
prise security architectures. Protecting Web-tier resources is critical because they are

418 J2EE Best Practices: Java Design Patterns, Automation, and Performance

the entry point to the application. Consider the network security model and the trusted
server concept when determining how many EJB tier resources you want explicitly
secured using container-managed security. For application-specific requirements, both
the servlet and EJB APIs offer programmatic access to user credentials.

Mapping EJB-Level Exceptions
to Application-Defined Errors
Map EJB-level exceptions to application exceptions with defined business errors for
user-friendly error messages. This approach also simplifies the client code because
there is only one high-level application exception that needs to be handled. The appli-
cation exception then always contains the list of errors. This is a variation on a best prac-
tice discussed earlier, which states that all system-level exceptions should be mapped to
user-friendly messages. As is the case with ObjectNotFoundException, you can
predefine certain application exception subclasses to map to defined business errors.

Implementing Actions with
Multiple Events
If multiple events are processed by the same action, as is the case with multiple submit
buttons on a form, first determine the event that occurred using either the request URL
or the submit button parameters. This type of logic should be isolated from the code
that handles each event. The actual processing of each event can be broken out into
helper methods. This approach is a result of a best practice described earlier in the user
interaction chapters, which states that user events should be abstracted and used to
drive front-end processing.

Implementing Forms with
Multiple Object Instances
Use aggregated, indexed form beans to manage forms with Struts that update multiple
instances of the same object. Struts automatically maps request data to the corre-
sponding form bean instance. The list of form beans can then easily be converted to
value objects, or else the form beans can be used as value objects themselves as input
data for an update service. To implement this in a JSP, you need to create the appropri-
ate nested syntax string to refer to each property instance. This can be done within a
loop structured using the Struts custom tag <logic:iterate>, which iterates over
a collection of objects.

Summary

Application security is largely based on three concepts: authentication, authorization,
and confidentiality. J2EE container-managed security has a number of benefits that
should be considered. It provides a well-tested solution, portability across J2EE
environments, and fairly easy integration with most enterprise security solutions.

Strengthening the Bank Application 419

Applications can also manage security directly, or they can use the servlet and EJB
APIs to extend the basic security model provided by the container. One example of a
combined approach is a scenario in which the container is used to integrate with au-
thentication data and application-specific code is used to perform authorization. If
possible, however, use J2EE security to enforce authorization against component re-
sources, in particular Web-tier resources that are the entry point into the application. At
some point in the architecture, network security models, firewalls, and the trusted
server concept come into play; therefore, not all EJB-tier resources need to be explicitly
secured using container-managed security.

This chapter covered concepts that can be used to strengthen your Web applications.
Application security was covered using J2EE and a number of interesting design
scenarios were discussed. These include Web pages with multiple events and object
instances being triggered by the same HTML form. The examples in this chapter
expanded on the architecture concepts and best practices that were discussed in earlier
chapters. The next chapter looks at strengthening your applications from the perspec-
tive of performance.

421

Performance

C H A P T E R

10

There is simply no way around the fact that the performance of any real-time Web ap-
plication is critical to the success or failure of the product. Most user communities today
are very unforgiving of applications with substantial page response times. Time is a
valuable commodity in today’s fast-paced Internet world, so performance is an essential
aspect of user acceptance for any software product. Thus, it is critical that performance
be considered from the beginning of the software development process. Now, there is a
lot of common wisdom on this topic, particularly about the dangers of spending too
much time up front on optimization. As in many things, the best answer is to take things
in moderation and find a middle ground. Performance should be considered first at the
architecture level and then at increasingly lower levels of detail as the iterative software
development process continues. To begin, this chapter looks at the overall software
development process and how performance engineering fits into the picture.

Overall Performance Approach

A basic development lifecycle with performance engineering integrated into the
process is shown in Figure 10.1. Note that this process itself is often performed in an
iterative manner that includes both prototypes and multiple production releases.

422 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 10.1 A Development Process with Performance Engineering.

Analysis

Project
Planning

Design

Performance
Test

Deploy

Profile

Optimize

Redesign

Validate

Evaluate

Code

Acceptable
Results? No

Yes

Project Objectives/
High-Level Requirements/

Scalable Architecture

Use-Case or
Scenario Level
Requirements

Scalable, Robust
Design

Everyday
Development Best

Practices

Measure and
Evaluate

Performance Engineering
Focal Points

It is no surprise to see that the corrective measures after an unacceptable perfor-
mance test get increasingly more expensive and detrimental as you are required to go
farther back in the process. Thus, it is very important to spend some initial time con-
sidering performance during the establishment of the overall software architecture. It
is much easier to refactor portions of the application code than it is to change the un-
derlying software architecture. As was alluded to earlier, there should still be a balance
in terms of how much time and effort is spent on this topic, but the following guide-
lines usually hold true:

A scalable, efficient architecture is a must for high-performance applications.

Lower-level optimizations can always be done later.

Performance 423

As this chapter looks at performance both in the overall software development
process and in J2EE technology, more clarity will be brought to these two important
points. The next section takes a look at each of the development steps in a bit more
detail from the perspective of performance.

Performance Engineering in the
Development Process
At the beginning of a software development effort, one of the first steps is to determine
the high-level objectives and requirements of the project. In addition to identifying the
key functionality provided by the system, the project objectives can include such
things as the flexibility of the system or the overall performance requirements. During
this time, the overall system architecture is also being developed. For performance-
intensive applications and projects with demanding requirements, a scalable architec-
ture is an absolute must. Early architecture reviews cannot ignore the performance
aspect of the system.

A scalable, efficient architecture is essential for high-
performance applications. Initial architecture reviews during the early stages of
a project can be used to help benchmark and validate high-level performance
requirements.

At this point, you are talking about the high-level software architecture including
such things as component interaction, partitioning of functionality, and the use of
frameworks and common design patterns. At this point you do not need to spend large
amounts of effort or consideration on detailed optimizations such as the use of
StringBuffer versus String or data caching down to the entity level. You are,
however, still looking at high-level strategies such as the component implementation
model, data caching strategies, and possibilities for asynchronous processing.

The creation of the basic software architecture at this point usually includes some
kind of narrow but deep prototype, or proof-of-concept, which executes the communi-
cation through all of the layers and primary components of the architecture. This could
include a user interface that retrieves data from the database and then sends an update
all the way back through the architecture. Some basic load testing can occur at this
point to obtain a ballpark estimate of transactions per second, page response time, or
some other meaningful unit of measure that can help to frame the discussion on
performance. This kind of data can be very helpful in terms of determining the valid-
ity of any high-level performance requirements that are being agreed upon during the
project’s early stages.

Once the individual use cases or scenarios of the system move into the analysis step,
specific performance requirements often emerge for different functions and business
processes. The analysis step allows you to apply the high-level project objectives
against the specific functional requirements in order to derive these lower-level per-
formance requirements for particular functions or pages.

Using the combination of the project objectives, functional requirements, and any
case-specific performance requirements, the process moves into the design phase. It is

BEST PRACTIC E

424 J2EE Best Practices: Java Design Patterns, Automation, and Performance

important that performance be considered at this phase because in many cases, there
are trade-offs that must be made between competing objectives on both the business
and technical sides of the project. Planning for performance can sometimes require a
give and take between business requirements, such as the overall flexibility of the sys-
tem and technical constraints, such as adherence to pure object-oriented design tech-
niques. Thus, you cannot ignore performance as a consideration during the design
phase, yet at the same time, you should not let it drive every decision.

In the coding phase, the everyday coding best practices become a focal point that
lead directly into the resulting quality of the product. At this point, common design
patterns have been prototyped, optimized to the extent that they can be in limited-use
situations, and are being applied to the application functionality. It is the responsibility
of the development team to then follow any guidelines set forth, such as the afore-
mentioned use of StringBuffer when a large amount of string concatenation is
being done to avoid the creation of many small, temporary objects. These are the more
minor things that, if done simply out of habit, can all add up to a robust set of applica-
tion code and the best possible performance results. These types of things can also be
caught during code reviews and used as a way to validate and communicate best prac-
tices to a development team.

In iterative software development, performance tests are typically run after signifi-
cant intermediate iterations have been completed or before releases go into produc-
tion. Testing tools are often used to generate a target number of simulated clients, and
the results are measured, again resulting in a set of metrics such as average page
response time and transactions per second. If the results are not satisfactory and the
root causes are not immediately apparent, profiling tools can be used to determine
where the trouble spots are in the code.

If your project or organization is on a small budget, there is a nice load-
testing tool called OpenSTA available under a GPL (GNU General Public License)
license that can be found at http://www.opensta.org. This tool is fairly easy to set
up and use to run simulated load tests on Web applications. It may lack all of the
features available within some commercial packaged solutions, but it provides
almost all of the basic capabilities and reporting functions.

Even at the end of a development cycle, there are still many lower-level code opti-
mizations that can be done, for example, additional data caching or the use of more
efficient Java collections classes. However, major changes to the code involving the
component implementation and interaction models are difficult to make unless a mod-
ular architecture has already been put in place. Likewise, if the architecture itself is not
scalable or efficient for its purposes, you have an entire codebase that may be affected
by changes sitting on top of it. If a commonly used pattern in the application is re-
designed at this point, it likely has many incarnations across the codebase that need to
be changed. Alternatively, if you are talking about something like moving components
from Entity Beans to regular Java classes, the migration is much more difficult if you
do not have a service layer isolating the business logic from the presentation layer.
These types of changes can be costly at this point in the game. Similarly, changes to the
application design can have a significant effect. For example, you may have made

NOTE

Performance 425

much of the business logic of the application configurable through database tables in
order to meet a project objective of flexibility. A potential resulting effect of this, in
terms of performance, is that the application becomes terribly slow due to the exten-
sive database I/O throughout each transaction. A change to this aspect of the design,
such as moving more of the logic back into the application code, could very easily
affect the overall flexibility. Now, the role of architecture in this project is not only to
provide an efficient foundation to implement these designs but also to allow for a mit-
igation plan. If you have wrapped access to the configuration data and isolated it to a
set of objects, you may be able to cache the data in memory and easily speed up the
performance of the application. You may also need to build in a refresh mechanism
based on the requirements. In terms of implementing this type of change, it is much
less painful to go back and recode a wrapper class than it is to update every business
component that used the configuration data. In fact, the foundation logic for the busi-
ness objects followed this same pattern through the use of the MetadataManager
and CacheList components.

As a last resort, there may be a need to go back and review the specific performance
requirements and possibly even validate that the project objectives are in line with
what can realistically be done to provide the most value to the user community. To
avoid having to go through this, the time and effort spent on performance can be
spread a bit more evenly throughout the life of the project in order to mitigate, mea-
sure, and meet the performance requirements spelled out for your application.

Measuring Performance
Fully evaluating the performance capabilities and capacity of an application often
requires the use of different metrics and different perspectives. Initially, it is usually
best to put the focus at the transaction level and measure the individual transaction
time or page response time. As the development process continues, the focus expands
to include measurements of the transaction throughput, the ability to support concur-
rent users, and the overall scalability of the application. One of the main challenges in
terms of performance in application development is to try to balance these vantage
points.

Individual Transaction Response Time

During the early prototyping stages, the first question to ask is, “How fast can I push a
single transaction through the system?” This is easy to test, requiring only a simple
client program with a timer, yet it provides the basic unit of measure upon which the
vast majority of performance metrics will be based. The result of a load test or sizing
exercise is usually a multiple of the processing speed of each individual unit of work.
Thus, the first area of focus is the basic patterns and architecture components exercised
by some basic transactions. If you create efficient patterns going through the core of the
user interface and business component models, these basic transactions can be opti-
mized and used as a foundation for the application. Keep in mind, however, that your
work does not end here because the next perspective may impact some of the strategies
chosen during this first exercise.

426 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Transaction Throughput and Scalability

The second aspect of performance that you want to measure takes the area of focus up
a level to the behavior of the application operating under a heavy user load. Scalability
is one of the main concerns here that can potentially impact some of the optimizations
you want to perform at the individual transaction level. The J2EE component architec-
ture provides a foundation for highly scalable and available applications on which to
base your approach. However, there are a couple of things to keep in mind, primarily
the memory consumption of the application and the size of the user HttpSession
object. As an example, you may have a blazing fast page response time for a single
user, but that may have been enabled by storing an entire result set from the database
in the HttpSession. Subsequent page requests can then page through the data with-
out having to go back to the database. If you are in this situation with a large data set,
however, you may be able to get only a handful of concurrent users on an individual
box because of the memory footprint involved with the application components.

As you look at the transaction throughput with various concurrent user levels, you
also want to ask the question, “Does the system performance degrade as I add concur-
rent users and transactions?” You hope not, as you would like to see a linear response
time as you add concurrent users to an application. Once you have hit the maximum
number of users by pushing the current hardware to its limit, you would then like to
see a linear response time as you add additional hardware. This type of scalability is
made possible through the clustering and load balancing of the application compo-
nents on the Web and EJB tiers. It enables you to add additional hardware and create
redundant instances of the application server to meet the demands of your application.
The value of the EJB component model is that it provides a standard method of build-
ing components to plug into a container and automatically take advantage of these
infrastructure services.

Object Instantiation, Garbage Collection,
and Scalability

In the Java language, there is also another aspect of code running in a JVM that affects
the ideal of linear response time. There are actually two performance hits incurred
by the JVM, both associated with instantiating an object in Java:

1. The initial cost of allocating memory to create the object

2. The secondary cost of tracking the object and later running it through the
garbage collection (GC) process, potentially multiple times, until it is eventually
destroyed and the memory is freed up for other use

Every object that is created in your code must later be checked by the JVM to see if
it is being used by another object. This must be done before it can be freed and the
memory reallocated for other use. The more objects that are created, the longer this
garbage collection process takes, and the less free memory that is available, which then
leads to the garbage collection process running more often. You can easily see how this
can create a downward spiral that quickly degrades both the transaction throughput
and the individual response times.

TEAMFL
Y

Team-Fly®

Performance 427

Figure 10.2 Theoretical Response Time with a Single JVM.

Time

Pa
ge

 R
es

po
ns

e
Ti

m
e

Start GC Start GC

To quickly see the effects of garbage collection, use the -verbose:gc
JVM flag. This causes the JVM to write information to the output log showing the
time spent in GC, memory used, and memory freed each time GC is run.

The problem of the downward spiral is magnified if only one JVM is being used
because transactions can continue to become backlogged until they eventually start to
time out or reach completely unacceptable levels. Figure 10.2 shows a graph to repre-
sent the effects of garbage collection on response time for a single JVM under a heavy
transaction load.

The secondary cost of object instantiation also prevents you from simply applying
the tempting cure of adding more memory to the heap. With a larger heap size, the
garbage collection process can become even more cumbersome to manage and then
takes away valuable computing cycles that could be used for processing user transac-
tions. Thus, adding more memory works to an extent, but at some point, it may have a
marginally negative effect. Once again, the clustering and load-balancing capabilities
of the J2EE application server come to the rescue to provide the scalability you need to
help maintain a relatively even response time. Because requests are distributed across
a cluster of application server instances, you can typically avoid having to use the JVMs
that are garbage collecting to process the current transaction. The load-balancing algo-
rithm, of course, is usually not tied directly into the GC status of the JVM, but it does
use the law of averages and probabilities to work in your favor. What the clustering
also allows you to do is to use a moderately sized memory heap for each JVM instance
so that you can find the optimal setting for your application. Tuning this JVM parame-
ter can often have a meaningful affect on the overall performance of an application.
Usually it takes a number of trial and error load tests in order to determine the optimal
settings for the heap size, although a few general guidelines include setting the mini-
mum size to be half of the maximum size, which usually does not exceed 512 MB. The

NOTE

428 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 10.3 Theoretical Response Time with Multiple JVMs.

Time

Pa
ge

 R
es

po
ns

e
Ti

m
e

net result of all of this is a much more even response time and consistent transaction
throughput as concurrent user levels increase. Figure 10.3 shows what an improved
response time might be for an application clustered across multiple JVMs. Barring
other extraneous factors, some minor blips in the curve still appear due to the occa-
sional time periods when a number of the JVMs happen to be collecting garbage at the
same time. This is largely unavoidable, but it has a much smaller effect on the overall
response curve than in the scenario with a single JVM.

ECperf—An EJB Performance Benchmark

Another performance metric you can use is the ECperf benchmark created through the
Java Community Process that is now a part of the J2EE suite of technologies. Its goal is
to provide a standard benchmark for the scalability and performance of J2EE applica-
tion servers and, in particular, the Enterprise JavaBean aspect that serves as the foun-
dation for middle-tier business logic. The focus of the ECperf specification is not the
presentation layer or database performance; these aspects are covered by other mea-
sures such as the series of TPC benchmarks. The focus of the ECperf tests is to test all
aspects of the EJB component architecture including:

Distributed components and transactions

High availability and scalability

Object persistence

Security and role-based authentication

Messaging, asynchronous processing, and legacy application integration

The software used for the test is intended to be a nontrivial, real-world example that
executes both internal and external business processes, yet it has an understandable

Performance 429

workflow that can be consistently executed in a reasonable amount of time. Four busi-
ness domains are modeled in the ECperf 1.1 specification as part of a worldwide
business case for the tests:

Manufacturing

Supplier

Customer

Corporate

A number of transactions are defined for each of the domains, each of which is given
a method signature to be used by an EJB component in the test. These transactions
include such things as ScheduleWorkOrder and CreateLargeOrder in the man-
ufacturing domain, as well as NewOrder and GetOrderStatus in the customer do-
main. Subsequently, two applications are built using these domains. The first is an
OrderEntryApplication that acts on behalf of customers who enter orders, makes
changes to them, and can check on their status. The second is a Manufacturing Ap-
plication that manages work orders and production output. The throughput bench-
marks are then determined by the activity of these two applications on the system being
tested. Reference beans are given for the test, and Entity Beans can be run using either
BMP or CMP. The only code changes allowed are for porting BMP code according to reg-
ulations set forth in the specification. Deployment descriptors for all of the beans must
be used as they are given in order to standardize the transactional behavior as well as the
rest of the deployment settings. The reference implementation of these transactions uses
stateless and stateful Session Beans as a front to Entity Beans, although the ratio of com-
ponents is fairly heavily weighted toward Entity Beans.

The primary metric used to capture the result is defined using the term BBops/min,
which is the standard for benchmark business operations per minute. This definition
includes the number of customer domain transactions plus the number of workorders
completed in the manufacturing domain over the given time intervals. This metric
must be expressed within either a standard or distributed deployment. In the standard,
or centralized deployment, the same application server deployment can be used for
all of the domains and can talk to a single database instance containing all of the
tables. The distributed version requires separate deployments and different database
instances. These two measurements are thus reported as BBops/min@std or
BBops/min@Dist, respectively. For either of these measurements, there is a very
helpful aspect built into the specification for technology decision makers, the measure
of performance against price, that is, $ per BBops/min@std, also commonly
referred to as Price/BBops.

The ECperf 1.1 specification also announced that it will be repackaged as SPECjApp-
Server2001 and reported by the Standard Performance Evaluation Corporation
(http://www.spec.org). SPECjAppServer2001 will cover J2EE 1.2 application servers
while SPECjAppServer2002 will cover J2EE 1.3 application servers. A good “apples-to-
apples” comparison of application servers like this has been a long time coming. The
Sun Web site currently refers you to http://ecperf.theserverside.com/ecperf/ for pub-
lished results. To give you a ballpark idea, there are currently a couple posted results
over 16,000 BBops/min@std for under $20/BBops.

430 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Performance in J2EE Applications

This section takes a look at various techniques you can use to optimize the architecture,
design, and code within your J2EE applications. As a first step, there are key aspects
within all Java programs that need to be addressed for their potential impact on appli-
cation performance. Additionally, there are various performance characteristics associ-
ated with J2EE components and technologies that are worth noting. Many solutions
involve using enterprise Java services whenever they provide the most benefit, but not
as a standard across the board. Using the enterprise components across the board from
front to back in the software architecture is a common tendency in building J2EE ar-
chitectures. A key example of this is the use of Entity Beans. Relatively speaking, Entity
Beans are fairly heavyweight components, and thus should not be used to model every
business object in an application, particularly if each Entity Bean maps to a row in the
database. Doing this can quickly degrade the scalability, and thus the usability, of an
application. This goes back to one of the main points, that a scalable architecture is a
must for almost any system, and design guidelines must be applied when deciding on
the foundation for software components as well as in building the individual compo-
nents themselves.

Core Aspects of Java Application
Performance
Two significant performance aspects to consider for almost all applications are:

Object instantiation and garbage collection

Disk and database I/O

Object Instantiation

A key point to take away from the earlier discussion regarding object instantiation and
garbage collection is that, to some degree, objects should be instantiated wisely. Each
new version of the JVM has seen significant gains in the efficiency of the garbage col-
lection process, but if you can reasonably limit or delay the creation of objects, you can
help yourself greatly in terms of performance. This is especially true for larger compo-
nents that usually encompass the instantiation of many objects. Of course, this does not
mean you should go back to doing pure procedural software development and put all
of your logic in a single main method. This is where performance as a design consid-
eration comes into play. You don’t want to sacrifice the potential for reusability and
flexibility through solid object-oriented design; thus, you don’t let performance drive
all of your decisions. Nonetheless, keep it in the back of your mind. And if you aren’t
quite sure of a potential impact, you can use an abstraction or design pattern to miti-
gate the concern by providing an escape route to take later. This means that if you have
isolated an architecture layer or encapsulated a certain function, it can be changed in
one place without great cost or side effects to the remainder of the application.

Performance 431

To maximize the efficiency of time spent considering performance in the design
process, consider the following approach. Rather than look at every object in the entire
object model, perhaps spend some time concentrating on the two extremes in your im-
plementation: the extremely large objects and components and the extremely small ob-
jects. For obvious reasons, large objects and components rapidly increase the memory
footprint and can affect the scalability of an application. In the case of larger compo-
nents, they often spawn the creation of many smaller objects as well. Consider now the
case of the very small object, such as the intermediate strings created by the following
line of code:

String result = value1 + value2 + value3 + value4;

This is a commonly referenced example in which, because String objects are im-
mutable, you find out that value1 and value2 are concatenated to form an interme-
diate String object, which is then concatenated to value3, and so on until the final
String result is created. Even if these strings are only a few characters in size, con-
sider now that each of these small String objects has a relatively equal impact on
your secondary cost consideration, the object tracking and garbage collection process.
An object is still an object, no matter what the size, and the JVM needs to track all of the
other objects that reference this one before it can be freed and taken off of the garbage
collection list. Thus, all of those little objects, although they do not significantly impact
the memory footprint, have an equal effect on slowing down the garbage collection
process as it runs periodically throughout the life of the application. For this reason,
you want to look at places in the application where lots of small objects are created in
order to see if there are other options that can be considered.

In the study of business object components, the concept of lazy instantiation, which
delays the creation of an aggregated object until it is requested, was discussed. If strict
encapsulation is used where even private methods used a standard get<Object>
method, you can delay the instantation of the object until it is truly necessary. This con-
cept is particularly important for value objects or other objects used as data transport
across a network. This practice minimizes the amount of RMI serialization overhead as
well as reducing network traffic.

Use lazy instantiation to delay object creation until neces-
sary. Pay particular attention to objects that are serialized and sent over RMI.

Another common use of this concept can be put into practice when lists of objects
are used. In many application transactions, a query is executed and a subset of the re-
sulting objects is dealt with in a transactional manner. This concept is particularly im-
portant if the business object components are implemented as Entity Beans. For a
collection of size n, as was discussed in the Business Object Architecture chapter, the
potential exists for the (n + 1) Entity Bean finder problem, which results in additional
database lookups that can be accomplished with a single JDBC query. However, you
also want to consider the characteristics of Entity Beans and their effect on the con-
tainer’s performance. Although Entity Beans are fairly heavyweight components, the
optimized transaction model is fairly efficient because Entity Bean instances are pooled

BEST PRACTIC E

432 J2EE Best Practices: Java Design Patterns, Automation, and Performance

and shared by the container for different client transactions. However, once an Entity
Bean instance is pulled into a client transaction, it cannot be shared by another client
until either the transaction ends or the container passivates the state of that instance for
future use. This passivation comes at a cost and additional complexity because the con-
tainer must activate the instance once again to complete the transaction later in a reli-
able, safe manner. Considering that the Entity Bean components have a relatively large
fixed cost and that there may be many different types in a complex application, you
want to size the component pools appropriately and find a balance between resource
consumption and large amounts of activation and passivation that can slow down the
application server. With all of this being said, if you can avoid using an Entity Bean for
pure data retrieval, it is worth doing it. Perhaps not for that individual transaction, but
it will aid the scalability and throughput of the overall application under a heavy user
load. This comes back to the analysis of performance measurement that first starts at
the individual transaction level, but then has to consider the effect on the overall
application performance.

This concept is also in line with the idea of using business objects only for transac-
tional updates as opposed to requiring that they be used for data retrieval as well.
Thus, if your application deals with a collection of objects, it is perhaps best to first run
the query using JDBC, similar to the ObjectList utility class. You can then iterate
through the collection and instantiate or look up the Entity Bean equivalents when you
want to perform a transaction update on a given instance. In the cases in which you do
not update the entire collection, you can gain the greatest benefit from this technique.
The database lookups for an n size collection are then somewhere between 1 and
(n + 1), depending on the particular circumstances of the transaction. You can also
compare this to an aggressive-loading Entity Bean strategy that theoretically limits you
to a single database query but then has the overall cost associated with using a signifi-
cant portion of the free instance pool. In other words, you sacrifice the overall transac-
tion throughput for the benefit of the individual transaction in a heavy user load
setting. Note that if the transaction volume is quite sporadic for a given application, an
aggressive-loading strategy for Entity Beans may be the better solution because the
assumption of fewer concurrent transactions is made; thus the cross-user impact is
limited.

Disk and Database I/O

Often, the first thing to look at when tuning an application is the amount of database
and disk I/O because of its relative cost compared to regular computational cycles.
Thus, look to minimize the amount of database calls and file read/writes in your
application. The first strategy to do this is usually to analyze the access patterns and
identify redundant or unnecessary database access. In many cases, a significant bene-
fit can be derived from performing this step at the design review and code review
stages of a project. Eventually, your application approaches the minimum level of
access required, and then you need to look to other techniques to make further
improvements, which is where data caching comes into play.

Data caching commonly refers to storing application data in the memory of the JVM,
although in general terms, it could also involve storing the data somewhere closer to

Performance 433

the client or in a less costly place than the original source. In a sense, you can refer to
data stored in the HttpSession of a Web application as being cached if you are not
required to go through an EJB component and to the application database to get it.
In practice, the HttpSession could be implemented by the container through in-
memory replication or persistent storage to a separate database, although, in both
cases, the access time to get to the data is likely less than it would be to go to the defin-
itive source. Now, of course, the definitive source is just that, and you need to be able
to refresh the cache with the updated data if it changes and your application require-
ments dictate the need, which is often the case. In the Business Object Architecture
chapter, a solution for this issue was looked at in the J2EE architecture using JMS as a
notification mechanism for caches living within each of the distributed, redundant
application server instances. Remember that even this approach has a minor lag time
between the update of the definitive source and the notification message being
processed by each of the caches. This may still not be acceptable for some mission-
critical applications; however it does fit the needs of many application requirements.

The reference architecture uses an XML configuration file for application metadata,
and many applications use a set of configuration values coming from a properties file.
This type of data is a perfect candidate for caching because it does not change fre-
quently and may not even require a refresh mechanism because changes to this data
often require a redeployment of the application.

The use of Entity Beans to cache data should also be addressed here. Whereas Ses-
sion Beans are used to deal with the state of a particular client at a time, Entity Beans
represent an instance of a persistent object across all clients. So how much can you rely
on Entity Beans to help with caching? Unfortunately, the benefit is not as great as one
might think. Although an instance of an Entity Bean can be shared across clients, the
same issue of updates to the definitive source applies here. If you deploy your EJB
components to a single instance of an application server, then you can, in fact, take full
advantage of this caching. However, most significant deployments wish to use the
clustering and load-balancing features of the application servers, so multiple instances
are deployed and the cached Entity Bean must consider the possibility of updates by
another copy of that Entity Bean in another instance. Thus, in a clustered environment,
the ejbLoadmethod must always be invoked at the beginning of a transaction to load
the current state and ensure data integrity.

Object Caching
The concept of caching can also be applied to objects that are relatively expensive to in-
stantiate. In a J2EE environment, this can include such objects as the JNDI Initial Con-
text and the EJB Home interfaces. In your own application, you may also have complex
components or objects that are expensive to instantiate. Some examples of this might
be classes that make use of BeanShell scripts or other external resources that involve
I/O, parsing, or other relatively expensive operations. You may want to cache
instances of these objects rather than instantiate new ones every time if one of the
following requirements can be met:

Objects can be made thread-safe for access by multiple concurrent clients.

Objects have an efficient way to clone themselves.

434 J2EE Best Practices: Java Design Patterns, Automation, and Performance

JNDI Objects

Relatively speaking, the JNDI operations can be somewhat expensive for an applica-
tion. The creation of a InitialContext and the subsequent lookups for EJB Home
interfaces should be looked at as a performance consideration. If your application does
not use a large number of EJB, this may not be worth any further thought. For exam-
ple, if your business logic is encompassed within Session Beans and you typically have
only one EJB lookup in a transaction, it may not be worth the trouble to try and opti-
mize this step. However, if you have a large number of Entity Beans used within a
given transaction, it can make a noticeable difference if you can avoid the creation of an
InitialContext and subsequent JNDI lookup for each component. Caching the
JNDI objects should be used with caution, as there are a number of potential impacts
to consider. The InitialContext object can be created once, such as on the Web tier
in the controller servlet’s init method, and then used for all client requests rather
than a new one created for each individual request. In a set of tests with heavy user
loads, a single shared InitialContext instance did not present any problems;
however, you should thoroughly test in your target environment to become comfort-
able with the approach.

Before looking at the EJBFactoryImpl code for an implementation of this solu-
tion, you should also consider caching the EJB Home interface objects. This technique
can also provide a performance boost in some cases but should be used only after care-
ful consideration. Many application servers provide a Home interface that is aware of
the available, redundant application server instances. However, ensure that this is the
case for your environment before using this technique. If you are going to reuse an ex-
isting Home interface, you don’t want one that pins you to a given instance, or you will
lose all of your load-balancing and failover capabilities. The other aspect to consider of
reusing the Home interface is that problems can result if one or more of the application
server instances are brought up or down. A Home interface may become “stale” if the
EJB server is restarted, and if instances are added or removed from the cluster, the ex-
isting home interface is likely not to be aware of this. In this sense, there also needs to
be a refresh capability for the Home interface cache unless it is acceptable to restart the
Web tier, or other such client tier, when a change is made to the EJB server configura-
tion. This is likely to be a manual process unless a programmatic management capa-
bility can be introduced into the application.

Here are the relevant portions of EJBFactoryImpl that use a cached Initial-
Context and cached collection of EJB Home interfaces keyed by the object name.
In the examples in this book, this class is always used in the context of an EJB tier
underneath a service component deployed as a Session Bean. Thus, note that the
InitialContext is created without any properties in a static initialization block.
In order to be used by remote clients, this class would need to be modified to pass in
the provider URL and context factory, but you can see the basic idea from this exam-
ple. Each time the findByPrimaryKey method is invoked, the helper method
getHomeInterface, which first looks in a collection of Home interfaces to see if the
interface was already created and cached, is called. If it is not there, then it is created
and stored for future use. This implementation uses a lazy-instantiation approach in
which the first time through is a bit slower and then subsequent requests benefit from

Performance 435

the performance improvements. Alternatively, this initial cost could be incurred at
server startup time:

public class EJBFactoryImpl extends BusinessObjectFactory {

// Cached initial context

private static InitialContext jndiContext;

// Cached set of home interfaces keyed by JNDI name

private static HashMap homeInterfaces;

static {

try {

// Initialize the context.

jndiContext = new InitialContext();

// Initialize the home interface cache.

homeInterfaces = new HashMap();

} catch (NamingException ne) {

ne.printStackTrace();

}

}

/**

* Helper method to get the EJBHome interface

*/

private static EJBHome getHomeInterface(String objectName,

BusinessObjectMetadata bom)

throws BlfException {

EJBHome home = null;

try {

// Check to see if you have already cached this

// Home interface.

if (homeInterfaces.containsKey(objectName)) {

return (EJBHome)

homeInterfaces.get(objectName);

}

// Get a reference to the bean.

Object ref = jndiContext.lookup(objectName);

// Get hold of the Home class.

Class homeClass =

Class.forName(bom.getEJBHomeClass());

// Get a reference from this to the

// Bean’s Home interface.

436 J2EE Best Practices: Java Design Patterns, Automation, and Performance

home = (EJBHome)

PortableRemoteObject.narrow(ref, homeClass);

// Cache this Home interface.

homeInterfaces.put(objectName,home);

} catch (Exception e) {

throw new BlfException(e.getMessage());

}

return home;

}

/*

* Discover an instance of a business object with the

* given key object.

*/

public static Object findByPrimaryKey(String objectName,

Object keyObject)

throws BlfException {

// Obtain the business object metadata.

BusinessObjectMetadata bom =

MetadataManager.getBusinessObject(objectName);

// Get the Home interface.

EJBHome home = getHomeInterface(objectName, bom);

//

// Use the Home interface to invoke the finder method...

//

}

}

For increased performance in applications that use a large
number of Entity Beans, consider caching the JNDI InitialContext and EJB
Home interfaces. This optimization should be encapsulated within the EJB business
object factory so there is no effect on business object client code. Many application
servers provide a Home interface that is aware of the available, redundant applica-
tion server instances. However, ensure that this is the case for your environment
before using this technique so you don’t lose the load-balancing and failover
capabilities of the application server.

Entity Beans
Many of the performance characteristics of Entity Beans have already been covered.
Although they are fairly heavyweight components, the container pools instances of
them, and the regular transaction model can be quite efficient. However, you can get

BEST PRACTIC E

TEAMFL
Y

Team-Fly®

Performance 437

into trouble when the container is forced to perform large amounts of activation and
passivation that can occur under heavy, concurrent usage. There are a number of other
things to keep in mind. For example, when using remote interfaces, you want to mini-
mize the amount of remote method invocation and RMI overhead. Thus, you use value
objects to communicate data to the Entity Bean. You also want to avoid iterating
through collections of Entity Beans through finder methods unless you can mitigate
the risks of the (n + 1) database lookup problem.

If you are using a Session Bean layer as a front to Entity Beans, similar to the refer-
ence architecture and the services layer, you should use local interfaces to access your
Entity Beans. This avoids the overhead of RMI and remote method invocations. This
forces you to colocate all related Entity Beans in a transaction in a given application
server deployment, although this usually does not cause much of a problem unless
you have a truly distributed architecture. In many cases, all of the beans are running in
a standard centralized deployment for performance reasons and you can do this with
ease. At this point, the biggest overhead left for each Entity Bean is the JNDI lookup to
access the local interface, and there are options to address this given the earlier discus-
sion of JNDI and object caching.

In many cases, Container-Managed Persistence (CMP) provides the best option in
terms of performance for Entity Bean persistence. Bean-Managed Persistence (BMP)
does suffer from a serious performance flaw in that a single lookup of an Entity Bean
can actually cause two database hits. This problem is similar to the (n + 1) problem if
considered for a collection of one. The container needs to look up the bean using the
primary key after a Home interface method is invoked. Once the component is located
and a business method is invoked from the remote or local interface, the ejbLoad
method, which typically uses application JDBC code to select the remainder of the
properties from the database, is called by the container. In the container-managed
approach, the container can optimize these steps into one database call. This is a seri-
ous consideration for using BMP in your Entity Beans. There are also many other cases
in which the container can optimize how persistence is implemented, such as checking
for modified fields before executing ejbStore. Finally, a major benefit of using Entity
Beans is the object persistence service, so carefully consider the benefits of using BMP
before taking this approach.

Another factor that can affect the performance of Entity Beans is the transaction
isolation setting. The safest option is TRANSACTION_SERIALIZABLE, but it is not
surprisingly the most expensive. Use the lowest level of isolation that implements
the safety required by the application requirements. In many cases, TRANSACTION_
READ_COMMITTED provides a sufficient level of isolation in that only committed data
is accessible by other beans. Transactions should also be kept to the smallest scope pos-
sible. However, this can sometimes be difficult to implement using container-managed
transactions because you can give each method only a single transaction setting for the
entire deployment. Often, methods are used across different contexts in an application,
and you would like the setting to be different in various situations. For this, you need
to use bean-managed transactions and control this aspect yourself. However, a nice
benefit of the Session Bean to Entity Bean pattern is that Entity Beans are usually
invoked within a transaction initiated by the Session Bean. In this case, a transaction
setting of TX_SUPPORTS works in most cases because a transaction will have already
been initiated if need be.

438 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Session Beans
Stateless Session Beans are the most efficient type of Enterprise JavaBean. Because the
beans are stateless, the container can use a single instance across multiple client
threads; thus, there is a minimal cost to using a stateless Session Bean both for the in-
dividual transaction and the overall application scalability. Remember that this is not
always the case with Entity Beans due to the potential for activation and passivation.
The container implementation also has the option to pool instances of stateless Session
Beans for maximum efficiency.

A stateful Session Bean is particular to the client that created it. Thus, there is a fixed
cost for the individual transaction that uses a stateful Session Bean. Stateful Session
Beans are sometimes used as an interface to a remote client that maintains some state
about the application. In a Web application, this type of state can usually be stored in
the HttpSession, although stateful Session Beans are particularly helpful for thick-
client Swing front ends. Note that it is important that the client call the removemethod
on the stateful Session Bean when it is done; otherwise the container will passivate it
for future use, and this adds to its overall overhead.

Be sure to remove instances of stateful Session Beans to
avoid unnecessary container overhead and processing.

One thing to note is that some J2EE containers, particularly earlier versions, do not
support failover with stateful Session Beans, although the major containers are now
doing this. Make sure this is the case in your environment if this is a factor for consid-
eration in your application.

XML
If an application does a large amount of XML parsing, it is important to look at the
parsing method being used to do it. Two of the basic parsing options are the Document
Object Model (DOM) and the Simple API for XML (SAX). DOM parsers require much
more overhead because they parse an entire XML document at once and create an in-
memory object representation of the XML tree. This is helpful if the program requires
either significant manipulation or the creation of XML documents. However, if your
application simply needs to parse through a document once and deal with the data
right away, the SAX parser is much more efficient. It reads through a document once
and invokes hook methods to process each tag that it comes across in the document. A
document handler is written specifically for the application. It is a little more compli-
cated to write because the hook methods are called without much of the XML tag con-
text, such as the name of the parent tag. Thus, it requires the developer to maintain
some state in order to correctly process the document if it contains any nested tags.
However, the difference in speed can be noticeable for large documents. The reasoning
for this goes back to the initial discussion on object creation and garbage collection. A
DOM parser creates a large number of objects underneath the covers. The actual num-
ber of objects created is a factor of the number of XML nodes because objects are
created for each attribute and text node of each element.

Many applications that use XML as a messaging or communications framework
will want to manipulate the data in a regular Java object format. There are binding

BEST PRACTIC E

Performance 439

frameworks such as the Java API for XML Binding (JAXB) that can be used to generate
classes that can both extract their data from XML and write out their state as XML.
These classes can be quite efficient because they know exactly where in the XML their
properties belong and thus can avoid some of the overhead of a generic parsing API.
These binding packages create a very powerful framework for exchanging data and
dealing with it on both sides of a business service or process.

If you use XML extensively throughout your application and
performance is a concern, choose the most efficient parsing method available to
you that meets your requirements. DOM parsers are usually the slowest due to
the large number of objects instantiated underneath the covers and their generic
nature. If your application simply needs to parse through a document once and
deal with the data right away, the SAX parser is much more efficient. Binding
frameworks such as JAXB will also be more efficient because they know exactly
what they are looking for in the XML or what XML tags they need to create. These
types of frameworks are also helpful because they use XML as a data transport
but allow programs to access the data through objects.

Asynchronous Processing
Asynchronous processing is a strategy that can be used in certain circumstances to
alleviate performance concerns. There are a limited number of situations for which this
approach can be used; however, in the cases in which it is applicable, it can make a
noticeable difference. Executing processes in parallel can be considered if any of the
following conditions exist:

Semi-real-time updates fit within the application requirements.

There are a number of independent external applications to invoke.

Application data and the relevant units-of-work can be partitioned.

Asynchronous processing can also be used to provide the benefit of perceived per-
formance. For example, if a Web page is waiting on a response from a lengthy transac-
tion, you may want to display the next page prior to the completion of the overall
process to give the user the ability to continue work, thus increasing the perceived per-
formance of the application. The next page might include a confirmation message,
some intermediate or partial results, or else just a message informing users that they
will be notified upon completion of the process, perhaps by email.

For a parallel processing approach to be effective, each asynchronous process needs
to be significantly big enough to make the light overhead of a messaging framework,
such as JMS, worth the benefit. One interesting thing to note about the J2EE environ-
ment is that JMS and Message-Driven EJBs are the only mechanisms provided to per-
form asynchronous processing. Strictly speaking, the EJB specification prohibits
applications from managing their own threads. This makes sense when you think
about the responsibilities of an application server. It is managing multiple threads for
different types of components, and in order to effectively maximize performance and
resource utilization, it requires control of the threads being run on a given machine.
Thus, an application component cannot explicitly start a new thread in an object.

BEST PRACTIC E

440 J2EE Best Practices: Java Design Patterns, Automation, and Performance

However, the Java Message Service provides a mechanism that goes through the con-
tainer to invoke and start other threads. A message can be sent asynchronously from a
client and a component that receives that message can process it in parallel with the ex-
ecution of the original thread. This strategy is quite easy with the EJB 2.0 specification
that provides a third type of Enterprise Bean, the Message-Driven Bean. This is an EJB
component that is invoked when a particular type of JMS message is received. Thus,
for asynchronous processing, a client can send a JMS message and a defined Message-
Driven Bean can be used as a wrapper to invoke additional functionality in parallel.

Consider the use of asynchronous processing to alleviate
performance concerns in applications with semi-real-time updates, multiple
external applications that can be invoked in parallel, or work that can be
partitioned into segments. Use Message-Driven Beans and JMS to implement
parallel processing in a J2EE container. Asynchronous processing can also be
used to increase the perceived performance of an application.

The Web Tier
JavaServer Pages and servlets are extremely efficient in that they are multithreaded
components with a very small amount of overhead. These components provide very
useful APIs and functions without causing much of an impact to the performance of the
application. Unlike EJBs, little or no thought is required in order to use either of these
components with regard to performance. The exception to this rule is of course the use of
HttpSession, something that was alluded to numerous times throughout this book.
This state maintenance option can impact the scalability and throughput of an applica-
tion, so careful attention does need to be paid to its use. Nonetheless, the front end of
the J2EE platform provides a very efficient, robust architecture for implementing high-
quality Web applications.

Best Practices for J2EE
Performance Engineering

A summary of the performance best practices is given in this section.

Considering Performance throughout
the Development Process
A scalable, efficient architecture is essential for high-performance applications. Initial
architecture reviews during the early stages of a project can be used to help benchmark
and validate high-level performance requirements. Lower-level optimizations can be
done later in the process. In general, spread the time spent on performance engineer-
ing throughout the process rather than wait until the week prior to deployment to run
a load test. Remember that performance problems uncovered later in the process
become increasingly more expensive to resolve.

BEST PRACTIC E

Performance 441

Minimizing Object Instantiation
Whenever Possible
Use lazy instantiation to delay object creation until necessary. Pay particular attention
to objects that are serialized and sent over RMI. If you are invoking a remote Session
Bean, try to send only the object data that is required for the component method.

Caching EJB Home Interfaces
For increased performance in applications that use a large number of Entity Beans,
consider caching the JNDI InitialContext and EJB Home interfaces. This opti-
mization should be encapsulated within the EJB business object factory so that there is
no effect on business object client code. Many application servers provide Home inter-
faces that are aware of the available, redundant application server instances. However,
ensure that this is the case for your environment before using this technique so you
don’t lose the load-balancing and failover capabilities of the application server.

Removing Stateful Session Beans
When Finished
Be sure to remove instances of stateful Session Beans when you are done with them to
avoid unnecessary container overhead and processing.

Choosing an Efficient XML Parser
Based on Your Requirements
The extensive use of XML in an application can have a noticeable effect on application
performance. Choose the most efficient parsing method available to you that will meet
your requirements. DOM parsers are usually the slowest due to the large number of
objects instantiated underneath the covers and their generic nature. If your application
simply needs to parse through a document once and deal with the data right away, the
SAX parser is much more efficient. Binding frameworks such as JAXB will also be more
efficient because they know exactly what they are looking for in the XML or what XML
tags they need to create. These types of frameworks are also helpful because they use
XML as a data transport, but you can program against the objects that receive the data.

Asynchronous Processing
as an Alternative
Asynchronous processing is an option that can be used to alleviate performance con-
cerns in applications with semi-real-time updates, multiple external applications that
can be invoked in parallel, or work that can be partitioned into segments. Use
Message-Driven Beans and JMS to implement parallel processing in a J2EE container.
Asynchronous processing can also be used to increase the perceived performance of an
application.

442 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Summary

Performance should be considered throughout the development process. The initial
focus is on developing a scalable architecture while lower-level optimizations can be
saved until later. A typical approach involves a narrow but deep prototype, or proof-
of-concept, which executes the communication through all of the layers and primary
components of the architecture. Some basic load testing is done at this point to obtain
basic performance metrics that help to validate both the high-level performance
requirements and the proposed architecture. Performance should also be considered
during the design phase because it often involves trade-offs against flexibility and
other requirements. The application architecture and design should help to mitigate
performance concerns by providing potential migration paths through the use of iso-
lation and encapsulation. A key example of this concept is the use of a business object
factory that provides a placeholder to optimize JNDI lookups without affecting the rest
of the application code. Other key factors to consider when looking at J2EE perfor-
mance include the use of Entity Beans and optimal pool sizes, choice of the right XML
parser, and possibilities for asynchronous processing.

This chapter covered best practices for performance engineering in J2EE Web appli-
cations. The role of performance in the development process was considered and a
number of techniques were discussed for the use of specific technologies such as Entity
Beans, Message-Driven Beans, and XML. Whereas this chapter helped make your
applications run faster, the next chapter addresses a number of best practices used to
speed the development of your applications. These best practices focus on the topic of
software reuse.

443

Moving toward Reuse in the
Reference Architecture

C H A P T E R

11

The topic of reuse in the software industry is a very big and complicated issue. This
chapter is not intended to tackle the entire problem. Instead, it takes a look at a few of
the common roadblocks and discusses some corresponding best practices that can be
used to help enable reuse. In particular, many of the practices discussed here are
intended to be used in conjunction with a reference architecture that is similar to the
one described in this book. Unfortunately, reuse has been difficult to achieve in many
practical settings for a number of reasons, but a combination of the J2EE platform, the
reference architecture, and the guiding principles discussed at the beginning of this
book can go a long way toward making reuse an achievable goal. The J2EE platform
provides a rich tool set and suite of standards to use in order to build highly reusable
components and enterprise architectures. The application architecture approach that
sits on top of the J2EE platform, which in this case is the reference architecture, can
greatly help the direction that reuse takes. It shapes how components are plugged in to
the application and how they fit in the strategic view of the architecture. Finally, the
guiding principles of design patterns, automation, and metadata-driven components
can be key enablers toward “reuse” architecture.

444 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Common Roadblocks and
Corresponding Best Practices

On paper, reusability looks like an easy way for many organizations to rapidly build
new Web-based applications. However, there are difficult aspects that come into play
from a number of different dimensions. Figure 11.1 shows a few of the common road-
blocks from both the producer and consumer perspectives of a reusable asset. Best
practices that can help address these issues are suggested for each hurdle. The rest of
this chapter will discuss these practices in more detail.

The Social and Educational
Dimensions
Generally speaking, most people want to meet their deadlines and be able to leave
work at a decent hour. Additionally, given that consumers of technology are also in
businesses that change very rapidly these days, the demands for new functionality are
not slowing down, nor are they coming with relaxed development schedules. Conse-
quently, the motivation to reuse would appear to be high, yet many organizations have
been struggling to realize the benefits for quite some time.

In many cases, an existing software component is not reused because a potential
consumer is either not aware of it, doesn’t know how to use it, or doesn’t like the way
in which it was implemented. Yet, technologists are inextricably faced with the fact that
today’s demanding requirements and schedules simply do not allow them to build
everything from scratch. Consequently, there needs to be a happy medium between
reuse and new development.

Characteristics of Reuse

What are the characteristics of a successful reuse effort? In order to address the social
and educational aspects of reuse, this is a helpful question to ask. There are many
levels in the J2EE architecture where portions of code can be reused. The reference
architecture, in fact, can be viewed as a number of layers that build on one another,
reusing services and components from the lower levels. The J2EE platform itself is the
lowest layer in the software architecture and provides many libraries and services for
developers to use. Consequently, looking at J2EE for a moment, it seems quite easy
to reuse services and components from this layer. Interestingly enough, it usually
requires little motivation to do so on the part of the development staff. This is impor-
tant to note, particularly because of the many roadblocks listed earlier.

For example, developers are inherently motivated to use the servlet API to get HTTP
parameters out of a request. This is largely because the HttpServletRequest.
getParameter method is easy to use, particularly when compared to the option of
getting the servlet input stream and parsing the text to extract and access the named
HTTP parameters. This illustrates one of the lowest levels of reuse in the layered view
of the architecture, and it seems like a “no-brainer” decision. How can this be emulated
in your own organization so that reuse bubbles up through the rest of the architecture

445

Fi
gu

re
 1

1.
1

D
im

en
si

on
s

of
 R

eu
se

: R
oa

db
lo

ck
s

an
d

B
es

t P
ra

ct
ic

es
.

E
d

uc
at

io
na

l
So

ci
al

Fu
nc

ti
on

al
Te

ch
ni

ca
l

C
on

su
m

er

Pr
od

uc
er

C
om

m
on

R
oa

d
bl

oc
k

B
es

t P
ra

ct
ic

e

C
om

m
on

R
oa

d
bl

oc
k

B
es

t P
ra

ct
ic

e

D
on

’t
kn

ow
ho

w
 to

 u
se

co
m

po
ne

nt

So
lid

 Ja
va

D
oc

an
d

 c
od

e
co

m
m

en
ts

N
ot

 a
w

ar
e

of
 e

xi
st

in
g

co
m

po
ne

nt

C
om

m
on

, s
ha

re
d

lib
ra

ry
 o

f r
eu

sa
bl

e
co

m
po

ne
nt

s

C
om

bi
ne

 in
d

us
tr

y
an

d
 o

rg
an

iz
at

io
na

l
re

us
e

al
on

g
w

it
h

d
ev

el
op

m
en

t
te

am
 c

re
at

iv
it

y

N
ot

 In
ve

nt
ed

 H
er

e
sy

nd
ro

m
e

It
 is

 q
ui

ck
er

 fo
r

yo
u

to
 d

ev
el

op
ex

pl
ic

it
 c

od
e

fo
r

cu
rr

en
t

re
qu

ir
em

en
ts

A
d

d
 r

ef
ac

to
ri

ng
 a

s
ta

sk
 to

 it
er

at
iv

e
pr

oj
ec

t p
la

n

C
om

po
ne

nt
 d

oe
sn

’t
m

ee
t 1

00
%

 o
f

re
qu

ir
em

en
ts

E
xt

en
d

, w
ra

p,
or

 r
ec

on
fi

gu
re

ex
is

ti
ng

 c
om

po
ne

nt
w

he
re

 it
 m

ak
es

 s
en

se

D
on

’t
kn

ow
 fu

tu
re

re
qu

ir
em

en
ts

U
se

 o
f d

es
ig

n
pa

tt
er

ns
, t

ha
t i

s
Te

m
pl

at
e

M
et

ho
d

Pa
tt

er
n

M
et

ad
at

a-
d

ri
ve

n
C

om
po

ne
nt

s

B
ui

ld
 e

xt
en

si
bl

e,
co

nf
ig

ur
ab

le
co

m
po

ne
nt

s

H
ar

d
 to

 p
lu

g
co

m
po

ne
nt

 in
to

ex
is

ti
ng

 c
od

e

U
se

 o
f J

2E
E

 p
la

tf
or

m

C
on

si
st

en
t u

se
 o

f a
re

fe
re

nc
e

ar
ch

it
ec

tu
re

U
se

 o
f s

ta
nd

ar
d

in
te

rf
ac

es
 a

nd
in

te
ra

ct
io

n
po

in
ts

J2
E

E
 r

ef
er

en
ce

ar
ch

it
ec

tu
re

 d
oe

s
no

t
m

ee
t p

er
fo

rm
an

ce
re

qu
ir

em
en

ts

In
te

gr
at

e
pe

rf
or

m
an

ce
en

gi
ne

er
in

g
in

to
 th

e
d

ev
el

op
m

en
t p

ro
ce

ss
fr

om
 th

e
be

gi
nn

in
g

446 J2EE Best Practices: Java Design Patterns, Automation, and Performance

layers and becomes a prevalent best practice among development teams? Well, the
servlet API example exhibits a number of characteristics that can be applied to devel-
opment projects. In particular, the getParameter method of the servlet API is:

An easy to use API or method signature

Published, well-documented, and has examples and sample usage

Standards-based and a generally accepted way of doing things

Readily available and comes from a trusted source

If you consider that the presence of these characteristics led to a “no-brainer” deci-
sion to use the servlet getParameter API rather than parsing the input stream, an
assumption can be made that people are willing, and in fact have an incentive, to reuse
software when it makes sense. To paraphrase the list of reuse characteristics, if the soft-
ware component is easy to use and there seems to be a low level of risk associated with
it, people will use it. How would someone determine the risk level of a component?
Well, the fact that a component has a published API, uses standards-based technology,
and is well documented leads to the impression that its use is a generally accepted
practice. If you can apply even a subset of these same characteristics to your organiza-
tion’s software, you should be able to achieve better results and start to engrain the
behavior of reuse within the development organization. How can this be done? For
one, you should strive to achieve the same high levels of quality within internally
developed software. As any technologist will tell you, there are never enough hours in
the day to do all of this, but you can focus on a few key points in particular that will
help the behavior and practice of reuse to grow.

Make sure that your software components have easy to use
APIs and are well documented. A little JavaDoc can go a long way toward helping
someone understand an existing component and feel comfortable reusing it.

Making a software component easy to use is absolutely essential for it to be success-
fully reused by others. The API, or method signatures of an object, should have mean-
ingful English names, and they should break up the work into chunks of functionality
that are separable and meaningful on their own. If you are developing a service
component, the API should be published to the user community and well docu-
mented. This means that it should be clearly stated what input data is expected and
what output data will be returned.

People in general, but particularly software developers, get
frustrated very easily if they try to use something on their own and need to go
ask for help before being able to get it to work. At some point, many developers
simply implement the functionality themselves before even making a simple
phone call to ask a question about an existing component.

Consequently, for the most part, you want your reusable components to be consum-
able by developers without having to do much extra hand-holding. There are, of course,
exceptions to this rule. Large, complex software components as well as comprehensive

THOUG HT

BEST PRACTIC E

TEAMFL
Y

Team-Fly®

Moving toward Reuse in the Reference Architecture 447

frameworks normally require additional training or consulting, but many reusable as-
sets are fairly self-contained and, consequently, should be straightforward to use. Mak-
ing components easy to use and well understood is accomplished both through making
their APIs intuitive and having clear documentation for their use, particularly for the
external interfaces. A common language for describing components is available
through UML models that can very quickly communicate basic information about your
components. In terms of documentation and UML models, if you have a limited
amount of time to spend, use your time to document the external APIs and interfaces
before writing anything else. This is what people see when they first look at a compo-
nent. In terms of reuse, and even to some extent maintenance, the interface is the best
place to start in order to understand how a component is used and accessed.

The aspect of standards-based software is a bit more difficult for most of the devel-
opment community because in the majority of cases, the resulting components are not
going to become part of the Java or J2EE specifications. But you can ensure that you are
using standard design patterns and that you are building on top of existing specifica-
tions and technologies. For example, you would not likely build a service component
as a pure RMI service anymore if you have an EJB infrastructure readily available. In
terms of design patterns, if you are building a Web-tier architecture, your components
are much more likely to be accepted if they are built using the Model-View-Controller
design pattern as opposed to some other approach. Taking this even a step further, you
are more likely to have reusable components if they are built upon generally accepted
solutions for the Web tier, such as action classes or tag libraries built upon Jakarta
Struts.

The last point on this example is awareness. You must ensure that components are
available and accessible to those who might be able to use them. This may be through
some kind of regular communications vehicle, searchable component library, or other
mechanism. Quite simply, you can’t reuse something that you don’t know about or
don’t have access to.

Combining Reuse with Creativity

The “not-invented-here” syndrome has been a strong barrier to reuse for quite some
time. It stems from the fact that many people are hesitant to put their faith in some-
thing new, unfamiliar, or put quite simply, done differently than they would have done
it. In the author’s opinion, it is, in fact, quite important that the eventual solution for
strategically important projects involve some combination of subjunctive industry
reuse, organizational reuse, and the creativity of the individuals involved. There are a
number of observations that lead to this point. The first is that a large body of high-
quality work, which represents years of proven designs and experience, already exists
out in the industry, readily available for use. To ignore these as candidates for reuse
would simply not be wise. Within an organization, there are a number of shared
aspects that make reuse the right answer for productivity gains. In particular, organi-
zations have domain expertise and component implementations in common that can
usually be shared among development teams.

Going toward the other end of the spectrum, members of a development team
should also have a sense of ownership and “pride of authorship” in the work that they
do. Consequently it is also important that, to some degree, they are able to put their

448 J2EE Best Practices: Java Design Patterns, Automation, and Performance

own signature on the technology solution that they implement. This should not be
done just for the sake of doing so, but when it is required for the job. You could make
a very simple case that this creativity is required more often than not. For example, try
to find one application or project that looks exactly like another one you or your orga-
nization has done. Rarely, if ever, is this the case, because for some unknown reason,
each software development project seems to take on a life of its own. Consequently,
there will be the need for customized solutions that require the intelligent use of exist-
ing patterns, designs, and principles in order to find the best solution for the job. In this
way, the development staff applies their own creativity to a solution and can feel good,
knowing not only that they made their deadline and delivered a quality product, but
that they were a part of something worthwhile that they created.

For large, strategically important development projects, use
a combination of industry and organizational reuse along with the creativity and
innovation of the development team. Each of these sources brings unique value
to the table. An approach that combines these aspects will help to alleviate the
“not-invented-here” syndrome while at the same time providing a jumpstart to
the development effort.

It is also important to note that creativity does not always strike on day one of a pro-
ject. A robust, reusable design or component implementation may not come into focus
until after the realization of the architecture starts to take shape. By nature, the more
you learn about the project, technology, or requirements, the smarter you become.
Consequently, it is recommended that you add refactoring as an explicit task to each it-
eration of a development plan. Even a small amount of time allotted for this purpose
can yield great long-term benefits in terms of reusability and flexibility.

Add refactoring as an explicit task in iterative software
development. This helps not only to increase the overall quality of the software,
but it often leads to more robust code that can be harvested into reusable assets.

The Technical and Functional
Dimensions
Even if an existing component is well known and understood, two common reasons
that it still may not be reused are that the component doesn’t meet all of the functional
requirements or else that it does not easily fit into the application architecture. These
roadblocks can be addressed at two different levels:

J2EE standards for component services and deployment

A configurable, extensible, reference architecture built using proven design
patterns

Figure 11.2 represents some of the primary aspects of J2EE and the reference archi-
tecture that enable reuse.

BEST PRACTIC E

BEST PRACTIC E

Moving toward Reuse in the Reference Architecture 449

Figure 11.2 Reuse Aspects in J2EE and the Reference Architecture.

User Interaction
Components

Business Object
Components

Service Object
Components

Standardized
Component
Deployment

Business Logic Foundation
Extensible,

Configurable
Components

Object-Oriented
Programming

Language

J2SE

J2SEJ2EE Web Container

J2EE Web Container

J2EE EJB Container

J2EE EJB Container

Deployment #1

Deployment #2

Jakarta Struts

Modular
Layered

Reference
Architecture

Web
Component

EJB
Component

J2EE Component Standards

The standard component deployment model provided by J2EE provides a tremendous
advantage in terms of building reusable assets for Web applications. If you first look at
the Web tier, the JSP custom tag mechanism is a shining example of a powerful mech-
anism for building reusable pieces of presentation code that can easily be integrated
into HTML-centric Web pages. There are already a number of prolific tag libraries from
Struts, the Jakarta project, and the upcoming Java Standard Tag Library. Any of these
libraries can be reused within your application to some degree, in many cases with
even a small amount of effort. They provide common functions such as collection iter-
ation, forms processing, and custom presentation logic. If you step back and look at the
JSP and servlet specifications at a higher level, they actually have given the Java com-
munity almost a de facto standard for the implementation of MVC-based Web archi-
tectures. Servlets provide the component implementation for the controller while JSPs
provide the view implementation.

The EJB specification provides a standard mechanism to distribute and manage
component functionality. It makes it easier to pull an existing component off the shelf
and drop it into your own environment because there are fewer worries about having
to plug it into “infrastructure” type services. In fact, even if you are picking up a non-
standard type component, you can usually wrap it with a Session EJB to integrate it

450 J2EE Best Practices: Java Design Patterns, Automation, and Performance

into your environment and take advantage of the same distribution, transaction, and
security services used with your homegrown applications. In summary, the J2EE plat-
form removes a large hurdle to reuse by providing a consistent, interoperable environ-
ment for the interaction of components.

The Reference Architecture as a
Reuse Architecture

A solid reference architecture is essential to a successful reuse effort. For one, it
becomes the most highly reused code in the application because it implements the
common aspects of transactional, Web-based applications. Second, it is a key enabler
for the reuse of domain-level components. Concepts embodied by the reference archi-
tecture that promote reuse include:

Extensible, configurable components

Use of standard interfaces as interaction points

A layered, modular architecture

Choose a reference architecture and view it as a “reuse”
architecture. Use it consistently throughout J2EE development projects. Incorporate
standard interaction points for components with known interfaces. Use extensible,
configurable components, such as the Jakarta Struts project, as a foundation. Take
advantage of standard J2EE implementation models such as JSP custom tags and
Session Bean EJB components.

Extensible, Configurable Components

Given that one cannot see into the future and accurately predict 100 percent of the
upcoming requirements for a given application, most software components are devel-
oped to meet all of the current requirements and perhaps some percentage of potential
future functionality. Likewise, when one looks to reuse assets, many existing compo-
nents do not provide all of the functionality or else they do it a bit differently. Conse-
quently, it is crucial that software components, particularly foundation components, be
designed so that they can easily be extended or configured to behave differently.

One of most powerful forms of reuse is through inheritance and the
use of the Template Method pattern that was used in the Business Logic Founda-
tion layer. Almost all Web-application frameworks use this concept at length to
create extensible foundation layers.

The Template Method pattern allows you to implement a standard process or set of
logic with extensibility points that can be implemented by subclasses. Many founda-
tion classes for business components use some aspect of this design pattern. In these
cases, inheritance provides the extensibility needed to enable an existing asset to be

THOUG HT

BEST PRACTIC E

Moving toward Reuse in the Reference Architecture 451

specialized for your own needs, whether the object represents an entity, a process, or
some other type of function.

The reference architecture uses metadata, similar to the J2EE specification, in order
to configure and drive the behavior of components. The Struts controller architecture
is a prime example of this concept. The configuration metadata determines how the
controller servlet handles particular requests for a Web client. This allows it to be used
as a foundation for almost any type of Web application. This same concept of declara-
tive programming can be used to add flexibility and reusability to many types of soft-
ware components.

Build to a Standard Interface

In Java, there is another very powerful mechanism at your disposal, the concept of an
interface. The use of standard interfaces throughout the reference architecture is a best
practice for both service and business object components. In terms of reuse in the
reference architecture, this is a central concept. It addresses the technical roadblock of
difficulty in plugging a new component into the architecture. If there are standard
interaction points, developers can build new implementations of components and
easily plug them into the architecture. Different implementations can also be configured
using metadata and invoked dynamically.

Java interfaces also allow you to gain some of the shared interface benefits without
the rigidity of inheritance and having to subclass an object. This is a powerful option to
consider in designing your application. If an existing asset implements a common
interface, it will be much easier for your application components to reuse it out of the
box. This is a primary rationale for the use of common interfaces throughout the
service components and business objects in the reference architecture.

The Layered, Modular Architecture

The fact that the reference architecture is structured into layers provides a great
amount of flexibility. Applications can be structured such that each layer reuses com-
ponents from lower levels in the architecture. Starting at the top layer, you can consider
the actual “application” to be a particular view into the business component function-
ality. The form that the user’s view takes is dependent on the user’s role, security priv-
ileges, and the amount of personalization factored into the application. This concept is
at the heart of a strategic view of the application architecture that will be discussed in
further detail later in this chapter.

In terms of a modular architecture, each layer as a whole can be thought of as a
building block upon which to build new functionality. Everything sits on top of J2EE
with business objects being the core application component in the architecture. Con-
tinuing upward, service components form a layer on top of the business components,
and then finally the user interaction layer exposes the component functionality to
clients. In today’s world, a key recipient of layered architecture benefits is the User
Interaction Architecture because it can include a wide array of PCs and devices that
wish to have access to the same services.

452 J2EE Best Practices: Java Design Patterns, Automation, and Performance

The Initial Investment of a
Reference Architecture

Component frameworks are a core aspect of the reference architecture. The reference
architecture is built upon the Jakarta Struts project and the Business Logic Foundation
that was developed in the earlier chapters of this book. There are also many more
options available in the form of both open-source projects and commercial products.
Without a doubt, there is an initial investment required to take advantage of component
frameworks, although the long-term benefits are clear and profound. Nonetheless, if
your situation requires the rapid development of either fairly simple applications or
“nonstrategic” software components, you may not be able to afford the additional
learning curve of using such a product. In these cases, you might want to code directly
on top of the J2EE specifications. No technology professional can escape the fact that
time simply can become a bigger factor than either consistency or maintainability.
Rarely, however, is quality not a concern. Component frameworks usually represent
highly tested pieces of software that can provide reliable building blocks for your ap-
plication logic. It is best to consider all of these aspects before making a decision one
way or another for your next software development project.

Reuse in the Reference Architecture

This section looks at the reference architecture and considers the potential for reuse in
each of the different layers.

Business Objects
Business objects tend to have a moderate level of reuse because they provide the trans-
actional ability to update a particular business entity. In a shared portfolio of applica-
tions, you don’t want to end up creating duplicate objects to represent the same entity,
even though they are viewed somewhat differently. For example, in the bank applica-
tion, consider the customer Web pages and the administrative Web pages as two differ-
ent applications. From a strategic viewpoint, this is one way to look at things, in which
each set of users has a different “view” into the same set of business functionality. The
Transaction object is used in the customer pages to record withdrawals and de-
posits as well as in the administrative pages to display and update the history of trans-
actions for a particular account. In these two different scenarios, the Transaction
object is used differently, and it could have been implemented differently in both cases.
For example, in the case of the administrative pages, only two properties of the
Transaction object are updated, so one alternative would have been to write a
stored procedure to update those two fields. This stored procedure could then be
invoked from a corresponding service component. From a strategic long-term view-
point, however, that may not be the best decision. By reusing the same Transaction
business object, you ensure that all the updates pass through the same set of data vali-
dations. Additionally, if you change the structure of that object or the related database
tables, there is only one place that you need to go to in order to make the changes. In this
manner, reusability and ease of maintenance go hand-in-hand, as is often the case.

Moving toward Reuse in the Reference Architecture 453

Similar to reuse with business objects, value objects and data objects will be reused
if you are using these conventions in your architecture. This is particularly important
if you are not using Container-Managed Persistence or if you are using JDBC outside
of Entity Beans. In these cases, you want to have a shared set of objects so that all of
your data access for each particular entity is encapsulated in a single place.

Service Objects
These components have a lower level of reuse because they implement specific busi-
ness processes and transactions. In many cases, they are particular to the application in
which they are built, although within a service, they do reuse existing business objects
in order to do their work. One way in which services can be reused as building blocks
is when smaller services are combined to form more coarse-grained services. Examples
were discussed in the Service-Based Architecture chapter of workflow examples that
used existing services to implement reusable steps within larger workflows.

If you look at services from the perspective of access through different types of
clients, they can be considered to have a high level of reuse. In the bank application,
there is a service that retrieves account transaction data that is reused across a couple of
pages. In some cases, you may want to look at reusing services in this way, particularly
for related data retrievals or updates of similar business entities. If a data retrieval
service returns a few extra columns in order to satisfy a number of different screens, this
can usually be done at a relatively low performance cost to get the benefit of easier main-
tenance through a reduced codebase. Adifferent type of example for service reuse might
be something like a “time” service that provides the system time across a distributed
set of components. This service would be highly reusable across any component or
application that needed the official time with regards to the application

User Interaction Objects
Web pages themselves are rarely reusable; however, the framework upon which they
are built is highly reusable. In some cases, you may create domain-level tag libraries
that could be reused across applications, but for the most part, each application pro-
vides its own view into the business functionality. Consequently, presentation layers
can be highly customized and personalized for the particular user or user role.

Turning the Layers Upside Down
With regard to business objects and services, they may not always stack up in the lay-
ers shown in the earlier diagrams. Often, you may reuse a service from within a busi-
ness object in addition to the examples thus far, which illustrated the services using
business objects. You can create components that are implemented through a pyramid
of building blocks made up of both service objects and business objects. Figure 11.3
represents such a component, typically implemented as an EJB component in order to
provide distribution, transaction management, and all of the other common services
provided by J2EE. Underneath the component interface are the building blocks of the
architecture reused in order to provide the ultimate function.

454 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 11.3 Service Component Implementation as Building Blocks.

External API/
Component

Interface

Business Objects
Aggregating Other

Objects; Reusing
Other Services

Process-Based Object Reusing
Business Objects

(or Other Services)

Business
Component

Service
Object(s)

Business
Object(s)

Service
Object

EJB

At the bottom of this pyramid is usually a wide base of business objects that can be
reused across services and applications. As you build up on top of lower layers, the
pyramid gets narrower until it comes to a point. This represents the fact that domain-
level reuse gets much more difficult to achieve as you build on top of business compo-
nents and go higher and higher in this diagram. Eventually, you get to a point where
you have customized services that are tailored to your specific application, although
they may be built upon reusable building blocks by combining existing transactional
components to create a specific process.

The Strategic View of the Architecture

A primary goal of having a strategic architecture vision is to plan for the future and be
able to adapt quickly when the time comes. Consequently, reusability is a core aspect
of any strategic architecture plan. The reference architecture, made up of extensible,
configurable layers with defined interaction points, is another core aspect of the strate-
gic view. This helps to enable the development of robust components that can easily be
plugged into new components or extended to provide additional functionality. At its
core, application architecture can be described as the definition of the application com-
ponents and their interaction with each other. It is the interaction aspect of this defini-
tion that is crucial to the future viability of any existing software assets. Loosely
coupled application components are simply more flexible than tightly coupled sets of
components. The importance of the component interaction is exemplified by the sheer
number of components that are included in a large-scale enterprise application. The
definition of individual components may not make or break the architecture, but

Moving toward Reuse in the Reference Architecture 455

groups of related components that interact with other sets of components and define
the structure of how this is done are vitally important if one wants to add new func-
tionality or modify existing functionality. In the case of small modifications, the indi-
vidual component definition, of course, becomes the key factor; but changes to the
overall business vision or technology direction will cut right to the heart of the compo-
nent interaction model. Consequently, it is important to look at what types of compo-
nents exist in the application inventory and how they interact with one another.

From the context of a strategic viewpoint, the following types of components exist
within the architecture layers:

Business object components. This is the core functionality of the application
because it models the business. It contains the majority of the business logic and
database interaction.

Service-based components. This layer represents the business processes. It also
insulates the user interaction components from the specific business object
implementation model and APIs. It is the exposure of the business transactions
to the front end.

User interaction components. This layer provides the view into the
application’s functionality. It can vary widely based on the client device and
business function being provided. Different views into the application can use
the same set of services, retrieve the same data, and update the same entities,
but they can potentially present the information and functions in very diverse
ways.

Why is the separation of the business transactions into a conceptual service layer so
important? One reason is that you want to be able to reuse the same business logic
components to implement both browser-based applications as well as B2B Web ser-
vices. Additionally, if your applications are deployed to wireless handheld devices,
you want them to be able to reuse the same business logic and only have to change the
presentation layer to cater to the language of the device. In some cases, this might be
Wireless Markup Language (WML) instead of HTML. Or in other cases, you might
want to plug existing functionality into another application that does not know any-
thing about the existing business object model. Finally, in all of these cases, you want
to be able to change the presentation layer and still access the same business functions.
By having the service components in between the user interaction and the business
entity components, development of the presentation layer can be simplified while at
the same time the same business logic code can be reused.

In addition to Web services, two critical aspects of a strategic architecture include an
Internet presence with personalized content and the integration of legacy applications
to the architecture. If all these aspects together are put together in one picture, it starts
to look like Figure 11.4.

For the most part, the major emphasis on integration thus far has been to integrate
existing applications within your own enterprise. Already, however, the focus is
expanding to include consuming Web services from third parties and other business
partners external to the organization. A true services-based model may become a
prevalent architecture direction as organizations look to integrate legacy functionality,
newly developed components, and functionality available from business partners over
the Internet.

456 J2EE Best Practices: Java Design Patterns, Automation, and Performance

Figure 11.4 A Strategic Architecture.

Applications
User Interaction Components

Personalization
Services

Content Management

Hosted Web Services

XML/HTML through HTTP(S)

Business Objects

Business Services/Processes/Transactions

JDBC/Java Connector Architecture/
HTTPS (SOAP)

Web Browser
Internet

End-User Devices
B2B Partner

Legacy Applications Web ServicesApplication
Database

Best Practices for Moving toward Reuse

A summary of the reuse best practices is given in this section.

Simplifying Life for the Consumer
of Reusable Assets
As a producer of reusable assets, try to remove the potential barriers for a consumer.
Emulate the characteristics of Java and J2EE APIs that are heavily used. Make sure that

TEAMFL
Y

Team-Fly®

Moving toward Reuse in the Reference Architecture 457

your software components have easy to use APIs and are well documented. A little
JavaDoc can go a long way toward helping someone understand an existing compo-
nent and feel comfortable reusing it. The use of proven design patterns and standard
J2EE component models can help minimize any perceived risk of using an existing
component.

Combining Reuse with Creativity
For large, strategically important development projects, use a combination of industry
and organizational reuse along with the creativity and innovation of the development
team. Each of these sources brings unique value to the table. An approach that com-
bines these aspects helps to alleviate the “not-invented-here” syndrome while at the
same time providing a jumpstart to the development effort.

Harvesting Reusable Assets through
Iterative Development
Add refactoring as an explicit task in iterative software development. This helps not
only to increase the overall quality of the software, but it often leads to more robust code
that can be harvested into reusable assets. The most frequently used assets are usually
not developed on day one. They are typically the result of iterative development
processes and incremental investments that often provide a solid return.

Using a Reference Architecture as a
Reuse Architecture
Choose a reference architecture and view it as a “reuse” architecture. Use it consistently
throughout J2EE development projects. Incorporate standard component interaction
points that use known interfaces. Use extensible, configurable components, such as the
Jakarta Struts project, as a foundation. Take advantage of standard J2EE implementa-
tion models such as JSP custom tags and Session Bean EJB components.

Summary

Reuse is a very complex issue in the software industry. The potential benefits are im-
mense, but the road to get there is not always so clear. Certainly, the entire problem
cannot be addressed in a single chapter, but there are a number of common roadblocks
that can be identified and remedied to some extent. These roadblocks span from the
social and educational dimensions all the way to functional and technical issues. A
number of best practices were identified to help alleviate these roadblocks. They
primarily center on the consistent use of a reference architecture in conjunction with
J2EE technology. J2EE has provided the standard development and deployment plat-
form. The reference architecture is then used to build extensible, configurable compo-
nents that have standard interaction points on top of J2EE. This allows the application

458 J2EE Best Practices: Java Design Patterns, Automation, and Performance

to plug new components into the architecture in addition to using or extending exist-
ing components.

The strategic architecture built upon the J2EE platform uses all of the best practices
that have been discussed in this book. Component interaction, which is so important to
the overall flexibility of a solution, is largely based on proven design patterns. The
rapid development of new functionality is largely based on the use of consistent, main-
tainable foundation layers that automate common functions through configurable,
extensible components. Consider performance from the beginning of the development
process because a scalable architecture is a prerequisite for any high-throughput appli-
cation. You can always make lower-level optimizations later in the process, but you
need to be within the ballpark to even get to that point. Finally, a good object design
that represents the entities and processes of a business puts you in a position to achieve
high levels of reuse and flexibility, allowing your organization to shift to new require-
ments and adapt to changes in the business.

459

Bibliography

D. Alur, J. Crupi, D. Malks. 2001. Core J2EE Patterns. Upper Saddle River, NJ:
Prentice Hall PTR.

E. Gamma, R. Helm, R. Johnson, J. Vlissides. 1995. Design Patterns. Boston, MA:
Addison-Wesley.

I. Singh, B. Stearns, M. Johnson, Enterprise Team. 2002. Designing Enterprise
Applications with the J2EE Platform. 2d ed. Boston, MA: Adddison-Wesley.

The Model/View pattern, Journal of Object-Oriented Programming 1(3):26–49,
August/September 1988.

461

A
Abstractions, 124, 186–187,

267–278, 299
factories, 124, 186–187
HTTP requests, 267–278
key elements, 299
page flows, 278
physical URLs, 276, 299

Access, 109–111, 172–174
applications, 172–174
isolations, 109–111

Accounts, 368–369, 392–397
account detail pages,

392–397
view accounts actions,

368–369
ACLs (access control lists), 220
Actions, 266–267, 288–289, 303,

362–371
action-level forwards, 288–289
class templates, 362–369

change address actions,
367–368

summary, 362–367
view accounts actions,

368–369
classes, 266–267, 271–273,

303, 371
Struts. See Jakarta Struts
view accounts, 368–369

Address form beans, 310–314
Address objects, 228–230
Administration pages, 408–417
Advanced functionalities, 375,

392–419
account detail pages, 392–397
administration pages,

408–417

best practices, 375, 394,
408–419

error mappings, 394, 418
multiple object

instances, 411
multiple submit buttons, 409
summary, 417–418

multiple object instances,
410–417

multiple submit buttons,
408–410

summary, 375, 408, 418–419
transaction objects, 392–397
transfer funds pages, 397–408

Aggregations, 28–29, 51,
144–150, 346–347

Alur, D., 459
Applicable service

invocations, 274
Application building, 9–15,

375–419
application strengthening,

375–419
advanced functionalities,

375, 392–419. See also

Advanced functionalities
security, 375–391, 418–419.

See also Security
best practices. See Best

practices
bibliography, 459
elements, 2–4

business entities, 2–3
business processes, 3
summary, 2
user interactions, 3–4

J2EE (Java 2 Enterprise
Edition) platform, 9–15

distributed components,
13–14

EIS (Enterprise Information
System) tiers, 14–15

EJB (Enterprise JavaBeans)
2.0, 11–13

JDNI (Java Naming and
Directory Interface), 13–14

JSPs (JavaServer Pages),
12–13

RMI (Remote Method
Invocation) protocol,
13–14

servlets, 12–13
Session Beans, 12
summary, 9–11

MVC (Model-View-Controller)
architectures, 16–20

reference architectures, 4–9
business object

architectures, 23–53,
55–103, 105–188. See also

Business object
architectures

performance engineering,
421–422. See also

Performance engineering
reuse and reusability,

443–458. See also Reuse
and reusability

service-based architectures,
189–257. See also Service-
based architectures

summary, 4–9
user interaction

architectures, 259–373.
See also User interaction
architectures

Index

Application building
(Continued)

summary, xv–xxvii, 1–2, 21–22
Application service invocations,

273–274
Application-managed security,

378–381. See also Security
Applications access, 172–174
Argument (parameter) lists,

203–205, 210–212
Associations, 29
Asynchronous processing,

439–441
Authentications, 387

B
Bean tag libraries, 295–298
Benchmarks, 428–429
Best practices, 20–457

action classes, 303, 371
aggregations, 28–29, 51
asynchronous processing,

439–441
cache and caching, 185,

434–436, 441
CMP (Container-Managed

Persistence) vs. BMP
(Bean-Managed
Persistence), 51

code minimizations, 282,
299–300

common base classes, 256
complex persistences, 52
custom tags, 332, 372
data retrieval services, 256–257
data validation automation,

317, 371
database name

minimizations, 186
deletions, 28
dimensions, 445
ease of use, 446, 456–457
Entity Beans, 50–51
error management, 102
error mappings, 394, 418
error messages, 103
error utility classes, 90
exception handling, 93, 103
factory abstractions, 124,

186–187
form beans, 317, 371
generic MVC

(Model-View-Controller)
implementations,
266, 299

generic reusable
services, 256

getter vs. setter
encapsulations, 58

industry-organizational
combinations, 448

iterative development, 448

JDBC (Java Database
Connectivity) logic
isolations and
encapsulations, 185–186

key element abstractions, 299
local interfaces, 51
migration alternatives, 50
multiple object instances, 411
multiple submit buttons, 409
object collection services, 187
object instantiations,

430–432, 441
one-to-one object-relational

mappings, 52
optimistic locking, 52
page logic minimizations, 371
persistence tools, 52
physical URL abstractions,

276, 299
presentation logic

encapsulations, 372
property format mechanism

integrations, 341, 372
refactoring, 448
reference architectures as

reuse architectures,
450, 457

reuse-creativity combinations,
444–447, 457

vs. roadblocks, 444–452
scalable efficient

architectures, 423, 440
service reuses as building

blocks, 238, 256
Session Beans as component

wrappers, 215–219
session size minimizations,

278, 299
SQL externalizations, 186
standard interfaces, 59–66,

102, 212–215, 255–256
stateful Session Beans, 438
strict encapsulations, 102
summary, 20–21, 50–52,

102–103, 185–208, 298–300,
371–372, 417–444, 457

template mechanisms, 283
template method

patterns, 162
template tag libraries,

308, 372
transactional updates, 186
XML metadata, 102, 172,

187–188, 438–441
Bibliography, 459
BMP (Bean-Managed

Persistence), 34–37, 51,
58–59

Bulk getter vs. bulk setter
methods, 82–83

Business application building.
See Application building

Business entities, 2–3
Business methods, 27
Business object architectures,

23–187
best practices, 28–29, 50–52

aggregations, 28–29, 51
CMP (Container-Managed

Persistence) vs. BMP
(Bean-Managed
Persistence), 51

complex persistences, 52
deletions, 28
Entity Beans, 50–51
local interfaces, 51
migration alternatives, 50
one-to-one object-relational

mappings, 52
optimistic locking, 52
persistence tools, 52
summary, 50–52

design considerations, 23–53
banking application

examples, 25–26
best practices, 28–29, 50–52
business object building,

26–29, 55–103, 105–188.
See also Business object
building

high-level architectures, 24
implementation models,

32–50. See also

Implementation models
object lifecycles, 31
object relationships, 24–29.

See also Object
relationships

stateful vs. stateless objects,
30–32

summary, 23–25, 29–30, 53
Business object building, 26–29,

55–103, 105–188
best practices, 58–66, 90–93,

102–103, 124, 162,
185–188

cache and caching, 185, 188
database name

minimizations, 186
error management, 102
error messages, 103
error utility classes, 90
exception handling, 93, 103
factory abstractions, 124,

186–187
getter vs. setter

encapsulations, 58
JDBC (Java Database

Connectivity) logic
isolations and
encapsulations, 185–186

object collection
services, 187

SQL externalizations, 186

462 Index

standard interfaces,
59–66, 102

strict encapsulations, 102
summary, 102–103, 185–188
template method patterns,

162, 187
transactional updates, 186
XML metadata, 102, 172,

187–188
business methods, 27
business object architectures,

relationship to, 23–188.
See also Business object
architectures

business rules, 27–28
cache and caching, 174–185

best practices, 185
Cache List object

models, 183
candidates, 184
configuration cache,

182–183
implementation options,

174–175
lookup tables, 180–181
object designs, 175–183
refresh mechanisms,

184–185
summary, 174

cross object validations,
100–101

error handling, 87, 89–101
application exception

hierarchies, 97–98
best practices, 90, 93, 97
error types, 90
exceptions vs. errors, 93–97
management, 89–93
property-handler

mechanisms, 99–100
summary, 87, 89
transaction management

integrations, 97–99
exception handling,

93–97, 101
object creations and

instantiations, 124–143
best practices, 124
Business Object Factory,

136–144
Entity Beans, 136–144
existing instance lookups,

130–141. See also Existing
instance lookups

instance creations, 141–144
instance lookups, 137–141
interface hierarchies, 136
models, 125
new instance creations,

126–130
summary, 124–126

object persistences, 105–159

aggregations, 144–150
cascading saves, deletes,

and validations, 148
Castor project, 115–119
CMP (Container-Managed

Persistence), 119–123
collection services, 150–157.

See also Collection
services

database frameworks, 158
JDBC (Java Database

Connectivity), 106–114.
See also JDBC (Java
Database Connectivity)

object creations and
instantiations, 124–114

object-relational mapping
tools, 114–119

persistence frameworks,
114–119

summary, 105–106
object validations, 27–28,

87–89
properties management,

55–103
best practices, 58–59,

102–103
BMP (Bean-Managed

Persistence) vs. CMP
(Container-Managed
Persistence), 58–59

bulk getter vs. bulk setter
methods, 82–83

Entity Beans, 58–59, 66–68
field validations, 68–73
Java objects, 56–58
property value formatting,

73–82. See also Property
value formatting

reusable property
definitions, 68–73

standard interfaces, 59–66.
See also Standard
interfaces

summary, 27–28, 55–56, 103
XML metadata, 68–73

summary, 27–28, 55–56, 103,
105, 188

template method patterns,
159–168

aggregations, 162–164
application-specific logic,

167–168
best practices, 162
create templates, 165–168
Entity Beans, 164–165
save templates, 160–165
summary, 159

value objects and lightweight
business objects, 83–87

shared properties and
interfaces, 84–85

summary, 83–84
UML representations, 87
unified structures, 85–87

XML metadata, 168–174
applications access,

172–174
best practices, 172
class diagrams, 173
DTDs (document type

definitions), 168–172
properties management,

68–73
summary, 168

Business processes, 3
Business rules, 27–28

C
Cache and caching, 433–437

best practices, 185, 434–436,
441

Cache List object models, 183
candidates, 184
configuration cache, 182–183
implementation options,

174–175
lookup tables, 180–181
objects, design and cloning,

175–183, 433–436
performance engineering,

relationship to, 421–442.
See also Performance
engineering

refresh mechanisms,
184–185

summary of, 433
thread-safe objects, 433

Cascading saves, deletes, and
validation, 148

Castor project, 115–119,
230–233, 249–250

Chaining, services, 254–255
Change address actions,

367–368
Change address JSPs

(JavaServer Pages),
307–332

best practices, 317, 332
conversion utilities, 314–315
drop-down tags, 327–332
event objects, 314–315,

325–327
form beans, 310–327

address, 310–314
event and value objects,

325–327
validation templates,

316–325
summary, 307–310
user interaction architectures,

relationship to, 259–373.
See also User interaction
architectures

Index 463

Change address JSPs
(continued)

validations, 315–325
value objects, 314–315,

325–327
Change address pages, 301–307

flow diagrams, 302
go change address events and

actions, 303–307
summary, 301–303

Change address services,
233–234

address objects,
nonexistence, 228–230

business objects, multiple,
233–234

Castor project, 230–233
Entity Bean business objects,

implementations, 228
Java business objects,

implementations, 227–228
service-based components,

relationship to, 209–257.
See also Service-based
components

summary, 227
Class diagrams, XML

metadata, 173
Classes, action, 266–267,

271–273, 303, 371
CMP (Container-Managed

Persistence), 33–37,
51–59, 119–123

Code minimizations, 282,
299–300

Collection services, 150–157
best practices, 150, 187
data retrieval services,

248–250
summary, 150
utilities, 150–156

Collection string properties, 62
Common base classes, 256
Complex persistence options, 52
Component standards, 449–450
Configurable components, 450
Configuration cache, 182–183
Container-managed security,

381–389, 417. See also

Security
best practices, 381–389, 417
content customizations,

389–391
implementation, 387–389
roles, use of, 389–391
summary, 381–387
user authentications, 387
Web directory structures and

contents, 382
Content customization, 389–391
Controller architectures,

265–278

action classes, 266–267,
271–273

application service
invocations, 273–274

controller logic, 267
core responsibilities,

267–278. See also Core
responsibilities, controller
architectures

definitions, 266–267
event-action mappings, 269
HTTP request abstractions,

267–278
input data-event object

mappings, 270–271
MVC (Model-View-Controller)

patterns, relationship to,
265–284. See also MVC
(Model-View-Controller)
patterns

navigation, event-based, 269,
275–276

partitioning automation,
276–278

summary, 265–266
user content

management, 275
user interaction loops, 275

Controller patterns, 253–255
object-centric services, 253
service chaining, 254–255
summary of, 253
workflow-type services,

253–254
Conversion utilities,

314–315
Core J2EE Patterns (D. Alur,

J. Crupi, D. Malks), 459
Core responsibilities, controller

architectures, 267–278
applicable service invocations

(core responsibility five),
274

event object creations and
populations (core
responsibility two), 270

event-action determination
(core responsibility one),
269

page flow abstractions (core
responsibility seven), 278

page forwarding (core
responsibility eight), 278

request handling via action
classes (core responsibility
three), 272

summary, 267
user content management

(core responsibility six),
275

validation performance (core
responsibility four), 272

Creativity-reuse combinations,
444–447, 457

Cross object validations,
100–101

Crupi, J., 459
Currency handling,

transactions, 47–50
Custom tags, 332, 372
Customer services, new,

234–239. See also New
customer services

Customizations, content,
389–391

D
Data retrieval services, 256–257

examples, 242–250
business objects, 242–243
Castor project, 249–250
collection services, 248–250
database queries, 243–248
summary, 242

responsibilities, 240–241
input data, relationship to,

240–241
output data, results

formatting, 241
query executions, 240–241
summary, 240

service-based components,
relationship to, 209–257.
See also Service-based
components

summary, 240, 250–251
Databases, 158, 186, 243–244,

432–433
frameworks, 158
I/O, 432–433
name minimizations, 186
queries, 243–244

Deletes, cascading, 148
Design Patterns (E. Gamma,

R. Helm, R. Johnson,
J. Vlissides), xvii, 174,
216, 459

Designing Enterprise

Application with the

J2EE Platform, 2nd. ed.
(I. Singh, B. Stearns,
M. Johnson), 459

Detail pages, accounts, 392–397
Development, iterative, 448
Dimensions, 445
Distributed components, 13–14
Drop-down tags, 327–332
DTDs (document type

definitions), 168–172

E
Ease of use, 446, 456–457
EIS (Enterprise Information

System) tiers, 14–15

464 Index

EJB (Enterprise JavaBeans)
2.0, 11–13

Embedded services, 239
Encapsulations, 58, 102,

185–186
getter vs. setter, 58
JDBC (Java Database

Connectivity) logic,
185–186

strict, 102
Engineering, performance. See

Performance engineering
Entities, business, 2–3
Entity Beans, 33–59, 136–144,

228, 426–437
best practices, 50–51
change address services, 228
existing instance lookups,

136–141
models, 38–41
object creations and

instantiations, 136–144
performance engineering,

426–437
persistences, 33–37
properties management,

58–59
Error handling, 87–103,

224–239, 263–264, 291–293,
394, 418

application exception
hierarchies, 97–98

best practices, 90, 93, 102–103
error data, combinations, 239
error types, 90
error utility classes, 90
exceptions vs. errors, 93–97
Jakarta Struts, 291–293
management, 89–93
mappings, 394, 418
property-handler

mechanisms, 99–100
service-based components,

224–225
summary, 87, 89
transaction management

integrations, 97–99
user interaction architectures,

263–264
Event object creations and

populations, 270
Event-action determinations,

269
Event-action mappings, 269
Exception handling, 93–103

application exception
hierarchies, 97–98

best practices, 93, 103
exceptions vs. errors, 93–97
summary, 93–97, 101

Existing instance lookups,
130–141

finds, 130–141
Entity Beans, 136–141
general methods, 133–136
primary keys, 130–133

object creations and
instantiations, relationship
to, 124–144. See also

Object creations and
instantiations

summary, 130
Explicit accessors, 63–66
Explicit data objects, 106–112
Extensible components,

450–451
Externalization, SQL, 112, 186

F
Factory abstractions, 124,

186–187
Field validations, 68–73
Flow abstractions, 278
Flow diagrams, 302
Focal points, 422
Form beans, 310–362

summary, 310–327
addresses, 310–314
aggregations, 346–347
best practices, 317, 371
event and value objects,

325–327
Jakarta Struts, 289–291
new customer wizards,

346–347, 362
templates, 316–325
validations, 316–325, 362
value objects, 362

Form tags, HTML, 293–294
Forms processing, 263
Forwards, 278, 288–289

action-level, 288–289
global, 288
pages, 278

Functional dimensions. See

Technical and functional
dimensions

Functionalities, advanced. See

Advanced functionalities

G
Gamma, E., xvii, 174, 216, 459
Garbage collections, 426–428
Generic reusable services, 256
Getter vs. setter, 58, 82–83

encapsulations, 58
methods, bulk, 82–83

Global forwards, 288
Go change address events and

actions, 303–307

H
Helm, R., 459
Hierarchies, 97–98, 136

application exceptions, 97–98
interfaces, 136

High-level architectures, 24
HTML, 293–295

form tags, 293–294
link tags, 294–295
tag libraries, 293–295

HTTP request abstractions,
267–278

I
Implementation models, 32–52

best practices, 49
business object architectures,

relationship to, 23–188.
See also Business object
architectures

Entity Beans vs. Java
business objects, 42–47

migrations, 44
model comparisons, 44–45
summary, 42–44
use comparisons, 45–47

object persistences, 33–38.
See also Persistences

best practices, 37
BMP (Bean-Managed

Persistence), 34–37
CMP (Container-Managed

Persistence), 33–37
Entity Beans, 33–37
object-relational mappings,

37–38
summary, 33

summary, 32–33
transaction currency

handling, 47–50
optimistic vs. pessimistic

locking, 47–50
summary, 47

transaction models, 38–41
Entity Bean models, 38–41
Java business object

models, 41
summary, 38

Individual transaction response
times, 425

Industry-organizational
combinations, 448

Input data-event object
mappings, 270–271

Instances, 126–130, 141–144,
410–417

creations, 126–130, 141–144
lookups, 137–141
multiple object instances,

410–417
new, 126–130

Integration issues, 206–207
Interfaces, 13–14, 51–66, 84–85,

102, 136, 199–227, 451
interface hierarchies, 136

Index 465

Interfaces (Continued)
JDNI (Java Naming and

Directory Interface), 13–14
local, 51
service-based architecture,

199–206
service-based components,

209–210, 226–227
shared properties and

interfaces, 84–85
standard interfaces, 59–66,

102, 226–227, 451
I/O, disks and databases,

432–433
Isolations, access, 109–111
Iterative development, 448

J
J2EE (Java 2 Enterprise

Edition) platforms, 9–15
distributed components,

13–14
EIS (Enterprise Information

System) tiers, 14–15
EJB (Enterprise JavaBeans)

2.0, 11–13
JDNI (Java Naming and

Directory Interface), 13–14
JSPs (JavaServer Pages),

12–13
RMI (Remote Method

Invocation) protocol, 13–14
servlets, 12–13
Session Beans, 12

Jakarta Struts, 259–261, 284–300
best practices, 298–300
Struts actions, 286–293

action-level forwards,
288–289

actions mappings, 287
error handling, 291–293
form beans, 289–291
global forwards, 288
page navigations, 288–289
summary, 286
user events-actions

mappings, 286–287
Struts architectures, 284
summary, 259–261, 284–286
user interaction architectures,

relationship to, 259–300.
See also User interaction
architectures

view components, 293–300
bean tag libraries, 295–298
form tags, 293–294
HTML tag libraries, 293–295
link tags, 294–295
logic tag libraries, 298
summary, 293
template tag libraries,

296–298

Java business object models, 41
Java servlets, 12–13
JDBC (Java Database

Connectivity), 105–114,
185–186

explicit data objects,
106–112

access isolations, 109–111
best practices, 109–112
SQL externalizations, 112
summary, 106–108

logic isolations and
encapsulations, 185–186

summary, 105–106
XLM metadata, 112–114

JDNI (Java Naming and
Directory Interface),
13–14

Johnson, M., 459
Johnson, R., 459
JSPs (JavaServer pages), 12–13,

281–284

K
Key element abstractions, 299
Keys, primary, 130–133

L
Layered architectures, 451
Libraries, 293–298, 308, 372

bean tags, 295–298
HTML tags, 293–295
logic tags, 298
template tags, 296–298,

308, 372
Lifecycles, object, 31
Lightweight business objects,

83–87
Link tags, HTML, 294–295
Local interfaces, 51
Locking, optimistic vs.

pessimistic, 47–52
Logic, 267, 298, 371

controllers, 267
minimizations, 371
tag libraries, 298

Lookups, 139–141, 180–181,
358–359

custom tags, 358–359
existing instances, 130–141
tables, 180–181

Loops, user interactions, 275

M
Malks, D., 459
Management, properties. See

Properties management
Mappings, 37–52, 114–119,

269–287, 394, 418
actions, 287
errors, 394, 418
events-actions, 269

input data-event objects,
270–271

object-relational, 37–38, 52,
114–119

one-to-one object-relational,
52

tools, 114–119
user events-actions,

286–287
McIanahan, C., 284
Measurements, performance,

425–429. See also

Performance engineering
benchmarks, 428–429
individual transaction

response times, 425
summary, 425
transaction throughput and

scalability, 426–428
garbage collections,

426–428
object instantiations,

426–428
scalability, 426–428
summary, 426

Metadata. See XML metadata
Methods, business, 27
Migration alternatives, 50
Minimizations, 278–300, 371

code, 282, 299–300
logic, 371
session sizes, 278, 299

Models, 32–65, 125, 183
Cache List objects, 183
Entity Bean, 38–41
implementation, 32–52.

See also Implementation
models

Java business objects, 41
JavaBeans properties,

64–65
Model 2 patterns. See MVC

(Model-View-Controller)
patterns

object creations and
instantiations, 125

transactions, 38–41. See also

Transactions
Modular architectures, 451
Multiple business objects,

233–234
Multiple object instances,

410–417
Multiple submit buttons,

408–410
MVC (Model-View-Controller)

patterns, 265–284
best practices, 266, 268, 278
controller architectures,

265–278
action classes, 266–267,

271–273

466 Index

TEAMFL
Y

Team-Fly®

application service
invocations, 273–274

controller logic, 267
core responsibilities,

267–278. See also Core
responsibilities, controller
architectures

definitions, 266–267
event-action mappings, 269
HTTP request abstractions,

267–278
input data-event object

mappings, 270–271
navigations, event-based,

269, 275–276
partitioning automation,

276–278
summary, 265–266
user content management,

275
user interaction loops, 275

Jakarta Struts, 284–300.
See also Jakarta Struts

server-side vs. HTTP
parameters, 280–281

state management, 278–280
summary, 16–20, 265
user interaction architectures,

relationship to, 259–373.
See also User interaction
architectures

view components, 281–284
code minimizations, 282
JSPs (JavaServer pages),

281–284
summary, 281–282
template mechanisms,

282–284

N
Navigations (screen flows),

262–269, 275–276, 288
event-based, 269, 275–276
pages, 288
summary, 262–263

New customer services,
234–239

service-based components,
relationship to, 209–257.
See also Service-based
components

services within services,
237–239

embedded services, 239
error data, combinations,

239
service reuses, 238

summary, 234–237
New customer wizards, 342–362

form beans, 346–347, 362
aggregations, 346–347
validations, 362

value objects, 362
implementation page flows,

342–345
lookup value custom tags,

358–359
new customer actions,

349–355
pages, 348–361

account information
(page two), 355–356

confirmation information
(page three), 356–359

customer and account
information (page one),
348–349

new customer information
(page four), 360–361

templates, 361
summary, 342
user interaction architectures,

relationship to, 259–373.
See also User interaction
architectures

New instance creations,
126–130

Nonexistence, address objects,
228–230

O
Object creations and

instantiations, 124–143
Object lifecycles, 31
Object persistences. See

Persistences
Object relationships, 28–29

aggregations, 28–29
associations, 29
specializations, 29
summary, 28

Object-relational mappings,
37–38

One-to-one object-relational
mappings, 52

Optimistic vs. pessimistic
locking, 47–52

Organizational-industry
combinations, 448

P
Pages, 12–13, 265–417

abstractions, 278
account detail pages, 392–397
account information, 355–356
administration pages, 408–417
building, 265–373

action class templates,
362–369. See also Actions

best practices, 303, 308,
371–372

change address JSPs
(JavaServer Pages),
307–332. See also Change

address JSPs (JavaServer
Pages)

change address pages,
301–307. See also Change
address pages

new customer wizards,
342–362. See also New
customer wizards

summary, 301, 372–373
view accounts pages,

332–342. See also

View accounts
Web services, 265, 369–371

confirmation information,
356–359

customer and account
information, 348–349

forwarding, 278
implementation page flows,

342–345
JSPs (JavaServer Pages),

12–13
logic minimizations, 371
security hierarchies, 376
templates, 361
transfer funds, 397–408

Parameter (argument) lists,
203–205, 210–212

Parsing, XML metadata,
438–438, 441

Partitioning automation,
276–278

Performance engineering,
421–442

application techniques,
430–440

asynchronous processing,
439–440

cache and caching, 433–436.
See also Cache and
caching

core aspects, 430–433
Entity Beans, 426–437
I/O, disk and database,

432–433
object instantiations,

430–432
stateful Session Beans,

438, 441
summary, 430
Web tiers, 440
XML metadata parsing,

438–438, 441
best practices, 423–441

asynchronous processing,
439–441

cache and caching,
434–436, 441

object instantiations,
430–432, 441

scalable efficient
architectures, 423, 440

Index 467

Performance engineering
(Continued)

stateful Session Bean
removal, 438, 441

summary, 440–441
XML metadata parsing,

438–438, 441
overall performance

approaches, 421–429
development processes,

422–425
focal points, 422
performance measurements,

425–429. See also

Measurements,
performance

summary, 421–423
summary, 421, 442

Persistences, 105–159
aggregations, 144–150
best practices, 37
BMP (Bean-Managed

Persistence), 34–37, 58–59
cascading saves, deletes, and

validations, 148
Castor project, 115–119
CMP (Container-Managed

Persistence), 33–37, 58–59,
119–123

complex persistence
options, 52

database frameworks, 158
Entity Beans, 33–37
object creations and

instantiations, 124–114
object-relational mappings,

37–38, 114–119
persistence frameworks,

114–119
summary, 33, 105–106
tools, 52

Pessimistic vs. optimistic
locking, 47–52

Physical URL abstractions,
276, 299

Presentation logic
encapsulations, 372

Primary keys, 130–133
Processes, business, 3
Processing, asynchronous,

439–441
Properties management, 55–103

best practices, 58–59, 102–103
BMP (Bean-Managed

Persistence) vs. CMP
(Container-Managed
Persistence), 58–59

bulk getter vs. bulk setter
methods, 82–83

Entity Beans, 58–59
field validations, 68–73
Java objects, 56–58

persistences. See Persistences
property value formatting,

73–82. See also Property
value formatting

reusable property definitions,
68–73

summary, 27–28, 55, 103
XML metadata, 68–73

Property value formatting,
73–82

getProperty methods, 76–78
property-handling

variations, 82
setProperty methods, 79–80
summary, 73–76
value conversions, 80–82

Property-handler mechanisms,
99–100

Q
Queries, 240–244

databases, 243–244
execution, 240–241

R
Refactoring, 448
Reference architectures,

23–458
business object architectures,

23–53, 55–103, 105–188.
See also Business object
architectures

performance engineering,
421–422. See also

Performance engineering
reuse and reusability,

443–458. See also Reuse
and reusability

service-based architectures,
189–257. See also Service-
based architectures

summary, 4–9
user interaction architectures,

259–373. See also User
interaction architectures

Reference literature, 459
Refresh mechanisms, 184–185
Requests, 267–278

abstractions, HTTP, 267–278
handling, 272

Response times,
transactions, 425

Retrieval services. See Data
retrieval services

Reusable property definitions,
68–73

Reuse and reusability, 443–458
best practices, 444–457

dimensions, 445
ease of use, 446, 456–457
industry-organizational

combinations, 448

iterative development,
448, 457

refactoring, 448
reference architectures as

reuse architectures,
450, 457

reuse-creativity combina-
tions, 444–447, 457

vs. roadblocks, 444–452
summary, 444, 457

business objects, 452–453, 455
characteristics, 444–447
generic reusable services, 256
presentation logic

encapsulations, 372
reuse-creativity combinations,

447–448, 457
roadblocks, 444–452
service objects, 453, 455
service reuses as building

blocks, 238, 256
social and educational

dimensions, 444–452
best practices, 446–448
reuse characteristics,

444–448
roadblocks vs. best

practices, 445
summary, 444

strategic views, 454–456
summary, 443–445, 457–458
technical and functional

dimensions, 448–454
component standards,

449–450
configurable components,

450–451
extensible components,

450–451
initial investments, 452
layered architectures, 451
modular architectures, 451
reference architectures as

reuse architectures,
450, 457

standard interfaces, 451
summary, 445, 448–449

user interaction objects,
453–455

layers, pyramid, 453–454
strategic views, 455
summary, 453

RMI (Remote Method
Invocation) protocol, 13–14

Roadblocks, 444–452
Rules, business, 27–28

S
Saves, cascading, 148
Scalability and throughput,

transactions, 426–428. See

also Transactions

468 Index

Screen flows. See Navigations
(screen flows)

Security, 375–391, 418–419
applications, 375–376
best practices, 381–389, 417
model components, 376–377
page hierarchies, 376
summary, 375, 418–419
Web applications, 377–391

application-managed,
378–381

container-managed,
381–389, 417. See also

Container-managed
security

directory structures and
contents, 382

summary, 377–378
Service chaining, 254–255
Service-based architectures,

189–247
best practices, 196–208

service interfaces, design of,
196–208

service-based components,
implementation, 207. See

also Service-based
components

Session Beans as
component wrappers,
197–198, 207–208

summary of, 207–208
design considerations,

196–208
argument (parameter) lists,

203–205
best practices, 196–208
business object

implementations and
integrations, 199, 206–207

data structures, evaluations,
201–206

enterprise Java
implementations,
197–199

explicit vs. generic
interfaces, 201

interfaces, 199–206
Session Beans as

component wrappers,
197–198, 207–208

summary, 196 –197
value objects, 202–203
XML metadata structures,

204–206
high-level, 193
integration issues, 206–207
service-based components.

See also Service-based
components, 193–196,
207–257

summary, 189–193, 208

Service-based components,
193–196, 207–257

best practices, 207–219,
256–258

common base classes, 256
data retrieval services,

256–257
generic reusable

services, 256
service reuses as building

blocks, 238, 256
Session beans as component

wrappers, 215–219
standard service interfaces,

212–215, 255–256
summary of, 207–208

building, 209–247
ACLs (access control

lists), 220
argument (parameters) lists,

210–212
best practices, 215, 219, 238,

243, 252, 255–257
business objects, initiations

and invocations, 221–224
change address services,

227–233. See also Change
address services

class diagrams, 219
controller patterns,

implementations, 253–255.
See also Controller
patterns

data retrieval services,
240–251. See also Data
retrieval services

error handling, 224–225
generic reusable services,

251–253
new customer services,

234–239. See also New
customer services

object data, 210
responsibilities, 221–225
service data structure

interfaces, unified,
212–215, 255–256

service interfaces, 209–210
Session Beans as

component wrappers,
215–219

standard interfaces, 226–227
subclasses, deployment,

220–221
summary, 209, 257
transactions, management,

220, 224–225
updates services, examples,

225–226
business objects, 194–196

multiple, 195–196
reusable, 194–196

business processes and
transactions models, 194

characteristics and elements,
193–194

data retrieval and
updates, 196

service categories, 196
service-based architectures,

relationship to, 189–208.
See also Service-based
architectures

Servlets, 12–13
Session Beans, 12, 197–219,

438–441
removal, 438
service-based architecture,

197–198, 207–208
service-based components,

215–219
stateful, 438, 441
summary, 12

Session size minimization,
278, 299

Setter vs. getter, 58, 82–83
encapsulations, 58
methods, bulk, 82–83

Singh, I., 459
Social and educational

dimensions, 444–452
best practices, 446–448
reuse characteristics, 444. See

also Reuse and reusability
roadblocks vs. best

practices, 445
summary, 444

Specialization, 29
SQL externalization, 112, 186
Standard interfaces, 59–66,

102, 451
best practices, 59
class diagrams, 61
generic property interface vs.

explicit property methods,
59–61, 65–66

properties management,
relationship to, 55–103.
See also Properties
management

summary, 59, 102
XML metadata, 61–65. See

also XML metadata
collection string property

storage, 62
explicit accessors, 63–66
JavaBeans property models,

64–65
summary, 61–62

Standards, component,
449–450

State management, 264,
278–280

Stateful Session Beans, 438, 441

Index 469

Stateful vs. stateless objects,
30–32

Stearns, B., 459
Strategic views, 454–456
Strengthened applications,

375–419
advanced functionalities, 375,

392–419. See also

Advanced functionalities
security, 375–391, 418–419.

See also Security
Strict encapsulations, 102
Struts, Jakarta. See

Jakarta Struts
Submit buttons, multiple,

408–410

T
Tag libraries, 293–308, 372

bean, 295–298
HTML, 293–295
logic, 298
templates, 296–298, 308, 372

Tags, 327–332, 372
custom tags, 332, 372
drop-down, 327–332

Technical and functional
dimensions, 448–454

component standards,
449–450

configurable components, 450
extensible components,

450–451
initial investments, 452
layered architectures, 451
modular architectures, 451
reference architectures as

reuse architectures,
450, 457

standard interfaces, 451
summary, 445, 448–449

Templates, 162, 282–325,
362–372

action classes, 362–369
mechanisms, 282–284
method patterns, 162
new customer wizard

pages, 361
tag libraries, 296–298, 308, 372
validation templates,

316–325
“The Model/View Pattern”

(Journal of Object-

Oriented Programming),

459
Throughput and scalability,

transactions, 426–428. See

also Transactions
Tools, 52, 114–119

object-relational mappings,
114–119

persistences, 52

Transactions, 38–50, 97–99, 186,
392–397, 425–428

currency handling, 47–50
management integrations,

97–99
models, 38–41. See

also Models
Entity Bean, 38–41
Java business object, 41
summary, 38

objects, 392–397
response times, 425
throughput and scalability,

426–428
garbage collections, 426–428
scalability, 426–428
summary, 426

transactional updates, 186
Transfer funds pages, 397–408

U
UML representations, 87
Unified structures, 85–87
Updates, transactional, 186
URL abstractions, 276, 299
User authentications, 387
User content management, 275
User events-actions mappings,

286–287
User interaction architectures,

259–373
best practices, 266–276,

282–317, 341, 371–372
action classes, 303, 371
code minimizations, 282,

299–300
custom tags, 332, 372
data validation automation,

317, 371
form beans, 317, 371
generic MVC (Model-

View-Controller)
implementations, 266, 299

key element abstractions,
299

page logic minimization, 371
physical URL abstractions,

276, 299
presentation logic

encapsulations, 372
property format mechanism

integration, 341, 372
session size minimizations,

278, 299
summary, 298–300, 371–372
template mechanisms, 283
template tag libraries,

308, 372
design considerations,

259–300
application presentations,

261–262

best practices, 266, 268, 276,
278, 282–283, 298–300

business functions and
services, access, 262

elements, 261–265
error handling, 263–264
forms processing, 263
Jakarta Struts, 284–300.

See also Jakarta Struts
MVC (Model-View-

Controller) patterns,
265–284. See also MVC
(Model-View-
Controller) patterns

navigations (screen flows),
262–263

state management, 264
summary, 259–261, 300
Web services, 265,

369–371
elements, 261–265
page building, 302–374

action class templates,
362–369. See also Actions

best practices, 303, 308,
371–372

change address JSPs
(JavaServer Pages),
307–332. See also Change
address JSPs (JavaServer
Pages)

change address pages,
301–307. See also Change
address pages

new customer wizards,
342–362. See also New
customer wizards

summary, 301, 372–373
view accounts pages,

332–342. See also

View accounts
Web services, 265, 369–371

Utilities, 90, 314–315
conversions, 314–315
errors classes, 90

V
Validations, 27–28, 68–101, 148,

272, 315–325, 362, 371
cascading, 148
change address JSPs

(JavaServer Pages),
315–325

cross objects, 100–101
data automation, 317, 371
fields, 68–73
form beans, 362
objects, 27–28, 87–89
performance, 272
templates, 316–325

Value objects and lightweight
business objects, 83–87

470 Index

shared properties and
interfaces, 84–85

summary, 83–84, 202–203
UML representations, 87
unified structures, 85–87

View accounts, 332–342,
368–369

actions, 368–369
pages, 332–342

account detail links,
variations, 341–342

actions, 334–342
best practices, 341
custom tags, 338–341
page flow diagrams, 334
summary, 332–334
user interaction

architectures, relationship
to, 259–373. See also User
interaction architectures

View components, 281–284,
293–300

bean tag libraries, 295–298
code minimizations, 282
form tags, 293–294
HTML tag libraries, 293–295
JSPs (JavaServer pages),

281–284
link tags, 294–295
logic tag libraries, 298
summary, 293
templates, 282–284, 296–298

mechanisms, 282–284
tag libraries, 296–298

Vlissides, J., 459

W
Web application security,

378–381. See also Security
Web pages. See Pages
Web services, 265, 369–371
Web tiers, 440
Wizards, new customer. See

New customer wizards

Workflow-type services,
253–254

X
XML metadata, 168–174

applications access, 172–174
best practices, 102, 172,

187–188
class diagrams, 173
collection string property

storage, 62
DTDs (document type

definitions), 168–172
explicit accessors, 63–66
JavaBeans property models,

64–65
parsing, 438–438, 441
properties management,

68–73
service-based architectures,

204–206
summary, 61–62, 112–114, 168

Index 471

	Contents
	Introduction
	Building Business Applications with J2EE
	Elements of Transactional, Web- Based
	Business Applications
	Business Entities
	Business Processes
	User Interaction

	The Reference Architecture
	Business Object Architecture
	Service- Based Architecture
	User Interaction Architecture

	The J2EE Platform Approach
	Entity Bean EJBs as Business
	Object Components
	Session Bean EJBs as Service- Based
	Components
	JavaServer Pages and Java Servlets as
	the User Interface
	Distributed Java Components
	J2EE Access to the Enterprise
	Information Systems (EIS) Tier

	The Model- View- Controller
	Architecture Approach
	Best Practices for Building Business
	Applications with J2EE
	Implementing Database Access
	Managing JDBC Resources
	Structuring Your Application Using
	the MVC Architecture Pattern
	Keeping the HTTP Session Size
	to a Minimum

	Summary

	The Business Object Architecture: Design Considerations
	Business Objects in a Banking Application
	Elements of Business Objects
	Properties
	Business Methods
	Business Rules and Validation Logic
	Relationships with Other
	Business Objects

	Design Considerations
	Stateful versus Stateless
	Business Objects
	Implementation Model: Entity Bean,
	Session Bean, or Java Object

	Best Practices for Designing
	Business Objects
	Deciding between Entity Beans and
	Regular Java Objects as the Business
	Object Implementation
	Designing Business Objects with a
	Potential Migration as an Alternative
	Configuring the Entity
	Bean Deployment
	Using CMP Entity Beans Instead
	of BMP Where Possible
	Be Aware of Entity Bean Finder
	Implementation Strategies
	Managing Aggregated
	Business Objects
	Using EJB Local Interfaces
	Wherever Possible
	Considering the Simple Case
	of a One- to- One Object- Relational
	Mapping Approach
	Implementing More Complex
	Persistence Options
	Considering the Use of
	Persistence Tools
	Using an Optimistic Lock Column
	for a Lightweight Solution

	Summary

	Building Business Objects: Managing Properties and Handling Errors
	Managing Properties
	Properties on a Java Object
	Properties on an Entity Bean
	Using a Standard Java Interface
	Standard Property Interface
	with Entity Beans
	Field Validation
	Property Value Formatting
	Bulk Getter and Setter Methods

	Value Objects and Lightweight
	Business Objects
	Same Properties, Same Interface
	A Unified Structure for Value Objects
	and Business Objects

	Object Validation and Error Handling
	Managing Business Errors
	Cross Object Validation

	Best Practices for Implementing Business
	Objects: Part One
	Use Strict Encapsulation
	Use a Standard Interface for
	Business Objects
	Consider the Use of Metadata- Driven
	Components and Reusable
	Property Definitions
	Develop a Consistent Approach
	for Managing Business Errors
	Using Exceptions
	Presenting Meaningful Error
	Messages to the User

	Summary

	Building Business Objects: Persistence, Relationships, and the Template Method Pattern
	Object Persistence
	JDBC in Explicit Data Objects
	JDBC Using a Metadata- Driven
	Approach
	Using Persistence Frameworks
	and Object- Relational Mapping Tools
	Entity Bean Container- Managed
	Persistence
	Business Object Creation
	and Instantiation
	Aggregated Objects
	Object Collection Services
	Database Queries

	The Base Class as a Template
	The Save Template
	The Create Template

	Overall Business Object Metadata Approach
	The Metadata XML DTD
	Accessing the Metadata from
	the Application

	Data Caching
	Cache Implementation Options
	Designing the Cache Objects
	When to Cache Data
	Refresh Mechanism

	Best Practices for Implementing Business
	Objects: Part Two
	Isolate and Encapsulate JDBC Logic
	Externalize SQL from the
	Application Code
	Always Use Business Objects for
	Transactional Updates
	Minimize Use of Database
	Names in Code
	Use a Business Object Factory
	Abstraction
	Use an Object Collection Service
	Use the Template Method Pattern for
	Common Business Behaviors
	Consider Metadata- Driven Business
	Objects Derived from Design Models
	Use a Consistent, Extensible Caching
	Mechanism to Improve Performance

	Summary

	The Service- Based Architecture: Design Considerations
	Elements of Service- Based Components
	Services Model Business Processes
	and Transactions
	Services Use Reusable
	Business Objects
	Coordinating Multiple Business
	Objects in a Transaction
	Service Categories: Data Retrieval
	and Update

	Design Considerations
	The Enterprise Java Implementation
	The Java Interface to the
	Service Component
	Integrating Service- Based
	Architecture with the Business
	Object Architecture

	Best Practices for Designing
	Service- Based Components
	Implementing Service- Based
	Components
	Using the Session Bean as a
	Component Wrapper
	Designing the Service Interface

	Summary

	Building Service- Based Components
	The Actual Service Interface
	An Implementation for Argument Lists
	A Unified Service Data Structure
	and Interface

	The Session Bean as a Component
	Wrapper to the Service
	Transaction Management Revisited
	When to Deploy Subclasses of
	BlfServiceBean

	Responsibilities of the Service Component
	Instantiating Business Objects
	Invoking Business Object Methods
	Managing the Transaction
	and Handling Errors

	Update Service Examples
	Explicit Transfer Funds Service
	Implementation
	Transfer Funds Implementation
	with Standard Interface
	Change Address Service

	Updating Multiple Business Objects
	The New Customer Service
	Invoking Services within Services

	Data Retrieval Services
	Responsibilities of the
	Data Retrieval Service
	Some Example Data
	Retrieval Services
	Is the Data Retrieval Service
	Mechanism Needed?

	Building Generic, Reusable Services
	Implementing the Controller Pattern
	in Services
	Object- Centric Services
	Workflow- Type Services
	Service Chaining

	Best Practices for Implementing
	Service- Based Components
	Consider the Use of a Standard
	Service Interface
	Use a Common Base Class
	Reuse Services as Building Blocks
	Build Generic, Reusable Services
	Implementing Data Retrieval Services

	Summary

	The User Interaction Architecture: Design Considerations and an Overview of Jakarta Struts
	Elements of the User
	Interaction Architecture
	Application Presentation
	Access to Business Functions
	and Services
	Screen Flow, or Page Navigation
	Forms Processing
	Error Handling
	State Management
	User Interaction in Web Services

	Design Considerations
	The Controller Architecture
	State Management
	HTTP Parameters versus
	Server- Side Parameters
	View Components: JavaServer Pages

	An Overview of Jakarta Struts
	Struts Actions
	View Components

	Best Practices for Designing the User
	Interaction Architecture
	Use a Generic MVC Implementation
	Abstract the Key Elements
	of User Interaction
	Don t Hard- Code Physical URLs
	into the Application
	Keep the Session Size to a Minimum
	Minimize the Amount of Java Code
	in a JSP
	Use a JSP Template Mechanism

	Summary

	Building the User Interaction Architecture
	The Change Address Page
	The Go Change Address Event
	and Action

	The Change Address JSP
	Using a Conversion Utility with
	Separate Event and Value Objects
	Validation
	Using the Form Bean as Both the
	Event Object and Value Object
	The Drop- Down Tag

	The View Accounts Page
	The View Accounts Action
	The View Accounts JSP

	The New Customer Wizard
	The Page Flow through the Wizard
	The Address and Account as
	Aggregated Form Beans
	Page One: The Customer and
	Account Information
	The New Customer Action
	Page Two: The Account Information
	Page Three: The Confirmation Page
	Page Four: The New Customer
	Information Page
	Using JSP Templates
	Refactoring to Use Form Beans
	as Value Objects

	A Template for the Action Class
	Template Implementation
	of Change Address Action
	Template Implementation
	of View Accounts Action

	Web Services
	Best Practices for Implementing
	the User Interaction Architecture
	Consider Minimizing Page Logic
	through Action Classes
	Use the Struts Template Tag Library
	Automate Data Validation
	in Form Beans
	Encapsulate and Reuse Presentation
	Logic through JSP Custom Tags
	Integrate a Property Formatting
	Mechanism into JSP Components

	Summary

	Strengthening the Bank Application: Adding Security and Advanced Functionality
	Application Security
	Web Application Security
	EJB Security

	Interesting Aspects of the Bank Application
	The Account Detail Page and the
	Transaction Object
	The Transfer Funds Page
	The Administration Pages

	Best Practices for Advanced Web
	Application Development
	Using Container- Managed Security
	Whenever Possible
	Mapping EJB- Level Exceptions
	to Application- Defined Errors
	Implementing Actions with
	Multiple Events
	Implementing Forms with
	Multiple Object Instances

	Summary

	Performance
	Overall Performance Approach
	Performance Engineering in the
	Development Process
	Measuring Performance

	Performance in J2EE Applications
	Core Aspects of Java Application
	Performance
	Object Caching
	Entity Beans
	Session Beans
	XML
	Asynchronous Processing
	The Web Tier

	Best Practices for J2EE
	Performance Engineering
	Considering Performance throughout
	the Development Process
	Minimizing Object Instantiation
	Whenever Possible
	Caching EJB Home Interfaces
	Removing Stateful Session Beans
	When Finished
	Choosing an Efficient XML Parser
	Based on Your Requirements
	Asynchronous Processing
	as an Alternative

	Summary

	Moving toward Reuse in the Reference Architecture
	Common Roadblocks and
	Corresponding Best Practices
	The Social and Educational
	Dimensions
	The Technical and Functional
	Dimensions

	Reuse in the Reference Architecture
	Business Objects
	Service Objects
	User Interaction Objects
	Turning the Layers Upside Down

	The Strategic View of the Architecture
	Best Practices for Moving toward Reuse
	Simplifying Life for the Consumer
	of Reusable Assets
	Combining Reuse with Creativity
	Harvesting Reusable Assets through
	Iterative Development
	Using a Reference Architecture as a
	Reuse Architecture

	Summary

	Bibliography
	Index

