JAVA
Programming

for Engineers

JAVA
Programming

for Engineers

JULIO SANCH E/

Minnesota State University, Mankato

MARIA P CANTON

rsity, Mankato

CRC PRESS

Boca Raton London New York Washington, D.C

Library of Congress Cataloging-in-Publication Data

Sanchez, Julio, 1938-
Java programming for engineers / Julio Sanchez, Maria P. Canton.
p. cm.—(Mechnical engineering)
ISBN 0-8493-0810-0 (alk. paper)
1. Java (Computer program language) 2. Mechanical engineering—Data processing. 1.
Canton, Maria P. II. Title. III. Mechanical engineering series (Boca Raton, Fla.)

QA76.76.J38 526 2002
005.13"3—dc21 2002025924

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for
creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC
for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2002 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-0810-0
Library of Congress Card Number 2002025924
Printed in the United States of America 1 2 3 4 56 78 90
Printed on acid-free paper

© 2002 by CRC Press LLC

Table of Contents

Preface
Part | - Java Language Fundamentals

Chapter 1 - Java Programming

Introducing Java
The Portability Issue
Java as a programming language
Java is object-oriented
Java is strongly-typed
Java is similar to C++
Java uses libraries
Java is an interpreted language
Java Code
Communicating with an alien intelligence
Flowcharting

Chapter 2 - Your First Java Program

Installing the JDK
Selecting an Editor
The HelloJava Program
Java language rules
The program header
The HelloJava code
Creating the HelloJava Program

Chapter 3 - How Computers Store Information

Storing Text and Numbers
Number Systems
Binary numbers
Hex numbers
Computer memory
Character data

© 2002 by CRC Press LLC

Numeric data

Chapter 4 - Storing and Naming Data

A Data-Processing Machine
What is Computer Data?
Identifiers
Creating and using variables and constants
Java variable types
Declaring a variable
Java strings
Java constants
Classification of Java Data
Numeric data
Character data
Boolean data
Type Conversions
Implicit conversions
Type-casting
Declaring literals

Chapter 5 - Performing Input and Output

Input and Output
Data Input
Data Output

Escape characters
A Sample Program

Chapter 6 - Introducing Arrays

A New Data Type
Java Arrays
Creating an array
The array brackets
Accessing array elements
The size of an array
Multi-dimensional arrays
Ragged arrays
Initializing multi-dimensional arrays

Chapter 7 - Java Operators

The Action Element
Operators

Operator action
The Assignment Operator

© 2002 by CRC Press LLC

The two sides of an assignment
Arithmetic Operators

The remainder operator
Concatenation
Increment and Decrement
Relational Operators

Chapter 8 - Other Java Operators

Logical Operations
Manipulating bits
The & operator
The | operator
The * operator
The ~ operator
The <, >, and >> operators
The compound assignment operators
Operator hierarchy
Associativity rules

Chapter 9 - Directing Program Flow

Simple Decisions
Java Decisions Constructs
The if construct
Statement blocks
The nested if
The else construct
The dangling else
Else-if clause
The switch construct
Conditional Expressions

Chapter 10 - Controlling Program Flow
Repetition in Programs
Loops and iterations
Elements of a program loop
For Loop
Compound statement in loops
While loop
Do-While Loop

Chapter 11- Programming with Loops

Java Loop Constructs
Selecting a Loop Construct

© 2002 by CRC Press LLC

Direct Flow Control
Using break in loops
The continue keyword
The labeled break

Chapter 12 - Program Building Blocks

The Java Subprogram
Modules and Methods
The Elements of a Method
Declaration
Access specifier
Modifier
Return type
Method name
Parameter list

Chapter 13 - Using Methods

The Method Call

Returning from a Method
Arguments and Parameters
Methods and Global Variables
Passing by Value and by Reference

Chapter 14 - Object-Oriented Programming

Classes and Objects

The Why and Wherefore of OO

Object-Oriented Fundamentals

From Problem to Solution

Learning about Classes and Objects
The fundamental principles
Encapsulation
Inheritance

Modeling with Classes

Polymorphism and Abstract Classes
A classification example

Chapter 15 - Object-Oriented Coding

Working with Classes and Objects
Thinking Objects
Object instantiation
Field variables and method variables
Object variables and class variables

© 2002 by CRC Press LLC

Building Objects
The default constructor
Overloading the constructor

Chapter 16 - Using Inheritance

Inheritance and Data Abstraction
Java Inheritance
Extending class functionality
Polymorphism
Modeling with inheritance
Abstraction and Inheritance
Programming with abstract classes

Chapter 17 - Object Composition

An Alternative to Inheritance
Inheritance Drawbacks
Reusing Class Functionality
The new mind set
Thinking object composition
Aggregation
Objects as Parameters
Acquaintance Associations
Combining Inheritance and Composition
Arrays of objects
Dynamic Binding

Chapter 18 - /0 Programming

Java Input and Output
Obtaining and Transmitting Data
Character data
java.io Package
Streams
Java InputStream class
Java OutputStream class
Standard Streams
The Keyin Class
Flushing the input stream
Obtaining character data
Obtaining numeric data

Chapter 19 - Handling Errors

Program Errors

© 2002 by CRC Press LLC

Error Types
Hardware and software errors
Algorithmic errors
Exceptions
Bullt-in exception handling
Java's approach
Java exception classes
Advertising exceptions
Exceptions Programming
Java exception processing
Raising exceptions
Handling exceptions
Throwing exceptions

Part Il - Java Programming for Engineers

Chapter 20 - Computer Number Systems

The Hindu-Arabic Numerals
Computer Number Systems
Radix or base
Types of Numbers
Whole numbers
Signed numbers
Rational and irational numbers
Real and complex numbers
Storage of Numerical Data
Computer word size
Representing Integers
Sign-magnitude integers
Radix-complement integers
Diminished-radix integers
Representing Fractional Numbers
Fixed-point representations
Floating-point representations
Standardized floating-point formats
Binary-Coded Decimals (BCD)
Floating-point BCD

Chapter 21- Fixed-Precision Numeric Data

Java Numeric Data Types

Primitive Data Types

IEEE 754 Standard
Numeric Data Encoding
Rounding

© 2002 by CRC Press LLC

Interval arithmetic
Treatment of infinity
Not a number (NaN)
Signaling and quiet NaNs
Exceptions
Invalid operation exception
Division by zero exception
Overflow exception
Underflow exception
Inexact result exception
IEEE 754 in Java
java.lang Class Double
MAX_VALUE
MIN_VALUE
NaN
NEGATIVE_INFINITY
POSITIVE_INFINITY
public static boolean isInfinite(double v)
public boolean isinfinite()
public static boolean isNaN(double v)
public boolean isNaN()
java.lang Class Float
MAX_VALUE
MIN_VALUE
NaN
NEGATIVE_INFINITY
POSITIVE_INFINITY
public static boolean isinfinite(float v)
public boolean isinfinite()
public static boolean isNaN(float v)
public boolean isNaN()
Java Numeric Truncation
public static double ceil(double a)
public static double floor(double a)
public static double rint(double a)
public static long round(double a)
public static int round(float a)

Chapter 22 - Variable-Precision Numeric Data

High-Precision Arithmetic
BigDecimal Numbers
BigDecimal constructors
BigDecimal(BigInteger val)
BigDecimal(Biglnteger unscaledVal, int scale)
BigDecimal(double val)
BigDecimal(String val)

© 2002 by CRC Press LLC

Using the BigDecimal constructors

BigDecimal scale operations
SetScale() method
Scale() method

BigDecimal point operations

BigDecimal comparisons and conversions
public boolean equals(Object x)
public int compareTo(BigDecimal val)
public double doubleValue()
public float floatValue()
public int intValue()
public long longValue()
public Biginteger toBiginteger()
public static BigDecimal value Of(long unscaledVal, int scale)
public static BigDecimal valueOf(long val)
public String toString()
public int hashCode()

BigDecimal rounding controls

BigDecimal Arithmetic
A sample program
The Biginteger Class

Biglnteger numbers

Biglnteger constructors
Biginteger(byte[] val)
Biginteger(int signum, byte[] magnitude)
Biglnteger(int bitLength, int certainty, Random rnd)
Biglnteger(int numBits, Random rnd)
Biglnteger(String val)
Biglnteger(String val, int rdix)

BigInteger methods

A sample program

Chapter 23 - Fundamental Operations

Calculator Operations
Java Floating-Point Math
Strict and non-strict math
Java Basic Arithmetic
Numeric constants
public static final double E
public static final double Pl
Absolute value
public static int abs(int a)
public static long abs(long a)
public static float abs(float a)
public static double abs(double a)
Maximum and minimum

© 2002 by CRC Press LLC

public static operand max(operand a, operand b)
public static operand min(operand a, operand b)
Rounding controls
public static double ceil(double a)
public static double floor(double a)
public static double rint(double a)
public static int round(float a)
public static long round(double a)
IEEE-style remainder
public static double IEEEremainder(double f1, double f2)
Exponential Function
public static double pow(double a, double b)
public static double sqrt(double a)
public static double exp(double a)
Trigonometric Functions
Calculating trigonometric functions
Hyperbolic functions and arc-functions
Cartesian and polar coordinates
Logarithmic Functions
Calculating antilogarithms
Random Numbers
Producing pseudo-random numbers
public static double random()

Chapter 24 - Java Math for Engineers

Java Numerical Primitives
Factorial
Evaluating Numeric Results
Floating-point errors
Comparing Floating-Point Numbers
Comparisons in IEEE 754
Weighted comparisons
Bit-by-Bit operations
public static long double ToLongBits(double value)
public static long double ToRawlLongBits(double value)
public static double longBitsToDouble(long bits)
Conversion Operations
Integer and fractional parts
Solving Triangles
Pythagoras’ theorem
Side-angle problems
Solving Quadratic equations

Chapter 25 - Introducing Computer Graphics
Developing Graphical Applications

© 2002 by CRC Press LLC

Origin of Computer Graphics

Text-based and graphical systems
Event-Driven Programming

Event manager and event handler
The Main Window

Controls

Chapter 26 - Java Graphics

The Greatest Challenge
Applets and applications
The Java Foundation Classes
AWT
Swing
Java 2D
The Frame Concept
AWT frame class
Window class
Container class
The Java Graphics Application
The ActiveFrame class
The Display Context
The update() and paint() methods
Manipulating fonts

Chapter 27 - Displaying Graphic Images
Vector and Raster Graphics
The frame origin
Color and Java graphics
RGB color designation
The Java Graphics Class
Vector-Based Drawing
Transformations
Raster Graphics
The image object
Displaying the bitmap

© 2002 by CRC Press LLC

Preface

This book about Java programming is designed to address the needs of en-
gineers, scientists, and technology professionals in general. In identifying
our target audience we have made several assumptions:

1. Ourreaders are not likely to use Java to develop applications of major com-
plexity. Instead, we envision that the programs would be relatively small
and specialized towards the solution of a particular problem set of a tech-
nological field.

2. Our audience is more concerned with the solution of numerical problems
than with text processing or the crunching of alphabetic data.

3. The typical development environment consists of a single programmer or a
small programming team.

4. Most of the programs will be used by an individual or by a small technical
group.

5. The programs and applications will not be marketed to the public at large.

Based on these assumptions we have focused our attention on those
topics in Java programming that are of greater interest to our audience.
At the same time, we have minimized the coverage of topics that are of
less concern to the typical engineer-programmer.

On the other hand, Java is a general-purpose programming language;
therefore, it cannot be easily partitioned for the convenience of a particu-
lar interest group. Java programmers must deal with data types, opera-
tors and keywords, methods, classes, input and output, error handling,
and a host of other necessary topics. This language core is necessary
whatever the purpose of the application.

Contents

The book aims at a comprehensive coverage of Java 1.3 as a full-featured
programming language, using the PC platform. The text assumes no prior
programming experience. The only skills expected in the reader are basic

© 2002 by CRC Press LLC

keyboarding and user-level familiarity with the PC. The material is sprin-
kled with short Java programs and code fragments that illustrate the point
at hand. The sample programs are stripped of all unnecessary complica-
tions and distracting details, however, most of them stand alone as small
applications. The purpose of the sample programs is to provide a valid, run-
ning sample that can be reused in your own code.

The text covers the following topics:
e Java programming language fundamentals
e Object oriented programming in Java
e Error handling
¢ Computer number systems
¢ Fixed and variable precision numeric data
e Numerical primitives
e Computer graphics in Java

The book is divided in two parts. The first one is a description of the
Java language, of the fundamentals of object orientation, input and out-
put operations, and error handling. The second part is about Java pro-
gramming for engineers. It starts with computer number systems, fixed-
and variable-precision numeric data, mathematical programming in Java
as could be of interest to engineers, and concludes with an overview of
Java graphics.

© 2002 by CRC Press LLC

Part |

Java Language Fundamentals

© 2002 by CRC Press LLC

Chapter 1

Java Programming

Introducing Java

Javais a programming language similar to C and C++. Its most characteris-
tic feature is that Java is a platform-independent language. This means that
Java programs will run on any machine that supports the language. The slo-
gan “write once, run anywhere” has often been used to describe and pro-
mote the Java language.

Incidentally...

Javais not without drawbacks, and platform-independency is more a
goal than a reality. Often Java programs must be modified before they
operate correctly in another system. This has led some critics to re-
write the Java slogan to say “write once, debug everywhere.”

Java was conceived by James Gosling, in the early 1990s, as a simple
and small language to be used in programming consumer electronic de-
vices, such as cellular phones and TV controllers. It was originally named
Oak. After a few years of vainly attempting to find a costumer for Oak
(also called Green), the design team renamed the language Java and in-
corporated it into the HotJava browser. HotJava could be used to down-
load and run small programs, called applets, from the web. Applets,
written in Java, provided a variety of animation and user-interaction fea-
tures that were not available in a conventional browser. In the summer of
1995, Sun Microsystems released Java as a programming language. It was
an instant success. In a few months Java became the preferred program-
ming language of the World Wide Web, and it still is. It also evolved into a
popular, general-purpose programming language.

© 2002 by CRC Press LLC

Perhaps the most important element in Java’'s success was its timeli-
ness. The language was introduced at the same time that the World Wide
Web was rapidly gaining popularity. The Web is an international network
of incompatible computers, made by dozens of manufacturers and having
unique hardware characteristics. There is no standard operating system
or software environment on the Web.

Java brought a promise of uniformity and compatibility to this diverse
hardware and software environment of often irreconcilable differences.
Its promise was that a program written in the Java language would exe-
cute correctly on any Java-enabled machine. A Java programmer could
code a small application, embed it in a Web page, and the program would
run on any browser that supported Java.

Programmers note:

The language used to create Web pages and other Internet documents
is called Hypertext Markup Language (HTML). Java code can be em-
bedded in HTML documents in a capsule called a Java applet.

Java also provides a way of extending the functionality of a Web
browser. Using Java, you can create a Web page that does more than is
possible with straight HTML. The processing is contained in a Java applet
that runs on any Java-enabled browser, including Mosaic, Netscape Navi-
gator, or Internet Explorer. The applet executes correctly on a PC run-
ning Windows, on a Macintosh, on a UNIX machine, or on an IBM
mainframe. The result is the same if you are connected to the Internet
through a high-speed network or a slow-speed modem. This is what
makes Java powerful and unique.

The Portability Issue

In computer talk, the word “portable” describes code that can be moved to
various systems with little or no effort. The expression probably relatesto a
computer connection, called a port, that is used for passing data in and out
of amachine. Code that can be made to work in another machine simply by
sending it through ports, is said to be portable. A programming language,
such as Java, that can be easily made to run on various systems is described
as highly portable.

Originally, Java’s portability was limited to applets intended for the
Web. It was soon noticed that Java could be used as a full-featured pro-
gramming language to develop complete applications. The resulting pro-
grams would be portable to any Java-supporting platform. The benefits of

© 2002 by CRC Press LLC

machine-independent programming went beyond the obvious problems
of hardware incompatibility. In the rapidly-evolving world of personal
computers, operating systems were also changing at a fast rate. In the
1990’s the same machine could run a half dozen versions of MS DOS, Win-
dows 3.0/3.1, Windows 95, Windows 98, Windows 2000, NT 3.1, 3.5, 4.0, or
Windows CE, and Linux. Applications had to be constructed taking into
account many variations in the system software. At the same time, many
potential customers were lost when an application was limited to a single
machine or operating system environment.

Making an application compatible with several machine and software
configurations often ends in a programming nightmare. Java promises a
simplification of the programming task and a solution to incompatibility
problems. No longer does the programmer have to deal with a “moving
target” of hardware and operating system software. Instead, Java’s “Code
once, run anywhere” motto promises that the code can be “future proof”
by making it compatible with future machines and operating systems.

Java as a Programming Language

One reason for Java’s success is that if you already know C or C++, Java is
easy to learn. By the same token, if you learn Java as your first language,
you will later be able to pick up C and C++ without much effort. Java is de-
scribed as an interpreted, object-oriented, strongly typed language that re-
lies heavily on support libraries. These characteristics of Java are
discussed in the following sections.

Java is object-oriented

An object is aprogram element that contains both data and code. The ratio-
nale for objects is that data is useful if there are operations that can be used
to transform it. For example, we find it useful to store numbers in a com-
puter system because there are operations that can be performed on these
numbers. A computer program stores the hourly wage of a company’s em-
ployees because it can later calculate the gross pay of each individual by
multiplying the hourly wage by the number of hours worked. What use
would it be to store numbers in a computer system that cannot perform
arithmetic?

Object-oriented programming (OOP) views a software system as a col-
lection of classes of objects. Each object class is a self-contained unit of
data and the processing operations that can be applied to this data. You
can image a payroll program that contains a class called Wage-
EarningEmployee. The objects of the class are the individual wage earn-
ers employed by the company. In this sense Joe Smith, who makes wages

© 2002 by CRC Press LLC

of $18.25 per hour as a carpenter, is an object of the class
WageEarningEmployee. The class contains data elements for storing the
name and address, hourly wage, number of hours worked, number of de-
pendents, and all other information necessary for managing the payroll. In
addition, the class WageEarningEmployee also contains programming
routines (called methods) for calculating wages, paying taxes, printing
checks, and performing other necessary data manipulations. Other
classes of the payroll software system may be called SalariedEmployee,
AdministrativeStaff, and Executives. Each class would hold the data and
processing elements necessary for each employee type.

Programmers note:

As an object-oriented language, Java resembles Smalltalk. Smalltalk
was developed at the Xerox Palo Alto Research Center (PARC) and
first released in 1980. Although Smalltalk has never been very popu-
lar, it is considered a model for object-oriented programming lan-
guages. Java supports inheritance, encapsulation, and polymorphis,
the cornerstones of object-oriented systems.

Java is strongly-typed

Java is described as a strongly-typed language. This means that all data
must belong to a specific type and that the data type cannot be changed
while the program is executing. For example, whole numbers belong to one
data type and fractional numbers to another one.

To understand the notion of a strongly-typed language you can imagine
a data type named int, that is intended for storing integer (whole) num-
bers, and another type named float, designed for storing fractional num-
bers. (It just happens that the int and float data types actually exist in
Java.) In this language, we could use the int type to store the number of
dependents of an employee since this value would always be a whole
number; while the employee’s hourly wage, which could be a fraction,
would be stored in a type float. Now suppose that an employee, for tax
purposes, wanted to claim a fractional number of dependents, say 2.5. If
the language is strongly-typed it would not be possible to store a frac-
tional number in a data element of int type. A weakly-typed language, on
the other hand, would allow storing a fractional number in an integer data
type. Java is defined as strongly-typed because each data element must be
consistent with the type of the data container that holds it. Strongly typed
languages are said to be more reliable.

© 2002 by CRC Press LLC

Java is similar to C++

The basic syntax of Javaisidentical to C++. However, the designers of Java
proposed to solve several problems that had plagued C++ and to eliminate
features that were considered non-essential. The most visible difference is
that Javais apure object-oriented language. This means that Java programs
must always use OO structures, while in C++ object-orientation can be
turned off. The following are some important differences between Java and
C++. Donot worry if you cannot understand all the terminology at this time
since all of this is revisited later.

¢ InJava, the size of the data typesis the same for all platforms. For example, a
Javaint data type must be encoded as a 32-bit signed 2s complement repre-
sentation (more on this later) in every platform to which Java is ported. This
is not the case in other languages in which the size of the data types can
change from one system to another one. This feature of Java is necessary to
ensure portability.

¢ In contrast with C and C++, Java performs automatic garbage collection at
run time. It is the language, not the programmer, who takes care of reclaim-
ing storage that is no longer in use. This simplifies the coding and program
design.

e Java supports multithreading. A thread can be loosely defined as an individ-
ual program task. Multithreading allows an application to perform several
tasks simultaneously. By supporting thread synchronization and schedul-
ing, as well as the handling of deadlocks, Java makes it possible to develop
code that makes better use of system resources and enhances performance.

e Java allows the programmer to deal with error conditions by means of ex-
ceptions. This simplifies the code and reduces clutter by offloading the er-
ror processing operations.

e Java is a smaller and simpler language than C and C++. It is easier to learn
and use and is more reliable.

e Java is free. All of the Java compilers, runtime, and standard libraries are
provided by Sun Microsystems at no charge. The software can be down-
loaded from the Sun Web sites and there are no royalties to be paid for its
use. The programs that you build using Java software can be sold without
displaying acknowledgments, disclaimers, or other statements of accep-
tance or recognition.

Java uses libraries

The Java language is quite small. Much of the language’s functionality is
achieved through libraries. There are two types of Java libraries: the core
libraries that are part of the Java Development Kit (JDK), and the optional

© 2002 by CRC Press LLC

library additions. The core libraries must be present in every implementa-
tion of Java, while the optional libraries can be present or not. However, if a
feature in an optional library is supported in a particular implementation, it
must be fully supported in the standard way.

The complexity of the Java libraries can intimidate a beginning pro-
grammer. In the current version of the Java Development Kit (JDK), there
are 12 core libraries. Table 1-1 lists the core Java libraries.

Table 1-1
Core Java Libraries

NAME CLASSES DESCRIPTION

java.lang 93 Basic runtime support for the Java
language

java.applet 4 Applets support

Java.awt 298 Windowing and GUI support

javax.swing 500 Supplements java.awt and improves
GUI support

java.io 75 Supports input and output

java.util 77 Utility data structures

java.rmi 65 Remote method calls

java.sql 26 Supports Java Database
Connectivity

java.security 106 Supports secure data coding and
decoding

java.net 38 TCP/IP, UDP, IP, and other network
support

java.beans 43 Component software support to

promote rapid application
development by reuse of existing
code fragments

java.text 50 Support for localized text elements
such as dates, time, and currency
java.math 2 Support for the DECIMAL and

NUMERIC types in the SQL
database. Do not confuse with
java.lang.Math class

javax.accessibility 14 Supports large text sizes for the
visually impaired

Java is an interpreted language

A Java program is executed by an application called the Java interpreter
that must be installed in the host system. The Java interpreter is named
Java. The interpreter reads the code contained in a file produced by the
Java compiler, called Javac. This compiler, in turn, reads a source file writ-
ten in the Java programming language. The result of the compilation step is
afile usually called the Java byte code. The Java source file, which serves as

© 2002 by CRC Press LLC

input to the compiler, has the extension .java. The Java byte code file gener-
ated by the Javac compiler has the extension .class. It is the file with the
.class extension that is executed by the Java interpreter. In Chapter 3, you
will learn to create and run a program using the Java software development
tools.

Java Code

A program, in general terms, is a sequential set of instructions designed to
perform a specific task. In this sense, the set of instructions that must be
followed to start up a particular model of automobile could be described as
the start-up program for that vehicle. By the same token, a computer pro-
gram is a set of logical instructions that makes the computer perform a spe-
cific function.

For example, you may write a computer program to calculate the inter-
est that accrues when you invest a given amount of money, at a certain in-
terest rate for a specific period of time. Another program could be used to
tell a robot when it is time to recharge its batteries. A third one to help a
physician diagnose a childhood disease by examining the patient’s symp-
toms. In all of these cases the program consists of a set of instructions
that perform conditional tests, follow a predictable path, and reach a pre-
dictable result. A set of haphazard instructions that lead to no predictable
end is not considered a program.

Communicating with an alien intelligence

When we write a computer program we are communicating with an alien in-
telligence. A computer is a machine built of metal, silicon, and other com-
posite materials. It has no knowledge and no common sense. In a way, a
computer is no more than a tin can. If one-hundred years ago someone had
found you attempting to communicate and give orders to a tin can, you
would have probably been committed to a mental institution.

Our main difficulty is that the tin can never knows what you mean. A
human intelligence has accumulated considerable knowledge of the
world and of society at large. The set of instructions for a human to get
me a can of pop out of a vending machine can be rather simple:

“Joe, here is fifty cents, would you please get me a Pepsi?”

Joe, who has knowledge of the world, understands that he must walk
out of the room, open the necessary doors and walk up and down stairs,
reach the vending machine, wait in line if someone is using it, then place
the coins in the adequate slot, punch the Pepsi button, retrieve the can of
pop, and bring it back to me, again opening doors and walking up and
down stairs as necessary. Joe has knowledge of doors, of stairs, of money,

© 2002 by CRC Press LLC

of waiting in line, of vending machines, and of a thousand other worldly
things and social conventions that are necessary to perform this simple
chore.

The machine, on the other hand, has no previous knowledge, does not
understand social conventions, and has no experience with doors, stairs,
people standing in line, or vending machine operation. If we forget to tell
the robot to open the door it will crash through and leave a hole shaped
like its outline. If we forget to tell it to wait in line if someone else is using
the vending machine, then the robot may just walk over the current cus-
tomer in its effort to put the coins in the slot. The tin can has no experi-
ence, no social manners, and no common sense. Giving instructions to a
machine is different and much more complicated than giving instructions
to an intelligent being.

This is what computer programming is about. It is sometimes consid-
ered difficult to learn, not so much because it is complicated, but because
it is something to which we are not accustomed. Learning programming
requires learning the grammar and syntax of a programming language,
but, perhaps more importantly, it requires learning to communicate with
and issue commands to a tin can; a task indeed!

Flowcharting

Computer scientists have come up with tools and techniques to help us de-
velop programs. One of the simplest and most useful of these tools is the
Sflowchart. A flowchart, like the word implies, is a graphical representation
of the flow of a program. In other words, a flowchart is a graph of the tests,
options, and actions that a program must perform in order to achieve a spe-
cific logical task.

Incidentally...

Present-day computers do not have human-like intelligence. Assump-
tions that are obvious when dealing with human beings are usually in-
valid when dealing with a machine. Computer programs must leave no
loose ends and presume no reasonable behavior. You cannot tell a
computer “well... you know what I mean!” or assume that a certain op-
eration is so obvious that it need not be explicitly stated. The program-
mer uses a flowchart to ensure that each processing step is clearly
defined and that the operations are performed in the required se-
quence.

© 2002 by CRC Press LLC

Flowcharts use symbols and special annotations to describe the spe-
cific steps in program flow. The most common ones are shown in Figure
1-1.

\

FLOWLINES
Connection symbol
Indicates direction of
program flow

RECTANGLE
Processing operations
Data entry. Arithmetic

DIAMOND
Decision

CIRCLE
Termination
symbol

PARALLELOGRAM
Input and output

Figure 1-1 Flowcharting Symbols

Suppose you needed to develop a program to determine when a domes-
tic robot needs to recharge its own batteries. Assume that the robot con-
tains a meter that measures the percent of full charge in its batteries, as
well as a clock that indicates the time of day. The program is to be based
on the following rules:

1. The robot should recharge itself after 5:00 PM.

2. Therobotshould notrecharge itselfif the batteries are more than 80% full.

The logic for recharging the robot batteries will first read the internal
clock to determine if it is after 5:00 PM. If so, then it will read the robot’s
battery meter to determine if the batteries are less than 80% full. If both
tests are true, then the robot is instructed to plug itself into a wall outlet
and recharge. If not, it is instructed to continue working. The logic can be
expressed in a flowchart, as shown in Figure 1-2.

© 2002 by CRC Press LLC

Y

Is it after

5:00 PM
?

Continue working

A

Read battery meter

Are batteries

less than 80% full
?

NO

Recharge battery

Figure 1-2 Flowchart for Recharging a Robot Battery

Note in the flowchart of Figure 1-2 that the diamond symbols represent
program decisions. These decisions are based on elementary logic, which
requires that there must be two, but not more than two choices. These
possible answers are labeled YES and NO in the flowchart. Decisions are
the crucial points in the logic. A program that requires no decision is
probably based on such simple logic that a flowchart would be unneces-
sary. For instance, a program that consists of several processing steps
that are always performed in the same sequence does not require a
flowchart.

The logic in computer programs often becomes complicated, or con-
tains subtle points that can be misinterpreted or overlooked. Even simple

© 2002 by CRC Press LLC

programming problems usually benefit from a flowchart. The logic
flowcharted in Figure 1-2 is based on recharging the batteries if it is after
5:00 PM “and” if the battery meter reads less than 80%. In this case both
conditions have to be true for the action of recharging the battery to take
place. An alternative set of rules could state that the robot must recharge
itself if it is after 5:00 PM “or” if the battery is less than 80% full. In this
case, either condition determines that the robot recharges. The flowchart
to represent this logic must be modified, as shown in Figure 1-3.

START

»
’

Read internal clock

Continue working

Is it past 5:00 PM
?

A

NO

Recharge battery

Read battery meter

Are batteries

< 80% full
?

Figure 1-3 Alternative Logic for Recharging a Robot Battery

Now suppose that there are critical functions that you do not want the
domestic robot to interrupt, even if it is after 5:00 PM or if the battery is
less than 80% charged. For example, if the robot is walking the dog you
may not want it to let go of the leash and go plug itself into the wall outlet.
In this case, you would have to modify the flowchart and insert an addi-
tional test so that recharging does not take place if the robot is currently
performing a critical activity. Furthermore, you may decide that a very
low battery could damage the machine; therefore, if the meter shows less
than 20% full charge, the robot should plug itself into the outlet no matter
what. Here again, the program logic and the flowchart would have to be

© 2002 by CRC Press LLC

modified to express the new set of conditions that determine which pro-
gram action takes place. It is easy to see how program logic can easily get
complicated and why flowcharts and other logic analysis tools are so im-
portant to the programmer.

© 2002 by CRC Press LLC

Chapter 2

Your First Java Program

Installing the JDK

The Java software development kit, called the JDK, is available for down-
loading at the Sun Microsystems Java software Web site at:

http://java.sun.com

The Java software is free. The Web site also contains useful Java pro-
gramming information and tools, documentation, demos, as well as an-
swers to frequently asked questions (FAQ). Appendix A contains detailed
instructions for loading and installing the Java development software in
your system. You must install the Java software in order to do the exer-
cises in this chapter.

Selecting an Editor

One component that is not included in the JDK is a text editor. You need a
text editor for creating the Java source used by your programs. There are
several text editors available in a PC. Edit is the MS-DOS editor while Note-
Pad and Wordpad work in Windows. Although any one of these programs
can serve in a pinch, all three have drawbacks. Edit, the MS-DOS editor, has
the disadvantage that it mangles filenames that contain more than 8 charac-
ters. This makes it difficult to navigate through typical Windows folders,
which usually have long names. In order to use Edit, you may consider plac-
ing all your source files in afirst-level directory and use short names for the
program files.

NotePad and WordPad are Microsoft editors that run in Windows.
WordPad is the more powerful one. The main objection to using these edi-
tors for Java progamming is that they do not save a file with the extension

© 2002 by CRC Press LLC

Java. Instead, WordPad and NotePad will automatically add the exten-
sion of the currently selected text type. For example, if you attempt to
save a file under the name Demo.java, either editor will append the exten-
sion of the currently selected text type. If the selected file type is a text
document, the resulting file will be named Demo.java.txt. The solution is
to enclose the filename in double quotation marks when saving the
source file to disk. For example, to save the file HelloWorld.java in Note-
Pad or WordPad, you would type:

“HelloWorld.java”

The quotation marks prevent NotePad and WordPad from appending
an extension to the filename. As long as you remember this requirement,
you can use WordPad or NotePad in developing Java programs.

The book’s CD ROM contains a Shareware editor named TextPad that
was especially developed for Java programming. You may want to experi-
ment with TextPad to see if it suits you. If you are going to spend time de-
veloping Java software using this editor, you should pay the modest
Shareware registration fee.

The HelloJava Program

In the first edition of their book on C programming, Kernigham and Ritchie
listed a simple program that displayed a screen message with the text
“Hello World”. The Java version of the Hello World program is as follows:

// Java version of the Hello World program
// Developed for the book “Java for Engineers”
// by CRC Press
public class HelloJdava
{
public static void main(String[] args)
{
System.out.println(“Hello World, this is Java”);
}
}

Java language rules
Java follows a few simple rules of syntax:

e Upper- and lower-case letters are different symbols in Java. When typing
Java code you must be careful to follow the required capitalization, because
Main and main are different.

e Java ignores white space. White space characters are those that do not ap-
pear on the screen, such as blank spaces, tabs, and line end codes. You will

© 2002 by CRC Press LLC

soon learn how Java programmers use white space to make the code more
pleasant and readable.

e Java uses braces {} as grouping symbols. They mark the beginning and the
end of a program section. A Java program must have an equal number of left
and right braces. The part of a Java program located between braces is
called a block.

e EveryJavastatement ends in the ; symbol. A statement is a program element
that generates a processing action. Not every Java expression is a state-
ment.

e Computer programs usually contain text that clarifies or explains the code.
These are called comments. Comments must be preceded by a special sym-
bol so that the text is ignored by the compiler. In Java, there are two ways of
inserting comments into your code:

The // symbol creates a comment that extends to the end of
the line. For example:

// This is a single-line comment

The // symbol can appear anywhere in a program line.

/* and */ symbols are used to delimit a comment that can span over
more than one line, for example:

/* This is a
multiple line
comment */

Programmers note:

Multiple line comments are now considered bad style. The reason is
that comments that span several lines may force the reader to look up
or down in the text for the comment symbols. A much clearer style is
to use the double slash symbol to mark each comment line. This is the
style we follow.

The program header

Programs often begin with several commented lines, sometimes called the
program header, that contain general information about the code that fol-
lows. The following elements are usually found in the program header:

e The program name
¢ The name of the author or authors

e A copyright notice, if one is appropriate

© 2002 by CRC Press LLC

e The date of program creation

e A description of the program'’s purpose and the functions it performs
¢ A history of the program changes and updates

¢ A listing of the tools used in developing the program

¢ Adescription of the software and hardware environment required to run the
program

Programmers create their own program headers which they paste into
all their sources. The following is a general-purpose program header that
you can adapt to suit your needs:

VAR EEREEEEREREEE SRR SRS EREEEREEEEREEEESEEEEEEEEEEEEEEREEEEREEEEE

//***

// ~Program name
// Copyright (c) 200? by
// ~ALL RIGHTS RESERVED

VAR EEREEEEREEEEEEEEEEEREEEREEEEREEEEREEEEREEEEEEEEEREEEEREEEEE

//***

// Date: Coded by:

// Filename: Module name:
// Source file:
// Program description:

//

//*****************‘k‘k*********************‘k‘k*******************

// Libraries and software support:

//
//*******************~k***
// Development environment:

//
//***‘k‘k‘k‘k‘k‘k‘k‘k‘k*
// System requirements:

//
//***
// Start date:

// Update history:

// DATE MODIFICATION

//
//***
// Test history:

// TEST PROTOCOL DATE TEST RESULTS

//
//***
// Programmer comments:

//

//

VAR EEREEEEREEEEEEEEEEEREEEREEEEREEEEREEEEEEEEEEEEEEREEEERE R R

//***

© 2002 by CRC Press LLC

On the Web

The listed sample header above is contained in the Chapter 2 folder at
www.crcpress.com. The name of the file is Header.java

The HelloJava code

Let’s examine the HelloJava program line-by-line. The program is re-listed be-
low:

// Java version of the Hello World program
// Developed for the book “Java for Engineers”
// by CRC Press
public class HelloJdava
{
public static void main(String[] args)
{
System.out.println(“Hello World, this is Java”);
}

The first three program lines are as follows:

// Java version of the Hello World program
// Developed for the book “Java for Engineers”
// by CRC Press

These three program lines are a comment. They are ignored by the com-
piler and have no other purpose than to document and explain the code. We
have used the // symbol to comment the lines individually.

The first non-comment line of the HelloJava program is as follows:

public class HelloJava
{

Programming languages, Java included, use special language elements
called keywords. Keywords are reserved and cannot be used in regular ex-
pressions. The keyword public, called an access modifier, determines if
other parts of the program can use this code. The keyword class is neces-
sary because everything in a Java program exists in a class.

The first class in a Java program is called the driving class. The driving
class must have the same name as the file in which it is stored. In other words,
if you save a Java program in a file named MyHello.java, then the driving class
must have the name MyHello. In the sample program, the source file has the
filename HelloJava.java, and the driving class is named HelloJava.

© 2002 by CRC Press LLC

Programmers note:

One of the most common mistakes made by beginning Java program-
mers is to use a different name for the file and the driving class. You
must also be careful to use identical capitalization in the file name and
the class name.

The left-hand roster symbol indicates the beginning of the class named
HelloJava. At the end of the program listing there is a right-hand roster
symbol that terminates the HelloJava class.

The next statement in the HelloJava program creates a method named
main(). Java code must always be contained in a method. The main()
method is created as follows:

public static void main(String[] args)

{

Every Java program must have a method named main. The words pub-
lic, static, and void are Java keywords that determine the characteristics
of the main method. Static indicates that the method remains active at all
time that is, that it “stays.” Void indicates that main returns nothing to the
operating system. The element inside parentheses represent a string
typed by the user when the program is executed. This string is sometimes
called the command tail. Command tails are seldom used in Java pro-
gramming.

Incidentally...

We use parentheses following the name of methods to make them eas-
ier to identify. Hereafter, the method named main appears as main().
This is a common style followed by many programming books.

Program execution always starts at the main() method of the Java
class that drives the application, that is, the class that has the same name
as the application’s source file.

The left-hand roster indicates the beginning of the main() method.
Later in the listing you can see a right-hand roster that marks the end of
main(). The following statement is included in main():

System.out.println(“Hello World, this is Java”);

© 2002 by CRC Press LLC

The purpose of this program line is to display the message “Hello
World, this is Java” on the screen. System is a built-in class that is part of
the standard Java libraries, while out is an object of this class. The word
println(), pronounced print line, is a method of the System.out stream.
The purpose of this line is to display a single text line on the video dis-
play. The text to be displayed is contained in double quotes. This is called
a string literal. A stream can be visualized as a sequence of characters
between a source (reader) and a destination (writer).

Figure 2-1 shows the elements of this program line. These elements are
discussed in detail in later chapters.

stream
println() parameters

System.out.println("Hello World, this is Java"):;

L terminator
end of parameters

end of string

string

start of string

start of parameters
method

object

class

Figure 2-1 Breakdown of the printin() Statement

At the end of the program listing we see two right-hand rosters. The
first one marks the end of the main() method. The second right-hand ros-
ter marks the end of the class HelloJava, which in this case is also the end
of the program.

Creating the HelloJava Program

As afirst programming exercise, you should now type, compile, and run the
HelloJava program. This will also serve to make sure that your develop-
ment system is working correctly. Start by executing the editor of your
choice and typing in the code. Make sure that you maintain the same capi-
talization as in the listing. Figure 2-2 shows the program as it appears in the
TextPad editor screen.

© 2002 by CRC Press LLC

Bl Helloworld - WordPad [_ O[]

File Edit “iew |nsert Format Help
D@ Sl o] & =8)o] &)
ICDurier(\Nestern) LI |1D LI B |/| u || I%

7+ Java wersion of the Hello World program
Developed for the hook "Java for Engineers”
/7 by CRC Press|
public class HelloJava
{

public static vold main(2tring[]. args)

System.out.println("Hello World, this is Java"):
¥
}
For Help, press F1 "

Figure 2-2 Typing the HelloJava Program

Once the program is typed into the editor, it must be saved with the
same name as that used in the driving class, in this case, HelloJava. The
text file that contains the program code is called the source file. In Java,
the source file must have the extension .java. Therefore, the program is
saved as

HelloJdava.java

Remember that the capitalization must be the same in the name of the
source file, as in the name of the driving class. Also note that Java ignores
white space in text formatting, but spaces inside a name are not ignored.
Hello Java and HelloJava are different names.

The Java program development software that comes with the JDK must
be run from the MS DOS command line. If you have correctly entered the
PATH and CLASSPATH commands in your autoexe.bat file, as described in
Appendix A, the system will be able to locate the development software
without having to type in the path specification.

© 2002 by CRC Press LLC

Programmers note:

Itisusually a good ideato execute the Java compiler from the same di-
rectory where the source files are located. This ensures that the sys-
tem can find the source files.

Proceed as follows to compile the HelloJava program:

1. Open a window with the MS DOS command prompt. If there is no MS DOS
icon on your Windows desktop, you can find the MS DOS command prompt
in the Programs command of the Windows Start menu.

2. Log on to the directory where the source file that you intend to compile is
located.

3. Execute the Java compiler from the MS DOS command prompt.

In the case of the HelloJava program, the command will be:

javac HelloJava.java

Javac (usually pronounced java-see) is the name of the Java compiler.
If compilation takes place correctly, no error message is displayed and
the MS DOS command prompt returns to the screen. If the javac compiler
produces an error, you will have to locate it in the source code and cor-
rect it before attempting to re-compile.

Figure 2-3 shows the MS-DOS prompt window during the compilation
and execution of the HelloJava program.

Microsoft(R) Windows 9§
(CICopyright Microsoft Corp 1%81-199%.

C:\WIHDOWS > cd v Javalew
C:vJavalev>javac Hellodava.java

C:vJavaDev>java HelloJdava
Hello YWorld, this is Java

C:hvdavalewy

Figure 2-3 Compiling and Executing the HelloJava Program

© 2002 by CRC Press LLC

Programmers note:

At this stage of your Java programming, most errors are due to typing
mistakes. Incorrect capitalization and missing rosters are among the

most common ones.

When the program has compiled without error, the compiler creates a
file with the extension .class. This is the executable that can be run by the
Java interpreter. The name of the java interpreter is java.exe.

Developing a Java application often requires going back and forth be-
tween the editor and the compiler. To save time, it is usually a good idea
to place the editor in a desktop window, and the MS DOS command
prompt in another one. You can then switch between both windows while
developing the application or making corrections in the source.

© 2002 by CRC Press LLC

Chapter 3

How Computers Store Information

Storing Text and Numbers

A program's work consists mostly of storing, manipulating, and processing
computer data. In this chapter we look at how this data is stored in a com-
puter system. To a beginner, some of the topics could be intimidating. Bi-
nary and hexadecimal numbers sometimes appear to be a profound and
arcane mystery that can only be understood by the gurus of computing.
Nothing could be further from the truth. As you will see, binary and hex
numbers are used in computers because they are more reasonable and eas-
ier to apply than conventional decimal numbers. Furthermore, you cannot
be a programmer without a working knowledge of the number systems
used by computers. A related topic is how text and numbers are encoded so
that they can be stored in a computer, and how these data storage codes are
used in Java programming.

Number Systems

A number system is a collection of rules and symbols that we use for count-
ing and doing arithmetic. The Hindu-Arabic or decimal system has gained
worldwide acceptance. We are all familiar with the symbols:

01 2 3 4 5 6 7 8 9
It has often been said that the decimal system of numbers resulted

from the practice of counting with our fingers, and that if humans had six
fingers instead, our number system would have six symbols.

The first and most important use of a system of numbers is in counting.

The simplest form of counting is called tallying. We all occasionally re-
sort to the tally system by drawing a vertical line for each object we wish

© 2002 by CRC Press LLC

to count. A refinement of the tally system is to make groups of five ele-
ments by drawing a diagonal line for each fifth unit. The tally system does
not require numerical symbols. The ancient Egyptians used the tally sys-
tem to count from 1 to 9. Roman numerals probably derived from the tally
system since we can detect in some Roman numerals, the vertical and di-
agonal traces. In the system of Roman numerals there is no symbol for
zero, the digits have no positional value, and some digits require more
than one symbol. These factors make Roman numerals difficult to use.

The Hindu-Arabic system of numbers was introduced into Europe dur-
ing the 14th and 15th centuries. These numerals are used in a counting
scheme in which the value of each digit is determined by its column posi-
tion, for example, the number

4 5 7 3

consists of 4 one-thousand units, plus 5 one-hundred units, plus 7 ten-units,
plus 3 single units. The total value is obtained by adding the column weights
of each unit.

Binary numbers

The computers built in the United States during the early 1940s used deci-
mal numbers to store data and to perform arithmetic operations. In 1946,
John von Neumann observed that computing machinery would be easier to
build and would be more reliable if the electronic circuits were based on
two states, labeled ON and OFF, and that these two states could be repre-
sented by the digits 1 and 0. A system of numbers of only two digits is called
the binary system. With binary numbers, the two states of an electronic
cell are made to correspond to the digits 0 and 1.

Incidentally...

John von Neumann, who was of Hungarian descent, insisted that his
lastname should be pronounced “fon Noiman”. In 1930, he was invited
to be a visiting lecturer at Princeton University. He later became one
of the original six professors at Princeton's Institute for Advanced
Study and Research; Albert Einstein was one of the other five. In 1946,
von Neumann published a paper in collaboration with Arthur Burks
and Herman Goldstein. The paper, titled “A Preliminary Discussion of
the Logical Design of an Electronic Computing Instrument”, turned
out to be a perfect blueprint for building a computer. For this reason,
the modern-day digital computer is described as a von Neumann ma-
chine.

© 2002 by CRC Press LLC

The binary system is the simplest possible set of symbols with which
we can count and perform positional arithmetic. Hexadecimal numbers,
also called hex, are a convenient shorthand for representing groups of
four binary digits. Figure 3-1 shows the relation between a group of four
electronic cells and various number systems.

o
o
o

ol
HowoOJoUdWNRO

[
N

[
w

[
'Y

FRRPRRRHRRROOOOOOO
HFRHRPHOOOOKKRKHKEROOO
HFROORKHOOKRROOKHKHO
HOFROHROHOHOKOKFRORO

[
8]

’—mmuow:u\oooqmm.bwwl—-o

Hex
Binary
Decimal

Figure 3-1 Decimal, Binary, and Hex Numbers

If we think of each cell as a miniature light bulb, then the binary num-
ber 1 can be used to represent the state of a charged cell (light bulb ON)
and the binary number 0 to represent the state of an uncharged cell (light
bulb OFF). In this sense, we say that a bit is set if its binary value is 1 and
that a bit is reset, or clear, if its binary value is 0.

Hex numbers

The rightmost column in Figure 3-1 contains the hex numbers. Hex num-
bers are convenient because they are a shorthand way for representing
groups of four binary digits. These groups of four electronic cells are the

© 2002 by CRC Press LLC

building blocks of computer systems. In most modern computers, memory
cells, registers, and data paths are designed in multiples of four binary dig-
its. In Figure 3-1, we see that all possible combinations of four binary digits
can be encoded in a single hex digit.

Computer memory

Today computer memory is usually furnished in the form of a silicon
wafer that houses a package of integrated circuits. Each memory cell is a
transistor circuit capable of storing two stable states. One state is repre-
sented with the binary symbol 1 and the other one with the binary symbol
0. The memory cells are usually arranged in groups of 8 bits, called a byte.
In most machines, the byte is the smallest unit of memory that can be di-
rectly accessed by a program.

Table 3-1 lists the most common units of measurement associated with
computer memory.

Table 3-1
Units of Memory Storage

UNIT EQUAL TO
nibble 4 bits
byte 8 bits

2 nibbles
word 16 bits

4 nibbles

2 bytes
kilobyte 1024 bytes
megabyte 1024 kilobytes
gigabyte 1024 megabytes

Memory is organized linearly, that is, memory cells are placed in a sin-
gle straight line that extends from the first to the last cell in the system.
The sequential number assigned to each unit is called the memory ad-
dress. The maximum number of memory units in a particular system de-
pends on its internal architecture. Each memory cell in a typical com-
puter consists of one byte (8 bits) of data. Figure 3-2 shows the
numbering of the individual bits within a byte.

Character data

Computers store data in groups of electrical cells, each of which holds ei-
ther binary 1 or 0. These patterns of 1's and 0's are the most efficient and
convenient way of representing computer information. A group of eight
cells, called a byte, stores a number in the range 0 to 255.

© 2002 by CRC Press LLC

[716/5/4]3]2]1]0]

High-order bit——— — Low-order bit
(HOB) (LOB)

Figure 3-2 Bit Numbering

Characters and symbols are stored in computers according to a code in
which each character or symbol corresponds to a numeric value. For ex-
ample, if we agree that the upper-case letter A is represented by the num-
ber 1, the letter B by the number 2, and so forth, then the upper-case letter
Z is represented by the number 26. Once we accept this scheme for repre-
senting letters by numbers, we can encode text messages using numbers
instead of letters. In this manner, the letters ACZ would be represented by
the numbers 1, 3, 26.

Several schemes for representing character data have been adopted
and abandoned over the years. Hollerith code and the Extended Binary
Coded Decimal Interchange Code, known as EBCDIC, were popular some
time ago. American Standard Code for Information Interchange, or ASCII
(pronounced as-key), has gained almost universal acceptance. Java rec-
ognizes several character sets, including ASCII; however, the language
supports a universal character set named Unicode. While ASCII charac-
ters are stored in 8-bits, Unicode is based on 16-bit values. This wider for-
mat allows supporting non-English and multilingual environments. Figure
3-3 (on the next page) shows the symbols in the ASCII character set as
well as their decimal and hexadecimal values.

You can use Figure 3-3 to determine the decimal and hex value of any
ASCII symbol. First, you look up the column value of the symbol, and
then add to it the row value. For example, the decimal ASCII code for the
letter “c” is 96 plus 3, or 99. By the same token, the value of the ASCII
symbol for the number “6” is 36 hexadecimal or 54 decimal.

Characters are stored in computer memory according to the numeric
values assigned to them in the adopted representation. In ASCII encoding
the name “Jane” appears in computer memory as the decimal values 74,
97, 110, and 101 since these are the ASCII decimal values for the letters
“J7 “a”, “n”, and “e.” In Hex, the values would be 4A, 61, 6E, and 65.Figure
3-4 shows the binary and hex values for the ASCII characters that form
the name “Jane.”

© 2002 by CRC Press LLC

mi || 0 |16 |32 |48 |64 |80 |96 |112
¢ HEX | O |10 |20 |30 (40 |50 (60 |70
0 0 (space)| O @ P N P
1 1 ! 1 A 0 a q
2 2 " 2 B R b r
3 |3 # | 3|/ C| S| c | s
4 4 S 4 D T d t
5 5 % 5 E U e u
6 6 & 6 F \% f v
7 7 ' 7 G W g w
8 8 (8 H X h x
9 9 9 I Y i y
10 A * J Z j z
11| B + | 7 | K [| k| {
12| C , < L \ 1 |
13| D - | =M] | m |}
14 | E > M ” n ~
15| F / | 2| O0| _|o
Figure 3-3 The ASCII Character Set
01001010-01100001-01101110-01100101 ——— Binary values
4AH 61H 6EH 65H —— Hex values
ng” NE “n” “e” ——— ASCII characters

Figure 3-4 ASCII Encoding of the Name “Jane”

© 2002 by CRC Press LLC

Numeric data

Numbers can be represented in a computer system by means of the corre-
sponding characters. In the ASCII character set, the number 128 is repre-
sented by three bytes holding the decimal values 49, 50, and 56. You can
confirm these codes in the ASCII table in Figure 3-3. Although numeric data
is sometimes stored as characters, this representation of numbers is ineffi-
cient and awkward. Computers are binary machines and perform arithme-
tic operations only on binary numbers. This means that to multiply the
number 128, encoded in ASCII digits, by the number 2, also in ASCII, the
computer would first have to convert these text-like representations into
binary. A more reasonable approach is to store numbers directly in binary.
For example, the number 128 can be stored as the binary value

10000000

First note that in binary the number 128 is stored in one byte, while it
requires three bytes if it is represented in ASCII characters. More impor-
tantly, binary arithmetic can be performed directly on the encoding with-
out having to perform conversions.

Computer systems use straight binary representation for unsigned in-
teger numbers. However, how would you represent negative and positive
numbers in binary? One possible scheme is to devote a binary digit to rep-
resent the sign. By convention, a binary 0 represents a positive number,
and a binary 1 represents a negative number. Usually the leftmost bit,
called the high-order bit, is devoted to the sign. This arrangement is
sometimes called a sign-magnitude representation. For example, the
decimal numbers +93 and -93 are represented as follows:

01011101
11011101

+93 decimal
-93 decimal

Note that the leftmost bit is zero for +93 and it is 1 for -93. The remain-
ing binary digits are the same in both numbers.

Sign-magnitude representation, although simple and straightforward,
has its drawbacks. One of them is that there are two encoding for zero,
one negative and one positive, as follows:

00000000 = positive zero
10000000 = negative zero

The representation for negative zero is usually unnecessary, since zero
is neither positive nor negative. Furthermore, sign-magnitude representa-
tions make arithmetic complicated. To add two signed numbers you first
have to determine if they have the same sign or different signs. If the sign

© 2002 by CRC Press LLC

is the same, then the numbers are added and given the common sign. If
the numbers have different signs, then the smaller one is subtracted from
the larger one and given the sign of the larger one. If either number is 0 or
-0, then the result is the other element. If both numbers are -0, then the
sum is 0.

Another type of signed binary encoding, called radix-complement rep-
resentation, was developed to eliminate the negative zero and to simplify
machine arithmetic. The radix of a number system is the same as its base.
The radix of the decimal system is ten, and in this system the radix com-
plement is also called the ten’s complement. In binary, the base of the
number system is two, and the radix-complement representation is called
the two's complement.

The two's complement of a signed number is obtained by calculating
the difference between the number and the next integer power of two
that is greater than the number. Usually the machine hardware contains
instructions that directly produce the two's complement. The great ad-
vantage of two's complement representations is that arithmetic addition
and subtraction become a single operation, and that the arithmetic rules
and manipulations are simpler and more effective.

Binary encoding of fractional numbers poses some additional prob-
lems. Since there is no way of representing a decimal point in binary, we
must adopt some scheme to define where the decimal point is located.
Several approaches are possible. In one of them, called a fixed-point rep-
resentation, a previously determined number of binary digits are as-
signed for encoding the integer part, and another number of digits for the
fractional part. Although the fixed-point approach was used in some of
the earlier computers, it is wasteful and ineffective.

Another way of encoding fractional numbers is based on the same
method used in scientific notation; it is also called exponential form. In
scientific notation scheme, the number 310.25 is written as follows:

3.1025 x 102

The value 310.25 is obtained by multiplying 3.1025 by 100. Numbers
that are smaller than 1 can we written using a negative exponent, for ex-
ample, the number .0004256 in scientific notation is

4.256 x 107°

In order to avoid superscripts, computer technology uses the letter E
for the exponent part. For example:

© 2002 by CRC Press LLC

3.1025 E2
4.256 E-4

Because the decimal point floats according to the value of the expo-
nent, these representations are called floating-point. For many years
computers have used floating-point binary representations for encoding
decimal numbers. Several computer manufacturers came up with their
own schemes for representing decimal numbers in floating-point format.
In 1985, the American National Standards Institute (ANSI) approved a bi-
nary floating-point standard based on the work of the Computer Society
of the Institute for Electric and Electronic Engineers (IEEE). This stan-
dard, designated as ANSI-IEEE 754 is now generally followed. Java uses
the ANSI-IEEE 754 formats for storing decimal numbers encoded in bi-
nary.

© 2002 by CRC Press LLC

Chapter 4

Storing and Naming Data

A Data-Processing Machine

A computer can be described as a machine that processes data. You can
imagine a digital meat grinder into which raw data is fed. When you turn the
grinder's handle, the raw data is converted into some form of consumable
digital sausage. Using this same meat grinder image we can say that a pro-
gram is a set of instructions that determine how the raw data is processed.
Therefore, one of the main functions of a programming language, such as
Java, is the classification, manipulation, and storage of computer data. In
this chapter we look at how data is stored in a Java program and learn how
to create and use different types of data.

What is Computer Data?

Datais a general term that can be applied to many types of objects. It means
an item of information.

Incidentally...

Strictly speaking “data” is the plural of “datum” but, in practice, no
one bothers making this distinction.

The following can be considered items of data:

3.1415
Minnesota

131 Calm Court
75

X

© 2002 by CRC Press LLC

When we look at data we observe that it comes in two flavors: numbers
and names. The main difference between numbers and names is that we
can perform arithmetic on numbers, but not on names. Numbers belong
to a type called numeric data, while names are alphanumeric or charac-
ter data. You may have also noticed that some data items refer to individ-
ual objects and others are a collection of objects. For example, the data
item “131 Calm Court” is a collection of three simpler items. Data types
that encode individual objects are called scalar types, while those that
represent collections of objects are called structured data types. Java
provides means for storing and manipulating numeric and alphanumeric
data objects of both scalar and structured types.

Once a data item is assigned to a particular type, its processing is done
according to the rules for that particular type. In other words: you cannot
do arithmetic on objects defined as a character type. By the same token,
numeric data cannot be separated into its individual symbols. As a pro-
grammer you assign each data object to the data type that corresponds to
its intended use. In doing this, you must not be confused by an object's
appearance. For example, a telephone number, which is actually a collec-
tion of digits, is usually considered an alphanumeric data type. What
would be the use of adding or subtracting telephone numbers?

Identifiers

Before we getinto the details of creating and using data we must take a brief
look at the Java rules for naming program elements. Java tdentifiers are
used to name data items, classes, and methods. Legal characters for identi-
fiers are the letters and digits of the Unicode character set, as well as the
symbols $ and _. The space is not alegal character in an identifier since Java
uses the space to mark the end of names. Because Java is case-sensitive,
the names aVar and Avar represent different identifiers. An identifier can-
not start with a digit. The length of an identifier is virtually unlimited, al-
though it is a good idea to keep identifiers to less than 30 characters. The
following are legal identifiers in Java:

personalName

PI

y_121

$$128

user_address

The following identifiers are illegal:
1_value

User name

%%123

© 2002 by CRC Press LLC

An identifier cannot be one of the special keywords used by the Java
language. Appendix B lists the Java reserved words.

Programmers note:

One of the programmer's most important tasks is coming up with good
identifiers. A good identifier is one that is descriptive and at the same
time easy to type. For example, if a data item is to hold the age of an
employee, a good name for this item may be employeeAge. Since
spaces are illegal in identifiers, you can use capital letters or the un-
derscore symbol to separate the individual words in a name. Cryptic
or meaningless identifiers make the code difficult to understand and
maintain. While identifiers that are too verbose or complicated are
prone to typing errors.

Creating and using variables and constants

To a programmer, a variable is a storage location that contains a data item
of a specific type. The storage location is assigned a name so that it can be
identified. The contents of a variable can be changed anywhere in the pro-
gram. Therefore, a variable can be visualized as a labeled box, defined by
the programmer, for storing a data object of a particular type. Figure 4-1
shows the data items listed previously.

| age stateName streetAddress

75 Minnesota 131 Calm Court

Figure 4-1 Variables as Labeled Boxes

In the course of a program we can re-assign values to all our variables,
as long as the new value is consistent with the original type. For example,
we can replace the value of the numeric constant named “age” with an-
other number, or the value of the variable named “stateName” with an-
other name. Constants, on the other hand, represent values that do not
change in the course of a program. For example, we can define a constant
to store the value of Pi, which is the ratio between the diameter and the

© 2002 by CRC Press LLC

circumference of a circle. Once defined, this value can be recalled any
time that it is needed.

Java variable types

Javais astrongly typed language. This means that every variable must have
a declared type, and that the language strictly enforces type-checking.
Eight primitive data types are built into the Java language. Four of these
primitive types, called integer types, are used to store whole numbers. They
are named byte, short, int, and long. Two primitive types are used for stor-
ing decimal numbers. These types are named float and double. There is also
one character type, named char, and one boolean type, named boolean. Ta-
ble 4-1 lists the Java primitive data types.

Table 4-1
Java Primitive Data Types

TYPE NAME STORAGE APPROXIMATE
SPACE RANGE
INTEGRALS:
int 4 bytes +/- 2 billion
short 2 bytes +/- 32,767
long 8 bytes +/-9.2x 1018
byte 1 byte -129 to 127
FLOATING-POINT:
float 4 bytes 7-8 digits
double 8 bytes 16-17 digits
CHARACTER TYPE:
char 2 bytes 65,536
BOOLEAN TYPE:
boolean true and false

Declaring a variable

Before you can use a variable in a Java program you must first declare it by
specifying its type and assigning to it a name. The variable name must be a
legal Java identifier and the variable type must be one of the primitive data
types listed in Table 4-1. The purpose of the declaration statement is to in-
form the compiler of our intention of creating a variable of a specific type
and tagging it with a particular name. The result is that Java reserves a
memory space in which to store the data and associates it with the identi-
fier that we assigned as aname. For example, the following declaration cre-
ates a variable of type int:

int agel;

© 2002 by CRC Press LLC

You may also declare several variables of the same type by separating
the variable names with commas, for example:

int age2, age3, age4;

At the time that a variable is declared, you can also assign to it a value.
This is called the variable’s initialization. The value assigned to the vari-
able is preceded by the equal sign, for example:

float radius = 1.22;

In this statement we have created a numeric variable of Java's float
type and named it radius. The variable was initially set to a value of 1.22.

You may also declare several variables while initializing some and not
others, for example:

int valA = 1, val2, val3, vald = 77;

In this case the commas separate the individual variables. However,
these complicated variable declarations are not considered good pro-
gramming style.

Java strings

Programs frequently use groups of characters called strings. A Java string
is a class, not a primitive type. The Java String class is part of the java.lang
library that is directly accessible to any Java program. For this reason you
can create objects of the Java String class as if they were variables of a prim-
itive data type. Note that because String is a class it begins with an up-
per-case letter, while all the other primitive data types in Table 4-1 have
names that start with a lower-case letter.

Programmers note:

The Java String class is so often used in programming that we tend to
think of it as another primitive data type. The fact that “String” starts
with a capital “S” reminds us that it is a class.

A String object is used to represent a sequence of characters. In con-
trast with the primitive data types, once a string is created it cannot be
changed. A String object is declared and initialized much like any of the
primitive types. Double quotation marks are used to delimit the string; for
example:

String uName = “Minnesota State University”;
String ssn = “263-98-2233";

© 2002 by CRC Press LLC

The Java String class contains several methods to manipulate and con-
vert strings. These are discussed later in this book.

Programmers note:

At the time it is declared a variable assumes certain specific attrib-
utes. One of these attributes is called the scope. A variable's scope is
the part of a program over which it is recognized. The scope of a Java
variable is determined by the closest set of roster symbols, { and }, that
contain the variable. The variable can be used only in the part of the
code that islocated within these rosters. By strictly enforcing the vari-
able scope rules, Java makes it difficult to misuse variables.

Java constants

Java constants are variables defined with the final and static keywords.
Javahas strict rules for the declaration of constants. The language does not
allow constants inside a particular method. Instead, constants must be de-
fined at the class level. For this reason they are sometimes called class con-
stants. If an application requires a local constant all it can do is define a
variable and use it as if it were a constant. The following statement declares
a constant:

static final double PI = 3.141592653589793;

Many programmers use all upper-case letters for constant names, as in
the case of the constant PI listed above. This style makes it easy to iden-
tify variables and constants in the code listing.

Classification of Java Data

In Table 4-1 we see that Java primitive data types are classified into three
categories: numeric types, character types (also called alphanumeric
data), and boolean types. Each of these data types serves a special purpose
inaJavaprogram. Before you can start serious Java programming you must
first have a clear notion of the three categories of Java data and of the spe-
cific types in each one of them.

Numeric data

Many Java programs must do number-crunching operations. Numeric data
is used to perform mathematical operations and calculations.

© 2002 by CRC Press LLC

Programmers note:

In numeric data types the digit symbols represent quantities. In alpha-
numeric data types these same symbols are used as designators, as is
the case in a telephone or a social security number.

Numeric data can appear in Java code in the form of variables or con-
stants. In addition numeric data can be entered explicitly in an operation.
Explicit numeric data, called literals, are discussed later in this chapter.
The floating-point types are also called reals.

Each numeric data type corresponds to a category of numbers, for ex-
ample, the integer data type allows representing whole numbers while the
floating-point data type allows representing fractional numbers. For each
data type, Java provides several type specifiers that further determine
the characteristic and range of representable values. These are listed in
Table 4-1.

Character data

Character or alphanumeric data refers to items that serve as textual desig-
nators. Theletters of the alphabet and other non-numeric symbols are often
used as designators. Number symbols are also valid in alphanumeric data.
This is the case of telephone numbers, street addresses, zip codes, social
security numbers, and many other designators.

In Java, alphanumeric data belongs either to the char data type or to
the String class. Data defined as char is treated by Java either as a 16-bit
unsigned integer, with values in the range 0 to 65535, or as a single
Unicode character. This means that the char data type can be used to rep-
resent unsigned integers in the range mentioned above, and that it sup-
ports basic arithmetic on these values. However, it is usually better to use
the numeric data types for this and leave the char type for alphanumeric
data.

The single quotation marks are used to declare a char data type. These
are sometimes called “tick” marks. For example:

char alLet = 'f';

Recall that String objects are declared using the double quotation
marks:

String aCity = "Mankato";

© 2002 by CRC Press LLC

Boolean data

The third data classification of the Java language is the boolean, repre-
sented by a single data type, also called boolean.

Incidentally...

The boolean data type owns its name to the English logician George
Boole who, in the nineteenth century, addressed the relations be-
tween mathematics and logic. Java is one of the languages that sup-
ports aboolean data type. Other languages, such as C and C++, use an
integer data type to represent boolean data. In languages with no
boolean data type, a value of 0 typically represents false and any other
numeric value represents true.

A boolean variable can take only two values: true and false. In Java
these values must be typed in lower-case letters. Typically, boolean vari-
ables represent program elements that indicate the truth or falseness of a
statement or proposition. They are declared and initialized like numeric
or alphanumeric types. For example:

boolean switchIsOn = true;

Type Conversions

In Java programming, you will often encounter a situation in which one
data type must be converted into another one. Suppose that you are devel-
oping a program that must calculate a ratio based on two integer values.
Such would be the case if your program used variables to represent a con-
trol valve with a maximum flow and a series of flow-control settings, as fol-
lows:

int maximumFlow

1}
(S
~ o

int flowSetting

In this case, you could obtain the current gas flow ratio (0.5) by divid-
ing the flow setting value (5) by the maximum valve flow value (10). The
problem is that, in Java, integer arithmetic always produces integer val-
ues. Therefore, in Java integer arithmetic, the result of the operation 5 /
10is 0.

The solution to this problem is to convert the two integer operands
into floating-point types (float or double) in order to perform float-
ing-point division. There are two forms of type conversions: explicit and
implicit. In explicit conversions, code deliberately changes the data type

© 2002 by CRC Press LLC

of an operand by a process called type casting. Implicit conversions are
performed automatically by the language.

Implicit conversions

Java performs implicit conversions between numeric types only if no loss
of precision or magnitude results from the conversion. In the case of unary
conversions, operands of type byte and short are automatically converted
to type int. All other types are preserved. In the case of binary conversions
the rules are as follows:

1. With integer types, if one of the operands is long, then the other one is con-
verted to long. Otherwise, both operands are converted to int.

2. Alsoinrelation to integers, the expression is an int except if the value is too
long for the int format. In this case the value is converted to a long.

3. For operations on floating-point types, if one operand is a double, the other
one is also converted to double and the result is of type double. Otherwise,
both operands are converted to float and the result is a float type.

Type-casting

Explicit conversions are performed by a process called casting or type
casting. Type casting consists of preceding the operand with the desired
type, enclosed in parentheses. Recall the case of the gas flow valve men-
tioned at the beginning of this section. Here we needed to convert two inte-
gervariables to afloating-point type. In this case the cast can be as follows:

int maximumFlow = 10;
int flowSetting = 5;
double flowRate;

flowRate = (double) maximumFlow / (double) flowSetting;

The variable flowRate now has the expected ratio of 0.5.

Java type casting must follow the following rules:
1. Boolean variables cannot be cast into any other type.

2. Any of the integer data types can be cast into any other type, except
boolean. Casting into a smaller type can result in loss of data.

3. Floating-point types can be cast into other float types or into integer types.
These casts may result in loss of data.

4. The char type can be cast into integer types. Since the char is 16-bits wide,
casting into abyte type may result in loss of data or in garbled characters.

© 2002 by CRC Press LLC

Declaring literals

Java programs usually contain values expressed directly. These values are
called literal expressions, or literals. You use a literal to initialize a vari-
able or a constant. For example:

int age = 32;
String myU = “Minnesota State University”;

In the declaration of literal values, Java assumes that floating-point lit-
erals are of type double. For this reason, the statement:

float aval = 12.33;

generates an error. The reason for the error is that Java assumed that the
value 12.33 is in double format, and there could be loss of precision when it
is converted into the float type of the variable. The solution is to force the
literal, in this case the value 12.33, into a float type, as follows:

float aval = (float) 12.33;

Java also provides the following shorthand:

float aval = 12.33f;

The small-case letter f following the literal value performs a type cast.

© 2002 by CRC Press LLC

Chapter 5

Performing Input and Output

Input and Output

So far you have learned about classification, storage, and initialization of
data. These operations are internal to the program and, therefore, rela-
tively independent from the machine's hardware. The designers of Java de-
fined data types and data-manipulation instructions in a way that ensured
that they could be implemented with relative ease, in any modern com-
puter. This is not easy to achieve with data input and output operations. In-
put and output requires the intervention of hardware devices, such as the
keyboard, the mouse, the video system, or the printer. This makes data in-
put and output functions device-dependent and very difficult to define and
implement in alanguage, such as Java, which aims at device-independence.
The result is that input and output operations in Java are often considered
difficult and complicated.

In this chapter, we describe a Java class named Keyin that we devel-
oped so as to simplify coding keyboard input operations. The elements of
the Keyin class are explained in detail in Chapter 18. For the time being,
you will use the class as a black box that contains methods for entering
numbers, characters, and strings from the keyboard. Data output to the
video display is supported by the Java libraries, although in a rather elab-
orate way.

Data Input

There is no single instruction or library method in the Java language to per-
form keyboard input. This is also true of C and C++; however, C and C++
contain input functions that are part of their standard libraries. Not in Java,
in which input takes place at the data stream level. This means that to input

© 2002 by CRC Press LLC

an integer, a string, or a floating-point number, the programmer has to de-
velop arather complicated routine based on the methods and subclasses of
the Java InputStream class, which is part of the java.io library. Alterna-
tively, you could develop an input routine using the methods of the System
class, which is part of the java.lang library, but it is also complicated and
beyond your present understanding of the language.

Although the processing required for obtaining keyboard input is not
difficult to implement, it is beyond our present level. On the other hand,
even the simplest program requires some form of data input. It would be
impossible to perform any kind of non-trivial programming in Java with-
out means for obtaining keyboard data. For this reason we have devel-
oped a class to perform data input. The class, called Keyin, contains the
following methods:

inChar () inputs a single keyboard character.
inString () inputs a string from the keyboard.
inInt () inputs an integer number.

inDouble() inputs a float in double format.

To use the methods inChar(), inString(), inInt(), and inDouble() you
must have the Keyin class accessible to the code. The easiest way is to
copy the file Keyin.class to your current development directory. This
done, your program will be able to input characters, strings, integers, and
floating-point numbers.

Each of the methods in the Keyin class displays a prompt message to
inform the user of the input required. This message is passed as a parame-
ter, as in the following code fragment:

int agel;

agel = inInt(“Please enter your age”);

When the method inInt() executes, the prompt message “Please enter
your age: ” is displayed on the screen. Once the user enters a valid value
and presses the <Enter> key the value is assigned to the variable agel.
The methods inChar(), inString() and inDouble() are similar.

On the Web

You may look at the code of the Keyin class by loading the file
Keyin.java into your editor program. Keyin.java is found in the Chap-
ter 18 folder at www.crcpress.com.

© 2002 by CRC Press LLC

Data Output

Data output in Java is easier to implement than data input. The out object,
which is part of the System class, can be used to display program data di-
rectly. The System class is part of the java.lang library. The out object of the
System class allows you to use the print() and printin() methods of the
PrintStream class, located in java.io. In the HelloJava program, developed
in Chapter 2, we used the println() method to display a message on the
screen. The following expression is part of the HelloJava.java program:

System.out.println ("Hello World, this is Java");

The println() method automatically terminates the displayed line. The
result is that the current text output marker, sometimes called the cursor,
is moved to the next screen line automatically. The print() method, on the
other hand, sends data to the video display at the current position of the
text output marker, but does not index to the next screen line. For exam-
ple, the statements:

System.out.print ("value") ;
System.out.print (" number") ;
System.out.print (" code") ;

(

System.out.flush

Produce the following output:

value number code

In this case, the flush() method, also of the PrintStream class, is used
to terminate the line.

Escape characters

The Java display methods, print() and println(), recognize special charac-
ters that serve to delimit and format the string or character to be displayed,;
also to display symbols that are used in the statement grammar. For exam-
ple, the “ symbol is used in print() and println() to mark the beginning and
the end of the string to be displayed. If you were to include this symbol as a
character, then the processing logic would be unable to correctly format
the output. Suppose you wanted to display on the screen a message that
contained a word inside quotation marks, for example:

She said her name was "Mary"

Since quotation marks are used to end the string to be displayed, the
following statement would not execute correctly

System.out.println("She said her name was "Ellen"");

© 2002 by CRC Press LLC

The processing logic would interpret that the second quotation mark
symbol marks the end of the output string. But if the string ends in this
symbol, then the rest of the statement is undecipherable and a compiler
error is produced.

Other special characters are used to format output. For example, when
the value 0x0a (decimal 10) is sent to the console the device moves the
cursor to the next screen line. From the days of teletype machines and
typewriters this is called a linefeed. By the same token, when the code
0x0d (decimal 13) is sent to the console the cursor is moved to the start of
the line. This action is called a carriage return. The values that perform
these special actions are called conitrol codes.

Java uses the \ symbol as a special character. It serves to indicate that
the character that follows is to be interpreted in a special way. The \ sym-
bol is called the escape character. The escape character is used to display
characters that are used in statement formatting and to execute control
codes such as new line and carriage returns. Table 5-1 shows the Java Es-
cape Characters.

Table 5-1
Java Escape Characters
LITERAL VALUE ACTION
\b 0x08 backspace
\t 0x09 horizontal tab
\n 0x0a new line
\f 0x0c form feed
\r 0x0d carriage return
\" double quotation mark
\' single quotation mark
\\ backslash

By using the escape character we can now reformat the previous state-
ment, as follows:

System.out.println("She said her name was \"Mary\"");

The new line character (\n) is often used to end the current text line or
to produce a blank line on the screen. The following code displays the
words “Hello” and “World” separated by two blank lines.

System.out.print ("Hello") ; // First word
System.out.print ("\n\n") ; // Two blank lines
System.out.print ("World"); // Second word

(

System.out.flush() ;

© 2002 by CRC Press LLC

A Sample Program

The following Java program demonstrates some of the programming ele-
ments and constructs discussed so far.

On the Web

The source file for the program Area.java can be found in the Chapter
5 directory at www.crcpress.com.

// File name: Area.java

// Reference: Chapter 5

//

// Java program to calculate the area of a circle
// Topics:

// 1. Using numeric variables and constants
// 2. Obtaining keyboard input

// 3. Displaying program data

// 4. Performing simple numeric calculations
//

// Requires:

// 1. Keyin class in the current directory

public class Area

{
// Constant PI is defined at the class level
static final double PI = 3.141592653589793;

public static void main(String[] args)
{
// Local variables
double radius, area;

// Input radius from keyboard
radius = Keyin.inDouble("Enter radius: ");

// Perform calculations and display result

area = PI * (radius * radius);
System.out.println("The area is: " + area);

© 2002 by CRC Press LLC

Chapter 6

Introducing Arrays

A New Data Type

In Chapter 4 you learned about Java's primitive data types and about the
String class. The Java primitive data types serve to store a single alphanu-
meric or Boolean value. For example, you can use an int data type to store a
whole number, or a float type to store a decimal number. But computer pro-
grams often need to store and manipulate data in groups of associated val-
ues. For example, a payroll program keeps track of the names, addresses,
social security numbers, number of dependents, wages, and other items of
information necessary for managing the company's employee database.

This is best accomplished by storing several data items, of the same
type, in a single structure, called an array. For example, the payroll pro-
gram can use an array to store the employee names, another one to store
addresses, a third one for the employee's social security numbers, and so
on. As you will see in this chapter, data placed in arrays is easy to save, re-
trieve, and process.

Java Arrays

An array is an ordered list of data, all of the same type. A payroll program
canuse an array of Java Strings to store the last names of the employees and
another one of int type to store the number of dependents. The glue that
holds together the corresponding elements of several arrays is the order in
which they appear. This relative position of the elements of an array is
called the index. Figure 6-1 (on the next page) represents these arrays in a
company with 10 employees.

© 2002 by CRC Press LLC

Array “lastName”

_I: Array “dependents”

index

Whiteman
Jones
Lopez
Carlson
Ragavendra
Black

Smith
Kruger
Thompson
Stone

2NN WINO

O NoO|AWIN|~O

Figure 6-1 Representation of Arrays

An array element is an individual data value. Each element in an array
can be considered as a stand-alone variable. In the array of Figure 6-1,
Carlson is the fourth element of the array “lastName”. Because the array
index is zero-based, the fourth entry is located at index 3. The number of
dependents for this employee is found at the same index, in the array
named “dependents”. In this case Carlson has one dependent. Note that
to identify an array element you need to use the array name and the corre-
sponding index.

Creating an array
In Java there are three distinct operations with arrays:
1. The array declaration
2. The array creation or allocation
3. The array initialization or access
An array of type int is declared as follows:

int[] studentGrades;
The same array is actually created using the new operator

finalGrade = new int[14];

The declaration and the creation of an array can also be performed in a
single statement:

int[] finalGrade = new int[14];

© 2002 by CRC Press LLC

This statement creates an array named finalGrade, of type int, and allo-
cates space for storing 14 elements. The first element is located at index
number 0, and the last one at index number 13.

Programmers note:

An array that allocates space for 14 elements does not have an ele-
ment at index 14. The largest index in this case is 13. In programming
arrays you must be careful not to attempt to access an element that
does not exist.

You can now store information in the array finalGrade, as follows:

finalGrade[0] = 78;
finalGrade[l] = 88;

and so on. The last element in the array is accessed as follows:
finalGrade[13] = 55;
Java recognizes a special syntax in arrays in which the new operator is

implicit. This allows declaring, creating, and initializing an array in a sin-
gle statement; for example:

int nums[] = {0, 1, 1, 2, 3, 5, 8, 13, 21};

The resulting array contains nine elements. The first one is located at
nums|[0] and the last one at nums[8].

Incidentally...

In contrast with its predecessor languages, C and C++, Java performs
considerable checking on arrays. If you try to access a non-allocated
array Javathrows a NullPointerException. If you attempt to access an
array element out of the array bounds, Java throws an Arraylndex-
OutOfBoundsException. Exceptions are discussed in Chapter 19.

A String array can be created and initialized as follows:

String[] studentNames = {“Jim”, “Jane”, “Harry”, “Lucy”};

The array brackets

For a beginning programmer it is confusing that in array declarations the
brackets can be attached either to the array type or to the name. For exam-
ple:

© 2002 by CRC Press LLC

int[] Arrayl = new int[12]; // Brackets on type
int Arrayl[] = new int[12]; // Brackets on name

You should pick whichever style you like best, and stick to it. It isnot a
good idea to mix both styles in the same program.

Programmers note:

Javaprogrammers usually prefer to place the brackets after the type.

Accessing array elements

Array elements are accessed by means of the array name and the element's
index. InaJavaprogram that has created and initialized the following data:

int singlevVal;
int scores([] = { 10, 12, 8, 13, 19 };

the array scores|[] is of int type and contains five elements. The elements are
located at index values 0 to 4. The value of scores[0] is 10, scores[1] = 12,
and so on. You could now store the value located at array index 3 into the
variable named singleVal, as follows:

singleVal = scores|[3];

After this statement executes, the variable singleVal and the array ele-
ment scores[3] both store the value 13. By the same token, you can use
the array index to store data into an array. For example, if you want to

change the value of the array element scores[4] to 25 you could code as
follows:

scores[4] = 25;
You can also store a variable into an array element, as follows:

singleval = 25;
scores[4] = singlevVal;

Programmers note:

Accessing arrays into primitive variables requires that the primitive
variable be of the same type as the array. An element of an array of
type int can be read into a variable of int type, and an element of an ar-
ray of type double into a variable of type double. Attempting to access
an array element into a variable of different type usually generates an
error.

© 2002 by CRC Press LLC

The size of an array

The size of an array, also called the array length, is the number of elements
it contains. The size of an array is defined when the array is created. Once
an array is created, its length cannot be changed. However, arrays can be
created using avariable or an expression to define the number of elements.

Suppose you wrote a program that used an array to store the names of
the passengers in an airline flight, and that the airline operated airplanes
with different seating capacities. One possible solution would be to allo-
cate the array size for the largest aircraft. But this would waste storage
space if the flight was to use a smaller airplane. A more reasonable option
is to let the user of the program determine the size of the array at the time
it is created. The program would question the user about the size of the
aircraft and then allocate the number of elements in the array according
to this value. For example:

int airPlaneSize;
airPlaneSize = inInt(“Enter number of passengers: ”);

String[] passenger = new Stringl[airPlaneSize];

In this case the number of elements of the array passenger[] is deter-
mined by the value of the variable airPlaneSize, which is entered by the
user. When the size of an array is determined as the program executes, we
say that the array is allocated at runtime.

Programs often need to know the size of an array. For example, if you
need to display the names of all the elements in the array passenger|(], you
would need to know how many elements were allocated when the array
was created. Since arrays can be allocated at runtime, you are not able to
determine the array size by inspecting the code. The Java length operator
returns the number of elements allocated in an array. For example:

int passengerCount = passenger.length;

In this case the variable passengerCount is assigned the number of ele-
ments in the array passenger[]. The following program demonstrates the
simultaneous declaration and initialization of arrays and the use of the
length operator.

On the Web

The source file for the program ArrayOps.java can be found in the
Chapter 6 folder at www.crcpress.com.

© 2002 by CRC Press LLC

// File name: ArrayOps.java
// Reference: Chapter 6

//

// Java program to demonstrate arrays

// Topics:

// 1. Simultaneous Array declaration and initialization
// 2. Use of the length operator

//

public class Arrays
{
public static void main(String[] args)

{
int[] nums = {1, 1, 2, 3, 5, 8, 13, 21};

char[] lets = {'t', 'h', 'ill 'S', 1 |, 'j—'r ISI};
System.out.print (“The value of nums([3] is ” + nums[3]);
System.out.print (“\nThe value of lets[5] is ” + lets[5]);

System.out.flush() ;

}

Multi-dimensional arrays

A Java array can have more than one dimension. Two-dimensional arrays
are often used to represent the entries in a table or other data that is orga-
nized in rows and columns. In the case of a two-dimensional array one index
represents the table rows and another one the columns. A three-dimensional
array can be used to represent a grid with breadth, width, and depth.

Suppose that you were to develop a program that keeps track of the
pieces on a game of checkers. The standard checkerboard consists of
eight columns by eight rows of cells into which the pieces can move. You
could use the letter “r” to represent the red pieces and the letter “b” for
the black pieces. Then the letter “R” would represent crowned red pieces
and the letter “B” crowned black pieces. Figure 6-2 shows a possible posi-
tion of the checker pieces of a game in progress.

Since the red and black pieces are identified by letters, the program
could use a two-dimensional array of type char to represent the checker-
board. The array could be created as follows:

char[] checkerboard = new char[8]([8];
Two-dimensional arrays in Java are in row-major order. This means
that the first dimension represents the array rows and the second one the

array columns. In the case of the checkerboard[] array we can store the
piece located at row number 0, column number 2 as follows:

checkerboard[0] [2] = 'b';

© 2002 by CRC Press LLC

Figure 6-2 Black and Red Pieces on a Checkerboard

Since the array index is zero-based the index value 0 represents the
first row, and the index value 2 the third column. The other pieces can be
stored in the checkerboard[] array, as follows:

checkerBoard[0] [4] = 'b';
checkerBoard[1][3] = 'b';
checkerBoard[2] [2] = 'B';
checkerBoard[3][1] = 'B';
checkerBoard[2] [6] = 'R';
checkerBoard[4][4] = 'R';
checkerBoard[5] [5] = 'r';
checkerBoard[5][7] = 'r';

A Java program could now use the checkerboard[] array to store the
positions of all the pieces as the game progresses.

Ragged arrays

Multidimensional arrays are actually faked by the Javalanguage. Internally,
a multidimensional array is implemented as a set of one-dimensional ar-
rays. For this reason a two-dimensional array can be rectangular or ragged
in shape, although rectangular ones are much more common. A ragged ar-
ray can be pictured as in Figure6-3.

© 2002 by CRC Press LLC

ROWS
X X X
X X X X

C

Figure 6-3 A Ragged Array

To create a ragged array of 5 rows, with 2, 3, 4, 5, and 6 elements in
each row you first allocate the five rows, as follows:

byte[][] raggedArray = new byte[5][];

Then, you allocate the elements in each row, as follows:

raggedArray[0] = new byte[2];
raggedArray[l] = new byte[3];
raggedArray[2] = new byte[4];
raggedArray[3] = new byte[5];
raggedArray[4] = new byte[6];

Programmers note:

In Java, creating and manipulating ragged arrays is somewhat coun-
ter-intuitive. You have to be particularly careful in keeping track of the
length of each element since attempting to access an array element
that does not exist generates an error.

You have used the length operator to obtain the size of a one-dimen-
sional array, but obtaining the size of a multidimensional array poses
some new problems. The problem relates to the fact that, in Java, a multi-
dimensional array can be a ragged array. For this reason, the size of a
multidimensional array can be defined for the number of rows, but it is
impossible to know the number of elements in each row.

To make things easier, the Java language assumes that if a multidimen-
sional array is declared using constants, then it is rectangular. In this case
it is possible to obtain the number allocated by means of the length opera-
tor, as follows:

© 2002 by CRC Press LLC

// Declare array constants
int ROWS = 10;

int COLS = 5;

// Allocate rectangular array

byte[][] screenPix = new byte[ROWS] [COLS];

// Obtain and store array dimensions

rowCount = screenPix.length; // Number of rows

colCount = screenPix[COLS].length; // Number of columns
totalSize = rowCount * colCount; // Calculate total elements

The following expressions generate errors:

screenPix [ROWS] .length
screenPix [ROWS] [COLS] .length

To obtain the size of a ragged array, you have to add the number of ele-
ments in each ragged row.

Initializing multi-dimensional arrays

Like one-dimensional array, multidimensional arrays can be initialized
when they are declared. For example:

byte[][] smallArray = {
{10, 11, 12, 13},
{20, 21, 22, 23},
{30, 31, 32, 33},
{40, 41, 42, 43}
Yi

Note that each array row is initialized separately; also that there must
be a comma at the end of each row, except for the last one. A ragged array
can also be initialized as it is declared, as follows:

byte[][] raggedSmall = {
{10, 11, 12, 133},
{20, 21, 22},
{30, 313},
{40}
Y

The sample program named MultiArrays.java, listed here and in the
book's CD ROM, demonstrates the creation and manipulation of multidi-
mensional arrays.

On the Web

The source file for the program MultiArray.java can be found in the
Chapter 6 folder at www.crcpress.com.

© 2002 by CRC Press LLC

// File name: MultiArray.java
// Reference: Chapter 6

//

// Java program to demonstrate multidimensional arrays
// Topics:

// 1. Simultaneous declaration and initialization
// 2. Use of the length operator to obtain the size
// of multidimensional arrays

public class MultiArray
{
// Declare constants
final static int ROWS = 10;
final static int COLS

|
ul

public static void main(String[] args)

{

// Local variables
int rowCount;
int colCount;
int totalSize;

// Declare and allocate an array of bytes
byte[][] screenPix = new byte[ROWS] [COLS];

// Obtain and store array dimensions

rowCount = screenPix.length;
colCount = screenPix[COLS].length;
totalSize = rowCount * colCount;

// To obtain the total number of elements of a
// two-dimensional ragged array you need to get the size of
// each array dimension separately

// Display array dimensions

System.out.println(“Array row size: " + rowCount) ;
System.out.println (“Array column size: ” + colCount);
System.out.println(“Total size: " + totalSize);

VAR EREEEEREEEEREERE TR

// ragged arrays
//*************************

// First allocate the rows of an array
byte[][] raggedArray = new byte[5]1[];

// Now allocate the columns

raggedArray[0] = new bytel[2];
raggedArray[l] = new bytel[2];
raggedArray[2] = new bytel[4d];
raggedArray[3] = new byte[8];
raggedArray[4] = new byte[3];

// The resulting ragged array is as follows:

© 2002 by CRC Press LLC

// x X

/] x %

// X x X X

// X X X X X X X X
// x x X

VAR EEREEEEREEEEREEEEEEEEEREEEEREEEE R

// static array initialization
//***********‘k‘k‘lc**********************
byte[][] smallArray = {
{10, 11, 12, 133},
{20, 21, 22, 23},
{30, 31, 32, 33},
{40, 41, 42, 43},
Y

// Display the array element at row 2, column 3

System.out.println(smallArray[1][2]); // Value is 21
}

© 2002 by CRC Press LLC

Chapter 7

Java Operators

The Action Element

An expression in a programming language consists of operators and
operands. Operators are special symbols that indicate specific processing
action. For example, to add two values in an expression, we use the familiar
+ sign, which is the addition operator in Java. Other operators are not as
common as the + and - symbols. Such is the case with the && symbol which
isone of the language's logical operators. In this chapter we start looking at
the Java operators.

Operators

Operators are the symbols and special characters used in a programming
language to change the value of one or more program elements. The pro-
gram elements that are changed by an operator are called the operand. We
use the + symbol to perform the sum of two operands, as in the following ex-
ample:

int vall 7;

int val2 = 3;

int val3 vall + val2;

Programmers note:

The + symbolis also used in appending strings. When used in this man-
ner it is called the concatenation operator. String concatenation is
discussed later in this chapter.

© 2002 by CRC Press LLC

In this case, the value of integer variable val3 (10) is found by adding
the values of variables vall and val2. The fundamental Java operators
can be functionally classified as follows:

e simple assignment

e arithmetic

e concatenation

¢ increment and decrement
e logical

e bitwise

e compound assignment

In this chapter we discuss the assignment, arithmetic, concatenation,
increment and decrement operators. The logical and bitwise operators
are the topic of Chapter 8.

Java operators are classified according to the number of operands as
follows:

e unary
e binary
* ternary
The one Java ternary operator (?:) is discussed in Chapter 9, in the con-
text of decision constructs.
Operator action

Java operators are used in expressions that produce program actions. For
example, if a, b, and c¢ are variables, the expression

uses the = and the + operators to assign to the variable c the value that re-
sults from adding the variables a and b. The operators in this expression are
the = (assignment) and + (addition) symbols.

Java operators must be used as elements of expressions; they are
meaningless when used by themselves. In this sense the term

-a;

is a trivial expression that does not change the value of the variable. On the
other hand, the expression

© 2002 by CRC Press LLC

b = -b;

assigns a negative value to the variable b.

The Assignment Operator

As you learn a programming language it is important to keep in mind that
the language expressions are not usually valid mathematically. Consider
the expression

a =a+ 2;

Mathematically, it is absurd to state the value of the variable a is the
same as the value that result from adding 2 to it. The reason for this ap-
parent absurdity is that Java's = operator does not represent an equality.
The = sign is used as a simple assignment operator. The result of the
statement

b=Db - 4;

is that the variable b is “assigned” the value that results from subtracting 4
from its own value. In other words, b “becomes” b - 4. It is important to note
that this use of the = sign in Java is limited to assigning a value to a storage
location referenced by a program element. For this reason a Java expres-
sion containing the = sign cannot be interpreted algebraically.

There are other differences between a Java expression and an alge-
braic equation. In elementary algebra we learn to solve an equation by
isolating a variable on the left-hand side of the = sign, as follows:

x = vy/2
However, the Java statement line
2 * x =y;

generates an error. This is due to the fact that programming languages, Java
included, are not designed to perform even the simplest algebraic manipu-
lations.

Incidentally...

Expressions in Java are usually not algebraically valid.

The two sides of an assignment

If we look at a Java expression that uses the assignment operator, we note
one part to the left of the = sign and another one to the right. In any program-

© 2002 by CRC Press LLC

ming language the part to the left of the = sign is called the lvalues (short for
left value) and the one to the right is called the rvalues (short for right
value). Therefore, an lvalue is an expression that can be used to the left of
the = sign. In aJava assignment statement the lvalue must represent a single
storage location. In other words, the element to the left of the = sign must be
a variable. In this manner, if x and y are variables, the expression

isnotvalid since in this case the lvalue is not a single storage location but an
expression in itself. By the same token, an expression without an rvalue is
illegal in Java, for example:

y = 7
An assignment expression without an lvalue is also illegal, such as

= X

Arithmetic Operators

Java arithmetic operators are used to perform simple calculations. Some of
the Java arithmetic operators coincide with the familiar mathematical sym-
bols. Such is the case with the + and - operators which indicate addition and
subtraction. But not all conventional mathematical symbols are available
in a computer keyboard. Others are ambiguous or incompatible with the
rules of the Java language. For example, the conventional symbol for divi-
sion (+) is not a standard keyboard character. Using the letter x as a symbol
for multiplication is impossible, since the language is unable to differenti-
ate between the mathematical operator and the alphanumeric character.
For these reasons Java uses the / symbol to indicate division and the * to in-
dicate multiplication. Table 7-1 lists the Java arithmetic operators.

Table 7-1
Java Arithmetic Operators

OPERATOR ACTION

+ addition

- subtraction

* multiplication
/ division

% remainder

© 2002 by CRC Press LLC

The remainder operator

One of the operatorsin Table 7-1 requires additional comment. The % opera-
tor gives the remainder of a division. The % symbol is also called the modu-
lus operator. Its action is limited to integer operands. The following code
fragment shows its use:

int vall = 14;

int result = vall % 3;

In this case, the value of the variable result is 2 since this is the remain-
der of dividing 14 by 3.

Programmers note:

We prefer to call the % symbol the remainder operator since the word
“modulus” is sometimes used in mathematics for the absolute value.
In this sense the mathematical expression |-4| is said to be the modu-
lus of -4, which is 4.

The remainder of a division finds many uses in mathematics and in pro-
gramming. Operations based on the remainder are sometimes called
“clock arithmetic.” This is due to the fact that the conventional clock face
is divided into 12 hours which repeat in cycles. We can say that the
modulo of a clock is 12. The hour-of-day from the present time, after any
number of hours, can be easily calculated by the remainder of dividing
the number of hours by 12 and adding this value to the present time.

Suppose it is 4 o'clock and you want to calculate the hour-of-day after
27 hours have elapsed. The remainder of 27/12 is 3. The hour-of-day is
then 4 + 3, which is 7 o'clock. In Java you can obtain the remainder with a
single operator. The following code fragment shows the calculations in
this example:

int thisHour = 4;

int hoursPassed = 27;

2

int hourOfDay = thisHour + (hoursPassed % 12);

Note that the expression

hoursPassed % 12

gives the remainder of 27/12, which is then added to the current hour to ob-
tain the new hour-of-day.

© 2002 by CRC Press LLC

Incidentally...

Modular arithmetic finds many computer uses. One of them is in cal-
culating functions that have repeating values, called periodic func-
tions. For example, the math unit of the Pentium microprocessor
produces trigonometric functions in the range 0 to 45 degrees. Soft-
ware must then use remainder calculations to scale the functions to
any desired angle.

Concatenation

InJava, the + operator, which is used for arithmetic addition, is also used to
concatenate strings. The term “concatenation” comes from the Latin word
“catena,” which means chain. To concatenate strings is to chain them to-
gether. The following code fragment shows the action of this operator:

// Define strings

String strl = “con”;

String str2 = “ca”;

String str3 = “ten”;

String strd4 = “ate”;

// Form a new word using string concatenation
String result = strl + str2 + str3 + str4;

// result = “concatenate”

The operation of the concatenation operator can be viewed as a form
of string “addition.” In Java, if a numeric value is added to a string the
number is first converted into a string of digits and then concatenated to
the string operand, as shown in the following code fragment:

String strl = “Catch ”; // Define a string

int value = 22; // Define an int

result = str5 + value; // Concatenate string + int
// result = “Catch 22"

Note that concatenation requires that one of the operands be a string.
If both operands are numeric values then arithmetic addition takes place.

Increment and Decrement

Programs often have to keep count of the number of times an operation, or
a series or operations, has taken place. In order to keep the tally count it is
convenient to have a simple form of adding 1 to the value of a variable or
subtracting 1 from the value of a variable. Java contains simple operators
that allow this manipulation. These operators, which originated in the C
language, are called the increment (++) and decrement (- -) operators. For

© 2002 by CRC Press LLC

example, the following expressions add or subtract 1 to the value of the op-
erand.

x = x + 1; // add 1 to the value of x
y =y - 1; // subtract 1 from the value of y

The increment and decrement operators can be used to achieve the
same result in a more compact way, as follows:

X++; // add 1 to the value of x
y--i // subtract 1 from the value of y
Incidentally...

The name of the C++ programming language originated in the notion
of a version of the C language that was extended and improved. In
other words, C incremented, or C++.

The ++ and — - symbols can be placed before or after an expression.
When the symbols are before the operand the operator is said to be in pre-
fix form. When it follows the operand it is said to be in postfix form. For
example:

z = ++x; // Prefix form

Z = X++; // Postfix form

The prefix and postfix forms result in the same value in unary state-
ments. For example, the variable «x is incremented by 1 in both of these
statements:

X++;

+4+X;

However, when the increment or decrement operators are used in an
assignment statement, the results are different if the operators are in pre-
fix or in postfix form. In the first case (prefix form), the increment or dec-
rement is first applied to the operand and the result assigned to the lvalue
of the expression. In the postfix form, the operand is first assigned to the
Ivalue and then the increment or decrement is applied. The following
code fragment shows both cases.

int x = 7;

int y;

Y = ++X; // y =8, x =8
Yy = X++; //y =7, x =8

© 2002 by CRC Press LLC

Relational Operators

Computers can make simple decisions. For example, a computer program
cantake one path of action if two variables, @ and b, are equal, another path
if a is greater than b, and yet another one if b is greater than a. The Javarela-
tional operators evaluate if a simple relationship between operands is true
or false. Table 7-2 lists the Java relational operators.

Table 7-2
Java Relational Operators

OPERATOR ACTION
< less than
> greater than
<= less than or equal to
>= greater than or equal to
== equal to
I= not equal to
The == operator deserves special notice. This operator is used to de-

termine if one operand is equal to the other one. It is unrelated to the as-
signment operator (=) which has already been discussed. In the following
examples we set the value of a boolean variable according to a compari-
son between two numeric variables, x and y.

boolean result;

int x = 4;

int v = 3;

result = x > y; // Case 1 - result is true
result = x < vy; // Case 2 - result is false
result = x == 0; // Case 3 - result is false
result = x != 0; // Case 4 - result is true
result = x <= 4; // Case 5 - result is true

Notice in case 3 the different action of the assignment and the rela-
tional operator. The assignment operator (=) is used in this expression to
assign to the variable result the boolean true or false that results from
comparing x to 0. The comparison is performed by means of the == oper-
ator. The result is false because the value of the variable x is 4. One com-
mon programming mistake is to use the assignment operator in place of
the relational operator, or vice versa. This error is particularly dangerous
because the resulting expression is often a legal one.

© 2002 by CRC Press LLC

Chapter 8

Other Java Operators

Logical Operations

The relational operators, described in the Chapter 7, are used to evaluate
whether a condition relating two operands is true or false. However, by
themselves, they serve only to test simple relationships. In programming,
you often need to determine complex conditional expressions. For exam-
ple, to determine if a user is a teenager you test whether the person is older
than twelve years and younger than twenty years.

The logical operators allow combining two or more conditional state-
ments into a single expression. As is the case with relational expressions,
expressions that contain logical operators return true or false. Table 8-1
lists the Java logical operators.

Table 8-1
Java Logical Operators
OPERATOR ACTION
&& logical AND
[| logical OR
I logical NOT

For example, if a = 6, b = 2, and ¢ = 0, the boolean variable result evalu-
ates to either true or false, as follows:

boolean result;

int a = 6;
int b = 2;
int ¢ = 0;
result = a > b && c == 0; // Case 1 - result is true
result = a > b & c !'= 0 // Case 2 - result is false
result = a == 0 || ¢ == 0; // Case 3 - result is true

© 2002 by CRC Press LLC

result = a <b || ¢ = 0; // Case 4 - result is false

In case 1, the result evaluates to true because both relational elements in
the statement are true. While case 4 evaluates to false because the OR con-
nector requires that at least one of the relational elements be true and, in
this case, both are false (@ > b and ¢ = 0).

The logical NOT operator is used to invert the value of a boolean variable
or to test for the opposite. For example:

boolean result;
boolean tf = false;
result = (tf == !true); // result is true

The preceding statement evaluates to true since !true is false and tf is
false. The principal use of conditional expressions is in making program de-
cisions, the topic of Chapter 9.

Manipulating bits

You already know that computers store data in individual electronic cells that
are in one of two states, sometimes callled ON and OFF. Also, that these two
states are represented by the binary digits 1 and 0. In practical programming
you often disregard this fact, and write code that deals with numbers, charac-
ters, boolean values, and strings. Storing anumber in a variable of type double,
or a name in a String object, does not usually require dealing with individual
bits. However, there are times when the code needs to know the state of one or
more data bits, or needs to change individual bits or groups of bits.

One of the reasons for manipulating individual bits or bit fields is simple
economics. Suppose that you were writing an operating system program and
needed to keep track of the input and output devices present in the machine.
For example, your code may need to determine and store the following in-
formation:

e The number of printers (range 0 to 3).

e If there is a mouse installed (yes or no).

e The number of serial ports (range 0 to 7).

¢ If the Pentium CPU is equipped with MMX technology (yes or no).

One way to store this information would be in conventional variables.
You could declare the following variable types:

int printers;

boolean mousePresent;
int serialPorts;
boolean hasMMX;

© 2002 by CRC Press LLC

One objection to storing each value in an individual variable is the
wasted space. When we devote an int variable for storing the number of
printers connected to the system, we are wasting considerable storage
space. An int variable consists of four memory bytes (refer to Table 4-1).
This means that you can store over 2 million combinations in an int type.
However, in this particular example the maximum number of printers is
3. You could use a variable of type byte or short but there would still be
considerable waste. The same applies to all other data types previously
listed.

A more economical option, memory wise, would be to devote to each
item the minimum amount of storage necessary for encoding all possible
states. In the case of the number of printers you could do this with just
two bits. Two bits allow representing values from 0 to 3, which is suffi-
cient for this data element. By the same token, a single bit would serve to
record if a mouse is present or not. The convention in this case is that a
binary 1 represents YES and a binary 0 represents NO. The number of se-
rial ports (range 0 to 5) could be encoded in a three-bit field, while an-
other single bit would record the presence or absence of MMX
technology in the Pentium CPU. The total storage would be as follows:

e printers, 2 bits
e mouse present, 1 bit
e serial ports, 3 bits

e MMX present, 1 bit

Incidentally...

The Multimedia Extension (MMX) is a modification of the architec-
ture of the Pentium CPU used in the PC. The MMX provides an ex-
tended set of instructions that facilitate programming and enhance
the performance of graphics, multimedia, and other high-perfor-
mance applications.

The total storage required is seven bits. Figure 8-1 (on the next page)
shows how the individual bits of a byte variable can be assigned to store
this information.

© 2002 by CRC Press LLC

[7]6[5][4]3[2][1]0]bits

Printers field:
00 = 0 printers
01 =1 printer
10 = 2 printers
11 = 3 printers

Mouse present bit:
0 = no mouse
1 = mouse installed

Serial ports field:
000 = 0 serial ports
001 = 1 serial port
010 = 2 serial ports

111 = 7 serial ports

MMX present bit:
0 = no MMX
1 = MMX available

UNUSED

Figure 8-1 Bitmapped Data

The operation of assigning individual bits and bit fields is called
bitmapping. Another advantage of bitmapped data is that several items of
information can be encoded in a single storage element. Since bitmapped
data is more compact, it is easier to pass and retrieve information. For ex-
ample, you could devote a byte variable to store the bitmapped data in
Figure 8-1. The variable could be defined as follows:

byte systemDevices;

In order to manipulate bitmapped data you must be able to access indi-
vidual bits and bit fields. This is the function of the Java bitwise opera-
tors.

In Table 8-2, the operators &, |, *, and ~ perform bitwise functions on
individual bits. The convention that a binary 1 corresponds to logical
true, and a binary 0 to false, allows using binary numbers to show the re-
sults of a logical or bitwise operation. For example:

© 2002 by CRC Press LLC

Table 8-2
Java Bitwise Operators

OPERATOR ACTION
& bitwise AND
| bitwise OR
A bitwise XOR
~ bitwise NOT
< bitwise left-shift
> bitwise right-shift
>> bitwise unsigned right-shift
1 AND 0 = 0
1 AND 1 = 1
1 OR O =1
NOT 1 = O

A table that lists all possible results of a bitwise or logical operation is
called a truth table. Table 8-3 has the truth tables for AND, OR, XOR, and
NOT. The tables are valid for both logical and the bitwise operations.

Table 8-3
Logical Truth Tables

NOT

P o
oRr

When using logical and bitwise operators you must keep in mind that
although they perform similar functions, the logical operators do not
change the actual contents of the variables. The bitwise operators, on the
other hand, manipulate bit data. Thus, the result of a bitwise operation is
a variable with a value different from the previous one.

Programmers note:

Itis customary to number the bits in an operand from right-to-left with
the rightmost bit designated as bit number 0. Refer to Figure 3-2.

© 2002 by CRC Press LLC

The & operator

The & operator performs a boolean AND of the two operands. The rule for
the AND operation is that a bit in the result is set only if the corresponding
bits are set in both operands. This action is shown in Table 8-3.

The & operator is frequently used to clear one or more bits, or to pre-
serve one or more bits in the operand. This action is consistent with the
fact that ANDing with a zero-bit clears the result bit, and ANDing with a
one-bit preserves the original value of the corresponding bit in the other
operand. A specific bit pattern used to manipulate bits or bit fields is
sometimes called a mask. An AND mask can be described as a filter that
passes the operand bits that correspond to a 1-bit in the mask, and clears
the operand bits that correspond to 0-bits. Figure 8-2 shows action of
ANDing with a mask.

0101 1111 «—— operand
bitwise AND 1111 0000 «<— mask

0101 0000 €«—— result

Figure 8-2 Action of the AND Mask

The program named Bit7And listed below and contained in the book's
CD ROM, allows the user to input a byte. The input value is then ANDed
with a mask in which the high-order bit is set. The required mask corre-
sponds to the decimal value 128, with the following bit pattern:

1 000000O0O

When ANDing the user's input with the mask 128 we can predict that
the seven low-order bits of the result are zero. Recall that ANDing with a
zero bit always produces zero. Also, that the value of the high-order bit of
the result will be the same as the corresponding bit in the user's input.

In Figure 8-3, the high-order bit of the result can be either the value 0
or 1. Since the seven low-order bits are always zero, you can conclude
that the result will be non-zero if bit 7 of the operand was 1. If the result is
zero, then bit 7 of the operand was zero.

© 2002 by CRC Press LLC

X X X X X X X «—— user input
bitwise AND 0000000 «——mask

X
1
(2]0 000000 «— result

bit tested

Figure 8-3 AND Testing a Single Bit

On the Web

The source file for the program Bit7And.javais found in the Chapter 8
folder at www.crcpress.com.

// File name: Bit7And.java

// Reference: Chapter 8

//

// Java program to demonstrate the action of the bitwise
// AND operator

// Topics:

// 1. Using the bitwise AND to determine the state
// of an operand bit

// Requires:

// 1. Keyin class in the current directory

public class Bit7And
{
public static void main(String[] args)
{

// Local variables
int mask = 128;
int userInput;
int result = 0;

// Processing
userInput = Keyin.inInt (“Enter value: ”);
result = userInput & mask;

// If bit 7 was set in the user input, then

// result = 128. Otherwise, result = 0
System.out.println(“result = ” + result);

}

The | operator

The | operator performs the Boolean inclusive OR of two operands. The out-
come is that a bit in the result is set if at least one of the corresponding bits
in the operands is also set, as shown by the truth table in Table 8-3. A fre-

© 2002 by CRC Press LLC

quent use for the | operator is to selectively set bits in an operand. The ac-
tion can be described by saying that ORing with a 1-bit always sets the
result bit, whereas ORing with a 0-bit preserves the value of the corre-
sponding bitin the other operand. For example, to make sure that bits 5 and
6 of an operand are set we can OR it with a mask in which these bits are 1.
This is shown in Figure 8-4.

0101 0101 «—— operand
bitwise OR 1111 0000 «—— mask

1111 0101 «—— result

Figure 8-4 Action of the OR mask

Because bits 4, 5, 6, and 7 in the mask are set, the OR operation guaran-
tees that these bits will be set in the result independently of whatever
value they have in the first operand.

The ” operator

The " operator performs the Boolean exclusive OR (XOR) of the two
operands. This action is described by stating that a bit in the result is set if
the corresponding bits in the operands have opposite values. If the bits
have the same value (1 or 0) the result bit is zero. The action of the XOR op-
eration corresponds to the truth table of Table 8-3.

0101 0101 «—— operand
bitwise XOR 1111 0000 «—— mask

1010 0101 «—— result

Figure 8-5 Action of the XOR mask

It is interesting to note that XORing a value with itself always gener-
ates a zero result, since all bits will necessarily have the same value. On
the other hand, XORing with a 1-bit inverts the value of the other oper-
and, because 0 XOR 1 =1 and 1 XOR 1 = 0 (see Table 8-3). By properly se-
lecting an XOR mask the programmer can control which bits of the
operand are inverted and which are preserved. To invert the two high-or-

© 2002 by CRC Press LLC

der bits of an operand you XOR with a mask in which these bits are set. If
the remaining bits are clear in the mask, then the original value of these
bits will be preserved in the result, as is shown in Figure 8-5.

The ~ operator

The ~ operator inverts all bits of a single operand. In other words, it con-
verts all 1-bits to 0 and all 0-bits to 1. This action corresponds to the boolean
NOT function, as shown in Table 8-3. Figure 8-5 shows the result of a NOT
operation.

bitwise NOT 0101 0011 «—— operand

1010 1100 «——— result

Figure 8-6 Action of the NOT Operator

The <, >, and >> operators

The Java shift left (<) and shift right (> and >>) operators are used to move
operand bits to the right or to the left. All three operators require a value
that specifies the number of bits to be shifted. The following expression
shifts left, by 2 bit positions, all the bits in the variable bitPattern:

int bitPattern = 127;
bitPattern = bitPattern < 2;

The action of a left shift by a 1-bit position can be seen in Figure 8-7.

[1[0]1]0o[1][1] 0| 0| OPERAND BEFORE << 1

discarded

YYVYYY
[o[1{0]1]1][0]0|0|] OPERAND AFTER <<1
A

0 shifted in

Figure 8-7 Action of the < Operator

The operation of the left-shift, as shown in Figure 8-7, determines that
the most significant bit is discarded. This could spell trouble when the op-

© 2002 by CRC Press LLC

erand is a signed number, since in signed representations the high-order
bit encodes the sign of the number. Therefore, discarding the high-order
bit can change the sign of the value. This would be true for all Java inte-
ger data types, except char, which is unsigned. In the example in Figure
8-7, the original number, which is negative (high-bit set), is changed into a
positive value. You must take this into account when left-shifting signed
quantities.

There are two right-shift operators in Java, > and >>. The simple
right-shift operator (>) shifts the left operand by the number of bits con-
tained in the right operand, for example:

int bitPattern = 127;
bitPattern = bitPattern > 1;

In the right shift, the low-order bit is discarded and the high-order bit is
duplicated into all the bits that were abandoned by the shift. The result is
extending the sign bit into the new operand. The action of a right shift by
1 bit position is shown in Figure 8-8.

—1]{0[1[0]1[1] 0| 0| OPERAND BEFORE >> 1

HOB —» discarded
reproduced

YYVYVYYYVYY
——»{1{1]{0]|1]0]|1]|1|0| OPERAND AFTER >> 1

Figure 8-8 Action of the > Operator

The unsigned right shift operator (>>) is similar to the right shift (>),
except that in the >> the vacated positions on the left of the operand are
filled with zeros. Figure 8-9 shows an unsigned right shift by 1 bit posi-
tion.

[1]o[1]o0]1|1|0[0| OPERAND BEFORE >>> 1

0 shifted in L » discarded

YVYVYVY Y
0{1/o[1][0]1]1]0| OPERAND AFTER >>> 1

Figure 8-9 Action of the >> Operator

© 2002 by CRC Press LLC

The compound assignment operators

Java contains several compound operators that were designed to make
code more compact. The compound assignment operators consist of acom-
bination of the simple assignment operator (=) with an arithmetic or
bitwise operator. For example, to add 5 to the variable y we can code

y =y + 5;

Alternatively, we can combine the addition operator (+) with the sim-
ple assignment operator (=) as follows

y += 5;
In either case the final value of y is its initial value plus 5, but the latter

form reduces the size of the program. Table 8-4 lists the compound as-
signment operators.

Table 8-4
Java Compound Assignment Operators
OPERATOR ACTION
+= addition assignment

-= subtraction assignment
multiplication assignment
= division assignment

%= remainder assignment

= bitwise AND assignment
= bitwise OR assignment
bitwise XOR assignment

<= left shift assignment
>= right shift assignment
>>= compound right shift assignment

Programmers note:

In compound assignments, the = sign always comes last.

Note that the compound assignment is not available for the NOT (~)
bitwise unary operator or for the unary increment (++) or decrement (—)
operators. The explanation is that unary (one element) statements do not
require simple assignment; therefore, the compound assignment form is
meaningless.

© 2002 by CRC Press LLC

Operator hierarchy

Programming languages have hierarchy rules that determine the order in
which each element in an expression is evaluated. For example, the expres-
sion

int value = 8 + 4 / 2;

evaluates to 6 because the Java addition operator has higher precedence
than the multiplication operator. In this case, the compiler first calculates 8
+4 =12 and then performs 12 / 2 = 6. If the division operation were per-
formed first, then the variable value evaluates to 10. Table 8-5 lists the pre-
cedence of the Java operators.

Table 8-5
Precedence of Java Operators
OPERATOR PRECEDENCE LEVELS
110 highest
+—~ 1 ++ —
*1 %
<> >>

lowest

Associativity rules

In some cases an expression can contain several operators with the same
precedence level. When operators have the same precedence, the order of
evaluationis determined by the associativity rules of the language. Associa-
tivity can be left-to-right or right-to-left. In most programming languages,
including Java, the basic rule of associativity for arithmetic operators is
left-to-right. This is consistent with the way we read in English and the
Western European languages.

In Java, the left-to-right associativity rule applies to all binary opera-
tors. However, unary operators, as well as the assignment operator (=),
follow right-to-left associativity. Because of this variation in the associa-
tivity rules, you must exercise care in evaluating some expressions. Con-
sider the following case:

© 2002 by CRC Press LLC

0;
4;
7;

int a
int b
a=>,

If the expression a = b = 7 is evaluated left-to-right, then the resulting
value of variable a is 4, and the value of b is 7. However, if it is evaluated
right-to-left then the value of both variables is 7. Since the assignment op-
erator has right-to-left associativity, the value of b is 7 and the value of a
is also 7, in this case.

© 2002 by CRC Press LLC

Chapter 9

Directing Program Flow

Simple Decisions

The main difference between a computer and a calculating machine is that
the computer can make simple decisions. Programs are able to process in-
formation logically because of this decision-making ability. The result of a
program decision is to direct program execution in one direction or an-
other one, that is, to change program flow. One of the most important tasks
performed by the programmer is the implementation of the program's pro-
cessing logic. This implementation is by means of the language's decision
constructs. In this chapter you will learn how a Java program makes deci-
sions.

Java Decisions Constructs

To make a program decision requires several language elements. Suppose
an application that must determine if the variable a is larger than b. If this is
the case, the program must take one course of action. If both variables are
equal, or if b is larger than a, then another course of action is necessary. As
you can see, the program has to make a comparison, examine the results,
and take the corresponding action in each case. All of this cannot be accom-
plished with a single operator or keyword, but requires one or more expres-
sions contained in one or more statements. For this reason we talk about
decision statements and decision constructs. In programming, a construct
can be described as one or more expressions, contained in one or more
statements, all of which perform a specific action.

Java contains several high-level decision operators and keywords that

can be used in constructs which make possible selection between several
processing options. The major decision-making mechanisms are called

© 2002 by CRC Press LLC

the if and the switch constructs. The conditional operator (?:), which is
the only Java operator that contains three operands, is also used in deci-
sion-making constructs.

The if construct

The Java if construct consists of three elements:

1. The if keyword

2. A test expression, called a conditional clause

3. One or more statements that execute if the test expression is true

The following program, named Beeplf, displays the message
“BEEP-BEEP” if the user enters the number 1 or 2. Otherwise no message
is displayed. The code uses an if construct to test if the typed keystroke
matches the required numbers.

// File name: BeepIf.java

// Reference: Chapter 9

//

// Java program to demonstrate simple decision
// Topics:

// 1. Using the if construct

//

// Requires:

// 1. Keyin class in the current directory

public class BeepIf
{

public static void main(String[] args)

{

int userInput;

userInput = Keyin.inInt ("Enter 1 or 2 to beep: ");
if (userInput == | | userInput == 2)
System.out.println ("BEEP-BEEP") ;

The Beeplf program uses a simple form of the Java if construct. The
compiler evaluates the expression in parentheses, following the if key-
word, which in this case is

if (userInput == || userInput == 2)
The expression uses the logical OR operator (discussed in Chapter 8)
to create a compound condition. The parenthetical expression evaluates

to true if the variable userInput is equal to 1 or 2. If the expression evalu-
ates to true, then the statement that follows is executed. If the expression

© 2002 by CRC Press LLC

evaluates to false, then the statement associated with the if clause is
skipped.

Statement blocks

The simple form of the if construct consists of a single statement that exe-
cutesifthe conditional expressionis true. The Beeplf program, listed previ-
ously, uses a simple if construct. But your code will often need to perform
more than one operation acording to the result of a decision. Java provides
a simple way of grouping several statements so that they are treated as a
unit. The grouping is performed by means of curly brace ({}) or roster sym-
bols. The statements enclosed within the two rosters form a compound
statement, also called a statement block.

You can use statement blocking to modify the Beeplf program so that
more than one statement executes when the test condition evaluates to
true. For example:

if (userInput == || userInput == 2)
{
System.out.println ("BEEP-BEEP") ;
System.out.println("The value entered is " + userInput);

The brace symbols ({ and }) are used to associate more than one state-
ment with the related if. In this example, both printin() statements exe-
cute if the conditional clause evaluates to true and both are skipped if it
evaluates to false.

The nested if

Several if statements can be nested in a single construct. The result is that
the execution of a statement or statement group is conditioned, not to a sin-
gle condition, but to two or more conditions. For example, we can modify
the if construct in the Beeplf program so that the code provides additional
processing for the case where the user input is the value 2, as follows:

if (userInput == || userInput == 2)
{
System.out.println ("BEEP-BEEP") ;
if (userInput == 2)
System.out.println("input was 2");

}

In the above code fragment, the if statement that tests for a value of 2
in the user input is nested inside the if statement that tests for a user in-
put of either 1 or 2. The inner if statement is never reached if the outer
one evaluates to false. If the user enters the value 3, the first test evalu-

© 2002 by CRC Press LLC

ates to false and the second one never takes place. We have used indenta-
tion to indicate that the second if statement is subordinate to the first
one. Although white space has no effect on the code, text line indentation
does help visualize logical flow. Figure 9-1 is a flowchart of a nested if
construct.

is user input YES
equalto 1 OR 2
?
i Message:
“BEEP-BEEP”
nested if T

Message: |YES is user input
“Input = 1” equal to 1

END

Figure 9-1 Flowchart of a Nested if Construct

The else construct

An if construct executes a statement, or a statement block, if the condi-
tional clause evaluates to true, but no alternative action is taken if the ex-
pression is false. The if-else construct allows Java code to provide an
alternative processing option for the case where the conditional clause is
false.

Programmers note:

The else construct is sometimes called the if-else construct.

© 2002 by CRC Press LLC

You can use the Java else construct to modify the Beeplf program so
that a different message is displayed if the user inputs the numbers 1 or 2,
or if the user enters a different value. The following code fragment shows
the processing in this case:

if (userInput == 1 || userInput == 2)
System.out.println ("BEEP-BEEP") ;

else
System.out.println("Input not 1 or 2");

It is customary to align the if and the else keywords in if-else con-
structs. This is another example of the use of white space to clarify pro-
gram flow. As in the case of the if clause, the else clause can also contain
a statement block delimited by rosters. A statement block is necessary if
more than one statement is to execute on the else branch. Figure 9-2 is a
flowchart of the preceding if-else construct.

else clause if clause
NO ‘ is user input YES
equalto 1 OR 2
2
Message: i Message:
“Invalid input” “BEEP-BEEP”

Figure 9-2 Flowchart of an If-Else Construct

The dangling else

The else statement is optional. Therefore, it is possible to have several
nested if constructs, not all of which with a corresponding else clause. This
case is sometimes called the “dangling else” problem. A dangling else state-
ment can give rise to uncertainty about the pairing of the if and else clauses.
In the following fragment there are two if statements and a single else
clause.

© 2002 by CRC Press LLC

if(a !'= 0)
if(a > 1)
System.out.println("x is positive and non-zero");
else
System.out.println("x is zero or negative");

In the preceding code fragment, the path of execution is different if the
else clause is paired with the inner if statement, or with the outer one.
The general rule used by Java in solving the dangling else problem is that
each else statement is paired with the closest if statement that does not
have an else, and that is located in the same block. Indentation in the pre-
ceding code fragment helps you see that the else statement is linked to
the inner if.

You can use rosters to force a different association between if and else
statements, for example

if(a != 0)
{
if(a > 1)
System.out.println("x is positive and non-zero");

}
else
System.out.println("x must be zero");

In the preceding code fragment the closest if statement without an
else, and located in the same block, is the statement

if(a !'=0)

Programmers note:

An else statement is paired with the closest if without an else located
in the same block.

Else-if clause

You have seen how the dangling else problem can cause unpredicted asso-
ciations of an else clause with an if statement. The relationship between
two consecutive if statements can also cause problems. The flowchart in
Figure 9-1 shows the case of a cascaded if construct, in which a second if
statement is conditioned to the first one being true. However, if the second
if statement is not nested in the first one, then its evaluation is independent
of the result of the first if. The following code shows this case.

if (userInput == || userInput == 2)
System.out.println (“BEEP-BEEP”) ;
if (userInput == 2)

System.out.println(“Input = 2");

© 2002 by CRC Press LLC

In the preceding code fragment the second if statement is unrelated to
the first one; therefore, the second statement is always evaluated.

The else-if construct allows subordinating the second if statement in
case the first one evaluates to false. All you have to do is nest the second
if within the else clause of the first one, for example:

int age;

if (age == 12)
System.out.println("You are 12");
else if(age == 13)
System.out.println("You are 13");
else if (age == 14)
System.out.println("You are 14");
else

System.out.println("You not 12, 13, or 14");

In the preceding code fragment, the last if println() statement executes
only if all the preceding if statements have evaluated to false. If one of the
if statements evaluates to true, then the rest of the construct is skipped.
In some cases, several logical variations of the consecutive if statements
may produce the desired results, while in other cases it may not.
Flowcharting is an effective way of resolving doubts about program logic.

The else-if is a mere convenience. The same action results if the else
and the if clause are separated. For example:

if (age == 12)
System.out.println("You are 12");
else

if (age == 13)

The switch construct

It is a common programming technique to use the value of an integer vari-
able to direct execution to one of several processing routines. You have
probably seen programs in which the user selects among several process-
ing options by entering a numeric value, as in the following example:

© 2002 by CRC Press LLC

KAk KKK KKAKRKRKRKRKR KK I hhh Kk kkkkkkkkkkkkkk*

| PAYROLL DATA PROCESSING |
| ROUTINE |
khkhkkhkhkdhhkhkhhkkhkhkkhhkhkhhkhkhkhhrhkhkhkhhrhhdkkhdkhkkkx
| Options: |
| enter new employee |
| calculate payroll |
| |
| |

w N

delete employee
4. enter employee data

B R R R

| Enter option number:
EIRE R R R IR I I I I R R I R

When using this menu, the user enters an integer value for selecting the

desired processing option in the payroll program. One way of implement-
ing a menu selection is to use several consecutive if statements to test the
value of the input variable. The Java switch construct provides an alterna-
tive mechanism for selecting among multiple options. The switch con-
sists of the following elements:

1.
2.

. One or more case statements followed by an integer or character constant,

The switch keyword

A controlling expression enclosed in parentheses. Must be of integer type.

or an expression that evaluates to a constant. Each case statement termi-
nates in a colon symbol.

An optional break statement at the end of each case block. When the break
is encountered, all other case statements are skipped.

An optional default statement. The default case receives control if none of
the other case statements have executed.

The switch construct provides a simple alternative to a complicated if,

else-if, and else chain. The general form of the switch statement is as fol-
lows:

switch (expression)

{

case valuel:
statement;
statement;

[break;]
case value2:

statement;

statement;

[break;]

[default:]
statement;

© 2002 by CRC Press LLC

statement;

[break;]

Incidentally...

The preceding example uses a non-existent computer language,
called pseudocode. Pseudocode shows the fundamental logic of a pro-
gramming construct, without complying with the formal require-
ments of any particular programming language. There are no strict
rules to pseudocode; the syntax is left to the programmer's imagina-
tion. The preceding pseudocode listing combines elements of the Java
language with symbols that are not part of Java. For example, the ...
characters (called ellipses) indicate that other program elements
could follow at this point. The bracket symbols are used to signal op-
tional components.

The controlling expression of a switch construct follows the switch
keyword and is enclosed in parentheses. The expression, usually a vari-
able, must evaluate to an integer type. It is possible to have a controlling
expression with more than one variable, one that contains literal values,
or to perform integer arithmetic within the controlling expression.

Each case statement marks a position in the code. If the case state-
ment is true, execution continues at the code that follows the case key-
word. The case keyword is followed by an integer or character constant,
or an expression that evaluates to an integer or character constant. The
case constant is enclosed in single quotation symbols (tic marks) if the
control statement is a char type. The following code fragment shows a
case construct in which the switch variable is of type char.

char charVar;

switch (charvar)
{
case 'A':
System.out.println(“Input was A”");
break;
case 'B':
System.out.println(“Input was B”);

break;

© 2002 by CRC Press LLC

The case constant does not require tic marks when the control state-
ment evaluates to an int type. The following code fragment shows a case
construct in which the switch variable is of type int.

int intVvar;

switch (intVar)
{
case 1:
System.out.println("Input was 1");
break;
case 2:
System.out.println("Input was 2");
break;9

The break keyword is optional, but if it is not present at the end of a
case block, then the following case or default blocks execute. In other
words, execution in a switch construct continues until a break keyword
or the end of the construct is encountered. When a break keyword is en-
countered, execution is immediately directed to the end of the switch
construct. A break statement is not required on the last block (case or de-
fault statement), although the break is usually included to make the code
easier to read.

The blocks of execution within a switch construct are enclosed in ros-
ters; however, the case and the default keywords automatically block the
statements that follow. Rosters are not necessary to indicate the
first-level execution block within a case or default statement.

The following program shows the processing necessary for implement-
ing menu selection using a Java switch construct.

On the Web

The MenuDemo.java program is found in the Chapter 9 folder at
WWW.Crcpress.com.

// File name: MenuDemo.java

// Reference: Chapter 9

//

// Java program to demonstrate menu selection
// Topics:

// 1. Using the switch construct

//

// Requires:

// 1. Keyin class in the current directory

© 2002 by CRC Press LLC

public class MenuDemo

{

public static void main(String[] args)
{
// Local variable
int swValue;

// Display menu graphics
System.out.println("============================
System.out.println(" | MENU SELECTION DEMO [y
System.out.println("============================
System.out.println("| Options:
System.out.println(" 1. Option 1
System.out.println (" 2. Option 2 | "
|

System.out.println(" 3. Exit ")
System.out.println("============================") ;
swValue = Keyin.inInt (" Select option: ");
// Switch construct
switch (swValue)
{
case 1:
System.out.println("Option 1 selected");
break;
case 2:
System.out.println("Option 2 selected");
break;
case 3:
System.out.println("Exit selected");
break;
default:
System.out.println("Invalid selection");
break; // This break is not really necessary

Conditional Expressions

Java expressions usually contain a single operand. There is one ternary op-
erator that uses two operands. Java's ternary operator is also called the
conditional operator. A conditional expression is used to substitute a sim-
ple if-else construct. The syntax of a conditional statement can be sketched
as follows:

expl ? exp2 : exp3

In the above pseudocode expl, exp2, and exp3 are Java expressions.
First, expl is tested. If expl is true, then exp2 executes. If expl is false,
then exp3 executes. Suppose you want to assign the value of the smaller

© 2002 by CRC Press LLC

of two integer variables (named a and b) to a third variable named min.
You could code as follows using a conventional if-else construct:

int a, b, min;

if (a < b

)
min = a;
else
min = b;

With the conditional operator the code can be shortened and simpli-
fied, as follows:

min = (a < b) ? a : b;
In the above statement the conditional expression is formed by the ele-

ments to the right of the assignment operator (=). There are three ele-
ments in the rvalue:

1. The expression (a < b) which evaluates either to logical true or false.

2. The expression ? a determines the value assigned to the Ivalue if the expres-
sion (a < b) is true.

3. The expression : b determines the value assigned to the lvalue if the expres-
sion (a < b) is false.

Programmers note:

The lvalue is the element to the left of the equal sign in an assignment
expression. The rvalue is the element to the right of the equal sign.

© 2002 by CRC Press LLC

Chapter 10

Controlling Program Flow

Repetition in Programs

Often computer programs must repeat the same task a number of times.
Think of a payroll program that estimates wages and deductions by per-
forming the same calculations for each employee in the company. If you
were developing such a program, you could write code to perform salary
calculations for each employee. If the company had 100 employees, you
would end up with 100 different routines. Although this solution would
work, it is cumbersome and awkward. A more reasonable approach is to
write a single routine that performs the necessary calculations. The routine
is executed for each employee by changing the data set. The result is more
compact code that is much easier to develop and test.

Program repetitions usually take place by means of programming con-
structs called loops. In this chapter, we discuss the three Java loop con-
structs: the for loop, the while loop, and the do-while loop.

Loops and iterations

Loops do not offer functionality that is not otherwise available in a pro-
gramming language. Loops just save coding effort and make programs
more logical and efficient. In many cases coding would be virtually impossi-
ble without loops. Imagine that you were developing a program that had to
estimate the tax liability for each resident of the state of Minnesota. With-
out loops, you would have to spend the rest of your life writing the code.

In talking about loops it is convenient to have a word that represents
one entire trip through the processing routine. We call this an iteration.
To iterate means to do something repeatedly. Each transition through the
statement or group of statements in the loop is an iteration. Thus, when

© 2002 by CRC Press LLC

talking about a program loop that repeats a group of statements three
times, we speak of the first, the second, and the third iteration.

Programmers note:

The concept of program iteration is not limited to loop structures.
The word “iteration” describes any form of repetitive processing, in-
dependently of the logical means by which it is performed.

Elements of a program loop

A loop always involves three steps:

1. Theinitialization step is used to prime the loop variables to an initial state.

2. The processing step performs the processing. This is the portion of the code
that is repeated during each iteration.

3. The testing step evaluates the variables or conditions that determine the
continuation of the loop. If they are met, the loop continues. If not, the loop
ends.

A loop structure can be used to calculate the factorial. The factorial is
the product of all the whole numbers that are equal to or less than the
number. For example, factorial 5 (written 5!) is

5! =5 * 4 = 3 *x 2 % 1 =120

In coding a routine to calculate the factorial you can use one variable
to hold the accumulated product and another one to hold the current fac-
tor. The first variable could be named facProd and the second one
curFactor. The loop to calculate facProd can be as follows:

1. Initialize the variable facProd to the number whose factorial is to be calcu-
lated and the variable curFactor to this number minus 1. For example: to
calculate 5! you make facProd = 5 and curFactor = 4.

2. During eachiteration calculate the new value of facProd by making facProd
= curFactor times facProd. Subtract one from curFactor.

3. If curFactor is greater than 1 repeat step 2, if not, terminate the loop.

Figure 10-1 is a flowchart of the logic used in the factorial calculation
described above.

© 2002 by CRC Press LLC

STEP 1: (initialization)
facProd = number
curFactor = number - 1

<
«<

STEP 2: (processing)
facProd = facProd * curFactor
curFactor = curFactor - 1
[

STEP 3:

is
curFactor > 1
?

YES

factorial = facProd

Figure 10-1 Factorial Flowchart

Programmers note:

In the factorial calculation we test for a factor greater than 1 to termi-
nate the loop. This eliminates multiplying by 1, which is a trivial opera-
tion.

For Loop

The for loop is the simplest iterative construct of Java. The for loop repeats
the execution of a program statement or statement block a fixed number of
times. A typical for loop consists of the following steps:

1. An initialization step that assigns an initial value to the loop variable.

2. One or more processing statements. It is in this step where the calculations
take place and the loop variable is updated.

3. A test expression that determines the termination of the loop.

© 2002 by CRC Press LLC

The general form of the for loop instruction is shown in Figure 10-2.

for keyword
initializing element
test element

|7 update element

for(var = 0; var < 5; var++)

{
}

Figure 10-2 Elements of the for Loop Construct

// processing statements

We can use the for loop in the following code fragment for calculating
the factorial according to the flowchart in Figure 10-1.

int number = 5; // Factorial to be calculated
int facProd, curFactor; // Local variables

// Initialization step

facProd = number; // Initialize operational variable

for (curFactor = number - 1; curFactor > 1; curFactor--)
facProd = curFactor * facProd;

// Done

System.out.println("Factorial is: ", + facProd);

Note that the expression

for (curFactor = number - 1; curFactor > 1; curFactor --)

contains the loop expression and that it includes elements from steps 1, 2,
and 3. The first statement (curFactor = number - 1) sets the initial value of
the loop variable. The second statement (curFactor > 1) contains the test
condition and determines if the loop continues or if it ends. The third state-
ment (curFactor --) diminishes the loop variable by 1 during each iteration.

Note that while the for loop expression does not end in a semicolon, it
does contain semicolon symbols. In the case of the for loop, the semico-
lon symbol is used to separate the initialization, test, and update elements
of the loop. This action of the semicolon symbol allows the use of multi-
ple statements in each element of the loop expression, as in the following
case:

unsigned int x;

unsigned int y;

for(x = 0, vy = 5; x < 5; x++, y--)
System.out.println("x is: " + x, " y is: " + y);

© 2002 by CRC Press LLC

In the preceding code the semicolons serve to delimit the initialization,
continuation, and update phases of the for loop. The initialization stage
(x =0, y = b) sets the variables to their initial values. The continuation
stage (x < b) tests the condition during which the loop continues. The up-
date stage (x++, y--) increments x and decrements y during each itera-
tion. The comma operator is used to separate the components in each
loop phase.

The middle phase in the for loop statement, called the test expression,
is evaluated during each loop iteration. If this statement is false, then the
loop terminates immediately. Otherwise, loop continues. For the loop to
execute the first time the test expression must initially evaluate to true.
Note that the test expression determines the condition under which the
loop executes, rather than its termination. For example

for(x = 0; x == 5; x++)
System.out.println(x) ;

The println() statement in the preceding loop does not execute be-
cause the test expression x == 5 is initially false. The following loop, on
the other hand, executes endlessly because the terminating condition is
assigned a new value during each iteration.

int x;
for (x = 0; x = 5; x++)
System.out.println(x) ;

Programmers note:

In the preceding loop the middle element should have been x = = 5.
The statement x = 5 assigns a value to x and always evaluates true. It is
avery common mistake to use the assignment operator (=) in place of
the comparison operator (= =).

It is also possible for the test element of a for loop to contain a com-
plex logical expression. In this case, the entire expression is evaluated to
determine if the condition is met. For example:

int x, vy;
for(x =0, vy =5; (x <3 || yv>1); x++, y--)

The test expression

(x <3 I y>1)

evaluates to true if either x is less than 3 or if y is greater than 1. The values
that determine the end of the loop are reached when the variable x = 4 or
when the variable y = 1.

© 2002 by CRC Press LLC

Compound statement in loops

You have learned that the roster symbols ({ and }) are used in Java to group
several statements into a single block. Statement blocks are used in loop
constructs to make possible performing more than one processing opera-
tion. The following program, named Factorial.java, uses a statement block
inaforloop to display the partial product during the factorial calculation.

On the Web

The program Factorial.java is found in the Chapter 10 folder at
WWW.Crcpress.com.

// File name: Factorial.java

// Reference: Chapter 10

//

// Java program to demonstrate looping

// Topics:

// 1. Using the for loop

// 2. Loop with multiple processing statements
//

// Requires:

// 1. Keyin class in the current directory

public class Factorial
{

public static void main(String[] args)

{
int number;
int facProd;

int curFactor;

System.out.println ("FACTORIAL CALCULATION PROGRAM") ;

number = Keyin.inInt ("Enter a positive integer: ");
facProd = number; // Initializing
for (curFactor = number - 1; curFactor > 1; curFactor-—)
{
facProd = curFactor * facProd;
System.out.println("Partial product: " + facProd);
System.out.println("Current factor: " + curFactor);

// Display the factorial
System.out.println("\n\nFactorial is: " + facProd);

© 2002 by CRC Press LLC

While loop

The Java while loop repeats a statement or statement block “while” a cer-
tain condition evaluates to true. Like the for loop, the while loop requires
initialization, processing, and testing steps. The difference is that in the for
loop, the initialization and testing steps are part of the loop itself, but in the
while loop these steps are located outside the loop body. The following pro-
gram uses a while loop to display the ASCII characters in the range 0x10 to
0x20.

On the Web

The program AsciiCodes.java is found in the Chapter 10 folder at
WWW.Crcpress.com.

// File name: AsciiCodes.java

// Reference: Chapter 10

//

// Java program to demonstrate looping

// Topics:

// 1. Using the while loop

//

// Requires:

// 1. Keyin class in the current directory

public class AsciiCodes

{

public static void main(String[] args)

{
char value = 0x10;

while (value < 0x20)

{
System.out.println(value) ;
value++;

In the program AsciiCodes.java, the initialization of the loop variable is
performed outside the while construct. The loop variable is updated in-
side the loop. The only loop element contained in the loop expression is
the test element. Figure 10-3 (on the next page) shows the elements of the
while loop.

© 2002 by CRC Press LLC

loopVar = 0; < External initialization
while (loopVar !'= 10) «—— Loop continuation test
{

// Processing statements

loopVar++; <« Loop variable update

}

Figure 10-3 Elements of the while Loop Construct

Programmers note:

The while loop evaluates the test expression before the loop state-
ment block executes. For this reason the AsciiCodes program, listed
previously, displays the values between 0x10 and 0x20, but not 0x20.
This mode of operation is consistent with the meaning of the word
while.

Do-While Loop

A characteristic of the while loop is that if the test condition is initially
false, the loop never executes. For example, the while loop in the following
code fragment will not execute the statement body because the variable x
evaluates to 0 before the first iteration

int x = 0;

while (x != 0)
System.out.println (x) ;

In the do-while loop, the test expression is evaluated after the loop ex-
ecutes. This ensures that the loop executes at least once, as in the follow-
ing example:

int x = 0;
do
System.out.println (x) ;

while (x != 0);

In the case of the do-while loop, the first iteration always takes place
because the test is not performed until after the loop body executes. Fig-
ure 10-4 shows the elements of the do-while loop.

© 2002 by CRC Press LLC

loopVar = 0; < External initialization

do = Start of loop
{
// Processing statements
loopVar++; <« Loop variable update
}
while (loopVar !'= 10); €«—— Loop continuation test

Figure 10-4 Elements of the do-while Loop Construct

In many cases the processing performed by the do-while loop is identi-
cal to the one performed by the while loop.

Programmers note:

The test expression in a do-while loop terminates in a semicolon sym-
bol. Since a while statement does not contain a semicolon, it is a com-
mon mistake to omit it in the do-while loop.

© 2002 by CRC Press LLC

Chapter 11

Programming with Loops

Java Loop Constructs

Most programs contain many loops of different types. The programmer
needs to be familiar with all types of loops and be able to select the most
suitable one in each case. In this Chapter, you learn how to use the three
loop constructs (for loop, while loop, and do-while loop) in practical pro-
gramming situations.

Selecting a Loop Construct

The for loop is aneat mechanism that contains the three required elements:
initialization, test, and processing. This design makes the for loop suitable
in situations in which you know the loop conditions in advance. For exam-
ple, a routine to display the ASCII characters in the range 16 to 128 can be
easily coded using a for loop, as follows:

for (char ascii = 16; ascii < 129; ascii ++)

System.out.println(ascii);

Programmers note:

In the preceding code fragment, the loop variable ascii is declared in-
side the for statement. The result is that ascii is alocal variable whose
scope is limited to the loop itself.

In contrast, the while loop repeats while a certain test condition is
true. This makes the while loop useful in cases in which the terminating
condition is initially unpredictable. For example, you may want a pro-
gram to repeat a set of calculations until the user types a specific ending

© 2002 by CRC Press LLC

code. In this case you can use a while loop in which the processing con-
tinues until the special ending code is detected.

The do-while loop provides an alternative to the while loop in which
the test condition is evaluated after the processing statements execute.
This ensures that the do-while loop executes at least once.

Programs often contain several loop constructs. Often one loop is
nested within another one. The program, named AsciiTable.java, listed
below, displays the table of ASCII characters in the range 0x20 to 0x7F.
The program uses four loops. The first two loops display the column
heads for the table. The third loop is a while loop which takes care of the
table's row heads and leading spaces. The fourth loop, nested in the third
one, displays a row of 16 ASCII codes. The program's result is a labeled
table of the ASCII character codes.

On the Web

The program AsciiTable.java is found in the Chapter 11 folder at
WWW.Crcpress.com.

// File name: AsciiTable.java

// Reference: Chapter 11

//

// Java program to demonstrate looping

// Topics:

// 1. Using several loop constructs simultaneously
// 2. Nested loops

//

public class AsciiTable

{
public static void main(String[] args)
{

// Local variables

char hexLetter; // For table header
char ascCode = 0x20; // First ASCII code
// Counters for rows and columns

int row = 2;

int column;

System.out.print ("\n\n") ;

System.out.print (" ")

System.out.println("ASCII CHARACTER TABLE") ;

System.out.print (" ")

System.out.println("characters 0x20 to Oxff");

System.out.print ("\n "y ;

// Loops 1 and 2

// Display column heads for numbers 0 to F hexadecimal

for (hexLetter = '0'; hexLetter <= '9'; hexLetter ++)
System.out.print (" " + hexLetter);

© 2002 by CRC Press LLC

for (hexLetter = 'A'; hexLetter <= 'F'; hexLetter ++)
System.out.print (" " + hexLetter) ;

// Blank line to separate table head from data

System.out.println("\n");

// Loop 3

// While ASCII codes smaller than 0x80 display row head

// and leading spaces

// Loop 4 (nested in loop 3)

// Display row of ASCII codes for columns 0 to O0xOF.

// Add a new line at end of each row

while (ascCode < 0x80)

{

System.out.print (" "+ row);
for (column = 0; column < 16; column ++)
{
System.out.print (" " + ascCode) ;

ascCode ++;
}
System.out.print ("\n\n") ;
Yow ++;

}

Figure 11-1 is a screen snapshot showing the result of compiling and
executing the AsciiTable program.

C:%\JavaDev>javac fAsciiTable.java
C:ZJavaDev>java AsciiTable
ASCIT CHARACTER TABLE
characters 020 to Oxff
7 f

s

*

C:vJavaley)r

Figure 11-1 Screen Snapshot of the AsciiTable.java Program

© 2002 by CRC Press LLC

Direct Flow Control

The loop statements discussed here and in Chapter 10, as well as the deci-
sion statements in Chapter 9, provide the programmer with ways of direct-
ing program execution. In loops and in the various flavors of the if
statement, program execution flows according to the result of the test ex-
pression that evaluates to true or false. Because their action depends on the
result of a logical expression, it is said that loops and decision statements
indirectly change the flow of a program.

But occasionally you may need to change program execution immedi-
ately and without performing any test. Java contains instructions that
abruptly change execution. These instructions are break, continue, and
return. The return statement is associated with methods, therefore it is
discussed in Chapter 12.

Incidentally...

C and C++ contain an additional statement, named goto, that allows
directing execution unconditionally to a specific destination. Al-
though goto is a Java reserved word, the goto statement has not been
implemented in the language.

Using break in loops

In Chapter 9 we saw the use of break in a switch construct to terminate
the processing action in a case block. The break statement can also be
used in a for, while, or do-while loop. In the case of loops, the break state-
ment directs execution to the line immediately after the currently execut-
ing level of the loop. When break is used in a nested loop, execution exits
the loop level in which the statement is located. This is shown by the pro-
gram named BreakDemo.java listed below.

On the Web

The program BreakDemo.java is found in the Chapter 11 folder at
WWW.Crcpress.com.

// File name: BreakDemo.java

// Reference: Chapter 11

//

// Java program to demonstrate direct flow control
// Topics:

// 1. Action of the break statement

//

© 2002 by CRC Press LLC

public class BreakDemo

{

public static void main(String[] args)

{
int number = 1;
char letter;

while (number < 10)

{

System.out.println("number is: " + number) ;
number ++;
for (letter = 'A'; letter < 'G'; letter ++)
{
System.out.println(" letter is: " + letter);
if (letter == 'C")
break;

There are two loops in the BreakDemo.java program. The first one is a
while loop that displays the numbers 1 to 9. The second one, an inner
loop, displays the capital letters A to F. An if statement tests for the letter
C and executes a break in order to interrupt execution of the nested loop.
Because the break statement acts on the current loop level only, the outer
loop resumes counting numbers until the value 10 is reached.

Programmers note:

The break keyword can only be used inside a switch construct orin a
for, while, or do-while loop. An error results if the break keyword ap-
pears anywhere else in a Java program.

The continue keyword

The break statement can be used with either a switch or a loop construct.
The continue statement, on the other hand, works only in loops. The pur-
pose of continue is to bypass all statements not yet executed in the loop and
return immediately to the beginning of the loop.

The program named ContinueDemo.java contains a for loop designed
to display the letters A to D. The continue statement in this loop serves to
bypass the letter C, which is not displayed.

© 2002 by CRC Press LLC

On the Web

The program ContinueDemo.java is found in the Chapter 11 folder at
WWW.Crcpress.com.

// File name: ContinueDemo.java

// Reference: Chapter 11

//

// Java program to demonstrate direct flow control
// Topics:

// 1. Action of the continue statement

//

public class ContinueDemo

{

public static void main(String[] args)
{

char letter;

for (letter = 'A'; letter < 'E'; letter ++)
{
if (letter == 'C")
continue;
System.out.println(" letter is " + letter);

}

The labeled break

A break statement is used to exit the current level of a loop. Occasionally,
an application needs to immediately exit all levels in aloop; for example, if
an error is detected. One possible solution is to include an if statement in
the loop and add an additional terminating condition to the loop header.
But when dealing with several nesting levels these extra conditions can be
inconvenient and complicated.

The Java instruction that provides an immediate and unconditional
exit for any level of a nested loop is the labeled break. In this case, the
break statement is followed by the identifier of a program label. The label
itself is a place-marker ending in the colon symbol. The general form of
the labeled break is shown in Figure 11-2.

Programmers note:

The label must precede the outermost loop level which you want to
exit.

© 2002 by CRC Press LLC

char n;

;7---» FAST EXIT: <= Label
while(. . .) < Outter loop
. {

for(. . .) <« Inner loop
. {

: if(n == 'x')

-------------------- break FAST EXIT; «—— Labeled break

Figure 11-2 Action of a Labeled Break

The following program shows the use of a labeled break to implement
an error handler.

// File name: LabeledBreak.java

// Reference: Chapter 11

//

// Java program to demonstrate direct flow control
// Topics:

// 1. Action of the labeled break statement

// 2. Use of a labeled break in an error handler
//

// Requires:

// 1. Keyin class in the current directory

public class LabeledBreak
{

public static void main(String[] args)
{
int number = 1;

char letter;

letter = Keyin.inChar ("Enter any character, except C: ");

FAST_EXIT:
while (number < 10)

{

System.out.println("number is: " + number);

number ++;

for (char ch = '"A'; ch < 'D'; ch++)
{
System.out.println(" char is: " + ch);

if (letter == 'C' || letter == 'c')
break FAST_EXIT;

© 2002 by CRC Press LLC

if(letter == 'C' || letter == 'c¢c')
System.out.println("ERROR, invalid input") ;

On the Web

The program LabeledBreak.java is found in the Chapter 11 folder at
WWW.Crcpress.com.

© 2002 by CRC Press LLC

Chapter 12

Program Building Blocks

The Java Subprogram

It did not take long for programmers to discover that code often contained
sections that performed identical operations. For example, a program that
performed geometrical calculations had to calculate the area of a circle
over and over again. Recoding the same routine wasted programming ef-
fort, made the program larger, and increased the possibility of error. The so-
lution was to create subprograms within the main program. The
subprogram would contain a processing routine that could be reused as of-
ten as necessary without having to recode it. An added advantage was that
subprograms reduced code size and simplified testing and error correction.
In this case, the subprogram to calculate the area of a circle would receive
the radius parameter from the caller. The subroutine would then perform
the required calculations and return the circle's area.

Java subprograms are called methods. Methods are the building block
of a Java application. This chapter is about methods and how they work.

Modules and Methods

Modern-day programming techniques are based on program modules. The
program breaks the processing task into small units, called modules. The
result is a program that is easier to manage and maintain. The processing
engines within each module are called methods. In Java, a method is a sub-
routine designed to perform a specific and well-defined set of related pro-
cessing operations. Each method has a single entry point and a single exit.
A well conceived method rarely exceeds a few pages of code. It is better to
divide processing into several simpler functions than to create a single
more complex one.

© 2002 by CRC Press LLC

The Elements of a Method

A Java method is a collection of declarations and statements, grouped un-
der a single structure, identified by a method name, and designed to per-
form a well-defined task. A Java method contains two clearly identifiable
elements: the declaration and the body. The method is created and defined
inits declaration statement, while the processing operations are contained
in the method body. The following method, named getAverage(), adds all
the elements in an array of int type and returns the average value.

public static int getAverage(int[] intArray)
{

int sum = 0; // Local variable

// Calculate sum of all array elements
for(int x = 0; X < intArray.length; x++)
sum = sum + intArray[x];

// Calculate and return average
return sum / intArray.length;

Incidentally...

It is popular among authors of computer books to follow the method
name with parentheses, for example, main() or getAverage(). This
seems reasonable since parenthesis are characteristic of Java meth-
ods. We follow this convention in this book.

Declaration

The method declaration, also called the method header, is a single expres-
sion that states the method name and defines the type returned by the
method and the parameters that it receives from the caller, if any. The
method declaration can also contain other information, such as access
specifiers and modifiers. These additional elements determine the
method’s visibility and its interaction with other program elements.

The method declaration can also contain exception-handling informa-
tion. This topic is discussed in the context of Java exceptions, in Chapter
19. Figure 12-1 shows the principal elements in a method declaration.

Programmers note:

The method declaration does not end with a semicolon symbol.

© 2002 by CRC Press LLC

public static int getAverage (int[] intArray)

parameter list
method name
return type
modifier

access specifier

Figure 12-1 Elements of a Method Declaration

Access specifier

The method’s access specifieris optional. The access specifier controls ac-
cess to the method. The access specifiers are public, protected, and pri-
vate. Public is the least restrictive one. Access specifiers for methods are
discussed in the context of object-oriented programming in Chapter 14.

Modifier

The modifier sets the properties for the method. The value for the modifier
are static, abstract, final, native, and synchronized. Modifiers are related
to the method's visibility and the method's attributes within the class struc-
ture.

You can also create methods that are unrelated to objects by using the
static modifier. This is the case with the getAverage() method listed previ-
ously and with the main() method that you have been using in your pro-
grams.

Return type

The return type is a required element in the method declaraction. The one
exception is a special type of methods, called constructors, which are dis-
cussed in Chapter 15. Allmethods can return asingle value to the caller. The
return type identifies the data type of the returned value. Java methods can
return any of the eight primitive data types (int, long, short, byte, boolean,
float, and double, and char) or more complex types, such as arrays and ob-
jects. Since a string is an object of the String class, aJava method can return
astring object to the caller. When a method returns no value, its return type
is declared to be void. If the method's return type is not void, it must return
the type specified in the declaration.

The following method returns a type boolean:

public static boolean i1s0dd(int aValue)
{

© 2002 by CRC Press LLC

if(avalue % 2 != 0)
return true;
else
return false;

}

Method name

Every Java method must have a name, which must be alegal Java identifier.
Most Java programmers start method names with a lower-case character,
and then use upper-case letters for any other words in the name. This is the
case in the methods getAverage() and isOdd () listed previously.

It is a matter of good programming style to select a method name that
is consistent with the value returned by the method. The reason for this
practice is that, in Java code, the method's name identifies the value re-
turned. For example, you could name getAverage() a method that returns
the average of the elements in a numeric array. While a method that re-
turns true if the argument is an even number can be named isEven().

Parameter list

The information passed to the method is defined by the method's parame-
ter list. There is no limit to the number of elements that can be declared in
the parameter list. The format for the parameters is as follows:

DataType VariableName, DataType VariableName,

Programmers note:

There is some confusion between the meaning of arguments and pa-
rameters in relation to methods. Arguments refer to the values passed
to the method, while parameters are the values received by the
method. Thus, we say that a method receives an int as a parameter, or
that we call the method with an int argument.

A method that receives no arguments is declared with an empty param-
eter list, as follows:

public static void eraseAll()

© 2002 by CRC Press LLC

Chapter 13

Using Methods

The Method Call

You transfer control to amethod by referencing the method's name in a pro-
gram statement. The method call can appear at any point in the code from
which the method is visible. Furthermore, a method can call itself. A
method that calls itself is said to use recursion.

The following code shows a call to the method named getAverage(),
discussed previously:

public static void main(String[] args)
{
// Local variables
int[] values = {1, 2, 3, 4, 5, 6, 7, 12};

int average;

// Call the method named getAverage()

average = getAverage(values) ;

// Display results

System.out.println("Average is: " + average);

The method call is contained in the statement:

average = getAverage (values);

The call to getAverage() contains the name of the array passed as an ar-
gument. This argument becomes the only parameter in getAverage().

© 2002 by CRC Press LLC

Returning from a Method

A method concludes when it reaches the return keyword. At this point, exe-
cution returns to the caller at the statement that follows the call. A return
statement can include an expression, optionally enclosed in parentheses,
which represents the value returned to the caller. The method
getAverage(), listed previously, has the following statement:

return sum / intArray.length;

The value returned by a method must always match the return type de-
fined in its declaration. Parentheses can optionally be used to clarify the
calculations of a returned value, as follows:

return (sum / intArray.length);

If the method's return type is void, then no value can follow the return
statement. For example, a method with void return type concludes execu-
tion with the statement:

return;

If you do not code a statement, the method concludes at the line that
precedes the closing roster. In this case, programmers say that the
method “falls off the edge.” A method can also return a constant to the
caller, as in the following example:

public static double getPi ()

{
return 3.141592653589793;
}

In the preceding example, the method getPi() returns the constant PI
to the calling routine.

Programmers note:

A method without a return statement does not produce a compiler er-
ror. However, an explicit return is better, since it leaves no doubt
about the programmer's intention.

The return statement can appear anywhere in the method body. A sin-
gle method can contain several return statements. Each return statement
can be associated with a different value. This is the case in the isOdd()
method:

public static boolean is0dd(int aValue)

{

© 2002 by CRC Press LLC

if(avalue % 2 != 0)
return true;
else
return false;

The following cases are possible in regards to a method's return:

1. The method can contain one or more explicit return statements. Each state-
ment can be associated with a different value. For example:

return (error_code);
return((r + r) * PI);
return 2 * radius;

2. A method can contain no return statement. In this case, execution con-
cludes at the closing brace and the method is said to “fall of the edge.” A
non-void method that falls off the edge has an undefined return value.

3. A method can end with a simple return statement. This happens when the
method concludes with the expression:

return;

In this case no specific value is returned to the caller. Void methods must
use this style.

4. A method can return a constant, optionally enclosed in parentheses

return 0;
return (1) ;

Arguments and Parameters

A method’s declaration contains a list of the variables, enclosed in
parentheses, whose values are passed by the caller. The method’s call state-
ment contains (also enclosed in parentheses) the value passed to the
method as arguments. Suppose that you have coded a method named
getArea() that calculates the area of a triangle from its height and base di-
mensions. Also assume that getArea() receives the height and base values
as parameters, as follows:

double area;
double height

= 12.7;
double base = 7.9

7

// Calling the method

area = getArea(base, height) ;

// Method

public static double getArea (double b, double h)
{

© 2002 by CRC Press LLC

double result = (b * h) / 2;
return result;

The method getArea() declares in its paramenter list two variables of
type double, named b and k. While the method call references, in paren-
theses, the arguments base and height, whose values are passed to
getArea().

Programmers note:

The term “argument” relates to elements in the method's call, while
the term “parameter” refers to the elements listed in the method’s dec-
laration. In other words, a value passed to a method is an argument
from the viewpoint of the caller, and a parameter from the viewpoint
of the method itself.

Data is passed to a method in the same order in which the arguments
are listed in the call. The method's parameter list defines this order. In the
case of the method getArea() previously listed, the first argument in the
method’s call, the variable base, becomes the parameter b declared in the
method’s header. While the second argument referenced in the call, the
variable height, becomes the variable k in the method.

The value returned by a method is associated with its name. This ex-
plains why the variable contained in a method's return statement can be
of local scope. Also notice that a method returns a single value to the
caller.

Methods and Global Variables

You have learned that the scope of a Java variable is the block in which it is
declared. Since a method’s body is defined within a block, a variable de-
claredinside this block has local scope. Sometimes we say that method vari-
ables have method scope. For example:

public static double getArea (double b, double h)

{
double result = (b * h) / 2;
return result;

The scope of the variable result is the getArea() method. Data elements
declared outside the methods of a class have class (or global) scope. The
fact that methods can access global data provides a simple mechanism
whereby a method can return more than one result to the caller.

© 2002 by CRC Press LLC

The following program, named Circle.java, contains two global vari-
ables and a constant.

On the Web

The source file for the program Circle.java can be found in the Chap-
ter 12 folder at www.crcpress.com.

// File name: Circle.java
// Reference: Chapter 12
// Java program to demonstrate global variables

// and their use by methods
// Topics:

// 1. Global variables

// 2. Variable visibility to methods

// 3. Method that returns several results in
// global variables

// 4. Data 1s passed by reference to a method
//

// Requires:

// 1. Keyin class in the current directory

public class Circle

{
// Data elements defined at the class level
static final double PI = 3.141592653589793;
static double area;
static double perimeter;

//*********************************

// main () method

//*********************************

public static void main(String[] args)

{

// Local variables
double radius;
// Input radius from keyboard
System.out.println("Caculating circle dimensions") ;
radius = Keyin.inDouble("Enter radius: ");
// Call method
circleData(radius) ;
// Display data stored globally

System.out.println("Radius: " + radius);
System.out.println("Area: " + area);
System.out.println("Perimeter: " + perimeter);

VAR R EAEEEEREEEEREESEREEEEEEEERE R

// circleData () method

VAR EEREEEEREEEEREEEEEEEEE TR

public static void circleData (double radius)

{

area = PI * (radius * radius);

© 2002 by CRC Press LLC

perimeter = PI * (2 * radius);
radius = 0; // Fruitless effort!
return;

The method circleData() receives the radius of a circle as a parameter
and calculates its area and circumference. The calculated values are
stored in global variables; where they can be accessed by the caller.

Programmers note:

The method circleData() of the program Circle.java, is defined with
return type void. In this case the method returns nothing to the caller
since the information is contained in global variables.

Passing by Value and by Reference

Datais passed to methods in two different ways: by value and by reference.
Data is said to be passed by value when the method receives a copy of the
values in the caller's arguments. The result of passing by value is that the
method hasno access to the variables where the data is stored. On the other
hand, when data is passed by reference, the method receives the addresses
of the variables where the values are stored. In this case, the method can
change the actual contents of the variables.

Java has simple rules that determine when data is passed by value or
by reference. Primitive data types are always passed by reference to
methods. In the program named Circle.java, listed previously, the method
circleData() receives the radius of the circle as a parameter from the
caller. The method attempts to change the value of this variable in the
statement:

radius = 0; // Fruitless effort!

In the comment to this line we said that this is a “fruitless effort.” The
reason is that the method circleData() has no access to the variable ra-
dius, which is local to the method main(). The first println statement in
the caller's code shows that the value of the variable radius remains un-
changed.

© 2002 by CRC Press LLC

Chapter 14

Object-Oriented Programming

Classes and Objects

A new approach to solving the software crisis, called object-oriented pro-
gramming was introduced to program developers during the early 1980s.
The idea behind object-orientation (often called OO) is to make program-
ming more real. Instead of dealing with abstractions and concepts that only
exist in the software world, OO programmers would model their products
using objects. These objects belonged to “classes of objects” that contained
the data structures and processing operations. The object-oriented ap-
proach proved to be a feasible alternative and is now a major force in the
computing mainstream.

Java is an object-oriented programming language. It uses classes and
objects, which are the fundamental elements of an OO system. Java also
implements the three conceptual mechanisms associated with ob-
ject-orientation: data abstraction, inheritance, and dynamic binding.
You have already learned that every statement and every construct of a
Java program must exist inside a class of objects. Because the Java librar-
ies, which are defined as classes, in order to use and understand Java you
must first grasp the fundamental notions of object-oriented program-
ming. This chapter is about object orientation and about classes and ob-
jects.

The Why and Wherefore of OO

The object-oriented approach dates back to the 1960s. The first notions of
data abstraction are due to Kristen Nygaard and Ole-Johan Dahl from the
Norwegian Computing Center. Simula, developed by Nygaard and Dahl,
was alanguage intended for simulations and for use in a field of mathemat-

© 2002 by CRC Press LLC

ics called operations research. Simula was described as a process-oriented
language. A few years later a new version, Simula 67, was released.

Simula and Simula 67 never became popular programming languages.
Their historical importance is the introduction of the notion of a class. In
object-oriented systems, a class is a template that packages together data
and processing routines. The class is a formal part of an OO language, not
a concrete entity. The programmer creates instances of a class as they be-
come necessary. The instances of a class are called objects.

The first description of a fully operational, object-oriented program-
ming language was due to Alan Kay. Kay foresaw that desktop computers
would have megabytes or memory and would be equipped with proces-
sors capable of executing millions of instructions per second. Since, in
Kay's vision of the future, desktop machines would be used mostly by
nonprogrammers, it was necessary that these computers be equipped
with a powerful graphical interface.

An information processing system named Dynabook was a first effort
in this direction. Dynabook was based on a virtual desktop on which
some documents were visible and others were partially covered. The user
would select documents, and move items around on the desktop using a
touch-sensitive screen. The interface was similar to our present day win-
dowing environments. The Flex programming language, loosely based on
Simula 67, performed the processing.

These ideas eventually evolved into the Smalltalk programming lan-
guage, still considered one of the most powerful and refined object-ori-
ented systems. The Smalltalk design team was led by Adele Goldberg. The
Smalltalk language has become the standard to which other object-ori-
ented languages are compared. In addition to Smalltalk, other notable ob-
ject-oriented languages are Clos, Ada 95, C++, and Java.

Object-Oriented Fundamentals

Not all object-oriented languages are created equal. Smalltalk, for example,
implements object-orientation in a pure and strict form. In other OO lan-
guages, such as C++, object-orientation is an optional feature that can be
turned on or off by the programmer. Object orientation in Java is not op-
tional. In contrast with C++, all Java code must reside inside a class. Never-
theless, it is possible to write Java programs in which object-orientation is
minimally visible. The programs developed so far in this book fall into this

group.

© 2002 by CRC Press LLC

Incidentally...

Unlike automobiles and food blenders, software products don't wear
out. As applications, programming languages, and operating systems
become more refined and stable, customers have less reasons for in-
vesting in new versions and updates. For this reason, software compa-
nies are always in search of features that enhance their products in
order to re-capture the interest of their customers. Object-oriented
languages have been eagerly adopted by software vendors, not only
because of their features, but also for purely commercial reasons.

From Problem to Solution

A computer program is a machine-coded solution to a problem in the
real-world. Programming projects usually start with the definition of a
problem, or aproblem-set. The resulting software product is a group of ma-
chine instructions that solve this problem. The art of programming facili-
tates the transit from the real-world problem-set to the machine-coded
solution-set. In this wide sense programming consists of the analysis, de-
sign, coding, and testing of a software product.

Over the years many methods have been developed to facilitate the
transition from a real world problem to a coded solution. Assemblers,
high-level programming languages, CASE tools, software analysis and de-
sign schemes, formal specifications, and scientific methods of program
testing are all efforts in this direction.

One of the first efforts at making programs easier to develop and more
dependable was called structured programming. Structured programming
techniques were based on fostering programs with a modular structure,
clean flow, and a logical design. The results were faster development,
more dependable execution, and easier maintenance. For many years the
structured programming model was prevalent in the software industry.

But structured programming is a program development methodology.
It does not deal with the real-world problem at the origin of every soft-
ware project. We can say that structured programming focuses on the so-
lution-set of a software project. But interpreting, defining, and modeling
the problem-set is one of the major stumbling blocks of software develop-
ment. The object-oriented approach focuses on this problem set. It uses
mechanisms well known to science, such as features classification and in-
heritance. The object of the program corresponds to the objects of the
real world.

© 2002 by CRC Press LLC

The following are the most important claims of the object-oriented ap-
proach:

1. The OO model can be understood by clients and software users with no
technical knowledge of programming or computers. For this reason, pro-
gram analysis and design methods based on object-orientation facilitate
communications with clients.

2. Real-world problems can be modeled in object-oriented terms. Structured
programming does not address the problem set.

3. Object-oriented programming languages promote and facilitate code re-
use. Reusing code increases programmer productivity.

4. Object-oriented programs are more resilient to change. This makes OO sys-
tems more able to accommodate the natural volatility of the problem-do-
main.

Learning about Classes and Objects

Object-oriented programming is based on modeling the problem set using
classes and objects. However, you must be careful not to equate an objectin
an OO language with an object in the real world. In OO terms, an objectis an
abstraction. It is not identical to an object in the physical sense. It is a con-
ceptual entity related to the problem domain. You can think of an object, in
object-oriented programming, as a hybrid that shares some characteristics
of common objects with features of a computer construct. The best way to
understand objects is to observe their properties:

1. An object belongs to a class. An object cannot exist without a class that de-
fines it. You can visualize the class as a cookie cutter and the object as the
cookie. More formally, an object is said to be an instance of a class.

2. A classis an encapsulation that includes data and its related processing op-
erations.

3. Objects have attributes that serve to store and preserve the object's state.
The attributes, which are the data element of the class, determine what is
remembered about an object.

4. An object's methods are the only way of accessing its data or modifying its
state. This is accomplished by sending a message to the object.

The fundamental principles

Encapsulation and inheritance are the cornerstones of object orientation.
Data abstraction, message passing, polymorphism, and dynamic binding
are OO mechanisms based on encapsulation and inheritance. You must

© 2002 by CRC Press LLC

have a basic understanding of the fundamental principles before you start
using object-orientation in your programs.

Encapsulation

Encapsulation means that the elements of a class, data and methods, are
packed in a single capsule. Encapsulation also relates to information hid-
ing, since the data elements contained in the capsule are, in most cases, not
accessible to code outside the class. Encapsulation hides the data. Before
object-orientation came into existence, processing operations were based
on routines and subprograms that shared global data or that received data
passed by the caller. The object-oriented approach encapsulates data and
methods in a single package, called the class, and hides the data so that it
cannot be changed without following proper procedures.

A class consists of both data elements and processing elements. The
data elements of a class are the attributes, and the processing operations
are the methods. Attributes and methods are the class members: the at-
tributes are called the data members and the methods are called the
member functions.

Incidentally...

A class is a structure visible to code, that is, it is a programming con-
struct. End users of an object-oriented program do not see or access
classes. Classes are for programmers. For this reason it is better to
speak of the “clients” of a class than of the “users” of a class.

Encapsulation hides the implementation details and stresses the inter-
face. In general, the interface is what the class exposes to its clients. In
particular the class' interface are its methods and the protocols necessary
to access these methods. The goal of encapsulation is to create a class
abstraction. This abstraction forces the programmer to think conceptu-
ally.

In most cases, the data members of a class are invisible to the client. If
a data member must be made accessible to the class' client, then the class
provides a method that inspects the data element and returns its value. A
class that exposes its data members is said to break encapsulation.

Inheritance

Scientists who study the representation of knowledge were the first to ob-
serve the inheritance of properties. In this sense inheritance refers to the
properties of a higher-level class being shared by its subclasses. Note that

© 2002 by CRC Press LLC

here we are using the common meaning of the word “class,” not in the sense
of aJava class structure. Using inheritance, knowledge is organized into hi-
erarchies based on class relationships. Thus, we say that an individual in-
herits the properties of the class to which it belongs. For example, animals
breathe, move, and reproduce. If the subclass bird belongs to the animal
super-class, then we can deduce that the members of the bird class breathe,
move, and reproduce since these properties are inherited from its base
class. Scientific classifications are based on inheritance of properties. Fig-
ure 14-1 is an inheritance diagram for some classes of animals.

ANIMAL

has feathers

CANARY

Figure 14-1 Class Inheritance Diagram

Class inheritance is used in knowledge bases to ensure the highest lev-
els of data abstraction. Suppose you are creating a knowledge base about
birds. This knowledge base starts by defining the traits that are common
to all birds. For example, all birds fly and have feathers. Then it defines
the traits of the particular bird species. The canary is yellow and sings.
The robin is red and migrates in the winter. The result is that the sub-
classes, canary and robin in this case, inherit the properties of their par-
ent class, bird, which in turn, inherits the properties of its superclass,
animal, and so on. The result is that the knowledge base is reduced, since
common properties are asserted only once. Inheritance structures also
serve to maintain the consistency of the knowledge base.

Object-orientated systems use inheritance so that subclasses acquire
the public members of their parent classes. Here again, inheritance pro-
motes the highest level of abstraction and simplifies the knowledge base.
It allows the program designer to build a class hierarchy that goes from
the most general to the most specific. Applying object-orientation to the
class diagram in Figure 14-1, we can say that ANIMAL is the base class,
and that BIRD, FISH, and CANARY are derived classes. A derived class in-

© 2002 by CRC Press LLC

corporates all the features of its parent class, and may add some unique
features of its own. Derived classes have access to all the public members
of their base class. Parent, child, and sibling are terms sometimes used
to express degrees of inheritance between classes. As in biological sys-
tems, sibling classes do not inherit from each other. Therefore, the prop-
erties of FISH (in Figure 14-1) are not inherited by its sibling class, BIRD.
This rule is also applied in object-oriented class inheritance.

Modeling with Classes

Software systems are complex, and object-oriented software development
oftenresults in complicated structures of related and unrelated classes and
subclasses. In order to understand complex systems you can use a model
that simplifies it. Architects create scale models of a building that can be
shown to clients. An engineer draws a model of a mechanical component
that is later used to manufacture the part. An aircraft designer creates a
model of an airplane that can be tested in a wind tunnel. The more elaborate
or complex a system the more useful the model.

In object-oriented software systems, classes and objects inherit prop-
erties from their parents and interact with their siblings. System design-
ers work at a high level of abstraction and use models that show the
interaction between the component elements. Several successful model-
ing tools have been developed over the years. The basic element of all
these modeling tools is a notation for classes and objects and their rela-
tions. One of the most popular models is due to Coad and Yourdon.
Booch, Jacobson, and Rumbaugh created the Unified Modeling Language
(UML) that uses a notation similar to the one proposed by Coad and
Yourdon. In either notations, Coad and Yourdon and UML, rectangular
boxes are used to denote classes and several connectors represent class'
associations and relationships. In this book we use the Coad and Yourdon
notation, since it is the simplest one. At times, we introduce minor varia-
tions to the Coad and Yourdon model. Figure 14-2 shows the diagram of a
class.

ClassName

Attributes

Methods()

Figure 14-2 A Class Diagram

© 2002 by CRC Press LLC

Suppose you were creating a software system that had to keep track
and model various dogs. You could start the design by creating a class
named Dog. Each object of the Dog class would have certain specific at-
tributes, such as a name, color, and weight. Also, the objects of the class
Dog would have the ability to bark and jump. Using the class diagram we
could model the class Dog as shown in Figure 14-3.

Dog

name
weight
color

Bark()
Jump()

Figure 14-3 Modeling the Dog Class

In modeling classes we note that there are two basic types of class as-
sociations. In one case, the subclass is “a kind-of” the parent class and in
another case the sub-class is “a part-of” the parent. Suppose you used a
class named Physician and a class named Surgeon to model a medical sys-
tem. In this case you could say that a Surgeon is “a kind-of” a Physician.
On the other hand, if you were modeling an automobile using a class
named Engine and another class named Starter; in this case, the relation-
ship between classes is that Starter is “a part- of” Engine.

The “kind-of” association is more properly named a generalization-spe-
cialization relationship (Gen/Spec for short). Part-of association is called
a Whole/Part structure. In the Coad and Yourdon notation for class asso-
ciations, the Gen/Spec relationship is shown using a semicircle to con-
nect the subclasses to the parent class. The Whole/Part association is
shown using a triangle to connect the subclasses to their parent. The no-
tation can be seen in Figure 14-4.

Figure 14-4 shows a base class Physician that has the subclasses Sur-
geon and Pediatrician. In this case, the subclasses Surgeon and Pediatri-
cian are specializations of the base class Physician. On the right-hand
side of Figure 14-4 we have a class Automobile and the subclasses Chas-
sis and Engine. Here the classes Engine and Chassis are parts of the
whole, represented by the class Automobile. Therefore, the class associa-
tion is a Whole/Part structure and the subclasses are “a part-of” the super-
class.

© 2002 by CRC Press LLC

Physician Automobile

A A

Surgeon Pediatrician Chassis Engine
(_Sen/S_pec Struct_ure Whole/Part Structure
(is-a-kind-of relation) (is-a-part-of relation)

Figure 14-4 Class Inheritance Notation

Polymorphism and Abstract Classes

In object-orientation it is possible to have a class that defines an interface
to the system but contains no specific implementation. In other words, it is
possible to create a class with dummy methods, that provide no actual pro-
cessing. All these dummy methods do is define the interface to the class sys-
tem. When a class contains no actual implementation we say that it is an
abstract class. Methods that define the interface but contain no implemen-
tation are called abstract methods.

In Java programming an abstract class is one that has at least one ab-
stract method. The purpose of abstract classes and abstract methods is to
achieve greater generalization. The abstract class defines the protocol
that must be followed to access the subclasses located lower in the hier-
archy. The implementation is left to the lower-level classes. In this man-
ner a dummy method (abstract method) is used as a template for the
interface of a concrete method that shares the same name.

The idea of having several methods with the same name is called poly-
morphism. Literally, polymorphism means to have many forms. In ob-
ject-oriented programming the term polymorphism is used in reference to
a class or class system that contains two or more methods that share the
same name. Polymorphism is used to implement class abstraction by hav-
ing several methods with the same name (called polymorphic methods)
located in different classes. Usually the method located in the highest
class in the hierarchy is an abstract method. The abstract method defines
the interface for all its polymorphic relatives, but provides no implemen-

© 2002 by CRC Press LLC

tation. In the Coad and Yourdon notation, abstract classes are identified
by a dashed rectangle.

A classification example

Suppose you were to create a software system for a pet shop. The pet shop
sold dogs, cats, and birds to the public and had to keep track of the inven-
tory of these animals. An object-oriented approach to the problem could be
based on creating an abstract base class called Pet. The notion of apet class
is an abstraction and the class Pet would be implemented as an abstract
class. The concrete classes would be named PetDog, PetCat, and PetBird.
The Pet class would define the interface for its subclasses. There would be
amethod called GetName() that returns the name of the individual pet ani-
mal. Another method called GetPrice() returns the sale price of the pet, and
amethod called GetLocation() returns the location in the pet shop where a
specific animal can be found. To keep track of pet names, locations, and
prices you would need three variables. The resulting system would appear
as in Figure 14-5.

In relation to the class diagram in Figure 14-5, note the following:

e The association between the superclass Pet and the subclasses PetDog,
PetCat, and PetBird is an is-a-kind-of relationship. The class structure is of
type Gen/Spec. The sem-circular connector in the class diagram shows the
Gen/Spec association.

petName
petLocation
petPrice

GetName()
GetLocation()
GetPrice()

............

- ==
S -mm -

PetCat PetBird

GetName() GetName()
GetlLocation() GetLocation()
GetPrice() GetPrice()

GetName()
GetLocation()
GetPrice()

Figure 14-5 A Pet Store Class System

© 2002 by CRC Press LLC

¢ The class Pet is an abstract class. You can tell that it is an abstract class by
the dashed rectangle.

¢ The methods GetName(), GetLocation(), and GetPrice() are the interface to
the system. These methods are polymorphic in all the classes. In the ab-
stract class Pet, the methods GetName(), GetLocation(), and GetPrice() are
abstract methods. In a class diagram abstract methods are identified by typ-
ing the method names in italics.

¢ The attributes petName, petLocation, and petPrice are defined in the super-
class only. It is not necessary to redefine the attributes in the subclasses.

© 2002 by CRC Press LLC

Chapter 15

Object-Oriented Coding

Working with Classes and Objects

Itisnow time to put to work your knowledge of object-orientation and your
skills in Java programming. So far we have been dealing with small pro-
grams that contain a single class. Our programs have used static variables
and methods. In fact, we have turned off object orientation and used Java as
a semi-procedural language. But the advantages of Java are related to its
object-oriented features. At this point you are ready to start developing true
object-oriented programs and learning to use the OO features of Java.

Thinking Objects

A Javaprogram is a collection of classes. In a well-designed and well coded
program, these classes interact with each other and provide a reasonable
and reusable software environment. A class is atemplate: an object factory.
The class defines the attributes and behavior of its objects. It is used to cre-
ate objects. You must always keep in mind that the class is a programming
construct. Although you define the data types and write methods in a class,
the data the methods are contained by the object. In this sense we can say
that the class is the cookie cutter, and the object is the cookie.

Because the functionality (methods) and the information (data) is in
the object, not in the class, we sometimes say that the object knows. It
knows the information contained in its data members, and it knows how
to perform the operations in its method members. The object is a unit of
data and processing. It is for these reasons that we talk about object-ori-
ented programming, not class-oriented programming.

© 2002 by CRC Press LLC

The art of object-orientation starts with learning how to think objects.
Consider the following Java program:

On the Web

The source file for the program VirtualDog.java can be found in the
Chapter 15 folder at www.crcpress.com.

VAR EEEEEEEEEEEEE RS EEEESEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEE

// File name: VirtualDog.java
// Reference: Chapter 15

VAR EEREEEEREEEEREEEEREEEEEEEREEEEEEEEEEEEEEEEEEEREEEEREEEEEEES

/7

// Java program to demonstrate a classes and objects

// Topics:

// 1. Java application with multiple classes

// 2. Object instantiation

//

// Note:

// 1. Only one class in a file can be public. The public
// class must have the name of the Java source file.
// 2. The "this" operator refers to the current object.
// 3. Class variables are usually declared with private
// accesibility in order to preserve encapsulation

//***********************************
//***********************************
// CLASS Dog
//***********************************
//***********************************
class Dog
{
// Class variables
private int dogNum; // Dog object number
private String dogName; // Dog object name

VAR EEREEEEEEEEERE R R

// setDogData ()
//************************

public void setDogData(int aNum, String aName)
{

this.dogNum = aNum;

this.dogName = aName;

VAR EEREEEEEEEEEEREEEEEE LR

// method bark ()

VAR EEREEEEREEEEREEEE R

public void bark()
{
System.out.println("Arf!, Arf!");

© 2002 by CRC Press LLC

//************************

// method showDogData ()
//************************
public void showDogData ()
{
System.out.println("My name is " + this.dogName) ;
System.out.println ("I am dog number " + this.dogNum) ;

//***********************************
//***********************************
// CLASS VirtualDog
//***********************************
//***********************************
public class VirtualDog
{
public static void main(String[] args)
{
// Declare objects of class Dog
Dog dogl = new Dog/() ; // First object is named dogl
Dog dog2 = new Dog() ; // Second object is dog2

// Assign names to Dog objects using setName () method
dogl.setDogbhata(l, "Fido"); // dogl name
dog2.setDogDhata (2, "Maverik"); // dog2 name

// Call methods of the class Dog using objects

dogl.bark() ; // dogl barks
dogl.showDogData () ; // dogl says its name and

// number
dog2.showDogDhata () ; // ... and so on
dog2.bark () ;

}

Object instantiation

The program VirtualDog.java. listed previously, contains two classes. The
class VirtualDog is called the driving class. Every Java program must con-
tain a driving class. The method main() must be in the driving class. The
other class in the program is Dog. Dog is a helper class. The class Dog con-
tains two attributes, defined as follows:

// Class variables
private int dogNum; // Dog object number
private String dogName; // Dog object name

Note that the object attributes are defined at the class level, that is,
outside the methods. They are defined with the private qualifier so that
they are not visible outside the class. Private attributes preserve encapsu-

© 2002 by CRC Press LLC

lation. When attributes are private, object data must be obtained through
methods, not directly. This makes object data safe from unauthorized ac-
cess. The class also contains the methods setDogData(), bark(), and
showDogData().

In order to use a class you must first instantiate an object of the class.
In the VirtualDog program, listed previously, the objects are instantiated
as follows:

// Declare objects of class Dog
Dog dogl = new Dog/() ; // First object is named dogl
Dog dog2 = new Dog/() ; // Second object is dog2

Programmers note:

An object whose state can be changed externally breaks encapsula-
tion.

Each object has:
1. A behavior (defined by its methods)
2. A state (determined by its fields)
3. Anidentity, which makes it different from all other objects of the same class

In most cases objects have different states, but two objects of the same
class are unique and different, even if they have the same state. For exam-
ple: a GasGauge object encodes the amount of gasoline in a tank. A truck
with two tanks may have two GasGauge objects. These objects would be
different, even if by chance both of them represented the same number of
gallons of gas. In this case their state would be the same, but each object
would still have its own identity.

Field variables and method variables

In relation to their location in the class, Java variables can be of two types.
Field variables are declared outside the methods, usually before any of the
methods. Sometimes we just say “fields” to refer to field variables. The
unique property of field variables is that they are accessible to all the meth-
ods in the class. Variables declared inside methods are called local or
method variables. Local variables are visible inside the method that con-
tains them and their lifetime is limited to duration of the method. For this
reason local variables cannot be accessed by other methods, or by other
classes. This explains why you cannot use access modifiers with local vari-
ables.

© 2002 by CRC Press LLC

In the program VirtualDog.java, listed previously, the class Dog con-
tains two data items: one is a variable of type int and another one is a
string. Both are declared with the private access modifier in order to pre-
serve encapsulation, as follows:

// Class variables
private int dogNum; // Dog object number
private String dogName; // Dog object name

The class Dog provides the method setDogData() that assigns a name
and a number to each dog object created from the class. Another method,
named showDogData(), returns the name and number of a dog object.
Thus, data is encapsulated, since it is only accessible through methods in
the Dog class. Client code cannot see or alter these variables. The class
data is protected from unauthorized access.

Object variables and class variables

Object variables are declared without the static keywords. The variables
dogNum and dogName, listed previously, are object variables. Object vari-
ables are associated with the objects of the class. For every object
instantiated from a class there is a copy of each of the object variables.

Another type of variable is declared with the static attribute. When a
variable is of static type it is related to the class itself, not to the objects.
Class variables are used in storing information that relates to all the ob-
jects of a class, and not to any object in particular. In the program
VirtualDog, listed previously, you could have used a class variable to keep
track of the number of dog objects instantiated. The use of class variables
is discussed later in this chapter.

Building Objects

A class is an object factory. To build an object the class uses a special
method called a constructor. The constructor method is called whenever
an object is created. The constructor has the same name as the class. You
can write your own constructors for your classes; however, if you do not
code a constructor, Java supplies one for you. The constructor created au-
tomatically by Java is sometimes called the default constructor. The only
function performed by the default constructor is to set to a known state all
object variables and class variables that were not initialized in their decla-
rations. The various variable types are initialized as follows:

1. All numeric variables are set to 0

2. All strings are set to null

© 2002 by CRC Press LLC

3. All boolean variables are set to false

A unique characteristic of constructors is that they have no return
type. Constructors can be public, private, or protected, but most con-
structors are public. A private constructor does not allow other classes to
instantiate objects. Therefore, a class with a private constructor can only
have static methods.

Programmers note:

You use a private constructor when you want to prevent other classes
from instantiating your class, but you still need access to the class'
static methods.

The default constructor

The constructor is called when an object of the class is created. For exam-
ple, in the case of the VirtualDog.java program listed previously, the default
constructoris called when the objects are created, as in the following state-
ment:

// Declare objects of class Dog

Dog myDog = new Dog() ; // First object is named myDog

The default constructor creates the object and sets the field variables
that were not initialized in their declaration to the default values men-
tioned previously. In the case of the sample program named
VirtualDog.java, listed earlier, the default constructor sets the variable
dogNum to zero, and the String dogName to null.

Overloading the constructor

In general, the word overloading refers to using a program element for
more than one purpose. For example, the Java + operator is overloaded
since it is used to represent both addition and concatenation. When a Java
class contains more than one constructor we say that the constructor is
overloaded.

Overloaded constructors must follow the rule that each implementa-
tion of the constructor have a unique signature.

© 2002 by CRC Press LLC

Programmers note:

The signature of a method is its unique name and parameter list.

Since all constructors have the same name as the class, the construc-
tors can only be identified by their unique parameter list. Overloaded con-
structors allow building objects in different ways. Java determines which
constructor to use by looking at the object's parameters. Once you define
a constructor, no matter its signature, the default constructor is not used
in creating objects.

The following program, named PayrollDemo.java, shows the use of
overloaded constructors.

On the Web

The source file for the PayrollDemo.java program file can be found in
the Chapter 15 folder at www.crcpress.com.

VAR EEREEEE SRR SRS EEEE SRR SRS SRR EEEEREESEREESEEEEEEEEESE SR LR

// File name: PayrollDemo.java
// Reference: Chapter 15

//****************‘k‘k‘k*********************‘k‘k‘k********************

// Topics:

// 1. A class with object and class attributes
// and object and class methods

// 2. Creating and using constructors

// 3. Polymorphism by overloaded constructors

VAR EEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEE R

//****************‘k‘k‘k‘k********************‘k‘k
//**
// Employee class

//*****************‘k‘k***********************

VAR EEREEEEREEEEREEEEREEEEEEEREEEEEEEEEE R

class Employee

{

VAR EEEEAEEEREEEEEREEEEEEEEEEEEEEEEE

// attributes section

//********************************

// field variables

private String name = "no name";

private String address;

private String ssn = "xXxXxX";

private int dependants = 1; // Default for dependants field
private int empNum;

// Class attribute (static gqualifier)
private static int empCounter = 0;

© 2002 by CRC Press LLC

VAR EEREEEEREEEEREEEEEEEEEEE LR

// methods section - constructors
//*********************************

// Fully parameterized constructor for Employee objects
public Employee(String n, String a, String s, int x)

{
this.name = n;
this.address = a;
this.ssn = s;
this.dependants = Xx;
this.empNum = ++empCounter;

// Nonparameterized constructor assigns only an employee number
public Employee ()
{

this.empNum = ++empCounter;

// Partially parameterized constructor assigns name and
// consecutive employee number
public Employee (String n)
{
this.name = n;
this.empNum = ++empCounter;

//*********************************

// methods section - other methods
//*********************************

public void showData ()

{
System.out.print ("number: " + this.empNum) ;
System.out.print ("\tname: " + this.name);
System.out.print ("\t\taddress: " + this.address);
System.out.print ("\n\t\tSSN: " + this.ssn);
System.out.print ("\t\tdependants: " + this.dependants +
"\n\n") ;

System.out.flush() ;

// Class method is used to access a class variable without
// an object reference
public static void showTotal ()
{
System.out.println("Total employees: " + empCounter) ;
System.out.println() ;

}

//**
//***'k'k'k'k‘k‘k‘k‘k‘k‘k*****************‘k‘k‘k‘k‘k‘k******
// CLASS PayrollDemo

//**

//**

© 2002 by CRC Press LLC

public class PayrollDemo
{
public static void main(String[] args)
{
// First two objects of Employee class are created using the
// parameterized constructor

Employee empl = new Employee("Jane", "131 Calm Street",
u263u, 2);

Employee emp2 = new Employee("Jim", "42 Curve Road", "261",
6);

// Third employee object is created with non-parameterized
// constructor
Employee emp3 = new Employee() ;

// Fourth employee is created with partially parameterized
// constructor
Employee emp4 = new Employee("Mary");

// Display data using an accessor method
empl .showDatal() ;

emp?2 .showData () ;
emp3 .showDatal() ;
emp4 .showData () ;

// Display total number of employees using a class method
Employee.showTotal () ;
}

The class Employee in the PayrollDemo.java program listed above con-
tains three constructors, declared as follows:

public Employee(String n, String a, String s, int x)
public Emplovyee ()
public Employee(String n)

The first constructor has a four-parameter signature. Of these parame-
ters three are strings and one is of type int. The second constructor is
parameterless. This constructor overrides the default constructor. The
third constructor receives a single parameter, of type string.

Programmers note:

The three constructors can coexist in the same class because they
have unique signatures.

The data elements for the class Employee are declared as follows:

// field variables

© 2002 by CRC Press LLC

private String name = "no name";

private String address;

private String ssn = "xxxX";

private int dependants = 1; // Default for dependants field
private int empNum;

// Class attribute (static qualifier)
private static int empCounter = 0;

The class contains five fields and one class variable. The field variables
are related to the objects of the class. The class variable named
empCounter is used to keep track of the total number of objects created.
Thus, the class-level variable allows the program to keep track of how
many employees are in the payroll and assigns a consecutive number to
each new employee. The class variable is associated with the class, not
with objects. In this case the class variable keeps track of the consecutive
number of the employee objects.

© 2002 by CRC Press LLC

Chapter 16

Using Inheritance

Inheritance and Data Abstraction

In science, inheritance is a mechanism for organizing knowledge into hier-
archies. In object-oriented computer languages, such as Java, inheritance
is implemented by means of a class hierarchy in which one class, usually
called the derived class, inherits the data members and the functionality of
another one, usually called the base class or the superclass. In short, inheri-
tance makes it possible for an object of a subclass to contain the attributes
and properties of the superclass. This mechanism makes it easier to de-
velop software by avoiding duplication and improving the organization of
the knowledge base. It also makes programs more reliable and easier to ex-
tend and to repair. In this chapter we look at class inheritance in Java code
and how inheritance promotes a higher level of abstraction.

Java Inheritance

Inheritance makes it possible to reuse the data members and the process-
ing capabilites of a class. From a programmer's view, the advantages of us-
ing class inheritance are that it fosters code reusability and simplifies
coding. Java inheritance is achieved by making a class extend another
class, for example:

class Bird extends Pet

{
}

In this case the subclass is Bird and the superclass is Pet. Bird inherits
all the public members of the superclass Pet. But Bird is not limited to the
attributes and methods of Pet, since it can have attributes and methods of
its own.

© 2002 by CRC Press LLC

Occasionally, you may want to provide clients with a class but you may
also want to prevent this class from being extended by inheritance. This
is accomplished by using the final keyword in the class declaration, as
follows:

class final Gauge

{
)

Now no other class can extend Gauge. Another option is to allow a
class to be extended but to prevent one or more of its methods from being
inherited by the subclasses. This is accomplished by using the final key-
word in the method declaration. For example:

class Gauge

{

public final SetGauge(int neddlePos)
{

If now a class extends Gauge, it does not inherit the method Set-
Gauge(). However, since SetGauge() is a public method it can be accessi-
ble to other classes.

Extending class functionality

Class inheritance is a powerful mechanism for extending class functional-
ity. This said, you should note that inheritance is used only in cases in which
the subclass “is a kind of” the superclass. In Chapter 14 we described this
kind a class relationship as a Generalization/Specialization structure, and
called it Gen/Spec for short. That is, the subclass is a special case of the
superclass. Inheritance is not suitable when the subclass “is a part of” the
superclass, which we call a Whole/Part structure.

Programmers note:

The keyword super is used in a subclass to refer to a method of the
superclass. The super keyword is often used to call constructors of
the superclass.

Perhaps the principal feature of inheritance is that it allows reusing the
data and functionality of a superclass while permitting the subclass to de-
fine its own data and methods. If there is an inheritance hierarchy be-
tween classes, and a method is called that is not implemented in the
subclass, Java will search up the class hierarchy until a method is found

© 2002 by CRC Press LLC

in a superclass. A compiler error produced in the method is not found in
any of the superclasses.

Polymorphism

You saw, in Chapter 13, that it is possible to have methods with the same
name as long as they have different parameter lists. We used this feature to
implement several constructors in the same class. The compiler is able to
determine which method is to be used by observing the signature.

The operation of connecting code to a particular method is called the
binding. Binding can take place when the program compiles (called
static binding) or when the program executes (called dynamic bind-

mng).

Polymorphism, on the other hand, means many forms. Two methods
with the same name are polymorphic. Overloading generates static poly-
morphism, since the method to be used can be determined at compile
time (static binding). Constructors with different signatures are over-
loaded, and are bound statically.

In inheritance, two or more methods with the same signature coexist
in a class hierarchy. Note that in the case of inheritance it is possible for
two methods with identical signatures to be located in the same class hi-
erarchy. This is different from overloading, in which the methods with the
same name must have different signatures.

When Java selects between two or more methods with the same signa-
ture, located in the same class inheritance structure, we say that the se-
lection takes place by overriding. Overriding differs from overloading
since in overriding the method linked to the object is dependent on the
position of the method in the class hierarchy. Consider three classes
named ClassA, ClassB, and ClassC and assume that there are two poly-
morphic methods named MethodA() and MethodB(). The class diagram is
shown in Figure 16-1, on the next page.

In relation to Figure 16-1, several cases of polymorphism should be
noted. First, when a call is made to MethodA() which of the two polymor-
phic implementations is used depends on the object making the call, as
follows:

© 2002 by CRC Press LLC

ClassA

MethodA()
MethodB()

I

ClassB

MethodB()

i

ClassC

MethodA()
MethodB()

Figure 16-1 Polymorphism in Class Inheritance

1. If the object making the call belongs to ClassA, then the implementation of
MethodA() in ClassA is used. In this case inheritance is not applied since
ClassA has no superclass and MethodA() is implemented within the class.

2. Ifanobject of ClassB calls MethodA(), then the implementation in ClassA is
used. The general rule is that Java searches up the inheritance hierarchy for
the closest polymorphic method.

3. If an object of ClassC calls methodA() then MethodA() in ClassC is used.
Here again, no inheritance is applied since the method is implemented in
the object making the call.

Modeling with inheritance

Let's start with a simple programming problem: suppose that you were re-
quired to write an application that calculates the payroll for the salaried
employees of a company. In addition, the company occasionally employs
part-time help which is paid by the hour. At the same time, much of the data
and many of the calculations that relate to regular employees also apply to
part-time employees. Since the part-time employees are a kind-of em-

© 2002 by CRC Press LLC

ployee, we could conceivably model the system using class inheritance. In
this case you could create a superclass called Employee, and a sub class
named PartTimer. PartTimer would inherit all the methods of Employee
and implement some of its own. The class diagram is shown in Figure 16-2.

Employee

name
address
ssn
dependents
number

ShowData()
PrintCheck()

T

PartTimer

hourlyWage
hoursWorked

PrintCheck()

Figure 16-2 A Case of Class Inheritance

In the diagram in Figure 16-2, assume that the method PrintCheck() in
the class PartTimer has a different parameter list than PrintCheck() in the
class Employee. This is consistent with a real-world situation in which
the data required for a part-timer is typically different from the data for a
salaried employee. The result of this inheritance scheme is that if an ob-
ject of the PartTimer class calls the method ShowData(), then the method
in Employee is used. However, if a PartTimer object calls the method
PrintCheck() then its own implementation is used and not the one in the
Employee class. The program named Simplelnherit.java, listed next,
shows simple inheritance and method selection by overriding.

On the Web

The source file for the program SimpleInherit.java can be found in the
Chapter 16 folder at www.crcpress.com.

© 2002 by CRC Press LLC

VAR SRR EEEE R EEEEREEEEEEEEEEEE LRSS EREEEEREESEEEEEEEEEREEEEE L

// File name: SimpleInherit.java

// Reference: Chapter 16
//***

// Topics:
// 1. Simple inheritance
// 2. Polymorphism by method overriding

//***************‘k‘k‘k********************‘k*‘k‘k****************

//**

//****'k'k'k'k‘k‘k‘k‘k‘k******************‘k‘k‘k‘k‘k******
//****‘k‘k‘k‘k*******************‘k‘k‘k‘k‘k‘k‘k‘k*******
// Employee class

//**

//**

class Employee
{

//********************************

// attributes section
//********************************
// Instance fields

private String name;

private String address;

private String ssn;

private int dependants;

private int number;

// Class attribute (note the static qualifier)
private static int consecNum = 0;

VAR EEREEEEREEEESEREEEEEEEEEE LT

// methods section - constructors
//*********************************

// Fully parameterized constructor for Employee objects
public Employee(String n, String a, String s, int x)

{
this.name = n;
this.address = a;
this.ssn = s;
this.dependants = Xx;
this.number = ++consecNum; // class attribute is accessed
// from an object method
}
public void showData ()
{
System.out.print ("number: " + this.number) ;
System.out.print ("\tname: " + this.name);
System.out.print ("\t\taddress: " + this.address);
System.out.print ("\n\t\tSSN: " + this.ssn);
System.out.print ("\t\tdependants: " + this.dependants +
"\n\n") ;
System.out.flush() ;
}

© 2002 by CRC Press LLC

public void printCheck ()
System.out.println("Printing check for regular employee") ;

}

//****‘k‘k‘k‘k*******************‘k‘k‘k‘k‘k‘k‘k‘k*******
//‘k**************‘k‘k‘k********************‘k‘k‘k‘k
// CLASS PartTimer

//**

VAR EEREEEEREEEEREEEEREEEESEEREEEEEEEEEREE T

class PartTimer extends Employee
{

//********************************

// attributes section
//*'k'k'k'k'k‘k‘k‘k‘k‘k******************‘k‘k‘k

private double hourlyWage;
private int hoursWorked;

//*********************************

// methods section

//**‘k******‘k***************‘k*‘k‘k****

// Constructor

public PartTimer (String n, String a, String s,
int x, double wage, int hours)

{
// Call the constructor in the superclass
super (n, a, s, X);
// Initialize specific fields
this.hourlyWage = wage;
this.hoursWorked = hours;
}
public void printCheck ()
{
System.out.println("Printing check for part-timer");
}

//**
//***'k'k'k'k***********************************
// Driving class

//**

//**

public class SimpleInherit

{

public static void main(String[] args)

{

// First two objects of Employee class are created using the
// parameterized constructor

Employee empl = new Employee("Jane", "131 Calm Street",
"263", 2);
Employee emp2 = new Employee("Jim", "42 Curve Road",

© 2002 by CRC Press LLC©® 2002 by CRC Press LLC

"261", 6);

// Following object is of class PartTimer
PartTimer emp3 =
new PartTimer ("Jack", "11 Bumpy St.", "333",
8, 11.00, 40);

// Display data using polymorphic methods

empl.showData () ; // object of class Employee
emp?2 .showData () ; // object of class Employee
emp3.showData () ; // object of class PartTimer
emp?2 .printCheck () ; // check for object of Employee

// An object of the subclass uses its own polymorphic method
emp3.printCheck () ;

Figure 16-3 is a screen snapshot of the Simplelnherit program.

M2 M5-DOS Prompt

& 25 Al

:\JavadD>
:\JavadD>
:\JavadD>
:\JavadD>
:\JavadD>
:\JavadD>
\Java4D>
:\JavadD>javac SimpleInherit.java

oonNOnNO0n

:\JavadD>java SimpleInherit
name: Jane address: 131 calm Street
SSN: 263 dependants: 2

name: Jim address: 42 curve Road
SSN: 261 dependants: 6

name: Jack address: 11 Bumpy St.
SSN: 333 dependants: 8

Printing check for regular employee
Printing check for part-timer

C:\Java4D>
C:\Java4D>

Figure 16-3 Screen Snapshot of the Simplelnherit Program

Some interesting features of the program Simplelnherit.java should be
noted:

¢ The class PartTimer contains a constructor that calls the constructor in the
superclass, then proceeds to initialize the fields that are unique to the sub-

© 2002 by CRC Press LLC® 2002 by CRC Press LLC

class. In this manner the superclass constructor is reused and supple-
mented.

e When a PartTimer object is built, the fields of the superclass are used for
storing PartTimer data. This is possible even though the fields of Employee
are defined with the private qualifier. However, the data defined in the Em-
ployee class remains encapsulated and is not directly visible to the class
PartTimer. Thus, a PartTimer object can not access some of its own data, ex-
cept by using the methods of the Employee class.

e The method printCheck() is polymorphic. In this example, since
printCheck() has the same signature in the superclass and the subclass,
method selection (binding) is based on the object making the call.

Note that this code provides only a stub for the printCheck() methods.

Abstraction and Inheritance

In Java it is possible to have a method that performs no processing opera-
tions, such a method is called an abstract method. The reason for this ap-
parent absurdity is that an abstract method serves to define the signature
that must be used by all polymorphic methods in extended classes. Thus, an
abstract method defines an interface in the base class, while leaving the im-
plementation to the subclasses.

An abstract class is one that contains one or more abstract methods.
You create an abstract class by including the abstract keyword in the
class declaration statement. For example:

abstract class Dog

{

An abstract class cannot be instantiated but it can be extended, that it,
you cannot create an object of an abstract class but other classes can in-
herit from it. Abstract classes can have concrete data and methods, which
perform normally.

Programming with abstract classes

Suppose that you were commissioned to develop a program for operating a
pet shop which sells dogs, cats, and birds to the public. The owner needs to
identify each animal that is available and keep track of its location and sale
price. Specifically, the owner also wants to keep track of each dog and cat
breed, and of the color of each bird. There is a plan to add other pet species
at a future date, so the system should be easily expandable. After analyzing
the software requirement you propose the following data elements:

© 2002 by CRC Press LLC

1. Each pet is given a name, which is remembered in a string variable.

2. Each pet has a sale price, stored in a variable of type double.

3. Avariable of type int keeps track of the location of each pet in the store. The
pet store showroom is location 1, the backroom is location 2, and the

store's basement is location 3.

4. There is also species-specific data that must be remembered: the breed of

each dog, the breed of each cat, and the color of each bird.

Since a dog is a kind of a pet, and so is a cat and a bird, you can use in-
heritance to model the pet store system. A base class named Pet could be
used to define the data elements that are common to all three pet species.
Since the notion of a pet is an abstraction, the class Pet is defined as an
abstract class. The Pet class also defines the interface for the methods
that are implemented in the subclasses. The class diagram for the pet

store is shown in Figure 16-4.

petName
petLocation
petPrice

getName()
getLocation()
getPrice()
getSpecData()

Dog

dogBreed

getSpecData()

Figure 16-4 Class Diagram for the Pet Store System

© 2002 by CRC Press LLC

Cat

catBreed

getSpecData()

Bird

birdColor

getSpecData()

The implementation of the PetStore system is based on the class dia-
gram in Figure 16-4. The class Pet holds variables for the name, location,
and price of all pets in the store. It also contains three concrete methods
to display the name, location, and price of each pet object. In order to
preserve encapsulation, the accessor methods for the class-level attrib-
utes must be in the superclass. Recall that, with or without inheritance,
private data is not visible outside the class.

In addition, the superclass Pet contains an abstract method named
getSpecData(). The getSpecData() method is implemented in each of the
subclasses. In the Dog class, getSpecData() displays the dogBreed. In the
Cat class, getSpecData() displays the cat name. In the Bird class,
getSpecData() displays the bird color. The following code listing is for the
PetStore program.

On the Web

The program PetStore is found in the Chapter 16 folder at
WWW.Crcpress.com.

VAR EEREEEEEEEEESEEEEREEEEREEEEEEE LR E R

VAR EEREEEE S EEEESEEEESEEEE SRS EEEEREEEEREEEEEEEEEEEE LR

// Program: PetStore
// Reference: Chapter 16
// Topics:

// 1. Using inheritance and abstract classes
//****'k'k'k'k'k*******‘k‘k‘k********'k'k'k'k*********‘k‘k*********'k******

VAR EEREEEESEEEESEEEESEEEE SRS EEEEREEEEAEEEEEEEEEEEE SRS

//**
//**
// CLASS Pet
//****'k'k'k'k'k'k*****************'k'k*************
//**********~k~k~k~k~k~k~k~k************************
abstract class Pet

//********************************

// attributes section
//**'k'k'k'k'k'k‘k****************'k'k****‘k

// Instance fields
private String petName;
private int petLocation;
private double petPrice;

VAR EEREEEEREEEEREEEEEEE SRR

// methods section
//*********************************

// Constructor.
// Defines the initial pet state

© 2002 by CRC Press LLC

public Pet(String name, int location, double price)
{

this.petName = name;

this.petLocation = location;

this.petPrice = price;

// Concrete methods in the base class

public void getName ()

{
System.out.println ("Pet name: " + this.petName) ;
return;

}

public void getLocation()

{
System.out.println("Pet location: " + this.petLocation);
return;

}

public void getPrice()

{
System.out.println("Pet price: " + this.petPrice);
return;

// Abstract method
public abstract void getSpecDatal() ;
j}

//************************************

// concrete classes
//***'k'k'k*‘k******************'k'k'k'k‘k‘k‘k‘k‘k‘k
class Dog extends Pet
{
// Data specific for the Dog class
String dogBreed;
int dogAge;

// Constructor for the Dog class uses the constructor

// if the superclass

public Dog(String name, int loc, double price, String race)
{

// Call the constructor in Pet

super (name, loc, price);

// Fill-in the dog-specific data

this.dogBreed = race;

}

// Concrete methods in subclass

public void getSpecDatal()

{
System.out.println("Dog race :" + this.dogBreed) ;
return;

© 2002 by CRC Press LLC

class Cat extends Pet

{
// Data specific for the Cat class
String catBreed;

public Cat(String name, int loc, double price, String race)
{

// Call the constructor in Pet

super (name, loc, price);

// Fill-in the cat-specific data

this.catBreed = race;

}

// Concrete methods in subclass

public void getSpecDatal()

{
System.out.println("Cat race: " + this.catBreed);
return;

class Bird extends Pet

{
// Data specific for the Cat class
String birdColor;

public Bird(String name, int loc, double price, String color)
{

// Call the constructor in Pet

super (name, loc, price);

// Fill-in the cat-specific data

this.birdColor = color;

}

// Concrete methods in subclass

public void getSpecData ()

{
System.out.println("Bird color: " + this.birdColor);
return;

//**

//**

// Driving class
//****‘k‘k‘k‘k*******************‘k‘k‘k‘k‘k‘k‘k‘k‘k******

//****************‘k‘k************************

public class PetStore

{

VAR EEE AR E R EEEEEEEEEE LR

// methods

//*****************************

© 2002 by CRC Press LLC

public static void main(String[] args)

{

// Create two objects of class Dog
Dog dogl = new Dog("Fido",2, 12.95, "Spaniel");
Dog dog2 = new Dog("Atila",3, 20.75, "Hound") ;

// Create a Cat and a Bird object
Cat catl = new Cat("Fifo", 3, 15.95, "Siamese");
Bird birdl = new Bird("Tweety", 1, 2.55, "Yellow");

// Display pet data using superclass and subclass

// methods

dogl.getName () ; // Method in superclass
dog?2.getName () ; // Methods in superclass
dog2.getLocation () ;

dog2.getSpecDhata(); // Method in subclass

birdl.getName () ;
birdl.getSpecDhatal() ;

Do not assume that an abstract class should only have abstract meth-
ods. The general rule is to have as much functionality as possible in the
superclass, whether or not it is an abstract class. Instance fields and
non-abstract methods should all be in the superclass. Operations that
cannot be implemented in the superclass are the only ones that should be
in the subclasses. This approach is the one used in the PetStore program
listed previously.

One of the advantages of using inheritance is greater code reusability.
Suppose that the pet store owner decided to expand the store line to in-
clude pet lizards. In this case the functionality for keeping track of the
name, location, and price of each pet lizard is already in place. The
PetStore program could be easily modified by implementing a new class
called Lizard, that extends Pet. Only the data and operations that are spe-
cific for each pet lizard would have to be implemented in the new class.

© 2002 by CRC Press LLC

Chapter 17

Object Composition

An Alternative to Inheritance

Class inheritance is a powerful mechanism for reusing code, minimizing
dataredundancy, and improving the organization of an object-oriented sys-
tem. However, inheritance is not always suitable. You saw that inheritance
is applied when classes are in a relationship in which the subclass “is a kind
of” the superclass. But this is not always the case. Often we have class rela-
tionships in which the subclass is “a part of” the superclass. Attempting to
apply inheritance in whole/part class relationships is an artificial and un-
natural solution. Fortunately, there is a simple alternative to inheritance as
a way of reusing class functionality, called object composition. In inheri-
tance, the subclass extends the functionality of a superclass. In object com-
position a class reuses functionality simply by declaring and holding an
object of the class it wants to reuse. In object composition, reusability is ac-
complished in a simpler manner.

Inheritance Drawbacks

One of the problems with inheritance can be simply stated: inheritance
breaks encapsulation. In the PetStore program, developed in Chapter 16,
the subclasses Dog, Cat, and Bird use the constructor of the superclass Pet
as well as some of its public methods. The data for the objects of the class
Dog, Cat, and Bird is centralized in the superclass Pet and the processing
operations are effectively reused in the superclass methods getName(),
getLocation(), and getPrice(). But for this to happen, the subclasses must
have knowledge of the structure of the superclass. A Dog object, a client ob-
ject of the Pet class, needs to know that Pet remembers name, location, and
price; even perhaps the type of variables where this datais stored. Although
the dog object has no direct access to the private data members of the

© 2002 by CRC Press LLC

superclass, it needs to know about this data. This knowledge of the sub-
class about the internals of the private members of the superclass breaks
encapsulation.

A second possible problem with inheritance is that the subclasses
sometimes loose control of their own data. In the case of the PetStore ex-
ample developed in Chapter 16, the name, location, and price of a dog,
cat, or bird object are stored in the superclass Pet. The subclasses must
rely entirely on the methods of the superclass for accessing and changing
this data. If the class Pet does not provide a method for changing a pet's
name, then code would be unable to assign a new name to objects of Dog,
Cat, and Bird. Since the pet name data is stored in the superclass, a
change-of-name method cannot be simply implemented in a subclass. In
summary, by using inheritance, the subclass loses some degree of control
over its own objects.

Reusing Class Functionality

Application designers and programmers of object-oriented systems some-
times become so entangled in the mechanisms of inheritance that they for-
get simple options. InJava, a class can reuse the public members of another
class simply by instantiating an object of the class to be reused. When a
class uses the methods of another one by means of an object we say that re-
usability is achieved through object composition.

Object composition is based on the following simple facts of the Java
language:
1. A class can access the public members of another class.
2. A class can instantiate an object of another class.
3. An object can be a member of a class.

In describing object composition we use the terms client and host
class. The client class is the one that reuses the functionality and the host
class is the one that contains the functionality to be reused.

The new mind set

The inheritance model requires that we think of a class as being a kind-of
another one. In object composition the relationship between classes is un-
important. All we need to know is that a host class is located within the
scope of the client class and that the host contains public members that the
client class wants to access.

© 2002 by CRC Press LLC

The reuse mechanism is quite simple and straightforward, but design-
ing systems based on object composition requires a new way of thinking.
Suppose there is a system that contains a class named Rectangle, and that
the Rectangle class contains a public method named area() that calcu-
lates the area of a rectangular figure. Now assume that you need to create
a class named Window, and that the objects of Window are rectangular in
shape. If an object of Window needed to calculate its area it could con-
sider using the method area() in rectangle.

One possible approach is through inheritance; that is, you could make
Window extend Rectangle. Since Rectangle is the superclass and Window
the subclass, an object of Window can access the area() method in rectan-
gle. The problem with this inheritance-based approach to class reuse is
that it assumes that a Window “is a kind-of” a Rectangle. But if a Window
object can also be circular or triangular in shape, then it is not accurate to
say that a Window is a kind-of a Rectangle.

In reality, all you need to do is access the method area() in Rectangle,
for which you do not need an inheritance relationship. The simple alter-
native is for Window to create an object of the Rectangle class and to use
this object to access the method area(). Thus, we can say that Window
“uses” Rectangle which, in this case, is a more accurate model of the class
relationship and a simple approach to reusability.

Thinking object composition

With this new model in mind you can rethink the PetStore program devel-
oped in Chapter 16. Let’s restate the case:

You are commissioned to develop a program for operating a pet shop
which sells dogs, cats, and birds to the public. The owner needs to iden-
tify each animal that is available and keep track of its location and sale
price. Specifically, the owner also wants to keep track of each dog and cat
breed and of the color of each bird. There is a plan to add other pet spe-
cies at a future date, so the system should be easily expandable. After an-
alyzing the software requirement you propose the following data
elements:

1. Each pet is given a name, which is remembered in a string variable.

2. Each pet has a sale price, stored in a variable of type double.

3. A variable of type int keeps track of the location of each pet in the store.
4

. There is also species-specific data that must be remembered: the breed of
each dog, the breed of each cat, and the color of each bird.

© 2002 by CRC Press LLC

Instead of thinking inheritance, we can consider the problem in sim-
pler terms. First we note that there are operations that are the same for
dogs, cats, and birds. To avoid duplication and wasted effort we create a
class, called Pet, to handle these common operations. Second, the func-
tions that are specific to dogs, cats, and birds are implemented in the re-
spective classes. Third, the field data for the objects is located in the
client classes. The result is that clients have total control over their ob-
jects and can expand their functionality as needed. The class diagram of
Figure 16-4 is modified accordingly, as shown in Figure 17-1.

Pet
getName()
getLocation()
getPrice()
A
Dog Cat Bird
name name namg
location location Ioc_:atlon
price price price
dogRace catRace birdColor
aPet aPet aPet
getSpecData() getSpecData() getSpecData()

Figure 17-1 Alternative Class Diagram for the PetStore System

Comparing the inheritance-based class diagram in Figure 16-4 with the
one in Figure 17-1, you will notice the following differences:

e The arrow that connects the classes Dog, Cat, and Bird with the class Pet
does not depict an inheritance relationship. The absence of the semicircle
symbol indicates that the classes are not in a “is a kind-of” relationship.

¢ Since there is no inheritance, the class Pet is no longer an abstract class nor
is the method getSpecData() defined in the class Pet.

© 2002 by CRC Press LLC

¢ The field variables are now defined in the client classes Dog, Cat, and Bird.
This does not mean that more data is stored by the code, since each object
has its own state in either case.

¢ The client classes Dog, Cat, and Bird contain an object of the host class Pet.
The object is named aPet in all the client classes.

The code must also be changed to reflect the new model. The program
PetStore2, listed below, shows the new version. To save space we have
implemented only the classes Pet and Dog in the PetStore2 program.

On the Web

The source file for the program PetStore2.java can be found in the
Chapter 17 folder at www.crcpress.com.

//**

VAR EEREEEEEEEEEEEEEEREEEEREEEEEEEEEREEEEREEEEEEEEE e

// Program: PetStore2

// Reference: Chapter 17

// Topics:

// 1. Class reuse through object composition
//**

VAR EEEEEEEEEEEEEEEEEEESEEEEEEEEEEEEEEREEEEREEEEEEEEEEEEEE Rk
VAR EEREEEEREEEEREEEEREEEEEEEREEEEEEEEE R

VAR EEE AR EEREEEEEREEEEEEEEEEEEEEEEE R

// CLASS Pet

VAR EEREEEESEEEESEEEESEEEEEEELEEEEEEREEEEE R

//*****************‘k‘k*********************‘k‘k

class Pet

{
// Concrete methods in the base class
public void getName (String aName)

{
System.out.println ("Pet name: " + aName) ;
return;
}
public void getLocation(int aLocation)
{
System.out.println("Pet location: " + aLocation);
return;
}
public void getPrice(double aPrice)
{
System.out.println("Pet price: " + aPrice);
return;
}

//************************************

© 2002 by CRC Press LLC

// CLASS Dog
//**~k*‘k**********************‘k‘k‘k‘k‘k****
class Dog
{

// Data specific for the Dog class

private String dogName;

private int dogLocation;

private double dogPrice;

private String dogBreed;

Pet aPet = new Pet();

// Constructor for the Dog class

public Dog(String name, int loc, double price, String race)

{

this.dogName = name;
this.dogLocation = loc;
this.dogPrice = price;
this.dogBreed = race;

}
// Overloaded methods in the Dog class
public void getName ()
{
aPet.getName (this.dogName) ;
return;

public void getLocation()

{
aPet.getLocation(this.dogLocation) ;
return;
}
public void getPrice()
{

aPet.getPrice(this.dogPrice) ;
return;

public void getSpecDatal()

{
System.out.println("Dog breed :" + this.dogBreed);
return;

//**

VAR EEREEEEREEEEREEEEEEEEEEELEEEEEEREEEEE T

// Driving class
//**

//**
public class PetStore2
{

//*****************************

// methods

© 2002 by CRC Press LLC

//**'k'k*‘k‘k‘k‘k‘k‘k*****************‘k

public static void main(String[] args)

{

// Create two objects of class Dog

Dog dogl new Dog("Fido",2, 12.95, "Spaniel");
Dog dog2 new Dog("Atila",3, 20.75, "Hound") ;

// Display pet data using host class and client class

// methods
dogl.getName () ; // Method in host class
dog2.getName () ; // Method in host class
dog2.getLocation() ;
dog2.getSpecDhata(); // Method in client class
}

}

Aggregation

In the program PetStore2, listed previously, the class Dog is able to access
the methods of the class Pet through an object of the class pet called aPet.
The object is created in the following statement:

Pet aPet = new Pet();

In a sense the object aPet is a dummy object, since it serves merely to
access methods in the host class. In cases like this we say that the relation-
ship between the client and the host class is one of aggregation. In many of
the other sample programs listed previously in this book, the driving class
creates objects of other classes in order to access their methods. Aggrega-
tion is the simplest and most direct way of accessing the public members
of another class.

The simplicity and directness of aggregation associations does not
make it any less valuable. In many cases aggregation provides an alterna-
tive to class inheritance avoiding some of the pitfalls of the more complex
model. Aggregation is often depicted in class diagrams by means of an ar-
row pointing from the client class to the host, as shown in Figure 17-2.

Window
width Rectangle
height
aRectangle >
winArea() area()

Figure 17-2 Modeling Aggregation

© 2002 by CRC Press LLC

Objects as Parameters

In Chapter 12 you saw that any primitive variable can be passed as a argu-
ment to amethod: an int, a double, aboolean, and so on. You also saw that a
string, which is an object, can also be passed as an argument. The fact is
that objects of any class can be passed as arguments. As in the case of prim-
itive data types, the method that receives the object parameter can access it
using an alias.

In the case of objects passed as parameters, there is only one copy of
the object. This means that any change on the object by the method modi-
fies this single copy and affects the original object. In other words, while
primitive data types are always passed by value, objects are passed by
reference.

Incidentally...

Java classes are abstract data types and follow many of the rules of the
primitive types that are part of the language. An object, which can be
viewed as avariable of an abstract data type, is subject to similar rules
as variables of primitive data types.

By the same token, a method can return an object. When the method
that returns an object is declared, the declaration specifies the class of
the object as a return type. Typically, the returned object is created in the
method using the new operator. Methods that receive objects as parame-
ters or that return objects are often of static type.

Consider the following case: a pixel (short for picture element) is the
smallest addressable graphic unit on the video display. You can visualize
a pixel as a small colored dot. The number of horizontal and vertical pix-
els that can be displayed determines the screen resolution. Thus, we
speak of a video system with a resolution of 640-by-480 pixels when there
are 640 individual dots in each screen row, and a total of 480 rows on the
entire screen.

The screen location of a pixel is defined in terms of the screen column
and row. Usually the column is designated as the x-coordinate, and the
row is the y-coordinate. The screen mapping is zero-based; this means
that the pixel at the top-left screen corner is located at x = 0, y = 0. Simi-
larly, the pixel located at column 120 and row 62 is at coordinates x = 120,
y = 62.

© 2002 by CRC Press LLC

Suppose you were asked to write a Java class that defined the location
of pixel objects and that this class is to have methods to display the loca-
tion of a pixel and to calculate the mid-position between two pixels. One
possible option in this case is that the method to calculate the mid-point
between two pixels could receive pixel objects as parameters. The class
can be coded as follows:

class Pixel

{
// Pixel location attributes
private int x; // x coordinate
private int y; // y coordinate

// Constructor
public Pixel (int pixX, int pixY)
{
this.x = pixX;
this.y = pixY;
}

// Method to calculate the mid point between two pixels
public static Pixel midPix(Pixel pl, Pixel p2)
{

int midX = (pl.x/2) + (p2.x/2);
int midYy = (pl.y/2) + (p2.y/2);
Pixel midOne = new Pixel (midX, midy);

return midOne;

}

// Display the address of a pixel

public void pixLocation()

{
System.out.print ("Pixel x : " + this.x + " ")
System.out.print ("Pixel y : " + this.y + "\n\n");
System.out.flush() ;

}

Note that the method midPixel() receives two pixel objects as parame-
ters. midPixel() returns the result in a pixel object instantiated in the
class. The objects passed as parameters are known under the aliases p1l
and p2. The method uses the x and y coordinates of p1 and p2 to calculate
the mid point. The program Pixels.java, listed below, demonstrates the
processing of objects passed and returned to methods.

On the Web

The source file for the program Pixels.java can be found in the Chap-
ter 17 folder at www.crcpress.com.

© 2002 by CRC Press LLC

//***'k'k'k'k'k'k‘k‘k‘k‘k********“k“k***'k'k'k'k'k'k‘k‘k‘k‘k*******************‘k‘k‘k
//****J(**********************J(***************************‘k**
// Program: Pixels

// Reference: Chapter 17

// Topics:
// 1. Objects passed as an arguments
// 2. Methods that return objects

//***************‘k‘k‘k********************‘k*‘k‘k****************

//**

VAR EEREEEEREEEEREEEEREEEEEEEREEEEEEREEREE T

// Pixel class
//**

class Pixel

{

// Pixel location attributes

private int x; // x coordinate

private int y; // y coordinate

// Constructor

public Pixel (int pixX, int pixY)

{
this.x = pixX;
this.y = pixY;

}

// Method to calculate the mid point between two pixels

public static Pixel midPix(Pixel pl, Pixel p2)

{

int midX = (pl.x/2) + (p2.x/2);

int midy = (pl.y/2) + (p2.vy/2);

Pixel midOne = new Pixel (midX, midy);

return midOne;

}

// Display the address of a pixel

public void pixLocation/()

{
System.out.print ("Pixel x : " + this.x + " ")
System.out.print ("Pixel y : " + this.y + "\n\n");
System.out.flush() ;

}

}

//**

VAR EEREEEEREEEEREEEEREEEEEEELEEEEEEREEEEE T

// Driving class
//**

//**

//
public class Pixels

{

public static void main(String[] args)

© 2002 by CRC Press LLC

{

// Create objects of the class Pixel
Pixel pixl = new Pixel (10, 50);
Pixel pix2 = new Pixel (90, 200);

// Since the method midPix is static, it is called with
// a class reference
Pixel pix3 = Pixel.midPix(pixl, pix2);

// Display location of all three Pixel objects
pixl.pixLocation() ;
pix2.pixLocation() ;
pix3.pixLocation() ;

}

Acquaintance Associations

We started this discussion considering the case of a class that contains an
object of another class, which is called an aggregation relationship. How-
ever, in the program PixelOps.java, we see a class that receives as aparame-
ter the object that it uses to access the methods of another one. Since in this
case the object is not contained in the class, we speak of a case of object
composition by acquaintance. Inthe acquaintance relationship the binding
is looser than in object composition, since in the case of acquaintance the
object may not be defined until runtime.

Incidentally...

It is this looser binding that makes it possible to use acquaintance to
implement dynamic binding.

Suppose an application has access to two methods to calculate areas.
Both methods are named Area(). One Area() method, located in a class
named Rectangle, calculates the area of a rectangular figure. Another
Area() method is located in a class named Circle and calculates the area
of a circular figure. Now suppose that we are coding a class named Win-
dow, which can be circular or rectangular in shape, and we wish to use
the area-calculating methods in the classes Rectangle and Circle. One
possible approach is to code two methods named WinArea() in the class
Window. One method receives a Rectangle object as a parameter and the
other one a Circle object. Since the WinArea() methods have different sig-
natures they are not polymorphic. Which method is used depends on the
object received as a parameter. The class diagram in Figure 17-3 shows
the class structure in this example.

© 2002 by CRC Press LLC

Rectangle
-------- >
Window Area()
int width :
int height
WinArea(Rectangle rect) [~ o
WinArea(Circle circ) ~ |---- : ircle
--------- >
Area()

Figure 17-3 Acquaintance Association

Programmers note:

In order to distinguish object composition by aggregation and by ac-
quaintancein a class diagram, we use asolid line to represent aggrega-
tion and a dashed line for acquaintance, as in Figure 17-3.

The following program, named Acquaintance.java, implements the
class diagram in Figure 14-2.

On the Web

The source file for the program Acquaintance.java can be found in the
Chapter 17 folder at www.crcpress.com.

//**
//**‘k*‘k‘k
// Program: Acquaintance

// Reference: Chapter 17

// Topics:

// 1. The acquaintance relationship
//**********‘k******k*k*k*k*k*k*k********‘k‘k‘k*********************‘k‘k*

VAR EEREEEE S EEEESEEEEREEEEEEEEEREEEEREEEEEEEEEEEEEE R

VAR EEREEEEREEEEREEEEREEEEEEEREEEEEEEEEE R

// Rectangle class
RS S S S S SRR EEEEEEEEEEEEEEEEREEEEEEEEEEEEEEES
//

class Rectangle
{
// Method Area()

© 2002 by CRC Press LLC

public double Area(int x, int vy)
{

return (x * y);

VAR EEEEEEEE R EEEREEEEEEEEEEEEEEEEEEEEEEE SRR

// Circle class
//**
class Circle
{

// Method Areal()

public double Area(int x, int vy)

{

return (3.1415 * (x * x));

//**

// Window class
//***'k'k'k'k'k‘k‘k*********************‘k‘k‘k‘k‘k‘k*****
class Window
{

// Attributes in Window class

private int width;

private int height;

// Constructor for Window
public Window(int w, int h)
{
this.width = w;
this.height = h;

// First method WinArea /()

public void WinArea (Rectangle rect)

{
double thisArea;
thisArea = rect.Area(this.width, this.height);
System.out.println("Area of this Window is: " + thisArea);

// Second method WinArea ()

public void WinArea (Circle circ)

{
double thisArea;
thisArea = circ.Area(this.width, this.height);
System.out.println("Area of this Window is: " + thisArea);

YWAREEEEEEEE R EEEREEEEEEEEEEEEEEEEEEEEEEE R

//**

// Driving class

© 2002 by CRC Press LLC

VAR EEREEEEREEEEREEEEREEEEEEEREEEEEEEEEREE T

VAR EEE AR EE R R EEEREEEEEEEEEEEEEEEEE R

public class Acquaintance

{

public static void main(String[] args)
{

// Create objects of the class Window
Window winl = new Window (10, 20);
Window win2 = new Window (20, 40);

// Create objects passed as arguments
Rectangle aRect = new Rectangle() ;
Circle aCirc = new Circle();

winl.WinArea (aRect) ;
win2.WinArea (aCirc) ;

Combining Inheritance and Composition

An object is an instance of a class and a class is a collection of data and
methods that work as a unit. The new operator is used in Java in order to
create an object from a class. We have also seen that a class can be defined
as an abstract data type. Since it is possible to create an array of any primi-
tive data type, it is also possible to create an array of an ADT.

Arrays of objects

When we create an array using a class, the result is an array of objects of the
class. For example, if there is a class named Employee, we create an array
of Employee objects the same way that we create an array of int.

int[] intArray = new int[14];
Employee[] empArray = new Employee[l0];

After the array of type Employee has been created, we can store 10 ob-
jects of the class Employee in it. An interesting variation on arrays of ob-
jects is that we can store objects of a subclass in an array of a superclass.
In this manner, if the class HourlyEmployee extends Employee, and emp4
is an object of the subclass, then we can code:

empArray[9] = emp4;

Note that the reverse is not true: an array of a subclass cannot store el-
ements of its superclass, except by typecasting.

© 2002 by CRC Press LLC

Dynamic Binding

Arrays can store objects of different types, that is, of the base class and of
any of its subclasses. This creates the possibility of defining an array of ob-
jects of a superclass and then filling the array at runtime with objects of any
class in the inheritance hierarchy. Since the objects are created when the
programruns, itis clear that the binding between the object and the method
takes place at runtime, which is a case of true polymorphism.

The program named ObjectArray.java, listed below, uses the classes
Employee and HourlyEmployee to demonstrate dynamic binding with an
array of objects. During program execution the user selects an object of
either class, which is then inserted in the object array. The binding is dy-
namic since the object is not known until the program runs.

On the Web

The source file for the program ObjectArray.java can be found in the
Chapter 17 folder at www.crcpress.com.

//***

// Program: ObjectArray
// Reference: Chapter 17

// Topics:

// 1. Creating and using an array of objects

// 2. Creating an object at runtime

// 3. Demonstrates dynamic binding (runtime polymorphism)
//

// Requires:

// 1. Keyin class in the current directory

VAR EEEEEEEEE R EEE SRR SR EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE e

//*****************‘k‘k‘k********************‘k‘k
//****7\’**‘k**************************‘k‘k‘k‘k‘k***
// Employee class

//****'k'k'k'k*‘k‘k‘k***************'k'k'k**‘k‘k‘k‘k******

VAR EEE A EEEEREEEREEEEEEEEEEEEEEEEEEEEE R

class Employee
{

[) KKK KKK KK KKK KK KK KKK KKK KK KKK KKK KKK

// attributes section
//****************************‘k‘k‘k*

// Instance fields

private String name;

private String address;

private String ssn;

private int dependents;

private int empNum;

// Class attribute (note the static qualifier)

© 2002 by CRC Press LLC

private static int consecNum = 0;

//*********************************

// methods section - constructors
//*********************************

// Fully parameterized constructor for Employee objects
public Employee(String n, String a, String s, int x)

{
this.name = n;
this.address = a;
this.ssn = s;
this.dependents = x;
this.empNum = ++consecNum; // class attribute is accessed

// from an object method

public void showData ()

{
System.out.print ("number: " + this.empNum) ;
System.out.print ("\tname: " + this.name);
System.out.print ("\t\taddress: " + this.address);
System.out.print ("\n\t\tSSN: " + this.ssn);
System.out.print ("\t\tdependents: " + this.dependents +
"\n\n") ;

System.out.flush() ;

}
} // end of class Employee

class HourlyEmployee extends Employee
{

VAR EEAEEEEREEEEREEEESEREEEREEEEREE

// attributes section
//********************************
private double hourlyWage;

private int hoursWorked;

VAR EEE R EEE RS EEEEEEEEEEEEEEEEEEEEE

// methods section

//*********************************

// Constructor

public HourlyEmployee(String n, String a, String s, int x,
double wage, int hours)

// Call the constructor in the superclass
super (n, a, s, X);

// Initialize specific fields
this.hourlyWage = wage;

this.hoursWorked = hours;

public void showData ()
{

super.showData () ;
System.out.print ("wage: " + this.hourlyWage) ;

© 2002 by CRC Press LLC

System.out.print ("\thours: " + this.hoursWorked + "\n\n");

}
} // End of class HourlyEmployee

//**
//*****'k'k'k'k*********‘k********'k**************
// Driving class

//************~k~k~k~k~k~k************************

//**

public class ObjectArray
{

VAR EEEEEEEEEEEEEEEEEEEEEEEEEEE R

// data

//******************************

// Define an array of type Employee with 4 elements
static Employee[] empArray = new Employeel[4];

static int objType; // Object type

//*****************************

// methods

VAR EEE AR EREEEEEEEEEE LR

public static void main(String[] args)

{

// Create two objects of Employee class

Employee empl = new Employee("Jane", "131 Calm Street",
"263", 2);

Employee emp2 = new Employee("Jim", "42 Curve Road",
"261", 6);

// Create an object of the class HourlyEmployee
HourlyEmployee emp3 =
new HourlyEmployee ("Jack", "11 Bumpy St.", "333",
8, 11.00, 40);

// Fill the array of objects of type Employee with objects of
// the superclass and the subclass.

empArray[0] = empl;
empArray[l] = emp2;
empArray[2] = emp3; // This is an object of the subclass

// The next object is entered from the keyboard.

// The user first selects the object's class

objType = Keyin.inInt ("Type 0 for superclass or 1 for " +
"subclass: ");

// Insert object in array according to user's input

if (objType == 0)
empArray[3] = new Employee("Lori", "222 Dumb Street",
"333", 7);
else
empArray[3] = new HourlyEmployee ("Joe", "11 End St.",

"999", 8, 11.00, 40);

© 2002 by CRC Press LLC

// Use runtime polymorphism with the showData () method

empArray[0] .showData () ; // Object is of class Employee
empArray|[1l].showData() ; // So is this one
empArray[2] .showData () ; // Object of subclass

// The following object is either of the class HourlyEmployee
// or of the class Employee, according to the user's input
empArray[3].showDatal() ;

© 2002 by CRC Press LLC

Chapter 18

/0 Programming

Java Input and Output

Compared to other programming languages, Java has little built-in support
for input and output operations. This is not due to deficiencies in the lan-
guage's design, or to omissions of implementation, but because Java is
based on a different model. For example, C and C++ assume that the com-
puter system interface consists of a text-based console and a keyboard with
characters in a western European alphabet. Java, on the other hand, makes
no assumption about input characters or devices and contains minimal sup-
port for a text-based console device and a command-line interface. The re-
sult of this design is that the application must provide its own input and
output routines, often not a trivial task.

Obtaining and Transmitting Data

The two limitations most often mentioned regarding Java input and output
functions relate to the difficulty in obtaining alphanumeric data from the
keyboard and in formatting output to the console device. So far you have
been using the Keyin class to obtain keyboard input. In this session we ex-
plore Java input and develop the routines for obtaining alphanumeric data
from the keyboard, including the Keyin class.

Keyboard processing functions that are common in other languages do
not exist in Java. Most notably missing are functions to implement a live
keyboard since there is no Java primitive to detect a single, raw key-
stroke. The same can be said about alphanumeric output formatting oper-
ations, also unavailable in Java.

© 2002 by CRC Press LLC

Character data

I/0 usually relates to text, and text consists of characters. Since data is
stored in computer memory as binary values, characters are represented by a
conventional numeric encoding. In Chapter 3, you saw that the ASCII encod-
ing the letter A is mapped to the number 65, the letter B to the number 66, the
space to the number 32, and the digit 1 to the number 49 (see Figure 3-3).

Code must keep track of whether a stored value represents a binary
number, a portion of a binary number, or an alphanumeric character. Some
I/O devices are designed to assume that data always represents some spe-
cific character encoding. For example, when we send the value 66 to the
console device, it knows to look up a bitmap for the letter B and displays it
on the screen.

For many years computer technology assumed that character data con-
sisted of the ten decimal digits, the upper- and lower-case letters of the
English alphabet, and a few dozen additional symbols such as punctuation
marks. Some systems later added a few other characters that were neces-
sary in the western European languages and in mathematical expressions.
However, these character sets do not allow representing characters in
Arabic, Japanese, Chinese, Russian, Greek, and many other languages.

Java was conceived as a universal language. It supports dozens of char-
acter sets, including ASCII, ISO Latin-1, and Unicode.

The simplest and most limited Java character set is defined by the Amer-
ican Standard Code for Information Interchange, or ASCII, discussed in
Chapters 3 and 4. This set contains 128 characters in the range 0 to 127.
Some of these are control codes; for example, the value 10 is interpreted as
a linefeed, the value 13 as a carriage return, and the value 8 as a tabulation
code. The digits 0 to 9 are represented by the values 48 to 57. The up-
per-case letters A through Z of the English alphabet are encoded in the val-
ues 65 to 90. The lower-case letters are the values 97 to 122. The value 32
represents a space. The remaining values are used for symbols, such as
"#$%&' O)*+,-./:;?{1} and ~.

On the Web

The program AsciiSet.java, in Chapter 19 folder at
www.crepress.com, displays the characters in the ASCII set.

A second character set supported by Java is defined by the Interna-
tional Standards Institute Latin-1 standard, commonly referred to as ISO

© 2002 by CRC Press LLC

Latin-1. This character set consists of a byte value in the range 0 to 255.
The first 128 values are the same as those of the ASCII set. The remaining
ones, in the range 128 to 255, are the characters needed to represent
non-English languages, including French, Spanish, Italian, and German
(in Roman script), typesetting symbols, some Greek letters often used in
mathematics, mathematical symbols, copyright and trademark glyphs,
common fractions, and others.

On the Web

The program named LatinSet.java, in the Chapter 19 folder at
www.crcpress.com, displays the ISO Latin-1 character set. Because
DOS-based consoles do not support the first 32 character in ISO Latin-1,
the first one displayed corresponds to the value 160.

The third and most comprehensive character set supported by Java is
Unicode. Unicode characters are encoded in 16 bits, which allow values
in the range 0 to 65,5635. This is the same range as the Java char primitive
data type. Unicode allows representing the characters of most modern
languages, including Cyrillic, Greek, Arabic, Hebrew, Persian, Chinese,
and Japanese. The first 256 characters of the Unicode character set coin-
cide with the ISO Latin-1 set.

The fact that Unicode characters are encoded in two bytes may create
problems when using stream-based read and write operations. Streams
have traditionally assumed that alphanumeric data consists of single
bytes. In order to read Unicode characters from the stream, the code
reads a first byte, shifts all the bits 8 positions to the left, reads the sec-
ond byte, then ANDs the low 8-bits of the second byte to the shifted bits
of the first one. Alternatively, the same results are obtained by multiply-
ing the first byte by 256 and adding the second one. One risk of reading
16-bit data, 8-bits at a time, is that code may lose step and combine the
second byte of one character with the first byte of the next one.

Java readers and writers are designed for handling any of the sup-
ported character sets. If the host system is set for ASCII or ISO Latin-1,
readers and writers operate one byte at a time. If the system is set for
Unicode, then data is read from the stream two bytes at a time. Further-
more, streams are not intended for character-based data and do not sup-
port string operations. In this chapter we use readers and writers for
performing file-based input and output.

© 2002 by CRC Press LLC

java.io Package

Input and output operations, I/O for short, are the subjects of the java.io li-
brary. This library is part of the Java application programming interface
(API) which includes java.io, java.lang, java.math, java.net, java.text, and
java.util. Note that, although most of the Java I/O support is in java.io, there
are a few other I/0 facilities located in the other packages.

Java I/0 is divided into two general types: byte-based I/O and charac-
ter-based I/0. The first type is handled by Java input and output streams
and the second one by readers and writers. In either case, the general ap-
proach is to make an abstraction of the data source and of the destina-
tion. This makes possible using the same methods to read and write from
a file, a text-based console, or a network connection. In other words, Java
code need not be concerned with where the data is coming from or where
it is going. Once the I/O stream has been defined, it is possible to automat-
ically receive, send, format, filter, compress, and encrypt the data.

Streams

The fundamental element of Java I/0 is the stream. The stream conceptis a
metaphor for a stream of water. A data stream is defined as an ordered se-
quence of bytes of undetermined length. An input data stream moves bytes
from some external source and an output data stream moves bytes to some
external destination.

The java.io package contains two stream-based abstract classes named
InputStream and OutputStream. Table 18-1 lists the subclasses.

Table 18-1
Abstract Classes in java.io and Subclasses

INPUT STREAM OUTPUT STREAM
ByteArraylnputStream ByteArrayOutputStream
FilelnputStream FileOutputStream
FilterlnputStream FilterOutputStream
InputStream OutputStream
ObjectinputStream ObjectOutputStream
PipedInputStream PipedOutputStream

SequencelnputStream
StringBufferinputStream

Recall that streams are designed to operate on numeric data and that
the stream's data unit is the byte. The byte is one of the Java integral data
types. It is defined as an 8-bit number, in two's complement format, en-

© 2002 by CRC Press LLC

coding a value in the range -128 to 127. The maximum positive value for a
byte operand is 127. Therefore, the values 128 through 255 are not legal.

Programmers note:

Two's complement representations are an encoding scheme for signed
binary integers designed to facilitate machine arithmetic. The value of
the two's complement is the difference between the number and the
next integer power of two that is greater than the number. A simple way
of calculating the two's complement of a binary number is negating all
the digits and adding one to the result. An additional advantage of two's
complement representations is that there is no encoding for negative
Z€ero.

One of the difficulties of Java stream operations is that the byte data
type is not convenient. While many of the methods in the stream classes
are documented to accept or return byte arguments, in reality, they operate
on int data. The main reason is that there is no byte literals in Java, al-
though the compiler sometimes makes automatic assignment conversions;
for example:

byte vall = 22; // Valid assignment

byte val2 = 44; // Valid assignment

however,

byte val3d = vall + val2; // Illegal. Requires type cast
byte vald = 1 = 3; // Illegal. Requires type cast

The small range of the byte data type explains why they are often con-
verted to int in calculations. Later the calculated values are typecast back
into the byte format. This means that although a stream is defined to oper-
ate on byte data, internal processing of numeric data by string-based
classes is often done on int data types.

Java InputStream class

The InputStream class, located in the java.io package, is the abstract class on
which all input streams are based. The class contains several methods asso-
ciated with input streams, including reading data from the stream, closing
and flushing streams, and checking how many bytes of data are available. Ta-
ble 18-2, on the following page, lists the methods of the InputStream class.

The method read() is designed to obtain byte data from the input

stream. In Table 18-2 you can see read() is overloaded in three different im-
plementations: read(), read(byte[] b), and read(byte[] b, int off, int len).

© 2002 by CRC Press LLC

Table 18-2
java.io.lnputStream

RETURNS NAME DESCRIPTION

int available() Returns the number of bytes that
can be read (or skipped over) from
the current input stream without

blocking.
void close() Closes this input stream.
void mark(int readlimit)

Marks the current position in the
input stream.

boolean markSupported()
Tests if this input stream supports
the mark and reset methods.

int read() Reads the next byte of data from the
input stream.
int read(bytel[] b) Reads a number of bytes from the

input stream and stores them into
the buffer array b.

int read(byte[] b,
int o, intl) Reads up to | bytes of data from
the input stream into an array b at
offset o.
void reset() Repositions this stream to the

position at the time the mark
Method was last called.

long skip(long n) Skips over and discards n bytes of
data from this input stream.

The first implementation of read() has the following signature:

public abstract int read()
throws IOException

This version reads the next byte of data from the input stream. The
method waits until a byte of data is available or until the end of the
stream is reached or an exception is raised. The value is returned as an
int in the range 0 to 255. The value -1 is returned when the end of the
stream is reached. Notice that this is an abstract method that cannot be
instantiated.

The second implementation of read() has the following signature:

public int read(bytel[] b)
throws IOException

This version reads a number of bytes from the input stream and stores
them in an array of type byte. The value returned is the number of bytes

© 2002 by CRC Press LLC

actually read. This method waits until input data is available, the end of
file is detected, or an exception is raised. If the array passed to the
method is null, a NullPointerException is raised. If the length of the array
is zero, then no bytes are read and 0 is returned. If no byte is available be-
cause the stream is at the end of file, the value -1 is returned. The bytes
read are stored in the array passed as an argument.

The third variation of read() has the following signature

public int read(bytel[] b, int o, int 1)
throws IOException

The method reads up to one byte of data from the input stream. The
data is stored at offset o, in the array b passed in the call. The method at-
tempts to read length bytes, but a smaller number may be read, possibly
zero. The return value, of type int, is the number of bytes actually read.
This method waits until input data is available, end of file is detected, or
an exception is raised.

Java OutputStream class

The OutputStream class of java.io is the abstract class on which all output
streams are based. The class contains several methods associated with out-
put streams, including methods for writing data to the stream and for clos-
ing and flushing streams. The methods of the OutputStream class are
shown in Table 18-3.

Table 18-3
java.io.OutputStream
RETURNS NAME DESCRIPTION
void close() Closes the current output stream.
void flush() Flushes this output stream. This
forces any buffered output bytes to
be written.
void write(int b) Writes the specified byte to the
output stream.
void write(byte[] b) Writes b.length bytes from the
specified byte array to this output
stream.
void write(byte[] b,
int o, int 1) Writes | bytes from the specified

byte array starting at offset o to
this output stream.

OutputStream is an abstract class. In Table 18-3 you can see that the
method write() is overloaded in three different implementations. Two are

© 2002 by CRC Press LLC

concrete and one is abstract. The first implementation of write() has the
following prototype:

public abstract void write(int b)
throws IOException

The method writes the specified byte to the current output stream. The
byte to be written is defined as the eight low-order bits of the argument b,
which is of type int. The 24 high-order bits are ignored. Subclasses of
OutputStream provide the implementation of this method. An IOException
is raised if an I/O error occurs or if the output stream has been closed.

The second implementation has the following prototype:

public void write(bytel[] b)
throws IOException

This method writes b length bytes from the byte array passed as an ar-
gument to the current output stream. The method raises an IOException
if an I/O error occurs.

The third implementation is prototyped as follows:

public void write(byte[] b, int o, int 1),
throws IOException

This method writes 1 number of bytes, from the byte array specified as an
argument, starting at offset o, to the current output stream. This variation of
the write() method of OutputStream calls the write() method on each of the
bytes to be written. Subclasses override this method and provide a more effi-
cient implementation. If the array passed as an argument is null, a
NullPointerException is thrown. If o is negative, or 1 is negative, or o + 1 is
greater than the length of the array b, then an IndexOutOfBoundsException
is thrown. An IOException is raised if an I/O error occurs or if the output
stream is closed.

Standard Streams

Applications often use the keyboard as the input stream and the display sys-
tem as an output stream. In this case it is said that the keyboard is the stan-
dard device for console input, and that the video display is the standard
device for console output. In addition, an error stream is provided for di-
recting error messages during debugging. The System class in the java.lang
package contains three fields that relate to the standard streams, as fol-
lows:

public static final InputStream in; // Standard input

© 2002 by CRC Press LLC

public static final PrintStream out; // Standard output

public static final PrintStream err; // Standard error output

Note that PrintStream extends FileOutputStream, which extends
OutputStream. PrintStream adds functionality by allowing the display of
various data types. In addition, PrintStream contains the println()
method, which we have often used in preceding chapters. This method
adds a newline character (\n) at the end of the string or array and auto-
matically flushes the stream.

The standard streams are always open and ready for use. This makes
them convenient for Java console applications, such as the ones devel-
oped previously in this book.

The Keyin Class

Thus farin this book we have used a class named Keyin to obtain console in-
put for character and numeric types.

The Keyin class contains six static methods, as follows:

1. inString() allows the promptless input of a string. This method is used inter-
nally by the class to obtain the individual characters in an int or double vari-
able.

2. InputFlush() ensures that there is no data available in the input stream. If
data is found, the read() method is called to remove it. InputFlush() is
called by the data input methods in the Keyin class.

3. inString(String prompt) is used to input a user string. The string passed as
an argument is displayed as a prompt.

4. inInt(String prompt) allows the input of an int type value. The string passed
as an argument is displayed as a prompt.

5. inChar(String prompt) allows the user to input a single value of type char.
The string passed as an argument is displayed as a prompt.

6. inDouble(String prompt) allows the user to input a floating-point value and
returns it as a value of type double. The string passed as an argument is dis-
played as a user prompt.

All methods of the Keyin class catch some of the exceptions raised by
the read() method of the InputStream class. Exceptions are discussed in
Chapter 19. The methods that input character data (inString and inChar)
catch IOException. The methods that input numbers in int and float for-
mat catch the NumberFormatException.

© 2002 by CRC Press LLC

Flushing the input stream

The OutputStream class contains a method to flush the stream but there is
no flush() method in InputStream. This means that, occasionally code may
call the read() method and encounter unexpected characters that have not
yet been removed from the stream. This is likely to happen when we at-
tempt to remove a single character from the stream, as is the case when at-
tempting to retrieve a single character. One of the methods of the Keyin
class, called inputFlush(), addresses this potential problem by ensuring
that there are no data bytes pending in the input stream.

The inputFlush() method uses the available() method of the InputStream
class. This method returns the number of bytes that can be read without be-
ing blocked. The method returns zero if there is no data pending to be re-
moved in the input stream. This can be interpreted to mean that the stream
is clear and that the next call to the read() function will be blocked. The
code for the InputFlush() method is as follows:

public static void inputFlush/()
{

int dummy;
int bAvail;

try

{

while((System.in.available()) != 0)
dummy = System.in.read() ;

}

catch(java.io.IOException e)

{
System.out.println("Input error");

}

The inputFlush() method contains a while loop that repeats while the
input stream is not clear. In each iteration, the byte in the input stream is
read into a variable named dummy and discarded. When the method re-
turns, code can assume that the input stream contains no spurious data.

Obtaining character data

Two methods of the Keyin class read character data. One reads and returns
a string and the other one a char variable. The method named inChar() is
used to input a single character.

public static char inChar (String prompt)

{
int aChar = 0;

© 2002 by CRC Press LLC

InputFlush() ;
printPrompt (prompt) ;

try
{

aChar = System.in.read() ;

catch(java.io.IOException e)
{
System.out.println("Input error");
}
inputFlush () ;
return (char) aChar;

Since there is no “raw mode” console input in Java, the method to read
a single character waits until the user presses the key that terminates in-
put, usually the one labeled <Enter> or <Return>. In fact, inChar() re-
turns the first character typed but it cannot prevent the user from typing
more than one character. For this reason the method calls inputFlush()
before exiting. Also note that the input, which is of type int, is typecast
into a type char in the return statement.

Capturing an input string requires a bit more processing. The method
inString, listed here, performs the processing.

public static String inString/()
{

int aChar;

String s = "";

boolean finished = false;

while(!finished)
{
try
{
aChar = System.in.read() ;

if (aChar < 0 || (char)aChar == '\n')
finished = true;

else if ((char)aChar != '\r')
s = s + (char) aChar; // Append to string

catch(java.io.IOException e)

{
System.out.println("Input error");
finished = true;

}

return s;

© 2002 by CRC Press LLC

The inString() method contains a while loop that terminates when the
user presses the input terminator key or when read() returns -1. If the
keystroke is not the <Return> key the input value is cast into a char type
and appended to a local string variable. This string is returned to the
caller when the method terminates.

An overloaded version of the inString() method flushes the input
stream, displays the user prompt, and then calls inString() to obtain in-
put.

Obtaining numeric data

Obtaining numeric data from the keyboard consists of a two step process:
first, we must retrieve the string of numeric characters typed by the user.
Commonly this string will be in ASCII format. Second, convert the string of
ASCII digitsinto the desired Java primitive. The first step is not difficult. We
can use the inString() method, previously developed, in order to obtain the
digit string. Parsing the string of digits into a binary value is another matter.

One possible approach would be to take on the conversion task di-
rectly. In the case of a decimal integer string we could isolate each string
digit, proceeding left to right. Convert the ASCII value to binary by sub-
tracting 0x30. Then multiply each digit by the power of ten that corre-
sponds to its place value, and accumulate the total. The processing for an
integer conversion is relatively straightforward and could be accom-
plished in a few lines of code. Much more complicated would be the con-
version of a decimal number in floating-point format. In this case we
would have to be familiar with the binary encoding defined in the
ANSI-IEEE 754 Standard, which is adopted by Java. These formats were
designed for computational efficiency; therefore they are not simple or
intuitive.

Fortunately, the parsing of the strings into binary formats can be easily
accomplished using methods provided in the java.lang library. In this pro-
cessing we use the inString() method, developed in the preceding section,
to input the string. The expression for obtaining the string and converting
into an integer format is as follows:

int aValue = Integer.valueOf
(inString () .trim()) .intValue() ;

In this case we use the trim() method to eliminate all spaces at either
end of the string obtained by the inString() method. The intValue()
method of the Integer class (located in java.lang) returns the integer
value of the expression. Then the parsing into an int type is performed by

© 2002 by CRC Press LLC

the valueOf() method of the Integer class. A similar processing can be
used for converting into other numeric types. For example, to convert
into a double format we could use the following statement:

double aValue = Double.valueOf
(inString () .trim()) .doublevalue() ;

The functions named inInt() and inDouble() in the Keyin class perform
input of these two types.

On the Web

The file Keyin.java is found in the Chapter 18 folder at www.crc-
press.com.

© 2002 by CRC Press LLC

Chapter 19

Handling Errors

Program Errors

Errors seem to be in the nature of computer systems. The logical complex-
ity of programs, as well as the mechanical diversity of the hardware, ad-
vises that we consider program errors as likely events. Ignoring the
possibility of errors leads to a “hope for the best” attitude in programming
that is both immature and dangerous. In this chapter we look at Java's ex-
tensive and powerful support for handling program errors.

Error Types

Program errors can originate in hardware, in software, or in algorithmic or
logical flaws. The possible solutions and the ideal error handling tech-
niques differ in each case.

Hardware and software errors

A program error can be hardware-related. For example, an application at-
tempts to open a file that does not exist, send characters to a printer that is
turned off, or communicate with a serial port that does not respond. Other
error conditions are software-related. For example, code attempts to ac-
cess an element that is beyond the bounds of the array or attempts to store a
value that exceeds the capacity of a data format.

Hardware-related errors are usually detected and reported by the sys-
tem. Software-related errors, on the other hand, must be detected by
code. Other errors can be detected either by software, by hardware, or by
both. For example, an application may inspect the divisor operand to
make sure that a division by zero is not attempted. However, if a division

© 2002 by CRC Press LLC

by zero does take place, the hardware in most computer systems pro-
duces an error response.

Algorithmic errors

Another type of errors, sometimes called algorithmic errors, relate to
flaws or intrinsic limitations of the real-world modeling performed by the
computer. One example is the approximation that may take place when
converting decimal numbers into binary format. Some decimal fractions
have an exact binary representation, as is the case with the values 0.5, 0.25,
0.125, 0.0625, and so on. Other decimal fractions have no exact binary
equivalent. In this case the computer uses the best binary approximation of
the decimal fraction according to the machine's word length. This approxi-
mation entails a roundoff error that can propagate in the calculations and
lead to incorrect results.

Numerical analysis is the discipline that deals with roundoff and trun-
cation errors of various algorithms. In this case the programmer must be
aware of the algorithms' error potential and use this knowledge to detect
erroneous results or to avoid ill-conditioned data sets. It is algorithmic er-
rors that are most often ignored by programmers.

Exceptions

The term exception is used to denote hardware, software, and algorithmic
errors. Thus, an exception can be broadly defined as any unusual event that
may require special handling. Exception handling refers to the special pro-
cessing operations that take place when an exception is detected. Raising
an exception refers to the actions that generate the exception itself. The en-
tire process can be described as follows:

1. A hardware, software, or algorithmic error takes place.
2. The error is detected and an exception is raised.
3. An exception handler provides the error response.

The detection of an error condition can originate in hardware or in
software. However, the exception itself is a software process. The error
handler can consist of many possible options, among them:

1. The error condition is ignored and the exception is cancelled.

2. The exception handler takes no specific action and passes the error condi-
tion along to another handler in the hierarchy.

3. The exception handler takes some action and passes the error condition
along to another handler in the hierarchy for additional response.

© 2002 by CRC Press LLC

4. The exception handler takes action and ends the exception response.

Bullt-in exception handling

Programming languages differ widely in the level of built-in support for
handling exceptions. Some languages provide no exception handling aid,
while others contain sophisticated mechanisms to support error response
and to ensure that all exceptions are adequately handled.

When languages like Java contain built-in exception handlers, there
are various implementation issues and design issues that must be consid-
ered. For example:

1. Does the language's runtime environment provide default action for some
or all exceptions?

2. Can user code raise exceptions?
3. Are hardware-detectable errors treated as exceptions?

4. Can the language's exception mechanism be temporarily or permanently
disabled?

5. Where does execution continue after an exception response concludes?

PL/I was the first major language to provide exception handling. The
PL/T exception handling facilities are powerful and flexible; however,
most language designers consider them too complex. The most of-
ten-mentioned problem is that exceptions are bound dynamically to the
handlers. A more reasonable model provides for statically bound excep-
tion handlers. The statically bound handlers were adopted in the Ada lan-
guage, which also includes a mechanism for propagating unhandled
exceptions to some other program unit.

Java's approach

Java's approach to exceptions is based on the model proposed in the 1990
ANSI standardization committee for C++. This model, in turn, is based on
the one used in the research language ML (Meta Language) developed at
Bell Labs. The resulting approach to exception handling has been imple-
mented in most modern versions of the C++ compiler, as well as in Java.

Java exception handling is based on three basic constructs, named
throw, try, and catch. The throw keyword is used to raise or re-raise an
exception. The try and catch blocks implement the exception handler. An
additional optional block, named finally, is used within exception han-
dlers to provide an alternate processing option.

© 2002 by CRC Press LLC

According to their cause, Java exceptions can be classified into two
types: implicit and explicit. Implicit exceptions take place when the pro-
gram performs an illegal operation, for example, attempting a division by
Zero or accessing an element array whose index is out of range. Code can-
not recover from this type of exception, although their cause can often be
avoided. Explicit exceptions are generated by the application by means
of a throw statement in order to handle some special condition. Implicit
exceptions are called runtime exceptions in the Java literature while ex-
plicit exceptions are said to be user-defined. Runtime exceptions refer to
the fact that implicit exceptions are thrown by the Java runtime library. In
reality, all exceptions take place at runtime.

Java exception classes

Java contains several classes that relate to exceptions. The class hierarchy
is shown in Figure 19-1.

Throwable

1

Error Exception

1

(User Exceptions) IOException RuntimeException

Figure 19-1 Java's Exception Class Hierarchy

The Throwable class is at the top of the exception hierarchy. Throw-
able is extended by the classes named Error and Exception. The members
of the Error class are system-level errors that are thrown by the Java vir-
tual machine. System level errors are rare. Although it is possible for ap-
plications to catch these errors, the recommended approach is to let the
system handle them. There is little an application can do if the system
runs out of memory or encounters another terminal condition.

The most important part of the Java Throwable hierarchy is the one
that goes through the Exception branch. There are currently 29 classes
that extend Exception. In Figure 19-1, we have shown the two more nota-
ble ones: RuntimeException and IOException. Table 19-1 lists the classes
that extend RuntimeException and IOException.

© 2002 by CRC Press LLC

Table 19-1
Subclasses of Exception

10 EXCEPTION RUNTIME EXCEPTION
ChangedCharSetException ArithmeticException
CharConversionException ArrayStoreException
EOFException CannotRedoException
FileNotFoundException CannotUndoException
InterruptedlOException ClassCastException
MalformedURLException CMMException
ObjectStreamException CurrentModificationException
ProtocolException EmptyStackException
RemoteException lllegalArgumentException
SocketException IllegalStateException
SyncFailedException ImaginingOpException
UnknownHostException IndexOutOfBoundsException
UnknownServiceException MissingResourceException
UnsupportedEncodingException NegativeArraySizeException
UTFDataFormatException NoSuchElementException
ZipException NullPointerException

ProfileDataException
ProviderException
RasterFormatException
SecurityException
SystemException
UnsupportedOperationException

In addition, application code can extend the Java Exception class in or-
der to provide its own exception conditions. This possibility is shown by
the class in a gray rectangle in Figure 19-1. Providing your own exception
handlers is discussed later in this chapter.

Advertising exceptions

Java specifications state that exceptions that derive from the class Error or
from the class RuntimeException are classified as unchecked exceptions.
All other exceptions are checked. Unchecked exceptions are either beyond
program control, as those related to the Error class, or relate to conditions
that are beyond program action, as is the case with an array index out of
bounds. Code must deal with checked exceptions.

A Java method informs the user that it could generate an exception by
declaring it in the method header. For example, a method named
WriteToFile() that could produce an exception named NameError would
be declared as follows:

public void WriteTo File()
throws NameErrorException

© 2002 by CRC Press LLC

In this case the throws keyword is used to advertise the exceptions
raised by the method. The general rule is that a method must declare all
checked exceptions that it throws, but not the unchecked exceptions.
This means that all Java exceptions that are part of the Error and
RuntimeException classes need not be advertised.

Exceptions Programming

The rationale behind the exception handling mechanism of Javais based on
two assumptions:

1. The compiler should ensure that all error conditions are adequately han-
dled by code.

2. It is better to handle errors separately from the program's main task.

The exception-handling strategy of a Java application should consider
the following issues:

1. Possible additional response to system errors. Code should not intercept
the system handler but may provide some additional diagnostics. For ex-
ample, upon detecting a system-level terminal error caused by a memory
shortage, an application may post a message warning the user of possible
loss of data.

2. Designing or modifying application code in order to avoid exceptions gen-
erated in the classes IOException and RuntimeException. For example,
making sure that a division-by-zero error is not produced by previously ex-
amining the divisor operand.

3. Handling exceptions generated by non-terminal conditions in Java built-in
classes. For example, providing code to recover from a file-not-found er-
Tror.

4. Providing application-defined exception handlers for local error condi-
tions. For example, a user-developed method that finds the average value
in an integer array generates an exception if the user passes a null array as
the argument.

5. Deciding what part of the code should handle an exception. This means de-
termining if a particular exception should be handled within the method
that detects it, or if it should be propagated down the program's method hi-
erarchy to be addressed by another handler.

The first one of these listed issues requires no additional discussion.
The remaining four are examined later in this section.

© 2002 by CRC Press LLC

Java exception processing

Processing exception conditions in Java code consists of three basic opera-
tions:

1. Raising user-defined exceptions by means of a throw clause. This usually
requires extending the Java Exception class in order to provide the excep-
tion response.

2. Handling exceptions, either system generated (implicit) or user-defined
(explicit). Exception handling is based on coding the corresponding try,
catch, and finally clauses.

3. Propagating exceptions into the application's method hierarchy. This is ac-
complished by means of a throws clause.

Note that the throw keyword is used to raise an exception and the
throws keyword to propagate it. It is unfortunate that the designers of the
Java language were unable to find more adequate mnemonics for two
functions that produce so different results. In this book, we try to reduce
the confusion by referring to the action of the throw keyword as raising
an exception and that of the throws keyword as throwing an exception.

Raising exceptions

Code can use its own exception classes in order to accommodate specific
error conditions. This can be accomplished by defining subclasses of Ex-
ception, or more commonly, by extending Java's Exception class. The Java
Exception class contains two constructors, defined as follows:

Exception ()
Exception(String s)

The easiest way to create an exception handler is to extend the Java
Exception class and to call its parameterized constructor. For example,
the following method provides an exception handler for a division by zero
error; the following class extends the Java Exception class and provides a
simple handler for a division by zero error:

class DivByZeroException extends Exception
{
// Parameterized constructor
public DivByZeroException(String message)
{
super (message) ;

}

The method that intends to use the handler in the DivByZeroException
must declare that it throws a DivByZeroException. This done, a throw

© 2002 by CRC Press LLC

clause gains access to the exception handler code, as shown in the fol-
lowing code fragment:

public class DivByZeroDemo
{
public static void main(String[] args)
throws DivByZeroException // Declaring exception
{
int dividend = 100;
int divisor, result;

divisor = Keyin.inInt ("Enter divisor: ");
if(divisor != 0)
{
result = dividend / divisor;
System.out.println("result = " + result);
}
else

throw new DivByZeroException("Invalid divisor");

Notice that the throws clause is used in the signature of the main()
method to declare that the method raises a DivByZeroException. Be-
cause DivByZeroException is a checked exception, not advertising it re-
sults in a compiler error.

Handling exceptions

Code can handle exceptions raised in other methods, whether these are lo-
cal methods or part of the Java libraries. For example, if you try opening a
non-existing file the FileNotFoundException class of [OException(see Ta-
ble 19-1) will raise an exception. Your code can be designed to intercept
Java's error response mechanism for this error and provide alternate pro-
cessing. One of the possible advantages of intercepting the error response
chain is the prevention of a terminal error that terminates execution. Ex-
ception handlers can also refer to extrinsic extension.

Three Java keywords are used in coding exception handlers: try, catch,
and finally. The try block contains the processing operations. Its execu-
tion continues until an exception is raised. The catch block contains the
actions to take place if an exception is raised. The catch block is skipped
if no exception is raised in the try block. The finally block, which is op-
tional, executes whether or not an exception is thrown. The finally state-
ment is often used in deallocating local resources. The following code
fragment shows an exception handler designed to intercept a system's di-
vision by zero error.

© 2002 by CRC Press LLC

The following program, named CatchDBZ, intercepts the Java
ArtihmeticException error response in the case of a division by zero.
Note that because ArithmeticException is unchecked it does not have to
be advertised in the header of the main() method.

On the Web

The source file for the program CatchDBZ.java can be found in the
Chapter 19 folder at www.crcpress.com.

//**

//**

// Program: CatchDBZ

// Reference: Chapter 19

// Topics:

// 1. Catching Java's ArithmeticException error in a
// division by =zero

// Requires:

// 1. Keyin class in the current directory
//**

VAR EEREEEEEEEEEEEEEEEEEEELEEEEEEEEEREEEEREEEEEEEREEEEEEEE S

public class CatchDBZ
{
public static void main(String[] args)
{
int dividend = 100;
int divisor, result;

while (true)

{
divisor = Keyin.inInt ("Enter divisor (100 to end): ");
if (divisor == 100)
break;
try
{
result = dividend / divisor; // May raise exception
System.out.println("result = " + result);
}
catch(ArithmeticException msgText)
{
System.out.println("Error is : " + msgText);

The CatchDBZ.java program, listed previously, allows the user to enter
the divisor of an integer division operation. A special value of 100 is used

© 2002 by CRC Press LLC

to terminate execution. The main() method's signature contains a throws
clause for Java's ArithmeticException class. The try clause performs the
division operation. If an ArithmeticException error is produced, then ex-
ecution continues in the catch clause; it displays a message followed by
the string returned by the ArithmeticException handler. In this case the
program recovers and prompts the user for another divisor.

Throwing exceptions

The basicrule of Java's error handling mechanism is that an exception must
either be handled by the method in which it is raised, or passed along the
call chain for another method to handle. In this case we say that the excep-
tion has propagated along the call hierarchy. This principle has been de-
scribed by saying that a Java method must either handle or declare all
exceptions.

The declaration of an exception refers to the throws clause that is part
of the method's signature. What this means is that code can refuse to han-
dle a possible exception raised by the method being called. For example,
suppose a call chain consists of methodA(), which calls methodB(),
which calls methodC(). Furthermore, suppose that methodC() can raise
Exceptionl. In this case methodC() can either handle Exceptionl or pass
it along the call chain so that it is handled by methodB(). Here again, if
methodB() does not handle the exception, Java will continue looking up
the call chain for a handler, in this case, in methodA(). Finally, if no han-
dler is found within the application's code, Java will then generate the ex-
ception and terminate execution.

The following program, named Handler.java, demonstrates exception
propagation and handling:

On the Web

The source file for the program Handler.java can be found in the Chap-
ter 19 folder at www.crcpress.com.

//**

//**

// Program: Handler

// Reference: Chapter 19

// Topics:

// 1. Propagating exceptions along the call chain

// Requires:

// 1. Keyin class in the current directory
//**

© 2002 by CRC Press LLC

VAR EEREEEE S EEEESEEEESEEEEREEEEREEEEREEEEREEEEEEE SRR

public class Handler
{
public static void main(String[] args)
{
int dividend = 100;
int divisor, result;

divisor = Keyin.inInt ("Enter divisor: ");

try

{
result = PreDivide(dividend, divisor) ;
System.out.println("result = " + result);

}
catch(DivisionException msgText)
{
System.out.println("In main(): " + msgText);

}
static int PreDivide (int numerator, int denominator)
throws DivisionException
{
int quotient;
quotient = Divide (numerator, denominator) ;
return quotient;

static int Divide(int x, int y)
throws DivisionException

{
int value = 0;
if(y == 0)
throw new DivisionException("Illegal Division") ;
else
value = x / y;

return value;

}

VAR EEAEEEEREEEEREEEEREEEEE TR TR

// Exception handler class
//******‘k‘k‘k‘k‘k‘k‘k‘k‘k**************‘k

class DivisionException extends Exception

{
// Parameterized constructor
public DivisionException(String message)
{

super (message) ;

The program Handler.java, listed previously, contains two classes. The
driving class (Handler) includes the methods main(), PreDivide(), and Di-

© 2002 by CRC Press LLC

vide(). The class DivisionException extends Exception and provides a
handler for a division by zero error.

The division by zero error is raised in the method Divide() but it is not
handled in that method. Note that Divide(), which does not contain a try
block, throws the DivisionException in the method's signature. Neither
does the PreDivide() method handle the exception. Here again, the ex-
ception is passed along the call chain by the throws clause in the
method's signature. The main() method, on the other hand, handles the
exception that was raised in the Divide() method. For this reason main()
contains a try block with the corresponding catch clause. The exception
handling chain, in this case, ends in main().

© 2002 by CRC Press LLC

Part 1]

Java Programming for Engineers

© 2002 by CRC Press LLC

Chapter 20

Computer Number Systems

The Hindu-Arabic Numerals

By the year 800 A.D. the Arabs were using a ten-symbol positional system of
numbers which included the special symbol for 0. This system (later called
the Hindu-Arabic or Arabic numerals) was introduced into Europe during
the 8th century, probably through Spain. Pope Sylvester II, who had studied
the Arabic numbers in Spain, was the first European scholar to support
them. The Latin title of the first book on the subject of “Indian numbers” is
Liber Algorismi de Numero Indorum. The author is the Arab mathemati-
cian al-Khowarizmi. The Hindu-Arabic numerals have been adopted by
practically all the nations and cultures of the world.

In spite of its advantages, the Arabic number system originally con-
fronted considerable debate and controversy. Some scholars of the time
considered that Roman numerals were easier to learn and more conve-
nient for operations on the abacus. The supporters of the Roman numeral
system, called abacists, engaged in intellectual combat with the algorist,
who were in favor of the Arabic numerals. Abacists and algorists debated
about the advantages of their systems for several centuries, with the
Catholic church often siding with the abacists. Because of their origin the
Hindu-Arabic numerals were sometimes called heathen numbers.

Perhaps the most significant feature of the Arabic numbers is the pres-
ence of a symbol (0), which by itself represents no quantity, but which
can be combined with other symbols to form larger numbers. This use of
the digit 0 results in a system in which the value of each digit depends on
its position in a digit string. For example,

© 2002 by CRC Press LLC

1 one

10 = ten
100 = hundred
1000 = thousand

In Arabic numbers the almost-magical symbol 0 does not correspond
to any unit-amount, but is used as a place-holder in a multi-column
scheme. All modern number systems, including decimal, hexadecimal,
and binary, are positional. The digits in the decimal number 2497 have the
following positional weights:

2000 ——- 2 thousand units
400 ——- 4 hundred units
+ 90 ——- 9 ten units
7 ——- 7 units
2497

or also

2 % 10° + 4 * 10° + 9 * 10" + 7 * 10° = 2497

(Recall that 10" = 10 and 10° = 1)

Computer Number Systems

The computers built in the United States during the early 1940s operated on
decimal numbers. However, in 1946 von Neumann, Burks, and Goldstine
published a seminal paper titled Preliminary Discussion of the Logical
Design of an Electronic Computing Instrument. In it they state:

“In a discussion of the arithmetic organs of a computing machine
one ts naturally led to a consideration of the number system to be
adopted. In spite of the long-standing tradition of building digital
machines in the decimal system, we must feel strongly in favor of
the binary system for our device.”

In this paper the authors also consider the possibility of a computing device
that uses binary-coded decimal numbers, called BCD. The ideais discarded
in favor of a pure binary encoding with the argument that binary numbers
are more compact. Later in this chapter you will see that BCD numbers are
sometimes used today. Nevertheless, the von Neumann computer model is
essentially a binary machine.

Radix or base

In any positional number system the weight of each column is determined
by the total number of symbols in the set, including zero. This is called the

© 2002 by CRC Press LLC

base or radix of the system. The base of the decimal system is 10, the base
of the binary system is 2, and the base of the hexadecimal system is 16.

In radix-positional terms a decimal number can be expressed as a
sum-of-digits expressed by the formula

Zdl. x10" for 0<d, <9 (d, an integer)

The summation formula for a binary radix, positional representation is
as follows

Y b,x2" forb=0orl

where d, and b, are the i" decimal and binary digits, respectively, as ordered
from right to left, starting at the 0 position.

Types of Numbers

By the adoption of special representations for different types of numbers
the usefulness of a positional number system can be extended beyond the
simple counting function.

Whole numbers

The digits of anumber system, called the positive integers or natural num-
bers, are an ordered set of symbols. The notion of an ordered set means that
the numerical symbols are assigned a predetermined sequence. A posi-
tional system of numbers also requires a special digit, named zero. The spe-
cial symbol 0, by itself, represents nothing. However, 0 assumes a cardinal
function when it is combined with other digits, for instance, 10 or 30. The
whole numbers are the set of natural numbers, including the number zero.

Signed numbers

A number system can also be used to represent direction. We generally use
the + and - signs to represent opposite numerical directions. The typical il-
lustration for a set of signed numbers is as follows

-9 -8 -7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 +8 +9
negative numbers <— zZero —> positive numbers

The number zero, which separates the positive and the negative num-
bers, has no sign of its own. Although in some binary encodings, which

© 2002 by CRC Press LLC

are discussed later in this book, we end up with a negative and a positive
Zero.

Rational and irrational numbers

A number system can also be used to represent parts of a whole. For exam-
ple, when a carpenter cuts one board into two boards of equal length we can
represent the result with the fraction 1/2. The verbalization of this opera-
tion states that the fraction 1/2 indicates one of the two parts which consti-
tute an object. Rational numbers are those expressed as a ratio of two
integers, forinstance, 1/2; 2/3, 7/248. Note that this use of the word rational
is related to the mathematical concept of a ratio, not to reason.

The denominator of a rational number expresses the number of poten-
tial parts. In this sense 2/5 indicates two of five possible parts. There is no
reason why the number 1 cannot be used to indicate the number of poten-
tial parts, for example 2/1, 128/1. In this case the ratio /1 indicates x ele-
ments of an undivided part. Therefore, it follows that x/1 = x. The
implication is that the set of rational numbers includes the integers, since
an integer can be expressed as a ratio by using a unit denominator.

But not all non-integer numbers can be written as an exact ratio of two
integers. The discovery of the first irrational number is usually associ-
ated with the investigation of a right triangle by the Greek mathematician
Pythagoras (approximately 600 BC).

The Pythagorean theorem states that in any right triangle the square of
the longest side (hypotenuse) is equal to the sum of the squares of the
other two sides.

For this triangle, the Pythagorean theorem states that

© 2002 by CRC Press LLC

at+b*=¢*
2=¢"

c=+2

Therefore, the length of the hypotenuse in a right triangle with unit
sides is a number that, when multiplied by itself, gives 2. This number
(approximately 1.414213562) cannot be expressed as the exact ratio of
two integers. Other irrational numbers are \/5 , \/g , as well as the mathe-
matical constants 7 and e.

Real and complex numbers

The set of numbers that includes the natural numbers, the whole numbers,
and the rational and irrational numbers is called the real numbers. Most
common mathematical problems are solved using real numbers. However,
during the investigation of squares and roots we notice the following:

+2 0 +2
—2 * _2

4
4

Since the square of a positive number is positive and the square of a
negative number is also positive, there can be no real number whose
square is negative. Therefore, the value of \/3 does not exist in the real
number system. But mathematicians of the 18th century extended the
number system to include operations with roots of negative numbers.
They defined the imaginary unit as

i’ =-1
i=v-1

Numbers that consist of a real part and an imaginary part are called
complex numbers. Some of the uses of complex numbers are in finding
the solution of a quadratic equation, in vector analysis, graphics, and in
solving many engineering, scientific, and mathematical problems.

Storage of Numerical Data

The von Neumann definition requires that the computing machine be capa-
ble of storing and retrieving numerical data. In practice, numerical data
items are stored in standard formats, designed to minimize space and opti-
mize processing efficiency. Historically, numeric data was stored in struc-
tures devised according to the architecture of a specific machine, or the
preferences of the designers. It was not until 1985 that the Institute of Elec-

© 2002 by CRC Press LLC

trical and Electronics Engineers (IEEE) and the American National Stan-
dards Institute (ANSI) formally approved mathematical standards for
digital computers.

Since electronic technology is based on bi-stable components, the bi-
nary number system has been almost universally adopted for computer
data. Data stored in processor registers, in magnetic media, in optical de-
vices, or in punched tape, is encoded in binary. The programmer and the
machine operator often ignore the physical characteristics of the storage
medium, since a binary number can be represented by holes in a strip of
paper tape, by magnetic charges on a mylar-coated disk, by voltage levels
in an integrated circuit memory cell, or by the depth of minute craters on
the surface of the CD.

Computer word size

In electronic devices states are represented by a binary digit. Circuit de-
signers group several individual cells to form a unit of storage that holds
several bits. In a particular machine the basic unit of data storage is called
the word size. Table 20-1 lists the word size of some historical computer
systems.

Table 20-1
Computer Word Size in Historical Systems
COMPUTER FAMILY WORD SIZE
TRS 80 Microcomputers (Z80 processor) 8 bits
Apple Microcomputers (6502 processor)
Original PC and other microcomputers 16 bits
equipped with Intel 8086, 8088 or 80286 CPU
DEC PDP 11
PS/2 line and other PCs equipped with 32 bits

the Intel 80386, 486, or Pentium
IBM 360/370 series

IBM 303X, 308X series

DEC VAX 11

Prime computers

DEC 10 36 bits
UNIVAC
Honeywell

CDC 6000 60 bits
CDC 7000
CDC CYBER series

© 2002 by CRC Press LLC

In most computers the smallest unit of individually addressable stor-
age is 8 bits (one byte). Individual bits are not directly addressable and
must be manipulated as part of larger units of data storage.

The machine's word size determines the units of data storage, the ma-
chine instruction size, and the units of memory addressing. PCs equipped
with the Intel 8086, 8088, or 80286 CPU have 16-bit wide registers, trans-
fer data in 8 and 16-bit units to memory and ports, and address memory
using a 16-bit base (segment register) and 16-bit pointers (offset register).
Since the data registers in these CPUs are 16-bits wide, the largest value
that can be held in a register is 11111111 11111111 binary, or 65,535 deci-
mal. PCs that use the Intel 80386, 486, and Pentium CPU have 32-bit inter-
nal registers and a flat address space that is 32-bits wide. In these
machines the word size is 32 bits. For compatibility reasons some operat-
ing systems and application code use the 80386, 486, and Pentium micro-
processors in a mode compatible with their 16-bit predecessors.

Representing Integers

The integers are the set of whole numbers, which can be positive or nega-
tive. Integer digits are located one storage unit apart and do not have a deci-
mal point. The computer storage of unsigned integers is a straightforward
binary encoding. Since the smallest addressable unit of storage in the PC is
one byte, the CPU logic pads with leading zeros numbers that are smaller
than one byte. Figure 2.1 is a representation of an integer number stored
electronically in a computer cell.

machine storage

OOOOOOOO binary decimal
= 01010010 10010101 = 21,141
00000000

Figure 20-1 Representation of an Unsigned Integer

Sign-magnitude integers

Representing signed numbers requires a special convention in order to dif-
ferentiate positive from negative magnitudes. The most generally accepted
scheme is to devote one bit to represent the sign. A common signed number
storage format sets the high-order bit to indicate negative magnitudes and
clears it to indicate positive magnitudes and zero. In this scheme the deci-
mal numbers 93 and -93 are represented as follows:

© 2002 by CRC Press LLC

01011101 binary = 93 decimal
11011101 binary = -93 decimal

Note that the left-most digit is set for a negative number and clear for a
positive one. This way of designating negative numbers, called a sign-mag-
nitude representation, corresponds to the conventional way in which we
write signed numbers longhand. That is, we precede the number by its
sign. Sign-magnitude representation has the following characteristics:

1. The absolute value of positive and negative numbers is the same.

2. Positive from negative numbers can be distinguished by examining the
high-order bit. If this bit is 1, then the number is negative. Otherwise, the
number is positive.

3. There are two possible representations for zero, one negative (10000000B)
and one positive (00000000B).

One limitation of the sign-magnitude representation is that the logic re-
quired to perform addition is different from that for subtraction. While this
is not insurmountable, there are other numeric representations (discussed
later in this chapter) in which addition and subtraction are a single opera-
tion. Another limitation of straight sign-magnitude representations is the
presence of negative zero. The negative zero reduces the numerical range
of the representation and is unnecessary for most practical purposes.

The limitations of the sign-magnitude format can be seen in the compli-
cated rules required for the addition of signed numbers. Assuming two
signed operands, x and y, the following rules must be observed for per-
forming addition:

1. Ifx and y have the same sign, they are added directly and the result is given
the common sign of the addends.

2. If the absolute value of x is larger than or equal to the absolute value of v,
then y is subtracted from x and the result is given the sign of x.

3. Ifthe absolute value of y is larger than the absolute value of x, then x is sub-
tracted from y and the result is given the sign of y.

4. If both x and y are -0, then the sum is 0.

The rules for subtracting numbers in sign-magnitude form are even
more complicated.

© 2002 by CRC Press LLC

Radix-complement integers

Arithmetic complements arise during subtraction. In general, the radix
complement of a number is defined as the difference between the number
and the nextinteger power of the base that is larger than the number. In dec-
imal numbers the radix complement is called the ten's complement. In the
binary system the radix complementis the two's complement. For example,
the radix complement of the decimal number 89 (ten's complement), is cal-
culated as follows:

100 = higher power of 10
- 89
11 = ten's complement of 89

The use of radix complements to simplify machine subtraction can
best be seen in an example. Suppose the operation to be performed is x =
a — b with the following values:

a = 602
b = 353
602
- 353
X = 249

Notice that in the process of performing longhand subtraction you had
to perform two borrow operations. Now consider that the radix comple-
ment (ten's complement) of 353 is

1000 - 353 = 647

Using complements, we can reformulate subtraction as the addition of
the ten's complement of the subtrahend, as follows

602

[discarded digit

The result is adjusted by discarding the digit that overflows the magni-
tude of the operands.

In longhand decimal arithmetic there is no advantage in replacing sub-
traction with ten's complement addition, since the additional labor re-
quired for calculating the ten's complement cancels out any other
possible benefit.

© 2002 by CRC Press LLC

In binary arithmetic the use of radix complements entails significant
computational advantages, principally because a binary machine can cal-
culate complements very rapidly. For example, the two's complement of a
binary number is obtained in the same manner as the ten's complement of
a decimal number, that is, by subtracting the number from an integer
power of the base that is larger than the number. In this manner the two's
complement of the binary number 101 is:

1000B = 2’ = 8 decimal (higher power of 2)
- 101B = 5 decimal
011B = 3 decimal

By the same token, the two's complement of 10110B is calculated

100000B = 2° = 32 decimal (higher power of 2)
- 10110B = 22 decimal
01010B 10 decimal

You can perform the binary subtraction of 11111B minus 10110B by
finding the two's complement of the subtrahend, adding the two
operands, and discarding any overflow digit, as follows:

11111B = 31 decimal
+ 01010B = 10 decimal (two's complement of 22)
101001B
discard__ |
01001B = 9 decimal (31 minus 22 = 9)

Diminished-radix integers

In addition to the radix complements (ten's complement in the decimal sys-
tem and two's complement in the binary system), there is a diminished ra-
dix representation that is often useful. This encoding, sometimes called
the radix-minus-one form, is created by subtracting the number from an
integer power of the base minus 1. In the decimal system, the diminished ra-
dix representation is called the nine's complement. In the binary system it
is called the one's complement. The nine's complement of the decimal num-
ber 76 is calculated as follows:

100 = next highest integer power of 10
99 = 100 minus 1

- 76
23 = nine's complement of 89

The one's complement of a binary number is obtained by subtracting
the number from an integer power of the base that is larger than the num-

© 2002 by CRC Press LLC

ber, minus one. For example, the one's complement of the binary number
101 (5 decimal) can be calculated as follows:

1000B = 2’ = 8 decimal

111B = 1000B minus 1 = 7 decimal
- 101B 5 decimal

010B = 2 decimal

Note that the one's complement can also be obtained by changing ev-
ery 1 binary digit to a 0 and every 0 binary digit to a 1. In the above exam-
ple, 010B is the one's complement of 101B. In this context the 0 binary
digit is often said to be the complement of the 1 binary digit, and vice
versa.

An interesting side effect is that the two's complement can be derived
by adding one to the one's complement of a number. Therefore, instead of
calculating

100000B
- 10110B

01010B

we can find the two's complement of 10110B as follows

10110B = number

01001B = change 0 to 1 and 1 to 0 (one's complement)
+ 1B then add 1

01010B = two's complement

A third way of calculating the two's complement is subtracting the op-
erand from zero and discarding the overflow.

One advantage of numeric complements is that the high-order bit can

be used to detect the sign of the number. Another advantage is that there
is no representation for negative 0.

Representing Fractional Numbers

In a positional number system the weight of each integer digit can be deter-
mined by the formula:

P=dxB"

© 2002 by CRC Press LLC

where d is the digit, B is the base or radix, and C is the zero-based column
number, starting from right to left. In this manner, the value of a multi-digit
positive integer to n digits can be expressed as a sum of the digit values:

dB"+d _B""'+d ,B"?+..+d,B"

where d, (1 = 0,...,n) is the value of the digit and B is the base or radix of the
number system. This representation can be extended to represent frac-
tional values. Recalling that

we can extend the sequence to the right of the radix point, as follows:
4+d,_B'+d ,B”..

In the decimal system, the value of each digit to the right of the decimal
point is calculated as 1/10, 1/100, 1/1000, and so on. The value of each suc-
cessive digit of a binary fraction is the reciprocal of a power of 2, hence
the sequence: 1/2, 1/4, 1/8, 1/16, etc. Figure 20-2 shows the positional
weight of the integer and the fractional digits in a binary number.

NTEGER PART
=128

64

32

16

8

2

0

radix point
[[a[a[a[a[a[aa] s [22]2]a]2]a]2]]

I
2
2
2
2
2
2
2
2

4
2
1

FRACTIONAL PART ,
.500 1/2 2
.250 1/4 27
.125 1/8 27
.0625 1/16 2™
.03125 1/32 27
.015625 1/64 2°
.0078125 1/128 27
.00390625 1/256 27

Figure 20-2 Positional Weights in a Binary Fraction

© 2002 by CRC Press LLC

The positional weight of the binary digits can be used to convert a bi-
nary number to its decimal equivalent. A similar method can be used to
convert the fractional part of a binary number to a decimal fraction, as
follows

Fixed-point representations

The encoding and storage of real numbers in binary form presents several
difficulties. The first one is related to the position of the radix point. Since
there are only two symbols in the binary set, and both are used to represent
the numerical value of the number, there is no other symbol available for
representing the radix point. The decimal number 58.125 can be repre-
sented by using one element to encode the integer part, and another one for
the fractional part, for example:

58 = 111010B
.125 = .001B

In longhand decimals, you can write 58.125, but in computers it is im-
possible to explicitly encode a binary fraction. One possible scheme for
representing binary fractions is to assume that the radix point is located
at a fixed position. Figure 20-3 shows one possible convention for storing
areal number in a fixed point binary format.

0000006 Pinary decimal
= 00111010 00100000 = 58.125
00000000

implied binary point

Figure 20-3 Binary Fixed-Point Representation

Figure 20-3 assumes that the binary point is positioned between the
eighth and the ninth digit of the encoding. A fixed point representation as-
sumes that there are a certain number of digits to the left and right of the
decimal point, which is the greatest limitation of the fixed point formats.
Suppose you wanted to store the value 312.250. This number can be rep-
resented in binary as follows:

© 2002 by CRC Press LLC

312 = 100111000
.250 = .01

The total number of binary digits required for the binary encoding is
11. The number can be physically stored in a 16-digit structure (as the one
in Figure 20-3) with five cells to spare. However, since this fixed point for-
mat assigns eight cells to represent the integer part of the number,
312.250 cannot be encoded because the integer part (312) requires nine
binary digits.

Floating-point representations

Floating-point representations, on the other hand, do not use a fixed posi-
tion for the radix point. The idea of separately encoding the position of the
radix point originated in what is usually called scientific notation. In con-
ventional scientific notation a number is written as a base greater than or
equal to 1 and smaller than 10, multiplied by apower of 10. For example, the
value 310.25 in scientific notation is written:

3.1025 x 107
A number in scientific notation has a real part and an exponent part.
Using the terminology of logarithms these two parts are sometimes called

the mantissa and the characteristic. The following simplification of sci-
entific notation is used in computers:

3.1025 E2
Here the multiplication symbol and the base are implicit. The letter E,
which signals the start of the exponent part of the representation, ac-
counts for the name exponential form. Numbers smaller than 1 can be

represented in scientific notation or in exponential form by using nega-
tive powers. For example, the number .0004256 can be written:

4.256 x 107*

or as

4.256 E-4

This notation is called a floating-point to indicate that the radix point
floats according to the value of the exponent. Floating-point representa-
tions provide a more efficient use of computer storage.

Standardized floating-point formats

Both the significand and the exponent of a floating-point number can be
stored either as an integer, in sign magnitude, or in radix complement form.
At the same time, the number of bits assigned to each field can vary ac-

© 2002 by CRC Press LLC

cording to the range and the precision required. For example, the computers of
the CDC 6000, 7000, and CYBER series used a 96-digit significand with an
11-digit exponent, while the PDP 11 series used 55-digit significands and 8-digit
exponents.

Historical variations, incompatibilities, and inconsistencies in float-
ing-point formats created a need to standardize. In March and July 1985, the
Computer Society of the Institute of Electric and Electronic Engineers (IEEE)
and the American National Standards Institute (ANSI) approved a standard
for binary floating-point arithmetic (ANSI/IEEE Standard 754-1985). This stan-
dard established four formats for encoding binary floating-point numbers. Ta-
ble 20-2 summarizes the characteristics of these formats.

Table 20-2
ANSI/IEEE Floating Point Formats
SINGLE DOUBLE
PARAMETER SINGLE EXTENDED DOUBLE EXTENDED
total bits 32 43 64 79
significand bits 24 32 53 64
maximum exponent +127 +1023 +1023 +16383
minimum exponent -126 +1022 -1022 +16382
exponent width 8 11 11 15
exponent bias +127 - +1023 -

Binary-Coded Decimals (BCD)

Binary floating-point encodings are usually considered the most efficient for-
mat for storing numerical data in a digital computer. Other representations are
also used in computer work. Binary-coded decimal (BCD) is a representation
of decimal digits in binary form. There are two common ways of storing BCD
digits. One is known as the packed BCD format and the other one as unpacked.
In the unpacked format, one BCD digit is represented in one byte of memory
storage. In packed form two BCD digits are encoded per byte of storage. The un-
packed BCD format does not use the four high-order bits of each byte, which is
wasted storage space. On the other hand, the unpacked format facilitates con-
versions and arithmetic operations on some machines. Figure 20-4 (on the fol-
lowing page) shows the memory storage of a packed and unpacked BCD
number.

Floating-point BCD

Binary-coded decimal representations and BCD arithmetic have not been ex-
plicitly described in a formal standard. Each machine, programming language,
or application, stores and manipulates BCD numbers in unique and often in-
compatible ways.

© 2002 by CRC Press LLC

UNPACKED BCD PACKED BCD
0o010{0o011|23

00000010

00000011 0111100179

0000O0f0111

O 9 W N

0000O0(1 001

Figure 20-4 Packed and Unpacked BCD

The advantage of BCD representations is that the precision of the cal-
culations is not limited by a pre-defined encoding. A programmer can de-
velop a BCD format for representing any number of digits, to any decimal
precision. The main disadvantage of BCD mathematics is their much
slower speed of execution and the greater difficulty in developing mathe-
matical software.

The java.math library uses BCD and provides simple arithmetic to un-
limited precision. The java.math library is discussed in Chapter 21.

© 2002 by CRC Press LLC

Chapter 21

Fixed-Precision Numeric Data

Java Numeric Data Types

Java numeric data types can be classified into two groups: the language's
fixed-precision primitive data types, and the arbitrary- or variable-preci-
sion numeric types implemented in the java.math library. Variable-preci-

sion numeric types are the subject of Chapter 22.

Primitive Data Types

In Chapter 4 you saw the standard numeric data types supported by Java.
These include four integer types (int, short, long, and byte) and two float-
ing-point types (float and double). Table 21-1 shows the formatting of

Java's primitive numeric data types.

Table 21-1
Java Fixed-precision Numeric Types

TYPE BITS MAXIMUM MINIMUM DESCRIPTION
Int 32 2,147,483,648 -2,147,483,648 Signed integer
Short 16 32,767 -32,768 Signed integer
Long 64 9.2233...E17 -9.2233...E17 Signed integer
Byte 8 128 -127 Signed integer
Float 32 3.40282...E38 1.40129...E-45 IEEE single
Double 64 1.79769...E308 4.94065...E-324 IEEE double

Java primitive numeric data types correspond to IEEE 754 Standard
for Binary Floating-Point Arithmetic. Understanding computer arithmetic
in general, and Java arithmetic in particular, requires some knowledge of
the Standard.

© 2002 by CRC Press LLC

IEEE 754 Standard

Originally, the computer implementation of floating-point mathematics
was based on proprietary data formats and processing routines developed
by each manufacturer. The results were unreliable and often erroneous,
including a Cray supercomputer that was unable to perform exact divisions
by 2, a Honeywell computer in which the precision guard bits would disap-
pear unexpectedly, and several cases in which multiplication by 1.0 could
cause an overflow.

The first suggestion of a computer mathematics standard was an arti-
cle entitled A Proposed Standard for Binary Floating-Point Arithmetic,
published in the SIGNUM Newsletter of the Association for Computing
Machinery (ACM) in October, 1979. This was followed by an article by
Jerome T. Coonen, titled An Implementation Guide to a Proposed Stan-
dard for Floating-Point Arithmetic. This one appeared in Computer
Magazine, January, 1980. Draft 8.0 of the proposed standard was pub-
lished in the March 1981 edition of Computer. The standard was approved
by the IEEE Standards Board on March 21, 1985, and by the American Na-
tional Standards Institute in July, 1985. The standard was reaffirmed on
December 6, 1990. A more general standard was published in 1987, under
the designation of IEEE Standard 854 for Radix-Independent
Floating-Point Arithmetic.

The Foreword to IEEE 754 states that the intent of the standard is to
promote the portability of numeric software, to provide a uniform envi-
ronment for programs, and to encourage the development of better, safer,
and more sophisticated mathematical code. Among the specific refine-
ments of IEEE 754 are the diagnosis of anomalies at execution time, the
improved handling of exception conditions, and the implementation of in-
terval arithmetic. In addition, the standard provides for standard elemen-
tary functions, very high precision calculations, and the use of algebraic
symbolism in numerical operations.

A system in compliance with the IEEE 754 Standard can be imple-
mented in hardware, in software, or in both. However, conformance to
the standard is not determined by the internal properties of a system, but
by the user's perception. In other words, if a hardware product requires
additional software to comply with the provisions of the standard, it can-
not state that it conforms. The standard includes the following topics and
operations:

1. Floating-point numeric formats

© 2002 by CRC Press LLC

2. The arithmetic operations of addition, subtraction, multiplication, division,
square root, remainder, and compare

3. Conversions between integer and floating-point, between the various float-
ing-point formats, and between decimal strings and floating-point formats

4. Handling of errors and exceptions
The following topics are specifically excluded from the standard:
1. Decimal and integer formats

2. Interpretation of the sign and the significand fields in non-numeric
encodings (called NaNs)

3. Binary to decimal and decimal to binary conversion of numbers encoded in
the Standard's extended formats

Numeric data encoding

IEEE 754 defines four floating-point encodings divided into two groups.
The first group is called the basic group and the second one is the extended
group. The basic formats are specified in detail by the standard; for the ex-
tended formats, the standard lists only the minimum requirements. Both
groups have a single and a double precision encoding. Table 21-2 shows the
requirements for the four formats.

Table 21-2
Numeric Data Encodings in IEEE 754
SINGLE DOUBLE
BASIC EXTENDED BASIC EXTENDED
significand bits 24 32 53 64
maximum exponent +127 +1023 +1023 +16383
minimum exponent —126 +1022 -1022 -16382
exponent bias +127 - +1023 -
exponent bits 8 11 11 15
total bits 32 43 64 79

Each binary encoding in the IEEE 754 contains three elements or
fields:

1. The first field is the most significant bit and is used to encode the sign of the
number. A 1-bit represents anegative number and a 0 bit a positive number.

2. The second field is used for encoding the exponent of the number in biased
form. The biased encoding makes it unnecessary to store the exponent
sign. An exponent smaller that the bias is in the negative range. An expo-
nent larger than the bias is in the positive range. The exponent is zero if it is
equal to the bias.

© 2002 by CRC Press LLC

3. The third field is called the significand, or the fraction field. In IEEE for-
mats, this field has an implied 1-bit to the left of an also implied binary
point. However, the standard validates encodings in the extended format in
which the significand's leading bit is explicitly represented.

Figure 21-1 shows the bit structure and fields in the single and double
format of the IEEE 754 Standard.

31 IEEE 754 BASIC SINGLE FORMAT
30 22 o +— bits

exponent significand |
|
|

—— 8 23
sign
63

IEEE 754 BASIC DOUBLE FORMAT

62 51

exponent significand

11 52
sign

Figure 21-1 |EEE 754 Single and Double Format

IEEE 754 leaves considerable freedom of implementation in the ex-
tended formats. These formats are defined as having a minimum number
of parameters and an unspecified exponent bias, as shown in Table 21-2.
The standard states that the developer may encode values redundantly,
and reserve bit strings for purposes not described. The standard requires
that all implementations support the single format and recommends that
at least one extended format be implemented for the widest basic format
used. This means that an implementation that supports the single basic
formats, should also have an extended single encoding. By the same to-
ken, an implementation that supports the basic double format should also
have an extended double. The intention of this recommendation is that
the extended formats be used for storing intermediate results with more
precision than the format used for the result. This scheme serves to im-
prove computational accuracy.

© 2002 by CRC Press LLC

Rounding

Rounding (or rounding-off) is the process of adjusting a numerical value so
that it fits in a particular format. In general, the purpose of rounding opera-
tions is to reduce the error that arises from the loss of one or more digits.
For example, the number 27,445.89 can be reduced to an integer value by
truncating it to 27,445 or by rounding to 27,446. In this case the rounded
value is amore accurate representation of the original number than the one
obtained by chopping off the last two digits.

IEEE 754 requires that implementations provide the following round-
ing modes:

1. Round to Nearest. This should be the default rounding mode. In this mode
the result is the nearest representable value. The standard also describes
how rounding is to take place when the result is equally near two represent-
able values. This case, sometimes called the halfway case, occurs when
rounding decimal numbers in which the last non-zero digit is 5.

For example,with the number 128.500 the arbitrary rounding rule often
taught in high-school is to round up. This value would be rounded to the in-
teger 129. An alternative rounding mode is called round to nearest even. In
rounding the value 20,000.50 to an integer value there are two equally near
options: 20,001 and 20,000. In the rounding to the nearest even mode the
number 20,000 is preferred since it is an even number. Binary representa-
tions can be easily rounded to the nearest even result by selecting the value
in which the least significant bit is zero. Note that this method is also valid
with binary coded decimals.

2. Round to positive infinity. In this rounding mode the result is rounded to
the next highest representable value. This rounding mode is sometimes
called rounding up.

3. Round to negative infinity. In this rounding mode the result is rounded to
the next lowest representable value. This rounding mode is sometimes
called rounding down.

4. Truncate. According to the definition at the beginning of this section, trun-
cationis not considered arounding mode. Truncation, also called chopping
or chopping-off, consists in discarding the non-representable portion and
disregarding its value. The chop-off operation is sometimes used in gener-
ating an integer result from a fractional operand.

Interval arithmetic

The possibility of selecting rounding to positive infinity or negative infinity
(round-up and round-down) allows the use of a technique known as interval

© 2002 by CRC Press LLC

arithmetic. Interval arithmetic is based on executing a series of calculations
twice: once rounding up and once rounding down. This allows the determina-
tion of the upper and lower bounds of the error. Using interval arithmetic, it is
possible, in many cases, to certify that the correct result is a value not larger
than the result obtained while rounding up, and no smaller than the result ob-
tained while rounding down. This places the exact result within a certain
boundary.

Although IEEE 754 does not specifically mention interval arithmetic, it
does require directed rounding modes. Interval arithmetic can be a powerful
numerical tool, although there are exceptional cases in which these results
are not valid. Not all mathematical calculations can be subject to interval
analysis. The fundamental rules are as follows:

1. The operation must consist of multiple steps.

2. At least one intermediate result in the calculations must be subject to
rounding.

3. The value zero should not be in the error range, that is, both results must have
the same sign. The subsequent possibility of division by zero or by a very small
number introduces other potential problems that are not evident in interval
arithmetic.

4. The calculations should not be, in themselves, amethod for approximating re-
sults. Compounded approximations render invalid intervals.

Treatment of infinity

The concept of infinity arises in relation to the range of a system of real num-
bers. One approach, called a projective closure, describes infinity as an un-
signed representation for very small or very large numbers. When projective
infinity is adopted, the symbol << is used to represent a number that is either
too small or too large to be encoded in the system.

An alternative approach, called affine closure, recognizes the difference
between values that exceed the number system by being too large (+<) or
too small (-e0) to be represented. Figure 21-2 graphically represents the pro-
jective and the affine methods for the closure of a number system.

According to the standard, infinity must be interpreted in the affine sense.
That is, any representable finite number x shall be located

—oo (X) oo

© 2002 by CRC Press LLC

PROJECTIVE
CLOSURE

NEGATIVE POSITIVE
NUMBERS NUMBERS
0
- 00 | + 00

I
AFFINE CLOSURE

Figure 21-2 IEEE 754 Representations of Infinity

The standard also provides that arithmetic operations with one or
more infinity operands must be exact. Nevertheless, certain operations
on infinity are considered invalid and generate the corresponding excep-
tion, specifically:

1. Addition (or subtraction) of infinities with opposite signs, for instance, (-0)
+ (400).

Multiplication of 0 times co.
Division of o by co.

Remainder operations in the form x REM y, when & = oo.

A A

When infinity is created by the overflow of a finite operand.

The practical consequence of the affine treatment of infinities is that
when infinity forms part of an arithmetic operation the results are alge-
braically valid.

Note in Table 21-2 that in the basic encoding of the single format the
exponent (bias 127) is in the range +127 to —126. This leaves unrepre-
sented the exponent values OH and FFH. Also, in the encoding of the dou-
ble format, the exponent values OH and 7FFH are unrepresented. These
values are intentionally left unused by the standard so that they are avail-
able for encoding un-normalized numbers, infinity, and non-numeric val-
ues that represent invalid operations.

In the single and double formats infinity is represented with an expo-
nent of all one bits, and a significand of all zeros in the fractional portion.

© 2002 by CRC Press LLC

In other words, in encodings that use an implicit 1-bit in the significand,
the significand for an infinity appears as all zeros. On the other hand, in
encodings with an explicit 1-bit, infinity is represented as 100...00. In
IEEE 754 affine treatment of infinity is achieved by setting the number's
sign bit for negative infinity and clearing it for positive infinity.

Not a number (NaN)

IEEE 754 requires that a number that exceeds the capacity of the destina-
tion format due to overflow or underflow, including the representable
denormals, be replaced with the special encoding for infinity. Thereafter in-
finity arithmetic generates exact and valid results on these operands and no
exceptionis signaled, except for the special conditions already mentioned.

On the other hand, certain operations generate results that are absurd,
unrepresentable, or mathematically undefined; for example, attempts to
perform division by zero, to multiply 0 * o, and to calculate the square
root of a negative number. In these cases the standard provides a special
encoding to represent results that are classified as Not a Number (NaN).
The general pattern is an exponent of all 1-bits (as in the encoding for in-
finity) and a non-zero fractional portion of the significand. Note that the
NaN encoding is easily differentiated from the infinity encoding because
infinity requires all zeros in the fractional portion of the significand.
Since these are the only requirements of the standard for a NaN encoding,
implementations are free to use variations of the non-zero significand to
represent different types of NaNs.

Signaling and quiet NaNs

IEEE 754 requires the support of two different types of NaNs: signaling
NaNs and quiet NaNs. The difference between them is that when a signal-
ing NaN appears as an operand in an arithmetic calculation it forces the
generation of an error exception. Quiet NaNs, on the other hand, will si-
lently propagate signaling no error.

In the standard, signaling NaN and quiet NaN encodings are left to the
implementor's discretion. The standard does mention that signaling NaNs
are typically used in representing uninitialized variables, complex infinity
encodings, or other particular enhancements of the implementation. The
signaling mechanism provides a way of detecting an attempt to use NaNs
as numeric operands. It is left to the implementation to decide whether
the simple copying of a signaling NaN generates an error.

According to IEEE 754, signaling NaNs are not to be propagated by the
system. If the result of an operation is a NaN it should be represented as a

© 2002 by CRC Press LLC

quiet NaN, even if both operands are signaling NaNs. Since the only re-
quirement of the NaN encoding is that the exponent be formed with all
one-bits and that the significand be non-zero, there is an abundant num-
ber of possible NaN combinations, even in the smaller formats. For exam-
ple, in the single format which uses a 23-bit significand, there are over
eight million possible encodings for positive NaNs, and as many for nega-
tive NaNs. How these encodings are assigned to the various signaling and
non-signaling NaNs is also left to the implementation.

Exceptions

IEEE 754 requires the identification and signaling of five different error
conditions:

1. Invalid operation
Division by zero
Overflow
Underflow

AN

Inexact result

The signaling of an exception condition is performed by setting a flag,
executing a trap routine, or both. The default response is to bypass the
trap routine. The trap (which is different for each exception condition)
transfers control to the user's error handler. The implementation must
provide a different error flag for each exception.

Invalid operation exception

According to IEEE 754 the following conditions generate an invalid opera-
tion exception:

1. An operation on a signaling NaN

2. Addition or subtraction operations in which one or both operands are infin-
ities

Multiplication of 0 times o

Division of 0/0 or oo/eo

Remainder operation, in the form x REM y, in whichx = 0 or y =

The square root of a negative number

N o o W

Conversion operations from binary floating-point formats into integer or
decimal formats that produce aresult that cannot be faithfully represented

8. Comparison operations in which one or both operands are NaNs.

© 2002 by CRC Press LLC

Division by zero exception

This exception occurs when the divisor is zero and the dividend is non-zero.
According to the standard the result is encoded as infinity. Note that the op-
eration 0/0, which generates an invalid exception, is not considered a divi-
sion by zero.

Overflow exception

Table 21-2 shows the exponent encodings in the IEEE 754 basic single for-
mat, which ranges from -126 to +127. Since this exponent is bias 127, the
maximum absolute exponent is the decimal value 254 (11111110B) and the
minimum absolute exponent is the decimal value 1 (00000001B). The expo-
nent encodings of 0 (00000000B) and 255 (11111111B) are not used in repre-
senting real numbers in the basic single format. An analysis of the valid
exponents in the other formats confirms that the exponent digit value of
00...00B and of 11...11B are also not part of the legal range assigned for the
representation of real numbers.

This approach is based on the fact that any computer representation of
real numbers is necessarily limited to a certain range. Numbers approach
the limits of this range as they become very large or very small. The over-
flow condition takes place whenever a real number exceeds the repre-
sentable range by becoming too large. In the standard's basic and
extended formats the maximum representable values have an exponent
in the form 11...10B and a significand of 11..11B. With positive real num-
bers, adding the smallest possible value to this encoding generates a num-
ber that exceeds the representable range (overflow).

The standard requires that when an overflow condition is detected, an
exception be signaled and a special encoding be entered as a result of the
operation. There are four possible variations of the actual results, de-
pending on the selected rounding mode, as follows:

1. Ifround to nearest is selected, the result of an overflow is encoded as an in-
finity with the sign of the intermediate result.

2. If the truncate mode is selected, the result of an overflow is represented
with the format's encoding for the largest representable number.

3. If round to negative infinity is selected, the result of a positive overflow is
represented with the format's encoding for the largest representable value
and a negative overflow with the encoding for —ce.

4. If round to positive infinity is selected, the result of a negative overflow is
represented with the format's encoding for the smallest representable
value, and a positive overflow with the encoding for +e.

© 2002 by CRC Press LLC

Note that overflow is always abrupt (also called a sudden overflow).
Because of the limitations in the representation of real numbers there are
no provisions for gradual overflow. The result of the overflow of a posi-
tive number results in +e or in the larger representable positive real,
while the overflow of a negative number results in -o= or in the smallest
representable negative real. Which action is taken depends on the se-
lected rounding mode.

Underflow exception

Overflow conditions take place as the absolute value of anumber becomes
very large. Underflow, on the other hand, takes place as the absolute value
of anumber becomes very small, in other words, as its value approximates
zero. One method of handling numbers that approximate zero is to make
them equal zero. This operation, sometimes called flush to zero, has been
frequently used as a simple solution to the problem of underflow. But this
sudden underflow presents some peculiar problems.For example, in the
equation

(x-y)+y = x

if y is a sufficiently large number, then the portion (x —) could suddenly
underflow to zero.

According to the provisions of IEEE 754, overflow conditions are han-
dled by abruptly converting the result to an infinity, or to the largest rep-
resentable real. Which method is adopted depends on the rounding mode
in effect. In order to avoid the dangers of sudden underflow, the standard
requires using a special un-normalized representation of real numbers,
called denormals.

To understand gradual underflow you must recall that a floating-point
representation is said to be normalized when the first digit of the
significand is non-zero. Normalization is designed to preserve the maxi-
mum number of significand digits and the precision of the stored value.
You can deduce that the smallest representable number in either format
is encoded with an exponent pattern of 00...01B and a significand of
00...00B. Gradual underflow is based on the use of a special encoding for
real numbers (the so-called denormals) which are characterized by an ex-
ponent in the form 00...00B and a denormalized significand. This repre-
sentation, easily identified by an exponent containing all zero bits, allows
representing numbers smaller than the smallest one that could be en-
coded using a normalized significand. Gradual underflow is made possi-
ble at the expense of precision. As the significand becomes denormalized,
the number of its significant digits diminishes.

© 2002 by CRC Press LLC

IEEE 754 requires the use of denormalized representations as well as
the gradual underflow of very small numbers. The standard describes two
correlated events that can contribute to underflow. One is the creation of a
representable number which is yet so small that it may generate an error
exception. An example is the overflow condition that could result from di-
viding by a very small operand. The second event is the loss of accuracy
that results from representing very small numbers by denormalizing the
significand.

Inexact result exception

The inexact results can occur from many arithmetic operations performed
onvalid operands. For example, the division operations 1/3, 1/7 and 1/9 can-
not be exactly represented in binary form. This exception, sometimes
called the precision exception, is designed as a warning that the rounded
result of the previous operation cannot be exactly represented. In most
computational situations this is the most frequent exception, and also the
error condition that is most often ignored.

IEEE 754 in Java

Java floating-point arithmetic is a partial implementation of IEEE 754. The
support includes overflow and underflow and the representation of invalid
expressions as a NaN. However, Java arithmetic does not detect, trap, or
signal IEEE 754 exceptions such as invalid operation, division by zero,
overflow, underflow, or inexact result.

Java's only rounding mode is rounding to the nearest even. This means
that inexact results are rounded to the nearest representable value. In
case of there being two equally distant values, Java uses the one with a
zero least-significant bit (even number). This rounding mode corresponds
to the default rounding in IEEE 754, called round-to-nearest or even. The
fact that Java does not provide user-selectable rounding modes deter-
mines that interval arithmetic is not possible. The class Math in the
java.lang library does provide several truncation methods for casting
floating-point values into integers. These methods, named ceil(), floor(),
rint(), and round(), are described later in this section.

Java does provide the programmer with some methods that relate to
IEEE 754 data types and special forms. These methods are located in the
classes Double and Float of the java.lang library. These methods are de-
scribed in the following sections.

© 2002 by CRC Press LLC

java.lang Class Double

This class contains several methods for converting and manipulating data
defined in IEEE 754 double format as well as methods for creating con-
stants and special types.

The following constants are defined in the class:

MAX_VALUE

This constant returns the largest magnitude that can be held in a variable of
type double. The constant is defined as:

public final static double MAX VALUE;

The largest value is the same for positive or negative numbers.
MAX_VALUE returns:

1.79769313486231570e+308

MIN_VALUE

This constant returns the smallest magnitude that can be held in a variable
of type double. The constant is defined as:

public final static double MIN VALUE;

The smallest value is the same for positive or negative numbers.
MIN_VALUE returns:

4.94065645841246544e-324

NaN

This constant returns an IEEE 754 Not-a-Number in double format. The
constant is defined as follows:

public final static double NaN;

The value returned as a NaN cannot be compared to other numeric
operands, including another NaN or itself. The NaN encoding is:

0x7ff8000000000000L

NEGATIVE_INFINITY

This constant returns the IEEE 754 value for negative infinity in double for-
mat. It is defined as follows:

public static final double NEGATIVE INFINITY;

© 2002 by CRC Press LLC

A negative infinity compares less-than any other value, except itself.
The encoding for negative infinity is:

0xf££0000000000000L

POSITIVE_INFINITY

This constant returns the IEEE 754 value for positive infinity in double for-
mat. It is defined as follows:

public static final double POSITIVE INFINITY;

A positive infinity compares greater-than any other value, except itself.
The encoding for positive infinity is:

0x7££0000000000000L

The Class Double contains the following methods to test for these spe-
cial encodings.

public static boolean isInfinite(double v)

Argument v is the value to be tested. Returns true if the value is positive in-
finity or negative infinity; false otherwise.

public boolean isinfinite()

Returns true if the value represented by this object is positive infinity or
negative infinity; false otherwise.

public static boolean isNaN(double v)

Argument v is the value to be tested. Returns true if the value of the argu-
ment is NaN; false otherwise.

public boolean isNaN()

Returnstrueifthe value represented by this object is NaN; false otherwise.

java.lang Class Float

This class contains several methods for converting and manipulating data
defined in IEEE 754 single format as well as methods for creating constants
and special types.

The following constants are defined in the class:

MAX_VALUE

This constant returns the largest magnitude that can be held in a variable of
type float. The constant is defined as:

© 2002 by CRC Press LLC

public final static float MAX VALUE;
The largest value is the same for positive or negative numbers.
MAX_VALUE returns:

3.40282346638528860e+38

MIN_VALUE

This constant returns the smallest magnitude that can be held in a variable
of type float. The constant is defined as:

public final static float MIN_VALUE;

The smallest value is the same for positive or negative numbers.
MIN_VALUE returns:

1.40129846432481707e-45

NaN

This constant returns an IEEE 754 Not-a-Number in float format. The con-
stant is defined as follows:

public final static float NaN;
The value returned as a NaN cannot be compared to other numeric
operands, including another NaN or itself. The NaN encoding float is:

0x7££c00000

NEGATIVE_INFINITY

This constant returns the IEEE 754 value for negative infinity in a type float.
It is defined as follows:

public static final float NEGATIVE INFINITY;
A negative infinity compares less-than any other value, except itself.
The float encoding for negative infinity is:

0x£f£800000

POSITIVE_INFINITY

This constant returns the IEEE 754 value for positive infinity in a type float.
It is defined as follows:

public static final float POSITIVE INFINITY;

A positive infinity compares greater-than any other value, except itself.
The float encoding for positive infinity is:

0x7£800000

© 2002 by CRC Press LLC

The Class Float also contains the following methods to test for these
special encodings.
public static boolean isInfinite(float v)
Argument v is the value to be tested. Returns true if the value is positive in-
finity or negative infinity; false otherwise.
public boolean isinfinite()
Returns true if the value represented by this object is positive infinity or
negative infinity; false otherwise.
public static boolean isNaN(float v)
Argument v is the value to be tested. Returns true if the value of the argu-
ment is NaN; false otherwise.
public boolean isNaN()

Returnstrueifthe value represented by this objectis NaN; false otherwise.

Java Numeric Truncation

The class Math in the java.lang library contains several methods that allow
control over truncation of floating-point values into integers. Although
these methods are sometimes described as rounding methods, and two of
them are named round(), they in fact perform IEEE 754 truncation opera-
tions. The truncation methods are named ceil(), floor(), rint(), and round().
Their operation is as follows:

public static double ceil(double a)

Returns the smallest integer value that is closest to negative infinity and not
less than the argument. The following are special cases:

1. If the argument is an integer, then the result is the same as the argument.

2. Ifthe argument is a NaN, an infinity, positive zero, or negative zero, then the
result is the same as the argument.

3. Ifthe argument is less than zero but greater than -1.0, then the result is nega-
tive zero.

The methods only parameter is a value of type double. The method's
name relates to the notion of a numeric ceiling.

public static double floor(double a)

Returns the largest integer value that is closest to positive infinity and not
greater than the argument. The following are special cases:

© 2002 by CRC Press LLC

1. If the argument is an integer, then the result is the same as the argument.

2. If the argument is a NaN, an infinity, or positive zero, or negative zero, then
the result is the same as the argument.

The method's only parameter is a value of type double.

public static double rint(double a)

Returns a double value thatis closest in value to the argument and is an inte-
ger. If two double values that are integers are equally close to the value of
the argument, then the resultis the integer value that is even. The following
are special cases:

1. If the argument is an integer, then the result is the same as the argument.

2. Ifthe argument is NaN, or an infinity, or positive zero, or negative zero then
the result is the same as the argument.

The function's only parameter is a value of type double. Note that
rint() returns an integer variable in a double type.
public static long round(double a)

Returns the closestlong to the argument. The resultis rounded to an integer
by adding 1/2, taking the floor of the result, and casting the result to type
long. In other words, the result is equal to the value of the expression:

(long)Math.floor(a 0.5d)

The following are special cases:
1. If the argument is NaN, the result is 0.

2. Ifthe argument is negative infinity or any value less than or equal to the value
of Long. MIN_VALUE, the result is equal to the value of Long. MIN_VALUE.

3. Ifthe argument is positive infinity or any value greater than or equal to the value
of Long. MAX_VALUE, the result is equal to the value of Long. MAX_ VALUE.

The method's only parameter is of type double. The integer result is re-
turned in a type long.

public static int round(float a)

Returns the closest int to the argument. The result is rounded to an integer
by adding 1/2, taking the floor of the result, and casting the result to type int.
In other words, the result is equal to the value of the expression:

(int)Math.floor(a 0.5f)

The following are special cases:

© 2002 by CRC Press LLC

1. If the argument is NaN, the result is 0.

2. If the argument is negative infinity or any value less than or equal to the
value of Integer.MIN_VALUE, the result is equal to the value of Inte-
ger.MIN_VALUE.

3. If the argument is positive infinity or any value greater than or equal to the
value of IntegerMAX_VALUE, the result is equal to the value of Inte-
ger.MAX_VALUE.

The method's only parameter is of type float. The integer result is re-
turned in a type int.

© 2002 by CRC Press LLC

Chapter 22

Variable-Precision Numeric Data

High-Precision Arithmetic

The java.lang library provides two classes that allow the implementation of
high-precision arithmetic. The BigDecimal class supports arbitrary-preci-
sion operations on signed decimal numbers, while the BigInteger does the
same for integers. These classes allow the programmer to define the preci-
sion of decimal and integer values. The resulting numbers are never
changed by the system and never overflow. On the other hand, the mathe-
matical operations that can be applied to arbitrary-precision datais limited
to basic arithmetic, conversions, comparisons, and rounding. The java li-
braries provide no trigonometry, logarithms, or exponential functions for
arbitrary-precision data.

BigDecimal Numbers

A BigDecimal object consists of an arbitrary-precision decimal number de-
fined as an integer unscaled value and a non-negative 32-bit integer scale.
The scale of a BigDecimal number is the number of digits to the right of the
decimal point. For example, the number

123.556677

has a scale of 6, since there are six digits to the right of the decimal point.
Zeros to the right of the scale digits are not truncated to reduce the scale;
therefore, the numbers 2.0 and 2.00 are not considered equal by some oper-
ations of the BigDecimal class. Since the scale is a 32-bit integer number,
the largest number of digits to the right of the decimal point is

68,719,476,735

© 2002 by CRC Press LLC

Consider that the number

5.6677221133445533229988776666554433221133

has a scale of 40 digits, which is a very small fraction of the format's maxi-
mum range. This means that for most practical purposes this range can be
considered of unlimited precision.

In addition to its high-precision, the BigDecimal class gives its users
control over rounding behavior, by providing eight rounding modes. As
discussed in Chapter 21, rounding control provides some interesting pro-
gramming possibilities, including the use of boundary arithmetic.

BigDecimal constructors

The BigDecimal class contains the following constructors:

BigDecimal(Biginteger val)

Translates a BigInteger into a BigDecimal.

BigDecimal(Biginteger unscaledVal, int scale)

Translates a BigInteger unscaled value and an int scale into a BigDecimal.

BigDecimal(double val)
Translates a double into a BigDecimal.
BigDecimal(String val)

Translates a string into a BigDecimal.

Using the BigDecimal constructors

The first three constructors are used to convert from other numeric for-
mats into the BigDecimal format. For example, to convert a value in double
precision format you can code:

double abbl = 1.23;
BigDecimal bigNum = new BigDecimal (aDbl) ;

At this point the variable bigNum contains the value of the closest dou-
ble precision representation to the number 1.23. Since the value 1.23 can-
not be exactly represented as a binary floating-point number, the value
stored in bigNum is:

1.229999999999999982236431605997495353221893310546875

In order make sure of the value stored in a BigDecimal variable you
must use the constructor that takes a string operand. For example:

© 2002 by CRC Press LLC

bigNum = new BigDecimal ("1.23");

This constructor translates the string operand into a BigDecimal value.
The string consists of an optional positive or negative sign, or no sign for
positive values, followed by a sequence of zero or more digits that form
the integer part of the number, optionally followed by a decimal point, op-
tionally followed by a fractional part, optionally followed by an exponent.
The string must contain at least one digit in either the integer or the frac-
tional part. The portion of the number formed by the sign, the integer and
the fraction is referred to as the significand.

The exponent can consist of the character e or E, followed by one or
more decimal digits. The value of the exponent must lie between Inte-
ger.MIN_VALUE and Integer. MAX_VALUE, inclusive.

The scale of the BigDecimal value produced by the constructor will be
the number of digits in the fraction, or zero if the string contains no deci-
mal point. If there is an exponent, the scale is adjusted by subtracting the
exponent. If the resulting value is negative, the scale of the BigDecimal is
zero. In any case the resulting BigDecimal is

significand * 1Q°€*Ponent

For floats and doubles other that NAN, +INFINITY and -INFINITY, the
string constructor is compatible with the values returned by
Float.toString() and Double.toString(). Using the toString() methods is
the recommended way to convert a float or double into a BigDecimal, as
it avoids the unpredictability of the BigDecimal(double) constructor.

BigDecimal scale operations

Two types of operations are provided for manipulating the scale of
BigDecimal numbers: those that relate to setting and changing the scale
and rounding controls, and those that move the decimal point.

SetScale() method

The setScale() method is provided with two different signatures. One takes
as parameters ascale and arounding mode, and the other one just the scale.
Recall that the scale is the number of representable digits to the right of the
decimal point. The setScale() methods are as follows:

public BigDecimal setScale(int scale, int roundingMode)

Returns a BigDecimal whose scale and rounding mode are the specified val-
ues. The method returns a BigDecimal whose scale is the specified value,
and whose unscaled value is determined by multiplying or dividing this

© 2002 by CRC Press LLC

BigDecimal's unscaled value by the appropriate power of ten to maintain
its overall value.

Throws:

1. ArithmeticException if scale is negative, or if roundingMode-
==ROUND_UNNECESSARY and the specified scaling operation would re-
quire rounding. Rounding modes are discussed later in this chapter.

2. IllegalArgumentException if roundingMode does not represent a valid
rounding mode.

Examples of the scaling methods are provided in the context of round-
ing operations later in this chapter.

public BigDecimal setScale(int scale)

Returns a BigDecimal whose scale is the specified value as described for
the previous signature of this method. The call to this method can be used
toreduce the scale if there are sufficiently many zeros at the end of its frac-
tional part. This allows the rescaling without loss of precision.

Scale() method

The scale() method is used to obtain the scale of a BigDecimal number. The
method is documented as follows:

public int scale()

Returns the scale of a BigDecimal as a type int.

BigDecimal point operations

Decimal point motion operations are provided by the methods
movePointLeft() and movePointRight(). Both methods return a
BigDecimal created from the operand by moving the decimal point a speci-
fied distance in the specified direction. These methods change the value of
a number without affecting its precision.

public BigDecimal movePointLeft (int n)

Returns a BigDecimal which is equivalent to the argument with the
decimal point moved 7 places to the left. If n is non-negative, the method
adds n to the scale. If n is negative, the method is equivalent to
movePointRight(—n).

public BigDecimal movePointRight (int n)

Moves the decimal point the specified number of places to the right. If
this BigDecimal's scale is > n, the method subtracts n from the scale; oth-

© 2002 by CRC Press LLC

erwise, it sets the scale to zero, and multiplies the integer value by 10. If n
is negative, the call is equivalent to movePointLeft(-n).

BigDecimal comparisons and conversions

Several methods of the BigDecimal class provide comparison of
BigDecimal numbers with other objects, as well as conversion between
BigDecimal numbers and other formats. The comparison methods are
equals() and compareTo(), while the conversion methods are
doubleValue(), floatValue(), intValue(), longValue(), toBiglnteger(),
valueOf(), toString(), and hashCode().

public boolean equals(Object x)

Compares a BigDecimal with the object specified as an operand. This
method considers two BigDecimal numbers equal if they are equal in value
and scale only. Thus, equals returns that 3.0 is not equal to 3.00. The method
returns if both BigDecimal objects are equal in value and scale, as in the fol-
lowing code fragment:

BigDecimal aNum = new BigDecimal ("3.45"); // String constructors
BigDecimal bNum = new BigDecimal ("3.450");

// Testing equals/()

System.out.println (aNum.equals (bNum)) ; // FALSE

public int compareTo(BigDecimal val)

Compares two BigDecimal with the specified BigDecimal independently of
scale. In contrast with the equals() methods, compareTo() does not con-
sider the scale of the operands when making comparisons. Also,
compareTo() returns an integer instead of a boolean.

The compareTo() method can be used with any of the six boolean com-
parison operators (<, ==, >, >=, |=, <=). The general form is:

(x.compareTo (y) <op> 0)

where x and y are two BigDecimal numbers and <op> is one of the boolean
operators. The method returns -1 if the first operatoris less than the second
one, 0 if both operators are equal, and 1 if the first one is greater than the
second one. For example:

BigDecimal aNum
BigDecimal bNum
BigDecimal cNum

new BigDecimal ("3.4
new BigDecimal ("3.4
new BigDecimal ("5.0

5"); // String constructor
50");

"
"y .
7

int numval = 0;

// Testing compareTo ()

System.out.println (aNum.compareTo (bNum) == 0); // TRUE
numVal = aNum.compareTo (cNum) ; // -1

System.out.println (numval) ;

© 2002 by CRC Press LLC

public double doubleValue()

Converts a BigDecimal to a double. If the BigDecimal operand is too large
to represent, the method returns DOUBLE.NEGATIVE_INFINITY or
DOUBLE.POSITIVE_INFINITY.

public float floatValue()

Converts a BigDecimal operand to a float. If the BigDecimal is too large to
represent as a float, the method returns FLOAT.NEGATIVE_INFINITY or
FLOAT.POSITIVE_INFINITY.

public int intValue()

Converts the BigDecimal operand to an int. The fractional part of the
BigDecimal is discarded. If the resulting “BigInteger” is too large to fit in an
int, the low-order 32 bits are returned.

public long longValue()

Converts the BigDecimal operand to a long. The fractional part of the
BigDecimal is discarded. If the resulting “BigInteger” is too large to fit in a
long, the low-order 64 bits are returned.

public Biginteger toBiginteger()

Converts the BigDecimal operand to a BigInteger. The fractional part of the
BigDecimal is discarded. The BigInteger format is discussed later in this
chapter.

public static BigDecimal valueOf(long unscaledVal, int scale)

Translates a long unscaled value and an int scale into a BigDecimal. This
method is provided in preference to a (long, int) constructor because it al-
lows for reuse of common BigDecimals. For example:

// Testing valueOf ()
System.out.println (BigDecimal.valueOf (2, 4)); // 0.0002

public static BigDecimal valueOf(long val)

Translates a long value into a BigDecimal with a scale of zero. This method
isprovidedin preference to a (long) constructor because it allows for reuse
of common BigDecimals. For example:

// Testing valueOf ()
System.out.println (BigDecimal.valueOf (1)) ; // 1

public String toString()

Returns the string representation of the BigDecimal operand. A leading mi-
nus sign is used to indicate sign, and the number of digits to the right of the

© 2002 by CRC Press LLC

decimal point is used to indicate scale. This method is compatible with the
constructor that uses a String argument.

public int hashCode()

Returns the hash code for the BigDecimal operand. The hash code is an in-
teger calculated from the number's value and scale. For this reason two
numbers with the same value but different scales may have different hash
codes. However, it is possible that two unequal big decimal numbers may
have the same hash codes. Hash codes and hash tables are used in data pro-
cessing.

BigDecimal rounding controls

The class java.math contains several constants that are used to enable any
one of several rounding modes. These constants are defined as static field
variables of type int in the BigDecimal class. Table 22-1 lists the rounding
mode constants.

Table 22-1
Rounding Mode Constants in BigDecimal Class
CONSTANT ACTION
ROUND_CEILING Round towards positive infinity
ROUND_DOWN Round towards zero
ROUND_FLOOR Round towards negative infinity

ROUND_HALF_DOWN Round towards nearest value unless
both values are equidistant, in which
case round down

ROUND_HALF_EVEN Round towards the nearest value un-
less both values are equidistant, in
which case, round towards the even
value

ROUND_HALF_UP Round towards nearest value unless
both values are equidistant, in which
case round up

ROUND_UNNECESSARY Assert that the requested operation
hasan exact result, hence no
rounding is necessary

ROUND_UP Round away from zero

The rounding control constants are typically used in methods that con-
tain a rounding mode parameter, such as the setScale() and divide()
methods of the BigDecimal class. For example, a method to change the
scale and the rounding mode of a BigDecimal variable could be coded as
follows:

© 2002 by CRC Press LLC

static BigDecimal reScale(BigDecimal n,
int scale,
int roundingMode)

return (n.setScale(scale, roundingMode)) ;

This method would return the BigDecimal operand with a new scale
and rounding mode. For example:

BigDecimal aNum = new BigDecimal ("3.45");

// Testing setScale() method and rounding mode constants
System.out.println (aNum) ; // 3.45
aNum = reScale(aNum, 1, BigDecimal.ROUND_UP) ; // 3.5

System.out.println (aNum) ;

Since the scale() method returns the current scale of a BigDecimal
number, the method reScale() could be modified to change the rounding
mode only, as follows:

static BigDecimal reRound (BigDecimal n,
int roundingMode)
{
return (n.setScale(n.scale(), roundingMode)) ;
}

BigDecimal Arithmetic

The BigDecimal class provides methods for performing basic arithmetic on
BigDecimal numbers. Table 22-2 is a summary of these methods.

Table 22-2
Arithmetic Methods in BigDecimal Class

Abs()
Returns a BigDecimal whose value is the absolute value
of this BigDecimal()
add(BigDecimal val)
Returns a BigDecimal whose value is the sum of the
argment and the operand
divide(BigDecimal val, int roundingMode)
Returns a BigDecimal whose value is the quotient of the
argument and the operand
divide(BigDecimal val, int scale, int roundingMode)
Returns a BigDecimal whose value is the quotient of the
argument and the operand and whose scale is as
specified
max(BigDecimal val)
Returns the maximum of this BigDecimal and val.
min(BigDecimal val)
Returns the minimum of this BigDecimal and val

(continues)

© 2002 by CRC Press LLC

Table 22-2
Arithmetic Methods in BigDecimal Class (continued)

multiply(BigDecimal val)
Returns a BigDecimal whose value is the product of the
argument and the operand
negate()
Returns a BigDecimal whose value is the operand times —1
int signum()
Returns -1, 0, or 1 if the value of the BigDecimal operand
is negative, zero, or positive
subtract(BigDecimal val)
Returns a BigDecimal whose value is the difference
between the argument and the operand

Note in Table 22-2 that the arithmetic operations provided for
BigDecimal numbers include addition, subtraction, multiplication, divi-
sion, absolute value, maximum, minimum, sign extraction, and negation.

A sample program

The following program demonstrates arithmetic on big decimal numbers
by calculating the square root. The code requests user input for a string of
digits representing the number and for the number's scale. The square root
of the user's input is calculated using Newton's method and the results are
displayed on the screen. The following is a listing of the source code.

class BigDSgrt
{
public static void main(String[] args)
{
double value = 1.0;
String numS;
int scale = 30;
BigDecimal v;

System.out.println("Big decimal square root routine\n");
numS = Keyin.inString ("Enter value: ");
scale = Keyin.inInt ("Enter scale: ");
// Convert value to big decimal format
v = new BigDecimal (numS) ;
System.out.println(sqgrt (v, scale));
}
public static BigDecimal sqgrt(BigDecimal n, int s)
{
BigDecimal TWO = BigDecimal.valueOf (2);
// Obtain the first approximation
BigDecimal x = n.divide (BigDecimal.valueOf(3), s,
BigDecimal .ROUND_DOWN) ;
BigDecimal lastX = BigDecimal.valueOf (0);
// Proceed through 50 iterations

© 2002 by CRC Press LLC

for (int i=0; i<50; i++)
{

x = n.add(x.multiply(x)).divide(x.multiply (TWO), s,
BigDecimal.ROUND_DOWN) ;

if (x.compareTo(lastX) == 0)
break;

lastX = x;
}
return x;

}

On the Web

The BigDSqrt program is found in the Chapter 22 folder at www.crc-
press.com.

The Biginteger Class

The java.math library contains the BigInteger class which allows creation,
manipulation, and basic arithmetic on arbitrary-precision integers. Integer
numbers are less useful for scientific and engineering applications than the
DigDecimal class described previously. However, Java's Biglnteger class is
not a mirror image of its BigDecimal counterpart. BigInteger implements
operations that are not available for decimal numbers, in addition to the el-
ementary ones that are available in both classes.

The Biglnteger class provides methods that are analogs of the ones
that the language provides for primitive integer operators. In addition,
the Biglnteger class provides operations for modular arithmetic, greatest
common divisor calculation, testing and generating prime numbers, bit
manipulations, and other operations not implemented for the primtive

types.

Biginteger numbers

Like the primitive integer data types, Java Biglnteger numbers are repre-
sented in two's-complement form. Semantics of arithmetic operations are
similar to the ones in Java integer arithmetic. For example, division by zero
throws an ArithmeticException, and division of a negative by a positive
yields anegative (or zero) remainder. One exceptionis the handling of over-
flow, which is not necessary for big integers since these numbers can be
made as large as necessary to accommodate the results of an operation.

Bitwise shift operators are the same ones used in Java primitive data
types. In this manner a right-shift with a negative shift distance results in

© 2002 by CRC Press LLC

a left shift, and vice-versa. Here again, the unsigned right shift operator
(>>) is omitted since the operation is not necessary with the infinite word
size provided by this class.

The bitwise logical operators and the comparison operators also
mimic those of Java. The Biglnteger class provides modular arithmetic
operations to compute residues, perform exponentiation, and calculate
multiplicative inverses. These methods return a non-negative result, be-
tween 0 and (modulus - 1), inclusive.

Biginteger constructors

The Biglnteger constructor is overloaded to provide several convenient
ways of building big integer numbers. The constructor signatures are as fol-
lows:

Biginteger(byte[] val)

Translates a byte array containing a two's-complement binary representa-
tioninto a BigInteger. In this form of the constructor the big integer value is
taken from the byte array val, which contains an integer in two's comple-
ment form. The bits are assumed to be in big-endian format. That is, val[0]
contains the most-significant byte. The result is negative if the most-signifi-
cant bit of val[0] is a 1 digit.

Biginteger(int signum, byte[] magnitude)

Translates the sign-magnitude representation into a Biginteger. In this form
of the constructor the big integer value is taken from the byte array magni-
tude, which must contain a nonnegative binary number. The bits are as-
sumed to be in big-endian format, that is, magnitude [0] contains the
most-significant byte. If signum is -1, the result is negative. If signum is 0,
the magnitude argument must contain only zeros. If signum s 1, the result is
positive.

Biginteger(int bitLength, int certainty, Random rnd)

Constructs a randomly generated positive Biglnteger that is probably
prime, with the specified bitLength. In this form of the constructor the big
integer value is initialized with bitLength number of random bits. The
paramenter rnd is used to generate the random bits. The probability that
the result is prime is controlled by the parameter certainty; larger values in-
crease the probability of a prime number's being obtained. The larger the
size of the certainty parameter the longer this constructor takes to com-
plete.

© 2002 by CRC Press LLC

Biginteger(int numBits, Random rnd)

Constructs a randomly generated Biglnteger, uniformly distributed over
the range 0 to (2"""*"), inclusive. In this form of the constructor the big in-
teger value is initialized with numBits number of random bits. The parame-
ter rnd is used to generate the random bits. The value is never negative.

Biginteger(String val)

Translates the decimal String representation of a Biglnteger into a
BigInteger. In this form of the constructor val is parsed as aradix 10 number
to obtain the big integer value. The first character can optionally be a nega-
tive sign. The parameter val must not contain spaces and must include at
least one digit. This constructor form is compatible with the strings gener-
ated by the toString() method.

Biginteger(String val, int rdix)

Translates the String representation of a Biglnteger in the specified radix
into a BigInteger. In this form of the constructor the parameter val is parsed
as a radix rdix number to obtain the big integer value. The first character
can optionally can be anegative sign. The string val must not contain spaces
and must include at least one digit.

Biginteger methods

There are over forty methods in the BigInteger class. Table 22-3 is summary
of these methods.

Table 22-3
Methods in the Biglnteger Class
RETURNS METHOD/ACTION
Biglnteger abs()

Returns a Biglnteger whose value is the
absolute value of this Biglnteger

Biglnteger add(Biginteger val)
Returns a Biglnteger whose value is (this val)
Biglinteger and(Biginteger val)
Returns a Biglnteger whose value is (this & val)
Biglnteger andNot(Biginteger val)
Returns a Biglnteger whose value is (this &
~val)
int bitCount()

Returns the number of bits in the two's
complement representation of this Biglnteger
that differ from its sign bit

(continues)

© 2002 by CRC Press LLC

Table 22-3

Methods in the Biginteger Class (continued)

RETURNS

METHOD/ACTION

int

Biglnteger

int

int

Biglnteger
BigInteger]]

Double

boolean

BigInteger

Float

Biglnteger

int

int

Int

boolean

long

bitLength()

Returns the number of bits in the minimal two's-
complement representation of this Biglnteger,
excluding a sign bit

learBit(int n)

Returns a BigIinteger whose value is equivalent
to this Biglnteger with the designated bit
cleared

compareTo(Biginteger val)

Compares this Biglnteger with the specified
Biglnteger

compareTo(Object o)

Compares this Biglnteger with the specified
object

divide(BiglInteger val)

Returns a Biglnteger whose value is (this / val)
divideAndRemainder(Biginteger val)

Returns an array of two Biglntegers containing
(this / val) followed by (this % val)
doubleValue()

Converts this Biglnteger to a double
equals(Object x)

Compares this Biglnteger with the specified
Object for equality

flipBit(int n)

Returns a Biglnteger whose value is equivalent
to this Biglnteger with the designated bit flipped
floatValue()

Converts this Biglnteger to a float
gcd(Biginteger val)

Returns a Biglnteger whose value is the greatest
common divisor of abs(this) and abs(val)
getLowestSetBit()

Returns the index of the rightmost (lowest-order)
one bit in this Biglnteger (the number of zero
bits to the right of the rightmost one bit)
hashCode()

Returns the hash code for this Biginteger
intValue()

Converts this Biglnteger to an int
isProbablePrime(int certainty)

Returns true if this Biglnteger is probably prime,
false if it's definitely composite

longValue()

Converts this Biglnteger to a long

© 2002 by CRC Press LLC

(continues)

Table 22-3

Methods in the Biginteger Class (continued)

RETURNS METHOD/ACTION

Biglnteger max(Biginteger val)

Returns the maximum of this Biglnteger and val
Biglnteger min(Biginteger val)

Returns the minimum of this Biginteger and val
Biglinteger mod(Biglnteger m)

Returns a Biglnteger whose value is (this

mod m)
Biginteger modInverse(Biginteger m)

Returns a BigIlnteger whose value is (this-1 mod

m)
BigInteger modPow(Biginteger exponent, Biginteger m)

Returns a Biglnteger whose value is

(thisexponent mod m)
Biglnteger multiply(Biglnteger val)

Returns a Biglnteger whose value is (this * val)
Biglinteger negate()

Returns a Biglnteger whose value is (-this)
Biglnteger not()

Returns a Biglnteger whose value is (~this)
Biglnteger or(Biginteger val)

Returns a Biglnteger whose value is (this | val)
Biglnteger pow(int exponent)

Returns a Biglnteger whose value is

(this.exponent)
Biglnteger remainder(Biginteger val)

Returns a Biglnteger whose value is (this % val)
Biglinteger setBit(int n)

Returns a Biglnteger whose value is equivalent

to this Biglnteger with the designated bit set
Biglnteger shiftLeft(int n)

Returns a BigIinteger whose value is (this < n)
Biglinteger shiftRight(int n)

Returns a BigIinteger whose value is (this > n)
int signum()

Returns the sign of this Biginteger
Biglinteger subtract(Biglinteger val)

Returns a Biglnteger whose value is (this — val)
boolean testBit(int n)

Returns true if and only if the designated bit is

set
Bytel[] toByteArray()

Returns a byte array containing the two's-
complement representation of this Biglnteger

© 2002 by CRC Press LLC

(continues)

Table 22-3
Methods in the Biginteger Class (continued)

RETURNS METHOD/ACTION

String toString()
Returns the decimal String representation of this
Biglnteger

String toString(int radix)

Returns the String representation of this
BigInteger in the given radix

Static Biginteger valueOf(long val)
Returns a Biglnteger whose value is equal to
that of the specified long

Biglnteger xor(Biginteger val)
Returns a Biglnteger whose value is (this * val)

A sample program

The following program demonstrates arithmetic on big integer numbers by
calculating the factorial. The following is a listing of the source code.

// Filename: BigIFact
// Reference: Chapter 22
// Description:

// Demonstration of high-precision integer arithmetic
// with the BigInteger class. Program calculates the
// factorial of a big integer number

// Requires:
// Keyin class in current directory

import java.math.*;
class BigIFact

public static void main(String[] args)

{
int v; // Input
BigInteger p = BigInteger.valueOf (1) ; // Factor

System.out.println("Big integer factorial routine\n");
v = Keyin.inInt ("Enter value: ");
// Calculate factorial by iteration
for(int i = 1; i <= v; i++)
p = p.multiply(BigInteger.valueOf (i));
// Display result
System.out.println(p) ;

© 2002 by CRC Press LLC

On the Web

The program BiglFact.java can be found in the Chapter 22 folder at
WWW.Crcpress.com.

© 2002 by CRC Press LLC

Chapter 23

Fundamental Operations

Calculator Operations

In this chapter we look at basic mathematical calculations in Java. You can
think of these operations as those typically found in scientific or engineer-
ing calculator. For the purpose of this chapter we classify the fundamental
operations into the following groups:

1. Basic arithmetic: the calculation of absolute value, maximum and mini-
mum, [EEE-style remainder, rounding operations, and obtaining the con-
stants m and e

2. Exponential functions: the calculation of powers and roots

3. Trigonometric functions: the calculation of trigonometric functions and
arc-functions, conversions of radians to degrees and degrees to radians,
and calculation of hyperbolic functions and arc-functions

4. Logarithms: the calculation of common and natural logarithms and the cor-
responding antilogarithms

5. Generation of random numbers

Java Floating-Point Math

Most engineering calculations require decimal numbers. For this reason
our emphasis in this chapter is on floating-point operations. These opera-
tions are located in several classes in the java.lang and java.math packages.
Some of these classes have been discussed in previous chapters. In particu-
lar the classes Double and Float of java.lang, which were mentioned in
Chapter 21, and the clases BigDecimal and BigInteger, which were the topic
of Chapter 22. Here we are mainly concerned with the classes Math and
StrictMath of java.math.

© 2002 by CRC Press LLC

Strict and non-strict math

Java supports two modes of floating point mathematics. One mode, called
strict is designed to ensure portability of Java programs. The methods that
provide strict mathematics are located in the StrictMath class of java.math.

The main purpose of Java strict math is to ensure that calculations pro-
duce identical results on any Java virtual machine. Non-strict arithmetic,
on the other hand, can be implemented with more relaxed rules. That is,
the designer of a Java virtual machine is allowed to use faster implemen-
tations for non-strict math functions, at the expense of producing slightly
different results on different platforms.

The programmer can select strict or non-strict modes by means of the
strictfp modifier. The modifier can be applied to a class, an interface, or a
method. When a method is declared with the strictfp modifier, all the
code is executed according to strict constraints. When used at the class
or interface level, all code in the class or interface is evaluated according
to strict math rules.

Programmers note:

The StrictMath class was introduced in Java version 1.3. Previous ver-
sions of the JDK generate an error if StrictMath isreferenced in code.

If your code requires exact bit-for-bit results on all Java virtual ma-
chines, then you should use the strictfp modifier. Note that implementing
non-strict math is a developer’s option. Therefore, it is possible that in a
particular Java virtual machine strict and non-strict routines produce the
same results.

At the application level strict math and non-strict math can be selected
by referencing the corresponding parent classes: Math for non-strict code
and StrictMath otherwise. For example, the following program calculates
the square of the constant e using strict math.

// Java for Engineers

// Filename: StrictE

// Reference: Chapter 23
// Description:

// Using strict math in applications.
// Calculates e * e

// Requires:

// Keyin class in current directory

import java.lang.*;

© 2002 by CRC Press LLC

class StrictM
{

public static void main(String[] args)

{
// Calculate E * E
double e2 = StrictMath.E * StrictMath.E;

System.out.println(e2) ;

Alternatively, the strictfp operator can be used at the class or the
method level. The program StrictPI.java, in the book’s CD ROM, contains
a class that is declared with the strictfp operator, as follows:

strictfp class StrictPI

On the Web

The programs StrictE.java and StrictPl.java are located in the Chapter
23 folder at www.crcpress.com.

Java Basic Arithmetic

The java.lang package contains several classes that provide basic arithmetic.
The most important ones are the classes named Math and StrictMath. Both
classes expose the same fields and methods, therefore the following descrip-
tions apply to both Math, and StrictMath. As mentioned previously, strict
mathematics can be enabled at the class or method level by means of the
strictfp operator. In that case the methods and fields in java.lang.StrictMath
are always used.

Programmers note:

The so-called operator functions (+, —, *, /, and %) are Java language
primitives and, therefore, not part of java.lang or any other Java pack-
age.

Numeric constants

Two fields defined in Math and StrictMath allow declaring the common con-
stants e and Pi. They are defined as follows:

public static final double E

The value that is closer than any other to the base of the natural loga-
rithms. The actual value is:

© 2002 by CRC Press LLC

2.7182818284590452354

public static final double PI

The double value that is closer than any other to the ratio of the circumfer-
ence of a circle to its diameter. The actual value is:

3.14159265358979323846

Absolute value

The method abs()returns the absolute value of the operand, which can be a
double, a float, and int, or a long in the various implementations.

public static int abs(int a)

Returns the absolute value of an int operand. If the argument is positive the
same value isreturned. If the argument is negative, the negation of the oper-
and value is returned. If the argument is equal to the value of Inte-
ger.MIN_VALUE the result is that same value, which is negative.

public static long abs(long a)

Returns the absolute value of a long operand. If the argument is not nega-
tive, the same value is returned. If the argument is negative, the negation of
the argument is returned.

Note that if the argument is equal to the value of Long. MIN_VALUE the
result is that same value, which is negative.

public static float abs(float a)

Returns the absolute value of a float operand. If the argument is not nega-
tive, the same value is returned. If the argument is negative, the negation of
the argument is returned. The following are special cases:

1. Ifthe argumentis positive zero or negative zero, the result is positive zero.
2. If the argument is infinite, the result is positive infinity.

3. If the argument is NaN, the result is NaN.

public static double abs(double a)

Returns the absolute value of a double operand. If the argument is not nega-
tive, the same value is returned. If the argument is negative, the negation of
the argument is returned. The following are special cases:

1. Ifthe argumentis positive zero or negative zero, the result is positive zero.
2. If the argument is infinite, the result is positive infinity.

3. If the argument is NaN, the result is NaN.

© 2002 by CRC Press LLC

Maximum and minimum

Two functions named max() and min() allow comparing two values to de-
termine which is the greater or the smaller. The max() method returns the
greater of two numbers, while the min() method determines the smaller.
Both methods allow operands of type int, long, float, and double.

The general form of the max() and min() functions are as follows:

public static operand max(operand a, operand b)

Operand can be of type int, long, float, or double. The max() method returns
the greater of two values.

public static operand min(operand a, operand b)

Operand can be of type int, long, float, or double. The min() method returns
the smaller of two values.

Rounding controls

Several methods in java.lang.Math and java.lang.StrictMath provide round-
ing controls over numeric operands. These methods round a floating-point
value to a whole number. The methods are as follows:

public static double ceil(double a)

Returns the smallest double value that is not less than the argument and is
equal to an integer. The following are special cases:

1. If the argument value is already equal to an integer, then the result is the
same as the argument.

2. If the argument is NaN or an infinity or positive zero or negative zero, then
the result is the same as the argument.

3. Ifthe argument value is less than zero but greater than -1.0, then the result is
negative zero.

public static double floor(double a)

Returns the largest double value thatis not greater than the argument and is
equal to an integer. The following are special cases:

1. If the argument is already equal to an integer, then the result is the same as
the argument.

2. Ifthe argument is NaN or an infinity or positive zero or negative zero, then
the result is the same as the argument.

© 2002 by CRC Press LLC

public static double rint(double a)

Returns the double that is closest in value to a and is equal to an integer. If
two double values that are integers are equally close to the value of the ar-
gument, the result is the integer value that is even. The following are special
cases:

1. If the argument value is already equal to an integer, then the result is the
same as the argument.

2. Ifthe argument is NaN or infinity or positive zero or negative zero, then the
result is the same as the argument.

public static int round(float a)

Returns the closest int to the argument. The result is rounded to an integer
by adding 1/2, taking the floor of the result, and casting the result to type int.
The following are special cases:

1. If the argument is NaN, the result is 0.

2. If the argument is negative infinity or any value less than or equal to the
value of Integer.MIN_VALUE, the result is equal to the value of Inte-
ger.MIN_VALUE.

3. If the argument is positive infinity or any value greater than or equal to the
value of Integer.MAX_VALUE, the result is equal to the value of Inte-
ger.MAX_VALUE.

public static long round(double a)

Returns the closest long to the argument. The resultis rounded to an integer
by adding 1/2, taking the floor of the result, and casting the result to type
long. The following are special cases:

1. If the argument is NaN, the result is 0.

2. Ifthe argument is negative infinity or any value less than or equal to the value
of Long. MIN_VALUE, the result is equal to the value of Long. MIN_VALUE.

3. If the argument is positive infinity or any value greater than or equal to the
value of Long.MAX_VALUE, the result is equal to the value of
Long MAX_VALUE.

IEEE-style remainder

One method in the classes Math and StrictMath returns the remainder as de-
fined by the IEEE 754 Standard. IEEE 754 requires that implementations
must provide the add, subtract, multiply, divide, and remainder operations
for any two operands of the same or different format.

© 2002 by CRC Press LLC

The IEEE remainder, sometimes called the exact remainder is defined
as follows:

When y not equal to 0, the remainder » = x REM y is defined by the
mathematical relation:

r=x—yXn

where 7 is the integer nearest to the exact value of x/y. Whenever

X
n——

y

1
2

thenniseven. If r =0 then the sign is that of x. In IEEE 754 precision control
does not apply to the remainder operation.

The method is defined as follows:

public static double IEEEremainder(double f1, double f2)

Computes the remainder operation on two arguments as prescribed by the
IEEE 754 standard. The remainder value is mathematically equal to f1—f2 x
n, flisthe dividend, f2 is the divisor, and n is the integer closest to the exact
mathematical value of the quotient f1/f2. If two integers are equally close to
S1/f2, thennis the integer thatis even. If the remainder is zero, its sign is the
same as the sign of the first argument. The following are special cases:

1. Ifeither argumentis NaN, or if the first argument is infinite, or if the second
argument is positive zero or negative zero, then the result is NaN.

2. Ifthe first argument is finite and the second argument is infinite, then the re-
sult is the same as the first argument.

Exponential Function

The Math and StrictMath classes of the java.lang package provide methods
to calculate powers and roots. These include the method pow() that returns
apower function, the method sqrt() that returns the square root of the argu-
ment, and the method exp() which returns the constant e raised to apower.
The methods are as follows:

public static double pow(double a, double b)

Returns the value of the first argument raised to the power of the second ar-
gument, that is, the method calculates a’. Because the exponent argument
is afloating-point value, the pow() method can be used to calculate roots:

© 2002 by CRC Press LLC

1

The laws of exponents apply to the arguments, therefore:

_ 1
xV=—
y

X
The method has a long list of special cases.
1. If the second argument is positive or negative zero, then the result is 1.0.

2. If the second argument is 1.0, then the result is the same as the first argu-
ment.

3. If the second argument is NaN, then the result is NaN.

4. If the first argument is NaN and the second argument is nonzero, then the
result is NaN.

5. If the absolute value of the first argument is greater than 1 and the second
argument is positive infinity, or the absolute value of the first argument is
less than 1 and the second argument is negative infinity, then the result is
positive infinity.

6. If the absolute value of the first argument is greater than 1 and the second
argument is negative infinity, or the absolute value of the first argument is
less than 1 and the second argument is positive infinity, then the result is
positive zero.

7. Ifthe absolute value of the first argument equals 1 and the second argument
is infinite, then the result is NaN.

8. If the first argument is positive zero and the second argument is greater
than zero, or the first argument is positive infinity and the second argument
is less than zero, then the result is positive zero.

9. If the first argument is positive zero and the second argument is less than
zero, or the first argument is positive infinity and the second argument is
greater than zero, then the result is positive infinity.

10. If the first argument is negative zero and the second argument is greater
than zero, but not a finite odd integer, or the first argument is negative infin-
ity and the second argument is less than zero but not a finite odd integer,
then the result is positive zero.

11. If the first argument is negative zero and the second argument is a positive
finite odd integer, or the first argument is negative infinity and the second
argument is a negative finite odd integer, then the result is negative zero.

© 2002 by CRC Press LLC

12. If the first argument is negative zero and the second argument is less than
zero, but not a finite odd integer, or the first argument is negative infinity
and the second argument is greater than zero, but not a finite odd integer,
then the result is positive infinity.

13. If the first argument is negative zero and the second argument is anegative
finite odd integer, or the first argument is negative infinity and the second
argument is a positive finite odd integer, then the result is negative infinity.

14. If the first argument is less than zero and the second argument is a finite
even integer, then the result is equal to the result of raising the absolute
value of the first argument to the power of the second argument.

15. If the first argument is less than zero and the second argument is a finite
odd integer, then the result is equal to the negative of the result of raising
the absolute value of the first argument to the power of the second argu-
ment.

16. If the first argument is finite and less than zero and the second argument is
finite and not an integer, then the result is NaN.

17.If both arguments are integers, then the result is exactly equal to the mathe-
matical result of raising the first argument to the power of the second argu-
ment if that result can in fact be represented exactly as a double value.

The following program demonstrates the use of the pow() method.

// Java for Engineers

// Filename: ExpoDemo

// Reference: Chapter 23

// Description:

// Using the pow() function

import java.lang.*;

strictfp class ExpoDemo
{
public static void main(String[] args)
{
// Display the square root of 2 using sqgrt()
System.out.print (" sgrt(2.0) = ");
System.out.println(Math.sqrt(2.0));

// Calculate and display using pow()
System.out.print (“pow (2.0, 0.5) = ");
System.out.println(Math.pow (2.0, 0.5));
System.out.println() ;

© 2002 by CRC Press LLC

On the Web

The programExpoDemo.java is located in the Chapter 23 folder at
WWW.Crcpress.com.

public static double sqrt(double a)

Returns the correctly rounded positive square root of a double value. The
following are special cases:

1. If the argument is NaN or less than zero, then the result is NaN.
2. If the argument is positive infinity, then the result is positive infinity.

3. Ifthe argument is positive zero or negative zero, then the result is the same
as the argument.

Otherwise, the result is the double value closest to the true mathemati-
cal square root of the argument.
public static double exp(double a)

Returns the constant e raised to the power of a double value. The following
are special cases:

1. If the argument is NaN, the result is NaN.
2. If the argument is positive infinity, then the result is positive infinity.

3. If the argument is negative infinity, then the result is positive zero.

Trigonometric Functions

Trigonometric methods in the classes Math and StrictMath provide for the
calculation of trigonometric functions and arc-functions, as well as conver-
sions of radians to degrees and degrees to radians. Table 23-1 describes the
trigonometry-related functions.

The functions notincluded in the classes can be easily obtained by applying
the corresponding identities, namely:

sec® = !
cos®
1

cscO =—
sin®

cot® = !
tan ©

© 2002 by CRC Press LLC

Table 23-1

Trigonometric Method in Math and StrictMath Classes

RETURNS

METHOD/ACTION

static double
static double
static double

static double

static double

static double

static double

static double

static double

sin(double a)

Returns the trigonometric sine of an angle
cos(double a)

Returns the trigonometric cosine of an angle
tan(double a)

Returns the trigonometric tangent of an angle
asin(double a)

Returns the arc sine of an angle, in the range
-nt/2 through m/2

acos(double a)

Returns the arc cosine of an angle, in the
range of 0.0 through ©t

atan(double a)

Returns the arc tangent of an angle, in the
range of —n/2 through n/2

atan2(double a, double b)

Converts rectangular coordinates (b, a) to
polar (r,)

toDegrees(double angrad)

Converts an angle measured in radians to the
equivalent angle measured in degrees
toRadians(double angdeg)

Converts an angle measured in degrees to
the equivalent angle measured in radians

and the corresponding arc functions:

sec' @ =cos™ (

Qj
. 1(1]
cot” ®O=tan | —
S}

|— @|—

csc '@ =cos™ (

Calculating trigonometric functions

The trigonometric functions in java.lang.Math receive as input an angle in
radians. If input is in degrees, user code can convert to radians by calling
the toRadians() method. By the same token, the trigonometric arc-func-

© 2002 by CRC Press LLC

tions return an angle in radians, which can be converted to degrees by
means of the toDegrees() method. The following program shows the calcu-
lation of trigonometric functions and arc-functions.

// Java for Engineers

// Filename: TrigFun

// Reference: Chapter 23
// Description:

// Calculating trigonometric functions,
// arcfunctions, and cofunctions.

// Requires:

// Keyin class in current directory

import java.lang.*;

strictfp class TrigFun

{
public static void main(String[] args)
{

double rads, degs, tanA, aTanA, coTanA;

// Obtain angle in degrees from user
degs = Keyin.inDouble (“Enter angle in degrees: ”);
// Convert degrees to radian
rads = Math.toRadians (degs) ;

// Calculate tangent
tanA = Math.tan(rads) ;
System.out.println(“Tangent = ” + tani);

// Calculate cotangent
coTanA = 1.0/Math.tan(rads) ;
System.out.println(“Cotangent = ” + coTanA) ;

// Calculate arc-tangent

rads = Math.atan(tana);

degs = Math.toDegrees (rads) ;
System.out.println(“Arc tangent: ” + degs);

// Calculate arc-cotangent

rads = Math.atan(l/coTani) ;

degs = Math.toDegrees (rads) ;
System.out.println(“Arc cotangent: ” + degs);

On the Web

The program TrigFun.java can be found in the Chapter 23 folder at
WWW.Crcpress.com.

© 2002 by CRC Press LLC

Hyperbolic functions and arc-functions

Engineering problems often require the evaluation of hyperbolic functions.
These functions, called the hyperbolic tangent (tanh), hyperbolic sine
(sinh), and hyperbolic cosine (cosh), have properties similar to the circular
trigonometric functions, except that the hyperbolic functions are related to
the hyperbola rather than to the circle. However, the hyperbolic functions
cannot be readily derived from their trigonometric counterparts. Instead,
they are expressed by the following formulas

) e —e”
sinh(x) = ——
(x) 5
cosh(x) = ¢ re

2
tanh(x) = %
e +e
tanh(x) = S0
cosh(x)

In evaluating the hyperbolic functions code can make use of the exp()
method in java.lang.Math previously discussed. The exp() method returns
a power of e, which allows estimating the numerator in the sinh and cosh.

Hyperbolic arc-tangent functions can be calculated according to the
following formulas:

sinh™(x) = In(x ++/x* +1
cosh™(x) = In(x +~+/x* -1

tanh ™' (x) = %ln(l +xj

1—x

Here again the input angle is in radians. The following program dem-
onstrates the calculation of hyperbolic functions and arc-functions.

© 2002 by CRC Press LLC

// Java for Engineers

// Filename: HypFun

// Reference: Chapter 23
// Description:

// Caculating hyperbolic functions
// Requires:
// Keyin class in current directory

import java.lang.*;

strictfp class HypFun
{
public static void main(String[] args)

{
double rads, degs, sinHA, cosHA, tanHA, asinHA;

// Obtain angle in degrees from user

degs = Keyin.inDouble(“Enter angle in degrees: ”);
// Convert degrees to radian

rads = Math.toRadians (degs) ;

// Calculate hyperbolic sine
sinHA = (Math.exp(rads) - Math.exp(-rads))/2;
System.out.println(“Hyperbolic sine = ” + sinHA);

// Calculate Hyperbolic cosine
cosHA = (Math.exp(rads) + Math.exp(-rads))/2;

"

System.out.println (“Hyperbolic cosine = + COsHA) ;

// Calculate hyperbolic tangent
tanHA = sinHA/ cosHA;
System.out.println (“Hyperbolic tangent = ” + tanHA);

// Calculate hyperbolic arc-sine

asinHA = Math.log(sinHA + Math.sqgrt((sinHA * gsinHA)+ 1.0));
degs = Math.toDegrees (asinHA) ;

System.out.println(“Arc hyperbolic sine = ” + degs);

On the Web

The program HypFun.java can be found in the Chapter 23 folder at
WWW.Crcpress.com.

Cartesian and polar coordinates

In mathematics the study of complex numbers leads directly to an alterna-
tive plane of trigonometric representation, usually called the polar coordi-
nate system. Conventionally, the polar coordinate system is depicted as
based on apoint, called the pole, located at the origin of the Cartesian plane,

© 2002 by CRC Press LLC

and aray from this pole, called the polar axis. The polar axis is assumed to
liein the positive direction of the x-axis. A pointin the polar coordinate sys-
tem is defined by its directed angle (called the vectorial angle) from the po-
lar axis, and its directed distance from the pole, called the radius vector.
Figure 23-1 shows the elements of the polar and Cartesian coordinate sys-
tems.

y
P(x, y) = Cartesian form
P(r, e) = polar form
r |
6 ‘ polar
0 X axis

Figure 23-1 Polar and Cartesian Coordinate Systems

Engineering applications often require converting coordinate pairs be-
tween the polar and the Cartesian systems. Cartesian coordinates are
also called rectangular coordinates. The following formulas express po-
lar coordinates from the rectangular form:

The method atan2() in java.lang.Math returns the vectorial angle ex-
pressed by the first formula from the rectangular coordinates. The radius

vector (r) can be calculated with the second formula.

The reverse process is obtaining the rectangular coordinates from the
polar form. The following formulas can be used:

x=rcos®

y=rsin®

© 2002 by CRC Press LLC

where 7 is the radius vector and 0 is the vectorial angle. The following pro-
gram demonstrates conversion from Cartesian to polar coordinates and
vice versa.

// Java for Engineers

// Filename: CartPol

// Reference: Chapter 23
// Description:

// Conversion between polar and rectangular
// coordinates

// Requires:

// Keyin class in current directory

import java.lang.*;

strictfp class CartPol
{
public static void main(String[] args)
{
double x, y, vA, degs, radvVec;

// Obtain rectangular coordinates from user
x = Keyin.inDouble (“Enter x: ”);
y = Keyin.inDouble (“Enter y: ”);

// Convert rectangular to polar coordinates

VA = Math.atan2(x, vy);

degs = Math.toDegrees (VA) ;
System.out.println(“Vectorial angle = ” + degs);
// Calculate radius vector

radVec = Math.sqgrt((x * x)+(y * vy));
System.out.println(“*Radius vector = ” + radVec) ;

// Convert polar back to rectangular coordinates
x = radVec * Math.cos(vA);

System.out.println(“x coodinate = ” + Xx);

v = radVec * Math.sin(vA);

System.out.println(“y coordinate = " + vy);

On the Web

The program CartPol.java can be found in the Chapter 23 folder at
WWW.Crcpress.com.

Logarithmic Functions

The classes java.lang.Math and java.lang.StrictMath contain a single
method that relates to logarithms: log(). This method returns the natural
logarithm (base e) of the double argument. However, the logarithmic for-

© 2002 by CRC Press LLC

mulas and identities allow using the natural logarithm to obtain logs to
other bases, as well as calculating anti-logarithms. The following formula

()= log.(0)

lo
S g, (n)

allows using the natural log to obtain logs to other bases:

_ log,(x)
log,,(x) = log, (10)
|
log,(¥) =105 8

For example, to obtain the common logarithm (base 10) and the binary
logarithm (base 2) we can calculate:

Calculating antilogarithms
alog,(x) =b"

Antilogarithms are the inverse function of the logarithm. The following for-
mula generalizes antilogarithms to any base (b):

alog,,(x)=10"

alog,(x)=¢€"

The natural (base e) and common (base 10) antilogarithms are defined
as follows:

The following program uses the preceding formulas to calculate natu-
ral and common logarithms and antilogarithms.

// Java for Engineers

// Filename: Logs

// Reference: Chapter 23

// Description:

// Conversion between polar and rectangular
// coordinates

© 2002 by CRC Press LLC

// Requires:
// Keyin class in current directory

import java.lang.*;

strictfp class Logs
{
public static void main(String[] args)

{
double num, loge, logl0, aloge, aloglO;

// Obtain input from user
num = Keyin.inDouble (“Enter number: ”);

// Calculate and display the natural logarithm
loge = Math.log(num) ;

System.out.println(“*log base e = " + loge);

// Calculate the common log

logl0 = Math.log(num)/Math.log(10.0) ;
System.out.println(“*log base 10 = ” + 1loglO0);

// Calculate the antilogarithm of log base e
aloge = Math.exp(loge) ;
System.out.println(“antilog of log base e = ” + aloge);

// Calculate the antilogarithm of log base 10
alogl0 = Math.pow(10.0, logl0);
System.out.println(“anitlog of log base 10 = ” + aloglO);

On the Web

The program named Logs.java is found in the Chapter 23 folder at
WWW.Crcpress.com.

Random Numbers

In computer games and in scientific and engineering simulations it is some-
times necessary to obtain a number, or set of numbers, at random. Com-
puters can be programmed to generate random numbers; however, their
values may repeat after a certain number of iterations. It has been proven
that true randomness requires mechanical devices. For this reason comput-
ers are often said to produce pseudo-random numbers. However, these
pseudo-random numbers are often of sufficient quality to be useful in many
applications.

Java provides several mechanisms for obtaining random numbers. The
class java.util. Random contains ten methods that relate to the generation

© 2002 by CRC Press LLC

of random numbers. The classes java.lang.Math and java.lang.StrictMath
contain a method random() that returns a pseudo-random number. This
method is simple to use and produces satisfactory results for many appli-
cations.

Producing pseudo-random numbers

How much programming is put into a random number generator depends
on the randomness tests that the results must pass. The most basic
pseudo-random generator can be based on the random() method of the
Math and StrictMath classes. This method is documented as follows:

public static double random()

Returns a pseudo-random double value (7) with a positive sign in the range
0.0 >=7<1.0. Returned values are uniform distributed over the range. When
this method is first called, it creates a single new pseudo-random-number
generator, as if by a call to:

new java.util.Random()

Thereafter the new pseudo-random-number generator is used for all calls
to this method, but nowhere else.

Alternatively, you can use method in java.util. Random to generate ran-
dom numbers. This approach is more complicated but ensures a better
distribution of the random numbers. The method nextDouble() returns
the next pseudo-random number uniformly distributed between 0.0 and
1.0. The method nextGaussian() generates a bell-curve distribution with a
mean of 0.0 and a standard deviation of 1.0. In other words, nextDouble()
produces a flat distribution curve and nextGaussian() produces a “nor-
mal” distribution curve.

The following program uses the random() method of java.lang.Math
and java.lang.StrictMath to generate 10000 random numbers. The num-
bers are scaled to the range 0 to 9. The random numbers produced are
classified according to their value in order to compare their frequency.
The result is a flat distribution like the ones produced by the next-
Double() method.

// Java for Engineers

// Filename: RandNum

// Reference: Chapter 23

// Description:

// Generating random numbers

import java.lang.*;

© 2002 by CRC Press LLC

class RandNum
{
public static void main(String[] args)
{
int num;
int[] dist = new int[10]; // Storage for distribution

// Generate 10000 random numbers using Math.random()
for(int x = 0; x < 10000; x++)
{

num = (int) (Math.floor (Math.random() * 10)) ;

dist [num]++;

// Display distribution of random integers in the range
// 0 to 9
System.out.println(“Distribution using Math.random() ”);

for(int k = 0; k < 10; k++)
System.out.print(k + “\t”);

// Display results

for(int v = 0; y < 10; y++)

System.out.print (dist[y] + “\t”);
}
System.out.println() ;

On the Web

The program RandNum.java is located in the Chapter 23 folder at
WWW.Crcpress.com.

© 2002 by CRC Press LLC

Chapter 24

Java Math for Engineers

Java Numerical Primitives

This chapter contains an assortment of numerical routines and primitives
that are often required in solving engineering problems. The chapter serves
a double purpose. The first one is to provide a small library of Java primi-
tives. Second, and more important, to demonstrate how you can use your
knowledge of the Javalanguage to solve problems that are expressed in for-
mulas and equations.

Factorial

The factorial of a number is the product of all positive integers less than or
equal to the number, for example:

5! =5 * 4 *x 3 % 2 * 1 =120

A typical computer algorithms for the calculation of factorials is recur-
sive. The recursive definition of the factorial function is as follows:

or =1

n! =n* (n - 1)! forn >0

In Java code a recursive factorial function can be coded as follows:

int Factorial (int n)
{
if(n == 0)
return 1;
else

return n * Factorial(n - 1);

© 2002 by CRC Press LLC

Recursive methods, although elegant, often show much worse perfor-
mance than those that use conventional iteration. The following program
calculates the factorial function with a while loop that contains a single
line of code.

// Java for Engineers

// Filename: Factorial

// Reference: Chapter 23

// Description:

/7

Non-recursive calculation of factorial

// Requires:

/7

Keyin class in current directory

import java.lang.*;

class Factorial

{

public static void main(String[] args)

{

int num;
int prod = 1;
int factor = 1;

// Get user input
num = Keyin.inInt (“Enter factorial value:

// Factorial calculation
while (factor <= num)

prod *= factor++;

System.out.println(“Factorial ” + num + “

is ” + prod);

On the Web

The program Factorial.java is found in the Chapter 24 folder at
WWW.CIrCpress.com.

Evaluating Numeric Results

Java code can perform operations on numbers that produce unexpected,
unacceptable, or invalid results. For example, a program can accidentally
or unintentionally perform integer division by zero, which ends with Java
abruptly throwing an arithmetic exception, because division by zero is
mathematically undefined and thus is considered a logic error.

© 2002 by CRC Press LLC

Floating-point errors

Floating-point numbers are defined over an almost unlimited range. There-
fore floating-point operations do not throw arithmetic exceptions. Instead,
they signal errors by producing error constants. For example, if you divide
by an integer value of zero the program stops abruptly, generating the mes-
sage:

ArithmeticException: /by zero at ...

On the other hand, if you divide a floating-point number by zero the re-
sult is the constant POSITIVE_INFINITY if the dividend is a positive num-
ber, or the constant NEGATIVE_INFINITY if the dividend is a negative
number. If the result is otherwise invalid a floating-point operation pro-
duces NaN (Not a Number).

The constants NaN, POSITIVE_INFINITY, and NEGATIVE_INFINITY
are defined in the wrapper classes Double and Float of the java.lang pack-
age. In addition, these classes provide methods that test whether a value
is a NaN or an Infinity. Providing a method to test for a NaN is necessary
because NaNs have the property of not being equal to themselves. The ex-
pression

if (val == Double.NaN)

will never evaluate to true. The following program demonstrates error de-
tection of floating-point results.

// Java for Engineers

// Filename: FpError

// Reference: Chapter 24
// Description:

// Floating-pioint error diagnostics
// Requires:
// Keyin class in current directory

import java.lang.*;

class FpError
{
public static void main(String[] args)
{
double res;
double divisor = 0;
double dividend, root;

// Get user input for numerator
System.out.println(“Forcing division by zero error”);
dividend = Keyin.inDouble (“Enter dividend: ”);

res = dividend/divisor;

// Test for negative invifinity

© 2002 by CRC Press LLC

if(res == Double.NEGATIVE_INFINITY)
System.out.println(“result is NEGATIVE_INFINITY”) ;
if (res == Double.POSITIVE_INFINITY)
System.out.println(“result is POSITIVE_INFINITY”) ;
// Test for either infinity
if (Double.isInfinite(res))
System.out.println(“result is infinite”);

// Get user input for square root
System.out.println(“\nCalculating square root (try negative)”);
root = Keyin.inDouble (“Enter root: ”);
res = Math.sqgrt (root) ;
if (Double.isNaN(res))

System.out.println(“result is Nan”);
else

System.out.println(“Square root = " + res);

On the Web

The program FpError.java is found in the Chapter 24 folder at
WWW.CIrCpress.com.

Comparing Floating-Point Numbers

The comparison operator (==) can be used for comparing double or float
values with finite operands, but the results are not always as expected. Con-
sider the following code fragment:

double numl = -0.0;
double num2 = 0.0;

if (numl == num?2)
System.out.println(“numbers are equal”);
else
System.out.println (“numbers not equal”);

The result of this test is that negative zero and positive zero are re-
ported as equal values. In the preceding section you saw that compari-
sons may also fail when one or both operands are NaNs. The class
java.lang.Object provides a method named equals() that allows compar-
ing two objects. This method is overridden in the subclasses of Object,
such as Byte, Short, Integer, Long, Double, Float, BigDecimal, and
BigInteger. Therefore, the equals() method can be used to compare nu-
meric values of any type. The equals() method is defined in the
java.lang.Object as follows:

public boolean equals (Object obj)

© 2002 by CRC Press LLC

Indicates whether some other object is equal to this one, according to
the following rules.

1. The comparison is reflexive, that is, for any reference value x, x.equals(x)
returns true.

2. The comparison is symmetric, that is, for any reference values x and y,
x.equals(y) returns true if and only if y.equals(x) returns true.

3. The comparison is transitive, that is, for any reference values x, y, and z, if
x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) re-
turns true.

4. The comparison is consistent, that is, for any reference values x and y, mul-
tiple invocations of x.equals(y) consistently return true or consistently re-
turn false, provided no information used in equals comparisons on the
object is modified.

5. For any non-null reference value x, x.equals(null) returns false.

6. The equals() method implements the most discriminating possible equiva-
lence relation on objects; that is, for any reference values x and y, this
method returns true if and only if x and y refer to the same object (x==y has
the value true).

In the implementation of equals() in the classes Double and Float the
method returns true if the two values are the same bit for bit. In other
words, equals() returns true if and only if the numbers are the same, or if
both are both NaN.

Comparisons in IEEE 754

The IEEE 754 Standard specifies that comparisons of floating point num-
bers are exact and never underflow or overflow. The standard defines four
mutually exclusive relations: less than, equal, greater than, and unordered.
The unordered case arises when at least one operand is a NaN. The stan-
dard states that every NaN shall compare unordered with everything, in-
cluding itself and that comparisons shall ignore the sign of zero, so +0 = -0.
Implementations can return one of the four relationships (less than, equal,
greater than, or unordered), or return true or false to predicates that name
the specific comparisons. Java adopts this second option.

The equals() methods of java.lang.Double and java.lang.Float do not
conform to the requirements of IEEE 754 in regards to comparisons.
Comparison of a negative zero to a positive zero returns false. Further-
more, two NaN doubles are considered equal no matter their origin. The
following program demonstrates comparisons using the == operator and
the methods of java.lang.

© 2002 by CRC Press LLC

// Java for Engineers

// Filename: FpComp

// Reference: Chapter 24
// Description:

// Floating-pioint comparisons
// Requires:
// Keyin class in current directory

import java.lang.*;

class FpComp
{
public static void main(String[] args)

{

double numl = -0.0;

double num2 = 0.0;

double sgrPos = Math.sqgrt(4.0);
double sgrNegl = Math.sqgrt(-4.0);
double sgrNeg2 = Math.sqgrt(-9.0);

// Comparing signed zeros using the == operator
System.out.println(“Using == to compare 0 and -0 ”);
if (numl == num2)

System.out.println(“numbers are equal”);
else

System.out.println (“numbers are not equal”);

// Comparing using the equals() method
// First convert primtive doubles to Double objects
Double nl = new Double (numl) ;
Double n2 = new Double (num2) ;
System.out.println(“Using equals() to compare 0 and -0");
if(nl.equals(n2))
System.out.println(“numbers are equal”) ;
else
System.out.println (“numbers are not equal”);

// Comparing NanS
Double spl = new Double(sgrPos) ;
Double snl = new Double(sgrNegl) ;
Double sn2 = new Double(sgrNeg?2) ;
System.out.println(“*Using equals() to compare two NaNs ”);
if(snl.equals(sn2))
System.out.println(“*NaNs are equal”);
else
System.out.println(“NaNs are not equal”);

When the program executes the following output is produced:

© 2002 by CRC Press LLC

Using == to compare 0 and -0
numbers are equal

Using equals () to compare 0 and -0
numbers are not equal

Using equals () to compare two NaNs
NaNs are equal

On the Web

The program FpComp.java is located in the Chapter 24 folder at
WWW.Crcpress.com.

Weighted comparisons

Java comparisons in regards to valid numeric values (not NaNs or infini-
ties) of primitive floating point types, or of floating-point objects of the
classes Double and Float, return true if both values are bit-by-bit identical.
This is often undesirable in engineering or scientific applications in which
different routes used in calculations can lead to small differences. In other
words, the code needs to determine not if two values are identically equal,
but if they are approximately equal to some pre-determined degree.

The Greek letter epsilon is sometimes used in mathematics to define a
small quantity. In this sense we can describe the weighted equality of two
operands if their values are within some tolerance, represented as epsi-
lon. If the value of epsilon is defined as a constant we can develop an
overloaded version of the equals() method to test for weighted equality.
For example:

final static double EPSILON = 1.0E-12;
// Method overloading equals/()
public static boolean equals(double vl, double v2, double e)
{
return Math.abs (vl - v2) < e;
}

In this case the method calculates the absolute difference between the
two operands and returns true if this differences is smaller than the value
defined for the constant passed as the third argument. The following pro-
gram demonstrates the difference between absolute and weighted equal-
ity.

// Java for Engineers
// Filename: WtComp
// Reference: Chapter 24

// Description:
// Weighted floating-pioint comparisons

© 2002 by CRC Press LLC

import java.lang.*;

class WtComp
{
public static boolean equals(double vl, // First argument
double v2, // Second argument
double e) // Epsilon
{
return Math.abs (vl - v2) < e;

}

public static void main(String[] args)

{

double a = 9.33333333333000;
double b = 9.33333333333333;
final double EPSILON = 1.0E-10;

if (equals(a, b, EPSILON))
System.out.println(“*values are equal”);
else
System.out.println(“values are not equal”);

On the Web

The program WtComp.java is found in the Chapter 24 folder at
WWW.CIrCpress.com.

Bit-by-Bit operations

In Chapter 21 (Table 21-2 and Figure 21-1) you saw how floating-point num-
bers are encoded in the IEEE 754 double and single formats. Java’s double
and float types correspond bit-by-bit to IEEE 754 double and single basic
and double basic formats. The classes java.lang.Double and java.lang.Float
contain methods that allow inspecting and manipulating the individual bits
and bit fields of a floating-point number. Java bit encoding for double and
float formats is shown in Figure 24-1.

The following methods in java.lang.Double relate to bit conversions of
floating-point values.

public static long doubleToLongBits(double value)

Returns the bit layout of the specified floating-point value according to
IEEE 754. Table 24-1 shows the masks that can be used to select the individ-
ual bits and bit fields.

© 2002 by CRC Press LLC

30 22 o 4— bits

| exponent significand (implicit 1 bit)

— 8 23 |
|
sign JAVA FLOAT FORMAT

| exponent significand (implicit 1 bit) |

J 11 52 {
sign JAVA DOUBLE FORMAT

Figure 24-1 Bit Map for Java Float and Double Format

Table 24-1
Bit- and Bit-Field Masks for Double Format
BIT/BIT FIELD MEANING MASK
63 sign 0x8000000000000000L
62-52 exponent 0x7££0000000000000L
51-0 significand Ox000fffffffffffffL

The following are special encodings:
1. Positive infinity is represented as 0x7ff0000000000000L.
2. Negative infinity is represented as 0xfff0000000000000L.
3. All NaNs are represented as 0x7ff8000000000000L.

In all cases, the result is a long integer that when given to the long-
BitsToDouble(long) method, will produce a floating-point value equal to

the argument of doubleToLongBits.

public static long doubleToRawLongBits(double value)

This method is similar to doubleToLongBits() except that if the argument is
a NaN the result is the long integer representing the actual NaN value. Un-
like the doubleToLongBits, the doubleToRawLongBits method does not

collapse NaN values.

© 2002 by CRC Press LLC

public static double longBitsToDouble(long bits)

Returns the double corresponding to a given bit map. The argument is con-
sidered to be a representation of a floating-point value according to the
IEEE 754 floating-point double precision layout. The special encodings
produce the following results:

1. The value 0x7ff0000000000000L produces a positive infinity.
2. The value 0xfff0000000000000L produces negative infinity.

3. If the argument is any value in the range 0x7ff0000000000001L through
Ox 7TEEFEEFEEEFEEfff. or in the range 0xfff0000000000001L through
OxEFEFEEFFFfefeL, the result is NaN.

Programmers note

Contrary to the requirements of IEEE 754, Java NaN values of type
double are lumped together into a single representation. Distinct val-
ues of NaN are only accessible by use of the Double.double-
ToRawLongBits method.

The following program shows unpacking the bit fields of a float-
ing-point number in double format.

// Reference: Chapter 24
// Description:

// Bit-level unpacking of floating-pioint data
// Requires:
// Keyin class in current directory

import java.lang.*;

class BitOps
{
public static void main(String[] args)
{
// Definition of bit field masks for double

final long SIGN = 0x8000000000000000L;
final long EXPN = 0x7££0000000000000L;
final long SGNF = OxOO00fffffffffffffL;
final long BIT1 = 0x8000000000000000L;

// Storage for bit fields

long s; // Sign

long e; // Exponent field

long m; // Significand (mantissa) field
String eS; // For conversions

double num;
long binval;

© 2002 by CRC Press LLC

long t;

// Get user input
num = Keyin.inDouble (“Enter a floating-point double: ”);
binval = Double.doubleToRawLongBits (num) ;

// Display hex bits
System.out.println(“As long = ” + Long.toHexString(binval)) ;

// Display bit fields of double format
s = binVal & SIGN;

if(s != 0)
System.out.println(“Sign = -");
else
System.out.println(“Sign = +");

// Mask out exponent field

e = (binval & EXPN) ;
eS = Long.toHexString(e) ;
System.out.println(“Exponent = ” + eS);

// Mask out significand field

m = (binval & SGNF) ;
eS = Long.toHexString (m) ;
System.out.println(“Significand = ” + eS);

System.out.println(“\nFields in binary”);

if(s != 0)
System.out.println(”Sign bit = 1");
else

System.out.println(”Sign bit = 0");

// Display binary exponent

// Eliminate sign bit

e = e < 1;

System.out.print (“Exponent = ") ;
for(int k = 0; k < 11; k++)

{
t = e & BITL;
// System.out.println(Long.toHexString(t));
if(t !'= 0)
System.out.print (“1");
else
System.out.print (“0") ;
e = e < 1;
}
System.out.println(“\n |-11 bits-|");

// Display binary significand
// Eliminate exponent and sign bits

m=m < 12;

System.out.print (“Significand = 1.");
for(int j = 0; j < 51; Jj++)

{

t =m & BITI1;

© 2002 by CRC Press LLC

if(t !'= 0)
System.out.print (“1") ;

else
System.out.print (“0") ;
m=m < 1;
}
System.out.println(“\n ~ly
System.out.println(“implicit bit -| | —- 52 bits —>");

When the program executes with an input of -127.375 the following out-
put is produced:

As long = c05£d480000000000
Sign = -

Exponent = 4050000000000000
Significand = £d480000000000

Fields in binary
Sign bit = 1
Exponent = 10000000101
|-11 bits-|
Significand = 1.111111011000
~

implicit bit -| | —— 52 bits —>

On the Web

The program BitOps.java is located in the Chapter 24 folder at
WWW.Crcpress.com.

Conversion Operations

Code often needs to convert a floating-point value into an integer. One
method is by typecasting, for example:

double a = 1.998899;
long b = (long) a; // b =1

In this case Java truncates the integer portion of the double variable
and uses it for the value of the integer variable. In some cases this conver-
sion may be acceptable, but more often you need to obtain the value of
the integer that is closest to the floating-point number. The round()
method of java.lang.Math returns the closest double to the argument if
the argument is a double, and the closest int if the argument is a float. The
round() method was described in Chapter 23. The following fragment
shows the use of the round() method:

© 2002 by CRC Press LLC

double a = 1.998899;
long b = Math.round(a) ; // b = 2

The rint() method also rounds the double operand to an integer but re-
turns the result as a double. The methods floor() and ceil() of
java.lang.Math allow obtaining the largest and the smallest integers of a
double value. Both methods return a double integer, which can then be
typecast into one of the integer formats. These methods are described in
Chapter 23.

Integer and fractional parts

Rational and irrational numbers must often be separated into their integer
and fractional parts. Obtaining the integer part of a floating-point value is
easily accomplished by typecasting. Note that the round() method cannot
be used in this case since you actually want to chop off the integer part. The
fractional part can be obtained by subtracting the integer part from the
original number. The following program shows the operations.

// Java for Engineers

// Filename: IntFrac

// Reference: Chapter 24
// Description:

// Obtaining the integer and fractional parts
// Requires:
// Keyin class in current directory

import java.lang.*;

class IntFrac

{
public static void main(String[] args)
{

double num;
long iPart;

double fPart;

// Get user input

num = Keyin.inDouble(“Enter a floating-point wvalue: ”);
iPart = (int)num;
fPart = num - iPart;
System.out.println(“Integer part = ” + iPart);
System.out.println(“Fractional part = ” + fPart);
}
}
On the Web

The program IntFrac.java is found in the Chapter 24 folder at
WWW.CICPress.comn.

© 2002 by CRC Press LLC

Solving Triangles

Many engineering problems require the solution of triangles. The program-
ming required is simple and straightforward. The following examples are
provided as illustrations of applying Java code to the solution of simple
equations.

Pythagoras’ theorem

One of the theorems of Euclidean geometry, usually attributed to the Greek
mathematician Pythagoras, states the relationship between the sides of a
right triangle, as shown in Figure 24-2.

Figure 24-2 Pythagoras’ Theorem

If the values of sides a and b in Figure 24-2 are stored in variables of
type double, then the hypotenuse can be calculated as follows:

double a, b, c¢; // Sides a, b, and c
¢ = Math.sgrt((a * a)+(b * b));

Side-angle problems

Sometimes the solution of a right triangle is required in terms of one side
and the adjacent angle. The tangent function can be applied to this case, as
shown in Figure 24-3.

Tan (A) =z—

a=bTan (A)

Figure 24-3 Side-Angle Formula for Right Triangle

© 2002 by CRC Press LLC

The following program solves right triangles by means of Pythagoras’
theorem and by applying the side/angle formula.

// Java for Engineers

// Filename: TrigSolv

// Reference: Chapter 24

// Description:

// Solving right triangles

// Requires:

// Keyin class in current directory

import java.lang.*;

strictfp class TrigSolwv
{
public static void main(String[] args)

{
double a, b, ¢, angleA, rada;

// Pythagoras’ Theorem

// Obtain sides from user

System.out.println(“*Side ¢ in terms of sides a and b”);
a = Keyin.inDouble (“Enter side a: ");

b = Keyin.inDouble (“Enter side b: ”);

c = Math.sqgrt((a * a)+(b * b));
System.out.println(“Side ¢ = " + c¢);

// Side-angle formula

System.out.println(“*Side ¢ in terms of side b and angle A");
b = Keyin.inDouble (“Enter side b: ”);

angleA = Keyin.inDouble(“Enter angle A: ”);

radA = Math.toRadians (angleA) ;

c = b * Math.tan(radA);

System.out.println(“*Side ¢ = " + c);

On the Web

The program named TrigSolv.java is found in the Chapter 24 folder at
WWW.CICPress.comn.

Solving Quadratic Equations

The general quadratic equation is expressed by the formula:

© 2002 by CRC Press LLC

ax’*+bx+c=0

where the coefficients a, b, and ¢ are constants. The solution a quadratic
equation can be attempted by applying the standard quadratic formula:

_ —b+~b* —4ac

2a

X

In the quadratic equation the term

Jb* —4ac

is called the discriminant. The value of the discriminant is used to deter-
mine if the solution set has two equal real roots, two different real roots, or
noreal roots. The following program attempts to find the real roots of a qua-
dratic equation (if they exist) by solving the quadratic formula.

// Java for Engineers

// Filename: QuadSolwv

// Reference: Chapter 24
// Description:

// Applying the quadratic formula
// Requires:
// Keyin class in current directory

import java.lang.*;

strictfp class QuadSolv
{
public static void main(String[] args)

{
double a, b, ¢, discr, rootl, root2;

// Apllying the quadratic formula

// Obtain sides from user
System.out.println(“Applying the quadratic formula”) ;
a Keyin.inDouble (“Enter a: ”);

b = Keyin.inDouble (“Enter b: ”);

c = Keyin.inDouble (“Enter c: ”);

// Solve the discriminant (SQRT (b”2 - 4ac)
discr = Math.sgrt((b * b) - (4 * a * ¢c));
System.out.println(“Discriminant = ” + discr);
// Determine number of roots

© 2002 by CRC Press LLC

// if discr > 0 equation has 2 real roots

// if discr == 0 equation has a repeated real root
// 1f discr < 0 equation has imaginary roots

// if discr is NaN equation has no roots

// Test for NaN
if (Double.isNaN (discr))

System.out.println(“Equation has no roots”);

if(discr > 0)

{
System.out.println(“Equation has 2 roots”);
rootl = (-b + discr)/2 * a;
root2 = (-b - discr)/2 * a;
System.out.println(“First root = ” + rootl);
System.out.println(“Second roor = ” + root2);

}

if(discr == 0)

{
System.out.println(“Equation has 1 root”);
rootl = (-b + discr)/2 * a;
System.out.println(“Root = ” + rootl);

if(discr < 0)
System.out.println(“Equation has imaginary roots”);

On the Web

The program QuadSolv.java can be found in the Chapter 24 folder at
WWW.CICPress.comn.

© 2002 by CRC Press LLC

Chapter 25

Introducing Computer Graphics

Developing Graphical Applications

The programs developed so far provide output in text form only. Because of
its simplicity, this approach is useful when developing console-based appli-
cations that communicate with the user with simple text commands and do
notrequire graphics. However, text-based programs are almost an anachro-
nism, since most programs developed today communicate with the user by
means of graphics devices, such as the mouse, and are capable of output-
ting graphics.

In this chapter we provide a brief overview of computer graphics.
Graphics programming is a complex and elaborate subject, but elemen-
tary graphics in Java are not difficult.

Origin of Computer Graphics

During the late 1950s IBM and other companies invented and developed
several technologies that simplified computer use and programming. Ori-
ginally, computer input and output consisted of punched cards and paper
tape. The introduction of teletype machines (called TTYs) as an input and
output device was a major advance. A TTY has a typewriter-like keyboard
and produces a paper printout as well as a strip of paper or mylar tape in
which data is encoded in rows of punched holes. These tapes provide a con-
venient way for transferring data and programs from the TTY into the com-
puter.

Soon thereafter the Cathode Ray Tube, already in use in commercial
television, was adapted to displaying computer data. At first it was re-

© 2002 by CRC Press LLC

ferred to as a glass teletype. An added bonus was that the CRT could also
be used to display pictures.

Other devices designed to facilitate input and output are the the
lightpen, the touch screen, the graphic tablet, the joystick, and the
mouse. All of these devices allow the user to visually interact with the
machine.

The original idea for a computer with which the user communicates
graphically came from the work of Allan Kay at the Xerox Palo Alto Re-
search Center. Dr. Kay’s work was an attempt at a computer that could be
used by children too young to read or to type commands in text form. One
approach was based on small screen objects, called icons, that represent
some object familiar to the child. A mechanical device (which later be-
came the mouse) allowed moving these graphics objects on the screen.

Interactive graphics and the graphical user interface were not an in-
stant success. It was Apple Computers that first developed an operating
system that supported graphical, mouse-controlled, icon-based user in-
teraction. The first machine to fully implement the technology was the
Macintosh computer. Not long afterward Microsoft developed a graphical
operating system for the PC, called Windows.

Text-based and graphical systems

Operating systems can be classified into two types: single-user, single-task,
command-driven systems, like DOS, and multiple-task, GUIl-based sys-
tems, such as Windows, XWindows, or the Macintosh. DOS-like, com-
mand-driven, systems allow unrestricted access to machine resources.
Once an application code gains control, it can do whatever it pleases. Its
only limitations are the hardware capabilities and the programmer’s skills.

Although DOS-like operating systems often list rules that well-behaved
programs should follow, there is no way of enforcing these rules. Inten-
tionally or accidentally, programs can raise havoc by deleting or modify-
ing files, interfering with other applications, or even damaging the
hardware. A single-user, single task program has total control over all sys-
tem resources. It can allocate all memory to itself, set up the input and
output devices, directly control the printer and the communications lines,
and manage the mouse and the keyboard. In this environment there are
no shared resources, since a single program executes in the machine and
the operating system is dormant while an application is in control.

On the other hand, multitasking systems such as Windows, must share
resources between several applications. Memory, CPU time, display hard-

© 2002 by CRC Press LLC

ware, communications lines and devices, mouse, keyboard, and disk stor-
age are all shared. Each program operates in its own private memory
space, with limited access to other memory areas. Hardware devices are
controlled by the operating system, which grants access to applications
at its discretion and under its control. The library of services that is made
available to applications by a multitasking operating system is often
called the application programming interface, or API. Figure 25-1 shows
how single-tasking and multitasking programs access system resources.

SINGLE TASK OS MULTIPLE USER, MULTIPLE TASK OS

memory memory

disk storage disk storage

Application
code

o API
_’ ApTg;aetlon <+ L’ services <

!
i

video system video system

1/0 devices

il
i,

1/0 devices

Figure 25-1 Access to System Resources

Multitasking operating systems have text-based or graphical inter-
faces. In the first case we say that the system is command-driven, which
means that operating system services and functions are accessed by com-
mands entered from the console. In the second case we describe the sys-
tem as having a graphical user interface or GUIL

The paradigm that defines a single-user command-driven operating
system is quite different from the one for a GUI-based multitasking sys-
tem. A preemptive multitasking operating system switches the fore-
ground (CPU access) from one application to another. If an application
misbehaves, the operating system can turn it off. In this model it is the op-
erating system that is “the god of the machine,” not the running program.

© 2002 by CRC Press LLC

Event-Driven Programming

The programming model that describes the interaction between the appli-
cation and a multitasking operating system is sometimes called
event-driven programming. The event-driven term relates to the fact that
synchronization between the operating system and the application is in the
form of events. For example, a user event takes place when the user initi-
ates an action to change the size of the program window. In response to this
user event, the operating system proceeds to change the window’s size by
means of a system event. The application is notified of the system event so
that it can initiate additional actions. This in turn generates another chain
of events.

The event-driven model is implemented by messages passed between
the application and the system. Typically each event, or group of events,
generates a message. For example, the user drags the corner of the pro-
gram window in order to resize it. This event generates a message that is
sent to the operating system. The operating system responds by resizing
the application window. It then informs the application that the size of
the window has changed so that the application code can update the dis-
play as necessary. Figure 25-2 shows the actions and messages in a
multitasking operating system environment.

K USER ACTION

T * control “.
MSG: L event !
update display h :

{ program : MSG: ! system -
. I<— :
event window resized , event |

Figure 25-2 Event-Driven Model

© 2002 by CRC Press LLC

Event manager and event handler

The event-driven application is passive since the program does not monitor
devices directly. The task of detecting input is left to the operating system
The application stays dormant until it is notified that a user event has taken
place, as shown in Figure 25-2. The operating system is the event handler,
and the application the event manager.

Events are loosely classified into several types: system events, control
events, and program events. One event often triggers another one of the
same type, or of a different type. A system event can generate a control
event. Or a program event can be the cause of a system event, which, in
turn, generates another system event, and so forth.

The Main Window

The main window is an application’s principal means of input and output
and its only access to the video display. In Java the program’s main window
is called the frame.

The following are the fundamental building blocks of a window:

¢ The main window has a title bar. The title bar can display a caption or it can
be blank.

¢ In the right-hand side of the title bar there are usually buttons to minimize,
maximize, and close the program window. The application can select which,
if any, of these control buttons are displayed.

¢ The optional menu barislocated below the title bar. A typical menu bar con-
tains one or more drop-down menus. Each drop-down menu consists of
commands that are activated by amouse click or by using the Alt key and the
underlined letter code. Menu commands that expand into submenus are
usually indicated by trailing ellipses.

e The program main window, as well as many input/output controls, can
have vertical or horizontal scroll bars. The operating system notifies the ap-
plication of user’s action on the scroll bars, but the application must provide
the required processing.

e The screen zone assigned to each program window is called the client area.
The dimensions and graphics attributes of the client area can be obtained
from the operating system.

Figure 25-3, on the next page, shows the basic components of a pro-
gram window.

© 2002 by CRC Press LLC

Controls

The program window in Figure 25-3 contains several controls: the buttons
on the title bar, the menu items and menu commands, and the scroll bars.
Buttons, scroll bars, and menu commands are just a few of the many control
components that are available in a graphics application. The components
that are used in implementing input/output and program manipulation op-
erations are generically called controls.

menu bar vertical scroll bar

control buttons

program icon

title bar

|Ef-‘
hi

The Program Window
Edit Search Help

Hew
Open..
Save

SEWE S
Erint

Piint Setup...

Exit

<= B

drop-down menu
horizontal scroll bar

Figure 25-3 Components of a Program Window

Incidentally...

Some controls have been around since the original GUI operating sys-
tems.

© 2002 by CRC Press LLC

Chapter 26

Java Graphics

The Greatest Challenge

The greatest challenge that confronted the creators of the Java program-
ming language was the implementation of a cross-platform Graphical User
Interface. Windowing environments, such as MAC OS, X-Windows, and the
various versions of Microsoft Windows, all have unique features. The cre-
ators of Java had to find the common elements in all platforms while ignor-
ing the features that were exclusive of a particular one. In other words, they
had to find the common graphics functionality, while making sure that Java
virtual machines would accommodate the unavoidable differences. A task
indeed!

The first implementation of a Java GUI was called the Java Abstract
Windowing Toolkit, or AWT. The original version had major shortcomings
and several nasty bugs, most of which have been fixed.

Applets and applications

The World Wide Web was at the origin of the Javalanguage and continues to
be one of its principal fields of application. Small Java programs, called ap-
plets, execute within a Web browser, such as Netscape Navigator or
Internet Explorer. These programs expand the functionality of the browser
by providing the logic and data processing capabilities of Java.

Most of the support required for Java graphics at the applet level is lo-
cated within the browser. This means that the browser itself must solve
all of the platform-dependency issues. Java applications, on the other
hand, are full-fledged Java programs that are executed by the Java inter-
preter. In this book we consider only Java applications.

© 2002 by CRC Press LLC

The Java Foundation Classes

Graphics programming in Java is by means of packages called the Java
Foundations Classes. In Java 1.2 the foundations classes include the fol-
lowing APIs:

1. Abstract Windows Toolkit or AWT
2. Swing components

3. Java 2D

4. Java accessibility

Of these, the Java Accessibility API package supports handicap
assistive technologies such as screen readers, screen magnifiers, etc. The
classes that more directly relate to conventional graphics (AWT, Swing,
and Java 2D) are briefly discussed in the following sections.

AWT

The Abstract Windows Toolkit (AWT) is the core package for implementing
graphics. The AWT contains classes for creating and operating a Graphical
User Interface and for performing drawing and painting operations. In addi-
tion, the current versions of the AWT provide support for clipboard-based
transfers, for image manipulations, fonts, printing, 2D geometrical opera-
tions, input, and provides an event handling mechanism.

One of the most useful classes of the AWT is java.awt.Component. A
component can be a button, a menu, a scrollbar, or any graphical element
that is displayed on the screen and that can interact with the user. In
Microsoft Windows components are called controls. The Component
class is currently extended by sixty-six classes.

Swing

The designers of the AWT decided to use the functionality of the underlying
operating systems instead of coding the user interface toolkit from scratch.
For this reason, the AWT is actually a thin software layer that provides ac-
cess to the system’s application programming interface. The underlying
code that provides the specific windowing functions are called peer
classes. For example, if a Java application uses the AWT to create a button
control, the resulting component would be a standard Windows button, a
Macintosh button, or a Motif button according to the operating system on
which the application executes.

© 2002 by CRC Press LLC

Programmers note

Java documentation refers to elements that use the underlying APIs
as heavyweight components and those that are totally implemented in
Java code as lightweight components. In this sense the AWT consists
of all heavyweight components. The Swing components, on the other
hand, are mostly lightweight.

A mechanism called “peers” facilitated the development of the original
Java toolkits and gave applications the look-and-feel of their host operat-
ing system. However, the use of peers brings about a performance penalty
for Java applications and has been the source of bugs and system
dependecies. Java 1.2 addressed these problems by means of a new set of
APIs called Swing.

In contrast with API components, Swing components are designed to
work the same on all platforms. Swing components add functionality to
the AWT methods. The swing interface makes it possible to select an ap-
plication’s “look and feel.” For example, a program using Swing compo-
nents can look like a Win32, a Motif, or a Mac program. In addition swing
implements a new graphics rendering paradigm called a
Model-View-Controller (MVC) architecture. In this scheme each compo-
nent has an associated Model class and an interface it uses. In this book
graphics coverage is restricted to the AWT. We do not cover swing.

Java 2D

Java 2D is the name of an extension of the AWT that includes enhanced
graphics, text operations, image handling, color definition and composi-
tion, hit detection, and device-independent printing. The class Graphics2D,
which extends the AWT Graphics class, is the fundamental class of Java 2D.

Applications that use Java 2D functionality start by creating an object
of the Graphics class, then casting it into one of the Graphics2D classes.
The result is that the methods of both classes, Graphics and Graphics2D,
become accessible to code. In this book you will see how the Graphics
and Graphics2D classes are used to implement GUIs and graphics output.

Java proposes to be a portable language, but the graphics platforms
present the biggest challenge to this portability. The hardware variations
and the uniqueness of the various operating systems result in GUIs with
substantial differences. Windows, Macintosh, xWindows, and Motif,
among others, present individualities that are often difficult for Java to
accommodate. The Java AWT provides facilities for manipulating images

© 2002 by CRC Press LLC

and generating graphics across all supported platforms. The results are
not always perfect, but very often they are good enough for the task at
hand. In any case, regarding portable graphics, Java is still “the only game
in town.”

The Frame Concept

In Java graphics a frame is a top-level window. The Java frame includes the
window’s title bar and border. The Frame object can resize itself when the
user drags the edge or the corner of the window. A frame is repositioned
when the user drags it to another place in the desktop. A frame can contain
other graphics objects, such as text, buttons, and controls.

Java AWT contains a Frame class that provides much of the functional-
ity needed to implement a typical application window. The default frame
has a title bar and a border. Applications are expected to provide process-
ing for handling events such as the user resizing or closing the frame. This
means that if your code does not provide processing for closing a frame,
then the program window can only be closed by system-level commands.
In Windows, the system command for closing a frame is <Ctrl-Alt-Del>
keystrokes. This is not only inconvenient, but can also lead to an unex-
pected system reboot with possible loss of data. Later in this chapter we
develop code to create frames that can be closed by the user.

The Java Frame class is located in a class hierarchy with the Compo-
nent class at its highest level. We concentrate out attention on the core
classes: Frame, Window, Container, and Component.

AWT frame class

The Frame class is used to create a window with a title bar, a border and an
optional menu bar. A frame can also contain gadgets such as buttons to
resize, minimize, or maximize the window. The Frame class, which extends
Window, provides methods for configuring and manipulating frames. Table
26-1 lists some of the most used methods in the Frame class.

Window class

A window object represents a top-level window with no border or menu.
When a window object is constructed it must have either a frame, a dialog,
or another window object as its owner. Window object generate events to
signal that the window has been opened or closed. Table 26-2 lists some of
the most used methods in the Window class.

© 2002 by CRC Press LLC

Table 26-1

Commonly Used Methods of the Frame Class

RETURNS NAME DESCRIPTION
void addNotify() Makes thes Frame displayable
by connecting it to a native
screen resource.
static Frame[] getFrames() Returns an array containing all
frames created by the application.
Image getlconimage() Gets the image to be dis-
played in the minimized icon.
MenuBar getMenuBar() Gets the frame’s menu bar.
int getState() Gets the frame’s state.
String getTitle() Gets the frame’s title.
boolean isResizable() Indicates whether the frame is
resizable by the user.
String paramString() Returns theparameter string.
void remove(MenuComponent m)
Removes the frame’s Menu bar.
void removeNotify() Makes the Frame un-displayable
by removing its connection to its
native screen resource.
void setlconlmage(lmage image)
Sets the image to be displayed in
the minimized icon for this frame.
void setMenuBar(MenuBar mb)
Sets the menu bar for this frame
to the specified menu bar.
void setResizable(boolean resizable)
Sets whether this frame is
resizable by the user.
void setState(int state)
Sets the frame’s state.
void setTitle(String title)
Sets the frame’s title.
Table 26-2
Commonly Used Methods of the Window Class
RETURNS 6NAME DESCRIPTION
void addNotify() Makes this Window displayable by
creating the connection to its native
screen resource.
void addWindowListener(WindowListener)
Adds a window listener to receive
events from this window.
void dispose() Releases all of the native screen
resources used by this Window.
(continues)

© 2002 by CRC Press LLC

Table 26-2

Commonly Used Methods of the Window Class (continued)

RETURNS NAME DESCRIPTION

Locale getLocale() Gets the Locale object that is
associated with this window, if one
has been defined.

indow[] getOwnedWindows()
Return an array containing all the
windows this window currently
owns.

Window getOwner() Returns the owner of this window.

void hide() Hide this Window.

boolean isShowing() Checks if this Window is currently
displayed.

void pack() Causes this Window to be sized to
fit the preferred size and layouts
of its subcomponents.

protected

void processEvent(AWTEvent e)
Processes events on this window.

protected

void processWindowEvent(WindowEvent e)
Processes window events
occurring on this window by
dispatching them to any registered
WindowListener object.

void removeWindowListener(WindowListener I)
Removes the specified window
listener.

void setCursor(Cursor cursor)
Set the cursor image to a
specified cursor.

void show() Makes the Window visible.

void toBack() Sends this window to the back.

void toFront() Brings this window to the front.

Container class

The java.awt.Container class defines a generic container object that can
contain other containers or components. A Java container object is a rect-
angular area in which other program elements can be placed. The Con-
tainer class is a subclass of Component. This means that container objects
can be nested one inside the other one. The Container class contains over
50 methods. Table 26-3 is a selection of some of the most frequently used

methods in the Container class.

© 2002 by CRC Press LLC

Table 26-3

Commonly Used Methods of the Container Class

RETURNS

NAME DESCRIPTION

Component

Component

void

void

Component

void

void

Component

Component

float
float

Component

Component

Component

add(Component comp)
Adds the specified component to this
container.
add(Component comp, int index)
Adds the specified component to this
container at the given position.
add(Component comp, Object constraints)
Adds the specified component to the
end of this container with the given
constraints.
add(Component comp, Object constraints, int index)
Adds the specified component to this
container with the specified
constraints at the specified
location.
add(String name, Component comp)
Adds the component specified by its
name to this container.
addContainerListener(ContainerListener I)
Adds the specified container listener
to receive container events from this
container.
Makes this Container displayable by
connecting it to a native screen
resource.
findComponentAt(int x, int y)
Locates the child component that
contains the specified position.
findComponentAt(Point p)
Locates the child component that
contains the specified point.
getAlignmentX()
Returns the x axis alignment.
getAlignmentY()
Returns the y axis alignment.
getComponent(int n)
Returns the nth component in this
container.
getComponentAt(int x, int y)
Locates the component that contains
the specified x,y position.
getComponentAt(Point p)
Gets the component that contains the
specified point.

addNotify()

© 2002 by CRC Press LLC

(continues)

Table 26-3

Commonly Used Methods of the Container Class (continued)

RETURNS NAME DESCRIPTION

int getComponentCount()
Gets the number of components in the
panel.

Component]] getComponents()

Insets

Gets all the components in this
container.

getinsets() Determines the size of the
container’s border.

LayoutManager

Dimension

Dimension

Dimension

void
boolean

void

void

void

void

protected

void

void

getLayout() Gets the layout manager for this
container.
getMaximumSize()
Returns the container’s maximum
size.
getMinimumSize()
Returns the container’s minimum size.
getPreferredSize()
Returns the preferred size of this
container.
invalidate() Invalidates the container.
isAncestorOf(Component c)
Checks if the component is contained
in the component hierarchy of this
container.
list (PrintStream out, int indent)
Prints a listing of this container to
the specified output stream.
list (PrintWriter out, int indent)
Prints out a list, starting at the
specified indention, to the specified
print writer.
paint (Graphics g)
Paints the container.
paintComponents(Graphics g)
Paints each of the components in this
container.
String paramString()
Returns the parameter string
for the state of this container.
print(Graphics g)
Prints the container.
printComponents(Graphics g)
Prints each of the components in this
container.

© 2002 by CRC Press LLC

(continues)

Table 26-3

Commonly Used Methods of the Container Class (continued)

RETURNS NAME DESCRIPTION

protected

void processContainerEvent(ContainerEvent e)
Processes container events occurring
on this container by dispatching them
to any registered ContainerListener
objects.

protected

void processEvent(AWTEvent e)
Processes events on this container.

void remove(Component comp)
Removes the specified component
from this container.

void remove(int index)
Removes the component specified by
index.

void removeAll() Removes all the components from this
container.

void removeContainerListener(ContainerListener I)
Removes the specified container
listener.

void removeNotify()
Makes this Container undisplayable
by removing its connection to its
native screen resource.

void setCursor(Cursor cursor)
Sets the cursor image to the
specified cursor.

void setFont(Font f)
Sets the font of this container.

void setLayout(LayoutManager mgr)
Sets the layout manager for this
container.

void update(Graphics g)
Updates the container.

void

protected validate() Validates this container.

The highest level class in the hierarchy is named Component. The Java
Component class defines objects that can be displayed on the screen and
interact with the user. The notion of a component is similar to that of a
Windows control. Examples of components are buttons, checkboxes,
scrollbars, and menus. The graphical user interface is implemented by
means of components. The Component class is one of the richest in the
AWT. You should consult the Java documentation to inspect the methods

in this class.

© 2002 by CRC Press LLC

The Java Graphics Application

Java graphics applications must provide processing for handling events
such as the user closing the frame. If this logic is not provided by your pro-
gram, then the window can only be closed by system-level commands,
which is both inconvenient and awkward.

To create a frame that can be closed by means of the control button re-
quires implementing event-handlers and using event-handling code. With
the previous version of the AWT this task posed no great problems, since
the event handling model was simple and intuitive. But, this model, which
was based on inheritance, had serious limitations. This led to the adop-
tion of a more complex delegation-based model. Although code that uses
the old model still works in Java 1.2, Java has declared that this support
will end in the near future.

In order to make the frames “closeable” we use a class called ActiveFrame.
Since ActiveFrame extends Frame, all the methods of the Frame class remain
available to our code.

An ActiveFrame object has the following properties:
e The frame’s default size is 300 by 200 pixels
e The default location is the top left screen corner

¢ The title bar displays the name of the class

The ActiveFrame class

Creating code that can process windows events requires creating a
WindowListener object. This is done by means of the WindowAdapter class
which is part of the java.lang package. The windowClosing() method of the
WindowAdapter class takes a WindowEvent object as a parameter. This
method is invoked when the application window is being closed thus pro-
viding implementation of a “user-closeable” window. The ActiveFrame
class, listed below, extends the Java Frame class and provides the neces-
sary code for conventional closing of the program window. ActiveFrame is
defined as follows:

import java.awt.*;
import java.awt.event.*;

public class ActiveFrame extends Frame

{

//*************************

// Constructors
//*************************

© 2002 by CRC Press LLC

public ActiveFrame ()
{ addwindowListener
(new WindowAdapter ()
{ public void windowClosing (WindowEvent e)
{ System.exit (0);}

) ;
setSize (300, 250);
setTitle(getClass () .getName()) ;

In addition to creating a closeable window, the ActiveFrame class sets
the window size to 300 by 250 pixels and displays the name of the driving
class as the program title. Your code can modify these default values. The
following program, named Closeable.java, creates a program window us-
ing the ActiveFrame class.

//****'k'k'k***********************************‘k‘k******’k*******
//****‘k*‘k‘k‘k‘k‘k‘k‘k**************************************‘k‘k‘k‘k‘k‘k‘k
// Project: Java for Engineers

// Program: Closeable.java

// Reference: Chapter 26

// Topics:

// 1. Extending the java Frame class with ActiveFrame.
// ActiveFrame provides additional processing logic
// for closing the program window without having to
// re-boot.

// 2. Calling methods in the superclasses.

// 3. Displaying the frame using the show() method of

// the Window class.

VAR EEREEEE S EEEESEEEEREEEEREEEEREEEEREEEE TR R R R

// Requires:

// 1. ActiveFrame class in the current directory
//****'k'k'k'k********‘k‘k‘k‘k*******'k'k'k'k**********‘k‘k*******'k*******

//************~k~k**************‘k**********************‘k‘k‘k****
import java.awt.*;
import ActiveFrame;

//***
//***
// driving class

//***

//***

public class Closeable extends ActiveFrame

{

// By extending ActiveFrame we make accessible all its

// methods and those of its superclasses (Object, Component,
// Container, Window, and Frame) .

VAR EEEEEEEEEREEEEEE R R

// main
khkkhkhkhhhhhhkhkrkhrkhkhkhkhkhkkhkkhkkkkkk*x*xx
//

© 2002 by CRC Press LLC

public static void main(String[] args)

{

// Create an object of the class GFrame. We can use
// this object to access the methods in GFrame and
// its superclasses

Closeable aframe = new Closeable();

// Use methods in the Component class

// to modify object’s default dimensions and screen

// and the setTitle() method of the Frame class to change
// the window title

aframe.setSize (400, 300); // Set frame size
aframe.setLocation (200, 100); // Set frame location
aframe.setTitle(“Closeable Frame Demo”) ; // Titlebar text

// Display the frame using the show() method of the Window
// class
aframe.show() ;

}

The resulting window overrides the default size defined in the

ActiveFrame class, which is of 300 by 250 pixels. Also the program’s title,
as displayed in the title bar, is changed. Because we have extended
ActiveFrame, the program window can be closed by clicking the X button
on the title bar or by means of the Close command in the system menu.
Figure 26-1 is a screen snapshot of the resulting program window.

E’_‘" Closeable Frame Demo !Elm

Figure 26-1 Screen Snapshot of the Closeable Program

© 2002 by CRC Press LLC

The Closeable program provides a simple shell in which to create a
graphics window using the ActiveFrame class. In your own programs you
will probably need to configure the Window to suit your purposes. For ex-
ample, if your program needs to execute in a window of a size different
than the one in the sample code, or if it is initially located at a different
position in the desktop area, you would most likely use your own window
title. All of these and many other program parameters can be changed by
means of the corresponding methods of its superclasses, namely, Compo-
nent, Container, Window, and Frame. For example, you can resize the
program window by calling the setSize() method of the Component class,
as shown in the Closeable program.

On the Web

The program Closeable.java is located in the Chapter 26 folder at
www.crcpress.com. Also in this folder is the source for
ActiveFrame.java.

The Display Context

A Windows data structure that stores information about a particular de-
vice, such as the video display or a printer, is called a device context. The
Java counterpart for a device context is an object of the Graphics class. The
Graphics object contains information that is necessary for drawing opera-
tions, such as:

¢ The object that is to receive the drawing. This is normally a Component, but
it can also be an off-screen image.

¢ A coordinate translation mode that controls the object’s position on the
screen.

¢ A clipping rectangle that limits output to the current frame.
e A color used for drawing.

e A font used for text output.

Every Java program that renders text or graphics in a frame must refer-
ence a Graphics object. The Graphics class, which is part of the AWT, con-
tains over 35 methods, which can be used to draw lines, arcs, rectangles,
characters, bytes, bitmaps (called images in Java), ellipses, polylines,
among many graphic objects. The Graphics class is an abstract class so
you cannot instantiate objects of this class directly.

© 2002 by CRC Press LLC

The update() and paint() methods

Java programs that use the AWT are event-driven. The programmer codes
the operations that draw on the program’s client area but does not perform
the drawing directly. Instead the code waits for a system or user generated
event to draw to the window. This event can be the program window being
displayed for the first time, or the program window being uncovered,
resized, minimized, maximized, or otherwise modified by the user. When
the Java event handler needs to redraw a window, it triggers a call to a
method called update() which is located in the Component class. The up-
date() method erases the window background and then calls the paint()
method in the Java Canvas class. A typical application redefines the paint()
method so thatitreceives control whenever the program’s window requires
updating. The paint() method receives a Graphics object asits only parame-
ter. For example:

public void paint (Graphics g)
{
g.drawString (“*Hello World!!!”, 50, 100);

}

In this case the code has redefined paint() with its own version so that
it receives control whenever a screen update is required. The only output
operation in this case is displaying a message on the screen using the
drawString() method of the Graphics class. The second and third parame-
ters to drawString() are the x and y pixel coordinates in the client area.

Manipulating fonts

A fontis aset of characters of the same typeface, style, and size. In the AWT
the typefaces available are SansSerif, Serif, Monospaced, Dialog, and Win-
dows Dialog. The sytles are bold, italic, bold-italic, and plain. The size is ex-
pressed in units called points, each point being 1/72th of an inch.

In Java an attribute of the Graphics object is the default font that is
used in drawing text to the screen. Applications can select other fonts
and point sizes by instantiating an object of the Font class. The Font con-
structor is as follows:

public Font (String name, int style, int size)

FONT NAME: ---- | | |------ point size
SansSerif [-—=-=——————- STYLES:

Serif BOLD
Monospaced ITALIC

Dialog BOLD | ITALIC
Dialog input PLAIN

© 2002 by CRC Press LLC

An application can create a font object as follows:

Font f = new Font (“SansSerif”, Font.BOLD, 14);

The font is then installed in the device context using the setFont()
method of the Component class, as follows:

g.setFont (f);

The following program, named Text.java, demonstrates the fundamen-
tal manipulations required for a Java graphics application that displays
text to the screen.

//*****************‘k‘k**********************‘k****************
// Project: Java for Engineers

// Program: Text.java

// Reference: Chapter 26

// Topics:

// 1. Instantiating a Graphics object
// 2. Redefining the paint () method
// 3. Changing fonts

// 4. Displaying a text message
//****'k'k'k‘k‘k‘k‘k****************'k'k'k‘k‘k‘k‘k‘k‘k**************'k'k*‘k‘k‘k‘k‘k
// Requires:

// 1. ActiveFrame class in the current directory
//****'k'k***********‘k‘k‘k*******'k'k************‘k‘k*******'k*******

//**
import java.awt.*;
//***
//***

// driving class
//***

//***

public class Text extends ActiveFrame
{

//**************‘k‘k*****************

// redefinition of paint/()
//*********************************

// The paint() method of the Java AWT Canvas class

// fills the Window'’s client area with the default

// color. An application can redefine paint() in

// order to output graphics to the display.

// The following code redefines paint (), which receives
// a Graphics object as a parameter, and then uses

// the drawString method of the Graphics class to

// display a message on the screen.

public void paint (Graphics g)

{
// Define a monospaced, bold, 1l6-point font
Font £ = new Font (“Monospaced”, Font.BOLD, 16);
// Set the font in the device context
g.setFont (f) ;
// Display a text string

© 2002 by CRC Press LLC

g.drawString (“*Hello Engineers, this is Java”, 50,
100) ;
}

//****************************

// main
//****************************

public static void main(String[] args)

{

// Create an object of the class WindowText
Text aframe = new Text();

// Use methods in superclasses to modify object’s default
// size, location, and program title

aframe.setSize (500, 300); // Set frame size
aframe.setLocation (200, 100); // Set frame location
aframe.setTitle(“Text Demo Program”); // Titlebar text

// Display frame calling the show() method of the Window
// class
aframe.show() ;

Figure 26-2 is a screen snapshot of the Text program.

EE%TE)Q Demo Program !Elm

Hello Engineers, this is Java

Figure 26-2 Snapshot of the Text.Program

On the Web

The program Text.java is located in the Chapter 26 folder at
WWW.Crcpress.com.

© 2002 by CRC Press LLC

Chapter 27

Displaying Graphic Images

Vector and Raster Graphics

Two technologies are used in creating and displaying images on the graph-
ics screen, they are called vector and raster graphics. As the name implies,
vector images are described mathematically. In vector graphics a straight
line is defined by the screen location of its start and end points, while cir-
cles and ellipses are defined by the dimension and coordinates of the rect-
angle that tightly contains the figure. In other words, in vector graphics a
complex graphical object consists of the descriptions of all the simpler
component that form it. Since vector-defined objects are a numerical ex-
pression, the objects can be manipulated by transforming the values that
represent it. Thus, vector images can be moved, scaled, and rotated on the
screen by performing mathematical operations on its data.

Raster graphics, on the other hand, consist of images defined in terms
of their individual screen dots. The pattern of dots is arranged in rows
and columns; each dot usually associated with a color attribute. AWT and
other Java graphics packages support both vector and raster graphics.

The frame origin

Before you attempt to draw graphics objects on the video display you must
consider a peculiarity of Java graphics. There is a geometrical issue that
should be addressed before we attempt to draw graphic objects on the
video display. Figure 27-1 shows a typical Java frame.

© 2002 by CRC Press LLC

Graphic frame origin

E;'i Graphic Frame Demo

Client area origin

Figure 27-1 Frame and the Client Area Origin

The concept of a Java program frame includes the title bar and the win-
dow border, as shown in Figure 27-1. Since applications cannot draw on
the title bar or the border, it is useful to change the frame origin to the
top-left corner of the client area, which is the screen area that applica-
tions can access. In order to translate the drawing origin from the frame
area to the client area you can use the translate() method of the graphics
class. The method receives two parameters which represent the x and the
y values by which the origin is to be moved. The size of the title bar and
the frame border can be obtained with the getInsets() method of the Con-
tainer class, as follows:

getInstets().left —> returns the width of the border

getInsets () .top —> returns the width of the titlebar

The call to translate() is made as follows:

g.translate (getInsets () .left, getlInsets().top);

After the translate() method executes, the origin of the drawing is lo-
cated at the top left corner of the application’s client area.

© 2002 by CRC Press LLC

Color and Java graphics

In Java graphics the video display color is an attribute of the graphics ob-
ject. Once a color is set, it is used for all drawing operations that follow. To
draw in multiple colors you must select them in succession. The Color class
Java’s AWT encapsulates colors. Several methods are available for defining
colors. One of them is based on the pre-defined color names, shown in Ta-
ble 27-1.

Table 27-1
Java Standard Colors
black green red
blue lightGray white
cyan magenta yellow
darkGray orange gray
pink

RGB color designation

Based on the physics of light, a color can also be defined by its red, green,
and blue components. This method is called the RGB color format. Con-
structors of the Color class allows a custom color to be created by specify-
ing its red, green, and blue components. In one constructor the RGB values
are specified as floating point numbers in the range 0.0 to 1.0. Another con-
structor allows specifying the RGB value with integers. A third constructor
reflects the architecture of the most common video cards which use a byte
value to encode each of the RGB components. Using this third constructor
you can create objects of the Color class, as follows:

Color aRed = new Color (200, 0, 0);

Color lightBlue = new Color (0, 0, 210);
Color pink = new Color (200, 50, 50);
Color blackest = new Color (0, 0, 0);
Color whitest = new Color (255, 255, 255);

Once a color has been defined, its name can be used to install it as an
attribute of the Java graphics object by means of the setColor() method.
The method takes a Color object as a parameter, which can be a color cre-
ated using one of the pre-defined color names in Table 27-1, or it can also
be a named color using one of the other constructors. For example:

g.setColor (aRed) ;
g.setColor (Color.orange) ;

You can also create a customized color and install it as an attribute of
the graphics object in the same statement:

g.setColor (new Color (0, 128, 128));

© 2002 by CRC Press LLC

The Java Graphics Class

The Java Graphics classis an abstract base class that allows applications to
draw onto the various devices, as well as creating off-screen images. A
Graphics object contains information that defines the basic rendering op-
erations. This state information includes the following properties:

e The Component object on which drawing takes place

¢ A translation origin for rendering and for clipping coordinates
e The current clipping rectangle

e The current color

e The current font

e The current logical pixel operation function

e The current XOR alternation color

Some of these attributes, such as the Component, the translation ori-
gin, the color and the font, have already been mentioned. In Java, render-
ing operations modify only pixels which lie within the area bounded by
the current clipping rectangle, one of the attributes of the graphics ob-
ject. Table 27-2 lists some of the methods in the Java Graphics class.

Table 27-2
Commonly Used Method the Graphics Class

RETURNS METHOD/ACTION
abstract
void clearRect(int x, int y, int width, int height)

Clears the specified rectangle by filling it with
the current background color.

abstract
void clipRect(int x, int y, int width, int height)

Intersects the current clip with the specified rectangle.
abstract
void copyArea(int x, int y, int width, int height, int dx,

int dy)

Copies an area of the component distance in dx and dy.

abstract

Graphics create()
Creates a new Graphics object that is a copy of the
current one.

Graphics create(int x, int y, int width, int height)
Creates a new Graphics object based on this Graphics
object, but with a new translation and clip area.

(continues)

© 2002 by CRC Press LLC

Table 27-2
Commonly Used Method the Graphics Class (continued)

RETURNS METHOD/ACTION

void dispose()
Disposes of this graphics context and releases any
System resources that it is using.

Abstract
void drawArc(int x, int y, int width, int height,
int startAngle, int arcAngle)
Draws the outline of a circular or elliptical arc defined
by the specified rectangle.
void drawBytes(byte[] data, int offset, int length, int x,
inty)
Draws the text given by the specified byte array using
the current color and font.
void drawChars(char[] data, int offset, int length, int x,
inty)
Draws the text in the specified character array, using
the current font and color.
abstract
void drawLine(int x1, int y1, int x2, int y2)
Draws a line, using the current color, between point
(x1, y1) and point (x2, y2).
abstract
void drawOval(int x, int y, int width, int height)
Draws the outline of an oval defined by its
bounding rectangle.
abstract
void drawPolygon(int[] xPoints, int[] yPoints,

int nPoints)
Draws a closed polygon defined by arrays of x and y
coordinates.

void drawPolygon(Polygon p)
Draws the outline of a polygon defined by the specified
polygon object.

abstract

void drawPolyline(int[] xPoints, int[] yPoints, int nPoints)
Draws a sequence of connected lines defined by
the corresponding arrays of x and y coordinates.

void drawRect(int x, int y, int width, int height)
Draws the outline of the specified rectangle.

abstract
void drawRoundRect(int x, int y, int width, int height,
int arcWidth, int arcHeight)
Draws an outlined round-cornered rectangle using the
graphics context’s current color.
abstract
void drawString(String str, int x, int y)

Draws the text given by the specified string, using the
graphics context’s current font and color.

(continues)

© 2002 by CRC Press LLC

Table 27-2

Commonly Used Method the Graphics Class (continued)

RETURNS METHOD/ACTION
void fill3DRect(int x, int y, int width, int height,
boolean raised)

Paints a 3-D highlighted rectangle filled with the
current color.

abstract

void fillArc(int x, int y, int width, int height,

int startAngle, int arcAngle)

Fills a circular or elliptical arc defined by the
specified bounding rectangle.

abstract

void fillOval(int x, int y, int width, int height)
Fills an oval defined by the specified bounding
rectangle, using the current color.

abstract

void fillPolygon(int[] xPoints, int[] yPoints, int nPoints)
Fills a closed polygon defined by arrays of x and y
coordinates.

void fillPolygon(Polygon p)
Fills the polygon defined by the specified Polygon
object, using the graphics context’s current color.

abstract

void fillRect(int x, int y, int width, int height)
Fills the specified rectangle.

abstract

void fillIRoundRect(int x, int y, int width, int height,

int arcWidth, int arcHeight)

Fills the specified rounded corner rectangle using
the current color.

void finalize()
Disposes of this graphics context once it is no longer
referenced.

abstract

Shape getClip()
Gets the current clipping area.

abstract

Rectangle getClipBounds()
Returns the bounding rectangle of the current clipping
area.

abstract

Color getColor()
Gets this graphics context’s current color.

abstract

Font getFont()

Gets the current font.

(continues)

© 2002 by CRC Press LLC

Table 27-2

Commonly Used Method the Graphics Class (continued)

RETURNS METHOD/ACTION
boolean hitClip(int x, int y, int width, int height)
Returns true if the specified rectangular area intersects
the bounding rectangle of the current clipping area.
abstract
void setClip(int x, int y, int width, int height)
Sets the current clip to the rectangle specified by the
given coordinates.
abstract
void setClip(Shape clip)
Sets the current clipping area to an arbitrary clip shape.
abstract
void setColor(Color c)
Sets this graphics context’s current color.
abstract
void setFont(Font font)
Sets this graphics context’s font.
abstract
void setPaintMode()
Sets the paint mode of this graphics context to
overwrite the destination with this graphics context’s
current color.
abstract
void setXORMode(Color c1)
Sets the paint mode of this graphics context to
alternate between this graphics context’s current color
and the new specified color.
String toString()
Returns a String object representing this Graphics
object’s value.
abstract
void translate(int x, int y)

Translates the origin of the graphics context to the point
(x, y) in the current coordinate system.

Vector-Based Drawing

Several methods of the Graphics class allow drawing straight and curved
lines on a graphics object. For example, to draw a filled oval you can use the
fillOval() method. The method draws a solid ellipse or circle, as follows:

g.filloval (50, 60, 200, 100);

| | | |__ height of bounding rectangle
| | [width of bounding rectangle
| [v of upper left corner

| x of upper left corner

© 2002 by CRC Press LLC

Other methods that take similar parameters are:

fillPolygon ()
fillRect ()
fillRoundRect ()

Methods that start with the word “draw” do not fill the interior of fig-
ures. For example:

drawRect ()
drawOval ()

The drawLine() method allows drawing a straight line defined by its
end points. The line attributes are those defined in the device context.
For example:

drawLine (int x1, int y1, int x2, int y2)

| |___ x/y of end point
| x/y of start point

Some vector-drawing methods of the Graphics class take arrays of co-
ordinates as a parameter. For example:

int[] xCoords = {350, 500, 500, 350};
int[] yCoords = {50, 150, 50, 150};

g.drawPolygon (xCoords, yCoords, 4);
| | |__ number of points
| o array of y coordinates
| array of x coordinates

Other methods that take similar parameters:

drawPolyline ()
fillPolygon ()

The drawArc() method is used to draw an arc of an ellipse, as follows:

g.drawArc (50, // x of start point
280, // y of start point
150, // width
100, // height
45, // start angle
180) ; // arc angle

All line drawing methods use lines that are one pixel thick. This is a
great limitation of the AWT which was supposed to be fixed in later ver-
sions.

© 2002 by CRC Press LLC

Transformations

One of the most powerful features of vector graphics is the possibility of
transforming an image by manipulating its coordinate points. Suppose you
create arectangular-shaped polygon defined by the x- and y-coordinates of
its four screen points. If you add a constant value to each of the x coordi-
nates of this image, the result is a rectangle translated along the x-axis by
the amount added to each coordinate point. By the same token, you can
translate a vector image to any desired screen location by adding or sub-
tracting a constant value to each of its x and y coordinates.

Figure 27-2 shows the translation of a rectangular polygon by adding a
constant to its x and y coordinates.

x=7,y=6

Figure 27-2 Translation of a Polygon

In Figure 27-2 the rectangle in solid lines is translated to the position of
the rectangle in dashed lines by manipulating its coordinate points. In
this case a value of 6 was added to the x coordinate of each point and a
value of 2 to each of the y coordinates.

Other geometrical transformations that can be performed on vector
images are scaling and rotation. In scaling each coordinate point is multi-
plied by a scaling factor, which can be different for each coordinate
plane. In the rotation transformation the vector-based object is made to
move along a circular arc by applying a trigonometric function to each co-
ordinate point. Objects can be made to appear larger or smaller, can be

© 2002 by CRC Press LLC

stretched and shrunk, and even animated, by applying translation, scal-
ing, and rotation transformation. For example, the vector-based arms of a
graphical clock can be made to move by applying a series of rotation
transformations. An object can be made to move diagonally across the
screen by consecutively applying a translation transformation. In either
case the graphics application would have to follow a cycle of drawing,
transforming, erasing, and redrawing each image.

The sample program named VGraphics, listed below, shows some of
the fundamental manipulations in Java vector graphics.

//****************‘k‘k‘k*********************‘k‘k****************
//**
// Project: Java for Engineers

// Program: VGraphics

// Reference: Chapter 27

// Topics:

// 1. Translating the frame origin to the client area
// 2. Creating and using colors

// 3. Vector graphics

//**
//****'k'k'k'k'k'k'k****************'k'k'k'k'k'k'k************************
// Requires: ActiveFrame class in the current directory

//********~k~k~k~k~k~k~k~k~k**************~k~k~k************************

//*****************‘k‘k*********************‘k‘k****************

import java.awt.*;

//****'k**‘k‘k‘k‘k‘k*k**************'k***‘k‘k‘k‘k**********
//****‘k**
// driving class

//***

//***

public class VGraphics extends ActiveFrame
{
// Class data
int[] xCoords = {350, 500, 500, 350};
int[] yCoords {50, 150, 50, 150%};

VAR EEREEEEREEEEREEEEEEE R

// redefinition of paint ()
//*************************‘k‘k‘k‘k‘k‘k‘k‘k

public void paint (Graphics g)

{
// Adjust the frame origin to the client area
g.translate(getInsets () .left, getlInsets().top);

// Select a font

Font f = new Font (“Monospaced”, Font.BOLD, 16);
g.setFont (f) ;

© 2002 by CRC Press LLC

// Create and set a bright shade of red

Color brightRed = new Color (200, 0, 0);

g.setColor (brightRed) ;

// Display a message

g.drawString (“*Demonstrating vector graphics in Java”,
30, 25);

// Create and set a shade of blue

Color aBlue = new Color (0, 0, 255);

g.setColor (aBlue) ;

// Draw a filled oval

g.filloval (50, 60, 200, 100);

// Draw a black-border rectangle
Color aBlack = new Color (0, 0, 0);
g.setColor (aBlack) ;

g.drawRect (30, 180, 200, 50);

// Draw a green polygon

Color aGreen = new Color (0, 180,0);
g.setColor (aGreen) ;

g.drawPolygon (xCoords, yCoords, 4);

// Translate the image by adding 120 to the
// y coordinates of the polygon
for(int x = 0; x < 4; xX++)

yCoords[x] = yCoords[x] + 120;

// Fill the translated polygon
g.fillPolygon (xCoords, yCoords, 4);

// Translate image again
for(int x = 0; x < 4; x++)
yCoords[x] = yCoords[x] + 120;

// Draw a magenta polyline. Note that the
// drawPolyline () does not close the figure
Color aMagenta = new Color(180,0 ,180);
g.setColor (aMagenta) ;

g.drawPolyline (xCoords, yCoords, 4);

// Restore the original values in the array of
// y coordinates

yCoords[0] = 50;
yCoords[1l] = 150;
yCoords[2] = 50;
yCoords[3] = 150;

// Draw a cyan arc
Color aCyan = new Color (0, 120 ,120);
g.setColor (aCyan) ;

g.drawArc (50, // x of start point
280, // y of start point
150, // width
100, // height

© 2002 by CRC Press LLC

45, // start angle
180) ; // arc angle

//****************************

/7

main

//*************‘k‘k‘k‘k***********

public static void main(String[] args)

{

// Create an object of the class VGraphics
VGraphics aframe = new VGraphics();

// Use

aframe.
aframe.
aframe.

methods in superclasses to modify object’s defaults

setSize (550, 500); // Set frame size
setLocation (200, 100); // Set frame location
setTitle(“Vector Graphics Demo”) ; // Title bar text

// Display frame calling the show() method of the Window
// class

aframe

.show () ;

Figure 27-3 is a screen snapshot of the VectorGraphics program.

Demonstrating wector graphics in Java

o
C

Figure 27-3 Screen Snapshot of the VGraphics Program

© 2002 by CRC Press LLC

On the Web

The program VGraphics.java is located in the Chapter 27 folder at
WWW.Crcpress.com.

Raster Graphics

Raster or bitmap graphicsis not based on geometrical figures but onimages
stored dot-by-dot. Raster images are a rectangle of individually colored
dots. Raster images can be stored in GIF or JPEG format and displayed in
Java programs. This technology is suitable for displaying photographs or
other images defined in a pattern of individual dots.

The image object

In order to display an image stored in a Java-compatible file the application
must first create an Image object. This is accomplished by first retrieving
the default Java AWT toolkit and then using the getimage() method of the
Toolkit class. For example, if you wish to display an image stored in a file
named “stars.gif” you start by creating the image object, as follows:

Image hstImage =
Toolkit.getDefaultToolkit () .getImage(“stars.gif”);

Displaying the bitmap

You can display an image called HST_1(of the class Image) using the
drawlmage() method of the Graphics class, for example:

g.drawImage (HST_1, 120, 350, 200, 200, this);

‘ | |___ image observer
\ | scaling rectangle

|
|
| | x/y location
| image object

The fifth parameter in the call to drawlmage() is an ImageObserver in-
terface. When the call to drawlmage() takes place Java starts a new pro-
gram thread to load the requested image. The image observer is notified
by the thread when the image data is acquired. Since the Component
class implements the ImageObserver interface, we can use the “this” op-
erator as an image observer in the call to drawImage().

The following program, named RGraphics.java, demonstrates the dis-
play of a bitmap file in Java.

© 2002 by CRC Press LLC

VAR EEREEEE S EEEESEEEESEEEEREEEEREEEEREEEEREEEEEEE SRR

//****‘k‘k‘k‘k‘k‘k‘k‘k***************‘k‘k*‘k‘k******************‘k‘k‘k‘k‘k‘k**
// Project: Java for Engineers

// Program: RGraphics
// Reference: Chapter 27

// Topics:
// 1. Creating the image object
// 2. Displaying a raster image

//**
//**
// Requires: ActiveFrame class in current directory

// Image file stars.gif in current directory
//**

//**

import java.awt.*;

//***************‘k‘k‘k********************‘k‘k‘k‘k***

//***

// driving class
R R I I I I I I I R I I I R I S 2 I I I A I R S R I I I
//

VAR EEE R R EE RS EEEEEEEEEEEEEEEEEEEEEEEEEEEEE

public class RasterGraphics extends ActiveFrame
{
// Class data

Image hstImage =
Toolkit.getDefaultToolkit () .getImage (“HST_1.JPG”") ;

VAR EEE AR EE RS EEEE SR EEEEEEEEEEEEEE

// redefinition of paint/()
//*********************************

public void paint (Graphics g)

{
// Adjust the frame origin to the client area
g.translate(getInsets () .left, getlInsets().top);

// Display an image in .Jjpg format
g.drawImage (hstImage, 20, 20, 440, 400, this);

//****************************

// main
Ak hkhkhkkhhkdkhkdkhkhkhkhkhhhkhhhhhhkxkkx
//

public static void main(String[] args)

{
// Create an object of the class RasterGraphics
RasterGraphics aframe = new RasterGraphics() ;

// Use methods in superclasses to modify object’s defaults
aframe.setSize (488, 470); // Set frame size

© 2002 by CRC Press LLC

aframe.setLocation (200, 100);

// Set frame location
aframe.setTitle(“Raster Graphics”);

// Titlebar text
// Display frame calling the show() method of the Window

// class
aframe.show() ;

Figure 27-4 is a screen snapshot of the RGraphics program.

ster Graphics Demo

Figure 27-4 Screen Snapshot of the RGraphics Program

On the Web

The program RGraphics.java is found in the Chapter 27 folder at
WWW.Crcpress.com.

© 2002 by CRC Press LLC

	JAVA Programming for Engineers
	Table of Contents
	Preface
	Part I: Java Language Fundamentals
	Chapter 1: Java Programming
	Introducing Java
	The Portability Issue
	Java as a Programming Language
	Java is object-oriented
	Java is strongly-typed
	Java is similar to C++
	Java uses libraries
	Java is an interpreted language

	Java Code
	Communicating with an alien intelligence
	Flowcharting

	Chapter 2: Your First Java Program
	Installing the JDK
	Selecting an Editor
	The HelloJava Program
	Java language rules
	The program header
	The HelloJava code

	Creating the HelloJava Program

	Chapter 3: How Computers Store Information
	Storing Text and Numbers
	Number Systems
	Binary numbers
	Hex numbers
	Computer memory
	Character data
	Numeric data

	Chapter 4: Storing and Naming Data
	A Data-Processing Machine
	What is Computer Data?
	Identifiers
	Creating and using variables and constants
	Java variable types
	Declaring a variable
	Java strings
	Java constants

	Classification of Java Data
	Numeric data
	Character data
	Boolean data

	Type Conversions
	Implicit conversions
	Type-casting
	Declaring literals

	Chapter 5: Performing Input and Output
	Input and Output
	Data Input
	Data Output
	Escape characters

	A Sample Program

	Chapter 6: Introducing Arrays
	A New Data Type
	Java Arrays
	Creating an array
	The array brackets
	Accessing array elements
	The size of an array
	Multi-dimensional arrays
	Ragged arrays
	Initializing multi-dimensional arrays

	Chapter 7: Java Operators
	The Action Element
	Operators
	Operator action

	The Assignment Operator
	The two sides of an assignment

	Arithmetic Operators
	The remainder operator

	Concatenation
	Increment and Decrement
	Relational Operators

	Chapter 8: Other Java Operators
	Logical Operations
	Manipulating bits
	The & operator
	The | operator
	The ^ operator
	The ~ operator
	The <, >, and >> operators
	The compound assignment operators
	Operator hierarchy
	Associativity rules

	Chapter 9: Directing Program Flow
	Simple Decisions
	Java Decisions Constructs
	The if construct
	Statement blocks
	The nested if
	The else construct
	The dangling else
	Else-if clause
	The switch construct

	Conditional Expressions

	Chapter 10: Controlling Program Flow
	Repetition in Programs
	Loops and iterations
	Elements of a program loop

	For Loop
	Compound statement in loops
	While loop

	Do-While Loop

	Chapter 11: Programming with Loops
	Java Loop Constructs
	Selecting a Loop Construct
	Direct Flow Control
	Using break in loops
	The continue keyword
	The labeled break

	Chapter 12: Program Building Blocks
	The Java Subprogram
	Modules and Methods
	The Elements of a Method
	Declaration
	Access specifier
	Modifier
	Return type
	Method name
	Parameter list

	Chapter 13: Using Methods
	The Method Call
	Returning from a Method
	Arguments and Parameters
	Methods and Global Variables
	Passing by Value and by Reference

	Chapter 14: Object-Oriented Programming
	Classes and Objects
	The Why and Wherefore of OO
	Object-Oriented Fundamentals
	From Problem to Solution
	Learning about Classes and Objects
	The fundamental principles
	Encapsulation
	Inheritance

	Modeling with Classes
	Polymorphism and Abstract Classes
	A classification example

	Chapter 15: Object-Oriented Coding
	Working with Classes and Objects
	Thinking Objects
	Object instantiation
	Field variables and method variables
	Object variables and class variables

	Building Objects
	The default constructor
	Overloading the constructor

	Chapter 16: using Inheritance
	Inheritance and Data Abstraction
	Java Inheritance
	Extending class functionality
	Polymorphism
	Modeling with inheritance

	Abstraction and Inheritance
	Programming with abstract classes

	Chapter 17: Object Composition
	An Alternative to Inheritance
	Inheritance Drawbacks
	Reusing Class Functionality
	The new mind set
	Thinking object composition
	Aggregation

	Objects as Parameters
	Acquaintance Associations
	Combining Inheritance and Composition
	Arrays of objects

	Dynamic Binding

	Chapter 18: I/O Programming
	Java Input and Output
	Obtaining and Transmitting Data
	Character data

	java.io Package
	Streams
	Java InputStream class
	Java OutputStream class

	Standard Streams
	The Keyin Class
	Flushing the input stream
	Obtaining character data
	Obtaining numeric data

	Chapter 19: Handling Errors
	Program Errors
	Error Types
	Hardware and software errors
	Algorithmic errors

	Exceptions
	Bullt-in exception handling
	Java's approach
	Java exception classes
	Advertising exceptions

	Exceptions Programming
	Java exception processing
	Raising exceptions
	Handling exceptions
	Throwing exceptions

	Part II: Java Programming for Engineers
	Chapter 20: Computer Number Systems
	The Hindu-Arabic Numerals
	Computer Number Systems
	Radix or base

	Types of Numbers
	Whole numbers
	Signed numbers
	Rational and irrational numbers
	Real and complex numbers

	Storage of Numerical Data
	Computer word size

	Representing Integers
	Sign-magnitude integers
	Radix-complement integers
	Diminished-radix integers

	Representing Fractional Numbers
	Fixed-point representations
	Floating-point representations
	Standardized floating-point formats

	Binary-Coded Decimals (BCD)
	Floating-point BCD

	Chapter 21: Fixed-Precision Numeric Data
	Java Numeric Data Types
	Primitive Data Types
	IEEE 754 Standard
	Numeric data encoding
	Rounding
	Interval arithmetic
	Treatment of infinity
	Not a number (NaN)
	Signaling and quiet NaNs

	Exceptions
	Invalid operation exception
	Division by zero exception
	Overflow exception
	Underflow exception
	Inexact result exception

	IEEE 754 in Java
	java.lang Class Double
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY
	POSITIVE_INFINITY
	public static boolean isInfinite(double v)
	public boolean isInfinite()
	public static boolean isNaN(double v)
	public boolean isNaN()

	java.lang Class Float
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY
	POSITIVE_INFINITY
	public static boolean isInfinite(float v)
	public boolean isInfinite()
	public static boolean isNaN(float v)
	public boolean isNaN()

	Java Numeric Truncation
	public static double ceil(double a)
	public static double floor(double a)
	public static double rint(double a)
	public static long round(double a)
	public static int round(float a)

	Chapter 22: Variable-Precision Numeric Data
	High-Precision Arithmetic
	BigDecimal Numbers
	BigDecimal constructors
	BigDecimal(BigInteger val)
	BigDecimal(BigInteger unscaledVal, int scale)
	BigDecimal(double val)
	BigDecimal(String val)

	Using the BigDecimal constructors
	BigDecimal scale operations
	SetScale() method
	Scale() method

	BigDecimal point operations
	BigDecimal comparisons and conversions
	public boolean equals(Object x)
	public int compareTo(BigDecimal val)
	public double doubleValue()
	public float floatValue()
	public int intValue()
	public long longValue()
	public BigInteger toBigInteger()
	public static BigDecimal valueOf(long unscaledVal, int scale)
	public static BigDecimal valueOf(long val)
	public String toString()
	public int hashCode()

	BigDecimal rounding controls

	BigDecimal Arithmetic
	A sample program

	The BigInteger Class
	BigInteger numbers
	BigInteger constructors
	BigInteger(byte[] val)
	BigInteger(int signum, byte[] magnitude)
	BigInteger(int bitLength, int certainty, Random rnd)
	BigInteger(int numBits, Random rnd)
	BigInteger(String val)
	BigInteger(String val, int rdix)

	BigInteger methods
	A sample program

	Chapter 23: Fundamental Operations
	Calculator Operations
	Java Floating-Point Math
	Strict and non-strict math

	Java Basic Arithmetic
	Numeric constants
	public static final double E
	public static final double PI

	Absolute value
	public static int abs(int a)
	public static long abs(long a)
	public static float abs(float a)
	public static double abs(double a)

	Maximum and minimum
	public static operand max(operand a, operand b)
	public static operand min(operand a, operand b)

	Rounding controls
	public static double ceil(double a)
	public static double floor(double a)
	public static double rint(double a)
	public static int round(float a)
	public static long round(double a)

	IEEE-style remainder
	public static double IEEEremainder(double f1, double f2)

	Exponential Function
	public static double pow(double a, double b)
	public static double sqrt(double a)
	public static double exp(double a)

	Trigonometric Functions
	Calculating trigonometric functions
	Hyperbolic functions and arc-functions
	Cartesian and polar coordinates

	Logarithmic Functions
	Calculating antilogarithms

	Random Numbers
	Producing pseudo-random numbers
	public static double random()

	Chapter 24: Java Math for Engineers
	Java Numerical Primitives
	Factorial
	Evaluating Numeric Results
	Floating-point errors

	Comparing Floating-Point Numbers
	Comparisons in IEEE 754
	Weighted comparisons
	Bit-by-Bit operations
	public static long doubleToLongBits(double value)
	public static long doubleToRawLongBits(double value)
	public static double longBitsToDouble(long bits)

	Conversion Operations
	Integer and fractional parts

	Solving Triangles
	Pythagoras’ theorem
	Side-angle problems

	Solving Quadratic Equations

	Chapter 25: Introducing Computer Graphics
	Developing Graphical Applications
	Origin of Computer Graphics
	Text-based and graphical systems

	Event-Driven Programming
	Event manager and event handler

	The Main Window
	Controls

	Chapter 26: Java Graphics
	The Greatest Challenge
	Applets and applications

	The Java Foundation Classes
	AWT
	Swing
	Java 2D

	The Frame Concept
	AWT frame class
	Window class
	Container class

	The Java Graphics Application
	The ActiveFrame class

	The Display Context
	The update() and paint() methods
	Manipulating fonts

	Chapter 27: Displaying Graphic Images
	Vector and Raster Graphics
	The frame origin
	Color and Java graphics
	RGB color designation

	The Java Graphics Class
	Vector-Based Drawing
	Transformations

	Raster Graphics
	The image object
	Displaying the bitmap

