
EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming Techniques.

 Back Cover

Table of Contents

Part I EJB & JSP—Java On the Edge

Chapter 1 - Enterprise Computing Concepts
Chapter 2 - J2EE Component APIs
Part II JavaServer Pages

Chapter 3 - A First Look at JavaServer Pages
Chapter 4 - The Elements of a JSP Page
Chapter 5 - JSP Web Sessions
Chapter 6 - JSP and JavaBeans
Chapter 7 - JSP Tag Extensions
Chapter 8 - JSPs and Servlets Revisited
Chapter 9 - JSP Errors and Debugging
Chapter 10 - The “Make Money” Brokerage Application
Part III Enterprise JavaBeans

Chapter 11 - A First Look at EJB
Chapter 12 - The Elements of an EJB
Chapter 13 - EJB Contexts and Containers
Chapter 14 - EJB Session Beans
Chapter 15 - EJB Entity Beans
Chapter 16 - EJB Security
Chapter 17 - EJB and Transaction Management
Chapter 18 - Creating EJB Clients
Chapter 19 - The Proposed EJB 2.0 Specification
Chapter 20 - Integrating JSPs and EJBs
Appendix A - The JSP API
Appendix B - The EJB API
Appendix C - Configuring the Tomcat Web Server

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=623160142

Appendix D - XML Overview

http://www.unltded.com/toc.asp?bkid=2878#TOP

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming Techniques.

Back Cover

Enterprise Java Beans and JavaServer Pages deliver the tools you need to
develop state-of-the-art multi-tier applications for the Internet or an intranet. But
how do you create robust components for these two APIs--and get them to work
together with each other and the rest of the containers in Java 2 Enterprise
Edition? This unique guide delivers the answers. With lucid explanations and
lots of sample code illustrating the development of a hotel reservation system,
Lou Marco shows you step by step how to harness the power of JSP and EJB--
and create cutting-edge J2EE applications.

Make JSP, EJB, and J2EE Work Together

● Get the lowdown on J2EE N-tier application development
● Work with JSP objects, standard actions, and Web sessions
● Use JavaBeans or JSP tags to access a database with JDBC
● Understand how JSP works with Java servlets
● Take control of JSP errors, exceptions, and debugging
● Master EJB basics, from clesses to session and entity Beans
● Harness EJB tools to secure your application
● Manage transactions using EJB with JDBC, JTS, and JTA
● Build Bean- or container-managed persistence in EJB components
● Learn the ins and outs of JSP and EJB as you create a fully functional

hotel reservation system

About the Authors

Lou Marco is a consultant, writer, and the owner of Lou Marco and Associates,
a firm that designs Web sites and writes custom software. An IT professional
with more than two decades of experience, he contributes frequently to
Enterprise Systems Journal and is the author of ISPF/REXX Development for

Experienced Programmers.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part I: EJB & JSP—Java On the Edge

Chapter List

Chapter 1: Enterprise Computing Concepts

Chapter 2: J2EE Component APIs

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=514334394

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 1: Enterprise Computing Concepts

JavaServer Pages (JSPs) and Enterprise JavaBeans (EJBs) are part of a server-side application development
specification called the Java 2 Platform, Enterprise Edition (J2EE). Before you jump into the specifics of JSPs or
EJBs, some background on enterprise application development, J2EE, and how JSP and EJB fit into J2EE is in order.

This chapter sets the stage with information on the characteristics of a typical computing environment found in a
modern corporation. Next, you read about two significant advancements in computer science that provide application
developers with the means to satisfy their customers’ demands for computing services. You get a high-level look at
J2EE and see how J2EE addresses the needs of application developers. You read about the components of J2EE,
which include JSP and EJB. The chapter closes with a short discussion on the roles that JSPs and EJBs play in
developing enterprise applications with the J2EE specification.

The Enterprise Computing Environment

Today’s corporate computing environment is a different animal from its ancestors. Typically, enterprise computing
environments are:

● Data-Obsessed: These days, the modern company is addicted to its data. With storage costs low, companies are
less likely to purge data stores today than in years past. Some industries, such as brokerage and insurance, keep
decades’ worth of data and subject their data to intense analysis. The astute corporate mavens realize that
corporate data is an asset worth exploiting. Those in charge look to their computing professionals to provide tools
that exploit this valuable asset.

● Distributed: Today’s enterprise computing environment has grown beyond the scenario of a single machine in an
air-conditioned room, with rows and rows of storage devices, serving hundreds or thousands of dumb green
screens. The more likely scenario for today’s environment is one of networked servers in diverse geographical
locations that serve data to hundreds or thousands of comparatively smart GUI clients.

● Secure: A good deal of corporate data must be kept from the prying eyes of the pesky, prying employee itching to
know who got the biggest raise in the department, the dementedly disgruntled employee looking to vend
proprietary information, and the capriciously curious employee trying to learn about various systems and
applications.

● Scalable: The environment that serves the needs of one hundred may be inadequate to serve the needs of one
thousand. As the number of users increases, resources, such as bandwidth or database connections, have a bad
habit of thinning out to unacceptable levels or simply running out.

● Fault tolerant: With the computing environment distributed among many parts, the possibility of any single part
failing increases with the number of parts. The company cannot afford to have its systems crash and burn every
time a server winks out or a data store goes offline.

● Heterogeneous: The days of a company using products from a single vendor are gone. More likely, a company
uses a mix of hardware and software from several competing vendors. Today, everything from the physical disk

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=894021235

packs to the video card on the desktop may be purchased from different vendors.

The modern computing environment clearly shares the characteristics of today’s diverse corporation doing business in
today’s diverse world.

The challenges facing systems professionals tasked with developing enterprise applications are legion. How have
today’s systems folk risen to the challenge? Two powerful technologies developed over the past few decades have
proven instrumental in developing applications that allow the modern corporation to conduct its business. These
technologies are client-server architectures and object technologies.

Client-server architectures describe how to partition the major functions of an application in layers. Object
technologies deal with constructing software systems as groups of communicating objects; each object has a set of
well-defined behaviors (called methods) and comes with its own data (called properties).

Developing Applications in Layers

In the days of bell-bottoms and disco music, companies used networks primarily to connect mainframes using
dedicated hardware and proprietary software and protocols. In the 1980s, companies started to use UNIX servers and
the TCP/IP protocol, which quickly became an industry standard. In response to servers’ not adequately scaling to
meet the needs of ever-increasing numbers of users, those in charge of the shop began to shift processing power
from centralized servers to the network. The era of client-server computing had begun.

Developing client-server applications is different from developing applications that run on green-screen, glass house
systems. The distributing of processing power between client and server demands that client-server software be
developed to reflect this division.

One strategy devised to develop client-server applications is to write the software in layers. A layer is a logical level
that deals with related application tasks. The basic idea is to develop the software to implement the layer’s functions
independently of features in other layers.

By partitioning software into layers, application developers could concentrate on the features and problems peculiar to
a particular layer. Division of application features among layers meant division of development responsibility. In
addition, the marketplace started to offer tools to support this software development strategy.

The layers commonly used to abstract a software system these days are a presentation layer, an application logic
layer, and a data layer. Each layer is responsible for functions not found in the other layers:

● The presentation layer is responsible for user interface tasks. These tasks include accepting user input, performing
various edit checks on input, and displaying relevant application output.

● The application logic layer is responsible for tasks that execute the algorithms that solve business problems. These
tasks include performing calculations, handling security, and accessing data. The application logic layer contains
most of the code for the application.

● The data layer is responsible for tasks that maintain permanent data stores in the form of one or more databases.
These tasks include data locking, data integrity support, and transaction support.

Code that implements tasks within a layer communicates with code in adjacent layers only. For example, code within
the presentation layer communicates with code within the application logic layer but does not communicate with code
within the data layer.

To implement a layered application, you need an architecture that describes the physical boundaries between the
above layers. The components that reside within the physical boundaries of the layers are called tiers. A summary of
two common client-server architectures, called two-tier and three-tier (or n-tier) architectures, follows.

Note The term architecture as used throughout this chapter refers to a partitioning strategy and a coordination
strategy. The partitioning strategy leads to dividing the entire system in discrete, non-overlapping parts or
components. The coordination strategy leads to explicitly defined interfaces between those parts.

Two-Tier Architectures in Brief

Some two-tier architectures combine most of the application logic layer tasks with the presentation layer, while others
combine most of the application logic layer with the data layer.

A two-tier architecture could have one tier consisting of client PCs containing application logic code and database
access routines and the other tier consisting of one or more databases. This arrangement is often referred to as a fat
client.

Another way to implement the two-tier architecture is placing the application logic layer with the data layer to form a
tier and having the presentation layer in the other tier. Here, the database would rely on stored procedures and
triggers to implement most of the application logic. This arrangement is often referred to as a thin client.

Figure 1-1 shows the differences between fat and thin client arrangements.

Figure 1-1: Fat and thin clients compared and contrasted

As you can see in Figure 1-1, the fat client architecture containing application logic code is a combination of the
functionality of the presentation and application logic layers. The thin client architecture has the application logic code
buried within the DBMS in the form of stored procedures (code stored within the database that performs some
application-specific task) and triggers (a feature of a DBMS that executes stored procedures based on one or more
conditions). Most two-tier architectures fall somewhere in between these extremes. The dashed line represents the
tier boundary.

Conventional wisdom these days is that two-tier architectures can satisfactorily handle a hundred or so users. For
larger numbers of users, performance may start to degrade because of the client’s need to maintain a connection to
the server. These constant connections drain network bandwidth and use scarce database connections. This problem
is more severe in the fat client than in the thin client scenario. For the fat client implementation, every request for data
requires reaching across the network, dipping into the database, and returning data to the client. For the thin client
implementation, one request for data can trigger a DBMS stored procedure that executes on the server. This stored
procedure could return the same data that a fat client would need multiple requests for. Although using stored
procedures helps alleviate the bandwidth problem, the thin client still requires the database connection.

More bad news for adopters of a two-tier architecture follows. In the fat client scenario, any change to the application
logic (and you know that there will be changes) involves compiling and installing the changed code on all the clients —
an expensive proposition. In the thin client scenario, the enterprise usually relies on vendor-specific databases and the
vendor’s implementation of triggers and stored procedures. Typically, proprietary implementations of DBMS features
are not portable to different platforms and usually will not work with different vendor products.

Every strain of technology solves some old problems while introducing new ones. Two-tier architectures are certainly
no exception; although applications developed with a two-tier architecture achieve some benefits by isolating tasks
into separate tiers, the disadvantages of the architecture remain. A sensible question is: Are there ways of exploiting
the advantages of these architectures while taking the sting out of their problems?

N-tier Architectures in Brief

Perhaps I can shed some light on a possible answer to the $64,000 question posed in the previous section by posing
another question: What are the root causes of the deficiencies of the two-tier architectures? One cause is the
architecture’s failure to give the application logic layer its own tier. By trying to divvy up the functionality of the
application logic layer, the resulting architecture ties applications to high-maintenance clients, proprietary and
nonportable databases, and clogged networks. Why not give the application logic layer its very own tier?

You don’t have to be a rocket scientist to guess what the architecture is called when the presentation, application
logic, and data layers have their own tier. The “n” in n-tier means that a particular layer (the application logic layer,
really) may have more than one physical tier. Whether you’re talking about three-tier (a specific case of the more
general n-tier) or n-tier, the basic concepts are the same — to encapsulate the application logic from the presentation
and data layers.

What does this buy you? With the computations, business logic code, and other application logic layer tasks isolated
in one or more separate tiers, these tasks do not reside in the client, nor do they reside in the database. Put another
way, n-tier architectures typically deploy thin clients and DBMSs devoid of application code.

There are several paths to the road of three-tier architecture implementation. A popular implementation places the
application logic layer on one or more application servers. These servers provide many essential services to a three-
tier application, such as transaction management, resource pooling, and security.

Rather than allow a fat client or stored procedure–laden database to handle transactions (when to commit one or
more transactions or when to rollback, for example), a three-tier architecture implementation delegates this vitally
important function to the application server. Because business logic dictates what constitutes a transaction, support
services dealing with transaction management belong on the application server because the business logic is
implemented there.

As previously mentioned, a shortcoming of two-tier architectures is the consumption of resources, such as database
connections, even when such resources are not needed. A characteristic of two-tier architectures is that each client
needs a connection to the databases. Three- or n-tier architecture implementations allow a client to request data from
one or more databases by communicating with code in the application logic layer tier. This code can dynamically
connect to a database to fetch and return the requested data to the client. Also, this code can queue the data request
until a database connection becomes available, and then fetch and return the requested data to the client.

Application servers — both hardware and software — are more secure than desktop client PCs. The hardware that
houses the application server usually resides in a physically protected space. Rarely would you worry about stumbling
over a power cord for the hardware that houses an application server! On the software side, most server software is
built with security in mind unlike client desktop operating systems, such as Windows or Mac OS.

Do three-tier architectures solve the problems of two-tier architectures cited above? For the most part, they do. The
problems caused by fat clients simply do not apply to n-tier architectures. Thin clients are relatively inexpensive to
install and maintain. Application changes will not have much of an impact on thin clients; the application servers take
the brunt of the changes.

Pulling application logic out of the DBMS by not using stored procedures places less reliance on proprietary stored
procedure implementations. Three-tier implementations have a wider choice of DBMS products for use in the data

layer than two-tier, thin-client implementations.

In general, the isolation of functions in discrete layers, implemented in discrete tiers, means that each tier can be
tweaked by using best-of-breed products without much impact on the remaining tiers.

As previously mentioned, any technology worth its salt solves old problems while introducing new ones. Some
problems caused by implementing applications that follow the n-tier architecture are described below.

N-tier architectures are flexible. One result of this flexibility is that the three- or n-tier implementer has to cope with
more hardware and software components than its two-tier counterpart. The addition of the application server opens up
new system configuration possibilities. While selecting best-of-breed products to implement the system’s layers is a
good thing, the problems with having a multiple vendor environment, replete with finger pointing, persist. As you might
imagine, maintenance costs for a large n-tier system are high.

Imagine a large n-tier application, such as a banking/ATM system, with thousands of clients dispersed all over the
world securely reading and writing terabytes of data to multiple data stores. The activity between tiers necessary to
get the job done must be staggering! The overhead produced by transmitting and receiving all this data across
networks that connect hardware and software components that implement the multiple tiers can slow down things, to
be sure.

The problems I've mentioned can be solved for the most part by spending more money for additional hardware — not
exactly the favorite solution!

We’ve talked about the benefits of developing software in layers, or tiers. As we’ll see here and throughout
subsequent chapters, J2EE provides an architecture for constructing n-tier applications. Before we move on to discuss
J2EE particulars, we need to take a look at another essential technology instrumental to J2EE application
development that has proved its worth in theory and practice: object technology.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 2: J2EE Component APIs

This chapter provides an overview of the J2EE component APIs. As mentioned in Chapter 1, J2EE is a collection of
approximately 12 application programming interfaces (APIs) for developing enterprise applications. These APIs define
a complete set of services that software engineers use to develop software components. J2EE simplifies the work of
an application development team by providing a rich set of services that manage many application details without
programming.

J2EE API Classifications

The J2EE APIs provide numerous services to n-tier application developers. We may group the J2EE APIs into three
classifications corresponding to the category of service, or function, the APIs provide to the application development
team. The classifications are as follows:

● Application components: These include applets, which are Java programs that execute in the client browser;
servlets, which execute on the server; and JSP pages, which provide dynamic content to Web pages. J2EE also
enables clients to run applications that can access data (by using a database API) without going to a Web server.

● Resource managers: These enable customer components to connect to an external component. These external
components can be another piece of J2EE, such as JavaMail (for mail messaging) or an IBM mainframe
transaction processor (such as IMS or CICS).

● Database access: J2EE database access relies on the Java Database Connectivity API or JDBC, which enables
a customer container to issue industry-standard SQL. Relational database access in Java also relies heavily on
Java Transaction Services, or JTS, and the Java Transaction API.

The J2EE APIs work in concert to provide the services mentioned in the aforementioned classifications. For example,
a developer would use an application component API, such as JSP, to create a Web interface for an application that
accesses data from a relational database using JDBC. In the following section, we’ll take a look at J2EE APIs that fall
within the preceding classifications.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=112436264

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

J2EE APIs

Sun Microsystems provides a list of technologies that developers use in creating J2EE applications. Most of these
technologies have an associated API. A few, notably XML, are used in several J2EE APIs. Here is a list of the J2EE
APIs with a brief description:

● JavaServer Pages (JSP): Enables developers to dynamically generate Web pages with HTML, XML, and Java
code. JSP pages execute on the Web server.

● Java Servlets: Enables developers to dynamically create Web content as well as provide additional functionality to
a Web server. Java servlets execute on the Web server.

● Enterprise JavaBeans (EJB): Defines an architecture that enables developers to create reusable, server-side
components called enterprise beans.

● Java Messaging Services (JMS): A set of APIs that invoke asynchronous messaging services such as broadcast
and point-to-point (client-to-client) messages.

● Java Transaction API (JTA): Provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

● Java Transaction Services (JTS): Provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources.

● JavaMail: Enables a J2EE application to send and receive e-mail.

● Java Naming and Directory Interface (JNDI): Provides an interface for accessing name and directory services,
such as LDAP directory services and Domain Name Service (DNS).

● Java Database Connectivity (JDBC): Provides the J2EE application with a standard interface to databases
(usually relational databases).

● Remote Method Invocation (RMI/IIOP): Enables a Java application to invoke methods on different Java Virtual
Machines.

● Interface Definition Language (IDL): Enables J2EE-based applications to use CORBA objects.

In the following sections of this chapter, we explore the APIs in the preceding list in greater detail.

CORBA at a Glance

CORBA, the Common Object Request Broker Architecture, defines a standard for creating distributed object request
systems. The CORBA standard is the result of the collaboration of well over a hundred companies. The end result is a
standard that is language, platform, and vendor neutral.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=529979399

CORBA enables the enterprise to use existing software by providing features that developers can use to wrap existing
software as CORBA objects. With CORBA, applications written in several languages can happily coexist and
communicate with each other.

A great deal of Enterprise JavaBeans was derived from CORBA. Indeed, a cursory look at EJB could lead one to think
that EJB is a slimmed-down, Java-centric version of CORBA. EJB and CORBA can be used together, specifically
when an enterprise bean needs access to code written in another language, or code written in another language
needs access to an enterprise bean.

Because CORBA is the brainchild of numerous companies, no single company controls CORBA. A committee (the
Object Management Group, or OMG) must agree upon changes made to the CORBA specification, which has both
positive and negative consequences. On the plus side, you are fairly assured that you are not tied to a single vendor,
product, or architecture when using a CORBA implementation. On the minus side, you may have to wait years for the
OMG to make decisions on CORBA-related issues.

The OMG Interface Definition Language (IDL) defines the interface to objects in the CORBA universe. Although IDL is
a language, you, the application programmer, do not necessarily execute IDL code. Rather, you write IDL code and
use a code generator to transform IDL into a specific programming language. Java programmers use an IDL-to-Java
translator to generate a representation of their IDL as Java. If you’re curious, you can take a look at how IDL
translates to Java by examining ftp://www.omg.org/pub/docs/format.98-02-29.pdf.

JavaServer Pages

You’ve already read some of the skinny on JavaServer Pages (JSP). Some call JSP the front door to enterprise
applications, and with good reason. JSPs enable the enterprise application developer to separate presentation code
from business logic code on the server, thereby providing the application with a robust presentation layer.

Java Servlets

As with JSP, servlets enable developers to dynamically create Web content as well as provide additional functionality
to a Web server.

If a JSP gets translated into a servlet, why are JSPs important in the J2EE arena? JSP pages are easier to code and
maintain than servlets because servlets require the Java programmer to explicitly write out HTML statements to a
response object, whereas the Web page developer using JSP merely codes HTML.

cross-reference Please refer to Chapter 3, “A First Look at JavaServer Pages” and Chapter 8, “JSP
Pages and Servlets Revisited,” for more detailed discussions of servlets and their
relationship to JSP pages.

For example, assuming you is the current Web page viewer below, the following code is a JSP that generates an
HTML page that displays the string Yes, it’s concatenated with the current user.

Listing 2-1: Your first JSP page

<html>
<body>
<%@ page language="java" %>
<p> Yes, it’s,
<% String you = (String) session.getAttribute(‘you’);
out.println(you); %>
</p>
</body>

</html>

The code in Listing 2-1 is the functional equivalent to the servlet code shown in Listing 2-2.

Note Recall that JSP pages get translated into servlets. However, the servlet code shown in Listing 2-2 is not the
result of translating the JSP in Listing 2-1 into a servlet. The JSP translator generates a servlet that performs
the same function as the servlet shown in Listing 2-2 but with different Java code .

Listing 2-2: A servlet functionally equivalent to the JSP page in listing 2-1

import java.io.*;

import javax.servlet.*;
public class HeyItsYou extends HttpServlet {
 public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws ServletException, IOException {
 res.setContentType("text/html");
 HttpSession session = req.getSession(false) ;
 PrintWriter out = res.getWriter();
 out.println("<html>");
 out.println("<body>");
 out.println ("<p> Hey, it’sey, it’s,");
 out.print("String you = ");
 out.println((String) session.getAttribute(‘you’));
 out.println(user);
 out.println("</p>");
 out.println("</body>");
 out.println("</html>");
 }
}

The JSP page is smaller than the servlet, and most users agree that the JSP is easier to understand and maintain.
Many others also agree that writing out HTML (or XML, of course) by way of out.println() statements is a major
drag because a large page can have hundreds of out.println() statements.

Hence, the bottom line is that, while JSPs and servlets often accomplish the same task, you’ll still need servlets from
time to time to do what JSPs cannot.

Enterprise JavaBeans

Enterprise JavaBeans (EJB) define an architecture that enables developers to create reusable, server-side
components called enterprise beans. Enterprise beans typically reside on the application server or may have their own
dedicated server. Of course, you can read much more about EJB in the following chapters.

Please note that enterprise beans are not JavaBeans! One difference is that calling a JavaBean (from a servlet or JSP
page) involves intra-process communication, whereas calling an EJB (from a servlet or JSP page) involves inter-
process communication. You can read about other differences in the following chapters.

Java Messaging Services

Java Messaging Services (JMS) is an API that invokes asynchronous messaging services such as broadcast and
point-to-point (client-to-client) messages.

JMS is an API for using networked messaging services. A messaging system accepts messages from "producer"
clients and delivers them to "consumer" clients. Data sent in a message is often intended as a sort of event notification
(for example, an e-mail-handling process may need to be notified when a request is queued). Another common use
for messaging (thus, JMS) is for interfacing with remote legacy applications. It can be complex and sometimes risky to
use Remote Procedure Call (RPC) or a Java variant such as Remote Method Invocation (RMI) to directly invoke
remote applications while a messaging solution can provide an easier and more reliable interconnection. In short, why
write remote procedure calls when you have access to an API specifically designed for sending messages across a
network from one object to another?

JMS calls frequently rely on the Java Naming and Directory Interface (JNDI) to locate message recipients. JNDI is
discussed later in this chapter.

Java Transaction API

Java Transaction API (JTA) provides developers with a mechanism for handling the commit and the rollback of
transactions as well as ensuring the ACID (Atomicity, Consistency, Isolation, and Durability) properties of a
transaction.

JTA is used for managing distributed transactions (e.g., updates to multiple databases that must be handled in a
single transaction). JTA is a low-level API and associated coding is complex and error-prone — not in the spirit of
J2EE!

Fortunately, EJB containers or application servers generally provide support for distributed transactions using JTA.
For this reason, the EJB developer is able to gain the benefit of distributed transactions, leaving the complex
implementation details to the provider of the EJB container. Now, that’s more in the J2EE spirit!

Java Transaction Services

The Java Transaction Service (JTS) provides developers with a means of communicating with transaction monitors
and other transaction-oriented resources. Of course, JTS provides high-level support for JTA as well as other
transaction services.

The Java Transaction Service plays the role of an intermediary for all the constituent components of the EJB
architecture. In JTS terminology, the director is called the transaction manager. The participants in the transaction that
implement transaction-protected resources such as relational databases are called resource managers. When an
application begins a transaction, it creates a transaction object that represents the transaction. You would use JNDI
(Java Naming and Directory Interface) to access this transaction object. The application invokes the resource
managers to perform the work of the transaction. As the transaction progresses, the transaction manager keeps track
of each of the resource managers enlisted in the transaction. Often, JTS assists in managing the activities involved in
a two-phase commit.

JavaMail

The JavaMail API offers a standard Java extension API to talk to all your favorite standard Internet mail protocols. The
API provides a platform-independent and protocol-independent framework to build Java technology–based mail and
messaging applications. Put differently, JavaMail represents a standardized, extensible platform for communicating,
presenting, and manipulating all current and future Multipurpose Internet Mail Extension (MIME) types. The JavaMail
API is implemented as a Java platform standard extension.

Say goodbye to writing your own classes for talking to mail protocols! Say goodbye to learning yet another unique
third-party or in-house class library for dealing with e-mail or newsgroups! JavaMail was designed to communicate
with popular protocols and MIME types.

Java Naming and Directory Interface

Java Naming and Directory Interface (JNDI) provides an interface for accessing name and directory services, such as
LDAP directory services and Domain Name Service (DNS). JNDI enables Java programs to use name servers and
directory servers to look up objects or data by name. This important feature enables a client object to locate a remote
server object or data.

JNDI is a generic API that can work with any name or directory server. As such, JNDI was not designed to replace
existing technology, but instead it provides a common interface to existing naming services. For example, JNDI
provides methods to bind a name to an object, enabling that object to be located, regardless of its location on the
network.

Server providers have been implemented for many common protocols (e.g., NIS, LDAP, and NDS) and for CORBA
object registries. Of particular interest to users of J2EE, JNDI is used to locate Enterprise JavaBean (EJB)
components on the network.

Again, the thrust of J2EE technology is to provide enterprise application developers with much-needed services in the
distributed realm. It’s hard to think of a more valuable service than a naming service. JNDI provides the Java
application developer with this much-needed service.

Java Database Connectivity

Java Database Connectivity (JDBC) provides the J2EE application a standard interface to databases (usually
relational databases). In principle, JDBC serves the same purpose as Open Database Connectivity (ODBC). JDBC
provides a database-independent protocol for accessing relational databases from Java. JDBC supports Data
Manipulation Language (DML) statements such as insert, update, delete, and select. It also includes Data
Definition Language (DDL) statements such as Create Table, Alter Table, and so on.

Database vendors usually provide a JDBC driver that enables a Java program to access the vendor’s RDBMS
product. As of this writing, Sun has 154 JDBC drivers listed in its driver database

Note See http://industry.java.sun.com/products/jdbc/drivers for a listing of available drivers for
use with JDBC.

JDBC was included in core Java starting with version 1.1. With JDBC, the SQL is always dynamically generated at
runtime and sent to the database. Many have griped about the inefficiencies of applying dynamically created SQL
against databases. In response, another standard for Java database access has emerged and is called SQLJ. SQLJ
enables static SQL to be used and it requires less cumbersome syntax than JDBC. One SQLJ advantage over JDBC
is better code quality because SQL is checked at compile-time. Also, SQLJ usually shows better performance than
JDBC because access paths to the database are generated once and reused for subsequent executions of the static
SQL.

We speak of levels for JDBC drivers; the slowest are level 1 drivers and the quickest are level 4 drivers. In addition,
some drivers serve as a bridge between JDBC and ODBC, mostly as an easy way to access ODBC databases (MS-
something or other databases, usually).

A type 1 driver provides JDBC access using a JDBC-ODBC bridge. This bridge provides JDBC access to most ODBC
drivers. Disadvantages of this type of JDBC driver include additional performance overhead of the ODBC layer, and
the requirement to load client code on each client machine.

A type 2 driver is a partial Java driver that converts JDBC calls into the native client database API. As with the type 1
driver, this driver requires some client code to be loaded on each client machine.

A type 3 driver is a pure Java driver that translates JDBC calls into a database-independent network protocol. The
database-independent protocol is implemented using a middleware server. The middleware server translates the
database-independent protocol into the native database server protocol. Middleware vendors typically offer a type 3

http://industry.java.sun.com/products/jdbc/drivers

driver. Because the driver is written purely in Java, it requires no configuration on the client machine other than telling
the application the location of the driver.

A type 4 driver is a pure Java driver that uses a native protocol to convert JDBC calls into the database server network
protocol. Using this type of driver, the application can make direct calls from a Java client to the database. A type 4
driver, such as Informix JDBC Driver, is typically offered by the database vendor. Because the driver is written purely
in Java, it requires no configuration on the client machine other than telling the application where to find the driver.

As you might imagine, JDBC relies on a host of other J2EE API sets, such as JTA and JTS, to get the job done.

Remote Method Invocation and IIOP

Remote Method Invocation (RMI) enables a Java application to invoke methods on different Java Virtual Machines.
RMI is an important API used for supporting distributed computing and has been supported in core Java since version
1.1. RMI enables a Java client application to communicate with a Java server application by invoking methods on that
remote object. With RMI, the client gets a reference to a server object, and then it can invoke methods on that object
as if it were a local object within the same virtual machine.

For server objects developed in other languages, you must employ other techniques such as using Java IDL with
CORBA or RMI/IIOP (the Internet Inter-ORB Protocol) to access the server object.

Java Interface Definition Language

By using the Java Interface Definition Language (IDL), the Java programmer has access to CORBA objects. As
previously mentioned, the Java programmer uses the “IDL to Java” compiler, called idlj, to generate Java code to
interact with CORBA objects.

Listing 2-3 is an example of CORBA IDL taken from the CORBA Document Object Model specification.

Note The Document Object Model (DOM) is the recommendation of the Worldwide Web Consortium (W3C) for
expressing a document as a set of related nodes. A common use of DOM is to model XML documents. See
Appendix D for an overview on XML. Refer to http://www.w3c.org/DOM for the definitive specification of
the Document Object Model.

Listing 2-3: Example IDL code from the W3C DOM

interface Element : Node {
 readonly attribute DOMString tagName;
 DOMString getAttribute(in DOMString name);
 void setAttribute(in DOMString name,
 in DOMString value)
 raises(DOMException);
 void removeAttribute(in DOMString name)
 raises(DOMException);
 Attr getAttributeNode(in DOMString name);
 Attr setAttributeNode(in Attr newAttr)
 raises(DOMException);
 Attr removeAttributeNode(in Attr oldAttr)
 raises(DOMException);
 NodeList getElementsByTagName(in DOMString name);
 void normalize();
};

The idlj compiler produces Listing 2-4, the Java language binding for the IDL shown above.

http://www.w3c.org/DOM

Listing 2-4: Java code from the W3C DOM

public interface Element extends Node {
 public String getTagName();
 public String getAttribute(String name);
 public void setAttribute(String name,
 String value)
 throws DOMException;
 public void removeAttribute(String name)
 throws DOMException;
 public Attr getAttributeNode(String name);
 public Attr setAttributeNode(Attr newAttr)
 throws DOMException;
 public Attr removeAttributeNode(Attr oldAttr)
 throws DOMException;
 public NodeList getElementsByTagName(String name);
 public void normalize();
}

J2EE Connector

The J2EE Connector provides a Java solution to the problem of connectivity among the many application servers and
Enterprise Information Systems (EIS) already in existence. By using the J2EE Connector architecture, EIS vendors no
longer need to customize their product for each application server. Application server vendors who conform to the
J2EE Connector architecture do not need to add custom code whenever they want to add connectivity to a new EIS.

Before the J2EE Connector architecture was defined, no specification for the Java platform addressed the problem of
providing a standard architecture for integrating heterogeneous EISs. Most EIS vendors and application server
vendors use nonstandard vendor-specific architectures to provide connectivity between application servers and
enterprise information systems.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 3: A First Look at JavaServer Pages

This chapter provides you with a bird's eye view of JavaServer Pages (JSP). You can read how to execute JSP and
how JSP is intimately related to Java servlets. You can also see a couple of simple JSPs and read about what
happens during the execution of these JSPs. This chapter continues with a brief discussion on the advantages and
disadvantages of using JSP over several competing technologies and is followed by a recap of the material presented.

JavaServer Pages

JavaServer Pages (JSP) is one solution to providing dynamic Web content. The days of displaying the same old
HTML page to all customers, or to the same customer, who has visited the site several times, is rapidly becoming a
thing of the past. Today, Web pages need to display different content customized according to user input or relevant
events.

Customers want and expect some sort of personalization from sites. A return customer does not want to be forced to
reenter the same information when revisiting the site. Also, a Web page displaying data relevant to your inputs may
need to differ from pages displayed for other users. Imagine an online banking site where you enter your password
and see not only information on your accounts, but information for other bank customers as well!

Sites that change based on relevant events also provide a good example of dynamic content. Sites with stock market
quotes or weather information need to be refreshed at regular intervals to be useful. News sites must also refresh
content to stay on top of what’s happening in the world. Stores that have online catalogs that often change inventory
and prices should not contain static content. Today’s Internet-related technologies, such as JavaServer Pages, give
the Web application developer the means to create pages with dynamic content.

JSP combines static text with special JSP tags. The static text represents invariant parts of the Web page, typically
but not necessarily HTML.

Note JSP pages mostly use HTML and XML for the static, template portion. Rather than constantly writing “HTML
or XML,” I’ve taken the liberty of writing “HTML” in this chapter and trusting you to know if “HTML or XML” or
“HTML” applies.

The JSP tags represent parts of the page that can change depending on the factors the page designer deems
appropriate. The basic mechanics are that the static text and the JSP tags are eventually sent to a Java-enabled
server that generates HTML from both the static part and the JSP tag. Once done, the server sends the generated
HTML back to the browser for display and continued user interaction.

This approach of mixing static text with tags is not unique to JSP. Indeed, several competing technologies employ this
approach. However, JSP enables you to leverage the full power of the Java programming language to make your
pages very flexible. The pros and cons of JSP are discussed later in this chapter, in the section “JSP Versus the
Competition.”

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=867331246

Creating and Using JSP Pages

A special IDE is not required to create JSP pages. You don't develop JSP pages as you would a Java application or
servlet. You don't have to wrap JSP pages in packages or deal with system settings (such as CLASSPATH). You don't
even have to (but you could) compile JSP pages! All you need is a good Web page editor that enables you to easily
enter the various JSP tags.

A site development team using JSP pages can have part of the team develop the static HTML portion, while others
develop the dynamic portion. The HTML developers need not know how to code JSP pages, or know anything about
programming in Java. But, as you might imagine, the JSP developer needs to be adept in coding HTML. When you
recall that the end result of a JSP is a Web page containing generated HTML, how could any self-respecting JSP
developer not be HTML-fluent?

It’s simple to use a JSP page. The JSP page user must have access to a server that understands JSP tags, or a JSP-
enabled server. To use a JSP page with such a server, you enter the name of the page as you would any Web page
in the location area of your browser. A file representing a JSP page has a .jsp extension, which a JSP-enabled
server recognizes as a JSP page and, in turn, processes the special tags as JSP tags.

Note The term “JSP page,” although redundant, enjoys widespread use among the JSP development community.
Hence, the term is used throughout this book.

For Web pages that submit a JSP page to the server with a GET or POST service, the customer may never realize that
JSP pages are in play on the site. The ACTION attribute of an HTML form may specify that the action upon submitting
the form is to send the name of a JSP page with one or more parameters to the server. Again, the JSP-enabled server
recognizes the .jsp extension and takes appropriate action.

The Relationship Between JSP Pages and Java Servlets

The simple mechanics of creating and using JSP pages masks the complexity of the under-the-covers activity. JSP
pages actually are compiled into Java servlets. All those environment issues dealing with compiling and executing
servlets come into play. Whereas you don't compile JSPs, your Java-enabled server performs the compilation from
JSP page into a Java servlet for you. Although you, the JSP developer, need not care about CLASSPATH and other
settings, your server needs to know these settings. Your server needs access to the Java compiler and various
classes required for servlet and JSP compilation.

The first time you request a JSP page, the server translates the page into a Java class. Recall from Chapter 1 the
concept of J2EE containers. The JSP-enabled server has a JSP container that provides the environment necessary
for this translation. Sometimes, the JSP container is called the JSP engine; both terms are used interchangeably in
this book.

The server compiles the class generated by the JSP engine into a servlet. This servlet contains Java println
statements that write the static text to the output stream, and Java code that implements the functionality of your JSP
tags. Depending on the amount of Java code generated by the JSP and the speed of the server, you may notice a
slight delay during the JSP-to-servlet compilation. However, subsequent requests of the JSP page do not cause a
page retranslation and recompilation. The JSP request accesses the already compiled servlet in memory.

As an aside, some servers enable you to establish file aliases. You can avoid the delay caused by the first-time JSP
translation and compilation by requesting your JSP page (causing translation and servlet generation), followed by
creating an alias of your JSP page to the generated servlet. Now, when your customer requests your JSP page, the
server references the previously generated servlet, which is already compiled and in memory.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Versus the Competition

As previously mentioned, JSP is not the only technology available to the Web application developer that generates
dynamic Web output. As with any technology, JSP has its advantages and disadvantages. This section describes
what JSPs can offer that competing technologies cannot.

Separating Logic from Presentation

As you read previously, coding business logic apart from presentation is a good design feature. Do you recall reading
about multitier architectures from Chapter 1? When properly separated, the code that implements the business logic
can be changed without affecting the code that implements the presentation, and vice-versa. JavaServer Pages give
the Web developer the ability to cleanly separate the logic from look-and-feel.

JSP enables Web developers to encapsulate the business logic in custom JSP tags (discussed in Chapter 7, “JSP
Tag Extensions”) and Java software components, such as JavaBeans and Enterprise JavaBeans. The code,
implementing the logic, is tied together with JSP scriptlets, expressions, and other JSP tags, which haven’t been
discussed yet, and is sent to the Web server for execution.

This separation enables developers to practice their particular specialty; the skilled HTML author has no need to learn
JSP and the JSP author doesn’t need to be an HTML maven. The HTML author can concentrate on coding HTML
(presentation) tags and the JSP developer can concentrate on coding JSP (logic) tags.

The Strength of Java

Because JSP pages eventually are translated and compiled into Java servlets, you can use JSP pages on any server
that supports Java. You are not tied to any particular vendor or platform when you go the JSP route.

Of course, you have full command and control of the Java programming language when you use JSP. JSP make
extensive use of Java Beans and can communicate with other J2EE technologies, such as JDBC and, of course,
Enterprise JavaBeans.

JSP Versus Java Servlets

Before the advent of JSP, the most-used Java technology that could generate dynamic Web page content was Java
servlets. Because JSPs eventually are compiled into Java servlets, you can do as much with JSPs as you can do with
Java servlets. However, coding JSPs is easier than coding Java servlets. With JSPs, you place static text by coding
HTML tags as opposed to Java servlets, in which you place static text by coding a plentitude of println statements.
With JSPs, you change static text by changing HTML; and with Java servlets, you change static text by modifying a
Java servlet (don’t forget the compile/debug cycle!).

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=776999381

JSP Versus Active Server Pages

Active Server Pages (ASP) is the Microsoft solution for providing dynamic Web content. Actually, ASP looks very
similar to JSP; both use custom tags to implement business logic and text (HTML) for invariant Web page parts.
However, the devil is in the details, as described in the following:

● ASP uses VBScript or JScript, a Microsoft flavor of JavaScript, as its scripting language, whereas JSP uses Java,
a more powerful language than VBScript or JScript.

● The ASP developer typically uses a Microsoft Web server platform or requires a third-party product that permits
ASP execution on non-Microsoft platforms. The JSP developer has a wide variety of Web server platforms
available for use.

Note These third parties must port Microsoft software components, such as ActiveX, to different platforms in order
for ASP to be used on these platforms.

● An ASP is interpreted every time the page is invoked, whereas a JSP is interpreted only the first time the page is
invoked (or when the page is changed).

However, Microsoft has overcome the previously mentioned limitations of ASP with its release of ASP.NET. ASP.NET,
formerly ASP+, promises to be a serious contender against JSP. As of this writing, you may download the ASP.NET
Beta-2 release from http://www.asp.net/.

JSPs Versus Client-Side Scripting

Client-side scripting with JavaScript or VBScript is certainly handy and useful, but it does present several problems,
including the following:

● You must count on the customer’s browser to have scripting enabled, which, of course, you can’t.

● Different customers may use different browsers. And coding client-side scripts that work on different browsers can
be a headache.

● Scripting languages used on the client side cannot match the strength and versatility of Java.

● Client-side scripting languages have very limited access to server-side resources, such as databases. JavaServer
pages have access to all server-side resources within the well-defined architecture of J2EE.

● You have the usual problems of maintaining software on the client that caused your organization to thin the client
in the first place.

In short, the advantages of using JSP over competing technologies are as follows:

● JSP enables a clean separation of business logic from presentation.

● JSP, by using Java as the scripting language, is not limited to a specific vendor’s platform.

● JSP, as an integral part of the J2EE architecture, has full access to server-side resources. Because JSP pages
execute on the server, you need not require the client to use a particular browser or have a fixed configuration

Disadvantages of Using JSP

What technology doesn’t have problems? Certainly, JSP technology has room for improvement. That said, what one
Web application developer views as a weakness, another may view as a strength (remember “bug” versus
“features”?). Here is a (short) list of real or perceived shortcomings of JavaServer Pages:

http://www.asp.net/

● JSP implementations typically issue poor diagnostics. Because JSP pages are translated, and then compiled into
Java servlets, errors that creep in your pages are rarely seen as errors arising from the coding of JSP pages.
Instead, such errors are seen as either Java servlet errors or HTML errors. You could look at this as an example of
a perceived strength of JSP — that of not needing to compile them — as opposed to a weakness. For example, a
JSP developer coding a scriptlet where a JSP declaration is called for would have to interpret a Java compile error.
The JSP developer would need access to the generated source to properly diagnose the error. Of course,
generated code is rarely a thing of beauty, and often, not easily understood.

● The JSP developer needs to know Java. Again, one developer’s asset is another’s liability. Whereas Java is
certainly more full-featured and flexible than other page scripting languages, no one can argue that the learning
curve for Java is far steeper than other scripting languages. If you already know Java (you do, right?), this is not an
issue. However, if a corporation is short on Java mavens but wants to use a dynamic Web technology, JSP may
not be the route to go. (Another way to look at the need to know Java is that if you had to train a rookie in using
either JSP or, say, ASP, and you had two days to produce half a dozen pages, which technology would you opt
for?)

● JSP pages require about double the disk space to hold the page. Because JSP pages are translated into class
files, the server has to store the resultant class files with the JSP pages.

● JSP pages must be compiled on the server when first accessed. This initial compilation produces a noticeable
delay when accessing the JSP page for the first time. The developer may compile JSP pages and place them on
the server in compiled form (as one or more class files) to speed up the initial page access. The JSP developer
may need to bring down the server to make the changed classes corresponding to the changed JSP page.

All in all, it’s a pretty short list.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 7: JSP Tag Extensions

Overview

At this point, you’ve been introduced to JSPs containing Java code in the form of scriptlets and expressions, custom
JSP constructs such as directives, and JSP action tags, which include other JSP pages or which enable your JSPs to
access JavaBeans. It certainly looks as if JSPs have covered all the bases for enabling JSP authors to generate
dynamic Web content.

You may recall that one goal of using JSPs is to clearly delineate presentation details from business logic. As you
write more scriptlet code in your JSPs, the delineation begins to blur. If you’re not careful, your JSPs may contain
more business logic code than presentation details. This needs to be avoided for two reasons. First, JSP authors may
not be Java experts and hence won't be able to maintain the Java code contained in these constructs. Second, the
coupling of business code and presentation code makes it harder to change either independently.

JSP tag extensions allow you to add functionality to JSP pages without having to add many Java scriptlets to your
pages. In this chapter you will learn what JSP tag extensions are, what you can do with them, and how to create them.

Top
of
current
section

Previous
Section

Next
Section

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=354237149

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you examined the code for a simple JavaBean and saw how this bean is used in some JSP pages. In
addition, you also explored several JSP statements that you can use to transfer data between beans and JSP pages,
and you learned that you can create and share beans among several JSPs.

By now, you have a good understanding of a powerful feature of JavaServer Pages — the feature of using software
components within your pages.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=919848418

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Bean Usage Odds and Ends

A few points about using beans in JSP pages haven’t been discussed yet. You probably surmised that you can use
more than one bean instance from the same or different bean classes in your JSPs. All you need to do is code an
appropriate jsp:useBean action for each bean instance.

When the JSP engine encounters a jsp:useBean action, the JSP engine searches for a bean with the same id and
scope as the bean cited in the jsp:useBean action. If such a bean is not found, the JSP engine generates code to
create the bean. If such a bean is found, the JSP engine makes that bean available to the page containing the
jsp:useBean action. Beans may have the same id but be instantiated from different classes. If so, the JSP engine
generates code to do a cast. If the cast is illegal, the generated servlet throws a ClassCastException.

As a result of this bean usage, multiple visits to the same page containing a jsp:useBean action during the same
session will not create multiple beans. Another consequence of this use involves conditionally executing JSP
commands, as explained in the following.

The examples of jsp:useBean you’ve seen use the empty tag XML syntax form. However, you can code the
jsp:useBean construct by using separate opening and closing tags as follows:

<jsp:useBean id=someBeanName… >
 Static HTML, JSP commands, whatever…
</jsp:useBean>

The virtue of using separate opening and closing tags is that the code sandwiched between the tags is executed only
if the bean instance does not exist. If you want to share a bean among several pages, you can place the same code in
every page, knowing that the code gets executed once, depending on where the bean gets created. Remember, JSP
knows the bean by the values of the jsp:useBean attributes id and class. Different beans (objects) may be the
"same" bean to JSP.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=643007470

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JavaBeans in Multiple JSPs

The syntax of the jsp:useBean action has a couple of additional parameters, as follows, which have not been
mentioned:
<jsp:useBean id="beanInstanceName"
 class="className"
 scope="beanScope"
 type="classType" />

The scope attribute is the focus of our discussion. The value of the scope attribute governs the bean’s visibility.
Different values for the scope attribute place instantiated beans within different contexts. Refer to Table 4-3 in
Chapter 4 for a list of scope attribute values and the relevant contexts.

The default scope attribute value is page. Page scope means that bean instances are accessible on the existing JSP,
or the JSP containing the jsp:useBean action. Stated differently, other JSPs within your application cannot use
instantiated bean objects without containing a jsp:useBean action.

Trying with page Scope

To bring the point home, here’s the JSP page calculate.jsp with a few changes. The following lines of code are
the substantial change:
<jsp:useBean id="CalcBean" class="cbean.CalcBean" scope="page"/>

Because scope="page" is the default, this code really doesn’t change the JSP’s behavior. The next line invokes
another JSP, coded remarkably similar to calculate.jsp.

Click Here for Next JSP Page

Figure 6-3 shows calcpage.html, the page that calls calculate.jsp, and the revised calculate.jsp:

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=810933965

Figure 6-3: The calcpage.html and the revised calculate.jsp that contain a link to calculate2.jsp

Keep in mind that calculate.jsp has the jsp:useBean action coded such that bean instances are known only
within the page. Listing 6-4 contains the code for calculate2.jsp.

Listing 6-4: Accessing CalcBean in a second JSP page

<%-- Tell JSP that this page renders HTML --%>
<%@ page contentType="text/html" %>
<%-- Tell JSP to map CalcBean properties to like-named variables --%>
<jsp:setProperty name="CalcBean" property="*" />
<html>
<head>
<title>Calculate 2 Page</title>
</head>
<body bgcolor="#dddddd">
Here's what was entered from <i>calcpage.html</i>: <p>
<P>The next 4 lines show using the jsp:getProperty action to fetch bean properties
<%-- jsp:getProperty writes the value of the bean property where coded --%>
<p>Operand1 <jsp:getProperty name="CalcBean" property="operand1" />
<p>Operand2 <jsp:getProperty name="CalcBean" property="operand2" />
<p>Operation <jsp:getProperty name="CalcBean" property="operation" />
<p>Result <jsp:getProperty name="CalcBean" property="result" />
</body>
</html>

The calculate2.jsp file refers to the bean instance CalcBean. However, calculate2.jsp does not contain a
jsp:useBean action. Because the instance of bean CalcBean created in calculate.jsp has page scope, you
would expect problems to occur when calculate2.jsp attempts to access properties of the bean. Figure 6-4
illustrates what Tomcat indicates when you click the link and tell the JSP translator to process calculate2.jsp.

Figure 6-4: Tomcat tells you off.

You do not need the entire stack trace; the essential message is (as usual) on the first line of the trace.

Trying with application Scope

We saw in the previous section, "Trying with page Scope", that if we set the value of scope to page in
calculate.jsp, CalcBean is no longer accessible when we attempt to access it in calculate2.jsp. Let's change
the value of scope from page to application as follows:

<jsp:useBean id="CalcBean" class="cbean.CalcBean" scope="application"/>

Using the application scope places the instantiated beans in the Servlet Context, which makes the bean
accessible to any servlet running on the server. Figure 6-5 shows what you see after shutting down Tomcat, restarting
Tomcat, displaying calcpage.html, entering some numbers, and clicking "Calculate."

Figure 6-5: Running the calculator again with application scope

No news here. You may recall that the JSP page calculate.jsp has its jsp:useBean action coded to enable
application access to bean instances in general and the bean instance named in the useBean action in particular.
When you click the link for the next (calculate2.jsp) JSP page, Figure 6-6 is what you see.

Figure 6-6: Accessing a bean instance from a page that didn’t create the instance

Refresh your memory by glancing at Listing 6-4 to note that calculate2.jsp does not contain a jsp:useBean
action.

Other scope Attribute Values

The scope attribute of the jsp:useBean action may also have a value of session or request. When you code
scope="session", you are telling the JSP engine to store your bean instance in the session object. You can turn
off sessions with a JSP page directive containing a session attribute with the value of "false." A useBean scope
value of session is incompatible with a page directive session value of false.

The remaining scope value is request. You’ve seen input data access with the request implicit object. Coding a
bean with scope of request stores the bean instance within this implicit object.

Coding a bean scope of request accomplishes little. You get the same access to the request object with the
default scope of page.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Coding JSP Standard Actions

Actions cause something to happen. In JSP, you have two categories of actions at your disposal: custom actions and standard actions.
You implement custom actions with tag libraries. You’ll have to wait until you get to Chapter 7 for the nitty-gritty on tag libraries. You don’t
implement standard actions; these actions are instead provided to you, the JSP developer, free of charge. Please note that a server
provider may provide vendor-specific actions above and beyond the standard set.

Table 4-2 shows the JSP standard actions, an example of the syntax, and a brief description of each action.

Table 4-2: Short Descriptions of JSP Standard Actions

Action Name Syntax Example Short
Description

jsp:param

and

jsp:params

<jsp:param name=@@dpparamName@@dp
value=@@dpparamValue@@dp />

This action
works with
other standard
action tags
(include,
forward, and
plugin tags)
to provide a
value to a
named
parameter.

jsp:forward <jsp:forward page=@@dpsomeURL@@dp>

….

</jsp:forward>

This action
provides a
convenient
mechanism to
forward a
request to
another JSP or
servlet.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=755332646

jsp:getProperty <jsp:getProperty

 name=@@dpbeanInstanceName@@dp

 property=@@dppropertyName@@dp />

The JSP
author uses
the
getProperty
action to
access the
properties of a
bean coded in
a useBean
action. The
getProperty
action is the
compliment to
the
setProperty
action.

jsp:include <jsp:include page=@@dppageName@@dp flush=@@dptrue@@dp /> The JSP
author codes
the include
action to direct
the engine to
include a
resource at
request time.
Do not confuse
this action with
the JSP
include
directive.

jsp:plugin <jsp:plugin type=@@dpapplet@@dp

 code=@@dpjavaCode@@dp

 codebase=@@dpjavaClasses@@dp

 align=@@dpalignment@@dp

 archive=@@dpjarFiles@@dp

 height=@@dppixelsHigh@@dp

 width=@@dppixelsWide@@dp

 jreversion=@@dp1.2@@dp

 name=@@dpcomponentName@@dp

 title=@@dpcomponentTitle@@dp

 vspace=@@dppaddingAround@@dp

 nspluginurl=@@dpwhereNSPluginsAre@@dp

 iepluginurl=@@dpwhereIEPluginsAre@@dp

Show This When Applet or Bean Fails to Load

<jsp:fallback>

</jsp:fallback>

</jsp:plugin>

The JSP
author codes
the plugin
action when he
or she needs
to generate
client-specific
HTML OBJECT
or EMBED tags
that ensure
that a
particular
object is
available and
to invoke that
bean or object.
Most of the
attributes are
identical in
function and
coding to the
HTML
attributes for
the OBJECT
tag.

jsp:setProperty <jsp:setProperty name=@@dpbeanName@@dp

 property=@@dppropertyName@@dp

 param=@@dpparamName@@dp />

<jsp:setProperty name=@@dpbeanName@@dp

 property=@@dppropertyName@@dp

 value=@@dpscriptletOrStringValue@@dp
/>

The JSP
author uses
the
setProperty
action with the
useBean
action to set
the values of
properties in
the beans
named in the
name attribute.
The bean
properties are
coded in the
property
attribute; the
value can be a
string or
scriptlet coded
in the value
attribute.

jsp:useBean <jsp:useBean id=@@dpbeanInstanceName@@dp

 scope=@@dppage@@dp

 class=@@dpclassName@@dp

 type=@@dpclassType@@dp />

This action
allows the JSP
author to use
objects
instantiated
from a
JavaBean. The
scope
attribute may
be page,
request,
session, or
application.
The useBean
action works
with other
actions
described
earlier.

The standard action commands are coded as tags following XML syntax rules. (See Appendix D for information on XML syntax.) In the
sections that follow, you learn more about the set of standard actions available to the JSP developer on any JSP Web server.

The param and params Action

The param action provides other tags with parameter data. Use param to get data to the forward, plugin, and include actions. The
syntax for the param action is as follows:

<jsp:param name="parameterName" value="parameterValue" />

If you have a need to create more than one parameter name-value pair for use in another action, you need to enclose the multiple param
actions inside a params action, as follows:

<jsp:params>
<jsp:param name="parameterName1" value="parameterValue1" />
<jsp:param name="parameterName2" value="parameterValue2" />
<jsp:param name="parameterName3" value="parameterValue3" />
</jsp:params>

The forward Action

The forward action causes processing to immediately redirect to the indicated page. For example, when processing hits the following
statement:
<jsp:forward page="thenextpage.html" />

thenextpage.html is immediately displayed.

Before displaying the forwarded page, the output stream buffer (if one exists) will be cleared. If you want to make a name-value parameter
known to the forwarded page, you use the param action as follows:

<jsp:forward page="thenextpage.html" >
 <jsp:param name="paramName" value="paramValue" />
</jsp:forward>

Using the forward action enables you to direct categories of activities to specific pages.

The getProperty and setProperty Actions

The getProperty action accesses one or more properties of a JavaBean used by the JSP page. The getProperty action accesses
the value of property from a JavaBean, converts the value to a string, and writes the string representation to output.

The getProperty action has the following syntax:

<jsp:getProperty name="beanInstanceName"
 property="propertyName />

As you might imagine, setProperty is how the bean gets the property value set in the first place. The syntax for the setProperty
action has several forms, as shown here:
<jsp:setProperty name="beanInstanceName" property="*" />

<jsp:setProperty name=" beanInstanceName"
 property="propertyName" />

<jsp:setProperty name=" beanInstanceName"
 property="propertyName"
 param="parameterName" />

<jsp:setProperty name=" beanInstanceName"
 property="propertyName"
 value="propertyValue" />

The attribute propertyName is the name of the bean property you want to set.

The attribute propertyValue is a string or JSP expression that, of course, represents the value of the property you wish to set.

The attribute paramName is the value of a parameter that replaces the existing value of the property coded in the setProperty action.

You cannot code both param and value in the same setProperty action.

The include Action

The include action enables you to include content in your JSP page. Before you think that the include action is the same thing as the
<%@ include %> directive, recall that the include directive brings in the external content at translation time whereas the include
action is processed at runtime (or page request time).

The syntax of the include action is straightforward, as shown here:

<jsp:include page="relativeURL" flush="true" />

When considering the include action, it’s important to note that the value of the page attribute can be a JSP expression or some other
dynamically generated expression.

The flush attribute must be coded as true.

You can code param tags with the include action, as shown here:

<jsp:include page="included.html" flush="true" >
 <jsp:param name="paramName" value="paramValue" />
</jsp:include>

The plugin and fallback Actions

You use the plugin action to generate HTML tags for embedding Java applets in the generated output page to ensure that the browser
contains an appropriate Java runtime, and that it executes the applet properly.

All but 4 of the 13 attributes of the plugin action have the same meaning as the HTML counterparts. The parameters that have different
meaning are:

● type: Identifies the type of the component; a bean or an applet

● jreversion: Java runtime required to execute the component

● nspluginurl: Location of the Netscape JRE download, as a URL

● iepluginurl: Location of the Internet Explorer JRE download, as a URL

The plugin action takes an optional param action as well.

You may code a fallback action to provide information when the plugin fails to load. Basically, the fallback action provides
alternate text that performs the same function as the ALT attribute.

The useBean Action

The useBean action is used to make a JavaBean known to your JSP. You read more about bean use with your JSPs in Chapter 6, "JSP,
JavaBeans, and JDBC." In this section, you get exposure to the syntax for the useBean action.

There are several forms for coding the useBean action, as shown here:

<jsp:useBean id="beanInstanceName" scope="contextScope"
 class="className" />

<jsp:useBean id="beanInstanceName" scope="contextScope"
 class="className" type="typeName" />

<jsp:useBean id="beanInstanceName" scope="contextScope"
 beanName="beanName" type="typeName" />

<jsp:useBean id="beanInstanceName" scope="contextScope"
 type="typeName" />

The attributes coded for useBean have the following meaning:

● id: The name of the bean object instance.

● scope: A context in which the bean reference is known. The different scope contexts are represented by implicit objects, covered
more fully in the next section. Think of the bean object as having a different life cycle for different scope values. Table 4-3 lists the
values and meaning of the scope attribute of the useBean action.

● class: The fully qualified class name of the bean being associated with the JSP.

● beanName: The same name you would use to instantiate the bean, or the name you would supply to the instantiate method of
java.beans.Beans.

● type: Defaults to the value of the class attribute but can be a valid superclass or interface implemented by the bean class.

Table 4-3: Values of the Scope Attribute Used in the JSP useBean Action
Scope Description

page The bean object dies after the servlet completes its service() invocation.

request The bean lives for as long as the HTTP request lives, even if the HTTP request object is passed
among different JSP pages.

session The bean object lives as long as the session exists.

application The bean object lives for the duration of the application’s execution.

As you might imagine, the useBean action enables you to load JavaBeans for use in your JSP pages, thereby opening your JSP pages to
the full power of the Java programming language. Also, you can take advantage of using software components, something that you
cannot easily do with other products.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix D: XML Overview

Throughout this book, you’ve read about JSP elements and EJB files coded in XML syntax. Although the examples of
such elements and files presented in the book convey the essential flavor of XML syntax, a more thorough
presentation is called for. Thus, the purpose of this appendix is to present the essentials of XML syntax.

This appendix provides an overview of XML, or Extensible Markup Language, a universal document format for
structuring data for presentation on the Web. The appendix starts with an overview of XML features that overcome
existing problems with HTML. Next, an extremely simple XML document is provided along with a discussion of XML
document components. The important XML terms, well-formed documents and valid documents, are covered, as are
XML Document Type Definitions (DTDs). Finally, a brief description of related technologies wraps up this appendix.

XML Features

XML does not have a fixed set of markup tags, overcoming HTML’s greatest deficiency, according to some experts.
XML is not a markup language per se; XML is a meta-markup language that enables document authors to define their
own tags. As a result, authors can create markup languages peculiar to their particular industries, and XML document
authors can use this markup language to encode data in industry-specific terminology.

XML requires document authors to follow certain rules in creating what is known as well-formed XML documents. If
these rules are not followed, the XML document is useless. This XML specification prohibits XML tools from trying to
fix problems with the document. The intent is to stop the browser madness prevalent in HTML, in which different
browsers attempt to “fix” broken HTML and, of course, parse and display this HTML differently. For example, an HTML
document author can write HTML with missing end tags, which the major browsers parse and display. Such
foolishness cannot fly with XML; if an XML document is broken, the document cannot be rendered. Therefore, an XML
author can confidently create XML documents, knowing that these documents are parsed identically with different
pieces of compliant software.

XML stresses the separation of data content from data presentation. Over time, HTML has blurred the distinction
between organizing document content and displaying the content. A typical HTML document has tags that describe
relationships among document content (such as tags) and tags that govern the display of this content (<U>,
, and so on). XML describes document content structure and semantic relationships, not the content formatting.
The XML author uses a related style sheet technology, such as CSS (Cascading Style Sheets) or XSL (Extensible
Style Language), to govern the display of the document. One upshot of this clean separation of structure and display
is that the same XML document can be displayed in various ways by using different style sheets, or the same style
sheet can govern the display of similarly structured XML documents.

The nonproprietary nature of XML, combined with its ease of writing, makes XML an ideal format for data exchange
among applications.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=608650343

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

There are many JSP engines on the market today, and you may or may not use Tomcat in your JSP projects. Since
Tomcat is the reference JSP implementation endorsed by Sun Microsystems, it will support new JSP specifications
more quickly than most other JSP engines. For this reason you will want to become familiar with Tomcat whether you
use it regularly or not because it will be a valuable tool for both regular use and for examining new JSP releases now
and in the future.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=149257240

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix C: Configuring the Tomcat Web Server

This appendix discusses Tomcat and provides advice on how to get the Tomcat release 3.2 Web server. Tomcat is
the Reference Implementation for the Java Servlet 2.2 and JavaServer Pages 1.1 Technologies. In other words,
Tomcat is a Web server that implements the most current release of JSP and Java Servlets.

The Tomcat Web Server

Tomcat is a Web server that contains a JSP container. Tomcat is quick and easy to install and to use, and offers the
following advantages:

● Tomcat is free.

● You can download the source code for Tomcat as well as the binaries. If you really want to learn about server
internals, the Tomcat source is a great resource.

● Mailing lists about Tomcat are available to one and all. These lists are devoted to disseminating information,
including posted questions and answers.

Tomcat is designed to work as both a standalone Web server or in conjunction with application servers, such as
Apache or JBoss. For your purposes here, it is more interesting to run Tomcat as a standalone Web server because it
offers a straightforward way to learn about JSPs. However, in the real world, if you opt to use Tomcat, you may want
to integrate Tomcat with another Web application server.

Tomcat was, and currently is, developed by a community of dedicated individuals under the umbrella of the Jakarta
Project. You are encouraged to learn about the Jakarta Project by taking a look at
http://jakarta.apache.org/index.html. From this site, you can get to the page where you can download the
Tomcat Web server.

As of this writing, the latest release of Tomcat is release 3.2.

Note By the time you read this book, it is very likely that the Jakarta folk will have a more recent version of Tomcat
available, probably release 4.0. Be advised that the description of Tomcat given here applies to release 3.2.
Several details and particulars may change between successive releases.

Downloading Tomcat Release 3.2

You can get to the download page for Tomcat from the Jakarta URL or go to
http://jakarta.apache.org/site/binindex.html. (If you prefer, you can get to the source code download
from here as well.)

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=817439471
http://jakarta.apache.org/index.html
http://jakarta.apache.org/site/binindex.html

The Tomcat download site classifies downloads into release builds, milestone builds, and nightly builds. The release
builds are the stable versions of the Tomcat product. Once you get to the download site, scroll to the release builds
section and select “Tomcat 3.2.1” (or whatever is the most current release being offered). Figure C-1 shows the
screen containing the download files.

Figure C-1: Tomcat release 3.2 download page

From this page you can select a Tomcat version for Windows 9x, Windows NT, or Windows 2000, or for various UNIX
flavors.

Assuming you are using some version of Windows, select jakarta-tomcat-3.2.1.zip to commence the
download. After a successful download, you should have a zip file called jakarta-tomcat-3.2.1.zip on your
hard drive.

Installing Tomcat

Installing Tomcat is a straightforward process. Just open the zip file and extract all contained files in the archive.

Note You need a copy of PKZIP to extract the contained files. You can get a copy at
http://www.pkware.com/. This site has compression/extraction tools for several operating systems.

You may want to create a directory at your disk root; for example, use d:\tomcat32 to hold all the Tomcat files. After
extracting the files, your directory structure should resemble that shown in Figure C-2.

http://www.pkware.com/

Figure C-2: Tomcat directory structure

As you can see, several directories shown in the figure have subdirectories. Not all the subdirectories within Tomcat
can be shown here because of space limitations. Throughout this appendix we will examine different directories in the
Tomcat installation that are relevant to the Tomcat configuration and JSP processing.

Assuming you see something similar to Figure C-2 on your screen, you are almost ready to check whether your
Tomcat installation was successful. However, first you need to set up a few environment variables, as described in the
following section.

Setting Your Tomcat Environment Variables

Tomcat uses a script located in the bin directory called, appropriately enough, startup.bat, which requires several
environment variables to be set on your system for proper execution. Table C-1 lists these variables and their
purpose.

Table C-1: Tomcat Environment Variables
Variable Name Purpose

JAVA_HOME Points to the root directory of your Java installation.

TOMCAT_HOME Points to the root directory of your Tomcat
installation.

If you are running Windows 9x, you can assign these environment variables in your autoexec.bat file as follows:

set JAVA_HOME=d:\jdk1.3
set TOMCAT_HOME=d:\tomcat32

After you code the assignments, you need to restart your machine or execute your autoexec.bat file to make the
variable assignments.

If you are running Windows 2000 or Windows NT, you can use the System Properties control panel to set these
environment variables. From your Start button, select Settings @@> Control Panel @@> System @@> Environment.
Figure C-3 shows the Environment control panel.

Figure C-3: The Windows NT Environment control panel

If you find existing entries for environment variables in the control panel, you may click the entry to view and edit its
value as necessary. Click OK or Apply to set the variables.

Caution Be careful when setting environment variables in command windows. Windows starts a separate process
for each command window opened. Therefore, if you issue a SET command to assign environment
variables values in one window, the variables have these values when executing programs from within
this command window only. Placing your SET commands in your autoexec.bat file or setting variable
values in the control panel makes the values known to all processes.

Okay, you’re almost home. With the Tomcat environment variables set, you are ready to test your Tomcat installation.

Testing Your Tomcat Installation

The directory TOMCAT_HOME\bin contains several startup and shutdown files. The files you are interested in are
called startup.bat and shutdown.bat. First, run the startup file by double-clicking its icon or running the file from
a command window. Once you execute the startup file, you should see two windows that resemble those shown in
Figure C-4.

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc03_0.jpg&image_id=33&previd=IMG_33&titlelabel=Figure+C-3%3A&title=The+Windows+NT+Environment+control+panel

Figure C-4: What you should see when executing startup.bat

The windows in Figure C-4 are stacked for display purposes, so your display will differ. If you see two command
windows such as the ones shown, you can be pretty sure that your Tomcat installation was successful.

You want to display Web pages in your Web server, right? Although the command windows shown in Figure C-4 show
Tomcat executing, you need to call up a Web page and check out some servlets and JSPs. This process is covered in
the following sections.

Displaying Web Pages in Tomcat

Open a browser and enter the following URL:
http://localhost:8080/

Figure C-5 shows what you should see on your screen.

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc04_0.jpg&image_id=34&previd=IMG_34&titlelabel=Figure+C-4%3A&title=What+you+should+see+when+executing+startup.bat
http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc05_0.jpg&image_id=35&previd=IMG_35&titlelabel=Figure+C-5%3A&title=The+Tomcat+greeting+screen

Figure C-5: The Tomcat greeting screen

If you see this screen, congratulations! You have a working version of the Tomcat Web server installed on your
system.

Try out the JSP and servlet examples next. Figure C-6 shows the page of JSP examples.

Figure C-6: The Tomcat JSP example page

The page in Figure C-6 contains 15 JSP examples, of which two are shown.

You have not seen a JSP execute yet. Click on the link labeled "Execute" next to the Date example. If you see a
screen such as Figure C-7, you have a working, JSP-enabled Web server!

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc06_0.jpg&image_id=36&previd=IMG_36&titlelabel=Figure+C-6%3A&title=The+Tomcat+JSP+example+page

Figure C-7: The Date JSP executing in Tomcat

Tomcat Directories and JSP Processing

The documentation contained in TOMCAT_HOME\doc covers nearly everything you need to know about using Tomcat.
In this section, you can see a quick rundown on placement of JSP files in Tomcat.

You have two options for running JSPs in Tomcat: You can create your own Web application or use the example
directory to run your JSP pages. This section describes how to use the example directory. Consult the documentation
for configuring Tomcat for your own Web application.

You have to place your JSP and HTML files in one directory and your class files from JavaBeans in another directory.
First, let's look at the directories and read about where you'll place JSP and HTML files.

To run a set of related JSPs, you need to create a directory in the TOMCAT_HOME\Webapps directory. For example,
let's create the directory TOMCAT_HOME\Webapps\examples\jsp.

Caution Do not be misled by looking at the URLs in the browser. Notice that the URL shown in Figure C-7,
http://localhost:8080/examples/jsp/datesdate.jsp, does not include the Webapps
directory. When placing your JSPs, remember that the directory shown in the URL is really found in
TOMCAT_HOME\Webapps.

Put your JSP files and static HTML files in your directory. For example, the series of JSPs for the Hotel Reservation
System are stored in the directory TOMCAT_HOME\Webapps\examples\jsp\hotelres.

Caution Do not invoke your JSPs or static HTML files by clicking their icons. You must invoke JSPs or HTML
pages from the browser from the http://localhost:8080 address. If you click HTML page icons,
you see the pages in the browser (of course), but you cannot invoke any JSPs from the pages.

As for your class files representing your JavaBeans, Tomcat understands that the directory
TOMCAT_HOME\Webapps\examples\classes holds class files. Because you are a sharp Java programmer, you’ve

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgc07_0.jpg&image_id=37&previd=IMG_37&titlelabel=Figure+C-7%3A&title=The+Date+JSP+executing+in+Tomcat

already coded your bean classes within a package, which corresponds to a directory within the classes directory cited
above. For example, beans created for the Hotel Reservation System are stored in
TOMCAT_HOME\Webapps\examples\classes\hotelres.

Once again, store your JSPs and HTML pages together in a directory located in the JSP subdirectory and your bean
classes in a directory (package) located in the classes subdirectory.

More Information on Tomcat

As previously mentioned, mailing lists are dedicated to disseminating information about Tomcat. If you have a
question, you can post it to the Web site for this book, of course, or join one of the Tomcat mailing lists.

Tip To join the Tomcat mailing list, visit http://jakarta.apache.org/tomcat and follow the directions
found there.

http://jakarta.apache.org/tomcat

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix B: The EJB API

This appendix lists the classes and interfaces that comprise Sun Microsystems’ Enterprise JavaBeans API for quick
reference.

The EJB API

Here, you can read about the EJB 1.1 API and Sun’s proposed changes for the upcoming EJB 2.0 release.

The entire EJB API is contained within the following two packages:

● javax.ejb

● javax.ejb.spi (2.0 only)

Before examining the contents of these two packages, let’s take a quick look at the class and interface hierarchies for
the javax.ejb package.

Class and Inheritance Hierarchies for Package javax.ejb

The proposed classes and interfaces introduced with release 2.0 are noted in the following list. Notice that EJB works
with interfaces; the classes in the javax.ejb package are representations of exceptions.
class java.lang.Object
 class java.lang.Throwable (implements java.io.Serializable)
 class java.lang.Exception
 class javax.ejb.CreateException
 class javax.ejb.DuplicateKeyException
 class javax.ejb.FinderException
 class javax.ejb.ObjectNotFoundException
 class javax.ejb.RemoveException
 class java.lang.RuntimeException
 class javax.ejb.EJBException
 class javax.ejb.AccessLocalException
 class javax.ejb.NoSuchEntityException
 class javax.ejb.NoSuchObjectLocalException (2.0)
 class javax.ejb.TransactionRequiredLocalException (2.0)
 class javax.ejb.TransactionRolledbackLocalException (2.0)

Interface Hierarchy

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=635730244

Here is the interface hierarchy:
interface javax.ejb.EJBContext
 interface javax.ejb.EntityContext
 interface javax.ejb.MessageDrivenContext (2.0)
 interface javax.ejb.SessionContext
 interface javax.ejb.EJBLocalHome (2.0)
interface javax.ejb.EJBLocalObject (2.0)
interface javax.ejb.EJBMetaData
interface java.rmi.Remote
 interface javax.ejb.EJBHome
 interface javax.ejb.EJBObject
interface java.io.Serializable
 interface javax.ejb.EnterpriseBean
 interface javax.ejb.EntityBean
 interface javax.ejb.MessageDrivenBean (2.0)
 interface javax.ejb.SessionBean
 interface javax.ejb.Handle
 interface javax.ejb.HomeHandle
interface javax.ejb.SessionSynchronization

Because the javax.ejb.spi package (new with release 2.0, remember?) contains a single interface, let's go ahead and
discuss it.

The javax.ejb.spi Package and Its Interface

The javax.ejb.spi package contains a single interface called HandleDelegate, which is implemented by the
EJB container. This interface is used by portable implementations of javax.ejb.Handle and
javax.ejb.HomeHandle. HandleDelegate is not used by EJB components or by client components. It provides
methods to serialize and deserialize EJBObject and EJBHome references to streams. Table B-1 lists the methods
available in the HandleDelegate interface.

Table B-1: Methods of the HandleDelegate Interface
Method Signature Description
EJBHome readEJBHome(ObjectInputStream
istream)

Invoked by the EJB container to deserialize the
EJBHome reference corresponding to a
HomeHandle.

EJBObject readEJBObject(
ObjectInputStream istream)

Invoked by the EJB container to deserialize the
EJBObject reference corresponding to a Handle.

void writeEJBHome(EJBHome home,
ObjectOutputStream ostream)

Serializes the EJBHome reference corresponding to
a HomeHandle.

void writeEJBObject(EJBObject object,
ObjectOutputStream ostream)

Serializes the EJBObject corresponding to a
Handle.

The vast bulk of the EJB API is contained in the javax.ejb package. Let’s take a look at javax.ejb now.

The javax.ejb Package

Enterprise JavaBeans work with remote interfaces. Hence, the majority of the methods defined in the EJB spec are

contained within interfaces. EJB classes are limited to exception classes. Later in this appendix, you can examine a
list of all available methods from the interfaces contained in javax.ejb. For now, let’s look at the exception classes,
which are listed in Table B-2. These exception classes inherit the "usual" methods, such as printStackTrace, and
use the "usual" constructors.

Table B-2: Exception Classes of the javax.ejb Package
Class Name Description

AccessLocalException An AccessLocalException is thrown to indicate
that the caller does not have permission to call the
method.

CreateException The CreateException exception must be included
in the throws clauses of all create methods defined
in an enterprise bean's home interface.

DuplicateKeyException The DuplicateKeyException exception is
thrown if an entity EJB object cannot be created
because an object with the same key already exists.

EJBException The EJBException exception is thrown by an
enterprise bean instance to its container to report
that the invoked business method or callback
method could not be completed because of an
unexpected error (for example, the instance failed to
open a database connection).

FinderException The FinderException exception must be included
in the throws clause of every findMETHOD()
method of an entity bean's home interface.

NoSuchEntityException The NoSuchEntityException exception is
thrown by an entity bean instance to its container to
report that the invoked business method or callback
method could not be completed because the
underlying entity was removed from the database.

NoSuchObjectLocalException A NoSuchObjectLocalException is thrown if an
attempt is made to invoke a method on an object
that no longer exists (new with release 2.0).

ObjectNotFoundException The ObjectNotFoundException exception is
thrown by a finder method to indicate that the
specified EJB object does not exist.

RemoveException The RemoveException exception is thrown at an
attempt to remove an EJB object when the
enterprise bean or the container does not enable the
EJB object to be removed.

TransactionRequiredLocalException This exception indicates that a request carried a null
transaction context, but the target object requires an
activate transaction (new with release 2.0).

TransactionRollbackLocalException This exception indicates that the transaction
associated with processing of the request has been
rolled back, or marked to roll back (new with release
2.0).

As you see, the new exception classes in release 2.0 deal with exceptions thrown by local objects.

The javax.ejb package defines no other classes than the exception classes listed in Table B-2; the remainder of
the package consists of interfaces. Table B-3 lists the interfaces available in the javax.ejb package. The interfaces
newly available with the release 2.0 are noted.

Table B-3: Interfaces of the javax.ejb Package
Interface Name Description

EJBContext The EJBContext interface provides an instance
with access to the container-provided runtime
context of an enterprise bean instance.

EJBHome The EJBHome interface must be extended by all
enterprise bean’s remote home interfaces.

EJBLocalHome The EJBLocalHome interface must be extended by
all enterprise bean’s local home interfaces (new with
release 2.0).

EJBLocalObject The EJBLocalObject interface must be extended
by all enterprise bean’s local interfaces.

EJBMetaData The EJBMetaData interface enables a client to
obtain the enterprise bean’s metadata information.

EJBObject The EJBObject interface is extended by all
enterprise bean’s remote interfaces.

EnterpriseBean The EnterpriseBean interface must be
implemented by every enterprise bean class.

EntityBean The EntityBean interface is implemented by every
entity enterprise bean class.

EntityContext The EntityContext interface provides an instance
with access to the container-provided runtime
context of an entity enterprise bean instance.

Handle The Handle interface is implemented by all EJB
object handles.

HomeHandle The HomeHandle interface is implemented by all
home object handles.

MessageDrivenBean The MessageDrivenBean interface is implemented
by every message-driven enterprise bean class (new
with release 2.0).

MessageDrivenContext The MessageDrivenContext interface provides
access to the runtime message-driven context that
the container provides for a message-driven
enterprise bean instance (new with release 2.0).

SessionBean The SessionBean interface is implemented by
every session enterprise bean class.

SessionContext The SessionContext interface provides access to
the runtime session context that the container
provides for a session enterprise bean instance.

SessionSynchronization The SessionSynchronization interface enables
a session bean instance to be notified by its
container of transaction boundaries.

Note that all of the new interfaces available with release 2.0 deal with the MessageDrivenBean and local objects.
The rest of the interfaces in the javax.ejb package existed in the previous EJB specification release. All of these
interfaces are discussed in this appendix.

The EJBContext Interface

The EJBContext interface provides a bean with the context of the EJB container. As such, the methods available
through EJBContext enable a bean to glean information about the container and the beans contained within. Table B-
4 lists the methods from the EJBContext interface.

Table B-4: Methods of the EJBContext Interface
Method Signature Description

Principal getCallerPrincipal() Returns the security Principal that identifies the
method caller.

EJBHome getEJBHome() Returns the bean’s (remote) home interface.

EJBLocalHome getEJBLocalHome() Returns the bean’s local home interface (new with
release 2.0).

boolean getRollbackOnly() Determines if the transaction is marked for rollback.

UserTransaction getUserTransaction() Returns a reference to the current transaction
demarcation interface.

boolean isCallerInRole() Determines if the method caller has a given security
role.

void setRollbackOnly() Sets the current transaction for rollback.

The EJBContext interface is extended by the SessionContext and EntityContext interfaces, which contain
methods peculiar to the two bean types.

The EJBHome Interface

The EJBHome interface must be extended by all remote home interfaces. With release 2.0, EJB draws a distinction
between a remote home interface and a local home interface. Later in this appendix you'll read about the methods in
the EJBLocalHome interface. All methods contained in the EJBHome interface throw (minimally) a
RemoteException. The proposed 2.0 release does not add new methods, or deprecate existing ones. Table B-5
lists the methods in the EJBHome interface.

Table B-5: Methods of the EJBHome Interface
Method Signature Description

EJBMetaData getEJBMetaData() Returns the metadata for the bean. The bean’s
metadata is rarely used by application developers.

HomeHandle getHomeHandle() Returns a handle for the (remote) home object.

void remove(Handle handle) Removes an EJB object referenced by its handle.

void remove(Object primaryKey) Removes an EJB object referenced by its primary
key.

getEJBHome() Returns the bean’s (remote) home interface.

The EJBLocalHome Interface

The EJBLocalHome interface is conceptually similar to the EJBHome interface except that the EJBLocalHome
interface should be extended for all local clients of enterprise beans. This interface, new with release 2.0, contains one
method, remove, which has the following signature:

void remove(Object primaryKey)
 throws RemoveException, EJBException ;

The remove method can be called only by local clients of an entity bean. Recall that session beans do not have
methods that rely on the existence of a primary key (such as finder methods). The implementation of this interface is
the responsibility of the EJB container.

The EJBLocalObject Interface

The EJBLocalObject interface, new with release 2.0, serves the same function as the EJBObject interface, but for
local clients. An enterprise bean's local interface provides the local client view of an EJB object. An enterprise bean's
local interface defines the business methods callable by local clients. The implementation of this interface is the
responsibility of the EJB container. Table B-6 lists the methods available from a class that implements the
EJBLocalObject interface.

Table B-6: Methods of the EJBLocalHome Interface
Method Signature Description

EJBLocalHome getEJBLocalHome() Returns the bean’s local home interface.

Object getPrimaryKey() Returns the primary key for the EJB local object.

boolean isIdentical(EJBLocalObject
lobj)

Determines if the given EJB local object is identical
to the invoking EJB local object.

void remove() Removes the EJB local object.

The EJBMetaData Interface

The EJBMetaData interface enables a client to obtain the enterprise bean's metadata information. The metadata is
intended for development tools used for building applications that use deployed enterprise beans, and for clients using
a scripting language to access the enterprise bean. Table B-7 shows the methods available by a class that
implements the EJBMetaData interface.

Table B-7: Methods of the EJBMetaData Interface
Method Signature Description

EJBHome getEJBHome() Returns the bean’s remote home interface.

Class getHomeInterfaceClass() Returns the class for the enterprise bean’s remote
home interface.

Class getRemoteInterfaceClass() Returns the class for the enterprise bean’s remote
interface.

boolean isSession() Determines if the bean’s type is session as opposed
to entity, or (with release 2.0 only) message driven.

boolean isStatelessSession() Determines if the bean’s type is “stateless session.”

object getPrimaryKey() Returns the primary key for the EJB local object.

The EJBObject Interface

The EJBObject interface is extended by all enterprise bean’s remote interfaces. An enterprise bean's remote
interface provides the remote client view of an EJB object. An enterprise bean's remote interface defines the business
methods callable by a remote client. Table B-8 shows the methods available by a class that implements the
EJBObject interface.

Table B-8: Methods of the EJBObject Interface
Method Signature Description

EJBHome getEJBHome () Returns the bean’s remote home interface.

Handle getHandle() Returns a handle for the invoking EJB object.

Object getPrimaryKey() Returns the primary key of the EJB object.

boolean isIdentical(EJBObject eobj) Determines if a given EJB object is identical to the
invoking EJB object.

void remove() Removes the EJB object.

The EnterpriseBean Interface

The EnterpriseBean interface contains no method signatures or constants. Interface EnterpriseBean serves as
the superinterface for the EntityBean, SessionBean, and MessageDrivenBean interfaces.

The EntityBean Interface

The EntityBean interface must be extended by any class that implements an entity EJB. The container uses the
methods defined in the entity bean class to notify the bean instances of various events in the bean’s life cycle. Table B-
9 lists the methods available in an entity bean class that implements the EntityBean interface.

Table B-9: Methods of the EntityBean Interface
Method Signature Description

void ejbActivate() The container invokes ejbActivate when the
bean instance is loaded from the bean pool to
become associated with a particular EJB object.

void ejbLoad() The container invokes ejbLoad to synchronize the
entity bean’s state by refreshing the bean with data
from the underlying database.

void ejbPassivate() The container invokes ejbPassivate before the
bean instance becomes disassociated with a specific
EJB object, possibly by placing the bean instance
into the instance pool.

void ejbRemove() The container invokes ejbRemove before it
removes the EJB object associated with the bean
instance.

void ejbStore() The container invokes ejbStore to synchronize the
bean’s state by storing the bean data to the
underlying database.

void setEntityContext() Sets the entity context for the newly created entity
bean.

void unsetEntityContext() Unsets the entity context immediately before
removing the bean instance.

The EntityContext Interface

The EntityContext interface, a subinterface of EJBContext, provides an instance with access to the container-
provided runtime context of an entity enterprise bean instance. The container passes the EntityContext interface
to an entity enterprise bean instance after the instance has been created. The EntityContext of an entity bean
stays associated with the bean for the bean’s entire life. Table B-10 lists the methods available from the EntityBean
interface.

Table B-10: Methods of the EntityContext Interface
Method Signature Description

EJBLocalObject getEJBLocalObject() Returns a reference to the EJB local object currently
associated with the bean’s instance (new with
release 2.0).

EJBObject getEJBObject() Returns a reference to the EJB object currently
associated with the bean instance.

Object getPrimaryKey() Returns the primary key of the EJB object currently
associated with this bean instance.

void ejbLoad() The container invokes ejbLoad to synchronize the
entity bean’s state by refreshing the bean with data
from the underlying database.

The Handle Interface

The Handle interface is implemented by all EJB object handles. A handle is an abstraction of a network reference to
an EJB object. A handle is used as a "robust" persistent reference to an EJB object.

The Handle interface defines one method, getEJBObject, with the following signature:

EJBObject getEJBObject() throws RemoteException ;

The HomeHandle Interface

The HomeHandle interface is implemented by all home object handles. A handle is an abstraction of a network

reference to a home object. A handle is used as a "robust" persistent reference to a homeobject.

The HomeHandle interface defines one method, getEJBHome, with the following signature:

EJBHomeObject getEJBHome () throws RemoteException ;

The MessageDrivenBean Interface

The MessageDrivenBean interface is implemented by every message-driven enterprise bean class. The container
uses the MessageDrivenBean methods to notify the enterprise bean instances of the instance's life cycle events.

The MessageDrivenBean interface, as well as any interface dealing with message-driven beans, is new with release
2.0. Table B-11 lists the methods available from the MessageDrivenBean interface.

Table B-11: Methods of the MessageDrivenBean Interface
Method Signature Description

void ejbRemove() The container invokes remove immediately prior to
ending the life of the message bean (new with
release 2.0).

void setMessageDrivenContext(
MessageDrivenContext mctx)

Sets the message-driven context immediately after
creating the instance of the message bean.

The MessageDrivenContext Interface

The MessageDrivenContext interface, new with release 2.0, is a subinterface of EJBContext that provides an
instance with access to the container-provided runtime context of a message bean instance. The container passes the
MessageDrivenContext interface to a message enterprise bean instance after the instance has been created. The
MessageDrivenContext of a message bean stays associated with the bean for the bean’s entire life.

The MessageDrivenContext interface requires no methods other than those from the superinterface,
EJBContext, be implemented.

The SessionBean Interface

The SessionBean interface is implemented by every session enterprise bean class. The container uses the
SessionBean methods to notify the enterprise bean instances of the instance's life cycle events. Table B-12 lists the
methods available from the SessionBean interface.

Table B-12: Methods of the SessionBean Interface
Method Signature Description

void ejbActivate() The container invokes ejbActivate when the
session bean instance becomes associated with an
EJB object by fetching from a bean pool or
deserializing from storage (enters the active state).

void ejbPassivate() The container invokes ejbPassivate when the
session bean is about to go into a bean pool or be
persisted (enters the passive state).

void ejbRemove() The container invokes remove immediately prior to
ending the life of the session bean.

void setMessageDrivenContext(
MessageDrivenContext mctx)

Sets the associated session context after the
container creates an instance of the session bean.

The SessionContext Interface

The SessionContext interface, a subinterface of EJBContext, provides an instance with access to the container-
provided runtime context of a session enterprise bean instance. The container passes the SessionContext
interface to a session enterprise bean instance after the instance has been created. The SessionContext of a
session bean stays associated with the bean for the bean’s entire life. Table B-13 lists the methods available from the
SessionBean interface.

Table B-13: Methods of the SessionContext Interface
Method Signature Description

EJBLocalObject getEJBLocalObject() Returns a reference to the EJB local object currently
associated with the bean’s instance (new with
release 2.0).

EJBObject getEJBObject() Returns a reference to the EJB object currently
associated with the bean instance.

The SessionSynchronization Interface

The SessionSynchronization interface enables a session bean instance to be notified by its container of
transaction boundaries. A session bean class is not required to implement this interface unless it wishes to
synchronize its state with the transactions. Table B-14 lists the methods available from the
SessionSynchronization interface.

Table B-14: Methods of the SessionSynchronization Interface
Method Signature Description

void afterBegin() The container invokes afterBegin to notify a
session bean that a new transaction has started.

void afterCompletion (boolean
committed)

The container invokes afterCompletion to notify
a session bean that a commit or a rollback occurred.

void beforeCompletion() The container invokes beforeCompletion to
notify a session bean that a transaction is about to
be committed.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Interfaces and Classes Added to JSP Release 1.2

The up-and-coming JSP release 1.2 includes some additional interfaces and classes to the
javax.servlet.jsp.tagext package. Table A-25 provides a quick look at what’s new with JSP 1.2

Table A-25: New Components of the javax.servlet.jsp.tagext Package
(JSP 1.2)

Component Type Description

IterationTag Interface Extends the Tag interface by
providing one additional method
that controls the reevaluation of
its body.

TryCatchFinally Interface Another interface of a tag-
handler class that wants more
hooks for managing resources.

PageData Abstract Class Objects of class PageData are
generated by the JSP translator
and passed to a Tag library
validator.

TagLibraryValidator Abstract Class Translation-time validator class
for a JSP page.

TagVariableInfo Class Contains information about tag
variables coded in the tld.

The IterationTag Interface

The IterationTag interface extends Tag by defining one additional method that controls the reevaluation of its
body.

A tag handler that implements IterationTag is treated as one that implements Tag regarding the doStartTag and
doEndTag methods. IterationTag provides a new method: doAfterBody with the following signature:

int doAfterBody()

The IterationTag interface defines an additional constant that requests the evaluation of the tag body, as follows:

public static final int EVAL_BODY_AGAIN

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=104963757

Note that EVAL_BODY_AGAIN replaces the deprecated tag BodyTag.EVAL_BODY_TAG.

The TryCatchFinally Interface

The TryCatchFinally interface is the auxiliary interface of a Tag, IterationTag, or BodyTag tag handler that
wants additional hooks for managing resources.

This interface provides two new methods: doCatch(Throwable) and doFinally, with the following signatures:

void doCatch(Throwable t)
void doFinally()

The doCatch method is invoked whenever an exception is thrown within the body of a tag. The doFinally method
is invoked in all cases after the doEndTag method for classes implementing the Tag, BodyTag, or the
IterationTag interfaces.

The PageData Abstract Class

The PageData class contains one method (Table A-26), getInputStream, that returns an input stream of an XML
document representing the translated JSP page. You, the JSP author, do not code the getInputStream method.

Table A-26: Methods in the PageData Class
Method Signature Description

abstract InputStream getInputStream() Returns an input stream of an XML document
representing the translated JSP page.

The TagLibraryValidator Abstract Class

This class is the translation-time validator class for a JSP page. A validator operates on the XML document associated
with the JSP page. The tld file associates a TagLibraryValidator class and some init arguments with a tag
library. Table A-27 lists the methods available from the TagLibraryValidator class.

Table A-27: Methods in the TagLibraryValidator Class
Method Signature Description

Map getInitParameters() Returns the init parameters data from the tld as an
immutable map. Parameter names are keys, and
parameter values are the values.

void release() Releases any data kept by this instance of the tag-
handler class.

void setInitParameters(Map parmMap) Sets the init parameters as key/value pairs for this
instance of the validator.

String validate(String tagPrefix,
String tagURI, PageData page)

Validates a JSP page. Returns a null string if
validation is successful or a diagnostic if not.

The TagVariableInfo Abstract Class

This class contains variable information for a tag in a tag library. It is instantiated from the Tag Library Descriptor file
(tld) and is available only at translation time. The methods contained in the TagVariableInfo class are similar to
those contained in the VariableInfo class. Table A-28 lists the methods available from the TagVariableInfo
class.

Table A-28: Methods in the TagVariableInfo Class
Method Signature Description

String getClassName () Returns the value (body) of the variable-class
element coded in the tld.

boolean getDeclare() Returns the value (body) of the declare element
coded in the tld.

String getNameFromAttribute() Returns the value (body) of the name-from-
attribute element coded in the tld.

int getScope() Returns the value (body) of the scope element
coded in the tld.

end

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Appendix A: The JSP API

This appendix lists the classes and interfaces that comprise Sun Microsystems’ JavaServer Pages API for quick reference.

The JSP API

Here, you can read about the JSP 1.1 API and Sun Microsystems’ proposed changes for the upcoming JSP 1.2 release. Only a few
differences exist between the two.

Because JSPs eventually get translated into Java servlets, you can read references to Sun’s Java Servlet API here. Also, the JSP
classes and interfaces inherit from the servlet classes, making a discussion of the JSP API tightly interwoven with mentioning the
Servlet API.

One more point worth mentioning is that you, the JSP programmer, often will not invoke the JSP API methods directly. When you
create a JSP page, the JSP translator generates references to the JSP API within the generated servlet. However, when you create
custom tags, you must code references to the JSP API for your classes that implement your tag’s functionality.

All of the JSP API is contained within the following two packages:

● javax.servlet.jsp

● javax.servlet.jsp.tagext

Before examining the contents of these two packages, take a quick look at the class and interface hierarchies for the JSP API for JSP,
releases 1.1 and 1.2.

The Class and Interface Hierarchies for the javax.servlet.jsp Package

The following are the proposed classes and interfaces for the JSP 1.2 release.

class java.lang.Object

 class javax.servlet.jsp.JspEngineInfo
 class javax.servlet.jsp.JspFactory
 class javax.servlet.jsp.PageContext
 class java.lang.Throwable (implements java.io.Serializable)
 class java.lang.Exception
 class javax.servlet.jsp.JspException
 class javax.servlet.jsp.JspTagException (JSP 1.2)
 class java.io.Writer
class javax.servlet.jsp.JspWriter
 interface javax.servlet.Servlet
 interface javax.servlet.jsp.JspPage
 interface javax.servlet.jsp.HttpJspPage

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=605291620

The Class and Inheritance Hierarchies for the javax.servlet.jsp.tagext Package

The following are the proposed classes and interfaces for the JSP 1.2 release.
class java.lang.Object
 class javax.servlet.jsp.tagext.PageData (1.2)
 class javax.servlet.jsp.tagext.TagAttributeInfo
 class javax.servlet.jsp.tagext.TagData (implements java.lang.Cloneable)
 class javax.servlet.jsp.tagext.TagExtraInfo
 class javax.servlet.jsp.tagext.TagInfo
 class javax.servlet.jsp.tagext.TagLibraryInfo
 class javax.servlet.jsp.tagext.TagLibraryValidator (1.2)
 class javax.servlet.jsp.tagext.TagSupport (implements javax.servlet.jsp.tagext.IterationTag,
java.io.Serializable)
 class javax.servlet.jsp.tagext.BodyTagSupport (implements javax.servlet.jsp.tagext.BodyTag)
 class javax.servlet.jsp.tagext.TagVariableInfo (1.2)
 class javax.servlet.jsp.tagext.VariableInfo
 class java.io.Writer
 class javax.servlet.jsp.JspWriter
 class javax.servlet.jsp.tagext.BodyContent interface javax.servlet.jsp.tagext.Tag
 interface javax.servlet.jsp.tagext.IterationTag (1.2)
 interface javax.servlet.jsp.tagext.BodyTag
interface javax.servlet.jsp.tagext.TryCatchFinally (1.2)

The javax.servlet.jsp Package

The javax.servlet.jsp package contains the classes and interfaces that describe and define the contracts between a JSP page
implementation class and the runtime environment provided for an instance of such a class by a JSP container. Table A-1 lists the
interfaces, classes, and exceptions of the javax.servlet.jsp package.

Table A-1: Components of the javax.servlet.jsp Package
Component Type Description

JspPage Interface Describes requirements for a JSP-
generated servlet class.

HttpJspPage Interface Describes requirements for a JSP —
uses the HTTP protocol.

JspEngineInfo Abstract Class Provides information about the JSP
engine in use.

JspFactory Abstract Class Defines factory methods that the JSP
page may use to create needed
runtime objects.

JspWriter Abstract Class Enables the creation of a buffered
version of java.io.PrintWriter
that throws IO exceptions.

PageContext Abstract Class PageContext objects enable the JSP
page to access page-specific
attributes, including a JspWriter and
errorpage exception processing.

JspError Exception When thrown, output generation stops
and processing is directed to error
pages.

JspException Exception Generic exception known to the JSP
engine.

Note that the JSP author does not invoke the code that invokes most of the methods in the interfaces and classes listed in Table A-1.

The JspPage Interface

JspPage defines methods that create and destroy a generated instance of the JSP page. The JSP container automatically invokes
the methods when appropriate. However, the JSP specification enables the JSP author to invoke the methods as well. Table A-2
shows the methods defined in JspPage.

Table A-2: Methods of the JspPage Interface
Method Signature Description

void jsp_init() Invoked by the JSP container when the JSP page is
initialized.

void jsp_destroy() Invoked by the JSP container just before the container
destroys the JSP page.

The JSP spec enables the JSP author to invoke these methods but the runtime invokes them when needed.

The HttpJspPage Interface

The HttpJspPage interface extends JspPage and provides an additional method, shown in Table A-3.

Table A-3: The Method of the HttpJspPage Interface
Method Signature Description

void _jspservice() jspService corresponds to the body of the JSP page. This
method is defined automatically by the JSP processor and
should never be invoked by the JSP author.

The Abstract Class JspEngineInfo

JspEngineInfo contains a single method that returns the version number of the JSP engine in use, shown in Table A-4.

Table A-4: The Method of the JspEngineInfo Class
Method Signature Description

abstract String getSpecificationVersion() Returns a version number for the JSP engine in use.

The Abstract Class JspFactory

The JspFactory is an abstract class that defines a number of factory methods available to a JSP page at runtime for the purposes of
creating instances of various interfaces and classes used to support the JSP implementation. The JSP author does not invoke the
methods in this class, which are shown in Table A-5.

Table A-5: Methods of the JspFactory Class
Method Signature Description

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP51
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP65
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP69

static JspFactory getDefaultFactory() Returns the default factory used in this JSP container.

abstract JspEngineInfo getEngineInfo() Gets implementation-specific data on the current JSP
engine.

abstract PageContext getPageContext(Servlet
serv, ServletRequest request,
ServletResponse response, String
errorPageURL, boolean needsSession, int
buffer, boolean autoFlush)

Gets an instance of the PageContext abstract class for the
servlet generated by the JSP engine.

abstract void releasePageContext(
PageContext thisPage)

Releases a previously allocated PageContext object.

static void setDefaultFactory(JspFactory
defFactory)

Sets the default JSP factory used by this engine.

The Abstract Class JspWriter

Instances of JspWriter represent the output stream to the client. Many of the methods available in JspWriter mimic those in
java.io.PrintWriter. The methods of JspWriter are listed in Table A-6.

Table A-6: Methods of the JspWriter Class
Method Signature Description

abstract void clear() Clears the output stream’s buffer. Throws an IOException
if buffer is already clear.

abstract void clearBuffer() Clears the output stream’s buffer. Does not throw an
IOException if buffer is already clear.

abstract void close() Closes and flushes the output stream.

abstract void flush() Flushes the output stream.

int getBufferSize() Returns the size of the output buffer.

abstract int getRemaining() Returns the number of unused bytes in the output buffer.

boolean isAutoFlush() Returns true if buffer automatically flushes; false if IO
exceptions are thrown on buffer overflows.

abstract void newLine() Writes a line separator (line.separator in system
properties) which does not need to be a newline character.

abstract void print(argType printIt) Prints a variety of primitive and reference types. Parameters
to print are the same as those to java.io.print.

abstract void println(argType printIt) Prints a variety of primitive and reference types followed by
a newline character. Parameters to println are the same
as those to java.io.print.

The fields available from class JspWriter are listed in Table A-7.

Table A-7: Fields Declared in Class JspWriter
Declaration Description

protected boolean autoFlush Whether or not the output buffer flushes automatically when
full (true) or throws an IOException when full (false).

protected int bufferSize Buffer size in use.

static int DEFAULT_BUFFER Variable indicating that the output stream is buffered and
using the default buffer size.

static int NO_BUFFER Variable indicating that the output stream is not buffered.

static int UNBOUNDED_BUFFER Variable indicating output stream is unbounded.

The Abstract Class PageContext

The PageContext class provides methods to the JSP author that enable the following functions:

● Managing the various scoped namespaces (page scope, session scope, and so on)

● Accessing the various public objects (out, request, response, and so on)

● Fetching the JspWriter for output

● Managing session usage by the page

● Exposing page directive attributes to the scripting environment

● Forwarding or including the current request to other active components in the application

● Handling errorpage exception processing

Table A-8 lists the methods available in class PageContext.

Table A-8: Methods in Class PageContext
Method Signature Description
abstract Object findAttribute(String
attrName)

Searches for the attribute named attrName in the order of
page, request, session, and application scopes, and
returns if found or returns null if no attribute with attrName
exists.

abstract void forward(String resourceURL) Redirects the current response or request to another
component (usually a servlet or another JSP page).

abstract Object getAttribute(String
attrName)

Returns the attribute named attrName in page scope only
or returns null if no such attribute exists.

abstract Object getAttribute(String
attrName, int scope)

Returns the attribute named attrName in the specified
scope or returns null if no such attribute exists.

abstract Enumeration
getAttributeNamesInScope(int scope)

Returns the names of the attributes in the specified scope.

abstract int getAttributeScope(String
attrName)

Returns the scope by which the attribute attrName is
known, or 0 if no attribute exists.

abstract Exception getException() Returns the last exception thrown.

abstract JspWriter getOut() Returns the current instance of JspWriter used to hold
servlet-generated output to the client.

abstract Object getPage() Returns the servlet instance associated with the current
PageContext.

abstract ServletRequest getRequest() Returns the request object associated with the current
PageContext.

abstract ServletResponse getResponse() Returns the response object associated with the current
PageContext.

abstract ServletConfig getServletConfig() Returns the ServletConfig object associated with the
current PageContext.

abstract ServletContext getServletContext() Returns the ServletContext object associated with the
current PageContext.

abstract HttpSession getSession () Returns the session object associated with the current
PageContext.

abstract void handlePageException(Exception
pExc)

Processes an unhandled page level exception, perhaps by
redirecting to a JSP error page or taking application-specific
action.

abstract void include(String resourceURL) Causes resourceURL to be processed as part of the
current request or response.

abstract void initialize(Servlet aServlet,
ServletRequest request, ServletResponse
response, String errorPageURL, boolean
requiresSession, int bufSize, boolean
autoFlush)

Initializes a PageContext, usually in response to a
JspFactory.getPageContext method.

BodyContent pushBody() Returns an instance of BodyContent and saves the current
instance of JspWriter (the implicit "out" object).

JspWriter popBody() Returns the saved version of JspWriter by a previous call
to pushBody.

abstract void removeAttribute(String
attrName)

Removes the attribute named attrName within the page
scope.

abstract void removeAttribute(String
attrName, int scope)

Removes the attribute named attrName within the specified
scope.

abstract void setAttribute(String attrName,
Object attrValue)

Sets a page scope attribute named attrName with the
value attrValue.

abstract void setAttribute(String attrName,
Object attrValue, int scope)

Sets an attribute named attrName with the value
attrValue within the specified scope.

Table A-9 lists the class variables (all declared static) available in class PageContext.

Table A-9: Class Variables Declared in Class PageContext
Declaration Description

String APPLICATION The name of the ServletContext in the PageContext
name table.

int APPLICATION_SCOPE Value representing application scope.

String CONFIG Name used to store ServletConfig in PageContext
name table.

String EXCEPTION Name used to store uncaught exception in PageContext
name table.

String OUT Name used to store current JspWriter in PageContext
name table.

String PAGE Name used to store the generated servlet in the
PageContext name table.

int PAGE_SCOPE Value representing page scope. PAGE_SCOPE is the default
scope.

String PAGECONTEXT Name used to store the current PageContext in its own
name table.

String REQUEST Name used to store ServletRequest in the
PageContext name table.

int REQUEST_SCOPE Value representing request scope.

String RESPONSE Name used to store ServletRequest in the
PageContext table.

String SESSION Name used to store HttpSession in PageContext name
table.

int SESSION_SCOPE Session scope (assuming JSP participates in a session).

The JspError and JspException Classes

The JspError and JspException classes behave as expected, with constructors that accept a string argument as a default
message.

The javax.servlet.jsp.tagext Package

The javax.servlet.jsp.tagext package contains the classes and interfaces needed to support the use of custom JSP tags.
Table A-10 lists the interfaces and classes that constitute the javax.servlet.jsp.tagext package.

Table A-10: Components of the javax.servlet.jsp.tagext Package
Component Type Description

BodyTag Interface Extends the Tag interface by defining
additional methods for the tag-handler
class to access and to manipulate the
tag body.

Tag Interface Describes the basic protocol between
a tag-handler class and the class that
implements the JSP page.

BodyContent Abstract Class A subclass of JspWriter used to
hold the results of evaluating a tag
body to a tag-handler class that
implements the BodyTag interface.

BodyTagSupport Class Class that contains methods to assist
in writing tag-handler classes that
implement the BodyTag interface.

TagAttributeInfo Class Instances of TagAttributeInfo
contain information on Tag attributes
derived from the Tag Library
Descriptor file.

TagData Class Tag instance attribute and value pairs.

TagExtraInfo Abstract Class Extra tag information. This class is
coded in the Tag Library Descriptor
file.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP99

TagInfo Class Tag information for a custom tag.
Instances of this class have values
derived from the Tag Library
Descriptor file.

TagLibraryInfo Abstract Class Information on the tag library.
Instances of this class have values
derived from the Tag Library
Descriptor file.

TagSupport Class A base class used to define new tag
handlers.

VariableInfo Class Information on scripting variables
used by a tag-handler class at
runtime.

Let’s take a closer look at these interfaces and classes.

The BodyTag Interface

The BodyTag interface extends Tag by defining additional methods to enable a Tag handler to access its body.

The interface provides two new methods. The first method is invoked with the BodyContent for the evaluation of the body. The
second method reevaluates after every body evaluation. Table A-11 lists the methods defined in the BodyTag interface.

Table A-11: Methods in the BodyTag Interface
Method Signature Description

int doAfterBody() Performs processing after the body of a custom tag has
been evaluated.

int doInitBody() Performs processing before processing of the tag body.

void setBodyContent() Setter method for the BodyContent property.

The BodyTag interface also provides a class variable with the following declaration:

static int EVAL_BODY_TAG

This declaration requests the creation of new BodyContent to evaluate the body of this tag.

The Tag Interface

The Tag interface defines the basic protocol between a Tag handler and JSP page implementation class, describing the life cycle and
the methods to be invoked at start and end tag. Table A-12 shows the methods of the Tag interface.

Table A-12: Methods in the Tag Interface
Method Signature Description

int doStartTag() Processes the start tag.

int doEndTag() Processes the end tag.

Tag getParent() Returns the parent tag or null if no parent exists.

void release() Calls on a tag-handler class to release the state of the tag.

void setPageContext(PageContext thisPC) Sets the current page context. This method is called before
calls to doStartTag.

void setParent(Tag pTag) Establishes pTag as the parent tag of the current tag.

The Tag interface also defines a few class variables, which are listed in Table A-13.

Table A-13: Class Variables Declared in the Tag Interface
Declaration Description

static int EVAL_BODY_INCLUDE Returned by the doStartTag method to include the
evaluation of the tag body into the output stream (current
instance of JspWriter).

static int EVAL_PAGE Returned by the doEndTag method to direct the JSP to
continue to evaluate the JSP page.

static int SKIP_BODY Returned by the doStartTag and doAfterBody methods
to omit evaluation of the tag body.

static int SKIP_PAGE Returned by the doEndTag method to omit evaluation of the
remainder of the JSP page.

The BodyContent Abstract Class

The BodyContent class is a subclass of JspWriter that can be used to process body evaluations so they can be re-extracted at a
later time. Table A-14 lists the methods available in class BodyContent.

Table A-14: Methods in the BodyContent Class
Method Signature Description

void clearBody() Clears the contents of a BodyContent object.

int flush() Redefines flush to make a call to flush illegal for objects
of BodyContent.

JspWriter getEnclosingWriter() Returns a reference to the JspWriter object from which
the current BodyContent is derived from.

abstract Reader getReader() Returns the instance of BodyContent as a Reader.

abstract String getString() Returns the instance of BodyContent as a String.

abstract void writeOut() Writes the instance of BodyContent to a Writer.

The BodyTagSupport Class

The BodyTagSupport class is a base class for defining tag handlers that implement the BodyTag interface. The BodyTagSupport
class implements the BodyTag interface and adds additional convenience methods including getter methods for the BodyContent
property and methods to get at the previous JspWriter "out" object. Table A-15 lists the methods available with the
BodyTagSupport class.

Table A-15: Methods in the BodyTagSupport Class

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP119

Method Signature Description

int doStartTag() This method is invoked first when a tag is encountered.

int doEndTag() Invoke this method when processing the end tag.

int doInitBody() Invoke this method before evaluating the tag body.

BodyContent getBodyContent() Returns the current BodyContent object.

JspWriter getPreviousOut() Returns the enclosing JspWriter.

void release() Resets the state of the tag.

void setBodyContent() Prepares for tag body evaluation.

The TagAttributeInfo Class

This class contains information on Tag attributes found in the Tag Library Descriptor file (tld). Only the information needed to generate
code is included in this reference. Additional information such as SCHEMA can be found in the complete JSP Specification
(java.sun.com/products/jsp).

Table A-16 lists the methods for the TagAttributeInfo class.

Table A-16: Methods in the TagAttributeInfo Class
Method Signature Description

boolean canBeRequestTime() Indicates whether this attribute can hold a request-time
value

static TagAttributeInfo getIDAttribute(
tagAttributeInfo[] tai)

Returns the ID attribute (if one exists) in the attribute list
argument.

String getName() Returns the name of the attribute.

String getTypeName() Returns the type of the attribute as a string.

boolean isRequired() Indicates whether this attribute is required or not.

String toString() Overrides Object.toString.

The TagAttributeInfo class also contains a class variable declared as follows:

static final String ID = "ID"

TheTagData Class

The TagData class contains translation-time information for the attributes and values of a tag instance. TagData is only used as an
argument to the isValid and getVariableInfo methods of TagExtraInfo, which are invoked at translation time. Table A-17
lists the methods for the TagData class.

Table A-17: Methods in the TagData Class
Method Signature Description

Object getAttribute(String attName) Returns the value of the attribute named attName or null if
no attribute exists.

String getAttributeString(String attName) Returns the value of the attribute named attName as a
string or null if no attribute exists.

String getID() Returns the value of the ID type attribute or null if no ID
attribute exists.

void setAttribute(String attName, Object
attValue)

Sets the value of the attribute named attName to the value
attValue.

The TagData class contains a variable coded as follows:

static Object REQUEST_TIME_VALUE

This variable tells the JSP container that the value of an attribute is available as a run-time expression, but will not be available at
translation time.

TheTagExtraInfo Class

This class provides extra information about a custom tag. To associate a TagExtraInfo class with a tag handler class, this class
must be mentioned in the Tag Library Descriptor file (tld). This class must be used if the tag defines any scripting variables or if the tag
wants to provide translation-time validation of the tag attributes. Table A-18 lists the methods for the TagExtraInfo class.

Table A-18: Methods in the TagExtraInfo Class
Method Signature Description

TagInfo getTagInfo() Returns the instance of TagInfo for the tag class.

VariableInfo[] getVariableInfo(TagData td) Returns information on scripting variables defined by
this tag.

boolean isValid() Translation-time validation of tag attributes.

void setTagInfo(TagInfo ti) Sets the TagInfo object for this class.

The class contains an instance variable coded as follows:
protected TagInfo tagInfo ;

This instance variable represents the instance of TagInfo associated with instances of TagExtraInfo.

TheTagInfo Class

Tag information for a tag in a Tag Library; this class is instantiated from the Tag Library Descriptor file (tld). Table A-19 lists the
methods for the TagInfo class.

Table A-19: Methods in the TagInfo Class
Method Signature Description

TagAttributeInfo getAttributes() Returns a TagAttributeInfo object describing the
attributes of the tag or null if tag has no attributes.

String getBodyContent() Returns the BodyContent object as a string.

String getInfoString() Returns an information string coded in the tld.

String getTagClassName() Returns the name of the class that provides the run-time
handler for the tag.

TagExtraInfo getTagExtraInfo() Returns the instance of the TagExtraInfo class, if any
exist.

TagLibraryInfo getTagLibrary() Returns the tag library owning this tag.

String getTagName() Returns the tag name.

VariableInfo[] getVariableInfo(TagData td) Returns information on the object created by this tag at
runtime. Null means no such object created. Default is
null if the tag has no "id" attribute, otherwise the array,
{"id", Object}, is returned.

String toString() Overridden version of Object.toString.

The TagData class also includes several class variables, used as arguments to the getBodyContent method, which are listed in
Table A-20.

Table A-20: Class Variables Declared in the TagInfo Class
Declaration Description

static String BODY_CONTENT _EMPTY The current instance of BodyContent is empty.

static String BODY_CONTENT_JSP The current instance of BodyContent contains JSP code.

static String BODY_CONTENT_TAG_DEPENDENT The current instance of BodyContent depends on the
evaluation of another tag.

TheTagLibraryInfo Class

This class contains information found in the Tag Library Descriptor file about the tag library. Table A-21 lists the methods for the
TagInfo class.

Table A-21: Methods in the TagLibraryInfo Class
Method Signature Description

String getInfoString() Returns the info string coded in the tld.

String getPrefixString() Returns the prefix string used to reference tags within the
JSP page.

String getReliableURN() Returns the URN to the tld.

String getRequiredVersion() Returns the version of the JSP container.

String getShortName() Returns the preferred short name of the library.

TagInfo getTag(String shortName) Returns the TagInfo object (tagInfo) for the library with
the short name argument.

TagInfo[] getTags() Returns an array of TagInfo objects — one for each tag
described in the tld.

String getURI() Returns the URI from the taglib directive for this library.

Instances of class TagLibraryInfo have instance variables that hold values returned from the get methods listed in Table A-21.

The TagSupport Class

The TagSupport class is a base class for defining new tag handlers implementing the Tag interface. The TagSupport class is a
utility class to be used as the base class for new tag handlers. The TagSupport class implements the Tag and IterationTag

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP151
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=734796495#wbpAppAfP155

interfaces and adds additional convenience methods including getter methods for the properties in Tag.

TagSupport has one static method that is included to facilitate coordination among cooperating tags. Many tag handlers extend
TagSupport and only redefine a few methods. Table A-22 lists the methods available in the TagSupport class.

Table A-22: Methods in the TagSupport Class
Method Signature Description

int doEndTag() Invokes this method when processing the end tag.

int doStartTag() Invokes this method when processing the start tag.

static tag findAncestorWithClass(Tag from,
Class tagClass)

Finds the instance of the class named tagClass that is the
closest ancestor to the tag named from.

Tag getParent() Returns the tag instance enclosing this tag instance.

String getTagId() Returns the value of the ID attribute for this tag (if it exists),
or null.

Object getValue(String key) Returns a value associated with the argument key.

Enumeration getValues() Returns an enumeration representing all the values
associated with this tag.

void release() Invoked after a call to doEndTag to reset the state of the
tag.

void removeValue(String key) Removes a key/value pair associated with this tag.

void setPageContext(PageContext pc) Sets the PageContext for this tag.

void setParent(Tag ptag) Sets the parent (ptag) for this tag.

void setTagID(String idAttr) Sets the ID attribute of the tag.

void setValue(String key, Object value) Sets a value for a key/value pair in this tag.

The TagSupport class also has two instance variables that are coded as shown in the following:

protected String id ;
protected PageContext pageContext ;

The VariableInfo Class

This class contains information on the scripting variables that are created/modified by a tag at run-time. This information is provided by
TagExtraInfo classes and it is used in the translation phase of JSP. Table A-23 lists the methods available in the VariableInfo
class.

Table A-23: Methods in the VariableInfo Class
Method Signature Description

String getClassName() Returns the class name of the scripting variables coded in
the tld as the <variable-class> element.

boolean getDeclare() Returns the value of the <declare> element coded in the
tld.

int getScope() Returns the value of the <scope> element coded in the tld.

String getVarName() Returns the name of the scripting variable coded in the tld as
the <variable> element coded in the tld.

The VariableInfo class contains three class variables, listed in Table A-24.

Table A-24: Class Variables Declared in the VariableInfo Class
Declaration Description

static int AT_BEGIN Variable is visible after the start tag.

static int AT_END Variable is visible after the end tag.

static int NESTED Variable is visible within the start and end tags.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you've seen how you can leverage the features of JavaServer Pages to create clients for enterprise
beans. By using JSP pages, you can hide functions within JavaBeans or custom tags, thereby separating your
presentation from your logic.

You've seen how a JSP page can use a custom tag to locate an instance of a bean's home object. The single, empty
tag containing needed data as values of attributes allows a JSP page to work with the EJB architecture. Once the
page has a reference to a home object, the page can request the execution of bean methods like any EJB client.

Tag libraries are a powerful feature of JSP. By using tag libraries, your JSP pages contain less Java scriptlet code and
more tags. Since scriptlet code implies business logic, by keeping scriptlet code to a minimum, you'll have less
mingling of presentation and logic.

You've seen the enterprise bean code that performs the same functions as the code shown in Chapter 10. Aside from
including dummy method implementations as required by EJB, the code that accesses the database is mostly the
same as that shown in Chapter 10. However, by adhering to the EJB specification, your code now creates objects that
are distributed objects with location transparency and have access to transaction and security resources by way of the
EJB container.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=468550666

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 10: The “Make Money” Brokerage Application

In previous chapters I’ve covered the capabilities of JavaServer Pages and shown you some sample JSP code. In this
chapter, you can see how JSP can be used in the construction of a brokerage application.

First, you can read about the functions available in our “Make Money” brokerage application. Next, you will read a
description of the underlying data store and client scenario. Last, you will see the JSP and Java code that implements
a typical client request.

The “Make Money” Application

The “Make Money” application is a small JSP program modeling an online stock trading system. This application will
be used to model several aspects of JSP development that we have covered thus far in this book. We will see the use
of JavaBeans in JSP pages. We will also see demonstrated the use of JSP error-handling tools discussed in the
previous chapter. If this is one of your first JSP applications, you should finish this chapter with a better understanding
of how you can use JSP successfully in developing Web applications.

The “Make Money” application provides clients with several functions. Once clients are successfully logged on, they
can:

● View their account history

● View their portfolio

● Place a buy or sell order

● Change personal information

The application is hardly full-featured. My intent is to present the code required to implement some of the operations of
the application. The next section describes the implemented features in more detail.

Implemented Application Features

Later in the chapter we will see the JSP and Java code that enables the following functions:

● Handling user logons

● Displaying a screen of selections

● Displaying the user’s account history

The JSP and Java code for other options is similar to what is presented here. In other words, it is not necessary to

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=609269569

understand new concepts or capabilities of JavaServer Pages to implement the remaining features.

Before you delve into the code, let’s take a look at the structure of the database that contains the customer, portfolio,
and security information used by the application.

The Application Data Defined

The database for our application consists of four tables. Even though you don’t need all four tables to implement the
three features mentioned in the previous section, you can describe the tables to provide a more complete view of the
application.

The four tables containing the data are described below.

● CustomerInfo: Contains the usual customer information (name, address, credit card info, and so on), an account
ID (primary key), and a password. The customer must supply the correct password to gain access to the
application.

● CustomerPortfolio: Contains an account ID (primary key), a stock ticker symbol, and a number representing how
much of this security the customer holds.

● SecurityInfo: Contains a stock ticker symbol, a trade date, and the selling price of the security on the trade date.
This table uses a compound key consisting of the stock ticker symbol and the trade date.

● TransactionHistory: Contains an account ID, a transaction date and type, a stock ticker symbol, and the number
of shares traded on the transaction date. This table uses a compound key of the account ID, transaction date,
stock ticker symbol, and the transaction type (buy or sell).

The preceding four tables have primary and foreign key relationships to ensure referential and data integrity. For sake
of simplicity, the JSP and Java code in this sample application does not have code to capture errors arising from
referential integrity constraint violations.

The Client Scenario

With the application data described, we can now look at a common client scenario. The application will allow a client
to proceed through the following steps:

1. The client requests access to the application by entering an account ID and a password.

2. Once the application receives a matching account ID and password combination, the application displays a list of
choices.

3. The client requests a listing of his or her transaction history; the application displays the list.

Without further delay, let’s look at the implementation of this scenario in the “Make Money” application.

Logging on to the “Make Money” Application

The customer enters a URL that identifies the JSP that handles the interactions necessary to grant access to the
client. Figure 10-1 shows the client logon screen.

Figure 10-1: Logging on to the application

Listing 10-1 shows the JSP code, logon.jsp, that displays the screen shown in Figure 10-1.

Listing 10-1: JSP for logon form (logon.jsp)

<html>
<head>
<title>Lou's Brokerage....Password Entry Screen</title>

<script language="Javascript">

 function giveFocus() {
 document.passwordform.acctNumber.focus() ;
 }
 function submit() {
 document.passwordform.submit() ;
 }
 function reset() {
 document.passwordform.reset() ;
 document.passwordform.acctNumber.focus() ;
 }

</script>

</head>

<jsp:include page="imagetable.html" flush="true" />

</center>

<center>
<form name="passwordform" action="checkLogin.jsp" method="POST" >

<p>Enter Your Account Number and Password in the Fields Below

Then Click Logon to Continue

<hr width="50%">
<table>
<tr>
 <td><P>Enter Your Account Number:</td>
 <td><input type="text" name="acctNumber" value="" width="25"></td>

</tr>
<tr>
 <td><P>Enter Your Password:</td>
 <td><input type="password" name="enteredPassword" value="" width="25"></td>
</tr>
<tr>
 <td><input type="button" name="Logon" value="Logon" onClick="submit()"></td>
 <td><input type="button" name="Reset" value="Reset" onClick="reset()"></td>
</tr>
</table>
<hr width="50%">
</center>
</form>
<%-- Here is the diagnostic when the user enters an invalid account number --%>
<% String message = (String)session.getAttribute("message") ;
 if (message != null) {
%>
<center>
<%= message %>
</center>
<% } %>

</body>
</html>

Many of the code features presented in Listing 10-1 are discussed in the following sections.

Using jsp:include

The following line includes an HTML table that shows the pictures of the stock exchange floor and the piggy banks:
<jsp:include page="imagetable.html" flush="true" />

Because you’re probably curious, Listing 10-2 shows the listing for the included HTML table, imagetable.html.

Listing 10-2: HTML to create the page banner (Imagetable.html)

<body bgcolor="#dddddd" topmargin=0>
<center>

<h1>

Make Money Brokerage

</h1>

<table>
<tr>
 <td></td>
 <td> </td>
 <td></td>
</tr>
</table>
</center>

No surprises here, right? The use of the jsp:include tag enables you to use this HTML page header for any or all
pages in the application.

Using a Form to Reference a JSP Page

The following line of code from Listing 10-1 directs the server to invoke the JSP page checkLogin.jsp when the
client clicks the submit button located at the bottom of the HTML form:
<form name="passwordform" action="checkLogin.jsp" method="POST" >

Using a Form to Associate Client Inputs with Program Variables

The following lines of code from Listing 10-1 create the form elements acctNumber and enteredPassword that will
be associated with program variables used in subsequent JSPs and JavaBean code.
<input type="text" name="acctNumber" value="" width="25"></td>
<input type="password" name="enteredPassword" value="" width="25">

Using Scriptlet Code to Display a Diagnostic

The following scriptlet code from Listing 10-1 causes login.jsp to display a message stating that the account
number is not on file or the password entered for the account ID is invalid.
<% String message = (String)session.getAttribute("message") ;
 if (message != null) {
%>
<center>
<%= message %>
</center>
<% } %>

The attribute message is set in the JSP page that checks the user login (checkLogin.jsp). If the account ID is not
on file or the password does not match the entered ID, checkLogin.jsp sets a session variable named message
to the diagnostic. The preceding scriptlet code checks the value of the message variable and, if not null, displays the
message in red.

Checking the Account ID/Password Combination

Once the client enters an account ID/password combination and clicks “Logon,” the application invokes the JSP page
checkLogin.jsp. This JSP page does not contain any static code for display. The purpose of checkLogin.jsp is
to access the CustomerInfo table to determine the following:

● Is the account ID entered on file?

● Is the password entered for an existing account ID the same as the password stored in the CustomerInfo table?

Listing 10-3 shows the code for checkLogin.jsp.

Listing 10-3: JSP to verify login (checkLogin.jsp)

<%@ page contentType="text/html"
 errorPage="errorpageex1.jsp"
 import="chapter10.*" %>

<%-- Determine if password matches account ID --%>
<%
 String enteredPassword =
 request.getParameter("enteredPassword") ;
 String acctNumber =
 request.getParameter("acctNumber") ;

 CustomerBean customer = new CustomerBean(acctNumber) ;
 String password = customer.getPassword() ;

 boolean redirectToLogin = false ;

 if (password.length() == 0) {
 session.setAttribute("message",
 "Account Number " + acctNumber +
 " Not on File. Enter Another Account Number") ;
 redirectToLogin = true ;

 }
 else
 if (!password.equals(enteredPassword)) {
 session.setAttribute("message",
 "Password Entered Does Not Match Password For Account " +
 acctNumber) ;
 redirectToLogin = true ;
 }

 if (redirectToLogin) {
%>
<jsp:forward page="login.jsp" />
<% } else {
 session.setAttribute("customer", customer) ;
%>
<jsp:forward page="showcustoptions.jsp" />
<% } %>

The first statement worthy of note in checkLogin.jsp is the page directive, shown here:

<%@ page contentType="text/html"
 errorPage="errorpageex1.jsp"
 import="chapter10.*" %>

The page directive serves several uses in checkLogin.jsp, as explained in the following sections.

Using the JSP Page Directive

Note the use of a JSP error page, errorpageex1.jsp, in the preceding code example. Any errors in JSP page
processing cause the JSP engine to invoke errorpageex1.jsp. For more information on error page
errorpageex1.jsp, see the sidebar "Explaining errorpageex1.jsp."

Explaining errorpageex1.jsp

The code in Listing 10-3 indicates errorpageex1.jsp as the page which should be used if any errors occur while
processing the login page. Let's look at how this error page works.
<%-- Tell JSP that this is an error page --%>
<%@ page isErrorPage="true" %>

<html>
<head>
<title>An Error Has Occurred!!!</title>
</head>

<body bgcolor="#dddddd">

<P>
The Following Error Occurred on <%= new java.util.Date() %>

<hr>
<%=exception %>

<%

exception.printStackTrace();

%>

<hr>

<p>Call 4-4444 and report the above line in red

</body>

</html>

First, we see the use of the isErrorPage directive, indicating that this page is an error page. Since this page is an
error page, we have access to the implicit exception object. The use of the statement <%=exception %> outputs
the error to the browser, giving the client a message as to what occurred. Here we also print the program stack trace
of the exception to the browser. Normally the stack trace and exception messages would be saved for logging or
debugging output (see Chapter 9), and what would be output here is a user-friendly message indicating what the user
should do because of the error.

The next attribute set in the page directive is the import attribute. The import attribute of the page directive serves
the same purpose as the import statement in a Java program. In this import attribute, you want the code in a
package called chapter10 to be known without qualification to our JSP.

Using the Implicit Request Object to Reference Entered Data

How does the checkLogin.jsp page know what values were entered by the client in the previously displayed JSP
page, login.jsp? The following code in checkLogin.jsp references the request implicit object.

 String enteredPassword =
 request.getParameter("enteredPassword") ;
 String acctNumber =
 request.getParameter("acctNumber") ;

The strings passed to the getParameter method must match the names coded for the form text elements in
login.jsp.

Now that the String objects enteredPassword and acctNumber contain what the client entered, you need to see
how checkLogin.jsp verifies that the account ID is on file and the password entered matches the password on file.

Matching Entered Data to Stored Data

The JSP uses Java code stored in a class called CustomerBean to verify the account ID and to check the entered
password. Before looking at the code in CustomerBean.java, which does the actual checking, here’s the JSP code
that accesses the code in CustomerBean.java:

CustomerBean customer = new CustomerBean(acctNumber) ;
String password = customer.getPassword() ;

The password string is the password stored on the CustomerInfo table for the entered account ID.

The checkLogin.jsp page checks if the getPassword method returns a password. If the returned password is
blank, the account ID entered is not on file and checkLogin.jsp sets a message stating that fact. The following
code reflects the above logic:
if (password.length() == 0) {
 session.setAttribute("message",
 "Account Number " + acctNumber +
 " Not on File. Enter Another Account Number") ;
 redirectToLogin = true ;

 }

The Boolean redirectToLogin causes checkLogin.jsp to display the login page.

If the getPassword method returns a password, checkLogin.jsp compares the returned password with the
entered password. If the two passwords do not match, checkLogin.jsp sets a message to that effect. The following
code reflects this logic:
else
 if (!password.equals(enteredPassword)) {
 session.setAttribute("message",
 "Password Entered Does Not Match Password For Account " +
 acctNumber) ;
 redirectToLogin = true ;
 }

Notice that checkLogin.jsp checks for a valid account ID first, followed by checking for a valid password. Both
code blocks use the setAttribute method of class Session. By using the session object, the attributes set in
one JSP are known to other JSPs sharing the session.

Finally, if either mismatch condition arises, the Boolean redirectToLogin is examined and, if true,
checkLogin.jsp forwards processing back to the login.jsp page. If no mismatches are found,
checkLogin.jsp saves the customer information in the session object and forwards the client to the "Show Options"
screen. The following code reflects this logic:
 if (redirectToLogin) {
%>
<jsp:forward page="login.jsp" />
<% } else {
 session.setAttribute("customer", customer) ;
%>
<jsp:forward page="showcustoptions.jsp" />
<% } %>

Figures 10-2 and 10-3 show a mismatch of password and account ID, respectively.

Figure 10-2: Entered password does not match password on file

Figure 10-3: Account ID does not exist

Before we look at the showcustomeroptions.jsp page, let’s explore the code in CustomerBean.java.

Creating the “Make Money” JavaBeans

So far we have looked at several of the JSPs in the “Make Money” application. Let's now get our first look at one of the
JavaBeans in this application (Listing 10-4). In the “Make Money” application, the customer is the central figure. The
CustomerBean models the necessary attributes that a customer would have.

Listing 10-4: JavaBean implementing the Customer (CustomerBean.java)

package chapter10 ;
import java.sql.* ;
public class CustomerBean {

 private String acctNumber = "" ;
 private String password = "" ;
 private String customerName = "" ;
 private String mailingAddress = "" ;
 private String billingAddress = "" ;
 private String creditCardType = "" ;
 private String creditCardNum = "" ;
 private String expirationDate = "" ;

 //Use the account number to access the customer table....
 public CustomerBean(String accountID) throws Exception {
 String persInfoQuery = "select customername," +
 " mailingaddress, billingaddress, " +
 " creditcardtype, creditcardnumber," +
 "expirationdate, password " +
 "from customerinfo where accountid = " ;

 StatementBean sqlStmt = new StatementBean() ;
 String query = persInfoQuery +
 "'" + accountID + "'";

 Connection aConn = sqlStmt.connectToDB() ;
 Statement stmt = aConn.createStatement();
 ResultSet myResultSet = stmt.executeQuery(query);

 if (myResultSet.next()) {
 acctNumber = accountID ;
 customerName =
 myResultSet.getString("customername") ;
 mailingAddress =
 myResultSet.getString("mailingaddress") ;
 billingAddress =
 myResultSet.getString("billingAddress") ;
 creditCardType =
 myResultSet.getString("creditcardtype") ;
 creditCardNum =
 myResultSet.getString("creditcardnumber") ;
 expirationDate =
 myResultSet.getString("expirationdate") ;
 password = myResultSet.getString("password") ;
 }
 aConn.close() ;
 }
 //Get/Set methods follow
 public String getAcctNumber() {
 return acctNumber ;
 }
 public void setAcctNumber(String acctnum) {
 acctNumber = acctnum ;
 }
 public String getPassword() {
 return password ;
 }
 public void setPassword(String pswd) {
 password = pswd ;
 }
 public String getCustomerName() {
 return customerName;
 }
 public void setCustomerName(String cName) {

 customerName = cName ;
 }
 public String getMailingAddress() {
 return mailingAddress;
 }
 public void setMailingAddress(String mAddr) {
 mailingAddress = mAddr ;
 }
 public String getBillingAddress() {
 return billingAddress;
 }
 public void setBillingAddress(String mAddr) {
 billingAddress = mAddr ;
 }
 public String getCreditCardType() {
 return creditCardType ;
 }
 public void setCreditCardType(String cType) {
 creditCardType = cType ;
 }
 public String getCreditCardNum() {
 return creditCardNum;
 }
 public void setCreditCardNum(String mAddr) {
 creditCardNum = mAddr ;
 }
 public String getExpirationDate() {
 return expirationDate ;
 }
 public void setExpirationDate(String eDate) {
 expirationDate = eDate ;
 }

}

The code in CustomerBean.java is straightforward: get and set methods enable you to set instance properties
from any JSP. The constructor is responsible for extracting information for a customer based on the value of the
table’s primary key, acctNumber.

The constructor for CustomerBean.java uses another class called StatementBean.java, which, in turn, uses
code from another class called SQLBean.java. Listing 10-5 shows the code for StatementBean.java, while
Listing 10-6 shows the code for SQLBean.java.

Listing 10-5: JavaBean implementation of a SQL statement (StatementBean.java)

package chapter10;
import java.sql.*;
import java.io.*;

public class StatementBean extends SQLBean
 {
 String passwordQuery = "select password from customerinfo " +
 " where accountid = ";
 String accountInfoQuery = "select transactiondate, " +
 " transactiontype, security, numbershares " +
 "from transactionhistory where accountid = " ;

 String myDeleteQuery = "delete " ;
 String myInsertQuery = "insert into " ;

 ResultSet myResultSet = null;
 public StatementBean() {super();}

 public String getPassword(String accountID) throws Exception {

 String passwordOnDB = null ;
 String query = passwordQuery + accountID ;
 Statement stmt = myConn.createStatement();
 myResultSet = stmt.executeQuery(query);
 if (myResultSet != null) {
 myResultSet.next() ;
 passwordOnDB = myResultSet.getString("password") ;
 myConn.takeDown() ;
 }

 return passwordOnDB ;
 }

 public boolean getAccountInfoQuery(String accountID) throws Exception {
 String query = accountInfoQuery + accountID ;
 Statement stmt = myConn.createStatement();
 myResultSet = stmt.executeQuery(query);
 return (myResultSet != null);
 }

 public boolean get() throws Exception
 {
 return myResultSet.next();
 }

 public String getColumn(String inCol) throws Exception
 {
 return myResultSet.getString(inCol);
 }
 }

The StatementBean class contains code to perform the actual database connect through a superclass called
SQLBean. The code for SQLBean is shown in Listing 10-6.

Listing 10-6: Code for SQLBean.java

package chapter10 ;
import java.sql.*;
import java.io.*;

public class SQLBean
 {
 private String myDriver = "sun.jdbc.odbc.JdbcOdbcDriver";
 private String myURL = "jdbc:odbc:stock";

 protected Connection myConn;

 public SQLBean() {}

 public void makeConnection() throws Exception
 {
 Class.forName(myDriver);
 myConn = DriverManager.getConnection(myURL);
 }

 public Connection connectToDB() throws Exception
 {
 Class.forName(myDriver);
 return DriverManager.getConnection(myURL) ;
 }

 public void takeDown() throws Exception
 {
 myConn.close();
 }
 }

SQLBean contains code that handles the actual connection and disconnection from the database containing tables for
the application.

There’s nothing specific or peculiar to using these Java classes with JSPs. The JSPs that require instances from
these classes reference the instances through scriptlet code or bean references.

The StatementBean class also extracts the account history information. You can see references to the
StatementBean class later in this chapter.

Next, let’s examine the JSP that presents the user with a list of options — the JSP page named
showcustoptions.jsp.

Examining the showcustoptions.jsp Page

Once the user has successfully logged into the “Make Money” application, the customer is able to access any of the
account options. The showcustoptions.jsp page presents the customer with a list of all of the implemented
options, as shown in Figure 10-4.

Figure 10-4: The list of user choices

Notice the inclusion of the client’s name in the HTML page. Listing 10-7 shows the JSP code for
showcustoptions.jsp.

Listing 10-7: JSP to display customer options (showcustoptions.jsp)

<%@ page contentType="text/html"
 import="chapter10.*"
 errorPage="errorpageex1.jsp" %>

<%-- If we've gotten this far, we have a valid account number and password. --%>
<%-- Why not show the options list? --%>

<%
 String custoptions = request.getParameter("custoptions") ;
 CustomerBean customer = (CustomerBean)session.getAttribute("customer") ;
 String customerName = customer.getCustomerName() ;

 if (custoptions != null) {
%>
<jsp:forward page="<%= custoptions %>" />
<% } %>

<html>
<head>
<title>Options for <%= customerName %> </title>
</head>

<jsp:include page="imagetable.html" flush="true" />

<center>

<form name="optionsform" action="showcustoptions.jsp" method="POST">

<p><%= customerName %>, select a Choice Below and Click Proceed to Continue

<hr width="50%">
<table>
<tr>
 <td><input type="radio" name="custoptions" value="viewhistory.jsp" checked>
 View Your Account History
 </td>
</tr>
<tr>
 <td><input type="radio" name="custoptions" value="viewportfolio.jsp">
 View Your Portfolio
 </td>
</tr>
<tr>
 <td><input type="radio" name="custoptions" value="dotransaction.jsp">
 Place an Order
 </td>
</tr>
<tr>
 <td><input type="radio" name="custoptions" value="changepersonal.jsp">
 Change Personal Information
 </td>
</tr>
<tr>
 <td><p><input type="submit" name="proceed" value="Proceed"></td>
 <td></td>
</tr>

</table>
<hr width="50%">
</center>
</form>

</body>

</html>

The workings of the preceding page are based on associating a JSP corresponding to a user option with each value of
the radio button on the form. In our case, when the client clicks the “View Your Account History” option, the form sets
the value to the name of a JSP page corresponding to that option (viewhistory.jsp).

In particular, the attribute custoptions used in the form holds the value of the JSP page corresponding to the client
selection. The following code in showcustoptions.jsp forwards JSP processing to the selected page.

<%
 String custoptions = request.getParameter("custoptions") ;

 if (custoptions != null) {
%>
<jsp:forward page="<%= custoptions %>" />
<% } %>

Other pieces of code in showcustoptions.jsp fetch the customer name, as shown here:

CustomerBean customer = (CustomerBean)session.getAttribute("customer") ;
 String customerName = customer.getCustomerName() ;

Assume the client clicks “View Account History.” The showcustoptions.jsp forwards JSP processing to
viewhistory.jsp. Let’s take a look at the workings of viewhistory.jsp next.

Examining viewhistory.jsp

One of the implemented customer options is the ability to view a history of all transactions. This feature, displayed to
the customer as "View Account History,” is implemented in viewhistory.jsp with the help of one new class,
AccountHistory. Figure 10-5 shows an HTML page generated by viewhistory.jsp.

Figure 10-5: The client’s account history

Listing 10-8 shows the code for viewhistory.jsp.

Listing 10-8: Code for viewhistory.jsp

<%@ page contentType="text/html"
 import="chapter10.*"
 errorPage="errorpageex1.jsp" %>

<%-- Display the account activity for this customer --%>

<%
 CustomerBean customer = (CustomerBean)session.getAttribute("customer") ;
 String customerName = customer.getCustomerName() ;
 String acctNum = customer.getAcctNumber() ;
%>
<html>
<title>Transaction History for <%=customerName %> <%= acctNum %> </title>
<body bgcolor="#dddddd" >
<center>

<%-- Put in the pictures for the page top --%>

<jsp:include page="imagetable.html" flush="true" />

<%
 AcctHistory anAcctHistory = new AcctHistory() ;

 if (anAcctHistory.getHistoryThisAccount(acctNum)) {

%>
<p><%= customerName %>, here is a list of your transactions

<hr width="50%">
<form name="historyform" action="showcustoptions.jsp" method="POST">

<table>

<%
 while (anAcctHistory.getNextHistRecord()) {
%>

<tr><td>
 On <%= anAcctHistory.getColumn("transactiondate") %>, you traded
 <%= anAcctHistory.getColumn("numbershares") %> shares of
 <%= anAcctHistory.getColumn("security") %> on a
 <%= anAcctHistory.getColumn("transactiontype") %> order.
 </td>
 </tr>
 <tr bgcolor="red"><td> </td> </tr>

<%
 }

 }
%>
<tr>
 <td><p><input type="submit" name="Return" value="Return to Customer Options"></td>

</tr>
</table>
</form>
<hr width="50%">
</center>

</body>
</html>

The viewhistory.jsp page uses much of the same code as we've seen in the other JSP pages in this application,
so we won't cover them again. What's new in this JSP page is the use of an instance of an account history object from
class AccountHistory. Before exploring the viewhistory.jsp page further, let’s first take a look at the
AccountHistory class.

Examining the AccountHistory Class

The AccountHistory class contains code to access the TransactionHistory table given a valid account ID.
Listing 10-9 shows the code for the AccountHistory class.

Listing 10-9: AccountHistory.java

package chapter10 ;
import java.sql.* ;
public class AcctHistory extends SQLBean {

 private String acctNumber = "" ;
 private String transactionDate = "" ;
 private String transactionType = "" ;
 private String security = "" ;
 private String numberShares = "" ;

 public ResultSet myResultSet ;

 public AcctHistory() { super(); } ;

 //Use the account number to access the history table....
 public boolean getHistoryThisAccount(String accountID)
 throws Exception {
 String histQuery = "select accountid, transactiondate," +
 " transactiontype, security, numbershares " +

 "from transactionhistory where accountid = " ;

 AcctHistory sqlStmt = new AcctHistory() ;
 String query = histQuery + "'" + accountID + "'";

 myConn = sqlStmt.connectToDB() ;
 Statement stmt = myConn.createStatement();
 myResultSet = stmt.executeQuery(query);

 return myResultSet != null ;
 // aConn.close() ;
 }
 public AcctHistory getHistoryRecord() throws Exception {

 AcctHistory aHistRec = new AcctHistory() ;
 aHistRec.acctNumber =
 myResultSet.getString("accountid") ;
 aHistRec.transactionDate =
 myResultSet.getString("transactiondate") ;
 aHistRec.transactionType =
 myResultSet.getString("transactiontype") ;
 aHistRec.security =
 myResultSet.getString("security") ;
 aHistRec.numberShares =
 myResultSet.getString("numbershares") ;

 return aHistRec ;

 }

 public boolean getNextHistRecord() throws Exception
 {
 return myResultSet.next();
 }

 public String getColumn(String inCol) throws Exception
 {
 return myResultSet.getString(inCol);
 }

 public void takeDown() throws Exception
 {
 myConn.close();
 }

 //Get/Set methods follow
 public String getAcctNumber() {
 return acctNumber ;
 }
 public void setAcctNumber(String acctnum) {
 acctNumber = acctnum ;
 }
 public String getTransactionDate() {
 return transactionDate ;
 }
 public void setTransactionDate(String tdat) {
 transactionDate = tdat;
 }
 public String getTransactionType() {
 return transactionType;
 }
 public void setTransactionType(String ttyp) {

 transactionType = ttyp;
 }
 public String getSecurity() {
 return security;
 }
 public void setSecurity(String sec) {
 security = sec;
 }
 public String getNumberShares() {
 return numberShares;
 }
 public void setNumberShares(String nShrs) {
 numberShares = nShrs ;
 }
}

Revisiting viewhistory.jsp

Now that we've looked at the implementation of the AccountHistory class, let's return to viewhistory.jsp. The
JSP generates an HTML table inside a form. The form includes a button that enables the user to return to the
customer options screen.

The HTML table writes a line of account history between two red lines. The following code accesses the instances of
AccountHistory that contain history information:

<%
 AcctHistory anAcctHistory = new AcctHistory() ;

 if (anAcctHistory.getHistoryThisAccount(acctNum)) {

%>

<%
 while (anAcctHistory.getNextHistRecord()) {
%>
<tr><td>
 On <%= anAcctHistory.getColumn("transactiondate") %>, you traded
 <%= anAcctHistory.getColumn("numbershares") %> shares of
 <%= anAcctHistory.getColumn("security") %> on a
 <%= anAcctHistory.getColumn("transactiontype") %> order.
 </td>
 </tr>
 <tr bgcolor="red"><td> </td> </tr>

<%
 }

 }
%>

Note Some HTML table code has been omitted from this code sample to enable you to view the JSP code that
accesses and lists the account history.

The JSP creates an instance of the AccountHistory class and then uses methods in the AccountHistory class
(getHistoryThisAccount and getNextHistRecord) and a method in the superclass SQLBean (getColumn) to
access history information.

The remaining code in viewhistory.jsp formats the fetched information into an HTML table and provides a client
with a way of returning to the options screen.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 9: JSP Errors and Debugging

Overview

Few processes execute as smoothly as originally planned. Nowhere is this more true than in the world of
programming. Even unseasoned programming novices know that programming errors and the debugging needed to
locate and repair such errors are part of the job.

This chapter covers how to deal with programming errors related to JSP development. You’ll read about the JSP
features that can route errors to specific JSP pages, and then spend some time examining JSP translation and
runtime errors. You’ll also explore JSP-specific exception classes.

After encountering and handling JSP errors, you must track down the root cause of the error. This chapter discusses
some effective techniques for debugging your JSP pages. You’ll read about the straightforward methods, such as
writing to a log, and the not-so-straightforward, such as creating a custom debugging class.

Before you get into the details of JSP error handling, you may be wondering why the topic of JSP errors and
debugging deserves special treatment. The next section provides some answers.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=360668835

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You've now seen many of the similarities and differences between JSP pages and servlets. It is necessary to
understand these two technologies and how they work so that you can decide whether to use a JSP page or a servlet
in a specific situation. Remember, above all, that neither JSP nor servlets are the final solution. As we return our focus
to JSP in the following chapters, remember that the power of JSPs and servlets may best be found in using them
together.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=294856613

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JSPs with Servlets

You’ve learned about JSP pages containing Java code that gets passed to servlets. You’ve witnessed JSPs using
JavaBeans. You’ve seen examples of JSP custom-tag libraries. By now, you’ve discovered quite a lot about
JavaServer Pages. But is there anything in the realm of generating dynamic Web content that JSPs cannot do? More
specifically, does a situation exist in which using only JSPs to generate dynamic Web content is not the best solution?

JSP development assumes that your pages have a common presentation style and theme. JSPs may be inadequate
at providing dramatically different looks based on different user inputs or different data. A JSP page that effectively
displays data as an HTML table may do a poor job displaying data as an animated chart.

Then what is one to do? Although opinions may differ, you can leverage servlets to help your JSP page development
in some situations. A servlet may start the dynamic content preparation process and then forward the request to one
or more JSPs to complete the presentation. In the Model 2 approach, the Model-View-Controller pattern is applied to
this situation by having a servlet act as the controller, the beans as the model, and the JSPs as the view. A more
recent point of view embraces the idea of a server acting as a dispatcher of requests to JSPs and other Java
container objects, such as Enterprise JavaBeans. Appropriately, the term used to describe the above-cited point of
view is called the Dispatcher approach, which is illustrated in Figure 8-2.

Figure 8-2: A servlet acting as a dispatcher

As Figure 8-2 shows, the servlet captures the request and manages the application flow. The dispatching servlet may
not be responsible for generating any dynamic presentation content. Figure 8-2 shows the dispatching servlet

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=923451463

accessing a Java component in addition to dispatching requests and fetched data (from other components) to some
JSP pages or other servlets.

Forwarding Requests from Servlets

In the recent past, the Java servlet programmer did not have a convenient way of implementing the preceding
approach. But with the release of the Servlet API 2.1, the Java programmer can implement the RequestDispatcher
interface. Implementations of RequestDispatcher are available at ServiceContext and can be used to send a
request to a static resource (an HTML page, for example) or a dynamic resource (a JSP or servlet, for example).

The servlet programmer has two methods to implement: forward, to transfer control to another resource; or
include, to handle the overall management of the request from, and the response to, the client.

The code, shown in the following, forwards a request from a servlet to a JSP:
//Assume request and response have their ‘usual’ meaning
RequestDispatcher rDisp =
 getServletContext().getRequestDispatcher("myJSPPage.jsp");
rDisp.forward(request, response) ;

The URL argument in getRequestDispatcher is a relative path URL.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using the JSP/Servlet Environment

Now that we have reviewed the methods related to the JSP and servlet life cycles, let's take a close look at the environment in which they exist. Understanding the JSP/servlet environment will help
us to better leverage the features of this environment that are useful for writing robust Web applications. Figure 8-1 depicts the relevant environmental components and the request/response flow
between clients, JSPs, and servlets.

Figure 8-1: A high-level view of JSP and servlet processing

HTTP, FTP, or any other supported protocol request type originates from a browser (client) and is sent to the Web server. The JSP-enabled server recognizes the .jsp extension and realizes that
the request is packaged with a JavaServer Page. The server translates the JSP page into a servlet. Along the way, the original request gets passed to the _jspService method in the generated
servlet. After the servlet executes, perhaps by communicating with other Java components such as JavaBeans, the servlet returns a response in the form of an HTML, XML, plain text, or other MIME-
type resource.

Useful Servlet Environment Features

The servlet environment provides important features to JSP pages. This section describes some of these features.

Session Management

One advantage of using servlets and, as a result, JSPs, is that servlets provide session management services. Recall that a session is a connection between a client and a server that enables the
two to share data. The server identifies sessions by using a session key, which the server stores in a dictionary-type object.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=119497300

Servlets and JSP pages use cookies by default to manage sessions. A cookie is a set of values, a name-value pair, which is sent to a client. Cookie implementations usually involve files stored on
the client machine, and the location of such files is browser dependent.

It is important to remember that cookies can’t be trusted to maintain sessions. For example, the client machine may have cookies disabled. In this situation, the servlet can use a technique called
URL rewriting, which involves encoding the session key in the request URL. The servlet can decode the URL to extract the session key, thereby identifying the appropriate client belonging to that
particular session.

Encoding and Parsing Form Data

Data sent with a get or post request may be encoded in a scheme known as URL encoding. The encoding replaces special characters, such as spaces and unprintable characters, with symbols
and hex values. Names and values are encoded separately. You’ve seen this encoding on search engines before. For example, an advanced search in the Google search engine
(http://www.google.com/) encodes search parameters as follows:

http://www.google.com/search?as_q=quantum+computing&num=10&btnG=Google+Search&as_oq=&as_epq=&as_eq=&as_occt=title&lr=&as_dt=i&sitesearch=&safe=off

Notice the name-value pairs (q=quantum+computing) with the + symbol replacing the blank, the & symbol connecting multiple search criteria, and the setting of hidden parameters (safe=off).

Servers are capable of automatically decoding this data. Whether the data is sent by a get request or post request, your JSP page can decode and retrieve the data by using the getParameter
method of the request object. For example, the JSP expression shown below retrieves the value of the q parameter:

<%= request.getParameter("q") %>

Using the above method eliminates the necessity of writing code to parse the data or having to use the java.net.URLEncoder and java.net.URLDecoder classes.

Accessing Shared Data

JSPs and servlets may exchange data by using a set of methods available to objects of class ServletContext. In JSP lingo, the application scope represents objects derived from class
ServletContext. Some of these methods are getAttribute, getAttributeNames, setAttribute, and removeAttribute.

Servlets and JSPs also can share initialization parameters and configuration settings by using methods available to objects of class ServletConfig, such as getInitParameter and
getInitParameterNames.

Your Web server may have additional methods to expose various properties and attributes of your server environment to your JSP pages.

Servlets provide the JSP programmer with powerful features that are accessed with standard JSP expressions. You may think that you’ll never have to code a servlet because all your dynamic Web
page content needs are addressed by JSP. Although JSP brings unparalleled abilities to the Web application developer, you shouldn’t throw out that servlet API documentation just yet. The following
section touches on some cases in which you may want to use Java servlets with your JSPs.

http://www.google.com/

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 8: JSPs and Servlets Revisited

In previous chapters, you’ve read much about the relationship between JavaServer Pages and Java servlets. In this chapter, you can take a closer look at this
relationship. You can delve into the servlet life cycle and discover the differences between a “raw” servlet and a JSP-generated servlet. You can also read about
important servlet and JSP methods, along with learning about the servlet environment. In addition, you can gain insight into why you need to use servlets, which
is discussed in this chapter’s section on using Java servlets and JSPs together.

Examining the Servlet Life Cycle

Because JSPs get translated into Java servlets, the JSP life cycle closely parallels that of servlets. In brief, when you request a JSP page, the translator
generates a servlet and the Java compiler on the server compiles the generated servlet. Then the server invokes the class loader to load the servlet and start
execution.

If the servlet contains an init method, the container calls it. The init method runs only once. You can see that, for JSP-generated servlets, the analogue for
the servlet init method is called jspInit. Both init and jspInit are optional methods.

After execution of init or jspInit, the servlet executes its service method. The JSP equivalent for the service method is _jspService. The server can
run multiple threads accessing the service or the _jspService method simultaneously, or you can force the server to single thread the method’s access by
using a single-threaded model using the isThreadSafe attribute of the page directive.

Next, in servlets the service method invokes either the doGet or doPost method. The doGet and doPost methods of the servlet implement the get and
post requests made from the client browser to the servlet, respectively. JSP-generated servlets do not have implementations for doPost and doGet. JSP-
generated servlets perform both post and get requests in the _jspService method. Actually, a servlet can implement various do methods depending on the
particulars of the HTTP request, such as doPut and doDelete methods.

When the server unloads a servlet, the server invokes the destroy method. The JSP-generated equivalent to the destroy method is jspDestroy. As with
init and jspInit, destroy and jspDestroy are optional.

Writing the Minimal Servlet

Given that most of the servlet methods discussed above are optional, you may wonder what is the “smallest” or minimal servlet? Listing 8-1 provides an example
of a minimal servlet.

Listing 8-1: A contender for the minimal servlet

import java.io.* ;
import java.text.* ;
import java.util.* ;
import javax.servlet.* ;
import javax.servlet.http.* ;

public class minimalServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType("text/html") ;
 PrintWriter out = response.getWriter() ;
 out.println("<HTML> <BODY> Hello World </BODY>
 </HTML>") ;
 out.close() ;

 }
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=422435410
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=760538467#wbpch08fP12

 {
 doGet(request, response) ;
 }}

The above servlet is as bare bones as it gets. It is important to note that you do not have to override the doGet or doPost methods if you instead override the
service method and handle all requests there. This would not be considered good form in servlet design, but it is an option. In the next section we will see that
a minimal JSP-generated servlet is a bit different since the doGet and doPost methods do not exist.

Writing a Minimal JSP-Generated Servlet

The nuts and bolts of a JSP-generated servlet are dependent on the JSP-to-servlet translator used with a particular Web server. Listing 8-2 shows a rather
simple JSP page in which Tomcat 3.2 generated the servlet. However, this page is not the simplest because it has actual JSP scripting elements — a simple
page would have nothing but static text.

Listing 8-2: A simple JSP page with a couple of scripting elements

<%@ page contentType="text/html" %>
<html>
<head>
<title>Minimal JSP Page</title>
</head>

<body>
<%! String hello = "Hello World"; %>
<%= hello %>
</body>

</html>

Listing 8-3 shows the servlet that Tomcat generates from the JSP page in Listing 8-2.

Listing 8-3: JSP-generated servlet for minimal JSP page in Listing 8-2

package jsp.loutest;

import javax.servlet.*;
import javax.servlet.http.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.PrintWriter;
import java.io.IOException;
import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Vector;
import org.apache.jasper.runtime.*;
import java.beans.*;
import org.apache.jasper.JasperException;

public class _0002fjsp_0002floutest_0002floutest_0002ejsploutest_jsp_7
 extends HttpJspBase {

 /* begin [file="D:\\tomcat32\\Webapps\\examples\\jsp\\loutest\\loutest.jsp";from
=(7,3);to=(7,34)] */
 String hello = "Hello World";
 // end

 static {
 }
 public _0002fjsp_0002floutest_0002floutest_0002ejsploutest_jsp_7() {
 }

 private static boolean _jspx_inited = false;

 public final void _jspx_init() throws JasperException {
 }

 public void _jspService(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {

 JspFactory _jspxFactory = null;
 PageContext pageContext = null;

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=760538467#wbpch08fP40
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=760538467#wbpch08fP42

 HttpSession session = null;
 ServletContext application = null;
 ServletConfig config = null;
 JspWriter out = null;
 Object page = this;
 String _value = null;
 try {

 if (_jspx_inited == false) {
 _jspx_init();
 _jspx_inited = true;
 }
 _jspxFactory = JspFactory.getDefaultFactory();
 response.setContentType("text/html");
 pageContext =
_jspxFactory.getPageContext(this, request, response,
 "", true, 8192, true);

 application = pageContext.getServletContext();
 config = pageContext.getServletConfig();
 session = pageContext.getSession();
 out = pageContext.getOut();

 /* HTML begin [file="D:\\tomcat32\\Webapps\\examples\\jsp\\loutest\\loutest.jsp";from=(0,35);to=(7,0)] */
 out.write("\r\n<html>\r\n<head>\r\n<title>Minimal JSP
Page</title>\r\n</head>\r\n\r\n<body>\r\n");
 // end
 /* HTML begin
[file="D:\\tomcat32\\Webapps\\examples\\jsp\\loutest\\loutest.jsp";from=(7,36);to=(8,0)] */
 out.write("\r\n");
 // end
 /* HTML begin [file="D:\\tomcat32\\Webapps\\examples\\jsp\\loutest\\loutest.jsp";from=(8,3);to=(8,10)] */
 out.print(hello);
 // end
 /* HTML begin [file="D:\\tomcat32\\Webapps\\examples\\jsp\\loutest\\loutest.jsp";from=(8,12);to=(12,0)] */
 out.write("\r\n</body>\r\n\r\n</html>\r\n");
 // end

 } catch (Exception ex) {
 if (out.getBufferSize() != 0)
 out.clearBuffer();
 pageContext.handlePageException(ex);
 } finally {
 out.flush();
 _jspxFactory.releasePageContext(pageContext);
 }
 }
}

Whew! What is the reason for showing the generated code? The first reason is to demonstrate the labor and toil expended in generating a servlet from a very
small JSP page. Second, examining generated code is best left to computers, not humans — don’t you agree?

Note the absence of jspInit, jspDestroy, doGet, and doPost methods in the generated servlet (or take my word for it!). Also, take note that the bolded
lines are generated in response to the JSP code in the page.

Because an implementation of the init method is not required for servlet execution and an implementation for the jspInit method is not required for JSP
execution, why would you implement these two methods? You can discover why in the next section.

Examining the init and jspInit Methods

As previously mentioned, the init method is called when the servlet first loads. The init method is not called for each user request. Hence, init is used to
perform one-time initializations. Actually, Java applets have an init method, which is not required, that serves the same function as init for servlets.

You may code the init method sans arguments as follows:

public void init() throws ServletException {

Also, you may pass an object of ServletConfig to init as follows:

public void init(ServletConfig sConfig)
 throws ServletException {
super.init(sConfig) ;

You would use the second signature for init when your servlet requires server settings. Creating server settings is dependent on the server being used. Some

servers use a configuration file, whereas others use a GUI to set values for server settings.

Note the bolded invocation of the superclass constructor in the second example. Do yourself a favor and code the call to super.init as the first line in your
init implementation when you require an object of ServerConfig.

As with init, jspInit is not required for JSP execution. However, you can code a jspInit method in your JSP page, which is passed to the generated
servlet. The servlet engine executes the jspInit method only once upon loading the generated servlet. Listing 8-4 shows how to code a jspInit method in
your JSP pages.

Listing 8-4: Example of jspInit method in a JSP

<%@ page contentType="text/html" %>
<html>
<head>
<title>jspInit</title>
</head>

<body>
<%! String hello = "Dummy Value";
 public void jspInit() {
 hello = "Initial value 'Hello World' changed in
 jspInit()" ;
}%>
Java variable hello is now <%= hello %>

</body>

</html>

When this page runs, the initial value of Dummy Value is changed by the assignment inside the jspInit method. In a real-world application, you would not see
one simple String value overriding another, as is seen in this listing. You might override the Dummy Value with information retrieved from a bean or a database,
depending on your application needs.

Rather than show you the vast amount of code generated by the JSP translator here, please take my word that this generated servlet contains a jspInit
method.

Examining the destroy and jspDestroy Methods

It is unnecessary for you to code an implementation of the destroy method for your servlets. However, if you do, the server invokes your destroy method
before unloading your servlet. The destroy method is a good place to perform various cleanup activities, such as closing database connections and writing any
remaining persistent data to disk.

The JSP equivalent to destroy is jspDestroy. As with destroy, jspDestroy is not required for JSP execution. The jspDestroy method serves the same
purpose as the destroy method for "raw" servlets. As with jspInit, you may code an implementation of jspDestroy in your page, or use a page directive to
include an implementation.

A good rule of thumb is that if you code a jspInit method that grabs resources, such as pooled database connections, you should code a jspDestroy
method to release the grabbed resources.

Note Other than jspInit and jspDestroy, you cannot code methods that start with jsp, jspx, _jsp, or _jspx. These method prefixes are reserved for
future use by Sun.

Examining the service and _jspService Methods

You do not need to code an implementation of the service method. In fact, it is best if you do not override service. Instead, it is more effective to override the
doGet and doPost methods. Your main advantages of overriding doGet and doPost as opposed to overriding service are as follows:

● You can add other do methods more easily when you override doGet and doPost. Overriding service removes your ability to add these other methods
easily, especially if your servlet is then subclassed.

● You have automatic support for various requests, such as TRACE and OPTIONS requests, even if your servlet is subclassed.

The accepted way of overriding the same action for a POST or GET is to override doGet and doPost in a servlet and have doPost invoke doGet, or vice
versa. (Refer to Listing 8-1 for an example of doPost calling doGet.)

The _jspService method is required for JSP execution. However, you must never code a _jspService method. The _jspService method is automatically
generated by the JSP translator. _jspService is the "meat and potatoes" of the JSP; most of your JSP code finds its way into the _jspService method.

Table 8-1 summarizes the servlet and JSP methods discussed in the preceding sections.

Table 8-1: Summary of Important Servlet and JSP Methods

Method Servlet or
JSP Required Description/Notes

init Servlet No Performs one-time initializations.

jspInit JSP No Same as init. JSP author may provide code in JSP.

service Servlet No Handles the request. Not a good idea to code an implementation

_jspService JSP Yes Handles the HTTP request from the JSP page. The JSP author does not have to
implement it. It is implemented by the JSP translator.

doGet Servlet No Handles an HTTP GET request. Required only if the servlet must handle GET
requests.

doPost Servlet No Handles an HTTP POST request. Required only if the servlet must handle POST
requests.

destroy Servlet No Performs cleanup immediately prior to servlet purge by server.

jspDestroy JSP No Performs cleanup immediately prior to JSP purge by server.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

The topic of JSP tag extensions is relatively recent, being introduced in JSP release 1.1. The draft specification for
JSP release 1.2 discusses additional features of the JSP tag extensions. Searching for “JSP tag extensions” at
http://www.google.com/ returns over 1,300 sites. Those who are "in the know" realize that JSP tag libraries are
an essential component of JSP technology.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=792429751
http://www.google.com/

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Writing an Example Nested Tag

Although the formatLine and repeatLine tags in the previous section were shown to execute when nested, the tags
can execute independently of each other. In other words, the presence or absence of one tag has no effect on the
execution of the other. At times, one tag requires a specific parent to execute, or a parent requires specific children. In JSP
terms, parent/child tags that depend on one another for proper execution are called nested tags.

Writing nested tags is very similar to writing the sort of tags you’ve already learned. The difference is that the objects
(beans) in the nested tags need to communicate. The tag library interfaces have methods that enable a child tag to
determine its parent. Once done, you can invoke parent tag methods from the child tag.

The following sections describe how to construct a case construct as a series of nested tags. The general format is as
follows:
<aTagLib:case value="some_value">
 <aTagLib:when value="case_value1">
 JSP to evaluate when some_value = case_value1
 </aTagLib:when >
 <aTagLib:when value="case_value2">
 JSP to evaluate when some_value = case_value2
 </aTagLib:when >
 <%-- Other casevalue tags may follow --%>
 <aTagLib:otherwise>
 JSP to evaluate when some_value not equals case_values
 </aTagLib:otherwise>
</aTagLib:case>

The relationships you need to enforce are as follows:

● A when tag must be enclosed within a case tag. The code has to know about the existence of a case tag (parent)
when processing the when tag (child).

● An otherwise tag must be enclosed within a case tag. The code has to know about the existence of a case tag
(parent) when processing the otherwise tag (child).

● The existence of an otherwise tag requires the existence of at least one when tag. The code has to know about the
existence of a past-processed when tag when processing the otherwise tag.

Of course, you may want to implement the common understanding of a case construct.

The case Statement Tag

The case statement tag is the first tag that we'll examine in looking at the implementation of these nested tags. This tag is

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=354601693

the parent tag of the when and otherwise tags.

The code uses indicators (flags, if you will) as properties in the parent tag handler class, which you can access from the
child classes. You must have two indicators: whenstatementfound indicates the presence of a when statement within
the case tag and whenstatementvaluefound indicates the presence of a when statement with a value that matches
that of the case statement. Listing 7-10 shows the tag handler for the case statement.

Listing 7-10: Tag handler class for the case tag

package chapter7;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

import java.io.*;

public class casestatement extends TagSupport {
 //This is the value to match on some when tag
 private String value ;
 //This boolean states whether or not at lease one
 //whenstatement is found
 private boolean whenstatementfound = false ;
 //This boolean states whether or not one of the when
 //statements has a value that matches that of the case
 //statement.
 private boolean whenstatementvaluefound = false ;

 public void setValue(String val) {
 value = val ;
 }
 public String getValue() {
 return value ;
 }
 public void setWhenstatementfound(boolean found) {
 whenstatementfound = found ;
 }
 public boolean getWhenstatementfound() {
 return whenstatementfound ;
 }
 public void setWhenstatementvaluefound(boolean found) {
 whenstatementvaluefound = found ;
 }
 public boolean getWhenstatementvaluefound() {
 return whenstatementvaluefound ;
 }
 public int doStartTag() {
 return EVAL_BODY_INCLUDE ;
 }
}

The code for the case tag (the outer tag) merely establishes the indicator properties and the value attribute that may or
may not match some when tags.

The doStartTag method coded here instructs the JSP container to continue to evaluate the tag body. Notice that,
because you are not using the tag body by a call to doAfterBody, the casestatement class extends the convenience
class TagSupport, not BodyTagSupport.

At to this point, you haven’t seen anything new in this tag handler. Next, you can take a look for an implementation of the

when tag, which shows how to access parent class properties.

The when Statement Tag

The when tag is the child tag of the case tag and needs to access information in the parent tag's implementing class. For
this reason, you need a method that identifies the class already instantiated with a bean from the parent tag's implementing
class. The method findAncestorWithClass does exactly that; findAncestorWithClass returns the instance of the
parent tag class, thereby enabling child classes access to parent tag properties. Listing 7-11 shows the code for the when
statement tag.

Listing 7-11: Tag handler class for the when tag

public class whenstatement extends BodyTagSupport {
 private String value ;
 public void setValue(String val) {
 value = val ;
 }
 public String getValue() {
 return value ;
 }
 public int doStartTag() throws JspException {
 //See if this is enclosed within a case tag
 casestatement caseTag =
 (casestatement) findAncestorWithClass(this, casestatement.class);
 if (caseTag == null)
 throw new
 JspException("when tag not enclosed in case tag") ;
 else //set when statement found indicator
 caseTag.setWhenstatementfound(true) ;
 //See if this is the when statement that has a value
 //matching that of the case tag
 if (caseTag.getValue().compareTo(getValue()) == 0) {
 //Set indicator in case tag to indicate a match
 caseTag.setWhenstatementvaluefound(true) ;
 return EVAL_BODY_TAG ;
 }
 else
 return SKIP_BODY ;

 }

 public int doAfterBody() throws JspException {
 BodyContent tagBody = getBodyContent() ;
 String tagBodyAsString = tagBody.getString() ;
 try {
 JspWriter out = tagBody.getEnclosingWriter() ;
 out.print(tagBodyAsString) ;
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 } return SKIP_BODY ;
 }
}

The doStartTag method enables you to determine if a parent (case) class exists or if the value coded in the when tag
matches that coded in the case tag. When a match of values is found, code in doStartTag, which sets the property
whenstatementvaluefound in the case tag class to true; the otherwise tag accesses this indicator as you can see in

the next section. The doAfterBody method lists the tag body.

The otherwise Statement Tag

The code for the otherwise tag handler is very similar to the code for the when tag handler. Decisions to process the tag
body are made in the doStartTag method; the doAfterBody tag lists the tag body to the screen. Listing 7-12 shows the
code.

Listing 7-12: Tag handler class for the otherwise tag

package chapter7;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;

public class otherwisestatement extends BodyTagSupport {
 public int doStartTag() throws JspException {
 //See if this is enclosed within a case tag
 casestatement caseTag =
 (casestatement) findAncestorWithClass(this, casestatement.class);
 if (caseTag == null)
 throw new JspException("otherwise tag not enclosed"+
 "within case tag") ;
 //See if a when statement was found
 if (!caseTag.getWhenstatementfound())
 throw new JspException("otherwise tag found without"+
 "when tag(s)") ;
 /*See if a previous when statement was executed.
 Actually, see if a previous when statement has the
 same value as that found on the case statement */
 if (!caseTag.getWhenstatementvaluefound())
 return EVAL_BODY_TAG ;
 else
 return SKIP_BODY;
 }
 public int doAfterBody() throws JspException {
 BodyContent tagBody = getBodyContent() ;
 String tagBodyAsString = tagBody.getString() ;
 try {
 JspWriter out = tagBody.getEnclosingWriter() ;
 out.print(tagBodyAsString) ;
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 return SKIP_BODY ;
 }
}

The doStartTag method uses findAncestorWithClass to communicate with the parent class. The JSP API does not
provide a mechanism to communicate directly with siblings. Siblings are tags that have the same parent tag. One
procedure for sibling tags to communicate is to access properties of a shared parent class, as is done here.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Implementing a Custom Tag

Throughout the rest of the chapter, we will work in stages to create the following custom tag:
<mytaglib:formatLine fontSize="5"
 fontColor="blue"
 reverse="true">
This is Line 1
</mytaglib:formatLine>

The implementation is shown in different stages. First we'll see how to implement an empty tag without attributes that writes
the text “Here’s another line” to the page:
<mytaglib:formatLine />

Then, we'll change the tag components to implement an empty tag with attributes:
<mytaglib:formatLine htmlline="This is Line 1" />

After adding an attribute, we'll change the tag components to implement the tag with a body:
<mytaglib:formatLine>
This is Line 1
</mytaglib:formatLine>

Finally, we'll create the tag with the body and three attributes, fontSize, fontColor, and reverse, as shown at the
beginning of this section.

Implementing the Empty Tag Without Attributes

As previously mentioned, you need to code three parts: a taglib directive that references the tld file, the class that
implements the tag behavior, and the tld file, although not necessarily in that order.

The JSP Page

You might as well start with the JSP page called example2.jsp containing the taglib directive and the tag reference. Listing
7-1 shows the page:

Listing 7-1: JSP page example2.jsp containing a custom empty tag

<%-- Tell JSP that this page renders HTML --%>
<%@ page contentType="text/html" %>
<html>
<head>
<title>Using a Custom Tag to Generate HTML</title>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=284020653

</head>
<body bgcolor="#dddddd">
<%-- Here is the taglib directive --%>
<%@ taglib uri="ch7taglib.tld" prefix="mytaglib" %>
<%-- Here is the tag reference --%>
<mytaglib:formatLine />

</body>
</html>

Figure 7-2 below shows the output of the page:

Figure 7-2: JSP output from page in Listing 7-1

The taglib directive names the tld as the file ch7taglib.tld, stored in the same directory as this JSP page. The
reference to the formatLine tag in the tld (Listing 7-3) names the implementing class for this tag as formatLine. Even
though the tag and the implementing class have the same name in this example, this does not have to be the case. Now let’s
take a look at the implementation of the class formatLine.

The Tag Handler Class: Empty Tag Without Attributes

Listing 7-2 shows an implementation of our custom tag.

Listing 7-2: Implementing the empty tag without attributes

package chapter7;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.Writer;
import java.io.IOException;
//or import java.io.* if you prefer
/**
 * Example 1: Write a line of text to the page
 */
public class formatLine extends TagSupport {
 public int doStartTag() throws JspException {
 try {

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fg0702_0.jpg&image_id=17&previd=IMG_17&titlelabel=Figure+7-2%3A&title=JSP+output+from+page+in+Listing+7-1

 JspWriter out= pageContext.getOut() ;
 out.print("This is Line 1") ;
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 return SKIP_BODY ;
 }
}

Aside from being good programming practice, some servers (Tomcat included) require that your tag implementations be
stored in packages. At a minimum, you can code the import statements that follow the package statement whenever you
implement a custom tag.

As previously mentioned, you can implement an empty tag by extending the convenience class TagSupport. Here, all you
need to do is direct the server to take action when the JSP container detects the start tag (<mytaglib:formatLine />)
by overriding the doStartTag method. You could have directed the server to produce output when the JSP container
detected the end tag by overriding the doEndTag method in TagSupport, too.

Note Although you don’t code an end tag per se when the tag is empty, the server invokes a doEndTag method.

The doStartTag method throws a JspException so you can normally enclose your code within a try/catch block, as
shown in Listing 7-2. Here, you’re performing a write operation, so you can catch IOExceptions and throw a
JspException.

Output performed by code implementing custom tags is directed to the implicit object out, an instance of the specialized
writer class named JspWriter. The output is merely the text you want to appear in the page.

The doStartTag method returns an integer. As mentioned earlier, the tag interface defines four constants that determine
the disposition of the tag body. The constant SKIP_BODY instruct the server to ignore the body of the tag. Your
doStartTag method should return SKIP_BODY when included in the implementation of an empty tag.

The last component that needs coding is the tag library descriptor file.

The tld that Describes the Empty Tag Without Attributes

Listing 7-3 shows the tld that describes the formatLine tag.

Listing 7-3: The TLD for the empty tag without attributes

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib
PUBLIC "-//SunMicrosystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/dtd/Web-jsptaglibrary_1_1.dtd">

<!-- Tag library descriptor -->

<taglib>

 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>mytaglib</shortname>
 <uri></uri>
 <info>
 An example tag library description file for Chapter 7
 </info>
 <!-- Place Tag information between <tag> tags -->

 <tag>
 <name>formatLine</name>
 <tagclass>chapter7.formatLine</tagclass>
 <info> Write a hardcoded string to the JSP page </info>
 <bodycontent>empty</bodycontent>
 </tag>
 <!-- Other tag descriptions could follow -->
</taglib>

Your tld starts with an XML declaration and a DOCTYPE statement. As Sun Microsystems releases new versions of JSP,
the PUBLIC and SYSTEM identifiers in the DOCTYPE statement will change to reflect the new releases.

Caution Sun changed the element names in the DTD for tag library descriptors in JSP release 1.2. Table 7-2 shows the
new element names corresponding to the elements used in JSP release 1.1. The element names not listed in
Table 7-2 are the same for both releases.

Table 7-2: TLD Element Names in JSP Release 1.1 and 1.2
Element Name, R1.1 Element Name, R1.2 Description

tlibversion tlib-version Version of your tag library.

jspversion jsp-version JSP release.

shortname short-name Prefix used in referring to tags
within the library. Notice that the
short name in the tld, mytaglib,
is used in the taglib directive in
Listing 7-1.

The uri tag names a public URI that points to the tld. In the example, you are not using a public uri, hence, the uri tag
has no content.

The info tag provides a short description about the tag library.

Tld’s that describe tags that contain attributes and bodies contain additional tags, which are covered later in this chapter.

The content of the tld is mostly contained within the <tag> elements. The elements shown in Listing 7-3 have the following
meaning:

● name — The name of the tag used in the JSP page. Actually, the content of the name element is only part of the tag
name; the actual name of the tag is the prefix coded in the taglib directive followed by the value of the name element in
the tld.

● tagclass — The package and class name that contains the implementation of the tag’s behavior, or the name of the tag
handler class.

● info — A short description of the tag.

● bodycontent — One of three values: empty for empty tags (such as the example), JSP for tags that contain JSP
statements in the tag body, or tagdependent for tags that do not rely on the JSP container for processing.

Every tag in the tag library has an accompanying <tag> entry in the tld.

To use this tag library, you can place the tld file in the same directory as the JSP page. Place the tag handler class in
directory Web-inf/classes/chapter7. Depending on your operating system, the case of this directory may or may not
matter, so check the directory where you JSP page is located to be sure. Now you can invoke your JSP page. If you’re using
Tomcat, enter this URL in your browser:
http://localhost:8080/examples/jsp/chapter7/example2.jsp

Refer to the screen shown in Figure 7-2. Now, let’s change our tag by adding attributes.

Implementing the Empty Tag with Attributes

Here’s the tag you want to implement:
<mytaglib:formatLine htmlline="This is Line 1" />

Of course, the value of the attribute htmlline can be any string.

The JSP page is the same as Listing 7-1 except for the preceding tag reference ; there’s no need to show the entire page
here. Also, the displayed page is the same. The changes you need to make are in the tag handler class and the tld.

The Tag Handler Class: Empty Tag with Attributes

Listing 7-4 shows the code for the tag handler class for the tag shown in the preceding section.

Listing 7-4: Implementing the empty tag with attributes

package chapter7;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.Writer;
import java.io.IOException;
//or import java.io.* if you prefer
/**
 * Example 2: Process the Tag with attributes
 */
public class formatLine extends TagSupport {
 private String htmlline ;
 //Code get and set methods for the attribute
 public void setHtmlline(String aLine) {
 htmlline = aLine ;
 }
 public String getHtmlline() {
 return htmlline ;
 }
 public int doStartTag() throws JspException {
 try {
 JspWriter out= pageContext.getOut() ;
 out.print(getHtmlline()) ;
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 return SKIP_BODY ;
 }
}

To get the JSP container to process the attribute coded in the tag, you simply code a pair of get/set methods for the

attribute. Then you can use the attribute value while processing the tag methods.

You do not need to code both get and set methods for your tag attributes. You are required to code a set method. Of
course, if you want any other class (bean) to access the values of your tag attributes, you must code a get method because
attribute instance variables should have private visibility.

You see that the tag handler class implementing the behavior of the tag with attributes is truly a bean. Unlike beans available
to JSPs by using the jsp:useBean action, tag handlers may use non-empty constructors. You may have to change the tld
to reference the tag attributes. The next section shows you how.

The tld that Describes the Empty Tag with Attributes

For each attribute coded in the tag, include an <attribute> tag in your tld. Listing 7-5 shows the tag element in the tld
for this empty tag with attributes; the rest of the tld is the same as that shown in Listing 7-2.

Listing 7-5: Tag library definition entry for an empty tag with attributes

<tag>
 <name> formatLine </name>
 <tagclass>chapter7.formatLine</tagclass>
 <info> Format an HTML Line </info>
 <bodycontent>empty</bodycontent>
 <attribute>
 <name>htmlline</name>
 <required>true</required>
 <!-- rtexpvalue is optional -->
 <rtexpvalue>true</rtexpvalue>
 </attribute>
 <!-- other attributes for this tag would follow -->
 </tag>

Here’s what the additional tags in the tld mean:

● attribute — Required tag that signals the start of an attribute description.

● name — Required tag that is the name of the attribute.

● required — Required tag that is true if a value for this attribute is required, false, if not. If you code false for the required
tag, you may omit the attribute when you code the tag in your JSP page. However, when you omit the tag, the tag’s
corresponding set method does not get invoked. You would be wise to code an initial value for an optional attribute in
your tag handler class.

● rtexpvalue — Optional attribute that is true if the value of the attribute may be a Java runtime expression, false if not
(value must be a fixed string). For example:
<apref:atag attr="<%= new java.util.Date() %>" />

If atag has the rtexpvalue element set to true, the expression is evaluated and used as the value returned by the tag
handler’s getAtag method; if false, the string is used as the value returned. False is the default value so you can safely
omit coding this tag in your tld when the attribute value is a fixed string.

So far, you’ve seen how to code custom empty tags with and without attributes. Next, you can read how to code custom tags
that contain a body.

Implementing the Tag with a Body

Here’s the tag you want to implement:
<mytaglib:formatLine>
This is Line 1
</mytaglib:formatLine>

You’ve taken the line of text, formerly an attribute, and placed it in the body of the tag. There’s no change to the JSP taglib
directive, so let’s get to the tag handler class for the preceding tag.

Listing 7-6 shows the code for the tag handler class for the tag shown in the preceding section. The presence or absence of
attributes has nothing to do with the coding constructs required to process the tag body. First, let’s look at the required code:

Listing 7-6: Tag handler for a tag with a body

package chapter7;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.Writer;
import java.io.IOException;
//or import java.io.* if you prefer
/**
 * Example 3: Process the tag body
 */
public class formatLine extends TagSupport {
 public int doStartTag() {
 return EVAL_BODY_INCLUDE ;
 }
}

That’s it! The code states that when the JSP container encounters the start of the tag, the container processes the tag body.
If the tag body contains JSP expressions, the expressions are evaluated.

Notice that the inclusion of a tag body in your JSP page is no guarantee that the body is processed. The decision whether or
not to process the tag body is made by the tag handler class, not the tag reference or the tld. If you code the doStartTag
method as follows, your tag body won't be processed.
public int doStartTag() {
 return SKIP_BODY ;
}

And you cannot expect the following code to work because by the time the JSP container gets to the end tag, it’s too late to
process the tag body.
public class formatLine extends TagSupport {
 public int doEndTag() {
 return EVAL_BODY_INCLUDE ;
 }
}

Speaking of the doEndTag method, when would you ever code this method? The next section provides some answers.

The Tag Handler Class: Coding a doEndTag Method

When a tag is empty, you rarely take action at the end of this tag. When a tag has a body, you can find yourself coding
doEndTag methods from time to time. Imagine your tag handler performing some output at the start of a tag, in a
doStartTag method, such as writing HTML for an HTML table to the implicit out object. The tag body contains JSP and

static text that gets written to out. You could use a doEndTag method to complete the HTML for the table. Your doEndTag
method could resemble the following:
public int doEndTag() {
 JspWriter out = pageContent.getOut() ;
 //Several out.print statements that finish the table
 return EVAL_PAGE;
}

The preceding example returned a constant instructing the JSP container to continue processing the remainder of the JSP
page. At times, you may want to skip the remainder of the page. Imagine your JSP page is laid out such that if a certain
condition arises after you process the tag body, you do not want to process the remainder of the JSP page. For instance, a
condition may arise when a registered user logs onto a system and the remainder of the page shows user information; but if
that user is not registered, no information is displayed and there’s no need to process the remainder of the page. Your
doEndTag method could resemble the following:

public int doEndTag() {
 if (conditionFromEvalTagMeansSkipRestofPage)
 return SKIP_PAGE;
 else
 return EVAL_PAGE ;
}

Now you know how to conditionally process the remainder of the page. Next, you can see how to code the tld to describe a
custom tag with a body.

The tld That Dwescribes the Tag with a Body

To code the tld to describe a custom tag with a body, you need make only a single change to the tld. Listing 7-7 shows
the tld tag entry for a tag with a body.

Listing 7-7: Tag library descriptor entry for a tag with a body

<tag>
 <name> formatLine </name>
 <tagclass>chapter7.formatLine</tagclass>
 <info> Write Body of Text to Page </info>
 <bodycontent>JSP</bodycontent>
 <attribute>
 <!-- Describe an attribute here -- >
 </attribute>

 </tag>

The only change you need to make is to the value of the bodycontent tag, from empty to JSP.

Note The bodycontent tag can use a value of tagdependent, which causes your tag to interpret the tag body as non-
JSP.

Optionally Processing the Tag Body

To this point, you’ve been shown implementations of tags that are empty, that omit the tag body, or always include the tag
body. If you code a doStartMethod according to the following template, you can optionally include or skip the tag body.

public int doStartTag() {

 if (youWantToProcessTagBody)
 return EVAL_BODY_INCLUDE ;
 else
 return SKIP_BODY ;
}

In the section on coding the doEndTag method, you encountered a similar situation in which, based on a condition, the
method returned a constant, generated during tag body processing that directed processing of the remainder of the page.
Because this discussion surrounds whether or not to process the tag body, you cannot use a condition generated during
body processing; you may not want to process the tag body. You can assume that the origin of the condition that determines
tag body processing must occur before the JSP container encounters the tag. Possible origins of the condition are from a tag
attribute that has its value dynamically generated, and processes earlier in the page or earlier in some other page. In
general, somewhere before encountering the start of the tag, some property in some object or bean must be set that the
doStartTag method can access.

Attribute values from the tag can be accessed by invoking the appropriate get methods, as can bean properties. If the
property is derived from some request time parameter, the doStartTag method accesses the implicit object by invoking the
getRequest method of the pageContext object.

What if you want to do something other than include the tag body or skip it? What if you want to selectively process parts of
the tag body? The next section discusses how you would affect the tag body contents.

Selectively Processing the Tag Body

Here, you want to implement the following tag:
<mytaglib:formatLine fontSize="5"
 fontColor="blue"
 reverse="true">
This is Line 1
</mytaglib:formatLine>

When the reverse attribute has a true value, you want to list the string backwards. You also want to append font tags to get
the specified color and font size. Listing 7-8 shows the tag handler that accomplishes the goal.

Listing 7-8: Tag handler for a tag that selectively processes its body

package chapter7;

import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;
import java.io.*;
/**
 * Example 4: Color, Size text and optionally Print backwards
 */
public class formatLine extends BodyTagSupport

{
 private boolean reverse ;
 private String color, fontSize ;

 public void setReverse(boolean rev) {
 reverse = rev;
 }
 public boolean getReverse() {
 return reverse ;
 }
 public void setFontSize(String size) {

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=978301159#wbpch07fP328

 fontSize = size;
 }
 public String getFontSize() {
 return fontSize;
 }

 public void setColor(String col) {
 color = col ;
 }
 public String getColor() {
 return color ;
 }
 public int doAfterBody() throws JspException {
 BodyContent tagBody = getBodyContent() ;
 String tagBodyAsString = tagBody.getString() ;
 try {
 JspWriter out = tagBody.getEnclosingWriter() ;

 if (getReverse())
 tagBodyAsString = ((new StringBuffer(tagBodyAsString)).reverse()).toString() ;

 out.print("<font color=" + getColor() +
 "><font size=" + getFontSize() +
 ">" + tagBodyAsString + "") ;

 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 return SKIP_BODY ;
 }
}

The get and set methods for the attributes are as before — nothing new there. The new code constructs are in italic. Let’s
take a look.

The first new construct is found on the class statement:

public class formatLine extends BodyTagSupport

Classes that change the tag body must implement the BodyTag interface or extend the convenience class
BodyTagSupport. The BodyTag interface extends the tag interface so you can continue to code doStartTag and
doEndTag methods if you need to. In this example, you do not need to take action at the start or the end of the tag, hence,
you did not code the doStartTag and doEndTag methods.

For the most part, you would code doStartTag and doEndTag the same way in classes that extend BodyTagSupport as
you would in classes that extend TagSupport. However, doStartTag should return the constant EVAL_BODY_TAG, a
constant not found in the tag interface.

The name of the method that processes the tag’s body is doAfterBody. More accurately, the doAfterBody method is
invoked after the JSP container evaluates any statements or expressions. If you want to perform processing on the tag body
before any JSP statements are evaluated, code a doInitBody method.

Perhaps a table showing the order of method invocation is in order. Table 7-3 illustrates the order of method invocation.

Table 7-3: Order of Method Invocation

Method Name When Executed

doStartTag The JSP container hits the start tag.

doInitBody After doStartTag execution, before JSP processing of
tag body.

no method The JSP container processes the tag body.

doAfterBody After the JSP container processes the tag body.

doEndTag When the JSP container hits the end tag, after
processing the tag body.

The preceding order can be short-circuited by the return values of the methods. In the following section, you learn that if the
doAfterBody method returns EVAL_BODY_TAG, the doAfterBody method gets reinvoked after JSP tag body evaluation.

For you to process the tag body in your bean (tag handler), you must have access to the tag body. The method
getBodyContent provides such access, returning the tag body as an object of, appropriately, class BodyContent. Class
BodyContent is an abstract extension of JspWriter. You operate on the tag body by invoking methods of class
BodyContent.

In Listing 7-8, you retrieved the tag body as a String by invoking the getString method. The String returned by
getString reflects the JSP processing done on the body.

To write output, you need a reference to the implicit out object. Although you may assume that you can access out by
referencing the pageContext object, you can’t. While your tag handler class would successfully compile, you would not get
any output.

To get a reference to the out object, you must invoke the getEnclosingWriter method. Once you have the reference,
you write to the out object as usual.

Class BodyContent includes the getReader method that returns the invoking BodyContent object as an input stream,
thereby enabling input stream operations to be performed on tag bodies.

Repetitively Processing the Tag Body

The doAfterBody method should return SKIP_BODY, assuming the tag body is to be evaluated only once. If you want to
repetitively process the tag body, your doAfterTag method should return a value of EVAL_BODY_TAG. When doAfterTag
returns EVAL_BODY_TAG, the tag body is again processed by the JSP container and is followed by another call to
doAfterTag.

For example, if you want the following tag:
<mytaglib:repeattag repeat="3">
This is line number
</mytaglib:repeattag>

To produce the following lines of output:
This is line number 1
This is line number 2
This is line number 3

The tag handler shown in Listing 7-9 does the trick.

Listing 7-9: Tag handler for repeating tag body processing

public class repeatline extends BodyTagSupport
{
 private int numTimes, numTimesLeft ;
 private String repeat ;

 public void setRepeat(String repString) {
 repeat = repString ;
 try {
 numTimesleft = Integer.parseInt(repString) ;
 } catch (NumberFormatException nfe) {
 numTimesLeft = 1 ;
 }

 }
 public String getRepeat() {
 return repeat ;
 }
 public int doStartTag() {
 try {
 numTimes = Integer.parseInt(getRepeat()) ;
 } catch (NumberFormatException nfe) {
 numTimes = 1 ;
 }
 return EVAL_BODY_TAG ;
}
public int doAfterBody() throws JspException {
 if (numtimesleft > 0) {
 int idx = numtimes - numtimesleft + 1 ;
 BodyContent tagBody = getBodyContent() ;
 String tagBodyAsString = tagBody.getString() ;
 try {
 JspWriter out = tagBody.getEnclosingWriter() ;
 out.print(tagBodyAsString + " " + idx + "
") ;
 tagBody.clearBody() ;
 numtimesleft-- ;
 } catch (IOException ex) {
 throw new JspTagException(ex.toString());
 }
 return EVAL_BODY_TAG ;
 }
 else
 return SKIP_BODY ;
 }
}

The overall idea is to process the tag body based on the value of an integer named numTimesLeft. Each time the tag body
is processed, the code decrements numTimesLeft. When numTimesLeft is zero, the code decides not to process the
loop body.

The key to this code is the returned value of doAfterBody. When doAfterBody returns EVAL_BODY_TAG, the JSP engine
processes the tag body, and then the server calls doAfterBody again. Take note of the following line:

tagBody.clearBody() ;

The clearBody method erases the tag body content associated with the tag body object. If you omit this line of code, your
output would be as follows:
Here is line 1

Here is line Here is line 2
Here is line Here is line Here is line 3

Each invocation of doAfterBody picks up the output from the previous invocations, along with the current contents of the
tag body.

Here’s another variation of repetitively processing the tag body, using a combination of tags:
<mytaglib:repeatline repeat="3" >
<mytaglib:formatLine reverse="false" fontSize="5" color="green">
Here is line
</mytaglib:formatLine>
</mytaglib:repeatline>

You can see that one tag is coded within another; the mytaglib:formatLine is a child tag of mytaglib.repeatline.

You do not need to change the tag handlers for the preceding two tags to use the tags as coded. The output for the above
pair of tags is the same as the output for the mytaglib:repeatline tag with the line of text as the tag body.

The body of the outer tag mytaglib:repeatline is the result of processing the inner tag, mytaglib:formatLine.
When the doAfterBody method coded for the outer tag invokes its getBodyContent method, the invocation does not
return the code for the inner tag. The getBodyContent method returns the result of processing the inner tag.

You can reverse the order of the parent/child relationship as follows:
<mytaglib:formatLine reverse="true" fontSize="5" color="green">
<mytaglib:repeatline repeat="3" >
Here is line
</mytaglib:repeatline>
</mytaglib:formatLine>

Here is the generated HTML from this tag combination:

>rb<3
enil enil si sihT
>rb<2
enil enil si sihT
>rb<1
enil enil si sihT

If you were to test this example, this generated HTML would appear as a single green line in your browser.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Tag Library Classes, Interfaces, and Components

As you might imagine, there’s plenty of behind-the-scenes activity to get the JSP container to understand a custom
tag. For a custom tag to work you need to:

1. Indicate in the JSP page that it uses custom tags using the taglib directive;

2. Tell the JSP container what to do when the it sees the tag by creating a tag handler class;

3. Tell the JSP container what class to use when it processes the tag by creating a tag library descriptor file for the
tag library.

Let’s examine these coding constructs one at a time, starting with the taglib directive.

Using the taglib Directive

The taglib directive has a simple syntax shown below:

<%@ taglib uri=where_taglib_descriptor_is prefix=some_prefix %>

The uri attribute names the location of the tag library descriptor file. You can read about this file later in this chapter.
For now, know that the tag library descriptor file does what its name says — it describes the characteristics of the tag
library. The taglib directive tells your JSP page that the page uses a library, not a particular tag. The library might
only contain a single tag, or it might contain dozens.

A natural question arises — how do you reference an individual tag in the library in your JSP page? The answer is that
you use a prefix, identified as the value of the second attribute of the taglib directive, with the name of an individual
tag in the library. For example, the taglib directive shown below identifies all tags prefixed with mytaglib to be an
individual tag within the tag library described by formatlib.tld.

<%@ taglib uri="formatlib.tld" prefix=mytaglib %>

Here’s how such a tag may be referenced in a JSP page:

<mytaglib:FormatLine fontSize="5"
 fontColor="blue"
 reverse="true">
Here’s another line
</mytaglib:FormatLine>

In the preceding example, formatlib.tld is in the same directory as the JSP page containing the taglib
directive.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=996591096

Caution If the uri attribute value is an absolute reference (that is, one that begins with a slash), some servers,
such as Tomcat, map that absolute value to a file on the local system. You may be confused if you
specify a uri value that doesn’t exist and notice that your JSP pages may still locate the tag library
descriptor file.

Now that you can tell your JSP page that it uses custom tags, you need to tell the JSP container what to do with the
tag.

Examining the Tag Interface

You implement the functionality of your tag by coding a Tag Handler Class. Your tag handler class implements the
javax.servlet.jsp.tagext.Tag interface. This interface contains constants and methods that the container
invokes during the life cycle of your tag, including methods to perform at the start tag and the end tag.

In practice, your tag handler class does not usually implement the tag interface directly. Instead, you can extend a
convenience class of the tag interface named TagSupport if your tag is empty. You can also extend
BodyTagSupport if you want to process the tag’s body. This class already implements the BodyTag interface, which
extends the tag interface.

The tag interface defines four constants that govern the disposition of the tag body. Methods you code that describe
the actions that occur when the JSP container encounters your tag should return the appropriate constant. Table 7-1
lists these constants and their meanings.

Table 7-1: Constants in the Tag Interface
Constant Description

SKIP_BODY The server should not process the body of the tag.

SKIP_PAGE The server should not process the remainder of the
JSP page.

EVAL_BODY_INCLUDE The server should evaluate the tag body.

EVAL_PAGE The server should process the remainder of the JSP
page.

Before delving into the details of the preceding — named classes and other classes required to implement a custom
tag — let’s take a look at the last component required to implement a custom tag: the tag library descriptor file.

Creating a Tag Library Descriptor File

The tag library descriptor file is a file in XML format that describes the class that implements the functionality of the
custom tags in your JSPs. The tag library descriptor file, or tld, contains the names of the tags with additional
information.

You can find the official DTD describing the elements and attributes of a tld at http://java.sun.com/dtd/Web-
jsptaglibrary_1_1.dtd for JSP, release 1.1.

You cannot create a tld unless you have a basic understanding of XML. If you haven’t read Appendix D yet, read it
now.

Next, you can see how to code a class, tld, and taglib directive for a custom tag. Let’s start with coding the tld.

http://java.sun.com/dtd/Web-jsptaglibrary_1_1.dtd
http://java.sun.com/dtd/Web-jsptaglibrary_1_1.dtd

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using Tags Versus Using JavaBeans

In Chapter 6, you read about using the jsp:useBean action to access a bean from a JSP page. However, this action
is limited to accessing the bean's exposed properties. Within your bean, your mutator methods influence the values of
your bean properties. For example, the JSP code below accesses a bean that generates HTML of a certain font size
and color. In addition, the bean has a property that, when true, reverses the text. The entire JSP page does not need
to be shown; the relevant code illustrates the point.
<jsp:useBean id="exbean" class="chapter7.ExBean"/>
<jsp:setProperty name="exbean" property="fontSize" value="2" />
<jsp:setProperty name="exbean" property="fontColor" value="red" />
<jsp:setProperty name="exbean" property="reverse" value="false" />
<jsp:setProperty name="exbean" property="htmlline" value="This is <i>Line 1</i>" />
<p>HTML line

<jsp:getProperty name="exbean" property="htmlline" />

<jsp:setProperty name="exbean" property="fontSize" value="5" />
<jsp:setProperty name="exbean" property="fontColor" value="blue" />
<jsp:setProperty name="exbean" property="reverse" value="true" />
<jsp:setProperty name="exbean" property="htmlline" value="Here's another line" />
<p>Another HTML line

<jsp:getProperty name="exbean" property="htmlline" />

Here’s the code within the bean class ExBean that sets the value of bean property htmlline. As with the preceding
listing for the JSP page, the entire bean doesn’t need to be shown because the set method for the htmlline
property suffices.
public void setHtmlline(String line1) {
 String locFontSize = getFontSize() ;
 String color = getFontColor()
 String linetext = (getReverse())?
 ((new StringBuffer(line1)).reverse()).toString() : line1 ;

 htmlline = "" +
 "" + linetext +
 "";
}

Figure 7-1 shows the page.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=173255841

Figure 7-1: Using bean properties to generate HTML

Compare how clumsy and inelegant the preceding example is with the following code:
<mytaglib:FormatLine fontSize="2"
 fontColor="red"
 reverse="false">
This is <i>Line 1</i>
</mytaglib:FormatLine>
<mytaglib:FormatLine fontSize="5"
 fontColor="blue"
 reverse="true">
Here’s another line
</mytaglib:FormatLine>

Notice how natural the syntax of the custom tag fits with a page of HTML or XML text. By comparison, the JSP code
for using the bean seems archaic. Getting, setting, and using bean property values in your JSP pages is a worthwhile
and powerful feature. Sadly, using beans and the associated jsp:setProperty and jsp:getProperty actions
clutters your pages with counterintuitive coding structures.

Yes, you can code scriptlets to generate the content shown in Figure 7-1. However, placing the Java code inside your
JSP page could blur the distinction between presentation and logic. You would trade using JSP actions with using
Java code.

In summary, you can use JavaBeans with the JSP action commands (or scriptlets) to accomplish much of what you
can with custom JSP tags. However, coding custom tags in your JSP pages looks more natural than the alternatives.

Next, you can read about the components that constitute a custom tag followed by the code for a simple tag.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 6: JSP and JavaBeans

You may recall from Chapter 3 that an essential advantage of using JSP over competing technologies is that JSP
enables you to separate the business logic from the appearance of your Web pages. You can separate business logic
from presentation by using J2SE and J2EE APIs to code your business logic in Java components and by using static
and dynamically generated HTML to code your presentation. Java components called JavaBeans are particularly
important to the JSP author.

This chapter shows you how to use JavaBeans in your JavaServer Pages, starting with an overview of JavaBeans,
including how to access data within JavaBeans in your JSP pages. Several examples of accessing JSP pages and
changing data within JavaBeans are shown. At the end of this chapter, you can be ready to use JavaBeans in your
JSP pages.

A JavaBeans Primer

JavaBeans is a topic worthy of entire tomes, but you do not need to be a JavaBeans expert to use them in your JSP
pages. The purpose of this section is to cover enough about JavaBeans to show you how to integrate JavaBeans with
your JSP pages.

JavaBeans Defined

Simply defined, JavaBeans are a standard for writing Java software components. As mentioned in Chapter 1, an
important virtue of using software components is the ability to plug in components as needed. To accomplish the all-
important separation of logic from presentation, it’s necessary to discuss how to plug JavaBean components into JSP
pages because JavaBeans encapsulate the business logic.

Note Do not confuse JavaBeans with Enterprise JavaBeans. Enterprise JavaBeans are JavaBeans with special
characteristics that allow them to work with EJB containers. Enterprise JavaBeans are the focus of the
second half of this book. Feel free to read ahead in Chapter 11 for a more complete explanation of
Enterprise JavaBeans.

Note Sun provides the Bean Development Kit, or BDK, for Java developers interested in creating JavaBeans. You
can download a copy at http://java.sun.com/products/javabeans/software/bdk_download.html.

The JavaBean specifies a component architecture for Java classes where a JavaBean is a public class that
(minimally) has an empty constructor, no public instance variables, and get/set methods for accessing persistent data
stored within the bean. In other words, a JavaBean is an object with a well-defined interface. Good Java programmers
already code Java classes with hidden instance variables encapsulated with accessor methods. You are halfway there
to coding JavaBeans for use in your JSP pages!

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=769372013
http://java.sun.com/products/javabeans/software/bdk_download.html.

Note You may encounter the term bean as you read about JavaBeans, here and throughout Java literature. A
bean is an instance of a class created as a JavaBean. In some circles, a bean may mean an Enterprise
JavaBean, too. In this book, bean refers to an instance of a JavaBean class and enterprise bean refers to an
instance of an Enterprise JavaBean.

Professional Java development environments use the Java Programming Language's inherent introspection feature to
peek inside JavaBeans, enabling the Java developer to access and change the properties of JavaBeans by using a
GUI. The environments use structures akin to property sheets to get and set bean property values. You must follow a
convention, which you may already know, when naming your accessor methods. This convention is explained later in
this chapter in the section “Coding JavaBean Property Accessor Methods.” It’s important to note that a Java developer
can use a JavaBean without knowing anything about the bean’s internals; the entire state of the bean is described
through its properties, which must be accessible through the bean’s accessor methods. After all, that’s what writing
component software is all about.

Another requirement of all JavaBeans is that they implement either the Serializable interface or the
Externalizable interface. This requirement allows a bean to be persistent, an attribute inherent to all objects that
implement either of these interfaces. In this book we will only consider the Serializable interface.

You may be muttering to yourself, “Great! I have to become a JavaBean maven in order to use JavaBeans in
JavaServer Pages.” Don’t worry! Everything you need to know about using JavaBeans in your JSPs is in the
preceding brief definition. If you create a public class with a zero-argument constructor and no public instance
variables, you can use this class in your JSP pages. If you want to save persistent data, you can write this data to a
database or implement Serializable. Rather than coding blocks of scriptlets or methods in your JSPs, you can
code JavaBeans containing the scriptlet or method code and invoke the methods from the bean in your JSPs. Now,
that’s not so bad, is it?

Before you read about how to code your JSPs to use JavaBeans, a few words about coding JavaBeans are in order.

Coding JavaBeans

Basically, coding JavaBeans resembles coding any Java class; remember to code your bean public, write (or
enable Java to automatically create) a zero-argument constructor, define no public instance variables, and use get
and set methods to provide access to your nonpublic instance variables.

You may already know how to code a public Java class and use a zero-argument class constructor. Whether this is
the case or not, here’s an example of a public class declaration with a zero-argument constructor:
public class SomeClassName {
 //Here’s the no — arg constructor
 public SomeClassName() { }
 //Rest of the code for this class follows…
}

You can give your instance variables any visibility except public, although most of the time you may opt for
private visibility for your instance variables.

Writing a method in a JavaBean is exactly the same as writing a method in any Java class. Code your methods as you
would for any Java class, using the familiar Java language constructs you’ve come to know and love.

Coding JavaBean Property Accessor Methods

As previously mentioned, you must follow a naming convention when coding accessor methods to read values from
and write values to instance variables. JavaBean tools follow the naming convention when looking inside the bean.
These tools then extract the bean properties, enabling the bean user to change the state of the bean by changing the
bean properties through a property sheet.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=624853273#wbpch06fP27

The naming convention details depend on whether or not the instance variable representing a bean property is an
array or not. Bean properties represented as arrays are known as indexed properties. First, let’s consider the case in
which bean properties are not represented as arrays.

Coding Accessor Methods for Non-Array Bean Properties

The following is a description of the naming convention for accessor methods of non-array bean properties:

Given a variable named anInstanceVariable, declared as follows:

private SomeClassOrPrimitiveType anInstanceVariable ;

the get method that reads the variable’s name can be coded as follows:

public SomeClassOrPrimitiveType getAnInstanceVariable() {
 return anInstanceVariable ;
}

Notice the following about the variable declaration and the get method:

● The variable anInstanceVariable is declared private. The private declaration insures that users of your
bean cannot access the bean’s instance variables at will. The bean user has to access the instance variables
through an approved interface.

● The get method is declared public. The get method is part of the approved interface the bean exposes to the
outside world.

● The get method takes no arguments.

● The name of the get method is the word "get" followed by the name of the instance variable with the first letter of
the variable name capitalized. However, when the instance variable is of type boolean, you may name the
method starting with the word is instead of the word get.

● The get method returns some element of the same class or primitive data type as the instance variable.

The preceding list of restrictions is required for bean use. Suppose you coded the getAnInstanceVariable
method without following the rules? For example:
public SomeClassOrPrimitiveType
 getAnInstanceVariable(Class1 objClass1) {
 return anInstanceVariable ;
}

You could invoke the method to “get” the instance variable. However, JavaBean tools would not know the preceding
coded method is a get method. The difference in signatures between the no-argument get method and the method
coded above would "fool" the bean tool. Stated differently, the preceding coded method does not follow the standard
for coding JavaBeans. To the bean tool, the above method is not related to a bean property.

One common mistake is to forget that the first letter of the instance variable name included in the set method name
must be capitalized. Hence, the method header coded as follows fails the naming standard:

public SomeClassOrPrimitiveType getanInstanceVariable()

When you access bean properties in your JSPs, you must code get methods according to the convention described
previously, or else the JSP engine, as with bean tools, will fail to recognize the method as a get method.

In the preceding example, the get method merely returns the instance variable. Of course, you may code methods

that do all sorts of useful work before returning the element. You are free to use any elements at your disposal to
derive a value for the method to return. For example:
public SomeClassOrPrimitiveType getAnInstanceVariable() {
 Class1 objectClass1 = new Class1() ;
 SomeClassOrPrimitiveType aVar =
 objectClass1AnotherMethod (objectClass1,
 anotherElement) ;
 return aVar ;
}

In the preceding example a new object is created and another method queried before the final value, aVar is returned
to the caller.

You may also have get methods that don't query an specific instance variable. For example, if you have a bean with
the boolean property networkUp, the method isNetworkUp would query the network and return a result based on
the status of the network.

In practice, many get methods just return the current value of the instance variable. Much of the manipulation of
setting instance variable values is done in "set" methods. Set, or mutator, methods enable a bean user to change
the value of a bean property. Here’s an example modeled after the get method above:

public void setAnInstanceVariable(SomeClassOrPrimitiveType aVar) {
 anInstanceVariable = aVar ;
}

Notice the following about the set method:

● The set method is declared public.

● The set method returns void.

● The set method takes one argument of the same class or primitive type as the instance variable.

● The name of the get method is the word "set" followed by the name of the instance variable with the first letter of
the variable name capitalized.

Notice that setAnInstanceVariable, anInstanceVariable is set to the value of aVar which was passed into
the method. While it is not a requirement of the set method that it contain one or more assignment statements, this is
usually the case.

You don’t need to write both get and set methods for a bean property. If your JSP or Java code doesn’t need to
change a bean property, then you shouldn’t create a set method for that property.

The following section takes a quick look at coding accessor methods for indexed bean properties.

Coding Accessor Methods for Indexed Bean Properties

The basic idea and rationale for coding get and set methods for indexed properties is the same as those for non-
array properties. Needing some mechanism for accessing an array element, consider the following indexed property
declaration:
private SupportedType[] anArrayOfThisType ;

Then the method header would appear as follows:
public SupportedType getAnArrayOfThisType(int arrIndex)

For example, the method invocation coded below reads the fourth element (or index value 3):
aVarOfSupportedType = getAnArrayOfThisType(3) ;

The set method that writes an indexed property requires two arguments: the array position and the data to be written
to the property. Here’s the method header for a set method for the indexed property declared in the previous code
listing:
public void setAnArrayOfThisType(int arrIndex,
 SupportedType aVar)

For example, the method invocation in the following writes some data into the fourth array element:
setAnArrayOfThisType(3, aVarOfSupportedType) ;

Now that you’ve seen the basic elements that comprise a bean, let’s take a look at a simple bean.

Creating a Simple Bean

The code in Listing 6-1 shows a simple bean. Later in the chapter, this bean will be used in a JSP.

Listing 6-1: The CalcBean class

1 package cbean ; //1
2 public class CalcBean {
3 /**
4 Calculator bean for Chapter 6
5 */
6 private int operand1 = 0 ; //2
7 private int operand2 = 0 ;
8 private double result = 0 ;
9 private String operation = "" ;
10
11 //No-arg constructor for bean....
12 public CalcBean() { } //3
13
14 //Get/Set methods follow
15 public void setOperand1(int op1) { //4
16 operand1 = op1 ;
17 }
18 public void setOperand2(int op2) {
19 operand2 = op2 ;
20 }
21 public void setOperation(String oper) {
22 operation = oper ;
23 }
24 public void setResult(double aResult) {
25 result = aResult ;
26 }
27 public int getOperand1() { //5
28 return operand1 ;
29 }
30 public int getOperand2() {
31 return operand2 ;
32 }
33 public String getOperation() {
34 return operation;
35 }
36

37 public double getResult() {
38 return performTheOperation() ; //6
39 }
40 /**
41 Perform the operation.....generate the result
42 */
43 private double performTheOperation() {
44 double aResult = 0.0 ;
45
46 if (operation.equals("+"))
47 aResult = operand1 + operand2 ;
48 else
49 if (operation.equals("-"))
50 aResult = operand1 - operand2 ;
51 else
52 if (operation.equals("*"))
53 aResult = operand1 * operand2 ;
54 else
55 if (operation.equals("/"))
56 aResult = operand1 / operand2 ;
57
58 return aResult ;
59 }
60 }

A cursory examination of Listing 6-1 reveals its purpose, which is to serve as a simple calculator. CalcBean has four
properties: two operands, an operation, and the result of the operation applied to the operands. To keep things simple,
this bean does not include any code that checks for errors (such as zerodivide) or performs any edit checks on
property values.

Line 1 shows the bean stored as a package. It is a good Java programming practice to use packages to group related
classes together. Here, we have only one class so the use of packages may seem a bit pedantic. Later, you’ll see
where you should put the CalcBean class within the Tomcat server’s directory structure.

Line //2 shows the declarations for the bean properties. Notice that the properties are declared with the private
visibility modifier. The bean requirement is that bean properties are not declared public; you can have declared
bean properties as protected or use default package visibility. If our bean has subclasses that need access to the
bean’s properties, you can make a case for using the protected visibility modifier. Of course, you can still declare
the properties private and use get/set methods within the subclasses to gain access to the bean properties. Note
that because bean properties are permitted to have initialized values, when this bean is created, its properties are
given these initial values.

Line //3 shows the no-arg constructor. You do not need to explicitly code the empty constructor because, as you
recall, Java uses the empty constructor by default. The important point is not to code a constructor that requires
arguments.

Line //4 shows a typical set method and line //5 shows a typical get method. The coding of the get and set
methods follows the convention described in the preceding section. Remember, if you do not code your accessor
methods according to the described convention, bean tools and the JSP container recognize the methods as accessor
methods.

Line //6 shows a get method that invokes a method to generate the result of the calculation. You could have
included the body of the method performTheOperation within the get method or coded performTheOperation
in another bean or class.

JavaBeans, as software components, must have the ability to communicate with other components. In the following
section, you can read how to code your beans so they can communicate with other beans.

Communicating with Other Beans

The standard Java event delegation mechanism enables you to code JavaBeans to communicate with other objects or
beans. Beans that are the source of communication are designated event sources, whereas interested beans, ones
that care about the activities of source beans, are the event listeners.

For example, you may want bean A to know when properties in bean B change. If so, bean B is the event source and
bean A is the event listener. The events bean A listens for are property change events.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Examining Some JSP Pages

In this section, you’ll see a few simple JSP pages and read a brief explanation of the JSP elements and how these
elements produce dynamic content.

A Simple JSP Page: Your Name Here and ereH emaN ruoY

This JSP page code in Listing 3-1 requests that the user enter his or her name, after which it invokes a JSP that
displays the user’s name and the name spelled backward. Listing 3-1 shows an HTML page that contains a reference
to a JSP followed by a JSP that generates the HTML containing the entered name and the name in reverse. Listing 3-
1 shows the HTML page, forwardreverse.html, that requests user input.

Listing 3-1: HTML page requesting a JSP

1 <HTML>
2 <HEAD>
3 <TITLE>JSP Page to Display Name, Forward and Reverse</TITLE>
4 </HEAD>
5 <BODY>
6 <P>Enter Your Name Below</P>

7 <FORM METHOD="GET" ACTION="ShowForwardAndReverse.jsp">
8 <INPUT TYPE="TEXT" SIZE="20" NAME="yourname">

9 <INPUT TYPE="SUBMIT">
10 </FORM>
11 </BODY>
12 </HTML>

The HTML page above does not contain any JSP. Rather, the <FORM> tag on line 7 invokes a JSP named
ShowForwardAndReverse.jsp when the user clicks the Submit button. If the user enters the name Lou Marco, the
SUBMIT process encodes the data and passes it as a name-value pair, yourname=Lou+Marco, and then passes the
following URL to the server: http://localhost:8080/forwardreverse.html?yourname=Lou+Marco.

Note Use the Tomcat Web server, which has a JSP engine. See Appendix C for instructions on installing and
configuring the Tomcat server.

Listing 3-2 is the first of two examples that show slightly different ways to code ShowForwardAndReverse.jsp.

Listing 3-2: A JSP page that prints name forward and reverse

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=631828715

1 <%@ page language="java" %>
2 <%-- JSP Page With Scriptlet --%>
3 <!-- JSP Page With Scriptlet -->
4 <HTML>
5 </HEAD>
6 <TITLE>ShowForwardAndReverse.jsp</TITLE>
7 </HEAD>
8 <BODY>
9 <%-- Here is the JSP scriptlet --%>
10 <% String yourName = request.getParameter("yourname") ;
11 StringBuffer yourNameReverse =
12 new StringBuffer(yourName).reverse() ;
13 out.println("<P>You Entered " + yourName) ;
14 out.println("<P>Your Name Backwards is " + yourNameReverse) ;
15 %>
16 </BODY>
17 </HTML>

The first thing that pops out is that the JSP page contains elements that begin with the characters <% and end with the
characters %>. JSP elements are bracketed with <% and %>. The JSP engine identifies types of JSP elements with
additional characters appended to <%. For example, lines 2 and 9, bracketed with <%-- and --%>, are JSP
comments. The JSP engine does not include JSP comments during the class file translation and, of course, the JSP
engine does not use the JSP comments when compiling the page into a servlet. As an aside, line 3, the HTML
comment, is passed to the JSP engine for translation and compilation.

Lines 3 through 8 and 16 and 17 are static HTML, which are passed to the JSP engine for translation and compilation.
The resultant servlet writes these lines to the output stream with out.write statements.

Line 1 is an example of a JSP directive. A JSP directive sets various page parameters that affect the structure and
properties of the JSP page. The directive coded on line 2 states that the scripting language used in this JSP page is
Java. In the JSP 1.1 and 1.2 specifications, the only defined and required scripting language for the language
attribute is java. However, other JSP implementations support other scripting languages beside Java. Allaire's "Jrun"
and Caucho Technology's "Resin" are JSP implementations that support JavaScript and Java as scripting languages.

A few points about coding JSP directives are in order here. Notice that the JSP directive (line 1) is bracketed by <%@
and %>. You may code whitespace between the @ sign and the directive (page in this case). You cannot code any
whitespace between the attribute and its value (language="java" in this case). Chapter 4, "The Elements of a JSP
Page," contains more information on JSP directives.

Lines 10 through 15 contain a JSP scriptlet. Scriptlets are pieces of Java code that are inserted into the service
method generated by the JSP translator. Scriptlets are sandwiched between <% and %>. Line 10 shows a Java String
declare with a call to method getParameter from the predefined request object instantiated from class
HttpServletRequest. As you can read in Chapter 4, JSP pages have access to a set of predefined objects, of
which the request object is one. The call to getParameter requires a parameter name represented as a string object
as an argument. The argument used is the name of the text input box coded on line 2 from Listing 3-1 (yourname).

Line 11 shows another string declare, yourNameReverse, initialized with a call to reverse(), a method from the
StringBuffer class in the java.lang package. You do not need to do anything to have JSPs recognize elements
from java.lang because JSPs are translated into a Java class and then compiled into a servlet. The compiler that
creates the servlet does not need any import statements or special setup to recognize elements from the java.lang
package. If your JSP needed methods from, say, java.util.Vector, you would have to use a JSP directive (the
page directive, actually) to generate an import statement that imports the required methods.

Lines 13 and 14 compile to output statements that write the entered name forward and backward. These two lines
reference println from another JSP predefined object, out. As previously mentioned, Chapter 4 has the full scoop

on these JSP predefined objects.

Notice that lines 13 and 14 output an HTML <P> tag. Although you can code HTML tags with JSP output statements,
you should not do so. It's good design practice to separate the programming logic, provided by coding JSP tags, from
page formatting tags. You can read a bit more on the separation of logic from presentation later in this chapter.

Listing 3-3 shows the generated HTML resulting from the JSP page in Listing 3-2.

Listing 3-3: The HTML generated by the JSP page

1 <!-- JSP Page With Scriptlet -->
2 <HTML>
3 </HEAD>
4 <TITLE>ShowForwardAndReverse.jsp</TITLE>
5 </HEAD>
6 <BODY>
7 <P>You Entered Lou Marco
8 <P>Your Name Backwards is ocraM uoL
9 </BODY>
10 </HTML>

Listing 3-4 shows another variation of the JSP page that can generate the HTML shown in Listing 3-3.

Listing 3-4: A variation of the forward and backward JSP page

1 <%@ page language="java" %>
2 <%-- JSP Page With a Declaration and Expressions --%>
3 <HTML>
4 </HEAD>
5 <TITLE>ShowForwardAndReverse.jsp</TITLE>
6 </HEAD>
7 <BODY>
8 <%-- Here is a JSP declaration --%>
9 <%! String yourName = request.getParameter("yourname") ; %>
10 <%-- Here are some JSP expressions %>
11 <P>You Entered <%= yourName %>
<P><%= "Your Name Backwards is " +
12 new StringBuffer(yourName).reverse() %>
13 </BODY>
14 </HTML>

Line 2 of Listing 3-4 is a JSP comment and line 1 is the same JSP directive as coded in Listing 3-2. Again, lines 3
through 7 and 13 and 14 are straight HTML. Line 9 is an example of a JSP declaration. JSP declarations are
bracketed with <%! and %>. You may code complete Java declare statements and complete Java method code in a
JSP declaration. Line 9 shows the declaration and initialization of the string variable containing the string entered in
the HTML form.

Lines 11 and 12 are examples of JSP expressions. A JSP expression is compiled to an output statement that writes a
string. The string is formed by evaluating the expression sandwiched between <@= and %>. JSP expressions use the
toString() method to convert non-string objects to strings for output, as in the following expression:

<%= yourName %>

produces the same output as the scriptlet below:
<% out.println(yourName) ; %>

Line 11 shows a JSP expression containing a variable declared with a JSP declare. Line 12 shows some text
concatenated with a Java method invocation. The HTML paragraph tags are outside the JSP expression tag markers.
JSP may accept HTML tags coded within the tag markers. However, including HTML tags, which are formatting
elements, with logic elements within JSP expressions is usually a poor coding practice.

The generated HTML is identical to that shown in Listing 3-3; no need to be repetitious.

Now that you’ve seen a few simple JSP pages, you might wonder about competing technologies. How does JSP stack
up against the competition? What features does JSP have that the competition doesn’t? What are the advantages and
disadvantages of using JSP? The above questions are addressed in the next section.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=570140911#wbpch03fP87

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 4: The Elements of a JSP Page

In the previous chapter, you explored some simple JSP pages. In this chapter, you learn about all the elements of a
JSP page and you see coding examples using these elements. After you read this chapter, you’ll have an
understanding of how to code all the JSP elements mentioned.

Coding Static Page Content in JSP Pages

You’ve read that a JSP page is static text, often in the form of HTML or XML tags, combined with programming
elements responsible for generating dynamic content. Often, a sizeable chunk of your JSP page is static. To use such
static text in your JSP, you code the static text “as is” into the page, using whatever syntax rules apply to the class of
text. If your static text is HTML, for example, you code the HTML as you always would, using the known and familiar
syntax rules for proper HTML formation.

The static text you code in the JSP page ends up as Java println statements in the generated servlet. The
generated servlet eventually passes the text back to the client, where the browser displays the text together with
generated dynamic page content. Typing text in a JSP page is a plus compared with writing println statements to
generate the text in a servlet.

Before you leave the subject of including invariant text in your JSP pages, know that HTML or XML comments will
pass through unchanged like any other static text and display in the browser, but JSP comments will not.

The remainder of this chapter describes the programmable elements of a JSP — those elements responsible for
generating dynamic content.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=730249795

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

JSP is useful in Web application programming because it allows us to create dynamic Web pages that leverage the
full power of the Java programming language by mixing static HTML and JSP tags. JSP pages are created in a text
editor and are interpreted by a JSP container. The JSP container translates JSP pages into Java class files, which are
compiled into servlets. JSP offers distinct advantages over competing technologies but is not without its shortcomings.

In this chapter we've seen our first JSP page examples. In the following chapter we'll break down the parts of a JSP
page and examine them each in turn.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=736132539

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Programmable JSP Elements

Programmable JSP elements are divided into five categories: directives, scripting elements, declarations, expressions, and
actions. Let’s take a look at the elements in the first category.

JSP Directives

JSP directives are JSP elements that send messages to the JSP container. Directives affect the overall structure of the servlet
generated from the JSP page. JSP directives do not produce any output to the generated document.

The general format of a JSP directive is:
<%@ directiveType attributelist %>

The first word, directiveType, is one of three values: page, include, and taglib. The second word, attributelist, is
one or more name-value pairs; the name part is the name of the attribute relevant to the directive type and the value is a quoted
string relevant to the attribute name. If the directive contains more than one name-value pair, the distinct pairs are delimited by
one or more spaces, such as the following JSP directive:
<%@ page buffer="8k" language="java" %>

Note The syntax for name-value pairs is the same as the syntax for XML name-value pairs. See Appendix D, “XML Overview,” for an overview of XML syntax.

Pay heed to the “at” (@) sign after the <% at the start of the directive; pay equal attention to the absence of the "at" sign at the end
of the directive. Also note that the space between the start of the directive and the directiveType is not required.

The page Directive

The page directive enables you to communicate a number of important attributes to the generated servlet. Using the page

http://www.unltded.com/viewer.asp?bkid=2878&destid=542#542

directive, you can direct the servlet to import classes, define a general error reporting page, or set a content type. The page
directive follows the general form shown below:
<%@ page attributelist %>

You can code one or more page directives in your JSP page. However, with one exception, take care to ensure that you code
only one name-value pair per page. The exception is that you may code more than one import attribute, the use of which is
explained shortly.

You may code page directives anywhere in your JSP page. By convention, page directives are coded at the top of the JSP
page.

JSP also permits a coding style that follows XML syntax rules. The following is an example of a page directive coded with the
XML style:
<jsp:directive.page buffer="8k" />

The preceding page directive is the same as the example shown here:
<%@ page buffer="8k" %>

Table 4-1 lists the allowable list of attributes with a short description of each.

Table 4-1: Allowable Page Directive Attributes
Page Directive Attributes Short Description

buffer Specifies a buffering model for the output stream

autoFlush Controls the behavior of the servlet output buffer

contentType Defines the character encoding scheme

errorPage Defines the URL of another JSP that reports on Java unchecked runtime exceptions

isErrorPage Indicates if this JSP page is a URL specified by another JSP page's errorPage attribute

extends Specifies a superclass that the generated servlet must extend

import Specifies a list of packages or classes for use in the JSP as the Java import statement does for Java classes

info Defines a string that can be accessed with the servlet’s getServletInfo() method

isThreadSafe Defines the threading model for the generated servlet

language Defines the programming language used in the JSP page.

session Specifies whether or not the JSP page participates in HTTP sessions

Now let’s explore the attributes listed in Table 4-1 in more detail.

The buffer Attribute

The buffer attribute specifies buffering characteristics for the server output response object. You’d want a buffer for efficiency
because buffered output is usually quicker than unbuffered output. Writing to the browser requires resources. The server sends
buffered output in large blocks a few times, which requires less resources than sending unbuffered output in small blocks more
often. You may code a value of "none" to specify no buffering so that all servlet output is immediately directed to the response
object. You may code a maximum buffer size in kilobytes, which directs the servlet to write to the buffer before writing to the
response object. Here are a few coding examples:

To direct the servlet to write output directly to the response output object, use the following:
<%@ page buffer="none" %>

Use the following to direct the servlet to write output to a buffer of size not less than 8 kilobytes:
<%@ page buffer="8kb" %>

The exact size depends on the server. The behavior of the buffer when full is indicated by the value of the autoFlush attribute,
which is described in the next section. The default value of the buffer attribute depends on the server implementation.

The autoFlush Attribute

The autoFlush attribute controls the behavior of the buffer or, more specifically, what happens to the output buffer when the
JSP is buffered and the buffer is full (see the buffer attribute above). The autoFlush attribute takes a Boolean as a value.
Some examples accompanied by a brief description of the directive follow.

The following directive causes the servlet to throw an exception when the servlet’s output buffer is full:
<%@ page autoFlush="false">

This directive causes the servlet to flush the output buffer when full:
<%@ page autoFlush="true">

Usually, the buffer and autoFlush attributes are coded on a single page directive as follows:
<%@ page buffer="16kb" autoflush="true" %>

The preceding directive establishes an output buffer not greater than 16 kilobytes that is flushed automatically when full.

This directive generates an error. It doesn’t make sense to code the autoFlush attribute without a buffer:
<%@ page buffer="none" autoflush="false" %>

http://www.unltded.com/viewer.asp?bkid=2878&destid=80#80

The default value of the autoFlush attribute is true.

The contentType Attribute

The contentType attribute sets the character encoding for the JSP page and for the generated response page. Put differently,
the contentType attribute tells the browser how to render the generated page. You can code a mime type or a mime type
and charset. Some examples follow.

The following statement directs the browser to render the generated page as HTML:
<%@ page contentType="text/html" %>

The following statement directs the browser to render the generated page as plain text:
<%@ page contentType="text/plain" %>

Note Internet Explorer seems to ignore the contentType value of text/plain. If your JSP page contains HTML, Internet Explorer will render the page as HTML.

The following directive sets the content type as a Microsoft Word document. Listing 4-1 is an example of a JSP page that
specifies a contentType of Microsoft Word.
<%@ page contentType="application/msword" %>

Listing 4-1: JSP page specifying page content is a Microsoft Word document
<%@ page contentType="application/msword" %>
<html>
<head>
<title>Showing the contentType Attribute</title>
</head>

<body>
Here's some Bolded Text followed by some
<i>Italicized Text</i>.

<P>Here's some more text
</body>

</html>

Displaying this page in Internet Explorer gives rise to the File Download prompt, shown in Figure 4-1.

Figure 4-1: Internet Explorer asks you what to do with this MIME type.

Were you to open the file from its present location, Internet Explorer would display the file as a Word document. Were you to
save the file, Windows would save the file as a Word document. Netscape would behave in a similar fashion.

You can set a character set for encoding as the following example illustrates:
<%@ page contentType="TYPE=text/plain;CHARSET=ISO-8859-1" %>

Set the type to plain text using the character set ISO-8859-1.

The errorPage Attribute

The errorPage attribute defines another JSP page as one that handles unchecked runtime exceptions. The value of the
errorPage attribute is a relative URL.

Note Relative URLs, when coded with / as the first character (called a context-relative path), are referenced from the application; when coded without / as the first character, they are
referenced from the JSP page. You cannot code an absolute URL reference in JSP pages.

For example, the following directive displays MyErrorPage.jsp when all uncaught exceptions are thrown:
<%@ page errorPage="MyErrorPage.jsp" %>

MyErrorPage.jsp is stored in the same directory as the page containing the above page directive. If you code the directive as
follows:
<%@ page errorPage="/MyErrorPage.jsp" %>

then MyErrorPage is stored in the root directory of the application.

You can use the setAttribute() method of class javax.servlet.jsp.ServletException to pass the exception object

to the error page. Since JSP error pages are meant to inform on uncaught exceptions, you’ll use error pages to report on such
exceptions rather than attempt recovery.

The JSP page MyErrorPage.jsp must have a page directive with the isErrorPage attribute set to true.

The isErrorPage Attribute

The isErrorPage attribute indicates whether or not the JSP page is the URL coded in another JSP page’s errorPage
attribute. The value of isErrorPage is either true or false. The default value of the isErrorPage attribute is false.

The extends Attribute

The extends attribute specifies a superclass that the generated servlet must extend. For example, the following directive directs
the JSP translator to generate the servlet such that the servlet extends somePackage.SomeClass:
<%@ page extends="somePackage.SomeClass" %>

Do you see a potential problem with coding a value for the extends attribute? The server may be using a superclass already, or
may require that generated servlets extend another, different superclass than the superclass coded as a value for the extends
attribute. If you use the extends attribute, be careful.

The import Attribute

The import attribute serves the same function as, and behaves like, the Java import statement. Classes coded as values for
the import attribute are made known to the generated servlet.

If you do not code any page directives with import attributes, the generated servlet imports, at a minimum, the following
classes:

● java.lang.*

● javax.servlet.*

● javax.servlet.jsp.*

● javax.servlet.http.*

Different servers may import additional classes, but the preceding list of classes is required to have a functioning JSP
environment.

You should not rely on your JSP pages having access to classes other than the ones listed without importing the classes
yourself! Wouldn’t you be embarrassed if your carefully coded JSP pages executed perfectly on server A but choked big time
when the company switched to server B, a different Java-enabled server?

The following example allows you to code unqualified references in a JSP page for classes in somePackage:
<%@ page import="somePackage.*" %>

The import attribute is the only attribute that may be coded multiple times in a JSP.

Be advised that different Web servers use different directory structures. Therefore, in all likelihood, server A may force you to
store your custom classes in a different directory than server B. Some servers require that you store classes used by your JSP
pages in a different directory than the directory used to store custom classes for your servlets. The moral of the story is that a
cursory glance at the server documentation is worth an hour of directory code examination and trial and error.

The info Attribute

The info attribute enables you to make a string available to your JSP pages by invoking the JSP page implementation of the
Servlet.getServletInfo() method. The string can be pretty much anything you desire. The following is a coding example:
<%@ page info="This JSP Page Written By Lou Marco" %>

The isThreadSafe Attribute

The isThreadSafe attribute lets the JSP container know how to dispatch requests to the page. The value of this attribute is a
boolean. When the value is false, the JSP container dispatches one request at a time; when the value is true, the JSP
container dispatches all outstanding requests simultaneously.

Servlets usually create a thread per user request. Multiple requests result in the servlet dispatching multiple threads, each thread
accessing the service() method of the same servlet. The underlying assumption is that the servlet is thread safe. The servlet
synchronizes access to data so that threads do not "step on" each other.

Assigning a value of true to isThreadSafe does not make your code thread safe. The isThreadSafe attribute is merely a
statement about your code’s ability to handle multiple threads. Although you should write your code to assume correct execution
in a multithreaded environment, you may encounter a situation in which a class you need to use is not thread safe. Hence, you
may, at times, code a value of false for the isThreadSave attribute. The default value is true.

The language Attribute

The language attribute indicates the programming language used in scripting the JSP page. The JSP specification requires that
a JSP implementation support a value of java for the language attribute. However, other JSP implementations may, and do,
support other values for the language attribute.

The session Attribute

The session attribute indicates whether or not the JSP page uses HTTP sessions. A value of true means that the JSP page
has access to a builtin object called session; a value of false means that the JSP page cannot access the builtin session
object. Put another way, the following directive allows the JSP page to use any of the builtin object session methods, such as
session.getCreationTime() or session.getLastAccessTime():
<%@ page session="true" %>

When the session attribute has a value of false, any attempt to access the builtin object session causes an error during JSP
to servlet translation.

In Chapter 5, “JSP Web Sessions,” sessions are covered in detail. You should recall that an advantage of using servlets over
traditional CGI is that servlets allow for sessions that maintain information about the client across multiple Web pages whereas
CGI does not.

To wrap up the plethora of attributes for the page directive, I want to note again that these attributes do not direct any output to
the eventually displayed page. You may code multiple page directives in your JSP page, but, with the exception of the import
attribute, attributes can appear at most once in the page. In addition, you may code more than one attribute in a single page
directive, with some combinations (such as buffer="none" and autoFlush="false") not permitted.

JSP has two other directives: the include and the taglib directives, which are covered in the following two sections.

The include Directive

You probably have an idea of the purpose of the include directive. The include directive enables you to bring external code
into your JSP at the point of reference. The syntax is as follows:
<%@ include file="relativeURL" %>

Unlike page directives, the placement of the include directive is critical. The JSP translator copies the code stored at
relativeURL into your JSP page starting at the location of the include directive. The URL specification in the value of the

http://www.unltded.com/viewer.asp?bkid=2878&destid=94#94

file attribute is a relative URL.

A few caveats concerning the use of the include directive are in order. First, be aware that the file to be included may (and
usually does) contain JSP code. If the to-be-included file contains page directives, the restriction about the multiple occurrences
of page directive attributes applies. In other words, you cannot have an included file contain a page directive with an attribute
already coded in the JSP page (except the import attribute).

Another caveat is that when you change an included file, you must update all the JSP files that include the changed file. What
you need is a JSP or server command that tells the JSP translator to retranslate, but such a command is not currently available.
The JSP translator detects when JSP pages require translation based on modification dates. An admittedly primitive but effective
workaround is to change a comment in your pages that uses included files to force a retranslation.

Later in this chapter, in the section titled “Coding JSP Standard Actions,” you’ll read about the <jsp:include action that also
brings external code into your JSP pages.

The taglib Directive

In Chapter 7, “JSP Tag Extensions,” we explore using custom tags in JSP pages. Without giving too much away before then,
know that a custom tag is part of a tag library. A tag library is a set of user-defined tags that implement custom behavior. In short,
you are extending the functionality of JSP pages by creating a set of tags that implement new behaviors for your JSP pages.
While this sounds a bit like using JavaBeans in your pages (see Chapter 6, “JSP, JavaBeans, and JDBC,” for JavaBean usage
in JSP pages), the tag library usage plays a slightly different role than JavaBean usage does. Because of the scope of the topic,
you’ll have to wait until you read Chapters 6 and 7 for the full story.

Given that you have a “thing” called a tag library for use in your JSP page, you have to tell the JSP container about the library.
You do so by using a JSP taglib directive.

The taglib directive declares that your JSP page uses a set of custom tags, identifies the location of the library, and provides a
means for identifying the custom tags in your JSP page. Here’s an example of a taglib directive:
<%@ taglib uri=http://joestags.tld prefix="joe" %>

Here, the uri attribute provides an absolute uri containing the code that implements the custom tag’s behaviors. The value of
the uri attribute can be an absolute (shown above) or relative reference. The prefix attribute associates the custom tag coded
in the JSP page with the library name coded as a value of the uri attribute.

Note The term uri means Universal Resource Identifier. Think of a uri as a URL or a file reference.

The following is an example of a custom tag from http://joestags.tld referenced by the value of the prefix attribute
coded in the taglib directive:

http://www.unltded.com/viewer.asp?bkid=2878&destid=80#80

<joe:doMyCalc />

Note Custom tags follow XML coding conventions. See Appendix D for an overview of XML syntax.

You must code the taglib directive before coding any references to the custom tags from the tag library.

Well, that’s the story on coding JSP directives. Worth repeating is that JSP directives do not produce output per se; JSP
directives communicate certain parameters and set certain attributes that affect the generated servlet and resultant output page.

What about JSP commands that do result in output? You’ll read about these commands next, starting with JSP scripting
elements.

JSP Scripting Elements

JSP scripting elements enable you to insert code into the JSP page that results in code in the generated servlet. Scripting
elements range from one-sentence variable declares to entire Java methods. I examine three categories of scripting elements:
expressions, declarations, and scriptlets.

JSP Expressions

A JSP expression inserts data in the resultant output page. A JSP expression has the following syntax:
<%= javaExpression %>

The JSP translator evaluates javaExpression, converts javaExpression into a string, and places the resultant string
directly in the output page. If the expression cannot be converted to a string, the runtime throws a ClassCastException. For
example, the following JSP expression generates the date and time the JSP page was requested:
<%= new java.util.Date() %>

Or, using a page directive that allows for an unqualified reference to the Date class with the expression:
<%@ page import="java.util.*" %>
<@= new Date() %>

JSP expressions are evaluated at the time the JSP page is requested (by entering the name of a JSP page in the location bar of
a browser or clicking a hyperlink that references the JSP page), or at runtime, not at JSP translation time. The result of the
evaluation being done at runtime is that variables or objects referenced in the expression have access to any information about
the request.

You may use the XML form of a JSP expressions as follows:
<jsp:expression>
 Java expression

</jsp:expression>

The engineers at Sun Microsystems make life a bit easier for the JSP programmer by providing the programmer access to
predefined environment objects called implicit objects. These objects are accessible from JSP expressions and JSP scriptlets.
You read about these objects later in this chapter.

JSP Declarations

As with any programming language, JSP uses variables to hold program data or code that performs various tasks. One JSP
feature that makes variables or program code known to the JSP page is called a JSP declaration.

JSP declarations have the following format:
<@! JspDeclaration @>

In Listing 4-2 you see a simple page with a JSP declaration and expression.

Listing 4-2: Simple JSP page with a declaration and expression
<%@ page contentType="text/html" %>
<html>
<head>
<title>Simple JSP Declaration Example</title>
</head>

<body>
<%-- Here's a JSP Declaration --%>
<%! int counter = 0 ; %>
<P>This page has been accessed
<%-- Here’s a JSP Expression --%>
<%= ++counter %> times
</body>

</html>

JSP declarations by themselves do not cause output. Rather, JSP declarations are used with the JSP expressions and scriptlets
to cause output. Note that the preceding expression could not have generated a value for counter without the counter variable
being declared.

Worthy of mention is that instance variables declared in JSP declarations need not be declared static because instance variables
are shared among separate page requests.

JSP declarations may include entire methods. Listing 4-3 shows a small JSP illustrating a method declare.

Listing 4-3: Coding and invoking a method in a JSP declaration

<%@ page contentType="text/html" %>
<html>
<head>
<title>Coding and Invoking a Method</title>
</head>

<body>
<%-- Here's a variable and method declaration --%>
<%! int toInteger = 100 ;
 int sumOfFirstIntegers = addIntegers(100) ;
 public int addIntegers(int to) {
 return to * (to + 1) / 2 ;
 }%>
<P> The sum of integers from 1 to <%= toInteger %> is:
 <%= sumOfFirstIntegers %>
</body>

</html>

Listing 4-3 also includes a few JSP expressions.

As you may have guessed by now, you can code JSP declarations in XML style syntax as follows:
<jsp:declaration>
 Java Code
</jsp:declaration>

JSPs also permit you to code pieces of Java in your page by coding scriptlets, as explained in the next section.

JSP Scriptlets

A scriptlet is an arbitrary piece of Java code. The general format is as follows:
<% aPieceOfJavaCode %>

Understand that a “piece” of code can be entire statements or groups of statements.

Scriptlets are executed at request time. Hence, code contained in scriptlets may modify objects by invoking methods. Listing 4-4
shows a page similar to Listing 4-3 but using a scriptlet.

Listing 4-4: JSP page with a scriptlet
<%@ page contentType="text/html" %>
<html>
<head>
<title>JSP scriptlet example</title>
</head>

<body>
<%-- Here's a JSP scriptlet --%>
<% int toInteger = 100 ;

 int sumOfFirstIntegers = toInteger * (toInteger + 1) / 2;

 int sumByLoop = 0 ;
 for (int counter = 1; counter <= toInteger; counter++)
 sumByLoop += counter ;
%>
<P> The sum of integers from 1 to <%= toInteger %> by loop is:
 <%= sumByLoop %>
</body>

</html>

Notice that Listing 4-4 uses pieces of Java code as opposed to an entire method. Changing Listing 4-4 to use a declaration
causes the JSP translator to generate an error, as shown in Listing 4-5.

Listing 4-5: Tomcat reacts to using a JSP declaration where a scriptlet is called for

Error: 500
Location: /examples/jsp/loutest/loutest.jsp
Internal Servlet Error:
org.apache.jasper.JasperException: Unable to compile class for
JSPD:\tomcat32\work\localhost_8080%2Fexamples_0002fjsp_0002floutest_0002floutest_0002ejsploutest_jsp_0.java:24: Type
expected.
 for (int counter = 1; counter <= toInteger; counter++)
 ^
1 error

The actual diagnostic shows a rather long stack trace, but the included top piece of the diagnostic shown in Listing 4-5 should give
you the essential flavor of the problem.

JSP scriptlets do not have to be complete Java statements. You may code pieces as long as all the pieces together form complete
Java statements. Listing 4-6 illustrates the concept.

Listing 4-6: JSP scriptlets with pieces of Java code
<%@ page contentType="text/html" %>
<html>
<head>
<title>JSP scriptlet example</title>
</head>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=767832684#wbpch04fP241

<body>
<%-- Here's a JSP scriptlet with pieces of code --%>
<% int toInteger =
 Integer.parseInt(request.getParameter("to")) ;
 int sumOfFirstIntegers = toInteger * (toInteger + 1) / 2;

 if (sumOfFirstIntegers > 100000){
%>
 Big Number
 <% } else { %>
 <i>Small Number</i>
 <% } %>

</body>

</html>

As you can see, the if statement is broken into pieces with some pieces as HTML and some as Java code. The requirement for a
syntactically correct scriptlet is that all the pieces must form syntactically correct Java code.

The following statement uses an implicit object called request:
int toInteger = Integer.parseInt(request.getParameter("to"));

You pass the parameter by entering the name of the JSP with the parameter entry as shown here:
http://localhost:8080/examples/jsp/loutest/loutest.jsp?to=50

You can code JSP scriptlets as XML tags, as follows:
<jsp:scriptlet>
 Java Code
</jsp:scriptlet>

You see that JSP allows you, the JSP programmer, to use Java code in your JSP pages in interesting and flexible ways. However,
you have additional capabilities that do not involve embedding Java code in your JSP page. JSP supports a variety of standard
actions, which are covered in the next section.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 11: A First Look at EJB

Overview

You’ve spent some time reading about JavaServer Pages, sometimes referred to as the front door to J2EE
applications. In Part III, you can read about Enterprise JavaBeans. As mentioned in Chapter 1, “Enterprise Computing
Concepts,” Enterprise JavaBeans are a server-side software component architecture. In other words, the Enterprise
JavaBeans specification describes how to develop distributed objects and how to deploy these objects in a distributed
computing environment.

This chapter provides an introduction to Enterprise JavaBeans (EJBs). This chapter’s first order of business is to
dispense with the belief that Enterprise JavaBeans are related to JavaBeans. Then you can read about the ambitious
goals of the EJB architecture. EJB release 1.1 is discussed here, along with features of EJB release 2.0 (Sun released
the final draft on October 25, 2000).

This chapter also introduces the important topic of EJB Roles and how these roles enable the development of
compatible EJBs by different vendors.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=884130291

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part III: Enterprise JavaBeans

Chapter 11: A First Look at EJB

Chapter 12: The Elements of an EJB

Chapter 13: EJB Contexts and Containers

Chapter 14: EJB Session Beans

Chapter 15: EJB Entity Beans

Chapter 16: EJB Security

Chapter 17: EJB and Transaction Management

Chapter 18: Creating EJB Clients

Chapter 19: The Proposed EJB 2.0 Specification

Chapter 20: Integrating JSPs and EJBs

Appendix A: The JSP API

Appendix B: The EJB API

Appendix C: Configuring the Tomcat Web Server

Appendix D: XML Overview

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=287854827

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You have now seen a complete JSP application. This application has combined JSP pages and JavaBeans to provide
dynamic Web page content. JavaBeans have been used to access database resources and provide client information.
JSP error handling, which we discussed in the previous chapter, was used to handle incorrect user input. You should
now have a better understanding of how these different parts of a JSP application work together. In the coming
chapters we'll learn how to use Enterprise JavaBeans, making our Internet applications even more powerful.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=674124268

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 12: The Elements of an EJB

Overview

At this point, you’ve been introduced to the rationale for Enterprise JavaBeans (EJBs), which is the need for server-
side distributed components. You’ve learned about the players in the world of EJBs and about the lofty goals of the
EJB architecture. Now, you’re ready to learn about the nuts and bolts of an Enterprise JavaBean.

This chapter discusses the components of an EJB. You can read about the required interfaces for implementing and
constructing an enterprise bean. You can discover that EJB supports three different bean types — entity beans,
session beans, and (new with EJB 2.0) message-driven beans. And you can learn why you need different enterprise
bean types in an application. You can also read about the environment required by enterprise beans for living,
working, and playing, including how to deploy your beans once developed.

First, let’s take a look at the makeup of an enterprise bean followed by a description of the bean’s components.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=816505363

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You’ve just taken a quick tour of Enterprise JavaBeans. You’ve learned that EJBs are distributed, server-side software
components that live inside an abstraction called a container. You’ve been introduced to the goals of the EJB
architecture. You’ve learned that the EJB specification provides for three different types of enterprise bean — the
session bean, the entity bean and, with release 2.0, the message bean. You’ve learned that clients do not access
enterprise beans directly; rather, they access enterprise beans by going through the bean’s home or remote interface.
You’ve read about the deployment descriptor, which enables you to customize an enterprise bean’s behavior without
changing the bean’s source code. You’ve also been introduced to the concept of EJB roles and how these roles are
important to the software component market. This should be enough to let us begin to dig into EJBs in detail with
some coding examples in the next chapter.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=459021557

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Examining EJB Release 1.1

Sun released Enterprise JavaBeans 2.0 as a final draft in late October 2000. However, this book concentrates on
Enterprise JavaBeans 1.1, because, at the time of this writing, no commercially available application servers support
the EJB 2.0 specification. In Part III of this book, EJB 2.0 features are discussed where appropriate.

The best place to start when examining the functionality provided by release 1.1 is with the core of EJB — the
enterprise bean itself. This chapter also covers other core concepts and key architecture elements that you need in
order to understand how enterprise beans work.

Examining the EJB and Its Environment

The EJB specification describes two types of enterprise beans: a session bean and an entity bean. A session bean is
a bean that models a process; an entity bean is a bean that models data. A considerable portion of Part III of this book
is devoted to describing these bean types.

Note Release 2.0 of the EJB specification describes a third enterprise bean type — the message-driven bean (or,
more simply, a message bean). Message beans were specifically designed to handle incoming JMS
messages. Chapter 12, “The Elements of an EJB,” covers the new message bean in more detail.

Clients do not directly access session or entity beans. Clients (which can be other enterprise beans) usually access
enterprise beans by using a naming service, such as JNDI. The EJB architecture describes the relevant interfaces
used to access enterprise beans, about which more is said throughout this chapter.

Enterprise beans of all types live within EJB containers. The EJB container is not a physical piece of hardware or
software but rather an abstract entity that manages the various instances of enterprise bean classes. Most industry
EJB containers are packaged as part of a larger software product, like IBM's WebSphere and Allaire's JRun. The
container provides support for contained enterprise beans through a set of interfaces defined in the architecture
specification.

Note Release 1.0 of the EJB specification stated that support for entity beans within EJB containers was optional.
Since release 1.1, support for entity beans within EJB containers is mandatory.

The containers live within an EJB server. You can think of the EJB server as the outermost box containing all the
elements of an EJB environment. The server is responsible for providing access to services and resources, such as
threads and processes, the network, storage devices, and memory.

Because the client does not directly access enterprise beans, it must access enterprise beans through interfaces.
Here’s a brief overview on these interfaces.

The home interface describes the methods responsible for managing the life of the enterprise bean. The home
interface has descriptions for methods that enable a client to create, locate, and destroy EJB instances. The object
that implements the home interface for an enterprise bean is referred to as the Home Object, or EJB Home.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=368086864

The remote interface describes methods that the enterprise bean uses to do its work. Clients can call methods of the
remote interface. The object that implements the remote interface is referred to as the EJB Object.

Figure 11-1 depicts clients accessing EJB instances by going through, or using, the home and remote interfaces.

Figure 11-1: Accessing enterprise beans through the home and remote interfaces

The basic idea is that clients, which can be Java applets, Java servlets, or other enterprise beans, can access EJB
instances only through the home or remote interfaces. Notice that clients access both bean types through the home
and remote interfaces.

The EJB instances are objects from the actual enterprise bean class, or bean class. The bean class contains
implementations of the business methods, which do the actual work of the bean. However, the bean class does not
implement the methods described in the remote interface. To further complicate matters, the bean class methods
must have signatures that match those found in the bean’s remote interface and several methods found in the bean’s
home interface. Chapter 12, “The Elements of an EJB,” discusses in detail how the home interface, remote interface,
and bean class interrelate.

While session, entity, and message beans are different animals, they have much in common. The next section
discusses essential enterprise bean properties that are shared by session and entity beans.

Essential Enterprise Bean Properties

The EJB specification describes essential bean properties as follows:

● Containers manage enterprise bean activities.

The EJB container has the responsibility for creating, destroying, and otherwise manipulating the enterprise bean.
Various runtime services required by the bean are not directly accessible by the bean; these services are provided
to the bean by the EJB container. Each container may house multiple enterprise beans, and an EJB server may

contain multiple EJB containers.

The EJB architecture requires that enterprise beans be deployed in suitable containers. Stated differently, EJBs
must live within containers that are capable of providing needed services.

● Enterprise beans can, and usually are, customized during deployment.

The most elegantly crafted enterprise bean is useless unless deployable in a customer’s environment. Given that
enterprise computing environments differ in unknown ways, customers who deploy enterprise beans need an easy
way to adapt the bean’s properties to fit with the peculiarities of an environment. The architecture calls for
enterprise beans to be packaged with a file called a deployment descriptor. The deployment descriptor is a text file
in XML format that can be edited to suit the needs of the customer. Hence, the customer does not need to have
access to Java source code to change the behavior of an enterprise bean to fit his or her environment.

Note Deployment descriptors are in XML format. Appendix D provides an overview of XML.

● The client that accesses enterprise beans does not care about the server or container particulars.

Because a client accesses enterprise beans through the home and remote interfaces, and not directly through the
server or container, the client does not need to be concerned with the server or container particulars. The home
and remote interfaces are not dependent on server or container particulars above those required by the EJB
specification. The upshot is that enterprise beans are highly portable among servers and containers that follow the
EJB specification.

Examining EJB Roles

The EJB architecture describes a role as a set of responsibilities (often called a contract) assumed by a party in the
development and deployment of an enterprise bean. The basic idea is that delineating the responsibilities of each role
ensures that the outputs of one party are compatible with the inputs of others.

The six roles described by the EJB release 1.1 specification, and a seventh introduced in EJB release 2.0, are
described in the following.

The Enterprise Bean Provider

The enterprise bean provider supplies software components (enterprise beans) that customers may purchase for use
in their computing environments. The provider is responsible for supplying the class files that implement one or more
processes, the definitions of the bean’s home and remote interfaces, and a deployment descriptor that describes how
the bean can be adjusted to fit into the customer’s environment.

The output of the enterprise bean provider is one or more enterprise beans packaged into ejb-jar files, which contain
the class files and bean deployment descriptors. You can probably imagine bean providers marketing enterprise
beans that perform useful tasks, like processing credit card transactions, which could be plugged into a customer's
Internet application as needed.

The Application Assembler

The application assembler combines enterprise beans and possibly other software components and elements into a
deployable application. Typically, the application assembler must be adept in the firm’s business and with the
particulars of how the application’s components work together.

The inputs received by the application assembler are the ejb-jar files produced by the enterprise bean provider. The
outputs delivered are these ejb-jar files with deployment descriptors modified to reflect the environment’s particulars.

The application assembler can be one or more programmers that write glue code that binds together several classes
provided by the bean provider. Possibly, the application assembler needs to tweak a user interface to fine-tune a
particular process. A good description of the application assembler’s ultimate responsibility is to do whatever must be

done to turn a group of EJBs into something deployable.

The Deployer

The deployer performs the actual application deployment of the combined components into a suitable environment.
The environment is one or more EJB containers resident on one or more EJB servers. To do its job, the deployer
needs inputs from the application assembler, the EJB container provider, and the EJB server provider.

The output of the deployer is one or more EJBs or an application consisting of one or more EJBs on a specific EJB
container. The deployer knows about the details of the EJB containers and EJB servers. Typically, the deployer is
knowledgeable of the firm’s computing environment.

The EJB Container Provider and the EJB Server Provider

The EJB container provider provides various system-level services available to applications composed of EJBs, such
as transaction support, security, storage, and memory.

The EJB server provider supplies the EJB-enabled application server that provides all the system services required by
the EJB containers. The EJB architecture does not specify a distinction between the container provider and the server
provider. In practice, one organization typically acts as both the container and server provider. In other words, an
organization providing EJB-enabled application servers also provides suitable EJB containers.

EJB servers usually contain tools that assist the deployer in deploying EJBs to containers and customizing the
enterprise beans if required.

The System Administrator

The system administrator is responsible for managing and maintaining the infrastructure needed for continual
operation of the application. The EJB specification does not require any specific inputs from other parties. Typically,
the system administrator uses various monitoring and system tuning tools available from the server providers.

The Persistence Manager

The EJB 2.0 specification has introduced a new role — the persistence manager provider. The persistence manager
is a new participant in the world of Enterprise JavaBeans dealing with entity beans. A discussion of the persistence
manager and the persistence manager provider role can be found in Chapter 15, “EJB Entity Beans.”

Wrapping up the Roles Discussion

One party may assume several roles, as is the case with container and server providers. As time goes on, it is easy to
envision a marketplace with vendors assuming one or more roles in providing enterprise beans, container, server, and
administrative services to customers. When vendors follow the EJB standard, customers can be reasonably sure that
different vendor products can operate well with each other.

In addition, the EJB specification may further delineate responsibilities, either by providing additional roles (the
persistence manager role in release 2.0, for example) or by defining distinctions between container and server
providers.

In short, the purpose of defining the above roles is to define areas of responsibilities to ensure the production of
quality, portable enterprise beans that adhere to the EJB specification.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 15: EJB Entity Beans

You’ve read a bit about entity beans in previous chapters, but in this chapter you’ll further explore the vitally important entity bean. You’ll read about characteristics
of entity beans and the entity bean interface, in addition to learning about container-managed and bean-managed persistence. You’ll also learn about the life cycle
of an entity bean, in addition to examining some code that implements an entity bean. Let’s start by learning about the characteristics of entity beans and their
uses.

Examining Entity Bean Characteristics

Entity beans provide an application with a consistent interface for accessing and manipulating data. A client interacts with the application’s data by invoking entity
bean methods defined in the remote interface, or by invoking session bean methods, which, in turn, invoke entity bean methods, again, through their respective
remote interfaces.

Many of the concepts and methods needed to implement entity beans should be familiar to you. In Chapter 14, “EJB Session Beans,” I covered bean activation
and passivation, which are relevant to entity beans. Entity beans have a context object — an instance of the EntityContext class — that a bean uses to interact
with the EJB container, like a session bean’s SessionContext object. In short, entity beans have much in common with stateful session beans.

It should come as no surprise that you still code and implement a home and remote interface to represent the client view of an entity bean. The client still uses
JNDI to locate a reference to the bean’s home interface, as with session beans. The client still invokes methods contained in the remote interface to communicate
with the container, then the bean, as with session beans.

A key difference between implementing a session bean and implementing an entity bean is that the session bean class implements the
javax.ejb.SessionBean interface, and the entity bean implements the javax.ejb.EntityBean interface. Throughout this chapter, you will read about the
methods in the EntityBean interface that require implementation.

Using Entity Beans for Persistent Data

You, the EJB developer, use entity beans to model some data relevant to the application. The data should be persistent; that is, the data source should be a
persistent data store such as a database. The data should have meaning and use for more than a single client, or the data should be useful in a distributed
application environment.

Accessing Entity Beans with a Primary Key

Because entity beans are an in-memory representation of some database data, it makes sense to use a key to access entity beans, just as you would for database
data. A primary key used to access an entity bean is, of course, an instance of a Java class.

Primary key objects usually map to a key in the underlying database. However, you are not limited to defining primary key classes as objects of a relational
database type, such as varchar or integer. You may construct your primary key as any Java object as long as the primary key class is serializable.

Looking at the Entity Bean Life Cycle

Entity beans, representing persistent data, have a long lifetime — as long as the data the bean represents. In reality, entity bean instances are pooled and the
container may manipulate bean instances to service multiple clients. However, from a client perspective, the entity bean is the data. As you’ll see in the code
examples in this chapter, when a client takes action that impacts the state of an entity bean, the persistent data the bean represents also changes. In short, the life
cycle of an entity bean closely mirrors that of the life cycle of the persistent data it models.

Later in this chapter, you learn about the states that an entity bean assumes throughout its lifetime.

Examining Entity Bean Client Scenarios

Entity beans are not bound to a particular client as stateful session beans are. The data being modeled by an entity bean has relevance and use to multiple clients
(barring exceptional situations in which only one client has privilege to access some data). Hence, a container strategy that instantiates an entity bean and weds
that bean to a single client may suffer performance bottlenecks.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=881632064

You can imagine a scenario in which multiple clients require access to the same data, modeled as entity beans. Would a container vendor instantiate multiple
beans, each bean representing the same data? Would a container vendor instantiate a single bean and write code that threads multiple requests to the entity
bean’s methods? Would the burden of writing thread-safe code fall on the EJB developer’s shoulders?

The EJB specification requires that all enterprise beans must contain one and only one thread. The promise of thread-safe execution within the container is a big
plus for the EJB architecture and helps ensure that the container and the enterprise application are stable.

Containers from different vendors can pool entity bean instances before filling these bean instances with data. As with session beans, the pooling strategy
undertaken by the container vendor is completely transparent to the client and to the EJB developer. When several clients access the same data, some containers
may instantiate several entity beans and present each bean to a separate client. These clients could access the bean instances simultaneously. But do you see a
problem with the aforementioned approach?

The process of several clients accessing the same data at the same time raises data consistency issues. Client A accesses data. Client B accesses and changes
the same data. However, client A has its copy of the data, which does not reflect the changes made by client B. At this point, client A has “stale” data. Also, if client
A changes the data, then the changes made by client B may be overwritten and lost. In short, multiple clients accessing the same data requires additional
housekeeping to ensure that the clients do not step on each other’s changes.

These problems are not specific or unique to entity beans; they are the classic problems faced by database application developers. As you’ll read later in this
chapter, entity beans have means to ensure that these types of problems do not occur. For now, know that EJBs contain callbacks that help guard against lost
update scenarios by synchronizing the bean instance with the database.

Because of the close relationship between entity beans and the data that they model, a short discussion of data persistence is in order.

Data Persistence

Actions taken on an entity bean affect data in the database. When the container creates a new entity bean, the data corresponding to the new bean must be
inserted into the database. When a bean property corresponding to a column in the database changes, that changed value must be altered in the database as
well. Some agency must be responsible for ensuring that changes in the bean are properly reflected in the database.

In the multiple-client, same-data scenario presented in the previous section, you read that EJBs contain callbacks that help synchronize bean changes and
database changes. In some cases, the EJB developer must write code to maintain data consistency, or persisting changes; in other cases, the container handles
this chore.

The division of responsibility for persisting changes from the beans to the database results in different classifications for entity beans. Beans that can have the
container manage persistence are called container-managed persistence (CMP) beans. Beans that contain code that manages persistence are called bean-
managed persistence (BMP) beans.

Like stateful and stateless session beans, the interfaces you code to implement CMP beans and BMP beans are pretty much the same. The client accessing the
bean has no knowledge of whether or not the entity bean is a CMP bean or a BMP bean. As they say, the devil’s in the details. Let’s take a closer look at these two
bean classifications, starting with CMP beans.

Container-Managed Persistence Entity Beans

CMP beans are a boon to the EJB developer. By developing CMP beans, you can insert, update, or delete rows from multiple tables in a relational database
without writing a single line of SQL! In other words, you write code that manages the activity of the CMP bean and the container automatically reflects your bean
activity in the database.

If a client invokes a create method in the CMP bean’s remote interface, the container is responsible for inserting the row(s) into the table(s). If a client invokes a
set method to change the name of a CMP bean property assigned to a database column, the container is responsible for updating the corresponding value in the
database. EJB folk call bean properties that map to columns in a table container-managed fields. A container-managed field can be any Java primitive type or any
serializable object

To sweeten the deal, the container for CMP beans also handles data consistency problems previously mentioned, by using the same mechanism to apply
database updates based on client invocations of bean set methods.

You may wonder how a CMP bean can possibly apply changes to a table in a relational database without SQL written by the bean developer. The container
vendor must provide a tool that enables a bean developer to map CMP bean properties to columns in the database and to associate SQL with CMP bean actions,
such as bean creation and removal.

The code in the CMP bean class does not contain any SQL. Also, the CMP bean is defined independently of the database used to store the bean’s state. This
independent definition and separation of the CMP bean from the database helps in making the bean reusable. The CMP bean contains business logic — not
transaction details such as commits and rollbacks — and, with any luck, applies to multiple business scenarios within the organization.

By now you can see that, given a choice, you should strive to develop CMP bean entity beans. Even if you are a “go it alone” type, you should understand the
wisdom in having the container manage the details of maintaining consistency between the CMP bean’s state and the data contained in the database. Even if you
rather enjoy writing SQL, you may see the wisdom in having the container issue any SQL needed, behind the scenes, to maintain the data.

CMP in EJB 2.0

Container-managed persistence will undergo significant changes in the upcoming EJB release 2.0. Sun and industry participants deemed the changes necessary

to clarify some ambiguities in the EJB 1.1 specification. For example, the following code defines a Customer CMP bean that relies on a dependent class:
public class Customer implements javax.ejb.EntityBean {
 public int custID ;
 public String custName ;
 public Address custAddress ;
 //Other fields and methods to complete the bean definition…
}

The Address class instantiates regular (non-EJB) objects:

public class Address {
 public String street ;
 public String city ;
 //Other fields and methods that complete the class definition
}

The problem is that the EJB 1.1 specification is unclear as how to handle the persistence of objects of class Address that are instance variables of the Customer
CMP bean. Are the Address objects serialized and saved? Are the instance variables (fields) within the Address objects mapped?

EJB 2.0 uses the persistence manager to alleviate this ambiguity. The persistence manager requires that the CMP bean developer code the relationships between
objects of class Address (the dependent class) and the Customer bean class by using new tags in the deployment descriptor. The container vendor is
responsible for providing tools that use the information in the deployment descriptor to generate the required access (get/set and create) methods that the
bean instances need from the dependent objects. The following code shows a likely deployment descriptor that describes the relationship between the bean class
and the dependent class:
<ejb-jar>
... .
 <enterprise-beans>
... .
 </enterprise-beans>

 <dependents>
 <dependent>
 <description>Address dependent class</description>
 <dependent-class>Address</dependent-class>
 <dependent-name>Address</dependent-name>
 <cmp-field><field-name>street</field-name></cmp-field>
 <cmp-field><field-name>city</field-name></cmp-field>
 </dependent>
 </dependents>

 <relationships>

 <!-- One to One: Customer Address -->
 <ejb-relation>
 <ejb-relationship-name>Customer-Address</ejb-relationship-name>
 <!-- defines role relationship from bean perspective -->
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 customer-has-address
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <role-source><ejb-name>Customer</ejb-name></role-source>
 <cmr-field><cmr-field-name>custAddress</cmr-field-name></cmr-field>
 </ejb-relationship-role>

 <!-- defines role relationship from dependent object perspective -->
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 address-belongs-to-customer
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <role-source><dependent-name>Address</dependent-name></role-source>
 <cmr-field><cmr-field-name>customer</cmr-field-name></cmr-field>
 </ejb-relationship-role>

 </ejb-relation>

 </relationships>

...

<ejb-jar>
The container uses the information coded in the deployment descriptor to generate the required accessor methods for both
classes.
The dependence on a container tool to map database columns to container-managed fields is a drawback to using CMP beans.
As of yet, container tools are not mature enough to address a wide range of mapping scenarios. Of course, tools never go
the distance; organizations will always have the odd requirement or two that baffles the current state of automation. In
these rare cases, the EJB developer must forgo CMP beans and write the code to have the bean manage the data’s

persistence. Such entity beans are called bean-managed persistence (BMP) beans and are the subject of the next section.

Bean-Managed Persistence Entity Beans

As the name implies, a BMP bean must have code that maintains consistency between the state of the bean and the state of the data in the database. In other
words, the BMP bean developer is responsible for writing code that explicitly manages the persistence logic of the database.

Naturally, the BMP bean developer must know about the database, the columns in the tables, the SQL used to access and modify the data, and when to issue the
SQL statements. When compared to the work required to code a CMP bean, coding a BMP bean seems like a real effort!

Later in this chapter, I provide code for a CMP bean and show the required changes to transform the CMP bean into a BMP bean. First, you need to take a look at
the javax.ejb.EntityBean interface, used to define both CMP bean and BMP beans.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 14: EJB Session Beans

Although you’ve been introduced to session beans in previous chapters, now it’s time to learn more about the
vitally important session bean. This chapter discusses the characteristics of session beans and the session bean
interface. You can also learn about stateful and stateless session beans and their respective life cycles, including the
myriad states of a session bean. In addition, you can examine some actual code that implements a session bean.

Understanding Session Beans

Session beans provide the generic components of an application that represent tasks or business processes. Session
beans perform actions on behalf of a single client and serve as the entry for the client to the enterprise application. A
client interacts with the application by invoking session bean methods defined in the remote interface, which access
the functional behavior and services of the application.

The EJB developer uses session beans to model some process or task relevant to the application. These tasks range
from the type you might expect, such as performing a computation or billing a customer account, to the type you might
not expect, such as issuing an arrest warrant.

Session Bean Life Cycle

Because session beans are typically bound to a client, the lifetime of the session bean is usually as long as that of the
client session. Often, an EJB server (or container depending on the implementation) has a time limit for inactive
sessions, meaning the container may purge session beans after a period of inactivity. However, one of the benefits of
the EJB architecture is that the EJB developer does not need to be concerned with bean-purging activities because
such activity is one of the many services provided to the EJB developer.

I mentioned that usually session beans live only as long as the client session. One exception to this rule exists when
EJB containers use bean pools. With bean pooling, the container or server creates multiple instances of session
beans and reuses bean instances to service multiple clients at different times.

One Client, One Thread, One Session Bean, One Time

One ramification of a session bean being bound to a single client is that the EJB container ensures that only a single
client has access to a single session bean instance. When a client invokes a session bean method through its remote
interface, the EJB container (or server, depending on the implementation) guarantees that no other client can use the
bound session bean instance. The benefit to you, the EJB developer, is that you do not have to write reentrant or
thread-safe session bean code.

The EJB container is under no obligation to create bean instances for every client. The EJB container has a session
bean instance ready for each and every client. The container takes care of the messy details of making session bean

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=203232933

instances available. The container may pull a session bean instance from a pre-created pool of beans, create a new
one, or load a previously serialized session bean from storage. The details are not important; all you need to do is
code your session beans to solve your business problems and let the EJB container take care of the rest.

As you’ve already read in Chapter 12, “The Elements of an EJB,” session beans come in two flavors: stateless and
stateful. Let’s find out more about stateless session beans.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

This chapter introduced the importance of EJB contexts. The nature of Java is to empower programmers by providing
tools that Java programs may use to discern relevant information about the program’s environment. Bean developers
can glean useful information about the all-important EJB container during runtime execution from the context objects
discussed in this chapter. In the next two chapters we will continue to examine context objects as we discuss session
and entity beans in turn.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=956244925

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Understanding the EJB Container

Chapter 11, “A First Look at EJB,” introduced the EJB roles that guide the responsible parties in the development,
deployment, use, and maintenance of Enterprise JavaBeans and applications that use beans. In this section, I delve
further into the EJB container. In particular, you read about the requirements for a functioning, compliant EJB
container, as well as the EJB container requirements under the proposed EJB 2.0 release.

The Container’s Responsibility

The container is responsible for providing the deployment tools and for managing the bean instances at runtime. By
deployment tools, I mean a tool suite that generates various bean classes and helps the deployer make entries into a
deployment descriptor.

The EJB specification does not define any API between deployment tools and the container. Therefore, you do not
specify what entity provides the deployment tools. However, the container must have tools to support the generation
of enterprise bean implementation classes.

Some EJB implementation classes and interfaces are used by all two (EJB 1.1) or three (EJB 2.0) bean types while
other EJB implementation classes and interfaces are specific to the different bean types. I won’t go into a laundry list
of these classes now as you’ll encounter all the bean classes and interfaces in subsequent chapters.

The Required EJB Container Runtime Environment

The requirements described here are considered to be the minimal requirements for an EJB 1.1–compliant container.
A container provider is free to provide additional functionality that is not required by the EJB specification. As usual,
when you stray away from the requirements, you run the risk of limiting your portability.

Java APIs Required for EJB Container

A complex environment that supports EJB, namely a container, requires more than the Java 2 Standard Edition. A
Java 2 platform-based EJB container must make the following APIs available to the enterprise bean instances at
runtime:

● Java 2 Standard Edition APIs

● EJB 1.1 or 2.0 APIs

● JNDI 1.2

● JTA 1.0.1

● JDBC 2.0

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=499324187

● JavaMail 1.1

The Required J2SE APIs

The EJB container must provide the full set of Java 2 Standard Edition APIs. However, the EJB container is allowed
to, and usually does, make certain Java functionality unavailable to the enterprise bean instances by using the Java 2
platform security policy mechanism. The container must take steps to protect its environment and to prevent the
enterprise bean instances from interfering with the container’s functions.

JNDI 1.2

The container must provide a Java Naming and Directory Interface (JNDI) API name space to the enterprise bean
instances. The container must make the name space available to an instance when the instance invokes the
javax.naming.InitialContext no-arg constructor.

The container needs to make the home interfaces of other enterprise beans available by using the JNDI API. The
code snippet that follows shows how a client can use the JNDI API to locate a home object:

Context initialContext = new InitialContext();
CartHome cartHome =
 (CartHome)
 javax.rmi.PortableRemoteObject.narrow(
 initialContext.lookup("java:comp/env/ejb/cart"),
 CartHome.class);

In Chapter 18, “Working with Persistent Data,” I discuss the coding of client programs that access enterprise beans,
so let’s defer discussion of the details until then. For now, note that the preceding code uses the default no-arg
constructor for the InitialContext class to construct the JNDI context.

The container also needs JNDI to locate resources used by the enterprise beans. The code snippet that follows shows
how a bean method would use the default no-arg constructor to locate a resource. Here, the resource is an object of
javax.sql.DataSource, or a database:

InitialContext initCtx = new InitialContext();
myData = (DataSource)initCtx.lookup("java:comp/env/mydatabase");

JTA 1.0.1

The container must include the Java Transaction API (JTA) 1.0.1 extension. The relevant JTA interface for EJB is the
javax.transaction.UserTransaction interface.

Recall that the EJBContext interface defined three methods dealing with transactions. The setRollbackOnly and
getRollbackOnly methods of EJBContext help developers of container-managed transaction beans control some
behaviors of transactions. For developers of bean-managed transaction beans, these two methods are of no help.
Bean-managed transaction developers rely on methods in the javax.transaction.UserTransaction interface
to provide similar functionality.

The third method of the EJBContext interface, getUserTransaction, is also available to developers of bean-
managed transaction beans. This method returns an object of a class that implements the
javax.transaction.UserTransaction interface.

The container is not required to implement the other interfaces defined in the JTA specification. The other JTA
interfaces are low-level transaction manager and resource manager integration interfaces and are not intended for
direct use by enterprise beans.

JDBC 2.0 extension

The container must include some of the JDBC 2.0 extension and provide its functionality to the enterprise bean
instances. The container makes the J2SE package java.sql.* available, as well as the J2EE package
javax.sql.*, which allows the container to connect to a database and pool database connections.

Of particular interest is the javax.sql.DataSource interface, which allows you to connect to a database. Objects
derived from the DataSource interface are located by using JNDI — the second code snippet in the section "JNDI
1.2" demonstrates a typical use of a DataSource object.

The JDBC 2.0 extension includes packages that perform low-level distributed transaction (XA) and connection pooling
interfaces. These low-level interfaces are intended for integration of a JDBC driver with an application server, not for
direct use by enterprise beans.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Understanding EJBs

From reading about JavaBeans in Chapter 6, “JSP, JavaBeans, and JDBC,” you know that JavaBeans are software
components. Because EJBs are software components, and the “JB” in EJB stands for “JavaBean,” you may conclude
that an EJB is an enhanced JavaBean. While this is a reasonable assumption, it is incorrect.

Both JavaBeans and Enterprise JavaBeans are standards for the development of software components, but that’s
where the similarity ends. A JavaBean is a software component that simply follows the naming conventions for
properties and accessor methods, contains a no-argument constructor, and is persistent. EJBs are deployable
components. Java developers can combine several Enterprise JavaBeans, and possibly other application parts, to
form deployable components. In other words, an EJB provides some base functionality useful in a distributed
computing environment.

Another distinction between JavaBeans and EJBs is that you do not need a special runtime, other than a Java Virtual
Machine (JVM), to use JavaBeans, whereas you need a special runtime to use an EJB. The special runtime provides
services to the EJBs, such as creating new instances or removing unused instances of a component class. You may
recall from Chapter 1, “Enterprise Computing Concepts,” that these special runtimes are called containers.

JavaBeans are components accessed within the context of a single process that exists in a single address space.
Your Java component accesses a JavaBean as an instance of a JavaBean class by name. EJBs are distributed
components accessed remotely within multiple contexts. Your application uses some sort of directory service to locate
and use an EJB.

Before completing this discussion of differentiating JavaBeans and EJBs, it is worthy of mention that you can, and
probably will, use JavaBeans as components when building EJBs.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=860474155

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Goals of the EJB Architecture

Sun Microsystems and its business partners set out to achieve several goals when they jointly developed the EJB
architecture. This section introduces these goals and offers some insights into the underlying intentions and
meanings.

The EJB specification document, available at http://java.sun.com/products/ejb/docs.html, contains the
goals for the EJB architecture. Our discussion in this section will focus on the general goals of the architecture. Later
in this chapter we will discuss goals added in new releases of the EJB specification.

1. The Enterprise JavaBeans architecture will be the standard component architecture for building
distributed object-oriented business applications in the Java programming language.

According to this goal, any organization developing server-side distributed software components in Java must
follow the standards set by the EBJ specification. Perhaps, more accurately stated, this goal alerts organizations
that are developing a distributed object software component architecture that they are wasting their time because
the architecture has already been developed.

Of course, all the players in the industry realize that the EBJ specification in its current form is not the last word on
developing Java-based distributed software components. EJB specification will undergo revisions and
enhancements as it is further developed. However, the foundations of the EJB architecture probably will not
change for a significant amount of time.

2. The Enterprise JavaBeans architecture will make it possible to build distributed applications by
combining components developed using tools from different vendors.

A key feature of the EJB architecture is the construction of applications from software components (enterprise
beans). The EBJ architecture defines what the enterprise beans are made of, including the classes and interfaces
enterprise beans extend or implement. The EJB architecture does not define how a vendor constructs enterprise
beans; the vendor is free to use whatever tools and technologies are at its disposal. The intention behind this goal
is to create a rich marketplace in which vendors can reuse server-side distributed components and an industry of
customers can mix and match different vendor offerings, secure in the knowledge that the developed enterprise
beans work according to the EJB architecture.

3. The Enterprise JavaBeans architecture will make it easy to write applications. Application developers will
not have to understand low-level transaction and state management details, multi-threading, connection
pooling, and other complex, low-level APIs.

As mentioned in Chapter 1, “Enterprise Computing Concepts,” developing multi-tiered applications is not a trivial
task. The application development team must be concerned with many important but nonbusiness services, such
as application security, transaction management, and data integrity. The EJB architecture defines the
responsibilities of the EJB Container, which provides the preceding, along with other, services to enterprise beans.
The application development team, freed from having to understand and provide such services, can concentrate
on solving the business problems they are paid to solve.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=281448647
http://java.sun.com/products/ejb/docs.html

4. Enterprise JavaBeans applications will follow the “Write Once, Run Anywhere” philosophy of the Java
programming language. An enterprise bean can be developed once, and then deployed on multiple
platforms without recompilation or source code modification.

Because the EJB architecture is a standard, as opposed to a product, any vendor that adheres to the standard
can develop enterprise beans deployable on any suitable Java-enabled platform, such as an application server.
When a vendor states that a piece of software is Java-enabled, the vendor must put the software through a series
of tests described in the Java Compatibility Kit. An enterprise bean developed according to the EJB architecture
must run on such a platform.

Note the preceding goal states that the enterprise bean can be deployed without recompilation or source code
modification. Given the wide variety of differences among enterprise computing environments, the goal may, at
first, sound impossible to attain. As you can read later in this chapter, you can change some particulars of an
enterprise bean without recompilation by using a deployment descriptor. The deployment descriptor, as the name
implies, is a file that describes the particulars of how the enterprise bean is to be deployed. Think of a properties
file and you get the essential idea.

5. The Enterprise JavaBeans architecture will address the development, deployment, and runtime aspects of
an enterprise application’s life cycle.

This goal is an acknowledgment of the vitally important role distributed software components play in the enterprise
application. However, this goal is somewhat vague in how the architecture addresses these aspects of the
application. One way of looking at this goal is to remember that every phase of the application development cycle,
in some manner, deals with the EBJ architecture. However, another way of looking at this goal is to remember that
the EJB architecture has something to say about every phase of the application development cycle. Nonetheless,
the importance of distributed software components cannot be understated, a fact known to the creators of the EJB
architecture.

6. The Enterprise JavaBeans architecture will define the contracts that enable tools from multiple vendors to
develop and deploy components that can interoperate at runtime.

As previously mentioned, the architecture defines a standard that enables developed enterprise beans to combine
to form applications. A Java-based enterprise application consisting of enterprise beans is not static, such as an
executable file formed by a compile/link cycle. A Java-based enterprise application is dynamic, with classes
creating, loading, and disposing of instances during execution. To facilitate this dynamic behavior, the EJB
architecture defines how enterprise beans interoperate at runtime.

Above and beyond the stated behavior of communicating enterprise beans during application, execution is how
these enterprise beans are created to permit this behavior. The EJB architecture defines what parts of enterprise
beans should be exposed to the software development tools the vendors use to empower enterprise beans with
the preceding behavior.

7. The Enterprise JavaBeans architecture will be compatible with existing server platforms. Vendors will be
able to extend their existing products to support Enterprise JavaBeans.

To create an EJB-capable server, the vendor must provide an environment in which enterprise beans can
execute. The environment is called an EJB container. The architecture accomplishes this apparent feat of magic
by providing a set of APIs that the EJB container must implement.

8. The Enterprise JavaBeans architecture will be compatible with other Java programming language APIs.

This goal enables application developers to use other Java Language APIs in the construction, deployment, and
execution of enterprise beans. Developers may use the JavaBeans API to construct beans that form pieces of
enterprise beans. Developers may use the Java servlet API to write servlets that invoke enterprise beans, perhaps
by using another Java API, such as RMI. Enterprise beans may use the JDBC API to manipulate persistent data.
Developers use the JNDI API to locate enterprise beans in the distributed environment.

9. The Enterprise JavaBeans architecture will provide interoperability between enterprise beans and non-
Java programming language applications.

Let’s face it: For a software component to be truly useful, the component must communicate with pieces of
software written in other programming languages. Most customers are not going to scrap their existing, functioning
applications any time soon. The creators of the EJB architecture realized this sobering fact and, in response,
established guidelines to ensure that an enterprise bean must have the ability to communicate with existing
applications written in other programming languages. The architecture provides mechanisms to enable this cross-
language interoperability.

10. The Enterprise JavaBeans architecture will be compatible with the CORBA protocols.

As you read in Chapter 2, “J2EE Component APIs,” CORBA (the Common Object Request Broker Architecture) is
the granddaddy of distributed object architectures. CORBA is more encompassing than Enterprise JavaBeans and
has been around for over a decade. The EBJ architects recognized the importance of CORBA interoperability and
have provided the Java IDL to enable Java programmers to represent Java objects in general, and enterprise
beans in particular, as CORBA objects.

In short, the goals of the EJB architecture are ambitious but, for the most part, realized with the current release of the
architecture. Sun Microsystems and its business partners are continually enhancing the EJB architecture with new
releases. The following section discusses, release by release, the major features of Enterprise JavaBeans.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 18: Creating EJB Clients

In previous chapters you learned about the elements of session and entity beans. You also read about EJB security
and transactions and examined code that implements some enterprise beans. In this chapter, you explore the coding
constructs required to create EJB clients. I begin by describing some general principles, followed by the requirements
that EJB clients must follow. In addition, I describe the particulars of invoking session bean and entity bean methods.

Examining the Rules of EJB Clients

This section examines some properties that EJB clients share, regardless of the bean type the client accesses.

The Client Never Talks to the Bean or to the Container

I’ve covered the fact that an EJB client never interacts directly with an enterprise bean. Instead, the client interacts
with the EJB object, which requests the EJB container to invoke bean methods on behalf of the client.

Let's review quickly the relationship between the client, the EJB object, the container, and the enterprise bean. The
EJB object is defined by methods in the remote interface. It is through this remote interface that the client accesses
the enterprise bean. The object that implements this remote interface is the EJB object.

The EJB specification does not define a client-container API, which is a ten-dollar way of saying that the client never
interacts directly with the container. The workings of the container are transparent to the client. Good thing, too, given
that one of the primary reasons developers are interested in distributed object technologies such as EJB is that the
container provides numerous services to clients in a transparent manner.

The Client Acquires References to EJB Objects Through a home Object

Before the client can access an EJB object, the client needs a reference to the object. Regardless of the type of bean
(session, entity, message-driven) accessed by the container by way of the EJB object, the client gets a reference to
the EJB object the same way: by initially referencing a home object.

The home object (called an EJB object factory in the EJB specification) is an object from a class that implements the
bean’s home interface. As you’ve read, the home interface defines methods that allow a client to request the creation,
location, and destruction of enterprise beans.

The Client Does Not Know Where the Bean Lives

The client has no knowledge of the location of the enterprise bean. That’s the goal of a distributed object technology

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=906766270

such as Enterprise JavaBeans — the location of the bean is unknown to the client because the client accesses the
bean regardless of the bean’s location on the network. In other words, the client does not know what JVM the bean
resides on.

The Client Does Not Know How the Bean Is Implemented

The client has no knowledge of the enterprise bean implementation. The bean may be an entity bean representing
relational database data or a wrapping of a CICS (Customer Information Control System) transaction. The client
accesses the bean in the manner dictated by the EJB specifications, not by the particulars of the implementation.

The technology used by the container provider is of no interest or importance to the client. Once again, the client
accesses enterprise beans according to the EJB specifications, not according to any implementation-specific details of
the container.

The Client Accesses Session Beans Much as It Does Entity Beans

A client, for the most part, accesses a session bean much as it does an entity bean. You’ve read that session beans
have different uses and capabilities than entity beans. Of course, the client invokes different methods to utilize
particular features of an entity bean instead of a session bean. That said, the methods and techniques to perform
common operations on both bean types, such as locating, creating, and destroying the bean, are done by the client
the same way.

The Client May Be One of Several Java Objects

An EJB client can be, but need not be, a Java application, through the standard use of a method:
public static void main(String[] args){ ... }

A client can also be an applet or a Java servlet. A client can even be a CORBA client not necessarily written in Java.

A client can be another enterprise bean. (It is common for one enterprise bean to invoke the methods in another
bean.) The client bean may or may not reside in the same container or the same JVM as the server bean.

Whatever the makeup of the client, the methods used by the client to access the enterprise bean are the same.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

The EJB component architecture was designed to provide a component architecture for enterprise-level applications.
Transactions are inherent to applications of the enterprise level, and with them come the difficulties of ensuring data
integrity. In this chapter we've read about transaction management mechanisms built into the EJB architecture. These
mechanisms give you the tools to control transactions at the level that best suits the nature of your enterprise
application. As you leverage the power of EJB transaction support, you will be able to build more robust applications
at the same time as you reduce your application development time.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=626525949

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Isolating Transactions at Different Levels

Transactions not only make completion of a unit of work atomic, but they also isolate the units of work from each
other, provided that the system enables concurrent execution of multiple units of work (recall the isolation property of
ACID).

The isolation level describes the degree to which the access to a resource manager by a transaction is isolated from
the access to the resource manager by other concurrently executing transactions.

Isolation Conditions

Certain conditions, called isolation conditions, are a by-product of transactional systems when multiple transactions
operate on the same data. These conditions are dirty reads and phantom reads.

Dealing with Dirty Reads

Dirty reads are a problem common to systems where multiple transactions can act on the same data. Suppose
transaction B reads the uncommitted results from transaction A. If transaction A is rolled back, a dirty read has
occurred because now transaction B is using data that is out-of-state, or invalid. Depending on the nature of your
application, you can choose to handle dirty reads using one of two different types of strategies, known as repeatable
reads and nonrepeatable reads.

Repeatable reads address the problem of dirty reads by forcing the data to look the same if read multiple times within
the same transaction. The resource manager may lock the data, thereby denying access to that data to any other
transactions. Another strategy to implement a repeatable read is to take a snapshot of the data. With the snapshot,
other transactions may change the data, but the current transaction does not see the changes; the current transaction
sees the snapshot.

Your application requirements determine if locking or taking a snapshot is necessary. It is noteworthy that most
database managers implement locking at the row level.

The opposite of repeatable reads are nonrepeatable reads. When using nonrepeatable reads, different reads of the
same data by the same transaction may yield different results, possibly from actions performed by different
transactions. Nonrepeatable reads may not always be a problem. Your application may require that the same data be
changed by multiple transactions and that these changes be seen by a single transaction.

Dealing with Phantom Reads

A phantom read occurs when a transaction detects new data between two separate read operations. The difference
between a phantom read and a nonrepeatable read is that the data is always new in phantom reads, whereas the data
in nonrepeatable reads may be new or changed.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=377246311

The next section describes some locking techniques used in dealing with the problems resulting from dirty and
phantom read problems.

Using Database Locking Strategies

The most popular database locking strategies are listed below:

● Write locks: Write locks prevent other transactions from changing the data until the current transaction completes.
Typically, other transactions can read the uncommitted changes.

● Exclusive write locks: Exclusive write locks prevent other transactions from looking at or changing the data. This
type of lock effectively eliminates the dirty read problem.

● Read locks: Read locks eliminate nonrepeatable reads by preventing transactions from changing just-read data
until the reading transaction ends. The data can be read by other transactions but not updated by them.

You may think that the best solution is to code as restrictive a lock as possible (exclusive write lock), thereby avoiding
all sorts of dirty and phantom read problems. Sadly, the more you lock your data, the slower your application may
execute. If you have multiple users who need access to the same data (and who doesn’t?), excessive locks cause the
transaction manager to roll back or suspend transactions, thereby degrading application performance.

Until the application has been up and running for a while, you may not know which is the best locking strategy to use.
That said, the next section offers some guidelines for managing isolation levels in enterprise beans.

Managing Isolation Levels

The following are guidelines for managing isolation levels in enterprise beans:

● The API for managing an isolation level is resource-manager specific. Therefore, the EJB architecture does not
define an API for managing isolation levels.

● If an enterprise bean uses multiple resource managers, the Bean Provider may specify the same or different
isolation level for each resource manager. As a result, if an enterprise bean accesses multiple resource managers
in a transaction, access to each resource manager may be associated with a different isolation level.

● The Bean Provider must take care when setting an isolation level. Most resource managers require that all
accesses to the resource manager within a transaction be done with the same isolation level. An attempt to change
the isolation level in the middle of a transaction may cause undesirable behavior, such as a commit of the changes
done so far.

● For session beans and message-driven beans with bean-managed transaction demarcation, the Bean Provider
can specify the desirable isolation level programmatically in the enterprise bean’s methods, using the resource-
manager specific API. For example, the Bean Provider can use the
java.sql.Connection.setTransactionIsolation method to set the appropriate isolation level for
database access.

The following code snippet sets an isolation level for a database connection:
String urlForDB = … ;
DataSource myDSrc = (javax.sql.DataSource)
jndiCTX.lookup(urlForDB) ;
Connection myConn = myDsrc.getConnection ;
MyConn.setTransactionIsolation
(Connection.TRANSACTION_READ_COMMITTED) ;

● For entity beans with container-managed persistence, transaction isolation is managed by the data access classes
that are generated by the persistence manager provider’s tools. The tools must ensure that the management of the
isolation levels performed by the data access classes will not result in conflicting isolation level requests for a
resource manager within a transaction.

● Additional care must be taken if multiple enterprise beans access the same resource manager in the same
transaction. Conflicts in the requested isolation levels must be avoided.

You cannot control isolation levels for container-managed transaction beans. Sun Microsystem’s reasoning is that
vendors had numerous difficulties implementing isolation levels at the transaction component level. The only real
alternative is to use JDBC’s isolation control facilities, as shown in the preceding code snippet.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Supporting Transactions in EJBs

Enterprise JavaBeans may be, and typically are, transactional and execute within a distributed transaction-processing
environment. Being transactional means that enterprise beans, together with the EJB container, may implement the
ACID transaction properties. The beauty of using Enterprise JavaBeans is that the EJB container performs many of
the tasks needed to implement the ACID properties and the concepts described previously. The containers and EJB
servers implement the low-level APIs needed to provide transaction support services and protocols, thereby freeing
the application developer from tending to the details of coding these services. In short, EJB hides much of the
complexities of transaction support in a distributed transactional environment from the developer.

Enterprise JavaBeans support transactions that adhere to the OMG Object Transaction Service (OTS) for flat
transactions. The OTS is a distributed transaction processing service specified by the Object Management Group. The
OMG specification extends the CORBA model and defines a set of interfaces to perform transaction processing
across multiple CORBA objects. As of release 2.0, Enterprise JavaBeans do not provide support for nested
transactions.

Managing EJB Transactions

You, the EJB developer, freed from much of the mundane details of managing transactions, rarely have to deal with
low-level transaction APIs. Your code never has to directly deal with the underbelly of the transaction manager. Your
job is to write application code that addresses the needs of your customers. You tap the power of EJB by deciding
how EJB manages your transactions.

What choices do you have? You can tell EJB to use a programmatic transaction demarcation or use a declarative
transaction demarcation. Let’s explore these two choices next.

Managing Transactions at the Bean Level

With programmatic transaction demarcation (often called bean-managed transaction demarcation), the EJB developer
is responsible for defining the boundaries of the transaction. Your code should expose methods that start the
transaction, perform all required operations, and commit or abort the transaction. In short, bean-managed demarcation
is the traditional way of coding transaction-driven applications.

You might be wondering what, with bean-managed transaction demarcation, is the benefit to using Enterprise
JavaBeans. Well, you still have the benefits afforded by a distributed object manager, such as location transparency.
Also, you need not fret over coding the details of having the transaction manager coordinate efforts with the resource
managers during the execution of the transaction operations. You write code invoking methods that implement the
operations required to complete the transaction; the EJB container and server handle the coordination of the system
components needed to complete (or abort) the transaction.

With bean-managed transaction demarcation, the enterprise bean code demarcates transactions using the
javax.transaction.UserTransaction interface. All resource manager accesses between the
UserTransaction.begin and UserTransaction.commit calls are part of a transaction. Hence, your beans

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=679005605

would invoke the UserTransaction.begin method of the current transaction object to start a transaction and
invoke the UserTransaction.commit or UserTransaction.rollback method to end a transaction. Listing 17-1
has a template that illustrates the use of the aforementioned methods.

Listing 17-1: Using bean-managed transaction demarcation

public void doMyTransaction(SomeClass1 anObjClass1,
 SomeClass2 anObjClass2,
 …
) {
 try {
 //Get a reference to the current transaction
 //
 javax.transaction.UserTransaction myTrans =
 ejbContext.getUserTransaction() ;
 //start the transaction
 //
 myTrans.begin() ;
 //Execute the operations that constitute the transaction
 //
 doOperation1(anObjClass1) ;
 doOperation2(anObjClass2) ;
 …
 //Commit the transaction. If any of the doOperation()
 //methods fail, we may assume the failed operation passed
 //an exception back to this method.
 myTrans.commit() ;
 }
 catch (Exception anExc) {
 //Tend to exceptions. You would need logic to
 //determine if a rollback is called for.
 //
 myTrans.rollback();
 }

}

Notice how the code in Listing 17-1 explicitly sets the transaction boundaries.

Because you make use of the Java Transaction API for bean-managed transaction demarcation, perhaps a few words
on the API is in order.

Using the Java Transaction API

The Java Transaction API consists of two elements: an application-level transaction demarcation interface and a
standard Java mapping of the X/Open XA protocol. You’ve seen the application-level transaction demarcation
interface in Listing 17-1. Listing 17-2 shows the javax.transaction.UserTransaction interface.

Listing 17-2: The javax.transaction.UserTransaction interface

package javax.transaction ;
interface UserTransaction{

 //
 public void begin()
 throws NotSupportedException,SystemException ;

 public void commit()
 throws RollbackException, HeuristicMixedException,
 HeuristicRollbackException,
 java.lang.SecurityException,
 java.lang.IllegalStateException,
 SystemException ;
 public void rollback()
 throws java.lang.IllegalStateException,
 java.lang.SecurityException,
 SystemException ;
 public void setRollbackOnly()
 throws java.lang.IllegalStateException,
 SystemException ;
 public void getStatus()
 throws SystemException ;
 public void setTransactionTimeout()
 throws SystemException ;

}

Note The javax.transaction.UserTransaction package in earlier releases of J2EE contained status
codes. In the latest J2EE release, Sun moved the status codes out of the UserTransaction interface and
placed the codes in a separate interface, javax.transaction.Status.

The begin method creates a new transaction and associates it with the current thread.

The commit method completes the transaction associated with the current thread by running the two-phase commit
process. When commit completes, the thread becomes associated with no transaction.

The rollback method rolls back the transaction associated with the current thread. When rollback completes, the
thread becomes associated with no transaction.

The setRollBack method modifies the transaction associated with the current thread such that the only possible
outcome of the transaction is to roll back the transaction. You can use setRollBack to determine what your
transaction components do without committing any changes to permanent storage.

The getStatus method obtains the status of the transaction associated with the current thread.

The setTransactionTimeout method modifies the value of the timeout value that is associated with the
transactions started by the current thread with the begin method. If an application has not called
setTransactionTimeout, the transaction service uses some default value for the transaction timeout.

Managing Transactions at the Container Level

With declarative transaction demarcation (often called container-managed transaction demarcation), the EJB
container is responsible for defining the boundaries of the transaction. Your code never invokes any method that
explicitly starts a transaction, or commits or rolls back a transaction. The EJB container does all the necessary work
for you.

Just how does EJB accomplish the necessary tasks of demarcating your transactions? The EJB container intercepts
any client request that involves a transaction and automatically starts, manages, and ends the transaction. As you’ve
probably guessed, you tell the EJB container what to do by setting various parameters in the bean’s deployment
descriptor. The parameter you must set to direct the EJB container to participate in container-managed transaction
demarcation is the transaction attribute. The next section describes this vitally important parameter, providing
examples of deployment descriptors that inform the EJB container of the transaction attribute value.

The transaction Attribute

A transaction attribute is a value associated with a method of a session or entity bean’s remote or home interface.
The transaction attribute specifies how the container must manage transactions for a method when a client
invokes the method via the enterprise bean’s home or remote interface.

For a session bean, the transaction attributes must be specified for the methods defined in the bean’s remote
interface and all the direct and indirect superinterfaces of the remote interface, excluding the methods of the
javax.ejb.EJBObject interface. transaction attributes must not be specified for the methods of a session
bean’s home interface.

For an entity bean, the transaction attributes must be specified for the methods defined in the bean’s remote
interface and all the direct and indirect superinterfaces of the remote interface, excluding the getEJBHome,
getHandle, getPrimaryKey, and isIdentical methods; and for the methods defined in the bean’s home
interface and all the direct and indirect superinterfaces of the home interface, excluding the getEJBMetaData and
getHomeHandle methods.

Providing the transaction attributes for an enterprise bean is an optional requirement for the application assembler.
For a given enterprise bean, an application assembler must either specify a value of the transaction attribute for all
of the methods for which a transaction attribute must be specified, or an assembler must specify none. If the
transaction attributes are not specified for the methods of an enterprise bean, the deployer must specify them.

Enterprise JavaBeans define the following values for the transaction attribute:

● NotSupported: If you set a bean or method’s transaction attribute to NotSupported, the bean cannot be
involved in a transaction. If a method is currently involved in a transaction to invoke a bean method coded as
NotSupported, the container should suspend the transaction until the NotSupported method completes.

● Required: If you set a mean or method’s transaction attribute to Required, the bean or method always runs
in some transaction context. Any method of a bean with the Required transaction attribute, invoked by a bean
currently involved in a transaction, participates in that transaction. If a method of a bean not involved in a
transaction invokes a bean with the Required transaction attribute, the bean will initiate a new transaction.

● Supports: If you set a bean or method’s transaction attribute to Supports, then the bean runs in a
transaction only if the invoking method or client is already involved in a transaction. If the invoking method is not
involved in a transaction, the bean with a transaction attribute of Supports executes outside of a transaction
context.

● RequiresNew: Code a bean or method’s transaction attribute to RequiresNew if you always want a new
transaction to start when a method of the bean is invoked. If a client or another bean that invokes the
RequiresNew bean is already involved in a transaction, the container should suspend the already running
transaction and start a new transaction. The new transaction lasts as long as the method of the RequiresNew
bean executes. After the method of the RequiresNew bean completes execution, the container resumes
execution of the suspended transaction.

● Mandatory: Use a value of Mandatory to instruct the EJB container to include the bean in an already executing
transaction. Hence, a transaction must already be executing when a bean with a transaction attribute of
Mandatory is invoked. If no transaction is executing, the invocation throws a
javax.transaction.TransactionRequiredException.

● Never: Beans coded with a transaction attribute of Never cannot be a part of a transaction. If a bean or client
involved in a transaction invokes a bean with a transaction attribute of Never, the invocation throws a
RemoteException.

Note Message-driven beans (EJB 2.0) support only the Required and NotSupported transaction attribute
values and must be coded for the Message bean’s onMessage method.

Coding the Transaction Attribute

As previously mentioned, you code a value of the transaction attribute in the bean’s deployment descriptor. EJB
enables you to provide a value of the transaction attribute for the entire bean or for methods within beans. Also,
you may code different values of the attribute for different methods of the same bean.

You use the container-transaction elements to define the transaction attributes for the methods of session and
entity bean’s remote and home interfaces and for the onMessage methods of message-driven beans. Each
container-transaction element consists of a list of one or more method elements, and the trans-attribute
element. The container-transaction element specifies that all the listed methods are assigned the specified
transaction attribute value. It is required that all the methods specified in a single container-transaction
element be methods of the same enterprise bean.

The method element uses the ejb-name, method-name, and method-params elements to denote one or more
methods of an enterprise bean’s home and remote interfaces. The three legal styles of composing the method
element are as follows:
Style 1:
<method>
<ejb-name> EJBNAME</ejb-name>
<method-name>*</method-name>
</method>

This style is used to specify a default value of the transaction attribute for the methods for which there is no Style 2
or Style 3 element specified. There must be at most one container-transaction element that uses the Style 1
method element for a given enterprise bean.

Style 2:

<method>
<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>
</method>

This style is used for referring to a specified method of the remote or home interface of the specified enterprise bean.
If there are multiple methods with the same overloaded name, this style refers to all the methods with the same name.
There must be at most one container-transaction element that uses the Style 2 method element for a given
method name. If there is also a container-transaction element that uses Style 1 element for the same bean, the
value specified by the Style 2 element takes precedence.
Style 3:

<method>
<ejb-name> EJBNAME</ejb-name>
<method-name> METHOD</method-name>
<method-params>
<method-param> PARAMETER_1</method-param>
...
<method-param> PARAMETER_N</method-param>
</method-params>
</method>

This style is used to refer to a single method within a set of methods with an overloaded name. The method must be
one defined in the remote or home interface of the specified enterprise bean. If there is also a container-

transaction element that uses the Style 2 element for the method name, or the Style 1 element for the bean, the
value specified by the Style 3 element takes precedence.

The optional method-intf element can be used to differentiate between methods with the same name and signature
that are defined in both the remote and home interfaces.

Listing 17-3 shows the specification of the transaction attributes in a deployment descriptor. The
updatePhoneNumber method of the EmployeeRecord enterprise bean is assigned the transaction attribute
Mandatory; all other methods of the EmployeeRecord bean are assigned the attribute Required. All the methods
of the enterprise bean AardvarkPayroll are assigned the attribute RequiresNew.

Listing 17-3: Deployment descriptor showing transaction attribute values

<ejb-jar>
...
<assembly-descriptor>
...
<container-transaction>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>Required</trans-attribute>
</container-transaction>
<container-transaction>
<method>
<ejb-name>EmployeeRecord</ejb-name>
<method-name>updatePhoneNumber</method-name>
</method>
<trans-attribute>Mandatory</trans-attribute>
</container-transaction>
<container-transaction>
<method>
<ejb-name>AardvarkPayroll</ejb-name>
<method-name>*</method-name>
</method>
<trans-attribute>RequiresNew</trans-attribute>
</container-transaction>
</assembly-descriptor>
</ejb-jar>

Another important transaction property supported by EJB is the property of Isolation Level. The next section provides
some details about this property.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Transaction Properties

Many of us have an intuitive understanding of a transaction, which is a set of operations that transforms data from one
consistent state to another. The set of operations that constitutes the transaction is usually initiated by a client and
consists of client requests for data access, data manipulation, and data removal.

Although describing a transaction is simple, implementing a transaction isn’t quite as simple. The difficulty often arises
when the set of operations must be implemented across a group of distributed components using data from several
locations. For example, if you write an enterprise bean that represents an online shopping cart, it may need to make
entries in your warehouse database in Chicago, your accounting database in Dallas, and your customer database in
New York. The operations involved in these transactions must be coordinated and possibly synchronized — this can
be a source of difficulty.

Our goal in this chapter is to understand transactions and how EJBs help ease these and other difficulties inherent in
implementing and managing transactions.

Understanding Transaction Terminology

Before you can explore transactions, it is necessary to become acquainted with the most commonly used terms found
in the world of transactions.

Processing Transactions

To process transactions, a system needs access to several components, namely application components, a resource
manager, and a transaction manager. Let’s take a look at these vitally important terms.

Application Components

The application consists of one or more application components. Application components are clients for the
transactional resources, or the programs with which the application developer implements business transactions. As
you might have guessed, enterprise beans are the application components of an EJB-based transactional system.
Application components operate on data by using the services of a resource manager.

Resource Managers

The resource manager supports distributed transactions by managing resources. In the context of a transactional
system, a resource may represent a permanent data store or a message queue.

Resource managers implement a transaction resource interface, such as a database driver to communicate with a
relational database. The X/Open XA protocol, supported by nearly all the major database players, is another example

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=270866982

of a resource manager.

Transaction Managers

The transaction manager is the heart and soul of a transaction-processing environment. Its primary responsibilities are
to create transactions when requested by application components and to manage the actions resulting from the
success or failure of transactions by working with the resource managers.

The transaction manager may act as a traffic cop, temporarily halting or suspending one transaction and enabling
another to proceed. Perhaps one transaction requires a resource held by another, currently executing transaction. If
so, the transaction manager may abort the one transaction or suspend it until the transaction holding the needed
resource completes. The transaction manager coordinates activities with the resource managers to make the
previously held resource available to the waiting transaction. Once available, the transaction manager allows the
suspended transaction to resume execution.

These three previously mentioned components are discussed later in this chapter, specifically in the section
“Transaction Processing Concepts.” Now, it’s time to look at the four defining characteristics of a transaction: the ACID
properties.

Learning the ACID Properties

Transactions have several important properties known as ACID properties, which are as follow:

● Atomicity: Transactions implement several operations, which must be completed in order for the transaction to be
successful. If any one of the constituent operations fails, the entire transaction fails. We say that transactions are
atomic in nature, meaning the operations of the transaction must be considered as an indivisible unit when
deciding whether or not the transaction is successful.

● Consistency: Transactions must ensure that the system remains in a consistent state, regardless of whether or
not the transactions successfully execute. The consistency of the system is defined by business rules, which the
application must enforce and implement.

● Isolation: The results of transaction execution should be independent of other executing transactions. Stated
differently, the effects of one transaction should not be visible to any other transaction until the transaction
completes. Although several transactions may be executing in parallel, the net effect is as if the transactions were
executing in serial.

● Durability: Changes made by a transaction must be permanent. Once the transaction successfully completes its
work, the system ensures that subsequent failures (software, hardware, network, and so on) cannot undo the
changes to the system resulting from a transaction.

When you develop a single-user program, implementing the ACID properties is simple. However, when you are
engaged in the development of enterprise-wide applications whereby hundreds or thousands of users have access to
common, distributed data stores, implementing the ACID properties is anything but simple.

In the past, the onus for supporting and implementing the highly desirable ACID properties fell to the application
programmer. With EJB, you can see that some of this burden is lifted from the programmer and placed on the back of
the EJB container. However, the application programmer is still left with a fair share of the load.

Differentiating Transaction States

A transaction results in one of two states: committed or rolled back. A transaction is committed if all its component
operations successfully execute and the changes in system state are persisted. In other words, the transaction
successfully implemented the ACID properties previously mentioned.

A transaction is rolled back if any one of its component operations fails. You may recall that the atomicity property of a
transaction requires that all of the transaction’s operations successfully complete. If one or more operations fail, the
system must be put back into a consistent state. Recall that the consistency property requires that the transaction
must leave the system in a consistent state. A good strategy for leaving the system in a consistent state after a
transaction operation failure is to undo all changes made by the transaction’s component operations (if any). The
process of undoing the changes made by the component operations is called rolling back the transaction.

A rolled-back transaction should remove all traces of its existence except for, perhaps, entries in various log files.
Please realize that a rolled-back transaction may not necessarily result from an error; it may be the result of the
implementation of a business rule or a change of state not present at the transaction’s onset.

Before continuing the discussion on transactions and transaction management, let’s describe some transaction
processing concepts.

Learning Some Transaction Concepts

In the world of transaction processing, many important concepts exist, such as transaction context, two-phase commit,
resource enlistment, transaction demarcation, and transaction models.

Transaction Context

Because multiple application components and resources participate in a transaction, the transaction manager needs
to establish and maintain the state of the transaction as it occurs, usually in the form of a transaction context.

The transaction context is an association among the transactional operations on the resources, and the application
components invoking the operations. During the course of a transaction, all the components participating in the
transaction share the transaction context. Thus, the transaction context logically envelops all the operations performed
on transactional resources during a transaction. The transaction manager is responsible for managing the transaction
context in a manner transparent to the applications and resource managers.

Two-Phase Commit

The two-phase commit protocol between the transaction manager and all the resources enlisted for a transaction
ensures that either all the resource managers commit the transaction or they all abort.

In this protocol, when the application requests for committing the transaction, the transaction manager issues a “get
ready to commit” request to all the resource managers involved. The “get ready” request is the initial part of phase one
in the two-phase commit protocol.

Each resource manager may send a reply to the transaction manager indicating whether or not the resource manager
is ready to commit the changes made by the currently executing transaction. The reply is the second part of phase
one in the two-phase commit protocol. Only when all the resource managers reply that they are ready for a commit
does the transaction manager issue a commit request to all the resource managers. The request is (you guessed it)
phase two of the two-phase commit protocol. If a single resource manager vetoes the commit request made by the
transaction manager, the transaction manager issues a rollback request and the transaction is rolled back.

Resource Enlistment

The ten-dollar phrase used to describe how the resource managers notify the transaction manager of their
involvement in a transaction is resource enlistment. The transaction manager must have a mechanism to keep track of
the specific resource managers (and their underlying resources) used in each transactions. Also, the transaction
manager needs to keep tabs on the resource managers to implement the two-phase commit protocol.

At the end of a transaction (after a commit or rollback), the transaction manager delists the resources, which severs
any relationship between the transaction and the resource(s).

Transaction Demarcation

Transaction demarcation involves defining the players that are involved in the transaction, including who starts the
transaction, who performs an update or a delete, and who commits or rolls back the transaction. Transaction
demarcation is a way of marking groups of operations as a transaction.

Transaction Models

A transaction model is a generalized framework that describes a class of transactions. The two most popular, or often-
used, models are the flat and the nested transaction models.

The Flat Transaction Model

The flat transaction model is a direct implementation of a series of operations that constitute a transaction. The
operations are applied in a specific order. If any single operation fails, the entire transaction is aborted, or rolled back,
in accordance with the atomicity property of transactions.

The resource managers enlisted in the processing of a flat transaction typically hold off making permanent changes to
the underlying resource until the transaction manager directs the managers to commit the changes. This way, the
transaction can be safely rolled back if an operation fails and the system is left in a consistent state.

The Nested Transaction Model

In contrast to the flat model, the nested transaction model enables a transaction to contain multiple units of work. The
multiple units of work combine to form the complete unit of work required to complete the transaction.

The classic example of a nested transaction is the trip-planning problem. Consider booking a trip that contains several
legs. The entire trip is a transaction; each of the legs may be considered a contained unit of work. The transaction
manager could book each leg separately, or independently of the other legs. If all legs are successfully booked, the
transaction manager could direct the resource managers to commit the transaction.

So far, the previous description of planning a trip may resemble a flat transaction. However, consider what a
transaction manager would do if one of the legs were currently unavailable for booking. If this trip were implemented
as a flat transaction, the transaction manager would have no choice but to direct the resource managers to roll back
the transaction. However, with a nested transaction, the currently unavailable trip is a separate unit of work contained
within the larger transaction. The transaction manager can put the transaction on hold and try to book the unavailable
leg later. If the later booking is successful, the trip transaction can be committed.

The application program can be written to try alternate legs when a leg cannot be immediately booked. If this is the
case, the transaction manager suspends the trip transaction while the application attempts to locate an alternative
(perhaps to complete the leg by boat instead of by jet). If an alternative is located, the transaction can be committed.

The application can also be written to book the “hard-to-book” legs first. With nested transactions, you are not
necessarily tied to a rigid order of operations as with the flat model. Of course, all the legs eventually must be booked
in order for the transaction to be committed. The nested transaction model affords the application developer more
flexibility in designing transactions.

Now that you have some terminology under your belt, it’s time to discuss how Enterprise JavaBeans support
transactions.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 17: EJB and Transaction Management

Overview

If you had to pick a property common to all enterprise-wide applications, surely the use of a database would be at the
top of the list. A database does more than store data, however. A database helps ensure that the application has
access to accurate data, although data accuracy is not the sole responsibility of the database. The database needs
help from the application, and from various pieces of system software, to ensure that the data housed in the database
is indeed accurate. The strategy used to ensure data accuracy includes the use and management of transactions.

Transactions are a proven technique for simplifying application programming. Transactions give the application
programmer the freedom from dealing with the complex issues of failure recovery and multi-user programming.

If the application programmer uses transactions, the programmer divides the application’s work into units called
transactions. The transactional system ensures that a unit of work fully completes or is fully rolled back. Furthermore,
transactions enable the programmer to design the application as if it were running in an environment that executes
units of work serially.

You may recall that a prime motivation for using a distributed component architecture to develop applications is to take
advantage of the services provided by the architecture. One of the vitally important services provided by the
Enterprise JavaBeans architecture is transaction support. This chapter discusses how Enterprise JavaBeans provide
transaction support, starting with a description of the transaction properties, and then following with a recap of the
Java APIs involved in transactions. Next, you can explore the services relating to transactions provided by EJB, and
you can finish the chapter with an examination of code that provides transaction support.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=652474880

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

Security is a complex topic that continues to grow in importance each and every day. In this chapter, you’ve glanced
at Java’s security features with emphasis on what Enterprise JavaBeans have to offer in the information security
realm. Thanks to the advanced architecture of EJB, you can build on the security features of Java to leverage security
in the construction of your EJBs.

Even though EJBs may not be the dominant piece of your applications, EJBs typically are the gateway to mission-
critical corporate data. This data is the target of hackers, crackers, and other scurrilous individuals with a not-too-nice
agenda. Fortunately, you have the tools and the technology to prevent most of these disasters.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=366628067

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Securing the Rest of Your Environment

Systems that are not 100 percent pure Java (and that means just about every large system out there) have additional
security concerns. Some techniques for addressing security in non-Java systems are SSL, HTTPS, IPSEC, and, of
course, using passwords.

SSL, or Secure Sockets Later, is a technology that enables a network administrator to secure transmissions between
two sockets. Once the network has established a channel connecting the two sockets, the transmissions are
encrypted.

HTTPS is a secure version of HTTP. The deal here is that HTTPS sends encrypted requests from Web hosts to
servers.

IPSEC is perhaps the strongest level of network security. In IPSEC, all IP messages sent over the network are
encrypted.

While encryption has an impact on network performance, the protection of information, corporate or private, can be far
more important.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=953719074

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

EJB Players and Security

Here is a brief rundown of the EJB players (roles) and their responsibilities in the security arena.

The Enterprise Bean Provider

The bean provider should implement neither security mechanisms nor hard-code security policies in the enterprise
bean’s business methods. Rather, the bean provider should rely on the security mechanisms provided by the EJB
container, and should let the application assembler and deployer define the appropriate security policies for the
application.

The bean provider and application assembler may use the deployment descriptor to convey security-related
information to the deployer. The information helps the deployer to set up the appropriate security policy for the
enterprise bean application.

The bean provider has methods available in the EJB API to glean security-related information. The
javax.ejb.EJBContext interface provides two methods that enable the bean provider to access security
information about the enterprise bean’s caller:
java.security.Principal getCallerPrincipal();
boolean isCallerInRole(String roleName);

The main purpose of the isCallerInRole() method is to enable the bean provider to code the security checks that
cannot be easily defined declaratively in the deployment descriptor using method permissions. Such a check might
impose a role-based limit on a request, or it might depend on information stored in the database.

The Application Assembler

The application assembler (which could be the same party as the bean provider) may define a security view of the
enterprise beans contained in the ejb-jar file. Providing the security view in the deployment descriptor is optional for
the bean provider and application assembler.

The security view consists of a set of security roles. A security role is a semantic grouping of permissions that a given
type of users of an application must have in order to successfully use the application.

The application assembler defines method permissions for each security role. A method permission is a permission to
invoke a specified group of methods of the enterprise bean’s home and remote interfaces. In other words, the
application assembler is responsible for the creation of roles and placing this information in the deployment descriptor
as described in previous sections.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=759618185

The Deployer

The deployer is responsible for ensuring that an assembled application is secure after it has been deployed in the
target operational environment.

The deployer is responsible for assigning the security domain and principal realm to an enterprise bean application.
Security domains and realms are security components from Java 2, not EJB.

Typically, the deployer is more knowledgeable of the EJB’s operational environment than the other parties. Hence, the
deployer may use the security view defined in the deployment descriptor by the bean provider and application
assembler merely as “hints” and may change the information whenever necessary to adapt the security policy to the
operational environment.

Providing security information may fall upon the deployer’s shoulders. The EJB specification states that the creation of
security information (roles, method permissions, and so on) by the application assembler is not mandated. If the
application assembler fails to provide security information, the deployer must pick up the slack.

The EJB Container Provider and Server Provider

The EJB Container Provider is responsible for providing the deployment tools that the deployer can use to perform
security-related tasks described in this chapter.

The deployment tools read the information from the deployment descriptor and present the information to the
deployer. The tools guide the deployer through the deployment process, and present him or her with choices for
mapping the security information in the deployment descriptor to the security management mechanisms and policies
used in the target operational environment.

The deployment tools’ output is stored in an EJB container–specific manner, and is available at runtime to the EJB
container.

The System Administrator

The system administrator’s security responsibilities usually fall outside the scope of EJB. That is, the system
administrator is involved with security of the network, such as granting users’ access to the network and adding and
removing user network accounts. In addition, if the EJB container provides an audit trail facility, the system
administrator is responsible for its management.

Note The EJB specification defines no security requirements for the Persistence Manager.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Securing EJB Applications

So far you’ve taken a high-level look at the security features of the Java language and JVM. Enterprise JavaBeans
bring additional security requirements to the table because EJBs are distributed software components. The two
overriding concerns with designing EJBs are identifying and authorizing the client and managing access to resources.

Identifying and Authorizing Clients

During the design of EJBs, the designer might have groups of users that can access the bean. These groups of users
may be classified into roles. For example, managers, tellers, and customers can access a bank account EJB and a
specific role can be assigned to each of the three groups. The bean designer decides the business methods that each
role has access to within the bean. Table 16-1 shows a possible grid that describes who has access to what methods.

Table 16-1: Method Permissions in a Bank Account EJB
Method Manager Role Teller Role Customer Role

createAcct Yes Yes No

removeAcct Yes Yes No

auditAccount Yes No No

creditAcct No No Yes

debitAcct No No Yes

transferFunds No No Yes

The assignment of the role to the method is usually done through an EJB deployment tool. If you are hard-core, you
may code the permissions by role in the bean’s deployment descriptor. Listing 16-1 shows a piece of a deployment
descriptor with a role and method-permission instructions.

Listing 16-1: Deployment descriptor snippet showing role and method permissions

<assembly-descriptor>
 <security-role>
 <description>This role represents bank branch managers
 </description>
 <role-name>manager</role-name>
 </security-role>

 <method-permission>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=833781883

 <role-name>manager</role-name>
 <method>
 <ejb-name>BankAccountBean</ejb-name>
 <method-name>createAcct</method-name>
 <method-name>removeAcct</method-name>
 <!-- and so on --!>
 </method>
 </method-permission>

 <method-permission>
 <role-name>customer</role-name>
 <method>
 <ejb-name>BankAccountBean</ejb-name>
 <method-name>transferFunds</method-name>
 <method-name>debitAcct</method-name>
 <!-- and so on --!>
 </method>
 </method-permission>

 <container-transaction>
 <!-- We don’t care about transaction attributes for now --!>
 </container-transaction>
</assembly-descriptor>

EJB uses a default role called, appropriately enough, everyone.

Managing Access to Resources in EJBs

The EJB specification indicates that permissions can be declaratively assigned to EJB methods via the deployment
descriptor. As previously mentioned, your EJB tools should make such assignments a bit easier by providing a
graphical interface. Table 16-2 shows the EJB 1.1 security restrictions as delineated in Section 18.2.1.1 of the
specification.

Table 16-2: EJB Security Rules
Permission EJB Rule

java.security.AllPermission deny

java.awt.AWTPermission deny

java.io.FilePermission deny

java.net.NetPermission deny

java.util.PropertyPermission grant read, *; deny others

java.lang.reflect.ReflectPermission deny

java.lang.RuntimePermission grant queuePrintJob; deny others

java.lang.SecurityPermisison deny

java.lang.SerializablePermission deny

java.net.SocketPermission grant connect, *; deny others

EJB security uses policy files with the EJB Security Manager first enforcing the permissions contained in the policy
file. If those checks pass successfully — the user has permission to execute the given method as delineated by the
permissions in the file — then the additional preceding checks are enforced if the operation is being attempted in the
context of an EJB.

Recall from Chapter 11, “A First Look at EJB,” that the EJB specifications cite seven players in the EJB arena. Each
player has a role in the development, installation, and configuration of an EJB. In the following, you can read which
player is responsible for what piece of EJB security.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Reviewing Java Language Security Features

To understand what EJB offers in the way of security, it is necessary to briefly discuss the offerings of Java, the programming
language and runtime environment. An interesting aspect of Java is that many of the language's features that help
programmers write better applications also assist us in writing applications that are more secure. We will look at several of
these features in this section.

The overriding property of the Java language and runtime is that Java manages most memory-related tasks. Not only does
Java do the thankless work of managing memory, Java forbids the programmer from doing this thankless work. The engineers
at Sun Microsystems realized that the vast majority of computing hacks come from clever folk who outfox the operating system
by performing memory sleight of hand with pointers, pointer arithmetic, improper object casting, and extending arrays beyond
declared bounds.

An example of a security language feature is the Java requirement that the programmer can cast objects to and from super and
subclasses only. This casting requirement ensures that the programmer uses valid references to objects. Casting of objects
outside a hierarchy chain, as allowed in other programming languages, could cause the runtime to overlap or corrupt memory
as the runtime attempts to interpret dissimilar objects.

Java checks the appropriateness of an object cast at compile time. The compile-time check finds errors early and is a feature
that enables programmers to write better code more quickly, without waiting for the runtime to crash and burn. In addition, Java
also checks some objects cast at runtime. So, it’s very difficult to outfox Java in the area of object casting.

Java does not allow a programmer to access memory by address. The Java programmer cannot explicitly use pointers. Of
course, the Java programmer causes the JVM to use pointers internally each time an object is referenced. However, the object
reference is not a pointer in the classic sense; the reference cannot be manipulated by performing arithmetic or bit-shifting. The
only real manipulation of the reference itself (as opposed to the underlying object) is an object cast, and as we read in the
previous paragraph, Java has object casts well secured.

The prohibition of explicit pointer use in Java stops a host of bugs and has the wholesome effect of making Java code secure
against memory-related attacks.

Java does not allow a programmer to explicitly allocate and free memory chunks. You cannot find dangling pointers in a Java
program. The runtime detects the presence of unused objects and sweeps them up automatically (garbage collection).

Try as you may, you cannot access an array outside its allocated extents. Again, the overriding theme is Java’s control over
memory. You may know that some programming languages enable array access past declared bounds and that such access
can corrupt code and data.

The watchword here is predictability. Memory-related errors behave in unpredictable ways. Such unpredictability is the bane of
anyone concerned with security. By stopping memory errors, Java enables programmers to improve the predictability of
applications.

Speaking of predictability, Java also uses a structured exception-reporting mechanism. While Java does not force programmers
to use this mechanism to handle all exceptions, nearly all of them take advantage of Java’s exception-reporting mechanism. As
a result, programmers improve the predictability of a program in the event of an error.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=267387736

Out-of-the-box Java includes an impressive array of features that enable a programmer to engineer well-developed and secure
systems. However, Java security encompasses more than the features of the language. The Java runtime, or JVM, also
contains a few features that affect system security, which is discussed in the following.

Using the JVM Security Features

Of course, the Java language security features, and the Java language itself, cannot exist without the JVM, which has a few
features that affect system security.

The JVM contains a bytecode verifier, which is the initial line of defense. In brief, the verifier scans the bytecode representing a
Java software object and checks to determine if the bytecode has been altered before executing it.

For example, the following program produces bytecode with the output string imbedded in the file:
public class BytecodeTest {
 public static void main(String [] a) {
 System.out.println("Tamper with my Bytecode") ;

 }
}

If you open the class file containing the bytecode with a text editor and change the word “with” to “WITH” and then run the
bytecode, here’s how JVM responds:
java.lang.ClassFormatError: BytecodeTest (Illegal constant pool type)
 at java.lang.ClassLoader.defineClass0(Native Method)
 at java.lang.ClassLoader.defineClass(ClassLoader.java:486)
 at java.security.SecureClassLoader.defineClass(SecureClassLoader.java:111)
 at java.net.URLClassLoader.defineClass(URLClassLoader.java:248)
 at java.net.URLClassLoader.access$100(URLClassLoader.java:56)
 at java.net.URLClassLoader$1.run(URLClassLoader.java:195)
 at java.security.AccessController.doPrivileged(Native Method)
 at java.net.URLClassLoader.findClass(URLClassLoader.java:188)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:297)
 at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:286)
 at java.lang.ClassLoader.loadClass(ClassLoader.java:253)
 at java.lang.ClassLoader.loadClassInternal(ClassLoader.java:313)
Exception in thread "main"

You can see that even an apparently benign change in the bytecode causes the JVM to react.

Another feature of the JVM, apparent in the above diagnostic, is the class loader. The class loader controls how and when
classes are added to the JVM during execution. A JVM contains many class loaders. The stack trace above shows a
URLClassLoader, a SecureClassLoader, and a ClassLoader. Class loaders are responsible for determining when
classes may be added to the Java environment.

The JVM also makes use of the security manager. The security manager is responsible for controlling how classes use
accessible interfaces. The security manager performs runtime checks and can issue security exceptions to veto potentially
dangerous or unauthorized actions. The security manager works hand-in-hand with the various class loaders to check for
access violations at runtime.

Up to this point in the chapter you’ve read about Java and JVM features that enable you to write more secure software, but
there’s more to tell regarding Java security features. Java contains a set of packages and tools that specifically address
security, which is covered in the following section.

Looking at the Java Security Packages

The relevant Java packages that deal with security are the java.security, java.security.cert,
java.security.interfaces, and java.security.spec packages, as well as a few classes in the base package,
java.lang.

The java.security package provides the classes and interfaces for the security framework, including classes that
implement a user-configurable, fine-grained access control security architecture. This package also supports the generation
and storage of cryptographic public key pairs, as well as a number of exportable cryptographic operations including those for
message digest and signature generation. Finally, this package provides classes that support signed/guarded objects and
secure random number generation. The cryptographic and secure random number generator classes are provider-based. The
implementations themselves may then be written by independent third-party vendors and plugged in seamlessly as needed.
Therefore, application developers may take advantage of any number of provider-based implementations without having to add
or rewrite code.

The java.security.cert package contains classes and interfaces for parsing and managing X.509 version 3 certificates. A
certificate is a digitally signed statement from one entity, stating that the key (and some other information) of another entity has
some specific value. The key is usually a public key, meaning that the key is freely available to any and all who need to receive
information from the certificate sender. The X.509 standard is the accepted standard for digital certificates and is maintained by
the Public Key Infrastructure Group.

The java.security.interfaces package contains interfaces for generating RSA (Rivest, Shamir, and Adleman
AsymmetricCipher algorithm) keys as defined in the RSA Laboratory Technical Note PKCS#1, and DSA (Digital Signature
Algorithm) keys. The ugly details of the algorithm and the specifications of the keys are defined in NIST's Federal Information
Processing Standards Publication, number 186.

The java.security.spec package contains classes and interfaces for key specifications and algorithm parameter
specifications. A key specification is a transparent representation of the key material that constitutes a key. A key may be
specified in an algorithm-specific way, or in an algorithm-independent encoding format. This package contains key
specifications for public and private keys in RSA, X.509, and other formats.

Security Features Available in the java.lang Package

The java.lang package contains classes that address security. These classes implement a security policy by using a security
manager to check permissions in conjunction with a policy file. Let’s take a look at how these pieces fit together.

The SecurityManager Class

A commonly used class from base Java is the SecurityManager class. This class and subclasses enable applications to
implement a security policy. The SecurityManager class enables an application to determine, before performing a possibly
unsafe or sensitive operation, what the operation is and whether it is being attempted in a security context, which would permit
the operation to be performed. The application can allow or disallow the operation. When the operation is not allowed, the
application may throw a security exception.

The SecurityManager class contains methods with names that begin with the word "check," such as checkRead() and
checkWrite(), which check if the application can read from or write to a stream specified in the argument. These methods
are called by various methods in the Java libraries before those methods perform certain potentially sensitive operations. For
example, the invocation of a checkRead() method may resemble the code snippet shown below:

//Get a security manager to check permissions
try {
 SecurityManager security = System.getSecurityManager();
 if (security != null) {
 //Here’s one permission…
 security.checkRead(myStringFileArg);
 //Do the operation…
 success = doRead(myStringFileArg) ;
 }
catch (SecurityException sEx) { sEx.printStackTrace() } ;

The security manager allows the Java programmer to enforce a fine-grained level of access control by granting permissions on
a method-by-method basis.

The class RMISecurityManager, a subclass of SecurityManager, is used to manage permissions for RMI applications.
Use RMISecurityManager as you would use SecurityManager; get an instance of the RMISecurityManager and
invoke the checkXXX methods.

Using Policy Files

The security manager examines a policy file to determine if a given permission is allowable. A policy file is a text file containing
a list of allowable operations. Operations not explicitly included in the policy file are forbidden. The basic structure of a policy
file is shown below:
grant [SignedBy "signer"] [, CodeBase "url"] {

 permission permission_class
 ["target"] [,"action"] [, SignedBy "signers"];
 //Additional permission statements may follow

}

In the preceding code snippet, if a read permission were not included in the policy file, the code would throw a
SecurityException.

Assuming that you have a policy file called mypolicyfile, you associate the policy file with an application
MyApplication.class as follows:

java –Djava.security.policy=mypolicyfile MyApplication

Tip There are hundreds of Java methods that require permissions. Rather than provide an exhaustive list here, check out
the following URL:
http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html

Here, you can find the definitive list of methods and the permissions they require.

In addition to supplying classes as part of the core language, Sun provides several tools to help you navigate the security
minefield.

Using Sun JDK Security Tools

The Java JDK contains tools for creating certificates and applying those certificates to your code (sign your code). The relevant
tools are keytool and jarsigner.

The keytool Utility

The keytool utility, available since Java 1.2, enables you to:

● Manage a database of keys and names called a keystore

● Generate public and private key pairs

● Store these keys in encrypted format

● Assign a password to allow controlled access to the keystore database

● Import and export X.509 certificates

http://java.sun.com/j2se/1.3/docs/guide/security/permissions.html

The keytool utility has numerous command line options. Here’s an example of generating a pair of keys and an X.509
certificate with password-protected access. The options appear in italics.

keytool –genkey –alias mykeypair –keypass pairpass –keystore mykeystore –storepass mystorepass

This command accomplishes the following:

● Creates a keystore database called mykeystore in the current directory and assigns the password storepass to
control access.

● Generates a pair of public and private keys and names the pair mykeypair and password-protects access to the keys by
assigning the password pairpass.

● Issues a series of prompts for information required for an X.509 certificate, such as name, company name, address, and
other identifying information.

● Generates an X.509 certificate that includes the key associated with the name mykeypair.

Note Most Java IDEs provide a user interface to create certificates, sign code, and import or export certificates.

Tip While certificates that you create with the keytool utility are valid, they may not be trusted by other parties in all
instances. There are companies that provide what are known as "trusted" certificates that can be purchased on a
subscription basis. For more check out VeriSign (http://www.verisign.com/).

The jarsigner Utility

The jarsigner tool is used to sign (apply a certificate to) jar files. The utility works with the keys and certificates generated in
the keytool utility described earlier. Here’s how you create a signed jar file using the information generated with the keytool
command above.

● Create your application, applet, or Java software object

● Create a jar of the class file(s) using Sun’s jar utility
jar cvf MyJavaSoftware.jar MyJavaSoftware.class …

● Sign the jar file with the jarsigner tool; command options are in italics.
jarsigner –keystore mykeystore
–signedjar MySignedJavaSoftware.jar MyJavaSoftware.jar mykeypair

The jarsigner tool prompts for the keystore password (mystorepass) and the key password (pairpass). Notice that
jarsigner need not overwrite your jar file.

Now that you have an idea of the security features available to the Java programmer, let’s take a look at EJB security concerns
and features.

http://www.verisign.com/

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

System Security Overview

In this instance, the term security means exercising control over the resources of the computing environment, which
involves physical security and information security.

Physical security deals with controlling access to buildings, rooms, and machines. Today, many companies hire
security guards and require employees to display and use encoded identification badges to gain entrance into
buildings, rooms, and parking garages. Companies may also install cameras and motion detectors, and they may
monitor employee e-mail and, at times, telephone calls — all in the name of providing a more secure environment to
conduct business. The high cost of such measures underscores the importance that companies place on physical
security.

Information security deals with protecting access to and ensuring the integrity of information, particularly in an
electronic form. Not only do security managers need to make sure that the wrong people do not access valuable
information, but they need to make sure that the integrity of that information is never compromised!

Regarding information security, a search on http://www.excite.com/ for the string "information security" returns
over 5 millions results. Even if a very small percentage of these Web sites addresses the issue of information security,
that’s still an absurd number of sites on the topic! Clearly, security is a hot topic and it’s likely to gain importance in this
ever-increasing networked world in which we live.

A search on http://www.amazon.com/ for "information security" lands 376 total matches. That’s a large number of
books, which, once again, illustrates the high level of interest software folk have in the topic of information security.

Enterprise JavaBeans’ security features extend those of the Java programming language. Java, being a modern
software technology, has several features that directly address information security. Next, you can read about some of
Java’s security features.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=536768366
http://www.excite.com/
http://www.amazon.com/

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 16: EJB Security

Overview

Today, corporate information systems departments are growing more concerned with threats to system security from
a Microsoft Word virus to a denial of service attack to a hack resulting in a loss or corruption of data. More than ever
before, decision-makers must take steps to secure their systems. Fortunately, decision-makers who have made Java
technologies, including EJB, an integral part of their shops are a step ahead of those who haven’t.

This chapter discusses the security features available when deploying Enterprise JavaBeans, starting with a brief
overview of security and then focusing on security features found in the Java programming language. This chapter
also introduces the additional security features EJB brings to the table, featuring a discussion of the security roles of
the players in the EJB arena, and concluding with a few thoughts on system security outside the Java environment.

First, let’s take a look at the topic of system security and what the Java environment has to offer in the security arena.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=350942273

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter you've learned about the use of entity beans to model data in an enterprise computing environment.
You've examined the life-cycle of entity beans and you've looked at the differences between container-managed
persistence and bean-managed persistence. Lastly, you've had the opportunity to create both CMP and BMP entity
beans in our employee bean examples. You should be able to use the information garnered from this chapter to
design and deploy entity beans to model data in future J2EE applications.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=492050716

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Implementing an Entity Bean

The listings that follow show code for an employee entity bean that models an employee in a company. This bean
provides the client with access to information about the employee, including salary, grade, and classification. The
bean also provides the client with methods to reassign or to promote the employee and to give the employee a raise.

In the following sections we’ll look at the remote interface, the home interface, the primary key class, and, of course,
the bean class used to implement this employee entity bean.

Creating the remote Interface

Listing 15-3 shows the remote interface for the employee bean. The remote interface has the usual get and set
methods along with some business methods that represents the client’s view of the enterprise bean. Notice that all the
remote interface methods throw an EJBException.

Listing 15-3: Remote interface for employee bean

package chapter15.employee ;

import java.util.* ;
import chapter15.employee.* ;
import javax.ejb.* ;

public interface Employee extends EJBObject {

 //Get methods for Employee Bean Properties
 String getEmployeeID() throws EJBException ;
 String getEmployeeName() throws EJBException ;
 Date getHireDate() throws EJBException ;
 int getGrade() throws EJBException ;
 String getClassification() throws EJBException ;
 double getSalary() throws EJBException ;
 String getDeptCode() throws EJBException ;
 //Set methods for Employee Bean properties (some of
 //them, anyway)
 void setGrade (int newGrade) throws EJBException ;
 void setSalary(double newSalary) throws EJBException ;
 void setDeptCode(String newDeptCode) throws EJBException ;
 //A few business methods
 void giveEmployeeAPromotion(double percentIncrease,
 int newGrade ,
 String newClassification)
 throws EJBException ;
 void giveEmployeeARaise(double percentIncrease)

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=434620030

 throws EJBException ;
 void reassign(String newDeptCode) throws EJBException ;
}

Next, you take a look at the home interface for the BMP Employee bean.

Creating the home Interface

Listing 15-4 shows the employee bean home interface. The home interface contains create, remove and
finder methods. Notice that create methods throw a CreateException, the finder method throws a
FinderException, and the remove method throws a RemoveException.

Listing 15-4: The home interface

package chapter15.employee ;

import chapter15.employee.* ;
import javax.ejb.* ;
import java.util.* ;

public interface EmployeeHome extends EJBHome {

 public Employee create(String employeeID,
 String firstName,
 String lastName,
 Date hireDate,
 int grade,
 String classification,
 double salary,
 String deptCode)
 throws EJBException, CreateException ;
 //This create() method is used to assign employees
 //to a default department, classification, grade and salary
 public Employee createTemp(String employeeID,
 String firstName,
 String lastName,
 Date hireDate)
 throws EJBException, CreateException ;
 //One finder method....
 public Employee findByPrimaryKey (EmployeePK empPK)
 throws EJBException, FinderException ;
 //And a remove method
 public void remove(EmployeePK empPK)
 throws EJBException, RemoveException ;

}

Creating the Primary Key Class

Entity beans need a primary key for access. With BMP beans, the bean code must directly use the primary key to
locate beans. Listing 15-5 shows the code for a key class whose objects have values that serve as keys to locate
particular entity beans.

Listing 15-5: The primary key class

package chapter15.employee ;

import java.io.* ;

public class EmployeePK implements Serializable {
 public String employeeID ;

 public EmployeePK(String empID) {
 employeeID = empID ;
 }

 //No Arg constructor for CMP beans
 public EmployeePK() {
 }

 public boolean equals(Object empID) {
 boolean isEqual = false ;
 if (empID instanceof EmployeePK)
 isEqual =
 (((EmployeePK)empID).employeeID == employeeID) ;

 return isEqual ;
 }

 public String toString() {
 return employeeID ;
 }

}

Notice that the primary key class satisfies the criteria cited earlier. The class is serializable, and overrides the
Object.equals and Object.toString methods. It doesn’t need to override Object.hashcode because the sole instance
variable, employeeID, is a string.

Implementing the Bean Class as a BMP Bean

Listing 15-6 shows the bean class coded as a BMP bean. Notice the ejbCreate and ejbFindByPrimaryKey
methods corresponding to the create and findByPrimaryKey methods in the home interface.

Listing 15-6: The bean class coded as a BMP bean

package chapter15.employee ;

import java.util.* ;
import chapter15.employee.* ;
import javax.ejb.* ;
import java.sql.* ;
import javax.sql.* ;
import javax.naming.* ;

public class EmployeeBean implements EntityBean {
 //Copy of EntityContext
 private EntityContext empECtx ;
 //Instance variables for Employee bean
 public String employeeID ;
 public String firstName ;
 public String lastName ;
 public java.util.Date hireDate ;

 public int grade ;
 public String classification ;
 public double salary ;
 public String deptCode ;
 //Default instance variables for temporary employees
 public static final int TEMPGRADE = 30 ;
 public static final String TEMPCLASSIFICATION = "TEMP" ;
 public static final double TEMPSALARY = 2000.00;
 public static final String TEMPDEPTCODE = "T100";

 //ejbCreate and ejbPostCreate methods
 public EmployeePK ejbCreate(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate,
 int grade,
 String classification,
 double salary,
 String deptCode)
 throws EJBException, CreateException {
 //Assign fields to instance variables
 this.employeeID = employeeID ;
 this.firstName = firstName ;
 this.lastName = lastName ;
 this.hireDate = hireDate ;
 this.grade = grade ;
 this.classification = classification ;
 this.salary = salary ;
 this.deptCode = deptCode ;
 //Issue SQL to insert into database
 if (employeeAdded(employeeID, firstName, lastName,
 hireDate, grade, classification,
 salary, deptCode))

 return new EmployeePK(employeeID) ;
 else
 throw new CreateException("SQL For Employee " +
 employeeID + " failed.") ;

 }
 public void ejbPostCreate(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate,
 int grade,
 String classification,
 double salary,
 String deptCode)
 throws EJBException, CreateException {
 //Nothing going on here....
 }
 //This create() method is used to assign Temp employees
 //to a default department, classification, grade and salary
 public EmployeePK ejbCreateTemp(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate)
 throws EJBException, CreateException{
 return ejbCreate(employeeID, firstName, lastName, hireDate,
 TEMPGRADE, TEMPCLASSIFICATION,

 TEMPSALARY, TEMPDEPTCODE) ;

 }
 public void ejbPostCreate(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate)
 throws EJBException, CreateException {
 //Nothing going on here.....
 }
 //ejbFind method follows
 EmployeePK ejbFindByPrimaryKey(EmployeePK empPK)
 throws EJBException, FinderException {
 PreparedStatement selectSQL = null ;
 Connection selectConn = null ;
 ResultSet findRS = null ;
 String selectSQLString =
 "select employeeID from emptable where employeeID = ?" ;
 try {
 selectConn = getConnection() ;
 selectSQL = selectConn.prepareStatement(selectSQLString) ;
 selectSQL.setString(1, empID.toString()) ;
 findRS = selectSQL.executeQuery() ;

 if (findRS == null)
 throw new EJBException("Locate of employee " +
 empID.toString() + " failed.") ;
 else {
 findRS.next() ;
 employeeID = findRS.getString("employeeID") ;

 }
 }
 catch(Exception exc) {
 throw new EJBException (exc.toString()) ;
 }
 finally {
 //Close up shop
 try {
 if (selectSQL != null)
 selectSQL.close() ;
 if (loadRS != null)
 loadRS.close() ;
 if (selectConn != null)
 selectConn.close() ;
 }
 catch (Exception exc) {} ;

 }
 //Business methods, including get and set methods
 String getEmployeeID() throws EJBException {
 return employeeID ;
 }
 String getEmployeeName() throws EJBException {
 return firstName + " " + lastName ;
 }
 java.util.Date getHireDate() throws EJBException {
 return hireDate ;
 }
 int getGrade() throws EJBException {
 return grade ;

 }
 String getClassification() throws EJBException {
 return classification ;
 }
 double getSalary() throws EJBException {
 return salary ;
 }
 String getDeptCode() throws EJBException {
 return deptCode ;
 }
 void setGrade (int newGrade) throws EJBException {
 grade = newGrade ;
 }
 void setSalary(double newSalary) throws EJBException {
 salary = newSalary ;
 }
 void setDeptCode(String newDeptCode) throws EJBException {
 deptCode = newDeptCode ;
 }
 //A few business methods
 void giveEmployeeAPromotion(double percentIncrease,
 int newGrade ,
 String newClassification)
 throws EJBException {
 salary = salary * (1.0 + percentIncrease) ;
 grade = newGrade ;
 classification = newClassification ;
 }
 void giveEmployeeARaise(double percentIncrease)
 throws EJBException {
 salary = salary * (1.0 + percentIncrease) ;
 }
 void reassign(String newDeptCode) throws EJBException {
 deptCode = newDeptCode ;

 }
 //Required methods for EntityBean declared here
 //Save the entity context
 public void setEntityContext(EntityContext ectx) {
 empECtx = ectx ;
 }
 public void unsetEntityContext() throws EJBException {
 empECtx = null ;
 }
 public void ejbActivate() throws EJBException {
 //Nothing going on here....
 }
 public void ejbPassivate() throws EJBException {
 //Nothing going on here....
 }
 public void ejbLoad() throws EJBException {
 //Load the correct database data to correspond with
 //this bean instance
 EmployeePK thisPK = (EmployeePK) empECtx.getPrimaryKey() ;
 String employeeID = thisPK.employeeID ;
 ResultSet loadRS = null ;

 String selectSQLString =
 "select * from empTable where employeeID = ?" ;

 PreparedStatement selectSQL = null ;

 Connection selectConn = null ;
 try {
 selectConn = getConnection() ;
 selectSQL = selectConn.prepareStatement(selectSQLString) ;
 selectSQL.setString(1, employeeID) ;
 loadRS = selectSQL.executeQuery() ;

 if (loadRS == null)
 throw new EJBException("Load of Employee " +
 employeeID + " failed.") ;
 else {
 loadRS.next() ;
 employeeID = loadRS.getString("employeeID") ;
 firstName = loadRS.getString("firstName") ;
 lastName = loadRS.getString("lastName") ;
 hireDate = (java.util.Date) loadRS.getDate("hireDate") ;
 grade = loadRS.getInt("grade") ;
 classification = loadRS.getString("classification") ;
 salary = loadRS.getDouble("salary") ;
 deptCode = loadRS.getString("deptCode") ;
 }
 }
 catch(Exception exc) {
 throw new EJBException (exc.toString()) ;
 }
 finally {
 //Close up shop
 try {
 if (selectSQL != null)
 selectSQL.close() ;
 if (loadRS != null)
 loadRS.close() ;
 if (selectConn != null)
 selectConn.close() ;
 }
 catch (Exception exc) {} ;
 }

 }
 public void ejbStore() throws EJBException {
 PreparedStatement updateSQL = null ;
 Connection updateConn = null ;
 String updateSQLString =
 "update emptable set employeeID = ?, firstName = ?, " +
 "lastName = ?, hireDate = ?, " +
 "grade = ?, classification = ?, " +
 "salary = ?, deptCode = ?) " ;
 //Issue SQL to update the database
 try {
 //First, get a database connection....
 updateConn = getConnection() ;
 //Second, prepare the SQL statement
 updateSQL = updateConn.prepareStatement(updateSQLString) ;
 updateSQL.setString(1, employeeID) ;
 updateSQL.setString(2, firstName) ;
 updateSQL.setString(3, lastName) ;
 updateSQL.setDate (4, (java.sql.Date) hireDate) ;
 updateSQL.setInt (5, grade) ;
 updateSQL.setString(6, classification) ;
 updateSQL.setDouble(7, salary) ;
 updateSQL.setString(8, deptCode) ;

 //Third, issue the SQL insert statement.
 //Save results as boolean for return
 if (updateSQL.executeUpdate() != 1)
 throw new EJBException("Update Failed during ejbStore");
 }
 catch (Exception exc) {
 throw new EJBException(exc.toString()) ;
 }
 finally {
 //Close up shop
 try {
 if (updateSQL != null)
 updateSQL.close() ;
 if (updateSQL != null)
 updateSQL.close() ;
 }
 catch (Exception exc) {} ;
 }

 }
 public void ejbRemove() throws EJBException {
 EmployeePK thisPK = (EmployeePK) empECtx.getPrimaryKey() ;
 String employeeID = thisPK.employeeID ;

 String deleteSQLString =
 "delete from empTable where employeeID = ?" ;
 PreparedStatement deleteSQL = null ;
 Connection deleteConn = null ;
 try {
 deleteConn = getConnection() ;
 deleteSQL = deleteConn.prepareStatement(deleteSQLString) ;
 deleteSQL.setString(1, employeeID) ;
 if (deleteSQL.executeUpdate() != 1)
 throw new EJBException("Delete of Employee " +
 employeeID + " failed.") ;
 }
 catch(Exception exc) {
 throw new EJBException (exc.toString()) ;
 }
 finally {
 //Close up shop
 try {
 if (deleteSQL != null)
 deleteSQL.close() ;
 if (deleteConn != null)
 deleteConn.close() ;
 }
 catch (Exception exc) {} ;
 }

 }
 //Utility method to establish a database connection
 private Connection getConnection()
 throws SQLException, NamingException {
 String dbURL = "java:comp/env/empdb" ;

 InitialContext initCtx = new InitialContext();
 DataSource empDB = (DataSource) initCtx.lookup(dbURL);
 Connection con = empDB.getConnection();

 return con ;

 }
 //Utility method to insert an employee into the database
 private boolean employeeAdded(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate,
 int grade,
 String classification,
 double salary,
 String deptCode)
 throws EJBException {

 boolean insertSuccessful = false ;

 PreparedStatement insertSQL = null ;
 Connection insertConn = null ;
 String insertSQLString =
 "insert into emptable " +
 " (employeeID,firstName,lastName,hireDate, " +
 " grade, classification, salary, deptCode) " +
 "values (?,?,?,?,?,?,?,?)" ;
 //Issue SQL to insert into database
 try {
 //First, get a database connection....
 insertConn = getConnection() ;
 //Second, prepare the SQL statement
 insertSQL = insertConn.prepareStatement(insertSQLString) ;
 insertSQL.setString(1, employeeID) ;
 insertSQL.setString(2, firstName) ;
 insertSQL.setString(3, lastName) ;
 insertSQL.setDate (4, (java.sql.Date) hireDate) ;
 insertSQL.setInt (5, grade) ;
 insertSQL.setString(6, classification) ;
 insertSQL.setDouble(7, salary) ;
 insertSQL.setString(8, deptCode) ;
 //Third, issue the SQL insert statement.
 //Save results as boolean for return
 insertSuccessful = (insertSQL.executeUpdate() == 1) ;

 }
 catch (Exception exc) {
 throw new EJBException(exc.toString()) ;
 }
 finally {
 //Close up shop
 try {
 if (insertSQL != null)
 insertSQL.close() ;
 if (insertConn != null)
 insertConn.close() ;
 }
 catch (Exception exc) {} ;

 return insertSuccessful ;
 }

 }

}

Because this bean class is for a bean-managed entity bean, it contains plenty of SQL code that performs the bean’s
major duties. The ejbCreate methods require the use of an SQL INSERT statement. The ejbFindByPrimaryKey and
the ejbLoad methods require an SQL SELECT statement. The ejbRemove method requires the use of an SQL
DELETE statement. The ejbStore method requires an SQL UPDATE statement.

The database connection is acquired by using the JNDI naming context, as in the example of a session bean shown in
Chapter 14, “EJB Session Beans.” Of course, the usual spate of accessor and mutator methods is also present,
along with business methods.

Let’s now take a look at the Employee bean coded as a container-managed bean.

Implementing the Bean Class as a CMP Bean

1.
The differences between the BMP and CMP bean versions are startling. You must have noticed all the SQL in the
BMP bean class. Please notice the absence of SQL in the CMP bean class. Listing 15-7 shows the bean coded as
a CMP bean.

Listing 15-7: The bean class as a CMP bean

package chapter15.employee ;

import java.util.* ;
import chapter15.employee.* ;
import javax.ejb.* ;

public class EmployeeBeanCMP implements EntityBean {
 //Copy of EntityContext
 private EntityContext empECtx ;
 //Instance variables for Employee bean
 public String employeeID ;
 public String firstName ;
 public String lastName ;
 public java.util.Date hireDate ;
 public int grade ;
 public String classification ;
 public double salary ;
 public String deptCode ;
 //Default instance variables for temporary employees
 public static final int TEMPGRADE = 30 ;
 public static final String TEMPCLASSIFICATION = "TEMP" ;
 public static final double TEMPSALARY = 2000.00;
 public static final String TEMPDEPTCODE = "T100";

 //ejbCreate and ejbPostCreate methods
 public void ejbCreate(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate,
 int grade,
 String classification,
 double salary,
 String deptCode)
 throws EJBException, CreateException {
 //Assign fields to instance variables
 this.employeeID = employeeID ;
 this.firstName = firstName ;
 this.lastName = lastName ;

 this.hireDate = hireDate ;
 this.grade = grade ;
 this.classification = classification ;
 this.salary = salary ;
 this.deptCode = deptCode ;

 }
 public void ejbPostCreate(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate,
 int grade,
 String classification,
 double salary,
 String deptCode)
 throws EJBException, CreateException {
 //Nothing going on here....
 }
 //This create() method is used to assign Temp employees
 //to a default department, classification, grade and salary
 public void ejbCreateTemp(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate)
 throws EJBException, CreateException {
 ejbCreate(employeeID, firstName, lastName, hireDate,
 TEMPGRADE, TEMPCLASSIFICATION,
 TEMPSALARY, TEMPDEPTCODE) ;

 }
 public void ejbPostCreate(String employeeID,
 String firstName,
 String lastName,
 java.util.Date hireDate)
 throws EJBException, CreateException {
 //Nothing going on here.....
 }
 //Business methods, including get and set methods
 String getEmployeeID() throws EJBException {
 return employeeID ;
 }
 String getEmployeeName() throws EJBException {
 return firstName + " " + lastName ;
 }
 java.util.Date getHireDate() throws EJBException {
 return hireDate ;
 }
 int getGrade() throws EJBException {
 return grade ;
 }
 String getClassification() throws EJBException {
 return classification ;
 }
 double getSalary() throws EJBException {
 return salary ;
 }
 String getDeptCode() throws EJBException {
 return deptCode ;
 }
 void setGrade (int newGrade) throws EJBException {
 grade = newGrade ;

 }
 void setSalary(double newSalary) throws EJBException {
 salary = newSalary ;
 }
 void setDeptCode(String newDeptCode) throws EJBException {
 deptCode = newDeptCode ;
 }
 //A few business methods
 void giveEmployeeAPromotion(double percentIncrease,
 int newGrade ,
 String newClassification)
 throws EJBException {
 salary = salary * (1.0 + percentIncrease) ;
 grade = newGrade ;
 classification = newClassification ;
 }
 void giveEmployeeARaise(double percentIncrease)
 throws EJBException {
 salary = salary * (1.0 + percentIncrease) ;
 }
 void reassign(String newDeptCode) throws EJBException {
 deptCode = newDeptCode ;

 }
 //Required methods for EntityBean declared here
 //Save the entity context
 public void setEntityContext(EntityContext ectx) {
 empECtx = ectx ;
 }
 public void unsetEntityContext() throws EJBException {
 empECtx = null ;
 }
 public void ejbActivate() throws EJBException {
 //Nothing going on here....
 }
 public void ejbPassivate() throws EJBException {
 //Nothing going on here....
 }
 public void ejbLoad() throws EJBException {

 }
 public void ejbStore() throws EJBException {

 }
 public void ejbRemove() throws EJBException {

 }

}

With the container managing the bean instance-to-database relationship, the bean code doesn’t need to issue any
SQL. With the need for SQL gone, so too is the need for utility methods that get database connections and the like.

Finder methods are absent in CMP beans, too. The container generates primary key values and uses these values to
access and manipulate beans and the underlying data.

Notice that the ejbCreate methods return a void, not an instance of the primary key class. The container tends to
many of the mundane details of creating and accessing database data.

Just how does the container know what to do? All the required information is kept in the deployment descriptor.

Writing the Deployment Descriptor for a CMP bean

Listing 15-8 shows a piece of the deployment descriptor instructing the container to handle database interactions with
instance variables of the employee bean.

Listing 15-8: Deployment descriptor naming container-managed fields

<entity>
 <description>
 The Employee entity bean encapsulates access to the
 employee records. The deployer will use container-managed
 persistence to integrate the entity bean with the back-end
 system managing the employee records.
 </description>
 <ejb-name>Employee</ejb-name>
 <home>chapter15.employee.EmployeeHome</home>
 <remote>chapter15.employee.Employee</remote>
 <ejb-class>chapter15.employee.EmployeeBeanCMP</ejb-class>
 <persistence-type>Container</persistence-type>
 <prim-key-class>chapter15.employee.EmployeeID</prim-key-class>
 <reentrant>True</reentrant>
 <cmp-field><field-name>employeeID</field-name></cmp-field>
 <cmp-field><field-name>firstName</field-name></cmp-field>
 <cmp-field><field-name>lastName</field-name></cmp-field>
 <cmp-field><field-name>hireDate</field-name></cmp-field>
 <cmp-field><field-name>grade</field-name></cmp-field>
 <cmp-field><field-name>classification</field-name></cmp-field>
 <cmp-field><field-name>salary</field-name></cmp-field>
 <cmp-field><field-name>deptCode</field-name></cmp-field>
</entity>

The container is smart enough to generate the correct SQL (or whatever language is used by the database) for
creates, deletes, and most selects and updates, based on the information contained in the deployment descriptor.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Looking at the Life Cycle of an Entity Bean

In this section, I describe the life cycle of an entity bean and discuss some container-invoked methods that execute as
the bean progresses through its life cycle.

Examining the Possible Entity Bean States

An entity bean exists in one of three states:

● Does Not Exist: The bean has not been created yet.

● Pooled: An entity bean in the pooled state exists but has no identity. In other words, the bean is ready to rock-and-
roll but cannot be identified by a client.

● Ready: An entity bean in the ready state has identity, or can be identified by a client. In other words, a ready state
bean can perform useful work on behalf of a client.

Figure 15-1 shows the methods invoked by the client and the container that causes the entity bean to transition from
one state to another.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=170405216

Figure 15-1: Entity bean life cycle

The following sections describe the life cycle of an entity bean instance.

Instantiating an Entity Bean

An entity bean instance’s life starts when the container creates the instance using the Class method newInstance.
The container calls the default constructor for your bean class.

Please realize that an EJB container is under no obligation to create a new instance of your bean class for every
client. Actually, most containers try to create as few beans as possible because object creation is not cheap. The
thrust behind the pooling strategy is to dole out a few bean instances to multiple clients. The same entity bean
instance usually services multiple clients. Never develop EJB applications under the assumption that the container will
create an entity bean at any particular time or situation.

The container then invokes the setEntityContext method to pass the instance a reference to the
EntityContext interface. The EntityContext interface allows the instance to invoke services provided by the
container and to obtain the information about the caller of a client-invoked method.

In Chapter 13, “EJB Basics,” I discussed the methods in the EJBContext interface and in Chapter 14, "EJB Session
Beans," I discussed the methods in the SessionContext subinterface. Let’s take a look at the subinterface of
EJBContext for entity beans named, appropriately enough, EntityContext.

The EntityContext Interface

The EntityContext interface provides a bean instance with access to its container-provided runtime context. The
container passes the EntityContext interface to an entity bean instance after the instance has been created.

The EntityContext interface remains associated with the instance for the lifetime of the instance. Note that the
information that the instance obtains using the EntityContext interface (such as the result of the getPrimaryKey
method) may change, as the container assigns the instance to different EJB objects during the instance's life cycle.

Listing 15-2 shows the EntityContext interface.

Listing 15-2: The EntityContext interface

public interface javax.ejb.EntityContext
 extends javax.ejb.EJBContext {

 EJBObject getEJBObject()
 throws java.lang.IllegalStateException ;

 Object getPrimaryKey()
 throws java.lang.IllegalStateException ;
}

The getEJBObject method returns a reference to the EJB object associated with the bean instance. Hence, your
bean can invoke this method only when your bean has identity, or is in the ready state. Entity beans may call
getEJBObject from their ejbActivate, ejbPassivate, ejbPostCreate, ejbRemove, ejbLoad, ejbStore,
and business methods.

If you need to code a method that passes a reference of the bean instance to another method, you should use the
reference returned by getEJBObject. You may think you can pass this to refer to the current bean instance.
However, recall that the work done by beans is done by the associated EJB object, through the container. You may
get unpredictable results by passing this around from method to method.

The getPrimaryKey method gets the primary key of the EJB object that is currently associated with this instance.
The same restrictions for invoking this method as those for invoking getEJBObject apply — the bean must be
associated with an EJB object.

It is important to save a reference to the entity context. If you don’t, you cannot legally invoke the getPrimaryKey or
getEJBObject methods because when your bean is in a legal state to do so, the setEntityContext method has
already executed and the entity context will go out of scope.

Moving an Entity Bean to the Pool

Once the entity bean is instantiated, it enters the pool of available instances. Each entity bean has its own pool. While
the instance is in the available pool, the instance is not associated with any particular entity object identity. All
instances in the pool are considered equivalent, and therefore any instance can be assigned by the container to any
entity object identity at the transition to the ready state.

While the instance is in the pooled state, the container may use the instance to execute any of the entity bean’s
finder or home methods (shown as ejbFind and ejbHome in the Figure 15-1, respectively). The instance does
not move to the ready state during the execution of a finder or a home method.

Transitioning to the Ready State

An instance transitions from the pooled state to the ready state when the container selects that instance to service a
client call to an entity object. There are two possible transitions from the pooled to the ready state: through the
ejbCreate and ejbPostCreate methods, or through the ejbActivate method.

The container invokes the ejbCreate and ejbPostCreate methods when the instance is assigned to an entity
object during entity object creation (i.e., when the client invokes a create method on the entity bean’s home object).
The container invokes the ejbActivate method on an instance when an instance needs to be activated to service
an invocation on an existing entity object. This occurs because there is no suitable instance in the ready state to

service the client’s call.

When an entity bean instance is in the ready state, the instance is associated with a specific entity object identity.
While the instance is in the ready state, the container can invoke the ejbLoad and ejbStore methods zero or more
times. A business method can be invoked on the instance zero or more times. Invocations of the ejbLoad and
ejbStore methods can be arbitrarily mixed with invocations of business methods.

The purpose of the ejbLoad and ejbStore methods is to synchronize the state of the instance with the state of the
entity in the underlying data source. The container can invoke these methods whenever it determines a need to
synchronize the instance’s state.

The container can choose to passivate an entity bean instance within a transaction. To passivate an instance, the
container first invokes the ejbStore method to allow the instance to synchronize the database state with the
instance’s state, and then the container invokes the ejbPassivate method to return the instance to the pooled state.

Returning to the Pooled State

Eventually, the container moves the bean instance from the ready state to the pooled state. There are three possible
transitions from the ready to the pooled state:

● After execution of the ejbPassivate method.

● After the execution of the ejbRemove method. Contrary to the method name, ejbRemove does not delete or
destroy the bean instance. After the container invokes ejbRemove, the bean instance retreats back into the
instance pool.

● After a transaction rollback for ejbCreate, ejbPostCreate,or ejbRemove (not shown in Figure 15-1).

The container invokes the ejbPassivate method when the container wants to disassociate the instance from the
entity object identity without removing the entity object. The container invokes the ejbRemove method when the
container is removing the entity object (i.e., when the client invokes the remove method on the entity object’s remote
interface, or on the entity bean’s home interface). If ejbCreate, ejbPostCreate, or ejbRemove is called and the
transaction rolls back, the container transitions the bean instance to the pooled state. Chapter 17, "EJB and
Transaction Management," has more information about transactions and Enterprise JavaBeans.

When the instance is put back into the pool, it is no longer associated with an entity object identity. The container can
assign the instance to any entity object within the same entity bean home.

Killing an Entity Bean

You can remove an instance in the pool by calling the unsetEntityContext method on the instance. Recall that
the container executing ejbRemove does not delete the bean instance.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 13: EJB Contexts and Containers

The previous chapter described the elements of session and entity beans. You’ve also read about the bean classes
and the home and remote interfaces. In this chapter, you read about the methods available from the EJBContext
interface. The chapter closes with some comments on the relationship, or contract, between the enterprise bean and
the EJB container.

Exploring the EJB Context

You know of the two enterprise bean types defined by the EJB 1.1 specification — entity and session beans. You may
recall that EJB 2.0 defines a third bean type — the message-driven bean. All these bean types (and others that may
be defined in future EJB releases) must provide information about their status and the container in which they reside
at runtime.

Enterprise JavaBeans provide developers with several interfaces to gather status or container information. Each bean
type supports a context interface that supplies this information. The context interfaces for each bean type are:

● The EntityContext interface for entity beans. See Chapter 15, "EJB Entity Beans," for more details on the
EntityContext interface.

● The SessionContext interface for session beans. See Chapter 14, "EJB Session Beans," for more details on the
SessionContext interface.

● The MessageDrivenContext interface for message-driven beans (EJB 2.0 only). See Chapter 19, "The
Proposed EJB 2.0 Specification," for more details on the MessageDrivenContext interface.

The preceding three context interfaces have a parent interface called the EJBContext interface. This section
discusses the methods available to bean developers from the EJBContext interface.

Various Java technologies that utilize containers support the use of a context object that holds, and allows access to,
information about the container. Servlets, for example, support a ServletContext object that serves much the
same purpose as the EJB context objects. However, rarely does an enterprise bean use an object derived from the
EJBContext interface. More often, the bean uses a context object derived from one of the three child interfaces listed
previously. Because of Java’s inheritance mechanism, all the methods available in EJBContext are available to
objects derived from all of the three child interfaces.

Before discussing the methods available through the EJBContext interface, let’s see how to gain access to a context
object.

Gaining Access to a Context Object

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=373631229

With EJBs (and other Java container type technologies), context objects are available at certain times in the bean’s
life cycle. Chapters 14 and 15 discuss enterprise bean life cycles, so I won’t cover the life cycle here. An enterprise
bean context object becomes available to the bean when the container creates an instance of the bean.

The fact that the context object is available to your bean does not mean that your bean has automatic access to the
context object. You need to write code to save a reference to the context object. The code snippet that follows saves a
reference to the EntityContext, which is the context available to entity beans:

public MyEntityBean implements EntityBean {
 //Declared outside any method
 private myEntityContext ;

 public void setEntityContext(EntityContext ectx)
 throws RemoteException {
 myEntityContext = ectx ;
 }
 //Rest of bean methods follow
}

Now the entity context is available to any bean method through the reference myEntityContext. Methods similar to
setEntityContext are available for session beans and message-driven beans. Chapter 15 discusses the
setEntityContext method in more detail.

Using EJBContext Methods

Listing 13-1 shows the methods that the EJBContext interface provides. All enterprise bean types have access to
these methods. We will discuss each of these methods in turn in the rest of this section.

Listing 13-1: The EJBContext interface

public interface javax.ejb.EJBContext {

 public java.security.Principal getCallerPrincipal() ;

 public boolean isCallerInRole(String roleName) ;

 public boolean getRollbackOnly()
 throws java.lang.IllegalStateException ;

 public void setRollbackOnly()
 throws java.lang.IllegalStateException ;

 public javax.jts.UserTransaction getUserTransaction()
 throws java.lang.IllegalStateException ;

 public javax.ejb.EJBHome getEJBHome() ;
}

Note EJB release 1.0 defined three methods, since deprecated. The methods and their replacements are:
public java.security.Identity getCallerIdentity, replaced by public
java.security.Principal getCallerPrincipal; public java.util.Properties
getEnvironment, replaced by using JNDI to get bean environment properties; and public boolean
isCallerInRole(java.security.Identity role) replaced by public boolean
isCallerInRole(String role).

The methods from EJBContext fall into three categories: security, transaction support, and accessing the home

http://www.unltded.com/viewer.asp?bkid=2878&destid=294#294
http://www.unltded.com/viewer.asp?bkid=2878&destid=339#339

object. Let’s examine the methods in these three categories.

EJBContext Security Methods

As a general rule, the EJB container should handle security issues in a manner transparent to the execution of your
beans. However, rules are made to be broken. If you have a real need to access security information about the caller
of your bean methods, the EJBContext interface provides two methods that deal with EJB security:
getCallerPrincipal and isCallerInRole.

The getCallerPrincipal and isCallerInRole methods can be invoked only in the enterprise bean’s business
methods for which the container has a client security context. If these methods are invoked when no security context
exists, they should throw the java.lang.IllegalStateException runtime exception.

Let's examine each of these security methods in turn in the following two sections. In Chapter 16, “EJB Security,” we
will return to address EJB security issues in more detail.

The getCallerPrincipal Method

The getCallerPrincipal method returns an object of a class that implements the java.security.Principal
interface, which we’ll call a principal. A principal can be an individual, a corporation, a program thread, or anything that
can have an identity.

An enterprise bean can invoke the getCallerPrincipal method to obtain a java.security.Principal
interface representing the current caller. The enterprise bean can then obtain the distinguished name of the caller
principal using the getName method of the java.security.Principal interface.

The meaning of the current caller, the Java class that implements the java.security.Principal interface, and
the realm of the principals returned by the getCallerPrincipal method depend on the operational environment
and the configuration of the application.

The isCallerInRole Method

The main purpose of the isCallerInRole method is to allow the bean provider to code the security checks that
cannot be easily defined in the deployment descriptor using method permissions. Such a check might impose a role-
based limit on a request, or it might depend on information stored in the database.

The enterprise bean code uses the isCallerInRole method to test whether the current caller has been assigned to
a given security role. The application assembler typically defines security roles in the deployment descriptor. The
deployer assigns the security roles to principals or principal groups that exist in the operational environment.

Listing 13-2 shows a code snippet that checks if the method caller has a specific security role named payroll. If not,
the code throws a SecurityException. If so, the caller presumably has clearance to perform updates to the data.

Listing 13-2: Invoking isCallerInRole

public class PayrollBean implements EntityBean {
 //We use EntityContext because the PayrollBean is an
 //entity bean
 EntityContext ejbContext;
 //Typical EJB business method
 public void updateEmployeeInfo(EmplInfo info) {
 oldInfo = ... read from database;
 //All users who do not have the security role
 //of ‘payroll’ are booted from the method.

 if (info.salary != oldInfo.salary &&
 !ejbContext.isCallerInRole("payroll")) {
 throw
 new SecurityException("You cannot update salaries!");
 }

As previously mentioned, security roles are declared in the bean’s deployment descriptor. Listing 13-3 shows a piece
of a deployment descriptor that allows current callers with a role of payroll to invoke the updateEmployeeInfo
method.

Listing 13-3: Deployment descriptor showing security role

<security-role>
 <description>
 This role represents Human Resource Staff
 authorized to perform payroll operations
 </description>
 <role-name>payroll</role-name>
 </security-role>

 <method-permission>
 <role-name>payroll</role-name>
 <method>
 <ejb-name>PayrollBean</ejb-name>
 <method-name>updateEmployeeInfo</method-name>
 <!- - Other methods may follow --!>
 </method>
 </method-permission>

It bears repeating that, as much as possible, the bean developer should allow the container to manage security
matters. After all, if you don’t want to take advantage of the services provided by the Enterprise JavaBeans container,
why are you developing EJBs?

The EJBContext Methods Dealing with Transactions

The topic of transactions is discussed in detail in Chapter 17, “EJB and Transaction Management.” However, a few
words on the EJBContext methods dealing with transactions are in order. The three methods provided by the context
interface are getRollbackOnly, setRollbackOnly, and getUserTransaction.

The getRollbackOnly and setRollbackOnly Methods

Code the getRollbackOnly method to test if the transaction has been marked for rollback only. An enterprise bean
instance can use this operation to test, after an exception has been caught, whether it is fruitless to continue
computation on behalf of the current transaction.

Code the setRollbackOnly method to mark the current transaction for rollback and the transaction will become
permanently marked for rollback. A transaction marked for rollback can never commit, by the way. Typically, an
enterprise bean marks a transaction for rollback to protect data integrity before throwing an application exception
because application exceptions do not automatically cause the container to roll back the transaction.

As you'll learn in Chapter 17, "EJB and Transaction Management," you can defer many of the details of transaction
management to the container. Beans that have their transaction state managed by the container are called (surprise)
container-managed transaction beans. Those beans that contain code to manage the nuts and bolts of transactions

are called bean-managed transaction beans.

I draw the distinction between bean-managed and container-managed beans in this section because only enterprise
beans with container-managed transactions are allowed to use getRollbackOnly and setRollbackOnly.
However, bean-managed beans may invoke the getStatus method of the
javax.transaction.UserTransaction interface to get the same information as getRollbackOnly and may
invoke the javax.transaction.rollback method to roll back a transaction. While these methods in the
javax.transaction package are not identical in function to the get and set rollback methods in the EJBContext
object, the javax.transaction package methods achieve the same end results.

The getUserTransaction Method

Code the getUserTransaction method to obtain a reference to the current transaction if there is one. Once
obtained, your code can take over transaction duties and issue commits and rollbacks.

As you may have guessed by now, beans with container-managed transactions cannot invoke
getUserTransaction. Having container-managed beans obtain a reference to the current transaction is a bit silly
because the container wouldn’t be managing the transaction at all. Hence, only enterprise beans that are bean-
managed may usefully invoke the getUserTransaction method.

The code snippet that follows shows a bean method acquiring a reference to the current transaction using the
getUserTransaction method. Remember that you need to save the context in a variable known to all methods of
the bean class.
public MySessionBean implements SessionBean {
 //SessionContext is the session bean subinterface of EJBContext
 SessionContext mySessionContext;

 //Save the session context….
 public void setSessionContext(SessionContext sctx)
 throws RemoteException {
 mySessionContext = sctx ;
 }

 public someBeanMethod() {
 //myTransaction is a reference to the current transaction
 UserTransaction myTransaction =
 mySessionContext.getUserTransaction();
 myTransaction.begin();
 //Do transaction stuff…
 myTransaction.commit();
 }

At the risk of sounding overly repetitive, boring, and preachy: strive to let the container manage as much of your bean
activity as possible. Security was one of the main reasons Sun developed the EJB technology in the first place.

The getEJBHome Method

The getEJBHome method returns a reference to the bean’s home object. I covered a bit about the home object in
Chapter 12, "The Elements of an EJB," but to refresh your memory, the home object is the broker between the client
and the EJB container. Put another way, the client invokes methods that are defined in the home object, and the home
object delegates client calls to the EJB container, which in turn, invokes the appropriate method in your enterprise
bean class.

The getEJBHome method allows your client to get a reference to the home object. In addition, your bean may use

getEJBHome to get a reference to its home object. A bean method may need to pass a reference to its home object as
a parameter to another method in a different class.

By now you may have the strong sense that the EJB container plays an integral part in the development, deployment,
and use of enterprise beans. Next, you read about the EJB container and the support services it provides.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Coding Entity Bean Creation Methods

As expected, a client accesses entity beans through the container’s implementation of the bean’s home interface. The home interface enables the client to create
an entity bean, to obtain a reference to an existing bean, and to remove a bean. The creation, location, and removal of entity beans is done by the container (once
again, the client never accesses or interacts with an enterprise bean directly).

You, or a client, create an entity bean the same way you would a session bean. The client program issues a call to the create method. The client class then
implements javax.ejb.EJBHome, which signals the container to invoke a corresponding ejbCreate method implemented in the bean class. Recall that for
session beans, you must code at least one ejbCreate method in your bean class. However, you are not required to code any ejbCreate methods for entity
beans. For example, an online shopping application may have the product catalog stored in a database accessed through Enterprise JavaBeans. You certainly
would want shoppers to peruse the catalog but you would not want shoppers to create new catalog items.

Of course, if the application designers decide not to allow entity bean creation through container invocations of ejbCreate methods, the designers need other
methods to create entity beans. Fortunately, you can create the data underlying entity beans through conventional means — SQL insert statements, for example.

You code a create method in your client application, which instructs the container to invoke a corresponding ejbCreate method, followed by invoking an
ejbPostCreate method, coded in your bean class. Also, you may code multiple create methods, passing different parameters. For every create method coded in
your home interface and invoked in your client, you must code a corresponding ejbCreate method and a corresponding ejbPostCreate method containing the
same parameter list.

You code ejbCreate methods for bean-managed entity beans a bit differently than ejbCreate methods for container-managed beans. However, the client code
that invokes the create methods is the same for both entity bean types.

Let’s see how to code create methods in the home interface and ejbCreate and ejbPostCreate methods of the bean class for BMP beans and CMP beans.

Coding create Methods

As previously mentioned, you are not required to code any create methods when implementing your bean’s home interface. If you do, the signature will resemble
the method signature that follows:
RemoteInterfaceName create<optional>(ClassProp1 prop1,
 ClassProp2 prop2, …)
 throws CreateException, RemoteException,
 ApplicationDefinedException1, …
 ApplicationDefinedExceptionN ;
Because EJB clients interact with the container through a remote interface, any create method should return an object of
the bean’s remote interface. As described in Chapter 12, "The Elements of an EJB," the remote interface defines the
client view of the bean.

You may code a create method using the word "create" only or you may code a create method that includes optional words, such as a subclass name. For
example, the create method that follows, when invoked, requests that the container create a special class of account called a large account:

Account createLargeAccount(String firstname, String lastname,
 double initialBalance)
 throws RemoteException, CreateException;

Here, Account is the name of the bean’s remote interface.

The arguments for the create methods are one or more properties of the bean class. You can code create methods with different arguments to initialize
different properties of the bean. For example:
//Create account passing name and initial balance
Account create(String firstName, String lastName,
 double initialBalance)
 throws RemoteException, CreateException;

//Create account by passing account number and initial balance
Account create(String accountNumber, double initialBalance)
 throws RemoteException, CreateException,
 LowInitialBalanceException;
Finally, create methods coded in the home interface should throw, at a minimum, a RemoteException and a CreateException.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=189113198

Remember that Enterprise JavaBeans is a distributed object technology and that method invocations are communicated to a
container that resides on a different JVM. The mechanism is similar to RMI, whereby a method invocation goes through a
stub, across the network, to another JVM. Hence, methods invoked by a client should throw a RemoteException.

The CreateException is peculiar to EJB create methods. You’ve seen other EJB-specific exceptions, such as RemoveException in Listing 15-1 for the
ejbRemove method and the general-purpose EJBException for all methods in the bean class.

You may also instruct home interface methods to throw one or more application-defined exceptions. The second create example in the previous code shows the
create method throwing a LowInitialBalanceException. You learn more about application-defined exceptions later in this chapter.

Your bean classes should have ejbCreate and ejbPostCreate methods for every create method coded in the home interface. Let’s take a look at how to
code methods in the next two sections.

Coding ejbCreate Methods for BMP Beans

The container invokes an ejbCreate method after the client calls a create method of the home object. Your ejbCreate method header would resemble the
following for your BMP beans:
PrimaryKeyClassName ejbCreate<optional>(ClassProp1 prop1,
 ClassProp2 prop2, …)
 throws CreateException, EJBException,
 ApplicationDefinedException1, …
 ApplicationDefinedExceptionN ;

When coding ejbCreate methods for bean-managed beans, you must return an instance of the primary key class. If you think about it, returning the primary key
object makes sense from the container’s viewpoint because the container will need the primary key object to locate the bean.

The prefix ejb of the bean class’s ejbCreate methods is not a slip of the pen. The container knows how to match bean ejbCreate methods with the
corresponding create methods in the home interface. The parameter lists of the create and ejbCreate methods must match.

For example, the BMP bean ejbCreate method corresponding to the createLargeAccount method shown in the previous section is as follows:

AccountPK ejbCreateLargeAccount(String firstname, String lastname,
 double initialBalance)
 throws EJBException, CreateException;

When the client calls the createLargeAccount method, the home object would call the ejbCreateLargeAccount method.

Other than the bean method returning an instance of the primary key class and the name of the method prefixed with ejb, the remainder of the create method in
the home interface is the same as the ejbCreate method in the bean class.

One final point: As of Enterprise JavaBeans 1.1, ejbCreate methods should not throw a RemoteException. The recommended practice is for ejbCreate
methods to throw, at a minimum, an EJBException and a CreateException.

Note As of the EJB 1.1 specification, EJB containers are still required to support the deprecated use of the RemoteException. If a RemoteException is
thrown, EJB containers are instructed to treat it in the same way specified for treating a thrown EJBException.

Coding ejbPostCreate Methods for BMP Beans

As previously mentioned, you should code an ejbPostCreate method for each ejbCreate method coded in your bean class. The ejbCreate and
ejbPostCreate methods are in pairs; each should have the same argument list and the same return type, and should throw the same exceptions.

The container calls the ejbPostCreate method immediately after calling the ejbCreate method. You have the chance to perform any initializations not possible
in the corresponding ejbCreate method.

The syntax for the ejbPostCreate method is identical to that of the ejbCreate method described previously except for the method name — ejbPostCreate
versus ejbCreate.

Coding ejbCreate and ejbPostCreate Methods for CMP Beans

Most of what you read in the previous section about ejbCreate and ejbPostCreate methods with BMP beans applies to CMP beans as well. The main
difference is that ejbCreate and ejbPostCreate methods coded in a CMP bean do not return an instance of the primary key; they return void.

In BMP beans, the bean needs the primary key to access the bean instance. In CMP beans, the bean doesn’t need to know about the primary key to access the
bean because the container is responsible for bean access (hence, the name container-managed). It is the responsibility of the container to create a primary key
used for CMP beans.

When the container invokes an ejbCreate method and the subsequent ejbPostCreate method (in response to a client invoking a create method), the

http://www.unltded.com/viewer.asp?bkid=2878&destid=350#350
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=148252284#wbpch15fP181

container typically inserts a row of data into the database for both BMP and CMP beans. The difference is that, with BMP beans, you must write code (usually an
SQL INSERT statement) to perform the insert, whereas with CMP beans, you don’t need to write any SQL.

Now that I’ve covered a bit about creating new entity beans, a few words on accessing existing entity beans are in order.

Coding finder Methods in the home Interface and ejbFind Methods in the Bean Class

The finder methods locate existing beans based on one or more criteria. Often a finder method uses instances of the primary key class to locate existing
beans. However, you may code multiple finder methods, each passing a different set of parameters.

As with the create methods described previously, you code finder methods in the home interface. All finder methods have corresponding ejbFind methods
in the bean class. As you might imagine, coding finder methods is different depending on whether you are coding for BMP beans or for CMP beans. You can
read about coding finder methods in the bean class as we continue in this chapter, but first, let’s take a look at coding finder methods in the home interface.

Coding finder Methods in the home Interface

Finder methods enable you to access beans in much the same way that SQL SELECT statements enable you to access data in relational database tables. Finder
methods in the home interface have one of two looks, shown here:

RemoteInterfaceClass findByPrimaryKey (PKClass aPrimaryKey)
 throws RemoteException, FinderException,
 ApplicationSpecificException ;

Collection findBy<OneorMoreProperties> (ClassProp1 aProp1Obj,
 …
 ClassPropN aPropNObj)
 throws RemoteException, FinderException,
 ApplicationSpecificException ;

Again, because the finder method is invoked in a client that communicates to the container through the remote interface, the finder method returns an object
of the remote interface.

Using a primary key for bean access should return one instance of the entity bean, just as accessing a relational table or view with a primary key should return one
row of data.

Also notice the presence of a new exception class called FinderException. If you pardon the lame pun, there’s nothing exceptional about FinderException
(or CreateException for that matter). All you need to do is code the method header and throw the proper exception at the proper time. Coding your method to
throw application-specific exceptions is not required.

You may wonder if EJB technology enables you to access or locate multiple entity beans, like the user of a relational database would use to access or locate
multiple rows of a table or view. You can code multiple finder methods in your home interface. By accessing different properties of your entity beans, your
finder method may return zero to many entity beans.

For example, the finder methods that follow locate entity beans by using different search criteria:

//Find account by using account holder name
Collection findByLastName(String lastName)
 throws RemoteException, FinderException ;

//Find all Large Accounts
Collection findLargeAccounts(double accountLimit)
 throws RemoteException, FinderException;

Notice the preceding two finder methods return an object of the java.util.Collection interface. A good rule of thumb is that findByPrimaryKey returns
one object; findBy<other property> returns a collection.

Now, let’s look at how to code the corresponding finder methods in the bean class.

Coding ejbFind methods in BMP Beans

As with create methods, you should code finder methods in your BMP bean class that correspond to the finder methods coded in your home interface. For
every finder method coded in your home interface, you code an ejbFind method in your bean class. The general form should resemble one of the two
templates that follow:
PKClass ejbFindByPrimaryKey (PKClass aPrimaryKey)
 throws FinderException,
 ApplicationSpecificException ;

Collection ejbFindBy<OneorMoreProperties> (ClassProp1 aProp1Obj,
 …
 ClassPropN aPropNObj)
 throws FinderException,
 ApplicationSpecificException ;

As with the create methods, the client invokes a finder method, which instructs the EJB object to get the container to invoke the corresponding ejbFind
method from the bean class.

The body of the finder methods should contain SQL or whatever database access language code you use to select data from the underlying database. That’s
why some entity beans are called bean-managed; the code in the bean is responsible for creating, accessing, and otherwise manipulating database data.

Not Coding Finder Methods in CMP Beans

In CMP beans, you do not code finder methods. A virtue of using CMP beans is that the container is responsible for locating beans and generating primary keys.
You don’t need to code finder methods in your CMP bean classes that return primary keys to the client.

Actually, in CMP beans, you do not code any database access language code. The container assumes full responsibility for any data manipulation. Later in this
chapter, you learn how the container manages this apparent feat of magic.

The Primary Key Class

The earlier discussions in this chapter on the finder method and the ejbRemove and ejbLoad methods both mention the use of a primary key. In EJBs,
primary keys are instances of a class which are used to locate particular entity beans. You need keys to access entity bean instances because EJB containers
typically pool entity beans and may use a single entity bean to represent several instances of database data.

The primary key enables you to access a particular bean instance among several in the container. As previously mentioned, when you remove beans, you should
take pains to ensure that the bean about to be removed (put back in the pool, actually) maps to database data that you intend to delete from the database. Also,
when the container invokes an ejbLoad method, you should ensure that the data loaded from the database eventually gets assigned to instance variables of the
bean instance currently bound to the EJB object.

A primary key class is just an ordinary, serializable Java class — it does not extend a bean class nor implement a bean interface. A primary key class is merely an
encapsulation of one or more database columns that serve as the primary key to the data. The only hard and fast requirement of the primary key class is that the
class implements the Serializable interface.

Primary key classes should override the equals, hashcode, and toString methods from class Object. Recall that the standard object equality operator (==)
compares object references, not contents. At times, you’ll need to know if two primary key objects have equal contents. The equals method from class Object
offers no help because it just uses ==; you should override Object.equals.

So, too, with the hashcode method in class Object — the hashcode method generates a hash code based on memory locations. However, for string objects,
the hashcode method uses the value of the string to generate a hashcode. Thus, if the underlying data representation of your primary key is one or more strings,
you don’t need to override hashcode.

Finally, you should override the Object.toString method. You’ll need a string representation of your primary key, but the default Object.toString method
appends additional object information, which makes the Object.toString method unsuitable for converting a key to a string. Most of the time all you need to
return is the instance variable (or variables) of the primary key object as strings.

In summary, a primary key class:

● is serializable

● overrides Object.equals, Object.hashcode, and Object.toString

For an example of a primary key class, please refer to Listing 15-5 later in this chapter.

Now let’s take an in-depth look at the life cycle of an entity bean.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 19: The Proposed EJB 2.0 Specification

Throughout the book, you’ve read references to the latest proposal for Enterprise Java Beans, the specifications for
the 2.0 release. With the Sun Microsystems specification document for EJB 2.0 weighing in at 558 pages (up from 314
pages for EJB 1.1), EJB 2.0 is no mere point release! In this chapter, you learn more about this “great leap forward.”
Sun published the final draft of the EJB 2.0 on October 23, 2000.

The chapter begins with a description of changes from EJB 1.1 to EJB 2.0. As you’ll see, EJB 2.0 contains some new
features plus refinements of existing (EJB 1.1) features. I explain the new features of EJB 2.0 and compare and
contrast the refinements to the EJB architecture brought about by the new release.

EJB 1.1 Versus EJB 2.0: The Major Changes

With over 150 additional pages of specifications, you might expect that EJB 2.0 introduces some significant changes
to Enterprise JavaBeans — and you’d be correct. The following is a brief rundown of the major changes:

● Introduction of the MessageDrivenBean: In addition to supporting session beans and entity beans, EJB 2.0
provides support for a new type of bean called a MessageDrivenBean, or message-driven beans. The short story
is that a message-driven bean provides the integration of Java Messaging Service (JMS) with Enterprise
JavaBeans. The longer story is covered later in this chapter.

● The new container-managed persistence model: Recall that container-managed persistence applies to entity
beans where the EJB container automatically persists beans to the underlying database. As you read in Chapter
15, “EJB Entity Beans,” the manner by which the EJB 1.1 container persisted beans is a bit ambiguous when
objects contain other objects. The EJB 2.0 specification tightens up the rules for container-managed persistence by
employing the services of the persistence manager.

● The EJB Query Language (QL): Entity beans are Java objects that are persisted to a database. The users of
entity beans use find methods on the home interface for the bean to create and do searches for these objects. A
lot of projects required custom find methods to support complex queries efficiently. This was possible using
proprietary extensions provided by the application server vendors. These extensions used SQL to specify a WHERE
clause for the query.

Sun Microsystems recognized that relying on vendor-specific extensions was in conflict with the spirit of Enterprise
JavaBeans. In response, Sun defined a new language for specifying these custom queries called the EJB Query
Language, or QL. QL enables bean developers to use references to attributes on entity beans rather than columns
in the database, further isolating bean developers from how the beans are mapped to the underlying database.

● Additional methods in home interface: Sun has provided additional support for the home interface to implement
business logic that is independent of a specific enterprise bean instance by including additional methods.

Sun also added a run-as security identity functionality for enterprise beans. This functionality allows for the
declarative specification of the principal to be used for the run-as identity of an enterprise bean in terms of its

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=944260496

security role.

Sun defined an interoperability protocol based on CORBA/IIOP to allow invocations on session and entity beans
from J2EE components that are deployed in products from different vendors.

Let’s now take a more detailed look at the preceding enhancements to EJB available with the 2.0 release, starting with
a discussion of the message-driven bean.

The MessageDrivenBean Type

A message-driven bean is an asynchronous message consumer. The EJB container invokes a message-driven bean
as a result of the arrival of a JMS message. The container controls the life cycle for the message-driven bean. A
message-driven bean has neither a home nor a remote interface. A message-driven bean instance is an instance of
a message-driven bean class.

To a client, a message-driven bean is a JMS message consumer running on the server that implements some
business logic. A client accesses a message-driven bean through JMS by sending messages to the JMS Destination
(Queue or Topic) for which the message-driven bean class is the message listener.

Message-driven bean instances have no conversational state, which means that all bean instances, like stateless
session beans, are equivalent when they are not involved in servicing a client message. In other words, message-
driven beans have no special identity to the client. Actually, message-driven beans are not even visible to the client.

A bean instance has no state for a specific client. However, the instance variables of the message-driven bean
instance can maintain state during the handling of client messages. Examples of state a message-driven bean might
maintain include an open database connection or an object reference to an EJB object.

Leveraging Message-driven Beans

Although session and entity beans work well in implementing transactions, they’re not perfect. Often, when session
and entity beans work to complete a transaction, they do so in a synchronous manner. When dealing with messages,
beans may have to wait until a message request is acknowledged. This waiting period could severely impede EJB
performance.

To alleviate potential performance bottlenecks arising from the synchronous handling of messages, Sun Microsystems
introduced JMS support for EJB in release 1.1. JMS is an asynchronous messaging service, which means that a JMS
message sender doesn’t need to wait for a response.

For example, if one or more beans are involved with a transaction, the steps required to complete the transaction
usually follow a prescribed sequence. In addition, the next step in the transaction should not commence unless the
previous step has successfully completed. Any messaging involved in processing a transaction should be
synchronous.

In contrast, if the business scenario requires that other beans be notified of the status of the transaction, the
notification may be sent asynchronously. An order placement bean may send messages to inventory beans so the
inventory beans can adjust the stock items; the inventory bean may not need to message the order bean back.

Although EJB 1.1 supported JMS (and asynchronous messaging), EJB 2.0 wraps JMS inside a bean type and
delegates much of the message-driven bean handling to the EJB container. In short, the EJB 2.0 bean developer may
take advantage of the asynchronous messaging capabilities of JMS by developing beans as opposed to writing native
JMS calls.

How does an EJB developer code a message-driven bean? In the next section, I show you how.

Coding a Message-driven bean

Not surprisingly, you code a message-driven bean by implementing interfaces. The three interfaces used when
implementing message-driven beans are the javax.ejb.MessageDrivenBean interface, the
javax.ejb.MessageDrivenContext interface, and the javax.jms.MessageListener interface (note that the
third interface is in the javax.jms package).

Let’s first look at the required interfaces that every message-driven bean must implement, and then let’s look at a
message-driven bean template.

The MessageDrivenBean Interface

All message-driven beans are coded as classes that implement the MessageDrivenBean interface. The
MessageDrivenBean interface, like the SessionBean and EntityBean interfaces, extends the EnterpriseBean
interface. The container uses the MessageDrivenBean methods to notify the bean instances of the instance's life
cycle events.

The MessageDrivenBean interface contains two methods:

● setMessageDrivenContext: The bean container calls setMessageDrivenContext to associate a message-
driven bean instance with its context maintained by the container. Typically a message-driven bean instance
retains its message context as part of its state. Essentially, setMessageDrivenContext serves the same
function for message-driven beans as setEntityContext does for entity beans and setSessionContext
does for session beans.

● ejbRemove: When the container decides to remove an instance of a message-driven bean class, the container
invokes the ejbRemove method. Again, ejbRemove serves the same purpose for message-driven beans as it
does for entity and session beans.

The MessageDrivenContext Interface

The MessageDrivenContext interface, a subinterface of EJBContext, provides access to the runtime message-
driven context that the container provides for a message-driven enterprise bean instance. The container passes the
MessageDrivenContext interface to an instance after the instance has been created. The message-driven context
remains associated with the instance for the lifetime of the instance.

The MessageDrivenContext interface adds no new methods to the EJBContext interface. However, message-
driven beans must not call the getCallerPrincipal method, the isCallerInRole method, or the getEJBHome
method.

The MessageListener Interface

Message-driven beans must implement the MessageListener interface. This interface has only one method
requiring implementation, the onMessage method. The onMessage method is called by the bean’s container when a
message has arrived for the bean to service. The onMessage method contains the business logic that handles the
processing of the message. The onMessage method has a single argument, the incoming message.

Only message-driven beans can asynchronously receive messages. Session and entity beans are not permitted to be
JMS MessageListeners.

Generic Message-driven Bean Template

Listing 19-1 is a generic message-driven bean. You supply the implementation of the onMessage method to complete
the bean.

Listing 19-1: A generic message-driven bean template

public class GenericMessageBean implements MessageDrivenBean, MessageListener {

 private MessageDrivenContext mCTX;

 //Sets the MessageDrivenContext.
 public void setMessageDrivenContext(MessageDrivenContext ctx) {
 mCTX = ctx;
 }

 //ejbCreate() with no arguments is required
 // by the EJB 2.0 specification

 public void ejbCreate () throws CreateException {}
 /**
 Supply an implementation of MessageListener by coding the
 onMessage() method below.
 */
 public void onMessage(Message msg) {
 // Implement your onMessage() method inside a try/catch block
 try {
 //Do it here……
 }
 catch(Exception ex) {
 ex.printStackTrace();
 }
 }
 // Public, no arg constructor

 public MessageLogBean() {}

 // ejbActivate is required by the EJB Specification

 public void ejbActivate() { }

 // ejbRemove is required by the EJB Specification

 public void ejbRemove() {
 mCTX = null;
 }

 // ejbPassivate is required by the EJB Specification

 public void ejbPassivate() { }

}

Notice that, as with other bean types, several methods are required even though these required methods contain no
real method body.

Message-driven Bean Life Cycle

A message-driven bean instance’s life starts when the container invokes newInstance on the message-driven bean
class to create a new instance. Next, the container calls setMessageDrivenContext followed by ejbCreate. Any
client can now deliver a message to the message-driven bean instance.

Figure 19-1 shows a state diagram for a message-driven bean’s life cycle.

Figure 19-1: Message bean life cycle

When the container no longer needs the instance (which usually happens when the container wants to reduce the
number of instances in the method-ready pool), the container invokes the bean’s ejbRemove method. This ends the
life of the message-driven bean instance.

Closing Thoughts on Message-driven Beans

Message-driven beans are necessary to allow EJB application servers to compete on a level playing field against
traditional transaction processing (TP) monitors. Modern enterprise applications are increasingly using message-
based architectures. The message-driven bean feature now allows EJB application servers to be used out of the box
in message-based architectures without resorting to using custom “message-driven beans.”

Previously, the lack of support for message synks and transactions contained in JMS and JDBC was a problem when
using EJB servers in large applications. With the introduction of the new message-driven bean, this obstacle has been
removed.

The New Container-Managed Persistence Model

EJB 2.0 redefines the container-managed persistence model for entity beans. The major features of the new model
include the introduction of a new role, the persistence manager; a new technique for defining container-managed
fields; and new ways of working with objects of dependent classes and other EJBs.

The Persistence Manager

In EJB 2.0, the persistence manager handles persistence of container-managed entity beans automatically at runtime.
The persistence manager is responsible for mapping the entity bean to the database based on a new bean-
persistence manager contract called the abstract persistence schema. By having the persistence manager handle
bean and dependent object relationships instead of the EJB container, entity beans developed under EJB 2.0 should
be more portable across multiple containers than their EJB 1.1 counterparts.

The bean provider specifies the persistent fields and the relationships between dependent objects by coding abstract
persistence schema statements in the deployment descriptor. The persistence manager provider should have tools to

map the persistent fields to a database according to the rules coded in the abstract persistence schema. The tools
should generate all needed classes to provide for persisting the indicated fields at runtime.

Listing 19-2 shows a snippet from a deployment descriptor that uses the abstract persistence schema to specify a one-
to-many relationship between two fields: Order and LineItem.

Listing 19-2: Deployment descriptor showing one-to-many relationship between two fields

<!-- ONE-TO-MANY: Order LineItem -->
<ejb-relation>
 <ejb-relation-name>Order-LineItem</ejb-relation-name>
 <ejb-relationship-role>
 <ejb-relationship-role-name>
 order-has-lineitems
 </ejb-relationship-role-name>
 <multiplicity>One</multiplicity>
 <role-source>
 <ejb-name>OrderEJB</ejb-name>
 </role-source>
 <cmr-field>
 <cmr-field-name>lineItems</cmr-field-name>
 <cmr-field-type>java.util.Collection</cmr-field-type>
 </cmr-field>
 </ejb-relationship-role>

 <ejb-relationship-role>
 <ejb-relationship-role-name>lineitem_belongsto_order
 </ejb-relationship-role-name>
 <multiplicity>Many</multiplicity>
 <cascade-delete/>
 <role-source>
 <dependent-name>LineItem<dependent-name>
 </role-source>
 <cmr-field>
 <cmr-field-name>order</cmr-field-name>
 </cmr-field>
 </ejb-relationship-role>
</ejb-relation>

Each ejb-relationship-role element describes a relationship role, its name, its multiplicity within a relation, and
its navigability. From the perspective of the participating bean (or its dependent object class), ejb-relationship-
role also specifies the name of the cmr-field that is used.

Each relationship role refers to an entity bean or a dependent object class by using an ejb-name, a remote-ejb-
name, or a dependent-name element contained in the role-source element. The bean provider must ensure that
the content of each role-source element refers to an existing entity bean, entity bean reference, or dependent
object class.

Closing Thoughts on EJB 2.0 Container-Managed Persistence

The EJB 2.0 CMP model helps normalize the CMP vendor offerings and makes beans much more likely to be portable
between persistence manager providers. However, the EJB 2.0 CMP model requirements do not define a completely
portable persistence mechanism. Because the object-to-datastore mapping is undefined, it remains possible to
provide implementations that vary in their capabilities. For example, it is possible for a vendor to supply a CMP
implementation in which a given object can map only to a single table. In addition, no interface is defined between the
persistence manager and the container, which means that collaboration between the two occurs in a proprietary,

application server–specific way. In general, though, the CMP model defined in EJB 2.0 provides a more robust
infrastructure than EJB 1.1 for persisting data.

Using the EJB Query Language

The persistence manager is responsible for implementing and executing find methods based on a new query
language called EJB Query Language (EJB QL). The structure of the QL statements depends on the find methods
coded in the home interface of the entity bean and the relationships of fields between beans coded in the deployment
descriptor.

The EJB QL defines query methods (find and select methods) for entity beans with container-managed
persistence. EJB QL defines query methods so that they are portable across containers and persistence managers.
EJB QL is a declarative, SQL-like language intended to be compiled to the target language of the persistent data store
used by a persistence manager.

EJB QL is based on a subset of SQL92 and is enhanced by path expressions that allow navigation over the
relationships defined for entity beans and dependent object classes.

EJB QL is a specification language that can be compiled to the persistent storage target language used by the
persistence manager, such as SQL. This allows the responsibility for the execution of queries to be shifted to the
native language facilities provided for the persistent store (e.g., RDBMS). Queries should no longer need to be
executed directly on the persistent manager’s representation of the entity bean’s state. As a result, you can more
easily optimize query methods. The methods are also easily portable between different database systems.

The EJB QL uses the abstract persistence schema of entity beans and dependent object classes, including their
relationships, for its data model. It defines operators and expressions based on this data model.

The bean provider uses EJB QL to write queries based on the abstract persistence schemas and the relationships
defined in the deployment descriptor. EJB QL depends on navigation and selection based on the cmp-fields and
cmr-fields of the abstract schema types of related entity beans and dependent objects.

The bean provider can navigate from an entity bean or dependent object to other dependent objects or beans by using
the names of cmr-fields in EJB QL queries.

EJB QL allows the bean provider to use the abstract schema types of related entity beans in a query if the abstract
persistence schemas of the related beans are defined in the same deployment descriptor as the query. The bean
provider can navigate to both locally defined entity beans and to remote entity beans. (In this context, remote entity
beans are entity beans with bean-managed persistence, entity beans using EJB 1.1 container-managed persistence,
and beans whose abstract persistence schemas are defined in a different deployment descriptor.) Although the
abstract persistence schemas of remote entity beans are not available to the bean provider, it is still possible to use
EJB QL to navigate to such remote entity beans. In addition, special expressions in the language allow the bean
provider to invoke the find methods of remote entity beans in queries.

EJB QL Statement Structure

An EJB QL query is a string containing one of the following three clauses:

● A SELECT clause, which indicates the types of the objects or values to be selected

● A FROM clause, which provides navigation declarations that designate the domain to which the conditional
expression specified in the WHERE clause of the query applies

● A WHERE clause, which restricts the results that are returned by the query

The FROM clause is required; SELECT and WHERE are optional.

EJB SQL supports many of the SQL92 operators used in predicates, such as in, between, like, not, and the use
of null.

An EJB QL Example

Because QL statements are based on the find methods in the bean’s home interface, you need an example home
interface to work with. Listing 19-3 is a home interface for a customer bean.

Listing 19-3: A home interface for a customer bean

public interface CustomerHome extends javax.ejb.EJBHome {
...

 public Employee findByPrimaryKey(Integer id)
 throws RemoteException, CreateException;

 public Collection findByZipCode(String zipcode)
 throws RemoteException, CreateException;

 public Collection findByProduct(String ProductName)
 throws RemoteException, CreateException;

}

You can use EJB QL to specify how the persistence manager should execute the find methods. All entity beans are
required to have a findByPrimaryKey method. You don’t use QL to execute the findByPrimaryKey method; you
use the fields in the primary key to search the database.

The findByZipCode method is used to obtain all the customer beans with a certain zip code. You can use the
following EJB QL in the deployment descriptor as follows:
FROM customerTable WHERE customerTable.zip = ?1

The question mark, reminiscent of the PreparedStatement interface in JDBC, is a placeholder for the argument
passed by the findByZipCode method.

EJB QL expressions are coded in the deployment descriptor. Listing 19-4 provides an example.

Listing 19-4: EJB QL coded in deployment descriptor

<query>
 <query-method>
 <method-name>findByZipCode</method-name>
 </method-params>
 <ejb-ql> FROM customerTable WHERE customerTable.zip = ?1
 </ejb-ql>
 <query-method>
</query>

Closing Thoughts on EJB QL

EJB QL allows the bean developer to delegate the execution of bean find methods to the persistence manager. The
EJB developer is not required to use EJB QL, but the straightforward syntax should make EJB QL an essential tool in

the EJB developer’s bag of tricks.

Additional Methods in home Interfaces

EJB 2.0 allows bean developers to code additional methods in the home interface that do not apply to any single bean
instance. Such methods are implemented by corresponding ejbHome methods. For example, the method header
coded in the following customer bean’s home interface:

public interface CustomerHome extends javax.ejb.EJBHome {

 public void increaseCredit(double increasePercentage)
 throws RemoteException ;

would have a method in the customer bean class with the following signature:
public void ejbHomeIncreaseCredit(double increasePercentage)

home interfaces in EJB 1.x specifications looked like singletons (that is, there was only one instance) to the developer.
They contained find methods for their associated bean (each bean has its own home) and methods to create and
delete the beans. Developers had a need for methods that applied to all beans represented by the home. There was
no standard place to put these in the EJB 1.x servers, so developers usually created a stateless session bean and put
the method there.

Developers can now add these methods to the home interface where they belong. A typical use for these methods is
as follows: You have an employee entity bean that holds employee names and salaries. Previously, you would have a
method on the employee bean to adjust the salary. If you wanted to change all salaries, the client of the bean wrote
code that iterated over all beans and called the method for each one. Such an operation should go in a session bean,
which is co-located with the entity bean for best performance. You can now put this method on the home interface.
This makes much more sense, because it’s where one expects to find all "static" methods for a bean.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you’ve read about the elements of an EJB and how these elements relate to one another. You’ve read
about the interfaces that represent server-side EJB components to clients and about the enterprise bean class. Now,
you know that EJBs come in three flavors, with each flavor dealing with a specific feature of using objects in a
distributed environment. You should be able to use this information to model your application components based on
which ones should be entity, session, or message beans. In the next chapter we'll continue to look at EJB code, and
we'll examine them in yet deeper detail.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=791678514

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

The javax.ejb.EntityBean Interface

The EntityBean interface, a subinterface of javax.ejb.EnterpriseBean, is implemented by every entity
enterprise bean class. The container uses the EntityBean methods to notify the enterprise bean instances of the
instance's life cycle events. Here you implement any access methods to the bean’s data. As you can see, you need
not implement most of these methods for CMP beans, as the container does most of the dirty work for you. Listing 15-
1 shows the entity bean interface.

Listing 15-1: The EntityBean interface

public interface javax.ejb.EntityBean
 extends javax.ejb.EnterpriseBean {

 public void ejbRemove()
 throws javax.ejb.RemoveException,
 throws javax.ejb.EJBException;

 public void setEntityContext(EntityContext ctx)
 throws javax.ejb.EJBException;

 public void unsetEntityContext()
 throws java.rmi.EJBException ;

 public void ejbPassivate()
 throws javax.ejb.EJBException;

 public void ejbActivate()
 throws javax.ejb.EJBException;

 public void ejbStore()
 throws javax.ejb.EJBException;

 public void ejbLoad()
 throws javax.ejb.EJBException;

}

Note Release 1.0 of EJB required that entity (and session) bean methods throw a RemoteException. You may
see bean method signatures that throw both RemoteException and EJBException. With newer EJB
releases, all you need to throw is EJBException, although RemoteException may be present for
backward compatibility with EJB 1.0.

You’ve seen some of these methods in Chapter 14, “EJB Session Beans.” In particular, the methods ejbPassivate,
ejbActivate, and ejbRemove perform much the same function for session beans as for entity beans. No need to

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=349394262

repeat the descriptions of these methods. I’ll mention any differences between these methods when used for session
and entity beans later.

Let’s look at the methods in the entity bean interface.

Using ejbRemove

The ejbRemovemethod behaves a bit differently when invoked from a session bean than from an entity bean. If you
flip back to Chapter 14, you’ll note that the signature of ejbRemove for session beans throws an EJBException; if
you look at Listing 15-1, you’ll note that ejbRemove for entity beans throws an EJBException and a
RemoveException.

Recall from Chapter 14 that the EJB container invokes ejbRemove immediately prior to the container’s removal of a
session bean instance. The EJB container activity leading up to invoking an ejbRemove method for an entity bean is
a bit different. The EJB container invokes ejbRemove in response to a client invocation of a remove method (like
session beans). However, the container does not remove an instance of an entity bean before, during, or after the
invocation of ejbRemove. The container, when executing ejbRemove, removes the data in the database represented
by the entity bean, not the instance of the bean. Put another way, the container changes the state of an entity bean
from "ready" to "pooled."

You need to ensure that the bean you are about to remove corresponds to the correct row of data in the database.
Because the container pools beans, you run the risk of removing a bean that is bound to a different row of database
data than the data you wish to remove from the database. You may be wondering how you tell the container which
row of data to remove.

The answer is that you access the primary key from the container’s entity context, and then use that primary key to
locate the correct data from the database. With the primary key, you issue a SQL delete or whatever database dialect
is used to remove database data. You learn more about the primary key later in this chapter.

You may think that the difference between the behavior of ejbRemove for session and entity beans is insignificant.
Why should the client or you, the distributed object programmer, care about the pooling of beans and beans
transitioning from a "ready" state to a "pooled" state? Most of the time you won’t care. The important difference
between ejbRemove when applied to an entity bean is that the container will remove data from the database as part
of processing the ejbRemove method.

Using setEntityContext

The setEntityContext method serves a similar function for entity beans as the setSessionContext method
does for session beans. The entity context allows your entity beans to learn about and communicate with the EJB
container. Later in this chapter, you’ll read about the methods available in the EntityContext interface and the
methods in the superinterface of both SessionContext and EntityContext — the EJBContext interface.

Typically, your bean class contains a method implementation of setEntityContext that holds onto a reference of
the entity context object. The implementation will closely resemble the following example.
//Declared outside any method
private myEntityContext ;

public void setEntityContext(EntityContext ectx)
 throws RemoteException {
 myEntityContext = ectx ;
}

Now, any bean method can access the entity context through myEntityContext, which is known throughout the
bean class.

Using unsetEntityContext

Unlike the session bean interface, the entity bean interface contains a method to disassociate the bean from its
context. This method, unsetEntityContext(), serves the same purpose for entity beans as ejbRemove() does
for session beans. The container invokes unsetEntityContext() when the container decides to move an entity
bean from the "pooled" state to the "does not exist" state.

Using ejbPassivate and ejbActivate

The ejbPassivate and ejbActivate methods perform much the same function for entity beans as for session
beans. When the EJB container decides to pull out an entity bean from the pool and draft the bean for use, the
container invokes the bean’s ejbActivate method; immediately before the EJB container decides it’s time for the
bean to return to the pool, the container executes the ejbPassivate method.

Using ejbStore and ejbLoad

The ejbStore method is used with entity beans, not with session beans. Recall that entity beans represent data
resident in some underlying data store. When the EJB container passivates an entity bean, the container needs a
mechanism to save the data to the data store so the persistent data reflects the state of the entity bean.

Before the container passivates an entity bean, the container invokes the ejbStore method. The purpose of
ejbStore is to save the entity bean’s instance variables to the database.

It’s not difficult to deduce the purpose of the ejbLoad method. Immediately following bean activation, or the
invocation of ejbActivate, the container invokes the bean’s ejbLoad method. The ejbLoad method refreshes the
newly activated bean with the latest version of its underlying data.

Loading the database data into the bean’s instance variables requires querying the data from persistent storage
(usually a relational database) and using the appropriate mechanism (usually SQL). However, for BMP beans, you
should ensure that the data you are loading belongs to the bean instance bound to the current EJB object. You need
to be sure because the container pools beans and may use one bean instance to represent several EJB objects.

How do you guarantee that you are loading the right data, specifically the data belonging to the instance bound to the
current EJB object? You fetch the bean instance that corresponds to the EJB object by using a primary key and a
finder method. You can read more on coding and using finder methods and primary keys later in this chapter.

Why Does EJB Require load and store Methods?

Perhaps you are wondering why the container requires separate methods to activate and passivate beans and to load
and store beans. Why doesn’t the container load the entity bean as part of its ejbActivate method and save the
bean as part of its ejbPassivate method? After all, the container doesn’t require load and store methods for
session beans; the container is able to save and load the state of a session bean through its activate and
passivate methods.

Recall that an entity bean represents data whereas a session bean does not. The activate and passivate
methods for a session bean save its state through serialization. However, more than serialization is required for entity
beans. As a result, the activate and passivate methods for entity beans deserialize and serialize the bean; the
load and store methods tend to fetch and save entity bean data stored in a database.

Other Methods You Would Typically Implement When Coding Entity Beans

A quick look at the javax.ejb.EntityBean interface reveals an absence of methods used to create new entity
beans and to access existing entity beans. Recall that a client application interacts with the EJB container to create,
access, and manipulate enterprise beans. Methods used to create and locate entity beans are defined in the bean’s
home interface. The code that implements the actions required to create and access the bean is located in the bean
class, or the class that implements javax.ejb.EntityBean.

You can also implement methods that enable a client to instruct the container to access an instance variable of an
entity bean — a column of a row of underlying relational database data, perhaps. You can code get and set
methods to access and change column values. Later in this chapter you will see that your CMP beans will not contain
SQL statements, while your BMP beans will.

In Chapter 12, “The Elements of an EJB,” I discussed the home interface and briefly described the home interface
methods. In the following sections, I describe the home interface methods for entity beans in more detail.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You made it! You've now looked at session beans in their stateful and stateless varieties and you've been able to read
about how you can use them in your enterprise applications. After examining the sample session beans that you've
seen implemented in this chapter, you should have a strong understanding of the different situations in which you may
want to use stateful and stateless session beans. In the next chapter, we'll complement this knowledge with a
discussion of entity beans and an example implementing them.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=676423997

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In the previous chapters in Part III of this book we've concentrated on learning to develop entity and session enterprise
beans. Now we've learned how to create EJB clients to access these EJBs. Coding EJB clients is a matter of coding
some statements up front — namely, creating the initial context and locating the home object via JNDI. Once you take
care of the housekeeping, you can invoke bean methods as if they were located on the same JVM as the client.
Whether your EJB client is an application, servlet, applet, or another enterprise bean, you can now access and use
EJBs with ease.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=593609307

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

Sun Microsystems has introduced dramatic and meaningful changes in the EJB 2.0 release. Message-driven beans,
persistence managers, and EJB QL are all aspects that give the developer the ability to build better enterprise
applications that are more flexible, portable, and robust. Although vendor support for the new release is scarce, if
nonexistent, these changes are welcomed by developers of distributed applications. Developer support of the
specification and the fact that Java is the language of Internet programming will ensure that vendor support grows as
this specification takes hold in industry.

Now, let's continue to the last chapter in this book and tie it all together, building a Web-based JSP application
powered by EJBs.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=231877669

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

EJB Deployment Descriptors

Notice that in all of the talk about home and remote interfaces and entity and session beans, there has been no
discussion of how to tell the Java environment various runtime attributes of beans. In addition, the topic of security or
transaction properties has not been discussed. Although the EJB container handles these, and other, system-level
services, you still must tell the container how to handle these services. Here’s where the deployment descriptor comes
into play.

The role of the deployment descriptor is to capture the declarative information (i.e., information that is not included
directly in the enterprise bean’s code) that is intended for the consumer of the ejb-jar file.

A deployment descriptor is a set of serialized classes that serve a similar function to property files. If you are using a
Java IDE for enterprise application development, the IDE probably has a tool that may assist you in the creation of a
deployment descriptor.

There are two basic kinds of information in the deployment descriptor: structural and application assembly information.

Structural information describes the structure of an enterprise bean and declares an enterprise bean’s external
dependencies. Providing structural information in the deployment descriptor is mandatory for the ejb-jar file
producer. The structural information cannot, in general, be changed because doing so can break the enterprise bean’s
function.

Application assembly information describes how the enterprise bean (or beans) in the ejb-jar file is composed into
a larger application deployment unit. Providing assembly information in the deployment descriptor is optional for the
ejb-jar file producer. Assembly level information can be changed without breaking the enterprise bean’s function,
although doing so may alter the behavior of an assembled application.

In Chapters 14 and 15, you will create EJBs and their corresponding deployment descriptors. For now, understand
that by using deployment descriptors, the bean deployer can customize the behavior of EJBs at runtime.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=637650378

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Coding an EJB Client

The Enterprise JavaBeans architecture makes coding client applications that access enterprise beans straightforward.
The overall structure is that the client needs to obtain a reference to the bean and then invoke methods defined in the
bean’s remote interface. As you’ve read, the remote interface methods correspond to bean methods. When the client
invokes a remote method, the EJB object delegates the invocation to the container. The container invokes the
corresponding bean method and handles the return of any needed data to the client. The general mechanism is
similar to using Java RMI.

Obtaining a Reference to the EJB Object

Before a client can invoke methods of the EJB object, which requests that the container invoke bean methods, the
client must obtain a reference to the EJB object. As mentioned earlier, the client first obtains a reference to the home
object. The home object contains methods that enable the client to locate EJB objects. The EJB objects contain
methods that map to enterprise bean business methods.

Obtaining a Reference to the Home Object

A client uses JNDI to get a reference to the home object, which must then be cast to the home interface. Listing 18-1
demonstrates code that gets a reference to the home object. The code is shown with fully qualified class names to
show where the JNDI and RMI classes derive from.

Listing 18-1: Obtaining a reference to the home object

//Name of the bean as coded in the deployment descriptor
private static final String HOME_IFACE_REF =
 "java:comp/env/ejb/MyBean" ;
try {
 //Use JNDI to obtain a default naming context
 javax.naming.Context jndiCtx =
 javax.naming.InitialContext() ;

 //Use lookup() to get the home object
 Object Obj = jndiCtx.lookup(HOME_IFACE_REF) ;

 //Use the ‘special cast’ to coerce to home interface type
 HomeIfaceClass homeObj = (HomeIfaceClass)
 javax.rmi.PortableRemoteObject.narrow(obj,
 HomeIfaceClass.class);
 //Reference EJB Objects, create, destroy, etc.

}
catch (javax.naming.NamingException ne) {
 //Mention somehow that the JNDI lookup method failed

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=638945908

 //to locate the home object
}

The JNDI Name for the Home Object

The static string HOME_IFACE_REF is the JNDI name for the home object. Listing 18-2 shows how the JNDI name is
coded in the deployment descriptor.

Listing 18-2: Deployment descriptor showing home interface JNDI reference

<ejb-ref>
 <description>
 Example bean used in Chapter 18
 </description>
 <ejb-ref-name>ejb/MyBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <home>chapter18.MyBeanHome</home>
 <remote>chapter18.MyBeanRemote</remote>
</ejb-ref>

As you can see, the JNDI name is coded as content for the ejb-ref-name tag. The choice of an entity bean type
is completely arbitrary in this example.

Obtaining the Initial JNDI Naming Context

The call to the method InitialContext() of the javax.naming package generates an initial JNDI naming
context. You need the initial context to perform a lookup in the JNDI namespace for the home object.

Looking Up the Home Object

The call to the method lookup() with the JNDI name coded in the deployment descriptor as the method argument
yields an object reference or throws a NamingException if not found.

Performing the “Special Cast”

The lookup() method returns an object of class Object. For this object to be of any use, it must be cast into the
class that implements the home interface. Because a stated goal of Enterprise JavaBeans is CORBA compatibility,
EJB does not permit a Java-style cast because CORBA objects may not be Java-based and, if not, will fail to yield to a
Java-style cast. To allow EJB to comply with CORBA as far as object casting is concerned, EJB permits the use of the
narrow() method of class javax.rmi.PortableRemoteObject. The effect of using narrow() is tantamount to
using a Java-style cast.

Notice that you can’t tell by looking at the code in Listing 18-1 what sort of Java object the client is. The client can be
an application, applet, servlet, or another enterprise bean.

Now that you have a reference to the home object, you can prepare to access the EJB object and the accompanying
bean operations.

Creating an EJB Object

Before you look at code that “creates” EJB objects, know that methods invoked by the client may not create any
objects. In the case of stateless session beans, an EJB object is likely pulled from a bean pool, activated, and bound
to the client for the duration of the method execution. In the case of a stateful session bean, an EJB object is likely
created and bound to the client for the duration of the session. In the case of an entity bean, an EJB object is likely
pulled from the pool, activated, and associated with data that will eventually be persisted if a transaction occurs and is
committed. However, from the client’s point of view, the code that “creates” the object provides the client an object by
which the client can invoke bean methods.

The following code “creates” an EJB object that the client may use to communicate requests to the container.
//Stateless session bean – no arguments to create() method
RemoteStatelessSessionClass myBeanObject = homeObj.create() ;
//Entity Bean – may or may not have arguments
RemoteEntityClass myBeanObject = homeObj.create(aParm);

Of course, the create() method of the home interface may or may not take arguments depending on the type of
bean and the particulars of the bean being "created."

EJB create() methods may throw a javax.ejb.CreateException. The client should be prepared to catch the
exception.

Invoking a Bean Method

Now that the client has a reference to a bean or, more accurately, a reference that allows the client to communicate a
method invocation request to the container, invoking the method is straightforward:
//Parameters vary with method, of course
AClass objAClass = myBeanObject.doSomething(aParm1, aParm2) ;

In other words, the client invokes the method as if the method were available locally, in the same JVM as the client.

Finding One or More Beans

Locating an entity bean by primary key is also straightforward. The code snippet that follows shows the creation of a
primary key and then the location of the bean referenced by that key:
//aKeyValue is declared and initialized to the correct type
RemoteEntityClassPK = new RemoteEntityClassPK(aKeyValue) ;
//Look for the bean (reference to a remote object, really)
//accessed by this key value
RemoteEntityBean myOtherBean =
 homeObj.findByPrimaryKey(RemoteEntityClassPK) ;

Notice that the find() method is invoked from the home object reference.

To locate multiple beans with a find() method, you need to set the search parameters as arguments to the find()
method and save the return value of the find() method as an object from a class that implements the Collection
interface. The code that follows returns a collection of "big beans."
Collection myBigBeans =
 HomeObj.findBigBeans(sizeForBigBean) ;

EJB findBy() methods may throw a javax.ejb.FinderException. The client should be prepared to catch the
exception.

Removing a Bean

Removing a bean does not delete the bean or purge the bean from memory. However, from the client’s point of view,
removing the bean makes any references to the bean invalid. Thus, to the client, the net effect of bean removal is the
same as if the bean were deleted or purged.

The following line of code “removes” the bean, making any references to the bean invalid:
myOtherBean.remove() ;

If only all things in life were so simple!

EJB remove() methods may throw a javax.ejb.RemoveException. The client should be prepared to catch the
exception.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 20: Integrating JSPs and EJBs

Overview

In Chapter 10 you read about how to use JSPs to implement a straightforward brokerage application. The application
used JSP pages to generate a front end for clients and to communicate with a database in response to client
requests.

Since then you’ve also read about the different types of enterprise beans — session, entity, and message-driven
beans — and have studied code samples that implement enterprise beans. You've read about coding EJB clients in
Chapter 18. The EJB clients presented in Chapter 18 were Java classes containing methods that communicated with
enterprise beans.

In this chapter, you will learn how to code EJB clients as JSP pages. This chapter presents code that implements the
“View Transaction History” feature of a version of the “Make Money” Brokerage Application presented in Chapter 10.
The major difference between the version in Chapter 10 and that in this chapter is that the Chapter 10 version relies
solely on JSP pages for client interface and data access tasks whereas the version in this chapter relies on a JSP
page for client interface and an enterprise bean for data access.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=500032077

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

The Bean Class

Objects of the bean class are the enterprise beans. As previously mentioned, beans come in three flavors: entity,
session, and message driven. The bean class contains implementations for methods that parallel those found in the
home interface and remote interface. The method names and the signatures listed in the remote interface must
exactly match the method names and signatures of the business methods defined by the enterprise bean. This differs
from the home interface, whose method signatures match, but whose names are different.

The interface EnterpriseBean is a marker interface, serving as a superinterface for three interfaces corresponding
to the three bean types previously mentioned. You can’t implement the EnterpriseBean interface directly. Instead,
you implement the EntityBean, SessionBean, or MessageDrivenBean interfaces.

The next sections describe the three bean types previously mentioned, starting with entity beans.

Using Entity Beans

An entity bean represents persistent data, methods that act on that data, and state management callback methods. In
relational terms, an entity bean might represent an underlying database row, or a single result row returned by a SQL
query. In an object-oriented database (OODB), an entity bean may represent a single object, with its associated
attributes and relationships. An example of an entity bean might be a room object in a particular hotel, or a specific
customer in a customer database.

Entity beans are associated with database transactions and may provide data access to multiple users. Because the
data that an entity bean represents is persistent, entity beans survive server crashes because as soon as the server
comes back online, the server may reconstruct the bean from existing data. In addition, references to an entity bean
survive server crashes. A client can later connect to the same entity bean using its object reference because it
encapsulates a unique primary key, enabling the enterprise bean, or its container, to reload its state.

The management callback methods notify the entity bean when a significant change of state is about to occur. For
example, an entity bean can be notified when the bean is about to be removed from the JVM, causing the underlying
data to be removed from the database. The entity bean may want to do some additional cleanup before removal.

Entity beans support two types of persistence: container-managed and bean-managed.

In container-managed persistence, the EJB container is responsible for saving the state of the entity bean. Because it
is container-managed, the implementation is independent of the data source. All container-managed fields need to be
specified in the deployment descriptor for the persistence to be automatically handled by the container. Later in this
chapter, you can read a bit about EJB deployment descriptors.

In bean-managed persistence, the entity bean is directly responsible for saving its own state, and the container does
not need to generate any database calls. Consequently, bean-managed persistence is less adaptable than container-
managed persistence because the persistence needs to be hard-coded into the bean.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=633261621

An EJB feature, new with release 2.0, available to entity beans with container-managed persistence is the EJB Query
Language (EJB QL). EJB QL is a specification language that can be compiled to a target language (SQL is the most
likely candidate) of a database used by the persistence manager. (Recall that the persistence manager is the newest
role, discussed in Chapter 11, “A First Look at EJB.”) With EJB QL, the responsibility for the execution of queries is
shifted to the native language facilities available in the underlying database instead of requiring queries to be executed
directly on the entity beans. You can read more about EJB QL in Chapter 15, “EJB Entity Beans.”

To summarize, every entity bean has the following characteristics:

● Entity beans represent data in a database.

● Entity beans can participate in transactions.

● Entity beans are persistent, living as long as the bean’s underlying data lives in the database.

● Entity beans may be accessed by multiple users.

● Entity beans can survive EJB server crashes. Any EJB server crash is always transparent to the client.

● Entity beans have a persistent object reference called the primary key.

● Entity beans may implement persistence in two ways: container-managed and bean-managed.

● Container-managed beans may use EJB QL, a new feature with EJB 2.0 that enables execution of queries on the
underlying database.

You can read more about entity beans in Chapter 15, “EJB Entity Beans,” and in the remaining chapters.

If you’re wondering what the code for an entity bean looks like, the next section discusses a possible template for an
entity bean.

Entity Bean Template

Your implementation of an entity bean that works with the home interface template (Listing 12-2) and the remote
interface template (Listing 12-4) can resemble the template shown in Listing 12-5.

Listing 12-5: Template for defining an entity bean

import java.rmi.* ;
import javax.ejb.* ;
import java.util.* ;

public class MyBeanClass implements EntityBean {

 /** Bean properties Follow **/
 public Type1 beanProp1 ;
 public Type2 beanProp2 ;
 …
 public Typen beanpropn ;
 public Typei beanPropi ;
 public Typej beanPropj ;
 …
 public Typez beanpropz ;

 public void ejbCreate (Type1 varType1,
 Type2 varType2,
 …
 Typen varTypen) {
 beanProp1 = varType1 ;

 beanProp2 = varType2 ;
 …
 beanPropn = varTypen ;
 /**
 Initialize other properties
 **/
 initializePropsiThroughz() ;

 }

 public void ejbAnotherCreate (Typei varTypei,
 Typej varTypej,
 …
 Typez varTypez) {
 beanPropi = varTypei ;
 beanPropj = varTypej ;
 …
 beanPropz = varTypez ;
 /**
 Initialize other properties
 **/
 initializeProps1Throughn() ;

 }

 public MyBeanClassKey ejbFindByPrimaryKey(myBeanClassKey aKey) {
 /** Code to access a relational store with JDBC,
 perhaps…
 **/
 return myBeanClassObject ;
 }

 public Collection ejbFindByDiffTypes
 (DiffType1 varDiffType,
 DiffType2 varDiffType2) {
 /** Code to access a relational store with JDBC…
 **/
 return myBeanClassObject ;
 }

 public Type1 getType1Property()
 throws RemoteException {
 return beanProp1 ;
 }

 public void setType1Property(Type1 varType1)
 throws RemoteException {
 beanProp1 = varType1 ;
 }
 //
 //Other accessor methods would follow
 //
 public boolean processWasSuccessful (Type1 varType1,
 …
 Typen varTypen)
 throws RemoteException {
 /** Some code to do this process **/
 return successful ;

 }

 public void doAProcess (Typea varTypea,
 …
 Typez varTypez)
 throws RemoteException {
 /** Some code to do this process **/
 }
 //
 //Other business methods would follow
 //
 public void ejbPostCreate (Type1 varType1,
 Type2 varType2,
 …
 Typen varTypen)
 throws RemoteException {
 /** Take action if the business logic dictates
 activity after the bean is created
 **/
 }
 public void ejbPostAnotherCreate (Typei varTypei,
 Typej varTypej,
 …
 Typez varTypez)
 throws RemoteException {
 /** Take action if the business logic dictates
 activity after the bean is created
 **/
 }
 //State management methods follow. No implementations
 //provided for this example
 public void setEntityContext(EntityContext eCTX)
 throws RemoteException {
 //
 }
 public void unsetEntityContext ()
 throws RemoteException {
 //
 }
 public void ejbActivate ()
 throws RemoteException {
 //
 }
 public void ejbPassivate ()
 throws RemoteException {
 //
 }
 public void ejbStore ()
 throws RemoteException {
 //
 }
 public void ejbLoad ()
 throws RemoteException {
 //
 }
 public void ejbRemove ()
 throws RemoteException {
 //
 }
}

About the preceding code listing a few points are worthy of mention:

● All methods defined in the home interface are referenced in the bean class. However, the methods in the bean
class have the prefix ejb. Hence, in the home method, the method create is known as ejbCreate in the bean
class. Notice that the prefacing of the home method name with ejb also holds for finder methods, too.

● Speaking of finder methods, notice that the method findByPrimaryKey coded in the home interface template
returns an object of the bean class, whereas the method ejbFindByPrimaryKey returns an object of the bean’s
class primary key. A moment’s reflection reveals the wisdom of this construct: The bean class method, invoked
remotely through the home interface, should return a reference to the object. Because a primary key uniquely
knows the entity bean, returning the primary key is the logical choice. However, remember that your client writes
code to invoke the method on the home interface, not the bean interface. Part of the magic of EJB is the remote
invocation of the bean method on the server when the client invokes the corresponding method from the home (or
remote) interface.

● You can code finder methods for those entity beans with bean-managed persistence. Beans with container-
managed persistence implement finder methods for you.

● Methods described in the remote interface have the same name as the corresponding methods in the bean
interface. Do not prefix remote interface methods with ejb.

● Entity beans require that you code an ejbPostCreate method for every create method described in your home
interface. Notice the presence of two ejbPost create methods: ejbPostCreate and
ejbPostAnotherCreate. The ejbPost methods execute after the create methods.

● The last seven methods are the entity bean’s state management callback methods, which are explained in detail in
the next chapter. Here, you can say that these methods notify the entity bean when a bean is created, loaded from
permanent storage, or destroyed. Because javax.ebj.EntityBean is an interface, you must supply a method
body for these required state management methods, but you need not do anything meaningful. Many developers
use adapter classes to provide empty method bodies in those rare cases in which beans are not already extending
a superclass. You can read about the state management callback methods in Chapters 13, 14, and 15.

Let’s put aside our discussion on entity beans for a moment and take a look at session beans.

Using Session Beans

A session bean is created by a client and, as a rule, exists only for the duration of a single session. A session bean
performs tasks or processes on behalf of (usually) a single client, such as database access, number crunching, or
some other relevant business process.

Although session beans can be transactional, they are not recoverable following a system crash. They can be
stateless or they can maintain conversational state across methods and transactions. The container manages the
conversational state of a session bean if it needs to be removed from memory. A session bean must manage its own
persistent data.

Two types of session beans exist: stateless and stateful session beans.

Stateless session beans have no conversational state. In other words, stateless session beans are ignorant of the
results of any prior method invocation. This ignorance may be put to good use. As a consequence, stateless session
beans can be pooled to service multiple clients.

Stateful session beans possess conversational states. In other words, the activities (method invocations) taking place
within a session bean are affected by prior method invocations.

Only one EJB client can exist per stateful session bean. However, stateful session beans can be saved and restored
across client sessions. You use the getHandle method to return a bean object’s instance handle, which can be used to

save the bean’s state. Later, you may use the getEJBObject method to restore a bean from persistent storage.

Session beans do not have a primary key. However, you may assign your own identifier, such as a host name/port
number pair of a remote connection, or even just a random number that the client may use to uniquely identify a given
bean.

The characteristics of a session bean can be summarized as follows:

● Session beans model tasks or processes.

● Session beans are used by a single client.

● Session beans may be transaction-aware and can update data in an underlying database.

● Session beans are relatively short-lived. The lifetime of stateless session beans is limited to that of their client.
However, stateful session beans may be saved and later restored across sessions.

● Session beans may be destroyed when the EJB server crashes. The client has to establish a connection with a
new session bean object to resume its work.

What does the code for a session bean look like? The next section discusses a possible template for a session bean.

Session Bean Template

A sample session bean resembles the sample template entity bean in Listing 12-5. Listing 12-6 shows such a sample.

Listing 12-6: Template for defining a session bean

import java.rmi.* ;
import javax.ejb.* ;
import java.util.* ;

public class MyBeanClass implements SessionBean {

 /** Bean properties Follow **/
 public Type1 beanProp1 ;
 public Type2 beanProp2 ;
 …
 public Typen beanpropn ;
 public Typei beanPropi ;
 public Typej beanPropj ;
 …
 public Typez beanpropz ;

 public void ejbCreate (Type1 varType1,
 Type2 varType2,
 …
 Typen varTypen) {
 beanProp1 = varType1 ;
 beanProp2 = varType2 ;
 …
 beanPropn = varTypen ;
 /**
 Initialize other properties
 **/
 initializePropsiThroughz() ;

 }

 public void ejbAnotherCreate (Typei varTypei,

 Typej varTypej,
 …
 Typez varTypez) {
 beanPropi = varTypei ;
 beanPropj = varTypej ;
 …
 beanPropz = varTypez ;
 /**
 Initialize other properties
 **/
 initializeProps1Throughn() ;

 }

 public Type1 getType1Property()
 throws RemoteException {
 return beanProp1 ;
 }

 public void setType1Property(Type1 varType1)
 throws RemoteException {
 beanProp1 = varType1 ;
 }
 //
 //Other accessor methods would follow
 //
 public boolean processWasSuccessful (Type1 varType1,
 …
 Typen varTypen)
 throws RemoteException {
 /** Some code to do this process **/
 return successful ;

 }

 public void doAProcess (Typea varTypea,
 …
 Typez varTypez)
 throws RemoteException {
 /** Some code to do this process **/
 }
 //
 //Other business methods would follow
 //
 //State management methods follow. No implementations
 //provided for this example
 public void setSessionContext(SessionContext sCTX) {
 //
 }
 public void ejbActivate ()
 throws RemoteException {
 //
 }
 public void ejbPassivate ()
 throws RemoteException {
 //
 }
 public void ejbRemove ()
 throws RemoteException {
 //
 }

}

In this section, the naming rules, which describe the entity bean template, apply to session beans as well. The names
of the session bean methods that correspond to the method descriptions in the home interface must be prefixed with
ejb. Also, the names of the session bean methods corresponding to the remote method interface descriptions must
match exactly.

Because session beans do not represent persistent data, you won’t need the state management routines ejbStore
and ejbLoad. You may set a session context with setSessionContext, but you need not remove the context.

It is unlikely that a session bean and an entity bean will use the same business methods or the same properties. The
templates shown in Listings 12-5 and 12-6 are meant to illustrate the overall structure of an entity bean and a session
bean, including showing you how to name your methods to correspond to those in the home and remote interfaces, as
well as showing you which state management methods to include. The next two chapters will show concrete examples
of both session and entity beans.

Comparing Entity Beans and Session Beans

Of course, the most dramatic difference between session and entity beans is that session beans manage information
relating to a conversation between the client and the server, whereas entity beans represent and manipulate
persistent application domain data. One way to conceptualize this is that entity beans replace the various sorts of
queries used in a traditional two- or three-tier system, and session beans do everything else. Methods dealing with
processing (tasks) found in entity beans have more to do with logic required in assigning persistent fields values than
application workflow.

Session beans are supposed to be private resources, used only by the client that creates them. For this reason, a
session bean hides its identity and is anonymous, in sharp contrast to an entity bean that exposes its identity through
its primary key.

Table 12-1 summarizes some of the major differences between a session bean and an entity bean.

Table 12-1: Entity Beans and Session Beans Compared and Contrasted
Entity Bean Session Bean

The data members of the entity bean represent
actual data in the database.

The data members of the session bean contain
conversational state information.

Entity beans may be used for database access by
many clients.

A session bean may perform database access for a
single client.

There is a one-to-one relationship between entity
beans and a row in a relational table.

There is a one-to-one relationship between session
beans and the bean’s client.

An entity bean is persistent; it lives as long as its
underlying data is stored in a database.

A session bean lives as long as the client session.

Entity beans survive system crashes. Session beans do not survive system crashes.

Entity beans may not store client state information. Stateful session beans store client state information.

In the next section is a discussion of some considerations you may ponder when using session beans and entity
beans.

Using Session and Entity Beans

You may include methods to perform tasks in both entity beans and session beans. A natural question is what
processes should be coded in each bean type.

Use entity beans for a persistent object model (to act as a JDBC wrapper, for instance). By doing so, you provide the
rest of your application an object-oriented interface to your data model. Use session beans for application logic.
Enable code in your entity beans to interact directly with the underlying database and enable code in your session
beans to interact with the object-oriented layer presented by the entity beans.

Use session beans as the only interface to the client, providing a high-level interface to the underlying model. You
should use entity beans to enforce the accuracy and integrity of your data in addition to an object representation of
your data. The client invokes methods in your session beans, which runs processes that operate on the databases.
This split reduces the pain of introducing new and changed processes because such changes are localized to the
session beans.

Insist on reuse of entity beans. Although they may initially be hard to develop, over time they prove a valuable asset
for your company. In contrast, expect little reuse of session beans. Often, session beans that model a set of
processes are unique to a specific application domain. Of course, some thoughtful planning during design may result
in increased reusability.

To summarize:

● Use session beans for application logic.

● Use session beans as the only interface to the client.

● Expect little reuse of session beans.

● Use session beans to control the workflow of a group of entity beans.

● Use entity beans to wrap all your JDBC code.

● Use entity beans to enforce accuracy and integrity of your database.

● Insist on reuse of entity beans.

The Primary Key Class

Every enterprise bean has a unique identifier. For entity beans, this unique identifier forms the identity of the
information. For example, a productIDnumber might uniquely identify a product object in an inventory system. This
is analogous to the concept of a primary key in a relational database system.

The primary key class is an abstraction that enables you to model entity beans as database entities. The primary key
is a reference that you use to locate an entity bean that corresponds to a unique database entity. The only
requirement is that objects of the primary key class be serializable.

Because session beans are not persistent, they do not use a primary key.

New with EJB 2.0: Message-Driven Beans

A message-driven bean is an asynchronous message consumer. The EJB container invokes methods in the message-
driven bean. Message-driven beans do not have a home or a remote interface.

To a client, a message-driven bean is a Java Messaging Service (JMS) message consumer that implements some

business logic running on the server. Message-driven beans are not visible to the client and have no identity. A client
accesses a message-driven bean through JMS by sending messages to the JMS destination (Queue or Topic) for
which the message-driven bean class is the MessageListener.

Message-driven bean instances have no conversational state. This means that all bean instances are equivalent when
they are not involved in servicing a client message. However, the instance variables of the message-driven bean
instance can contain state across the handling of client messages. Examples of such state include an open database
connection and an object reference to an EJB object.

The EJB container is responsible for the life-cycle of a message-driven bean instance; your client may have no
knowledge of, or be capable of, controlling the birth and death of a message bean instance.

The topic of message-driven beans, along with other new features of EJB 2.0, is discussed in greater detail in Chapter
19, “The Proposed EJB 2.0 Specification.”

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Examining the EJB Interfaces

When you access an enterprise bean’s properties or invoke its methods, you should not know where the bean lives, or
what server or JVM the bean resides on. Of course, you need a mechanism to access the bean, regardless of where
the bean lives, without knowing the bean’s location. The mechanism requires the EJB developer to implement two
interfaces and two classes. The interfaces define how a client interacts with the bean, or they define the client’s view
of the bean.

The client EJB object and the server EJB component implement the same interface. Hence, the client object and the
server component look the same, even though they are separate classes. Think of using your garage door opener:
you click a button on your (client-side) locally held remote control; the clicking activates a device in a remote (server)
location, your garage, which opens your garage door. The button (client interface) on your remote looks the same as
the button (server interface) on your garage wall; both buttons perform the same function.

Note Java practitioners of RMI can see much in common with the concept of a client and server implementing the
same interface. However, with RMI, you implement only one interface; with EJB, you must implement two.

The two interfaces you must implement to create an enterprise bean are called the home interface and the remote
interface. Let’s examine the home interface first.

Understanding the Home Interface

Each EJB component class has what is called a home interface, which defines the methods for creating, initializing,
destroying, and finding EJB instances on the server. When an EJB client needs to use the services of an enterprise
bean, the client creates the bean by invoking one of several create methods defined in its home interface. You may
code several create methods that create objects in different states. When you no longer need a particular bean, you
may invoke a remove method, also defined in its home interface.

Take a look at the methods that require implementation from the home interface below.

Home Interface Methods

The requirements for the home interface are not many. For starters, the home interface extends the interface
javax.ejb.EJBHome, which extends java.rmi.Remote. The EJBHome interface defines a minimal set of
requirements, meaning your beans extend javax.ejb.EJBHome and implement more methods than required by this
interface. For example, you are likely to define one or more create methods to create instances of your enterprise
bean, or find methods to locate bean instances.

Listing 12-1 below shows the interface javax.ejb.EJBHome.

Listing 12-1: The javax.ejb.EJBHome interface

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=998161076

public interface javax.ejb.EJBHome extends java.rmi.Remote {

 public EJBMetaData getEJBMetaData()
 throws java.rmi.RemoteException ;

 public void remove (Handle handle)
 throws java.rmi.RemoteException,
 javax.ejb.RemoveException ;

 public void remove(Object primaryKey)
 throws java.rmi.RemoteException,
 javax.ejb.RemoveException ;

 public javax.ejb.HomeHandle getHomeHandle()
 throws java.rmi.RemoteException ;

}

The method getEJBMetaData returns an object of some class that implements the EJBMetaData interface. Objects
of this class contain information associated with the bean’s classes. For example, an EJBMetaData object enables a
client to get the Java classes that create objects by using the home interface and the remote interface. EJB
application developers may never invoke getEJBMetaData; the method is used primarily by tool and EJB container
developers.

The remove methods remove an EJB object identified by the method argument. The remove(Handle) method
requires an object from a class that implements the Handle interface. Objects of this class provide a reference to a
networked EJB object. The remove(Object) method, used for entity beans only, requires an object that
represents a bean’s primary key. Calling this flavor of the remove method on a bean type other than entity bean
results in RemoteException being thrown. Later, you can read about primary keys and entity beans.

As you might have guessed, the javax.ejb.RemoveException is thrown when the container or the object does
not permit the object’s removal.

The method getHomeHandle returns an object of a class that implements the HomeHandle interface. An object of
this class is a handle, or reference, to the home object. The short story is that the home object is an object of a class
that implements the home interface.

Note Before you become overwhelmed with the preceding discussion on interfaces and classes, keep in mind that
you do not create most of the previously mentioned classes. The EJB container creates most of these
classes implementing these interfaces for you. You remember the EJB container — that nebulous entity that
provides essential system services to your enterprise beans — don’t you? Well, creating all these support
classes is part of the services that the EJB container provides.

Methods defined in the home interface must follow the standard rules for RMI-IIOP remote interfaces. One rule is that
any method that may be invoked across a network must throw java.rmi.RemoteException. Notice that all the
methods described in Listing 12-1 throw this exception. You include a throws java.rmi.RemoteException
clause in each method header in your home interface. You are free to, and probably will, include other exceptions in
your throws clause. Another rule is that arguments passed to remotely invoked methods and returned types must be
serializable. This makes sense, because such arguments and returned values are passed over a network, and Java
RMI-IIOP uses object serialization to pass such data.

Note Because EJB relies on dynamic class loading across the network, enterprise beans must follow certain
security precautions. The issue of EJB security is covered in Chapter 16, “EJB Security.”

You’ve read that the home interface is used to invoke life-cycle methods on your enterprise beans. The next section
provides a template for a possible home interface implementation.

Home Interface Template

Your implementation of the home interface can resemble the template shown in Listing 12-2.

Listing 12-2: Template for defining a home interface

import java.rmi.* ;
import javax.ejb.* ;

public interface MyHome extends EJBHome {

 public MyBeanClass create(Type1 varType1,
 Type2 varType2,
 …
 Typen varTypen)
 throws CreateException, RemoteException ;

 public MyBeanClass anotherCreate(Typei varTypei,
 Typej varTypej,
 …
 Typez varTypez)
 throws CreateException, RemoteException ;

 public MyBeanClass findByPrimaryKey(myBeanClassKey aKey)
 throws FinderException, RemoteException ;

 public Collection findByDiffTypes(DiffType1 varDiffType,
 DiffType2 varDiffType2)
 throws FinderException, RemoteException ;

}

Listing 12-2 shows a couple of create methods and a couple of finder methods. As previously mentioned, you may
code multiple create methods to create enterprise beans having a certain initial state. If you may need to access
your beans by primary, secondary, and non-key fields, you may code multiple finder methods, as Listing 12-2
shows.

CreateException and FinderException are part of the EJB API. For now, keep in mind that every create
method you implement requires that you code a throws CreateException, and that every finder method you
implement requires that you code a throws FinderException.

The template in Listing 12-2 defines two create methods taking different parameters. All create method names
must start with the word create.

The findByPrimaryKey method returns the unique instance of the bean accessed by the primary key argument.
However, notice the returned type of method findByDiffTypes: Collection. The idea is that when searching on
nonprimary key values, you may return 0 to many objects.

You implement the home interface by creating an object called, not surprisingly, the home object. An instance of the
home object is created on a remote server and is made available to the clients for creating the enterprise bean. Let’s
take a look at the home object next.

The Home Object

The home object is an instance of a class that implements an interface that extends the javax.ejb.EJBHome
interface. You use the home object to invoke methods that create enterprise beans on a remote server.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=344022946#wbpch12fP57

The home object has the needed create, find, and remove methods. These life-cycle methods invoke a
corresponding ejbCreate, ejbFind, and ejbRemove method of the same signature in the actual enterprise bean
from the bean class being created.

When a client wants to create an enterprise bean, it uses the Java Naming and Directory Interface (JNDI) to locate the
home interface for the class of bean it wants. JNDI provides a service to any Java environment that enables Java
programs to locate, use, and find information about resources by name. As of EJB 1.1, you must use JNDI to look up
just about everything in your Java environment pertinent to EJBs. In the next chapter, you can see coding examples of
using JNDI from a client to locate a home interface.

Once you have access to the home object, you can invoke methods that request the EJB container to create objects
of your bean class to do work for the client. Barring any thrown exceptions, the server responds by creating an
instance of the bean class remotely and returning a reference to an object. This object is an instance of a class that
implements the same interface as the one implemented by the EJB component. That interface is called the remote
interface, which you can read about in the following.

Understanding the Remote Interface

The remote interface makes the enterprise bean’s business methods accessible to client objects. Methods defined in
the remote interface do the work of the bean. The object of the class that implements the remote interface is called the
EJB object. Once your client has a reference to an EJB object, your object can invoke that object's methods, which
are implementations of the EJB component class's remote interface.

A short description of the methods required to implement the remote interface follows.

Remote Interface Methods

As with the home interface, the requirements for remote interface methods are few. Methods of a class that implement
the remote interface typically extend javax.ejb.EJBObject, which extends java.rmi.Remote. Hence, remote
interface methods must conform to the rules for RMI-IIOP methods described for the home interface methods in the
previous section.

Listing 12-3 provides the code for the javax.ejb.EJBObject interface.

Listing 12-3: The javax.ejb.EJBObject interface

public interface javax.ejb.EJBObject extends java.rmi.Remote {

 public javax.ejb.EJBHome getEJBHome()
 throws java.rmi.RemoteException ;

 public java.lang.Object getPrimaryKey()
 throws java.rmi.RemoteException;

 public void remove()
 throws java.rmi.RemoteException,
 javax.ejb.RemoveException ;

 public javax.ejb.Handle getHandle()
 throws java.rmi.RemoteException ;

 public boolean isIdentical(javax.ejb.EJBObject)
 throws java.rmi.RemoteException ;
}

The method getEJBHome returns a reference to the home object for an enterprise bean.

The getPrimaryKey method returns a primary key for a bean. As you’ve read previously, primary keys are used only
with entity beans.

Use the remove method to destroy the bean, thereby making available any resources previously held by this object.

The getHandle method returns a reference to this bean. You use getHandle as you would use the home interface
method getHomeHandle — to get a reference to an EJB object that you can save and later use to reference the
object.

The isIdentical method tests whether two enterprise beans are identical. As with any Java objects, you do not use
the Java operator = = unless you are testing to see if two variables point to the same object handle in memory.

Recall that the remote interface exposes business logic methods to the client. What would a possible implementation
of the remote interface look like? The next section shows a likely template.

Remote Interface Template

Your implementation of the home interface can resemble the template shown in Listing 12-4.

Listing 12-4: Template for defining a remote interface

import java.rmi.* ;
import javax.ejb.* ;

public interface MyRemote extends EJBObject {

 public Type1 getType1Property()
 throws RemoteException ;

 public void setType1Property(Type1 varType1)
 throws RemoteException ;

 //Other accessor methods for other properties would follow

 public boolean processWasSuccessful (Type1 varType1,
 …
 Typen varTypen)
 throws java.rmi.RemoteException ;

 public void doAProcess (Typea varTypea,
 …
 Typez varTypez)
 throws java.rmi.RemoteException ;
 //Other business method definitions would follow
}

No surprises here, right? The remote interface defines business methods, which include accessor methods for
various bean properties as well as garden variety processing methods.

Now, let’s talk some more about the previously mentioned EJB object.

The EJB Object

The EJB object is a server-side distributed object that implements the remote interface. Once your client has access
to the EJB object, the client invokes its exposed methods. The methods get invoked remotely via RMI-IIOP and are

executed on the server. Then the client uses the EJB object as if it were a local object with the remote object doing all
of the work.

You may be wondering how the EJB object and the home object are created, and how the server knows what
methods to invoke when a client invokes a method implemented from a bean’s remote and home interfaces. The
following section addresses these, and other, questions.

About the Home and EJB Object

You may have figured out that you do not write code that implements the methods in the EJB and home objects. The
EJB container generates the code that implements these methods. The container provider includes tools that
automatically generate the required code.

Actually, you may never see the EJB and home objects, nor should you. The EJB specification describes the end-
product of the code generated by the container, not the process or details. All you need to do is invoke the methods
guaranteed by the interfaces to remotely invoke methods in your beans.

How does a client program create objects on a server? Operations involving the life cycle of server-side beans are the
responsibility of the EJB container. The client program actually contacts the container and requests that a particular
type of object be created, and the container responds with an EJB object that can be used to manipulate the new EJB
component.

How does the container know what method of the enterprise bean to invoke when a client invokes a method from the
home or remote interface? Before this question can be answered, a discussion about the creation of the bean class is
in order.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using the Enterprise Bean

An enterprise bean is a server-side software component that lives somewhere in a distributed environment. The
component is the implementation of a Java class coded to follow the convention laid out by the EJB specification. The
specification describes how to code the enterprise bean such that a client, or bean user, may use the bean to create
EJB components on a remote server (or different JVM) and manipulate these components as if they were local
objects. In the EJB distributed environment we have simplified writing clients, or applications, that access remote
objects, thereby achieving the valued property of location transparency. While the developer writes client code that
simply creates, uses, and destroys objects, these objects have counterparts executing on a server that do the actual
work.

You must draw a distinction between an EJB object and an EJB component. The EJB object is a client-side object that
accesses properties and invokes methods on an EJB server-side component.

Enterprise bean clients can be just about anything; applets, servlets, and other enterprise beans are possible, and
likely, candidates. Using other enterprise beans as clients makes possible a “divide-and-conquer” approach to
problem solving. The developer can divide the problem into bite-sized tasks, in which each task is implemented as a
separate bean.

Describing the components of an EJB is difficult because these components refer to each other. In other words, it’s
hard to describe an EJB component without some knowledge of other EJB components. To alleviate potential
confusion that may arise when describing the EJB components, a short description of these components follows.

EJB Components: The Short Story

To create and use an enterprise bean, you need to implement two interfaces and create two classes. The two
interfaces are called the home interface and the remote interface. The two classes are called the bean class and the
primary key class.

The class implementing the home interface provides methods that govern the enterprise bean’s life-cycle. Here is
where you invoke methods that find, create, and remove enterprise beans.

The class implementing the remote interface provides methods that describe the bean’s business methods, which are
the methods that do the work of the bean.

The bean class contains methods that do the work of the bean. Beans of the bean class come in three flavors: entity
beans represent persistent data, session beans represent processes, and message-driven beans represent
asynchronous messaging with Java Messaging Services (JMS). In this chapter, the word bean without qualification
refers to an instance of the bean class.

The primary key class is used to get references to entity beans. Imagine that you have created multiple instances of
entity beans corresponding to rows in a relational database. The primary key would be used to access a particular
bean instance.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=547205858

As you read about each of the interfaces and classes discussed in the preceding, you learn how they interrelate to
create bean instances and perform work.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

The “Make Money” Brokerage Application Revisited

This chapter starts with a brief discussion of how you can use a JSP page as a client to an enterprise bean. You'll take
a look at the JSP page that contains the custom tag to locate an EJB home object as well as enterprise bean business
method references in JSP scriptlets and expressions. You'll also see that the JSP page shown in this chapter is
strikingly similar to the JSP page shown in Listing 10-8 in Chapter 10.

The JSP pages that handle the logon and checks for a valid user/password combination is the same as the JSP
pages in Chapter 10. For our purposes here, you will concentrate on the user option to display the client’s transaction
history, where you will see one approach in using beans together with JSPs to implement the transaction history
function. Next, you'll see the code that constitutes the custom tag used in the JSP page. You'll also see the code for
the tag library descriptor used to describe the tag.

The code for the enterprise bean comes next. Here's where the code that implements the business methods resides.
The business methods use very similar code to the methods of the AcctHistory bean shown in Listing 10-9 in
Chapter 10. Included is a deployment descriptor that describes the properties of the enterprise bean to the EJB
container.

You may want to quickly glance at Chapter 10, “The ‘Make Money’ Brokerage Application,” if you need a quick
refresher on the application’s functionality.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=923261810

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using JSP Pages as EJB Clients

For a JSP page to be an EJB client, the page has to perform the tasks described in Chapter 18, “Creating EJB
Clients.” These tasks are:

● Locate the EJB home object in order to obtain a reference to the EJB object.

● Direct the EJB container (by invoking methods on the EJB object) to create or remove enterprise beans.

● Direct the EJB container (by invoking methods on the EJB object) to invoke enterprise bean business methods.

We can create JSP pages to communicate with enterprise beans in two ways, by implementing either a JavaBean or a
custom JSP tag. Either way entails writing a Java class and coding methods that perform the EJB client tasks.

Coding a JavaBean results in the JSP pages using the bean containing <jsp:usebean tags and references to the
bean methods in the JSP pages in JSP scriptlets or expressions. Coding a custom tag means that the JSP pages will
contain references to the bean methods as JSP tags and, possibly, as code in JSP scriptlets or expressions.

The end result is the same whether you use JavaBeans or custom tags. However, as mentioned in Chapter 7, “JSP
Tag Extensions,” using custom tags gives your JSP pages more of a natural look than using JavaBeans. The natural
look comes from having the page's functionality encapsulated in code invoked by tags as opposed to having the
page's functionality encapsulated in bean method invocations.

The example JSP page shown in this chapter uses a custom tag to locate the EJB home object.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=151219388

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Coding the JSP Page That Implements an EJB Client

The JSP page shown in Listing 20-1 is pretty close to the page used in Chapter 10. The major difference is that the
page shown in this chapter is a client to an enterprise bean.

The page uses a custom tag to locate an EJB object. Once the JSP page locates the EJB object through the home
interface and creates a reference to a session bean, the JSP page invokes the bean's business methods through the
EJB object.

Listing 20-1 lists the JSP page that acts as an EJB client. The page contains a custom tag. However, custom tag
usage is not a requirement for creating JSP pages that are clients to enterprise beans. The code in the page dealing
with the custom tag is shown in italics.

Listing 20-1: JSP Page containing a custom tag to locate an EJB object

<%@ page contentType="text/html"
 import="chapter20.*"
 errorPage="errorpageex1.jsp" %>

<%-- The taglib directive identifies the tag descriptor library --%>
<%-- and names a prefix used to denote the tags described in --%>
<%-- the tag decscriptor library that are used in the page. --%>

<%@ taglib uri="ch20taglib.tld" prefix="ch20" %>

<%-- Display the account activity for this customer --%>

<%
 CustomerBean customer = (CustomerBean)session.getAttribute("customer") ;
 String customerName = customer.getCustomerName() ;
 String acctNum = customer.getAcctNumber() ;
%>
<html>
<title>Transaction History for <%=customerName %> <%= acctNum %> </title>
<body bgcolor="#dddddd" >
<center>

<%-- Put in their pictures for the page top --%>

<jsp:include page="imagetable.html" flush="true" />

<%-- Here's the tag that looks up the EJB --%>

<ch20:lookupbean
 homeObject="ch20Home"
 JNDIlocation="java:comp/env/AcctHistory"
 homeObjectClass="AcctHistoryHome"

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=273404816

 remoteObjectClass="AcctHistory"
 remoteObjectName="anAcctHistory" />

<%-- Let's create an instance of the EJB using the home object --%>
<%
 anAcctHistory = ch20Home.create(acctNum) ;
%>

<%-- The rest of the JSP is the same as the page in Chapter 10 --%>

<%

 if (anAcctHistory.getHistoryThisAccount(acctNum)) {

%>
<p><%= customerName %>, here is a list of your transactions

<hr width="50%">
<form name="historyform" action="showcustoptions.jsp" method="POST">

<table>

<%
 while (anAcctHistory.getNextHistRecord()) {
%>
<tr><td>
 On <%= anAcctHistory.getColumn("transactiondate") %>, you traded
 <%= anAcctHistory.getColumn("numbershares") %> shares of
 <%= anAcctHistory.getColumn("security") %> on a
 <%= anAcctHistory.getColumn("transactiontype") %> order.
 </td>
 </tr>
 <tr bgcolor="red"><td> </td> </tr>

<%
 }

 }
%>
<tr>
 <td><p>
 <input type="submit"
 name="Return" value="Return to Customer Options">
 </td>

</tr>
</table>
</form>
<hr width="50%">
</center>

</body>
</html>

Recall from Chapter 7 that JSPs require a taglib directive when using custom tags. The following line is the taglib
directive used in the JSP shown in Listing 20-1.

<%@ taglib uri="ch20taglib.tld" prefix="ch20" %>

The taglib directive provides a reference to the tag library descriptor file, ch20taglib.tld, and a prefix used to

reference the library throughout the page, ch20. Every custom tag described by the tag library descriptor file used in
this page must be prefixed with the value of the prefix attribute, or ch20.

Here, we’re using a custom tag to locate an EJB object that the EJB container will associate with an instance of your
bean. The tag contains information, encoded in attributes, that enable the tag library code to locate a suitable EJB
object. The tag listed here is the tag used in Listing 20-1.

<ch20:lookupbean
 homeObject="ch20Home"
 JNDIlocation="java:comp/env/AcctHistory"
 homeObjectClass="AcctHistoryHome"
 remoteObjectClass="AcctHistory"
 remoteObjectName="anAcctHistory" />

Recall that the first task of an EJB client is to locate the home object, which the client uses to obtain a reference to the
EJB object. The homeObject attribute provides a reference that the JSP page uses later to create references to
enterprise beans — in our case, just a single session bean.

The JNDILocation attribute provides the location of the bean class as the default naming context. Once we have the
naming context, we can get a reference to the home object by invoking the lookup method of class
javax.Naming.Context.

The lookup method returns the reference to the home object as an object of class Object. We need the name of the
home interface to cast the home object reference to a usable form. Therefore, we include an attribute in our custom
tag, named homeObjectClass, that provides the home interface name.

An EJB client uses the methods in the home interface to create EJB objects. The EJB object is an object of the
remote interface. The remote interface contains descriptions of the enterprise bean's business methods. Therefore,
for a client to invoke bean business methods defined in the remote interface, the client needs to know the name of
the remote interface. Hence, we provide the remote interface as an attribute value aptly named
remoteObjectClass in our custom tag. While we're at it, we need a name for our EJB object, which we'll supply as
a value of the attribute remoteObjectName. The tag library code requires these parameters to locate and narrow the
EJB object to the correct class.

With an appropriate EJB object reference handy, the JSP creates a reference to the bean by using the home object’s
create method, as shown in the following line of code:

anAcctHistory = ch20Home.create(acctNum) ;

Use the account number from the customer object as a unique client identifier.

Once we create the EJB object, we're ready to request the EJB container execute business methods. These methods
will access the transaction history database and return data to the JSP page. The page will format and display the
returned data just like the page shown in Listing 10-8 of Chapter 10.

Now let’s take a look at the code that implements the custom tag.

The Tag Library Code

The tag library code implements the EJB client methods that locate and narrow a home object. To create our custom
tag, we'll need to implement a class that provides the tag's functionality, or the tag class. We'll also need a tag library
descriptor file (tld) that describes the tag class and allows you to use the custom tags in your JSP pages.

The Tag Class

The tag class is a class that extends the convenience class TagSupport. Recall from Chapter 7 that class
TagSupport is an implementation of the tag interface for custom tags that do not contain a tag body. The name of
the tag class is not terribly important. What is important is that elements in the tld associate the name of the tag
class with the name of the custom tag. Listing 20-2 shows the code for the tag class.

Listing 20-2: Code for the tag class

package chapter20 ;
import javax.ejb.*;
import javax.naming.*;
import javax.rmi.*;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

public class LookupCh20Bean extends TagSupport
{
 private String JNDIlocation;
 private String homeObjectClass;
 private String remoteObjectClass;
 private String remoteObjectName;

 //Set the class of the home interface.

 public void setType(String type)
 {
 this.homeObjectClass = type;
 }

 //Set the JNDI location of the home.

 public void setLocation(String location)
 {
 this.JNDIlocation = location;
 }

 //Set the class of the remote interface.

 public void setRemoteType(String remoteType)
 {
 this.remoteObjectClass = remoteType;
 }

 // Set the name of the remote interface variable.

 public void setRemoteName(String remoteName)
 {
 this.remoteObjectName = remoteName;
 }

 public int doStartTag() throws JspException
 {
 try
 {
 InitialContext context = new InitialContext();

 // Get the home interface class using the
 // proper (the page's) ClassLoader.
 Class homeClass =
 Class.forName(this.homeObjectClass, true,
 pageContext.getPage().getClass().getClassLoader());

 // Lookup the home object
 Object homeObject = context.lookup(this.JNDIlocation);

 // Narrow the home object
 EJBHome home =
 (EJBHome)javax.rmi.PortableRemoteObject.narrow(homeObject,
 homeClass);

 // Put the home object into the PageContext
 pageContext.setAttribute(this.getId(), home);
 }
 catch(NamingException e)
 {
 throw new JspException("Error looking up home at " +
 this.JNDIlocation);
 }
 catch(ClassNotFoundException e)
 {
 throw new JspException("Home class not found: " +
 this.homeObjectClass);
 }

 return SKIP_BODY;
 }
}

The tag library code is straightforward. The class contains methods to set the values of the tag attributes to object
properties and to invoke the lookup and narrow methods. Notice how the code wraps up the exceptions as
JSPExceptions.

The tag class uses the pageContext variable to hold a reference to the home object. The JSP page needs the
reference to the home object to create an EJB object by invoking the home object's create method.

The tag class contains code to locate a home object. There's no code in our tag to access the session bean (or
access the EJB object that, in turn, requests the EJB container to execute a remote method). There's no code in our
tag to create EJB objects. The code to request bean business method execution and to create EJB objects is included
in the JSP page.

The Tag Descriptor File

The tld describes the tag’s properties, notably, the tag’s attributes. Listing 20-3 shows the tld for our enterprise
bean locator tag.

Listing 20-3: tld for the bean locator tag

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "web-jsptaglib_1_1.dtd">

<taglib>
 <jspversion>1.1</jspversion>
 <tlibversion>1.0</tlibversion>

 <shortname>ch20lib</shortname>
 <urn></urn>

 <info>

 Tag Library That Provides Info on Tags That Display Trade
 History For Customers
 </info>
 <tag>

 <name>lookupbean</name>

 <tagclass>LookupCh20Bean</tagclass>

 <teiclass></teiclass>

 <bodycontent>empty</bodycontent>

 <info>This tag locates a home object for a session bean</info>

 <attribute>
 <name>homeObject</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 <attribute>
 <name>JNDIlocation</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 <attribute>
 <name>homeObjectClass</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

 <attribute>
 <name>remoteObjectClass</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

 <attribute>
 <name>remoteObjectName</name>
 <required>true</required>
 <rtexprvalue>false</rtexprvalue>
 </attribute>

 </tag>
</taglib>

The tld describes the tag as an empty tag, as shown by the bodycontent element
(<bodycontent>empty</bodycontent>). Also, all attributes are required, as shown by the required element, a
child element of the attribute element (<required>true</required>). Finally, no attribute contains JSP
expressions or JSP tags as shown by the rtexprvalue element (<rtexprvalue>false</rtexprvalue>).

Now let’s look at the components of the enterprise bean.

The Enterprise Bean

The enterprise bean requires essentially the same methods as the JavaBean used in Chapter 10. The EJB requires

methods to determine if the client has history records and to access a transaction history record. In addition, to satisfy
the architectural requirements of an enterprise bean, the bean must provide implementations of all the methods of a
bean. Some of the required method implementations are “dummy” implementations, or a method signature with a pair
of empty braces. Nonetheless, the EJB architecture requires that you implement the laundry list of required methods,
even if you code dummy implementations.

The Home Interface

The home interface contains a reference to the create method used by the JSP page to request that the EJB
container create a reference to the home object. Listing 20-4 shows the small but vitally important code that
constitutes the home interface.

Listing 20-4: The home interface

import javax.ejb.*;
import java.rmi.*;

public interface AcctHistoryHome extends EJBHome
{
 public AcctHistory create(String acctID)
 throws RemoteException, CreateException;
}

Notice that the create method requires an argument and that your bean is bound to a particular customer by the
account ID.

The Remote Interface

Recall that the remote interface contains references to the business methods contained in the bean. You request that
the EJB container invoke a bean method by invoking a like-named method described in the remote interface. The
reference to the EJB object, obtained through the home object, allows your EJB client to issue requests for remote
enterprise bean method invocation. Listing 20-5 shows the code for the remote interface.

Listing 20-5: The remote interface

import javax.ejb.*;
import java.rmi.*;

//Remote Interface

public interface AcctHistory extends EJBObject
{
 public boolean getHistoryThisAccount(String accountID)
 throws RemoteException ;
 //Disconnect from database — close connection, stmt, resultset
 public void takeDown() throws RemoteException ;
 public boolean getNextHistRecord() throws RemoteException ;
 //Get a column for display in the HTML table
 public String getColumn(String inCol) throws RemoteException ;

}

Notice that the four methods described in the remote interface are those methods used in the JSP page to list the
customer’s transaction history.

The Enterprise Bean Code

The enterprise bean is a stateful session bean that looks very similar to the code shown in Chapter 10. Listing 20-6
shows the EJB code that retrieves the customer’s transaction history.

Listing 20-6: Session bean code that displays transaction history

import java.sql.* ;
import javax.ejb.*;
import javax.naming.* ;
import javax.sql.* ;

public class AcctHistoryBean implements SessionBean {

 private ResultSet myResultSet ;

 private SessionContext mySessionContext;
 private Connection myConn = null ;
 private Statement stmt = null ;

 //Use the account number to access the history table.
 public boolean getHistoryThisAccount(String accountID)
 throws Exception {
 String histQuery = "select accountid, transactiondate," + ,
 "transactiontype, security, numbershares " +
 "from transactionhistory where accountid = " ;

 String query = histQuery + "'" + accountID + "'";
 try {
 myConn = getConnection() ;
 stmt = myConn.createStatement();
 myResultSet = stmt.executeQuery(query);

 return myResultSet != null ;
 }
 catch (SQLException sqlEx) {
 throw new EJBException(sqlEx) ;
 }

 }

 public boolean getNextHistRecord() throws Exception
 {
 try {
 return myResultSet.next();
 }
 catch (SQLException sqlEx) {
 throw new EJBException(sqlEx) ; }

 }

 public String getColumn(String inCol) throws Exception
 {
 try {
 return myResultSet.getString(inCol);
 }
 catch (SQLException sqlEx) { throw new EJBException(sqlEx) ;
 }

 }

 public void takeDown() throws Exception

 {
 try {
 if (stmt != null) stmt.close() ;

 if (myConn != null) myConn.close() ;
 }
 catch (SQLException sqlEx) {sqlEx.printStackTrace();}
 }

 //Utility method from Chapter 14 that establishes a connection

 private Connection getConnection() {
 String jndiDBName = "java:comp/env/jdbc/stock" ;
 try {
 InitialContext jndiCtx = new InitialContext() ;
 DataSource stockDS =
 (DataSource) jndiCtx.lookup(jndiDBName);
 return stockDS.getConnection() ;

 }
 catch (NamingException ne) {throw new EJBException(ne);}
 catch (SQLException sqlEx) {throw new EJBException(sqlEx);}
 }
 // EJB methods. Most of these methods are dummy implementations.
 // However, the SessionBean interface requires the implementing
 // class provide implementations of ALL the methods.

 public void ejbActivate()
 {
 }

 public void ejbPassivate()
 {
 }

 public void ejbRemove()
 {
 }

 public void ejbCreate() throws CreateException
 {
 }

 public void setSessionContext(SessionContext sessionContext)
 {
 mySessionContext = sessionContext;
 }

}

Aside from the extra code required for bean implementation and the method used to locate the database, the code
shown in Listing 20-6 is the same as that used in Chapter 10.

The method getConnection used to locate and establish a database connection differs from the methods used in
Chapter 10 to establish a connection. With enterprise beans, we can code database location information in the bean's
deployment descriptor. Enterprise beans may access the location information with the same lookup method used to
locate a home object.

The Deployment Descriptor

The deployment descriptor shows the location of the database as well as providing some details on the EJB’s
components. Listing 20-7 shows the deployment descriptor.

Listing 20-7: The EJB deployment descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
 '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>

 <enterprise-beans>
 <session>
 <ejb-name>AcctHistoryBean</ejb-name>
 <home>chapter20.AcctHistoryHome</home>
 <remote>chapter20.AcctHistory</remote>
 <ejb-class>chapter20.AcctHistoryBean</ejb-class>
 <session-type>Stateful</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <description>Brokerage Database Data Store</description>
 <res-ref-name>jdbc/stock</res-ref-name>
 <res-type>javax.sql.DataSource </res-type>
 <res-auth>Container</res-auth>
 </resource-ref>
 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>AcctHistoryBean</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

</ejb-jar>

The deployment descriptor contains three main groups of information: bean particulars, resources used by the bean,
and transaction information.

The bean particulars include the bean type (stateful session, stateless session, entity, or message-driven), the home
and remote interface names, the bean class name, and how transactions are managed.

The resources used by the bean are described as child elements of the resource-ref element. The content of the
res-type element, javax.sql.DataSource, tells the container this resource is a reference to a database.

The transaction information is described by child elements of the container-transaction element.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using Stateless Session Beans

The EJB developer can use stateless session beans to implement a business process that does not require extended
contact or conversation with a client. In other words, your stateless session beans may perform a task that requires no
knowledge about a particular client.

Stateless session beans are ignorant of the results of any prior method invocation. Some examples of tasks that can
be performed by a stateless session bean are:

● Calculating the price for an item

● Evaluating the current value of a portfolio

● Converting an RGB color space value to an HSV color space value

Characteristics of Stateless Session Beans

As mentioned previously in this chapter, stateless session beans are blissfully unaware of client particulars. This
ignorance leads the EJB container and server developers to devise strategies for pooling session bean instances.

Pooling Stateless Session Beans

Because any stateless session bean can service any client, the container may create instances of a stateless session
bean ahead of time and keep them “on ice.” When a client invokes a stateless session bean method through the
bean’s remote interface, the container may have a bean instance available for use. The advantage of having the
container pull a bean from a ready-made pool of instances, as opposed to creating an instance on demand, is
performance. The pooling strategy is faster than the create-on-demand strategy because a small number of stateless
session beans may service a large number of clients.

Using the create and ejbCreate Methods with Stateless Session Beans

In the previous chapter, you read about creating instances of beans by invoking ejbCreate methods by invoking a
create method in the home interface. Because stateless session beans have no concept of state, they do not retain
any knowledge of parameters passed to the bean via ejbCreate. Therefore, you should not code stateless session
bean create methods in your home interface and any corresponding ejbCreate methods in your bean class that
require parameters.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=749740627

Caution You may be thinking that a stateless session bean shouldn't use instance variables since it doesn't track
state. You are free to include instance variables in your session bean. However, each method in a
stateless session bean exposed to clients must be provided with all information needed for your bean to
do its work. You cannot pass data by way of arguments to create methods, so you are left with passing
arguments when you invoke bean methods.

Instance variables for stateless session beans do not hold information that can be used for subsequent
method invocations of the bean. That is, the stateless bean has no knowledge from one method
invocation to the next, or any knowledge of the previous method invocation. If a stateless bean contains
three business methods exposed to a client through the bean’s remote interface, a client typically invokes
only one of those methods. Once a client invokes a bean method, the data contained in any of the bean’s
instance variables cannot be used by a subsequent method invocation.

Life Cycle of Stateless Session Beans

The simplicity of stateless session beans is mirrored in its life cycle. Stateless session beans exist in only two states:
the nonexistent state and the method-ready state.

You don’t have to be a rocket scientist to glean what the nonexistent state means. This state is used to describe when
a bean is no longer needed and its existence is ended with a call to ejbRemove.

When a bean is in the method-ready state, the bean instance is in a pool or has been created to service a client
request. Such beans are ready to perform work on behalf of their clients.

Another way of looking at the bean instance pool is that a stateless session bean is bound to a particular EJB object,
which is the entity managed by the container that works on behalf of the client. The creation and destruction of beans
may or may not correspond to the creation and destruction of EJB objects. The client interacts with interfaces that
interact with the EJB container that manipulates EJB objects. The particular EJB container implementation may
involve bean instance creation for every client or (more likely) creating a pool of bean instances and binding these
instances to EJB objects.

As previously mentioned, EJB containers usually create multiple instances of stateless session beans for performance
reasons. The container manages assigning bean instances to clients based on client requests. If the container pools
beans, the container issues the Class.newInstance method to create an instance of the bean and put that instance
in the bean pool. Next, the bean receives a reference to its EJBContext when the container invokes the
SessionBean.setSessionContext method. When a client issues a call to create in the bean’s home interface,
the container invokes the ejbCreate method (with no arguments, remember?). At a time of the container’s choosing,
the container purges the bean by issuing an ejbRemove method.

In truth, the client does not really operate on the bean instance. The client, by making calls to methods in the bean’s
home (and remote) interface, operates on the underlying EJB object. The client may view the container activity as
creating and purging beans. That’s part of the EJB magic — hiding the implementation details from the client and, of
course, the client and developer’s code.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using Stateful Session Beans

Stateful session beans model business processes where the concept of a conversational state takes center stage. In
other words, the activities (method invocations) taking place within a session bean are affected by prior method
invocations.

Characteristics of Stateful Session Beans

A stateful session bean needs a way of identifying one particular client among many. The simplest (and surprisingly
effective) way for EJB containers to cause stateful session beans to maintain client identity is to bind the underlying
EJB object to a particular client for the lifetime of the bean.

Pooling (or not) Stateful Session Beans

EJB containers typically do not create pools of stateful session beans and swap the bean instances among multiple
EJB objects. Once a client requests the creation of an EJB object by invoking the home interface’s create method,
the EJB object is bound to that client for life.

Although the EJB object corresponding to the stateful session bean is dedicated to a single client, the EJB container
may swap bean instances to and from storage or perform whatever optimizations the container creators deem
necessary.

So, do EJB containers pool stateful session beans or not? The practical result of the container swapping stateful
session beans is the same as pooling bean instances. However, there are differences between the swapping of
stateful session beans and the pooling of stateless session beans. Later in this chapter, the section titled "Using the
javax.ejb.SessionBean Interface" will discuss these differences.

The create and ejbCreate Methods with Stateful Session Beans

Unlike their stateless cousins, stateful session beans may accept data via a create method in the bean’s home
interface (and the corresponding ejbCreate method in the bean class). Stateful session beans remember data from
one method invocation to the next for the same client. It makes sense to initialize EJB objects corresponding to
session beans with data peculiar to a particular client.

In addition, you may code multiple create methods, each with a different set of parameters (or no parameters) when
instructing the container to create an EJB object to serve as an agent for a stateful session bean.

Instance Variables and Stateful Session Beans

Instance variables of stateful session beans may serve different uses than instance variables of stateless session
beans. Because stateful session beans are used to maintain a sense of session with a single client, instance variables

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=121732317
http://www.unltded.com/viewer.asp?bkid=2878&destid=305#305
http://www.unltded.com/viewer.asp?bkid=2878&destid=305#305

may hold information relevant to successive method invocations. If a stateful session bean exposes three methods to
a client through the bean’s remote interface, any of these method invocations may use instance variables to store data
for use by subsequent method invocations.

Life Cycle of Stateful Session Beans

One important difference between the life cycle of a stateful and a stateless bean is that stateful beans are not pooled
whereas stateless beans are pooled. From the client’s perspective, the client has access to a stateful bean (do you
recall that the client has access to the EJB object?) for the life of the client session. If the server or EJB container
decides to swap the stateful session bean, the server or container must preserve the state of the conversation
between the EJB object and the client. The container may decide to perform the swap to conserve server resources or
to implement a "last-used" strategy to decide when to remove beans from memory.

Activating and Passivating Beans

The process of swapping out a stateful session bean from memory to storage is called passivation. It's important to
understand that passivation is the process that an EJB container uses to preserve the state of a stateful session bean
(or an entity bean) when the container swaps the bean out to storage.

Do not confuse passivation with storing a piece of persistent data. When you save data to persistent storage, you hold
on to that data for an indefinite period of time. The persistent storage is usually a database. Although passivation
usually includes writing out the bean to storage, the intent is not to save the stateful session bean for an indefinite
period of time. Rather, the intent is to make room for other beans that, at the present time, are more used than the
passivated bean. The server reloads the passivated bean when some client needs it. The passivated bean is not data
per se; the passivated bean represents the state of a client session with the enterprise application.

The opposite of passivation is the process called activation. A stateful session bean is activated when the client issues
a method invocation through the bean’s remote interface that requires the services of the EJB object. The server is
responsible for reloading the previously passivated EJB object from storage to memory so that the methods of the
EJB object may be invoked and work may be done.

Because stateless session beans do not maintain any state, the concepts of passivation and activation are not
relevant with stateless session beans.

The activation and passivation process affects the makeup of instance variables. You may have figured out that the
server uses Java’s object serialization to passivate and activate a bean. Hence, any instance variable critical to
describing the conversational state of the bean must be serializable or be declared as a Java primitive type.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using the javax.ejb.SessionBean Interface

To write session beans, you must create a class that implements the SessionBean interface. The SessionBean
interface contains callbacks that govern the container’s treatment of your bean. Please note that the client never calls
these methods. In other words, the methods in the SessionBean interface are not made available to the client
through the remote interface.

As with other Java interfaces, you may not need implementations of all of the methods defined in the SessionBean
interface. If this is the case, you may code an empty implementation for unneeded methods. For your convenience,
some EJB servers contain adapter classes such as those used in GUI event handlers. Of course, you may code your
own adapters as well.

Listing 14-1 shows the SessionBean interface.

Listing 14-1: The SessionBean interface

public interface javax.ejb.SessionBean
 extends javax.ejb.EnterpriseBean {

 public abstract void setSessionContext(SessionContext ctx)
 throws java.rmi.RemoteException ;

 public abstract void ejbPassivate()
 throws java.rmi.RemoteException ;

 public abstract void ejbActivate()
 throws java.rmi.RemoteException ;

 public abstract void ejbRemove()
 throws java.rmi.RemoteException ;

}

Your bean class implements the methods in the SessionBean interface and the business methods in the bean’s
remote interface. You can take a look at the methods in the SessionBean interface now. Remember that all of the
methods that follow are invoked by the EJB container.

ejbActivate

The ejbActivate method is a callback invoked by the container immediately after activating a bean. Of course, you
remember that the container activates a bean by loading a previously saved (passivated) bean from storage into

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=641821652

memory in response to a client request through the EJB object’s remote interface. Once the container resurrects your
bean, the container invokes the bean class’s ejbActivate method.

Because activation and passivation do not apply to stateless session beans, you must code empty implementations
for ejbActivate and ejbPassivate for stateless session beans.

Use ejbActivate to acquire the resources your bean needs to accomplish its appointed duty. For example,

import javax.ejb.* ;
//Other imports as required for the bean
public class SampleStatefulSessionBean implements SessionBean {

 public void ejbActivate() (
 //Open Database connections
 //Open files, load properties, etc.
 }
 //Other required SessionBean interface methods and
 //business methods defined in the bean’s home
 //interface follow
}

ejbPassivate

The ejbPassivate method is invoked by the EJB container immediately prior to the passivation of the stateful
session bean. As we read earlier in the section titled "Activating and Passivating Beans," passivation is the process,
involving Java serialization, in which the container writes a bean to storage.

For stateless beans, you code dummy implementations as follows:
import javax.ejb.* ;
//Other imports as required for the bean
public class SampleStatelessSessionBean implements SessionBean {

 public void ejbActivate() (
 //Do not code any statements here
 }
 public void ejbPassivate() (
 //Do not code any statements here
 }
 //Other required SessionBean interface methods and
 //business methods defined in the bean’s home
 //interface follow
}

For a stateful session bean, you would release resources held by the bean in the ejbPassivate implementation.
These resources would then be reacquired in your ejbActivate method implementation.

ejbRemove

The EJB container calls the ejbRemove method immediately prior to removing a session bean instance. Do not
confuse removing the instance with passivating the instance. When the container passivates the bean, the container
may bring the bean back to satisfy a client request. When the container removes the bean, that bean is dead, gone,
finished, whacked.

setSessionContext

The bean’s SessionContext object provides methods for the bean to interact with the EJB container. Later in this
chapter you can learn more about the session context. For now, it’s enough to know that the session context is set by
a call to the setSessionContext method.

A commonly used technique is to declare a session context outside any method and assign the session context to this
object. For example, the following code does the trick:
import javax.ejb.* ;
//Other imports, etc.
public class SampleSessionBean implements SessionBean {
 private SessionContext sCtx ;

 public void setSessionContext(SessionContext ctx) {
 sCtx = ctx ;
 }
 //Other SessionBean and business method implementations
 //follow
}

ejbCreate

Strictly speaking, the ejbCreate method is not included in the SessionBean interface. For session beans, however,
you must code at least one create method. Thus, a discussion of create and ejbCreate is included here.

To direct the container to create beans for your use, issue a create method implemented on the bean’s home
interface. When the client invokes the create method, the container invokes a corresponding ejbCreate method,
which makes an EJB object available to the client.

From the client’s perspective, the call to create creates a session bean. But that may or may not be true; the truth
depends on the EJB container implementation. If the client requires access to an enterprise bean, the client issues a
call to create, which, in turn, causes the container to issue a call to an ejbCreate method.

As previously mentioned, for stateless session beans, you may code only the garden-variety, parameterless create
and ejbCreate methods. For stateful session beans, you are free to code several create and corresponding
ejbCreate methods. The only requirement is that the create and ejbCreate methods must have matching
argument lists and all return void.

For example, if you coded the following create method signature in your home interface:

public void create(Customer aCust, double payAmt)
 throws RemoteException, CreateException {

You would code the following method signature in your bean class:
import javax.ejb.* ;
//Other imports as required for the bean
public class SampleStatefulSessionBean implements SessionBean {

 public void ejbCreate(Customer aCust, double payAmt) (
 //Initialize bean with arg variables or use as you see fit
 }
 //Other required SessionBean interface methods and
 //business methods defined in the bean’s home
 //interface follow

}

As an aside, you must code create methods in your home interface that throw CreateException. Recall that all
methods coded in the remote and home interfaces must throw a remote exception. In Chapter 15, "EJB Entity
Beans," when you read about entity beans, you’ll learn that finder methods coded in the home interface must throw
a FinderException.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

The javax.ejb.SessionContext Interface

No bean is an island. Beans work and play within containers. You might imagine that beans and their containers
engage in a fair amount of communication. The SessionContext interface extends the more general EJBContext
interface. You can read about the EJBContext interface in Chapter 15. The following section covers the
SessionContext interface.

getEJBObject

As it turns out, your beans may need to communicate with the container when your beans need to invoke methods in
other EJBs. Session beans have access to a SessionContext object to facilitate interbean communication. This
object enables your bean to invoke one method, getEJBObject, which enables your bean to pass a reference to
itself to other EJBs.

You might be thinking, “Why can’t the session bean use the this keyword to pass a reference to itself to another
bean?" Recall that clients do not invoke bean methods directly on the bean; clients invoke bean methods through a
reference to the remote interface, or its EJB object. If the bean returned this, it would be returning a reference to
the bean itself and not to its EJB object. The bean must return a reference to the EJB object, hence the purpose of the
getEJBObject method.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=923003551

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Creating a Stateless Session Bean

The code in this section implements a system in which a customer can buy or sell stocks. The application executes
one of two methods from a stateless session bean: buy and sell. What follows is the code for the home and remote
interfaces, support classes, and a sample client that invokes the EJB object through the remote interface.

The buy and sell methods interact with a relational table called stocktable. Here are the relevant columns for
table stocktable used in the stateless session bean example:

Create table stocktable(

 customerID NUMBER Primary Key,
 sharesymbol CHARACTER(4) Primary Key,
 numSharesOnAcct NUMBER
)

Although simple, the table suffices for our sample stateless bean application.

The payment bean uses two application classes: StockCustomer and StockTradeResult. Listings 14-2 and 14-3
show the code for these classes.

Listing 14-2: Code for the StockCustomer class

package chapter14.stocktrader ;
import java.io.* ;

public class StockCustomer implements Serializable {
 private String custName ;
 private int custID ;
 private String custAcctNum ;

 public StockCustomer(String cName, int cID, String cAcctNum) {
 custName = cName ;
 custID = cID ;
 custAcctNum = cAcctNum ;
 }

 public String getCustName () {
 return custName ;
 }
 public int getCustID () {
 return custID ;
 }
 public String getCustAcctNum () {
 return custAcctNum ;
 }

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=414023816
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=369081763#wbpch14fP167
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=369081763#wbpch14fP195

}

Notice that this class implements java.io.Serializable, because the code passes objects of class
StockCustomer to remote methods.

Listing 14-3 shows the class StockTradeResult. An instance of this class is returned to the client after each trade.
As you’d expect, StockTradeResult implements java.io.Serializable.

Listing 14-3: Code for the StockTradeResult class

package chapter14.stocktrader;

import java.io.Serializable;

public final class StockTradeResult implements Serializable {

 private String statusMsg ; //Successful or not?.
 private int numberTraded; //# of shares bought or sold.
 private String custName ; //Like it says.
 private String stockSymbol; //Ditto.

 public StockTradeResult(String status,
 String cName,
 int nt,
 String ss) {
 statusMsg = status ;
 custName = cName ;
 numberTraded = nt;
 stockSymbol = ss;
 }
 public String getStatusMsg() { return statusMsg; }
 public String getCustName() { return custName; }
 public int getNumberTraded() { return numberTraded; }
 public String getStockSymbol() { return stockSymbol; }
}

Coding the Remote Interface

Listing 14-4 provides the code for the remote interface StockTrader. Notice that both methods return an object of
class StockTradeResult.

Listing 14-4: Code for the remote interface

package chapter14.stocktrader;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

/*
 Remote interface for the Stock Trader. These methods
 get implemented in the bean class StockTraderBean
 */
public interface StockTrader extends EJBObject {

 public StockTradeResult buy (StockCustomer aCust,
 String stockSymbol,
 int numShares)
 throws RemoteException;

 public StockTradeResult sell (StockCustomer aCust,
 String stockSymbol,
 int numShares)
 throws RemoteException;
}

Coding the home Interface

Listing 14-5 shows the code for the home interface. All you need is a create method as required by the EJB
specification for session beans. Remember that you cannot pass arguments to the create method for stateless
session beans.

Listing 14-5: Code for the home interface

package chapter14.stocktrader;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface StockTraderHome extends EJBHome {

 StockTrader create() throws CreateException, RemoteException;
}

Coding the Bean Class

The code for bean class StockTraderBean is shown in Listing 14-6. Implement the required methods from the
SessionBean interface plus business methods defined in the remote interface.

Listing 14-6: Code for the bean class

package chapter14.stocktrader;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.EJBException ;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import java.io.* ;
import java.sql.* ;
import java.rmi.RemoteException ;
import javax.sql.DataSource ;
import java.util.* ;

public class StockTraderBean implements SessionBean {

 /** Declare the connection and preparedStatement object so we
 can use them in multiple methods. Also, we want to
 reuse the connection because we'll issue two SQL statements
 here.
 For a buy order, we need to determine if the customer has
 this stock already. If so, we issue an UPDATE sql. If not,
 we issue an INSERT SQL.
 For a sell order, we need to see how many shares the customer
 has to sell. If not enough, we issue a StockTraderException.
 If enough, we issue an UPDATE to change the shares on
 account.
 */
 Connection payConn = null ;
 PreparedStatement payPS = null ;

 private SessionContext sCtx;
 /** These are the required methods of the SessionBean interface.
 Although we don’t need them we must supply a dummy
 implementation.
 */
 public void ejbActivate() { } ;
 public void ejbRemove() { } ;
 public void ejbPassivate() { } ;
 /*
 */
 public void setSessionContext(SessionContext ctx) {
 sCtx = ctx;
 /* When the bean becomes available, the container makes a
 session object available. Here’s a good place to perform
 startup tasks. Recall that stateless session beans live
 and die for a single method invocation.
 Let's acquire the DB connection here... */
 payConn = getConnection() ;
 }

 public void ejbCreate () throws CreateException { } ;
 /* Finally! A business method implementation.
 */
 public StockTradeResult buy(StockCustomer aCust,
 String stockSymbol,
 int shares)
 throws RemoteException {
 /* To buy stock, we merely update the record if this
 customer has some stock or add a new record if not.
 */
 boolean success = false ;
 String statusMsg = "Stock Purchase Failed" ;
 int numShares = getNumShares(aCust.getCustID(), stockSymbol) ;
 if (numShares > 0)
 success = updateCustomerRecord(aCust.getCustID(),
 stockSymbol,
 numShares + shares) ;
 else
 success = addCustomerRecord(aCust.getCustID(),
 stockSymbol,
 numShares) ;

 if (success)
 statusMsg = "Stock Purchase Successful" ;
 /*
 Let the client know the status of the trade.

 */
 return new StockTradeResult(statusMsg,
 aCust.getCustName(),
 shares,
 stockSymbol);
 }

 /*
 The other business method…
 */
 public StockTradeResult sell(StockCustomer aCust,
 String stockSymbol,
 int shares)
 throws RemoteException {
 /* To sell stock, we check if the customer has enough stock
 to cover the sell order or update the stock on hand after
 a successful sale.
 */
 boolean success = false ;
 String statusMsg = "Stock Sale Failed" ;
 int numShares = getNumShares(aCust.getCustID(),
 stockSymbol) ;
 if (numShares >= shares) {
 success = updateCustomerRecord(aCust.getCustID(),
 stockSymbol,
 numShares - shares) ;
 statusMsg = "Stock Sale Successful." ;
 }
 else {
 statusMsg = statusMsg + "Not enough shares on account" ;
 shares = 0 ;
 }

 return new StockTradeResult(statusMsg,
 aCust.getCustName(),
 shares,
 stockSymbol);
 }
 /*This method adds customer share table returning success/
 failure flag. When a customer buys stock and has none
 on hand, this method adds a record for the
 customerID/sharesymbol combination.
 */
 private boolean addCustomerRecord(int aCustomerID,
 String stockSymbol,
 int numShares) {
 try {
 payPS = payConn.prepareStatement(" insert " +
 " into stocktable " +
 "(customerid, sharesymbol, " +
 " numSharesOnAcct) " +
 " values (?,?,?) ") ;
 /* Well, let's set the parametters.... */
 payPS.setInt (1, aCustomerID) ;
 payPS.setString(2, stockSymbol) ;
 payPS.setInt (3, numShares) ;
 /* Issue the SQL...
 Table primary key is compound key CustID and ShareSymbol
 1 row impacted or error. */
 int numRowsAdded = payPS.executeUpdate() ;
 /* Let's get the result. */

 if (numRowsAdded != 1)
 throw new EJBException ("Table Addition Failed!!!") ;

 }
 catch (SQLException sqlEx) {
 throw new EJBException (sqlEx) ;
 }
 finally {
 try {
 if (payPS != null) payPS.close() ;
 /* We shut down the connection here..no more SQL
 today!! */
 if (payConn != null) payConn.close() ;
 }
 catch (SQLException sqlEx) {
 sqlEx.printStackTrace() ;
 }
 }
 /* If we get here, we're successful */
 return true ;
 }
 /*This method updates customer share table returning success
 failure flag. This method gets called for buys and sells. */
 private boolean updateCustomerRecord(int aCustomerID,
 String stockSymbol,
 int numShares) {
 try {
 payPS = payConn.prepareStatement(" Update stocktable " +
 " Set numSharesOnAcct = ? " +
 " where customerid = ? " +
 " and sharesymbol = ? ") ;
 /* Well, let's set the parametters.... */
 payPS.setInt (1, numShares) ;
 payPS.setInt (2, aCustomerID) ;
 payPS.setString(3, stockSymbol) ;
 /* Issue the SQL...
 Table primary key is compound key CustID and ShareSymbol
 1 row impacted or error. */
 int numRowsUpdated = payPS.executeUpdate() ;
 /* Let's get the result. */
 if (numRowsUpdated != 1)
 throw new EJBException ("Table Update Failed!!!") ;

 }
 catch (SQLException sqlEx) {
 throw new EJBException (sqlEx) ;
 }
 finally {
 try {
 if (payPS != null) payPS.close() ;
 /* We shut down the connection here..no more SQL
 today!! */
 if (payConn != null) payConn.close() ;
 }
 catch (SQLException sqlEx) {
 sqlEx.printStackTrace() ;
 }

 }
 /* If we get here, we're successful */
 return true ;

 }
 /*This method returns the number of stock the customer has.
 Both buy and sell invokes this method — if the customer
 puts in a sell order, the method checks if the customer has
 the requisite stock on hand. For buy orders, we use the
 number of existing shares added to the new purchase to
 update the table. */
 private int getNumShares(int aCustomerID,
 String stockSymbol) {
 int numShares = 0 ;
 ResultSet numSharesOnTable = null ;
 try {
 payPS = payConn.prepareStatement(
 " Select numSharesOnAcct " +
 " from stocktable " +
 " where customerid = ? " +
 " and sharesymbol = ? ") ;
 /* Well, let's set the parametters.... */
 payPS.setInt (1, aCustomerID) ;
 payPS.setString(2, stockSymbol) ;
 /* Issue the SQL...
 Table primary key is compound key CustID and ShareSymbol
 Either 0 or 1 row returned. */
 numSharesOnTable = payPS.executeQuery() ;
 /* Let's get the result. */
 while (numSharesOnTable.next())
 numShares = numSharesOnTable.getInt(1) ;

 }
 catch (SQLException sqlEx) {
 throw new EJBException (sqlEx) ;
 }
 finally {
 try {
 if (payPS != null)
 payPS.close() ;
 if (numSharesOnTable != null)
 numSharesOnTable.close() ;
 }
 catch (SQLException sqlEx) {
 sqlEx.printStackTrace() ;
 }

 }
 /* If no shares on record, zero is returned, right? */
 return numShares ;
 }
 //Utility method to acquire a database connection
 private Connection getConnection() {
 // The string below is coded in the Deployment Descriptor
 String jndiDBName = "java:comp/env/jdbc/paymentDB" ;
 try {
 InitialContext jndiCtx = new InitialContext() ;
 DataSource payDS =
 (DataSource) jndiCtx.lookup(jndiDBName) ;
 return payDS.getConnection() ;

 }
 catch (NamingException ne) {
 throw new EJBException(ne) ;
 }

 catch (SQLException sqlEx) {
 throw new EJBException(sqlEx) ;
 }
 }
}

Notice that every business method requires information identifying the particular client. Also, the “business” of the
bean can be completed in a single method invocation from the client.

You acquire a connection to the database by using an object of class DataSource, which is found in the J2EE
version of JDBC that works with other J2EE APIs such as JNDI. By following the code examples in this chapter, you
can learn more about JNDI.

Coding the Deployment Descriptor

Listing 14-7 shows the deployment descriptor for the StockTrader bean.

Listing 14-7: Code for the deployment descriptor

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC '-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
 'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>

 <enterprise-beans>
 <session>

 <ejb-name>exampleStatelessSessionBean</ejb-name>
 <home>chapter14.stocktrader.StockTraderHome</home>
 <remote>chapter14.stocktrader.StockTrader</remote>
 <ejb-class>chapter14.stocktrader.StockTraderBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <resource-ref>
 <description>
 Customer shares datasource reference
 </description>
 <res-ref-name>jdbc/custstockDB</res-ref-name>
 <res-type>javax.sql.DataSource </res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 </session>
 </enterprise-beans>

 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>exampleStatelessSessionBean</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

 </ejb-jar>

For the most part, your EJB deployment tool generates deployment descriptors for you. But, a few words on the
content of this deployment descriptor are in order.

● The root element of a deployment descriptor is <ejb-jar>.

● You may code information pertaining to more than one EJB in a single deployment descriptor.

● The deployment descriptor contains sections that describe session and entity beans.

● The deployment descriptor contains information that JNDI needs to locate resources. Notice the reference to the
database used in the above bean in the <resource-ref> tag.

● The <assembly-descriptor> tag may contain transaction and security-related information. The topic of
transactions or security hasn’t been discussed yet, so you haven’t missed anything.

Code for a Sample Client

Listing 14-8 shows some code for a sample client. The meat of the client is the invocation of the buy and sell
methods defined in the remote interface.

Listing 14-8: Code for a sample client

import chapter14.stocktrader;

import java.rmi.RemoteException;
import java.util.Properties;

import javax.ejb.CreateException;
import javax.ejb.RemoveException;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import java.util.* ;

public class StockTraderClient {

 private static final String JNDI_NAME = "StockTraderHome";

 private StockTraderHome home;

 private StockCustomer me = new StockCustomer("Lou Marco",
 12345,
 "123ABC") ;
 //Represents the result returned from the buy or sell order
 private StockTradeResult resultLastTrans = null ;

 public StockTraderClient()
 throws NamingException
 {
 home = lookupHome();
 }

 /*
 * Runs this example from the command line.
 */

 public static void main(String[] args) throws Exception {

 StockTraderClient client = null;
 try {
 client = new StockTraderClient();
 } catch (NamingException ne) {
 System.exit(1);
 }

 }

 /**
 * Runs this example.
 */
 public void example()
 throws CreateException, RemoteException, RemoveException
 {

 //Create a StockTrader
 StockTrader trader = (StockTrader)
 PortableRemoteObject.narrow(home.create(),
 StockTrader.class);

 String [] stocks = {"LMAA", "IOU2", "DOAP", "RIPP" };

 // execute some buys
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 System.out.println("Buying " + shares + " shares of" +
 stocks[i] + ".");
 resultLastTrans = trader.buy(me, stocks[i], shares);
 //List out result of this trade
 showTradeResult(resultLastTrans) ;
 }

 // execute some sells
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 System.out.println("Selling " + shares + " shares of" +
 stocks[i]+".");
 trader.sell(me, stocks[i], shares);
 //List out result of this trade
 showTradeResult(resultLastTrans) ;
 }
 //We’re done…remove the instance of our trader bean.
 trader.remove();

 }
 private void showTradeResult(StockTradeResult str) {
 Date now = new Date() ;
 System.out.println("On " + now + str.getStatusMsg()) ;
 System.out.print("You traded " + str.getNumberTraded()) ;
 System.out.println(" shares of " + str.getStockSymbol() +
 "\n") ;
 }

 /*
 * Lookup the EJB home in the JNDI tree
 */
 private StockTraderHome lookupHome()
 throws NamingException
 {

 /* Lookup the beans home using JNDI.
 RMI/IIOP clients should use
 PortableRemoteObject.narrow function */
 Context ctx = new InitialContext();

 try {
 Object home = ctx.lookup(JNDI_NAME);
 return (StockTraderHome)
 PortableRemoteObject.narrow(home,
 StockTraderHome.class);
 } catch (NamingException ne) {
 System.out.println("Cannot locate Home object") ;
 throw ne;
 }
 }

}

The client acquires a reference to the home interface and then invokes business methods defined in the bean’s
remote interface.

Using JNDI

The Java Naming and Directory Interface, or JNDI, is pervasive in creating and using EJBs. Resources are stored in a
JNDI tree, which resembles a directory tree. JNDI enables Java code to locate needed resources by using a structure
called the JNDI Context. The context contains a JNDI method called lookup used, not surprisingly, to locate objects
in the JNDI tree.

The process is to first acquire an InitialContext using a constructor. Then, you invoke the lookup method of
class InitialContext to locate a resource on the JNDI tree.

The JNDI lookup method takes a name registered with JNDI through some other Java facility. For EJBs, JNDI is
used in both the client and the enterprise bean.

The client uses JNDI to locate a reference to the home interface as shown in the lookup method. The name for the
home method used in the client must match the name coded in the deployment descriptor. Fortunately, EJB servers
and containers have tools that enable you to use a GUI to enter deployment descriptor information.

To maintain compatibility with CORBA, Java clients use the PortableRemoteObject.narrow() method. This
method is not a JNDI method. Think of using this method as a way of coding a CORBA-compliant cast. The narrow
method takes two arguments: an object of class Object to be cast, and an object of class Class, representing the
class to cast the object to. The returned value of the narrow method is cast, Java-style, to the desired class. In the
case of using the narrow method on home interfaces, the cast is to the class of the home interface of the bean.

The bean uses JNDI to locate a reference to the database. The process is the same as that used in the client
program: acquire an InitialContext object followed by invoking the lookup method.

If one bean needs to call another bean, the calling bean may need access to the called bean’s home object. In this
scenario, the calling bean acts as a client. The calling bean could use JNDI to locate the home interface of the called
bean.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Creating a Stateful Session Bean

The code presented in this section implements the same bean as shown in the preceding section but as a stateful
session bean. The main difference is that the client passes a customer ID as an argument to the create method,
which enables the stateful bean to maintain state.

Coding the remote Interface

The difference in the remote interface shown in Listing 14-9 for the stateful bean is the absence of a customer object
passed to business methods. When the stateful bean is created, the container remembers the client who invoked the
create method. The client does not have to pass a client identifier to the bean.

Listing 14-9: Code for the remote interface

package chapter14.stocktraderstateful;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

/*
 Remote interface for the Stock Trader. These methods
 get implemented in the bean class StockTraderBean
 */
public interface StockTraderStateful extends EJBObject {

 public StockTradeResult buy (String stockSymbol,
 int numShares)
 throws RemoteException;

 public StockTradeResult sell (String stockSymbol,
 int numShares)
 throws RemoteException;
}

Coding the home Interface

Listing 14-10 contains the code for the home interface. The difference between this and the stateless bean version is
that here, you pass a client identifier as an argument to the create method.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=842239398

Listing 14-10: Code for the home interface

package chapter14.stocktraderstateful;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

public interface StockTraderStatefulHome extends EJBHome {

 StockTrader create(int custID) throws CreateException, RemoteException;
}

Coding the Bean Class

Listing 14-11 shows the code for the stateful bean version. The bean class is very similar to the stateless version, but
the stateful version uses a customerID to maintain client identity. This version does not access objects of class
Customer, and the business methods — buyStateful and sellStateful — do not accept an argument that
identifies the client. The relational database access routines are identical to those in the stateless bean version.

Listing 14-11: Code for the stateful bean

package chapter14.stocktraderstateful;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.ejb.EJBException ;
import javax.naming.InitialContext;
import javax.naming.NamingException;

import java.io.* ;
import java.sql.* ;
import java.rmi.RemoteException ;
import javax.sql.DataSource ;
import java.util.* ;

public class StockTraderBeanStateful implements SessionBean {

 /** Declare the connection and preparedStatement object so we
 can use them in multiple methods. Also, we want to
 reuse the connection because we'll issue two SQL statements
 here.
 For a buy order, we need to determine if the customer has
 this stock already. If so, we issue an UPDATE sql. If not,
 we issue an INSERT SQL.
 For a sell order, we need to see how many shares the customer
 has to sell. If not enough, we issue a StockTraderException.
 If enough, we issue an UPDATE to change the shares on
 account.
 */
 Connection payConn = null ;
 PreparedStatement payPS = null ;
 int customerID ;

 private SessionContext sCtx;
 /**

 */

 public void ejbActivate() { } ;
 public void ejbRemove() { } ;
 public void ejbPassivate() { } ;
 /*
 */
 public void setSessionContext(SessionContext ctx) {
 sCtx = ctx;
 /* Let's acquire the DB connection here... */
 payConn = getConnection() ;
 }
 /*
 Here, we pass a customer ID which will define
 the conversational state of the bean.
 */
 public void ejbCreate (int custID) throws CreateException {
 customerID = custID ;
 } ;
 /*
 Note the absence of a client identifier passed as an argument
 The bean instance variable customerID serves to identify the
 Client.
 */
 public StockTradeResult buyStateful(String stockSymbol,
 int shares)
 throws RemoteException {
 /* To buy stock, we merely update the record if this customer has
 some stock or add a new record if not.
 */
 boolean success = false ;
 String statusMsg = "Stock Purchase Failed" ;
 int numShares = getNumShares(customerID, stockSymbol) ;
 if (numShares > 0)
 success = updateCustomerRecord(customerID,
 stockSymbol,
 numShares + shares) ;
 else
 success = addCustomerRecord(customerID,
 stockSymbol,
 numShares) ;

 if (success)
 statusMsg = "Stock Purchase Successful" ;

 return new StockTradeResult(statusMsg,
 "Customer With ID " + customerID,
 shares,
 stockSymbol);
 }

 /**

 */
 public StockTradeResult sellStateful(String stockSymbol,
 int shares)
 throws RemoteException {
 /* To buy stock, we merely update the record
 if this customer has
 some stock or add a new record if not.
 */
 boolean success = false ;
 String statusMsg = "Stock Sale Failed" ;

 int numShares = getNumShares(customerID, stockSymbol) ;
 if (numShares >= shares) {
 success = updateCustomerRecord(customerID,
 stockSymbol,
 numShares - shares) ;
 statusMsg = "Stock Sale Successful." ;
 }
 else {
 statusMsg = statusMsg + "Not enough shares on account" ;
 shares = 0 ;
 }

 return new StockTradeResult(statusMsg,
 "Customer With ID " + customerID,
 shares,
 stockSymbol);
 }
 //This method adds customer share table returning success/
 //failure flag
 private boolean addCustomerRecord(int aCustomerID,
 String stockSymbol,
 int numShares) {
 try {
 payPS = payConn.prepareStatement("insert into stocktable" +
 "(customerid, sharesymbol, " +
 " numSharesOnAcct) " +
 " values (?,?,?) ") ;
 /* Well, let's set the parametters.... */
 payPS.setInt (1, aCustomerID) ;
 payPS.setString(2, stockSymbol) ;
 payPS.setInt (3, numShares) ;
 /* Issue the SQL...
 Table primary key is compound key CustID and
 ShareSymbol 1 row impacted or error. */
 int numRowsAdded = payPS.executeUpdate() ;
 /* Let's get the result. */
 if (numRowsAdded != 1)
 throw new EJBException ("Table Addition Failed!!!") ;

 }
 catch (SQLException sqlEx) {
 throw new EJBException (sqlEx) ;
 }
 finally {
 try {
 if (payPS != null) payPS.close() ;
 /* We shut down the connection here..no more SQL
 today!! */
 if (payConn != null) payConn.close() ;
 }
 catch (SQLException sqlEx) {
 sqlEx.printStackTrace() ;
 }
 }
 /* If we get here, we're successful */
 return true ;
 }
 //This method updates customer share table returning success/
 //failure flag
 private boolean updateCustomerRecord(int aCustomerID,
 String stockSymbol,

 int numShares) {
 try {
 payPS = payConn.prepareStatement("Update stocktable " +
 " Set numSharesOnAcct = ? " +
 " where customerid = ? " +
 " and sharesymbol = ? ") ;
 /* Well, let's set the parametters.... */
 payPS.setInt (1, numShares) ;
 payPS.setInt (2, aCustomerID) ;
 payPS.setString(3, stockSymbol) ;
 /* Issue the SQL...
 Table primary key is compound key
 CustID and ShareSymbol
 1 row impacted or error. */
 int numRowsUpdated = payPS.executeUpdate() ;
 /* Let's get the result. */
 if (numRowsUpdated != 1)
 throw new EJBException ("Table Update Failed!!!") ;

 }
 catch (SQLException sqlEx) {
 throw new EJBException (sqlEx) ;
 }
 finally {
 try {
 if (payPS != null) payPS.close() ;
 /* We shut down the connection here..no more SQL
 today!! */
 if (payConn != null) payConn.close() ;
 }
 catch (SQLException sqlEx) {
 sqlEx.printStackTrace() ;
 }

 }
 /* If we get here, we're successful */
 return true ;
 }
 //This method returns the number of stock the customer has
 private int getNumShares(int aCustomerID,
 String stockSymbol) {
 int numShares = 0 ;
 ResultSet numSharesOnTable = null ;
 try {
 payPS = payConn.prepareStatement(" Select numSharesOnAcct " +
 " from stocktable " +
 " where customerid = ? " +
 " and sharesymbol = ? ") ;
 /* Well, let's set the parametters.... */
 payPS.setInt (1, aCustomerID) ;
 payPS.setString(2, stockSymbol) ;
 /* Issue the SQL...
 Table primary key is compound key CustID and ShareSymbol
 Either 0 or 1 row returned. */
 numSharesOnTable = payPS.executeQuery() ;
 /* Let's get the result. */
 while (numSharesOnTable.next())
 numShares = numSharesOnTable.getInt(1) ;

 }
 catch (SQLException sqlEx) {

 throw new EJBException (sqlEx) ;
 }
 finally {
 try {
 if (payPS != null) payPS.close() ;
 if (numSharesOnTable != null)
 numSharesOnTable.close() ;
 }
 catch (SQLException sqlEx) {
 sqlEx.printStackTrace() ;
 }

 }
 /* If no shares on record, zero is returned, right? */
 return numShares ;
 }
 //Utility method to acquire a database connection
 private Connection getConnection() {
 String jndiDBName = "java:comp/env/jdbc/paymentDB" ;
 try {
 InitialContext jndiCtx = new InitialContext() ;
 DataSource payDS = (DataSource)
 jndiCtx.lookup(jndiDBName) ;
 return payDS.getConnection() ;
 }
 catch (NamingException ne) {
 throw new EJBException(ne) ;
 }
 catch (SQLException sqlEx) {
 throw new EJBException(sqlEx) ;
 }

 }

}

Coding the Deployment Descriptor

The deployment descriptor for the stateful version is the same except for the <session-
type>Stateless</session-type> tag, which, of course, would be coded as <session-
type>Stateful</session-type>.

Code for a Sample Client

The client code uses a customer ID as an argument to create and remove the object of class Customer as the first
argument to the buyStateful and sellStateful methods. Listing 14-12 shows the code.

Listing 14-12: Client implementation using the stateful bean

import chapter14.stocktraderstateful;

import java.rmi.RemoteException;
import java.util.Properties;

import javax.ejb.CreateException;
import javax.ejb.RemoveException;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.rmi.PortableRemoteObject;
import java.util.* ;

public class StockTraderClientStateful {

 private static final String JNDI_NAME = "StockTraderHome";

 private StockTraderHome home;
 //This gets passed to the bean to identify the client
 private StockCustomerID me = 12345;
 //Represents the returned from the buy or sell order
 private StockTradeResult resultLastTrans = null ;

 public StockTraderClient()
 throws NamingException
 {
 home = lookupHome();
 }

 /**
 * Runs this example from the command line.
 */
 public static void main(String[] args) throws Exception {

 StockTraderClient client = null;
 try {
 client = new StockTraderClient();
 } catch (NamingException ne) {
 System.exit(1);
 }

 }

 /**
 * Runs this example.
 */
 public void example()
 throws CreateException, RemoteException, RemoveException
 {

 //Create a StockTraderStateful object. Note that the
 //customer ID is passed to the home.create()
 //method as the first argument to
 // PortableRemoteObject.narrow()
 StockTraderStateful trader = (StockTraderStateful)
 PortableRemoteObject.narrow(home.create(me),
 StockTraderStateful.class);

 String [] stocks = {"LMAA", "IOU2", "DOAP", "RIPP" };

 // execute some buys. Note the absence of a client identifier
 //in the call to the business methods
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 System.out.println("Buying "+shares+" shares of" +
 stocks[i]+".");
 resultLastTrans = trader.buyStateful(stocks[i], shares);
 //List out result of this trade
 showTradeResult(resultLastTrans) ;

 }

 // execute some sells
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 System.out.println("Selling "+shares+" shares of" +
 stocks[i]+".");
 trader.sellStateful(stocks[i], shares);
 //List out result of this trade
 showTradeResult(resultLastTrans) ;
 }

 }
 private void showTradeResult(StockTradeResult str) {
 Date now = new Date() ;
 System.out.println("On " + now + str.getStatusMsg()) ;
 System.out.print("You traded " + str.getNumberTraded()) ;
 System.out.println(" shares of " + str.getStockSymbol() +
 "\n") ;
 }

 /**
 * Lookup the EJBs home in the JNDI tree
 */
 private StockTraderStatefulHome lookupHome()
 throws NamingException
 {
 /* Lookup the beans home using JNDI.
 RMI/IIOP clients should use PortableRemoteObject.narrow
 function */
 Context ctx = new InitialContext();

 try {
 Object home = ctx.lookup(JNDI_NAME);
 return (StockTraderStatefulHome)
 PortableRemoteObject.narrow(home,
 StockTraderStatefulHome.class);
 } catch (NamingException ne) {
 System.out.println("Cannot locate Home object") ;
 throw ne;
 }
 }
}

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

Error handling and debugging JSPs have much in common with the same tasks in regular Java development.
However, the nature of JSPs can make this task much more difficult. The techniques and tools that you have learned
about in this chapter, especially the use of the errorPage and isErrorPage directives, should help you overcome
many of the problems that you will face when handling errors and debugging your JSP pages.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=913197708

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Debugging Techniques

A syntax error in a JSP causes a compile error, with references to code in the servlet, not the JSP. Because JSP
errors rarely reference the true cause, debugging JSPs can be quite different from other debugging you may be used
to. This section provides some often-used techniques to debug JSPs.

Remembering Good Coding Practices

To get a job done within the deadline, even the most meticulous programmer may not follow all good coding practices.
However, diligence following good practices will save you time as you develop JSP pages.

Comment, Comment, Comment!

If JSP authors take the time and trouble to comment their code, they may not make the coding mistakes that cause
many runtime errors. The act of commenting the code often makes you stop and think about what you are coding. By
expressing the intent of the code in human language, it’s possible to uncover flaws in our reasoning — flaws that can
result in runtime errors.

The JSP author can write JSP comments (<%-- … --%>), write Java comments in scriptlets and declarations, or
write HTML comments. Java and HTML comments get passed to the JSP translator and eventually end up in the
generated servlet.

All of us have used comments to block out pieces of code in an attempt to isolate the code causing an error, but be
mindful of commenting out code in JSP scriptlets. Sometimes, a scriptlet intermingles static text with Java code.
Combining the Java scriptlet code and static text results in syntactically correct Java, with the static text represented
as out.print statements in the generated servlet. Comment out the wrong piece of scriptlet code and you will
generate all sorts of translation (compile) errors.

The following code is an example JSP construct composed of several scriptlets. It shows a piece of the JSP page
example1.jsp (from Listing 9-1) modified to display square roots in excess of 50 in blue.

<tr>
 <td><%= number %></td>
 <td>
 <% if (squareRootNumber > 50) { %>

 <% } %>

 <%= squareRootNumber %>
 <% if (squareRootNumber > 50) { %>

 <% } %>
 </td>
 <td><%= cubeRootNumber %></td>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=320632524

 </tr>

Notice the proliferation of JSP scriptlet identifiers required to generate even a simple change. Commenting out pieces
of scriptlet code while debugging or coding is an invitation to meet a translation time error.

Although Java and HTML comments get passed to the JSP translator and end up in the generated servlet, you can
perform some JSP processing within HTML comments. You can embed JSP expressions within HTML comments
without affecting the layout of the finished HTML page. For example:
<!-- Value of lobound parameter =
 <%=request.getParameter("lobound") %> -->

You would not see this comment line in the displayed page, but if you viewed the resultant HTML source you would
see:
<!-- Value of lobound parameter = 2000.25 -->

You can embed time information in HTML comments throughout your pages if you want to know the order of the JSP
processing — if page A is processed before page B, for example. Once you have fixed your errors and your JSP page
is put into a production environment, such comments should not be visible to the end user. There are two methods of
hiding debug comments from the end user that I will discuss briefly. First, you can remove the code that created the
comments from the JSP pages. This method, while surefire, forces you to add them to the pages at a future time when
debugging. A second method that is more robust is to use a session variable to flag whether debugging comments
should be output. This flag could be turned on or off through a password-protected page so that you could switch to
and from debugging mode as necessary.

Does the Resultant HTML (or XML) Work?

Although your JSPs may generate the HTML (or XML) you desire, the result of the generation may be in error. In other
words, you may be generating HTML that is incorrect. The JSP is generating the incorrect HTML correctly.

Some JSP authors create several HTML pages that model the desired result of the JSP execution, without using their
JSPs. If you have a working end product — one or more HTML pages that you want your JSPs to produce — you may
be in a better position to catch logic errors in your JSPs.

Reloading JSPs and Classes

As you debug your application and find errors, you will see these errors in your JSP pages or Java classes. As you
make changes and test them, you need to be sure that the changes are reflected in the server. By default, your server
may not recompile JSP pages or reload classes that have been changed without being restarted. If you think you've
fixed an error but your changes don't appear to be reflected, try restarting the server. Also, examine your server
documentation to see how you can set it up to reload classes that have been changed and recompile JSP pages that
have been altered.

Using println and log Methods

Often used by practitioners and frowned upon by theorists, intermittent attribute and variable values dumped to output
by using various println and log methods can be very illuminating.

Using out.println is quick, requires no real setup or changes to your environment, and is unlikely to introduce any
additional errors in your JSPs. You see the results in your JSP page after execution. However, adding output to the
final, rendered page by using out.println will likely alter the presentation. It is not entirely a bad thing that
out.println alters the presentation because it makes it obvious for subsequent removal where you coded the
out.println statements.

If you want most of the convenience of using out.println without the possibility of altering your presentation, you
can direct debugging output to the server. The destination of output depends on your server and your server
configuration. You’ll likely need a console window open to catch the output.

In Tomcat, you get a console window by using the standard startup batch files. For Windows environments, remember
to set the command window properties to allow for scrolling or else your output may scroll into nowhere. Some servers
have a startup switch that opens a console window, which will receive output from System.out.println.

The log method of class GenericServlet writes to a server-dependent log file (in Tomcat, the log file is in
TOMCAT_HOME/docs/servlet.log). All you do to invoke the method is include the invocation in a declaration or a
scriptlet.

The following is an example of the log function in a JSP declaration:

<%!
 private double getBound(String bound) {
 log("In method getBound") ;
 return Double.parseDouble(bound) ;
 }
%>

Here’s an example in a scriptlet:
<% log("End of Table Generation") ; %>

Because log files typically append output, open the log file after JSP execution and view the results. It’s a bit tedious
to open the log, scroll to the bottom, and close the log, but just think of using the log method as another wrench in
your JSP toolbox.

If you decide to use logging or System.out.println, you can toggle this debugging information on or off using a
session debug flag. This method, as mentioned in the previous section on comments, will allow you to quickly
transfer from a testing to a production environment with minimal time and changes on your part.

Debugging Concurrency Issues

Developing code that works with concurrent users is tough enough when your application consists of components that
use visible code. Developing working code with components from nonvisible components just makes this more
difficult. Code that is not developed to be thread-safe usually won’t be. In addition, problems arising from timing issues
are very difficult, if not impossible, to re-create.

That said, there are a few tips that may prove useful in debugging problems that arise from concurrent access of your
JSPs.

You cannot solve a coding problem unless you can re-create it. The marketplace offers several tools to stress-test
Java servlets, which may be used to create several concurrent requests to JSP pages.

You can include a generous sprinkling of println calls that write information identifying the client (session) and the
threads. You can use the following line of code to track the client session:
<% System.out.println("Client Session ID = " + session.getId()) ; %>

You may use the following line to list the currently executing thread:
<% System.out.println("Thread Name = " +
 Thread.currentThread.getName()) ; %>

There’s always the possibility that the activity of writing output via System.out.println can introduce additional
timing problems or make the problems that caused the original error more difficult to reproduce.

You can always try to take advantage of a debugger. Since you already use some sort of IDE, and virtually all IDEs
come with a debugger, you probably have a debugger at your fingertips. However, I’m talking about JSP and servlet
debugging here, and not all Java IDEs have support for debugging JSPs. If you set breakpoints and step through the

code and timing is the root of the problem, you’ll rarely find the error, because code-stepping freezes the program and
allows you to look at a statement in isolation. The very nature of a multithreaded application is that not all statements
can be viewed in isolation. In short, using a code-stepping debugger is a less-than-perfect solution to a complex
problem. As JSP development becomes more popular, hopefully we will see more robust and useful JSP debugging
tools.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Tracking JSP Errors

JSP processing involves several steps, using several different software tools. An error encountered in using any of
these tools may be difficult to track down. In the following sections, I will discuss using the JSP page directive
attributes errorPage and isErrorPage to handle errors. I also cover the differences between JSP translation
errors, which are coding mistakes, and runtime errors, which may or may not be coding mistakes.

Recall that JSPs use the page directive to set properties of the JSP by way of assigning values to attributes. Two
attributes of the page directive especially applicable to JSP debugging are errorPage and isErrorPage. Also, the
JSP implicit object called exception is useful in handling JSP errors. Let's go ahead and look at the use and
importance of errorPage, isErrorPage, and exception next.

The errorPage Page Directive Attribute

The errorPage attribute names a JSP page that handles exceptions not handled in the current page. In the following
coding example, the errorPage attribute is a relative URL.

<%@ page errorPage="mydir/myErrorPage.jsp" %>

The virtue of using custom error pages is that your JSP code is not cluttered with handling errors. (Remember that
one of the design goals of JSPs is to separate business logic from presentation details.) Code that handles errors, a
business logic activity, should not be intermingled with code to handle the presentation.

The actual reporting of the error is not done within the page containing the page directive with the errorPage
attribute set. Instead, the reporting is done in the JSP page named as the errorPage, or the value of the errorPage
attribute. The page mentioned should itself use the isErrorPage attribute. Before showing an example of the
errorPage attribute in action, let’s first take a look at the isErrorPage attribute.

The isErrorPage Page Directive Attribute

The isErrorPage attribute identifies a JSP page to handle errors. The coding is straightforward:

<%@ page isErrorPage="true" %>

The isErrorPage attribute defaults to false.

The JSP example1.jsp, for example, generates a table of square and cube roots based on the request parameters
lobound and hibound. The JSP page directs errors not caught in the page to an error page. Listing 9-1 shows the
code for example1.jsp.

Listing 9-1: JSP example showing use of the errorPage attribute

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=837978814

<%-- Tell JSP to redirect uncaught exceptions to errorpageex1.jsp --%>
<%@ page errorPage="errorpageex1.jsp" %>

<html>
<head>
<title>errorPage and isErrorPage Demonstration</title>
</head>

<body bgcolor="#dddddd">

<%!
 private double getBound(String bound) {
 return Double.parseDouble(bound) ;
 }
%>

<%
 double loBound = getBound(request.getParameter("lobound")) ;
 double hiBound = getBound(request.getParameter("hibound")) ;
 double increment = (hiBound - loBound) / 5;

%>

<center>
Table of Roots from <%= loBound %> to <%= hiBound %>
<table border=2>
<tr>
 <td>Number</td>
 <td>Square Root</td>
 <td>Cube Root</td>
</tr>
<%
 double number, squareRootNumber, cubeRootNumber;

 for (int numIDX = 0; numIDX < 6; numIDX++) {
 number = loBound + increment * numIDX ;
 squareRootNumber = Math.sqrt(number) ;
 cubeRootNumber = Math.pow(number, 0.3333) ;
%>
 <tr>
 <td><%= number %></td>
 <td><%= squareRootNumber %></td>
 <td><%= cubeRootNumber %></td>
 </tr>
<%
 }
%>
</table>
</body>
</html>

The page directive at the beginning of Listing 9-1 directs exceptions to the JSP page errorpageex1.jsp. Notice
that the routine getBound does not catch any exceptions, notably the NumberFormatException. Any exceptions
will be directed to the JSP page errorpageex1.jsp.

Figure 9-2 shows what a faultless execution of the JSP page example1.jsp looks like.

Figure 9-2: Display of example1.jsp without errors

Notice the presence of the request parameters lobound and hibound on the browser location bar.

Change the value of hibound from 3000 to 3000Z. The new value for hibound will generate a
NumberFormatException. Because there is no code to catch the exception, you expect the processing to be
directed to the error page. Figure 9-3 shows what you will see.

Figure 9-3: Display of example1.jsp with errors

Figure 9-3 is output of the JSP page errorpageex1.jsp. Recall that errorpageex1.jsp is the value of the
attribute errorPage of the page directive of example1.jsp. Listing 9-2 provides the code for errorpageex1.jsp.

Listing 9-2: Code for error page errorpageex1.jsp

<%-- Tell JSP that this is an error page --%>
<%@ page isErrorPage="true" %>

<html>
<head>
<title>Using an Error Page</title>
</head>

<body bgcolor="#dddddd">

<P>
The Following Error Occurred in example1.jsp

on <%= new java.util.Date() %>

<hr>
<%=exception %>
<hr>

<p>Call 4-4444 and report the above line in red.

</body>
</html>

The error page can contain a list of probable causes, a list of contacts, e-mail links, or any other useful information.

An error page identified by the isErrorPage attribute can handle errors from multiple pages. For generic error
reporting, you might have a small set of core error pages with a few others to handle specific cases.

Caution The server output buffer is flushed prior to display of an error page. If the autoFlush attribute of the
page directive is set to true, the display of the error page may cause an error.

The exception Implicit Variable

You may wonder if you can catch exceptions yourself and forward error-processing to a JSP page using the
jsp:forward action, instead of using the errorPage and isErrorPage directives. Well, you can. Any JSP page
can be used to handle exceptions. However, only JSPs with the isErrorPage attribute set to true have access to the
implicit variable exception. During the rest of this discussion, when we talk about JSP error pages, I will be referring
to JSP pages with the isErrorPage attribute set to true.

Notice the following statement from Listing 9-2:

<%=exception %>

The expression <%= exception %> yields the following output (in this example):

java.lang.NumberFormatException: 3000Z

The exception variable represents the Throwable object that caused the JSP container to invoke the page named
as the error page. This variable exists only for the duration, or life, of the error page. You can hold on to the variable
by saving its value as an attribute as follows:
session.setAttribute("errorVarPageex11", exception) ;

Table 9-1 shows some handy JSP expressions using the exception variable.

Table 9-1: JSP Expressions Using the exception Variable

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=921275931#wbpch09fP133

Expression Meaning

<%=exception> Displays a description of the exception.

<%=exception.getMessage() %> Displays the message associated with the exception.

<%=exception.getlocalizedMessage() %> Displays a local version of the exception. If
localization parameters are not set,
exception.getlocalizedMessage returns the
same output as exception.getMessage.

<%=exception.printStackTrace() %> Displays a stack trace.

Remember that JSP error pages have access to the implicit variable exception. The implication is that non-error
pages do not have access to this variable. The truth is you can reference the exception variable as an attribute of
the implicit request object. You can think of the exception variable as a convenient reference for the value of the
request attribute javax.servlet.jsp.JspException.

JSP Translation Errors

As you should know by now, JSP pages are translated into Java servlets. When you introduce syntax errors in your
JSPs, you will generate compilation errors. Compilation errors will not be detected by error page redirection. Put
differently, you need functioning, syntactically correct JSP pages to use error pages.

The default output of a JSP translation/compilation error is server-dependent. The output should strongly resemble
what you would see if you compiled the generated servlet directly. Refer to Figure 9-1 to see an example of a screen
displayed in response to a translation error for the Tomcat Web server; your server should display something similar.

Your Web server should also generate log files describing, among other things, translation and runtime activity. You
should reference your server’s documentation and locate these log files, as one of them may provide details on
translation (compile-time) errors.

Recall that JSPs are loaded and translated when first referenced. Subsequent references do not cause a JSP page
retranslation; the server kicks off another thread and loads the existing copy of the previously translated servlet. The
JSP author can compile the JSP page and save the results of the compilation on the server. If the author compiles the
JSP page ahead of time, the first user to access the JSP page does not have to wait for JSP page translation. In
essence, the user is accessing a servlet.

Compiling your JSP pages ahead of time will not only save the end-user time when pages are first accessed, but the
author is assured that the pages are syntactically correct. Many servers have tools that enable you to compile the JSP
page; Tomcat has the JspC tool located in the bin directory.

When repairing translation errors, you should not make changes to the generated servlet directly. Even though you
know what you are doing, the next person may not. More important, the next time the JSP is compiled, the servlet will
be regenerated, causing any changes to be destroyed.

JSP Runtime Errors

Sadly, the execution of syntactically correct JSP pages can still generate runtime errors. Because JSP runtime errors
are essentially Java runtime errors, you can use Java exception handling mechanisms to catch and handle errors. In
particular, you may include try/catch blocks in Java scriptlet code and methods coded in Java declarations.

Within try/catch blocks, you cannot easily use the jsp:forward action to redirect activities to another JSP page.
The following syntax is not correct:

http://www.unltded.com/viewer.asp?bkid=2878&destid=198#198

<%
try {
 //Some Java code
}
catch (someExceptionClass sexobj) {
 <jsp:forward page="somePage.jsp">
}
%>

Instead, use the sendRedirect method of the class java.servlet.http.HttpServletRequest to redirect JSP
processing within a try/catch block, as shown in the following code:

<%
try {
 //Some Java code
}
catch (someExceptionClass sexobj) {
 response.sendRedirect("somePage.jsp") ;
}
%>

Of course, you can also use the JSP errorPage and isErrorPage attributes of the page directive, as shown
earlier.

JSP Exception Classes

The two exception classes specific to JSP are JspException and JspError. You encountered these classes in
Chapter 7, "JSP Tag Extensions." JspException is a subclass of Exception, and JspError is a subclass of
JspException (not class Error). Both JSP exception classes may be found in the javax.servlet.jsp package.

Note Unless you are writing custom tag libraries, you’re not likely to use these exception classes.

Now that you have a feel for the nature of the errors you’ll encounter as you author JSP pages, let’s discuss how to
track the errors down.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Examining a JSP Error

The laws of thermodynamics state that energy cannot be created or destroyed; it can only be transformed from one
form into another. You can make an analogous statement about JSP creation. Yes, JSPs do lots of work for you.
Think of all that effort — or energy — you can save by not having to code servlets to generate dynamic content.
However, work not done by you is transferred to the JSP translator. The JSP translator performs the task of changing
the JSP page into a servlet. While this process simplifies your development work, it can also, at times, make the
source of an error in a JSP more difficult to find.

JSPs get translated into servlets. Often, your diagnostics will refer to activity in the generated servlet. For this reason
alone, you should have a good handle on Java servlets to make advanced JSP development go more smoothly.
Although JSPs are touted as a Web page designer’s tool, a JSP author will have an extremely difficult time tracking
down errors if he or she doesn’t have a programming background or the help of somebody with one.

The following JSP syntax error generates a runtime error, which generates the error page shown in Figure 9-1.

Figure 9-1: Typical JSP error screen

<%!
 double loBound = getBound(request.getParameter("lobound")) ;

%>

The incorrectly coded JSP declaration should be coded as a JSP scriptlet. The correct syntax is as follows:

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=199364256

<%
 double loBound = getBound(request.getParameter("lobound")) ;

%>

Notice that the line numbers and the file references in the stack trace in Figure 9-1 do not refer to the JSP page but to
the contents of the generated servlet (although the file location points to the JSP page). In addition, nothing in the
diagnostic directly discusses JSP declarations or JSP scriptlets.

Most JSP-enabled servers have an option that allows you to save the generated source code. Hunt that option down
and switch it on now. You’ll have a hard time finding and solving problems unless you can see the actual generated
servlet source code.

Note Tomcat uses a directory called "work" under TOMCAT_HOME where intermediate files, including compiled
JSP servlets, are stored.

JSP pages usually generate HTML, possibly combined with Javascript, that is returned to the client's browser. Any
page with more than one programming languages can be quite confusing to read. Finding errors in these situations
can be challenging. Your JSP pages may be generating HTML or scripting code that contains errors. Given the
interesting ways different browsers render HTML, you can have resulting pages that render properly on one browser
but fail to render on a different browser.

While multiple clients may access the same JSP pages, concurrent access opens up a set of debugging issues.
During debugging, you’ll need ways of identifying different clients and different threads. I’ll have more to say about
debugging when there are multiple (concurrent) clients later in this chapter.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

In this chapter, you learned about using sessions in your JSP pages. Sessions are a convenient way for an application
to share data among multiple JSP pages during the same client session. However, they are resource intensive, so
remember to examine if you need to use them, depending on the needs of your application. In conclusion, sessions
are a powerful tool that overcome the stateless HTTP protocol, thus making our Web applications more robust and
user-friendly.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=337348285

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary of Session Methods

Table 5-2 is a list of methods you can use to manage and manipulate the session object. Most of the method names
are self-explanatory. Most of these methods throw an IllegalStateException when invoked from an invalidated
session object. Unless otherwise specified, the method throws the previously mentioned exception.

Table 5-2: Session Methods
Method Description

Object getAttribute(String) Fetches an object that was previously stored in the
session object with setAttribute.

void setAttribute(String, Object) Assigns a value to a session object. Returns null if
the property does not exist in the session object.
Also, you cannot store primitive types in session
objects; you need to use a wrapper class to
generate an object representation before saving to
the session object. Any object listening for changes
to the session object has its valueBound method
executed.

Enumeration getAttributeNames Returns the list of objects stored in the session
object.

long getCreationTime Returns the number of milliseconds since January
1st, 1970, since the session was created.

String = getId Returns the session ID.

long = getLastAccessedTime Returns the number of milliseconds since January
1st, 1970, since the session was last accessed.

int getMaxInactiveInterval Returns the number of seconds of inactivity that
must occur before the session times out. When this
method returns a negative number, the session
never timeouts.

void setMaxInactiveInterval(int) Sets the number of seconds of inactivity before a
session timeout.

void invalidate Removes all objects stored in the session object and
invalidates the session. Any object listening to
changes in the session object has its
valueUnbound method invoked.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=813486175

boolean = isNew Returns true when a session object is created and
known to the server but not known to the client; false
otherwise. If your application relies on cookies to
track sessions and a client has disabled cookies,
isNew always returns true.

void removeAttribute(String) Removes the object referenced by the property
name argument from the session object. All objects
listening to changes in the session object are
notified, and their respective valueUnbound
methods are executed on the server. If the property
named in the argument does not exist in the session
object, nothing happens (not even the invocation of
the valueUnbound methods).

You may see session methods putValue, getValue, and getValueNames. These three methods have been
deprecated since the 2.2 release of the Java Servlet API.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Understanding Sessions

Simply put, a session is a series of client requests and server responses such that the requests and responses are
somewhat dependent on one another. Put differently, a session is a group of requests and responses coming from
and going to the same client over a continuous period of time. A session is the difference between a simple exchange
of information and an extended conversation. Sessions make possible complex Web transactions, such as electronic
shopping cart implementations and interactive data analysis (fetch data, fine-tune selection based on data returned,
and so on).

The JSP/servlet implementation of a session is an object called, appropriately enough, a session object. The session
object is available to JSPs and servlets. The JSPs and servlets use the session object to store and retrieve data
relevant to the ongoing session.

HTTP, the major Internet protocol, is stateless. HTTP sends a client request to a server. The server processes the
client’s request and uses HTTP to send a response back to the client. HTTP works at the single request/response
level, meaning that each request is handled independently of any other. Your application consists of independently
sent HTTP requests and responses to these requests.

Note You may have heard about HTTP 1.1, which can use a persistent connection. The basic idea is to group
requests and send them as a single transmission, thereby avoiding some of the overhead incurred by
initiating several transmissions.

No one would fault you for thinking that a persistent connection somehow implies a session as discussed
previously. However, the HTTP 1.1 persistent connection involves network transmissions and has nothing to
do with the server maintaining a connection with the same client.

As previously mentioned, HTTP is a stateless protocol. You have to graft JSP and servlet features and capabilities
atop HTTP to create, maintain, and track sessions. In short, these features are methods available to your JSPs by
accessing the aforementioned session object.

JSPs use the implicit session object to track the requests of a single client and to distinguish one client from another.
Consider an application used concurrently by multiple clients. Each client progresses through a series of steps to
complete a transaction. A good, if not overused, example of such a multi-step transaction is an electronic shopping
cart. A client must complete steps A, B, and C before proceeding to step D. Meanwhile, other clients are progressing
through the same steps. By using sessions, the application is able to identify what clients are doing and what steps
the clients are executing. Imagine the chaos if an application mixes up clients’ shopping carts!

The Session Life Cycle

This section discusses how a session is created, how the client and server use the session to maintain state and
communicate, and how a session dies.

Creating a Session

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=954633440

The client requests the display of a Web page from a server. The request causes the server to issue a call to the
getSession method. The getSession method requests that a session be established for this client-server pair. The
successful execution of getSession results in a returned object, the session object, mentioned in the previous
section, as an instance of class HTTPSession.

Recall that JSPs use a group of implicit objects, one of which is the session object. The session object is implicit
because your JSP code need not explicitly create the session object. Having immediate access to the session object
through a well-defined interface is one advantage of using JSPs. Another way of saying that JSPs automatically have
access to the session object is saying that JSPs automatically participate in sessions.

Note Although JSP pages by default have access to the implicit session object, you can override the default by
coding the following page directive:
<%@ page session="false" %>

The session object holds data relevant to the session. However, you still need a mechanism for identifying the client
among possibly thousands of clients. The solution is for the server to generate a unique session ID. The server
returns the session ID to the client by using a cookie (if the browser has cookies enabled) or by appending the session
ID to a URL (called URL rewriting). However, there is no session connecting the client to the server until the client
returns the session ID back to the server by issuing a new request for some server resource.

Note If the browser (client) has disabled cookies or the server does not support URL rewriting, no session ID is
returned from the client to the server. Now, every JSP page that requests some server resource causes the
server to generate a new session object. That means information does not pass between pages.

Your JSP pages or servlets never have to look at the session ID. The format of the session ID is dependent on the
Web server. Actually, the session ID is the sole piece of information identifying the session that is presented to the
client.

Client-Server Interaction During a Session

Every time the client requests some resource available from the server, the client passes the session ID as part of the
request. The server uses the session ID to access the requested resource. Think of the server maintaining a collection
of dictionaries or hash tables — one for each client — and the session ID is the entry into the dictionary/table for that
client. Figure 5-1 depicts interaction between a client and a server during a session.

Figure 5-1: Client-server interaction during a session

The server has established a session with client A by issuing a getSession method invocation. (The call to
getSession is not shown in Figure 5-1.)

Note The session ID in our example has a value of A101X. The value used for the session ID is purely for
illustrative purposes. For example, a session ID returned by the Tomcat server by the call to getSession in
a JSP page by coding the expression <%= request.getSession %> is
org.apache.tomcat.session.StandardSession@6dfa45.

The session ID for client A is different than the session ID for other clients. An important point is that the JSP page
need not explicitly use the session ID when communicating with the server. You do not code the session ID as an
argument to JSP or servlet methods.

Figure 5-1 depicts the session object as a table, with the left column containing names and the right column containing
values. In JSP and servlet parlance, the left column contains the session object’s attributes and the right column
contains the attribute values.

The method invocation putAttribute(attributeName, attributeValue) places the name-value pair in the
session object. Figure 5-1 shows the name-value pair together with the session ID being transmitted to the server.
The server knows to access the session object for client A because of the session ID sent with the request.

In a JSP page, you can code the putAttribute method as a scriptlet:

<% session.setAttribute("nameLuLu", (Object)"LuLu"); %>

Figure 5-1 also shows a client (JSP page, for example) retrieving the value of a previously saved session attribute
named obj3Name. Again, the session ID gets sent to the server along with the attribute name. The session ID for
client A points the way to the session object stored for client A. The server reacts to the client request by accessing
the session object and returns the value of the requested attribute.

In a JSP page, you can code the getAttribute method invocation in a scriptlet or expression:

<%= session.getAttribute("nameLuLu") %>

Your JSP pages and servlets get and set attribute values for the life of the session. The session object provides
access to the attribute values and the session ID provides access to the session object.

Note You may see calls to the methods getValue and setValue in some JSPs or servlets that purport to fetch
or change session attribute values. The getValue and setValue methods are deprecated as of Java
Servlet 2.2, replaced by getAttribute and setAttribute.

In short, your JSPs and servlets access and change session object data by using setAttribute and
getAttribute methods.

Saving Session Data

Session data is saved for the duration of the client connection to the server. When a client logs off a site, the session
data generated during the client visit would normally be destroyed once the client logged off the site. If you have a
need to save client data, you should use a storage-based solution, such as using a database or using cookies, to save
the data.

Using Cookies to Save Session Data

A cookie is a piece of data placed on a client by a server. Cookies were developed for the express purpose of
providing a mechanism to save session data. Cookies can be temporary (for the life of the session) or semi-
permanent (days or months).

Cookies have several limitations that make them less than perfect as a session tracking mechanism. Browsers are
required to accept 20 cookies per site, 300 cookies per user and can limit the size of the cookie to 4K.

One severe limitation in using cookies to store session data is that the client has control over the storage of cookies
on the client machine. If the client turns cookies off, the application that relies solely on cookies to save session data
cannot do so. That's why applications that rely on sessions implement multiple session tracking mechanisms.

You can use cookies by invoking the methods in the class javax.servlet.http.Cookie. Table 5-1 lists some of
the methods available to JSPs (and, therefore, to servlets) to use cookies.

Table 5-1: Methods Used to Manipulate Cookies
Method Description

Object clone Returns a copy of the cookie.

String getComment Returns the comment set for this cookie with the
setComment method. If no comment exists,
getComment returns null.

void setComment(String) Specifies a comment that describes the cookie's
purpose.

String getDomain Returns the URL set for this cookie with the
setDomain method.

void setDomain(String) Specifies the domain where this cookie should be
presented.

int getMaxAge Returns the maximum age for the cookie, possibly
set by setMaxAge. The default value of –1 means
the cookie lasts until the client closes the browser.

void setMaxAge(int) Sets the maximum age for the cookie in seconds.

String getName Returns the name of the cookie set with the cookie
constructor.

String getPath Returns the location of the cookie on the server set
by the setPath method.

void setPath(String) Specifies a path where the client should return the
cookie.

boolean getSecure Returns true when the browser sends the cookie
over a secure protocol, false otherwise.

void setSecure(boolean) Indicates whether the cookie should be sent using a
secure (HTTPS or SSL) protocol.

String getValue Returns the value of the cookie set with the
setValue method.

void setValue(String) Specifies a value for the cookie.

int getVersion Returns the version of the protocol, 0 (original) or 1
(Netscape) set with the setVersion method.

void setVersion(int) The version of the cookie protocol this cookie
compiles with.

Listing 5-1 shows adding a cookie in a JSP and listing the names of all cookies.

Listing 5-1: Adding a cookie and listing all cookies in a JSP

<html>
<head>
<title>Cookies in JSP</title>
</head>

<body bgcolor="#dddddd">
<%
//Create a new cookie and add to the rest
//"Name", "Value"
Cookie ch5Cookie = new Cookie ("Ch5Cookie", "Chapter 5");
//This cookie will persist for 1 minute
ch5Cookie.setMaxAge(60*2) ;
ch5Cookie.setComment("This is a test Cookie for Chapter 5") ;
response.addCookie(ch5Cookie);

//
//Loop over all cookies, printing out some cookie info
Cookie aCookie = null ;
Cookie[] allCookies = request.getCookies() ;

for (int cIDX = 0; cIDX < allCookies.length; cIDX++) {
 aCookie = allCookies[cIDX] ;
 out.print("Cookie # " + cIDX + ": Name = " + aCookie.getName()+ "
") ;
 out.print(" Value = " + aCookie.getValue()+ "
") ;

}

%>
</body>
</html>

To add a cookie, you instantiate a cookie object and add attributes to the cookie followed by invoking the addCookie
method from the response object.

Class cookie has no method to access a cookie by name. The technique is to grab all the cookies by invoking the
getCookies method from the request object. Loop over the array of cookies and use cookie methods to extract the
desired information.

As an aside, note the use of the implicit out object in the scriptlet to generate HTML output. Figure 5-2 shows the JSP
page in Listing 5-1.

Figure 5-2: JSP page with cookie information

Terminating a Session

The session can be terminated by a client logging out (assuming the client had to log in), by a timeout (period of client
inactivity), or by an explicit call by the client or server of the session method invalidate. The session object is
tagged for garbage collection after the session terminates.

Should All Your JSPs Participate in Sessions?

You may not want to use the session object. Think about it — the session object allows a client and a server to have
access to the same data, the data stored in the session object. If you do not need this requirement, and you do not
need for the client and server to share some data, then you may not need to establish a session.

Later, you’ll see that several JSPs can access the session object. If you don’t want several JSP pages to have access
to the same information, you probably do not need to establish a session.

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fg0502_0.jpg&image_id=8&previd=IMG_8&titlelabel=Figure+5-2%3A&title=JSP+page+with+cookie+information

Recall that JSP participation in sessions (JSP access to the implicit session object) is the default behavior. The
pertinent question is whether or not you should, at times, squelch the default behavior of JSP session participation? In
other words, is there a reason why sessions are not good for your Web application?

The answer is that sessions do, indeed, exact a performance penalty on your application. The main performance
penalties include use of memory and the amount of time and server resources required to access and manipulate the
session object. Remember that no server is an island; think of all those other clients out there hungry for server
resources. If your application has no need of sessions, merely code the page directive with the session attribute set to
false. If you try to access the session object in a page that isn't participating with sessions, you receive a fatal error
from your JSP container.

Sharing Data with Sessions

As previously mentioned, one good use of sessions is to share data with a server and a client. The session object with
the object’s associated data, is known to all JSPs used by a client during a session. If JSP page A invokes JSP page
B, JSP page B has access to data in the session object established by JSP page A because JSP pages A and B are
of the same session.

Listing 5-1 shows a JSP page that has references to the session object and a link to another JSP page. The
references to the session object are in italics.

Listing 5-2: JSP page A with references to the session object

<%-- Tell JSP that this page renders HTML --%>
<%@ page contentType="text/html" %>
<html>
<head>
<title>Show Session Data Across JSP Pages</title>
</head>

<body bgcolor="#dddddd">

Some Session Data: <p>

<p>Session = <%= request.getSession() %>
<p>Session ID = <%= session.getId() %>
<P>Session Create Time = <%=session.getCreationTime()%>
<P>Session Last Access Time =
<%= session.getLastAccessedTime() %>
<P>Session Kept Open (alive) Without Inputs For
<%= session.getMaxInactiveInterval()%> Seconds
<P>Adding 100 to the time the session is Kept Open (alive) Without Inputs.
<% session.setMaxInactiveInterval(
 session.getMaxInactiveInterval() + 100); %>
<p>Set session attribute nameLuLu to string "LuLu"
<% session.setAttribute("nameLuLu", (Object)"LuLu"); %>

Click Here for Next JSP Page

</body>

</html>

Figure 5-3 is the page displayed from the JSP code in Listing 5-2.

Figure 5-3: The JSP page resulting from the code in Listing 5.1

Recall that JSP pages, by default, participate in sessions. If the JSP page that would be displayed when the user
clicks on the link Click Here for Next JSP Page does not have a page directive that denies session
participation (<%@ page session="false" %>), the JSP page has access to the session object.

When you have multiple JSP pages accessing the same objects within the session object, you may have to pay
special heed to synchronization issues. JSP does not help you here — you must tend to such issues yourself. You
also may have to tend to changes in the session object, which is covered in the next section.

Tending to Changes in the Session Object

Because the session object may be shared among all servlets and JSPs in a client’s session, the objects in your
application may need to know when objects are added, removed, or changed to the session object. Fortunately, the
Java servlet API provides for an event-listener mechanism familiar to Java programmers such as you.

When a class implements the javax.servlet.http.HttpSessionBindingListener interface, the objects
instantiated from the class are notified of changes to the session object. We say that an object is bound to a session
when the object implements the interface. When the application issues a setAttribute or removeAttribute
method call, the bound objects are notified and can take action. One common use is to allow objects to save their
state when the user, or application, is about to terminate the session.

The HttpSessionBindingListener interface has two methods:

public abstract void valueBound(HttpSessionBindingEvent hsbe)

An object implements this method to be notified of additions to the session object by use of the setAttribute
method.
public abstract void valueUnbound(HttpSessionBindingEvent hsbe)

An object implements this method to be notified of removals from the session object by use of the removeAttribute
method.

Invoking ValueBound and ValueUnbound

Here’s how valueBound and valueUnbound get invoked based on session object activity. First, you create an
object from a class that implements the HttpSessionBindingListener interface:

public class ClassForMyObj implements
 HttpSessionBindingListener

ClassForMyObj myObj = new ClassForMyObj() ;

Next, you bind the object to the session using putAttribute:

sessionObject.setAttribute("AttribName", myObj) ;

After execution of the putAttribute method, the server executes the implementation of valueBound for object
myObj.

When the application takes some action that causes the removal of object myObj, either by session termination using
invalidate or removing the attribute using removeAttribute, the server executes the implementation of
valueUnbound for object myObj.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Chapter 5: JSP Web Sessions

Overview

Suppose that you encounter a Web site that looks interesting and you want to explore it. Before you proceed, the site
requests that you provide some information. You dutifully enter the requested information and click a link on the site,
but then the site asks you to enter the same information you entered a few screens earlier. In disgust, you move on
and find another interesting site. As with the previous site, the second site also requests that you enter information.
You comply, click a link, and proceed to explore the site unfettered. Unlike the first site you visited, the second site
“knows” who you are and recalls the previously entered data. The programmers of the second site have established a
way for the site to remember who you are.

If you, the Web applications developer, want your application to remember previous visits by clients, you have to add
something extra to your Web application called Web sessions.

This chapter describes how you implement Web sessions with the help of JSP features. You can read about Web
sessions in general and JSP support for Web sessions in particular. This chapter also includes several JSP pages that
implement JSP Web session support.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=814358501

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You’ve covered a lot of ground in this chapter! You've read about using static content in your JSP pages. You've also
looked at the different types of JSP tags, including those that are programmable and those that are directives. We will
be able to combine these elements to create working applications once we've covered Web sessions and how to use
JavaBeans with your JSPs in the next two chapters.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=659931002

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

JSP Implicit Objects

You, the JSP programmer, have access to several predefined objects known as implicit objects. Some of these
objects correspond to the value of the scope attribute for the useBean action described previously. Others represent
the request and response objects for the generated servlet. Because the implicit objects are objects, they have scope
like other Java objects. Table 4-4 lists the essential details of the JSP implicit objects.

Table 4-4: JSP Implicit Object Scope and Descriptions
Object Name Scope Description

application Application Represents the servlet context, or where the JSP is
executing. The application object is an instance of class
javax.servlet.ServletContext.

config Page Represents the servlet configuration. Object methods
enable you to store and retrieve initialization data. These
objects are instances of the class
javax.servlet.ServletConfig.

exception Page Represents a Throwable object. Only JSP pages that
set the isErrorPage attribute to true define this implicit
object.

out Page Represents the output sent back to the client browser.
The out object is an instance of
javax.servlet.jsp.JspWriter.

page Page Represents the current JSP page. The page object is an
instance of class Object and can be referenced by the
Java keyword this.

pageContext Page Represents the current JSP page context. This object is
an instance of class
javax.servlet.jsp.PageContext.

request Request Represents the request coming from the client for
processing by the JSP page. The request object is an
instance of class javax.servlet.ServletRequest.

response Page Represents the response sent back to the client browser,
generated by the servlet derived from the JSP page. The
response object is an instance of class
javax.servlet.ServletResponse.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=390882188

session Session Represents the session created for the client. The
session object is an instance of class
javax.servlet.http.HttpSession.

Listing 4-7 shows a JSP page that accesses some of the methods in some of the implicit objects listed in Table 4-4.

Listing 4-7: JSP showing some implicit object methods

<%@ page contentType="text/html" %>
<html>
<head>
<title>Implicit Variable example</title>
</head>

<body>
Server Info is:

<%= application.getServerInfo() %>

Host Name: <%= request.getRemoteHost() %>
Session ID: <%= session.getId() %>
</body>

</html>

Notice that you need to reference only the object. Figure 4-2 shows the resulting page shown in Internet Explorer.

Figure 4-2: Internet Explorer screen showing page generated by Listing 4-7

For details on the supported methods attached to the implicit objects, refer to the appendixes or your Java
documentation for the classes mentioned in Table 4-4. For example, to determine what methods are attached to the
request object, reference the documentation for class javax.servlet.ServletRequest.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Using Beans in a JSP Page

Now that we've examined what JavaBeans are in the first half of this chapter, we are going to look at how we can use JavaBeans in our JSP
pages. There are three important JSP actions required to interact with beans in your JSP pages. The jsp:useBean action is used to make a
JavaBean known to your JSP page. The jsp:setProperty and jsp:getProperty actions are used to change a bean property and query a bean
property respectively.

Here’s a JSP action that makes the calculator bean shown in Listing 6-1 known to a JSP page:

<jsp:useBean id="CalcBean" class="cbean.CalcBean" />

The above JSP action states that a JavaBean called CalcBean in package cbean goes by the name CalcBean when referenced in the JSP
page. The id attribute does not need to be the same as the class name.

As noted in Chapter 4, the jsp:useBean action has the following format:

<jsp:useBean id="beanInstanceName" class="className"
 scope="beanScope" type="classType" />

You can read more about the scope and type attributes later in this chapter. To use the bean shown in Listing 6-1 now, you only need the id
and class attributes.

To refer to the properties of CalcBean, you use the jsp:getProperty and the jsp:setProperty actions respectively. For example, to refer
to the operation property, you code:

<jsp:getProperty name="CalcBean" property="operation" />

Here, the value of the name attribute must match the value of the id attribute in the jsp:useBean action.

To change the value of a property of our CalcBean from a JSP page, code a jsp:setProperty action as follows:

<jsp:setProperty name="CalcBean" property="operation" value="*" />

Variations on a Theme

You can use other JSP constructs to access bean properties, such as JSP expressions. For example, the following expressions also read and
write the operation property of our CalcBean:

To read the value of the bean property:
<%= CalcBean.getOperation() ; %>

To write the value of the bean property:
<%= CalcBean.setOperation("+") ; %>

Use scriptlets to load bean properties into Java variables. For example, the following expression hangs onto the value of a bean property for
possible use in your JSP pages:
<% int enteredOperand1 = CalcBean.getOperand1() ; %>

Now, you can use the Java variable enteredOperand1 in expressions or scriptlets, as follows:

<% if (enteredOperand1 > 1000000) { %>
 <p> You Entered a large number

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=107540702

<% } else { %>
 <p> You Entered a small number
<% } %>

You can combine expressions within scriptlets as follows:
 <% if (enteredOperand1 > 1000000) { %>
 <p> You Entered <%= enteredOperand1 %>, a large number
<% } else { %>
 <p> You Entered <%= enteredOperand1 %>, a small number
<% } %>

You can combine JSP actions to access bean properties with static HTML text as follows:
<% if (enteredOperand1 > 1000000) { %>
 <p> You Entered <jsp:getProperty name="CalcBean"
 property="operand1" />a large number
<% } else { %>
 <p> You Entered <jsp:getProperty name="CalcBean"
 property="operand1" />a small number
<% } %>

Notice how the scriptlets include curly braces in order to construct valid Java statements.

The following construct will not translate:
<% int enteredOperand1 = <jsp:getProperty name="CalcBean"
 property="operand1" /> ; %>

You can use the JSP actions in place of static page text, not Java code.

You’ve now seen some examples of JSP actions, expressions, and scriptlet code that make JavaBean properties known to a JSP page. Before
you get into an example of displaying the values of CalcBean properties in Web pages, let’s begin by exploring an example of how to collect
values of CalcBean properties to the bean.

Collecting Values of Bean Properties from Web Pages

The following example shows a Web page that collects some inputs by using an HTML form, and then makes this data known to a JavaBean
referenced within a JSP page. Figure 6-1 shows the Web page, calcpage.html, that collects the inputs.

Figure 6-1: Web page that collects input for the Calculator Bean

For the purpose of discussion, Figure 6-1 contains all of the essentials. You don’t have to be a rocket scientist to deduce that the input field
Operand1 refers to the bean property operand1, and so on. Listing 6-2 shows the code for the Calculator Bean Web page shown in Figure 6-1.

Listing 6-2: Form used to get input for the CalcBean

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fg0601_0.jpg&image_id=10&previd=IMG_10&titlelabel=Figure+6-1%3A&title=Web+page+that+collects+input+for+the+Calculator+Bean
http://www.unltded.com/viewer.asp?bkid=2878&chnkid=962309439#wbpch06fP216

<html>
<head>
<title>JSP Sample Page - Calculator Bean</title>
</head>
<body bgcolor="#dddddd">
<center>

<h1>A Simple Calculator</h1>
<!-- Here is the reference to the JSP that uses CalcBean -->
<form name="calcform" action="calculate.jsp" method="POST" >

<p>Enter Operand1 and Operand2 (Integers)

and Select an operation From the Pull Down

Menu, then Click Calculate to Continue

<hr width="50%">
<table>
<tr>
 <td><P>Enter Operand1:</td>
<!-- Entered value to be CalcBean property called operand1 -->
 <td><input type="text" name="operand1" value="" width="25"></td>
</tr>
<tr>
 <td><P>Enter Operand2:</td>
<!-- Entered value to be CalcBean property called operand2 -->
 <td><input type="text" name="operand2" value="" width="25"></td>
</tr>
<tr>
 <td><P>Select Operation:</td>
<!-- Selected value to be CalcBean property called operation -->
 <td><select NAME="operation">
 <option> +
 <option> -
 <option> *
 <option> /
 </select>
 </td>
<tr>
<!-- Click here to invoke the JSP page coded in the FORM tag -->
 <td><input type="button" name="Calculate"
value="Calculate"></td>
</tr>
</table>
<hr width="50%">
</center>

</form>
</body>
</html>

The first thing you may notice about calcpage.html is that the Web page is not a JSP. Changing the Web page into a JSP simply requires
changing the name, depending on the Web server used. For Tomcat, files with an extension .jsp are recognized as JSP pages. If we named the
preceding HTML page calc.jsp, Tomcat would take the Web page through the translation process, generating and storing a servlet on the
server for subsequent execution. Because this page contains no JSP expressions, scriptlets, actions, or means of generating dynamic content,
let’s leave it as an HTML page for now.

Calcpage.html does have code that refers to the JSP that uses the calculator bean. The following line does just that:

<form name="calcform" action="calculate.jsp" method="POST" >

The following form input fields capture the data that corresponds to the properties of CalcBean:

<input type="text" name="operand1" value="" width="25">
<input type="text" name="operand2" value="" width="25">
<select NAME="operation">
 <option> +
 <option> -
 <option> *

 <option> /
</select>

When you enter numbers, select an operation, and click the “Calculate” button, the data entered in the form is sent to the server and the JSP page
(calculate.jsp) is translated (if necessary), and then executed. The JSP calculate.jsp contains JSP coding constructs that access the
entered data and invokes methods coded in CalcBean.java. You can dissect calculate.jsp in the following section.

Displaying and Using Values of Bean Properties in JSP Pages

Figure 6-2 shows calculate.jsp as displayed with the values of CalcBean properties derived from inputs entered in calcpage.html.

Figure 6-2: JSP page displaying values of CalcBean properties

Looking at the rendered JSP page tells little about the page’s workings. After all, you’re looking at generated HTML now, not JSP code. Listing 6-3
provides the code for calculate.jsp.

Listing 6-3: Using the CalcBean in JSP based on user input

<%-- Tell JSP that this page renders HTML --%>
<%@ page contentType="text/html" %>
<%-- Tell JSP to use the bean CalcBean --%>
<jsp:useBean id="CalcBean" class="cbean.CalcBean" />
<%-- Tell JSP to map CalcBean properties to like-named input parameters --%>
<jsp:setProperty name="CalcBean" property="*" />
<html>
<head>
<title>Show Calc Results bean</title>
</head>

<body bgcolor="#dddddd">
Here's what was entered from <i>calcpage.html</i>: <p>
<P>The next 4 lines show using the jsp:getProperty action to fetch bean properties
<%-- jsp:getProperty writes the value of the bean property where coded --%>
<p>Operand1 <jsp:getProperty name="CalcBean" property="operand1" />
<p>Operand2 <jsp:getProperty name="CalcBean" property="operand2" />
<p>Operation <jsp:getProperty name="CalcBean" property="operation" />
<p>Result <jsp:getProperty name="CalcBean" property="result" />

<P>The next 4 lines show using the request implicit object to fetch input properties
<%-- Access input parameters by accessing the request object. --%>
<p>Operand1 <%= request.getParameter("operand1")%>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=962309439#wbpch06fP286

<p>Operand2 <%= request.getParameter("operand2")%>
<p>Operation <%= request.getParameter("operation")%>
<p>result - not an input parameter!
<%= request.getParameter("result")%>

<p>The next group of lines access and display bean properties by using scriptlet code, expressions
 and JSP actions
<%-- Invoke the 'get' method of the bean directly to get the property value --%>
<% int enteredOperand1 = CalcBean.getOperand1();
 int enteredOperand2 = CalcBean.getOperand2();
 if (enteredOperand1 > enteredOperand2) { %>
<%-- You may use expressions, actions and scriptlets together in your JSPs as shown below --%>
 <p> <jsp:getProperty name="CalcBean" property="operand1" /> is larger than <%= enteredOperand2 %>
<% } else { %>
 <p> <%= enteredOperand1 %> is smaller than <jsp:getProperty name="CalcBean" property="operand2" />
<% } %>

</body>

</html>

Here’s the rundown on the JSP code included in calculate.jsp:

The JSP directive shown in the following tells the JSP engine that the results of the dynamic text generation is HTML:
<%@ page contentType="text/html" %>

You do not need to code this because the value of the contentType attribute is the default.

Here’s the line in the JSP file that directs JSP to access the bean class CalcBean:

<jsp:useBean id="CalcBean" class="cbean.CalcBean" />

As mentioned previously, JSP actions are coded as XML tags — note the ending tag />. Also, in Listing 6-1, CalcBean was placed in a package
called cbean. Note the value of the class attribute in the above jsp:useBean tag.

The value of the id attribute is the instance of CalcBean used in JSP page(s) that access the bean. You do not need to name the instance the
same as the class name.

The jsp:useBean action does not make property values known to your JSPs. You cannot read or write bean property values without coding the
jsp:useBean action. In the following section, you can take a closer look at JSP statements that manipulate bean property values.

JSP Code That Reads and Writes Bean Property Values

You read bean property values by coding the jsp:getProperty action and write property values by coding the jsp:setProperty action. If
you accessed bean property values in your JSPs immediately after coding the jsp:useBean action, you would access the default, or initialized,
property bean values. Make sure that your beans contain meaningful data before accessing the beans’ property values. This can be done
using the jsp:setProperty action in a variety of ways, which we look at next.

The jsp:setProperty action coded in calculate.jsp changes the values of all the bean properties with like-named input parameters.

<jsp:setProperty name="CalcBean" property="*" />

The input parameters come from the <FORM> submitted in calcpage.html. The single JSP action shown above matches the names of the FORM
input elements to the names of the bean’s properties and uses the values from the form as the values of the bean properties. Put differently, the
above JSP action is a very handy and quick way of sticking input data into a bean occurrence.

Did you think it was a happy coincidence that the input FORM elements in calcpage.html have the same names as the properties in bean
CalcBean? Later in this chapter, you learn that the names of bean properties do not need to match those of request-input parameters and you
can learn how to change bean properties when the names differ.

You can get your hands on the values of the bean properties in a number of ways. Here is a JSP action that fetches the value of the operand1
bean property:
<jsp:getProperty name="CalcBean" property="operand1" />

Here is a JSP expression that fetches the value of the FORM input parameter by accessing the implicit JSP request object:

<%= request.getParameter("operand1")%>

Caution If you invoke the getParameter method for the request object for a nonexistent parameter, the method returns null, as shown in the
following code:
<p>result - not an input parameter!
<%= request.getParameter("result")%>
Refer to Figure 6-2, and you can see that JSP renders the word null on the page.

Here is a JSP expression that invokes the bean accessor method directly:

<%= CalcBean.getOperand1(); %>

Notice that getOperand1 is the accessor method coded within CalcBean in accordance with the naming convention described earlier in this
chapter; however, you can invoke any method in CalcBean in a JSP expression.

It’s sensible to question which of the preceding methods is preferable for accessing values of bean properties. This question is tackled in the
following section.

Comparing Ways to Access Bean Properties in a JSP Page

Not surprisingly, each method of accessing bean property data has certain advantages and disadvantages.

Using the jsp:getProperty action is more explicit inasmuch as the jsp:getProperty action is specifically designed to access bean
properties. In addition, using the action may be more understandable by nonprogrammers than coding Java method invocations.

Using the bean get method invocation is shorter (requires less code) and can be used in some places where the jsp:getProperty action
cannot. For example, the following line of JSP code causes a translation error:
<% int enteredOperand1 = <jsp:getProperty name="CalcBean"
 property="operand1" /> ; %>

Whereas the following line of JSP code does not:
<% int enteredOperand1 = CalcBean.getOperand1(); %>

Using the implicit request object is, strictly speaking, not accessing a bean property. The request object access fetches the bean property data
because CalcBean and calcpage.html were craftily coded to use the same names for the bean properties and the input parameters.

Before you mutter to yourself, “What’s the big deal?” take a look at the three lines of JSP code here:
<jsp:setProperty name="CalcBean" property="operation" value="Lou"/>
<p>From getProperty: <jsp:getProperty name="CalcBean" property="operation" />
<p>From request object: <%= request.getParameter("operation") %>

The first line changes the value of the bean property to the string Lou by using the jsp:setProperty action. The second line fetches the
recently changed value and generates the following line of output:
From getProperty: Lou

The third line accesses the value of the parameter stored in the implicit request object. Before you read on, do you think the jsp:setProperty
action changed the value of the parameter of the request object? Here’s the line resulting from the expression that references the value of the
parameter of the request object:

From request object: +

No surprise here because you’ve read that invoking the getParameter method from the request object does not access the bean property.

The moral of the story is that if you want to access a bean property, use a JSP technique designed to access bean properties. If you can get away
with using the jsp:getProperty action, do so. If you want to store the value for use in a Java variable for use in a scriptlet or some other use,
invoke the bean accessor method directly.

As previously mentioned, bean property names do not need to be the same as request input properties. If they are not the same, you cannot use
the following JSP action to change the values of bean properties:
<jsp:setProperty name="CalcBean" property="*" />

Read on to see how to use other attributes of the jsp:setProperty action to change bean property values.

More About jsp:setProperty

Let’s take a look at all the attributes of the JSP action jsp:setProperty. You may code three versions of jsp:setProperty. One version is
what you’ve already seen, the version to change all bean properties with names matching those of the request object. Another version is shown
in the following segment of code:
<jsp:setProperty name="CalcBean" property="operation" value="Lou"/>

This version follows the syntax for the jsp:setProperty action shown here:

<jsp:setProperty name="beanName"
 property="propertyName"
 value="scriptletOrStringValue" />

Here, you change the value of a bean property by referring to that property and assigning a value. You can code a string or dynamically generate
a value. For example, you may use the value of an input parameter. Look at the code below and try to figure out what it does:
<jsp:setProperty name="CalcBean" property="operand1"
 value="<%= CalcBean.getOperand2()%>"/>

Can you see that the JSP action above assigns the value of the bean parameter operand1 to the bean property operand2?

You may think that you are limited to using simple expressions to assign bean property values from within your JSP pages. But this isn’t the case.
The piece of JSP code below gives a hint of the possibilities:
<% int enteredOperand1 = CalcBean.getOperand1();
 int enteredOperand2 = CalcBean.getOperand2();
%>
<%! String whichIsLarger(int op1, int op2) {
 int theLarger = (op1 > op2)? op1: op2 ;
 return "This Number is " + theLarger +
 " the larger of the two operands" ;
 } %>
<jsp:setProperty name="CalcBean" property="operation"
 value='<%= whichIsLarger(enteredOperand1,
 enteredOperand2)%>'/>

<!--Output from the below line:
 From Scriptlet. Operation = This number is 456 the larger of
 the two operands
--!>
From Scriptlet. Operation = <jsp:getProperty name="CalcBean"
 property="operation"/>

Notice that the jsp:setProperty action enables you to code expressions that invoke methods coded within your JSP. Actually, you can invoke
methods coded within your beans in addition to those coded within your JSP pages.

Using the form of jsp:setProperty with the value attribute does present a problem. Look at the following line of JSP for an illustration:

<jsp:setProperty name="CalcBean" property="operand1"
 value='<%=request.getParameter("operand1")%>' />

When you pass this line of JSP to the translator, it rudely responds as follows:
Error: 500
Location: /examples/jsp/cbean/calculate.jsp
Internal Servlet Error:
org.apache.jasper.JasperException: argument type mismatch

Input parameters, or properties of the request object, are class String, whereas the bean property operand1, is type int. When you use the
value attribute to assign data to bean properties, you need to ensure that the data type of your data agrees with the data type of the bean
property. The following code shows the essential strategy:
<%
 int oper1 = 0 ;
 try {
 oper1 = Integer.parseInt(request.getParameter("operand1"));
 }
 catch (NumberFormatException myNFE) {}
%>

<jsp:setProperty name="CalcBean" property="operand1"
 value="<%= oper1 %>" />

Generate an equivalent value of the desired class or primitive type and use a JSP expression to assign the value to the bean property.

Note that you can assign a value, as follows, without worrying about data types:
<jsp:setProperty name="CalcBean" property="operand2" value="25"/>

The other form of the jsp:setProperty action has the following format:

<jsp:setProperty name="beanName"
 property="propertyName"
 param="paramName" />

You can use the preceding format for the jsp:setProperty action when you want to assign the value of an individual input parameter from the
request object to a bean property. In addition, you do not need to write JSP code to perform data type conversions because the result of the
jsp:setProperty action with the param attribute performs most conversions automatically.

The JSP following code automatically performs the conversion from class String to type int.

<jsp:setProperty name="CalcBean" property="operand1"
 param="operand1" />

The form of the jsp:setProperty action with the param attribute performs type conversions from class String to any primitive type or object
representation of a primitive type (Integer for int, Float for float, for example).

Note The form of the jsp:setProperty action which copies all values of input parameters to like-named bean properties also performs
automatic type conversions.

You can see how useful it is to have access to JavaBeans in your JSP pages. You may be wondering if you can leverage your beans across
several JSPs in your application. Well, you don’t have to wonder anymore! The following section discusses how to use your beans with multiple
JSPs in your application.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

A Typical JSP Execution

Here’s the rundown on a typical JSP execution. Figure 3-1 summarizes the following steps:

1. The customer enters the name of the JSP page in the browser location area or clicks some action item in an
HTML page (button or menu selection, for example) that invokes the JSP page.

2. The browser sends the JSP page to the Java-enabled Web server as an HTTP request.

Note The JSP specification does not mandate use of the HTTP protocol. Some companies use JSP with their
proprietary protocols. However, a JSP-enabled server must, at a minimum, support HTTP.

3. The Web server recognizes (by the .jsp extension) that the JSP page requires special handling and forwards the
JSP to the JSP engine. The JSP engine translates the JSP page into a Java class file, implementing the special
JSP tags found in the page.

4. The server sends the class file to the servlet engine, which generates a servlet from the class file by using the
Java compiler and associated files.

5. The servlet engine compiles, loads, and executes the generated servlet. Successful execution of the generated
servlet creates an HTML file, which the server pumps back to the customer’s browser for display.

6. The newly generated HTML file is displayed in the customer’s browser.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=100648600

Figure 3-1: Executing a JSP Page

Figure 3-1 shows the process for using, or of calling, a JSP page for the first time, or if the JSP page changed from
the first invocation. The process is different when a customer calls a page that has been viewed before. The JSP
engine will not retranslate the page, nor will the servlet engine recompile the class file. The servlet engine creates a
new thread to handle the execution of the generated servlet.

A JSP page may use other files, including other JSP pages. The JSP engine translates other, referenced JSP page
files into their own class files. These class files are passed to the servlet engine for compilation and execution.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Part II: JavaServer Pages

Chapter List

Chapter 3: A First Look at JavaServer Pages

Chapter 4: The Elements of a JSP Page

Chapter 5: JSP Web Sessions

Chapter 6: JSP and JavaBeans

Chapter 7: JSP Tag Extensions

Chapter 8: JSPs and Servlets Revisited

Chapter 9: JSP Errors and Debugging

Chapter 10: The “Make Money” Brokerage Application

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=292245414

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

You have now read about the major classifications of J2EE APIs and have read a short description of each. In the
following chapter, we will dive into JavaServer Pages in depth.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=496782075

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Tag Extensions

Tag extensions or custom tags are application-defined language extensions to JavaServer Pages. You can use
custom tags in your JSP pages to do the following:

● Create static text (HTML, XML) or JSP output

● Create objects that are hidden from the JSP page or that can be seen as scripting variables in the JSP page

● Process a block of JSP page text

● Determine if a section of the calling JSP should be processed or skipped

Custom-related tags are grouped together into a tag library. This chapter talks about creating and using tag libraries.
Some custom-tag activities relate to the tag library, whereas others relate to individual tags within the library.

A tag is a bean that implements either the javax.servlet.jsp.tagext.Tag or
javax.servlet.jsp.tagext.BodyTag interfaces. The two classes,
javax.servlet.jsp.tagext.TagSupport and java.servlet.jsp.tagext.BodyTagSupport, are
convenience classes that the developer can subclass to create tags as well. These classes implement the
aforementioned interfaces respectively. You can read more about these two interfaces and classes later.

A simple description of how custom tags work is that when the JSP engine comes across a tag in a JSP page, it
invokes a method of the bean with which this tag is related. Throughout the rest of this chapter we will elaborate on
this process.

Custom tags are referenced in your JSP page as an XML element, such as the examples shown below:
<mytaglib:atagwithbody>
This tag has a body
</mytaglib:atagwithbody >

Custom JSP tags may contain a body. The tag body can be static text or JSP code. The particulars of the tag’s
behavior govern how the JSP container interprets the tag body.

Custom tags may also be empty, that is without a body, as shown in the following example:
<mytaglib:anemptytag />

Custom tags may also contain attributes, as in the following:
<mytaglib:anemptytagwithattrs attr1="attr1Value" attr2="attr2Value" />

You can nest tags to any practical level, as shown in the following example:
<mytaglib:outertag >
 This tag can contain plain old text

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=306185017

 <%= session.getAttribute("userID") %>
 <mytaglib:innertag anattr="attrvalue">
 <p>This tag <I>too</I>
 </mytaglib:innertag>
</mytaglib:outertag>

Custom tags follow XML syntax rules. See Appendix D for details on XML syntax. You may be thinking that if a
custom tag causes the invocation of a bean, why use custom tags at all? Why not code the bean and use the JSP
action jsp:useBean instead? Let’s tackle this question in the following section.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

A Simple XML Document

This section shows one of the simplest XML documents you can create and also explores some of the document’s
properties. Some important rules about writing XML documents that should be noted are:

● XML is case-sensitive

● XML tags must have a corresponding closing tag, or use a special self-closing syntax

● Attributes in an XML tag must use quotes

Now, let's look at the code for the simple XML document:
<?xml version="1.0" standalone="yes"?>
<First>
My First XML Document
</First>

This document has code that tells a parser that it is an XML document. The document’s content is the phrase “My
First XML Document.” The document’s first line tells the parser that the document is an XML document. Notice the
presence of the characters <? and ?>; these characters indicate the presence of an XML processing instruction. The
word after the characters <? (xml, in this case) tells the parser the particular processing instruction that is an XML
declaration.

XML documents are free form, because XML parsers typically do not care about column positions or white space.
Thus, XML document authors should take some time making their documents easy to read with judicious use of tabs,
white space, and blank lines.

XML processing instructions and tags often use XML attributes, which are name/value pairs separated by an equal (=)
sign. The values must be enclosed in quotes. (Although XML requires the use of quotes, most HTML values do not
require the quotes.) The XML declaration requires the use of the version and standalone attributes. For now, it’s
important to note that the XML declaration shown here states that the document conforms to XML version 1.0 and
does not require any other documents for parsing its content.

It is worth mentioning that this document does not contain any display or formatting information. Recall that a big part
of XML is the separation of content from display. Therefore, you would need a style sheet and a way of telling the XML
document to use that style sheet to display the XML document. Let’s use the following simple style sheet, saved as
forfirst.css in the same directory as the XML document. Notice that the style sheet refers to the tag <First>
used in the document.
First {display: block; font-size: 36pt; font-weight: bold; color="00FF00";}

The second, italicized processing instruction associates the style sheet with the XML document:
<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="forfirst.css"?>
<First>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=835637580

My First XML Document
</First>

Figure D-1 shows this simple XML document displayed in Internet Explorer 5.0.

Figure D-1: A simple XML document displayed in Internet Explorer 5.0

http://www.unltded.com/viewer.asp?bkid=2878&image_src=bookimages/id_2878/fgd01_0.jpg&image_id=38&previd=IMG_38&titlelabel=Figure+D-1%3A&title=A+simple+XML+document+displayed+in+Internet+Explorer+5.0

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

XML Document Components

XML documents consist of data and markup texts. The data is what the author encodes and the markups tell the XML
parser how this data is organized and structured. Markup includes processing instructions, comments, elements,
entity references, CDATA delimiters, and Document Type Definitions (DTDs). All of these markups are case sensitive
and are described later in this appendix.

The preceding simple XML document contains an XML declaration, a processing instruction that associates a style
sheet with the document, and a tag (or element). The XML declaration, a processing instruction, is an optional
statement that identifies the XML version in use; currently, version 1.0 is the only version. If present, the XML
declaration must be the first statement in the document. If an XML document must be displayed, a processing
instruction that associates one or more display documents (such as a CSS) must be coded as well.

XML comments begin with <!-- and end with -- >. However, an XML author cannot place comments with reckless
abandon. Comments cannot be coded before the XML declaration. Comments may not be coded inside element tags,
and they may not be nested. Comments may not include two successive dashes other than those that start and end
the comment.

XML document content is enclosed in tags, or elements. Our simple example explored previously contains one
element coded as <First>. XML documents require that one element enclose all others. In XML lingo, that special
element is called the root element. Stated differently, every element coded in an XML document must be sandwiched
between the opening and closing tags of the root element. Elements that are coded within (sandwiched between)
other elements are known as child elements. Listing D-1 shows an XML document with child elements.

Listing D-1: XML document with child elements

<?xml version="1.0" standalone="yes"?>
<?xml-stylesheet type="text/css" href="mystylesheet.css"?>
<Root>
 <Employee_Data>
 <Name>
 John Q. Public
 </Name>
 <Department>
 Human Resources
 </Department>
 <Hire_Date>
 May 1 2000
 </Hire_Date>
 <Review_Date>
 December 1 2000
 </Review_Date>
 </Employee_Data>
</Root>

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=717655522

All elements other than <Root> (which is not a keyword) are child elements. Style sheet display attributes may be
attached to each element or a child element may inherit display attributes from its parent element. For example, if the
file mystylesheet.css, associated with the above XML document, contained only the following line, then all the
content in the XML document would be 36-point blue text.
Root {display: block; font-size: 36pt; font-weight: bold; color="blue";}

However, if the following line were also present, the content for element Hire_Date would be 18-point red text
positioned slightly to the left.
Hire_Date {position: absolute; top:90; left:190;display: block; font-size: 18pt;
 font-weight: bold;color="red";}

Element names must begin with either the underscore character or a letter; following characters may be just about
anything except spaces. Also, element names are case sensitive. For instance, </aTag> is not the closing tag for
<Atag>.

XML enables tags to contain no data. For example, HTML tags that contain no data have no closing tags (for
example, no tag is required). HTML may or may not ignore unknown tags. However, XML must be able to
recognize and process every tag present in a document. To deal with tags that contain no data, XML allows for empty
tags. An empty tag is closed with /> (for example,).

XML enables an author to categorize data by using meaningful tag names and organize data by developing a
hierarchy between parent and child elements. An author may also attach attributes to an element. As in HTML, XML
enables an author to code name/value pairs with elements. For example, the following element contains one attribute:
<Department Location="Home Office">

Notice that an author could have coded a separate location element.

Then the question arises of when an author should code attributes instead of elements. Rather than supply a laundry
list of dos and don’ts, a simple rule works best here. If an author needs to access and independently display some
data or the data has structure, it may work best to encode that data in an element. If an author needs to encode some
data about the data (sometimes called metadata) or a piece of data does not need to be independently accessed, the
best approach may be to encode that data in an attribute. A good example of using attributes instead of elements is
coding the Height and Width attributes of the tag in an HTML document.

Entity references are markup that the XML parser replaces with a single character. For example, authors who need to
encode data that includes a less-than sign (<)would use the entity reference <. If the author didn't use this entity
reference, the XML parser would interpret < as the start of a tag.

Table D-1 contains examples of entity references. Note the presence of the semicolon after each entity reference.

Table D-1: Predefined XML Entity Reference
Entity Reference Character

& &

' ‘

> >

< <

" "

An XML author may want to include a block of text as is, without having the XML parser perform any translations. The
data may contain numerous entity characters (such as the preceding example), and coding the entity references may
become tiresome. XML has markup that enables an author to include text as is, including comments, called the
CDATA section. Just enclose text between the CDATA delimiters <![CDATA[and]]>.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Rules for Well-Formed XML Documents

XML requires that an author follow certain rules when creating an XML document. These rules were designed to
enable XML parsers to understand properly constructed XML documents. In XML lingo, an XML document that obeys
the rules, shown in the following, for proper construction is said to be well-formed.

● The XML declaration, if present, must be the first statement in the document.

● Every XML tag that contains data must have a closing tag. Close empty tags with />.

● Include a root element.

● Put attribute values in quotes.

● Use < only to start element tags; use & to start entity references.

● Enclose every element tag (except the root) inside another. For example, the following line is not well-formed XML:
<Outer> This is NOT <Inner> Well-Formed </Outer> XML </Inner>

● Use the five entity references shown in Table D-1.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=623412457

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Document Type Definitions

XML enables an author to create entirely new markup languages with tags that contain industry-specific language.
The markup language creator can define the language with a Document Type Definition, or DTD. In short, DTDs
define a set of rules that govern the relationships among the tags contained in a document. For example, a DTD
describing a company's personnel may specify that every Employee element have at least one Hire_Date child
element and one and only one Name child element.

When the tags in an XML document conform to the specifications in an associated DTD, the XML document is said to
be valid. An XML document can be well-formed without being valid. Also, DTD keywords are case sensitive.

A Simple DTD

Let’s look at a simple XML document with a DTD:
<?xml version="1.0" standalone="yes"?>
<!DOCTYPE First [
 <!ELEMENT First (#PCDATA)>
]>
<First>
My First XML Document
</First>

The three italicized lines are the Document Type Declaration, not a DTD. The declaration is delimited by <!DOCTYPE
rootname and]>; the DTD is what is sandwiched between these delimiters. The rootname of the XML document
must follow the starting delimiter.

The DTD author may opt to store the DTD as opposed to coding the DTD in the XML document. If so, the Document
Type Declaration changes to:
 <!DOCTYPE First SYSTEM "myDTD.dtd">

The entire DTD, <!ELEMENT First (#PCDATA)>, states that the element First must contain parsed character
data only, or text that has no markup, such as child elements. The following section covers additional element
declarations that a DTD author can code.

Element DTD Declarations

DTD element declarations begin with <!ELEMENT and end with >. The name of the element must follow the starting
delimiter. Element attributes specified in the DTD for that element follow, usually in parentheses. Each element should
have one, and only one, declaration. The order of declarations is not important; XML enables forward and backward
references.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=716850564

Table D-2 shows some DTD element declarations and their meanings.

Table D-2: DTD Element Declarations and Their Meanings
DTD Element Declaration Meaning

<!ELEMENT usuallyARootElement ANY> No restrictions on element use

<!ELEMENT Employee_Data (Name)>

<!ELEMENT Parent (Child1, Child2)>

One occurrence of Name for Employee_Data

One occurrence of Child1 and Child2 for
Parent

<!ELEMENT Parent (Child, Child, Child)> Exactly three occurrences of Child

<!ELEMENT Parent (Child+)> One or more occurrences of Child

<!ELEMENT Parent (Child*)> Zero or more occurrences of Child

<ELEMENT Parent (Child?)> Zero or one occurrence of Child

<!ELEMENT Parent (Choice1 | Choice 2 |
Choice 3) >

Exactly one of Choice 1, 2, or 3

<!ELEMENT Parent (#PCDATA | Child)> Both character data and occurrence of Child

<!ELEMENT Parent (Child1 | Child2 |
Child3)*>

Zero or more occurrences of Child1, 2, or 3

<!ELEMENT Parent (Child1 ,Child2,
Child3)+>

One or more occurrences of Child1 and 2 and
3

<!ELEMENT Parent (Child1, (Child2 |
Child3)) >

One occurrence of Child1 followed by one
occurrence of Child 2 or 3

<!ELEMENT Parent (Child1?,(
Child2,Child3)+ | Child4*)) >

Zero or one occurrence of Child1 followed by
one or more occurrences of Child2 and
Child3 or zero or more of Child4

Note how a DTD author can build complex relationships between elements by combining different requirements inside
nested parentheses.

DTD Entities

DTDs support the inclusion of text from internal and external sources. In essence, the DTD author codes a general
entity reference that, when processed, substitutes text in the XML document for the entity reference. The mechanism
is identical to that described for the XML entity references. First, the DTD author codes the <ENTITY> tag:

<!ENTITY entityName "Replacement Text">

The XML document may contain the element:
<SomeTag> Where is that &entityName; going? </SomeTag>

During processing, the XML processor substitutes Replacement Text for &entityName;. The semicolon must be
the last character in the entity reference.

External general entities enable the author to include text from other locations into a document. For example, the
author can code the following line, in which someFile can be a URL or a file on the network or on the local machine.

<!ENTITY entityName SYSTEM "someFile">

The internal and external general entities become part of the XML document, not the DTD. XML provides a
mechanism, called a parameter entity reference, that enables authors to substitute text in the DTD. The coding of a
parameter entity reference is similar to that of a general entity reference, but with two differences: Parameter entity
references start with a percent sign (not an ampersand), and parameter entity references cannot appear in the
document content.

Here is a DTD entry for a parameter entity reference and some references to the entity:
<!ENTITY % entityNameList "Replacement Text">
<!ELEMENT anElement1 (Child1, (%entityNameList;)) >
<!--anElement 2 through 999 follow with the same parameter entity reference-- >
<!ELEMENT anElement1000 (ChildA, (%entityNameList;)) >

If the author needs to add or remove an element from the list, the author can change the parameter entity reference
instead of each <!ELEMENT tag.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Related XML Technologies

As previously mentioned, XML stresses the separation of content from presentation. This appendix uses CSS for XML
document display. However, a strong up-and-coming contender for XML display is XSL, the Extensible Style
Language. XSL, an XML application, consists of a transformation language and a formatting language. The
transformation language specifies how one XML document may be transformed into another — for example, how the
custom tags used in an XML document may be changed to tags of another. The formatting language, similar to CSS,
describes how an XML document is rendered.

XML developers can mix and match tags from multiple applications. However, a mechanism needs to be in place to
enable XML applications to distinguish between elements and attributes of the same name. A related XML technology
called Namespaces enables an XML developer to prefix custom tags by directing the XML parser to reference a
unique resource (dataset, URL).

The XML community is crying out for more robust technologies than DTDs to perform XML document structure and
element/attribute validations. XML Schemas is an attempt to provide database-like validations, such as data types, to
XML elements.

With the proliferation of Web pages on the Internet, technology that facilitates quick and accurate searches is in
increasing demand. The XML application RDF, the Resource Description Framework, encodes data about data, or
metadata. In other words, RDF provides a consistent way to describe metadata. The basic idea is that RDF
standardizes vocabularies used to describe metadata and should provide a strong foundation for building applications
to search XML documents.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=434512465

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Objects and Components

The basic idea behind object technology dates back to the 1960s (yes, the 1960s) and the work done by Xerox and
others with the Smalltalk and Simula programming languages. Object technology treats software as a set of
cooperating objects. Each object is derived from a class, or a template describing similar objects, or objects with the
same behavior. Objects have a well-defined interface that allows for complete and concise communication. The
objects have no knowledge of other objects’ internals; all they know is what is exposed in the interface to other
objects. Object software development environments allow for the creation of objects that share some, or most, of the
behaviors of other objects.

Object technology makes possible the development of software components. A software component is simply a piece
of code with a well-defined interface. In other words, a software component is an object that can be reused. The goal
is that an object development team can create libraries of interrelated software components that model fundamental,
low-level behaviors such as database access (finely grained components) or application tasks such as printing
(coarsely grained components), and that object applications can be constructed by pulling together existing
components. This plug-and-play property has always been the Holy Grail of application development, and object
technology brings the grail closer than before. As discussed later in the chapter, developing and deploying software
components are integral parts of the modern enterprise applications environment.

Of course, one milestone in the development and refinement of object technology is the Java programming language.
Scarcely six years old, Java is dominant on the Internet, is taught by any school that teaches computer science (even
some high schools), and is gaining a frothy head of steam as it charges into the business data processing community.
Java is well suited to serve as the backbone of a host of technologies that help the enterprise application developer
accomplish his or her difficult task.

How does the application development team leverage the power of objects and components when developing
applications? The answer, described in the next section, is that the team combines the use of objects and components
with application servers.

Server Component Architecture

Developing n-tier applications involves writing much more than the code that implements the business logic. Many
ancillary but important functions — such as transaction support, security, resource allocation, and dealing with
hardware failures — have to be implemented. In addition, you can’t forget numerous procedural and analysis matters,
such as performance monitoring and tuning, database administration, and training.

Thank goodness for application servers! The raison d’être for application servers is to supply the services mentioned,
plus many more, to enterprise application development teams. Freed from the drudgery of providing these services
from scratch, application developers can concentrate on the job at hand — solving the problems of their customers.

Still, the application programmer’s code has to communicate with these application servers in order to use the various
system services these servers offer. Given the numerous services required in a substantial enterprise application, the
developer still faces a monumental task. The developer needs a consistent, well-defined method of having his or her
code communicate with application server code that provides much-needed services. In other words, the developer

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=925057499

needs a server-side architecture to provide and help enforce a consistent method for interacting with application
servers.

The server architecture should provide a set of well-defined interfaces to application server services. The developer
need not know or care how these services are implemented on the application server; all he or she needs to know is
the interface required to access the required services.

Ideally, the architecture should allow for plug-and-play components. For example, the application should allow a
database connection pooling component X from company ABC to be compatible with a transaction support
component from company XYZ on the same application server, as long as both components follow the same server-
side architecture.

All this is starting to sound a bit like using object technology and software components, isn’t it? For this reason, the
major players in the server-side architecture business have embraced some flavor of object technology. The
application server vendors believe in the strength and value of components and realize that components combined
with application servers offer customers a powerful combination: the implementation of a server-side architecture that
enables customers to plug in their own components to communicate with server components, thereby making the
myriad services available on the application server. A server-side architecture that allows for the use of software
components is called a server component architecture.

Several server component architectures exist today. Microsoft’s DNA (Distributed Internet Applications Architecture)
ties together various Microsoft technologies with a Windows platform to provide a server-side component architecture.
CORBA (Common Object Request Broker Architecture) is a specification for the use of distributed objects. J2EE (Java
2 Platform, Enterprise Edition), like CORBA, is a specification for a server-side architecture.

What About Web Applications?

Simply put, a Web application is an application with a Web browser serving as the client (implementation of the
presentation layer) working with an application server known as a Web server. A Web server is an application server
that is good at speaking HTTP (Hypertext Transfer Protocol), a browser’s native tongue.

The information in the previous sections about n-tier applications also applies to n-tier Web applications. Any server-
side architecture that supports Web applications requires additional features, or should provide additional services, to
facilitate Web application construction. Notably, the server architecture should allow a customer to get to the server’s
services by using HTTP from the client, either directly or indirectly.

Some server component architectures, such as J2EE, permit the use of a Web server and an application server,
possibly housed on separate hardware.

The Java programming language is a good choice for developing software components. Because Java is not tied to
any particular hardware or operating system, components written in Java can, ideally, be hosted on different platforms
(remember Sun's slogan “Write Once, Run Anywhere”?) that contain a Java runtime. Whereas the presence of a
required runtime could be a maintenance issue for using Java on the client, it is not much of an issue for using Java
on the server (unless the company has thousands of servers!).

Java’s ease of use, combined with powerful features for component development, makes Java a natural for server-
side development. Sun Microsystems, along with industry participants, created J2EE to provide a Java-based server-
side component architecture. J2EE is the result of consolidating several Java-based server technologies into a single
specification.

J2EE describes how a customer’s component interacts with server components to use the application and Web
server’s services. Basically, J2EE is a set of Application Programming Interfaces (APIs) that defines the interaction
between customer components and server services. Hence, the job of the enterprise application developer working
within the J2EE framework is to understand the how, when, and why of using the various APIs to invoke various
application and Web server services.

J2EE is based on the concept of containers. A container is an environment that exposes application and Web server

services to a housed software component. The component interacts with the server by declaring the services required
by the component, and the container makes these services available to the housed component. This book focuses on
two J2EE containers: the Web server container that houses JSPs (and Java servlets, too) and the application server
container that houses EJBs. Figure 1-2 illustrates the basic ideas behind using containers.

Figure 1-2: A J2EE container at work

In Figure 1-2, a component living in a J2EE container needs service X from the application server. The component
has code that makes one or more API calls to the service. The container fetches the service and makes that service
available to the needy component. The container also establishes a runtime so the component can use the service
without having to tend to runtime concerns, such as memory management.

JSP and EJB with the J2EE Specification

JSP is a key component in developing Web-based applications. A JSP is a Web page that contains static HTML or
XML, as well as JSP scripting tags. JSPs are compiled into Java servlets on the Web server.

Because JSPs eventually become Java servlets, one can rightfully assume that a developer can use Java servlets to
dynamically generate HTML and XML, thereby removing the need to learn and use yet another API. However, JSPs
are a better solution than servlets to the problem of providing dynamic Web content because JSPs are easier to write
and provide a more straightforward way of separating presentation layer code from application logic code.

EJB is the J2EE component that defines a component model, or architecture, for creating software components.
These components are the heart and soul of the enterprise application. Although the long list of J2EE APIs is
necessary for the implementation of any substantial n-tier application, most of the API sets define interfaces to support
services and external resources. EJB is the API that deals with creating application components and how these
components interact with the other J2EE API sets (see Figure 1-3).

Figure 1-3: A high-level overview of a Web application request

Figure 1-3 shows how a request made from a Web page containing a reference to a JSP could flow up and down
through the various components and tiers of a Web application. The dashed lines represent tier boundaries. The Web
server and the application server can reside on the same hardware. Also, please note that the Web server, Java
Virtual Machine (JVM), and the application server contain more components than are shown here.

Here’s a high-level overview of a client interacting with a Web application that uses J2EE technology:

1. Client makes a request by filling out a form on a Web page that contains a reference to one or more JSPs and
clicking a submit button.

2. The request (entered data) with other information coded on the Web page goes to the Web server via HTTP.

3. The Web server recognizes the page as JSP and sends the page to be compiled into a Java servlet.

4. The newly compiled servlet communicates with one or more EJBs on the application server to get data or goes
right to the data store (bypassing the EJBs), or both.

5. The EJB components fetch data from the data store and return this data to the Web server.

6. The JSP creates a new Web page based on the data fetched by the servlet or EJB and sends this page to the
client via HTTP.

7. The client displays the new, JSP-generated Web page in the browser.

The preceding scenario is a condensed version of what happens. Every step of this process is explained in detail in
the remaining chapters of this book. Note that every step involves using either JSP or EJB, which underscores the
importance of JSP and EJB in the J2EE architecture.

EJB & JSP: Java On The Edge, Unlimited Edition
by Lou Marco ISBN: 0764548026

Your Guide to Cutting-Edge J2EE Programming
Techniques.

Summary

Client-server architectures are used to implement enterprise applications as discrete layers of functionality. Any
serious application built on an n-tier component architecture can access services needed through application servers.
Java 2 Enterprise Edition and its API sets have been introduced as a way to develop n-tier applications. In the J2EE
architecture, information flows from JSP-enabled client Web pages, to EJBs, to a data store, and back.

http://www.unltded.com/viewer.asp?bkid=2878&chnkid=102142820

