
Flash MX Savvy
Ethan Watrall | Norbert Herber

Associate Publisher: Dan Brodnitz
Acquisitions and Developmental Editor: Mariann Barsolo
Editors: Jim Gabbert, Kim Wimpsett, Carol Henry
Production Editor: Dennis Fitzgerald
Technical Editors: Eric Bell, Denise Tyler
Production Manager: Amy Changar
Cover, Interior, and Technical Illustration Designer: Caryl Gorska
Icon Illustrator: Tina Healey Illustrations
Compositor: Maureen Forys, Happenstance Type-O-Rama
Proofreaders: Amey Garber, Dave Nash, Laurie O'Connell, Nancy Riddiough, Suzanne Stein
Indexer: Ted Laux
CD Coordinator: Dan Mummert
CD Technician: Kevin Ly
Cover Photographer: Peter Purdy, Hulton Archive

Copyright © 2002 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World
rights reserved. The authors created reusable code in this publication expressly for reuse by
readers. Sybex grants readers limited permission to reuse the code found in this publication or
its accompanying CD-ROM so long as the authors are attributed in any application containing
the reusable code and the code itself is never distributed, posted online by electronic
transmission, sold, or commercially exploited as a stand-alone product. Aside from this
specific exception concerning reusable code, no part of this publication may be stored in a
retrieval system, transmitted, or reproduced in any way, including but not limited to
photocopy, photograph, magnetic, or other record, without the prior agreement and written
permission of the publisher.

Library of Congress Card Number: 2002104564

ISBN: 0-7821-4108-0

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc.
in the United States and/or other countries.

Savvy is a trademark of SYBEX Inc.

Screen reproductions produced with FullShot 99. FullShot 99 © 1991-1999 Inbit
Incorporated. All rights reserved. FullShot is a trademark of Inbit Incorporated.

Screen reproductions produced with Snapz Pro 2. Snapz Pro 2 © 1995-1999 Ambrosia
Software Inc. All rights reserved. Snapz Pro 2 is a trademark of Ambrosia Software Inc.

The CD interface was created using Macromedia Flash, © 1995-2002 Macromedia, Inc. For
more information on Macromedia and Macromedia products, please visit
http://www.macromedia.com.

Netscape Communications, the Netscape Communications logo, Netscape, and Netscape
Navigator are trademarks of Netscape Communications Corporation.

Netscape Communications Corporation has not authorized, sponsored, endorsed, or approved
this publication and is not responsible for its content. Netscape and the Netscape
Communications Corporate Logos are trademarks and trade names of Netscape
Communications Corporation. All other product names and/or logos are trademarks of their
respective owners.

Internet screen shots using Microsoft Internet Explorer 5.0 reprinted by permission from
Microsoft Corporation.

Pro Tools and Pro Tools LE are trademarks of Digidesign, a division of Avid Technology Inc.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary
trademarks from descriptive terms by following the capitalization style used by the
manufacturer.

The authors and publisher have made their best efforts to prepare this book, and the content is
based upon final release software whenever possible. Portions of the manuscript may be based
upon pre-release versions supplied by software manufacturer(s). The authors and the
publisher make no representation or warranties of any kind with regard to the completeness or
accuracy of the contents herein and accept no liability of any kind including but not limited to
performance, merchantability, fitness for any particular purpose, or any losses or damages of
any kind caused or alleged to be caused directly or indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this book that are available now or in
the future contain programs and/or text files (the "Software") to be used in connection with
the book. SYBEX hereby grants to you a license to use the Software, subject to the terms that
follow. Your purchase, acceptance, or use of the Software will constitute your acceptance of
such terms. The Software compilation is the property of SYBEX unless otherwise indicated
and is protected by copyright to SYBEX or other copyright owner(s) as indicated in the media
files (the "Owner(s)"). You are hereby granted a single-user license to use the Software for
your personal, noncommercial use only. You may not reproduce, sell, distribute, publish,
circulate, or commercially exploit the Software, or any portion thereof, without the written
consent of SYBEX and the specific copyright owner(s) of any component software included
on this media. In the event that the Software or components include specific license
requirements or end-user agreements, statements of condition, disclaimers, limitations or
warranties ("End-User License"), those End-User Licenses supersede the terms and conditions
herein as to that particular Software component. Your purchase, acceptance, or use of the
Software will constitute your acceptance of such End-User Licenses. By purchase, use or
acceptance of the Software you further agree to comply with all export laws and regulations
of the United States as such laws and regulations may exist from time to time.

Reusable Code in This Book The authors created reusable code in this publication expressly
for reuse for readers. Sybex grants readers limited permission to reuse the code found in this
publication or its accompanying CD-ROM so long as the authors are attributed in any
application containing the reusable code and the code itself is never distributed, posted online
by electronic transmission, sold, or commercially exploited as a stand-alone product.

Software Support Components of the supplemental Software and any offers associated with
them may be supported by the specific Owner(s) of that material, but they are not supported
by SYBEX. Information regarding any available support may be obtained from the Owner(s)
using the information provided in the appropriate read.me files or listed elsewhere on the
media. Should the manufacturer(s) or other Owner(s) cease to offer support or decline to
honor any offer, SYBEX bears no responsibility. This notice concerning support for the
Software is provided for your information only. SYBEX is not the agent or principal of the
Owner(s), and SYBEX is in no way responsible for providing any support for the Software,
nor is it liable or responsible for any support provided, or not provided, by the Owner(s).

Warranty SYBEX warrants the enclosed media to be free of physical defects for a period of
ninety (90) days after purchase. The Software is not available from SYBEX in any other form
or media than that enclosed herein or posted to www.sybex.com. If you discover a defect in
the media during this warranty period, you may obtain a replacement of identical format at no
charge by sending the defective media, postage prepaid, with proof of purchase to:

SYBEX Inc.
Product Support Department
1151 Marina Village Parkway
Alameda, CA 94501
Web: http://www.sybex.com

After the 90-day period, you can obtain replacement media of identical format by sending us
the defective disk, proof of purchase, and a check or money order for $10, payable to
SYBEX.

Disclaimer SYBEX makes no warranty or representation, either expressed or implied, with
respect to the Software or its contents, quality, performance, merchantability, or fitness for a
particular purpose. In no event will SYBEX, its distributors, or dealers be liable to you or any
other party for direct, indirect, special, incidental, consequential, or other damages arising out
of the use of or inability to use the Software or its contents even if advised of the possibility of
such damage. In the event that the Software includes an online update feature, SYBEX further
disclaims any obligation to provide this feature for any specific duration other than the initial
posting. The exclusion of implied warranties is not permitted by some states. Therefore, the
above exclusion may not apply to you. This warranty provides you with specific legal rights;
there may be other rights that you may have that vary from state to state. The pricing of the
book with the Software by SYBEX reflects the allocation of risk and limitations on liability
contained in this agreement of Terms and Conditions.

Shareware Distribution This Software may contain various programs that are distributed as
shareware. Copyright laws apply to both shareware and ordinary commercial software, and
the copyright Owner(s) retains all rights. If you try a shareware program and continue using it,
you are expected to register it. Individual programs differ on details of trial periods,
registration, and payment. Please observe the requirements stated in appropriate files.

Copy Protection The Software in whole or in part may or may not be copy-protected or
encrypted. However, in all cases, reselling or redistributing these files without authorization is
expressly forbidden except as specifically provided for by the Owner(s) therein.

About the Authors

Born in Regina, Saskatchewan, Canada, Ethan Watrall completed his bachelor's degree with
distinction at the University of Regina, with a double major in anthropology and history.
While an undergraduate, he participated in many archaeological excavations in Saskatchewan,
Manitoba, and Indiana.

After graduation, Ethan was accepted into the Ph.D. program in anthropology at Indiana
University. There, he has directed his academic energies toward two main subjects. The first,
which represents a culmination of years of archaeological experience, is household craft
production in Predynastic Egypt. He has worked at both Nabta Playa (an extremely large
Neolithic habitation site in the Egyptian Western Desert) and Hierakonpolis (arguably the
most important extant Predynastic site in all of Egypt), where he has excavated such cool
things as prehistoric wells, clay mines, households, animal enclosures, pottery kilns, and
cemeteries. His current research at the HK11 locality, a Late Predynastic village at
Hierakonpolis, has consistently yielded information that challenges and greatly expands the
current understanding of Predynastic Egyptian households.

The second subject that Ethan has focused on is the place of interactive media in archaeology.
Whether from the standpoint of an educational tool, a method for scholarly publication, or
simply an issue deserving academic discussion, Ethan has dedicated himself to expanding the
dialog surrounding interactive media and archaeology. He is particularly interested in the role
that interactive entertainment plays in the public perception of archaeology-a topic on which
he has published and delivered papers targeted to both professional archaeologists and
professional game designers. Not content to simply comment on the situation, Ethan preaches
active involvement on the part of academics in the interactive entertainment industry.

Beyond academia, Ethan is also an active practitioner of interactive media. He is a faculty
member at both Ivy Tech State University, Columbus (Indiana), and Ivy Tech State College,
Bloomington (Indiana), where he teaches classes in interactive design and multimedia.
Ethan's first book, Dreamweaver 4/Fireworks 4 Visual JumpStart, was published by Sybex,
Inc., in February 2001 and has been translated into Chinese and Greek. He is also writing his
third book, Dreamweaver MX: Design and Technique, which will be published by Sybex in
the summer of 2002.

Ethan's digital alter ego can be found hanging out at www.captainprimate.com.

Norbert Herber grew up in Minneapolis/St. Paul, Minnesota. At 16, he began his musical
career as a jazz saxophonist, trading sets with the swing tenor legend Irv Williams. After
cutting his teeth in the Twin Cities, he entered the Indiana University School of Music,
Bloomington. Here, he continued his studies of jazz with David Baker, pursuing interests in
improvisation, arranging, music theory, woodwinds, and composition.

After graduation, Norbert worked as a freelance musician and arranger while founding his
own group, the x-tet, and writing a score for the short film Jambalaya. His musical interests
soon merged with digital media. Yearning to explore the relationships between sound, text,

imagery, and storytelling, he returned to Indiana University for graduate work in the MIME
program in the Department of Telecommunications. Here, he began an intense, concentrated
study of electronic music, film scoring, sound design, and interactive musical composition.

Currently, Norbert is pursuing several interactive, digital media projects, including Word Is
Virus, a sonic exploration of the writings and techniques of William S. Burroughs. His
interests are centered around the use of audio in interactive environments, nonlinear music
composition, and the effects of the sound-picture relationship in both linear and nonlinear
media. Norbert is an instructor at the International Academy of Design and Technology in
Chicago, where he teaches classes in multimedia development and scripting, interactive
design, and digital audio.

For information on Norbert's current and past projects, visit www.x-tet.com.

Dedication

To Taylor, with the hope that someday she'll write books far better than this one.

-ECW

This book goes out to Jenny. Your patience, love, and understanding made this possible.

-NFH

Acknowledgments

As with any book-especially one of this size-there are quite a number of people who deserve
thanks for their help in bringing this project to fruition. First and foremost, I must extend my
thanks to my friend, coauthor, and partner in many digital shenanigans: Norb Herber. A hefty
book (covering an application of Flash MX's complexity) in which two authors share writing
duties is an undertaking rife with possibilities for disaster. Instead, we managed to create a
book with some serious neckwear punch. Here's to many more fruitful collaborations! To all
those who graciously gave permission to use their work as Inspirational Design Models or in
the Color section (there are way too many folks to list by name-they know who they are), I
offer my profound thanks. I especially want to thank Joost van Schaik and Brian Taylor,
whose contributions and help were above and beyond the call of duty. On a more personal
level, as always I want to express my profound love and gratitude to Jenn. She graciously put
up with my lunacy and long hours on the computer during the year that this book was being
written, rewritten, revised, re-revised, and so on, and so on. Thanks also to both Mom and
Dad and my good friend Neil Birch for their support during this project. Finally, a special
thank-you (and a good tummy rub) to my dog, Oscar; nothing brings you down to earth like a
puppy who wants nothing more in life than to play. Lastly, my sincere apologies to anyone
whom I managed to forget. Thanks, everybody!

Ethan Watrall

Not only was this book a team effort by two authors, but each of us had our own "support
staff" to help us through many late nights with the digital quill and ink. For starters, I extend
my thanks to Bill Frisell, Miles Davis, James Brown, and many others for providing the
musical catalyst that inspired much of this text. Thanks also to Peet's Coffee and Tea for the

fuel behind many long hours of working with ActionScript, and to the Laughing Planet Cafe
and Soma (in Bloomington, Ind.) for hosting several long meetings about the book. Cheers to
those who shared their work as Inspirational Design Models, especially Nico Stumpo, Jean-
luc Lamarque, NPFC, Joe Sparks, and Donna Durant at LEGO Systems, Inc. Also, a round of
applause for Shannon Zastrow and Ryan Douglas of DoReMedia for providing the ideas and
material that went into the Hands On 6 section. Thanks to my colleagues in Chicago: Tim
Arroyo and Bernie Mack at IADT for their contributions to this book, and Brian Hrastar at
Opt1mus for video consultations and a sampling of the family footage. A huge thanks to my
partner in crime, Ethan Watrall, for convincing me to do this in the first place. I knew it would
work, since there were no twin brothers involved! Thanks for your endless diligence and
resourcefulness. I must also thank my wonderful, supportive family: Mom and Dad,
Genevieve, Lyla, Susan, Hasan, and, most of all, my dearest Jenny. Thanks for listening to
story after story about "the book." Finally, thank you for reading this!

Norbert Herber

Both of us want to acknowledge lots of other people who helped make this book a reality.
Many thanks go to our agent, David Fugate of Waterside Productions, Inc. As always, we are
forever in his debt for all the work he put in and for the advice he provided during this project.
At Sybex, Dennis Fitzgerald, Jim Gabbert, Carol Henry, Kim Wimpsett, Dan Schiff, Dan
Mummert, and Maureen Forys deserve praise for all their help and hard work. Kudos to
technical editor Denise Tyler, who was of great help during the writing process, and to Eric
Bell for his technical insight. Without the help of Mariann Barsolo, our acquisitions and
developmental editor at Sybex, this project might well have exploded very early. She was
always there with great advice, tons of help, and an incredibly understanding attitude,
especially during the really nutty periods. A resounding thanks to Thom Gillespie for helping
with the book's foreword, and to Brian Taylor (Rust Boy & XL5 Design), Virginia Mielke
(Nelvana), Derek Mosher (Sony Screenblast), and Joost van Schaik (Djojo Studios) for their
kind endorsements. We also want to extend our gratitude to those individuals who helped with
the software and hardware that either appears on the CD or was used while we were writing
the book: William Reeb (of Wacom), Philip Staiger (Eovia), Paul Babb (Maxon), Karen
Carpenter (Curious Labs), Stefan Moss (Ideaworks3D), Ben Yoder (Electric Image), Dave
Klein (Electric Rain), Steve Foldvari (Sonic Foundry), Daniel Brown (Adobe Systems
Incorporated), and Zac Wheatcroft (BIAS, Inc.).

Foreword
When FutureSplash first splashed down, I and most of the known "newMedia" world thought
Director was the be-all and end-all of newMedia. Suddenly, there was this wacko animation
tool floating around the Net. I downloaded it and played with it. It looked sorta like Director
since it had a timeline, but it seemed to work the opposite of Director in every way, which
made it difficult to use. I was amused by simple morphing-making eyes blink and balls roll.
FutureSplash was fun, but obviously inconsequential. So I went back to struggling with
bitmaps, sounds, and Lingo. I knew the future.

A couple of years later, I created the MIME program in interactive media at Indiana
University. Two of my first students were Ethan and Norbert. Ethan was doing his Ph.D. in
archaeology, and Norbert was a jazz sax player. Ethan alternated between newMedia and
digging things up in the Nile Valley. Norbert made funny sounds. They were very nice,
creative, and obviously smart guys, but not really technologists. I figured they might be useful
folks, but I had to get back to working with the real technologists. I knew the future.

Actually, I didn't have a clue about the future. Flash is much more important than Director
ever was, and Ethan and Norb have gone on to do lots of interesting things with all sorts of
technology, by virtue of the fact that they're not technologists. And now they've written this
book for creative, smart folks who aren't interested in technology for technology's sake, but as
a tool to get real work done.

This book isn't your traditional loops-and-variables techno book; nor is it a look-what-we-can-
do, over-glossed guide to eye candy. An exceptional difference between this book and other
Flash books is its substantial amount of sheer information on integrating Flash with audio and
sound. Flash MX includes better sound control, and Flash MX Savvy explains how to use
these new tools to boost the auditory experience.

Ethan understands human culture-how people have lived, worked, and learned. Norb is a
musician who has augmented his living as an interactive designer, graphic artist, and
educator. When writing about Flash, they bring more to the table than mere technologists
would. They've written a very good book about using Flash to get real work done in the real
world.

Dr. Thom Gillespie, Director of MIME (www.mime.indiana.edu)
Associate Professor, Telecommunications, Indiana University

Introduction
In the summer of 1996, a little-known company named FutureWave shipped a small program
called FutureSplash Animator, a relatively simple application that was designed to create
linear, vector-based animations. After its release, the application attracted considerable
attention when it was used in the design of both Microsoft's web version of MSN and Disney's
subscription-based Disney Daily Blast. In November 1996, Macromedia approached
FutureWave about the possibility of working together. For FutureWave, which was still a tiny
company of six employees, this was an incredible opportunity. So, in December 1996,
FutureWave sold the technology to Macromedia, who released Flash 1 in early 1997. The rest,
as they say, is history.

Fast-forward to 2002. Six versions later, Flash (now dubbed Flash MX) is arguably one of the
most popular interactive authoring applications. With it, you can create not only unbelievably
cool-looking animations but incredibly complex interactive experiences that feature rich
media and the integration of dynamic, database-driven applications.

Not only are today's Web-based Flash creations a quantum leap beyond anything that could
have been conceived previously for online media, but they are pushing the boundaries of
interactive digital media. Although Flash was originally intended for the Web, its sheer
popularity (and phenomenal power) has taken it far beyond the online domain. These days,

you can see the integration of Flash as an authoring tool in mobile devices, broadcast media,
and console games.

To really understand the penetration of Flash into the world of interactive digital media, you
only need to look at the number of people who have downloaded the Flash Player over the
years: more than 430 million. Yup, that's right-nearly half a billion! Need we say more?

About This Book
This book was written with a lot of love, blood, sweat, and tears…seriously. We don't want to
give you the impression that we are "tortured authors," holed up in a dingy loft pouring over
manuscripts and surrounded by bottles of wine and take-out containers. However, we did put
a lot of thought and planning into the writing process. Our objective was to create the most
intuitive, learning-focused Flash reference imaginable.

Unlike many Flash books, this one was written with the intention of not only explaining how
to work with Flash MX but why. Knowing why you do things is a crucial step in the learning
process because it gives you the means to creatively apply your newfound skills to original
ideas of your own. The techniques outlined in this book will give you the basic concepts to
create an enormous variety of things in Flash. Additionally, all techniques are presented with
the mind-set that "this is just the beginning." Our hope is that you will use these lessons as a
point of departure for your own creative ideas. As educators, we approached this book in
much the same way we would approach a class.

This book will be equally effective for Macintosh and Windows users. As a writing team, we
are split: Norbert is "the Mac guy," and Ethan "the Windows guy." We tried as much as
possible to present a balanced approach so that regardless of your platform, the book will fit
your specific needs and illustrate each technique clearly.

Who Needs This Book?
Every man, woman, and child on the planet needs this book!

But seriously, folks, it's impossible to write a book that is all things to all people. That being
said, we did our best to write a book that is many things to a lot of different people. We
carefully selected the topics discussed, and crafted the way we discussed them so that many
different types of people, with varying levels of expertise and different goals, could pick the
book up and find it useful. Granted, if worse comes to worse, the book is large enough to prop
up the wobbly leg on your bed or serve as a pretty decent doorstop.

If you were to corner us in a dark alley, we would feel comfortable (relatively comfortable,
that is, since we're not used to being cornered in dark alleys by our readers) in saying that the
range of people who will get the most out of this book will vary between the savvy computer
user who "gets" Flash but has never actually worked with the program and someone who is
experienced in the basics of Flash and wants to obtain intermediate and low-level advanced
skills.

We feel strongly that this book isn't really appropriate for people who already have advanced
Flash skills. We certainly don't want to discourage any interested individual from using the
book-quite the contrary! It covers a lot of stuff that even the most advanced user might not be
familiar with. However, we feel that those more-experienced Flash users might not find in this
book exactly what they are looking for, and would therefore be disappointed-something we
definitely don't want.

Having said that, we think that anyone who is eager to take part in the Flash revolution and
become a dyed-in-the-wool "Flasher" should read this book! That includes any student
wanting to put their class project on the Web, any animator or artist wanting to go digital with
their creations, anyone who is frustrated by the inherent design limitations of HTML, anyone
enamored with the "wow" factor of vector animation and interactivity-in short, anyone who is
excited about the endless possibilities and phenomenal power of Flash, but who is a little
befuddled about where they should start or is a bit unsure about their skills. If you're one of
those types, this book is for you!

How This Book Is Organized
There is a natural progression of skills involved in working with Flash MX. The chapter-by-
chapter structure of this book is designed to emulate this progression. Although each chapter
builds on the previous one to a certain extent, the book can, in fact, be used as a reference for
those wishing to tackle specific problems.

 New to MX We've been careful to point out which features are new in Flash MX-this will
be useful if you've used Flash 5 and are completely new to MX. Be on the lookout for the
handy "new to MX" icon.

Here's a quick look at what you can expect to explore in each chapter.

Part I Getting to Know Flash

Part I sets the stage for all your future work in Flash. In Chapter 1, you'll start off by getting
a nice introduction to the world of Flash. You'll bone up on the venerable history of Flash
(including the advances in each version), explore the difference between vectors and bitmaps,
and get a snapshot of what kinds of cool stuff are being created with Flash. In Chapter 2,
you'll explore the great updates that Flash MX features. Finally, in Chapter 3, you'll delve
deeply into the Flash MX interface and get your hands dirty exploring how you can
manipulate your working environment.

Part II Creating and Manipulating Visual Content

Part II is geared toward teaching you the fundamentals of creating and manipulating all things
visual in Flash MX. In Chapter 4, you'll become intimately familiar with all of Flash MX's
painting and drawing tools. From there, Chapter 5 covers the process of creating and
manipulating text. In Chapter 6, you'll learn how to use objects (a blanket term for just about
anything graphical in Flash MX) to your advantage. Chapter 7 features an in-depth
discussion about working with reusable content-primarily symbols and the Library. Finally,
Chapter 8 explores how to work with layers-a vital subject if you want to create animations
having any degree of complexity.

Part III Animating with Flash

Part III is designed to teach you just about everything you need to know about creating
animation in Flash MX. First, Chapter 9 thoroughly explores how to use the Timeline to add
the dimension of movement to your Flash creation. From there, you'll learn how to work with
Movie Clips-arguably one of the most important elements in Flash-in Chapter 10. Finally,
Chapter 11 will teach you how to work with scenes, a vital tool for partitioning and
organizing animated content.

Part IV Scripting for Interactivity with ActionScript

This section of the book will introduce you to one of the most compelling and important
aspects of Flash development: ActionScript. Chapter 12 introduces the basic concepts of the
ActionScript language and the techniques for adding scripts to control the interactivity of your
movies. Chapter 13 presents a discussion on the creation and design of interactive controls,
an essential part of any interactive experience.

Part V Adding Advanced Interactivity with ActionScript

If you love Flash but have been hesitant to take the plunge into the world of Flash-based
scripting, Part V is for you. Chapter 14 discusses some beginning concepts of programming
and explains how ActionScript works inside a Flash movie. Chapter 15 provides details on
the syntax, structure, and elements of ActionScript, while Chapter 16 presents a variety of
inspiring and useful in-context examples that use ActionScript to add all sorts of functionality
to your Flash movies. In Chapter 17, you'll explore how to make Flash dynamic (either alone
or with other database-driven technologies) by sending data out or bringing data in. We feel
that it's important to keep this book realistic; as a result, Chapter 18 discusses the techniques
and tools that you can use to troubleshoot ActionScripts that aren't performing as expected.

Part VI Working with Audio

Part VI covers one of the most important (and sadly neglected) aspects of multimedia
development: audio. Chapter 19 provides useful information on the basics of digital audio
and serves as a primer for anyone who is new to working with sound and music on their
computer. With the essentials of digital audio under your belt, you can read Chapter 20 to
learn how audio works inside Flash and how to publish "sonified" Flash movies. Because
getting your audio to synchronize with any variety of events is a crucial part of animation and
interactive development, Chapter 21 discusses the various techniques for audio/visual
synchronization. Finally, Chapter 22 ups the ante, showing you how to control audio
elements interactively via ActionScript.

Part VII Integrating Flash with Other Programs

In Part VI, you'll learn how you can integrate Flash with lots of other applications. Chapter
23 discusses Flash in the context of Macromedia's other multimedia powerhouse: Director. In
Chapter 24, you'll learn how to integrate Flash MX with Macromedia's popular vector-
illustration program, FreeHand. Chapter 25 discusses different ways that you can use third-
party audio applications to edit sounds, compose music, and engineer your digital audio files
before integrating them with your Flash masterpiece. Finally, in Chapter 26, you'll get a taste
of how to integrate 3D with your Flash creation. The chapter covers both third-party 3D
software and techniques for simulating 3D with Flash's painting and drawing tools.

 On the CD-ROM The book's companion CD-ROM contains a full-length chapter (in
Adobe Acrobat PDF format) about integrating Flash with Macromedia's Dreamweaver.

Part VIII Publishing and Distributing Flash Movies

Part VIII focuses on how you go about actually getting your beautiful Flash creations to your
audience. In Chapter 27, you'll learn how to publish your Flash movies to several formats
that are suitable for distribution. Flash MX is the first version that has real support for digital
video. Chapter 28 discusses the techniques involved in publishing Flash movies that include
video, and publishing Flash movies as digital video in either QuickTime or AVI format.
You'll also learn how to transfer your Flash movies to VHS tape using Adobe Premiere. And
finally, Chapter 29 discusses the ins and outs of developing Flash movies for delivery on
CD-ROM.

Inspirational Design Models

Every creative endeavor-and that includes a Flash MX movie-definitely benefits from a little
inspiration now and then. Let's face it, folks, even the most innovative person on the planet
sometimes feels a bit "creatively constipated."

To help, we've included an Inspirational Design Model (IDM) at the end of almost every
chapter. Each IDM highlights one of the best Flash creations and is loosely tied to the subject
of the chapter. For example, in Chapter 5, "Working with Text," the IDM is Jimmy Chen's
typographic.com, a beautiful fusion of type and Flash. Ultimately, the IDMs give you not only
helpful nudges along the path of creativity but also a good feel for the terribly groovy
possibilities of the application.

Hands On Sections

This book offers eight Hands On sections. As the name suggests, these are included to put
your skills to work in the context of projects that are larger and more in-depth than those
encountered within the chapters. Hands On 1 shows you how to change keyboard shortcuts in
Flash MX with the Keyboard Shortcuts editor. Hands On 2 features a step-by-step tutorial on
using Flash MX's painting and drawing tools to create a static garden scene. Hands On 3
walks you through the creation of a short science-fiction animation. Hands On 4 shows you
how to create an interactive resume using basic ActionScript techniques. Hands On 5 delves
deeper into ActionScript, showing you how to work with a movie that uses multiple SWF
files in a single Flash movie. Hands On 6, which focuses on audio, demonstrates how you
can use DoReMedia Sound Families to create a dynamic soundtrack for your Flash movies.

Hands On 7 shows you how to create an animated 3D logo and place it in an HTML
document using Amorphium Pro and Macromedia Dreamweaver. And to top it all off, Hands
On 8 teaches you how to burn a hybrid (cross-platform) CD-ROM using Toast 5 Titanium.

ActionScript Reference

The ActionScript Reference section of this book provides you with the correct syntax,
contextual examples, and tips for working with many ActionScript terms. This isn't a
complete reference; rather, it contains what we consider to be essential ActionScript elements.
It should prove to be very helpful when you're composing scripts from the ground up.

Appendix

Appendix A, "Adding Cool Bells and Whistles," features step-by-step tutorials that didn't
quite fit into other parts of the book. These tutorials will show you how to create some of the
coolest Flash widgets and doohickeys. Included are navigational widgets, preloaders, and
array-based doohickeys.

Color Section

The color section is a gallery containing some of the most innovative, beautiful, and
interesting Flash work on the Internet today. Pieces were selected not only because they are
visually stunning but because they demonstrate the true potentials of this application, from
concept and artistry to interactivity and entertainment.

How to Use This Book
This book can be used in two ways. The first, as mentioned earlier, depends on the fact that
the material presented follows a logical learning curve. As a result, someone can easily read
the book from cover to cover, confident that when they're finished, they'll have a solid
foundation in basic, intermediate, and some advanced Flash MX techniques.

The book can also be used as a reference. If you want to solve certain problems or learn
specific skills, you can simply locate the information you desire by using the index or the
table of contents.

The bottom line is that whatever way you decide to use this book, you'll learn the skills
necessary to continue your journey in the wonderful world of Flash MX.

Fire up your computer and grab hold of something nailed down. It's going to be a wild ride!

About the CD
As with many computer books, Flash MX Savvy comes with a handy-dandy companion CD-
ROM, which is compatible with both Macintosh and Windows platforms. Although the CD
would probably make a pretty decent Frisbee, we've gone to great lengths to include some
really useful stuff.

First, you'll find a whole bevy of demo and trial software. Most, if not all, of these
applications were chosen because they are discussed in the book; some of them are needed for
the successful completion of the Hands On tutorials. Second, the CD contains all the
necessary support and example files that are used in the chapters and the Hands On sections.
Third, there's an additional chapter, "Working with Flash and Dreamweaver." And finally,
you'll find a host of links to extremely useful online Flash resources.

 On the CD-ROM Any time we want to point you toward files on the CD, the text will
appear next to a cool little CD icon like this. Feel free to use these files as starter files for your
own unique Flash creations. It is recommended that you open all Flash MX documents (FLA
files) from within Flash MX. Simply choose File → Open and browse to the file you need.

Getting in Touch and Staying Connected
We have developed a community resource for the readers (and potential readers) of this book.
Visit www.vonflashenstein.com to learn about Flash in the laboratory of Dr. Helmut von
Flashenstein and his faithful lab assistant, Müvie Klip. In the depths of his lab, Dr. von
Flashenstein will introduce you to various Flash oddities, lessons, and other material in
support of this book.

The website includes:

• An expanded Inspirational Design Model section
• An ActionScript-of-the-week example and source FLA files
• Opportunities to sign up for receiving news and events via e-mail
• Access to bonus tutorials and articles

We said that this book was constructed like a class. But there's one exception: You can't raise
your hand to ask a question or offer feedback. In case you'd like to get in touch with us, here
are our addresses:

norbert@vonflashenstein.com
ethan@vonflashenstein.com

Part I: Getting to Know Flash
Chapter List
Chapter 1: Introduction to Flash
Chapter 2: What's New in Flash MX
Chapter 3: A Tour of the Flash Interface
Hands On 1: Customizing Keyborad Shortcuts

Part Overview
Flash began its career humbly as a great tool for adding low-bandwidth animations to
websites. To say the least, the application has grown by leaps and bounds! Yes, Flash can still
animate, but it can also be used to create complex, interactive navigational schemes, dynamic

and data-driven websites, cartoon serials, games, music videos, music players…the list goes
on and on. Flash has evolved from "simple animator" to "multimedia authoring juggernaut."
In fact, it would be hard to imagine the Internet today without Flash and what it offers to
contemporary digital media.

Part I of this book will take you on a guided tour of Flash. You'll learn about the history of the
software, explore its role in digital media today, and get a glimpse of how the application may
evolve in the future. And of course, you'll be introduced to Macromedia's latest addition to the
Flash pedigree: Flash MX. This sixth version of the application also has a terrific new
interface that makes working with the program more intuitive than ever before. Whether
you're a veteran Flash developer or a first-time user, this section of the book will show you
the now, then, and possibly tomorrow of Flash.

Chapter 1: Introduction to Flash
Overview
As one of the most popular and versatile applications for creating digital multimedia, Flash
wears (and has worn) many hats. Flash has always been at the cutting edge of technology for
the delivery of compelling animated content. And, as a vector-based medium, Flash is able to
deliver the goods at a fraction of the bandwidth required by other animated media. What
many people don't know is that Flash can do much more that simply create bandwidth-
efficient vector animation. As the application continues to evolve, its scope broadens more
and more. Flash is now one of the more flexible authoring tools available, offering the
capabilities to run not only on the Internet and contemporary desktop computer platforms, but
on game consoles and mobile devices as well. It is truly, multimedia.

To get a sense of what Flash really is, it can be helpful to know its lineage, makeup, and
current scope of possibilities.

A History of Flash
Before you dig into today's Flash, it's a good idea to cast your eye back and get an idea of how
this virtual revolution in interactive multimedia came about. Besides, it's a cool story.

So, turn the "way back" machine to the late 1980s. The stage for our little story has been set
with four companies. The first, Macromind, was a Chicago-based software company whose
primary product was an application called VideoWorks. The second, Paracomp in San
Francisco, was best known for its Macintosh 3D application, Swivel3D. The third company
was Authorware, a Minnesota-based company best known for its CBT/multimedia authoring
application, Authorware. In 1991, Macromind, which had moved to San Francisco, merged
with Paracomp to form Macromind-Paracomp. Authorware then moved from Minnesota and
joined Macromind-Paracomp in Redwood Shores, California, to found the mighty
Macromedia-the beginning, so to speak.

As you may have noticed, this accounts for only three of the four players in our story. To
learn about the fourth member of the cast, we look back to January 1993. Jonathan Gay, who
had put himself through college writing such venerable early Mac games as Dark Castle and

Beyond Dark Castle, convinced his buddy Charlie Jackson (founder of Silicon Beach
Software) to invest some money and help form a company called FutureWave. The whole
point of the company, whose first product was an application called Go, was to produce
software that would dominate the pen computer market. Well, unfortunately, the early pen
computers failed to really catch on, and there was some corporate interference by AT&T, so
Go became an application without a market.

So FutureWave found itself in serious trouble. It was a small software company with no
income and had spent a year developing an application that would never see the light of day.
Their salvation came in the form of a small drawing program called SmartSketch that they
had developed as a sideline to Go. FutureWave began marketing SmartSketch as a computer-
based drawing solution for both Macintosh and Windows platforms. It wasn't long before
people were asking why FutureWave didn't turn SmartSketch into a 2D animation program. In
perhaps one of the most stunning examples of technological foresight, FutureWave shifted the
focus of SmartSketch from a static image-creation program to an animation program. This
shift was based solely on the hope that the Internet-something that everyone was beginning to
talk about-would be a great medium for delivering 2D animation.

After both Adobe and Fractal Design declined to buy the technology (they must be kicking
themselves now!), FutureWave shipped its FutureSplash Animator in the summer of 1996.
FutureSplash Animator was a relatively simple application for creating linear vector-based
animations. After its release, the application gained some attention when it was used in the
design of both Microsoft's web version of MSN, and Disney's subscription-based Disney
Daily Blast. In November 1996, Macromedia approached FutureWave about the possibility of
the two firms working together. For FutureWave, which was still a tiny company with only
six employees, this was an astonishing opportunity. So, in December 1996, FutureWave sold
the technology to Macromedia, which released the first Flash in early 1997. The rest, as they
say, is history.

Once it was picked up by Macromedia, Flash began to evolve as a software tool. Each new
version offered significant advances in the application's capabilities and usability:

Flash 1 Flash 1, which was really just a rebranded version of FutureWave's FutureSplash,
featured very basic (by Flash MX's standards) timeline-based vector animation. Its primary
strength was that, with the help of either a Netscape plug-in or an Internet Explorer ActiveX
control, the user could mount animations on the Web for anyone to view and enjoy.

Flash 2 Flash 2 was a major step for the application. Generally speaking, it began the
transformation of Flash from a straight linear-vector animation program to an interactive
media-design program. The shift resulted from the integration of such features as reusable
button symbols, embedded graphics, vector fonts, very basic actions, and stereo audio. Flash 2
also supported the import of an impressive selection of file formats, including EPS, GIF,
JPEG, AutoCAD DXF, BMP, Enhanced Metafile, AIFF, Windows Metafile, and Shockwave.

Flash 3 One of the most significant additions to Flash 3, besides the continual improvement
to the user interface, was the increasing importance and integration of actions. Based loosely
on JavaScript, actions (which would later evolve into ActionScript) enabled users to add a
certain measure of control and interactivity into their movies. In addition, the integration of
masks, shape tweening, and transparency allowed users to exert much more control over how
their Flash creations actually looked.

Flash 4 One of the most exciting improvements in Flash 4 was the ability to implement
compressed MP3 audio files in the context of a Flash movie. Flash 4 also boasted improved
ActionScript, which made it easier to create interactive games and interfaces. Other
enhancements included editable text fields, an improved user interface, and a simplified
publishing process.

Flash 5 The greatest advance in Flash 5 was definitely ActionScript. By aligning itself with
the ECMA-262 standard, Macromedia announced to the world that Flash and ActionScript
were ready to compete with the "big dogs." Other changes in this version were in the user
interface: additional art tools, the introduction of panels, the Movie Explorer, the Macromedia
Dashboard (for online help and updates), and user-customizable keystrokes for common tasks
and functions.

Flash has clearly come a long way. Features that once seemed amazing and unbelievable in
one version pale in comparison to the possibilities offered in subsequent upgrades. As you
will soon discover, Flash MX is another significant step forward. Like the upgrades that came
before it, Flash MX offers options and features that will continue to keep Flash at the
forefront of digital media and Internet development.

Flash MX: What's in a Name?

One of the most startling changes to this latest version of the Flash software is the departure
from its traditional naming scheme. According to Macromedia, they made the switch to MX in
order to inform developers that the software presents integrated solutions to Internet-based
digital media. Because Macromedia's tools (Flash, Dreamweaver, ColdFusion, and so on) can
be so tightly integrated, the company felt it was only appropriate that the authoring
applications carry the same moniker. MX is simply a label used for this family of Macromedia
tools. The Flash Player (the application that hosts any Flash movie, either as a plug-in or
stand-alone) still carries the current version number in its title (Flash Player 6), but the
software does not.

The initials MX don't seem to "stand for" anything in particular, and the Flash community
simply has to accept this change at face value. Whether you like the name change or not, it's a
moot point at this stage of the game. The good news is, regardless of Macromedia's master
plan for marketing, Flash MX is a fine upgrade and will serve you well until the next version
comes along. The title of that one is anybody's guess!

Raster vs. Vector Formats
Computers can store and display graphics in two main formats: vector and raster. To better
understand how Flash works and why it presents advantages over other kinds of animation
applications, it's helpful to understand the differences between these two graphic formats.

One of the aspects of Flash that makes it unique is its use of vectors to display much of its
animated content. Vectors are line representations of an image. Like cartoons, they resemble
an actual image but don't look completely realistic. The vectors that create an image give it
shape and color. The curves of the vectors give an object its shape and contour. Every vector
has two color properties: stroke (or outline) and fill; these properties (see Figure 1.1) give a
vector image both its outline and overall color.

Figure 1.1: The stroke and fill of a vector image give it its overall graphic
properties.Illustration by Tim Arroyo, © 2001
 Note The kicker about vector images is that stroke and fill are calculated mathematically.

This is very important when it comes to animation.

Raster images are very different from vector images. A raster image is created by a collection
of pixels. Pixel, a hybrid word combining picture and element, is a colored dot or tile. A raster
image, which can contain millions of pixels, works like a mosaic. Each little colored tile,
which consumes a fixed amount of memory, plays a role in creating the overall color makeup
and detail of the image. For an illustration of raster format, see Figure 1.2.

Figure 1.2: A raster image is created using a series of colored tiles, or pixels, arranged in a
grid format.

One of the major differences between vector and raster graphics is in their scalability.
Because the components of a vector image (stroke, fill, and so on) are calculated
mathematically, they can be scaled, stretched, and manipulated by the computer without any
loss of the image's clarity or resolution. The same is not true for raster images, however. They
have a preset grid configuration, so any change in size alters the grid. When the size of a
raster image is increased, the computer must interpolate (make an educated guess for) the

additional pixels needed to make a larger grid. This can result in unwanted "chunkiness" or
"blockiness" in the enlarged raster graphic.

The Many Faces of Flash
As you probably know by now, Flash isn't just an animation tool. So, what is it, then? Rather
than try to define Flash, it's better to exemplify what it can do. Its presence and application
around the world speak volumes.

Broadcast Media

Even though Flash is probably most "at home" on the Web, it has also made its way to
broadcast media in recent years. This transition shouldn't come as a surprise. After all, Flash
has proven to be a powerful animation tool and can be exported to a variety of file formats.

Flash has been used for several broadcast applications, both in Europe and the United States.
In the U.K., the web design firm Kerb developed one of the first broadcast cartoon series that
was created entirely in Flash. You can read more about the series, Hellz Kitchen, an irreverent
and hilarious look at a group of slightly deranged talking vegetables, in the "Inspirational
Design Model" of Chapter 28.

 On the Web In the United States, Flash can be seen in the intro animation of The Rosie
O'Donnell Show. For more information on this and other uses of Flash as a "convergent
media," see www.macromedia.com/macromedia/proom/pr/2000/converge.html

Mobile Computing/Communications

As computers continue to become both smaller and more communicative, Flash will be part of
the revolution. The Flash Player is poised to deliver content to a wide variety of Web-ready
gadgets and devices. This includes business applications and commerce, news, entertainment-
the works!

 On the Web One of the first platforms to support Flash was Microsoft's Pocket PC. You
can read more about Flash for the Pocket PC platform at
www.macromedia.com/software/flashplayer/pocketpc.

The science fiction doesn't stop there. Flash is also being developed for implementation on
mobile phones and other handheld or portable computing devices. For more information, see
www.macromedia.com/software/flashplayer/resources/devices.

Gaming Consoles

Arguably one of the most unexpected applications of Flash has been in the interactive
entertainment industry-console games, to be precise.

 On the Web The most noteworthy example was the use of Flash to create the user interface
for LucasArts's popular "Star Wars: Starfighter" game for PlayStation 2 and Xbox. Although
LucasArts had designed the in-game interface for "Starfighter," they encountered a serious
problem near the end of their development cycle when they realized that they were lacking a

functional out-of-game user interface. Enter Macromedia Flash. LucasArts partnered with two
companies, Secret Level (www.secretlevel.com) and Orange Design
(www.orangedesign.com), to design the out-of-game interface using Flash. Released in
February of 2001, the game serves as a milestone in Flash history. Hopefully such future
collaborations will open new avenues for Flash and its development community. For more
information on how Flash was used in "Star Wars: Starfighter," see the Gamasutra article at
www.gamasutra.com/features/20010801/corry_01.htm.

Interestingly, in May 2001, Macromedia and Sony announced a partnership geared toward
bringing the Flash Player to the Sony PlayStation 2. Facilitating in-game visual design, like
that featured in "Star Wars: Starfighter," was high on the partnership's list of goals. Offering a
complete range of Flash-facilitated connected entertainment experiences in the emerging
broadband era is also an important focus for the new partners.

The Internet

Flash started as a tool for deployment of animated content on the Internet, and, well, some
things will never change. No matter how Flash continues to advance in the areas of
connectivity, media authoring, and audience interactivity, it will always be a web
development tool at heart. To get a sense of this tradition, see the Inspirational Design Model
sections throughout this book. Most of these projects are web-based and present a very
rounded view of the possibilities that this application presents.

 On the Web In addition to delivering information and entertainment, Flash is used for
advertising. To read how Flash can track advertisements, see the article at
www.macromedia.com/resources/ richmedia/tracking.

Web Games and Cartoons

Flash is great for creating multimedia and interactive navigation, but it is superb for creating
fun stuff! Why do we try to pass Flash off as such a "serious" application, when a large
portion of its development community is dedicated to doing work that is meant to be anything
but serious! Games and cartoons are another important part of the Flash oeuvre.

It's fair to say that these kinds of Flash movies provide some of the most stimulating and
memorable Flash work on the Internet today. This book contains several excellent examples
for you to discover, including "Goodnight Mr. Snoozleberg" (Chapter 14), "Radiskull & Devil
Doll" (Chapter 20), the Mondo Media website (Chapter 11), the Atomic Cartoons website
(Chapter 7), and the Camp Chaos website (this book's Color section).

Kiosk Development

A kiosk is a piece of custom computer hardware that delivers a fixed body of information,
usually through a very user friendly interactive interface. Kiosks are most commonly used in
situations where an organization wants to let the user control the access to information
(usually through a touch screen or a mouse-driven interface) that would traditionally be
delivered by a receptionist or another such individual. Because Flash can create powerful
interactive experiences that are both complex and beautiful, it naturally lends itself to creating
kiosks.

Although it would be difficult to provide a representative list of all the kiosks that have been
developed with Flash, there is one very noteworthy example that we absolutely must mention.
In late 2000, Moccu (whose corporate website is featured in the Color section of this book)
presented the prototype for a touch screen, Flash-based petrol pump at CeBit in Hannover,
Germany. Designed to let motorists search for information on travel routes and traffic
situations, browse special shop offers, and even send e-mail while they're filling their tank,
the CeBit pump prototype has yet to be implemented. It will be an outstanding and exciting
example of the possibilities of merging Flash content with nontraditional computing
environments such as kiosks (and even Web-enabled appliances).

Digital Art

Some Flash work defies description and needs no explanation. As the audience, you can take
away from the experience whatever you like. Works of this nature can only be called one
thing: art.

There are many individuals who are pushing the boundaries of Flash in ways that challenge
current thinking about interactive, digital media. Two of these individuals are featured in this
book: Maruto (Josh Davis), and Yugo Nakamura. See the Color section for a glimpse into
their work and for links that will allow you to experience it firsthand at your computer.

Summary
In this chapter, you had a chance to make a closer examination of Flash as an application.
This look at the range of its possibilities will be a helpful framework for your learning
experience as you work through the lessons of Flash MX Savvy. Not only do you get to learn
the history and tradition of the software and its community, but you'll be given hands-on
experience with the amazing possibilities Flash has to offer. Now that you're prepared, you're
ready to dig into the rest of this book and learn how to make the application work for you.
Good luck, and have fun!

Chapter 2: What's New in Flash MX
Overview
Well, it's official: Flash MX has some truly cool features. With its release, Macromedia has
upheld its longstanding tradition of meaningful software updates. By introducing a horde of
new and exciting features, Macromedia has once again managed to push the boundaries of
cutting-edge interactive design tools. This chapter details the latest and greatest additions.

Enhancing Workflow and Usability
Great software is easy to use and easy to customize. As such, Macromedia has included the
following additions in Flash MX in order to increase its usability and streamline your
workflow:

New user interface Flash MX's new user interface, in which all panels are fully dockable and
collapsible/expandable, maximizes workflow so that you can focus on what is most important:
creativity. For more information on Flash MX's new interface, see Chapter 3.

Improved Timeline Flash MX's most vital tool for animation, the Timeline, now includes
such innovations as layer folders. For more information on the new and improved Timeline,
see Chapter 9.

Starter templates Flash MX now lets you create documents from a library of templates,
thereby bypassing many of the common tasks required in starting a new movie. You can also
save existing movies as templates and distribute them to colleagues.

Property Inspector Replacing many of the panels from Flash 5, the Property Inspector is a
dynamic tool that lets you efficiently edit all aspects of your movie from one central location.
The Property Inspector is introduced in Chapter 3, but you'll see it used throughout the entire
book.

Editing symbols in place Gone are the days when you had to leave the main Timeline to
create and manipulate symbols. Now, you can work with your movie's symbols directly from
the Stage. To learn more about editing symbols, refer to Chapter 7.

Shared Library enhancements Now you can employ Shared Library assets that are either
integrated into your movie at runtime (when they're on a web server) or at author-time (when
you're creating them on a local computer). For more information on the new Shared Library
enhancements, see Chapter 7.

Components For developers who create highly interactive or content-driven movies,
Components are a welcome addition. They enable you to add standard interface controls
through a simple drag-and-drop procedure, and they include a check box, a drop-down menu,
a scrolling menu, push buttons, radio buttons, a scroll bar, and a scroll pane. Flash MX makes
it possible to customize the default Components and to create and distribute original
Components that fit your specific needs. To learn more about Components, see Chapter 16.

Lessons and tutorials Macromedia knows that learning Flash MX can be a complicated
process. As a result, it has included a series of enhanced and interactive tutorials and lessons
geared toward getting developers and designers up to speed as quickly as possible on Flash
MX's new features. Select Help → Tutorials to peruse your options.

Using New Tools for Visual Creativity
Flash MX includes many tools and enhancements for the drawing and design process, thereby
helping you make the most of your creative skills:

Color Mixer enhancements Recognizing that the efficient use of color is one of the most
important aspects of a successful Flash movie, Macromedia has enhanced the Color Mixer so
that it's easier to mix, manipulate, and use colors and gradients. If you are interested in
learning more about the Color Mixer, see Chapter 4.

Free Transform tool The Free Transform tool is a handy-dandy one-stop tool for all your
object transformation and manipulation needs. Rotating, skewing, scaling-the Free Transform
tool does it all. Chapter 6 covers the Free Transform tool.

Envelope Modifier tool A subset of the Free Transform tool, the Envelope Modifier tool
(also referred to as the Edit Envelope tool) is a marvelous little gadget that lets you warp and
distort the shape of the bounding box around an object-and therefore the object itself. For
more information about the Envelope Modifier tool, see Chapter 6.

Distribute to Layers The Distribute to Layers command lets you take any number of selected
objects and quickly distribute them to their own individual automatically generated layers-a
definite must for complex animation. To learn more about how to distribute to layers, see
Chapter 8.

Enhanced text With Flash MX's Text tool (in conjunction with the Property Inspector), you
can exert a great deal more control over the way in which the type in your movie looks.
Included are new features such as vertical text (great for creating Asian-language content).
For more information about Flash MX's new enhanced text control, see Chapter 5.

Integrating Rich Media
What is Flash without rich media? These improvements and new features help you integrate
Flash MX with all sorts of other cool media formats:

Enhanced audio support Flash MX has additional ActionScript elements that will further
expand the sound possibilities of your Flash movies. The Sound object has added support that
makes it possible to preload individual streaming sound files, monitor a sound's duration and
playback position, and manage events when a sound loads or finishes playing. These new
sound-related ActionScript terms make it easier than ever to distribute and manage high-
quality audio content in a Flash movie. Flash MX's audio tools are covered fully in Part VI.

Support for external images Flash MX now makes it possible for you to load JPEG files
from an external source. This feature is a welcome addition for developers who are creating
interactive slide shows and other image-intensive movies. To learn about loading external
JPEGs, see Chapter 17.

Video support For the first time, Flash MX offers real support for video. Flash has the
capability to import many digital video formats and either embed or link them to a Flash
movie. Embedded video takes advantage of Sorenson Spark, a video encoder/decoder that
allows video to play within your Flash movies. As an element of your movie, video can then
be controlled by ActionScript to create interactive movie players and editors. For more
information on working with video in Flash, see Chapter 28.

Exploring ActionScript Advancements
Flash MX's scripting language, ActionScript, is probably one of the most powerful tools at
your fingertips during the creative process. You'll see incredible enhancements to
ActionScript in Flash MX.

 Note Flash MX's new ActionScript enhancements are discussed throughout Part IV and Part
V.

Some of the improvements to ActionScript include the following:

Better scripting environment Flash MX boasts a re-designed Actions panel that will make
even the most squeamish animator take the plunge into the world of ActionScript.
Enhancements include a new ActionScript Toolbox organization, a Jump menu for script
navigation, code hint scripting shortcuts, a customizable script display, and an improved
Debugger window that allows you to examine scripts in a line-by-line fashion.

Scripting for text and text fields To increase the control over text elements in your movies,
Flash MX offers many ActionScript elements for manipulating text fields and text formatting
parameters. This enhancement will increase the possibilities for displaying Dynamic Text in a
movie.

Drawing with Movie Clips The Movie Clip object now has several new methods that allow
you to paint and draw with ActionScript. To read about these new terms, see the ActionScript
Reference section.

Expanded button scripting Buttons have always been symbols in Flash; in Flash MX they
are also objects. As objects, buttons have been given an entire collection of ActionScript
elements that enhance their functionality and interactivity. To learn more about the Button
object, see Chapter 16 and the ActionScript Reference section.

Playback support The new Capabilities and Stage objects allow you to monitor the playback
conditions of your movie and change its content accordingly to give your audience the best
show possible. Read more about the Capabilities object and Stage object in the ActionScript
Reference section.

Introducing New Publishing and Distribution Features
Flash MX broadens the possibilities of where and how you publish your creations. The new
enhancements include the following:

Creating accessible content Using the new Accessibility panel, you can create and publish
movies in Flash MX that are accessible by disabled individuals who use adaptive technology
such as screen readers. For more information on creating and publishing accessible content,
see Chapter 27.

SWF compression The Z-Lib compression codec greatly improves the download time for
SWF files that contain particularly complex content.

Saving as Flash 5 Although Flash MX is a marvelous tool, there are people still working in
the Flash 5 authoring environment. With the Save as Flash 5 option, you can upgrade to Flash
MX and still collaborate with colleagues and teammates who haven't taken the plunge into the
latest version.

Summary

In this chapter you got a brief, whirlwind tour of all the cool new enhancements of Flash MX.
These included improvements to workflow and usability, visual creativity tools, rich media
integration, ActionScript, and publishing features. You are now set to venture forth into the
wonderful world of Flash MX.

Chapter 3: A Tour of the Flash Interface
Overview
After you've double-clicked the Flash program icon, you'll face a multitude of panels and
windows. Have no fear, fellow Flasher, for by the end of this chapter, you'll be well
acquainted with the Flash interface and know how to bend it to your will! To accomplish this
amazing feat, you'll start by exploring the main program menu, the toolbars, and the Toolbox.
From there, you'll look at the areas of the interface where you'll produce the majority of your
creative masterpieces: the Stage and the Timeline. Then you'll look at the myriad of panels in
Flash that help you streamline your workflow and leverage your creative potential. Finally,
you'll delve into customizing Flash and using the Flash help system.

Getting Comfortable with Flash's Working Environment
One of the great joys of Flash is its interface. The program boasts an incredible collection of
tools, all of which can be at your fingertips at a moment's notice. The interface, which
accommodates a wide range of expertise and working styles, lets you maximize what's really
important-creativity. So, let's launch Flash and take a quick tour of the tools you'll be using.

 Note By default, Flash loads with a preset configuration of tools. Don't worry about this for
the moment because, by the end of the chapter, you'll have learned how to get the
interface looking exactly how you want.

Navigating the Main Menu Bar

Like many other programs, the main program menu bar lets you access many of Flash's
functions, tools, and commands. The main program menu bar appears at the top of the
program's interface (see Figure 3.1).

Figure 3.1: The main program menu
 Note Many of the commands in the main program menu bar have hot keys associated with

them-all of which are customizable. For more information on customizing keyboard
shortcuts, see the "Customizing Shortcuts" section later in this chapter. To get a hands-
on, step-by-step approach to customizing your keyboard shortcuts, see Hands On 1,
"Customizing Keyboard Shortcuts," which follows this chapter.

File Menu

The File menu contains many of the primary file-related operations. Because most, if not all,
of your Flash projects will either start or finish with one of the options in the File menu, it's
good to become familiar with it. The File menu contains the following commands (many of
which are covered in subsequent chapters): New, New from Template, Open, Open as
Library, Close, Save, Save as, Save as Template, Revert, Import, Import to Library, Export
Movie, Export Image, Publish Settings, Publish Preview, Publish, Page Setup, Print Preview,
Print, Send, Recent File, and Exit.

Edit Menu

The Edit menu contains commands that let you handle data and manipulate the Flash
environment to one degree or another. The commands include Undo, Redo, Cut, Copy, Paste,
Paste in Place, Paste Special, Clear, Duplicate, Select All, Deselect All, Cut Frames, Copy
Frames, Paste Frames, Clear Frames, Select All Frames, Edit Symbols, Edit Selected, Edit in
Place, Edit All, Preferences, Keyboard Shortcuts, and Font Mapping.

View Menu

The View menu gives you access to a number of commands that let you control how movies
(as well as some tools) are viewed. These commands include Goto (with submenu commands
First, Previous, Next, Last, and Scene), Zoom In, Zoom Out, Magnification (with submenu
commands 25%, 50%, 100%, 200%, 400%, 800%, Show Frame, and Show All), Outlines,
Fast, Antialias, Antialias Text, Timeline, Work Area, Rulers, Grid (with submenu commands
Show Grid, Snap to Grid, and Edit Grid), Guides (with submenu commands Show Guides,
Snap to Guides, and Edit Guides), Snap to Pixels, Snap to Objects, Show Shape Hints, Hide
Edges, and Hide Panels.

Insert Menu

The Insert menu lets you add the elements that make a Flash animation. The Insert menu
includes Convert to Symbol, New Symbol, Layer, Layer Folder, Motion Guide, Frame,
Remove Frames, Keyframe, Blank Keyframe, Clear Keyframe, Create Motion Tween, Scene,
and Remove Scene.

Modify Menu

While the Insert menu lets you insert various elements of a Flash project, the Modify menu
enables you to alter those elements. The Modify menu contains the following commands:
Layer, Scene, Document, Smooth, Straighten, Optimize, Shape (with submenu commands
Convert Lines to Fills, Expand Fill, Soften Fill Edges, Add Shape Hints, and Remove Shape
Hints), Swap Symbol, Duplicate Symbol, Swap Bitmap, Trace Bitmap, Transform (with
submenu commands Free, Distort, Envelope, Scale, Rotate and Skew, Scale and Rotate,
Rotate 90° CW, Rotate 90° CCW, Flip Vertical, Flip Horizontal, and Remove Transform),
Arrange (with submenu commands Bring to Front, Bring Forward, Send Backward, Send To
Back, Lock, and Unlock All), Frames (with submenu commands Reverse, Synchronize
Symbols, Convert to Key Frames, and Convert to Blank Key Frames), Group, Ungroup,
Break Apart, and Distribute to Layers.

Text Menu

The Text menu contains the commands for manipulating text attributes and alignment. These
include the following: Font (with a submenu of all the available fonts on your system), Size
(with a submenu of point sizes), Style (with submenu commands Plain, Bold, Italic, Subscript,
and Superscript), Align (with submenu commands Align Left, Align Center, Align Right, and
Justify), Tracking (with submenu commands Increase, Decrease, and Reset), and Scrollable.

Control Menu

The Control menu contains all the commands you'll need to control the playback of your
Flash movie. These include Play, Rewind, Go to End, Step Forward, Step Backward, Test
Movie, Debug Movie, Test Scene, Loop Playback, Play All Scenes, Enable Simple Frame
Actions, Enable Simple Buttons, Mute Sounds, and Enable Live Preview.

Window Menu

The Window menu gives you access to some of Flash's most important tools-primarily panels
and dialog boxes. It includes the following commands: New Window, Toolbars (with
submenu commands Main, Status, and Controller), Tools, Timeline, Properties, Answers,
Align, Color Mixer, Color Swatches, Info, Scene, Transform, Actions, Debugger, Movie
Explorer, Reference, Output, Accessibility, Components, Component Parameters, Library,
Common Libraries (with submenu commands Buttons, Learning Interactions, and Sounds),
Sitespring, Panel Sets (with submenu commands Default Layout, Designer [1024×768],
Designer [1280×1024], Designer [1600×1200], Developer [1024×768], Developer
[1280×1024], and Developer [1600×1200]), Save Panel Layout, Close All Panels, Cascade,
and Tile. A selection list of currently open windows appears at the bottom.

Help Menu

The Help menu offers you access to a myriad of resources to help you out. These include
Welcome, What's New, Lessons, Tutorials, Using Flash, ActionScript Dictionary, Flash
Exchange, Manage Extensions, Samples, Flash Support Center, and About Flash.

Accessing the Toolbars in Windows

Flash's toolbars are available only on the Windows operating system (sorry, no toolbars on the
Mac). The series of toolbars contain shortcuts for popular menu commands.

 Note As you can easily access many of the commands in the toolbars through the main
program menu, it's best to leave them turned off to conserve precious screen real estate.

Main Toolbar

The Main toolbar, accessible through Window → Toolbars → Main, is similar to the
edit/production toolbar of many graphics programs. The default tools (from left to right)
include the following: New, Open, Save, Print, Print Preview, Cut, Copy, Paste, Undo, Redo,
Snap to Object, Smooth, Straighten, Rotate, Scale, and Align.

 Note Although the default location of the Main toolbar is just above the Timeline, it can also

float free of the interface or be placed along the left or the right side of the interface. To
move it from its default location, simply click it (anywhere off its various buttons and
drag it to the desired location)

 Note Many of the commands in Main toolbar (Copy, Cut, Paste, Smooth, Straighten, Rotate,
and Scale) are only accessible if you have an object selected on the Stage.

Status Toolbar

Unlike the Main toolbar, which can either float or be docked to the top or sides of the Flash
interface, the Status toolbar resides at the bottom of the Flash interface (see Figure 3.2).
Essentially, the Status toolbar provides tooltips for various Flash interface elements. You can
access it by selecting Window → Toolbars → Status.

Figure 3.2: The Status toolbar

Controller Toolbar

The Controller toolbar, accessible through Window → Toolbars → Controller, gives you
access to a series of VCR-like buttons, which enable you to control and test your animation in
the Flash Movie Editor. From left to right, the buttons in the Controller toolbar are Stop,
Rewind, Step Back, Play, Step Forward, and Go to End.

 Note Like the Main toolbar, the Controller toolbar can also float free of the interface or be

placed along the left or the right side of the interface. To move it from its default
location, simply click its surface (avoiding its various buttons), and drag it to the desired
location).

 Note If your Flash movie doesn't actually feature any kind of animation, the buttons in the
Controller toolbar won't be accessible.

Digging into the Toolbox

Imagine you are a cross between an artist and a handyman (or handywoman). I know the idea
is a little silly, but for this section, it's apt. Now, to carry out your job, you need all manner of
tools designed both to create art as well as to repair and modify your creations. Where would
you find such an odd set of tools in one place? Look no further, for the Flash Toolbox is just
what you need!

Essentially, the Flash Toolbox (Windows → Tools), which is partitioned into four sections, is
a central location for a whole host of drawing, painting, selection, and modification tools.
Let's have a look at each of the sections separately.

Tools Section

This section of the Toolbox contains tools for drawing, painting, and selecting. Don't worry
about understanding how each of the individual tools work at this point, as they'll all be
covered in subsequent chapters.

View Section

The View section of the Toolbox contains the necessary tools for zooming in on and panning
your Flash movie.

 Note The Hand tool is "handy" for panning your movie if you've magnified the Stage to such
a degree that all of it isn't visible. A little confused as to what exactly the Stage is? See
the "Discovering the Stage and Work Area" section to find out.

To pan your Flash movie, follow these steps:

1. Select the Hand tool from the View section of the Toolbox (or simply hit H).
2. Click anywhere on the Stage, hold down your mouse button, and drag the Stage to the

location you want. When you are finished, release your mouse button.

To zoom in on a specific location in your movie, follow these steps:

1. Select the Zoom tool from the View section of the Toolbox (or simply hit either M or
Z).

2. Move the Zoom tool over the Stage, click and drag the mouse so that the line encloses
the area you want to magnify, and release the mouse button.

To zoom out, simply hold down the Option/Alt key. You'll notice that the magnifying glass
icon changes to contain a minus sign instead of a plus sign. From here, click your mouse
button until you are zoomed out to where you want.

 Note Alternatively, instead of using the Option/Alt key to zoom out, you can click the Reduce
button (the one with the minus sign), which appears in the Options section of the
Toolbox when the Zoom tool is active.

Colors Section

As you would expect, the Colors section of the Toolbox deals exclusively with colors. The
functionality of the Colors section, which allows you to set both stroke and fill color, is
duplicated in the Stroke and Fill controls in the Property Inspector. Don't worry about how
you can use the tools in the Colors section just yet; we'll cover the use of color in Flash in
Chapter 4.

Options Section

The Options section of the Toolbox, unlike the previous three sections discussed, doesn't
contain a set of static tools. Instead, it contains modifiers for tools selected in any of the other
three sections. For example, when you select the Rectangle tool from the Tools section of the
Toolbox, the Round Rectangle Radius button appears in the Options section.

At this point, don't worry too much about figuring out how each of the modifiers work, as
they'll all be covered in subsequent chapters.

Discovering the Stage and Work Area

Much like in a play, the Stage is where it all happens in Flash. This is where you craft your
eye candy, where all your animations do their thing, and all your creations come to life.
Ultimately, what happens on the Stage is what your audience sees after you've exported your
movie.

The work area is the gray expanse that surrounds the Stage. You can think of the work area as
"backstage," if you want to continue the theatrical metaphor. You can actually place elements
in the work area as you would place them on the Stage. The difference is that they won't be
visible in the Flash movie itself when it's exported or tested. The great thing is that all the
elements placed in the work area behave in exactly the same way as if they were on the Stage.
As a result, you could create an animation where a small sphere begins its journey in the work
area and ends its journey on the Stage. Figure 3.3 shows the Stage and the work area.

Figure 3.3: The Stage and work area

You can toggle the visibility of the work area by going to View → Work Area. Alternatively,
you can use the shortcut Cmd+Shift+W (Mac)/Ctrl+Shift+W (Win).

 Note Like many of the "toggleable" features in Flash, a check mark next to its command in
the View menu indicates the work area is visible.

Located just above the Stage proper and the work area, the Scene and Symbol bar not only
gives you an indication of the scene in which you are currently working or the symbol which
you are currently editing, but it also allows you to jump from scene to scene or from symbol
to symbol using either the Edit Scene or Edit Symbol drop-down menu.

You'll also notice that in at the extreme right of the Scene and Symbol bar there is a drop-
down menu that lets you dynamically change the Stage's magnification.

Customizing the Stage's Size

The Stage starts out as a blank slate upon which you create and choreograph your handiwork.
As one would expect, the Stage certainly wouldn't be good to anyone if you couldn't mold it
to look exactly how you wanted. Flash wouldn't be that exciting if everyone's movie had to be
the same size or color. Never fear, Macromedia has built in the ability to change the Stage's
size and color.

To change the Stage's size:

1. Go to Modify → Document or use the shortcut Cmd/Ctrl+J to open the Document
Properties dialog box.

2. Enter pixel values into the Width and Height fields, and then hit OK.

The dimensions of the Stage will immediately change.

Customizing the Stage's Color

Now, to change the background color of the Stage (and as a result, the background color of
the movie), you follow almost the same steps. But, instead of entering a value into the Width
and Height fields, click the Background Color swatch and choose a color from the Color
Picker.

Alternatively, you can use the Property Inspector to change the look of the Stage. To do this,
follow these steps:

1. If it isn't already, open the Property Inspector by going to Window → Properties or
using the shortcut Cmd/Ctrl+F3.

2. If you don't have any other object selected on the Stage, the Property Inspector will
display the Stage's properties.

3. To change the Stage's background color, just click the Background Color swatch in the
Property Inspector. When the color palette opens, select the color you want.

4. Click the Size button to open the Document Properties dialog box. From there, you'll
be able to change the dimensions of the Stage by entering a pixel value into the Width
and Height fields.

 Tip If you want the changes you've made be the default for all the Flash movies you create,
click the Make Default button in the Document Properties dialog box.

Exploring the Timeline

If the Stage is where "it all happens," the Timeline is what "makes it happen." The Timeline,
which is discussed in-depth in Chapter 9, is the tool you employ when you add any kind of
change over time to your Flash movie (see Figure 3.4).

Figure 3.4: The Flash Timeline

Without going into too much depth, the Timeline occupies the uppermost portion of the Flash
interface and is broken up into three primary elements: the playhead, frames, and layers.

 Note The Timeline, like many other interface elements within Flash MX, can be both
minimized and docked/undocked. For more information on how to dock, undock, and
minimize the Timeline, see the "Customizing Panels" section later in this chapter (the
Timeline isn't a panel per se, but the same principles apply).

Playhead

When you play your Flash animation, the playhead travels through the Timeline (horizontally)
at a consistent rate. As the playhead moves through each of the individual frames, the contents
are displayed on the Stage, thereby creating the animation.

 Note Although Chapter 9 covers the ins and outs of the Timeline and the playhead, it's
important to know you can move the playhead manually. You can either click the
frame's location on the Timeline header (the strip on the top of the Timeline where the
frame numbers-in increments of five-are located), or drag the playhead to the desired
location.

Frames

Frames are pretty much the heart and soul of the Timeline. Each frame represents a moment
of time in an animation. In addition, each frame contains unique content that changes from
frame to frame. As the playhead moves through the Timeline, the content of each of the
frames appears on the Stage.

 Note Your animation's frame rate determines the actual speed at which the animation plays.
For more information on frame rate, see Chapter 9.

Layers

Flash animations are not just constructed horizontally (with frames) but also vertically with
layers. Each layer contains a single element or animation. As a result, you can have many
layers with many different elements and animations, thereby creating a complex movie.

 Note Layers give you the ability to separate content. For especially complex Flash movies,
this is a good way to keep track of your work. To learn more about layers and how you
can alter their appearance, see Chapter 8.

Understanding the Property Inspector

 New to MX The Property Inspector, which is new to Flash MX, is a tool you'll undoubtedly
find yourself using quite frequently during the creative process. Essentially, it serves as a
doorway to the properties of any given object (be it some text, a shape, a button, or a Movie
Clip).

 Note Like many other interface elements within Flash MX, the Property Inspector can be both

collapsed/expanded and docked/undocked. For more information on how to dock,
undock, and minimize the Property Inspector, see the "Customizing Panels" section later
in this chapter (the Property Inspector isn't a panel per se, but the same principles
apply).

Its power is that it's a dynamic tool. By dynamic, I mean that the options displayed change
depending on what sort of object you select. For example, if you select a string of text, you'll
be able to change its font, color, and size. On the other hand, when you click a shape, you'll be
able to change its stroke, fill, and dimensions. So, you see, it's a pretty powerful and useful
tool. To access the Property Inspector, all you need to do is select Window → Properties or
use the shortcut Cmd/Ctrl+F3.

 Note To access less common attributes of a given object, all you need to do is click the
expander arrow (the Down arrow in the bottom-right corner of the Property Inspector).

Working with Panels

Panels are arguably one of the most important aspects of the Flash MX interface. With them,
you can access a whole bevy of incredibly powerful tools that work with any number of
elements within Flash MX.

One of the coolest things about panels in Flash MX is that they can be integrated into the
overall interface (opposed to floating around the workspace). Docking, as the process is
called, makes it considerably easier for you to access tools and information while maximizing
your workspace (see Figure 3.5).

Figure 3.5: The default Flash MX interface complete with docked panels
 Note To learn more about docking panels (as well as their many other workspace-

streamlining features), see the "Customizing Panels" section later in this chapter.

On top of this, you can easily open, close, move, and resize panels to streamline your work
environment (and therefore your creative process).

Each panel, regardless of its purpose, has an Options drop-down menu accessible by clicking
the icon in its upper-right corner. Although some panels won't have many options in this
menu, there will be some that have many options.

At this point, it's a good time to explore each of the panels available in Flash.

 Note When you initially open Flash, you'll see the default organization of preset docked
panels. If you open any new panels, they won't appear docked, but instead they will be
free floating. Don't worry, you can easily dock them if you so desire.

Answers Panel

The Answers panel, accessible by going to Window → Answers, provides you a centralized
location for accessing Flash MX's assorted support and help documents (Tutorials, What's
New, Readme, and so on).

Align Panel

The Align panel, which you can open by going to Window → Align (Cmd/Ctrl+K), enables
you to align objects (or groups of selected objects) according to a series of preset criteria-each
of which is represented by a button. For more information on using the aligning objects with
the Align panel, see Chapter 6.

Color Mixer Panel

The Color Mixer panel, accessible by selecting Window → Color Mixer (Shift+F2), gives you
the ability to create colors, using RGB, HSB, or Hexadecimal Code, and save them as a
swatch to the Color Swatches panel. The Color Mixer panel also enables you to assign colors
to either the stroke or fill. For more information, see Chapter 4.

Color Swatches Panel

The Color Swatches panel, accessible by choosing Window → Color Swatches (Shift+F3),
helps you organize, load, save, and remove individual colors from the currently used color
palette. For more information on using the Color Swatches panel, see Chapter 4.

Info Panel

The Info panel, which is accessible by going to Window → Info (or by using the shortcut
Cmd/Ctrl+I), gives you the ability to numerically change the dimensions (in the Width and
Height fields) and the position (in the X and Y fields) of a given selected object. The bottom
portion of the Info panel contains information (in RGB format) about the currently selected
object's color. Finally, the lower-right corner of the panel provides information (in X/Y
coordinates) as to the exact current position of the mouse.

Scene Panel

The Scene panel, accessible by going to Window → Scene, gives you the ability to navigate
between, rename, add new, and delete scenes. To learn more about scenes and the Scene
panel, see Chapter 11.

Transform Panel

Similar to the Info panel, the Transform panel gives you the ability to numerically manipulate
a selected object. The top portion of the panel includes two fields that allow you to scale an
object horizontally or vertically. You can open the Transform panel by selecting Window →
Transform or by using the shortcut Cmd/Ctrl+T.

 Note When scaling an object with the Transform panel, you can constrain the proportions by

clicking the Constrain check box.

The bottom portion of the Transform panel allows you to either rotate or skew, in degrees, the
currently selected object.

Actions Panel

The Actions panel, which can be opened by going to Window → Actions or by using the
shortcut F9, is where you attach ActionScripts to either objects or frames. The Actions panel
enables you to either choose from a preset list of ActionScripts or author your own in Normal
or Expert mode. For more information on the Actions panel, see Chapter 12.

ActionScript Debugger

Because ActionScript is a scripting language, it's natural that Macromedia would include a
debugger. The ActionScript Debugger, which was introduced in Flash 5 and is accessible by
going to Window → Debugger, lets you troubleshoot troublesome ActionScript. Chapter 18
explores the ActionScript Debugger in detail.

Movie Explorer

The Movie Explorer is a handy little tool introduced in Flash 5. Accessible by going to
Window → Movie Explorer or by using the shortcut Option/Alt+F3, the Movie Explorer
provides central access to all your movie's assets. From this central location, you can search
for an object or element by name, display and alter the properties of a given element, and
replace all instances of a font with another font. For a better look at the Movie Explorer, see
Chapter 7.

Reference Panel

 New to MX Let's face it, ActionScript (Flash's scripting language) is getting more
complicated by the second. To help Flash developers cope, Macromedia has introduced the
Reference panel (Window → Reference), an integrated repository in which individual listings
(that include Flash version compatibility, parameters, a description, and an example) for each
ActionScript element reside.

Output Window

The Output window, which cannot be docked with other panels, is a snazzy little tool that,
once you've exported your Flash movie, provides you with a readout of the file size for all
scenes, objects, text, symbols, and instances. You can open the Output window by going to
Window → Output.

Accessibility Panel

 New to MX A new addition to Flash MX, the Accessibility panel is an incredible step
forward in making Flash content accessible to audiences with a variety of disabilities (who
use a range of different technologies to access the Web). You can open the Accessibility panel
by going to Window → Accessibility. The Accessibility panel will be discussed in Chapter
27.

Components Panel

 New to MX The Components panel, accessible by going to Window → Components, is the
central repository for Flash MX's new Components feature-specialized, premade, complex

Movie Clips with already defined parameters. Components are extremely handy if you want
to create relatively complex user interface components (such as scrollable windows or drop-
down menus) with a minimum of muss and fuss.

Component Parameters Panel

 New to MX The Component Parameters panel, accessible by going to Window →
Component Parameters, is the tool by which you edit the parameters of Components you've
added to your movie using the Components panel.

Library

The Library, which can be opened by going to Window → Library (or by using the shortcut
F11), is a repository of all of the symbols you create or use for your Flash movie. Whether a
Movie Clip, Button, or Graphic symbol, the Library has it all. For more information on the
Library, see Chapter 7.

Common Libraries

The Common Libraries, which are accessible though Window → Common Libraries, are
slightly different from the Library itself. Where the Library contains only those symbols
associated with the currently open Flash movie, the Common Libraries contain a series of
symbol groups (Buttons, Learning Interactions, and Sounds). Each symbol group has a bunch
of premade symbols that come with Flash. The Common Libraries give you lots of symbols
so that you don't have to create them yourself.

Sitespring Panel

 New to MX Sitespring is Macromedia's new groupware tool. Designed as a tool with which
multiple design team members can track digital assets, communicate, maintain versioning,
and create project schedules, Sitespring runs off a central server as opposed to the user's
machine. The Sitespring panel, which is accessible by going to Window → Sitespring, lets
you log in directly to a Sitespring server from within Flash.

Customizing Panels

One of the great things about the new Flash MX user interface is that it has evolved to such a
point that all elements fit seamlessly and efficiently together to create an extremely usable
work environment. This is no great surprise because, with the increasing complexity of the
Flash itself, screen real estate has become increasingly precious.

One of the most obvious features of Flash MX's new-and-improved interface is its panels that,
as mentioned before, are dockable and collapsible/expandable.

In the following section, you are going to learn how to make the most of the new panel
paradigm. You'll learn how to dock panels, expand/collapse panels, choose from preset panel
layouts, and create a custom panel layout.

Docking Panels

When you dock a panel, you physically combine it with another element of the interface. If
you dock two floating panels, you create a floating "mega" panel (see Figure 3.6).

Figure 3.6: The Scene panel and Color Swatches panel have been combined to form a floating
"mega" panel.

On the other hand, as illustrated in Figure 3.7, you can also dock a panel with a section of the
underlying interface (underlying in the sense of what is below a floating panel) to create an
area where all of your commonly used panels reside.

Figure 3.7: Flash MX interface with docked panels

Ultimately, docking panels makes it considerably easier for you to access tools and
information while maximizing your workspace.

To dock two panels, follow these steps:

1. Open any two panels by using the Window menu.

2. Click the gripper region of the panel's title bar (represented by the small dots on the
left side of the title bar) and drag it toward the target panel. Notice that a ghost image
of the panel appears as you drag your mouse.

 Note You'll notice that your cursor will change when it moves over the gripper region
of the panel's title bar.

3. Move your cursor over the target panel.
4. When a black highlight appears around the target panel, release the mouse button.

To dock a panel with the underlying interface, follow these steps:

1. Open the panel you'd like to dock with the underlying interface by using the Window
menu.

2. Click the gripper region of the panel's title bar and drag it over the area of the interface
to which you'd like to dock it.

 Note Flash MX lets you dock a panel to the left, bottom, and right side of the
interface.

3. When the black highlight appears your mouse button and the panel will automatically
dock.

Collapsing and Expanding Panels

As mentioned, the Flash MX interface has become a little crowded. As a result, Macromedia
has provided users with the ability to expand and collapse panels, thereby economizing on
space while still keeping the necessary tools at their fingertips (see Figure 3.8).

Figure 3.8: The left screen shows a series of panels that have been collapsed, and the right one
shows the same panels expanded.

To expand a collapsed panel (or collapse an expanded panel), all you need to do is click the
panel's name in the title bar.

Choosing Preset Panel Layouts

Because of the malleability of the Flash MX's working environment, there is any number of
permutations for interface elements. You can certainly experiment and develop an interface
layout that best suits your needs. If you aren't inclined to do so, you can also choose from a
list of preset panel layouts that Macromedia has provided.

Go to Window → Panel Sets and choose one of the seven options. Each preset panel layout
contains a specific set of panels arranged for a specific screen resolution (the higher the
resolution, the more panels in the layout).

Creating Custom Panel Layouts

After working with Flash MX for a while, you'll get to the point where you develop a panel
layout most conducive to your working style. If so, you don't want to have to constantly re-
create the layout every time you fire up the program. Flash MX lets you take your layout and
save it so it will be accessible from the same location as Flash MX's preset panel layouts. Let's
take a look at how:

1. Go to Window → Save Panel Layout.
2. When the Save Panel Layout dialog box appears, enter a name for your custom layout

into the field.
3. When you've finished, click OK.
4. From here, your custom panel layout will be accessible by going to Window → Panel

Sets.

Customizing Shortcuts
Keyboard shortcuts are a quick and easy way to access a program's functions. Up until now,
however, most programs offered the user only an immutable set of shortcuts. But Flash MX,
as well as many of the other Macromedia programs, offers a Keyboard Shortcuts editor that
lets you use existing shortcuts, create your own shortcuts, and edit existing shortcuts. To
access the Keyboard Shortcuts editor, select Edit → Keyboard Shortcuts (see Figure 3.9).

Figure 3.9: The Keyboard Shortcuts editor

To learn more about customizing keyboard shortcuts, see Hands On 1: "Customizing
Keyboard Shortcuts," which follows this chapter.

Using Flash Help
Macromedia has provided Flash users with a pantheon of resources when you're in a jam and
can't quite figure something out. Beyond the Macromedia Dashboard, you can access many
help options through the Help menu, including:

Using Flash (Help → Using Flash) Provides a manual whose content is accessible through a
content list, an index, or a search engine.

ActionScript Dictionary (Help → ActionScript Dictionary) Provides a syntactical
reference (organized alphabetically) to the ActionScript language.

Lessons (Help → Lessons) Provides Flash-based tutorials, delivered in the program
environment, covering topics that range from introducing Flash to using Flash with Freehand
and Illustrator.

Samples (Help → Samples) Provides some interesting examples of Flash techniques that you
can play with and pick apart.

Flash Support Center (Help → Flash Support Center) Provides up-to-date information on
the latest Flash developments and technical issues. (It's sometimes referred to as the
Developers Resource Center.)

Flash Tutorials (Help → Tutorials) Provides you with a whole series of project-based
tutorials whose source files are installed on your hard drive (in the Tutorials directory) when
you install Flash MX.

Summary
In this chapter you spent time getting familiar with the Flash interface. You explored the main
menu, the toolbar, the Toolbox, the Property Inspector, the Stage, the work area, and the
Timeline. Then, you moved on to a brief, but thorough, look at all the panels available to you
when working with Flash. From there, you explored how to manipulate Flash MX's interface
to maximize your efficiency and creativity. Finally, you explored the Flash help options.

Understanding the Flash interface is fundamentally important to continued success with the
program. Remember, the better you understand your working environment, the better you can
use it to produce amazing results!

Hands On 1: Customizing Keyboard
Shortcuts
Overview
As mentioned earlier, Flash offers you a way to customize the keyboard shortcuts you use.
Not happy with the default setup for keyboard shortcuts? The Keyboard Shortcuts editor lets
you change it to suit your fancy. Let's take a step-by step look at how to take advantage of the
Keyboard Shortcuts editor.

Changing a Command's Shortcut
To redefine a command's shortcut:

1. Go to Edit → Keyboard Shortcuts to open up the Keyboard Shortcuts editor.
2. If it isn't already selected, choose Flash MX from the Current Set drop-down menu at

the top of the Keyboard Shortcuts editor.
3. Click the Duplicate Set button just to the right of the Current Set drop-down menu.

 Note You cannot manipulate the default keyboard shortcuts for Flash MX. Instead,
you create a duplicate set and then make any changes you want.

4. When the Duplicate dialog box appears, enter a name into the Duplicate Name field,
and click OK. Notice that the name of the duplicate set you've just created appears in
the Current Set drop-down menu.

5. Now, choose the specific group of commands you'd like to work with from the
Commands drop-down menu.

6. If you've chosen Drawing Menu Commands or Test Movie Menu Commands, click
the plus sign to expand the command category (File, Edit, View, Insert, and so on)
with which you want to work.

If you've chosen Drawing Tools or Actions Panel Commands, skip to step 9.

7. Select the specific command you want. Notice that the existing shortcuts attached to
that command appear to the right of the command (the shortcut will also appear in the
Shortcuts text box just below).

8. Select the command's existing shortcut in the Shortcuts text box.

9. Click the Remove Shortcut (-) button to strip the command's existing shortcut.
10. Press the Add Shortcut (+) button ; the Press Key field will automatically go live.

11. Press the key combination you want to add; the key combination appears in the Press
Key field.

12. Click the Change button to assign the new shortcut to the command.

 Note If your key combination is already assigned to another command, Flash will alert
you and let you either reassign the shortcut or simply cancel it.

13. When you've finished, click OK and the new keyboard shortcut will be assigned.

Part II: Creating and Manipulating Visual
Content
Chapter List
Chapter 4: Painting and Drawing
Chapter 5: Working with Text
Chapter 6: Working with Objects
Chapter 7: Creating and Manipulating Reusable Content
Chapter 8: Adding Depth to Flash Graphics with Layers
Hands On 2: Creating a Garden with Objects and Layers

Part Overview
As you learned in Chapter 1, Flash MX is capable of creating an incredible array of exciting
interactive products. Be it traditional websites, webtoons, kiosks, or other, more adventurous
applications, the common thread is that the overwhelming majority are visually based. This is
no great surprise as one of the greatest aspects of Flash MX is that it is vector based opposed
to bitmap based, thereby allowing you to create some truly stunning visual imagery.

Ultimately, this means that you'll be spending a fair amount of your creative energy focusing
on crafting the visual aspects of your beautiful Flash MX creation. As a result, Macromedia
has included an extremely wide variety of tools designed to create, manage, and manipulate
all visual aspects of your visual assets.

Chapter 4: Painting and Drawing
Overview
The good people at Macromedia have molded Flash into a topnotch animation program, as
well as a graphics program of surprising power. The program boasts a whole host of powerful
and usable tools for creating both vector and bitmap graphics. This chapter explores these
tools. You'll start off by looking at the various selections tools available. Then, you'll learn
about the line and shape drawing tools: the Pencil tool, the Brush tool, the Pen tool, the Ink
Bottle tool, the Paint Bucket tool, and the Dropper tool. You'll close the chapter off by
looking at the Eraser tool and learning how to manipulate stroke and fill with the Property
Inspector.

Selecting Items for Manipulation
Flash MX prides itself on having a fairly extensive list of tools with which you can select
lines, shapes, text, groups, symbols, buttons, and a multitude of other items you place on the
Stage. Every item you place on the Stage has a tool with which to select it (or parts of it). In
this section, you're going to quickly explore each of the various selection tools available,
including the Arrow tool, the Subselection tool, and the Lasso tool.

 Note Because the Pen tool and the Subselection tool are intrinsically connected, it is difficult

to separate them in a discussion such as this. A more in-depth discussion of the
Subselection tool's functionality (especially in conjunction with the Pen tool) is
provided in the "Drawing with the Pen Tool" section later in this chapter.

Selecting with the Arrow Tool

Located in the top-left corner of the Toolbox, the Arrow tool lets you select and move
single or multiple items about the Stage. The Arrow tool also allows you to change the shape
of an unselected line, stroke, or object.

Selecting an Object

Selecting an object with the Arrow tool is actually quite simple—just point and click.
However, a few tips and tricks will help you better take advantage of its functionality. First,
when you select an ungrouped object, a checkered pattern appears over it to indicate it is
currently selected.

 Note If you are interested in learning more about the difference between a grouped and an
ungrouped object, as well as how you group and ungroup objects, see Chapter 6.

On the other hand, a grouped object that has been selected has a thin rectangular box around
it. Figure 4.1 illustrates the difference between grouped objects that have been selected with
the Arrow tool and ungrouped objects selected with the Arrow tool.

Figure 4.1: The left two are ungrouped objects selected with the Arrow tool, and the right two
are grouped objects selected with the Arrow tool.
 Note Many objects, especially if they have been drawn with one of the shape tools, usually

have both a fill and a stroke. Therefore, if you want to select the entire object, you'll
need to select both the fill and stroke separately. You can also double-click an object's
fill to select both the fill and stroke. Alternatively, you can select both the stroke and fill,
and then group them together by selecting Modify → Group. After grouping them,
you'll only need to click the object to select the group.

To deselect an item that you've selected with the Arrow tool, click anywhere else on the
Stage, go to Edit → Deselect All, hit your Esc key, or use the keyboard shortcut
Cmd+Shift+A (Mac)/Ctrl+Shift+A (Win).

Moving an Object

To move an object with the Arrow tool, just click and drag it to the desired location, and
release your mouse button. If you have grouped a series of objects, the process works the
same way when you want to move the group.

 Note Many objects are made up of both a stroke and fill. If you don't select both and attempt
to move the object, the unselected portion of the object will be left behind.

Changing the Shape of an Object

Although you are able to alter the shapes of objects more easily with other Flash tools, the
Arrow tool is a quick way to fiddle with the form of an unselected line, stroke, or shape:

1. Select the Arrow tool from the Toolbox. Make sure you have an ungrouped object on
the Stage (this example shows a simple circle). Make sure the object itself is
unselected.

2. Move the Arrow tool close to the edge of the circle and notice the cursor changes
slightly (see Figure 4.2).

Figure 4.2: The Arrow tool changes when you move it close to the unselected line,
stroke, or shape.

3. When the cursor changes, click and drag the line to where you want it. Notice that you
get a ghost-like preview of the line's position (see Figure 4.3).

Figure 4.3: You get a preview of the new position of the line, stroke, or shape.

4. When the line, edge, or shape is altered the way in which you want, release your
mouse button.

Using the Snap to Objects Option

When you toggle Snap to Objects, which is located in Toolbox's Options section when the
Arrow tool is selected, you cause the selected objects to snap to other objects on the Stage.
You can snap selected objects to just about anything: lines, freeform paths, shapes, and so on.
In addition, you can even snap objects to the Stage's grid. Using the Snap to Objects option is
useful when you want to make sure the objects on the Stage line up or arrange them in a
consistent manner.

 Note To view the grid, select View → Grid → Show Grid. To snap objects to the grid, just
choose View → Grid → Snap to Grid. Finally, if you want to edit the grid properties,
just go to View → Grid → Edit Grid.

When you've got the Snap to Objects option toggled, you'll notice that a small circle appears
in the center of the selected object when you move it with the Arrow tool. This small circle is
called the registration point in Flash (see Figure 4.4).

Figure 4.4: A small circle appears in the center of the selected object when you move it with
the Arrow tool.

The registration point, and not the object itself, is the thing that's doing the snapping.
However, as the registration point and the object are one and the same thing, the point is
pretty much moot. When you move the registration point of one object (and therefore the
object itself) over another object (a straight line drawn with the line tool, for instance), it turns
bold/black and snaps to it.

Although it isn't that vital to have a full understanding of registration points yet, your curiosity
might be piqued. If this is the case, see Chapter 6 for an in-depth discussion of registration
points and how you manipulate them.

 Note Snap to Objects is most useful when you are creating a tweened animation along a path.
For more information on tweening along a path, see Chapter 9.

Snapping to Pixels

In addition to employing the Snap to Objects options, you can also use the Snap to Pixels
option. Although it's not accessible in the Options section of the Toolbox when the Arrow tool
is selected, the Snap to Pixels option is best explored at this stage of the discussion.

Essentially, when the Snap to Pixels option is turned on (View → Snap to Pixels), a pixel grid
(visible only if the Stage is magnified to at least 400 percent) appears to which all objects will
snap.

 Note To temporarily make the pixels grid invisible, press X. When you hold down the X key,
the grid will disappear, reappearing when you release the button.

Using the Smooth Option

The Arrow tool's Smooth option , which is located in the Toolbox's Options portion when
you've got the Arrow tool selected, reduces the number of bumps in a selected curve. The
result is a smoother curve than you had previously.

To use the Smooth option, simply select a curve with the Arrow tool, and click the Smooth
button. Alternatively, you can select the curve with the Arrow tool, and go to Modify →
Smooth.

Using the Straighten Option

The Arrow tool's Straighten option , located in the Toolbox's Options portion next to the
Smooth option button, takes the curve out of relatively straight lines—thereby making them
perfectly straight.

To use the Straighten option, select a line with the Arrow tool, and click the Straighten button.
Alternatively, you can select the curve with the Arrow tool, and go to Modify → Straighten.

Selecting with the Lasso Tool

While the Arrow tool selects individual objects, the Lasso tool selects all the objects (or
parts of objects) in a specific area.

 Note You can select portions of individual ungrouped objects (say, the corner of a large
square) with the Lasso tool. That area will be selected independently from the rest of the
object and can therefore be moved with the Arrow tool—creating the illusion you took a
pair of scissors, cut off the corner, and then moved it away from the square.

The Lasso tool contains three options in the Toolbox's Options section: Magic Wand, Magic
Wand Properties, and Polygon mode. Much like the Arrow tool, the Lasso tool is amazingly
easy to use. All you need to do is click and drag the tool to draw a line around the area you
want to select.

 Note For selection purposes, the Lasso tool automatically closes an area that you don't close
yourself.

Using Polygon Mode

Polygon mode lets you assert a great deal more control over selection than you'd get if you
were simply using the Lasso tool.

Essentially, Polygon mode lets you select an area by drawing multiple connected straight
edges. Make sense? In Polygon mode, the Lasso tool draws a straight line. Every time you hit
your mouse button, a selection point is created. You can then draw another straight line
(which is attached to the selection point you just created). The process is repeated until you
encircle the entire selection area. When you double-click your mouse button, the area is
selected. Figure 4.5 illustrates Polygon mode in action.

Figure 4.5: Polygon mode in action
 Note Just like with the Lasso tool when it isn't in Polygon mode, an unclosed area is

automatically closed when you finish your making your selection.

Working with the Magic Wand Option

The Lasso tool's Magic Wand option selects similar colors in a bitmap image that has
been broken apart.

 Note When you break apart a bitmap (which isn’t the same as tracing a bitmap), you are
simply telling Flash to regard the image as a collection of individual color areas. For
more information on how to work with bitmaps in Flash MX, refer to Chapter 6.

After the bitmap image has been broken apart (which is accomplished by selecting the image
and then going to Modify → Break Apart), you can then click individual colors with the
Magic Wand to select them.

 Note A color area selected with the Magic Wand is overlain by a checkerboard pattern to note
its selection.

Setting Magic Wand Properties

The Magic Wand Properties button , which is located in the Toolbox's Options portion
when you have the Lasso tool selected, allows you to set the properties of the Magic Wand.
When you click the Magic Wand Properties button, the Magic Wand Settings dialog box

opens and you can make the appropriate adjustments to the Magic Wand. The options are as
follows:

Threshold Defines the degree to which the Magic Wand will select similar (but not identical)
colors. Choices range from 0 to 200. For example, if you use a threshold setting of 0, only
similar identical colors will be selected. As you increase the threshold setting, the amount of
colors that are selected will increase.

Smoothing Determines how edges of a selection should be smoothed. The choices include
Normal, Pixels, Rough, and Smooth.

Drawing Visual Elements
Now that you've looked at how to use Flash's various selection tools, it's time to create
something that can be selected. Flash boasts a whole of host of great tools that allow you to
draw anything you imagine. Want to create a Picasso-like portrait of yourself (remember, both
eyes on one side of your face) or a drawing of your favorite flower? In this section, you'll look
at the tools you'll need to draw these types of images.

As with the previous tools discussed in this chapter, all the tools you'll need are located in the
Toolbox.

 Note When you select one of the following drawing tools from the Toolbox, you can

manipulate the drawn object's stroke and fill using the Property Inspector before you
draw it.

Drawing with the Line Tool

Unlike the freeform Pencil tool, which will be discussed shortly, the Line tool creates
single straight lines.

To use the Line tool, click where you want the line to begin, drag until it is the desired length,
and release your mouse button. You can set the thickness and style of the Line tool using the
Property Inspector. To learn more about manipulating an object's stroke, see the "Changing an
Object's Stroke with the Property Inspector" section later in this chapter.

 Note Holding the Shift key down while you're using the Line tool will constrain the line to
multiples of 45 degrees.

Drawing Basic Shapes

Flash provides you with two tools, the Oval tool and the Rectangle tool, for drawing basic
shapes. Although fairly similar, each has particular characteristics you should explore.

Using the Oval Tool

Located in the Toolbox's Tools section, the Oval tool helps you draw ellipses and circles.
To use the Oval tool, simple click your mouse where you want the shape to start and then drag
until you have created the desired shape and size. When you are finished, release your mouse
button. An oval is composed of both a stroke and a fill. To find out more about how you can
adjust an oval's stroke and fill properties, see the "Changing an Object's Stroke with the
Property Inspector" and "Altering an Object's Fill with the Property Inspector" sections later
in this chapter.

 Note Holding down the Shift key while drawing your oval creates perfectly round circles.

Drawing a Rectangle

Located in the Toolbox's Tools section, the Rectangle tool lets you draw rectangles and
squares. Much like the Oval tool, you can create a rectangle by selecting the Rectangle tool
from the Toolbox, clicking your cursor on the Stage where you want the shape to start, and
then dragging until you have created the desired shape and size. When you are finished,
release your mouse button. A rectangle, like an oval, is composed of both a stroke and a fill.
To find out more about how you can adjust a rectangle's stroke and fill, see the "Changing an
Object's Stroke with the Property Inspector" and "Altering an Object's Fill with the Property
Inspector" sections.

 Note Holding down the Shift key while drawing your rectangle creates a perfect square.

Changing Rectangle Corner Radius

The Rectangle tool has one available option in the Toolbox's Options portion—Rounded
Rectangle Radius . There will certainly be instances when you'll want to round the corners
of the rectangle or square you create. This is where the Rounded Rectangle Corner Radius
option comes in.

When you click the Rounded Rectangle Radius button, the Rectangle Settings dialog box
opens.

From here, you can enter a value (from 0 to 100) in the Corner Radius field. The higher the
value, the more rounded the corners of your rectangle become—give it a try and see what
kind of results you get.

Drawing with the Pencil Tool

The Pencil tool creates single lines. Unlike the Line tool, however, the Pencil is a
freehand tool. With it you can draw shapes that range from straight lines to incredibly
squiggly doodles.

Using the Pencil tool is almost as simple as using an actual pencil. All you need to do is select
the Pencil tool from the Toolbox, click the area of the Stage where you want your line to
begin, hold down the mouse button, and draw the shape you want. When you're finished, just
release the mouse button. Figure 4.6 illustrates the Pencil tool.

Figure 4.6: The Pencil tool in action

Setting Pencil Mode

The Pencil mode , which is the Pencil tool's only option, contains three options:
Straighten, Smooth, or Ink. The specific Pencil mode you choose is applied to the line you
draw as you draw it. However, you can straighten or smooth an already drawn line by
selecting the target line and then going to Modify → Smooth or Modify → Straighten.
Alternatively, you can also simply click either the Smooth or Straighten button after having
selected the already drawn line. The Pencil modes include the following options:

Straighten Straightens all curves in a line. This creates a line angular in nature.

Smooth Smooths out any angularities in a line. Unfortunately, you have no real control over
the degree to which Flash smoothes out your lines.

Ink Ensures your line is displayed exactly how you've drawn it—no smoothing and no
straightening.

Drawing with the Brush Tool

The Brush tool , much like the Pencil tool, creates single freeform lines. Unlike the Pencil
tool, however, the shapes created with the Brush tool are all fill. As a result, to change the
color of the brush stroke, you'll need to use the Property Inspector (discussed in the "Altering
an Object's Fill with the Property Inspector" section later in this chapter).

 Note The cool thing about the Brush tool is that, like the Pencil tool, you can smooth or
straighten a stroke that you create. To do this, select the already created stroke with the
Arrow tool and hit the Straighten or Smooth button. Alternatively, you can go to Modify
→ Smooth or Modify → Straighten.

Using the Brush tool is as easy as using the Pencil tool. Just select the Brush tool from the
Toolbox, click the area of the Stage where you want your line to begin, hold down the mouse
button, and draw the shape you want. When you're finished, just release the mouse button.

 Note Another cool thing about the Brush tool is that if you are using a graphics tablet, such as
those produced by Wacom, you can dynamically vary the weight of the stroke. Toggle
the Use Pressure button in the Options section of the Toolbox when you've got the
Brush tool selected and alter the pressure of the stylus on the tablet.

Selecting Brush Size

The Brush tool certainly wouldn't be that useful if you were stuck with one size. Well, fear

not, Macromedia has provided you with a series of different brush sizes , all of which
are accessible through the Options portion of the Toolbox when you've got the Brush tool
selected.

Brushes ranging from tiny to huge are accessible through the drop-down menu. To change the
brush size, just make your choice from the drop-down menu before you draw your line—you
can't dynamically change a line's size by choosing a different brush size after you've drawn it.

Setting Brush Shape

Flash also allows you to set your brush's shape . Much like setting brush size, you
need to choose a brush shape, all of which are accessible from the Brush Shape drop-down
menu, before you draw your line.

 Note Unfortunately, Flash still doesn't give you the ability to create your own brush shapes,
so you'll have to make do with what is available.

Setting Brush Mode

Brush mode , which is accessible through a drop-down menu in the Toolbox's Options
section, is perhaps one of the most interesting aspects of the Brush tool.

Essentially, Brush mode lets you specify exactly how your brush stroke affects an existing
drawn or painted element.

There are five Brush mode options:

Paint Normal Applies a stroke from the Brush tool over the top of existing elements—just
like if you were to take a can of spray paint to the (yikes!) Mona Lisa.

Paint Fill Applies your brush stroke to all areas made up of fills.

 Note The Paint Fill option leaves lines (like those created with the Pencil tool) unaltered.

Paint Behind Applies the strokes from your Brush tool behind any existing element.

Paint Selection Applies your brush stroke to areas of fill that have been previously selected.

Paint Inside Is interesting in that it applies brush strokes in only the same area in which it
was initiated. Paint Inside mode will not paint over existing elements.

Drawing with the Pen Tool

The Pen tool is the primary tool for creating freeform vector art within Flash. Granted, the
vast majority of the drawing tools in Flash (like the Line or the Pencil) create vector graphics.
However, the Pen tool is by far the most useful and powerful.

 Note The Pen tool works closely with the Subselection tool, which is covered later in this
chapter starting with the "Modifying a Point's Position with the Subselection Tool"
section.

For those among you who are more familiar with illustration programs such as Macromedia
FreeHand or Adobe Illustrator, you'll certainly recognize the Pen tool. Designed to build
precision paths, the Pen tool works by creating points that are connected by paths to form a
segment. The line segments can be either straight as an arrow or curved as a mountain path.
One of the many joys of the Pen tool is that the points (which are created each time you click
the mouse button) act as anchors that can be moved around to alter the characteristics of any
of the line segments (see Figure 4.7). It's powerful!

Figure 4.7: Any complicated line (which is more than one segment long) is composed of paths
linked by a series of points.

Setting Pen Tool Preferences

Before you tear off and start learning how to put the Pen tool to work, you need to become
familiar with its preferences—accessible by going to Edit → Preferences and clicking the
Editing tab. From here, you have three choices (all located in the upper-left corner of the
Editing tab):

Show Pen Preview Lets you preview line segments as you draw. A preview of the line
segment is displayed as you move the pointer around the Stage.

Show Solid Points Specifies that unselected anchor points appear as solid dots and selected
anchor points appear as hollow dots.

Show Precise Cursors Specifies that the Pen tool pointer appears as a crosshair cursor, rather
than the default Pen tool icon.

Drawing a Straight Line with the Pen Tool

Drawing a straight line is quite easy with the Pen tool. All you need to do is select the Pen
tool from the Toolbox, click a place on the Stage where you want to begin the line (which
creates a point), and then move your mouse and click to define the endpoint of the line.
Whammo, you've just created a straight line with the Pen tool. Figure 4.8 shows a simple one-
segment line drawn with the Pen tool.

Figure 4.8: A simple, one-segment line drawn with the Pen tool; notice that it ends and begins
with a point.

Drawing a Curved Line with the Pen Tool

Drawing a curved line is where the Pen tool really begins to shine! Drawing a straight line is
easy (and can be accomplished with many other drawing tools in Flash), but creating (and
manipulating) curved segments is what the Pen tool is really good at.

 Note When you draw a curve with the Pen tool, you create curve points. When you draw a
straight-line segment, you create corner points. When selected, curve points appear as
hollow circles, and selected corner points appear as hollow squares.

To create a curved line with the Pen tool, follow these steps:

1. Select the Pen tool from the Toolbox.
2. Click anywhere on the Stage where you want your curve to begin.
3. Move the cursor to the location where you want the curve to end.
4. Click to add the end point in the segment. However, instead of releasing your mouse

button, keep it pressed down and move the mouse a little bit in any direction. You'll
notice that as you move your mouse away (with the button still held down), two things
happen:

o First, your cursor is actually dragging one of two tangent handles that are
linked to the final point in the segment.

o Second, the farther away you drag one of the tangent handles away from the
original point, the more extreme your curve gets (see Figure 4.9).

Figure 4.9: The resulting curve that is created as you move the selected tangent
handle away from the original end point. Note that the tangent handle stretches
out the farther you drag it away.

5. To adjust the characteristics of the curve, simply move the selected tangent handle.
6. When the curve is exactly how you want it, release the mouse button. Notice that the

tangent handles disappear.

Figure 4.10 illustrates the resulting curved segment.

Figure 4.10: The resulting curve

Adding a Point to a Line

Each time you click your mouse button when you use the Pen tool, you add a point to a path.
When you are finished, you have a series of points and the segments that run between them.
The points themselves really determine the way in which the line looks. As you'll see later in
this section, you can move points around to alter the shape of the line. Given this, it's pretty
obvious that the Pen tool wouldn't be all that useful unless you could add more points along
the path after you've drawn it.

Follow these steps to add points to a path:

1. Make sure a curved path already exists on the Stage and that you have the Pen tool
selected. (If you have difficulty remembering how to make a curved path, just refer to
the "Drawing a Curved Line with the Pen Tool" section.)

2. Move the Pen tool over the area of the path you want to add the point. Notice that the
cursor changes from a pen with a small x to its right (which is the default cursor when
you are pointing anywhere on the Stage) to a pen with a small plus (+) to its right (see
Figure 4.11).

Figure 4.11: When you move the cursor over a curved path, the icon changes to a pen
with a plus (+) next to it. This indicates that you can add a point.

3. Click to add the point.

Removing a Point from a Stroke

Removing a point from a stroke is as easy as adding one; follow these steps:

1. Make sure a multipoint path already exists on the Stage and you have the Pen tool
selected.

 Note Removing a curve point is a two-step process. First, you actually convert the
curve point to a corner point and then you remove the corner point. If you want
to remove a corner point, it's simply a one-step process.

2. Move the Pen tool over the point you want to remove. Notice that the cursor changes
from a pen with a small x to its right (which is the default cursor when you are
pointing anywhere on the Stage) to a pen with a small v shape to its right (see Figure
4.12).

Figure 4.12: When you move the cursor over a path, the icon changes to a pen with a
small v next to it.

3. Click once. This converts the curve point to a corner point. Once you do this, you'll
notice that your cursor changes to a pen with a small minus (-) to its right (see Figure
4.13).

Figure 4.13: Once you convert the curve point to a corner point, you'll notice that your
cursor changes to a pen with a small minus (-) to its right.

4. Click the point once again to remove it entirely.

Modifying a Point's Position with the Subselection Tool

Because the points in a path act as a sort of skeleton, moving any of the given points alters the
structure of the path itself. To move a point with the Subselection tool, follow these steps:

1. Make sure you've got a multisegmented path on the Stage. Also, make sure you select
the Subselection tool, which is located just to the right of the Arrow tool in the
Toolbox's Tools section.

2. Click the path with the point you want to move to select it (notice that the path will
turn a light blue).

3. Move your cursor over the point you want to move. Notice the cursor turns from an
arrow with a small black box to its right, which is the default for the Subselection tool,
to an arrow with a small empty box to its right, which indicates you are over an
editable point.

4. Click and drag the point to the desired location.
5. When the point is at the desired location, simply release your mouse button.

 Note If the point you've selected is a curve point, the tangent handles appear when you select
it with the Subselection tool.

Editing a Curved Segment with the Subselection Tool

As discussed previously, it's pretty painless to create a curved segment with the Pen tool. But
what happens if you want to edit the curviness, for example, of the curve after you've created
it? Well, this is where the Subselection tool comes in. To alter a curve with the Subselection
tool, follow these steps:

1. Make sure you've got a curved path on the Stage. Also, make sure you select the
Subselection tool, which is located to the right of the Arrow tool in the Toolbox's
Tools section.

2. Click the path with the point you want to move to select it (notice that the path will
turn a light blue).

3. Click the curve point once (remember that the curve point is usually the second point
in the curved segment because that was the one whose tangent handles were used to
modify the curve's shape). Depending on whether the curve point is at the end or in the
middle of the path, either one or two tangent handles will appear (see Figure 4.14).

Figure 4.14: After clicking the desired curve point with the Subselection tool, either
one or two tangent handles will appear—depending on whether the point is at the end
or in the middle of the path.

4. Click the point at the end of the tangent handle and drag it to adjust the curve's shape.

Converting a Corner Point to a Curve Point

Corner points are all well and good when you're drawing angular paths with the Pen tool.
However, they are limited in that they can't be fiddled with to produce (or adjust) a curve.
This is a little annoying if you have spent a couple of hours creating a perfect image only to
find you need to make a slight curve in a straight line. Fortunately, Flash has the ability to
turn a corner point into a curve point:

1. With the Subselection tool, select the corner point you want to convert. When it's
selected, the corner point will turn from a hollow square to a filled square.

2. Once it has been selected, hold down the Option/Alt key.
3. Click the corner point you want to convert, and then and drag it slightly. Notice that

two tangent handles immediately appear.
4. You can then click and drag either tangent handler to adjust the shape of the curve.

Using the Ink Bottle Tool

Located in the Tools section of the Toolbox, the Ink Bottle changes a stroke's color,
width, and style. The benefit of using the Ink Bottle, opposed to just selecting the individual
stroke and then using the Property Inspector, is that you can use it to make it easier to change
the stroke attributes of multiple objects simultaneously.

 Note Using the Ink Bottle involves becoming familiar with the workings of the Property
Inspector—something that hasn't been covered yet. For more information, see the
"Changing an Object's Stroke with the Property Inspector" section later in this chapter.

To use the Ink Bottle, follow these steps:

1. Without anything selected on the Stage, select the Ink Bottle tool from the Tools
section of the Toolbox.

2. If it isn't already, open the Property Inspector by going to Window → Properties.
Notice that the Property Inspector displays the Ink Bottle options.

3. Choose a stroke color, stroke height, and stroke style.

 Note To learn how you go about creating a custom stroke, see the "Changing an
Object's Stroke with the Property Inspector" section later in this chapter.

4. Now, move your cursor (which has changed into an ink bottle) over any stroke you
want to change and click once. The target stroke will automatically change to reflect
the options you chose in the Property Inspector.

 Note Once you've set the properties of the Ink Bottle tool, it remains "filled." This
means that you could continue clicking other strokes on the Stage and they
would all change to reflect the options you set in the Property Inspector.

Manipulating an Object's Fill with the Paint Bucket
While the Ink Bottle tool changes the character of an object's stroke, the Paint Bucket tool

fills an area with color. It can both fill empty areas as well as change the color of already
filled areas. You can paint with solid colors, gradient fills, and bitmap fills. One of the neat
things about the Paint Bucket tool is that it can fill areas that are not entirely closed.

 Note Much like in the case of the Ink Bottle tool, using the Paint Bucket tool requires at least
a basic understanding of how the Property Inspector works—something that hasn't been
covered yet. As a result, see the "Altering an Object's Fill with the Property Inspector"
section later in this chapter.

To use the Paint Bucket, follow these steps:

1. Without anything selected on the Stage, select the Paint Bucket tool from the Tools
section of the Toolbox.

2. If it isn't already, open the Property Inspector by going to Window → Properties.
Notice that the Property Inspector displays the Ink Bottle options.

3. Choose a fill color.

4. Now, move your cursor (which has changed into a paint bucket) over the inside of an
empty shape or an existing fill and click once. The target area will automatically "fill
up" with the new color you set using the Property Inspector.

Setting the Paint Bucket Gap Size Option

As mentioned previously, the Paint Bucket tool can actually fill objects that aren't entirely

closed. The Gap Size option , which is accessible through the Toolbox's Options section,
gives you the ability to set the gap size at which the Paint Bucket will still fill an open shape.

To set the gap size, just choose from one of these options in the drop-down menu: Don't Close
Gaps, Close Small Gaps, Close Medium Gaps, or Close Large Gaps.

Using the Paint Bucket Lock Fill Option

The Paint Bucket's Lock Fill option comes into play when you're using gradients as fill
(something that's covered later in the "Working with the Color Mixer Panel" section). Located
in the Toolbox's Options section when you've got the Paint Bucket selected, this creates the
illusion that all filled areas (regardless of whether they are side by side or far apart) are part of
the same, continuous gradient. Figure 4.15 illustrates the Lock Fill option.

Figure 4.15: When used in conjunction with a gradient fill, the Lock Fill option creates the
illusion that filled objects are part of the same, continuous gradient.

To use the Lock Fill option, just follow these steps:

1. Select or create a gradient fill using the Color Mixer panel.

 Note To learn about how you go about creating and manipulating gradient fills, see
the "Working with the Color Mixer Panel" section later in this chapter.

2. Select the Paint Bucket tool.
3. Select the Lock Fill option.
4. Move your cursor (which has changed into an paint bucket with a small padlock icon

to its right) over the inside of an empty shape or an existing fill and click once. The
target area will automatically "fill up" with the gradient you mixed.

5. Repeat the process in step 4 to fill additional areas—by doing this, you'll get the
illusion that the filled areas are part of the same, continuous gradient.

Using the Fill Transform Tool

 New to MX The Fill Transform tool , which used to be the Paint Bucket option but has
been turned into a tool in its own right in Flash MX, lets you adjust the visual properties of a
gradient or bitmap fill.

 Note This discussion hinges on at least a basic understanding of how you use the Color Mixer
panel to create gradient and bitmap fills. As a result, you might want to read the
"Working with the Color Mixer Panel" section later in this chapter before continuing.

Let's take a look at how you can use the Fill Transform tool:

1. Select the Fill Transform tool.
2. Click an area filled with a gradient or bitmap fill. Notice that when you select a fill for

editing, a bounding box with handles and a center point appears. You'll find that,
depending on whether you are working with a linear gradient, a radial gradient, or a
bitmap fill, you'll get different handles.

o In the case of a linear gradient fill, the bounding box that appears is rectangular
with a center point, a circular handle in the upper-right corner, and a square
handle on the right.

o However, if you are working with a bitmap fill, the bounding box appears with
two separate sets of handles: three circular ones (one on top, one in the top-
right corner, and one in the right) and three square ones (one in the left, one in
the bottom-left corner, and one in the bottom).

o On the other hand, if you are working with a radial gradient fill, the bounding
box is oval in shape, with a square handle, and two circular handles.

 Note When your pointer is over any of these handles, it changes to indicate the
handle's specific function.

3. From here, you can perform several distinct actions:
o Reposition the center point of a gradient (either radial or linear): Simply

click and drag the center point to a desired location within the bounding box.
o Change the width of the linear gradient or bitmap fill: Click and drag the

square handle on the side of the bounding box.

 Note Changing the width of the gradient or bitmap fill resizes only the fill and
not the object itself.

o Change the height of a bitmap fill: Click and drag the square handles at the
bottom of the bounding box.

o Rotate the linear gradient, radial gradient, or bitmap fill: When you're
working with a linear gradient or bitmap fill, drag the circular rotation handle
at the corner.

 Note As with adjusting the width, when you adjust the height of a gradient or
bitmap fill, you are not adjusting the height of the actual filled object.

On the other hand, if you are working with a radial gradient, drag the bottom
circular rotation handle.

o Stretch or compact a linear gradient or a fill: Drag the square handle at the
center of the bounding box.

However, if you are working with radial gradient, click and drag the first
circular handle (just below the square handle).

o Skew or slant a bitmap fill: Drag one of the circular handles on the top or
right side of the bounding box.

Sampling with the Dropper Tool

The Dropper tool , which is located in the Toolbox's Tools section, lets you sample the fill
or stroke from one object and then apply it to another.

To sample the stroke of an object:

1. Make sure you have the Dropper tool selected and you have an object with a stroke on
the Stage.

2. Move the Dropper over the stroke. You'll notice that the cursor changes from a simple
dropper to a dropper with a small pencil to its right.

3. Click your mouse button once—notice that the Dropper instantly changes to the Ink
Bottle tool. This means you are ready to apply the sampled stroke color to the stroke
of another object.

4. Move the Ink Bottle cursor over another stroke and click once—voila! The stroke of
the second object is changed to that of the first.

To sample the fill of an object:

1. Make sure you have the Dropper tool selected and you have an object with a fill on the
Stage.

2. Move the Dropper over the fill. You'll notice that the cursor changes from a simple
dropper to a dropper with a small brush to its right.

3. Click your mouse button once—notice that the Dropper instantly changes to the Paint
Bucket tool. This means you are ready to apply the sampled fill color to the fill of
another object.

4. Move the Paint Bucket cursor over another fill and click once.

 Tip If you hold down the Shift key when you click an object with the Dropper tool, both the
fill and stroke are sampled and can be applied to another object.

Using the Eraser Tool

To use the Eraser tool , which is a heck of a lot easier than using a real eraser (no little
rubber shavings), select it from the Toolbox, move it to the location on the Stage you want to
erase, and click and drag until you've erased to your heart's content. Yup, it's that easy.

Selecting Eraser Mode

Much like with the Brush tool, the Eraser has several different modes , all of which are
accessible through the Toolbox's Options section when you've got the Eraser selected.

Essentially, the five Eraser modes let you specify exactly how your Eraser affects an existing
drawn or painted element:

Erase Normal Erases any fills or strokes over which you drag the Eraser tool.

Erase Fills Constrains the Eraser so it erases only fills and empty areas without erasing any
strokes over which it passes.

Erase Lines Erases only strokes and lines. Any fills your cursor passes over will not be
affected.

Erase Inside Erases within the constraints of a shape. When this mode is selected and you
start your stroke in a filled area, only the section inside of that area is erased.

Erase Selected Fills Affects only fills that are selected.

Working with the Faucet Option

The Faucet option , which is located in the Toolbox's Options section when you've got the
Eraser selected, automatically deletes any fill or stroke that you click. Just select the Faucet
option and point and click—and say "bye bye" to the offending fill or stroke.

Selecting the Eraser Shape

As with the Brush Size mode, you can specify the size and shape of your Eraser. The
available Eraser shapes and sizes range from small to large and are accessible through a drop-
down menu in the Options section of the Toolbox when the Eraser is selected.

To change the Eraser shape and size, make your choice from the drop-down menu before you
use the Eraser.

Changing an Object's Stroke with the Property Inspector
 New to MX As mentioned in Chapter 3, stroke is the character of the line formed when you
draw an object. Whether you want to change the character of a line drawn with the Pencil tool
or the border of a rounded rectangle, you are going to need to use the Property Inspector.

 Note As already discussed, you can use the Color Mixer panel to manipulate stroke color.
However, if you want to fiddle with other stroke attributes, such as height and style, you
need to use the Property Inspector.

With it, you can change the height, style, and color of an object's stroke. Let's take a look at
how:

1. If it isn't already, open the Property Inspector by going to Window → Properties.
2. Now, select the object whose stroke you want to manipulate.

 Note If you want to change the stroke of an ungrouped object, make sure you don't
just select its fill. The easiest way to avoid this is to select the Arrow tool and
click and drag so that the selection box encompasses the entire object.

3. Click the Stroke Color swatch. When the color palette opens, select the color you want
to use for the object's stroke.

4. From here, you can set the stroke's height (thickness) by either adjusting the slider
(accessible by clicking the little down arrow to the right of the Stroke Height field) or
by simply typing in a numerical value into the Stroke Height field.

 Note The minimum stroke height is 0.1, and the maximum is 10.

5.
6. Now, you can set the stroke's style by choosing one of the options from the Stroke

Style drop-down menu.

7. If you aren't happy with the preset stroke styles that Flash offers, you can create your
own by clicking the Custom button to the right of the Stroke Style drop-down menu.
The Stroke Style dialog box that appears initially lets you set the type and thickness of
the custom stroke.

Your choices are automatically shown in the preview window in the left portion of the
dialog box. To get a good feel how this dialog box works, experiment with the various
options and see what kinds of results you get. Depending on the stroke type you've
chosen, you will have access to a far wider range of unique options in the Stroke Style
dialog box.

 Note You can also set an object's stroke color through the Stroke Color well in the Toolbox—
represented by the color swatch just to the right of the Pencil icon. Just toggle the Stroke
Color button, click the color swatch, and then choose the color you want.

Altering an Object's Fill with the Property Inspector
 New to MX You have two ways of setting fill color. The first, which will be discussed in
the "Working with the Color Mixer Panel" section later in this chapter. The second way,
discussed in this section, involves using the Property Inspector. In all honesty, using the
Property Inspector is a little limiting because you only have access to solid color—with the
Color Mixer panel you've also got access to gradient and bitmap fill.

To set an object's fill using the Property Inspector, just follow these steps:

1. If it isn't already, open the Property Inspector by going to Window → Properties.
2. Now, select the object whose fill you want to manipulate.
3. Click the Fill Color swatch. When the color palette opens, select the color you want to

use for the object's stroke.

 Note Using the Fill Color well in the Toolbox works exactly the same as if you were to use
the Color Mixer panel or the Propertry Inspector; it's just accessed from a different
location. All you need to do is toggle the Fill Color button, click the color swatch, and
the choose the color you want.

Creating with Digital Color
Like any other visual medium (such as painting, photography, film, or 3D modeling), color is
an extremely important factor in crafting a creation with impact in Flash. Unless you are
targeting your work toward an audience of visually impaired individuals (a process that
involves a great deal of specialized knowledge and experience), you need to spend a great
deal of time thinking about how you are going to effectively maximize color in Flash. In this
section, you're going to explore some specific color-oriented topics.

Until the Web came along, all computer-oriented graphic designers created images and
artwork specifically for print. When it comes to print, color is composed using a system
designed to make sure that the color displayed on a computer monitor translated accurately
into the ink in a printer. Called CMYK (Cyan/Magenta/Yellow/Black), the system defines
individual colors as a percentage of each of these four colors. For example, the CMYK
abbreviation for the color black would be 0-0-0-100.

When it comes to designing specifically for the screen, CMYK has no real place. Instead,
color is composed using the RGB (Red/Green/Blue) system, which defines an individual color
in terms of a combination of three colors.

When it comes to the Web, there is an additional color system of which you need to be aware.
Hexadecimal notation (sometimes just referred to as Hex) is less of a real color system and
more of a way to describe RGB color in an alternative format. Used by HTML, Hex notation
is composed of six characters (00DDFF, for example). The first two characters represent the
red color channel (R), the middle two the green channel (G), and the last two the blue channel
(B). Each of the numeric characters (0–9) and each of the letters (A–F) represent an integer
from 0–16. As a result, the Hex notation translates neatly into an RGB value.

Working with Web-Safe Color

When it comes to using color in conjunction with web-oriented media (HTML, Flash, digital
video, and so on), there are some things you need to know.

Most computers can display at least 256 colors (most can display millions). The problem,
however, is that you can't be exactly sure which 256 colors. This would normally cause some

rather frustrating problems for web designers. Fortunately, the majority of web browsers
(Netscape Navigator and Microsoft Internet Explorer are the most popular) all share a fixed-
color palette—the browser-safe palette (or web-safe palette as it's sometimes called). So, if
you choose a color from the browser-safe palette, you are guaranteed your design will look
exactly the same (at least when it comes to color) from system to system.

If you use a color outside the web-safe color palette, the browser coverts the odd color to the
closest color it can find in its system palette. As a result, you run the risk of having your
colors look slightly different from machine to machine if you stray from the web-safe color
palette.

Working with the Color Swatches Panel

Each Flash movie contains its own color palette, stored in the architecture of the file itself.
Flash displays a file's palette as swatches (small squares of color) in the Color Swatches
panel.

Although the Color Swatches panel (Window → Color Swatches) displays the web-safe
palette by default, you can add, delete, edit, and duplicate colors as you need. You can also
import and export custom-created palettes. You do all of these operations through the Color
Swatches panel's Options pop-up menu—which, if you remember, is accessible by clicking
the icon in the panel's top-right corner.

The options include the following:

Duplicate Swatch Automatically duplicates the currently selected swatch.

Delete Swatch Deletes the currently selected swatch.

Add Colors Lets you import color palettes that have been saved in the CLR (Flash Color Set)
or ACT (Color Table) file format. After choosing the option from the drop-down menu, just
navigate to the file on your hard drive and select it.

Replace Colors Lets you replace the current palette with an imported palette. Just choose the
option from the drop-down menu, navigate to the CLR file, and select it.

Load Default Colors If you've manipulated your current palette, use the Load Default Colors
option to revert back to the web-safe palette.

Save Colors To export a color palette, choose Save Colors from the drop-down menu. When
the Export Color Swatch dialog box appears, navigate to the location where you want to save
the palette, choose a desired file type from the Format menu (Mac) or Save as Type drop-
down menu (Win), enter a desired name, and click Save.

Save as Default Designates the current palette as the default palette to be loaded when you
use the Load Default Colors option in the drop-down menu.

Clear Colors Automatically removes all the colors from the current palette besides black and
white.

Web 216 Switches the current palette to the web-safe palette.

Sort by Color Rearranges the color swatches by hue, allowing you to better locate a given
color in the current palette.

Working with the Color Mixer Panel

While the Color Swatches panel displays the individual colors in the current palette, the Color
Mixer panel (Window → Color Mixer) creates and edits solid colors.

It is also used to create gradient and bitmap fills—something that we've already talked a bit
about but haven't had the chance to go over in detail.

The primary purpose of the Color Mixer panel is to exert complete control over both fill and
stroke color—to do this, just select either the Stroke Color icon (indicated by the pencil) or
the Fill Color icon (indicated by the paint bucket) and follow the color-mixing procedures
detailed next.

 Note Because you cannot create or edit gradient or bitmap fills using the Property Inspector,
you'll find it's preferable to use the Color Mixer panel to do all of your fill work.

Mixing Solid Colors

You can use the Color Mixer panel to create solid RGB (Red, Green, Blue), HSB (Hue,
Saturation, Brightness), or Hexadecimal notation colors using a series of different methods
(all of which are explored in this section). Once you've created colors, you can add them to
the current palette and displayed in the Color Swatches panel.

 Note One of the great things about using the Color Mixer panel is that you can dynamically
apply fill. This means you can change and manipulate an object's fill either before or
after it is created. If you want to change the fill of an existing object, make sure it has
been selected (with the Arrow tool) and then make the desired changes in the Color
Mixer panel.

Let's take a look at how you use the Color Mixer panel to create and mix solid colors.

 Note When you've mixed a color using any of the upcoming procedures, all you have to do is
select the Add Swatch command from the Color Mixer panel's Options menu—the color
will automatically be added to the Color Swatches panel.

Mixing an RGB Color

To mix an RGB color, follow these steps:

1. If it isn't already, select Solid from the Fill Style drop-down menu.
2. Choose RGB from the Color Mixer panel's Options menu.

3. From here, simply enter numerical values into the R, G, and B fields. Alternatively,
you can use the sliders to the right of the individual color channel fields.

You can also choose a color by clicking anywhere in the color box with your cursor.
The appropriate RGB code automatically appears in the color channel fields.

4. If you want to manipulate the color's transparency, enter a value into the Alpha field
(or adjust the slider) to specify the degree of transparency—0 for complete
transparency to 100 for complete opacity.

Mixing an HSB Color

The process for mixing an HSB color works exactly the same as mixing an RGB color.
Simply choose HSB from the Color Mixer panel's Options menu (below left). From there,
enter values (in percent) into the H, S, and B fields. You can also choose a color by clicking
anywhere in the color box with your cursor. You can also enter a value into the Alpha field
(or adjust the slider).

Mixing a Hex Color

Mixing a Hex color is just as easy as mixing either an RGB or an HSB color. Simply enter the
appropriate Hex values into the Hex field.

 Note The Hex value of any color you create using RGB or HSB is automatically displayed in

the Hex field.

You can also choose a color by clicking anywhere in the color bar with your cursor.

Using the None Fill Style

When you choose None from the Fill Style drop-down menu, any object you draw (oval,
rectangle, and so on) won't have a fill.

Unlike the other choices in the Fill Style drop-down menu, you can't dynamically change an
object's fill to None after it has been drawn. As a result, if you don't want an object to have a
fill, select None from the Style drop-down menu before drawing it.

Creating a Linear Gradient

A linear gradient is a fill that gradually changes from one color to another in a linear
fashion—either vertically or horizontally (see Figure 4.16).

Figure 4.16: A linear gradient

Let's take a step-by-step approach to creating and editing a linear gradient with the Color
Mixer panel:

1. With the Color Mixer panel open and an object selected, choose Linear Gradient from
the Fill Style drop-down menu.

 Note Alternatively, you can choose Linear Gradient from the Fill Style drop-down
menu before you draw the object. By doing this, your object, when it's drawn,
will be filled with the linear gradient you selected and edited beforehand.

2. To change a color in the selected gradient, first click one of the pointers below the
gradient definition bar. As a gradient slowly changes from one color to another, the
pointer you choose determines either the starting color or the ending color (below
left).

3. Once you have one of the pointers selected, click the color swatch just above the
gradient's definition bar. This will open the color palette from which you can choose a
new color (below center).

4. To change the character of the gradient, click and drag either pointer. The farther apart
the pointers are, the more gradual the gradient will appear. Conversely, the closer
together the pointers are, the more abrupt the gradient will be (below center).

 Note As you move the pointers around or change the gradient colors, your changes
will automatically preview in both the gradient definition bar and the gradient
preview.

5. You can increase the complexity of the gradient by adding additional colors. To do
this, click just below the gradient's color definition bar to add an additional pointer.
Once it has been added, you can change the pointer's color by following the process
outlined in step 4 (below right).

6. Once you've finished editing the gradient, you can add it to the Color Swatches panel
(so it can be used whenever you want). To do this, select Add Swatch from the Color
Mixer panel's Options drop-down menu.

 Note To transform a gradient fill of any kind (either linear or radial), you can use the Fill
Transform tool described in the "Using the Fill Transform Tool" section earlier in this
chapter.

Creating a Radial Gradient

A radial gradient is quite similar to a linear gradient. However, instead of the fill changing
from one color to another in a linear pattern, it changes in a circular pattern (see Figure 4.17).

Figure 4.17: A radial gradient

Beyond that detail, creating and editing a radial gradient is exactly the same as if you were
working with a linear gradient.

Creating a Bitmap Fill

You can use the Color Mixer panel to create a fill that is a bitmap image (opposed to a solid
color or a gradient). Let's take a look at how:

1. With the Color Mixer panel open and an object selected, choose Bitmap from the Fill
Style drop-down menu.

 Note Alternatively, you can choose Bitmap from the Fill Style drop-down menu
before you draw the object. By doing this, your object, when it's drawn, will be
filled with the bitmap you selected and edited beforehand.

2. If you haven't already imported another bitmap into your movie, the Import to Library
dialog box will open. Navigate to where the bitmap you want to use as fill is located,
select it, and then click Open.

3. If you've already imported a bitmap (or bitmaps), they will appear in the Bitmap Fill
window.

4. Select the bitmap you want to use as fill from the thumbnails displayed in the Bitmap
Fill window.

5. To manipulate the way in which the bitmap fill is displayed, use the Fill Transform
tool, discussed in the "Using the Fill Transform Tool" section earlier in this chapter.

Inspirational Design Model
Any successful Flash creation requires total control over all of the application's painting,
drawing, and color tools. Although many examples of Flash movies exemplify this, arguably
one of the coolest is the Peter Grafik Retro Experience site
(www.petergrafik.dk/dubonet_retro_experience/), shown in Figure 4.18. Designed as a self-
promotional site by Peter Holm, one of the principals of Titoonic (the Inspirational Design
Model for Chapter 26), this site is a tour de force of color, design, and illustration. (This
version is actually the first generation of the site—the new version is visible at
www.petergrafik.dk). His comfortable, cartoony style of illustration is incredibly well
integrated into the overall interface. Ultimately, the site creates a certain feeling of groovy
playfulness.

Figure 4.18: The overall use of color, design, and illustration in the Peter Grafik Retro
Experience site creates a sense of playfulness.

Summary
In this chapter, you spent a fair amount of time going over the various drawing and painting
tools at your fingertips in Flash. You explored all of the various selection tools, which
included the Arrow tool, the Subselection tool, and the Lasso tool. You looked at how to
create shapes using the Oval and Rectangle tools. You also spent a great deal of time
discussing the Pencil tool, the Pen tool, the Brush tool, and the Line tool—all of which create
freeform paths. You then spent time looking at the Dropper tool, the Paint Bucket tool, the Ink
Bottle tool, the Transform Fill tool, and the Eraser tool. You rounded out the chapter by
exploring how you adjust an object's stroke and fill by using either the Property Inspector or
the Color Mixer panel.

Chapter 5: Working with Text
Overview
When Edward Lytton said that the pen is mightier than the sword in his play Richelieu, he
probably had no idea this phrase would be just as meaningful in the digital age. Even though
the Web is becoming an increasingly more visual medium by the second, the majority of the
information is still textual.

Beyond the textual content you can transmit, however, the type itself is an extremely powerful
tool for giving your digital creation extra life and meaning. Because of Flash's vector
animation tools, text—especially if it's properly crafted—can have an incredible impact on
your visitors. Taking the time to choose the right type for your textual content can turn a good
Flash site into a great Flash site.

Understanding Text, Type, and Fonts

When you work with text in Flash (or any other graphics program for that matter), you'll find
that the words text, font, and typeface are often used interchangeably. Don't be fooled,
however; there is a big difference among the three.

Text refers to any combination of characters that make up a written document of some sort
(whether a word, a sentence, or a book). A font, on the other hand, is a complete set of
characters in a particular size and style. This includes the letters, the numbers, and all of the
special characters you get by pressing the Shift, Option, or Cmd/Ctrl keys. A typeface, on the
other hand, contains a series of fonts. For example, the typeface Arial contains the fonts Arial,
Arial Bold, Arial Italic, and Arial Bold Italic.

 Note For more information about the art of text, type, fonts, and just about anything else
typographic, try these great resources: www.typereview.com,
www.rsub.com/typographic/, and http://counterspace.motivo.com/.

Working with Flash's Font Limitations
Although Flash has some font-related issues that need to be discussed, they are nowhere near
as complicated (and limiting) as those related to fonts and HTML-based design. However,
they are important and ultimately will impact your Flash creations.

Flash movies can use Type 1 PostScript fonts, TrueType fonts, and bitmap fonts (on the
Macintosh only). To use PostScript fonts, you must have Adobe Type Manager (ATM)
installed on your system.

 Note If you're using Windows 2000, you don't need to install ATM to use Type 1 PostScript
fonts.

For the most part, when you publish your final product, Flash embeds the necessary
information about fonts, thereby allowing your audience's computers to display them
properly. However, in some cases, fonts may still appear incorrectly in your Flash creation
when your audience views it because they many not have that font installed on their machine.

You can avoid this problem in two ways. First, if you are not picky about the actual font you
use, employ the _sans, _serif, or _typewriter fonts available in the Font drop-down menu of
the Property Inspector (see the "Manipulating Text with the Property Inspector" section).
Essentially, when you use these fonts (which are called device fonts), you are telling the Flash
movie to use the equivalent fonts installed on your audience's computers. This way, you'll
always know your text will appear correctly. Essentially, device fonts are the fonts that your
operating system employs to display its textual information.

Second, to keep your fonts from displaying incorrectly when your Flash creation is viewed,
you can break apart the given text and turn it into shapes instead of text. The process for
breaking apart text will be covered later in this chapter in the "Breaking Apart Text" section.

Besides the problem of users not having a certain font installed, there are some other specific
font issues of which you should be aware. When it comes to Windows machines, PostScript
fonts are prone to display incorrectly. As a result, it is strongly suggested Windows users limit
themselves to TrueType fonts.

Mac users need to be cautious when employing Adobe PostScript fonts. For the most part,
PostScript fonts function properly, but there are situations where they cause problems.
Sometimes, PostScript fonts will display properly while you are creating your Flash movie
but will display incorrectly when the movie is actually published.

Creating Type with the Text Tool
Now that you've explored the limitations of Flash-based text, you can explore the process of

creating text by using the Text tool , which is located in the Tools section of the Toolbox.

Although the vast majority of your text editing in Flash will be facilitated with the Property
Inspector (which you'll explore later in this chapter), you always need to start off by actually
creating some text—a process made possible by the Text tool.

 Note You can antialias text by going to View → Antialias Text.

To use the Text tool, select it from the Toolbox, click anywhere on the Stage, and begin
typing. Don't worry too much about how the text appears at this early stage of creation; you'll
learn how you can get it to look exactly how you want in the "Manipulating Text with the
Property Inspector" section later in this chapter.

 Note To edit text, simply click a text block with the Text tool (or double-click it with the
Arrow tool) and make the changes you want. When finished, click anywhere outside of
the text box.

Understanding Text Boxes

Figure 5.1: As you're typing the text, you'll notice it is contained in a rectangle with a small
circle in the upper-right corner. This is a text box.

Flash creates text in blocks called text boxes (see Figure 5.1). The text blocks themselves
become editable objects that you can move about the Stage at will.

There are actually three distinct types of text boxes, all with a particular function within the
process of creating and manipulating text in Flash.

An Extending text box extends as you type. You can easily recognize these by a small circle
in the upper-right corner. The Extending text box is the default type of text box in Flash.

A Ffixed text box doesn't increase horizontally. To create a Fixed text box, which is
recognizable by a small square in its upper-right corner, choose the Text tool from the
Toolbox, click anywhere on the Stage, and drag the text block to the desired size. Notice that
you can only drag horizontally. When you type, your text will automatically wrap, extending
the size of the text block vertically, but not horizontally.

A Input text box contains Dynamic Text that can be changed by anyone viewing your Flash
movie.

 Note For more information and how to create and work with Dynamic Text, see the "Working
with Dynamic Text" section later in this chapter.

Say, for instance, you wanted to create a field where someone types a password to access a
restricted area of your site. You would accomplish this (at least in part) by creating an Input
text block. Unlike the other two types of text blocks already discussed, the Input text box,
which is recognizable by a small square in the lower-right corner of the text box, is not
created with the Text tool. Instead, you need to choose Dynamic Text or Input Text from the
Text Type drop-down menu in the Property Inspector (see "Manipulating Text with the
Property Inspector").

Manipulating Text with the Property Inspector
 New to MX The Text tool is the prime method for creating text, and the Property Inspector
is the prime tool for editing and manipulating it. Unlike previous versions of Flash, which
used several different panels to control various aspects of Flash text, Flash MX uses the all-
powerful Property Inspector to manipulate text. You can access it using Window →
Properties.

Before learning how to manipulate text with the Property Inspector, however, there is a single
detail that needs to be discussed. In Flash MX, there are three distinct types of text: Static
Text, Dynamic Text, and Input Text. Each type, which will be discussed in the following
sections, has its own place and function within a Flash creation.

Let's take a look at the process you need to follow to create and edit each of the three types
using the Property Inspector:

1. If you haven't already, insert some text onto the Stage using the Text tool.
2. If the text box you've just created is still "live" (or, still editable), select the text using

your cursor. If you've deselected the text box, simply reselect it with the Arrow tool (a
light blue box will appear around the selected text block).

3. If it isn't already, open the Property Inspector by going to Window → Properties.
4. Select the specific type of text you want to create from the Text Type drop-down

menu.

From here, the Property Inspector will change to reflect that text type's specific properties—
all of which are described in the following sections.

 Note This step-by-step process describes how you can manipulate text after it's already been
created. If you want to create some text with the Text tool whose properties have
already been set, just select the Text tool from the Toolbox, open the Property Inspector,

set the text properties (all of which are described next), and then insert the text onto the
Stage. The inserted text will automatically have all the properties (font, color, size, and
so on) that you set with the Property Inspector.

Working with Static Text

Although you are going to spend time exploring and discussing Dynamic Text and Input Text
a little later in this section, it's important to recognize that Static Text, which is automatically
created when you insert text using the Text tool, is the default type of text in Flash. In other
words, when you create text with the Text tool, it is automatically Static Text.

 Note When you want to work with Static Text, you really don't have to follow the steps in the
previous section because Static Text is already chosen in the Text Type drop-down
menu.

Beyond its innate ability to convey textual information, Static Text doesn't do anything
special. As a result, you'll find that you'll probably use it the most. As a result, it's good that
you become intimately familiar with all the following Static Text options accessible through
the Property Inspector.

The options are as follows:

Font drop-down menu Displays the current font when the Text tool is active. The list shows
every font currently installed on your computer. You can either choose a font with the Font
drop-down menu before you begin typing or select existing text within a text block (or the
text block itself) and change its font with the Font drop-down menu.

 Note You can also change the font of selected text by choosing Text → Font and then picking
from the list of fonts installed on your machine.

Font Size field Sets a font's size. You can either enter a value (in point size) into the Font
Size field or use the Font Size slider (which is accessible by clicking the small Down arrow to
the right of the field).

 Note You can also change the font size by choosing Text → Size and picking from the list of
sizes available.

Text style buttons Sets the text to either bold or italic. As with the rest of the options in the
Property Inspector, you either select a block of text with the Arrow tool or use the Text tool to
select the text when the text block is "live." Then click one of the style buttons. You can also
click either of the style buttons before you create a new string of text.

 Note Unfortunately, the Property Inspector offers a limited array of style options. For more

(though not much more), select Text → Style and choose a style from the list.

Text Color swatch Opens the Text Color palette so you can set your text's color. If you are
unhappy with the available color choices, mix your own using the Color Picker (accessible by
clicking the small color wheel in the top-right corner of the Text Color palette).

Character Spacing value Represents the distance between characters in a string of text. The
higher the Character Spacing value, the farther apart the characters will be. Figure 5.2
illustrates different Character Spacing values, also referred to as tracking.

Figure 5.2: The top line of text has a character spacing of 0, the middle line has a tracking of
10, and the bottom line has a tracking of 25.

The Property Inspector lets you set the Character Spacing for any given text block (either
before or after it has been created). If the text has already been created, all you need to do is
select the text block or the actual text and enter a value in the Character Spacing field.
Alternatively, you can use the Tracking slider, which is accessible by clicking the small Down
arrow just to the right of the Tracking field, to adjust the amount of tracking.

As with all of the other options in the Property Inspector, you can also set the tracking before
you create text with the Text tool.

Character Position value Character Position, which is also referred to as baseline shift in
graphic design, refers to how closely the text sits above or below its natural baseline (the
bottom of the letters). By changing a text block's Character Position value, you can create
superscript or subscript characters. Unlike most graphic design programs that allow you to set
an exact baseline shift value, Flash gives you only three default settings: Normal, Superscript,
and Subscript (see Figure 5.3).

Figure 5.3: The three baseline shift presets

To set the character position, select a string of already created text, and choose one of the
three baseline shift options from the Character Position drop-down menu. As with all of the
other options in the Property Inspector, you can also set the baseline shift before you create
text with the Text tool.

 Note In addition to changing some text's Character Position value, you can also create
superscript or subscript by going to Text → Style → Superscript or Subscript.

Auto Kern option Evens out the spacing between individual characters in a string of text.
When you select the Auto Kern option, you activate the built-in kerning option of many (but
not all) fonts.

 Note If you want to apply the Auto Kerning feature, a font must have kerning information
built into the file—this is why some fonts will auto kern and others won't.

Change Direction of Text button Accesses a drop-down menu with a series of options that
change the direction of the selected text. The default Horizontal option makes the text flow
from left to right horizontally. The two remaining options—Vertical, Left to Right and
Vertical, Right to Left—make the text flow vertically. The difference between the two is that
if you apply the Vertical, Left to Right option to a block of text with more than one line, the
first line will remain the first vertical line. However, if you choose the Vertical, Right to Left
option, the last line in a text block with more than one line of text will be the first vertical line.

Rotate Text button Changes the text's orientation (only on vertical text). With rotation turned
off, individual characters will face to the right.

On the other hand, if you turn the rotate option on, the individual characters will face
downward.

URL field Flash offers several different ways in which to link to a URL. The easiest method
uses the URL field in the Property Inspector.

 Note Any Flash text to which you've attached a URL will appear on the Stage with a dotted
underline.

Simply select a string of text you want to turn into a link, and type in a URL into the URL
field.

 Note You can only add a URL to horizontal text.

URL Target field Because it's entirely possible that your Flash movie be delivered in a
framed HTML document, the Target drop-down menu lets you set the location in which the
URL loads. There are four default options:

• Choosing _blank loads the link in a new browser window, maintaining the window in
which the hyperlink was located just below the newly opened window.

• If you choose _parent, the document, when loaded, will occupy the entire area of the
frameset document in which the link resides.

• Choosing _self (which is the default link target) simply opens the document in the
frame where the link resides.

• If you choose _top, the document will be loaded into the uppermost (hierarchically
speaking) frameset—wiping out all frames and nested framesets.

You can also manually enter a frame name into the Target drop-down menu/field if you want
to target a specific named frame in the HTML document.

Selectable button Under normal circumstances, Static Text is part of the Flash movie and is
therefore not selectable as text would be in an HTML document, for example. However, if
you want your audience to be able to select the Static Text in your movie (and therefore copy
and paste it), make sure the Selectable button is toggled.

Use Device Fonts option By selecting the Use Device Fonts option, you tell Flash not to
embed the font used in a given text block. Instead, Flash will look at the user's computer and
employ the most appropriate font on their system to display the text. Ultimately, because the
font information is not embedded, the SWF file's size will be slightly smaller.

 Note You can only evoke the Use Device Fonts option when you're working with horizontal
text.

Alignment buttons The right side of the Property Inspector offers you four alignment
options: Left/Top, Center, Right/Bottom, and Full Justify (see Figure 5.4). To align text,
select a text block (or a string of text within a text block) and click one of the alignment
buttons.

Figure 5.4: The results of the four alignment options from left to right: Left/Top, Center,
Right/Bottom, and Full Justify.

Formatting options By clicking the Edit Format Options button, you get access to a Format
Options dialog box, which contains a series of options that affect the way in which an entire
text block looks (opposed to individual characters within the text block).

When you set the left margin of a text block, you set the distance, in pixels, between the left
side of the text box and the text itself. Enter a value numerically into the Left Margin field or
use the Left Margin slider (accessible by clicking the small Down arrow to the right of the
Left Margin field).

When you manipulate the right margin, you set the distance, in pixels, between the right side
of the text box and the text itself. Enter a numerical value into the Right Margin field or use
the Right Margin slider (accessible by clicking the Down arrow to the right of the Right
Margin field).

The Indent setting changes the distance, in pixels, between the left side of the text box and the
first line of text.

The Line Spacing setting represents the vertical distance, in points, between lines in a text
block. To set the line spacing, enter a value numerically into the Line Spacing field, or use the
Line Spacing slider.

Working with Dynamic Text

When you create Dynamic Text, you produce a text box with content dynamically updated
from another source—say, a database or text file on your server. So, Dynamic Text is not
really fixed or unchanging per se, even though it's created in the same way as Static Text.
Instead, it is sort of like a text container whose contents can change. With this in mind, one
can easily come up with some genuinely interesting uses. You could create a constantly
changing list of your favorite jokes or your daily itinerary—the possibilities are endless.

 Note If you are interested in using Dynamic Text to create dynamic content, see Chapter 17.

If you want to create and manipulate Dynamic Text, you have to go through an extra step that
you wouldn't normally have to go through if you were working with Static Text—you'll need
to manually select Dynamic Text from the Property Inspector's Text Type drop-down menu.

From there, you'll get access to the specific Dynamic Text properties in the lower-right corner
of the expanded Property Inspector—each of which is described next:

Line Type drop-down menu Displays three choices: Single Line, Multiline, and Multiline
No Wrap. Single Line displays the text as one line, and both Multiline and Multiline No Wrap
display it as more than one line. The difference between the two Multiline options is that
Multiline No Wrap will only break a single line into more that one line if the last character is
a breaking character—such as Return/Enter.

Variable field Contains the name of the text block so that dynamic content intended for that
specific text block will know exactly where it needs to go.

 Note Make sure the name you enter into the Variable field is unique.

Selectable Text button Allows your audience to select the text within the Dynamic Text box,
much like in the case of the Static Text option.

Render Text as HTML button Tells Flash to retain certain HTML text formatting styles.
Now, don't get all wild and crazy, thinking you can retain every HTML tag under the sun.
Unfortunately, there are only a limited number of HTML tags (including bold, italic,
underline, font face, font color, paragraph break, and font size) that are supported.

Show Border around Text button Tells Flash you want the text box to be surrounded by a
visible border.

 Note By default, when you've got the Show Border around Text option turned off, the
Dynamic Text is always surrounded by a dotted border—which is not visible when the
movie is published.

Edit Character Options button When you click the Edit Character Options button (shown
as Character), the Character Options dialog box opens.

From here you can determine exactly how many characters of the font are embedded in the
file. From top to bottom, the radio buttons let you embed none of the characters, all of the

characters, or specific characters in the font (uppercase characters, lowercase characters,
numbers, and punctuation). By typing specific characters into the field at the bottom of the
dialog box (which goes live when you select the Only option), you can customize which
characters you'd like to embed.

 Note The fewer characters of a font you embed, the smaller the file will be.

Working with Input Text

Input Text is almost exactly the same as Dynamic Text. The only real difference lies in the
fact that data is traveling in the other direction—from the user's computer to a server, rather
than from server to computer. As a result, most of the options available once you select Input
Text from the Text Type drop-down menu in the Property Inspector are exactly the same as
described previously.

There are, however, two additional options:

Password option Beyond the Single Line, Multiline, and Multiline No Wrap options in the
Line Type drop-down menu, you have a fourth option: Password. Use the Password option to
display the onscreen text as asterisks to maintain password security.

 Note Selecting the Password option only affects the display of the text entered by the user. To
make the password work, you are going to have to use ActionScript to pass the
information to a server-side application. For more information about integrating
database-driven applications and Flash, see Chapter 17.

Maximum Characters field Entering a numerical value into the Maximum Characters field
limits the number of characters that a user can enter into a given text field.

Breaking Apart Text
As you've probably noticed, when you create text, it's inserted onto the Stage as a block.
Whether a letter, a word, or an entire Shakespearean soliloquy, you can't independently
manipulate (scale, skew, move, and so on) one portion of the text block.

 Note You need to be aware of two problems when you break apart text and turn it into shapes.
First, broken-apart text increases your Flash creation's file size considerably. Second,
once text is broken apart, you can no longer edit it as you would other text.

Although this is especially irksome, there is a rather easy way around the problem.
Essentially, you break the text block down into its parts—let's take a look at how:

1. Select a text block with the Arrow tool.
2. Go to Modify → Break Apart.

3. The result will be that the text block will be broken into its individual characters, each
of which can be edited, moved, and manipulated independently of the others (see
Figure 5.5).

Figure 5.5: The same block of text as it appears normally (left) and as it appears after
it has been broken apart (right)

 Note Breaking text apart is especially handy if you want to animate individual characters of a
larger text block.

Manipulating Text Shape
One of the really neat things you can do with Flash is manipulate the shape of the individual
characters of a given font. If you don't like how the G looks in Arial, you can change it to look
exactly how you want. The process involves taking the text and breaking it apart several
times—to accomplish this, follow these steps:

1. Make sure the Stage has some already created text.
2. Select the text box with the Arrow tool.
3. Go to Modify → Break Apart. At this point, the text should break down into multiple

groups—each of which is composed of one character.
4. Again, go to Modify → Break Apart.
5. Deselect the shape by clicking anywhere else on the Stage or by going to Edit →

Deselect All.
6. By doing this, you convert the text into a shape like any other. From here, you can use

the Arrow tool to manipulate the shape of the character(s).

 Note One of the coolest things about text that has been broken apart is that you can use the
Ink Bottle to add an outline around the individual characters.

 Note When you use the Break Apart command, you can really only affect TrueType fonts.
Bitmap fonts disappear when you break them apart. PostScript fonts can be broken apart
only on Mac systems running ATM.

Creating a Font Symbol
If you are planning on creating and using a Shared Library (discussed in Chapter 7), you
would do well to become familiar with Font symbols. Essentially, a Font symbol allows you
to stick any font into a Shared Library-which sits on a server somewhere. From there, any
number of Flash movies can link to the Shared Library and use the font without it having to
be embedded in their files, thereby reducing their overall sizes.

To create a Font symbol, follow these steps:

1. Open the movie that you want to house the Shared Library.
2. If it isn't already, open the Library by going to Window → Library.
3. Choose New Font from the Library Options menu.
4. When the Font Symbol Properties dialog box pops up, enter the name for the font that

will appear in the Library into the Name field.

 Note The name you give isn't the official name of the font itself, just an identifier you
assign for your own purposes.

5. Select the actual font from the Font drop-down menu.
6. Select whether you want the Font symbol to be either bold or italic.
7. When you are finished, click OK.

 Note For more information on Shared Libraries, see Chapter 7.

Inspirational Design Model
There is little doubt that sound digital typography gives a well-designed site that extra
creative punch. Let's face it, folks: Type is power! Because of its foundation in vector
technology, Flash gives you the opportunity to leverage typographic power. No site illustrates
this more than typographic (www.typographic.com). Designed by Jimmy Chen, an astounding
visual designer who lives in Los Angeles, typographic takes web design beyond the realm of
the commercial, the corporate, and the everyday into something far more potent (see Figure
5.6). Every square centimeter is packed with beautiful digital typographic design. The visual
subtleties of typographic are quite stunning and create a visual space that easily holds your
attention for long periods of time.

Figure 5.6: Jimmy Chen's typographic

Summary
In this chapter, you received a tour of Flash's text-oriented tools. You started off with a short
but vital look at the nature of text, type, and fonts. You continued by exploring the limitations
that might be encountered when you are working with text in Flash. If you are planning to
create an especially text-heavy site (or are just want to make absolutely sure your text appears
exactly as you want it), understanding these limitations is particularly important. You then
moved on to look at how you use the Text tool to create text, including the nature of text
boxes. You then got into the meat of manipulating all aspects of text with a look at the
Property Inspector. The chapter finished off with a short exploration of how you can reshape
individual characters by breaking apart text.

Chapter 6: Working with Objects
Overview
In the previous chapters, you learned how to create various elements in Flash. Whether
shapes, text, or color, you've spent a fair amount of time wading into the process of visual
creation. To a certain degree, you've also learned how to manipulate the elements you've
created.

The success of your Flash creation depends, at least partly, on your ability to exert complete
control over the way in which your objects look. So, what exactly is an object? Well, simply
put, an object is another word for anything visual you either create or import in Flash. This
means that, for example, blocks of text, imported bitmaps, and shapes drawn in Flash are all
referred to as objects.

The great thing about working with objects is that Flash offers a whole host of tools with
which to manipulate and modify them. Whether you want to modify their shape, move them
about the Stage, or group them with other objects, this chapter explores all the ways in which
you can exert control over the look of the objects in your Flash creation.

Understanding Objects
Objects are the heart and soul of Flash. Anything you draw, paint, or import onto the Stage is
considered an object. So, an object can range from an imported JPEG of your dog Zippy to an
illustration of the solar system you created with the painting and drawing tools (and
everything in between).

In the following sections, you're going to explore the plethora of tools and procedures that let
you manipulate the appearance of individual objects.

 Note The term object is also used in ActionScripts. However, don't be fooled; an ActionScript
object and the kind of object discussed in this chapter are totally different. For more
information on ActionScript objects, see Chapter 14.

Working with External Bitmaps
Although Flash is designed to work primarily with vector-based art, it also handles bitmaps
relatively well. The program boasts a virtual plethora of tools designed to import and
manipulate bitmaps. Beyond getting acquainted with these tools, however, it's vitally
important to understand the nature of bitmaps and how Flash deals with them. In Chapter 3,
you learned how to use bitmaps as fill. Now you're going to learn how bitmaps integrate into
the greater pantheon of Flash objects.

Bitmaps, which are also sometimes called raster graphics, are images composed of individual
pixels that have a fixed size and take up a set amount of computer memory. The quality of a
bitmap image is determined by its resolution. For the most part, resolution is expressed as dots
per inch (dpi). A bitmap with a higher resolution (say, 300dpi) will be better quality than one
with a lower resolution (say, 72dpi).

One of the other characteristics of a bitmap image is that it is resolution dependent. When the
resolution and size is set, its quality is fixed. As a result, changing a bitmap's dimensions can
drastically affect its quality. One of the most obvious manifestations of this quality change is
something called jaggies. If you take a bitmap image and enlarge it, you'll be able to see its
individual pixels. The edges of the image will have a jaggy appearance because the number of
pixels per inch cannot change. A similar vector image, on the other hand, would simply
recalculate the mathematical equations that define its shape and preserve a smooth edge at any
size. Figure 6.1 illustrates bitmap jaggies and the lack thereof in vector images.

Figure 6.1: The individual pixels of the bitmap (on the left) are visible, and the edge of the
vector image (on the right) is smooth.

All of these characteristics make bitmaps larger and more memory intensive than vectors. As
a result, it behooves you to use vector-based art as much as possible when orchestrating your
Flash creation. However, sometimes bitmaps have a distinct advantage over vectors. Although
vectors are smaller in file size, they are generally unable to efficiently display complex
photorealistic images or images with continuous color tones.

As everything you create in Flash with the painting and drawing tools is vector-based, Flash
doesn't have the ability to actually create bitmaps. However, Flash can easily import many
different types of bitmap files. After imported, they can then be manipulated to minimize the
amount of memory they'll consume in your Flash creation.

Importing Bitmaps

You can import bitmaps into Flash in two ways: by using the Import command or by simply
pasting an image onto the Stage.

 Note Flash can import the following raster/bitmap files: Windows Bitmaps (BMP/DIB), GIF
(GIF), JPEG (JPG/JPEG), PNG (PNG), and PICT (PCT/PIC). Flash can import the
following bitmap/raster files only if you've got QuickTime 4 or above installed:
MacPaint (PNTG), QuickTime Image (QTIF), Photoshop (PSD), Silicon Graphics
Images (.SGI), TGA (TGA), and TIFF (TIF).

 On the CD-ROM A copy of QuickTime 5 has been included on this book's CD-ROM.

To import a bitmap:

1. Go to File → Import or use the shortcut Cmd/Ctrl+R.
2. When the Import dialog box opens, navigate the file you want to import, select it, and

click on the Open button.

 Note Use the Files of Type drop-down mwnu at the bottom of the Import dialog box
to choose the exact file type you are trying to import.

3. When the bitmap is imported into Flash, it is automatically placed both on the Stage
and in the Library (as a symbol).

 Note If you want your imported bitmap to be placed only in the Library, and not on

the Stage, select File → Import to Library.

Importing a TIFF file requires QuickTime. If you have QuickTime on your system, and you
are trying to import a file called image.tiff, for example, you will get a rather odd prompt:
"Flash doesn't recognize the file format of image.tiff. Would you like to try importing via
QuickTime?" The prompt isn't much to worry about. If you select Yes, your imported image
won't be adversely affected. On the other hand, if you do not have QuickTime on your
system, you will get the message: "One or more files were not imported because there were
problems reading them."

 Note Although Flash will import a PNG created in any program, if you're importing a
Fireworks PNG, you get the Fireworks PNG Import Settings dialog box. From here, you
can set a series of options, including whether you want the various layer in your image
to be flattened into a single layer.

To copy a bitmap from another application:

1. Copy the intended bitmap from the other application by going to Edit → Copy or
using the shortcut Cmd/Ctrl+C.

2. Return to Flash, and paste the bitmap onto the Stage by going to Edit → Paste or using
the shortcut Cmd/Ctrl+V.

Tracing Bitmaps

The Trace Bitmap command lets you take a bitmap and convert it into a native Flash vector
file format with discreet areas of color. This is a definite advantage if you want to manipulate
the bitmap image as you would a vector image. Under most circumstances, tracing a bitmap
and turning it into a vector image also decreases its file size.

 Note When you trace a bitmap, the link between the image and the symbol in the Library is
severed. If you want to place the traced bitmap back into the Library, simply convert it
to a symbol-a process discussed thoroughly in Chapter 7.

Don't get too excited, however, because when you trace a bitmap, the results are not
necessarily what you would expect. It is nearly impossible to convert an image into a vector
so that it looks that same as it did when it was a bitmap. This having been said, let's explore
how you go about tracing an image:

1. With the Arrow tool, select a bitmap image on the Stage.

2. Go to Modify → Trace Bitmap to open the Trace Bitmap dialog box.

From here, you can set the various Trace Bitmap properties:

Color Threshold Determines the number of colors in the bitmap after it has been
traced and turned into a vector image. When you trace a bitmap, the colors of adjacent
pixels in the bitmap are compared. If the difference between the RGB color values of
the adjacent pixels is lower than that entered in the Color Threshold field (which can
be a number from 1 to 500) , then the adjacent pixels' colors are considered the same.
By doing this, the process averages out the colors in the bitmap. The higher the color
threshold, the fewer colors will be in the traced bitmap. On the other hand, if you enter
a lower value into the Color Threshold field, the traced image will have more colors.
Figure 6.2 illustrates the results of different Color Threshold values.

Figure 6.2: The image on the left is the original bitmap image. The other three images
have a Color Threshold value of 25, 50, and 75, respectively.

• Minimum Area Sets the radius (from 1 to 1,000) at which the Color Threshold
compares adjacent pixels. A higher Minimum Area means that more pixels will be
compared. Alternatively, a lower Minimum Area means that less adjacent pixels will
be compared.

• Curve Fit Determines how the outlines of the traced bitmap are drawn. Options
include Pixels, Very Tight, Tight, Normal, Smooth, and Very Smooth. If your image
has many curves that you want to maintain, select Tight or Very Tight. On the other
hand, if you aren't that worried about preserving the curves in your image, select
Smooth or Very Smooth from the Curve Fit drop-down menu.

• Corner Threshold Determines how the tracing process deals with corners in your
bitmap image. Choosing Many Corners from the drop-down menu preserves the
corners in the image, and choosing Few Corners smoothes them out.

Setting Bitmap Properties

Each bitmap you import into Flash has a series of properties you can manipulate.

 Note When you set bitmap properties, you have to work with the Library. Don't worry too
much about the intricacies of the Library yet because it will be covered in detail in
Chapter 7.

To manipulate a bitmap, follow these steps:

1. Open the Library by going to Window → Library or use the shortcut F11.
2. To open the Bitmap Properties dialog box, select the bitmap in the Library, and do one

of the following:
o Click the Properties icon, which is the third icon from the left at the bottom of

the Library (the small blue circle with an i in it).
o Ctrl+click (Mac) or right-click (Windows) and choose Properties from the

context menu.

o Choose Properties from the Library's Options drop-down menu.
3. When open, the Bitmap Properties dialog box has several options:

• Preview window Gives you a preview of the selected bitmap. If the bitmap itself is
larger than the preview window, a hand icon (which appears when you move your
cursor over the preview window) lets you pan the image.

• Name field Displays the name of the bitmap and lets you change it if you want.

 Note When you change the name of the bitmap in the Bitmap Properties dialog box,
you aren't actually changing the filename, just the name given to the bitmap in
the Library.

• Path, Date, and Dimensions areas Display the bitmap's path, date of creation, and
dimensions.

• Allow Smoothing option Instructs Flash to dither (or smooth) the image when
checked.

• Compression drop-down menu Gives you two choices:
o By choosing Photo (JPEG), you compress the image in JPEG format. To use

the image's default compression quality, click the Use Document Default
Quality check box. To choose a new quality compression setting, deselect Use
Document Default Quality and enter a value between 1 and 100 in the Quality
field. A higher value preserves greater image quality but results in a larger file
size.

o By choosing Lossless (GIF/PNG), you maintains the image "as is" by not
discarding any of its data. Although Lossless compression maintains image
quality, it results in a far larger image size.

• Use Document Default Quality option Ensures that the image maintains its original
quality. (This option is only available if you haven't clicked the Test button.)

• Test button Allows you to check the file's compression. The results, which include
the file sizes of the original and the compressed images, are displayed at the bottom of
the Bitmap Properties dialog box.

• Update button Checks to see if any changes have been made to the original file. If
there have been changes, the imported file will update to reflect the changes to its
parent.

Once you've set the bitmap's properties, click OK.

Editing Bitmaps

Flash gives you the ability to launch an external image-editing program. From here, you can
make any changes you want to a given bitmap and then have Flash reflect the changes.

 Note If you are editing a Fireworks PNG file that's been imported as a flattened image (by
choosing the Flatten Image option from the Fireworks PNG Import Settings dialog box),
you can choose to edit the PNG source file for the bitmap. If you've imported a PNG as
an editable object, you won't be able to edit it with an alternate image-editing program.

To edit a PNG with Macromedia Fireworks 3 or later:

 Note If you don't have a version of Macromedia Fireworks installed, you won't have access to
the Edit with Fireworks option.

1. Open the Library by going to Window → Library or use the shortcut F11.
2. Ctrl+click (Mac) or right-click (Windows) and choose Edit with Fireworks 4 from the

context menu.
3. When the Edit Image dialog box appears, specify whether the PNG source file or the

bitmap file is to be opened.
4. When Fireworks opens, make the desired changes to the file.
5. When finished, choose Select → Update, and Fireworks automatically updates the file.

If you are using Fireworks 4 or later, simply click on the Done button in the upper-left
corner of the Document window, and the file will automatically be updated in Flash.

If you want to edit a bitmap with an image-editing program other than Fireworks:

1. Open the Library by going to Window → Library or use the shortcut F11.
2. Ctrl+click (Mac) or right-click (Windows) and choose Edit With.
3. When the Select External Editor dialog box appears, navigate to the program file of

the external editor you want to use, and select it.
4. After the external editor opens, make the desired changes to the image and save it.
5. To automatically update the file in Flash, do one of the following:

o Select the bitmap's icon in the Library and choose Update from the Library
Options menu.

o Ctrl+click (Mac) or right-click (Windows) the bitmap in the Library and select
Update from the context menu.

Grouping and Ungrouping Objects
When you combine multiple objects as one unit, it's called grouping. The process itself is
useful for a number of reasons. Say you wanted to create a flower to use in your Flash movie.
You can get a lot more visual detail and control over the way the flower looks if you draw the
individual parts separately. So, you could draw the petals, the stem, the leaves, and then
combine them on the Stage exactly how you want. However, what happens when you want to
move the whole flower? Well, you could select each of the elements and then move them with
the Arrow tool. However, what if you accidentally forgot to include a vital part of the flower
(say, the stem) in the selection? When you moved the flower, the stem would stay behind,
putting your beautiful creation out of whack.

Don't laugh; this kind of thing happens all the time to even the most accomplished Flashers.
How could you avoid this potentially calamitous situation? This is where grouping comes in.
When you group a series of objects, they are treated as one unit. So, in our silly flower
example, if you had grouped all the elements, you'd be able to move them all as one unit,
leaving no part behind.

 Note As discussed in Chapter 4, you can also group the stroke and fill of a given object to
avoid moving one independently of the other.

To group objects, follow these steps:

1. With the Arrow tool, select any objects on the Stage you want to include in the group.
Remember, you can select anything on the Stage: text, shapes, bitmaps, and so on.

 Note To select multiple objects, hold down the Shift key and click any items you want
included in the selection.

2. With the various objects selected, select Modify → Group or use the shortcut
Cmd/Ctrl+G. Figure 6.3 illustrates a series of grouped objects.

Figure 6.3: On the top is a series of ungrouped objects. On the bottom, the same
objects have been grouped. Notice the line that surrounds the entire group as if they
are one object.

 Note The Property Inspector will identify an object (or objects) as being grouped.

Ungrouping objects is just as easy as grouping them:

1. Select the grouped objects with the Arrow tool.
2. Go to Modify → Ungroup or use the shortcut Cmd/Ctrl+Shift+G.

One of the great things about the way Flash deals with grouped objects is that you can edit
individual elements (for instance, the petals in our flower example) without having to ungroup
them. This is quite helpful if you've created a particularly detailed image with which you don't
want to go through the entire grouping process again. Let's take a look at how:

1. Select a group with the Arrow tool.
2. Go to Edit → Edit Selected. Alternatively, you can also simply double-click on an

object in an already selected group. Notice that everything else on the Stage that isn't
part of the group changes color slightly; this signals their temporary inaccessibility.
Also, notice that the Scene and Symbol Bar, which is located along the top of the
Stage, indicates you are currently editing the group (usually represented by the default
name of Group).

3. From here make any changes you want to any of the objects within the group.
4. When finished, simply go to Edit → Edit All, double-click anywhere outside the group

with the Arrow tool, or click the scene name in the Scene and Symbol bar.

Moving Objects
When it comes to working with objects, you'll need to move them around the Stage. You can
move objects in four ways: with the Arrow tool, with the arrow keys, through the Property
Inspector, or with the Info panel.

To move an object with the Arrow tool, just follow these steps:

1. Select an object. To select a series of objects, hold down the Shift key and click.
2. With the Arrow tool, click and drag the object (or series of objects) to the desired

position on the Stage. If you want to constrain its movement vertically or horizontally,
hold down the Shift key while moving the object(s).

 Note If you hold down the Option/Alt key while dragging, Flash creates a copy of the
object(s) and moves it instead of the original.

To move an object with the arrow keys on your keyboard:

1. Select an object, or group of objects, you want to move.
2. Use the arrow keys on your keyboard to move the selected object 1 pixel at a time in

any direction. If you want to move the selected object 8 pixels at a time, hold down
your Shift key while using the arrow keys.

To move an object, or objects, with the Property Inspector or the Info panel, follow these
steps:

1. Open the Property Inspector by going to Window → Properties or open the Info panel
by going to Window → Info.

2. Select the object or objects you want to move. Notice that there is an X field and a Y
field in the lower-left corner of the Property Inspector or at the right side of the Info
panel. These represent the vertical (Y) and horizontal (X) coordinates of the currently
selected object. The X/Y coordinate system is relative to the upper-left corner of the
Stage-the location of which is 0/0.

3. Type a value into each of the fields to change the position of the selected object.

 Note The units used in the Info panel's X/Y coordinate system are determined by what you
specified in the Ruler Units you set in the Document Properties dialog box. To change
them, just go to Modify → Document (or use the shortcut Cmd/Ctrl+J) and choose an
alternate one from the Ruler Units drop-down menu.

Manipulating Objects with the Align Panel

The Align panel, which is accessible by selecting Window → Align (or by using the shortcut
Cmd/Ctrl+K), is a handy tool that lets you do all manner of interesting things. Figure 6.4
illustrates the Align panel and all of its options.

Figure 6.4: The Align panel has four sets of buttons: Align, Distribute, Match Size, and
Space.

Beyond aligning objects on the Stage, the Align panel also lets you distribute, match size, and
space objects. In the following section you'll look at each of these options separately.

 Note If you want to align objects to the Stage (opposed to other objects), click the
Align/Distribute to Stage button in the right portion of the Align panel.

Aligning Objects

The top section of the Align panel contains a series of buttons that lets you align selected
objects horizontally or vertically. From left to right, the buttons let you align objects by their
left edges, horizontally by their center points, and by their right edges. The second set of
buttons, from left to right, lets you align objects by their top edges, vertically by their center
points, and by their bottom edges.

 Note Flash aligns objects according to their bounding boxes, not any feature of the object
itself.

To align a series of objects, follow these steps:

1. With the Align panel open, select the objects you want to align. Remember, you can
select multiple objects by clicking and dragging with the Arrow tool and surrounding

them with the bounding box or selecting them individually with the Arrow tool
(remember to hold down the Shift key to select multiple objects).

2. Select one of the alignment options from the Align panel. Figure 6.5 illustrates the
effects that the various alignment options have on images.

Figure 6.5: The first row is an illustration of three unaligned images. The bottom row
illustrates the three same images that have been aligned horizontally to the top edge.

 Note When aligning to the left, Flash uses the left edge of the leftmost object in the selection
for the alignment. The same applies when you are aligning to the top, to the bottom, or
to the right-Flash uses the edge of the topmost, bottommost, or rightmost object for the
alignment.

Distributing Objects

Beyond alignment, the Align panel gives you the ability to distribute selected objects. This
comes in handy if you want to evenly space three or more selected objects. From left to right,
the buttons in the Distribute section of the Align panel let you distribute objects to their top
edges, to their center points vertically, and to their bottom edges. The second set of the
distribute buttons, from left to right, let you distribute objects to their left edge, to their center
point horizontally, and to their right edge.

To distribute a series of objects, follow these directions:

1. Select a series of objects (distributing less than two won't have any visible effect, so
remember to select three or more).

2. Click on one of the distribute buttons in the Align panel. Figure 6.6 provides an
example of the Distribute option's effects.

Figure 6.6: The left row of images is undistributed. The right row, however, contains
the same images after they've been distributed vertically to their center points.

Matching Object Size

When you use the Match Size buttons in the Align panel, you can resize a series of selected
objects so that their horizontal or vertical dimensions match those of the largest in the
selection. From left to right, the Match Size buttons in the Align panel let you match two
objects' width, height, or width and height.

To match object size, follow these steps:

1. Select two or more objects on the Stage.
2. Click on one of the Match Size buttons in the Align panel. Figure 6.7 illustrates the

Match Size option's effects.

Figure 6.7: The top two images are unaltered. The bottom two are examples of the
same images after their heights have been matched. As the one on the left was the
larger of the two, it has remained unchanged. The right image, however, has been
stretched.

Spacing Objects

The Space buttons in the Align panel allows you to space selected objects vertically or
horizontally. So, what exactly is the difference between the Space options and the Distribute

options? Although you won't see much difference between two similarly sized images if they
were either spaced or distributed, the difference is obvious when you're working with
differently sized images.

When you use the Space Evenly Horizontally or the Space Evenly Vertically buttons, you are
guaranteed that there will be a fixed number of pixels between each image. When you
distribute images of varied sizes, you'll find that the larger the image is, the less space there
will be between it and the next one. This is primarily because the Distribute options use a
central reference point to arrange the images. As a result, you might want to use the Space
option in the Align panel instead.

To space objects, follow these steps:

1. Select two or more objects on the Stage.
2. Click on one of the Space buttons in the Align panel. In Figure 6.8, you'll see an

example of the Space Evenly Horizontally option.

Figure 6.8: The top three images are unaltered. The bottom three images, however,
show what happens when you use the Space Evenly Horizontally option in the Align
panel.

Arranging Objects
Although you can use layers (something we'll talk about in depth in Chapter 8) to position
objects in your Flash creation horizontally, you can also stack them within a single layer using
the Arrange command. The result of both methods is that some objects appear to be either
behind or in front of other objects.

So, what exactly is the difference between using layers to stack items and using the Arrange
command? Well, as you'll come to learn in Chapter 8, layers provide you a great deal more
control over the Z organization of your movie. However, in cases where all the elements in
your movie exist within a single layer, the Arrange command is your best bet for
manipulating the stacking order of your objects.

The Arrange commands, which are accessible by selecting Modify → Arrange, allow you to
change the position of any selected object in the stack, thereby moving them in front of or
behind other objects. The commands in the Arrange menu are pretty straightforward; let's take
a look at each:

Bring to Front Moves the selected object to the absolute top/front of the stack in the
currently selected layer.

Bring Forward Moves the currently selected object one increment forward/up in the stack of
the currently selected layer.

Send Backward Moves the currently selected object backward/downward one increment in
the stack of the currently selected layer.

Send to Back Moves the currently selected object to the absolute bottom/back of the stack of
the currently selected layer.

Lock Locks the position of all the objects in the stack of a given layer.

Unlock All Unlocks the stack of the currently selected layer.

Transforming Objects
 New to MX In previous versions of Flash, the tools with which you could manipulate an
object's shape, size, and orientation were all accessible in the Options section of the Toolbox
when the Arrow tool was selected. However, in Flash MX, Macromedia has introduced a
discreet tool, called the Free Transform tool, with which you can manipulate all aspects of a
given object.

Located in the Tools section of the Toolbox, the Free Transform tool has a series of
modifiers that let you transform a selected object. These modifiers are accessible in the
Options section of the Toolbox when the Free Transform tool is selected.

Although you can specify the action you want to take on an object by selecting a specific
transform modifier, the Free Transform tool also lets you manipulate an object without
selecting one of the options. All you need to do is select the Free Transform tool, click the
object you want to manipulate, and then move your cursor over any of the handles on the
object's bounding box. Depending on the transform you can perform on that specific handle,
your cursor will change accordingly.

 Note The following sections will discuss the use of the Free Transform tool in conjunction
with its various modifier options.

Never content to provide you with only one way to perform an action, Flash MX also allows
you to do many of the same types of transformations with the Transform panel (which is
accessible by going to Window → Transform).

In the following sections, you'll explore how to scale, rotate, flip, skew, distort, and edit the
envelope of a selected object. You'll also learn how to restore a transformed object.

Scaling an Object

By scaling an object, you change its size (either horizontally, vertically, or uniformly). You
can scale an object either with the Free Transform tool or the Transform panel.

To scale an object with the Free Transform tool, follow these steps:

1. Select the desired object with the Arrow tool, then choose the Free Transform tool
from the Toolbox. Alternatively, click the desired object with the Free Transform tool
to select it.

2. From here, you'll notice that a bounding box with handles appears around the selected
object.

3. Select the Scale button in the Toolbox's Options section (accessible when you've
selected the Free Transform tool). Alternatively, you can select Modify → Transform
→ Scale.

 Note Remember, because of the nature of the Free Transform tool, you can bypass
step 3 if you want and go straight on to step 4.

4.

5.
6. To scale horizontally, click on one of the transform handles on the left or right of the

bounding box and drag until the object is the desired size.
7. To scale vertically, click on one of the transform handle on the top or the bottom of

the bounding box and drag until the object is the desired size.
8. To scale vertically and horizontally at the same time, click on one of the corner

transform handles and drag until the object is the desired size. By doing this, you'll
also maintain the object's proportions.

9. When you've finished, click anywhere off the object to hide the transform handles.

You can also scale an object with the Transform panel:

1. Select the object you want to scale.
2. Choose Window → Transform to open the Transform panel.
3. To scale the object horizontally, enter a value (in percent) into the Width field.
4. To scale the object vertically, enter a value (in percent) into the Height field.
5. To scale the object both horizontally and vertically, click on the Constrain button and

then enter a value (in percent) into either the Width or Height field.

 Note The value you enter into the Width or Height field can range from 1 to 1000.

6. When you've finished, click anywhere off the object to hide the transform handles.

Rotating an Object

When you rotate an object, it turns around its registration point. Don't worry too much about
registration points yet because they're covered in the "Working with Transformation Points"
section. For the time being, just recognize that they are a central point that acts as a pivot for
rotation.

As with many of the transformation operations, you can rotate an object with the Free
Transform tool or the Transform panel. To rotate an object with the Free Transform tool,
follow these steps:

1. Select the desired object with the Arrow tool, then choose the Free Transform tool
from the Toolbox. Alternatively, click the desired object with the Free Transform tool
to select it.

2. From here, you'll notice that a bounding box with handles appears around the selected
object.

3. Select the Rotate and Skew button in the Toolbox's Options section (accessible
when you've selected the Free Transform tool). Alternatively, you can go to Modify →
Transform → Rotate and Skew.

 Note Remember, because of the nature of the Free Transform tool, you can bypass
step 3 if you want and go straight on to step 4.

4. Move your cursor over one of the corner handles. Notice how your cursor changes to
an icon with arrows that form a circle.

5. From here, click and drag in a circular motion to rotate your object.
6. When you are finished, click anywhere off the object to hide the transform handles.

To rotate an object with the Transform panel, follow these steps:

1. Select the object you want to rotate.
2. Go to Window → Transform to open the Transform panel.
3. Click on the Rotate radio button.
4. Enter a value (in degrees) into the Rotate field.
5. Click Return/Enter to apply the rotation to the selected object.

 Note You can also rotate a selected object 90° clockwise or counterclockwise by going to
Modify → Transform → Rotate 90° CW or Rotate 90° CCW.

Flipping an Object

Flash lets you flip a selected object horizontally or vertically without changing its relative
position on the Stage.

1. Use the Arrow tool to select the object you want to flip.
2. Select Modify → Transform → Flip Horizontal or Flip Vertical. Figure 6.9 illustrates

the effects of the Flip Horizontal and Flip Vertical commands.

Figure 6.9: Three copies of the same image. The one on the top shows the original
position. The middle illustrates the image after it has been flipped horizontally. The
one on the bottom illustrates the same image after it has been flipped vertically.

Skewing an Object

Skewing slants an object along its vertical or horizontal axis. As with many of the operations
discussed in this chapter, you can slant an object in two ways.

To slant an object with the Free Transform tool:

1. Select the desired object with the Arrow tool, then choose the Free Transform tool

from the Toolbox. Alternatively, click the desired object with the Free Transform
tool to select it.

2. Click on the Rotate and Skew button in the Toolbox's Options section (when you
have the Free Transform tool selected).

 Note Remember, because of the Free Tranform tool, you can bypass step 2 if you
want and go straight on to step 4

3. When the handles appear, move your cursor over one of handles in the middle of the
side of the bounding box. Notice how your cursor changes to be to opposite pointing
arrows oriented vertically or horizontally (depending on which handles you moved
your cursor over)

4. Click and drag horizontally or vertically (depending on which handles you are
manipulating).

5. To finish, click anywhere off the object to hide the transform handles.

To skew an object with the Transform panel, follow these steps:

1. Select the object you want to skew.
2. Go to Window → Transform to open the Transform panel.
3. Click on the Skew radio button.
4. To skew the object vertically, enter a value (in degrees) into the Skew Vertically field.
5. To skew an object horizontally, enter a value (in degrees) into the Skew Horizontally

field.
6. When you are finished, press Return/Enter.

Distorting an Object

 New to MX When you apply a distort transformation, you can change the position of either
the corner or side handles of an object's bounding box. This process not only changes the
position of the selected handles (and therefore the shape of the object itself), but it also
changes its adjoining edges.

 Note It's worth noting that while the Distort transformation won't work on a group (Modify →
Group), but it works just fine on a group of individually selected objects.

If you hold down the Shift key while applying a distort transformation, the object will be
tapered.

Unlike the previous transformations discussed, you can only distort an object using the Free
Transform tool. Here's how:

1. Select the object you want to distort with the Arrow tool.

2. Select the Free Transform tool .

3. Click on the Distort button in the Toolbox's Options section (when you have the
Free Transform tool selected). Alternatively, you can also go to Modify → Transform
→ Distort.

4. When the bounding box appears, move your cursor over any of the handles. Notice
how your cursor changes to a larger white pointer.

5. Click and drag the handle. When you've reached the location on the Stage where you
would like the handle to be moved, simply release your mouse button. Your object
will distort accordingly.

Manipulating an Object's Envelope

 New to MX An envelope is the bounding box that surrounds one or more ungrouped
objects. With the Edit Envelope transform, you can effectively manipulate this envelope and
thereby warp an object with a fair amount of precision.

 Note The Edit Envelope transformation does not work on grouped objects, symbols, bitmaps,
gradients, or text.

To manipulate an object's envelope, follow these steps:

1. Select the object (or objects) whose envelope you want to edit with the Arrow tool.

 Note Although the Edit Envelope transformation won't work on a group (Modify →
Group), but it works just fine on a group of individually selected objects.

2. Select the Free Transform tool .

3. Click on the Envelope button in the Toolbox's Options section (when you have the
Free Transform tool selected). Alternatively, you can also go to Modify → Transform
→ Envelope.

 Note Remember, if the object is grouped, you won't have access to the Distort button.

4. When the bounding box appears, move your cursor over any of the handles. Notice
how your cursor changes to a larger white pointer.

 Note You'll note that there are two types of handles: square and circular. The square
handles are the points along the object's bounding box that you can directly
manipulate, and the circular handles are tangent handles.

5. Click and drag the handle. When you've reached the location on the Stage where you
would like the handle to be moved, simply release your mouse button. Your object
will warp accordingly.

6. Notice that when you click and drag one of the envelope handles, tangent handles will
appear. Much like in the case of path created with the Pen tool, you can manipulate the
tangents (by clicking and dragging the handle at the end of the tangent) to further warp
the object's envelope.

7. When you've finished distorting the object's envelope, just deselect it by clicking
anywhere else on the Stage.

Restoring Transformed Objects

As you can see, you can apply a number of transformations to any given object. It would be
quite easy to go wild and transform an object beyond all hope of returning it to its previous
state. You'd be surprised how far away an object can wander from its initial appearance,
leaving you totally stumped as to how it originally looked. But there is an easy way to restore
objects to their pre-transformed state:

1. Select the object you want to restore.
2. Go to Modify → Transform → Remove Transform. Alternatively, you can click on

the Reset button in the bottom-right corner of the Transform panel.

Grouping and Ungrouping Objects
When you combine multiple objects as one unit, it's called grouping. The process itself is
useful for a number of reasons. Say you wanted to create a flower to use in your Flash movie.
You can get a lot more visual detail and control over the way the flower looks if you draw the
individual parts separately. So, you could draw the petals, the stem, the leaves, and then
combine them on the Stage exactly how you want. However, what happens when you want to
move the whole flower? Well, you could select each of the elements and then move them with
the Arrow tool. However, what if you accidentally forgot to include a vital part of the flower
(say, the stem) in the selection? When you moved the flower, the stem would stay behind,
putting your beautiful creation out of whack.

Don't laugh; this kind of thing happens all the time to even the most accomplished Flashers.
How could you avoid this potentially calamitous situation? This is where grouping comes in.
When you group a series of objects, they are treated as one unit. So, in our silly flower
example, if you had grouped all the elements, you'd be able to move them all as one unit,
leaving no part behind.

 Note As discussed in Chapter 4, you can also group the stroke and fill of a given object to
avoid moving one independently of the other.

To group objects, follow these steps:

1. With the Arrow tool, select any objects on the Stage you want to include in the group.
Remember, you can select anything on the Stage: text, shapes, bitmaps, and so on.

 Note To select multiple objects, hold down the Shift key and click any items you want
included in the selection.

2. With the various objects selected, select Modify → Group or use the shortcut
Cmd/Ctrl+G. Figure 6.3 illustrates a series of grouped objects.

Figure 6.3: On the top is a series of ungrouped objects. On the bottom, the same
objects have been grouped. Notice the line that surrounds the entire group as if they
are one object.

 Note The Property Inspector will identify an object (or objects) as being grouped.

Ungrouping objects is just as easy as grouping them:

1. Select the grouped objects with the Arrow tool.
2. Go to Modify → Ungroup or use the shortcut Cmd/Ctrl+Shift+G.

One of the great things about the way Flash deals with grouped objects is that you can edit
individual elements (for instance, the petals in our flower example) without having to ungroup
them. This is quite helpful if you've created a particularly detailed image with which you don't
want to go through the entire grouping process again. Let's take a look at how:

1. Select a group with the Arrow tool.
2. Go to Edit → Edit Selected. Alternatively, you can also simply double-click on an

object in an already selected group. Notice that everything else on the Stage that isn't
part of the group changes color slightly; this signals their temporary inaccessibility.
Also, notice that the Scene and Symbol Bar, which is located along the top of the
Stage, indicates you are currently editing the group (usually represented by the default
name of Group).

3. From here make any changes you want to any of the objects within the group.
4. When finished, simply go to Edit → Edit All, double-click anywhere outside the group

with the Arrow tool, or click the scene name in the Scene and Symbol bar.

Moving Objects
When it comes to working with objects, you'll need to move them around the Stage. You can
move objects in four ways: with the Arrow tool, with the arrow keys, through the Property
Inspector, or with the Info panel.

To move an object with the Arrow tool, just follow these steps:

1. Select an object. To select a series of objects, hold down the Shift key and click.
2. With the Arrow tool, click and drag the object (or series of objects) to the desired

position on the Stage. If you want to constrain its movement vertically or horizontally,
hold down the Shift key while moving the object(s).

 Note If you hold down the Option/Alt key while dragging, Flash creates a copy of the
object(s) and moves it instead of the original.

To move an object with the arrow keys on your keyboard:

1. Select an object, or group of objects, you want to move.
2. Use the arrow keys on your keyboard to move the selected object 1 pixel at a time in

any direction. If you want to move the selected object 8 pixels at a time, hold down
your Shift key while using the arrow keys.

To move an object, or objects, with the Property Inspector or the Info panel, follow these
steps:

1. Open the Property Inspector by going to Window → Properties or open the Info panel
by going to Window → Info.

2. Select the object or objects you want to move. Notice that there is an X field and a Y
field in the lower-left corner of the Property Inspector or at the right side of the Info
panel. These represent the vertical (Y) and horizontal (X) coordinates of the currently
selected object. The X/Y coordinate system is relative to the upper-left corner of the
Stage-the location of which is 0/0.

3. Type a value into each of the fields to change the position of the selected object.

 Note The units used in the Info panel's X/Y coordinate system are determined by what you
specified in the Ruler Units you set in the Document Properties dialog box. To change
them, just go to Modify → Document (or use the shortcut Cmd/Ctrl+J) and choose an
alternate one from the Ruler Units drop-down menu.

Manipulating Objects with the Align Panel

The Align panel, which is accessible by selecting Window → Align (or by using the shortcut
Cmd/Ctrl+K), is a handy tool that lets you do all manner of interesting things. Figure 6.4
illustrates the Align panel and all of its options.

Figure 6.4: The Align panel has four sets of buttons: Align, Distribute, Match Size, and
Space.

Beyond aligning objects on the Stage, the Align panel also lets you distribute, match size, and
space objects. In the following section you'll look at each of these options separately.

 Note If you want to align objects to the Stage (opposed to other objects), click the
Align/Distribute to Stage button in the right portion of the Align panel.

Aligning Objects

The top section of the Align panel contains a series of buttons that lets you align selected
objects horizontally or vertically. From left to right, the buttons let you align objects by their
left edges, horizontally by their center points, and by their right edges. The second set of
buttons, from left to right, lets you align objects by their top edges, vertically by their center
points, and by their bottom edges.

 Note Flash aligns objects according to their bounding boxes, not any feature of the object
itself.

To align a series of objects, follow these steps:

1. With the Align panel open, select the objects you want to align. Remember, you can
select multiple objects by clicking and dragging with the Arrow tool and surrounding

them with the bounding box or selecting them individually with the Arrow tool
(remember to hold down the Shift key to select multiple objects).

2. Select one of the alignment options from the Align panel. Figure 6.5 illustrates the
effects that the various alignment options have on images.

Figure 6.5: The first row is an illustration of three unaligned images. The bottom row
illustrates the three same images that have been aligned horizontally to the top edge.

 Note When aligning to the left, Flash uses the left edge of the leftmost object in the selection
for the alignment. The same applies when you are aligning to the top, to the bottom, or
to the right-Flash uses the edge of the topmost, bottommost, or rightmost object for the
alignment.

Distributing Objects

Beyond alignment, the Align panel gives you the ability to distribute selected objects. This
comes in handy if you want to evenly space three or more selected objects. From left to right,
the buttons in the Distribute section of the Align panel let you distribute objects to their top
edges, to their center points vertically, and to their bottom edges. The second set of the
distribute buttons, from left to right, let you distribute objects to their left edge, to their center
point horizontally, and to their right edge.

To distribute a series of objects, follow these directions:

1. Select a series of objects (distributing less than two won't have any visible effect, so
remember to select three or more).

2. Click on one of the distribute buttons in the Align panel. Figure 6.6 provides an
example of the Distribute option's effects.

Figure 6.6: The left row of images is undistributed. The right row, however, contains
the same images after they've been distributed vertically to their center points.

Matching Object Size

When you use the Match Size buttons in the Align panel, you can resize a series of selected
objects so that their horizontal or vertical dimensions match those of the largest in the
selection. From left to right, the Match Size buttons in the Align panel let you match two
objects' width, height, or width and height.

To match object size, follow these steps:

1. Select two or more objects on the Stage.
2. Click on one of the Match Size buttons in the Align panel. Figure 6.7 illustrates the

Match Size option's effects.

Figure 6.7: The top two images are unaltered. The bottom two are examples of the
same images after their heights have been matched. As the one on the left was the
larger of the two, it has remained unchanged. The right image, however, has been
stretched.

Spacing Objects

The Space buttons in the Align panel allows you to space selected objects vertically or
horizontally. So, what exactly is the difference between the Space options and the Distribute

options? Although you won't see much difference between two similarly sized images if they
were either spaced or distributed, the difference is obvious when you're working with
differently sized images.

When you use the Space Evenly Horizontally or the Space Evenly Vertically buttons, you are
guaranteed that there will be a fixed number of pixels between each image. When you
distribute images of varied sizes, you'll find that the larger the image is, the less space there
will be between it and the next one. This is primarily because the Distribute options use a
central reference point to arrange the images. As a result, you might want to use the Space
option in the Align panel instead.

To space objects, follow these steps:

1. Select two or more objects on the Stage.
2. Click on one of the Space buttons in the Align panel. In Figure 6.8, you'll see an

example of the Space Evenly Horizontally option.

Figure 6.8: The top three images are unaltered. The bottom three images, however,
show what happens when you use the Space Evenly Horizontally option in the Align
panel.

Arranging Objects
Although you can use layers (something we'll talk about in depth in Chapter 8) to position
objects in your Flash creation horizontally, you can also stack them within a single layer using
the Arrange command. The result of both methods is that some objects appear to be either
behind or in front of other objects.

So, what exactly is the difference between using layers to stack items and using the Arrange
command? Well, as you'll come to learn in Chapter 8, layers provide you a great deal more
control over the Z organization of your movie. However, in cases where all the elements in
your movie exist within a single layer, the Arrange command is your best bet for
manipulating the stacking order of your objects.

The Arrange commands, which are accessible by selecting Modify → Arrange, allow you to
change the position of any selected object in the stack, thereby moving them in front of or
behind other objects. The commands in the Arrange menu are pretty straightforward; let's take
a look at each:

Bring to Front Moves the selected object to the absolute top/front of the stack in the
currently selected layer.

Bring Forward Moves the currently selected object one increment forward/up in the stack of
the currently selected layer.

Send Backward Moves the currently selected object backward/downward one increment in
the stack of the currently selected layer.

Send to Back Moves the currently selected object to the absolute bottom/back of the stack of
the currently selected layer.

Lock Locks the position of all the objects in the stack of a given layer.

Unlock All Unlocks the stack of the currently selected layer.

Transforming Objects
 New to MX In previous versions of Flash, the tools with which you could manipulate an
object's shape, size, and orientation were all accessible in the Options section of the Toolbox
when the Arrow tool was selected. However, in Flash MX, Macromedia has introduced a
discreet tool, called the Free Transform tool, with which you can manipulate all aspects of a
given object.

Located in the Tools section of the Toolbox, the Free Transform tool has a series of
modifiers that let you transform a selected object. These modifiers are accessible in the
Options section of the Toolbox when the Free Transform tool is selected.

Although you can specify the action you want to take on an object by selecting a specific
transform modifier, the Free Transform tool also lets you manipulate an object without
selecting one of the options. All you need to do is select the Free Transform tool, click the
object you want to manipulate, and then move your cursor over any of the handles on the
object's bounding box. Depending on the transform you can perform on that specific handle,
your cursor will change accordingly.

 Note The following sections will discuss the use of the Free Transform tool in conjunction
with its various modifier options.

Never content to provide you with only one way to perform an action, Flash MX also allows
you to do many of the same types of transformations with the Transform panel (which is
accessible by going to Window → Transform).

In the following sections, you'll explore how to scale, rotate, flip, skew, distort, and edit the
envelope of a selected object. You'll also learn how to restore a transformed object.

Scaling an Object

By scaling an object, you change its size (either horizontally, vertically, or uniformly). You
can scale an object either with the Free Transform tool or the Transform panel.

To scale an object with the Free Transform tool, follow these steps:

1. Select the desired object with the Arrow tool, then choose the Free Transform tool
from the Toolbox. Alternatively, click the desired object with the Free Transform tool
to select it.

2. From here, you'll notice that a bounding box with handles appears around the selected
object.

3. Select the Scale button in the Toolbox's Options section (accessible when you've
selected the Free Transform tool). Alternatively, you can select Modify → Transform
→ Scale.

 Note Remember, because of the nature of the Free Transform tool, you can bypass
step 3 if you want and go straight on to step 4.

4.

5.
6. To scale horizontally, click on one of the transform handles on the left or right of the

bounding box and drag until the object is the desired size.
7. To scale vertically, click on one of the transform handle on the top or the bottom of

the bounding box and drag until the object is the desired size.
8. To scale vertically and horizontally at the same time, click on one of the corner

transform handles and drag until the object is the desired size. By doing this, you'll
also maintain the object's proportions.

9. When you've finished, click anywhere off the object to hide the transform handles.

You can also scale an object with the Transform panel:

1. Select the object you want to scale.
2. Choose Window → Transform to open the Transform panel.
3. To scale the object horizontally, enter a value (in percent) into the Width field.
4. To scale the object vertically, enter a value (in percent) into the Height field.
5. To scale the object both horizontally and vertically, click on the Constrain button and

then enter a value (in percent) into either the Width or Height field.

 Note The value you enter into the Width or Height field can range from 1 to 1000.

6. When you've finished, click anywhere off the object to hide the transform handles.

Rotating an Object

When you rotate an object, it turns around its registration point. Don't worry too much about
registration points yet because they're covered in the "Working with Transformation Points"
section. For the time being, just recognize that they are a central point that acts as a pivot for
rotation.

As with many of the transformation operations, you can rotate an object with the Free
Transform tool or the Transform panel. To rotate an object with the Free Transform tool,
follow these steps:

1. Select the desired object with the Arrow tool, then choose the Free Transform tool
from the Toolbox. Alternatively, click the desired object with the Free Transform tool
to select it.

2. From here, you'll notice that a bounding box with handles appears around the selected
object.

3. Select the Rotate and Skew button in the Toolbox's Options section (accessible
when you've selected the Free Transform tool). Alternatively, you can go to Modify →
Transform → Rotate and Skew.

 Note Remember, because of the nature of the Free Transform tool, you can bypass
step 3 if you want and go straight on to step 4.

4. Move your cursor over one of the corner handles. Notice how your cursor changes to
an icon with arrows that form a circle.

5. From here, click and drag in a circular motion to rotate your object.
6. When you are finished, click anywhere off the object to hide the transform handles.

To rotate an object with the Transform panel, follow these steps:

1. Select the object you want to rotate.
2. Go to Window → Transform to open the Transform panel.
3. Click on the Rotate radio button.
4. Enter a value (in degrees) into the Rotate field.
5. Click Return/Enter to apply the rotation to the selected object.

 Note You can also rotate a selected object 90° clockwise or counterclockwise by going to
Modify → Transform → Rotate 90° CW or Rotate 90° CCW.

Flipping an Object

Flash lets you flip a selected object horizontally or vertically without changing its relative
position on the Stage.

1. Use the Arrow tool to select the object you want to flip.
2. Select Modify → Transform → Flip Horizontal or Flip Vertical. Figure 6.9 illustrates

the effects of the Flip Horizontal and Flip Vertical commands.

Figure 6.9: Three copies of the same image. The one on the top shows the original
position. The middle illustrates the image after it has been flipped horizontally. The
one on the bottom illustrates the same image after it has been flipped vertically.

Skewing an Object

Skewing slants an object along its vertical or horizontal axis. As with many of the operations
discussed in this chapter, you can slant an object in two ways.

To slant an object with the Free Transform tool:

1. Select the desired object with the Arrow tool, then choose the Free Transform tool

from the Toolbox. Alternatively, click the desired object with the Free Transform
tool to select it.

2. Click on the Rotate and Skew button in the Toolbox's Options section (when you
have the Free Transform tool selected).

 Note Remember, because of the Free Tranform tool, you can bypass step 2 if you
want and go straight on to step 4

3. When the handles appear, move your cursor over one of handles in the middle of the
side of the bounding box. Notice how your cursor changes to be to opposite pointing
arrows oriented vertically or horizontally (depending on which handles you moved
your cursor over)

4. Click and drag horizontally or vertically (depending on which handles you are
manipulating).

5. To finish, click anywhere off the object to hide the transform handles.

To skew an object with the Transform panel, follow these steps:

1. Select the object you want to skew.
2. Go to Window → Transform to open the Transform panel.
3. Click on the Skew radio button.
4. To skew the object vertically, enter a value (in degrees) into the Skew Vertically field.
5. To skew an object horizontally, enter a value (in degrees) into the Skew Horizontally

field.
6. When you are finished, press Return/Enter.

Distorting an Object

 New to MX When you apply a distort transformation, you can change the position of either
the corner or side handles of an object's bounding box. This process not only changes the
position of the selected handles (and therefore the shape of the object itself), but it also
changes its adjoining edges.

 Note It's worth noting that while the Distort transformation won't work on a group (Modify →
Group), but it works just fine on a group of individually selected objects.

If you hold down the Shift key while applying a distort transformation, the object will be
tapered.

Unlike the previous transformations discussed, you can only distort an object using the Free
Transform tool. Here's how:

1. Select the object you want to distort with the Arrow tool.

2. Select the Free Transform tool .

3. Click on the Distort button in the Toolbox's Options section (when you have the
Free Transform tool selected). Alternatively, you can also go to Modify → Transform
→ Distort.

4. When the bounding box appears, move your cursor over any of the handles. Notice
how your cursor changes to a larger white pointer.

5. Click and drag the handle. When you've reached the location on the Stage where you
would like the handle to be moved, simply release your mouse button. Your object
will distort accordingly.

Manipulating an Object's Envelope

 New to MX An envelope is the bounding box that surrounds one or more ungrouped
objects. With the Edit Envelope transform, you can effectively manipulate this envelope and
thereby warp an object with a fair amount of precision.

 Note The Edit Envelope transformation does not work on grouped objects, symbols, bitmaps,
gradients, or text.

To manipulate an object's envelope, follow these steps:

1. Select the object (or objects) whose envelope you want to edit with the Arrow tool.

 Note Although the Edit Envelope transformation won't work on a group (Modify →
Group), but it works just fine on a group of individually selected objects.

2. Select the Free Transform tool .

3. Click on the Envelope button in the Toolbox's Options section (when you have the
Free Transform tool selected). Alternatively, you can also go to Modify → Transform
→ Envelope.

 Note Remember, if the object is grouped, you won't have access to the Distort button.

4. When the bounding box appears, move your cursor over any of the handles. Notice
how your cursor changes to a larger white pointer.

 Note You'll note that there are two types of handles: square and circular. The square
handles are the points along the object's bounding box that you can directly
manipulate, and the circular handles are tangent handles.

5. Click and drag the handle. When you've reached the location on the Stage where you
would like the handle to be moved, simply release your mouse button. Your object
will warp accordingly.

6. Notice that when you click and drag one of the envelope handles, tangent handles will
appear. Much like in the case of path created with the Pen tool, you can manipulate the
tangents (by clicking and dragging the handle at the end of the tangent) to further warp
the object's envelope.

7. When you've finished distorting the object's envelope, just deselect it by clicking
anywhere else on the Stage.

Restoring Transformed Objects

As you can see, you can apply a number of transformations to any given object. It would be
quite easy to go wild and transform an object beyond all hope of returning it to its previous
state. You'd be surprised how far away an object can wander from its initial appearance,
leaving you totally stumped as to how it originally looked. But there is an easy way to restore
objects to their pre-transformed state:

1. Select the object you want to restore.
2. Go to Modify → Transform → Remove Transform. Alternatively, you can click on

the Reset button in the bottom-right corner of the Transform panel.

Working with Transformation Points
 New to MX A registration point is a reference that Flash uses when it carries out all of the
previously mentioned transformations. When you rotate an object, you rotate it around the
registration point. When you align or distribute objects, the registration point acts as a
reference for the procedure.

Unfortunately, you can't directly manipulate an object's registration point. However, you can
change the position of an object's transformation point-which is like a temporary registration
point that appears when an object is being transformed. Ultimately, by moving the position of
the transformation point, you can get better control over the result of any given
transformation. Say, for instance, you want an object to rotate not around its center but instead

around its upper-right corner. Well, all you would need to do is move the object's
transformation point from the center to the desired location in the upper-right corner.

 Note When you move an object's transformation point, its new location is merely temporary.
As soon as you apply a new transformation, the transformation point will reset to its
default location, which is in the center of an object.

Let's take a look at how you go about moving an object's transformation point:

1. Select the object whose transformation point you want to manipulate.
2. Initiate any transform (either with the Free Transform tool or with the Modify →

Transform menu). This will cause the bounding box to appear around the selected
object.

3. Click and drag the transformation point (which appears in the center of the object as a
white circle) and drag it to the desired location.

4. When the transformation point is in the desired location, carry out the desired
transformation.

 Note To reset the transformation point to its default location manually, simply double-click
on it.

Inspirational Design Model
Working with objects is all about exerting control over your visual design so that it conveys
the exact message you want. This chapter's Inspirational Design Model is Atomic Cartoons
(www.atomiccartoons.com), which exemplifies the peak of visual control.

Based in the great city of Vancouver, in the wonderful province of British Columbia, in the
beautiful country of Canada, Atomic Cartoons specializes in creating offbeat and hilarious
Flash-animated shorts for distribution over the Web. Entertaining the masses, the Atomic
Cartoons website features incredibly well-engineered graphics with stylish simplicity that
scream creative talent (see Figure 6.10).

Figure 6.10: Atomic Cartoons

The beautifully constructed visual elements used in the site indicate that the good folks at
Atomic Cartoons have a keen understanding of the tools used to manipulate objects in Flash.

Summary
In this chapter, you explored the wonderful world of objects. The chapter began by providing
a brief introduction to the nature of objects themselves and then moved on to an extensive
look at bitmaps. From there, you learned how objects are grouped and ungrouped. You then
learned how you go about aligning and arranging objects. From there you looked at the
various transformations you can apply to objects, including scaling, rotating, flipping,
skewing, distorting, envelope editing, and restoring. The chapter finished off with an
investigation of registration points, including a look at how you move an object's
transformation point.

Chapter 7: Creating and Manipulating
Reusable Content
Overview
Imagine if you created a Flash movie in which all the elements were variations on the same
theme. Up until now, you would have to spend a great deal of time painstakingly creating
each element individually. However, with the help of symbols, you will never have to toil in
vain, oppressed under the weight of backbreaking digital labor. You will be able to create one
master image and then base all subsequent images upon it, making specific changes to each as
you go. Symbols help streamline the creative process and maximize your artistic juices. The
purpose of this chapter, therefore, is to first explore symbols and then look at Flash MX's
other cool reusable content and asset management tools.

Understanding Symbols

Essentially, symbols are reusable elements that reside in the Library. You can use them
repeatedly in either the same Flash creation or another one entirely. Whenever you create a
symbol, it is automatically placed in the Library, where it is stored for future use. When you
drag a symbol out of the Library (discussed later in the "Adding a Symbol to the Stage"
section) onto the Stage, the symbol itself is not placed on the Stage. Instead, Flash creates a
copy, called an instance, and places it on the Stage. You can change instances as many times
or in as many different ways as you'd like without altering the original symbol. There will
always be a copy of the original symbol residing in the Library.

 Note Animation of any significant complexity can only be accomplished with symbols. As a
result, it's important that most, if not all, of the graphical elements you create in Flash
MX should either be converted to symbols or be created as symbols right off the bat.
Don't worry too much about how symbols are animated with the Timeline-that will be
covered in Part III of the book. For now, it's only important to understand the
differences between the various types of symbols.

Symbols can fall into one of two categories: native Flash symbols and imported symbols.
Native Flash symbols are those created directly within Flash, while imported Flash symbols
are those created in another program and imported into Flash.

In Flash MX, native symbols are also referred to as symbol behaviors. This is due to the fact
that, as you'll soon discover, there are three types of native Flash symbols, all of which
behave and have different purposes within your movie.

Symbols are beneficial for a couple of reasons. The first, which has already been discussed
briefly, is that they allow you to streamline the creative process. When it comes to native
Flash symbols, all you need to do is create one object and then manipulate its instance on the
Stage to create multiple variations without having to re-create the object from scratch every
time. The second reason that symbols are so powerful is that they help you reduce the overall
file size of your Flash creation. Each time a symbol is used, Flash simply refers to the profile
of the original in the Library. If you are using multiple instances based on a single symbol,
Flash only needs to save the information about their differences. If you were to use a one
symbol for each of the various objects, each would be included in the Flash file, thereby
increasing the overall file size.

Introducing Native Flash Symbols

Let's explore the three different types of native Flash symbols:

Graphic symbols Graphic symbols are static graphic objects created with the various
Flash drawing and painting tools. They work in conjunction with the main movie and as such
are most commonly used as elements in Timeline animations.

Button symbols While the Graphic symbols are static elements, Button symbols are
dynamic, altering their appearance when clicked. Buttons are one of the most popular
interactive elements you can create in Flash. Although you'll get the chance to explore Button
symbols (and how you make them) in Chapter 13, it's important to know they are made up of
four different static images (referred to as states). Each state is visible based on how the user
interacts with the button-when the button is up (the up state), when the user's mouse is over
the button (the over state), and when the user clicks the button (the down state). The fourth

button state, the hit state, is not a visible element in the button. Instead, it acts more like a
hotspot that determines the active area of the button.

One of the most important things about Button symbols, at least in terms of creating
interactivity, is that they can be tightly integrated with ActionScript.

Movie Clip symbols It's no exaggeration to say that Movie Clips are probably one of the
most important aspects of Flash itself. Movie Clips are smaller, self-contained movies that
you can place within another movie. They are infinitely nestable. Therefore, you could have a
Movie Clip within a Movie Clip within a Movie Clip, and so on.

Movie Clips, which are in no way limited in their composition, run independently of the
Timeline. They can also be placed within other symbols. So, you could insert a Movie Clip
into one of the previously mentioned Button symbol states, thereby creating an animated
button.

 Note If you are really interested in finding out how you can create and manipulate Movie
Clips, see Chapter 10.

Introducing Imported Flash Symbols

Now that you've looked at the three native Flash symbols, you can move on to look at the
various types of imported symbols:

Bitmaps You've already looked at how you go about importing a bitmap into Flash. What you
haven't learned is that all imported bitmaps are automatically inserted into the Library and
converted into symbols for your use when they are imported into Flash.

Audio Unlike graphical elements, audio files can't be seen. As a result, when they are
imported, they are only placed in the Library (and not also on the Stage like imported
bitmaps.) Because discussing audio at this point would be opening up a Pandora's box, there
is little more you need to know at the moment other than they're one of the many types of
nonnative Flash symbols.

 Note For more about audio and Flash, see Part VI.

Digital Video One of the great things about Flash is that it lets you import and use a series of
different digital video formats. If you have QuickTime 4 (or above) installed on your
computer, you can import QuickTime files, Audio Video Interlace (AVI) files, Digital Video
(DV) files, and Motion Picture Experts Group (MPEG) files.

 Note You can also import sound-only QuickTime movie files and place them in the Library
as symbols.

If you are working on a Windows machine, and you have DirectX 7 (or above) installed,
you'll be able to import AVI, MPEG, or Window Media Files (WMV/ASF).

 Note When imported, all digital video files are automatically placed in the Library to be used
as symbols.

Creating Symbols
There is little doubt that symbols are one of the most important elements of Flash MX.
Mastering their creation and manipulation will open up a world of incredible creative
possibilities for you. In this section, you'll look at the two primary ways to create Graphic
symbols: creating from scratch and converting from existing graphics.

 Note Button and Movie Clip symbols are discussed in future chapters, so this section deals
exclusively with creating Graphic symbols.

Creating a Symbol from Scratch

When it comes to Graphic symbols, it's more than likely that you'll create most within Flash
with the painting and drawing tools:

1. Make sure you don't already have an object selected on the Stage.
2. Go to Insert → New Symbol or use the shortcut Cmd/Ctrl+F8. The Create New

Symbol dialog box will appear.

 Note You can switch between basic and advanced options in the Create New Symbol
dialog box by clicking the Basic/Advanced button. The options available in the
Advanced section relate to creating a Shared Library-something discussed in the
"Working with Shared Symbol Libraries" section.

3. When the Create New Symbol dialog box appears, make sure the Graphic radio button
is selected, enter a name for your symbol into the Name field, and click OK.

 Note If you Flash creation is going to use a great deal of graphics, it'sa good strategy
to give each symbol a distinct name so that you won't get confused. By default,
if you don't name the symbol, Flash MX will use the name Symbol X, where X is
a sequential number.

4. From here, Flash adds the symbol to the Library and switches you to Symbol Editing
mode (see Figure 7.1). The name of the symbol appears in the Scene and Symbol bar,

just to the right of the name of the scene in which you are currently working. For
reference, the symbol's registration point is represented by the crosshairs in the middle
of the Symbol Editor.

Figure 7.1: Symbol Editing mode enables you to create your symbol with the same
painting and drawing tools as when you're working in the Stage.

 Note The Symbol Editor is a little tricky in that it looks almost exactly like the regular
Flash environment. Don't get confused, though; you can tell the difference
because the symbol's name is displayed in the Scene and Symbol bar just to the
right of the actual scene's name and a small cross, representing the symbol's
eventual registration point, appears on the Stage.

5. Use the skills you mastered in Chapter 3 to create the desired symbol.
6. When you are finished, you need to exit Symbol Editing mode. To do this, either go to

Edit → Edit Document or click the scene name in the Scene and Symbol bar.

 Tip Scenes are a way to break your Flash creation into manageable chunks. If you are
interested in finding out more, see Chapter 11.

Converting an Existing Graphic to a Symbol

Although many of your Graphic symbols are going to be made from scratch in the Symbol
Editor, you might come upon a situation where you need to convert an existing graphic
(something you didn't create in the Symbol Editor) into a symbol:

1. On the Stage, select the object you want to turn into a Graphic symbol.
2. Go to Insert → Convert to Symbol.
3. When the Convert to Symbol dialog box pops up, make sure you select the radio

button appropriate for the type of symbol you want to create.

4. Enter a name for your symbol into the Name field.
5. From here, you can set the location of your symbol's registration point. To do this,

click one of the nine small boxes in the registration point diagram-each box represents
the location of the symbol's registration point within its square bounding box.

6. When you're finished, click OK, and the symbol is automatically added to the Library.
7. The original object that you converted on the Stage is switched into an instance whose

parent symbol now resides in the Library.

Leveraging the Power of the Library

The Library, accessible by going to Window → Library (or by using the shortcut F11), is the
repository for all symbols in a given Flash project. Whether you are using Graphic symbols,
Button symbols, Movie Clips, or any of the various imported symbols in your Flash project,
the Library is where they'll be. The Library also offers you the ability to preview animations
and sound files quickly and easily.

The Library has a second cousin called the Common Library, which is accessibly by going to
Window → Common Libraries. There you'll find three groups of premade symbols-Buttons,
Learning Interactions, and Sounds-that you can use in your own movie. With this basic
introduction to the Library, you can begin to take advantage of its power and versatility.

Exploring the Library

The Library is packed with information and tools designed to make managing and
manipulating symbols considerably easier (see Figure 7.2). The only way to get a handle on
them is to explore each individually.

Figure 7.2: The Library

The Sort Window Columns

The Sort window displays information about each symbol in the Library in columns. Under
normal circumstances, you can make all the columns visible only if you resize the Library
horizontally (by clicking its left edge and dragging). Alternatively, you can also click the
Wide Library View button in the right portion of the Library (just below the vertical scroll
bar).

 Tip Clicking any aspect of a symbol (name, icon, linkage, date modified, and so on) will
display a preview of it.

The Sort window contains the following columns:

Name Shows the name you assigned each symbol. The Name column also displays the
filename for imported files such as audio files and bitmaps. The Name column is sorted
alphabetically. To reverse the sort order, click the Sort Order button to the right of the Library
window.

Kind Indicates whether the symbol is a Button, Bitmap, Graphic, Movie Clip, or Sound. To
group items in the library by the type, click the Kind column header.

 Note The type of symbol is also indicated by the small icon to the left of the name.

Use Count Tracks exactly how many times each symbol has been used. This is especially
useful if you are working on a particularly large project, and you want to determine which
symbols have actually been used in the final movie.

Linkage Indicates whether a symbol is being shared with another movie or imported from
another movie.

Date Modified Indicates the last time a symbol or imported file was updated.

Library Panel Buttons

In addition to the Sort window columns, the bottom portion of the Library features several
important buttons:

New Symbol Opens the Create New Symbol dialog box, thereby allowing you to create new
symbols directly from within the Library.

New Folder Allows you to set up folders in the Library so you can better organize your
content. This feature is amazingly useful when working with large, complex movies that need
to be well organized. To add an item to a folder, click the item and drag it to the folder. To
expand a folder, double-click it.

Properties Opens up the Symbol Properties dialog box. From there, you can change any of
the selected symbol's properties.

Delete Lets you delete symbols from the Library. Just click the symbol you want to delete,
and click the Delete button to remove it from the Library.

The Library Options Menu

The Library Options menu, accessible by clicking the menu icon in the upper-right corner of
the Library, allows you to manage all aspects of the Library. A subset of these options is also
available by Ctrl+clicking (Mac) or right-clicking (Win) a Library item.

 Note The New Symbol and New Folder options were discussed in the previous section.

The following settings are available in the Options menu:

New Font Lets you create font symbols that are stored in a shared Library. This is beneficial
because you no longer have to embed a font directly in your Flash movie.

 Note If you are interested in learning more about Font symbols, see Chapter 5.

New Video Inserts an empty Video symbol into the Library. To fill the symbol, double-click
the Video symbol's icon. When the Embedded Video Symbol dialog box opens, click the
Import button. From there, navigate to where the desired video file is located, select it, and
click OK.

Rename Allows you to rename a symbol directly within your Library. Simply select the
symbol whose name you want to change, choose the Rename option from the Options menu,
and type in a new name into the Sort window.

 Note You can also double-click the symbol's name in the Sort window to change it.

Move to a New Folder Automatically creates a new folder on the Sort window into which it
will move the currently selected symbol.

Duplicate Makes an exact duplicate of the currently selected symbol. Simply select a symbol
in the Sort window, choose Duplicate from the Options menu, and make any adjustments
when the Duplicate Symbol dialog box opens.

Delete Works exactly the same as the Delete button at the bottom of the Library. Just select
the unwanted Library item and select Delete from the Options menu.

Edit Opens the currently selected Graphic, Movie Clip, or Button in Symbol Editing mode.
From there, you can make any changes you want, and the symbol in the Library will change
accordingly.

Edit With The Edit With option opens the currently selected bitmap or sound with an
external application. If you have Fireworks installed on your machine, Flash launches
Fireworks for bitmap editing. Changes made using Fireworks do not affect the original
bitmap; they appear only within Flash. When it comes to audio files in the Library, a dialog
box appears, prompting you to choose a sound editor.

Properties Opens the Symbol Properties dialog box for the selected symbol. From there, you
can change the symbol's type, edit its name, and manipulate its Linkage properties.

Linkage Lets you set several options needed to create a Shared Library. For more information
on creating Shared Libraries, see the "Working with Shared Symbol Libraries" section later in
this chapter.

Component Definition Lets you control the parameters of a Flash MX UI Component
through the Component Definition dialog box.

 Note For more information about Components, see Chapter 16.

Select Unused Items Automatically selects any symbols not currently used in the Flash
project.

Update Automatically updates a bitmap or audio file you've altered in an external program
rather than having to re-import it.

 Note If you choose the Edit With option in conjunction with Macromedia Fireworks to make
a change to artwork, you do not have to update it.

Play Plays any selected Movie Clip, Sound, or Button symbol.

 Tip You can also play a Movie Clip, Sound, or Button symbol by clicking the Play button in
the upper-right corner of the preview window.

Expand Folder Automatically expands any selected folder so that all of its contents are
visible.

Collapse Folder Collapses the currently selected folder so that none of its contents are
visible-the opposite effect as the Expand Folder.

Expand All Folder Expands all of the folders in the current Library so all of their content is
visible.

Shared Library Properties Opens the Shared Library Properties dialog box, allowing you to
assign a URL for a given shared Library.

Keep Use Counts Updated Tells Flash to continuously update the use counts.

 Tip Evoking the Keep Use Counts Updated option eats up a lot of your computers processing
power, often resulting in a drastic slowdown.

Update Use Counts Now Lets you manually update the use counts.

Using the Library with Symbols
Now you are going to take your knowledge about symbols and put the Library to work. In this
section, you'll start off by looking at how you add symbols to the Stage. You'll also explore
how to use various Library options to manage and manipulate your symbols.

Adding a Symbol to the Stage

The Library is a two-way street-you can place symbols on the Stage just as easily as you can
add them to the Library.

 Tip Remember that when you place a symbol onto the Stage, you are creating an instance. An
instance is a copy of the parent symbol that can you change and manipulate without
altering the original symbol.

To add a symbol to the Stage, follow these steps:

1. Make sure the Library is open. If it isn't, go to Window → Library or use the shortcut
F11.

2. Click and drag the desired symbol onto the Stage.

Renaming a Symbol

When you initially create a symbol, you give it a name. There are actually a number of
different quick and easy ways to change that name:

1. Make sure the Library is open.
2. Select the symbol whose name you want to change.
3. Do one of the following:

o Cmd+click (Mac) or right-click (Win) and choose Rename. When the current
name is highlighted in the Sort window, simply type a new one.

o Choose Rename from the Options menu. When the current name is
highlighted, just type a new one.

o Choose Properties from the Options menu (or click the Properties button in the
bottom of the Library) to open the Symbol Properties dialog box. From here,
type in a new name into the Name field.

o Double-click the symbol name and type in a new name.

Duplicating Symbols

Flash gives you the ability to duplicate symbols in the Library with a minimum of trouble.
You might find this handy if you had created a complex symbol that you wanted to copy,
alter, and then subsequently add to the Library. Instead of jumping through a series of
convoluted hoops, you can simply duplicate the symbol and then edit the copy in whatever

way you want. Also, duplicating a symbol allows you to create a new symbol (to which you
can make any changes) without actually changing any of that symbol's instances on the Stage.

To duplicate a symbol, follow these steps:

1. Make sure you have the Library open.
2. Select the symbol you want to duplicate.
3. Do one of the following:

o Cmd+click (Mac) or right-click (Win) and choose Duplicate.
o Choose Duplicate from the Options menu.

4. When the Duplicate Symbol dialog box appears, enter a new name. If you want to
retain its original format, make sure to select the appropriate radio button. If you want
to turn the duplicate symbol into an alternate format, click the desired radio button.

5. Click OK. The duplicated symbol is automatically placed in the Library.
6. From here, you can edit the duplicate symbol and make any changes you want.

Editing a Symbol

You may find yourself in a situation where you want to make more significant changes to a
symbol that go beyond changing its name. All you need to do is follow these steps:

1. Make sure you have the Library open.
2. Select the symbol you want to edit.
3. Do one of the following:

o Double-click the symbol's icon (to the left of the symbol name in the Sort
window).

o Cmd+click (Mac) or right-click (Win) and choose Edit.
o Choose Edit from the Library's Options.
o If the symbol you want to edit is a bitmap or audio file, select Edit With to

open the appropriate external editor.
4. When Flash switches to the Symbol Editor, make any changes you want.
5. When you are finished, you need to exit Symbol Editing mode. To do this, either go to

Edit → Edit Document or click the Scene button in the Scene and Symbol bar.

 Note When you change a symbol, all of its associated instances will automatically change as
well.

Organizing Your Library

As your experience with Flash develops, you will find find that many of your projects will use
a large number of symbols. This can certainly lead to some workflow and organizational
problems. To avoid this problem, you can do several things.

The first solution involves creating various folders in which similar symbols are placed (see
Figure 7.3). Just as you can create folders in a website to better organize your files, you can
make folders in a Flash Library to better organize your symbols, bitmaps, and sounds.

Figure 7.3: You can organize your Library by creating various folders in which you place
common or similar symbols.

To create a folder, click the New Folder button in the bottom-left corner of the Library
window. You can also choose New Folder from the Library Options menu. From here, simply
click and drag the various symbols into their intended folders. Alternatively, you can also
select a symbol and choose Move to New Folder from the Library's Options menu.

The second way to organize your Library, which has decidedly less of an impact on the
Library's overall organization (but is nonetheless useful), involves using the Sort window
columns. By clicking the name of either the Date Modified or Name column, the contents of
the Library will be reorganized in a descending order.

Opening External Flash Libraries

One of the great things about Flash is that you aren't limited to the Library being used in your
current Flash project-you can also open other Flash movie Libraries by using the Open as
Library command.

 Note External Libraries aren't really unique elements in Flash. Essentially, they are just
regular FLA files, the contents of whose Library you've taken and shoved into your
Library. Because of this, there is no special procedure for creating an external Library-
you just need to create a Flash movie like any other.

Follow these steps:

1. Make sure you have the Library open.
2. Go to File → Open as Library.
3. When the Open as Library dialog box opens, navigate to the file whose Library you

want to access, and open it (see Figure 7.4).

Figure 7.4: The original Library is on the left, and the Library on the right has been
opened from an external Flash file.

 Tip If you have not moved your original Library window, the new Library window
might open directly on top of the old one. Drag the new Library window until you
can see both windows.

4. From here, click and drag any symbol from the newly opened Library to the current
project's Library. This automatically copies the desired symbol into the Library of
your current project-to be used as any other symbol would.

Working with Shared Symbol Libraries

As Flash development teams become larger and projects become more complex, sharing
assets becomes important. With Shared Symbol Libraries, also referred to as Shared Library
Assets or Shared Libraries, you can use graphics, buttons, movies, audio files, and other
assets in your movie by linking to the Library of a centrally located SWF file (on a web
server, for example). The result is that a Flash movie no longer has to have its own individual
Library.

The beauty of Shared Symbol Libraries is that teams can share standard set of symbols across
multiple movies. You can make any final modification to a symbol in the Shared Library.
After the Shared Library has been published, any other movies that use the Library are
updated automatically. In addition, when you draw your symbols from a Shared Symbol
Library, your final movie doesn't need any embedded symbols and therefore will be smaller.

 Tip Although Shared Symbol Libraries are beneficial to large projects, they have,
unfortunately, proven to be somewhat unreliable and unpredictable. This having been
said, it is strongly suggested that if you find the need to use Shared Libraries, you should
limit their use to storage of relatively small (in terms of file size) elements.

Before you learn how to create and work with Shared Symbol Libraries, you need to realize
there are two models for Shared Libraries: runtime and author-time.

• In a runtime Shared Symbol Library, assets are loaded into the destination movie from
a source movie when the movie actually plays. Although the source movie (the movie

from which you are drawing the symbols) doesn't have to be accessible when you
initially author the movie, it must be posted to a web server and be accessible for the
destination movie to draw the symbols at runtime. Using a runtime Shared Symbol
Library is really only appropriate when you're distributing your Flash movie on the
Web-this way, it will have access to the actual Shared Symbol Library.

• In an author-time Shared Symbol Library, you can replace any symbol in the movie
upon which you are currently working with a symbol from another movie. Although
the symbol in the destination movie retains its original name and properties, its
contents are replaced. For example, you could use an author-time Shared Symbol
Library when you want to integrate symbols into your movie that were created by
someone else. The primary difference between an author-time Shared Symbol Library
and a runtime Shared Symbol Library is that the movie being used as the source must
be accessible on your local network (or on your own hard drive). Because you
integrate symbols from a Shared Symbol Library into your own movie when it's being
created, author-time Shared Symbol Libraries can be used whether you are distributing
your movie over the Web or by some other means.

Creating a Runtime Shared Symbol Library

Creating and using a runtime Shared Symbol Library involves two discreet steps. The first
involves creating the source movie (in which the Shared Symbol Library resides) and
identifying symbols (through the use of unique names) within the source movie. The
assignment of unique identifiers for symbols in the Shared Symbol Library is vital so the
destination movie can successfully locate and acquire the symbols it needs to run properly.

 Tip If you are planning on using runtime Shared Symbol Libraries, get into the habit of using
the same name for the unique identifier as you did for the symbol's actual name-this
might avoid some confusion in the long run.

The second part, which you do when you create the destination movie, involves telling Flash
that the symbols being used will be drawn from a source movie at runtime.

Let's start off by looking at how you create a runtime Shared Symbol Library:

1. Create a new Flash file by going to File → New (or by using the shortcut
Cmd/Ctrl+N).

2. Create or import all the elements you want to include in the final runtime Shared
Symbol Library and add them to the currently active project's Library. If you are
having trouble remembering how to create either native Flash symbols or imported
Flash symbols, see "Understanding Symbols."

3. If you want to include an entire font in your Shared Symbol Library, choose New Font
from the Library Options menu. When the Font Symbol Properties dialog box opens,
type a name for the font you want to include, locate the font in the Font menu, and
select the style you want to be included.

4. Delete all objects from your Stage that will be included in the final Shared Symbol
Library.

Now that you've included all the symbols that will ultimately reside in the final runtime
Shared Symbol Library, you need to assign a unique identifier to each so that they can be
successfully located and used by the destination movie:

1. Select one of the symbols in the Library on which you're working.
2. From here, you've got a couple of different options:

o Choose Linkage from the Library Options menu or from the Ctrl+click (Mac)
or right-click (Win) context menu.

o Select Properties from the Library Options menu or from the Ctrl+click (Mac)
or right-click (Win) context menu. In the Symbol Properties dialog box that
appears, click the Advanced button to access to the Shared Symbol Library
options.

 Note If the item you've selected is not a native Flash symbol (Button, Movie Clip, or
Graphic), you won't have access to the properties.

3. Select the Export for Runtime Sharing option.

4. Type in a unique name (without any spaces) into the Identifier field.
5. Enter the URL for the place where the source movie will be located into the URL

field.
6. Repeat the process for each symbol that will ultimately be included in the final Shared

Symbol Library.
7. When you've finished identifying all the desired symbols as assets within the runtime

Shared Symbol Library, click OK.

 Tip The URL you enter into the URL field must be absolute (for example,
http://someURL.com/movies/mymovie.swf not /movies/mymovie.swf). If you
don't place the source movie in the location you set or enter the correct URL, the
destination movie will not be able to locate and draw upon the necessary symbols.

 Tip Although the process of tagging each symbol with a unique identifier is tedious
(especially if you've got a lot of symbols), it is necessary. Any of the symbols that

aren't assigned a unique identifier will not work properly in the final Shared
Symbol Library.

Now that you've set up all the properties of the source movie (which will act as the runtime
Shared Symbol Library), save and publish it by following these steps:

1. Save the currently open Flash file (that contains the Library you've been working on)
by going to File → Save. Alternatively, you can use the shortcut Cmd/Ctrl+S. So you
don't get confused, make sure you give the file a distinct name that will identify it
specifically as containing a runtime Shared Symbol Library.

2. From here, publish the FLA file as an SWF file (Flash's web format). All you need to
do it go to File → Publish Settings. Make sure that Flash is the only format chosen in
the Formats tab. Beyond that, you don't need to set any of the other options.

3. Once you've finished adjusting the necessary Publish Settings, click the Publish
button. Then go to File → Publish (or use the shortcut Shift+F12). The SWF file will
be saved to the same directory where you saved the original FLA file on which you
were working.

4. At this point, you'll have to take the SWF file (which includes the tagged symbols) and
upload it to the server whose URL corresponds to what you entered into the URL
field.

 Note For a far more detailed and thorough look at publishing your Flash movie, see Chapter
27.

Linking to a Runtime Shared Symbol Library

Now that you've gone through the process of creating a runtime Shared Symbol Library (the
source movie), you can use its assets in another Flash movie (the destination movie).

The effect of linking to a runtime Shared Symbol Library is something like opening external
Flash Libraries. The most important difference is that when you change a symbol in your
runtime Shared Symbol Library (source movie), it changes all of the linked symbols in the
destination movies that use it.

 Tip Unless you've got a copy of the symbol you want to draw from the runtime Shared
Symbol Library (source movie) in the destination movie's Library, you aren't going to be
able to do any linking at all. Although this seems a little counterproductive (what's the
point of drawing the symbol from a runtime Shared Symbol Library if it's already in the
destination movie?), it's important to realize that the symbol won't actually get exported if
it has been linked to a runtime Shared Symbol Library. It really just acts as a placeholder
in your movie.

Now follow these steps to link to a Library:

1. Create a new Flash movie (or open an existing one)-this will act as the destination
movie.

2. Open the movie's Library by going to Window → Library.
3. Select the Graphic, Movie Clip, or Button symbol, and open the Symbol Properties

dialog box by choosing Properties from the Library's Options menu. If the Symbol
Properties dialog box isn't expanded, click the Advanced button.

4. Select the Import for Runtime Sharing option.
5. Enter the unique identifier for the symbol you are drawing from the runtime Shared

Symbol Library (source movie) into the Identifier field.

 Note If you don't put the exact identifier into the field, the destination movie will not
be able to successfully locate the symbol you want to use.

6. Enter the exact location for where the runtime Shared Symbol Library (source movie)
is posted into the URL field.

 Note If you don't put the exact URL, the destination movie won't be able to locate the
source movie and will therefore not be able to access the required symbol.

7. When you've finished, click OK.

Severing the Link to a Runtime Shared Symbol Library

Although linking to a runtime Shared Symbol Library is definitely a handy technique, you
might find yourself in a position where you want to severe the link between your destination
movie and the source movie-here's how:

1. Open the destination movie that contains the symbol you want to "de-link."
2. Open the Library by going to Window → Library.
3. Select the Movie Clip, Button, or Graphic symbol you want to de-link.
4. Open the Symbol Properties dialog box by selecting Properties from the Library

Options menu.
5. De-select the Import for Runtime Sharing option.
6. Click OK.

Linking to an Author-Time Shared Symbol Library

As mentioned before, when you employ an author-time Shared Symbol Library, you can
replace any symbol in the movie you are currently working on with a symbol from another
movie entirely.

 Note When you're working with an author-time Shared Symbol Library, the source movie
must be directly accessible-either over a local network or on your own computer.

Remember that although the symbol in the destination movie retains its original name and
properties, its contents are replaced by that of the symbol you are drawing from the source
movie.

 Note Any asset that the symbol from the source movie uses (such as an audio file in a Movie
Clip) is also copied over to the destination movie.

To replace a symbol in a destination movie with one drawn from an author-time Shared
Symbol Library, just follow these steps:

1. Open the movie that has the symbol you want to replace.
2. Open the Library by going to Window → Library.
3. Select the symbol you want to replace.
4. Open the Symbol Properties dialog box by selecting Properties from the Library

Options menu.
5. Click the Browse button located at the bottom of the Symbol Properties dialog box.
6. When the Locate Macromedia Flash Document File dialog box pops up, navigate to

where the FLA file containing the symbol you want to use as the replacement is
located, select it, and click Open.

7. When the Select Source Symbol dialog box appears (which lists all the symbols in the
FLA file you picked), select the symbol that you want to use as the replacement.

8. Click OK.
9. When you are returned to the Symbol Properties dialog box, click OK again. Note that

the contents of the symbol have been replaced.

 Note To replace one symbol for another in the same movie, just click the Symbol button in
the Source section of the Symbol Properties dialog box to access the Select Source
Symbol dialog box.

Working with Symbol Instances
You've already learned that when you drag a symbol from the Library to the Stage, you are
not really adding the symbol per se. Instead, you are creating a copy (called an instance) that
you can alter without changing the parent symbol (which remains in the Library). As such, an
instance can be changed to look quite different than its parent symbol. Although editing the

symbol in the Library updates all of its instances, editing an instance of a symbol updates only
that instance.

In the next section you'll investigate how you can manipulate the various visual characteristics
of symbol instances.

Modifying the Appearance of Instances with the Property Inspector

Instances have a series of properties that you can manipulate to change the instance's visual
character. You'll find that many, if not all, of these instance properties are particularly
important when it comes to animation. You can animate each property-including
transparency, brightness, and color-to create a change in the instance's visual appearance over
time. For example, you could animate an instance's transparency so it appears to fade-in over
time.

 Note For more information on how to animate an instance's visual properties, see Chapter 9.

This section of the chapter will get you familiar with the tools to change the overall
appearance of any given symbol instance.

When it comes to the visual character of an instance property, you'll rely exclusively on the
Color Style drop-down menu in the Property Inspector to make any changes:

1. Select the symbol instance whose visual properties you want to manipulate.
2. If the Property Inspector isn't already open, go to Window → Properties.

3. Select one of the options from the Color Style drop-down menu (each of which has
unique properties).

 Tip The alterations you make to a symbol instance's visual properties in the Property
Inspector will be dynamically applied to the selected symbol instance.

Let's take a look at each option individually:

None Leaves the symbol instance unaltered. Applying the None effect is a good way to revert
a symbol instance back to its original form after you've fiddled with its visual properties.

Brightness Input a value (in percent) into the Brightness field (or use the Brightness slider) to
change the relative brightness of the selected symbol instance. The value can range from 100
percent (white) to -100 percent (black).

 Tip Setting the Brightness to 0 percent retains the original color of the symbol instance.

Tint Offers several ways to alter the color of the selected symbol instance. First, you can click
the Tint swatch (which opens up the Color Picker) and choose a color. Alternatively you
could mix your own RGB color by entering a value into the R, G, and B fields.

 Note Remember, you can also use the sliders (accessible by clicking the small Down arrow

just to the right of each field) to adjust the value of the individual RGB channels

Finally, you can adjust the amount of tint by entering a value (in percent) between 0 and 100
into the Tint field.

 Note Like the R, G, and B fields, the Tint amount can be manipulated by adjusting the slider
(accessible by clicking the small Down arrow just to the right of the field).

Alpha Lets you adjust the transparency of a selected symbol instance. Enter a value into the
Alpha field or use the slider (accessible by clicking the Down arrow to the right of the field)
to adjust the value. The value can range from 0 (totally transparent) to 100 (no transparency).

Advanced When you select Advanced from the Color Style drop-down menu, and click the
Settings button in the Property Inspector, you open the Advanced Effect dialog box-where
you can change the color and transparency of an object simultaneously.

In the Advanced Effect dialog box, you'll notice that there are two sets of Tint and Alpha
controls. The four controls on the right (R, G, B, and Alpha) change the color and
transparency of a selected symbol instance by an absolute value. The four controls on the left
change a symbol instance's Tint and Alpha value by a relative amount (percent).

Replacing One Instance with Another

You might find yourself in a situation where you want to swap one instance for another. This
is particularly useful when you have a complex scene where you want to swap one symbol
instance with another but want to make sure the new one is placed in the exact same location
as the old one. To do this, follow these steps:

1. Select the symbol instance you want to replace.
2. Go to Window → Properties.
3. Click the Swap button.

4. When the Swap Symbol dialog box opens, select the symbol you want to swap, and
click OK.

Editing an Instance on the Stage

Symbol instances are exact copies of their parent symbols in the Library. You can alter and
edit them without changing the parent. As such, you are probably going to edit symbol
instances on a regular basis. To do this, follow these steps:

1. Select the symbol instance you'd like to edit.

2. From here, use any of Flash's painting, drawing, or transformation tools to manipulate
the symbol instance.

 Note To manipulate every aspect of the symbol instance, you will probably have to break it
down into its parts-a process accomplished by selecting the symbol instance and then
going to Modify → Break Apart.

If you want to edit the parent symbol of a given instance, you can open the Library, select the
symbol, and choose Edit from the Library Options menu. Alternatively, you can double-click
the symbol, which opens the Symbol Editor where you can make any changes you want.

 Note Remember, when you change the parent symbol, all of its associated symbol instances
will also change.

Using the Movie Explorer
In the earlier versions of Flash, it was quite difficult to keep track of the structure of your
Flash creation-especially if you were using ActionScripts, nested symbols, or complex Movie
Clips. Then, much to the joy of much of the Flash community, along came the Movie
Explorer.

Essentially, the Movie Explorer displays the contents of your movie hierarchically (see Figure
7.5). The Movie Explorer lets you search your entire movie for any symbol or symbol
instance. In addition, you can replace text and fonts with a few easy steps. You can also copy
the contents of the Movie Explorer as text to the Clipboard or print the display list in the
Movie Explorer. To activate the Movie Explorer, simply go to Window → Movie Explorer
(or use the shortcut Option/Alt+F3).

Figure 7.5: The Movie Explorer

In the next sections, you'll explore the various Movie Explorer options. You'll also look at
how you filter the categories displayed in the Movie Explorer and how you search for items
with the Find field. Finally, you'll learn how to edit symbol properties and replace fonts from
within the Movie Explorer.

Understanding the Movie Explorer Options

As with many of Flash's panels, the Movie Explorer has an Options drop-down menu
(accessible by clicking the icon in the panel's right corner). It contains the following options:

Go to Location Jumps to the selected layer, scene, or frame in the movie. You can
accomplish the same thing by simply double-clicking the item in the Movie Explorer.

Go to Symbol Definition Automatically selects all files associated with the selected symbol.
The Go to Symbol Definition option only works if you have the Show Buttons, Movie Clips,
and Graphics button toggled, and it's only active when you're working in the Movie Elements
section of the display list.

Select Symbol Instances Automatically jumps to the scene in the Movie Elements section of
the display list that contains the selected symbol's instance. This option is only accessible
when the Show Buttons, Movie Clips, and Graphics button is toggled.

Find in Library Opens the Library (if it is not already open) and jumps to the selected
symbol.

Rename Lets you rename the currently selected symbol.

Edit in Place Allows you to edit the currently selected symbol on the Stage without entering
into Symbol Editing mode.

Edit in New Window Opens up a new window in which you can make changes to the
selected symbol.

Show Movie Elements Automatically displays all elements in the Flash movie, organized by
scene.

Show Symbol Definitions Displays all the files associated with the currently selected element
(by toggling on and off).

Show All Scenes Displays all the scenes in your movie (by toggling on and off).

Copy All Text to Clipboard Copies selected text to your Clipboard so that you can paste it
into another program (a word processor, for example).

Cut Cuts selected text.

Copy Copies selected text (but does not place it in the Clipboard like the Copy All Text to
Clipboard option).

Paste Allows you to paste text that has been copied either from within Flash or from another
application.

Clear Clears selected text.

Expand Branch Expands the currently selected branch of the hierarchical tree. You can
accomplish the same result by clicking the small plus (+) sign to the right of any given section
of the hierarchy.

Collapse Branch Collapses the currently selected branch of the hierarchy. You can
accomplish the same effect by clicking the minus (-) symbol to the right of any given section
of the hierarchy. This is the opposite of the Expand Branch option.

Collapse Others Automatically collapses all sections of the hierarchy except for the one
currently selected.

Print Automatically prints all the contents of the Movie Explorer (with all sections of the
hierarchy expanded). This is a good way to create a hard copy version of your Flash movie's
structure.

Leveraging the Power of the Movie Explorer

Now that you've had a chance to fully explore all of the Movie Explorer options, you can
learn how to manipulate the way your Flash movie's content is displayed and how you can
manipulate that content.

Filtering the Displayed Categories

Several buttons allow you to customize which category of items are displayed in the Movie
Explorer. By clicking any of the buttons (or a combination thereof), the Movie Explorer
displays only those elements in your file.

From left to right, the buttons are Show Text; Show Buttons, Movie Clips, and Graphics;
Show ActionScripts; Show Video, Sounds, and Bitmaps; and Show Frames and Layers. The
final button, Customize Which Items to Show, brings up the Movie Explorer Settings dialog
box so you can set the items you want visible.

Searching for Items

When you are working with a particularly large movie with many discreet elements, you may
become overwhelmed and have difficulty locating a given symbol or instance. In that case,
the Movie Explorer provides you with a search tool. All you have to do is enter the name of a
symbol, instance, font, ActionScript string, or frame number into the Find field, and the
Movie Explorer automatically jumps to the location in the hierarchy where the item is located.

Editing Symbols

You will probably find yourself in the situation where you'd like to alter a given symbol
instance from within the Movie Explorer:

1. Make sure the Movie Explorer is open.
2. Locate the symbol instance you want to edit. You can either navigate to its location in

the hierarchy manually, or use the Movie Explorer's search tool to find it.
3. Ctrl+click (Mac) or right-click (Win) and choose Edit in Place or Edit in New

Window from the pop-up menu. Alternatively, you can choose either of these options
from the Movie Explorer's option menu (accessible by clicking the small right-
pointing arrow in the top-right corner of the Movie Explorer).

 Note You can also double-click the symbol instance in the Movie Explorer to enter
into Symbol Editing mode.

4. Make any changes you want to the symbol instance and then return to working on
your movie.

Replacing Fonts

The Movie Explorer lets you search for and replace any specific font you've used in your
movie. This is particularly useful if you have many different instances of a given font that you
want to change and don't want to switch each by hand:

1. Make sure the Movie Explorer is open.
2. Type the name of the font into the Find field.
3. After the Movie Explorer has jumped to the location in the hierarchy where the font in

question resides, select it. If you've used the same font several times, it will display all
occurrences.

 Note If there is more than one use of the specific font, all occurrences will be
displayed. To select them all, use Cmd/Ctrl+click.

4. Open the Property Inspector.
5. After the Property Inspector opens, make any changes you want-including font, style,

color, size, and so on.
6. When you make your changes, your movie is automatically updated.

Inspirational Design Model
When it comes to reusable content, any Inspirational Design Model would have to feature a
wide range of media types (vectors, bitmaps, sound, and so on) as well as consistency across
the design. This kind of approach to design is easily recognizable in the website of Doug
Chiang Studio (www.dchiang.com).

Founded by Doug Chiang, the design director for the Star Wars prequels, Doug Chiang
Studio is currently working on a film/book project called Robata: Reign of Machines. The
160-page "film-format" illustrated book is to be published in 2002 and explores the
relationship between technology and nature against the backdrop of a futuristic society. The
website is intended to cater to those fascinated by the incredible work of Chiang, as well as
publicize and explore the studio's current project.

Designed by Red Industries (www.redindustries.com) using a combination of Dreamweaver,
Fireworks, and Flash, the website combines Chiang's compelling style of illustration with a

highly intuitive navigational scheme to create an exceptionally immersive experience (see
Figure 7.6). The site's design masterfully combines incredibly beautiful bitmap art and audio
with consistently predictable and repeating interface elements, easily making it worthy as this
chapter's Inspirational Design Model. Prepare to be inspired!

Figure 7.6: Doug Chiang Studio

Summary
In this chapter, you learned about reusable content. You looked at the nature of symbols and
the different symbol types. You learned how to create a new symbol, import an existing
symbol, and convert an existing graphic to a symbol. From there, you used your knowledge
about symbols as a stepping-stone to investigate the Library. You learned how to add symbols
to the Stage from the Library, how to duplicate symbols, how to rename a symbol, and how to
edit symbols. You also learned about organizing your Library, opening external Flash
Libraries, and creating Shared Symbol Libraries. From there, you explored how to use the
Property Inspector to change the visual character of a symbol instance. You finished off the
chapter with a thorough look at the Movie Explore-an extremely useful tool for managing and
manipulating the assets in your movie.

Chapter 8: Adding Depth to Flash Graphics
with Layers
Overview
Up until this point, all of the painting, drawing, and manipulating of visual elements you've
done has taken place on one layer. Well, prepare yourself for the third dimension! Don't get
too excited, you're not going to look at creating 3D images in Flash until Chapter 26.
However, now is a perfect time to start exploring how you can create 2D visual content in
discreet planes stacked one upon another.

Like many other graphics programs, Flash lets you create any number of individual layers in
your movie. If you are confused as to what layers are, it's easiest to think of them as invisible

levels where you can create and place objects. Layers let you partition your artwork when
you're building complicated or composite images and animations so that you can focus on
each element independently of the others. Layers are also extremely important when it comes
to animation-a topic covered in Chapter 9. In this chapter, you're going to explore all aspects
of layers.

Leveraging the Power of Layers
Each layer in a Flash movie acts like a transparent sheet upon which any number of individual
objects reside. Ultimately, your final Flash movie will consist of a stack of layers. Although
individual layers are not really recognizable on the Stage, they are displayed horizontally
across (and accessible from) the Timeline.

The way in which each layer is displayed in relation to other layers in the Timeline is
important. Because the layers (and therefore the content on the layers) are stacked, the
topmost ones appear in the foreground of the movie, and the bottommost ones appear in the
background of the movie. Although this may be a little difficult to grasp in the abstract, look
at it this way: Say you had two different images in two separate layers that occupied the same
space on the Stage. The image in the top layer of the Timeline would appear in front of the
image in the bottom layer.

Layers come in a number of different "flavors," all of which play distinct roles in Flash. Don't
worry too much about the types of layers right now, as you'll learn all about them later in this
chapter (see "Creating Guide Layers" and "Creating Mask Layers"). In addition, each layer
has a series of different options accessible through the Timeline. You'll get a chance to
explore these options shortly (see "Working with Layer Properties").

 Note Selecting a layer is as simple as clicking its name in the Timeline. You'll notice that
when it is selected, the layer is highlighted and a small pencil appears to the right of its
name. This indicates the layer is active, and any objects you add to the Stage will be
assigned to it.

Although layers play in integral part in static image creation, they become even more
important when you start learning about animation, covered in Chapter 9. For the time being,
however, it's important to familiarize yourself with creating and manipulating layers.

Creating a New Layer
When you start Flash, one layer appears in the Timeline. You certainly don't have to add more
layers to your movie. However, once you are creating extensive (and, of course, amazingly

brilliant) Flash movies, you'll find that working in one layer is not only confusing, but it may
result in some functionality problems.

Without getting too much ahead of things, let's take a look at a short example. When you get
into ActionScripts in Chapter 12, you'll learn it is possible create scripts that are activated
when the playhead passes over a given frame. These are called frame actions. If your movie
comprises only one layer, a frame action affects all the content of the layer, which could
easily be far from what you intended. Instead, it would be better to create multiple layers.
Then, you could include the frame action in a specific layer, thereby restricting the scripts to
that layer. In addition, when it comes to creating complex animations, you'll find that you are
going to want to create one layer for each discreet object or symbol. By doing this, you can
exert greater control over each object (moving, manipulating, and so on) and therefore your
overall animation. The bottom line, for a number of different reasons, is that it's wise to use
many layers for each distinct object (or group of objects). The number of layers you can
create is only limited by the amount of available memory on your computer.

 Note Because Flash flattens all of the layers upon export, you don't have to worry about
increasing the file's size resulting from many different layers.

Do one of the following to create a new layer:

• Click the Insert Layer button in the bottom-left corner of the Timeline.
• Go to Insert → Layer.
• Cmd+click (Mac) or right-click (Win) any layer in the Timeline and choose Insert

Layer from the pop-up context menu.

When you carry out any of these procedures, Flash automatically adds the new layer above
the existing one.

 Note If you have more than one layer, Flash inserts the new layer above the currently selected
one.

Adding Content to a Layer
You'll find that through the course of creating your Flash masterpiece you will add layers as
you need them. Adding new layers is all well and good, but what about adding content to
those layers? The process itself is quite simple-all you need to do is select the layer by
clicking it and insert any content you want onto the Stage (by using the painting and drawing
tools or dragging a symbol instance from the Library). As long as that particular layer stays
active, all content you add will automatically be placed in it.

As you add content to a layer, you'll notice that the small black outline of a circle (which
always occupies the first frame of a newly created layer and is called a blank keyframe) will
fill up and become a small solid black circle-this is called a keyframe.

You are going to learn all about frames, keyframes, and blank keyframes in Chapter 9, so all
you need to know right now is that when a keyframe appears, it means that content has been
added or manually changed in that frame.

Working with Layer Properties
Now that you've learned how to create and add content to layers, you can learn how to work
with layer properties. Each layer has a series of properties represented and accessible through
the icons to the right of the layer's name.

In this section, you'll explore how to turn layer visibility on/off, view layer objects as outlines,
change the layer outline color, and lock/unlock a layer.

Turning Layer Visibility On/Off

One of the great things about layers in Flash is that they can be "turned off." By doing this,
you make the content of any given layer invisible. Ultimately, this helps to unclutter the Stage
and allows you to focus better on the objects on a particular layer. When you're done with
whatever you were doing, you simply "turn the layer back on," and it becomes visible again.
To change a layer's visibility, perform one of the following tasks:

• Click the small dot in the layer's eye column. A red X automatically appears, denoting
the layer's hidden state. To turn the layer visibility back on, click the red X.

• To hide all the layers at the same time, click the eye icon. To reverse this process,
click the eye icon again, or Cmd+click (Mac) or right-click (Win) and choose Show
All from the pop-up context menu.

• To hide all the layers except one, Option/Alt+click the small dot in the layer's eye
column that you want to stay visible. Alternatively, you can Cmd+click (Mac) or
right-click (Win) and choose Hide Others from the pop-up context menu.

Viewing Layer Objects as Outlines

Viewing layer objects as outlines allows you to alter all of the layer's objects so they appear as
colored outlines.

This is particularly useful if you want to speed up the display of your movie when editing or
testing animations.

To view layer objects as outlines, you have three options:

• Click the layer's outline icon (represented by a colored box). The box icon will
become hollow, indicating that the layer's objects are currently displayed only as
outlines. To turn the option off, click the hollow box icon. Figure 8.1 shows both
states of the layer's outline icon.

Figure 8.1: The left image displays the outline icon as it appears when you have the
view layer objects as outlines option turned off. The right image shows the outline
icon as it appears when you have the option activated.

• To display the content of all layers as outlines, click the Timeline's box icon (located
above the layers themselves). To reverse the process, click the icon again.

• To view all layer objects as outlines except one, just Option/Alt+click the layer's
outline icon whose objects you want to remain "solid."

Changing the Layer Outline Color

You'll notice that each of your layer's outline box icon is a different color-each of which
represents the color of the layer's objects if they were to be reduced to outlines using one of
the procedures described in the previous section. So, if your outline box icon is red, your
objects are represented as red outlines. You certainly aren't stuck with the default color,
though:

1. First, to open the Layer Properties dialog box, do one of the following:
o Double-click the layer icon (to the left of the layer name).
o Cmd+click (Mac) or right-click (Win) the layer and choose Properties from the

pop-up context menu.
o Select the layer whose outline color you want to change, and go to Modify →

Layer.
2. When the Layer Properties dialog box opens, click the Outline Color swatch and

choose the color you want.
3. When you've finished, click OK.

Locking/Unlocking Layers

When you first create a layer in Flash MX, it is automatically unlocked; otherwise, you
wouldn't be able to add to or edit the layer. However, the tricky thing about layers is that you
don't need to have them selected to actually manipulate their contents. As a result, you could
inadvertently modify the content of one layer while working on the content of another. This
can be particularly frustrating if the movie on which you're working took a great deal of time
to create, and the mistaken displacement of any given object would result in lost work hours.
To avoid this sort of unfortunate situation, Flash lets you lock layers. You have a few ways to
lock/unlock a layer:

• Click the small dot in the layer's lock column (represented by a padlock). A little
padlock automatically appears, denoting the layer's locked state. To unlock the layer,
click the padlock.

• To lock all layers at the same time, click the Timeline's padlock icon. To reverse this
process, click the padlock icon again.

• To lock all the layers except one, just Option/Alt+click the small dot in the layer's eye
column that you want to remain visible. Alternatively, you can Cmd+click (Mac) or
right-click (Win) and choose Lock Others from the pop-up context menu.

Creating and Editing Layer Folders

 New to MX One of the exciting features of Flash MX, at least in terms of layers, is the
ability to create what are called layer folders. Essentially, layer folders are folders in the
Timeline into which you can place multiple layers-thereby organizing your Timeline.

For instance, say you had an animation with a series of cartoon characters. If you've planned
your movie correctly, each discreet part of the characters (arm, head, leg, floppy ears, and so
on) occupies an individual layer. To cut down on the confusion in your Timeline, you could
organize the body parts for each character into a layer folder-a Goofy folder, a Daffy folder,
and so on.

One of the cool things about layer folders is that you can expand and collapse them, thereby
hiding all of the associated layers in the Timeline without affecting what is visible on the
Stage.

 Note Although layer folders don't manifest themselves in the Timeline like layers do, they
have many of the same properties (lock/unlock, visibility, name, and outline color)-all of
which you can manipulate in the same way as you would if you were working with a
regular layer.

In the following sections, you are going to learn everything you need to know about layer
folders. You'll explore how to create them, edit them, add layers to layer folders, and expand
and collapse them.

 Note You can change the position of a layer folder in the same way that you can move a
layer-a procedure we'll talk about shortly.

Creating a Layer Folder

The process by which you create a layer folder is really quite easy-just do one of the
following:

• Click the Insert Layer Folder button in the bottom-left corner of the Timeline.
• Go to Insert → Layer Folder.
• Cmd+click (Mac) or right-click (Win) any layer in the Timeline and choose Insert

Folder from the pop-up context menu.

When you carry out any of these procedures, Flash automatically adds the new layer folder
above the selected layer.

 Tip You can also convert a selected layer to a layer folder by changing its type from Normal
to Folder in the Layer Properties dialog box (accessible by selecting the layer and then
going to Modify → Layer).

Adding a Layer to a Layer Folder

The purpose of layer folders is to contain layers. As a result, you need to learn how to add
layers to layer folders:

1. Make sure you've already created a layer folder using the procedure described in the
previous section.

2. Click and drag the desired layer to the layer folder's icon (notice that the folder icon
will be highlighted when your cursor is directly over it).

3. Release your mouse button.
4. The layer will move so that it's just below the layer folder. It will also be indented

slightly, indicating its position within the layer folder.

Expanding and Collapsing a Layer Folder

As mentioned previously, one of the benefits of a layer folder is that it can be expanded to
show its contents and collapsed to hide them. Ultimately, this lets you unclutter your Timeline
without actually removing the collapsed layer folder's associated objects/symbols from the
Stage.

To either collapse or expand a layer folder, just click the small arrow to the left of the layer
folder name. When the arrow is pointing down and the layer folder's associated layers are
visible, you know that it is expanded.

On the other hand, if the arrow is pointing to the right, and the layer folder's associated layers
aren't visible, you know it has been collapsed.

Editing Layers
Now that you've looked at how to manipulate a layer's properties, it's time to explore how to
edit layers. You've already mastered the finer points of creating layers, adding content, and
setting properties. In this section, you'll learn how to move a layer, copy layers, delete layers,
rename a layer, and change a layer's height.

Moving a Layer

As you've already learned, the position of a layer within the stack determines whether its
associated objects or symbols either overlay other layer content or are overlayed by the
content from other layers. Because of this, you are going to want to be able to change the
position of a layer within the stack, thereby changing the way in which objects and symbols
on the Stage interact visually with one another. Here's how:

1. Select the layer you want to move.
2. Click and drag the layer to its intended place within the Timeline's layer stack. Notice

that a thin black bar will appear, highlighting the projected position of the layer.
3. When the highlighted line reaches the location where you want to move the layer,

simply release your mouse button.

Copying a Layer

You might find yourself in a situation where, instead of inserting a new layer, you want to
copy an existing layer (along with all of its content). This process is a little cumbersome. You
really don't copy the layer itself; you copy its content (frame by frame) and then paste it into a
newly created layer. Follow these steps:

1. Select the layer you want to copy by clicking its name-this selects the entire layer.
2. Go to Edit → Copy Frames or use the shortcut Cmd/Ctrl+Option/Alt+C-this copies all

the content in each of the layers' frames.
3. Create a new layer. If you are having trouble remembering how to insert a new layer,

see the "Creating a New Layer" section.
4. Select the newly created layer by clicking its name.
5. Go to Edit → Paste Frames or use the shortcut Cmd/Ctrl+Option/Alt+V.

Deleting a Layer

Deleting a layer is just as simple as creating one:

1. Select the layer you'd like to delete by clicking its name.
2. Do one of the following:

o Click the Delete button .
o Click and drag the layer to the Delete button.
o Ctrl+click (Mac) or right-click (Win) and choose Delete Layer from the pop-

up context menu.

 Note When you delete a layer, you also delete all of its content from the Stage. Therefore,
make sure you want to do this because Flash doesn't ask you whenthere you really want
to go ahead with the procedure

Renaming a Layer

As you've already seen, each layer is created with a distinct name. Granted, the name Layer 1
isn't all that imaginative, but Flash lets you change the layer name to anything you want.

 Tip When renaming a layer, it's a good idea to give it a name that describes its content. This
makes it easier for you to identify the layer's content as your Flash creation gets more
complex.

You have a few ways to rename a layer:

• Double-click the layer's name (not its icon) and then enter a new name when the
editable field appears.

• Double-click the layer's icon (located to the left of its name). When the Layer
Properties dialog box opens, enter a new name into the Name field. Alternately, you
can go to Modify → Layer to open the Layer Properties dialog box.

 Note If the entire layer name isn't visible, simply click and drag the bar that separates the area
of the left part of the Timeline (where the layer name is) and the right part of the
Timeline (where the frames are).

Altering Layer Dimensions

When layers are created, they are a default height. However, you might find yourself in a
position where you want to change the height of the layer. For instance, when it comes to
working with audio in Flash (covered in Part VI), you can add sounds to the Timeline. Unlike
other objects that you work with in conjunction with the Timeline, the audio files are
represented by the sound's waveform, which is easier to see when the layer's size is larger.

 Note Although this section discusses how you can change a layer's height, you are going to

learn how to manipulate the appearance of the frames within the layer (and thereby the
layer itself) in Chapter 9.

To increase the height of a layer, follow these steps:

1. Open the Layer Properties dialog box. If you are having trouble remembering how, see
"Working with Layer Properties."

2. Choose one of the options from the Layer Height drop-down menu (100%, 200%,
300%).

3. When you are finished, click OK.

 Note You might find that the number or size of your layers inhibits the number of layers you
can see simultaneously in the Timeline. There are a few ways to work around this. First,
you can use the Timeline's scroll bar to scroll down to lower layers. Alternatively, you
can click and drag the bar that separates the Timeline from the Stage to increase the
amount of visible layers.

Distributing Objects to Layers
 New to MX As mentioned previously, it's wise to limit a single object or symbol to a single
layer when you are working with complex composite images or animations. However, you
might find yourself in a situation where you end up with multiple objects or symbols on a
single layer.

 Note When you import many types of vector files (such as those from Adobe Illustrator or
Macromedia FreeHand), the image will comprise many different ungrouped objects.

As a result, Flash MX has a handy command that allows you to select multiple objects and
distribute them so that they each occupy their own discreet layer.

Flash MX will give all the newly created layers a unique name. In the case of letters in a
string of text that has been broken apart (discussed in Chapter 5), each layer will be named
with the particular character (F, L, A, S, or H, for example). In the case of a layer that
contains a Library object (such as a symbol, bitmap, or video clip), Flash MX will give the
layer the same name as the object itself. In the case of a layer containing a symbol instance,
Flash MX will give the layer the same name as the instance. Finally, in the case of a layer
containing a graphical object created using Flash's painting and drawing tools, Flash will give
the layer a default name of Layer 1-which will increase sequentially (Layer 2, Layer 3, Layer
4, and so on).

To distribute objects to layers, follow these steps:

1. Select the objects on the Stage that you want to distribute to layers. Remember, you
can select objects across multiple layers.

2. From here, either choose Modify → Distribute to Layers or use Ctrl+click (Mac) or
right-click (Win) and select Distribute to Layers.

Creating Guide Layers
As mentioned, layers come in several different flavors. A guide layer is one of the various
types in which a layer comes, and there are two different kinds of guide layers: regular guide
layers and motion guide layers. You can fill a regular guide layer with content (lines, shapes,
and so on) that help with layout and positioning (kind of like customizable, irregular graph
paper). You can use a motion guide layer, on the other hand, to help create the complex
motion path of an animation.

This section teaches you how to designate an existing layer as a guide layer and how to create
a motion guide (without actually creating the animation proper). You'll get into how to create
the animations in Chapter 9.

 Tip The cool thing about guide layers, whether you are using them for layout or to create a
path for complex animation, is that they don't appear in the final Flash movie after it has
been published.

To create a guide layer, follow these steps:

1. Select the layer you want to designate as a guide layer.

2. From here, you have several choices:
o To create a regular guide layer (not a motion guide), Cmd+click (Mac) or

right-click (Windows) and choose Guide from the pop-up context menu-the
Guide Layer icon will then appear to the left of the layer's name.

o To add a motion guide layer, you have three choices: Click the Add Motion
Guide icon in the lower portion of the Timeline, go to Insert → Motion
Guide, or Ctrl+click (Mac) or right-click (Win) and choose Add Motion Guide
from the pop-up context menu. An additional layer is created just above the
current layer. You can identify the motion guide layer by the special symbol
(which looks like an arc with a circle on top of it) just to the left of the layer's
name.

 Tip You can also create guide layers or motion guide layers by clicking the
appropriate option in the Layer Properties dialog box.

After their creation, both types are immediately usable. When it comes to the regular guide
layer, you can create any visual element (by painting and drawing or importing) to aid in your
layout. When it comes to a motion guide layer, you can create a motion path for an animation.
As mentioned before, the next step in using motion guide layers is beyond the scope of this
chapter. If you are eager to learn about creating animation paths with a motion guide layer,
see Chapter 9.

Creating Mask Layers
Mask layers are the second type of layer you'll look at in this chapter. Essentially, you use
mask layers to create a hole through which the contents of one underlying layer are visible.
Imagine looking through a keyhole at a complex scene. Because of the shape of the keyhole,
you can only see a limited portion of the scene itself. This is essentially how a mask layer
works. In Flash, you create the size and shape of the "hole" through which the scene beyond
(or, because of the nature of layers, below) is visible. Figure 8.2 illustrates a mask layer in
action.

Figure 8.2: The image on the left illustrates a non-masked imaged. The image on the right
illustrates the same image with a circular mask.

One of the neat things about mask layers is that you can group a series of them together to
create a single unit resulting in a complex effect. You can animate the mask so that it moves.
Mask layers are useful for creating all sorts of effects such as a scene viewed through a
telescope or a landscape revealed by a spotlight-the possibilities are endless.

 Note Unfortunately, you cannot mask layers inside Button symbols.

Because you'll be exploring the process of animating mask layers in Chapter 9, you'll spend
time in this chapter simply learning how to create a static mask layer.

Let's take a look at how you go about creating a mask layer:

1. Select the layer with the content that will be visible through the mask you create.

 Tip Remember that a mask layer only works on the layer immediately below it.

2. Insert a new layer by clicking the Insert Layer button in the Timeline or by selecting
Insert → Layer.

3. In the newly created layer, which is placed above of the layer with the content you
want the mask applied to, draw the "hole" through which the other layer will be
visible. Although the hole doesn't have to circular (it can be any shape), it must be
filled. When the layer is converted into a mask layer, all areas composed of a solid fill
will be transparent. On the other hand, all areas not composed of a solid fill will
become opaque.

4. Ctrl+click (Mac) or right-click (Win) the layer's name and choose Mask from the pop-
up context menu.

5. The layer is automatically turned into a mask layer. Note that both the mask layer's
and the masked layer's icons change.

Inspirational Design Model
Any complex Flash creation needs to leverage the power of layers to effectively and
efficiently deliver its content. As a result, any Inspirational Design Model presented would
need to exhibit an incredibly high level of design, interactivity, and animation that would only
be made possible by layers. With this in mind, one needs to look no further than Blitz Digital
Studios (www.blitzds.com).

Based in Valencia, California, Blitz Digital Studios produces innovative information and
interactive entertainment for the traditional television markets, as well as emerging web and
wireless markets.

Blitz Digital Studios' corporate website is an incredibly stylish and sophisticated interactive
experience that, although somewhat bandwidth intensive, is a feast for the eyes (see Figure
8.3).

Figure 8.3: Blitz Digital Studios

Summary
In this chapter, you topped off your exploration of Flash's visual content creation tools with a
look at layers. Essentially, layers are invisible levels (stacked one upon the other) where you
can place all manner of content. You started the chapter off by looking at how to create a new
layer. You then explored how to add content to layers. From there, you learned how to set the
layer's various properties. You then mastered the ins and outs of creating layer folders and
editing layers. Finally, you spent time looking at two different types of layers: guide layers
and mask layers.

Hands On 2: Creating a Garden with
Objects and Layers
Overview
Throughout Part II, you explored the Flash tools for painting, drawing, and manipulating
objects. In this tutorial, you're going to put all of your hard-earned knowledge to work by
creating a garden scene. As you have yet to learn how to animate objects in Flash, the garden
itself will be static. The tutorial will help you create a basic garden scene that you can later
spruce up-no green thumb required.

 On the CD-ROM This tutorial's files are on the companion CD-ROM. Look for garden.fla
in the Hands On 2 folder. In this file, you'll find a copy of the finished garden scene. Although
you can certainly use the objects in the file's Library to create your own garden scene, it's
strongly encouraged that you create and use your own graphics. The value of this assignment
is based more on the process itself than on working with the actual graphics and duplicating
each step.

Creating the Background

The first step in the tutorial is to create the background:

1. Create a new document by going to File → New or using the shortcut Cmd/Ctrl+N.
2. Go to Modify → Document or use Cmd/Ctrl+J to open the Movie Properties dialog

box.
3. At this point, you want to see the color for the garden's sky. Click the Background

Color swatch and choose a nice sky blue color from the Color Picker.
4. After you've chosen a color for the sky, click OK.

Creating the Ground
From here, you'll want to create the ground from which will spring your digital flowers:

1. First, double-click the existing layer's icon to open the Layer Properties dialog box.
2. Enter Ground into the Name field.
3. Click OK.
4. Select the Rectangle tool and choose a green color by clicking the Fill Color swatch in

the Colors section of the Toolbox.
5. Because you don't want the ground to have an outline, you'll need to turn the stroke

color off. To do this, click the Stroke Color swatch in the Toolbox and click the No
Color button in the upper-right corner of the Color Picker (just to the left of the color
wheel).

6. Now, you're ready to actually create the ground. With the Rectangle tool, draw a
rectangle that occupies about half of the height of the Stage.

 Tip Remember, the Rectangle tool can go beyond the Stage itself. However, anything
in the work area (the gray area outside the Stage) will not be included when you
publish the final scene.

7.
8. From here, you need to take the rectangle you created and turn it into a symbol. To do

this, select the ground/rectangle and go to Insert → Convert to Symbol or use the
shortcut F8.

9. When the Convert to Symbol dialog box opens, make sure the Graphic radio button is
checked and enter Ground into the Name field.

10. Click OK.
11. After you've done this, your scene will look roughly like this:

Setting Up the Flowerbeds

Now that you've created the sky and the ground that will serve as a background for your
garden scene, it's time to create several flowerbeds:

1. The first step is to create several new layers into which you'll place a number of
flowerbeds. Click the Insert Layer button in the bottom-left corner of the Timeline or
go to Insert → Layer to create a new layer.

2. Double-click the new layer's icon, and enter the name flowerbed1 into the Name field.
3. Repeat the process until you have a total of three new layers, each with a unique name

(you can use flowerbed1, flowerbed2, and flowerbed3 or another naming system
entirely).

4. At this point, your Timeline should look something like this:

Creating the Flowerbeds
Now, to create the actual flowerbeds, follow these steps:

1. Select the Rectangle tool from the Toolbox.
2. Select a nice brown color for the dirt by clicking the Fill Color swatch in the Toolbox's

Colors section.
3. As you don't want the flowerbed to have an outline, click the Stroke Color swatch in

the Toolbox and click the No Color button in the upper-right corner of the Color
Picker (just to the left of the color wheel).

4. To give the flowerbed a more organic look, click the Round Rectangle Radius button
(accessible in the Toolbox's Options section when the Rectangle tool is selected), and
enter a value of 5 in the Corner Radius field when the Rectangle Settings dialog box
opens.

5. Select the flowerbed1 layer, and draw a vertical rectangle in the green area of the
scene. Your scene now should look something like this:

6. Now, select the rectangle and convert it to a symbol by going to Insert → Convert to
Symbol or by using the shortcut F8. When the Convert to Symbol dialog box opens,
make sure the Graphic radio button is selected and enter flowerbed1 into the Name
field.

Adding Perspective
From here, you are going to want to add a little perspective to your scene by transforming the
shape of the rectangle:

1. Select the rectangle, click the Free Transform tool in the Toolbox, and select the
Rotate and Skew button from the Toolbox's Options section.

2. When the rotate handles appear around the rectangle, move your cur-sor over the top
handle (not one of the ones in the two upper corners). When your cursor changes to
two opposite-pointing arrows, click and drag to the right to skew the rectangle. Your
scene should now look something like this:

3. To create a second bed, click the flowerbed2 layer.
4. Open the Library by going to Window → Library or by using the shortcut F11.
5. Select the flowerbed1 symbol, and Ctrl+click (Mac) or right-click (Win) and choose

Duplicate from the pop-up context menu.
6. When the Duplicate Symbol dialog box opens, type flowerbed2 in the Name field.

Make sure the Graphic radio button is selected.
7. Click OK.
8. With the flowerbed2 layer still selected, drag the flowerbed2 symbol from the Library

to the Stage.
9. From here, you'll need to skew the flowerbed "preform" that you just dragged into the

flowerbed2 layer so that it's pointing in the opposite direction of the flowerbed1
symbol. To do this, select the rectangle, click the Free Transform tool in the Toolbox,
and click the Rotate and Skew button in the Toolbox's Options section. When the
rotate handles appear around the rectangle, move your cursor over the top handle (not
one of the ones in the two upper corners). When your cursor changes to two opposite-
pointing arrows, click and drag to the left to skew the rectangle.

10. After you've skewed the symbol to the left, click and drag it to the right side of the
Stage. Your scene should now look something like this:

Completing the Flowerbeds
Now that you you've created a flowerbed on both sides of the scene, you can then add a third
one in the middle. As you are trying to give your scene some visual perspective, the middle
flowerbed will need to have a different shape than the previous two:

1. If it isn't, open the Library by going to Window → Library.
2. Select the flowerbed1 symbol, and then Ctrl+click (Mac) or right-click (Win) and

choose Duplicate from the pop-up context menu.
3. When the Duplicate Symbol dialog box opens, type flowerbed3 in the Name field.

Make sure the Graphic radio button is selected.
4. Click OK.
5. With the Library still open, double-click the flowerbed3 symbol to enter into Symbol

Editing mode.
6. When the flowerbed3 symbol opens in the Symbol Editor, select it with the Arrow

tool.
7. Select the Free Transform tool from the Toolbox and select the Distort button from the

Options section of the Toolbox.
8. Hold down your Shift key, click either the top-left or top-right handle of the object's

bounding box, and drag inward so that the top of the flowerbed becomes tapered.
When you've finished tapering the object, release your mouse button.

9. Now, with the Shift button still held down, click either the bottom-left or bottom-right
handle of the object's bounding box, and drag outward so that the bottom of the
flowerbed becomes wider than the top. When you've finished, release your mouse
button.

10. At this point, the flowerbed3 symbol should look something like this:
11. Click the Scene 1 link in the Scene and Symbol bar to return to the Stage.
12. Now, select the flowerbed3 layer.
13. Click and drag the flowerbed3 symbol from the Library onto the Stage. Position it so

that it is between the two other flowerbeds. The scene should look something like this:

Creating the Flowers
Now that you've created the beds from which your digital flowers sprout, it's time to create
the flowers themselves. In this section, you'll actually only create one flower (a daisy) that
you'll then manipulate and transform to give it the appearance of many different flowers:

1. Because the scene is getting quite full already, start off by creating a symbol from
scratch in Symbol Editing mode. Go to Insert → New Symbol or use the shortcut
Cmd/Ctrl+F8 to enter Symbol Editing mode. When the New Symbol dialog box pops
up, enter daisy into the Name field. Remember to make sure that the Graphic radio
button is selected.

2. When the Symbol Editor opens, start by naming the existing layer stem.
3. From here, create four additional layers named leaf 1, leaf 2, petals, and center.
4. At this point, the Timeline in the Symbol Editor should look like this:

5. Now, click the Brush tool. Choose a dark green color by clicking the Fill Color swatch
in the Toolbox's Colors section. From the Brush Size drop-down menu (located in the
Toolbox's Options section when the Brush tool is selected), choose one of the smaller
diameter brush sizes.

 Note If you are using a graphics tablet (such as Wacom Intuos2), you can select the
Use Pressure button in the Options section of the Toolbox (when the Brush tool
is selected) to take advantage of your graphic tablet's variable pressure stylus.

6. Now, after selected the stem layer, draw a single vertical line about 2.5 centimeters (1
inch) long. It should look something like this:

7. From here, select the Pencil tool.
8. Click the leaf 1 layer and draw a leaf-shaped object. Make sure the shape is closed.

When the outline of the leaf is drawn, choose a green color by clicking the Fill Color
swatch in the Toolbox (if it isn't still selected), and fill the leaf outline using the Paint
Bucket. Your leaf should look something like this:

 Note If you want your leaf to look a little smoother, choose Smooth from the Pencil
Mode drop-down menu (which is accessible in the Toolbox's Options section
when you've got the Pencil tool selected).

9. Select the entire leaf you just created (both stroke and fill), and go to Modify →
Group.

10. Now that you've created the first leaf, you want to create the second. Select the leaf
you've just created and copy it by going to Edit → Copy.

11. Now, select the leaf 2 layer and paste the copied leaf by going to Edit → Paste.

12. Select the newly pasted leaf and go to Modify → Transform → Flip Horizontal.
13. Now, position the two leaves on either side of the stem. Your image so far should look

something like this:
14. Now, on to the central part of the flower. Select the center layer in the Timeline. Draw

a small circle with the Oval tool in the area just above the stem (if it isn't exactly
where you want it, just select and move it). Set whatever color you want (for both the
stroke and fill) by clicking the appropriate color swatches in the Toolbox. It should
look something like this in relation to the stem and leaves:

 Note Remember that all of the objects thus far consist of both a stroke and fill. It
would be wise to group the two (select both and then go to Modify → Group) to
avoid any problems.

15. From here, all you have to do is draw the flower's petals. Click the petals layer in the
Timeline.

16. With the Pencil tool, draw a single shape for the petal. Make sure it's a closed shape.

 Note To avoid creating the shape with jaggy edges, you might want to select Smooth
from the Pencil Mode drop-down menu in the Options section of the Toolbox
when the Pencil tool is selected.

17. Set whatever color you want for the stroke using the Toolbox or the Property
Inspector. Fill the leaf shape with any color you want using the Paint Bucket. It should
look something like this in relation to the rest of the flower:

18. Now you need to "clone" the single petal into the remainder of the necessary petals.
Select the petal, copy it by going to Edit → Copy, and then paste it (on the same layer
as the original petal) by going to Edit → Paste.

19. Click and drag the new petal so that it's sticking out from the center, right next to the
previous petal.

20. From there, select the petal with the Arrow tool (if it isn't already), select the Free
Transform tool, and click the Rotate and Skew button (in the Options section of the
Toolbox).

21. Move your cursor over one of the corner handles. When your cursor changes, click
and drag your cursor so that the base of the petal aligns with the central part of the
flower. After you've done this, the flower should look something like this:

22. Now, repeat steps 18-21 until petals surround the entire circumference of the central
portion of the flower. When finished, it should look something like this:

Adding the Flowers to the Scene
Now, you're ready to go back to your original scene and start adding flowers:

1. Click the Scene 1 button in the Scene and Symbol bar to return to the original scene on
which you were working.

2. Add an additional layer and call it daisy1.
3. Select the newly created daisy1 layer, and drag the daisy symbol from the Library onto

one of the flowerbeds. So far, your scene should look something like image on bottom
left.

4. Now, to add some variation to the scene, create an additional layer and call it daisy2.
5. Select the newly created daisy2 layer, and drag another symbol instance of the daisy

from the Library onto the Stage.
6. Make sure it's selected and go to Modify → Transform → Flip Horizontal. After the

daisy has been flipped, position it on one of the other flowerbeds. So far, your scene
should look something like image on bottom right.

Now, to finish up this tutorial, you need to place one of the flowers farther away from the
viewer, thereby preserving the scene's perspective:

1. Create an additional layer and call it daisy3.
2. Select the newly created layer, and drag the daisy symbol anywhere onto the Stage.
3. Select the newly placed daisy symbol with the Arrow tool.
4. Select the Free Transform tool from the Toolbox, and select the Scale options.
5. With the Shift key held down, click and drag inward on one of symbol's bounding

box's four corner handles until it's about half of its original size.
6. After you've resized the daisy symbol, move it up (in relation to the Stage) toward the

sky. Place it in one of the flowerbeds. By doing this, you will maintain the scene's
perspective. Your final scene should look something like this:

Now that you've created a relatively simple garden (with only three flowers), you can use the
processes described in this tutorial to make the scene more complex. Interested in adding a
sun? Well, that's really just a yellow circle. How about some more flowers-or even some
different types of flower? Take some time to experiment, and you're sure to get great results!

Part III: Animating with Flash
Chapter List
Chapter 9: Animating with the Timeline
Chapter 10: Working with Movie Clips
Chapter 11: Using Scenes to Organize Animated Content

Hands On 3: Animating a Space Scene

Part Overview
While Flash MX has evolved into a full fledged interactive design tool suitable for creating a
whole range of groovy media, it is, at its heart, still an animation program. Flash's
fundamental feature, vector based graphics, really shines when it comes to animation. As a
result, it behooves you to become intimately familiar with all the ways in which you can
infuse your beautiful Flash creation with movement.

In this section of the book, you are going to learn almost everything you need to know about
the fundamentals of animating in Flash. You'll start off by looking at how to use the Timeline
to make your creation zip, bounce, zing, and jump. From there, you'll explore one of the most
important aspects of animating in Flash: Movie Clips (a topic which is vital to your future
adventures in ActionScripting.) Finally, you'll explore one of the most useful tools with which
you can control, manage, and manipulate your animation: Scenes.

Chapter 9: Animating with the Timeline
Overview
FutureSplash (later to become Flash) was a simple vector animation program when
Macromedia acquired it from FutureWave in 1997. Though the most recent version of Flash
has about 100 times the bells and whistles that FutureSplash did, it is still, at its core, an
animation program. Although you can do much more than animate objects, much of Flash
MX's power lies in its ability to create movies with content that changes over time.

Up until this point, you haven't created anything that moves. If you had wanted to just create
static images, you could have easily turned to Macromedia Fireworks or Adobe Photoshop.
But, no, you want to make things that move and spin and bounce! Whether it's a character that
walks across the screen and promptly gets hit by a falling anvil or a button that spins around
when users move their cursors over it, you want to create animations. In this chapter, you'll
explore the primary tool with which you construct and manipulate animations in Flash MX:
the Timeline.

Understanding Animation
Animation is the process by which an object's size, position, color, or shape changes over
time. In Flash, you have two animation methods, each with their own unique development
process and strengths: frame by frame and tweening. Before you start learning about using
these two methods to infuse your static creations with movement, you need to grasp some
fundamental animation concepts, including frames, keyframes, and frame rate.

Understanding Frames and Keyframes

Any animation, whether the latest Hollywood 3D animated blockbuster, Walt Disney's
original Fantasia, or your humble Flash creation, contains frames. Each frame contains one

static image that, when displayed in succession with other images in other frames, creates the
illusion of movement. In Flash MX, frames are displayed horizontally in the Timeline as
small boxes.

 Note The small boxes in the Timeline are called cells. You can convert any cell into a frame,
a keyframe, or an empty keyframe by using the commands in the Insert menu.

Each frame's content is displayed as the playhead passes through it, thereby creating
something of a digital "flipbook."

In Flash, any frame populated by content (of any kind) that you've directly manipulated
(opposed to being placed there by Flash in a tweened animation, for example) is represented
in the Timeline by a small black circle-this is called a keyframe. A keyframe represents a
point on the Timeline where a change occurs in the animation. For the time being, know that
any time you want to change your animation in any way (add content, subtract content, start
the motion of an object, and so on), you'll use a keyframe.

So what exactly is the difference between content in frames and content in keyframes? Well,
it's pretty simple. Although a keyframe and a frame can have exactly the same content, you
can only directly manipulate that content if it resides in a keyframe. If it resides within a
frame, there is no way, short of turning the frame into a keyframe (which is a perfectly
functional solution), to directly manipulate its content.

Beyond frames and keyframes, there is a third type of frame of which you should be aware.
Somewhere between an ordinary frame and a keyframe, an empty keyframe is essentially a
keyframe that has yet to be "filled" with content. An outline of a small circle represents an
empty keyframe.

 Note By default, Flash designates the first frame of any animation as an empty keyframe. The
remaining frames in any given layer are little more than placeholders for future empty
keyframes or keyframes (which you need to create).

Changing the Appearance of Frames in the Timeline

Up until now, the only way you could actually change the appearance of a frame was to
change the height of an entire layer (discussed in Chapter 8). The problem with this is that
you weren't really changing the appearance of the frames themselves, but the layer itself. And
besides, as you've already discovered, there are only three options for layer height, making it a
pretty limited solution.

However, in Flash MX, you have the ability to change the appearance of the frames
themselves by using the Frame View button, located in the top-right corner of the Timeline.
When clicked, the Frame View button opens a drop-down menu.

 Note Unfortunately, the option you choose applies to all layers within the Timeline. You can't

change the frame appearance for a single layer.

When clicked the Frame View button opens a drop-down menu containing the following
options:

• Tiny makes the frames extremely small-thereby allowing more frames to be displayed
at any given time in the Timeline.

• Small changes the size of the frames so that they are between the Tiny option and the
default, Normal.

• Normal is the default frame size.

• Medium changes the size of the frame so that they are slightly larger than the default
Normal size.

• Large increases the Timeline's frames to their maximum sizes.

• Short reduces the height of the frames in the Timeline.

• The Tinted Frames option, which can be toggled on and off, controls whether every
sequential frame in an animation is gray or unshaded.

• By selecting Preview in Context, Flash creates a thumbnail of each keyframe's
contents that are a direct proportional reflection of what is on the Stage-including all
the empty space as well.

• When you choose Preview, you get a thumbnail of each keyframe's contents that fills
the entire cell (opposed to being a proportional representation of the entire Stage).
Don't be fooled-even though the results of Preview and Preview in Context might be
similar, the difference usually asserts itself in the amount of white space that is
displayed.

 Tip Ultimately, because you are displaying extra information in the Timeline, using either
Preview or Preview in Context will consume more processing power-thereby possibly
causing your computer to slow down.

How the Timeline Represents Animation

The Timeline represents different kinds of animation (and Timeline elements) differently. As
a result, it's in your best interest to become familiar with each so that when you get into
animating with the Timeline, you won't be caught off guard by the way an animation looks.

• A frame-by-frame animation is usually represented by a layer with a series of
sequential keyframes.

• A motion tween is denoted by a keyframe at the beginning and end, between which a
black arrow (representing the actual tween) runs. In addition, a motion tween has a
light blue background.

• Like a motion tween, a shape tween is denoted by a keyframe at the beginning and
end, between which a black arrow (representing the actual tween) runs. The difference
is that the intervening frames are light green instead of light blue.

• When a keyframe is followed by a dashed line, motion tween is incomplete (usually
the result of the final keyframe being removed or not added).

• When a series of gray frames begins with a keyframe and ends with a hollow
rectangle, all frames after the keyframe have exactly the same content.

• A frame or keyframe with a small lowercase a represents a point in the animation
where a frame action has been added. (For more information on actions and
ActionScripting, see Part IV and Part V.)

• A frame or keyframe with a red flag indicates the presence of a frame label.

 Note Frame labels are extrely useful for identifying and targeting specific frames (instead of
using frame numbers) when you are using actions. You can also use them in the
development process to add comments or notes to specific frames. To insert a frame
label, select the frame, open the Property Inspector, and enter the label into the Frame
Label field.

Understanding Frame Rate

Frame rate determines the rate at which an animation plays. Represented in frames per
second (fps), an animation's frame rate is related both to the speed at which the animation
plays as well as its overall quality. Think of it this way: If you have a high frame rate, more
frames will be displayed in the space of a second, thereby increasing the animation's quality.
The lower your frame rate, the fewer frames will be displayed in a given second, thereby
increasing the animation's choppiness and decreasing its quality.

You're probably thinking, well, that's all great, but if a higher frame rate means a better
quality animation, then why would anyone ever set a low frame rate? Well, there are some
pretty important reasons why you shouldn't always set a high frame rate, the most important
of which concern memory and bandwidth. When you set a high frame rate, you are forcing
the user's computer to display more information in the span of a second. As a result, a higher
frame rate might cause some slower computers (or slower Internet connections) to "choke" on
the higher rate of information, thereby causing the animation to hang, skip, or crash entirely.

To set your animation's frame rate:

1. Go to Modify → Document or use the shortcut Cmd/Ctrl+J to open the Document
Properties dialog box. Alternatively, you can double-click the frame rate indicator at
the bottom of the Timeline.

2. Enter a value into the Frame Rate field.

 Tip Although 12fps is Flash's default frame rate, you're certainly safe if you use a higher
frame rate. However, it's wise, for the reasons already discussed, to set a frame rate no
higher than 20 unless you are absolutely confident your users' systems can cope with
more information.

Creating Frame-by-Frame Animations
Way back in the dark ages of animation (before computers), animators had to painstakingly
create the individual images in each frame, varying each slightly to get the illusion of
movement.

In Flash, the most basic form of animation, frame-by-frame animation, works the same way.
Essentially, frame-by-frame animation works by creating a unique image in each frame. Each
frame then becomes a keyframe (because it has content in it that alters the animation). As the
playhead passes through each of the frames, the frame's content displays, thereby creating the
illusion of changing over time. Frame-by-frame animations are great if you want to exert
direct control over the details in your animation.

There is, however, one problem with creating a frame-by-frame animation. Because each
frame needs to be "filled" with content unique from the previous frame, you end up creating a
lot of art. Imagine if your movie contained an animation that was 300-frames long. You
would have to create at least 300 static images-an altogether laborious undertaking. Granted,
using the Library, symbols, and symbol instances to recycle some of your material could help
reduce the workload. However, whichever way you look at it, you'd be spending a great deal
of time creating art assets for your animation.

Now, let's create a frame-by-frame animation. You'll start with something particularly
mundane, a sphere moving across the Stage, to help you grasp the basics of frame-by-frame
animation:

1. Start with a new file (File → New or Cmd/Ctrl+N).
2. Go to Insert → New Symbol. When the Create New Symbol dialog box opens, enter

sphere in the Name field, make sure the Graphic radio button is selected, and click
OK. When the Symbol Editor opens, draw a sphere about 3 centimeters (1 inch) in
diameter. When you're finished, return to the Stage by clicking the Scene 1 link in the

Scene and Symbol bar. (See Chapter 7 if you have trouble remembering how to work
with symbols.)

3. Now that you have a sphere in the Library, click the first frame of the Timeline's
single layer (which, if you remember, is an empty keyframe by default), open the
Library (Window → Library), and drag the sphere onto the left side of the Stage.
Notice that the first frame automatically becomes a keyframe (denoted by the small
black circle).

 Note Remember, Flash automatically designates the first frame of any layer as an
empty keyframe. As a result, you don't have to go through the process of
inserting a keyframe. However, for the remainder of the layer, you'll have to
insert each keyframe yourself.

4. Now that you've populated the first keyframe with content, you can create the
remainder of the sequence. Click the second frame in the Timeline (just to the right of
the keyframe you created) and go to Insert → Keyframe (or use F6). This inserts a
second keyframe. You'll notice that Flash has automatically populated the keyframe
with the content of the previous keyframe. You could keep on adding successive
keyframes, and Flash would continue to populate them with the contents of the first
one.

 Note If, for some reason, you don't want the same content in the second frame, just
insert a blank keyframe (Insert → Blank Keyframe). To add content to the blank
keyframe, simply select it, and then add something to the Stage. When you do
this, the blank keyframe will become a keyframe.

5. Make sure you have the second keyframe selected. Select the sphere with the Arrow
tool, and move it to the right slightly.

6. Select the third frame in the Timeline, and insert a new keyframe.
7. Make sure you have the third keyframe selected. From here, select the sphere and

move it slightly to the right.
8. Continue adding successive keyframes and moving the sphere to the right in each one

until it has reached the right side of the Stage. Depending on how much you moved
the sphere each time (the less you moved it, the more keyframes it will take to move it
to the right side of the screen), your Timeline should be filled with several keyframes.

Congratulations, you've created your first frame-by-frame animation. To test it, you can do
any of the following:

• Drag the playhead through the Timeline to view the animation.
• Go to Control → Play or hit Return/Enter.
• Go to Control → Test Scene or Control → Test Movie (which opens a new window

where the animation will continue to loop).

Working with the Onion Skinning Option

When you were creating a frame-by-frame animation in the previous section, you moved the
sphere in each successive keyframe without having real reference as to its position in the
preceding frame. This probably proved to be a little frustrating because, without a way to get
the sphere exactly in line with the one in the previous frame, your animation looked a little
jumpy. Granted, you could simply click the previous frame, check the position of the sphere,
and then click back and adjust the position of the next one. However, this process is a little
time consuming and frustrating. This is where onion skinning comes in.

Basically, onion skinning lets you see the contents of frames preceding and following the
currently selected frame. The concept comes from the traditional pen-and-paper animation
technique of using tracing paper to view a sequence of animation frames. With onion
skinning, you can do away with all the guesswork inherent in flipping back and forth to see
the contents of previous frames and smoothly animate a moving object.

You have several options when using onion skinning:

Turning onion skinning on To turn onion skinning on, click the Onion Skin button
located at the bottom of the Timeline. By doing this, two things happen: First, the Onion Skin
marker appears in the Timeline header. The Onion Skin marker displays the content of the
frames included in the onion skinning. To increase, decrease, or change the number of frames
included, click one of the handles on either side of the Onion Skin marker and drag it
accordingly.

Second, the frames' content within the Onion Skin marker displays as partially transparent. In
addition, the contents of the currently selected frame display normally.

 Note If you've any locked layers in your animation, they won't be displayed when you have

onion skinning turned on.

Turning onion skinning outlines on By clicking the Onion Skin Outlines button , which is
located at the bottom of the Timeline, you can display the content of multiple frames as
outlines (instead of simply transparent). Note that the currently selected frame appears
normally when you've got Onion Skin Outlines activated.

 Note The particular layer's outline color determines the color of the onion skin outlines.

Editing multiple frames When you have onion skinning turned on, you can't actually edit the
contents of a frame unless you've selected it in the Timeline. This can prove a little
frustrating, as you will constantly have to switch to a given frame to edit its content. One of
the great things about onion skinning is the Edit Multiple Frames button.

Located to the right of the Onion Skin Outlines button, the Edit Multiple Frames button lets
you edit the contents of all frames without having to move from frame to frame. Unlike with
simple onion skinning, the Edit Multiple Frames button displays all the contents without any
transparency.

Modifying onion markers The Modify Onion Markers drop-down menu is accessible by
clicking the Modify Onion Markers button , which is located to the right of the Edit
Multiple Frames button at the bottom of the Timeline. Each of the options contained in the
menu affect the position of the Onion Skin marker and therefore the frames that are displayed:

• Always Show Markers displays the Onion Skin markers in the Timeline header
regardless of whether onion skinning is turned on.

• Under normal circumstances, the Onion Skin range is relative to the current frame
pointer and the Onion Skin markers. By selecting Anchor Onion, you lock the Onion
Skin markers to their current position in the Timeline header.

• Onion 2 displays two frames on either side of the currently selected frame.
• Onion 5 displays five frames on either side of the currently selected frame.
• Onion All displays all the frames on either side of the currently selected frame.

Understanding Tweening
Now that you've created a frame-by-frame animation, let's take the next step and look at a far
more efficient and less time-consuming way to create an animation: tweening. Essentially,
tweening is the process by which you define a starting point/form and ending point/form for
an object and then tell Flash to fill in all the in-between frames-hence the name tweening.

Two types of tweening are available depending on what you want your animation to do. The
first, motion tweening, is covered next. The second, shape tweening, is covered later in the
"Creating a Shape-Tweened Animation" section. After having looked at motion-tweened
animation and shape-tweened animation, you'll look at how you create a motion-tweened
animation that follows a path in the "Creating a Motion-Tweened Animation That Follows a
Path" section.

Creating a Motion-Tweened Animation

In the previous section, you learned how to create a frame-by-frame animation by filling each
frame with content. All in all, the process is pretty clunky. This is where motion tweening
comes it. Motion tweening is a quantum leap beyond frame-by-frame animation-no more
working with frame after frame, painstakingly crafting each image in your animation so it is
just right. With motion tweening, you merely create the first and last keyframes in your
animation-from there, Flash completes the in-between frames. And because Flash only has to
save the contents of the first and last keyframes (along with numerical values concerning how
the object changes), tweened animations generally result in smaller file sizes than frame-by-
frame animations.

Although you use tweening primarily for animating motion, you can also animate size, color,
and orientation. In short, any transformation that can be applied to an object can be animated
with tweening.

 Note You can use motion tweening on text as well as groups of objects.

In this section, you're going to create the same sort of animation you created using the frame-
by-frame technique (a square moving across the Stage), but you'll do it instead with tweening:

1. Start with a new file (File → New or Cmd/Ctrl+N).
2. Go to Insert → New Symbol. When the Create New Symbol dialog box opens, enter

square in the Name field, make sure the Graphic radio button is selected, and click
OK. When the Symbol Editor opens, draw a square about 3 centimeters (1 inch) in
diameter. When you're finished, return to the Stage.

3. Now that you have a square ready and waiting in the Library, click the first frame of
the Timeline's single layer, open the Library (Window → Library), and drag the
square onto the left side of the Stage. Notice that the default blank keyframe
automatically becomes a keyframe (denoted by the small black circle).

4. Now that you've created the first keyframe in the animation, you can create the last
one. Click frame 25, and insert a keyframe by going to Insert → Keyframe. At this
point, your Timeline should look like this:

 Note The frames between the two keyframes are just that- frames. They really don't do much
except contain the content that is automatically generated by Flash. If you want them to
become more, you must insert a keyframe.

Much like in the case of frame-by-frame animation, Flash populated the second keyframe you
created with the content of the first. As a result, you are going to want to move the square in
the last keyframe to the location on the Stage where you want it to be at the end of the
animation:

1. Select the final keyframe.
2. Click and drag the square to the right side of the Stage. By doing this, you tell Flash

that in the first keyframe the square is at the left side of the Stage, and in the last
keyframe it's in the right side of the Stage. Now comes the tweening.

3. Select the first keyframe.
4. Go to Insert → Create Motion Tween. Alternatively, you can select the first keyframe,

open the Property Inspector (Window → Properties), and select Motion from the
Tween drop-down menu.

5. Flash fills all the in-between frames, thereby creating the animation. You'll also notice
that the Timeline itself changes. The change in the frames' colors as well as an
addition of an arrow indicates the presence of a tween.

Congratulations, you've created your first tweened animation. To test it, do one of the
following:

• Drag the playhead through the Timeline to view the animation.
• Go to Control → Play or hit Return/Enter.
• Go to Control → Test Scene/Test Movie (which opens up a new window in which the

animation will continue to loop).

Even though the motion tween you've just created is amazingly simple, don't be fooled into
believing that motion tweening creates simple animations. Quite the contrary! You can create
some amazingly complex and varied animation with tweening. As an experiment, take the
animation you just created, insert a keyframe in the middle, and alter the square's location.
When you play the animation, Flash moves the square to the new location defined in the
keyframe you just added and then to the position you set in the final keyframe.

You also don't have to merely move your square across the Stage. Try increasing the object's
size in the final keyframe using the Transform panel or the Free Transform tool. When
played, the square slowly grows until it reaches the defined size in the final keyframe.

You can also change the visual properties of a tweened symbol using the Property Inspector-
something you'll learn how to do later in the "Creating Animated Special Effects with the
Property Inspector" section.

Editing a Tweened Animation with the Property Inspector

Although you can create a motion-tweened animation with Flash's drop-down menu, you can't
do much to edit the animation's characteristics this way. Instead, you use the Property
Inspector (Window → Properties or Cmd/Ctrl+F3) to manipulate all manner of the tweened
animation's characteristics, including those specific to motion tweening.

Some of the options in the Property Inspector apply to other types of tweening, such as shape
and motion-path tweening. You'll get to them in "Creating a Shape-Tweening Animation" and
"Creating an Animation That Follows a Path," respectively; for now, let's look at the motion-
tweening options.

Easing Your Motion Tween

You probably noticed that your tweened square traveled at a constant rate across the Stage. If
you want, you can use the Property Inspector to ease the object in or out of the animation. In
other words, it starts off slower, gaining speed through the process of the animation. On the
other hand, if you ease the object out of the animation, it slows down near the end.

To ease your motion tween, follow these steps:

1. Select the first frame in the motion tween.

2. Open the Property Inspector by going to Window → Properties or by using the
shortcut Cmd/Ctrl+F3.

3. Enter a value into the Ease field. A positive number eases the object out of the
animation, and a negative number eases it into the animation. A higher value (either
negative or positive) increases the effect. Alternatively, you can use the Ease slider to
adjust the value.

 Note You can enter values from -100 to 100 in the Easing field.

Rotating an Object in a Motion Tween

Follow these steps to get an object to rotate through the tweening:

1. Select the first frame in the motion tween.
2. Open the Property Inspector by going to Window → Properties or by using the

shortcut Cmd/Ctrl+F3.
3. Choose one of the options from the Rotate drop-down menu.

None Applies no rotation to the object.

Auto Rotates the object once in the direction that requires the least amount of
movement.

CW Rotates the object clockwise. You define the number of rotations by entering a
value into the Times field (which is to the right of the Rotate drop-down menu).

CCW Rotates the object counterclockwise. You define the number of rotations by
entering a value into the Times field (which is to the right of the Rotate drop-down
menu).

Creating a Shape-Tweened Animation

While motion tweening moves an object from one point of the Stage to another (or changes its
characteristics, such as size or orientation), shape tweening morphs an object from one shape
to another. You can create some decidedly interesting effects by using shape tweening.

 Note One of the most fundamental things you need to remember about shape tweening is that
it only works on shapes drawn on the Stage. You can't shape tween symbol instances,
bitmaps, text, or groups of objects. You must break apart these elements (Modify →
Break Apart) before you can shape tween them.

To create a shape tween:

1. Create a new document.
2. Select the first frame, which is a blank keyframe by default.
3. Use the drawing tools to create the image with which you want to start. Notice that the

first frame automatically becomes a filled keyframe (denoted by the small black
circle).

4. Click the frame where you want the shape tween to terminate, and insert a keyframe.
As usual, Flash populates the last keyframe with the first keyframe's contents. From

here, manipulate the existing image (using one of the various transform tools) so it
looks like what you want for the final product of the shape tween. (Alternately, delete
the image and create an entirely new one.)

 Note If you place the last keyframe's shape in another location, Flash automatically
motion tweens the animation as well. Not only will your object "morph," but it
will do so as it is moving from one location to another on the Stage.

5. Now, select the first frame and then open the Properties Inspector (Window →
Properties).

6. Choose Shape from the Tweening drop-down menu.
7. From here, you can set the shape tween's characteristics:

o Enter a value into the Ease field to ease the tween in or out. Remember, a
positive number makes the tween faster at the beginning, and a negative
number makes it faster at the end. Alternatively, use the Ease slider to adjust
the value.

o Choose a blend option from the Blend drop-down menu. Choosing Distributive
creates an animation in which the edges of the intermediate shapes are
smoother. Alternatively, choosing Angular creates an animation in which
straight edges are preserved in the intervening frames.

8. When you've finished, test your animation by moving the playhead, hitting
Return/Enter, selecting Control → Play, or choosing Control → Test Scene/Test
Movie.

Creating a Motion-Tweened Animation That Follows a
Path
When it comes to motion tweening, you've explored how to move an object along a straight
line. Granted, you can vary the course of the object's motion by adding more keyframes to the
animation (as discussed earlier), thereby creating a zigzag pattern. However, what if you
wanted to make an object move along a circle? Well, motion paths let you move objects along
a specific path.

You learned how to create motion guide layers in Chapter 8; in this section, you are going to
take what you learned in Chapter 8 and combine it with what you've learned about motion
tweening in this chapter to craft an animation that has an object traveling along a complex
path.

To create an animation that follows a path, use these steps:

1. Create a simple motion-tweened animation with two keyframes, one at the beginning
and one at the end. (If you want, you can use the square animation you created earlier
in this chapter.) If you are having trouble remembering how to create a simple motion
tween, see "Creating a Motion-Tweened Animation."

2. Select the layer with the tweened animation and go to Insert → Motion Guide.
Alternatively, you can Ctrl+click (Mac) or right-click (Win) the layer's name and
choose Add Motion Guide from the pop-up context menu or click the Add Motion
Guide button in the bottom-left corner of the Timeline. This creates a motion guide
layer just above the layer containing the animation.

3. Now, with the first frame (the empty keyframe) in the motion guide layer selected,
draw the path you want the object to follow (as illustrated in Figure 9.1). You can use
the Pencil tool, the Oval tool, the Rectangle tool, the Brush tool, the Pen tool, or the
Line tool.

Figure 9.1: The motion path can take any form you desire-this one was drawn with the
Pen tool.

4. It's now time to attach your object to the motion path you've created. Select the first
keyframe of your tweened animation, go to Window → Properties, and make sure the
Snap check box is selected. This makes sure your object's registration point will snap
to the motion path.

5. Click and drag the object so the registration point snaps onto the beginning of the path
you've drawn.

6. Now, click the final keyframe in the animation, and click and drag the object so the
registration point snaps onto the end of the path you've drawn.

If the registration point doesn't appear when you initially click and drag, click and
hold down your mouse button for a few seconds before you move the object to the end
of the path.

 Note If the registration point doesn't appear when you click the object, release it, click
the central portion of the object (represented by a set of crosshairs), hold your
mouse button down for a few seconds, and then drag it to the beginning of the
path.

7. If you want the object to point in the direction of the path that it's moving along, make
sure the Orient to Path check box is selected in the Property Inspector.

8. From here, test your animation by hitting Return/Enter, going to Control → Play, or
selecting Control → Test Scene/Test Movie.

 Note You can 'unlink' a layer from a motion guide by selecting the layer and either
clicking and dragging the layer above the motion guide layer in the Timeline or
going to Modify → Layer and choosing Normal.

Animating a Mask
As explained in Chapter 8, mask layers create a hole through which the contents of one layer
is visible. Better yet, you can animate mask layers to create any number of interesting effects-
from the view through a telescope to the view through a keyhole. In this section, you're going
to look at how to create a spotlight effect that moves across the Stage, revealing a stationary
object as it passes over it:

1. First, create a new document.
2. Go to File → Import. When the Import dialog box pops up, navigate to the Chapter 9

directory on this book's CD-ROM, choose All Files from the Import dialog box's Files
of Type drop-down menu, select the flying_saucer.swf file, and click OK.

3. Now, click frame 25, and go to Insert → Frame. This populates the frames from 2 to
25 with the content of the first keyframe.

4. From here, you're going to create the object that will serve as the mask. Go to Insert →
New Symbol. When the Create New Symbol dialog box appears, make sure the
Graphic radio button is checked, and enter circle into the Name field.

5. When the Symbol Editor opens, draw a single sphere of about 3 centimeters (1 inch)
in diameter. Remember, the circle needs to be filled for the mask to work. Beyond
that, the color of the fill makes no difference whatsoever.

6. Exit the Symbol Editor by clicking the Scene 1 link in the Scene and Symbol bar.
7. Now, create a new layer by clicking the Insert Layer button in the Timeline.

Alternatively, you can Ctrl+click (Mac) or right-click (Win) and choose Insert Layer
from the pop-up context menu or go to Insert → Layer. This layer will ultimately be
converted into the mask layer.

8. Now, select the first blank keyframe in the new layer and drag the Circle symbol from
the Library (Window → Library) to the left part of the Stage.

9. Click frame 25 (in the newly created layer), and go to Insert → Keyframe. With the
last keyframe selected (the one you just created), click and drag the circle to the right
side of the Stage.

10. Select the first keyframe and go to Insert → Create Motion Tween. This animates the
sphere so that it moves across the Stage and passes over the flying saucer image you
imported earlier.

11. Now, it's time to turn the tweened circle into a mask. Ctrl+click (Mac) or right-click
(Win) the layer with the circle symbol, and choose Mask from the pop-up context
menu. By doing this, you turn the layer with the circle into a mask layer. Notice that
the appearance of both layers changes to reflect the relationship. Also, this process
locks both the mask and masked layers. They must remain locked for the animation to
work.

 Note Don't worry if the flying saucer disappears from the Stage-this is supposed to
happen. If you want to view both the flying saucer image and the circle symbol,
unlock all the layers.

12. From here, test your animation by hitting Return/Enter, going to Control → Play, or
selecting Control → Test Scene/Test Movie.

Extending a Still Image through Time
Up until this point, you've explored how to do all sorts of cool animations with the Timeline.
There is, however, an additional animation trick that, although straightforward, is incredibly
useful. Specifically, you can integrate an image into your Flash movie that occupies a span of
time (a series of frames) but doesn't actually move. Here's how you do it:

1. Create a new document.
2. Select the first blank keyframe in the single layer.
3. Place the desired image onto the Stage.
4. Click the last keyframe on which you would like the image to be visible.
5. Go to Insert → Frame or use the shortcut F5. Alternatively, you can Ctrl+click (Mac)

or right-click (Win) and choose Insert Frame from the pop-up context menu.
6. Notice that all the intermediate frames are gray, and a small outline of a rectangle is

placed in the final frame. This means that the content from the first keyframe has been
carried over to all the frames.

Creating Animated Special Effects with the Property
Inspector
One of the great things about tweening is that you are not limited to position, size, and shape.
You can also tween more complicated changes to an object's appearance. You can animate a
fade-in/fade-out or color change by taking what you've learned about tweening thus far and
combining it with the tools in the Property Inspector (Window → Properties). You
manipulated a symbol's visual properties with the Property Inspector in Chapter 6, so its
options should be familiar to you. In the following sections you'll now learn how to animate
changes in an object's transparency, brightness, and tint.

 Note You can carry out the following processes only on symbols—not on shapes or groups of
shapes created with Flash's painting and drawing tools directly on the stage.

Animating Symbol's Transparency

By animating an object's Alpha effect (or transparency), you can create the illusion of a fade-
in/fade-out:

1. Create a new document.
2. Create a tweened animation of some sort using symbols.
3. Now, click the first keyframe in the animation and select the object that you want to

fade-in with the Arrow tool.
4. If it isn't already, open the Property Inspector by going to Window → Properties.
5. Choose Alpha from the Color drop-down menu.
6. Enter 0 into the Alpha Value field. By doing this, you are making the object in the first

keyframe transparent.
7. Click the last keyframe in the animation, and select the object with which you're

working with the Arrow tool.
8. With the Property Inspector open and Alpha selected from the Color drop-down menu,

enter 100 into the Alpha Value field. This makes the object opaque (solid) in the final
keyframe.

9. Now, test your animation by hitting Return/Enter, going to Control → Play, or select
Control → Test Scene/Test Movie. Your object will now fade-in.

 Note To have an item fade-out, do the opposite. Set the Alpha Value in the first keyframe to
100 and that of the last keyframe to 0.

Animating an Object's Brightness

Animating an object's brightness is almost identical to the process of animating an object's
transparency:

1. Create a new document.
2. Create a tweened animation using a symbol.
3. Now, click the first keyframe in the animation, and select the object whose brightness

you want to change.
4. If it isn't already, open the Property Inspector by going to Window → Properties.
5. Choose Brightness from the Color drop-down menu.

6. Enter a value into the Brightness Value field (or use the Brightness slider).
7. Click the last keyframe in the animation, and select the object with which you're

working.
8. With the Property Inspector open, enter a different value into the Brightness Value

field.
9. Now, test your animation by hitting Return/Enter, choosing Control → Play, or

selecting Control → Test Scene/Test Movie.

 Note Because you can't simulate the same sort of brightness experienced in the real world,
altering the brightness of an object actually does more to change the intensity of its
color.

Animating Color Change

Like the previous two procedures, animating a color change is just a matter of using a
different area of the Property Inspector:

1. Create a new document.
2. Create a tweened animation of some sort using a symbol.
3. Now, click the first keyframe in the animation and select the object whose color you

want to change.
4. If it isn't already, open the Property Inspector by going to Window → Properties.
5. Choose Tint from the Color drop-down menu.
6. From here, click the Tint color swatch to open up the Color Picker. From here, choose

one of the colors. Alternatively, you can mix a custom RGB color by inputting values
into the R, G, and B fields.

7. Click the last keyframe in the animation, and select the object with which you're
working.

8. With the Property Inspector open, choose another color.
9. Now, test your animation by hitting Return/Enter, going to Control → Play, or

selecting Control → Test Scene/Test Movie. Your object will change from the color
set in the first keyframe to the color set in the last keyframe.

Inspirational Design Model
Creating effective and well-designed animations is tricky. Because much of Flash's power is
derived from its ability to generate complex animations, the types of animations that one can
experience range from simple moving text to full-blown professionally designed web-based
animated shorts. As a result, this chapter's Inspirational Design Model should provide an
example of smooth, stylish animation that leverages the power of Flash's entire animation
repertoire. With this in mind, one needs look no further than Djojo Studios
(www.djojostudios.com).

A one-man design studio based in the Netherlands (operated by the artistic powerhouse Joost
van Schaik), Djojo Studios' mandate is to create rich visual interactive web-based multimedia.
The website features smooth, stylish, and amazingly well-designed animation (see Figure
9.2). One of the most wonderful features is the spinning astronaut that was designed using a
combination of 3D and 2D methods.

Figure 9.2: Djojo Studios

For animated eye candy, Djojo Studios can't be beat.

Summary
In this chapter, you were exposed the heart and soul of Flash: animation. You began by
exploring some fundamental animation concepts such as frames, keyframes, and frame rate.
From there, you jumped straight into the mighty world of moving pictures by mastering how
to create a frame-by-frame animation. Moving on, you learned how to create a motion-
tweened animation, a definite improvement to the frame-by-frame technique. Then, you
explored the process of forging shape-tweened animations. Building on what you had learned
previously, you looked at how to create a motion path that a tweened object would follow.
You closed the chapter by exploring animated masks and creating animated special effects
with the Property Inspector.

Chapter 10: Working with Movie Clips
Overview
One of the types of symbols discussed in Chapter 7 (but not focused on) was Movie Clips.
Probably one of the most fundamentally important aspects of Flash, Movie Clips are fully
functional, self-contained movies that can be placed on the Stage and run independently of the
Timeline. In addition, you can control Movie Clips using ActionScript, which makes them
incredibly powerful.

Because you've already mastered the basic skills necessary to create animations with the
Timeline, you'll start this chapter off by exploring the nature of Movie Clips. You'll then learn
how to create Movie Clips from scratch as well as from existing animations. Finally, you'll
learn how to insert Movie Clips into the main Timeline.

Understanding Movie Clips

It wouldn't be an exaggeration to say that Movie Clips are probably one of the most useful
objects in Flash. However, unlike Button and Graphic symbols, Movie Clips are far better
discussed in conjunction with animation. Why? Well, Movie Clips are essentially self-
contained movies that you can nest within your primary movie. Because they are self-
contained, their Timelines run independently of the main Timeline. In other words, you can
think of a Movie Clip as a movie within a movie.

You can use Movie Clips in conjunction with other symbols or alone on the Stage. For
instance, you could place a Movie Clip in one of the states of a Button symbol to create an
animated button—a process discussed in Chapter 13. One of the great things about Movie
Clips is that, unlike regular Timeline animations that use a great deal of frames and
keyframes, Movie Clips need only one keyframe in the main Timeline to run.

Because Movie Clips run independently of the main Timeline, they are often quite detached
from your main movie. Say, for instance, you've got an animation in which several birds (each
of which is a Movie Clip) fly across the sky. Under normal circumstances, the Movie Clips
will either loop or play once and stop—both of which are pretty limiting when it comes to
intricate animations. This, however, is where ActionScript comes into the picture.

Flash's scripting language, ActionScript, allows you to exert a great deal of control over how
a given Movie Clip behaves within the main Timeline. Essentially, you can write simple (or
complex) scripts that control the independent behavior of an individual Movie Clip. For
example, going back to the "flock" of birds example, you could write a script that would make
sure none of the Movie Clips ever come in contact with one another. If you were really
ambitious, you could write a script that would force the bird Movie Clips to emulate flocking
behavior. (See Chapter 16 for more information on how you can use ActionScripts to control
Movie Clips.)

Creating Movie Clips from Scratch
Creating a Movie Clip from scratch builds on the skills you've already mastered in Chapters 7
and 9:

1. Open a new document by going to File → New.
2. Go to Insert → New Symbol.
3. When the Create New Symbol dialog box opens, make sure the Movie Clip radio

button is selected, enter a name into the Name field, and click OK. (If you're having
trouble remembering your way around the Create New Symbol dialog box, refer to
Chapter 7.)

4. This opens the Symbol Editor. From here, use the Timeline in the Symbol Editor to
create an animation. Remember, a Movie Clip is exactly the same as a regular
Timeline animation. As a result, you can use any of the techniques (tweening, frame
by frame, special effects, and so on) that you've already learned. You also aren't
limited to a single animated object in a single layer—you could have multiple layers
with multiple animated objects.

 Note Because Movie Clips can contain complex animations, you will probably use
Graphic symbols. You can create them directly from within the Movie Clip
much as you would from the main Timeline, and they're automatically placed in
the main movie's Library for future use.

5. When you've finished crafting the animation in your Movie Clip, click the scene link
in the Scene and Symbol bar to return to the main Timeline.

6. Once you've returned to the main Timeline, you can view and test your Movie Clip by
opening the Library (Window → Library), selecting the Movie Clip, and clicking the
Play button in the preview window's top-right corner.

 Note You can also test the Movie Clip's animation directly from within Symbol
Editing mode—just hit the Return/Enter button.

Turning Existing Animations into Movie Clips
It's more than likely that the majority of Movie Clips you create will be fashioned from
scratch. However, you'll probably find yourself in the situation where you'll want to turn an
existing animation into a Movie Clip. In that case, follow these steps:

1. In the main Timeline, select every frame in every layer that you want to turn into a
Movie Clip.

2. Copy the frames you've selected by going to Edit → Copy Frames or by Ctrl+clicking
(Mac) or right-clicking (Win) and choosing Copy Frames from the pop-up context
menu.

3. Go to Insert → New Symbol or use Cmd/Ctrl+F8.

 Note Make sure nothing on the Stage is selected before you insert a new symbol.

4. When the Create New Symbol dialog box opens, enter a name into the Name field,
select the Movie Clip radio button, and click OK.

5. When the Symbol Editor opens, select the first frame in the Timeline and go to Edit →
Paste Frames or Ctrl+click (Mac) or right-click (Win) and choose Paste Frames from
the pop-up context menu. This pastes all the copied frames into the Movie Clip.

6. To return to the main Timeline, go to Edit → Edit Movie or click the scene link in the
Scene and Symbol bar.

7. Now that you've returned to the main movie, you can remove the animation you
copied to create the Movie Clip (if you so desire). Just reselect all the frames you
previously selected and then delete them by going to Edit → Cut Frames.
Alternatively, you can Ctrl+click (Mac) or right-click (Win) and choose Cut Frames
from the pop-up context menu.

Inserting Movie Clips into the Main Timeline
Now that you've learned how to create Movie Clips, either from scratch or an existing
animation, insert them into your main movie:

1. If it isn't already, open the Library by going to Window → Library.
2. Click the exact location in the Timeline where you want to insert the Movie Clip.

Remember, you'll need to insert a keyframe if one hasn't already been inserted.
3. Click and drag the Movie Clip from the Library onto the Stage. Even though a Movie

Clip could run for hundreds of frames, when it's inserted into the main Timeline, it
only occupies a single keyframe.

4. To see how your Movie Clip runs within your main movie, you'll need to go to
Control → Test Movie or Control → Test Scene.

Manipulating Movie Clips
Once you have inserted a Movie Clip into the main Timeline, you can manipulate it—as you
can all symbols—by using the Property Inspector (Window → Properties). You can also
accomplish a series of important operations by using the Library. You'll take a look at each
option in the next several sections.

Naming a Movie Clip Instance

As you leaned in Chapter 6, when you drag a symbol from the Library onto the Stage, you are
creating a symbol instance—a copy of the parent symbol in the Library. This is no difference
when creating Movie Clips (they are symbols, after all). What you haven't learned, however,
is that you can easily assign a unique name to a symbol instance using the Property Inspector.
So, the big question becomes, why exactly would you want to assign a name to a symbol
instance? Well, you can use ActionScript to control and manipulate Movie Clips that reside
on the main Timeline. To do this, however, you need to identify each Movie Clip symbol
instance with a unique name so that you can appropriately target the ActionScript. So,
although the process by which you name a Movie Clip symbol instance is really quite easy (as
you'll find out shortly), it is absolutely vital to the creation of any moderately complex Flash
creation that fully leverages the phenomenal power of Movie Clips.

To name a Movie Clip symbol instance, follow these steps:

1. With a new document open, drag a Movie Clip from the Library onto the Stage.

2. Select the Movie Clip symbol instance using the Arrow tool.
3. If it isn't already, open the Property Inspector by going to Window → Properties.
4. Enter a unique name into the Instance Name field.

 Note When entering a name into the Instance Name field, avoid using spaces. If you want a
two-word name, use a hyphen (-) or an underscore (_).

Swapping One Movie Clip for Another

You might find yourself in a situation where you want to swap one instance for another. To
do this, you use the Swap symbol in the Property Inspector:

1. In the main Timeline, select the Movie Clip you want to swap out.
2. If it isn't already, open the Property Inspector by going to Window → Properties.
3. Click the Swap button.

4. When the Swap Symbol dialog box opens, select the symbol you want to swap in, and
click OK.

 Note You don't have to swap a Movie Clip for a Movie Clip. You could easily swap a
Movie Clip for a Graphic symbol, for example. However, the swapped symbol
will retain the behavior (Movie Clip, Button, Graphic) of the symbol it's
replacing.

Editing a Movie Clip

If you want to edit the parent symbol of a given Movie Clip, you can open the Library, select
the Movie Clip, and choose Edit from the Library Options menu. Alternatively, you can
double-click the Movie Clip instance on the Stage and then make any changes you want.
Remember, when you've finished up in the Symbol Editor, just click the scene link in the
Scene and Symbol bar to return to the main Timeline.

Duplicating a Movie Clip

You can use the Library to duplicate a Movie Clip, which is useful if you want to replace one
symbol with an edited version of another. You just duplicate the symbol, edit it using the Edit
command in the Library's Options drop-down menu, and then use it to replace the target
symbol instance on the Stage. Let's take a look at the process for duplicating:

1. Open the Flash movie that contains the Movie Clip you want to duplicate.
2. If it isn't already, open the Library by going to Window → Library.
3. Select the Movie Clip you want to duplicate.
4. Select Duplicate from the Library's Options drop-down menu.
5. When the Duplicate Symbol dialog box appears, enter the name for the duplicated

symbol into the Name field, make sure the Movie Clip radio button is selected, and
click OK.

The duplicate Movie Clip is automatically added to the Library, and you can then manipulate
it however you'd want.

Seeing Movie Clips in Action
Now that you've explored the basics of creating and manipulating Movie Clips, you can put
all of your hard-earned knowledge to work. Even though you've yet to explore the
ActionScript-related aspects of Movie Clips (discussed in Chapter 16), there is no better way
to experiment with their power and versatility than by using them to create a scene that, under
normal circumstances, would prove complex enough to be somewhat overwhelming if it were
constructed using the main Timeline alone.

 On the CD-ROM All of the images (in SWF format) in this tutorial are located in the
Chapter 10 folder of the companion CD-ROM. In addition, the files under_the_sea.swf and
under_the_sea.fla provide an example of how the final product should look.

In this tutorial, you're going to create a simple 2D undersea scene in which a single fish swims
by the camera. You will create all of the moving objects in the scene using Movie Clips.

Creating the Ocean

To start off, you'll need to create the ocean:

1. Create a new document by going to File → New.
2. Go to Modify → Document. When the Document Properties dialog box opens, change

the Width to 500 and the Height to 400.
3. Choose a light blue for the document's background color.
4. Click OK to exit the Document Properties dialog box.
5. Now, go to File → Import.
6. When the Import dialog box opens, navigate to the Chapter 10 directory on the CD-

ROM, locate water.swf, and click Open. This imports the premade water (complete
with gentle rolling waves) onto the Stage and into your Library. The file is nothing
spectacular, so you might want to create your own.

 Note If you can't locate the file, you might have to select the All Files option from the
Import dialog box's Files of Type drop-down menu.

7. Position the water so that it lines up with the edges of the movie.
8. Because you are going to have a number of different layers in your scene, it's wise to

name each. Double-click on your only layer's icon. When the Layer Properties dialog
box opens, enter Water into the Name field. Click OK.

Creating the Fish

Now that you've got the ocean occupying a single keyframe of a single layer, it's time to
create some fish:

1. Go to Insert → New Symbol (or use the shortcut Cmd/Ctrl+F8).
2. When the Create New Symbol dialog box opens, click the Movie Clip radio button,

enter fish1 into the name field, and click OK.
3. When the Symbol Editor opens, go to File → Import, navigate to the Chapter 10

directory on your CD-ROM, and choose the file fish.swf. This imports the image
you'll use to create your fish Movie Clip.

 Note If the image doesn't appear, it's possible that Flash placed it out of view. Scroll
down until it's visible, and drag it up. Remember, the crosshairs represent the
symbol's registration point.

4. Now it's time to create the animation where the fish "swims" horizontally from the
right to the left. First, select the fish with the Arrow tool.

5. If it isn't already, open the Property Inspector by going to Window → Properties.
6. Enter 470 into the X field and -78.5 into the Y field.
7. Click frame 90, and go to Insert → Keyframe.
8. With the newly created keyframe selected, select the fish with the Arrow tool.
9. Enter –400 into the X field and –78.5 into the Y field.
10. Select the first keyframe, and go to Insert → Create Motion Tween.

 Note The whole point of creating an animation that covers this amount of distance is
to ensure that you can place the Movie Clip on one side of the Stage in the work
area, have it pass through the ocean scene, and then have it pass into the work
area on the other side of the Stage before it loops. This gives the illusion that the
fish is simply passing by your line of sight.

11. If you want to add a little more life to your scene, you can have the fish follow a wavy
path—opposed to the straight one it currently follows. To add a motion guide, follow
the steps described in Chapter 9.

12. Now that you've created the Movie Clip of the fish, you can insert it into the water.
Return to the main scene by going to Edit → Document or by clicking on the scene
link in the Scene and Symbol bar.

13. Create a new layer by going to Insert → Layer or clicking on the Insert Layer button
in the bottom-left corner of the Timeline.

14. Now, rename the new layer fish.
15. If it isn't already, make sure the fish layer is above the ocean layer in the Timeline.
16. Select the first keyframe of the fish layer.
17. Open the Library (Window → Library) and click and drag the fish Movie Clip onto

the Stage. You should position the Movie Clip in the work area to the right of the
Stage. So far, your scene should look something like this:

Now that you've created a basic ocean scene, you can test it—simply go to Control → Test
Movie or Control → Test Scene.

Adding Some Bubbles

You'll finish off this tutorial by adding some floating bubbles to the ocean:

1. Go to Insert → New Symbol.
2. When the Create New Symbol dialog box opens, click the Graphic radio button, type

bubble template into the Name field, and click OK.
3. When the Symbol Editor opens, click on the first keyframe of the only layer in the

Timeline and draw a small circle with the Oval tool in the lower portion of the screen.
As this will be the template for your floating bubbles, you should choose a sufficiently
bubble-like color for the stroke and fill.

4. From here, you are going to want to take the bubble template Graphic symbol you
created, and use it in a Movie Clip to create an animation of a rising bubble. Go to
Insert → New Symbol.

5. When the Create New Symbol dialog box pops up, enter bubble into the Name field,
select the Movie Clip radio button, and click OK.

6. When you enter the Symbol Editor, select the first blank keyframe in the only layer,
and drag the bubble template graphic symbol from the Library onto the Stage.

7. With the bubble template still selected, open the Info panel. Change the X value to
14.7 and the Y value to 76.3.

8. Click on frame 30 and go to Insert → Keyframe.
9. With the second keyframe selected, change the bubble template's X value to –9.8 and

its Y value to –202.7.
10. Reselect the first keyframe in the layer and go to Insert → Create Motion Tween. This

creates the animation of the rising bubble.

11. To add a little character to the rising bubble, click somewhere in the middle of the
tween (say, frame 15 or so).

 Note Even though the entire tween gets selected, don't be fooled into believing that
you aren't selecting a specific frame. The playhead indicates the actual frame
you've selected.

12. Go to Insert → Keyframe. By doing this, you've added another keyframe to the middle
of the tween you created. Your Timeline should look something like this:

13. With the newly created middle keyframe selected, use either the Transform panel
(Window → Transform) or the Scale tool (located in the Toolbox's Options section
when the Free Transform tool is selected) to increase the size of the bubble slightly.
By doing this, you've created a tween in which the bubble starts off small, gradually
gets bigger, and then goes back to its previous size. All of this happens when the
bubble is moving.

14. Now, you're going to add a little more subtlety to your rising bubble by making it
disappear as it nears the top of its tween. First, select the final keyframe in the tween.

15. Using the Arrow tool, select the bubble.
16. If it isn't already, open the Property Inspector by going to Window → Properties.
17. Choose Alpha from the Color drop-down menu and enter 0 into the Alpha Value field.

This makes the bubble appear transparent by the end of the tween.

Adding More Complexity to the Bubbles

Now that you've created the animation of one rising bubble, you can then add several more
that rise at staggered intervals:

1. With the bubble Movie Clip still open in the Symbol Editor, add an additional layer
(give it a unique name if you want) by going to Insert → Layer or by clicking the
Insert Layer button in the bottom-left corner of the Timeline.

2. Click on frame 5 and go to Insert → Keyframe or use the shortcut F6. This guarantees
that the second bubble won't appear and start rising until the playhead reaches frame 5.
As a result, the two bubbles will be staggered.

3. Drag the bubble template Graphic symbol from the Library onto the Stage. With the
Info panel, set the new bubble's X value to –51.5 and its Y value to 91.5.

4. Click on frame 35 and go to Insert → Keyframe.
5. From here, repeat the process described in the previous section—the only difference is

that you set the bubble's X value to –48.5 and its Y value to –120.5 using the Info
panel to create the second rising bubble.

6. Now that you've created two rising bubbles, you can continue adding rising bubbles.
The only thing you have to vary is the frame at which the specific animation starts.
You can also vary the size of each bubble instance to add variety.

Adding the Bubbles to the Main Scene

Now, you can add your rising bubble Movie Clip to the main scene:

1. Return to the main scene by going to Edit → Document or by clicking on the Scene
button in Scene and Symbol bar.

2. Create a new layer by going to Insert → Layer or clicking on the Insert Layer button
in the bottom-left corner of the Timeline.

3. Now, rename the new layer as bubbles.
4. Select the first keyframe of the bubbles layer.
5. Open the Library (Window → Library) and click and drag the bubbles Movie Clip

onto the Stage. You should position the Movie Clip in the work area just below the
Stage. By doing this, you'll get the illusion that the bubbles are passing into view from
the bottom of the scene. Your scene should look something like this:

6. Now that you've created a basic ocean scene, you can test it. Simply go to Control →
Test Movie or Control → Test Scene.

Congratulations, you've created your first scene using Movie Clips. Experiment with them by
adding more objects to the scene. For example, try adding other fish or swaying sea plants.

Inspirational Design Model
Any good Flash creation will leverage Movie Clips to enhance the user experience. However,
because of their sheer power and versatility, there exists an obvious gap between those who
simply use Movie Clips and those who exploit Movie Clips to their maximum potential. A
great example of an effective use of Movie Clips is Neostream (www.neostream.com)

Based in Sydney, Australia, Neostream is a topnotch multimedia company that specializes in
CD-ROMs, the Web, and corporate identity. Its website is a fast-paced, beautiful example of
clean Flash design (see Figure 10.1). The animation is extremely smooth, employing Movie
Clips for all manner of elements—including its preloader screen and interface elements
(specifically, its animated buttons). Log on and prepare to be dazzled with some serious
animation.

Figure 10.1: Neostream

Summary
In this chapter, you extended your mastery of Flash animation with a solid introduction to
Movie Clips. As mentioned in the onset of the chapter, you'll get into ActionScript-related
aspects of Movie Clips (of which there are many) in Chapter 16. This chapter prepared the
foundation upon which advanced Movie Clips will ultimately be based. You began the
chapter with a look at the nature of Movie Clips. You continued by learning how to create
Movie Clips from scratch and from existing Timeline animations. From there, you looked at
inserting Movie Clips into the main Timeline and editing Movie Clips with tools such as the
Property Inspector. Finally, in a hands-on exploration of Movie Clips, you created an
animated seascape.

Chapter 11: Using Scenes to Organize
Animated Content
Overview
By now you've probably figured out that Flash movies can be quite complex. A movie of even
moderate size and intricacy can contain many discreet areas of action (interactivity,
animation, and so on). As a result, it's fairly straightforward to create a Flash movie that,
although compelling and beautiful, is an unorganized, chaotic nightmare. Whether you are
creating a stand-alone animation, a web-based animated short, or a complete Flash site, you're
going to have to develop and maintain a method of keeping your Flash creation well
organized.

Now, imagine being able to break your creation into any number of manageable chunks, each
containing a specific series of events (such as an animation, an interface, or some
interactivity)—this is where Flash scenes come in. Like in theater, you can think of scenes as
self-contained chunks that logically break up your movie's content. Each scene is something
akin to a mini-movie that is strung together with other mini-movies to create the overall Flash

movie. When it comes to movies of any significant complexity, scenes save you a great deal
of time and trouble.

Familiarizing Yourself with Scenes
Scenes are wondrous little tools that segment the overall content in your movie into self-
contained, manageable chunks. Each scene acts as a mini-movie that plays one after the other.
Although they appear to be somewhat separated from one another within the Flash authoring
environment, they really aren't. When you play the overall movie (either from within Flash or
after it has been exported), the scenes string together as if they were one movie and play
according to the sequence listed in the Scene panel. There is never any perceptible lag or
flicker between scenes.

 Note The number of scenes you can have is limited only by the amount of memory in your
computer.

The possibilities for scenes are endless. Say, for instance, you are creating an entire Flash site.
You could use a scene for each individual section and subsection of the site. Another
possibility is along the lines of traditional film or theater. Web-based Flash animated shorts
are becoming increasingly popular these days. You could use scenes to partition a Flash
animated short you created into…well, scenes!

Introducing the Scene Panel

For the most part, you access the majority of scene functionality through the Scene panel.
Opened by going to Window → Scene, the Scene panel displays the number and organization
of your movie's scenes. In addition, it lets you duplicate, add, delete, and move scenes.

 Note Unlike many other Flash panels, the Scene panel doesn't have any additional options

beyond the default Maximize Panel, Close Panel, and Help options.

Introducing the Scene and Symbol Bar

Nestled above the Timeline and below the main program menu is the Scene and Symbol bar
(see Figure 11.1). You used the Scene and Symbol bar in Chapter 7 when you were working
with the Symbol Editor (more specifically, moving back to the main Timeline from the

Symbol Editor). However, you didn't get a chance to explore its functionality in relation to
scenes.

Figure 11.1: The Edit Scene button in the Scene and Symbol bar gives you access to all the
scenes in the currently open movie.

Essentially, the Scene and Symbol bar displays the current scene (which is finale in Figure
11.1). When you move to another scene, the Scene and Symbol bar changes its display
accordingly. Also, the Edit Scene button in the right portion of the Scene and Symbol bar
displays a drop-down list that lets you switch the currently displayed scene. (For more
information about this button, see the "Navigating Between Scenes" section.)

Creating and Manipulating Scenes

As mentioned previously, you'll use the Scene panel (Window → Scene) to work with scenes.
In this section of the chapter, you're going to explore how to use the Scene panel to add,
duplicate, rename, and rearrange scenes.

Adding Scenes

As your movie increases in size and complexity, you are going to want to add more scenes to
keep a firm grip on its organization. By using the Scene panel, you can add as many scenes as
you want by following these steps:

1. Make sure you have a document open.
2. Go to Window → Scene to open the Scene panel.
3. From here, click the Add Scene button located in the bottom-right corner of the

Scene panel. Alternatively, besides using the Scene panel to add a new scene, you can
also go to Insert → Scene.

4. You'll notice that Flash has added an additional scene to the movie. By default, Flash
always adds the new scene below the currently selected one. The default naming
convention for a new scene is numerical—for instance, Scene 1, Scene 2, and so on.

5. From here, all you have to do is select the newly added scene in the Scene panel and
start creating.

 Note When you create a new scene, Flash automatically switches to the newly created scene.

Deleting Scenes

If you want to delete a scene, follow these steps:

1. Open the Scene panel by going to Window → Scene.
2. Select the scene you'd like to delete.
3. Click the Delete Scene button located in the bottom-right corner of the Scene panel.
4. When the prompt appears, click OK.

As indicated in the prompt, you cannot undo a scene deletion. Alternatively, you can
also go to Insert → Remove Scene to delete a scene.

Duplicating Scenes

In previous chapters, you looked at how to copy and duplicate various elements such as
objects and animations (mostly for the purpose of converting them to symbols). The process,
especially when it comes to copying entire animations, is fairly unwieldy. Imagine, then,
having to duplicate an entire scene! The prospect is pretty daunting, especially if your movie
(and its respective scenes) has become fairly complicated.

Macromedia has integrated a simple duplicate function that lets you create exact copies of any
given scene with a click of a button:

1. With the Scene panel open (Window → Scene), select the scene you want to
duplicate.

2. Click the Duplicate Scene button in the bottom-right section of the Scene panel.
3. You'll notice that a duplicate of your selected scene, with the word copy tagged onto

the original name, appears in the Scene panel.

Renaming Scenes

The default names Flash assigns to new or duplicate scenes are not very original. Although
logically numbered, the names aren't particularly useful when it comes to identifying the
content of individual scenes in a large movie. To rename a scene, follow these steps:

1. With the Scene panel open, double-click the scene whose name you want to change.
By doing this, the scene's name becomes editable.

2. From here, type a new name and click Return/Enter (or click anywhere off the Scene
panel).

Rearranging Scenes

As mentioned, scenes play sequentially based on their positions in the Scene panel. But you
certainly aren't stuck with the order in which the scenes were created (and therefore the
sequence that they play). To change the arrangement of scenes, follow these steps:

1. Open the Scene panel (Window → Scene).
2. Click and drag the scene to the location you want. You'll notice that as long as you

keep your mouse button down, your cursor changes and a blue line appears in the
scene's projected location.

3. To move the scene, release the mouse button.

Navigating Between Scenes
Because you are going to want to switch back and forth between various scenes as you work
on them, Flash has provided several scene navigation tools:

Scene panel To navigate between the various scenes in your movie, all you need to do is click
the desired scene in the Scene panel. Remember, your current scene is displayed in the Scene
and Symbol bar.

Edit Scene button Two buttons dominate the right portion of the Scene and Symbol bar. The
leftmost one, when clicked (as illustrated in Figure 11.1), provides a menu of all the current
scenes in your movie. All you need to do is select one and Flash automatically switches to
that scene.

Movie Explorer As discussed in Chapter 7, the Movie Explorer (Window → Movie
Explorer) displays the contents of your movie hierarchically, lets you search your entire
movie for any symbol or symbol instance, and replaces text and fonts.

Because scenes are part of the overall movie, they are displayed in the Movie Explorer as top-
level items in the organizational hierarchy.

Simply locate the scene by its name, and click it. Flash automatically switches you to the
selected scene.

 Note Under normal circumstances, the Movie Explorer only displays the contents of the

currently selected scene. To display all scenes (and their content), choose Show All
Scenes from the Movie Explorer's drop-down Options menu.

Testing Scenes
So far, you've looked at a couple of different ways to test the movie you've created. When it
comes to scenes, you should be aware that if you were to simply hit Return/Enter to play your
movie within the Flash authoring environment, you would only be able to preview the
currently selected scene. Although, when exported, the movie plays all the scenes
sequentially, it does not do so from within Flash. As a result, you need to do one of the
following:

• To test a scene other than the current one, use the Scene panel to select it, and then hit
Return/Enter. Alternatively, you can go to Control → Test Scene.

• Now, if you want to test the movie in its entirety, go to Control → Test Movie or use
the shortcut Cmd/Ctrl+Return/Enter. This opens the movie in a new window and plays
all the scenes according to their sequence within the Scene panel.

 Note You can also play all the scenes in your movie by going to Control → Play All
Scenes.

ActionScripting and Scenes
Although scenes are great for organizing animated content, they do tend to create a fairly
linear product. Granted, there isn't much you can do about the linearity of scenes; you
certainly can't have two scenes playing at the same time. However, what if you wanted to play
your first scene, followed by your third scene, your second scene, and finally your fourth
scene? Alternatively, what if you wanted your scenes to play from last to first, instead of first
to last? Under normal circumstances, this defies the natural laws of Flash. However, with the
use of ActionScript (specifically frame actions), you can be your own Einstein, shattering the
conventions of the known Flash universe! But seriously, as is the case in many aspects of
Flash, ActionScripting greatly extends scene functionality.

However, at this point it would be a little premature to get into ActionScript. Instead, this
section will focus on what is possible when you use ActionScript to extend the usability of
scenes. If you want to explore the step-by-step specifics of ActionScripting in general and
frame actions in particular, see Chapter 12. For now, these frame actions can increase the
versatility of scenes:

• gotoAndPlay() determines the specific scene and frame that the playhead jumps to
when it evokes the action.

• gotoAndStop() goes to a specific scene or frame and stops the movie. This is a
variation of the gotoAndPlay() action that you set by deselecting the GotoAndPlay
check box at the bottom of the Actions panel.

• play() restarts a movie that has been previously stopped.
• stop() ends the movie from playing any further.

Inspirational Design Model
When it comes down to it, scenes let you partition your content (as well as the authoring
process) into manageable chunks. Any good Flash creation leverages scenes in any number of
interesting and creative ways. As a result, it is extremely difficult to single out one upon
which the honor of Inspirational Design Model can be bestowed. However, a decidedly
superior example of using scenes effectively is Mondo Media (www.mondomedia.com).

Mondo Media was founded to capitalize on a model of Internet syndication to develop and
distribute animated entertainment. With such irreverent and hilarious online Flash animated
shorts such as Thugs on Film, The God and Devil Show, and Heavy Metal Guy, Mondo Media
has grown into an unstoppable powerhouse of online entertainment.

Mondo Media's website harnesses the power of scenes to partition content into discreet
chunks for easy consumption (see Figure 11.2). The site's subsections (especially those
pertaining to the animated shorts, called Mondo Mini Shows) are mini-sites unto themselves.
In short, the Mondo Media website is an excellent example of how to effectively use scenes to
get the most out of your content.

Figure 11.2: Mondo Media

Summary
In this chapter, you explored the power and versatility of scenes as a method to partition your
content—both for the audience and for your own personal organizational purposes. You
began the chapter by looking at how scenes work in the overall framework of a Flash movie.
From there, you moved on to more practical topics such as how to use the Scene panel to
create and manipulate scenes, how to navigate between scenes, and how to play scenes. You
finished the chapter by looking at how ActionScript can control the default behavior of scenes
in your Flash creation.

Hands On 3: Animating a Space Scene
Overview
In this tutorial you're going to take all that (somewhat) abstract knowledge you've amassed
about animating in Flash and put it to good use.

Ever wanted to travel into space? Well, here's your chance. You aren't really going to travel
into space but, with the mighty power of Flash at your disposal, you'll create the next best
thing—an animation of a voyage through the cosmos. The animation will draw on all of the
techniques you've learned throughout Part III, including Timeline animations, Movie Clips,
and scenes. The project itself will be broken up into five scenes. The first will be an animation
of a rocket taking off from Earth. From there, you'll create three outer space scenes: one with
the rocket blasting away from Earth, one with the rocket traveling through deep space, and
one with the rocket heading toward a planet. The last scene you create will add a little
"Hollywood" to the animation.

 On the CD-ROM You can find all of the images and files used in this tutorial in the Hands
On 3 directory on this book's CD-ROM. You will also find a copy of the finished movie
(space_flight.swf and space_flight.fla), so you can get an idea of what it might look like.
However, as with all the tutorials in this book, the process is far more important than the final
product.

Creating the Rocket Ship
Start off this tutorial by creating the first scene in the animation—your rocket ship blasting off
from Earth:

1. Create a new file (File → New).
2. Open the Document Properties dialog box (Modify → Document). From here, change

the frame rate to 15 and make the document's background color a light blue (suitable
for the sky).

3. Click OK.
4. Select the Rectangle tool from the Toolbox.
5. Click the Stroke Color swatch in the Toolbox and hit the No Color button—which is

the box with a red line through it just to the left of the color wheel. This guarantees the
shape you draw won't have any stroke.

6. Now, click the Fill Color swatch and choose a brown or green color (the rectangle will
serve as the ground, so pick an appropriate color).

7. Use the Rectangle tool to draw a rectangle that occupies about one third of the bottom
of the Stage. So far, things should look something like this:

8. Change the existing layer's name to ground.

 Note This step-by-step tutorial focuses almost no energy on creating a landscape in
the first scene that is anything less than dull. To spruce up you movie, you might
want to add additional elements (buildings and so on)—it's up to you.

9. Now, to keep things tidy, you need to name your scene. Open the Scene panel
(Window → Scene), double-click Scene 1 (the only scene in your movie thus far), and
type the name takeoff.

10. Now, you'll need to import all of the graphics you'll use in the scene. Go to Insert →
New Symbol. When the Create New Symbol dialog box appears, make sure the
Graphic radio button is selected, type rocket ship into the Name field, and click OK.

11. Now, when the Symbol Editor opens, go to File → Import. When the Import dialog
box opens, navigate to the Hands On 3 folder of the book's CD-ROM, select
rocketship.swf, and click Open. By doing this, you'll place the rocket ship graphic into
the Symbol Editor. (Sometimes, when you import complex graphics, they'll appear as
discreet parts—as opposed to one graphic. As a result, you'll need to group all of its
elements. However, in the case of the rocket ship graphic, everything has already been
grouped.)

 Note If you don't see the image in the Symbol Editor, scroll down. Sometimes Flash
doesn't place the imported graphic in the center of the Symbol Editor. All you
need to do is click and drag the rocket ship to the center of the Symbol Editor.
Remember, where you put the image in relation to the small crosshairs
determines where its registration point is.

12. From here, you're going to turn the static rocket ship graphic into a Movie Clip where
flames shoot from its exhaust ports. First, select the rocket ship graphic in the Library
and select Properties from the Library Options pop-up menu. Alternatively, you can
simply click the Properties icon at the bottom of the Library.

13. When the Symbol Properties dialog box opens, select the Movie Clip radio button, and
click OK. Now the static rocket ship graphic is a Movie Clip. From here, it's time to
add some flames.

14. Name the existing layer rocket ship (remember, you're still working on the Movie
Clip within the Symbol Editor).

15. Create a new layer and call it flames.
16. Move the flames layer so that it is below the rocket ship layer.
17. Now, select frame 5 in the rocket ship layer and go to Insert → Frame.
18. Now, select the second frame in the flames layer, and go to Insert → Keyframe.

 Note The first keyframe will be left blank to simulate the rocket ship without any
flames. The reason for this will become far more apparent when you put the
scene together.

19. With the second keyframe selected (the one you just added), draw some flames
coming from the exhaust of the rocket ship with the Pen tool. Use the Paint Bucket
tool to fill the outline you've created with a red color. So far, your flames should look
something like this:

20. Now, click the third frame in the flames layer and go to Insert → Keyframe.
21. Click the fourth frame in the flames layer, go to Insert → Blank Keyframe.

 Note If you are having trouble remembering how to use the Pen tool or the Paint
Bucket, see Chapter 4.

22. With the newly created blank keyframe selected, draw another set of flames coming
from the rocket ship's exhaust. Make sure they are similar, but not identical, to the first
set of the flames you drew, and fill them with an orange color using the Paint Bucket.
They should look something like this:

23. Now, click the fifth frame in the flames layer, and go to Insert → Keyframe. By doing
this, you've created a Movie Clip in which the flames you've drawn will alternate.
Because the Movie Clip will loop indefinitely when it's used in the main Timeline,
you'll get a simple (but effective) moving flame effect.

24. Now it's time to insert the rocket ship Movie Clip into the launch scene. If you are still
in the Symbol Editor, switch back to the main Timeline.

25. Insert a new layer and call it rocket ship.
26. With the first keyframe of the rocket ship layer selected, click and drag the rocket ship

Movie Clip from the Library onto the Stage. Position it so that it is in the middle of the
scene. So far, the scene should look something like this:

27. Now, it's time to do some animating. Select frame 30 in the background layer and go
to Insert → Keyframe.

 Note Remember back when you were creating the rocket ship Movie Clip you left the
first keyframe in the flames layer blank? Well, here is where that amazing
foresight comes in. If you hadn't left that first keyframe blank, you would have
had flames coming out of the rocket ship while it was simply sitting there. The
blank keyframe gives the illusion of the rocket ship starting up.

28. Select frame 30 in the ground layer and go to Insert → Frame or use the shortcut F5.
29. Select frame 30 in the rocket ship layer and go to Insert → Keyframe.
30. Now, with frame 30 in the rocket ship layer selected, move the rocket ship Movie Clip

up until it's outside the Stage.
31. Select the first keyframe in the rocket ship layer and go to Insert → Create Motion

Tween. This creates a tweened animation in which the rocket ship flies up into the sky.
32. To add a little more detail, select the first keyframe in the rocket ship tween, open the

Property Inspector (Window → Properties), and set the Ease to -100. This gives the
illusion that the rocket ship starts off slow but then picks up speed as it rises.

33. Now, save the file by going to File → Save. When the Save dialog box opens,
navigate to the location of your hard drive where you want save the file, enter
rocket_animation into the File Name field, and click Save.

You can test your movie by hitting Return/Enter. If you want the rocket ship Movie Clip to
play, select Control → Test Movie.

Speeding Away from Earth
Now that you've created the first scene in your animation, you can create the second one.
You'll be continuing your space voyage by creating a scene in which the rocket ship speeds
into space with Earth receding in the background. As it will add another dimension to the
scene, you're going to engineer a little visual trickery to simulate the illusion of depth and
distance:

1. Make sure you have the rocket_animation file open.
2. Open the Scene panel, if it isn't already open (Window → Scene), and add a second

scene by clicking the Add Scene button (at the bottom of the Scene panel) or by going
to Insert → Scene.

3. Double-click the name of the scene you've just created, and enter departure into the
field.

4. If it isn't already, select the departure scene.
5. To create the blackness of space, select Modify → Document, click the Background

Color swatch to open the Color Picker, and choose black.
6. Now, you're going to start off by creating the stars that will be scattered throughout the

space portions of your animation. Go to Insert → New Symbol. When the Create New
Symbol dialog box appears, enter star into the Name filed, select the Graphic radio
button, and click OK.

7. When the Symbol Editor appears, use the Ellipse tool to draw a small yellow circle.
Make sure the circle's stroke is also yellow. As with much of this tutorial, you are
certainly welcome to create something a little more fancy for your stars. However,
given the fact that the stars are meant to be in the background, it might be wiser to rely
on something understated.

8. When you've finished creating your star (which you'll use repeatedly in the space
scene), return to the main Timeline.

9. Now, import the graphic you'll be using for Earth. Go to Insert → New Symbol. When
the Create New Symbol dialog box opens, enter earth into the Name field, select the
Graphic radio button, and click OK.

10. When the Symbol Editor Opens, go to File → Import. When the Import dialog box
opens, navigate to the Hands On 3 directory on the book's CD-ROM, locate the
earth.swf file, and click Open.

11. Now, you're set to start adding assets to your scene. Use the Edit Scene button (in the
right portion of the Symbol and Scene bar) to select the departure scene.

12. Change the single existing layer's name to stars.
13. Open the Library (Window → Library), select the first keyframe in the stars layer, and

repeatedly drag the star symbol onto the Stage. The number of stars you place on the
Stage is up to you.

14. Now, add an additional layer to the main Timeline by going to Insert → Layer or by
clicking the Insert Layer button in the bottom-right corner of the Timeline. Double-
click the layer's name and type earth. Alternatively, you can double-click the layer's
icon (just to the left of the name itself) to open the Layer Properties dialog box and
enter earth into the Name field.

15. Now, with the Library open (Window → Library), drag the earth symbol onto the
Stage. Position it so that's it's located in the bottom-left corner of the Stage. So far,
your scene should look something like this:

16. Now, create a third layer and call it rocket ship.
17. Select the first keyframe in the rocket ship layer, open the Library (Window →

Library), and drag the rocket ship Movie Clip (which you created in the previous
section of the Tutorial) onto the Stage.

18. The rocket ship Movie Clip's current size and orientation isn't appropriate for the
current scene. As a result, you'll have to fiddle with it a bit. First, select it and go to
Modify → Transform → Flip Horizontal.

19. Now, select Free Transform tool from the Toolbox, click the rocket ship Movie Clip,
and select the Rotate and Skew button in the Options section of the Toolbox.

20. Rotate the rocket ship Movie Clip roughly 45° clockwise. This gives your rocket ship
a decent trajectory as it speeds away from Earth.

 Note Alternatively, you can simply use the Transform panel (Window → Panels →
Transform). Just click the Rotate radio button, and enter 45 into the Rotate Value
field.

21. Now, with the first keyframe still selected, use either the Free Transform tool or the
Transform panel to shrink the rocket ship symbol so it's small. By doing this, you
create the illusion that the rocket ship is far away at the start of the animation. Later,
you'll add to the illusion of depth and distance by having the rocket ship fly "toward"
the viewer.

22. Select the rocket ship symbol with the Arrow tool and position it so that it's
somewhere over the middle of the earth symbol. So far, your scene should look
something like this:

23. Now that you've placed all the elements you are going to use in the scene, it's time to
do some animating. Select frame 35 in the stars layer, and go to Insert → Frame.

24. Select frame 35 in the earth layer and go to Insert → Frame.
25. Select frame 35 in the rocket ship layer, and go to Insert → Keyframe.
26. Select the keyframe you just created in the rocket ship layer. Click and drag the rocket

ship symbol to a location just outside the top-right corner of the Stage.
27. With the Free Transform tool or the Transform panel, increase the rocket ship symbol

to larger than its original size. Once you've scaled the symbol, make sure that all of it
is off the Stage. Once animated, this will create the illusion that the rocket ship flies
from Earth past your point of view. At this point, frame 35 should look some thing
like this:

28. Select the first keyframe in the rocket ship layer, and go to Insert → Create Motion
Tween. This creates a tweened animation of the rocket ship increasing in size as it
"flies" past the camera. However, depending on where the rocket ship is in the final
keyframe, the animation could look a little bit funny—like the rocket ship is flying
without its nose pointed exactly forward. You'll remedy this by adding a straight path
along which the rocket ship will move.

29. Select the first keyframe in the rocket ship layer, and click the Add Motion Guide
button at the bottom-right corner of the main Timeline.

30. Select the first keyframe in the motion guide layer (which appears directly above the
rocket ship layer), and use the Line tool to draw a trajectory from the middle of the
earth symbol to a few centimeters past where your rocket ship ends up in the final
keyframe.

 Note Because the scene's background is black, you will have some problems with the
line (whose default color is also black) getting lost. To avoid this, either change
the stroke color before you draw the line (by using the Stroke Color Picker in the
Toolbox's Colors section) or change the background color of your movie
temporarily by going to Modify → Document and clicking the Background
Color swatch.

31. With the first keyframe in the rocket ship layer selected, click and drag the small
rocket ship symbol so that it snaps to the start of the linear motion path. Because the
rocket ship symbol is small, you might want to use the Zoom tool to get a better look
at the area with which you're working.

32. Now, click the last keyframe in the layer, and click and drag the larger rocket ship
symbol so that it snaps onto the end of the motion path.

 Note If you have trouble snapping the rocket ship's registration point to the path, make
sure Snap to Objects is turned on (View → Snap to Objects). Also, you might
have to click the registration point and then hold your mouse down for a second
before dragging to make the snapping registration point appear.

33. Select the first keyframe in the layer, and open the Property Inspector (Window →
Properties).

34. Click the Orient to Path check box and set Easing to -100. By doing this, the rocket
ship will always point in the direction of the path. By changing the Easing, the rocket
ship will start off slowly and gain speed as it travels along the path, thereby furthering
the illusion of depth and distance.

35. It's time to animate Earth receding into the distance. Click Keyframe 35 in the earth
layer, and go to Insert → Keyframe.

36. With the newly created keyframe selected, click and drag the earth symbol into the
work area, just outside the bottom-left corner of the Stage. With Keyframe 35 still
selected, use the Free Transform tool or the Transform panel to shrink the earth
symbol to about 25 percent of its former size. When animated, this creates the
impression that Earth is moving off into the distance.

37. With the first keyframe of the earth layer selected, go to Insert → Create Motion
Tween.

You've just finished the second scene in the animation! To test it, simply hit Return/Enter. If
you want the rocket ship Movie Clip to work properly, select Control → Test Scene. If you
want to view the entire animation thus far (including Scene 1), go to Control → Test Movie.

Zipping through Space
Now that you've created the scene in which the rocket ship zips away from Earth, you can
start on the third scene in the animation, the rocket ship careening through space:

1. Make sure you have the rocket_animation file open.
2. Open the Scene panel, if it isn't already open (Window → Scene), and add a third

scene by clicking the Add Scene button (at the bottom of the Scene panel) or by going
to Insert → Scene.

3. Double-click the name of the scene you've just created, and enter travel into the field.

4. Select the single layer in the Timeline, and change its name to stars. Now, with the
stars layer still selected, click frame 30 and go to Insert → Frame.

5. Select the first blank keyframe in the stars layer, open the Library, and click and drag
as many instances of the star symbol as you want onto the Stage.

6. From here, you'll need to add some "texture" to the scene by including a planet for the
rocket ship to pass by. Go to Insert → New Symbol. When the Create New Symbol
dialog box opens, enter planet1 into the Name field, click the Graphic radio button,
and click OK.

7. When the Symbol Editor opens, go to File → Import. When the Import dialog box
opens, navigate to the Hands On 3 directory on the book's CD-ROM, and select
planet1.swf.

8. Remember to click and drag the graphic to the registration point marker in the middle
of the Symbol Editor.

9. Return to the main Timeline. From there, create a new layer by clicking the Insert
Layer button in the bottom-left corner of the Timeline or by going to Insert → Layer,
and name it planet.

10. With the first keyframe of the planet layer selected, click and drag the planet1 symbol
from the Library onto the right portion of the Stage. At this point, your scene should
look something like this:

11. Now, to add some movement to the planet. With the planet layer selected, click frame
30 and go to Insert → Keyframe.

12. Select the final keyframe in the planet layer (the one you just created), and click and
drag the planet1 symbol about four centimeters (1.5 inches) to the left. Now, select the
first keyframe in the planet layer, and go to Insert → Create Motion Tween. By adding
a little motion to the planet, you'll create the illusion that the rocket ship is traveling at
high speed.

13. Now for the actual rocket ship. Create a new layer in the main Timeline and call it
rocket ship.

14. Select the first keyframe in the rocket ship layer, and drag the rocket ship Movie Clip
from the Library into the work area just to the left of the Stage. Use the Free
Transform tool or the Transform panel to orient the rocket ship horizontally. So far,
your scene should look something like this:

15. Now, with the rocket ship layer selected, click frame 30 and go to Insert → Keyframe.
16. Click the final keyframe in the rocket ship layer (the one you just created), and click

and drag the rocket ship Movie Clip to the other side of the Stage into the work area.
17. Select the first keyframe in the rocket ship layer, and go to Insert → Create Motion

Tween.

You've just completed the animation of the rocket ship hurtling though space. To test it,
simply hit Return/Enter. If you want the rocket ship Movie Clip to work properly, you're
going to have to go to Control → Test Scene. If you want to view the entire animation thus far
(including Scene 1 and 2), select Control → Test Movie.

Approaching the Planet
Now it's time to create the sequence in the animation in which your little rocket ship flies
toward its intended destination, the mysterious planet X:

1. Make sure you have the rocket_animation file open.
2. Open the Scene panel, if it isn't already open (Window → Panels → Scene), and add a

fourth scene by clicking the Add Scene button (at the bottom of the Scene panel) or by
going to Insert → Scene.

3. Double-click the name of the scene you've just created, and enter descent into the
field.

4. Select the single layer in the Timeline, and change its name to stars. Now, with the
stars layer still selected, click frame 30 and go to Insert → Frame.

5. Select the first blank keyframe in the stars layer, open the Library, and click and drag
as many instances of the star symbol as you want onto the Stage.

6. From here, you'll need to add the planet to the scene. Go to Insert → New Symbol.
When the Create New Symbol dialog box opens, enter planet2 into the Name field,
click the Graphic radio button, and click OK.

7. When the Symbol Editor opens, go to File → Import. When the Import dialog box
opens, navigate to the Hands On 3 directory on the book's CD-ROM, and select
planet2.swf.

8. Remember to click and drag the graphic to the registration point marker in the middle
of the Symbol Editor.

9. Return to the main Timeline. From there, create a new layer by clicking the Insert
Layer button in the bottom-right corner of the Timeline or by going to Insert → Layer,
and name it planet x.

10. With the first keyframe of the planet x layer selected, drag the planet2 symbol from
the Library to the lower-right portion of the Stage. As the symbol is fairly large, use
the Free Transform tool or the Transform panel to shrink it to about 3 centimeters (1

inch) across—or about 123×123 pixels. So far, your scene should look something like
this:

11. Select frame 30 in the stars layer and go to Insert → Frame or use the shortcut F5.
12. Now, click frame 30 in the planet x layer and go to Insert → Keyframe.
13. With the last keyframe selected in the planet x layer, select the planet2 symbol and

increase its size (either with the Free Transform tool or the Transform panel) to the
point where it dominates much of the Stage. At this point, the scene should look
something like this:

14. Now, with the first keyframe in the planet x layer selected, go to Insert → Create
Motion Tween.

15. At this point, you can start working on the rocket ship itself. Create a new layer and
call it rocket ship.

16. Select the first keyframe in the rocket ship layer, and drag the rocket ship Movie Clip
from the Library onto the Stage. Position it so that it's in the work area just outside the
top-left corner of the Stage.

17. Use either the Rotate tool or the Transform panel to rotate the rocket ship Movie Clip
so that it's pointing toward the planet2 symbol. The result should be something like
this:

18. Now, with the rocket ship layer still selected, click frame 30, and go to Insert →
Keyframe.

19. Select the keyframe you've just created, and move the rocket ship Movie Clip over the
middle of the planet. Then, use the Scale tool or the Transform panel to reduce its size
substantially. The result should be something like this:

20. Select the first frame in the rocket ship layer, and go to Insert → Create Motion
Tween.

21. Much like in the case when you created the first scene, your rocket ship's movement
might look a little off. To correct this, you'll create a straight motion path for it to
follow.

22. Select the first keyframe in the rocket ship layer, and click the Add Motion Guide
button at the bottom-left of the main Timeline.

23. Select the first keyframe in the motion guide layer (which appears directly above the
rocket ship layer), and use the Line tool to draw a trajectory from where the rocket
ship starts to where it ends in the final keyframe—remember, you could run into
problems if the Line tool draws a black line along the black background.

24. With the first keyframe in the rocket ship layer selected, click and drag the small
rocket ship symbol so that it snaps to the start of the linear motion path.

25. Now, click the last keyframe in the layer, and click and drag the larger rocket ship
symbol so that it snaps onto the end of the motion path—you'll probably need to zoom
in because the rocket ship is so small.

26. Select the first keyframe in the layer, and open the Property Inspector (Window →
Properties).

27. Click the Orient to Path check box, and set Easing to 100. By doing this, the rocket
ship with always point in the direction of the path. By changing the Easing, the rocket
ship will start off fast and slow down as it travels along the path, thereby furthering the
illusion of depth and distance.

You've just finished the animation in which your rocket ship approaches planet X. To test it,
hit Return/Enter. If you want the rocket ship Movie Clip to work properly, you're going to
have to go to Control → Test Scene. If you want to view the entire animation thus far
(including the other scenes), go to Control → Test Movie.

Adding Some Hollywood Glamour
You're just about there! You've finished the first four scenes in your animation. In the final
scene, you're going to add a bit of cheesy "Hollywood" to cap it all off:

1. Make sure you have the rocket_animation file open.
2. Open the Scene panel, if it isn't already open (Window → Panels → Scene), and add a

fifth scene by clicking the Add Scene button (at the bottom of the Scene panel) or by
going to Insert → Scene.

3. Double-click the name of the scene you've just created, and enter finale into the field.
4. Go to Insert → New Symbol.
5. When the Create New Symbol dialog box opens, type To Be Continued into the

Name field, click the Graphic radio button, and click OK.
6. Select the Text tool from the Toolbox.
7. Before you add any text, open the Property Inspector (Window → Properties).
8. When the Property Inspector opens, choose a font from the Font drop-down menu. (To

preserve the effect, choose something big and blocky.) Then, enter a size (make it
large) into the Size field.

9. Because the background of your movie is black, choose a light color for the text such
as white.

10. Now, without clicking your cursor anywhere else, type To Be Continued… into the
text box.

11. When you've finished, click your cursor anywhere outside the text box. Click and drag
the text to the center of the Symbol Editor (if it isn't already there).

 Note If the edges of your text are jaggy, select the text, and go to View → Antialias
Text.

12. Now, to create a "dramatic" fade-in text effect, switch back to the main Timeline and
select the first keyframe in the scene's single layer. (If you want, you can name the
layer something distinct. However, as it will be the only one in the scene, it's not
necessary.)

13. Drag the To Be Continued symbol from the Library onto the middle of the Stage.
14. Click frame 15, and go to Insert → Keyframe.
15. Select the keyframe you just created, and open the Property Inspector (Window →

Properties).
16. Choose Alpha from the Color drop-down menu, and enter 0 into the Alpha Value

field.
17. Now, click the first keyframe in the layer and go to Insert → Create Motion Tween.

This creates the fade-in text effect.

Congratulations, you've completed the final scene in the animation! To view the entire
animation, select Control → Test Movie.

 Note If you want to have the animation stop at the end (instead of simply looping over and
over), add a stop() frame action. To learn more about frame actions, see Chapter 12.

Part IV: Scripting for Interactivity with
ActionScript
Chapter List
Chapter 12: Adding Interactivity with Basic Actions
Chapter 13: Creating Interactive Controls
Hands On 4: Combining Basic Actions and Button Navigation to Create an Interactive
Resurme

Part Overview
One of the more elusive terms we hear as developers of digital media is interactivity. This
word appears frequently in books, tutorials, and articles, and is usually used to qualify or
categorize the media we produce. It has become a sort of buzzword, such that in many circles,
interactive equals cool. In its defense, though, many things (digital and otherwise) are
interactive and require this cyber-savvy stamp of approval. One fear, however, is that the
word is used so often that either it has lost its meaning or its meaning has been diluted.

So what exactly is interactivity? Merriam-Webster's Collegiate Dictionary defines interactive
as "of, relating to, or being a two-way electronic communication system…that involves a
user's orders (as for information or merchandise) or responses…" Well, that gets us started—a
two-way communication between a person and a machine, but how does this relate to Flash?
That's where you come in. As a developer of Flash movies, you are the "ghost in the
machine"; you're the person responsible for determining the nature of communication
between your movies and your audience. Flash movies can respond to audience input in
whatever manner you define; your task is to decide how that response will be delivered. This
section of the book opens the floodgates to the vast world of interactivity. Here you will begin
to understand the myriad techniques that afford communication between your audience and
your Flash creations.

Chapter 12: Adding Interactivity with Basic
Actions
Overview
Up to this point, you have used Flash as a tool for creating low-bandwidth graphics and
animation. But you can also use Flash to transform these elements into dynamic components
of games, nonlinear stories, and interactive interfaces. It's not difficult to add this kind of
functionality to your Flash movie, and it's all done with the help of actions.

Actions are sets of commands written in ActionScript, Flash's object-oriented programming
language. In the most basic sense, actions tell a Flash movie how to perform. They can range
from simple ones (for example, to tell Flash to skip ahead and play a particular frame) to
complex ones (for example, to perform a computation and then do something based on the
result).

Understanding Actions
Actions are one of the more dynamic features that Flash offers its users; they allow you to add
interactivity to your Flash movie. Actions can enable your audience to control the playback of
your movie with mouse clicks, keystrokes, and custom menus. They also allow you as the
designer to build a movie that plays in precisely the manner you desire.

To use actions in Flash, you don't have to be a programmer. It can be helpful to understand
programming concepts if you plan to get into advanced actions, but it's not essential. Flash
provides a simple, intuitive interface called the Actions panel, which allows you to create
actions and place them in your movie. This scheme gives you access to an entire Library of
ActionScript commands and involves a minimum of typing or "hand coding."

So, what is ActionScript? It's an object-oriented programming language that is native to the
Flash environment. Object-oriented means that scripts are attached to "objects" or elements of
your movie. When those objects encounter a particular event while the movie is running, their
script (or action) is executed. For example:

on(press){
 gotoAndPlay("nextStop")
}

In this script, the press mouse event will cause the movie to jump ahead to a frame label
named "nextStop" and continue playing from that position. Or, in more general terms, the
event cues an action that changes the playback of the movie.

The relationship between events and actions is a fundamental concept of object-oriented
programming. If you are new to scripting languages or have never seen any kind of
programming, this may look a little weird, but don't be discouraged. As you become more
familiar with actions, the syntax and structure of ActionScript will seem less cryptic.

In order to write actions for your Flash movie, you must first become familiar with the
Actions panel.

Navigating the Actions Panel

The Actions panel is your interface for creating scripts that will be executed in a Flash movie.
The panel offers two modes for composing ActionScript: Normal and Expert. Normal mode
offers several automated features and is recommended for beginners. It allows you to add
actions to a movie through a process of menu selections and drag-and-drop options. Expert
mode is generally more appropriate for advanced users. This mode makes the Actions panel
similar to a text editor and offers a great deal of flexibility when you are writing scripts.

 New to MX To display the Actions panel, select Window → Actions or press the F9 key.

Many of the enhancements to Flash MX can be found in the Actions panel (see Figure 12.1).
It is now equipped with several new features that make writing and editing scripts easier than
ever before.

Figure 12.1: The Actions panel

Following are descriptions of the Actions panel's features:

ActionScript Toolbox This menu is one location where you can access an ActionScript
Library. Actions can be selected in this area of the panel and dragged into the Script pane.

Script pane Scripts are displayed in their entirety here. In Expert mode, this is the area where
you compose ActionScript.

Parameters pane This area allows you to enter specific information (such as frame numbers
or scene names) that will be plugged into a script. This option is available only while working
in Normal mode. You can use the small triangle at the top right of the Actions panel to either
expand or collapse the information area of the Parameters pane.

Add/Delete an Action Statement buttons Use these buttons to add or remove a statement of
ActionScript. The Add button opens to a cascading series of ActionScript menus. When an
item is selected, it will appear in the text box. The Delete button removes all highlighted
statement(s).

Move Selected Action Statement(s) buttons Use the Up and Down buttons to change the
order of statements within a script from top to bottom.

Insert Target Path button This button is used to launch the Insert Target Path dialog box.
Use this option when referencing a button or Movie Clip instance along its target path.

The following Actions panel features are new in Flash MX:

 New to MX Jump menu The Actions panel is context sensitive. When a scriptable element
of your movie is selected, the panel's Jump menu will update its information to reflect that
element. For instance, if you have a frame selected, the menu will show the frame number and
both the name and number of the layer that holds the frame. If a button or Movie Clip is
selected, the Jump menu will show the name of the button or Movie Clip.

View Options menu The View Options menu allows you to toggle between Normal and
Expert modes and to enable the line numbering feature of the Actions panel. To read more
about line numbering, see Chapter 14.

Launch ActionScript Reference button This handy button gives you access to Flash MX's
built-in ActionScript reference. Click it, and the Reference panel will appear. To read more
about the features of the Reference panel, see Chapter 14.

Script Pin button In previous versions of Flash, the Actions panel displayed only the script
for the currently selected frame or symbol. Now, with the Script Pin button, you can "stick" a
script to the panel. This is the digital equivalent of a pushpin cork board: Once you pin a
script to the panel, it will remain there. This feature allows you to make one script viewable at
all times while selecting other objects in your movie.

Scripting in Normal Mode

As mentioned earlier, the Actions panel offers two modes for writing ActionScript: Normal
and Expert. Depending on your personal preference and level of comfort with the language,
you may decide that one works better for you and your way of working in Flash. Table 12.1
shows the basic differences between the two modes of operation.

Table 12.1: Capabilities of Normal and Expert Modes
Capabilities Normal Mode Expert Mode
Supports drag-and-drop from the ActionScript Toolbox. Yes Yes
Use the Parameters pane to enter script information. Yes No
Add/Delete a Statement buttons are fully functional. Yes Add Statement

button only
Move Selected Statements buttons are fully functional. Yes No
Insert Target Path button is available. Yes Yes
Jump menu is fully functional. Yes Yes
Script Pin button is fully functional. Yes Yes

Generally, Expert mode puts more of the responsibility in the hands of the designer. There are
fewer features, but there is also greater flexibility to write scripts in exactly the way you wish.
For more information on Expert mode, see Chapter 14.

Normal mode is comparatively limiting because everything is done through menu selections.
It offers a more automated approach, however. Normal mode requires less knowledge of the
ActionScript language and involves a minimal amount of typing. If you are new to
ActionScript, it's probably best that you begin your career as an "actionscripter" in Normal
mode.

 Note Feeling undecided? If so, you are in luck. Provided that your scripts are free of errors,
Flash enables you to switch between modes whenever necessary.

To set the Actions panel so that you are working in Normal mode:

1. Select Window → Actions to display the Actions panel.
2. Do one of the following:

o Click the Actions panel pop-up menu in the upper-right corner of the panel to
display the menu, and select Normal Mode from the menu.

o Press Cmd+Shift+N (Mac) or Ctrl+Shift+N (Windows).
o Click the View Options menu above the Script pane and choose Normal Mode.

Working with Object Actions

Actions can be attached to two kinds of objects in Flash: buttons and Movie Clips. The
attached action will be executed when the object receives an event message. For buttons,
these messages generally come in the form of mouse interaction or other kinds of user input.
Movie Clip event messages revolve around any changes or interactions that happen to the clip
itself. When you attach an action and write an ActionScript, you specify the event trigger for
each object.

Actions are attached to buttons and Movie Clips because they are the interactive components
of your Flash movie. As objects, they can receive mouse clicks, data, and other kinds of
information while the movie is running. The structure that you create with objects and their
attached actions will determine the way your audience interacts with your movie.

It's important to remember that in Flash, button and MovieClip objects are stored in the
Library as symbols. As symbols, they are unique. Each time they are used in your movie, they
stand alone as an individual occurrence, or instance, of the symbol. (For details about symbols
and instances, see Chapter 7.)

You can think of an instance as a copy of a symbol. Any changes made to an instance will not
affect the original symbol or any other instances of that symbol. This characteristic remains
true when you attach actions to a symbol instance. Any actions applied to an instance are
available only at the time the instance occurs in a movie. This means that actions remain
exclusive to the instance where they are attached.

However, in order for any actions to be executed, they must first be triggered by some kind of
event in the movie. In ActionScript (and many other object-oriented languages), these events
are called handlers.

Event Handlers

Object-oriented languages work in a cause-and-effect manner, where an action is the "effect"
or the result that a script produces, and an event handler is the "cause" that pulls the trigger.
For example, consider the following script:

on(thisEvent){
 doAnAction();
}

Anyone who has had even the slightest exposure to ActionScript knows immediately that this
code is object-oriented fiction. There is no handler named thisEvent, and there is certainly no
action called doAnAction. But what this bit of imaginary code provides is a simple
constructor for the sequence of events and actions. The event handler is almost always the

first statement. The name of the handler is preceded by the word on, which can be interpreted
as "when the following event occurs…" The handler creates the first part of a sentence that
will tell your Flash movie to do something. That something is filled in by the action. The
entire script can be better understood in sentence form: "When the following event occurs,
doAnAction." There are many different kinds of event handlers in ActionScript, and we will
discuss the specifics of each later in this chapter.

You should now know what a handler is, but it's also important to understand the event itself,
and when and how it occurs in the context of the movie. As a designer or developer of
interactive media, you need to know how each handler will affect the way your audience will
experience your movie. If you were creating an interactive music mixer in Flash, what mouse-
event handler would you want to use for buttons to turn the tracks off and on—a mouse button
press or a mouse button release? Our vote would be for a press event. Why? Well, because we
are talking about a music mixer. And when you deal with a music mixer, you want to be sure
that the person playing it can sync the audio tracks and maintain a steady beat the entire time.
The press event is easier to time because it's similar to tapping your hands on a tabletop or
hitting a drum. The press event is more like actually playing an instrument.

With thoughtful planning and consideration, it's simple to choose the event handlers that will
allow your actions to execute in the best way possible.

Working with Frame Actions

As you've probably guessed, frame actions are actions that are attached to a frame in your
Flash movie. Specifically, frame actions are attached to a special kind of frame called a
keyframe. Keyframes are used to signify important changes in the Flash movie, for both
animation and actions. (To read more about keyframe concepts and animation, see Chapter 9.)

When an action is attached to a keyframe, the frame shows a small letter a in the Timeline
(see Figure 12.2).

Figure 12.2: Frame action in the Timeline

You attach actions to frames to cause your movie to play back in a particular manner. Take,
for example, the following action:

gotoAndPlay(1);

If you attached this action to frame 10 of a Flash movie, it would create a playback loop.
When the movie reached frame 10, it would immediately be sent back to frame 1 and told to
continue playing. The cycle would persist until another action told the movie to either stop
playing or do something else.

The greatest difference you will notice between object actions and frame actions is the
absence of an event handler. With frame actions, the event handler is assumed. These actions
require no specific handler because they are executed when the frame is played in the Flash
movie.

Using Actions
Now that we have discussed the basic concepts involving actions, we can move on to the good
part: implementing them in your Flash movie. To use actions in your movie, you must attach
them to either an object or a frame. This is done through a simple process of selecting the
object or frame, choosing the action you want to use, and then defining any parameters that
the action requires. Any actions that you attach will affect only the instance of an object
symbol or the single frame containing the action.

You use actions to control your movie so that it behaves exactly as you want. Actions can be
used to control interactivity, to "listen" for user input, and to control the flow and direction of
movie playback—just about anything that affects the way your movie is presented to the
audience. Actions make Flash less of an animation program and more of an authoring
environment for interactive media applications. Here are just a few possibilities that actions
can offer your Flash movie:

• Create complex, interactive navigation
• Change the quality of movie playback
• Link to HTML pages on the Internet and communicate with server-side applications
• Communicate with host applications or other Flash movies
• Play additional movies within the host movie

Attaching Object Actions

Attaching an action to either a button object or a MovieClip object is a fairly simple and
straightforward process. Here are just a few things to keep in mind along the way:

• You must first select an object in the Timeline (or on the Stage) before you can attach
an action to it. If you call upon the Actions panel and have no object selected, all the
actions will be unavailable.

• Actions are attached to an instance of a button or Movie Clip symbol; all other
instances of the object will be left untouched.

• It's important to test an action after it has been attached. In editing mode, only simple
frame actions (like gotoAndPlay) will work properly. To test an action, you must test
your movie. Select Control → Test Movie and try out the newly applied action. (For
more information on testing movies, see Chapter 28.)

Here are the basic steps for attaching an action to an object in Normal mode:

1. Select the object in the Timeline or on the Stage.
2. Choose Window → Actions from the menu bar or press F9.
3. The Actions panel appears. Select the following:

An action Choose from the list of actions in the ActionScript Toolbox.

Action parameters Select any information needed for the action in the Parameters
pane.

An event handler Each action will have a default handler. If necessary, you can
change it in the Parameters pane.

To learn how to attach specific actions and define their parameters, skip ahead in this
chapter to the section titled "Using Actions for Basic Movie Navigation and
Interactivity."

Mouse Events

When you attach an action to a button object in Normal scripting mode, Flash automatically
assigns a mouse-event handler to the action. This handler determines what event within the
movie will execute the action(s) contained in the script. In most cases, the default handler
provided by Flash will do the trick, but there may be times when you must change the mouse
event to accommodate a particular kind of interaction.

To set or change the mouse-event handler for an action:

1. Select the button that either needs an action or needs to be changed.
2. Open the Actions panel and do either of the following:

o If you need to set the mouse event, select the on action from the Actions →
Movie Control category of the Actions panel.

o If you need to change the mouse event for an action that already exists, click
the event in the ActionScript text box.

 Tip There are four ways to choose actions while scripting in Normal mode. You can
either double-click the desired action, grab the action from the ActionScript
Toolbox and drag it to the text box, click the Add (+) button and select the action
from the cascading menus, or type the action's key command. To display the key
commands in the ActionScript Toolbox, select View Esc Shortcut Keys from the

Actions panel pop-up menu.

3. The Parameters pane displays a list of the various ActionScript mouse-event handlers.
Check the box next to your handler of choice, and your script will be updated. Notice
in Figure 12.3 how the Parameters pane lists events when the handler is selected in the
text box.

Figure 12.3: An event handler selected in the Actions panel

Following are the names and descriptions of the ActionScript mouse-event handlers:

Press The press event cues an action when the mouse button is pressed while the cursor is
over the button object.

Release The release event cues an action when the mouse button is released while the cursor
is over the button object. Release is the default mouse event.

Release Outside The releaseOutside event cues an action when the mouse button is released
and the cursor is not over the button object.

Key Press The keyPress event doesn't involve the mouse at all. It is executed when the key
listed in the adjacent field is pressed.

Roll Over The rollOver event cues an action when the cursor moves over (or within) the
button object.

Roll Out The rollOut event cues an action when the cursor moves away from (or leaves) the
button object.

Drag Over The dragOver event can be confusing at first. It involves a combination of two
different mouse behaviors, a drag and a rollover. The sequence goes like this: The mouse is
clicked over the button; the mouse is dragged outside of the button; the action is finally cued
when the mouse is dragged back over the button.

Drag Out The dragOut event cues an action when the mouse is clicked over the button object
and dragged outside of the button.

Remember that any of these event handlers can be used to cue multiple actions in a single
script. Additionally, any one object can have more than one handler attached to it. For
example:

on(press){
 gotoAndPlay(1);
}
on(release){
 gotoAndPlay(2);
}

In this script, a button tells a movie to play at frame 1 while the mouse is pressed, and then go
to frame 2 when the mouse is released.

 On the CD-ROM For a sample movie that demonstrates each handler in context, see the
movie HandlerMan.swf on this book's companion CD-ROM.

Movie Clip Events

A Movie Clip is another kind of object that can have actions assigned to it. Because Movie
Clips can behave differently from buttons in your Flash movie, they have their own unique
handler to cue actions. The Movie Clip handler is called onClipEvent. When you select an
action for a Movie Clip, Flash automatically inserts a default event handler to cue the action.
But unlike the mouse-event handlers we saw earlier, the onClipEvent handler takes an
argument that specifies what kind of clip event will trigger the action. The structure for
onClipEvent is as follows:

onClipEvent(someMovieEvent){
 doAction(s);
}

In this example, someMovieEvent represents an argument to be filled by any of a number of
Movie Clip–related events. The argument is there to more clearly define the handler. You
may use any of the following possibilities to satisfy the someMovieEvent argument:

Load The load event is cued when the Movie Clip is first called to the Stage or is present in
the current frame of the Timeline.

Unload The unload event is cued in the next possible frame after a Movie Clip is taken out of
the Timeline or removed from the Stage.

EnterFrame The enterFrame event is cued as each frame of the Movie Clip is played.

MouseMove The mouseMove event is cued whenever the mouse is moved.

MouseDown The mouseDown event is cued when the mouse is pressed and the cursor is over
any portion of the movie's Stage.

MouseUp The mouseUp event is cued when the mouse is released and the cursor is over any
portion of the movie's Stage.

KeyDown The keyDown event is cued when a key is pressed. To monitor keystrokes, refer to
the Key object and its methods in the ActionScript Reference section of this book.

KeyUp The keyUp event is cued when a key is released. To monitor keystrokes, refer to the
Key object and its methods in the ActionScript Reference section.

Data The data event is executed whenever a Movie Clip receives data via the loadVariables
or loadMovie action.

To set or change the event handler for a Movie Clip:

1. Select the clip to which you want to attach an action or that has an action that needs to
be changed.

2. Open the Actions panel and do either of the following:
o If you need to set the clip event, select the onClipEvent action from the

Actions → Movie Clip Control category of the Actions panel.
o If you need to change the clip event for an action that already exists, click the

event in the ActionScript text box.
3. The Parameters pane displays a list of the various Movie Clip event handlers. Check

the box next to your handler of choice, and your script will be updated.

 New to MX Flash MX offers another way of assigning actions to buttons and Movie Clips.
By using the events of the MovieClip and Button objects, you can assign action(s) in a single
script, rather than attach multiple scripts to each instance individually. To read more about
event handler methods for buttons and Movie Clips, see Chapter 16.

Attaching Frame Actions

Frame actions are another kind of ActionScript you can use in a Flash movie to control the
way it plays back. When a keyframe with an attached action is encountered in the Timeline,
that action is executed and the movie reacts accordingly. For more specifics on frame actions,
refer to the section "Working with Frame Actions" earlier in this chapter.

 Tip Frame actions can be used within Movie Clips as well in the main Timeline. They are
especially useful for creating internal Movie Clip loops.

To attach a frame action:

1. Select a keyframe where you wish to attach the action. If no keyframe is available,
Flash will automatically attach the action to the first available keyframe to the left
(earlier) in the Timeline. If you need to insert a keyframe, choose Insert → Keyframe.

2. With a keyframe selected, choose Window → Actions or press F9 to display the
Actions panel.

3. To select an action, do one of the following:
o Double-click an action from the Actions section of the Toolbox.
o Drag an action from the Toolbox to the text box.
o Select an action from the Add (+) menu.

o Type a keystroke for the desired action. (For a list of Action keystrokes, see
the ActionScript Reference section of this book.)

4. Make any necessary adjustments to the action by entering values in the Parameters
pane. Not all actions require parameters; if the Parameters pane is collapsed, you can
expand it by clicking the small triangle in the upper-right corner of the panel.

5. If necessary, repeat steps 3 and 4 to attach additional actions.
6. Frame actions require no event handler, since each action is executed when the frame

is played in the Timeline. To test your actions, select Control → Test Movie.

Using Actions for Basic Movie Navigation and Interactivity

In the Actions category of the ActionScript Toolbox, you will find several subcategories of
actions to control various aspects of movie playback. We have discussed the particulars of
attaching an action to different elements of your movie; let's now focus on what some of those
actions can do.

 New to MX With the release of Flash MX, the organization of the Actions panel has
changed significantly. The once-familiar Basic Actions category of previous Flash releases
has been reorganized into a more comprehensive structure. Consequently, this may take a
little getting used to if you have recently upgraded to Flash MX. This change may make the
experience of learning how to script for a Flash MX movie a little more daunting at first, but
take heart! With a little investigation, you will find that all the actions you require are still
available and ready to go.

Due to the new organization of the Actions panel, it may be difficult to decide where to begin
your ActionScript career, especially if you are a first-time Flash user. If you are in this
situation, you have come to the right place. This section of the chapter aims to give you an
overview of the most important and useful actions in the language. These "essential" actions
are listed according to their subcategory in the Actions section of the Actions panel.

Movie Control

gotoAndPlay() Skips to a frame or movie scene and plays at that location.

gotoAndStop() Skips to a frame or movie scene and stops at that location.

on Defines the mouse handler that will trigger an action.

play() Plays a movie.

stop() Stops a movie.

stopAllSounds() Stops audio elements in a movie.

Browser/Network

fscommand() Controls the Flash player.

getURL() Links to a URL.

loadMovie() Loads other Flash movies.

unloadMovie() Unloads other Flash movies.

Movie Clip Control

setProperty() Sets the attributes of a Movie Clip: dimensions, position, and so on.

onClipEvent() Defines the clip event handler that will trigger an action.

Deprecated Actions

For now (and probably forever), the following actions have been relegated to the ActionScript
scrap heap. Deprecated means that each term is no longer the preferred syntax and has been
replaced or supplemented by a newer, more flexible, more powerful action that will
accomplish the same goal. Deprecated terms are still functional, but they are not always the
best or most efficient means of getting something done with ActionScript. For a more detailed
description of each new term, see the ActionScript Reference section of this book.

tellTarget() Controlled Movie Clips and other movies. Now use the with action or a target
path to control a specific Movie Clip or Timeline.

toggleHighQuality() Controlled the playback quality of a movie. Now use the _quality
property.

ifFrameLoaded() Monitored whether a frame was loaded. Now use the _framesloaded
property. The ifFrameLoaded() action was used to create preloaders, simple animated loops,
or movies that managed the loading of movie assets. To learn how the _framesloaded property
can be used to create preloaders, see the Appendix, "Cool Bells and Whistles."

Skip to a Frame or Movie Scene

The goto action is used for navigation and allows you to skip to a frame or scene in your
movie. When your movie reaches the new scene, you can tell the movie to either stop or
continue playing.

To attach a goto action:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Movie Control section and select the

goto action by double-clicking it or dragging it to the text box.
4. The goto action now appears in the text box. In the Parameters pane, specify the

following options:
o If you want the movie to continue playing when it reaches its destination, leave

the default Go to and Play radio button checked. If you wish to make the
movie stop when it skips ahead, select Go to and Stop. The action is
immediately updated and replaced with the gotoAndStop() action.

o Select the scene for your destination from the Scene pop-up menu. The Next
and Previous options will take you to the first frame of either the next or
previous scene. If you select either Current or a named scene in your movie,
you must specify a destination frame in the scene.

o Use the Type pop-up menu to select the kind of destination. This can be either
the next or previous frame, a frame number, a frame label, or an expression.

o If you select either Frame Number or Frame Label, you must enter the name of
the label or the number of the frame in the Frame field. If you select
Expression, you must enter a statement that can be evaluated. (For more about
writing expressions, see Chapter 14.)

Set the Handler for a Mouse Event

In some cases, you may wish to declare your script's event handler first and then select the
actions that will execute when it occurs. To set the event handler manually, you can use the on
action. When you select this action, the default on(release) mouse-event handler appears in
the text box. You can change the event and then select the actions you wish it to cue.

To attach the On Mouse Event action:

1. Click the button instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Movie Control section and select the

on action by double-clicking it or dragging it to the text box.
4. The default handler (release) can be changed in the Parameters pane. Initially, the

action looks something like this:
5. on(release){

}

To change the handler, highlight the on(release) line and select from one of the
handler options that appear in the Parameters pane. To read more about mouse-event
handlers for buttons, see Chapter 13.

6. Once you have selected a handler, you must insert actions for it to execute. With the
handler highlighted in the text box, select another action from the ActionScript
Toolbox.

7. Enter any necessary values for the action in the Parameters pane.
8. To put other actions into the handler or attach additional actions, repeat steps 5 and 6.

Actions can be reordered using the Up and Down arrows in the Actions panel.

Play or Stop a Movie

There are two actions to control whether or not a movie is playing. A Flash movie will play
until it either runs out of frames in the Timeline or is halted by the stop() action. The play()
action must be issued in order to restart the movie from wherever it was stopped. Both the
play() and stop() actions can be used to control either the main Timeline or the Timeline of a
Movie Clip. For more specifics on how you can control Movie Clips with ActionScript, see
Chapter 16.

To attach either a play() or stop() action:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.
Unless a target path is specified, an action will control only the Movie Clip or
Timeline to which it is attached.

2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Movie Control section and select

either the play() or stop() action.
4. If necessary, select the default event handler and change events in the Parameters

pane. Frame actions to stop or play will be executed when the movie reaches the
frame. If you were to create an action for an animation rewind button, it would
resemble these statements:

5. on(release){
6. gotoAndStop(1);

}

Stop Sounds

The stopAllSounds() action allows you to turn off the audio elements of your movie and leave
any active Timeline animations untouched. This action will terminate the playback of all
audible sounds when it is executed. Looping event sounds won't be heard until they are cued
again. Stream sounds will play when they are encountered again in the Timeline. (For more
information on cueing sounds, see Chapter 21.)

To attach the stopAllSounds() action:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Movie Control section and select the

stopAllSounds() action. stopAllSounds() takes no arguments and will be executed
when its event handler occurs or when its frame plays in the Timeline.

Link to a URL

It's possible to link to a URL from within your Flash movie using the getURL()action.
Linking to a URL allows you to do two things. You can use Flash to hyperlink anywhere on
the Web and load a URL into a browser window. You can also use the action to send
variables to a source found at the particular URL, such as a Director movie, CGI script, or
other kind of server-side script.

To attach the getURL()action:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Browser/Network section and select

the getURL()action. This action has three parameters that must be specified: URL,
Window, and Variables.

4. URL is a parameter that defines the URL to which you will link. You can enter either
a relative path or an absolute path to the link. An absolute path includes the entire
URL, such as http://www.myflashlink.com/myfile.html. A relative path tells the movie
to link within the file structure where the Flash movie is saved—for example,
currentfolder/folder1/folder0.

It's also possible to use an expression that produces a value for the URL. To use an
expression, check the box next to the URL field and enter the information. (For more
specifics about writing expressions, see Chapter 14.)

5. Window tells the web browser where to load the URL. You can enter a specific frame
or window name in the field, enter an expression that produces a value for the
window, or choose a default from the pop-up menu:

o _self targets the window and frame where the movie is currently sitting.
o _blank targets a new browser window.
o _parent targets the current window and replaces only the frameset where the

movie is currently sitting. This option is best if you have nested framesets and
you want to retain that structure.

o _top targets the current window and replaces all framesets with the new URL.
Use _top if your movie is in a frame and you want the URL to fill the entire
browser window.

For example, to load a relative URL named myinfo.html in a new browser window
when a button object is clicked, your script would look like this:

on(release){
 getURL("myinfo.html", "_blank");
}

6. Use the Variables pop-up menu to send variables to the URL to which you wish to
link.

o Don't Send is the default and should be used for standard links where there is
no transfer of data.

o Send Using GET will attach a few variables to the URL and is best for small
transfers of information.

o Send Using POST is best for larger amounts of information.

Control the Flash Player

The fscommand() action is used to control the Flash Player when it's running as a stand-alone
application or projector. fscommand() can also be used to pass information to an application
that is hosting the movie, such as a web browser or a computer's operating system.

To control the stand-alone Flash Player:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Browser/Network section and select

the fscommand() action.
4. In the Parameters pane, choose from the following options in the drop-down menu:

Fullscreen A setting of True will allow your projector to fill the entire screen and
show no menu. False will play the projector in Normal mode in its own window.

Allowscale This controls the ability to scale the animation. True makes the animation
scalable; False preserves it at the original size.

Showmenu The stand-alone Flash Player has a menu bar and offers Ctrl+click (Mac)
and right-click (Win) menu options. When this value is set to True, these options are
available; when it's False, they are not.

Quit This command causes the projector file to close.

Trapallkeys This feature, when set to True, disables any keyboard input. It's great for
limiting all user input to the mouse-enabled controls you have created for the movie. If
you plan to use this and set showmenu to False, be sure to include an element that
issues a quit command.

Exec This opens and runs an application from within the projector. Enter a path to the
application in the arguments field.

For more information about fscommand(), stand-alone projectors, and how they can be used
for CD-ROM development, refer to Chapter 29.

Scripting for Multiple Movies

As a theater production brings different cast members onto the stage, you can call additional
movies to play in a Flash production. To do this, you use two actions: Load Movie and
Unload Movie. Through the process of loading and unloading movies, Flash can string
together a series of movies, or layer one on top of another to create different playback
permutations. Additionally, it allows you to play several movies in a single browser window.
Rather than reload the browser when you need to link to a different movie, you can simply
replace one movie with another. This technique produces a much smoother presentation of the
content.

Loading a Movie

To load additional movies in the Flash Player:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Browser/Network section and select

the loadMovie() action (see Figure 12.4).

Figure 12.4: A loadMovie() action in the Actions panel

4. In the Parameters pane, use the URL field to enter the name of the SWF file you wish
to load. It can be helpful to keep all movies (the main file and others to be loaded) in
the same folder.

5. Choose either Level or Target from the Location pop-up menu.
6. If you chose Level, you must enter a level number:

o 0 is the default level and the level of the movie that was loaded first. The level
0 movie sets the frame rate, background color, and size for all other loaded
movies. If a new movie is loaded at level 0, it will replace the original movie
and unload all other levels.

o To load a new level, select the next available positive number that is greater
than zero.

o To replace a loaded movie, determine its level number and load a new movie at
that same level.

7. If you chose Target in step 5, you must enter the name of a Movie Clip to be replaced
by the loaded movie. The new movie will be positioned with its upper-left corner over
the registration point of the Movie Clip. Newly loaded movies will also be given the
attributes of the targeted Movie Clip instance (scale, rotation, and so on).

8. The Variables menu defaults to Don't Send. This will prohibit any variables from
passing to the loaded movie. However, if you want to transfer variables, you can use
either GET or POST. For a description of these methods, refer to the earlier discussion
of the getURL() action.

Unloading a Movie

To unload a movie in the Flash Player:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.

2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Browser/Network section and select

the unloadMovie() action.
4. In the Parameters pane, select either Level or Target from the Location pop-up menu.
5. If you selected Level, you must enter the level number containing the movie you wish

to unload.
6. Target will unload the specified Movie Clip instance. Enter an instance name or target

path to the instance you wish to unload.

 Note You may notice that the loadMovie() and unloadMovie() actions are sometimes listed as
loadMovieNum() and unloadMovieNum(). In Normal mode, the Actions panel makes
these changes for you automatically. Each action performs basically the same job but
uses a different syntax, or structure, to do it. loadMovie() passes arguments as a string,
while loadMovieNum() uses a number to specify a load level for the new movie. In
Normal mode, loadMovie() is used as the default for loading movies into Movie Clip
instances, and loadMovieNum is used for loading movies into levels. (To learn more
about working with multiple Timelines, see Chapter 16.)

Set the Handler for a Movie Clip Event

In some cases, you may wish to declare a script's event handler first and then select the
actions that will execute when it occurs. To set a Movie Clip event handler manually, you can
use the onClipEvent action. When you select this action, the default onClipEvent(load)
handler appears in the text box. You can change the event and then select the actions you wish
it to cue.

To attach the onClipEvent event handler:

1. Select the Movie Clip instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Movie Clip Control section and

select the onClipEvent action.
4. The default handler (load) can be changed in the Parameters pane. Initially, the action

looks something like this:
5. onClipEvent(load){

}

6. Once you have selected a handler, you must insert actions for it to execute. With the
handler (usually the first line) highlighted in the text box, select another action from
the ActionScript Toolbox.

7. Enter any necessary values for the action in the Parameters pane.
8. To put other actions into the handler or attach additional actions, repeat steps 5 and 6.

Actions can be reordered using the Up and Down arrows in the Actions panel.

Control Movie Clips and Other Movies

You can control the playback of Movie Clips in your Flash movie by using the tellTarget()
action. Although it is technically considered a deprecated term, tellTarget() is still very useful
for controlling Movie Clips while working in Normal mode. This action can be attached to

both objects and frames. For example, a button can be used to stop playing a clip, or a frame
action can cue a Movie Clip to start playing.

You need to set a few things in your movie before using this action. First, you must have a
Movie Clip in the movie to target. Additionally, the clip must have a unique instance name.
To assign a name to a clip instance, select the instance in your movie and then choose
Window → Properties to open the Properties inspector. Enter a name in the Instance Name
field. You can use letters or a combination of letters and numbers. It's best to give instances
meaningful names so that you can remember which Movie Clip they identify. The last
condition is that a Movie Clip must be in the same frame as the element (either a frame or
object) that will target it. A button in frame 1 cannot control a Movie Clip in frame 2.

To attach a tellTarget()action:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Deprecated section and select the

tellTarget() action.

4. To specify the clip you wish to target, click the Insert Target Path button in the
Parameters pane. If the button is grayed out, click inside the Target field, and the
button should become available.

5. The Insert Target Path dialog box appears and displays an outline of the Movie Clips
in your movie.

6. For Notation, select the Dots radio button. This will define your target path using the
more current dot syntax. The slash syntax is available if you are more comfortable
with the older Flash 4 style.

7. The Mode setting allows you to choose which Movie Clips are displayed:
o Relative will show you only Movie Clips that are in the current scene. this, at

the top of the outline, refers to the current Timeline or Movie Clip.
o Absolute will show every clip in the entire movie. In this mode, _root (at the

top of the outline) shows the path to the clip from the main Timeline.

Although either mode will work, you will find that relative paths are more concise and
can sometimes be easier to understand.

8. Select the clip you wish to target, and the instance name appears in the Target field.
Click OK to return to the Actions panel.

9. Now that you have targeted a clip, you can insert an action that will control it. First, be
sure that the tellTarget() action is highlighted in the text box. Then return to the
Actions Toolbox and select the action(s) you would like tellTarget() to apply to the
targeted clip. The final script for an action that stops a clip instance named "icon"
would look like this:

10. on(release){
11. tellTarget("icon") {
12. stop();
13. }

}
 Tip As we mentioned, the tellTarget() action is now deprecated but is still very useful while

working in Normal mode. If you are interested in finding an alternative to this term, see
"Writing ActionScript for Multiple-Timeline Movies" in Chapter 16, and the with action
in the ActionScript Reference section.

Assign Properties to a Movie Clip

Using the setProperty()action, you can write scripts to manipulate the attributes or properties
of a Movie Clip instance. Of course, it's possible to set the properties of a clip when you first
create it, but it's more interesting (and fun for your audience) to change the clip dynamically
using interactive controls such as mouse clicks or keystrokes. Remember, before you can
control a Movie Clip with ActionScript, it must first have a unique instance name.

To attach the setProperty()action:

1. Click the button, frame, or Movie Clip instance where you plan to attach the action.
2. Select Window → Actions or press F9 to open the Actions panel.
3. In the ActionScript Toolbox, open the Actions → Movie Clip Control section and

select the setProperty()action by double-clicking it or dragging it to the Script pane.
This action has three parameters that must be specified:

o For Property, choose one of the properties that is available in the drop-down
menu.

o For Target, enter the name of the Movie Clip instance you would like to affect.
Alternately, you can use the Insert Target Path button to target the clip
specifically. To learn about the Insert Target Path button, refer to steps 4
through 8 in the preceding section on the tellTarget() action.

o For Value, assign a value that is consistent with the parameters of the property.
Since most values are numeric, be sure to check the Expression box next to the
Value field. To read more about the value ranges for Movie Clip properties,
see the ActionScript Reference section.

 Tip Rather than using the setProperty() action, you can use dot syntax to target a
Movie Clip directly. To learn how this is done, see Chapter 16.

Inspirational Design Model
Because there are so many excellent uses of actions on the Web today, choosing a site for an
Inspirational Design Model is particularly difficult for this chapter. Actions are a cornerstone
of interactive design with Flash and are an essential part of every interactive movie,
animation, or game. Actions allow Flash designers to control the playback of their movie with

great precision. This is an advantage in both the authoring stage and the final delivery of the
movie.

For the Michael Schuster Associates site, Core Five Creative (www.corefive.com) built an
intro animation that is run almost entirely with actions and Movie Clips. Although this
technique is transparent in the final presentation of the animation (see Figure 12.5), it makes
the creation of the animation much easier and increases flexibility by allowing several
members of the design team to add their own Movie Clips to the piece. You can see the final
animation at www.msaarch.com.

Figure 12.5: The Michael Schuster Associates intro animation by Core Five Creative

Summary
This chapter introduced you to ActionScript. You can now see how this powerful object-
oriented language is a valuable asset to Flash. Not only is it useful for controlling movie
playback, but it can also communicate with other movies and the Flash Player, open browser
windows on the Web, and define the way your audience interacts with the movie. As you
become more comfortable with actions and ActionScript, you will be able to create complex
interactive environments and experiences.

Chapter 13: Creating Interactive Controls
Overview
At this point, you should know what actions are and should understand some of the basic
components of the ActionScript language. What is missing is something to put all of this
knowledge to use. Actions allow your audience to control the movie—but control it with
what? Your movie needs some kind of switch or button to unlock its interactive potential.

Building controls in Flash is an essential step toward creating a movie that is both great to
look at and easy to experience or play. At the most basic level, you can create simple buttons
to turn a movie on or off and to skip to different sections. Flash controls can be as simple as
those found on a VCR. They can also become an integral part of the overall design of your

movie. As you progress to a more advanced stage, you will be able to create robust interfaces
with flexible navigation options and a savvy look and feel.

Adding Interactivity with Simple Buttons
Flash is capable of managing complex and dynamic interactivity, but it's not always necessary
to pull all the stops for your movie. Sometimes you may find that simple elements are just as
effective as complex ones. Designing a movie for interactivity is no exception. For Flash
developers or designers who are just learning the program or want to keep things easy, there
are many options for adding interactive controls. The good news is that these options don't
demand a lot of work or experience, and the results can be very satisfying.

Selecting Buttons from the Flash Common Library

Flash has several Common Libraries to offer its users. These Libraries include things like
sounds, Movie Clips, and, yes, buttons. They are resources that are linked to the program and
thus will be available every time you use Flash. The buttons in the Common Library are great
for quick mock-ups or tests. Although some of the buttons in the Library may not fit your
personal standards or design goals, all of them are very functional and can prove to be
valuable assets in the Flash environment.

To open the button Library, select Window → Common Libraries → Buttons.fla (see Figure
13.1). This Library looks like any other in Flash. The only exception is its contents. It
contains a wide assortment of buttons that are designed and ready for use in a movie.

Figure 13.1: The Common Library for buttons
 Tip For more information about working with Libraries and shared assets in Flash, see

Chapter 7.

The Library is organized with a series of individual folders that contain button families. Each
family of buttons contains a group of graphics that originate from a common background and
have a similar look and feel. This allows you to use the family as a set and maintain a
consistent look for all navigational or interactive elements.

To use a Common Library button in your movie:

1. Select Window → Common Libraries → Buttons.fla to display the Library if it's not
open already.

2. Open the folders within the Common Library panel to find the button you want.
Folders in the panel can be opened and closed by double-clicking the folder icon (see
Figure 13.2).

Figure 13.2: The Common Library folder structure

3. Do either of the following:
o Drag a button from the Common Library to the main Library for your movie. If

your movie Library isn't visible, you can display it by selecting Window →
Library or pressing F11.

o Drag a button from the Common Library directly to the Stage. It will
automatically appear in your main movie Library.

At this point, the button is a symbol in your movie, either on the Stage or in your main
Library, waiting to take the Stage.

From here, there are many different options for your button. If you put it directly onto the
Stage, it becomes an instance in your movie and can have actions attached to it. To learn more
about attaching actions to a button, see Chapter 12. If you would like to edit the button and
customize it to better fit your movie, see the section "Editing Buttons in Your Movie" later in
this chapter.

Creating Your Own Buttons

Although using buttons in the Common Library is convenient, you will likely want to create
some of your own. After all, this is why we're here; working in Flash is fun! But beyond the
fun factor, the process of creating your own buttons has some specific advantages as well. The
greatest of these, of course, is that with some effort, you will get exactly what you want. A
custom button can be built to your exact specifications so that it fits the specific design goals
of your movie. Interactive controls are a big part of a Flash movie, and it's important to get
them right.

So, in Flash, what exactly is a button? It is a short, interactive movie with only four frames.
Each of the frames represents a different appearance, or "state," of the button that reflects user
interaction. These different states are saved as separate images in keyframes along the
Timeline of the button movie. As you move the mouse over the button and click it, it changes
states accordingly by displaying the correct keyframe image.

By making a button change appearance while it's being manipulated, you show your audience
that it is more than just a graphic. The simple animation lets them know that the button is
"active" in the movie and that clicking it will produce a change in your movie.

Like Movie Clips, buttons are another kind of symbol. You can create a single button and use
it repeatedly. Every instance of a button will be treated independently throughout an
animation or interactive movie.

The four states of a button are as follows:

Up This first state represents the appearance of the button when the cursor is not over it. This
can also be considered the "inactive" state.

Over The second keyframe of the button Timeline represents the Over state. This creates the
appearance of the button when the cursor is positioned over it.

Down The third keyframe of the button Timeline shows the button graphic when it is clicked.

Hit The fourth and final keyframe defines the area of the button that will respond to a mouse
click. Think of the Hit state as the button's hot spot. It defines the area that must be clicked in
order for the button to execute any scripts attached to it.

Table 13.1 contains illustrations and descriptions of the four states of a typical button.

Table 13.1: The Four States of a Button
State Illustration Description
Up

Appearance when the cursor is not over the button

Over

Appearance when the cursor is over the button

Table 13.1: The Four States of a Button
State Illustration Description
Down

Appearance when the mouse clicks the button

Hit

Defines the button area that can respond to a click

Now that you know a bit more about what goes into a button, you are ready to create your
own. Just follow these steps:

1. Select Insert → New Symbol (Cmd/Ctrl+F8) to display the Create New Symbol dialog
box.

2. Choose Button as your Behavior and enter a name for the button in the Name field.
3. Click OK, and you are switched to Symbol Editing mode (see Figure 13.3). Notice

that there are several changes to the appearance of Flash in this mode. The title of your
symbol appears beside a button icon in the area between the Stage and the Timeline.
The frames of the main Timeline disappear and are replaced by the new frames of
your button. Also, the frames of the new Timeline are labeled to show the four states
of your new button. The first frame for the Up state contains a blank keyframe.

Figure 13.3: The Timeline in Symbol Editing mode

4. Create an Up state for the button by doing any one of the following:
o Use the Flash drawing tools to create a graphic.
o Import a graphic file and drag it onto the button's Stage.
o Drag an instance of another graphic or Movie Clip symbol to the Stage to

create an instance within a button.

The crosshairs in the middle of the Stage represent the registration point of the button.

 Note It’s possible to use Movie Clips within button symbols, but you are not allowed
to put a but-ton within a button. Using a Movie Clip as part of a button creates
an animated button. For more on this, see “Creating Animated Buttons” later in
this chapter.

5. To create a new keyframe for the Over state, either click the Over state frame and then
select Insert → Keyframe. Flash automatically duplicates the previous frame in the
new keyframe.

6. Make changes to the graphic in frame 2 or use any of the methods outlined above to
alter the appearance of the Over state.

7. Repeat steps 5 and 6 for both the Down and Hit states.

The Hit state is unique and constitutes a very important part of the button. It defines
the area that will respond to any mouse clicks on the button. It's important that the Hit
state has a solid graphic so that clicks don't "slip through the cracks" in the button. It's
also important to be sure that the Hit state is large enough to be clicked. If it's too
small, your audience may have a difficult time trying to click the right spot.

 Tip If you are creating a button that consists solely of text, the Hit state graphic is
extremely important. Letters like o have "holes"; a mouse click in the middle of an
o-shaped button will not be recognized if the Hit state is also shaped like an o. To
avoid this potential problem, create a rectangular-shaped Hit state that is
approximately the same size as the chunk of text that comprises your button.
Since the button Hit state is invisible, this will not have an undesirable effect on
the appearance of the button, and will make the button much easier for your
audience to use.

8. With graphics for the four states in place, your button is ready to go. To leave Symbol
Editing mode, either select Edit → Edit Document (Cmd/Ctrl+E) or simply click the
Timeline icon for the current scene of your movie.

9. Drag your button from the Library to the Stage to create a button instance in your
movie.

10. As needed, attach action(s) to the button so that it can be used to control various
elements of your movie. For a discussion of basic actions, see Chapter 12. If you are
interested in more advanced button actions, refer to Chapter 16.

These are the fundamental steps for creating a simple button for your Flash movie. From this
point on, the possibilities are virtually limitless. For a discussion of how to add sound to a
button in your movie, see Chapter 20. If you want to continue to work with your movie and
explore the potential of buttons as interactive control sources, read on. In the next section, we
will discuss the ins and outs of testing your buttons and making any changes or edits to their
components.

Previewing, Testing, and Editing Buttons
Once you have created your buttons, it's a good idea to test them to be sure that they work
properly and look the way you want. Flash offers two main techniques for testing buttons:
You can work in the authoring environment or use the Test Movie command. Depending on
your movie project, one technique may suit you better than the other. Whatever the case, it's a
good idea to become familiar with both so that you are able to work smoothly and efficiently.

Previewing Buttons in the Flash Authoring Environment

It's possible to preview your buttons while you are working in Flash's authoring environment
(also known as authoring mode). By default, Flash keeps all buttons in an inactive state while
you are creating your movie. If necessary, you can activate your buttons and test them while
you create the rest of the movie.

To test buttons in authoring mode, select Control → Enable Simple Buttons. A check next to
the command appears, indicating that this option is turned on. To turn it off again, simply
repeat the process, and buttons will be disabled.

 Tip Working in Flash with buttons activated can sometimes be difficult. For example, it can
be tricky to select a button on the Stage when it is enabled. If you need to select an
activated button, you can click outside the button and drag a selection around it. Flash
highlights the button with a rectangular marquee to let you know it is selected.

Testing Buttons

Previewing buttons in authoring mode gives you a rough idea of what they will look like in
your final movie. However, Movie Clips won't be visible when you preview your buttons in
authoring mode. Also, most actions attached to the button are disabled in this mode. To get a
sneak peek at any animated buttons or actions, you must test your movie or scene. To preview
animated buttons, select Control → Test Movie (Cmd/Ctrl+Return/Enter) or Control → Test
Scene (Cmd/Ctrl+Option/Alt+Return/Enter). For more specifics on testing movies, see
Chapter 27.

Editing Buttons in Your Movie

If a test or preview shows that a button needs some tweaking or fine-tuning, you will have to
go back and edit the button. The good news is that if you have used a single button symbol
over and over (meaning that you used multiple instances of the button), any changes you
make to the button symbol will be updated in every instance. For more details on symbols and
instances, see Chapter 7.

There are three ways to edit buttons in your Flash movie: You can edit a button on the Stage
("in place"), in Symbol Editing mode, or in a separate window. These options will achieve the
same results, but you may find that one technique works better for you than the others.

To edit a button in place, do either of the following:

• Double-click the button instance.
• Ctrl+click (Mac) or right-click (Win) the instance and select Edit in Place from the

context menu.

Items on the Stage will fade to the background, and the Timeline will change appearance to
reveal the button Timeline and keyframes. This option allows you to edit the button and see
how it changes in relation to other items around it on the Stage.

You can edit a button in Symbol Editing mode in one of four ways:

• Select the name of the button you would like to edit from the Edit Symbols menu in

the information bar between the Stage and the Timeline.
• Ctrl+click (Mac) or right-click (Win) the instance and select Edit from the context

menu.
• Select the symbol instance on the Stage and choose Edit → Edit Symbols from the

menu bar.

• In the Library panel, either double-click the symbol's button icon or highlight the
symbol and choose Edit from the Library options menu.

To edit a button in a separate window, Ctrl+click (Mac) or right-click (Win) the instance and
select Edit in New Window from the context menu. The new window will open directly over
the window that contains your main Timeline.

All these options reveal basically the same thing: the button's Timeline and access to the four
button states and keyframes. When you see this, you are free to make any necessary changes
to the button. You can make changes using any of the tools available to you in Flash, by
adding Movie Clip instances to the button and by importing bitmap graphics or other external
files. Remember that any changes made here will affect all instances of the button in your
movie.

When you are finished editing your button, do one of the following:

• Select Edit → Edit Document (Cmd/Ctrl+E).
• Click either the Scene button or the Back button (Figure 13.4) in the information bar

between the Stage and the Timeline to return to the main Timeline of a particular
scene.

Figure 13.4: Both the Scene and Back buttons will take you from Symbol Editing
mode to the main Timeline.

For more information on moving around quickly and efficiently in the main Timeline, see
Chapter 2.

Creating Complex Buttons
So far, we have covered all the basic steps for creating buttons and using them in your movie.
With these essential skills, you are ready to move on to the next level: creating complex
buttons and designing them to support the theme or concept of your movie. These buttons do
more than serve as navigational icons. They allow you to give the audience a clear means of
moving through your movie while offering visual interest and punch. Once you start to
explore the possibilities outlined here, you will see the benefit that these techniques can bring
to your Flash productions.

Creating Multilayered Buttons

Buttons are not only controllers in your movie—they are graphics that have an impact on its
overall look and feel. This presents you with several choices. On one hand, you can try to
make the button as unobtrusive as possible, so that it is transparently woven into the fabric of
your movie. On the other hand, you can play it up and allow the button to make a bold visual
statement.

 On the CO-ROM In the next example, you will see how to create a graphically dynamic
button with components on several different layers. You can find the source files for this
example on the companion CD-ROM. Look for the file named multilayer.fla in the Chapter
13 folder.

To create a multilayered button:

1. Select Insert → New Symbol or press Cmd/Ctrl+F8.
2. The Create New Symbol dialog box appears. Choose Button as the Behavior and give

the symbol a name. Then click OK.
3. Flash automatically jumps into Symbol Editing mode. You will see the button

Timeline and the Up, Over, Down, and Hit state keyframes.
4. The beauty of the multilayered button is that each graphic layer is independent. One

layer can change without affecting the others. To add another layer to the button
Timeline, select Insert → Layer or click the Insert Layer button in the Timeline.
The new layer appears in the Timeline with an empty keyframe in the Up state frame.

5. Begin by drawing a graphic on Layer 1 to represent the Up state of the button. When
you are finished, click Layer 2 and draw an additional portion of the graphic. Because
each part is on its own layer, you have more flexibility to change the various states of
the button.

6. If necessary, repeat steps 4 and 5 to create additional layers for the button.
7. When the Up state is complete, click Layer 1 and either select Insert → Keyframe to

add a keyframe for the Over state. When you do this, Flash automatically inserts a new
frame in Layer 2 and duplicates the Up state graphics in the new frames (below left).

8. Draw a new graphic for the Over state of Layer 1 or make changes to the duplicated
frame as needed. Then click frame 2 of Layer 2, insert a new keyframe, and adjust this
image as needed.

9. Repeat the process outlined in steps 7 and 8 to create the appearance for the button's
Down state (below right).

10. In this example, you can see that the button is a tomato. When it's rolled over, both the
stem and the fruit change color. Then, when the tomato is clicked, it is squished and
changed to a dark color. You can manipulate each element (stem and fruit) separately
because each layer is autonomous and will not directly affect the other.

11. Insert a new keyframe in Layer 1 to complete the button and give it a Hit state.
Because the Hit state isn't visible, it's necessary to put a Hit state keyframe in only one
layer.

12. When you have finished creating the button, select Edit → Edit Document to return to
the main Timeline. To preview your button, select Control → Enable Simple Buttons.
This option will allow you to see how the multilayered button looks when manipulated
by the cursor.

Creating Animated Buttons

You have seen how multilayered buttons provide a new graphic dimension to your button
controls. With each element on a separate layer, you can edit and control them independently.
This technique also opens the door to a variety of additional possibilities that can add yet
another layer of interest to your button symbols.

Buttons are by default a kind of animation. When you roll over them, there is a graphic
change. When you click them, there is another change. It's not a linear animation but rather
one that demonstrates that the graphic is somehow significant; the animation begs you to click
it. We can take this idea a step further by creating animated buttons. Such buttons use a Movie
Clip or small animation to represent one of their states. Generally, this is done at the Over
state, although it is certainly not a requirement. If a Movie Clip were used for the Up state, the
animation could be distracting. If it were used as the Down state, there is a chance that the
Movie Clip animation wouldn't be seen at the instant the button is clicked. The Over state
presents the animation when the button is active (rolled over). It grabs your attention and adds
more to the rollover effect than just a change of graphic.

 On the CO-ROM In the next example, you will see how to create an animated button by
using a Movie Clip. You can find this example on the CD-ROM. Look for the file named
animatedButton.fla in the Chapter 13 folder.

To create an animated button:

1. Create a graphic on the Stage to use as your button. When it is complete, drag around
it to select the entire graphic, and either choose Insert → Convert to Symbol or press
F8. Select the Graphic Behavior and give the symbol a name in the Create New
Symbol dialog box. Click OK.

2. The symbol appears in the Library. Delete the symbol from the main Timeline Stage.

This graphic symbol will be used as the starting point for each component of our
button. We use a symbol so that instances of the symbol can be used repeatedly in the
button animation.

3. Select Insert → New Symbol or press Cmd/Ctrl+F8. This time, choose the Movie Clip
Behavior, give the clip a name, and click OK when you are finished. Flash takes you
immediately to Movie Clip Editing mode.

4. You can now create the animation that will be used as the Over state of your button.
Drag the graphic symbol from the Library to the Stage while you are in Movie Clip
mode. Use the arrow keys to nudge the symbol so that its registration point lines up
with the registration point of the new Movie Clip.

 Tip Lining up the registration points is a good idea because you will use the graphic
symbol several times in this process. This ensures that that each instance of the
symbol is positioned in exactly the same place.

 Tip Alternatively, you can use the Align panel (Cmd/Ctrl+K) and have Flash handle
the registration for you automatically. To learn more about working with the
Align panel, see Chapter 6.

6. Create the animation using keyframes, tweening, and any other techniques that are
available to you in Flash (see Figure 13.5). If you need to change the symbol, you can
select Modify → Break Apart (Cmd/Ctrl+B) and edit its characteristics directly. For
more information on keyframes and animation concepts, see Chapter 9.

Figure 13.5: The Timeline for the Movie Clip in the file animatedButton.fla. Notice
that there is a 40% Alpha effect at keyframe 7. Also, there is a stop() action in frame
10 to prevent the clip from looping when the cursor is over the button.

7. When you have finished creating your Movie Clip, select Edit → Edit Document and
return to the main Timeline.

8. At this point, you are ready to create the button. You have a graphic and you have a
Movie Clip; now is the time to bring it all together. Select Insert → New Symbol, and
the Create New Symbol dialog box appears once again. This time, choose the Button
Behavior and enter a name in the Name field.

9. Click OK, and Flash jumps into Button Editing mode.
10. Drag the graphic symbol to the Stage and use the arrow keys to nudge it into place so

that the registration points line up. Notice that the symbol creates a keyframe for the
Up state of the button.

 Tip Nudging an object with the arrow keys moves it one pixel at a time. To move an
object 10 pixels at a time, press the Shift key while nudging with the arrows.

11. After the Up state graphic is in place, you can move on to the Over state. Select Insert
→ Keyframe to insert a new keyframe. The keyframe appears in frame 2 as the Over
state graphic. Flash automatically copies the Up state graphic into the new keyframe.
You will need to swap this with the Movie Clip you created in step 5. Select the
graphic in the Over state frame and then click the Swap Symbols button on the
Properties inspector.

The Swap Symbol dialog box appears and allows you to exchange graphics for the
Movie Clip symbol. Be sure that the Properties inspector displays Movie Clip in the
Symbol Behavior menu after you have swapped symbols; otherwise, the clip will not
animate. For specifics on swapping symbols, see Chapter 7.

 Tip You may notice that the button in animatedButton.fla has multiple layers for both
the Over and Down states. This was the choice for that particular button.
Animated buttons may have just one layer or take advantage of several.

12. The bulk of the work is now over. You have an Up state and an animated Over state.
The next step is to add a Down state to your button. Create a keyframe for the Down
state in frame 3 of the button Timeline. Flash will duplicate the contents of the

previous keyframe in the new frame. Using any of the previously described
techniques, insert a graphic for the Down state in this keyframe.

13. Repeat the procedure in step 11 to insert a graphic for the Hit state of the button in
frame 4. With keyframes and graphics for each of the four states, your animated
button is now ready to go.

14. Select Edit → Edit Document (Cmd/Ctrl+E) to return to the main Timeline and save
your movie. Since we used a Movie Clip, Flash won't give us a true preview of our
animated button in authoring mode. To see the button in action, add an instance of the
animated button to the movie; then select Control → Test Movie and give it a spin.

An animated button is a button like any other. Once it's in your Library as a button symbol,
you are free to use it throughout your movie. You can attach actions to instances of the
animated button and use it as a means of controlling other movie elements and playback.

Creating Multiple Button Interfaces

One thing you may have noticed with buttons in Flash is that after you click them, you can
sometimes still see the Over state of the button symbol. At first, this can look like an error in
your movie, but since your cursor is still over the button, Flash is technically doing what it
should.

It's possible to create a button so that this doesn't happen. It's also possible to use the
technique to create multiple button interfaces or navigation bars where any single button can
take you to a new section of the movie and serve as a kind of "bookmark" when you arrive
there.

 On the CO-ROM In the next example, you will learn how to create a navigation bar with
two buttons. Although it's a simple task, the concepts presented here can be used to build
larger and more complicated interfaces. You can find the files for this example on the CD-
ROM. Look for the file named navBar.fla in the Chapter 13 folder.

 Tip Although this is a simple task, there are many steps to ensure consistency in the
navigation bar. Be sure to follow the steps carefully!

To create a navigation bar with multiple buttons:

1. First, you must create a button. One button is enough for an entire navigation bar,
although you may opt to use more in your own projects. Turn back in this chapter to
revisit the process of making a simple button. Once it is complete, return to the main
Timeline of your movie.

2. Now that you have a button, you can start to build a navigation bar. Use the Rectangle
tool to draw a box that fills the width of your movie, making sure that the box is tall
enough to accommodate your button.

3. You are ready to add your button now. Select Insert → Layer to add a layer to your
movie Timeline. It isn't necessary to put items on different layers, but it can be helpful
in keeping your movie organized. Name the new layer "buttons." For more details on
organizing and working with layers, see Chapter 8.

4. Drag your button from the Library to the left corner of the navigation bar graphic and
be sure that when you drop it into place, you are on the buttons layer (below left).

5. Repeat step 4 to create a second instance of the button, only this time, drop the button
farther to the right of the first button instance. These two buttons will serve as the
controls for the navigation bar.

6. Next, you need to enter some text so that you can distinguish which button will
connect with which part of the movie. Create a new layer (select Insert → Layer) and
name it "text." Then use the Text tool to enter text as follows(below right):

o Beside the first button, create a text box and enter Scene 1 in a small point
size.

o Enter Scene 2 in a separate text box beside the second button.
o In a large point size, type Scene 1 somewhere near the middle of the Stage.

This will serve as a temporary marker to help you when testing the navigation
bar buttons.

For more details about using the Text tool, see Chapter 5.

7. The final step in setting up the navigation bar involves adding a frame action so that
the scenes will play correctly. Select Insert → Layer and name the new layer
"actions." Click the keyframe in this new layer and select Window → Actions (F9) to
display the Actions panel. Drag a stop()action from the Actions → Movie Control
category to the text box.

8. All the basic elements for our scene and navigation bar are now set. With these in
place, we can create an additional scene for the movie.

9. Select Window → Scene (Shift+F2) to display the Scene panel. Here you can
duplicate the first scene so that you have two identical copies. Click the Duplicate
Scene button at the bottom of the Scene panel (see Figure 13.6).

Figure 13.6: The Scene panel

Flash names the duplicate "Scene 1 copy." Double-click the name in the Scene panel
and rename the scene "Scene 2."

 Tip There is a definite advantage to duplicating scenes when you create a navigation
bar. Because the new scene is a copy of the first, you can be sure that all of the
navigation bar elements are in exactly the same position for every scene.

10. Use the Text tool to change the large text in Scene 2 so that it reads "Scene 2." We
need to see some sort of contrast between one scene and the next so that we can test
the movie later and determine whether or not it is working.

11. You are now ready to make your navigation bar jump to a new location in the movie.
Make sure that you are working on Scene 1. Select the button on the right, choose
Window → Actions (F9) or Ctrl+click (Mac) or right-click (Win), and select Actions
from the context menu. Either way, the Actions panel appears.

12. Attach an action that will cause the movie to skip to frame 1 of Scene 2 when the
button is clicked. The action should read:

13. on(release){
14. gotoAndPlay("Scene 2",1);

}

For specifics on attaching actions to button objects, see Chapter 12.

15. Use the Scene panel to switch to the Timeline for Scene 2. Repeat steps 9 and 10 for
the left button in Scene 2 (see Figure 13.7), except that when you attach actions to the
button, they should read:

Figure 13.7: Whereas the right button in Scene 1 had an action that jumped to Scene 2,
the left button in Scene 2 has an action that jumps to Scene 1.

on(release){
 gotoAndPlay("Scene 1",1);
}

16. Your movie should now have buttons that will take you from one scene to another. To
test that everything is working correctly, select Control → Test Movie.

17. Provided that there are no problems with your movie, you should be ready to finish the
last feature of the navigation bar.

One of the best qualities of a navigation bar is that it can serve as a kind of bookmark
to let your audience know where they are in your movie at all times. To create this
feature, all you need to do is manipulate a few of the graphics in your movie.

Select Window → Library (F11) to display the Library.

18. Double-click the button icon in the Library to open the button in Symbol Editing
mode. Click the third keyframe in the Timeline (the Down state) to select that portion
of the button only.

19. Select Insert → Convert to Symbol (F8) to display the Create New Symbol dialog box.
Choose the Graphic Behavior and name the new symbol "bookmark." Click OK to
return to Symbol Editing mode, and select Edit → Edit Document to return to the
main Timeline.

20. With the new graphic in the Library, you are ready to add the bookmark feature to
your navigation bar. Make Scene 1 the current scene in your Timeline; then select the
first button on the navigation bar.

21. Click the Swap Symbol button on the Properties inspector to display the Swap Symbol
dialog box. Switch your Scene 1 button symbol with the bookmark symbol you just
created. This puts the graphic symbol in place of the button and creates the effect of a
bookmark in Scene 1 of your movie.

22. Switch to Scene 2 and repeat step 18, but be sure to select the button on the right
before you swap symbols.

23. Your movie is complete! Or at least the navigation bar portion of it is. Select Control
→ Test Movie to give your navigation bar a test drive. Notice how the bookmark
symbol acts like a real bookmark. When you click a button to move to a particular
scene, the graphic doesn't change after it has been clicked. This is like a "permanent
Down state" to signify which section of the movie is currently playing.

Although the steps outlined here are for a movie with only two locations, it's possible to use
this technique to build a navigation bar for an entire Flash website. Using these ideas, and
with the help of additional graphics, scenes, and actions, you will be able to create a
navigational tool that meets the demands of any Flash movie.

 New to MX Flash MX increases the scripting possibilities for interactive controls by
bringing you the Button object. It is a separate object class with its own set of ActionScript
for controlling everything from movie navigation to button appearance. To learn more about
the Button object and to see an alternative way to create a navigation bar using ActionScript,
see "Scripting Button Behaviors with the Button Object" in Chapter 16.

Creating Non-Button Buttons

So what in the world are "non-button buttons"? Good question. Actually non-button buttons is
a made-up term to describe any kind of interactive controller that functions as a button but
doesn't look like a button. Let's clarify this a bit.

By nature, interactive media demands that there be some kind of control source. The audience
should be able to shape the media content to fit their particular needs and desires. The control
source is often presented to the audience as a button: Click here to do this, click there to do
that. It is simple and direct, and it gets the job done.

One problem is that buttons can be disruptive to the presentation of the movie or message. In
some forms, buttons work well. "Informational structures" are a good example of this (see
Figure 13.8). Any time you have to present a large amount of information and you need for it
to be clearly organized, a traditional button scheme can be useful, to both the designer and the
audience. But what about something that is supposed to entertain or tell a story? Is it really in
the best interest of your project to use the same kind of navigational structure as an online
newspaper if you are trying to divert or amuse? This is where you say, "No! Interactive media
deserve better than that!"

Figure 13.8: A traditional button scheme is clear to the audience and a good means of
presenting organized information.

The whole idea behind non-button buttons is that you take advantage of the button convention
but integrate it into the concept of your project. Buttons are established, and audiences know
how they work. They are a sure way to help the audience navigate your movie. But if a button
doesn't somehow tie into the theme of the movie, it can look tacked on and just plain
awkward.

If you want to keep your audience engaged in your movie the entire time they are visiting it,
non-button buttons can be a great strategy to use. By tying into the concept of your movie,
non-button buttons provide a clear means of navigation that is seamless within the movie.
They keep the audience's attention focused on the message of your movie but also allow for
free navigation, or "surfing," within the piece.

Here are a few examples:

• An animated fairy tale or nursery rhyme where the buttons to advance the story are a
book, magic wand, pixie dust, or other element from the genre

• A music player or mixer where the controls look like knobs on actual audio equipment
or parts of a musical instrument

• A cartoon that uses character gestures or animated dialog bubbles to help move the
story along

By using non-button buttons in your Flash movie (or any project, for that matter), you can
help to keep the audience focused on the ideas you present in the movie. This approach also
helps to push the artistic potential of your piece by setting some definite creative boundaries.
You are forced to work within a set of self-imposed or story-imposed rules. The fewer the
available resources, the more creative the solution. Try integrating non-button buttons into
your next Flash project and see what kind of results they yield.

To witness a good example of this, see the Inspirational Design Model for Chapter 14,
"Goodnight, Mr. Snoozleberg." This interactive game implements many different kinds of
buttons to help get Mr. Snoozleberg safely along his journey. Notice how they are all
elements that fit the environment that he is exploring. They function as buttons but look like
something that is very much a part of the scenery.

Inspirational Design Model
Designing interactive media is so much more than just making "cool" stuff. Designers must
take their audience into consideration so that their message is accessible and presented in the
most effective manner. No matter how cool the animation or presentation of content, if an
audience doesn't understand how to play or interact with the movie, you've lost them.

This is why intuitive interactive controls are so crucial to design. A naturally flowing design
will be much more appealing to your viewers than a confusing display of technical fireworks
and animation prowess. Remember, your audience is seeing a movie for the first time. Things
that may seem obvious to you as the movie's creator can be potentially confusing if the design
isn't clear. There are a few folks out there who are able to strike a unique balance between
seamless presentation and technical moxie. Their art lies in creating something that is visually
rich and immediately accessible to the audience. Check out San Francisco's THUNKdesign at
www.thunkdesign.com (see Figure 13.9). In particular, follow the link to "Studio" and check
out their 1999 website. Not only is this site gorgeous, but it's very cleverly written and fun to
navigate.

Figure 13.9: THUNKdesign's 1999 website

Summary
In this chapter, you learned how to create buttons to control a Flash movie. Combined with
your knowledge of basic actions, you are well on your way to creating a dynamic, interactive
Flash production. In addition to using the built-in buttons of the Common Button Library, you
learned how to design your own button from the ground up, test the button, and make any
edits or changes to the button symbol. This chapter also covered several kinds of advanced
button controllers for more sophisticated interaction. It's possible to use buttons as an integral
part of your design scheme and to give each component of your movie a common link or bond
to the movie concept.

Hands On 4: Combining Basic Actions and
Button Navigation to Create an Interactive
Resume

Overview
This Hands On tutorial will help to cap off Part IV of this book and put some of your new
Flash skills to work. Here we will put together all the techniques covered in this part: using
basic actions to add interactivity and navigation, and working with buttons to provide sources
for interactive control.

Part 1: Setting the Stage
 On the CD-ROM The files for this tutorial are on the companion CD-ROM. Look for the
file named resume.fla in the Hands On 4 folder. These files aren't essential for completing the
exercise (see Figure H4.1). It's possible for you to complete it with your own graphics and
visual design elements, and we strongly encourage you to do so. The value of this assignment
is based more on the process that is presented than on working with the actual graphics and
duplicating each step.

Figure H4.1: The finished interactive resume looks something like this. Use this image as a
guide if you need to check on the layout of the resume.

The task is to create a simple, interactive resume that presents the essential information found
in a typical resume. To complete this task, it will be helpful to have familiarity with basic
actions, buttons, and type (working with text) and to have a good working knowledge of the
Flash interface. Let's get to work!

1. Start by setting up a Stage size for your movie. Select Modify → Document
(Cmd/Ctrl+J) to display the Document Properties dialog box. Enter a width and height
of 480×480 pixels and choose the Background color swatch #666666 (charcoal gray).
Click OK when you are finished.

2. Select the Rectangle tool from the Toolbox and draw two rectangles to serve as header
and footer graphics—one at the top of the Stage and one at the bottom. Be careful not
to make them too large; 50 pixels is a good approximate height. A lot of information
will be displayed in the movie, and you should leave a good amount of space free in
the middle of the Stage. If it's helpful, select View → Rulers or use the Info panel
(Cmd/Ctrl+I) so that you can see exactly how large the rectangles are.

3. Every resume needs a named title. Select the Text tool from the Toolbox. Use the
Property inspector to choose a font, text color, and size for your title. Then use the
Text tool to insert your name on the left side of the rectangle at the top of your Stage.
(For more information about using the Text tool, see Chapter 5.)

4. Now you need to add an e-mail button so that readers of your resume can get in touch
with you (to call for interviews and offer exorbitant sums of money for your Flash
work). Use the steps outlined in Chapter 13 to create a button, and insert it in the top-
right corner of your Stage. The file on the CD-ROM uses a button resembling an
envelope. When the button is clicked (in the Down state), it reveals a stamped,
addressed envelope.

5. Once the button is complete, you can attach an action so that when the button is
clicked, your readers can send a message to you. Highlight the button on the Stage and
then select Window → Actions (F9); the Actions panel appears.

6. In the Actions → Browser/Network category, select the getURL() action and either
double-click it or drag it into the text box. In the URL line of the Parameters pane,

enter mailto:myAddress@myDomain.com, where myAddress and myDomain are filled
with your e-mail information.

When the button is clicked, the getURL() action uses the mailto protocol (part of
HTML) and launches the e-mail application that has been assigned this responsibility
on your audience's computer. This technique works well if your resume is displayed in
a web browser or if you choose to distribute it as a stand-alone projector.

7. Save your movie and give it a name if you haven't done so already. You are now
finished with the foundation of the resume and can move on to some of the more
interesting features.

Part 2: Creating the Resume
8. This resume has four different sections: contact information, education, experience,

and references. It's possible to take the groundwork laid in the previous seven steps
and use it for each of the four sections. To do this, you can duplicate Scene 1 three
times, as follows:

o Select Window → Scene (Shift+F2) to display the Scene panel. Currently, it
contains only one scene. To copy this scene, click its name in the Scene panel
and then click the Duplicate Scene button at the bottom of the panel (see
Figure H4.2).

Figure H4.2: Duplicate Scene button in the Scene panel

o A new scene titled "Scene 1 copy" appears in the panel. Double-click this new
scene and rename it "Scene 2."

o Repeat this process twice more and name the subsequent scenes "Scene 3" and
"Scene 4." Using either the Scene panel or the Edit Scene button, you can
navigate to each of the scenes and find that they are identical in every way.

Now that you have a consistent template for the resume, you can start to build some of
the interactive features.

9. The first interactive element you need is a button so that your readers can navigate to
various sections of the resume. Select Insert → New Symbol (Cmd/Ctrl+F8). In the
Create New Symbol dialog box, check the button behavior and give the new symbol a
name. Click OK, and Flash jumps into Symbol Editing mode.

10. Let's create a new kind of rollover for this button. To do so, you are going to
temporarily use other parts of your movie for layout and alignment purposes.

Navigate to Scene 4 in your movie. In the empty rectangle at the bottom of the screen,
create a button scheme with four "dummy" button graphics (placeholders) and a block
of type that reads "contact." Make sure that the type is in a position that leaves enough
room at the right side for words longer than "contact." The type will serve as a
different kind of placeholder here as well. For an idea of what this looks like, refer to
Figure H4.3.

Figure H4.3: A dummy button layout. This will be used to help line up the buttons to
create a rollover effect with two different elements.

 Tip You may find it helpful to use the rulers (View → Rulers) and the Align panel
(Cmd/Ctrl+K) to line up the dummy buttons.

11. You are now ready to create your first button. Use Shift+click to select the word

contact and the button dummy on the far-left side of the Stage; then choose Insert
→ Convert to Symbol (F8).

12. Make the new symbol a button, and name it "contactButton." Click OK. Next, you
need to make some corrections to this new button. In the Edit Symbols menu, select
contactButton, or double-click the contactButton symbol in the Library. Either way,
Flash switches to Symbol Editing mode and reveals the new button's Timeline.

13. Select Insert → Keyframe three times. This will insert three new keyframes in the
button Timeline that are duplicates of the first.

14. With your keyframes in place, you can edit the graphics to create the different button
states. For now, leave the Up and Over states alone. You will need them to remain
intact for alignment purposes later. For the Down state, change the color of the button
but leave the type alone. For the Hit state, leave the button graphic alone but delete the
type altogether. All you need for responding to mouse clicks is the main area of the
button.

15. Now it's production time. Repeat steps 11–14 for the remaining three buttons. Figure
H4.4 shows you which buttons match which text elements.

Figure H4.4: Each button position has a different line of text for the resurme:
"education," "experience," and "references." Name the graphics "edButton,"
"expButton," and "refButton," respectively.

Part 3: Adding Navigational Elements
16. For this controller at the bottom of the resume, you are going to use the buttons in a

navigation bar with a "bookmark" that tells the reader where they are in the resume at
all times. (For specifics on creating a navigation bar, see Chapter 13.)

One of the most important features of the navigation bar is the bookmark. To create
the bookmark, you need to use a portion of the button symbol created in steps 11–14.

17. Select Window → Library to open your movie's Library. Double-click the Contact
button symbol to open it in Symbol Editing mode.

18. Click the Down state keyframe of this button to select both the graphic and the text
elements of the button; then select Insert → Convert to Symbol (F8).

19. In the Create New Symbol box, name the symbol "conMark" and then choose the
Graphic Behavior option. Click OK when you are finished.

20. Repeat this procedure for the Down states of the other three buttons. Name the graphic
symbols "edMark," "expMark," and "refMark," respectively. When you are finished,
save your movie and return to the main Timeline of Scene 1.

21. Now that all the buttons and bookmarks have been created, you are ready to add them
to your movie. Add a new layer to Scene 1 and name it "buttons." One by one, drag
your buttons to the Stage so that they line up the same way as your dummy graphics.
The text will overlap, but that's okay for now. Actually, the text is helpful for getting
everything lined up properly.

22. It's time now for some more production busywork. Your buttons are in place in Scene
1, and they need to be copied into the other three scenes. Click the first keyframe of
the "buttons" layer in Scene 1 and select Edit → Copy. Then, for the remaining scenes
(Scenes 2–4), repeat these steps:

o Insert a new layer and name it "buttons."
o Select Edit → Paste in Place.

Don't forget to remove the dummy buttons from Scene 4 before you paste the finished
buttons in that scene.

23. With all the finished buttons in all the scenes, you can now insert the bookmark
graphics that create the navigation bar. Jump to Scene 1 of your movie and select the
conButton instance.

24. In the Properties inspector, click the Swap Symbols button. In the Swap Symbol
dialog box, exchange the conButton symbol with the conMark graphic symbol. You
will see the change take place on the Stage as the symbols swap. Repeat this process
with symbols in the following scenes:

o Scene 2: Swap edButton for edMark.
o Scene 3: Swap expButton for expMark.
o Scene 4: Swap refButton for refMark.

25. With all the bookmarks in place now, you can do some cleaning up and finish the
button symbols that you started earlier in the movie. Right now, the buttons display
their text component in the Up state. This is confusing and impossible to read! You
left it like that so that you could use the text to help line things up; but now that the
buttons are in order, you can delete the unnecessary text. Since you want the button to
display the text only when the button is rolled over and clicked, all you have to do is
delete the text from the Up state of each button symbol.

Open the Library panel and double-click the conButton symbol to open it in Symbol
Editing mode. Be sure that the playback head is in frame 1 (the Up state) and delete
the text that reads "contact" from the frame. Repeat this process with the other three
buttons so that none of them have any text in their Up state frames.

Similarly, you must do the same with the text for the graphic symbol bookmarks. Now
that everything is lined up, you are free to get rid of any extra text garbage. The
process for these symbols is the same: Open the symbol in Symbol Editing mode and
delete the text from the graphic. All instances of the symbol will be updated
automatically.

26. Now that the buttons are cleaned up, the movie is finally starting to look like
something! You should be able to see how each scene has its own bookmark to
designate where you are in the movie. With all the button and bookmark graphics in
order, you can attach the actions that are necessary to create the navigation.

 Tip If you haven't done so in a while, save your movie. It might also be a good idea to
do a Save As and give the movie a new name. That way, if there are any
problems, you can come back to where you left off and not have to redo too much
work.

Part 4: Scripting for Interactivity
27. For each scene, repeat these steps:

o Insert a new layer and name it "actions."
o Attach a stop() frame action to the first frame in this new layer.

28. For each scene in the movie, attach a gotoAndPlay() action that sends the movie to the
correct scene when a button instance is clicked:

o conButton instance goes to frame 1 of Scene 1.
o edButton instance goes to frame 1 of Scene 2.
o expButton instance goes to frame 1 of Scene 3.
o refButton instance goes to frame 1 of Scene 4.

For example, the script on the edButton instance in Scenes 1, 3, and 4 should read:

on(release){
 gotoAndPlay("Scene 2",1);

}

No matter what scene is currently playing, the button instance will always point the
movie to frame 1 of Scene 2.

You must attach these actions to every instance in every scene of your movie. Happy
scripting!

29. When you have finished attaching all your actions, select Control → Test Movie to
test the button and action performance of your resume movie.

Part 5: Completing the Resume
30. Now that the controls work and you can navigate through the resume, it's time to

create the rest of the design structure and content. To display the written information,
you will need some kind of frame to put it in.

In Scene 1, insert a new layer and name it "graphic box." On the new layer, create a
box or frame in the middle of the Stage. When it looks the way you want, select the
entire box and choose Insert → Convert to Symbol (F8). Give the box a name and a
Graphic Behavior.

31. Click the box to select it and choose Edit → Copy. Then, for each scene in your
movie, insert a new layer and name it "graphic box." When the layer is complete,
select Edit → Paste in Place to paste the box in exactly the same location for every
scene.

32. The next step is to add some simple animation to the box symbol. To add animation,
you need to have additional frames in your Timeline. In Scene 1, click frame 1 of
every layer, using the Shift+click technique to add to your selection. After each frame
is selected, press the F5 key 11 times. This will leave you with a total of 12 frames in
the Timeline for Scene 1. Repeat this process for scenes 2–4.

33. Next, you must move the stop() action that was attached to frame 1 of each scene back
in step 27. This is easy to do by simply moving the action manually. Select the action's
keyframe and position your mouse cursor over the action in the Timeline. Click the
keyframe and drag it to frame 12 of the actions layer for each scene in your movie.

34. Now that the action is in frame 12, you have some room to create an animation before
the Timeline is stopped. In this step, you will create an animation that tweens the
Alpha, or opacity, of the instance. (For more details on tweening, refer to Chapter 9.)

In the "graphic box" layer of Scene 1, click the last frame (frame 12) of the animation
and select Insert → Keyframe to insert a new keyframe.

35. Select the graphic in the first keyframe (frame 1) and open the Properties inspector.

Select Alpha from the Color drop-down menu. Then either enter a value of 0% in the
text field or use the pop-up menu to access the Alpha slider and drag it down until the
field reads 0%.

36. Your next step is to tween the animation so that the Alpha value slowly changes from
0% to 100%. Since the last keyframe at frame 12 was untouched, it still has the default
Alpha setting of 100%, and the animation will fade up from 0% to 100%. To tween
the animation, select keyframe 1. With the frame selected, choose Motion from the
Tween menu in the Properties inspector. This step inserts an arrow pointing from one
keyframe to the next. If you press Return/Enter on your keyboard, you will be able to
see the animation play its first 12 frames.

37. Repeat steps 34–36 to create identical animations for the other scenes in your movie.
38. You are ready now for the final step, which is to insert the text that will make up the

informational content of your resume. You should put this text on a separate layer so
that you can control and edit it independently. First, add the title text for each resume
section. In Scene 1, insert another new layer and name it "text." Select Insert →
Keyframe to insert a keyframe in frame 12 of the new text layer.

39. Use the Properties inspector to select a font, size, and style for the title text. Then,
using the Text tool, insert text to serve as the title for this section of the resume. In the
CD-ROM example, the title at the top is the same as the rollover graphic at the
bottom.

40. Repeat steps 38 and 39 for the remaining scenes of your movie. Rather than trying to
line up the text blocks from one scene to the next, you can use the Paste in Place
command to ensure consistent placement of all items.

41. Use the Text tool to enter any additional text for your movie and to fill your resume
with all the important information about you: your background, your experience, and
other points of interest. (To learn more about working with text in Flash, see Chapter
5.)

42. After you have filled each scene of your resume movie with text, save the file and
select Control → Test Movie to see how it works.

Congratulations! You have just completed one of your first large projects with Flash MX.
Realize that this tutorial is only a point of departure. From the basic principles outlined here,

you can build upon the techniques and strategies to create even more dynamic, interactive
resumes and portfolios. Have fun, and keep up the good work.

Part V: Adding Advanced Interactivity with
ActionScript
Chapter List
Chapter 14: Understanding and Using ActionScript
Chapter 15: Writing ActionScripts
Chapter 16: Creating Advanced Interaction
Chapter 17: Managing Data Input and Output
Chapter 18: Troubleshooting ActionScript
Hands On 5: Using ActionScript to Create an Interactive, Multilayered Timeline

Part Overview
Up to this point in the book, you have worked with the elements of Flash that have helped the
application build its reputation: clean vector graphics, smooth Timeline animation, and an
intuitive user interface that streamlines your work flow. You have also learned how to make
your movies interactive by adding simple scripts that direct a movie's playback and allow
your audience to experience your content on their own terms.

In recent years, Flash has become much more. Its scripting capabilities have grown
considerably. ActionScript, once a simple "traffic cop" that controlled the flow of Timelines,
has become the "governor" of your Flash movie, with control over nearly every level of the
movie. With this increased control comes the increased potential to make a simple Flash
animation into an immersive multimedia experience.

In this part of the book, you will begin to dig deeper into the specifics of ActionScript and
learn how to use the language as a tool for making your movies play and respond intelligently
to the requests of your audience.

Chapter 14: Understanding and Using
ActionScript
Overview
So, you are ready to take the plunge into the world of ActionScript. Congratulations! This is
one of the most exciting and rewarding aspects of working in Flash—but it can also be the
most difficult and demanding.

This is not a warning to scare you off; it is a call to arms. Learning ActionScript and
becoming comfortable with the language is a challenge. Getting to the point where you can
use the language with fluidity can be even more tenuous. However, none of this is impossible.

What is most important is that you practice diligently. Learning ActionScript (or any
programming language, for that matter) is similar to learning to speak a foreign language: To
use it fluently, you have to practice every day. Practice can be as basic as trying to create
simple movies that perform tasks using capabilities of the ActionScript language. Repeated
exposure to the language through this kind of routine will give you a good feel for the
language in context. The more you practice, the more of the language you learn and the more
comfortable you become with its elements.

This chapter covers fundamental ActionScript terms and concepts and gets you started with
some advanced scripting techniques.

Knowing and Applying the Anatomy of ActionScript
ActionScript is most similar to the programming language JavaScript. In fact, ActionScript is
derived from the JavaScript specifications set forth by the European Computer Manufacturers
Association (ECMA).

 Note For more information about the history, role, and members of the ECMA, go to its
website, www.ecma.ch.

As an object-oriented scripting language, ActionScript has components that follow a
particular organization. Elements of a movie are organized into classes. Classes can then be
expressed as individual or independent parts called objects. An object is an instance of a class.

A class has information that it passes on to each object it creates. This information comes in
the form of properties, the qualities of an object, and methods, the actions an object can
perform. In Flash, there are several predefined classes that create objects, such as Date objects
and Sound objects. One of the most common predefined objects, the Movie Clip, has
properties like _framesloaded and methods like play().

It's possible to create your own objects using ActionScript. For example, you could use a
constructor function to create the class Dogs, with properties like _spotted and _scruffy, and
the method fetch.

Breaking Down a Script

One way to understand how scripts work is to dissect a script that is working in the context of
a movie. This approach is helpful because seeing a movie is the proof; you can witness the
script running right before you. Once you grasp what is happening on the movie's Stage, you
can take a look behind the scenes and see what kind of script is making the movie act a certain
way or do a certain thing.

 On th CD-ROM In the following example (tapGlass.fla in the Chapter 14 folder on this
book's companion CD), the audience's standard pointer cursor is replaced with a custom hand
cursor created in Flash. When someone clicks the glass (or "taps" it), the water in the glass
ripples and a ping sound is heard. This movie takes place in a single frame (see Figure 14.1),
although the ripple animation takes about 40 frames. However, this animation is part of a
Movie Clip, and the glass is an instance of the Movie Clip.

Figure 14.1: The tapGlass movie

The only scripts in the movie are a series of actions attached to the hand Movie Clip instance.
These scripts are responsible for attaching the custom hand cursor, cueing the glass animation,
and playing the sound.

Open and play the movie so that you can see exactly what it does. Also, select the hand
instance and open the Actions panel (by pressing F9) to see the scripts that control the
instance's behavior as a custom cursor. For a specific breakdown of the scripts in this movie,
refer to Figure 14.2.

Figure 14.2: The Action panel with attached script for the hand instance

In the actions, there are two main handlers; and since this movie deals with Movie Clips, each
is an onClipEvent handler. The actions in the first handler execute only once, when the clip
event loads. They are as follows:

mouse.hide();
startDrag("_root.hand",true);
tap=new Sound();
tap.attachSound("glassSound");

When the clip event loads, the Mouse object hides the cursor; then a startDrag action makes
the Movie Clip draggable and replaces the cursor. The next two lines invoke a sound object
using the new Sound() constructor function, and attach an instance named tap of the sound
glassSound.

The next handler is also a clip-event handler, but it is executed only when the clip receives a
mouseDown, or click, message. The mouseDown message is then run through a conditional:

if(this.hitTest(_root.H2Oglass)){
 _root.H2Oglass.gotoAndPlay(2);
 tap.start();
}

The conditional if statement asks if the hand clip (this) has collided with or is over the clip
instance H2Oglass when the mouse is clicked. If it does intersect the other instance, the
conditional returns a True value, and it sends the H2Oglass instance to play at frame 2 of its
internal Timeline. After doing this, the script plays the sound object tap that was created when
the clip first loaded into the movie. The conditional has no else statement. This means that if
the two clips don't intersect when the mouse is clicked, the if statement returns a False value
and nothing is done. Without the conditional statement to check whether the hand is over the
glass, any mouseDown event would cause the animation and the sound to play. Try pulling
this script apart and changing different parameters to see what different kinds of behavior you
can create.

 Note There is one other script in this movie. In the glass Movie Clip, there is a stop()action at
frame 1. This prevents the clip from playing until it receives a message that tells it to
jump ahead to frame 2 and begin the animation.

How Scripts Flow

What is almost more important than understanding the elements of a language is
understanding the flow of a language. Flow refers to the way that a script is read and
processed while your movie is running. When scripts will not work properly, the cause is
often a mistake in the flow, or order of the script, rather than a misuse of terms or incorrect
syntax.

Like most programming languages, ActionScript follows a logical, step-by-step flow. This
means that lines are executed in sequential order, starting at the top and working their way
down through the script.

For example, in the following script, the playback head stops, sets the _alpha property, or
transparency, of a Movie Clip named plane to 50%, and then continues playing at frame 11:

stop();
setProperty("_root.plane",_alpha,50);
gotoAndPlay(11);

The actions are carried out specifically in the order they are listed.

A script can take several diversions as it travels along in your movie. In ActionScript, there
are statements known as conditionals that will reroute your script flow. This detour in the

flow of the script is usually done to test a condition and then do something as a result of the
test.

One of the most common conditionals is an if statement. Here is its basic structure:

if(thisStatementIsTrue){
 do thisStatement
}

The if statement tests a condition, which can be evaluated as either True or False; and if the
evaluation is True, the statements in the body of the if statement are executed. The if
statement can provide an else alternative. This way, if the condition tested is False, the script
will execute a separate action—the statements in the body of the else part of the statement
(see Figure 14.3). For example:

if(thisStatementIsTrue){
 do thisStatement
}else{
 do aDifferentStatement
}

Figure 14.3: The flow of an if…else statement
 Note In a script where the if statement evaluates False and there is no else alternative, the

statements in the body of the if are skipped entirely.

These structures are very useful for testing different parameters in your movie and telling
Flash to act accordingly.

Related to the conditional script structure is the loop structure. The loop structure creates a
repetition and performs a task or process repeatedly until a value is achieved to satisfy the
demands of the loop (see Figure 14.4).

Figure 14.4: The flow of while loop

For example:

i=100;
while(i>0){
 i=i-1;
 setProperty("_root.plane",_alpha,i);

}
gotoAndPlay (11);

This script is executed in the same step-by-step fashion as the if...then conditional. However,
there is a slight delay before the script makes it to the last line. This script uses a while loop
and detains the script flow while it runs the variable i through a decreasing series of values.
Rather than simply set the Movie Clip to an _alpha value of 0%, this script methodically
decreases the _alpha value by 1 as long as it is greater than 0. When the script has completed
this task, it continues down the line and executes the last statement, sending the movie to play
at frame 11. Loops like this are especially helpful for repetitive actions and information
processing. For more information on loops and loop syntax, see both Chapter 15 and the
ActionScript Reference section.

Planning and Assigning Scripts

Every designer or animator knows that one of the most essential parts of the development
process is planning and storyboarding. Planning is crucial. It allows you to think things
through before committing to a final version. It's also an opportunity to look at the big picture
before zeroing in on the details during production. Planning answers the most important
question: What am I creating?

Just as planning is common practice for design and animation, it should be so for scripting.
Before writing a single line of ActionScript, you should know the purpose of every script and
how it will work toward a goal in your movie.

To begin the process, you need to start at the top and decide what you need the movie to do.
Then, break it down to the next level: What movie elements are needed to accomplish this?
When the various movie components are clear, you should decide how they work and whether
they interact. Once things have been reduced to this level, you should have a good start

toward defining the purpose of ActionScript in your movie. The next step is, of course, to start
writing scripts.

The best strategy for writing scripts is to start simple. Get one element of the movie working
before you move on to the next one. This technique allows you to isolate problems as they
occur. It's also good to get in the habit of saving your work often and saving multiple versions
of a project. This way, if something goes horribly wrong, you can go back to the last working
version and pick up where you left off, rather than build a movie from scratch.

If you are new to ActionScript, you are likely to spend a fair amount of time digging through
ActionScript references looking for the components you need to build your scripts. Inevitably,
you will encounter things that are not immediately helpful, but may be helpful in the future. In
these occasions, it's a good idea to keep a list or journal of the terms you discover. That way,
when the time comes and you need a term, you can reference your notes rather than dig
through a book again.

Getting Familiar with ActionScript Terminology
As a powerful and flexible scripting language, ActionScript has many components within the
language itself. It's important to understand these terms and how they fit together in the
ActionScript family. The following list, organized alphabetically, is a breakdown of the key
ActionScript terms and their general descriptions. For a more detailed account of these terms,
see Chapter 16.

Actions are statements in ActionScript that tell a movie or one of its components to do
something while the movie is running.

Arguments (or parameters) are containers that hold information and pass it on to actions or
functions. For example, the custom function newUser has two arguments: userName and
userID:

function newUser(userName,userID)

These arguments are stored and used later in the function. Similarly, ActionScript actions can
take arguments. For example:

gotoAndStop(5);

The gotoAndStop() action requires an argument so that it knows where to stop the Timeline.

Classes are categories of information in your movie. Each object belongs to a class and is an
individual instance of that class. To define a new object, you must create an instance of the
object founded on a class. This is done with the help of a constructor function.

Constants are script elements that do not change. For example, an integer (whole number) is
a constant and can be used to check the value of an expression. The key SPACE is a constant
because it always refers to the spacebar.

Constructors are functions that are used to create objects based on classes. The function, in
turn, has arguments that give the class properties.

Data types describe the kind of information that a variable or ActionScript element can
communicate. In ActionScript, the data types are string, number, Boolean value (True and
False), object, Movie Clip, and undefined or null (no data). For more information on data
types, see Chapter 15.

Events happen while your movie is running. They are generated by such things as mouse
clicks, the loading of Movie Clips, and keystrokes. Events are used to trigger scripts and
actions.

An expression is any chunk of information that can produce a value. For example:

on(release){
 gotoAndPlay(_currentframe+1);
}

This script sends the movie to the frame number equal to the value of the expression
_currentframe+1.

Functions are information processors. They can be passed information in the form of
arguments and can return a value. Functions are great if you want to create a custom
ActionScript routine or task that will be used repeatedly throughout a movie.

Handlers are used to perform actions in response to events. In ActionScript, there are
handlers for both mouse and Movie Clip events.

Identifiers are unique names assigned to functions, methods, objects, properties, or variables.
The first character of an identifier must be either a letter, dollar sign ($),or underscore (_).
Every other character must be a number, letter, dollar sign ($), or underscore(_).

Instances are individual objects that belong to a class. For example, the today instance could
belong to the date class.

An instance name is a unique name used to refer to a specific Movie Clip instance once it is
in your main movie Timeline. For example, a Movie Clip symbol named logoMovie can be
used repeatedly throughout a movie. You must give each instance a unique instance name,
such as logo1 or logo2. Each instance in the movie must be referred to by its unique instance
name. This distinction allows ActionScript to control each instance of the one Movie Clip
symbol independently.

Keywords are words with special meaning in the ActionScript language and are unavailable
for use as variables, functions, and so on. Refer to Chapter 15 for a list of ActionScript
keywords.

Methods are actions that can be performed by objects. For custom objects, you can create
custom methods. In ActionScript, each predefined object (such as the Sound object or
MovieClip object) has its own methods. For a list of object methods, see the ActionScript
Reference section.

Objects are instances of a class. ActionScript has several built-in classes that are called
objects; these include the Sound object, the Date object, and the MovieClip object.

Operators are elements that are used to calculate and compare values. For example, the
forward-slash (/) operator is used to divide one number by another.

A property is any kind of quality that defines an object or instance of an object. For example,
the _x property determines the X coordinate of a Movie Clip on the Stage.

Target paths are used to pass information along the chain of Movie Clip instance names,
variables, and objects in a movie. For example:

menuBar.item1.selected

This is the target path to the variable selected, which is inside the Movie Clip item1, which is
inside the Movie Clip menuBar. For more details on the hierarchy of Movie Clips, see
Chapter 16.

Variables are storage locations that hold information and values. Variables can be used for
permanent or temporary storage, and can be retrieved for use in scripts while a movie is
playing.

Using the Actions Panel for Advanced Scripting
As you learned while working with some of ActionScript's basic actions, the Actions panel is
your interface for adding actions to a Flash movie. It provides several window components
that allow you to select ActionScript elements, arrange and order them as you see fit, and edit
any individual parameters as needed.

Up to this point, your exposure to scripting in the Actions panel has occurred in Normal
mode. This is the most user-friendly means of working with the panel, especially for
beginners. However, as you become more comfortable with the language, you may find that
it's helpful to have more control over the actions you write and how you write them. Absolute
freedom and control over the Actions panel can come only through working in Expert
scripting mode.

Scripting in Expert Mode

Working in Expert mode can be similar to working in Normal mode. The biggest difference is
that in Expert mode, you are given complete control over the window and what can be entered
in the text box. To set up the Actions panel so that you are working in Expert mode:

1. Select Window → Actions. The Actions panel appears (see Figure 14.5).

Figure 14.5: The Actions panel contains several unique and useful new features while
running in Expert mode.

2. Do one of the following:
o Click the Actions panel pop-up menu in the upper-right corner of the panel.

o Choose Expert Mode from the Actions panel's View Options menu.
o Type Shift+Cmd+E (Mac)/ Shift+Ctrl+E (Win).

 Note One of the immediate differences between modes is the absence of the
Parameters pane in Expert mode. In Normal mode, you use the pane to enter
parameters for the actions you select. In Expert mode, you type all of those
parameters by hand.

You may remember from Chapter 12 that it's possible to switch from one mode to the other
while you are writing scripts. This is true, but there are a few things to keep in mind:

• A script with errors can go from Normal mode to Expert mode but not from Expert to
Normal. The script must be free of errors before switching back to Normal mode.

• Switching modes may cause some reformatting, so pay careful attention to any
unwanted changes that appear when switching modes.

• New to MX With the release of Flash MX, the Actions panel can boast many new
features. Many of these are available only while you are working in Expert mode.
Keep reading to learn how the new additions to the Actions panel can help streamline
your work flow and offer greater control over how actions are displayed in the text
box.

Actions Panel Options

Besides enabling you to switch editing modes, the Actions panel offers several options to let
you work with scripts more easily. You are able to search scripts and perform find and replace
edits for ActionScript terms that appear more than once. It's also possible to write your scripts
outside Flash and to include them in your movie from an external location. Additionally, the
Actions panel allows you to print scripts and check for errors before testing your movie.

Script Display Options

 New to MX In Flash MX, there are several new (and very welcome) additions to the
Actions panel. Many of these features affect the way a script is displayed in the panel,
offering greater control over the formatting, script font and color, and organization of
information. To take advantage of these options, you need to run the panel in Expert scripting
mode. Press Shift+Cmd+E (Mac)/Shift+Ctrl+E (Win) or use the View Options menu to
switch to Expert mode.

Line Numbering

The Actions panel's line-numbering feature allows you to better manage long scripts. Line
numbering gives each line in your script an "address" of sorts, so that you can easily refer to
each script component by number. To activate or deactivate line numbering:

1. Choose Window → Actions or press F9 to open the Actions panel.
2. Select the View Options menu and do either of the following:

o To display line numbering, select View Line Numbers or press Shift+Cmd+L
(Mac)/Shift+Ctrl+L (Win). A check appears beside the menu option in the
menu.

o To hide line numbering, select View Line Numbers. The check beside the
menu option disappears.

When line numbers are on, they appear in the vertical gray strip between the Actions Toolbox
and the text box (see Figure 14.6). When the option is off, the gray strip is empty.

Figure 14.6: The Actions panel with the line numbering option turned on

Auto Format

The ActionScript examples that you read in this book were specially prepared so that they
were written as neatly and clearly as possible. In the real world, though, this isn't always the
case. If you are "in the trenches" and under a tight deadline for preparing a script-intensive
movie, the last thing on your mind is the tidiness of your script. A neat, orderly script isn't a
necessity, but often a neat script makes it easier to find syntax errors or other glitches that
prohibit a script from running properly or running at all.

Luckily, Flash MX offers a new auto-format feature that enables you to automatically clean
up a messy script by using a single mouse click or keyboard shortcut. To apply auto-
formatting to a script:

1. Select the object or frame that contains the script you wish to format.
2. Choose Window → Actions (F9) to open the Actions panel.
3. Do one of the following:

o Press Shift+Cmd+F (Mac)/Shift+Ctrl+F (Win).
o Choose Auto Format from the Actions panel pop-up menu.

o Click the Auto Format button .

Your script is automatically reformatted.

When you are using the auto-format feature, it's possible to control how Flash formats your
scripts. To set the parameters for auto-formatting:

1. Click the Actions panel pop-up menu and select Auto Format Options.
2. The Auto Format Options dialog box appears. Use the check boxes to turn on or off

the various formatting parameters. To see how a particular formatting option affects
your script, look at the Preview window at the bottom of the dialog box. When
finished, click OK to return to the Actions panel.

Once you have set the formatting options, they will be applied to the current script whenever
you use the Auto Format command.

Actions Panel Text Display

Flash MX allows you to have complete control over the display of actions in the Actions
panel. This includes font, size, text color, and spacing. These options are controlled from the
ActionScript Editor tab of the Preferences menu. To open this menu, do either of the
following:

• Select Edit → Preferences and choose the ActionScript Editor tab.
• Click the Actions panel pop-up menu and select Preferences.

You can set several options on the ActionScript Editor tab:

Spacing Check the Automatic Indentation box, and Flash will automatically indent your
scripts. To set the amount of indentation, type a number in the Tab Size field.

Text Use the Text menus to select a font and size for your actions. Because ActionScript must
be entered with specific syntax, it's better to choose a legible screen font than your favorite
deconstructed display typeface.

Color Flash allows several options for the display color of actions in your movie. When the
Syntax Coloring box is checked, you can set a specific color for the following ActionScript
elements: Foreground (text), Background (window color), Keywords, Comments, Identifiers,
and Strings. Syntax coloring can make it easier to visually organize your scripts based on the
color of individual script entries. Use the color swatch next to each element to choose a
display color. If you prefer to view your scripts without the syntax coloration, deselect the
Syntax Coloring option and choose appropriate foreground and background colors.

Syntax Version Tracking

Although you are working with Flash MX, it's possible to publish your movie for older
versions of the Flash Player. Previous releases of Flash didn't contain all of the ActionScript
that you now find in MX. As a result, you are unable to use those new terms when publishing
for an older version. It can be hard to keep track of which terms are available in which
versions, so the Actions panel makes it easy for you. Any terms that are unavailable in the
version for which you are publishing will be highlighted in a bright yellow color. You cannot
use these terms unless you switch your publish settings to a higher version number. You can
read more about publishing movies in Chapter 28.

Automatic ActionScript Input Using Code Hints

 New to MX Macromedia seems to be going out of its way to make it easier and easier to
compose ActionScript in the Actions panel. Now in Flash MX, you can use code hints, an

automated feature that provides yet another means of writing your scripts. Although the
feature stems from a good idea, its actual implementation is a little cumbersome.

 Note Code hints are available only in Expert mode.

Code hints are intended to provide you with menu options so that rather than type an entire
script, you can select pieces of it from a menu. Because code hints appear in the Actions panel
alongside your script, it's easy to choose from the menu and build your script in a somewhat
systematic fashion. You can use code hints to insert handler events, actions, and action
parameters into a script. You can choose to have code hints displayed automatically or to call
upon them as needed. When they are set to be automatic, Flash detects when you need a code
hint and displays it in the Actions panel. To enable automatic code hints:

1. Choose Edit → Preferences and select the ActionScript Editor tab, or click the Actions
panel pop-up menu and choose Preferences. The Preferences dialog box appears.

2. Check the Code Hints box to turn on automatic display of code hints. You can also use
the Delay slider set the period of delay before a code hint appears; the minimum
period is 0 seconds (no delay), and the maximum is 4 seconds.

3. Click OK to leave Preferences and return to your movie.

Writing Scripts with Code Hints

As mentioned earlier, code hints can be used for three ActionScript elements: event handlers,
actions, and action parameters. In the steps that follow, you will learn how to use code hints to
build a script with a minimum amount of typing.

Say, for example, you wanted to enter the following script:

on(press){
 menu.gotoAndPlay(5);
}

This button script will send the Movie Clip instance menu to play at frame 5. To enter this
script using code hints:

1. Select a button object in your movie.
2. Choose Window → Actions (F9) to open the Actions panel.
3. Type on(in the Actions panel text box. If automatic code hints are enabled, a code

hints menu of event handlers appears beside your script (see Figure 14.7).

Figure 14.7: Code hints appear in the Actions panel text box along with your scripts.

If code hints are disabled, do one of the following to display the code hints menu:

o Press Cmd/Ctrl+spacebar.

o Click the Show Code Hint button .
o Select Show Code Hint from the Actions panel pop-up menu.

4. Since you are writing a handler, the code hints menu knows to give you a list of
handler events. Now you must choose the handler you want to use from the menu.
There are two ways to do this:

o Use the arrow keys to navigate to the handler event, and press Return/Enter to
make your selection.

o Choose and double-click an event from the menu.

Use either technique to select the press event. Flash enters the event into your script.
Type){ and press Return/Enter to start a new line. Your incomplete script should now
look like this:

on(press){

5. Start the second line of your script by typing menu. This is the instance name of the
Movie Clip you are scripting for in this example. If you are scripting for a clip with a
different instance name or target path, insert that information here at the beginning of
line two.

6. With the instance name (or target path) in place, you can use a code hint to enter an
action. Flash doesn't always understand what action to display when you ask for a
code hint. Here you are scripting to control a Movie Clip, but what if the menu
instance were a Sound object or an Array? Flash has no way of knowing this. You
must provide some additional information to give the code hint a little clue about your
script. Type _mc after the word menu. Your script should now read like this:

7. on(press){
 menu_mc

The _mc class suffix lets Flash know that the menu instance is a Movie Clip. For a
complete list of class suffixes, see Table 14.1 at the end of this section.

 Tip Using suffixes such as _mc is one of the "gotcha" features in Flash MX. By
changing the script from instanceName to instanceName_mc, you are telling

Flash to look for a completely different Movie Clip instance. The _mc suffix is
interpreted as part of the full instance name. If you plan to use code hints when
writing scripts for your movies, you will need to find a work-around solution. The
best way to manage this situation is to name all of your instances with the
appropriate code hint suffix. That way, there will be no confusion in your scripts.

8. After the _mc class suffix, type a period (.). If code hints are enabled, the code hints
menu should appear. If not, use one of the techniques described in step 3 to display the
menu.

9. Using one of the code hint selection techniques described in step 4, choose the
gotoAndPlay() action from the code hints menu. Your incomplete script should now
look like this:

10. on(press){
 menu_mc.gotoAndPlay(

11. This next step may come as a bit of a surprise! After entering the gotoAndPlay()
action via the code hints menu, you are automatically faced with another code hint
choice—only this one is different from the others you have seen. This code hint
appears in a yellow box and is called a tooltip-style code hint. Tooltip code hints are
used to enter parameters for actions. The gotoAndPlay() action requires one
parameter, a frame number. When the yellow tooltip code hint appears, you can type a
value, and it will be inserted as the parameter for the current action. Type 5; then type
a closing parenthesis ()). This will hide the code hint. End the line with a semicolon
(;).

 Note Some actions require more than one parameter. To enter multiple parameters
when using code hints, simply type the parameters in the proper order,
separating them with commas. Don't rely on Flash's tooltip-style code hints to
give you the correct number or order of the parameters. To learn the correct
parameter syntax for an action, see the ActionScript Reference section.

12. Press Return/Enter to start a new line, and type the closing curly-brace character (}) to
end your script. The finished script should now read like this:

13. on(press){
14. menu_mc.gotoAndPlay(5);

}
 Note Remember to update all your instance names in the Property Inspector so that

your code hint suffixes will reference the correct instance names. In this
example, you would need to change the instance menu to menu_mc.

Code hints are designed to make scripting a little less keyboard intensive. You should be the
judge of whether or not they are helpful. One of the beauties of Flash MX is that the interface
is completely customizable. Use the features you like, and ignore those you don't.

Table 14.1: Code Hint Class Suffixes
Suffix Object Class
_array Array
_btn Button
_camera Camera
_color Color
_connection NetConnection
_date Date
_fmt TextFormat
_mc MovieClip
_mic Microphone
_so SharedObject
_sound Sound
_str String
_stream NetStream
_txt TextField
_video Video
_xml XML
_xmlsocket XMLSocket
To use code hints, enter the appropriate suffix after the name of the object you wish to
control.

Navigating, Searching, and Replacing ActionScripts

To look for portions of an ActionScript, use the pop-up menu in the upper-right corner of the
Actions panel:

Select Go to Line (Cmd+, (Mac), Ctrl+G (Win)) to skip to a particular line in a long script.

Select Find (Cmd/Ctrl+F) or click the Find button to locate a particular word or phrase.
Find Again (Cmd+G (Mac), F3 (Win)) will locate the next occurrence of that text.

Select Replace (Cmd/Ctrl+Shift+H, (Mac), Cmd/Ctrl+H (Win)) or click the Replace button

to find one set of text and replace it with another.

In Expert mode, Find and Replace will search the entire script body. In Normal mode, they
will search only the information in the Parameters pane.

Find and Replace will search only the immediate script window. To do a movie-wide search,
use the Movie Explorer. (For more information about the Movie Explorer, see Chapter 7.)

Getting Files in and out of the Actions Panel

There are several ways to move data in and out of the Actions panel. Use the pop-up menu in
the upper-right corner of the panel to handle these tasks:

Import text Select Import from File or press Shift+Cmd+I (Mac)/Shift+Ctrl+I (Win), and
browse to a text file composed of ActionScript. This option is particularly useful if you prefer
to write scripts in a text- or script-editing program and want to integrate them directly into
your movie.

Export your script Select Export as File or press Shift+Cmd+X (Mac)/Shift+Ctrl+X (Win),
give the file a name, and click Save. Flash exports a text file containing your script.

Print Select Print, pick your print options, and click Print.

 Tip When you print scripts from the Actions panel, Flash doesn't include any information
about the file that contains the script or the script's location in the movie. If you plan to
print several scripts, it can be helpful to include comments that note where each script
resides in your movie. (To learn more about working with comments, see Chapter 15.)

Checking Syntax and Errors

One advantage of Expert mode is that it gives you complete control over what is entered in
the text box. The downside of this feature is that unlike Normal mode, it has no way to check

automatically for errors as you input the actions. To ensure that your scripts are error-free
before testing your movie, you can check the syntax in the Actions panel by doing one of the
following:

• Click the Check Syntax button near the top of the Actions panel. This button looks
like a check mark.

• In the pop-up menu in the upper-right corner of the Actions panel, select Check
Syntax.

• Press Cmd/Ctrl+T while the Actions panel is active.

Whichever option you choose, if the script is free of mistakes, you will get a message that
asks you to acknowledge this. If there are errors, you will be alerted, and any errors will be
printed in the Output window. (For more specifics on using the Output window, see Chapter
18.)

Working with an External Script Editor

Although the Actions panel gives you total control while working in Expert mode, you may
find it helpful to take advantage of an external editor and do your scripting outside Flash. If
this is the case, all you need to do is replace any chunks of ActionScript with this line:

#include "actionScriptFile.as"

Here, actionScriptFile.as is a text file that contains all of the necessary code for the frame or
object where the #include action is attached. The #include action imports the lines of
ActionScript from the external AS file and runs it in the movie as though it were written
directly in the Actions panel. To use this technique to import ActionScript from an external
file:

1. Write your script in an external editor and save it with a .as extension.
2. Drag the include action from the ActionScript Toolbox or type #include in the text

box.
3. In either the Parameters pane (when working in Normal mode) or in quotes after the

#include action (when working in Expert mode), enter the path to the external script
file. Use the forward-slash character (/) to delimit the path. For example, if movie.fla
and extScript.as were in the same folder, the path would be extScript.as. If the script
file were in a subfolder named Actions, the path would be actions/extScript.as.

Once you publish a movie that uses external scripts, those scripts become a permanent part of
the movie. To make any changes to the script, you will have to change the ActionScript in the
AS file and republish your movie.

Attaching Complex ActionScripts

Attaching complex scripts to objects and frames isn't very different than attaching basic
actions. With advanced scripts, you will likely manage several scripts at a time. It's important
to be aware of the impact one script will have on another while the movie is running. The
Movie Explorer can be a valuable ally because it will allow you to see the hierarchy of movie
elements and track which scripts are attached to which movie elements. (For more details on
the Movie Explorer, see Chapter 7.)

The greatest difference between attaching simple and complex scripts is that most complex
scripts are generally composed with the Actions panel in Expert mode. This is primarily
because Expert mode offers more flexibility for creating scripts on your own terms, in the
order you prefer.

When you attach scripts in Normal mode, you have to go through the process of dragging the
actions from one side of the window to another. This is very convenient for just a few lines of
code, but for complex scripts that go on and on, dragging scripts can become tedious.
Moreover, to edit scripts in Normal mode, you have to make all your changes in the
Parameters pane. This means that you have access to your script only through the options that
the Parameters pane provides. In many cases, this is sufficient, but with Expert mode, it's
never an obstacle; every element of your script is available for changes or modification.

The differences for creating scripts in this mode are few. Once you become familiar with
Expert mode scripting, you will find that it is one of the most direct ways to attach scripts to
your movie.

Attaching Scripts to Buttons and Movie Clips in Expert Mode

The objects in Flash that can have scripts attached to them are buttons and Movie Clips. With
the right kind of script, buttons will respond to many kinds of mouse interaction, including
clicks, rollovers, and drags. Movie Clips can also respond to events like loading into memory
or playing through a frame. Additionally, both kinds of objects can monitor and record user
keystrokes while a movie is running.

To attach an action to an object while working in Expert mode:

1. Click a button or MovieClip object and then either select Window → Actions or press
F9.

2. Click the View Options menu and choose Expert Mode, or press Shift+Cmd+E
(Mac)/Shift+Ctrl+E (Win).

3. Enter an action by doing one of the following:
o Select an action from a category of the ActionScript Toolbox and either

double-click it or drag it to the text box.
o Use the Add Actions button (+) and select an action from the pop-up menu.
o Type ActionScript directly into the text box window.

 Tip When you worked in Normal mode, event handlers were automatically inserted
when you brought an action over from the Toolbox. In Expert mode, this isn't the
case, so be sure to remember a handler. It assigns a trigger event that will set your
script in motion. For a review of ActionScript event handlers, see Chapter 12.

4. When you are finished, it's a good idea to check the syntax of your script. Either select
Check Syntax from the Actions panel pop-up menu, click the Check Syntax button, or
press Cmd/Ctrl+T.

5. If the script is free of errors, select Control → Test Movie to see how it works in your
movie.

If you need to attach additional scripts, use the Jump menu to navigate to other objects
in your movie and repeat steps 3 and 4. This allows you to write several scripts in your
movie without ever having to leave the Actions panel. To keep an object script
displayed in the Actions panel at all times, click the Script Pin button, and the script
will remain in the text box. Even if you select other objects or frames in your movie,
the "pinned" script won't disappear.

Attaching Actions to Frames in Expert Mode

Frame actions are a close relative of object actions. The biggest difference is that no handler is
required. By default, when the movie playback head reaches a frame containing a script, that
script is executed.

To attach a frame script in Expert mode:

1. Click a keyframe in the Timeline and select Window → Actions (F9). If there is no
keyframe, click a frame and select Insert → Keyframe to insert one.

2. Click the View Options menu and choose Expert Mode, or press Shift+Cmd+E
(Mac)/Shift+Ctrl+E (Win).

3. Enter an action by doing one of the following:
o Select an action from a category of the ActionScript Toolbox and then either

double-click it or drag it to the text box.
o Use the Add Actions button (+) and select an action from the pop-up menu.
o Type ActionScript directly into the text box window.

4. When you are finished, it's a good idea to check the syntax of your script. Either select
Check Syntax from the Actions panel pop-up menu, click the Check Syntax button, or
press Cmd/Ctrl+T.

5. If the script is free of errors, select Control → Test Movie to see how it works in your
movie.

If you need to attach additional scripts, use the Jump menu to navigate to other
keyframes in your movie and repeat steps 3 and 4. This allows you to write several
scripts in your movie without ever having to leave the Actions panel. To keep a frame
script displayed in the Actions panel at all times, click the Script Pin button, and the
script will remain in the text box. Even if you select other frames or objects in your
movie, the "pinned" script won't disappear.

Inspirational Design Model
ActionScript opens Flash to an enormous world of possibilities. With the help of
ActionScript, Flash is no longer just a vector animation tool; it can be used to create rich
multimedia websites, interactive forms, cartoon serials, and games.

"Goodnight Mr. Snoozleberg" is a combination game and cartoon developed by Sarbakan of
Quebec (see Figure 14.8). Visit www.sarbakan.com/sybex/snooz for the latest information on
where Mr.Snoozleberg is being hosted. It's an excellent example that shows Flash in its
element—a perfect marriage of clean vector animation and programming to create a funny,
entertaining, and very interactive web experience.

Figure 14.8: "Goodnight Mr. Snoozleberg" by Sarbakan

Summary
This chapter introduced you to some of the more advanced components of the ActionScript
language. You saw how an advanced script can be broken down and reduced to its most basic
elements. This is a helpful exercise because it allows you to see how the different parts of the
language work together to create a meaningful script. You were also introduced to Expert
scripting mode, which offers several alternatives to Normal scripting. With this new
understanding, you should be ready to begin writing more complex and advanced
ActionScripts of your own.

Chapter 15: Writing ActionScripts
Overview
The last chapter introduced the fundamental ActionScript terms and some of the concepts of
using the ActionScript language. In this chapter, you will peel back another layer and delve
deeper into the world of Flash-based scripting.

So far, you have seen the possibilities that ActionScript can offer to your movies: It
transforms them from simple linear animations to complex interactive applications and
experiences. What is missing right now is a framework for you to use when constructing your
scripts. You need to learn the conventions and rules of the language. Without these, it's
impossible to use ActionScript to communicate intelligently.

Learning ActionScript Syntax
Like all spoken languages, computer languages such as ActionScript follow a particular set of
rules, or syntax. It's crucial to understand the syntax of the language so that you can use it to
say something meaningful. After all, the purpose of a language is to communicate, and
ActionScript provides you with a communication link to Flash.

Knowing all of the ActionScript terms in this book can be helpful if you want to become an
expert "ActionScripter." But it is even more important to know the rules that define how all
the terms are used and how they work together as a language. Once you have grasped the
rules of ActionScript syntax, you are well on your way to becoming a fluent script writer and
an excellent communicator with your Flash movies.

Punctuation Marks in ActionScript

You will use several different punctuation marks when writing an ActionScript. You can use
punctuation to issue a command or track the path to a movie or variable. It is also there to
help annotate your scripts and provide both explanation and instruction. Mainly, the purpose
of punctuation is to bring order to your scripts and organize their contents so that Flash can
understand how the scripts should be executed.

ActionScript Dot Syntax

The ActionScript dot syntax was introduced when Flash evolved to version 5. The dot syntax
makes ActionScript look similar to JavaScript. If you are comfortable with JavaScript,
learning ActionScript will put you in familiar territory. The construction for the dot syntax is
as follows:

The left side of the dot names either an object, instance, or Timeline reference in your movie.
The right side of the dot can be either a property, target path, variable, or action that is
directed at (or found within) the element on the left side. Here are three examples:

myClip._visible=0;
menuBar.menu1.item3;
_root.gotoAndPlay(5);

In the first example, a Movie Clip named myClip is made invisible by setting the _visible
property to 0 with the dot syntax. The second example shows the path to the variable item3
through menu1, a nested Movie Clip in the Movie Clip named menuBar. The third example
uses the _root reference to command the main Timeline to jump to frame 5 and play. In each
example, you can see how the left side of the dot names or references an object, while the
right side contains some kind of instruction to define, or manipulate, that object.

 Note The dot is also known as the dot operator because it can be used to issue commands and

modify properties. For more information on other ActionScript operators, see the
"Operators" section later in this chapter.

ActionScript Slash Syntax

The slash syntax was used in Flash 4 and has since been replaced by the dot syntax. Although
slash syntax is still supported in Flash MX, it is deprecated, or no longer preferred. This
syntax was used primarily in Flash 4 to delimit target paths. For example, the path to the
nested Movie Clip leg through the clips spider and body was expressed like this:

"/spider/body/leg";

Now, using the dot syntax, the same path is written this way:

spider.body.leg;

The slash syntax was used to access variables belonging to other Timelines and was also used
with the tellTarget action to target Movie Clips. Now that the tellTarget action has been
deprecated, it's better to use the dot syntax and the with action.

Comments

It is a good idea to make notes as you write your scripts. Notes can provide guidance or
instructions to someone who has to edit your scripts. They can also be helpful if you are
forced to abandon a project for a period of time; when you come back to the code, your notes
will remind you what each part of the script was doing.

To make notes in ActionScript, you have to insert them as comments. To insert comments in
Normal scripting mode, simply drag or select the comment action from the Actions category
of the script Toolbox and enter your notes in the text field of the Parameters pane. To enter
comments in Expert mode, type two forward slashes (//) and enter your notes after them. For
example:

// checks to see if all movie frames are loaded
if(_framesLoaded >=_totalFrames){
// if TRUE, then it starts the move at frame 6
 gotoAndPlay(6);
}else{
// if FALSE, it loops back to frame 1
 gotoAndPlay(1);
}

In ActionScript, anything that follows the double slash will be ignored by Flash. This means
that you can type anything you like after the slashes because Flash will not interpret
comments as ActionScript. Comments also allow you to "turn off" parts of a script. If there
are one or more lines that are causing problems, you can comment them out and run the script
without those lines. Flash will ignore the commented lines and run everything else in the
script. To learn more about this technique, see Chapter 18.

 Tip To insert large notes or blocks of text within your scripts, you can use the multiline
comment operator (/*). This handy tool makes it easy to write long messages or
explanations within the body of your ActionScripts. Simply begin the note with the

opening operator (/*) and end with the closing operator (*/). All statements that are
written between these markers will be ignored by the Flash Player.

When the ActionScript Editor Preferences are set to default, comments appear in the script
window in a light gray color so that you can distinguish them from other parts of your script.
To change this, select Edit → Preferences or choose Preferences from the Actions panel pop-
up menu. Go to the ActionScript Editor tab and select a new color from the swatch menu next
to the word Comments.

Curly Braces

ActionScript organizes the elements of a script by using the curly brace characters ({}).
(These characters are also called curly brackets.) In the following script, all the statements
between the pair of curly braces will be executed when the mouse is pressed:

on(press){
 with(fishClip){
 gotoAndStop(50);
 }
}

In this example, the curly braces organize the script into two parts. The on(press) handler
executes the with action, and the with action targets the instance fishClip, sends it to frame 50,
and stops it.

Parentheses

Parentheses are used in ActionScript to assign arguments for functions or to set the order of
operations in an expression. For example, the setProperty action has three arguments: target,
property, and expression. Here you use the parentheses to list the arguments after calling the
action:

setProperty("testClip",_alpha,50);

This script sets the _alpha value (property) to 50% (expression) for the instance testClip
(target).

You can also use parentheses to alter the order of operations. The expression 2 + 3 * 4
evaluates to 14, whereas the expression (2 + 3) * 4 evaluates to 20 because the parentheses
force you to do the addition first.

Semicolon

In ActionScript, the semicolon (;) is used to mark the end of a statement. For example:

on(release){
 introClip._visible=0;
}

Here, the action that makes the instance introClip invisible is terminated with a semicolon. If
you forget to use the semicolon, Flash will still compile the script correctly. However, it is

good practice to follow correct syntax conventions and always terminate statements with the
semicolon character.

Semicolons are also used to separate the parameters in a for loop structure. To learn more
about this ActionScript convention, see the Conditionals section later in this chapter.

Other ActionScript Syntax Conventions

Aside from the mechanics of ActionScript, there are a few other conventions that are
important to understand so that you can work flexibly with the language. Certain terms in the
language are "protected" or reserved because they have a specific meaning in ActionScript.
Other terms must follow a specific upper- or lowercase structure so that Flash will know how
to interpret them.

Constants

Constants are terms or properties that retain a specific and unchanging value in ActionScript.
In a script, they are written in all-capital letters. Constants are part of three ActionScript
objects: the Key object, the Math object, and the Number object.

The following script uses the Key object to test whether the spacebar has been pressed:

if(Key.isdown(Key.SPACE)){
 laser.shoot(1);
}

The spacebar has a constant value, and it is a property of the Key object. When it is pressed,
the statements below it execute.

In the next example, the Math object uses the constant value of PI to evaluate the area of a
circle:

area=Math.PI*(radius*radius);

In the following example, the MAX_VALUE constant is used to set the variable duration to
the highest possible value in ActionScript:

duration=Number.MAX_VALUE;

Keywords

Keywords are ActionScript terms that are reserved and have a specific purpose in the
language. These terms are used only in a specific context and are not available as names of
variables, functions, objects, or instances. See Table 15.1 for a list of ActionScript keywords.

Table 15.1: The ActionScript Keywords
break else instanceof typeof
case for new var
continue function return void

default if switch while
delete in this with
do

ActionScript Case Sensitivity

For the most part, ActionScript is fairly forgiving when it comes to upper- and lowercase
letters. If you are scripting in Expert mode, you will notice that the color for a term will
change if it isn't entered in the preferred upper- or lowercase syntax. For example, stop() is
usually colored blue. If you were to enter it as Stop() (note the capital S), it would change to
black. However, in most cases, Flash would still be able to interpret your script without error.
To be safe, it is best to follow proper ActionScript syntax at all times; capitalize anything that
should appear in uppercase, and keep all lowercase terms free of capital letters.

Learning ActionScript Language Elements
So far, you have learned the conventions of ActionScript and how the pieces of the language
fit together to create scripts. Now it's time to look at those individual pieces and see exactly
what ActionScript is made of. There are many components to the language, some of which
will seem familiar based on what you already know. Luckily, most of the terms resemble a
word in the English language that is near the term's meaning in ActionScript. This (hopefully)
makes the terms easier to remember. The most important step toward learning to write
ActionScript is understanding the role a particular term plays in the language. As the duties of
these terms become clearer, you will begin to see how to fit pieces of the puzzle together to
suit your needs.

Data Types

As you learned earlier, data types define the kind of information that can be represented by
elements of ActionScript. There are six types of information used in a script: string, number,
Boolean, object, Movie Clip, and undefined. We will discuss the specifics of each type.

Strings

Strings are literal chunks of information that hold no value. They are composed of any
combination of letters, punctuation, and numbers. String data is enclosed in quotes (" " or ' ')
and treated as a single piece of information. Because strings are literal, they are case sensitive,
so, for instance, the strings "one" and "One" are different. In the following example, Joe is a
string stored in myName:

myName="Joe";

Strings can be combined, or concatenated, to link string information together. For example:

fullName=myName+" Smith";

The addition operator (+) is used to concatenate string data. Note that in the preceding
example, the string " Smith" contains a space. This is to prevent the two string elements from

getting closed up when they are concatenated. When the strings are combined, you get this
result:

fullName="Joe Smith";

Strings can also be organized alphabetically by using the comparison operators: <, >, =<, and
>=. Flash uses the Latin 1 character set. When evaluating strings alphabetically, the letter z
holds the highest value, while "A" holds the lowest. Note the following expression:

"alligator"<"zebra"=true
"alligator">"Zebra"=true

Here you can see how lowercase letters hold a higher value than uppercase ones. For more
information on operators and comparisons, see the "Operators" section of this chapter.

Numbers

Numbers are characters that hold a specific numeric value. In ActionScript, number values
can be manipulated in expressions using mathematical operators such as addition (+),
subtraction (–), multiplication (*), division (/), modulo (%), increment (++), and decrement (–
–). You can also use ActionScript's predefined Math object to evaluate numbers and
expressions. For more information on this, see the "Operators" section of this chapter or the
ActionScript Reference section.

Booleans

A Boolean is a value that is either True or False. Booleans are used in conditional statements
to evaluate script elements and see if values have been met or initialized. The following
statements evaluate whether or not all of a movie's frames have been loaded into memory:

_framesloaded=loaded;
if(loaded=true){
 introMovie.gotoAndPlay(2);
}

In most conditional statements, the Boolean value is assumed and not stated explicitly in the if
statement. For more specifics on this, see the Conditionals section later in this chapter.

Objects

An object is a collection of information organized into properties. These properties have
names and values that can be accessed in a Flash movie. The object data type allows you to
manipulate the properties assigned to a particular object. In the following statement, the object
money has a property named myAccount, which is assigned the value 5000:

money.myAccount=5000;

Flash allows you to create your own objects or use one of the built-in objects such as Date,
Array, and Color.

Movie Clips

Movie Clips are self-contained animations that run independently in a Flash movie. They are
self-contained because they have their own Timeline. Movie Clips have properties such as
_alpha or _rotation that can be assigned values in ActionScript. Here, a Movie Clip instance is
rotated 180 degrees:

spinClip._rotation=180;

Movie Clips also have methods that you can use to control them. In this example, a clip is
instructed to stop on the first frame of its Timeline:

audioClip.gotoAndStop(1);

Undefined

Undefined exists to represent a lack of data, or no data. A variable that has no value returns
undefined. A variable with no value cannot be considered an "empty" variable. Without a
value, it does not exist and is therefore undefined.

On a related note, if you want to create an empty variable, you can set the value of the
variable to be null. Rather than not existing at all (undefined), the variable exists but is empty,
or null. For example, the following statement returns nothing; as a nonexistent container, the
variable is declared but has no value:

var one;

The next statement returns null; the variable is an empty but existing container:

var two=null;

To learn more about variables, see the next section.

Variables

Variables serve as storage locations for information that you need in a script. Variables are
like pockets where you can put something, keep it there for a while, and then retrieve it when
it's needed again later in your movie. To use a variable, you have to first declare, or state, the
variable. Then you must initialize the variable to let Flash know that you are going to store
something in it. Once you have initialized the variable with a starting value, it will hold that
value until it is changed. To change the value of a variable, all you have to do is add to it,
subtract from it, or reinitialize it.

Variables can be used to hold any type of data: string, number, Boolean, object, or Movie
Clip. For example, the variable x can be initialized to either a numeric value or a set of string
data:

x=24;
x="myName";

Variables can also be used in conditional loops to serve as the loop counter. For example:

j=2

while(j>0){
 duplicateMovieClip(_root.ship,"ship"+j,j);
 setProperty("ship"+j,_y,(_root.ship._y+50*j));
 trace("duplicated"+j);
 j=j-1;
}

In this example, the variable j is initialized to 2. Every time it passes through the while loop, it
is reduced by 1, or reinitialized until it no longer meets the conditions of the loop. The
variable j is also used to help name the duplicated Movie Clips and assign the level of each
new clip in the duplicateMovieClip statement. Finally, in the setProperty statement, j is used
in an expression to position the new Movie Clips at a location that is 50*j pixels away from
the original clip. That's a lot of work for one variable! The important thing to realize is that
you can use a variable over and over again in your scripts to help perform a variety of tasks.

When you use a variable, it's important to give it an appropriate name. There are a few rules
concerning this. First, a variable must be an identifier—a combination of letters, numbers,
underscore (_), or dollar sign character ($). See Chapter 14 for specifics on identifiers.
Second, a variable cannot be an ActionScript keyword, and it must be unique within your
movie. It's good practice to name a variable something meaningful that relates to the job it
will perform in your movie. If you use a variable to store the name of a visitor to your
website, name the variable something like siteVisitor to keep things simple. For example, if
visitors enter their names in an input text field, give the field the variable name siteVisitor.
This way, any time you want to use a visitor's name, you can just call on the variable, and the
name will be available immediately. If you wanted to print a farewell message in the text field
goodbye, you would write:

goodbye="Thanks for visiting "+siteVisitor;

In the previous conditional loop script example, you may have noted the line that reads
trace("duplicated"+j);. trace is a special function of ActionScript that allows you to monitor
different elements of your script. In this line, the script will trace the word duplicated and
concatenate it with the current value of j. It can be very helpful to use this function because it
allows you to track the value of your variables as they change while your script executes.

To use the trace()function, all you have to do is enter the information you want to monitor in
the parentheses following trace. When you test your movie, Flash will print all the
information you asked it to trace in the Output window. Anything entered within quotes will
be treated as a literal string and appear in the Output window exactly as it was entered. This
can be helpful because it allows you to make a label for each item you need to trace. For the
example trace("duplicated"+j);, the Output window will print:

duplicated2
duplicated1

This printout reflects the value of the variable j as it goes through the while loop twice, each
time decreasing its value.

Variable Scope

One of the most important aspects of variables is their availability, or scope. A variable's
scope determines how it is available to other portions of your movie. Because you use

variables to store and retrieve information, having them available is very important. In
ActionScript, variables have a scope that is either global, timeline-specific, or local.

If a variable is global, it is shared by all Timelines in your movie and is available at any time.
Any script in any part of your movie can access or change the value of a global variable. You
declare a global variable by using the reference _global. For example, this statement will
create a global variable named store1 and initialize its value to 1:

_global.store1=1;

The value of store1 can be retrieved at any point in your movie with this statement:

trace(store1);

Because the variable is global, it is always available, by name.

A Timeline-specific variable is also available throughout your movie. However, you must
always use a target path when working with the variable; otherwise, Flash won't know where
to find the information the variable is storing. Declare a Timeline variable by giving it a name
and assigning it a value. For example, to create a Timeline-specific variable named store2,
you would enter the following statement on any Timeline (Movie Clip, main Timeline, and so
on):

store2=2;

If you created this variable on the main Timeline, its value could be retrieved at any point in
your movie with this statement:

_root.store2;

If you created store2 on the Timeline of the Movie Clip instance sprocket, you would access it
by using this target path:

_root.sprocket.store2

Because the variable is scoped to a particular Timeline, you must refer to it using a target
path, or the "address" of the variable in your movie.

A local variable is different. Local variables are scoped to functions and can be changed only
within the block of script or function where they reside. This can be helpful if you have a
value that needs to exist for only a very brief period of time. To make a variable local, you
must use the var action when you declare and initialize the variable. For example:

function init3(){
 var store3=3;
}

This script declares the variable store3 as a local variable and initializes its value to 3. As a
local variable, store3 is available only within the curly braces ({}) of the function where it
resides, and it will be "alive" (contain a value) only while the function is executing.

To create a global variable:

• In Normal mode, select Objects → Core → _global and assign a value in the
Expression field.

• In Expert mode, type _global= and assign a value.

To create a Timeline-specific variable:

• In Normal mode, select Actions → Variables → Set Variable. Enter a name in the
Variable field and assign a value in the Value field. If the value is numeric, be sure to
check the Expression box.

• In Expert mode, type the name of the variable and use the assignment operator (=) to
assign a value.

To create a local variable inside a function:

• In Normal mode, select Actions → Variables → var and enter a name in the Variables
field. Then, to assign it a value, follow the steps to create a Timeline variable.

• In Expert mode, type var, followed by the variable name, and use the assignment
operator (=) to assign a value.

Operators

Operators are used to produce values. They are characters that instruct ActionScript how to
combine, remove, or compare the values in an expression. On both sides of the operator, you
have the values, known as the operands. The operator takes the operands, performs its
function on them, and leaves a final value for the expression.

If there is more than one operator in an expression, they are executed in a specific order,
which Macromedia calls precedence. Operators with the highest precedence are executed
first, followed by others in order of highest to lowest precedence. For example:

total = 3 + 4 * 5
total = 23

According to the rules of precedence, the 4 and 5 are multiplied first, and then the 3 is added.
Tables 15.2–15.5 list some of the ActionScript operators in order of precedence, from highest
to lowest. Where operator precedence is equal, operations are performed from the left of an
expression to the right.

Numeric Operators

Numeric operators are used to add, subtract, multiply, and divide the operands of an
expression. Table 15.2 lists the ActionScript numeric operators. Operators with the highest
precedence are listed first; precedence decreases as you move down the table.

Table 15.2: The Numeric Operators
Operator Operation
++ Increment by one

Table 15.2: The Numeric Operators
Operator Operation
– – Decrement by one
* Multiplication
/ Division
% Modulo
+ Addition
– Subtraction

Comparison Operators

The comparison operators are used to compare the value of two operands and return a
Boolean (True or False) value based on the comparison. Table 15.3 lists the ActionScript
comparison operators. Comparison operators have equal precedence and are read from left to
right.

Table 15.3: The Comparison Operators
Operator Operation
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

Logical Operators

Logical operators are used to compare two Boolean values and return a third Boolean value.
LogicalAND will evaluate to true if both conditions are True. LogicalOR will evaluate to true
if one of the conditions is True, and false if both conditions are False. LogicalNOT inverts the
value of an expression—for example, !false = true. Table 15.4 lists the ActionScript logical
operators. Operators with the highest precedence are listed first; precedence decreases as you
move down the table.

Table 15.4: The Logical Operators
Operator Operation
! LogicalNOT
&& LogicalAND
|| LogicalOR

Equality and Assignment Operators

The equality operators are used to test for equality between two operands. The operation will
return a Boolean value based on the operands. The assignment operators make assignments
and initialize variables. Table 15.5 lists the equality and assignment operators. Operators with
the highest precedence are listed first; precedence decreases as you move down the table. All

compound assignment operators (+=, –=, *=, and so on) have equal precedence and are read
from left to right.

Table 15.5: The Equality and Assignment Operators
Operator Operation
== Equality
=== Strict equality
!= Inequality
!== Strict inequality
= Assignment
+= Addition and assignment
–= Subtraction and assignment
*= Multiplication and assignment
/= Division and assignment
%= Modulo and assignment
 Note ActionScript's bitwise operators, which are used to set and evaluate values at the bit

level, are beyond the scope of this book and will not be covered. To learn more about
them, refer to the documentation that ships with Flash.

Actions

Actions are statements in ActionScript that issue commands to a movie or one of its
components, telling it to do something. For example:

gotoAndPlay(5);

This action tells the movie to go to frame 5 and continue playing when it gets there.

Here's another example:

duplicateMovieClip("myClip","myOtherClip",1);

This action makes a copy of the Movie Clip myClip, names the copy myOtherClip, and sets it
at stacking level 1 above the original clip.

Actions are one of the largest portions of the ActionScript language. They can be found in the
ActionScript Toolbox section of the Actions panel. Click the Actions icon to display a list of
actions that are available to you.

Conditionals

In the preceding chapter, you learned about the flow of scripts. Conditionals are used to direct
this flow. Conditionals present a script with a condition to be tested. The test returns a
Boolean value, either true or false. Depending on this outcome, the script is routed in the
appropriate direction by the conditional structure. In ActionScript, the main conditionals are
if, if...else, switch, while, do...while, and for.

"if" and "if…else" Statements

Statements that test whether a condition evaluates to either true or false use the if action.
ActionScript evaluates the condition in the first line of the script and then proceeds to execute
the appropriate statements that follow, based on the condition's evaluation. For example:

if(y<_currentFrame){
 move=Math.PI*y;
 saucerClip._x=saucerClip._x+move;
}

In this script, if the statement y<_currentFrame evaluates to true, the following statements
within the curly braces are executed. If it evaluates to false, the code in the if block is skipped
and execution of the script skips to the first statement after the closing curly brace of the if
action. if conditionals can have alternative statements as well. The preceding example could
be expanded as follows:

if(y<_currentFrame){
 move=Math.PI*y;
 saucerClip._x=saucerClip._x+move;
}else{
 gotoAndPlay(1);
 y++;
}

This second script has an else component. This means that if the y<_currentFrame statement
evaluates to false, the statements following }else{ are executed as an alternative.

 New to MX With the introduction of Flash MX, you are able to take advantage of a new
conditional structure that provides an alternative to the if...else statements. This new structure,
called switch, presents a script with a series of cases, each of which will be executed
depending on the value of the condition to be tested. Consider the following statements:

num=1;
switch(num){
 case 1:
 trace("case 1 was true");
 break;
 case 2:
 trace("case 2 was true");
 break;
 case 3:
 trace("case 3 was true");
 break;
 default:
 trace("no case was true")
}

In the preceding switch statement, the value of num is tested over several conditions, or cases.
If a case returns true, meaning that the value of the case equals that of the variable running
through the conditional, its statements are executed. In this example, the Output window
would print "case 1 was true" because the value of num happens to be 1. If the first line read
num=3, you would see "case 3 was true" in the Output window. If no cases evaluated as true,
the default case's statement(s) would be executed.

Notice that within each case statement, there is a break action. This ensures that only a single
condition's statements are executed. If you ran this script but removed the break actions, it
would print the following:

case 1 was true
case 2 was true
case 3 was true
no case was true

break causes a script to quit executing statements in the current block. This is defined by the
pair of curly braces ({}) that contain the switch statement's case conditions. Without the break
statement, the remaining conditions in the body of the switch statement will be evaluated as
true.

Looping Scripts with Conditional Statements

ActionScript conditionals can also be used to loop repetitive tasks that perform an action or
actions a certain number of times. A loop is created with either the while, do...while, or for
action. Each of these loop structures has some kind of counter that monitors the number of
times the loop should be executed. Generally, the counter is initialized as a variable at the
outset of the loop and is either decremented or incremented (decreased or increased by one)
with every loop cycle. The function of each loop structure is identical, but the way each
performs its function is unique.

The while loop establishes a condition and then executes statements within the curly braces
until the condition is no longer true. In the next example, the variable k is used as the loop
counter and is decremented each time the loop statements are executed. This loop will execute
three times:

k=3;
while(k>0){
 duplicatMovieClip("spotClip","spot"+k,k+1);
 k=k-1;
}

The do...while loop executes its statements first and then tests the condition to see whether the
loop should continue. If the condition evaluates to true, the loop continues. With this kind of
loop, the statements are always executed at least once, even if the condition is false. For
example:

k=3;
do{
 duplicatMovieClip("spotClip","spot"+k,k+1);
 k=k-1;
} while(k>0);

The for loop puts all of the necessary loop information in the first statement: the counter
initialization, the condition, and the count expression. For example:

for(k=3;k>0;k=k-1){
 duplicateMovieClip("spotClip","spot"+k,k+1);
}

Here you can see that the loop conditions and the count are the same as in the while and
do...while examples. However, all of the information to establish and control the loop has
been economically placed in the first line of the loop.

Another loop structure, for...in, is used to loop through the properties or nested objects of an
object. This action can modify properties or use methods to control multiple nested Movie
Clips or multiple objects. To learn more about for...in loops, see the ActionScript Reference
section.

Functions

In the preceding chapter, functions were presented as information processors. You give them
a set of arguments, and they perform a specific task using those arguments. The power of
functions can be very useful if you have a series of tasks or operations that have to be
performed over and over again in your movie. For example, if you need to frequently scale a
Movie Clip to 50% of its original size, you can write a function. Rather than having to use
both the _xscale and _yscale properties every time you do this, you can call on the function
and it will do all the work for you.

First, you must define the function. The syntax for defining a function is as follows:

function functionName(arguments){
 statement(s);
}

Here is a function named Half that reduces the horizontal and vertical scale of a Movie Clip
by 50% and moves it 100 pixels up and to the left:

function Half(myClip) {
 var x=myClip._x;
 var y=myClip._y;
 myClip._x=x-100;
 myClip._y=y-100;
 myClip._xscale=50;
 myClip._yscale=50;
}

In this function, the term myClip is used as an argument. When the function is called, the
Movie Clip listed within the parentheses (an argument to the function) will be scaled down
accordingly. When you create a function, it's best to put the constructor function script in a
frame action at the beginning of your movie. If ActionScript hasn't read your function, it
won't know what to do when you call it later.

 Note When creating a function, it is essential to give it a unique name within your movie so
that there is no confusion between functions, variables, and instances. For example, if
you had a function named Half and a variable named Half, you would open the door to
possible error and confusion with the ActionScript in your movie. If you can't use any
other name, append the name with a prefix like funHalf for the function and varHalf for
the variable.

Once you've created the function, you are free to call it whenever you need it in your movie.
A function can be called in any script or in any handler, and from any level or Timeline of

your movie. Here is an example where the Half function is called when a button is clicked and
released:

on(release){
 _root.Half(invaders.rogue_1);
}

In this script, the clip rogue_1 (nested inside the clip invaders) is moved and sized down by
50% using the Half function. The target path to rogue_1 is passed as an argument to the
function, and the clip is scaled. Because the Half function was created on the main Timeline,
it is necessary to include the target reference _root when the function is called from a different
Timeline.

Objects

Objects are one of the many data types in Flash, and as such, they can be referred to directly
in an ActionScript statement. They are also an important element of the language because
they hold chunks of information that affect different elements of your movie. Objects have
properties that can be set and reset as needed within a movie. They also have methods, which
are built-in functions that can be used to produce values or perform actions.

Following is a list of the predefined objects in ActionScript. Each object has a particular set of
methods.

 New to MX Arguments object An array that is used to manage the arguments passed to a
function.

Array object Used to get at and change the values and positions of elements in an array.

Boolean object Used to return a Boolean value (true or false) as either a primitive data type
or a string representation of that data type—that is, either the string true or the string false.

 New to MX Button object Button symbols can now be controlled as objects, with their
own set of methods and properties.

Capabilities object Used to determine the technical abilities of the system and player running
your movie.

Color object Allows you to transform, set, and retrieve the RGB colors of a Movie Clip.

Date object Allows you to get current date and time information relative to either Universal
Coordinated Time or the operating system running the Flash Player.

Key object Used to capture keystrokes while your movie is playing.

LoadVars object Used to pass variables between Flash movies and a server.

 New to MX Math object Allows you to access mathematical constants and functions for
crunching data in your movie.

Mouse object Used to show, hide, and script events for the cursor while your movie is
running.

MovieClip object Allows you to control Movie Clip properties and playback.

Number object Used to calculate numeric values.

Object object The "generic" object is used in conjunction with the methods of other objects
and for creating custom objects, properties, and methods.

Selection object Used to control editable text fields.

Sound object Used to manipulate the playback of sound in your movie.

Stage object Used to alter the size and position of your Flash movie.

 New to MX String object Used to work with primitive string value types.

TextField object Used to control the behavior and properties of a text field instance.

 New to MX TextFormat object Used to set and manipulate the formatting of text within
text fields.

Video object Used to stream video from a camera into a Flash movie.

 New to MX XML object Allows you to communicate with XML documents.

XML Socket object Allows the computer running the Flash Player to communicate directly
with a server.

 Note The topics surrounding XML are beyond the scope of this book and will not be covered
in detail. For an overview of the XML and XML Socket objects, see the ActionScript
Reference section. For more specific information, choose Window → Reference or
press Shift+F1 to consult Flash MX's built-in Reference panel.

Inspirational Design Model
For an example of the kind of interactive depth and interest that Flash can create, take a look
at the Destroy Everything site designed by Nicola Stumpo at
www.abnormalbehaviorchild.com/nuovo/default.html(Figure 15.1). This site features an
interesting blend of music, text, imagery, animation, and interactivity. Little ActionScript
"tricks," as Nico calls them, are used to make this project come to life. What is most
compelling is the way visitors are drawn deeper into the site through its interactive animations
and unique interface structure.

Figure 15.1: Destroy Everything by Nicola Stumpo

Summary
In this chapter, you learned two crucial parts of the ActionScript language: its syntax
conventions and its elements. You saw how ActionScript uses punctuation to organize and
issue commands in scripts, and how the language responds to upper- and lowercase letters.
This chapter introduced you to the different kinds of information that can be included in an
ActionScript element, as well as ways to store and evaluate information and to test conditions
in a script.

With the details of the language behind you, the next chapter will put this information to use
and show you how to control many different aspects of your movie using ActionScript.

Chapter 16: Creating Advanced Interaction
Overview
Okay, you can admit it: Learning all the technical ins and outs of ActionScript isn't a picnic.
The language has many layers of detail, and understanding the relationships between them is a
tough thing to wrap your brain around. If you are like most people, it will take months of
mental pain and frustration to get a handle on how it all comes together. But be patient. As
you progress, you will find that the moments of ActionScript success far outnumber the
periods of frustration.

You have tackled the technical side of ActionScript, and you are now ready to put your newly
acquired skills to use. As you can imagine, the possibilities that ActionScript offers are
virtually unbounded; it can sometimes be stifling just trying to think about what you want to
do with a particular movie, let alone how you will actually accomplish the task. The best
approach to take is this: Think about what you would like to create rather than how you will
create it. Let your artistic or design goals provide direction first; then figure out how they will
be accomplished.

This chapter should provide the materials you need to help get you started. It would be
impossible to cover all the features of both Flash and ActionScript in a single book. Here you
will find examples that cover many of the Flash and ActionScript essentials. Think of these
lessons as starter kits for your movies. Just add your own ideas, and you will be up and
running in no time. As always, remember to work in small chunks, save often, and test your
movie each time you add a new feature or change a script. If you follow this process, it will be
much easier to pinpoint an error or problem if and when one occurs. Good luck, and have fun!

Scripting for User Input and Interactivity
Flash is a great application for creating vector animations, and with the help of ActionScript,
it is also great for creating interactive games, interfaces, presentations, music players—the list
goes on and on. When you are creating an interactive application, it is helpful to be able to
monitor how your audience is interacting with your movie. That way, the movie can react
appropriately and respond to the wishes and intentions of the audience. After all, this is what
makes something interactive to begin with.

At the time of this writing, the main ways to communicate or interact with a computer
program are through mouse and keyboard input. Someday (probably closer than we think), the
mouse and keyboard will be under glass in museums around the world, and everyone will
marvel that we actually used to use these things. Well, until that day comes, everyone is stuck
in the Stone Age with two basic input devices. In keeping with the times, ActionScript
provides a series of actions, properties, and methods that allow you to create your movies with
mouse and keyboard input in mind.

Even though all of the ActionScript covered here can be entered in the Actions panel while
working in Normal mode, all references will be made as though you were working in Expert
mode. To learn about the ActionScript editing modes, see Chapter 12 for Normal scripting
mode and Chapter 14 for Expert mode.

Advanced Button Scripting

Buttons are one of the most basic and intuitive kinds of interactive controls. Their role in an
interactive movie is straightforward: You click them and something happens. Like a Movie
Clip, a button can have actions attached to it. When the button is clicked, any attached actions
are executed in accordance with the handler that is managing the action(s). To learn more
about buttons and handlers, see Chapter 13.

At the most basic level, a button will have a single handler with a single action. For example:

on(release){
 gotoAndPlay(15);
}

When the mouse button is released, the action that sends the movie to play at frame 15 is
executed. The handler event (release) sets the action in motion. For many buttons, this is all
the complexity you will need, especially in the case of basic movie navigation. However,
button scripts are capable of much more.

The mouse-event handlers used with button scripts, like any of the other handlers in
ActionScript, can support multiple actions within a single handler. This means that you can
make a button do all sorts of things when it is clicked: control the main Timeline, control
other Timelines, play and stop sounds, perform functions or other computations, and send or
modify variables—anything that is possible within ActionScript. When the mouse-event
handler occurs, all actions within it are executed from top to bottom, and your movie is
updated accordingly.

It's also possible to attach multiple handlers to a single button. This technique multiplies the
performance of the button because it is no longer executing actions at the occurrence of a
single event. For example:

on(rollOver){
 swish.start();
}
on(press){
 click.start();
}
on(release){
 ring.start();
}

This script sample plays three different sounds—swish, click, and ring—when you interact
with the button. Swish is played when the mouse moves over the button, click is played when
the mouse is pressed, and ring is heard when the mouse is released. All of this scripting
creates a very musical and interactive button!

The technique of using multiple handlers and actions opens up the possibilities for the
functionality of a button in your Flash movie. To explore this idea further, see both the listing
for mouse-event handlers and the section on actions in the ActionScript Reference section of
this book.

Scripting Button Behaviors with the Button Object

 New to MX One of the exciting new features of Flash MX is the Button object. Buttons
have always been objects of a Flash movie, but now they have their own object class. As a
result, it's now possible to assign a unique instance name to a button and to control its
behavior and properties via ActionScript. This feature will not significantly change the way
you create Flash movies. It will, however, expand the possibilities of what you can do with a
button in your interactive movies.

The Button object, like other objects, has a collection of associated methods, properties, and
events. Methods work like actions to execute a particular task. Properties set the attributes of a
Button object. Events are used like button-event handlers: They determine which button event
must occur for an action (or actions) to be executed.

Like regular buttons, Button objects can be used as interactive controllers in your movie. The
only differences, in fact, are that, to be an interactive controller, the Button object must have a
unique instance name and a function assigned to it. When you assign a function to the Button
object, you must specify which Button object event you would like to trigger the function.
This makes Button object events one of the most important parts of this new feature.

The Button object events and their descriptions are as follows:

Button.onDragOut Occurs when the cursor is clicked over the button and dragged outside its
bounds.

Button.onDragOver Occurs when the cursor is clicked over the button, dragged outside its
bounds, and then dragged back inside.

Button.onKillFocus Occurs when the button loses keyboard focus.

Button.onPress Occurs when the cursor is pressed over the button.

Button.onRelease Occurs when the cursor is first pressed, then released over the button.

Button.onReleaseOutside Occurs when the cursor is first pressed over the button and then
released outside the button's bounds.

Button.onRollOut Occurs when the cursor is moved outside the bounds of the button.

Button.onRollOver Occurs when the cursor is moved within the bounds of the button.

Button.onSetFocus Occurs when the button is given keyboard focus.

As you can see, there are many similarities between Button object events and regular button
handlers.

Now that you are acquainted with the Button object events, you are ready to learn how to
assign a function to a Button object. First, open a new Flash document and create a button
symbol. For specifics on creating buttons, see Chapter 13. To assign an action to a Button
object:

1. Select the button on the Stage. Choose Window → Properties or press Cmd/Ctrl+F3 to
open the Property Inspector.

2. In the instance name field, type an instance name for the button. For the sake of this
example, use the name clicker.

3. Insert a new layer in the Timeline and call it actions. Select the first keyframe of the
actions layer and choose Window → Actions (F9) to open the Actions panel. Enter the
following statements:

4. clicker.onRelease=function(){
5. trace("clicked");

}

This script assigns a function to your clicker button instance. The function will print
the phrase clicked in the Output window and will execute when the mouse is pressed
and released over the clicker button instance.

6. Select Control → Test Movie to give your new function a try. When you click the
button, the Output window should appear with the message clicked.

One advantage of this new scripting technique is that rather than having to attach actions to
each button individually, you can assign them to each button from one location in your movie.
If you have many buttons and button scripts, this can centralize the task of scripting for all of
these elements. Be sure that for every Button object script you write, the object's
corresponding button instance is on the Timeline at the same frame number. If a script is read
on frame 1 but the button isn't encountered until frame 2, Flash won't know where to assign
the function, and it will fail.

So far, what you have seen of the Button object is not tremendously different from what you
saw in previous versions of Flash. Be not disappointed, for there are other techniques to
explore that will show you the "coolness" of this new ActionScript feature. In Chapter 13, you
learned how to use buttons to create a navigation bar. This was an important lesson because it
showed you how to use buttons and graphic symbols together to create a navigational scheme
that "bookmarked" where you were in the movie at all times. To do this, you had to work with
a button, a graphic, and several movie scenes. However, by using the new Button object
ActionScript, you can do this in a way that requires less work. And, best of all, it's a scalable
technique. So, if your movie must be expanded, the task becomes a simple matter of changing
some ActionScript and adding or subtracting elements from your Timeline as needed.

 On the CD-ROM Check out the file navBarButtons.fla in the Chapter 16 folder on this
book's companion CD-ROM. This file will allow you to see the finished scripts and
techniques in context. To try the finished movie, open navBarButtons.swf, found in the same
folder.

To make a navigation bar using Button object ActionScript:

1. Open the file navBarLesson.fla in the Chapter 16 folder. This file allows you to have
some of the movie elements in place before you begin the lesson.

2. Use the Edit Symbols menu to open the navMC Timeline for editing. This is a Movie
Clip, but in order to create the navigation bar, we will treat it as a button. In the
navMC Timeline, select the first keyframe of the actions layer and open the Actions
panel. Enter a stop() action. If this Movie Clip is going to act like a button, you cannot
allow it to start playing right away.

3. With the first keyframe still selected, Choose Window → Properties to open the
Property Inspector. In the Frame label field, enter the text _up. This causes this frame
of the clip to behave like the Up state of a button Timeline.

4. For the remaining keyframes at frame 4 and frame 7, enter the frame labels _over and
_down, respectively. The final Timeline should look like Figure 16.1.

Figure 16.1: The finished navMC Timeline is prepared to work like a button Timeline.

5. Return to the main Timeline. You will notice that at the lower left, there are two
instances of navMC. For the clip on the left labeled "Section 1," assign the instance
name button_one in the Property Inspector. For the clip labeled "Section 2," assign
the name button_two. Now that both clips have instance names, you can control them
with ActionScript.

6. Click the first keyframe of the actions layer in the main Timeline and open the Actions
panel. Enter the following statements below the stop() action:

7. button_one.onRollOver=function(){
8. button_one.gotoAndPlay("_over");
9. }
10. button_one.onPress=function(){
11. marker.gotoAndStop(1);
12. button_one.gotoAndStop("_down")
13. button_two.gotoAndStop("_up")
14. }
15. button_one.onRollOut=function(){
16. button_one.gotoAndStop("_over");

}

These statements create the navigation bar behavior for the first button:

o When the mouse moves over the button, the Movie Clip is sent to the _over
frame.

o When the mouse is pressed, the marker clip instance is sent to its first Timeline
frame, the button goes to its _down frame, and the other button is sent to its
_up frame. This resets the appearance of the other button, so that it no longer
looks like a bookmark.

o When the mouse moves outside the button, the clip instance goes to the _over
frame to serve as a bookmark.

17. Copy the statements you just entered and paste them in the bottom of the Actions
panel. In the copied statements, change every instance of button_one to button_two.
This creates the behavior for the second button, which is the reverse of the first. The
entire script should resemble Figure 16.2.

Figure 16.2: The final button behavior script

18. Select Control → Test Movie. Roll your mouse over the buttons and click to see the
navigation bar in action. When you use the Section 2 button, you jump to Section 2 of
the Movie Clip instance in the middle of the Stage. The Section 1 button takes you
back to Section 1 of the clip instance. Also, while visiting each section, the button is
locked in its Down state to create a bookmark that shows where you are in the movie.

So what's the deal? Why is this Movie Clip acting like a button? Well, that's just one
of the ways the Button object works. You can script for buttons directly, or you can
script for Movie Clips and make them behave like buttons. The only difference
between this Movie Clip and a regular button is that the clip has no separate Hit state
frame. It does, however, have a "simulated Hit state." Look closely at the navMC
Timeline:

Notice the contents of layer 3: There is an invisible Graphic symbol. This works like
the Hit state. When using Button object actions on a Movie Clip, the pixels of the
actual clip make up the Hit state.

This lesson introduced you to the basics of scripting for Button objects using Movie Clips.
Because Movie Clips are independent animations, there is a lot more you can do with this
technique. Try taking advantage of the Movie Clip Timeline to create complex animated
buttons and other kinds of interactive graphical changes.

Scripting for Custom Controllers

What is a custom controller? You can describe it as any kind of movie element, other than a
button, that you create in order to direct the playback and display of your movie. Like most
things you do in Flash, there is virtually no limit to the variety of controllers you can create:
knobs that turn, rotary menus, virtual joysticks, and so on. The main thing that most custom
controllers have in common is that you manipulate them with the mouse as though you were
able to physically touch the controller. Even though actual contact is impossible in Flash,
these objects attempt to simulate the experience. Custom controllers present the illusion that
you can tweak some sort of physical object in your movie.

To create this illusion, it's necessary to be able to drag or move items around on the movie
Stage. ActionScript allows you to create this kind of interaction with Movie Clips by
providing two action statements: startDrag() and stopDrag(). These terms are fairly self-
explanatory; startDrag() makes a specified clip draggable, while stopDrag() ends the action
and keeps the clip locked in a stationary position. Each action has its own syntax. Whereas the
stopDrag() action can be used on its own, the startDrag() action takes arguments, as shown in
its syntax:

startDrag("target",lock,left,top,right,bottom)

The arguments of this action are as follows:

target represents the instance or path to the instance you wish to make draggable. If this
argument is left blank (as an empty string ""), it refers to the clip that has the action attached.

lock is a Boolean value: true if the clip's registration point should lock to the mouse position,
or false if the clip is locked to wherever it is first clicked. lock is an optional argument.

left, top, right, and bottom are optional arguments used to define the coordinate boundaries
for the drag. All coordinates are relative to the Timeline where the clip is playing. If you plan
to use these arguments, be sure to also enter a value for lock to ensure proper syntax.

Creating a Slider to Scroll a Timeline

One of the most common and useful kinds of custom controllers is the slider. A slider is
simply a knob or lever that can be moved along a horizontal or vertical path. As the slider is
moved, it changes some element or parameter in your movie. Sliders (also known as faders)
are most often used as sound volume controllers, but they can also be used to create color
changes, to position and scale objects on the Stage, to load additional Movie Clips, to
navigate, and so on. When you create a slider, you start by creating the slider knob. Then you
define the slider's bounds and put it on the Stage. Once it is in the movie, you can attach all
kinds of ActionScript to make it perform the way you desire.

 On the CD-ROM Here is a step-by-step example that shows you how to create a slider that
scrolls a Timeline. You will find the file, named slider.fla, in the Chapter 16 folder on the
companion CD-ROM. This example would be useful if you wanted your movie to present
information from various periods of history. The process outlined here is fairly general, so
any of the ideas presented should transfer to different kinds of sliders that you may need to
create for your own movies.

To create a slider:

1. Create a button to use as the slider knob. It does not have to be a special kind of
button, just something that works well in a draggable context. When you are finished,
select Edit → Edit Document or click the Back button to return to the main Timeline.

2. Select Insert → New Symbol (Cmd/Ctrl+F8) to display the Create New Symbol dialog
box. Enter the name slider knob and choose the Movie Clip behavior. Click OK, and
Flash will jump into Symbol Editing mode.

3. Drag your button to the Stage of the slider knob Movie Clip. Click the button and
choose Window → Actions (F9) to display the Actions panel. Here you can attach
actions to the button inside the Movie Clip. This makes the scripts available for every
instance where the slider knob is used.

4. Enter the following statements:
5. on(press){
6.

startDrag("",false,leftBounds,topBounds,rightBounds,bottomBounds);
7. drag=true;
8. }
9. on(release){
10. stopDrag();
11. drag=false;

}

These actions turn on or off the ability to drag the slider knob when the button is
pressed and released, respectively. Note that there are no specific values assigned to
the startDrag()action that set the bounds for the drag. Instead, you use a set of
variables that will be initialized later.

12. Close the Actions panel and return to your main movie Timeline. When working with
a slider, it can be helpful to have some kind of graphic that shows its path. Use one of
the painting tools to draw a line across the bottom of the Stage, leaving enough room
for the slider knob. Then use the Oval tool to create a series of five dots along the line.
Position each dot at the X (horizontal) values 100, 200, 300, 400, and 500.

13. Drag an instance of the slider knob Movie Clip to the Stage and position it directly
over the first dot. If necessary, select View → Rulers and drag a guide over to the 100-
pixel mark to be sure the registration point of the clip is at exactly 100 pixels. You can
confirm this in the Info panel.

14. Now that the clip is in your movie, you can assign the remaining actions that are
needed to make the slider. Click the slider knob instance and choose Window →
Actions (F9). Enter the following statements in the Actions panel:

15. onClipEvent(load){

16. topBounds=_y;
17. leftBounds=_x;
18. rightBounds=_x+400;
19. bottomBounds=_y;

}

When the clip first appears on the Stage, these actions are executed. They initialize the
variables that are used to set the boundaries for the drag. According to these actions,
the drag is locked to the current vertical value of the Movie Clip (_y) and is allowed to
move 400 pixels to the right of the current horizontal value (_x). Because these
variables are initialized only once at the outset of the movie, the position of the slider
knob is stored when the movie starts playing, and its drag boundaries are created
relative to that position. Save your movie and select Control → Test Movie to see how
it works.

20. At this point, your slider should be able to move around freely on the Stage and
remain confined within 400 pixels of its initial horizontal location. However, the slider
should not be able to move up or down.

Next, you need something to control with the slider. Create a new Movie Clip symbol
and name it screen. Make the screen Movie Clip a rectangle that is 1000×100 pixels.
Be sure that the rectangle is positioned exactly in the center of the Stage. To do this, it
will be helpful to use the Align panel (Window → Align, or Cmd/Ctrl+K).

21. The rectangle graphic should stretch 500 pixels to the left and right of the Movie Clip
registration point. Create some kind of graphic that appears within the rectangle every
200 pixels. Because the slider.fla example is a Timeline, there are dates located at
regular increments along the graphic.

22. When you have finished with the screen Movie Clip, return to the main Timeline.
Drag an instance of the clip onto the Stage so that it is above the slider, and its left
edge is at 175 pixels. This should put the clip's registration point at 675 pixels. Use the
Info panel to confirm this.

Choose Window → Properties (Cmd/Ctrl+F3) to open the Property Inspector and
enter the name info in the instance field to create a unique instance of the screen
Movie Clip.

23. Now you can compose the actions that are needed to make the slider control the
position of the info instance. Click the slider knob and open the Actions panel. Enter
these additional statements in the window:

24. onClipEvent(enterFrame){
25. if(drag==true){

26. _root.info._x=(675-((root.slider._x-100)*2));
27. }

}

These actions will control the _x position of the info instance relative to the _x
position of the slider instance. Here is how it works: 675 is the total distance from the
left edge of the Stage to the registration point of the info instance. As slider moves to
the right 100 pixels, info should move left by 200 pixels, covering twice as much
ground as slider. The expression root.slider._x-100 "zeroes" the starting position of the
slider knob, since its initial _x position is 100. This way, the clips can be manipulated
from the _x values 0 and 675. Then, as it moves to the right, its _x location value is
doubled and subtracted from 675. As slider moves farther from 0, info moves farther
from 675 at twice the rate. The final value is used to set the _x position of the info
instance. For a comparison of the values, see Table 16.1.

Table 16.1: _x Values for slider.fla Movie Clips
slider._x slider._x–100 info._x
100 0 675
200 100 475
300 200 275
400 300 75
500 400 –125

So why are they moved at different "rates"? Both slider and info have five different
sections of information to present. However, whereas slider has to move only 100
pixels to get to a new section, info has to move 200 pixels. As slider moves right in
increments of 100 pixels, the value is doubled and subtracted from 675. This new
value is assigned to the _x property of info, which moves info across the Stage to the
left.

28. Your Timeline slider is now ready to go. Select Control → Test Movie to try it out.
See Figure 16.3 for an illustration of the finished product.

Figure 16.3: The final slider.fla Timeline

The slider.fla movie has some additional features not covered in this example. There are a few
text enhancements that help clarify the information it presents. Also, there is a layer mask that
creates a window through which you can view the contents of the Timeline. To learn more
about creating layer masks, see Chapter 8.

Recording and Monitoring Keystrokes

In addition to monitoring mouse-type interactions, ActionScript can be used to track keyboard
input and interaction. This functionality enables you to create interactive controls, which in
turn allows your audience to use their keyboard to interact with your movie. This kind of
interaction can be particularly useful for creating games, interactive animators, quizzes, and
easy-to-use presentations.

To take advantage of this feature, you can use one of ActionScript's predefined objects known
as the Key object. The Key object and its methods allow you to track and set all parameters
concerning keyboard input in your movie. Here is a partial list of Key object methods:

isDown(keyCode) Used to return a Boolean value: true if the key in the keyCode argument is
pressed, and false if it is not.

getCode() Returns the key code of the last key pressed while the movie was running.

getAscii() Similar to getCode(), returns the ASCII value of the last key pressed.

In the preceding examples, the term keyCode was used as a placeholder for the argument
where you would normally enter an ActionScript key code value. Key code values are
ActionScript constants. They are numbers used to represent the keys on a standard keyboard.
For example, the key code for the letter A is 65. For a complete listing of ActionScript key
codes, see the Key Code Values table in the ActionScript Reference section.

 Note You may remember the on(keyPress) handler that is associated with buttons. This
handler, when attached to a button, will also track keystrokes that occur while the movie
is playing. To read more about on(keyPress) see Chapter 12.

Using Keystrokes to Track Answers in a Quiz

The keyboard can be a very useful alternative to the mouse when it comes to interacting with
your movie. More than 90 different key codes are used to represent the keys on a standard
keyboard. Not only does this present you with a lot of options for interaction, but it opens the
door to creating movies that can be used by more than one person at a time. Use the Key
object both to record keys that are pressed while the movie plays and to assign specific keys
as hot keys or interactive controls.

 Note One thing to keep in mind when building interactive movies that use the keyboard is that
a few keys have specific functions in Flash's Test Movie mode. These keys are
Return/Enter, the comma (,) key, and the period (.) key. Try to avoid using these keys if
possible. If you must use them, select Control → Disable Keyboard Shortcuts while you
are in Test Movie mode. This will void their functions in Flash.

 On the CD-ROM In the next example, you will learn how to set up a basic keyboard
interface that serves as the input device for a Flash-based quiz. Open the file named
keyPress.fla in the Chapter 16 folder on the companion CD-ROM to see these scripts in their
specific context. You will find that this process is very simple once you become comfortable
with the ActionScript terms used to create this kind of interaction.

To monitor keystrokes in your movie:

1. Drag a Movie Clip to the Stage. Select Window → Actions (F9) to display the Actions
panel and then enter these statements:

2. onClipEvent(keyDown){
3. trace("the key was: "+Key.getCode());

}

4. Select Control → Test Movie and try your movie by typing on the keyboard. When
you type, you initiate a keyDown event that executes the statements in the script. The
Output window returns the message you specified with the trace()function and gives
you the key code for each key you pressed. The key code is provided by the Key
object, using the getCode() method. This method retrieves the code, which is then
concatenated in a string and printed in the Output window. If you don't have the
ActionScript Reference section available, you can use this technique to get any key
code values that you need.

5. Return to movie editing mode and open the Actions panel to display the script you just
entered. Delete or comment out (//) the line that starts with trace and enter the
following statements within the onClipEvent curly braces:

if(Key.isDown(32)){
 _root.gotoAndPlay(1);
}
if(Key.isDown(65)){
 _root.gotoAndPlay(3);
}
if(Key.isDown(66)){
 _root.gotoAndPlay(2);
}
if(Key.isDown(67)){
 _root.gotoAndPlay(3);
}

These statements monitor which keys have been pressed and then send the movie to a
new location accordingly. Specifically, the script checks the answer to the first quiz
question and sends the movie to a specific frame based on whether the answer is right

or wrong. It also provides the opportunity to try the question again. If the spacebar is
pressed (key code 32), the movie returns to frame 1. The other key codes are as
follows: 65 = A, 66 = B, and 67 = C.

 Note The Key object is not case sensitive. When using it to track keystrokes, there is
no difference between a and A.

6. Press F5 to add two additional frames to the layer that contains your Movie Clip.
Insert a new layer and insert three keyframes in the first three empty frames of the
layer. Attach a stop() action to each. Then, use the Text tool to type the word
CORRECT!! in the second frame and SORRY, NO. in the third frame.

7. Now you must write a multiple-choice question. It doesn't matter what it is, but it has
to have at least three possible answers: A, B, and C. Based on the script you attached
to the Movie Clip, make answer B the correct choice. Use the Text tool to write your
question and put it on the first frame of another new layer (layer 3 if you started with a
blank movie file).

8. Select Control → Test Movie and give your quiz a try. If you wrote your question
correctly, pressing B should render a "CORRECT!!" answer, while A and C are
incorrect. If this isn't working properly, you can either change the script or reorder the
answers to your question.

Writing ActionScript for Multiple-Timeline Movies
One of the most important aspects of using ActionScript to create Flash content is
understanding how Flash movies are constructed. In this case, constructed is not used in the
hands-on sense, but in the compositional sense. It is essential to know what Flash movies are
made of and how they are put together.

As an animation tool, Flash creates motion sequences using pictures and text. If this were all
it could do, by today's standards the application would be simple indeed. However, Flash has
the capability to layer and combine multiple animations. Additionally, you can use
ActionScript to tell Flash how to assemble these animations and make them "talk" to one
another. The simple behaviors and functions of individual animations can be used together in
the same space, and as they interact with each other through ActionScript, rich and complex
behaviors emerge.

To truly maximize the interactive potential of your movies, you must understand how to use
Flash as a container or arena for animated content, and how many simple movies can
synergize to create an interactive experience with great depth and potential.

How Flash Manages Multiple Movie Timelines

When a Flash movie plays, all of its elements appear (or are heard, in the case of sounds) on
the movie Stage. This creates the illusion that all the movie components exist on an even
playing field and share the same space within the Flash environment. Although they do share
the common space of the Stage and its boundaries, there is a hierarchy to this space and to the
elements that inhabit it.

Every Flash movie you create has a particular organization based on the animations it
contains. This rule applies to animations in the form of both Movie Clips and additional Flash
movies, or SWF files, that are loaded into a host Flash movie. When additional movies are
loaded into a Flash movie, they are placed in a hierarchy and loaded onto a new movie level.
In Flash, the main Timeline is the absolute bottom and is referred to as level 0. Subsequent
movies that are loaded are stacked on top of it in succession: level 1, level 2, level 3, and so
on. As each movie is loaded onto its own level, it maintains its autonomy and plays its
Timeline independently of the other level Timelines.

Movie Clips also exhibit a similar kind of hierarchical relationship. One Movie Clip can
contain another clip or clips. These, in turn, can contain additional Movie Clips. The stacking
can go on and on. This stacking process is known as nesting Movie Clips. In the same way
that movies can contain multiple independent Timelines on various levels, Movie Clips are
able to hold other clips, and each clip is able to behave independently. The Movie Clip
hierarchy has a different set of terms used to describe this relationship, though. A nested clip
is known as a child, and the clip hosting it is referred to as the parent. It's possible for a clip to
be both a child and a parent. If clip A contains clip B, and clip B contains clip C, then B is
both a parent of C and a child of A. Ultimately, all Movie Clips are children of the Timeline
where they are playing. In the preceding example, if clips A, B, and C all exist in the movie
on level 2, then level 2 is the parent, and A, B, and C are all children. For an illustration of
this, see Figure 16.4.

Figure 16.4: The hierarchical relationship of movie levels and Movie Clip parents and
children. Here, the movie has three levels: 0, 1, and 2. Movie Clips A, B, and C exist on level
2 and are nested inside one another. Clip A is a parent of B and C, and B is a parent of C.

So, how would all of this apply in a Flash movie? Take, for example, a movie that contains an
animated character named BubbleBody, or BB for short. If you wanted to create an animation

of BB jumping straight up in the air, you would need to consider several things. As BB
prepares for the jump, he crouches down, his head sinks a bit, and his arms widen. As he
springs upward, he shoots his arms up over his head, and his fingers stretch to the sky. While
this is happening, his legs push up, leaving the crouch stance and coming together as he rises
above the ground.

Many things are going on in this animation. One of the greatest challenges is trying to make
each event happen, and happen together, so that the animation looks as natural as possible. By
making each part of BB's body a Movie Clip and nesting these clips inside a single BB clip,
you can achieve this kind of synchronization and control. As the main BB clip rises, all the
others (arms, legs, hands, and so on) rise with it. As the arm Movie Clips stretch to the sky,
the hand instances are carried with it. This is accomplished because a nested clip sits on the
Timeline of another clip. As the host clip is changed or moved, the nested clip is carried along
with it.

In addition to keeping all the elements together, nested clips allow you to control each
element independently. To create a "wave hello" animation with ActionScript, you would
have to script the forearm Movie Clip to rotate 120 degrees, and also to tell the hand clip to
rotate in some fashion. Creating the rotation with ActionScript is simple, and with
independent control over each body part, you are able to manipulate the parts individually. In
this case, since the hand clip is a child of the arm, the hand moves with the arm as it is raised.
Then, because the arm is the parent clip, it is unaffected when the hand clip executes its
"wave" rotation.

Creating Absolute Target Paths

To create this kind of animation, or to get the kind of control described in the preceding
example, it's necessary to send ActionScript commands from one Timeline to another. In this
case, a button or other control element has to send the commands along the hierarchy to tell
the arm and hand clips to execute the appropriate actions.

The process of passing ActionScript commands and information to a Movie Clip is known as
targeting. When you target a clip, you send a command through the Timeline chain so that it
reaches the specific clip. This process can be compared to sending mail. To send a message to
someone, you have to have their address so that your message will land in the right hands.
Targeting a Movie Clip in ActionScript works the same way. If you don't enter the correct
target path (or address) for the clip, the clip won't receive the message. In ActionScript, there
are two ways to refer to a clip's target path: absolute and relative.

An absolute path is the ActionScript equivalent of a postal address for a Movie Clip instance.
In the same way that your mailing address specifies country, state, zip code, street, building
number, and so on, an absolute target path describes the location of the clip instance relative
to the main Timeline. Going back to the BB animation presented earlier, the absolute path to
BB's hand Movie Clip would be:

_root.BB.upperBody.armL.handL

This script example uses the _root reference to access the main Timeline. If, however, BB
were in a movie on level 2, the target path to the hand would be:

_level2.BB.upperBody.armL.handL

You can use absolute target paths to send commands, variables, and any ActionScript
information to Movie Clip instances and Timelines from any other location in your movie.
Absolute paths are always a safe choice when the levels and nests of a movie start to get
confusing or complicated. To get an idea of clip instances that make up BB, see Figure 16.5.

Figure 16.5: The BubbleBody Movie Clip is created from nine separate, nested Movie Clips.
Notice how the Insert Target Path dialog box shows the hierarchical breakdown and structure
of clip instances.

Targeting Timelines with Relative Paths

It is also possible to target clips with relative paths. These paths don't refer directly to the
main Timeline, but rather the location of the clip you want to target relative to the location of
the script that calls the action. Going back to the BB example, if you wanted to send an action
from the handL clip to the armL clip, you could use the absolute target path

_root.BB.upperBody.armL._rotation=0;

Or you could use the relative path

_parent._rotation=0;

As you can see, in this case, the relative path is much shorter. Relative paths can use a
different reference: _parent. This reference translates to "go back one nest level." Since the
handL clip is a child nested inside armL, an action on the armL Timeline needs to go back
only a single nest level. There is an additional relative target path reference called this, which
refers to the current Timeline or the Timeline where the action is called. this is convenient
because it allows you to access a clip directly from its own Timeline rather than enter a long,
specific target path to the clip. To send a message to armR directly from the upperBody
Timeline, you can use the this reference:

this.armR._rotation=-120;

The preceding script would rotate the armR instance to –120°. The this alias works to keep
script actions relative to the Timeline where they are called: a child clip instance, a movie
level number, or even the main Timeline (although the need for this is rare).

Controlling Multiple Movie Timelines with ActionScript

Now that you know how to properly refer to the various Timelines in your Flash movie, you
should be able to apply what you know about ActionScript to control their playback and
attributes. There are three main ActionScript components that you can use to do this:

Actions, or ActionScript commands, are used to control Timeline playback. These include
statements like gotoAndPlay(), stop(), and nextFrame().

Methods that are specific to the MovieClip object can also be used in this context. There are
several Movie Clip methods that don't have a counterpart in the Actions portion of the
language and are unique to the MovieClip object, such as getBounds() and hitTest().

Properties, or the attributes of a Movie Clip, can be altered when you target a clip. Many of
the Movie Clip properties are discussed in this chapter.

For complete listings of these components, see the ActionScript Reference section.

Depending on the type of Timeline that you have to control with ActionScript, you will use a
different set of ActionScript statements and syntax to achieve the desired effect. The
following example outlines the basic syntax used to load additional movie Timelines and to
target a Movie Clip instance.

Loading Movie Levels

To load additional movies, you use the loadMovie() action. The syntax for loadMovie() is as
follows:

loadMovie("URL","target",varMethod)

This action has three main arguments:

URL is the argument that specifies the location and name of the movie (SWF) file to be
loaded. This URL can be either absolute or relative to the file loading the movie and should
be specified as a string (in quotes).

target is a string argument used to specify where the new movie will be loaded. To load the
movie on a new level, specify that level in this argument—for example, "_level1".
Alternatively, you can replace a Movie Clip instance with a newly loaded movie by
specifying the target path to the clip you would like to replace.

varMethod is an optional argument that passes information to the new movie. For more on
this, see the ActionScript Reference section.

The following statement loads the movie levelOne.swf into movie level 2:

loadMovie("levelOne.swf","_level2");

The next statement loads the movie begin.swf into a clip instance named intro, which is
located on the main Timeline:

loadMovie("begin.swf","_root.intro");

Alternatively, you can use the unloadMovie action to reverse the process. The main difference
with this action is that it takes only one argument—the location that gets unloaded:

unloadMovie("_level1");

This script removes the movie currently playing on level 1.

 Note Related to loadMovie and unloadMovie are the actions loadMovieNum and
unloadMovieNum. Although the two sets of actions have identical purposes, each set
takes a slightly different syntax. Depending on the application, you may find one set
advantageous over the other. For specifics, see Chapter 12 or the ActionScript
Reference section.

Targeting Movie Layers

To target the Timeline for a Movie Clip instance, you must use either a relative or absolute
path to the clip you wish to target. After you specify that clip, you can use the dot operator to
state the ActionScript property or action you would like to use to manipulate the instance. For
example:

_root.upperBody.armL.handL._rotation=200;

This starts at the main Timeline, goes up a chain of nested instances, and sets a rotation value
for the instance handL. It can be helpful to think of targeting with the dot operator as moving
from the general to the specific.

This following script stops the parent of a nested Movie Clip at frame 1 on the parent's
Timeline. When executed, the child clip that called this script would be able to continue
playing independently.

_parent.gotoAndStop(1);

Adding Interface Elements with Components

 New to MX Components are one of the most robust features implemented with the release
of Flash MX. At the most basic level, Components are drag-and-drop interface widgets that
add standard interactive controllers to your movie. Taken to an extreme, Components open
the gateway to building completely customizable interface elements that can be used and
reused by members of a development team. Think of them as "instant interfaces" that can be
added to a movie by simply dragging them to the Stage.

If you were accustomed to Smart Clips, which were implemented in previous releases of
Flash, you are going to love Components. Like Smart Clips, Components are meant to

simplify the development process; but due to their modular nature, they can be customized to
an entirely new degree.

 Note Components are like a separate authoring tool inside Flash MX. Their scope and
complexity goes far beyond the reach of this book. In fact, Components and their related
techniques could provide, on their own, enough information for an entirely separate
book! This section of the chapter aims to give you an idea of what Components are and
how to use them in your own Flash projects. To learn more about the nitty-gritty details
of Components and how to create them from scratch with ActionScript, see the
Reference panel (Shift+F1). For additional Components or updates, such as Components
that create charts and graphs, visit www.macromedia.com/desdev/mx/flash.

Select Window → Components or press Cmd/Ctrl+F7 to see the Components panel (see
Figure 16.6).

Figure 16.6: The Components panel

Components come in seven flavors:

CheckBox A laundry list of clickable options used for multiple selections.

ComboBox A single-selection drop-down list.

ListBox A scrollable menu box for single and multiple selections.

PushButton A standard, rectangular push button.

RadioButton An on/off toggle button. RadioButton components are grouped; they work as a
team so that only one button in the group can be selected at a time.

ScrollBar A standard side-scroll controller for text boxes.

ScrollPane A standard side-scroll controller for large images and Movie Clips.

The seven Components cover just about every interface convention you find in contemporary
computer software. The idea is that when your audience encounters a Component in your
movie, it will be immediately recognizable and provide an intuitive solution for navigating
and making selections.

 On the CD-ROM Adding Components to your movie is a simple and straightforward
process. In the following lesson, you will learn how to add a ScrollBar Component to a text
field. Open the scrollBarComponent.fla file, which you'll find in the Chapter 16 folder on the
companion CD-ROM. On the Stage, you'll see a dynamic text box containing the poem
"Constantly Risking Absurdity" by Lawrence Ferlinghetti (see Figure 16.7).

Figure 16.7: The scrollBarComponent.fla file contains a text box that is too small to display
all the text it contains.

As you can see, the poem is too long to fit into its text box. This is where your ScrollBar
Component comes in. By adding it to the poem's text box, you will be able to scroll down and
read the entire poem. To add a scroll bar to a text box:

1. Select the text box where you want to attach the Component. Choose Window →
Properties (Cmd/Ctrl+F3) to open the Property Inspector. To attach a Component to a
text field, that field must be either a dynamic or input text field. (To read about the
specifics of text fields, see Chapters 5 and 17.) Use the drop-down menu in the
Property Inspector to select one of these options and give the field an instance name.
For this example, assign the instance name poetry.

2. Now that the text box is prepared, you are ready to attach the ScrollBar Component.
Choose Window → Components (Cmd/Ctrl+F7) to open the Components panel.

3. Grab the ScrollBar Component and drag it to the Stage. When you release it,
drop it over the text box, keeping it as close to the right edge of the box as possible.
Flash is supposed to handle the alignment for you, although this doesn't always work.
Use the arrow keys or mouse to move the scroll bar into the position you want.

4. Select the scroll bar (if it isn't already selected) and look at the Property Inspector. It
should show you that the scroll bar has two parameters:

Target TextField This option should read poetry since you dropped the component
over the poetry field. If this parameter is blank, click the Target TextField option and
enter the name poetry. This tells the scroll bar to control that particular text field
instance.

Horizontal This option determines whether the scroll bar is horizontal (true) or
vertical (false). Be sure it is set to false for this example.

5. You can also see that the scroll bar is not quite the same height as the text box. Your
poetry text box is 110 pixels tall, and the scroll bar only 100. This is easy to correct.
Select the ScrollBar Component and look at the Property Inspector. To make the
heights match, type 110 in the H field to make the scroll bar 10 pixels taller.

6. Select Control → Test Movie to audition the scroll bar. Click the arrows, and the text
box moves up and down; drag the shuttle box, and the field glides smoothly from top
to bottom.

One of the most interesting features of Components is that you can change their appearance.
Each Component is created from several Movie Clips called skins. Skins are literally the
components of Components. By changing the color, shape, and overall appearance of a skin,
you can transform the appearance of any Component. Editing skins is a tricky business, but
here is one technique you can use to make some basic modifications. To edit a Component
skin in the Library:

1. Open the Library for scrollBarComponent.fla by choosing Window → Library (F11).
2. Open the following Library folder path: Flash UI Components → Component Skins

→ FScrollBar Skins.
3. To edit a skin, double-click its Movie Clip icon in the Library. For an illustration of

this, see Figure 16.8.

Figure 16.8: The arrow portion of the down-arrow button is prepared for editing on the
Stage.

4. Depending on the Component skin, you may need to dig deeper into the Movie Clip
once it appears on the Stage for editing. Component skins are made up of clips nested
several layers thick.

Redraw, repaint, or change the clip as you see fit. Once you are finished, return to
other layers of the skin by using the Back button or return to the main Timeline by
selecting Edit → Document. Any edits you make will not be visible until you test your
movie.

There is a tremendous ActionScript vocabulary devoted to editing and changing the
parameters of Components and their skins. Again, to see the specifics of these terms and
concepts, refer to Flash MX's built-in help or the Reference panel.

ActionScripting to Control Graphic Elements
One of the most important and unique aspects of Movie Clips is that they are the only member
of the Flash Library that can have their appearance modified via ActionScript. This is an
extremely important factor when it comes to creating interactive movies. In addition to
navigational features in your movie, any kind of interactive control element can be scripted to
move, scale, stretch, hide, spin, or perform any combination of these actions on a Movie Clip
instance. Ultimately, this enables you to create interactive animation in your movie because
you have access to all the parameters that affect the way graphics are positioned and
displayed.

ActionScript provides a healthy dose of commands to manipulate visual content. Listed below
are the properties you can use to alter the appearance of Movie Clip instances. You can find
specifics of each in the ActionScript Reference section.

_alpha is used to change the transparency of a Movie Clip instance.

_height sets and returns the height of a Movie Clip instance.

_rotation sets the rotation of a Movie Clip. Values are specified in degrees.

_visible takes a Boolean argument. true makes a Movie Clip active and visible, while false
hides the clip. Hidden clips remain active in your movie.

_width sets and returns the width of a Movie Clip instance.

_x and _y are two properties that set and return the X and Y coordinates of a Movie Clip. If a
clip is on the main Timeline, its coordinates are relative to the point (0, 0) in the upper-left
corner of the Stage. If a Movie Clip is nested inside another clip, its coordinates are relative to
the registration point of the _parent clip.

_xscale and _yscale are two properties that set and return a percentage value that specifies the
scaling of a Movie Clip instance.

In addition to these properties, there is a collection of methods associated with the predefined
Color object. Using a small collection of methods, the Color object allows you to set and

return RGB color values of a Movie Clip. To learn more about these methods, refer to the
"Scripting Color Changes" section later in this chapter, or see the entry for the Color object in
the ActionScript Reference section.

Scripting Animation

Many of the properties associated with Movie Clip appearance deal with the position of
Movie Clips. By rapidly changing the position of a clip, you can create the illusion of smooth
motion, or animation. ActionScript can also be used to modify the size or scale of a Movie
Clip instance. Again, when done over a period of time, this creates an animated effect.

You can change these ActionScript properties in combination with one another to produce
interesting graphic results. The results are not much different than those you get when
creating a tweened animation. The main difference is that with ActionScript, the changes can
be dynamically modified with scripting. And when you combine them with other ActionScript
components, you are able to interactively control the appearance and movement of Movie
Clips.

In the following examples, you will learn how to control and animate a Movie Clip using
ActionScript. Two of the most basic graphic parameters are presented here: position and size.
With the help of additional ActionScript commands and statements, you will be able to take a
simple Movie Clip instance and either set it in motion or cause it to grow and expand.

Animating Graphic Elements with Motion and Custom Cursors

ActionScript provides a set of properties that allow you to track the position of the mouse
cursor in your movie. Using X and Y coordinates, ActionScript will return the position of the
cursor on the movie Stage. The properties are as follows:

_xmouse returns the X (horizontal) coordinate position of the mouse cursor.

_ymouse returns the Y (vertical) coordinate position of the mouse cursor.

All coordinates are returned relative to the movie origin, or coordinates (0, 0), located at the
upper-left corner of the Stage. When you use these properties to get the mouse position, it's
good practice to specify the Timeline you want to track. For example, to track the mouse on
the main Timeline, you would write:

hPos=_root._xmouse;
vPos=_root._ymouse;

In this example, hPos and vPos are variables that store the current X and Y mouse
coordinates.

This example also deals with the _x and _y properties for a Movie Clip. As mentioned earlier,
these properties are used to monitor and set the X and Y coordinates of a Movie Clip instance,
either on the Stage or within another clip instance. With the help of a few variables and some
ActionScript number crunching, you will see how to create an ever-changing, organic
animation. Also, you will learn how to take this animation and lock its position to that of the
mouse cursor, providing an additional layer of animation.

 On the CD-ROM The scripts presented here are in the flyCursor.fla file inside the Chapter
16 folder on the companion CD-ROM. You can also look at the finished version,
flyCursor.swf, to get an idea of how the final animation looks and behaves.

To create a dynamic animation with ActionScript and attach it to a custom cursor:

1. Create a Movie Clip that you want to use for your animation. This example uses a
Movie Clip of a fly, since the animation will randomly flutter around a single position
on the Stage.

2. Drag this Movie Clip to the Stage to create an instance, and name it fly. Select the
instance and choose Window → Actions to open the Actions panel.

3. Enter the following statements in the window:
4. onClipEvent(load){
5. Mouse.hide();
6. }
7. onClipEvent(mouseMove){
8. _x=_root._xmouse;
9. _y=_root._ymouse;

}

Close the Actions panel and test your movie. The results are quite surprising! The first
actions turn the Movie Clip instance into a custom cursor by using the Mouse object to
conceal the mouse pointer. Then the onClipEvent(mouseMove) handler locks the
position of the Movie Clip to the mouse cursor, creating the effect that the Movie Clip
is the cursor. This works because the horizontal and vertical position of the clip (_x
and _y properties) are set to the mouse cursor position, relative to its coordinates on
the main Timeline Stage (_root).

10. Return to movie editing mode and reopen the Actions panel for the Movie Clip
instance. Enter these additional actions in the window:

11. onClipEvent(enterFrame){
12. v=_root.fly._x;
13. h=_root.fly._y;
14. posNeg=Math.round(Math.random()+1);
15. if (posNeg>1){
16. posNeg=1;
17. }else{
18. posNeg=-1;
19. }
20. moveV=Math.round(Math.random()*4*posNeg);
21. moveH=Math.round(Math.random()*4*posNeg);
22. _root.fly._x=v+moveV;
23. _root.fly._x=h+moveH;

}

To put it simply, this script does three things: It stores the current position of the
instance, generates a random number between –4 and +4, and adds it to the original
instance location, jumping it to a new position on the Stage.

In more specific terms, this is what is happening:

o The variables v and h are used to store the position of the instance on the
enterFrame event.

o The variable posNeg uses two methods of the Math object to randomly
generate a value of either 1 or 2. The random() method randomly generates a
value between 0.0 and 0.999…. This is then incremented by 1, and the sum is
rounded to the nearest integer, 1 or 2.

o The new posNeg value is then passed through a conditional and reinitialized to
–1 or +1.

 Note It's necessary to use negative numbers to keep the clip from slowly
drifting off to the lower-right corner of the Stage. If both the x and y
values are always increasing positively, the clip will always move away
(down and right) from the (0, 0) origin in the upper-left corner of the
Stage.

o Next, a new set of variables, moveV and moveH, are initialized to a random
number between–4 and 4 using a similar arithmetic technique. These values
are added to the original position variables (v and h), and the sum is used to set
the _x and _y properties of the Movie Clip instance. Because this script is
rapidly executed on each exitFrame event, it creates the animated illusion of
hovering.

24. Select Control → Test Movie to see the script in context and watch the fly buzz across
the Stage.

Here are a few additional techniques you might want to try in addition to this script:

• Create separate variables to fill the role of the posNeg variable. Use one to control the
horizontal change and another to control the vertical change. This creates a smoother
hover effect.

• In this script example, the hover range was set to a maximum of 4. You can change
this to create a more subtle or abrupt hover effect.

• Try creating tweened animations using this animated clip. Or use this technique to
create dynamic, ever-changing background graphics that are constantly in motion.

Scaling Graphic Elements

Everyone knows the saying "there is always a bigger fish," which refers to the fact that
everything is relative. Just when you think you have found something that is the absolute
biggest or best, something better comes along. In Flash, you can use the _xscale and _yscale
properties to create a bigger fish. And in the next example, that is exactly what you will do.

 On the CD-ROM These properties are used to both set and retrieve the horizontal and
vertical scale of a Movie Clip. Each property is entered and returned a percentage value. With
the help of a few ActionScript actions, you can use scripting to change the size of an object by
stretching its length and width to a percentage of the original size. The scripts in this example
can be found on the companion CD-ROM in a file named fishScaler.fla inside the Chapter 16
folder.

To script changes to the scaling of a Movie Clip instance:

1. Open a new file and select Modify → Document to set the Stage dimensions to
400×400 pixels. Be sure the frame rate is at least 12 frames per second. Click OK.

2. Create a new Movie Clip symbol of a fish. Make it an animated clip that moves from
right to left. Be sure that the clip both starts and ends slightly more than 200 pixels
from its registration point (see Figure 16.9).

Figure 16.9: The fish Movie Clip starts at an _x value of 240 and ends at _x = –235.

3. Return to the main Timeline and drag your fish Movie Clip to the center of the Stage;
put its registration point at the coordinates (200, 200). Give it the instance name fishy
in the Property Inspector. Test your movie to see the fishy instance in action.

4. Return to movie editing mode, select Insert → New Symbol, and create a new button
symbol. The design of the button is left in your capable hands. The button in the
fishScaler.fla example is made to look as though it is underwater. When you have
finished with the button, return to the main Timeline and drag your button onto the
Stage. Position it either above or below the fish Movie Clip animation.

5. You are now ready to enter the ActionScript that will scale (resize, not prepare for
cooking) the fishy Movie Clip instance. Select the instance and choose Window →
Actions (F9) to display the Actions panel. Enter these statements:

6. onClipEvent(load){
7. count=0;

}

Next click the button and open the Actions panel once again. Enter the following
statements in the window:

on(release){
 count+=1;
 duplicateMovieClip(_root.fishy,"fishy"+count,count);
 setProperty("fishy"+count,_xscale,count*200);
 setProperty("fishy"+count,_yscale,count*200);
}

8. Close the Actions panel and select Test → Movie. Each time you click the button, you
will see a larger fish appear as it moves across the Stage. This effect is created through
the combination of the duplicateMovieclip action and the _xscale and _yscale
properties. The preceding script executes each time the button is clicked. When this
happens, the count variable (initialized when the instance is first loaded) is
incremented and used to perform two actions. The fishy instance, or parent, is
duplicated. And each duplicate, or child, has the value of count appended to its name
and is placed at the stacking level of count relative to its parent clip.

 Note Each duplicate is still on the _root or _level0 Timeline, but it occupies a new
layer above the original source clip. Duplicates are placed in an internal

hierarchy called a stacking level. When a clip is duplicated, its duplicates are
placed in a stacking level above it. Stacking levels work like layers in the
Timeline, but they are generated via ActionScript when a clip is duplicated.
Because a duplicate clip cannot exist in the same space as the original, each is
placed in a unique location, or stacking level, above the last duplicate or source.
In this example, fishy is duplicated and placed at stacking level count. The
variable count is incremented each time the button is clicked, and the clips
continue to stack above the original fishy instance.

9. Then, the _xscale and _yscale properties are used to scale each child to a value of
count*200. Because count is incremented with each button click, the child clips are
gradually scaled by increasing values, creating bigger and bigger fish.

 Note You may notice that each duplicate seems to move faster than those that came
before it. This is because, as the duplicate clip is scaled, it has twice as far to
travel as the clip that preceded it. All properties of the clip are scaled, including
the width of the area it must travel. However, it must travel the new distance in
the same number of frames. A clip that moves 400 frames in 3 seconds is not as
fast as a clip that must move 1,600 frames in that same time span.

This example shows how the properties _xscale and _yscale can be used to dynamically
change the size of a Movie Clip. You will also find that the _height and _width properties
produce similar results when used in this fashion. To learn more about these properties, see
their listings in the ActionScript Reference section.

Scripting Color Changes

In Chapter 9, you learned how to use the Effect panel to create animated color changes using
Tint, Alpha, and some of the other color parameters. When combined with a motion tween,
color animation effects can be created to change over a period of time, just like a regular
motion animation. On a more advanced level, ActionScript is able to create the same kind of
effects. Using the Color object and its methods, you are able to create dynamic color changes
that will respond to controls or parameters you define in your scripts. The Color object is one
of Flash's predefined objects. It allows you to read and write color changes and effects to
Movie Clip instances in your movie.

To use the Color object, you must use a constructor function to create a new object instance;
then you are able to set and return color information using the Color object methods:

getRGB() returns the numeric RGB value set by the last setRGB() command.

setRGB() sets a hexadecimal value for the specified Color object.

getTransform() returns the color transform value(s) set by the last setTransform() command.

setTransform() sets parameters to color-transform a Color object.

Once invoked, these methods can be used to create many kinds of color effects that change
with your movie and the parameters you assign to the object that controls the color changes.

For example, you could use the Color object to create a character that turns deeper shades of
red as it is placed closer and closer to an image of the sun.

Using the Color Object to Create a Color Mixer

In this example, you will learn how to use the Color object to dynamically modify the color
attributes of a Movie Clip. You will use a series of slider controllers to add and subtract color
values to a Movie Clip instance. As the sliders are positioned and moved to different settings,
the instance's color will change accordingly.

 On the CD-ROM You will find two files for this example in the Chapter 16 folder on the
companion CD-ROM. The finished file, colorMixer.fla (and .swf), has all the final
components discussed here. If you would like to work through this example as you read, use
the partially completed version, colorMixerCD.fla, to help you get started.

To create a set of slider controllers that modify the color of a Movie Clip:

1. Open the colorMixerCD.fla file and then select File → Save As to store it on your
computer.

You will see that a lot of the grunt work has been done already, mainly to save time
and allow you to focus on the important aspects of this lesson. All of the sliders have
been created and are in position on the movie Stage. (To learn more about creating
slider controls of your own, see the earlier section "Scripting for Custom
Controllers.")

In this movie, there are two kinds of slider Movie Clips: one that controls values
between –100 and 100, and another between –255 and 255. This is because when you
work with the setTransform() method of the Color object, you must specify several
parameters that range within either positive/negative 100 or positive/negative 255.

2. First, you must give each slider Movie Clip an instance name. Click the slider at the
far left of the Stage and then select Window → Properties (Cmd/Ctrl+F3) to open the
Property Inspector. Enter the name ra in the instance name field.

Continue to do this with the remaining five Movie Clips. The remaining instances,
from left to right, should be named rb, ga, gb, ba, and bb. When you have completed
these tasks, save your movie.

3. Click the ra instance (far left) and then open the Actions panel. Enter the following
statements in the window:

4. onClipEvent(enterFrame){
5. raColor=new Color(_root.meter);
6. raTransform=new Object();
7. raTransform.ra=((this.knob100._y)*-1);
8. trace("ra:"+raTransform.ra);
9. raColor.setTransform(raTransform);
10. }

This script is executed as your movie plays through each frame. Since this movie
exists in a single frame, Flash is simply looping frame 1 over and over. The second
line of the script uses a constructor function to create a new Color object named
raColor and targets the meter instance on the main Timeline. The next statement
creates a new object named raTransform. This will be used later with the
setTransform() method.

Now for the linchpin of the script: The setTransform() method can accept up to eight
parameters defined here by the raTransform object. For this slider instance, you will
use only one of these, ra, which represents the percentage of red in the transformation.
This parameter is set to ((this.knob100._y)*-1), an expression that tracks the position
of the slider knob and returns a numeric value. If you look at the script attached to the
knob100 instance, you will see that it is locked to the range of –100 to +100. In the
preceding expression, its movement will return inverse values in this same range
because each is multiplied by –1. This enables slider movement toward the top of the
Stage to yield positive values.

The trace() function prints this value to the Output window. The final statement uses
the setTransform() method; it takes the transform object raTransform as its argument
to alter the red percentage value for the Color object raColor and applies it to the
meter instance.

Here, where ra represents the percentage of red, other letter combinations will be used
to specify additional color parameters. To learn about these in more detail, see the
setTransform() method listing in the ActionScript Reference section.

11. Now that you have finished the hard work, you can copy and paste to attach the
remaining actions. Select the actions you just entered and copy them to the clipboard
(Cmd/Ctrl+C). Then, select the ga instance, open the Actions panel, and paste
(Cmd/Ctrl+V) the actions into the window. Go through the script and change every
iteration of the phrase ra to ga. Do the same for the ba instance.

 Note You may find it helpful to use the Actions panel's Jump menu to move from
script to script.

12. This process attaches the same script to each instance, but it changes the names of the
objects so that each object is unique; also, each slider controls a different parameter

for the object in the setTransform() method. To learn more about this, see the listing
for this method in the ActionScript Reference section.

13.
14. At this point, half of the sliders have their scripts attached. To script the remaining

three, you will be able to cut and paste, but with a few additional modifications. The
initial script should still be copied to your clipboard. Click the instance named rb and
open the Actions panel. Paste your script into the window. First, change all iterations
of the phrase ra to rb; then change the line that reads

raTransform.ra=((this.knob100._y)*-1);

to read

rbTransform.rb=((this.knob255._y)*-2);

This instance uses a different slider instance to generate a different numeric value
when it is manipulated. This line of script targets the instance knob255 and multiplies
its vertical position (_y) by –2. The reasons for this are nearly the same as those
encountered in the previous slider. Where ra, ga,and ba can accept a value between –
100 and 100, rb, gb, and bb can hold a range of values between –255 and 255. The
knob255 instance is locked to a range between –127.5 and 127.5. As a result, values
must be doubled in order to yield the full 255 possibilities in each direction.

Once you have completed this script, copy it to the clipboard and then close the
Actions panel.

15. Select the instance named gb, open the Actions panel, and paste the script into the
window. Be sure to update all iterations of rb to gb in the script statements. Do the
same for the bb instance.

You have now completed all the scripting needed for this movie. Save the movie; then
select Control → Test Movie. As you drag the sliders up and down, you will see the
meter Movie Clip instance change color according to the parameters that each slider is
feeding to the setTransform() method.

Inspirational Design Model

Great ideas defy genre and media boundaries. Many pieces of exceptional depth and quality
have the ability to go beyond multimedia and become transmedia works—pieces that thrive in
any format. The Inspirational Design Model for this chapter is one such piece.

"African Voices" was developed by the Smithsonian Institution to document the richness of
Africa and its people. The exhibit "examines the diversity, dynamism, and global influence of
Africa's peoples and cultures" across time, in the context of personal, family, and professional
life. Although the exhibit is kept in Washington, D.C., at the National Museum of Natural
History, it is also available via the Internet to those who cannot attend in person.

The African Voices website, at www.mnh.si.edu/africanvoices/ (see Figure 16.10), was
developed by both the Smithsonian Institution and Terra Incognita to bring portions of the
live exhibit to a worldwide audience. Here you will find a comprehensive site where Flash
and ActionScript are used to dynamically present vast amounts of information in an easily
accessible format.

Figure 16.10: African Voices is a rich, dynamic site that explores the cultural intricacies of the
African continent.

Summary
This chapter presented many of the most useful elements of the ActionScript language. You
learned how to increase the interactivity of your movie through the use of alternative
controllers and how to use the keyboard as another source for audience input. You also
learned about the depth and versatility of movies that use multiple Timelines and Movie
Clips, some of Flash's greatest assets.

You can use many different ActionScript properties and actions to control Movie Clips in a
Flash animation or interactive movie. Some of these are used to affect playback directly,
while others are primarily for changing appearance and creating interesting graphic effects. In
the next chapter, you will learn additional ActionScript techniques for manipulating data and
managing some of the less-visual components of a Flash movie.

Chapter 17: Managing Data Input and
Output
Overview
One of Flash's powerful features is its ability to gather user data from within the client (the
Flash movie within the browser) or display dynamic content that it has retrieved from the
server. For instance, you can collect information from your audience through a form or
display a constantly changing list of news headlines on your site. In these situations, Flash
movies switch from being static to being dynamic, thereby becoming much more versatile and
powerful.

To be fair, however, most of the time Flash only provides the dynamic frontend (what the user
sees in the web browser) for these web applications (as they are called sometimes). The
backend (the system used to parse, collect, and serve the information collected from the
frontend) is made possible by a host of database-driven technologies. Any discussion about
managing data input and output in Flash could easily go beyond the scope of this chapter. As
a result, this chapter will be light on the backend technologies (though they won't be totally
neglected) and heavy on the creation of the dynamic frontend. In any case, you'll be provided
with enough information that you'll be in a great position to begin creating dynamic database-
driven web applications.

Understanding Databases and Database-Driven Sites
Up until a number of years ago, the Web was pretty static. People uploaded pages that
contained a fixed, immutable amount of content that changed only when new HTML files
were uploaded. Then, much to the collective applause of the development community,
dynamic database-driven applications were developed. Rather than forcing people to be
passive visitors, dynamic database-driven sites allowed users to change aspects of a page
(whether content or design) in real time.

So what exactly is a dynamic database web application? Well, a web application consists of
two parts: a frontend and a backend. The frontend consists of the portion of the application in
the browser window with which the user interacts. Radio buttons, check boxes, text fields,
drop-down menus, submit buttons, and the interface in which they all reside are all part of the
frontend. The backend, on the other hand, is generally made up of three elements: a web
server, a database, and a script that makes them all work together. The web server carries out
a couple of functions: First, it delivers HTML documents to the user's computer when they are
requested. Second, it processes the code that makes the web application work.

The database, which can range from Microsoft Access to Structured Query Language (SQL),
contains all of the information dynamically delivered to the user based on their requests. For
example, if you were creating a site where a user needed to register before getting access, you
would use a database to store, manage, and manipulate username and password information.

 Note SQL is not really a database; it's a language used to format structured queries to
databases.

 Tip Databases are extremely complicated objects in their own right. If you are interested in
learning more about databases, invest in alternate reference material. If you're using
Microsoft Access (which is usually the database of choice for creating small- to medium-
sized web applications), Mastering Access 2002 Premium Edition (Sybex, 2001) is a
great place to start.

The script is the heart and soul of the dynamic database-driven application. There are many
different solutions you can use to create the script that runs the application. In "Introducing
the Dynamic Backend" later in this chapter, you'll get an introduction to many of the scripting
solutions you can use.

Creating the Dynamic Flash Frontend
Where does Flash fit into all of this dynamic database-driven stuff? Well, used effectively,
Flash is the perfect tool for building the frontend of a web application. By employing some
fairly complicated ActionScript, Flash can easily hook up with a host of tools and
technologies that provide the backend functionality in any given dynamic web application. In
the following sections, you are going to go through three steps used to create the frontend of a
dynamic Flash web application. The first involves creating the visual interface elements that
will be used to either input or display data. The second and the third steps, which are
somewhat inextricably entwined, involve sending data to the server and, if desired,
dynamically displaying data within Flash.

Using Text Boxes to Gather and Display Dynamic Information

As covered in Chapter 5, there are three kinds of text in Flash: Static, Input, and Dynamic.
You can access the options of each type through the Property Inspector (Window →
Properties). The first type, Static Text, is the plain-Jane default text in Flash. However, the
other two types, Input Text and Dynamic Text, are integral parts of any dynamic frontend. In
this section, you're going to look at each type and explore how you can integrate them into
your dynamic database-driven Flash application.

Gathering Data with Input Text Fields

The easiest way to think about an Input Text field is as a container into which the user enters
information (their name, a favorite color, and so on). Any text entered into the field is
assigned a variable (which you determine). Flash then sends the variable's value (the data
entered by the user) to a server or uses it internally. For example, if you assign the variable
userName to an Input Text field, anything the user types into that field (whether it's their
name or not) becomes the value of userName.

Just like any other type of text within Flash, Input Text is created with the Text tool. Follow
these steps:

1. Create a new document.
2. Select the Text tool from the Toolbox.
3. If it isn't already, open the Property Inspector by going to Window → Properties.

4. Choose Input Text from the Text Type drop-down menu. (If you are having trouble
remembering how to work with the Input Text options in the Property Inspector, see
Chapter 5.)

5. Click and drag to define a text box on the Stage.
6. From there, you have a series of options; the most pertinent to this discussion is the

Var field. If you want the Input Text field to work properly, you must enter a variable
into the Var field. If you want your field to be visible to the user, make sure you've
checked Show Border around Text.

7. To test the Input Text field, save the document, and then view it by going to Control
→ Test Movie (or Control → Test Scene). Then type something into the field and go
to Debug → List Variables. In the Output window, you'll get a display like this:

Taking the data the user has entered and sending it to Flash is part of a process (using the
getUrl() and loadVariables() actions) that is covered shortly in "Moving Data to and from a
Server."

Displaying Dynamic Data with Dynamic Text

Dynamic Text is almost the same as Input Text. The only difference, which is fairly
significant, is that data is traveling in the other direction—from the server to the user's
browser.

When you create a Dynamic Text field, you create a text box that has content dynamically
generated from another source—say, a database or a text file on your server. With this in
mind, one can easily come up with some interesting uses. For example, you could create a
constantly changing list of your favorite jokes or your daily itinerary. The possibilities are
definitely endless.

Let's take a look at how to create Dynamic Text:

1. Create a new document.
2. Select the Text tool from the Toolbox.
3. If it isn't already, open the Property Inspector by going to Window → Properties.
4. Click and drag to define a text box on the Stage—make sure the size of the text box is

appropriate from the amount of text you want to display.
5. Choose Dynamic Text from the Text Type drop-down menu in the Property Inspector.
6. Enter a unique variable name for the Dynamic Text into the Var field. Like the Input

Text, if you don't assign a variable, your Dynamic Text won't work.

Later in this chapter, you'll explore how to put Dynamic Text to work by creating a movie
with content drawn from associated text files.

Moving Data to and from a Server

Now that you've explored the visual interface elements used to push data out of Flash and
display data within Flash (Input Text and Dynamic Text), it's time to look at the ActionScript
necessary to tell Flash where and how you want the data sent. In the next sections, you'll
explore getURL(), loadVariables(), and loadMovie().

Using getURL()

When it comes to creating dynamic Flash applications, the getURL() action lets you send
variables to a given file and display the results in a new window, targeted frame, or existing
window. The primary weakness of the getURL() action is that it won't return information to
the actual Flash movie in the browser window. So, as a result, if you instruct Flash to return
information to the currently open window, the Flash movie currently playing is replaced. The
alternative is to instruct Flash to return the information to a new window by using the _blank
target (something you'll learn how to do shortly). Granted, this is not a good solution if you
want to limit your user's experience to within the Flash movie, but it is your only choice when
it comes to the getURL() action.

In the following step-by-step example on how to use the getURL() action, you are going to
send a variable to a fictional ASP file (called name.asp) sitting in the same directory of your
movie:

1. Open a new document.
2. Select the Text tool from the Toolbox.
3. If it isn't already, open the Property Inspector by going to Window → Properties.
4. Click and drag to define a text box on the Stage.
5. Choose Input Text from the Text Type drop-down menu in the Property Inspector.
6. Click the Show Border around Text button to make sure the text box remains visible.
7. Type userName into the Var field.
8. Create a simple button (using the Symbol Editor) and place it on the Stage next to the

Input Text. (If you are having difficulty remembering how to create a button symbol,
see Chapter 13.)

9. Select the Button symbol, and go to Window → Actions.
10. If it isn't already, switch the Actions panel into Normal mode by clicking the View

Options button, and selecting Normal Mode from the drop-down menu.
11. Click the Actions category in the ActionScript Toolbox (the left side of the Actions

panel where all ActionScript elements are located).
12. When the Actions category opens, click the Browser/Network category.
13. Double-click the getURL() action to add it to the ActionScript text box.
14. Enter the filename into the URL field. In this case, type name.asp. If you were

sending information to a web page, simply type in the full URL. If the file you are
sending the information to is in another directory (as opposed to the one in which your
Flash movie resides), you'll need to type in the exact path. Once you've entered the
filename or URL into the URL field, you'll notice that it's added to the ActionScript in
the ActionScript text box.

15. Now, it's time to tell Flash to which window you want the information returned. Open
the Window drop-down menu (by clicking the small Down arrow to the right of the
Window field), and choose one of the Window options:

o _blank returns the information to a newly opened window (on top of the one in
which the Flash movie resides).

o _self returns the information to the current frame in the current window.
o _parent returns the information into the parent frame of the current frame.
o _top returns the information to the top frame of the current page.

16. Once you've set the window in which the information will be returned, you need to
decide the method by which the information is sent. Just below the Window drop-
down menu, there is a Variables drop-down menu:

o The GET method sends the information in the form of a query string.
o The POST method sends the information via a buffer—far more preferable if

you are sending a great deal of information, as it isn't visible in the URL field
of the browser.

When it's all said and done, the Actions panel should look something like this:

17. From there, your script is complete. Simply close down the Actions window.

Theoretically, when the button is clicked, the Flash movie will take the text that the user
entered into the Input Text field, and send it to the name.asp file. From there, the ASP file will
take the information (which is packaged as the variable/value combination) and do something
with it—the something is determined by the ASP file itself (which you need to create).

 Note The choice you made in the Window drop-down menu really only applies if the ASP file
is created so that it spits some kind of data back to be displayed in the browser.

For example, you could construct the ASP file so that it takes the value of the variable
userName, and sticks it in a database. Alternatively, instead of sticking it into a database, it
could simply send the information to you in an e-mail.

Using loadVariables() or loadVariablesNum()

The getURL() action works well if you want to leave your Flash movie to return the desired
information. But what if you wanted the desired information returned and displayed within the
Flash movie? This is where the loadVariables() and loadVariablesNum() actions come in.

The two actions return information to either a targeted Movie Clip—loadVariables()—or a
level within the main Timeline—loadVariablesNum()—within your Flash movie or update
variables with new values inside the active movie.

At this point in the chapter, you aren't going to go into a step-by-step look at using either
action like you did when you explored the getURL() action. After you've explored the
backend of a dynamic web application (either Flash or regular HTML), you'll get a chance to
create a movie that uses loadVariablesNum() to load dynamic content from a series of text
files.

Using loadMovie() or loadMovieNum() to Dynamically Load JPEGs

As you've probably figured out, you use getUrl() and loadVariables()/loadVariablesNum() to
either display or acquire textual information (at least in this context). So, what if you wanted
to display something other than text? Well, that's where loadMovie() and loadMovieNum()
(which are both actions of the Movie Clip object) enter the picture. With them, you can
dynamically load JPEG images that reside on you web server—or another web server
entirely—into a target Movie Clip (loadMovie()) or a level within the main Timeline
(loadMovieNum()).

 Note Although this section is going to focus on using loadMovie() or loadMovieNum() to
dynamically display JPEGs within a Flash movie, you can also use them to load other
SWF files into a movie.

To dynamically load a JPEG using either loadMovie() or loadMovieNum(), follow these
steps:

1. Select the frame, Button, or Movie Clip that you want to activate the loadMovie() or
loadMovieNum() action.

2. Open the Actions panel by going to Window → Actions.
3. If it isn't already, expand the Actions category in the ActionScript Toolbox by clicking

it.
4. Expand the Browser/Network category in the ActionScript Toolbox.
5. Double-click the loadMovie() action to add it to the ActionScript text box.
6. Now, in the URL field of the Parameters pane, enter the location and name of the

JPEG you want to load. Remember, if the image is in the same directory as the Flash
movie, you really only have to enter the image name. However, if it isn't located in the
same directory, you'll have to enter the exact path (either as an absolute or relative
URL) so that the Flash movie can locate it.

7. Now, if you want to load the image into a document level or the main Timeline,
choose Level from the Location drop-down menu, and then enter the level number
into the field just to the right of the Location drop-down menu. On the other hand, if
you want to load the image into a Movie Clip, select Target from the Location drop-
down menu, and enter the name of the Movie Clip instance into which you are loading
the JPEG in the field to the right of the Location drop-down menu.

8. When you've finished, close the Actions panel.

When you load directly into the main Timeline, the movie will automatically resize to fit the
JPEG exactly. As a result, it's probably better to load into a Movie Clip that is the same size

(or larger) as its JPEG images. The result will be that the Movie Clip will automatically resize
to fit the image, and the overall movie won't be affected.

 Note If the Movie Clip into which you are loading the JPEG is not a direct child of the current
Timeline, you'll need to enter the proper target path using dot syntax.

Although using loadMovie() or loadMovieNum() to dynamically load a JPEG is pretty easy,
there are two things you need to realize. First, when it comes to using loadMovie(), all the
contents of the target Movie Clip will be replaced by the loaded JPEG. Second, only one
JPEG can occupy a given level in the Flash movie. As a result, if you load a second JPEG into
_level1, the first one you loaded will be automatically replaced.

 Note For more information on levels in a Flash movie, see Chapter 16.

Introducing the Dynamic Backend
Earlier in this chapter, you learned about how dynamic database-driven applications work.
Just to refresh your memory, dynamic database-driven web applications have two parts: a
frontend and a backend. You explored how to create the frontend of a dynamic web
application in Flash. The backend, on the other hand, includes three elements: a server, a
database, and a script.

You've already learned how to send data to a web server. In the cases of both the getUrl() and
loadVariables() actions, you target the script by entering the correct location into the URL
field of the Actions window's Parameter section. Whether you are using an ASP file (like the
fictional one you used when looking at the getUrl() action) or a CGI script, once you've told
Flash where to send the data, the script takes care of the rest.

In the following sections, you'll be introduced to the various types of scripts and technologies
available. The point of these sections is to adequately prepare you to choose the best solution
for your needs and point you in the direction of learning more about that technology.

ASP

ASP (Active Server Pages) is a server-side scripting technology developed by Microsoft. ASP
is based on an HTML-like syntax in which custom-made VBScript or Jscript (Microsoft's
version of JavaScript) resides in specialized tags. Although the most common way to deploy
ASP is with Microsoft's Internet Information Server, a number of other methods, mainly Sun's
Chili!soft, can deploy ASP on other platforms such as Linux or Solaris.

One of the great joys of ASP is that it can store site information in a database. As users visit
the site, the information is called from the database on a case-by-case basis. As a result, you
can make all manner of changes to your layout (font, color, and so on) by changing the ASP
code and not the actual HTML page. In addition, ASP, like many server-side technologies,
can draw upon information within a database to continuously repopulate a web page or a
Flash movie with dynamic data.

Although ASP can be written in any text program (such as Notepad or SimpleText), it tends to
get a little complicated. As a result, a number of authoring environments are available that

help you develop ASP. Most notably among these is Macromedia's Dreamweaver UltraDev.
Built on the same authoring environment as Dreamweaver, UltraDev lets you create
complicated ASP with minimum knowledge of the underlying code.

 Note On the CD-ROM A demo copy of Macromedia's Dreamweaver UltraDev is included
on the book's CD-ROM.

One of the other great things about ASP is that it can work with any Open Database
Connection (ODBC)–compliant database. As a result, you can create your database in a wide
range of programs.

ColdFusion

Originally developed by Allaire (which was acquired by Macromedia in 2001), ColdFusion is
a dynamic database-driven application technology that uses a unique tag-based server
scripting language (ColdFusion Markup Language, or CFML) in conjunction with a
specialized server (ColdFusion Server) to deliver powerful dynamic web applications.
Because ColdFusion's CFML scripting language is similar to HTML, it is fairly easy to learn
and use.

When a user requests a ColdFusion document (which is called a template and has a .cfm
extension), the web server passes the file first to the ColdFusion Server (which sits on the web
server itself) before passing it to the user's browser. The ColdFusion Server looks at the
template, interpreting any the embedded CFML. The ColdFusion Server then generates the
output from the CFML in the template and returns the file to the web server to be passed back
and displayed in the user's browser.

Let's take a look at a short example. Say, for instance, that you've created a ColdFusion
template with all the necessary CFML to create a list of the current books you are reading.
When a user tries to load that file (remember, it's called a template) into their browser, the
server would notice .cfm extension and pass the request onto the ColdFusion Server. Now,
when the ColdFusion Server received the request, it would pull the list of the current books
you are reading from a database (which you keep constantly updated), stick the data in the
appropriate places in the template (which are designated using CFML), and pass the file back
to the web server. The web server would then send the file to the user's browser, letting them
view the list of the books you are currently reading.

ColdFusion requires ColdFusion Server to work. Unlike ASP (which only requires a specific
type of web server), ColdFusion actually needs this piece of software that sits on the web
server to work properly.

 Note To learn more about ColdFusion, go to www.macromedia.com/coldfusion.

Just like with ASP, you can set a ColdFusion template as the target URL for either a getUrl()
or a loadVariables() action. Once information (in the form of actual data or a request for data)
is sent to a CFM document, ColdFusion will do its thing and then return the data back to
Flash to be displayed in the manner you've defined (either in the Flash movie itself or in
another window).

You can generate CFML a number of ways. You can simply write it from scratch as you
would with HTML. You can also use either Macromedia Dreamweaver UltraDev or
ColdFusion Studio (available from Macromedia).

PHP

Back in 1994, Rasmus Lerdorf developed a series of Perl (Practical Extraction and Reporting
Language) scripts that allowed him to monitor the users who accessed his website. Word got
around about Lerdorf's interesting invention, and people started asking to use his scripts on
their pages. Shortly thereafter, Lerdorf released them as a package called Personal Home Page
Tools (PHP).

By 1995, PHP—whose full name was changed from Personal Home Page Tools to Hypertext
Preprocessor—had gained a large following. The popularity of PHP prompted Rasmus to
release a scripting engine and additional scripts designed to process data from forms.

When the third incarnation of PHP (PHP3) was released, it included a far more efficient
scripting engine. The syntax of PHP was changed so that it looked more like a cross between
C/C++ and Perl, instead of just straight Perl (which isn't an object-oriented programming
language). To allow third-party developers to further extend PHP by developing their own
modules, PHP3 included an Application Programming Interface (API).

The current release of PHP (PHP4) has been completely reworked to give users far more
control over their PHP creations. The API now more efficiently integrates third-party PHP
modules.

PHP's benefits lie in several different areas. First, you can write PHP with a simple text utility
such as Notepad, SimpleText, or Emacs. Like many server-side scripting technologies
(including all those discussed in this chapter), PHP can draw information from any ODBC-
compliant database on the server. PHP can be installed on most web servers (Windows- or
Unix-based). Generally speaking, PHP is reported to be faster and more stable than both ASP
and ColdFusion. All of these benefits are great, but the best is that it's free. You can use it for
noncommercial or commercial applications, trade it with friends, hang it on your wall, use
burn it on a CD, or use it to play fetch with your dog Oscar. Further, because PHP is open
source, tens of thousands of developers are working hard to develop modules that do new
things.

 Note Although Macromedia Dreamweaver UltraDev didn't feature integrated support for PHP
at the time of this writing, a number of user-developed extensions add PHP functionality
to UltraDev.

Like with any of the other technologies discussed so far, you can set a PHP file (which has a
.php extension) as the target URL for either a getUrl() or loadVariables() action. Once
information (in the form of actual data or a request for data) is sent to a PHP document, the
PHP server will do its thing and return the data back to Flash to be displayed in the manner
you've defined (either in the Flash movie itself or in another window).

 Note To find out more about PHP, go to www.php.net. You can also visit
www.phpbuilder.com. If you are interested in open-source software, try
www.opensource.org.

CGI

CGI (which stands for Common Gateway Interface) was around way before anyone ever
thought of dynamic database-driven applications. To be honest, CGI isn't a programming
language in itself. It's really a technology that allows the development of server-side programs
that extend the functionality of HTML (and Flash for that matter).

Although Perl is by far the most popular programming language to develop CGI, there are
certainly other options, including C/C++, Visual Basic, Applescript, Unix Shell, and Tcl.

As with all of the other technologies discussed, you can target a CGI file with the getUrl() or
loadVariables() actions. Data passed out of Flash is processed by the particular CGI script and
then returned and displayed in the method you determine.

 Note For more information about CGI, visit www.scriptsearch.com or www.cgi-
resources.com.

Generating Dynamic Content from Text Files
Now that you've looked at both the frontend and backend of dynamic database-driven web
applications, it's time to create a Flash movie that displays dynamic information. In this
section, you're going to take everything you've learned and create a Flash movie that displays
information from text files. Granted, this is not particularly dynamic per se because the text
files contain information that is static. The point of the exercise is that you'll be creating a
Flash movie that draws and displays information from another source by using ActionScript
(more specifically, the loadVariablesNum() action discussed earlier). To create something
truly dynamic, you would have to use one of the previously mentioned technologies.

During this step-by-step example, you'll create four different buttons that, when clicked, will
load the contents of four text files (each a quotation from a literary figure or orator) into the
Flash movie.

 On the CD-ROM Although you certainly can use any text file you want, the Chapter 17
directory on the book's CD-ROM contains the four text files referred to in the following
example. In addition, the quotes.swf file is an example of what the end result should be. As
usual, however, the process is more important than the end result. So, let's get at it:

1. First, create a folder on your hard drive called Flash Quote Project. After you've done
that, copy all of the text files in the Chapter 17 directory of the book's CD-ROM to the
folder.

2. Now, create a new file by going to File → New. Before you create anything, save the
file to the Flash Quote Project directory and call it quotes.

 Note If you've copied the quotes.fla over from the Chapter 17 directory of the book's
CD-ROM, the newly saved file will overwrite it. If you want to avoid this, either
refrain from copying the finished quotes.swf from the CD-ROM or simply give
your file another name.

3. First, name the existing layer Dynamic Text.

4. Select the Text tool from the Toolbox.
5. If it isn't already, open the Property Inspector by going to Window → Properties.
6. In the Property Inspector, select the Dynamic Text option from the Text Type drop-

down menu.
7. Make sure Multiline is selected in the Line Type drop-down menu.
8. Now, select the first keyframe of the Dynamic Text layer and use the Text tool to draw

an area roughly 10 centimeters (4 inches) wide and 7 centimeters (2.75 inches) high.
This will serve as the "container" in which Flash will display the contents of each of
the text files. Now, for the most important part, enter quoteField into the Property
Inspector's Variable field.

If you take a look at each of the text files, you'll notice the words quoteField= at the
beginning of each text file. This string links each text file to the Dynamic box you've
just created.

9. Now, you want to set the look of the text when it's displayed in the Dynamic Text
field. So, with the field you created still selected, and the Property Inspector still open,
set your font to Helvetica/Arial, the color to Black, the size to 12, and the style to Bold
and Italic.

10. Now that you've created the Dynamic box in which Flash will place the text drawn
from the text files, it's time to create the interactive controls that will call the content
from each individual text file. From here, you can create four buttons (with the words
Homer, Plato, Frost, and Melville on each respectively). Alternatively, you can just go
to File → Open as Library, navigate to and select the quotes.swf file on the book's
CD-ROM, and use the buttons that are included.

11. Create four additional layers and assign them the same names as the buttons (Homer,
Plato, Frost, and Melville). Click and drag each individual button to their respective
layer. Make sure the buttons are placed in an evenly spaced line below the Dynamic
Text field. So far, your Stage should look something like this:

12. Now, you need to attach the ActionScript to each of the buttons so that when clicked,
the appropriate text will be loaded into the Dynamic Text field. Select the first button
in the row (Homer) and go to Window → Actions to open the Actions panel.

13. First, make sure you are in Normal mode. If the Actions category isn't already
expanded in the ActionScript Toolbox (the left side of the Actions panel), do so by
clicking it.

14. Then, expand the Browser/Network category.
15. Now, locate and double-click the loadVariables() action to add it to the ActionScript

text box.
16. Next, you need to set the parameters for the loadVariables(). In the URL field, enter

the name of the text file you want to load when the user clicks the button (in this case,
homer.txt). If the text file is in the same directory as the Flash movie, you only need to

type the filename. However, if the text file is sitting elsewhere, you have to enter the
relative path.

17. In the Location drop-down menu, choose Level. Then, enter 0 into the field just to the
right. By doing this, you are telling Flash to load the text file into the Dynamic box
located in level 0 of the movie. You'll notice that when you choose Level, opposed to
Target, from the Location drop-down menu, the action itself will switch from
loadVariables() to loadVariablesNum(). Don't worry—you are loading the text files
into the main Timeline (opposed to a Movie Clip), which is what is supposed to
happen.

 Note Flash stores information in different hierarchical layers called levels. Movie
Clips and scripts can easily access variables in the same level they occupy. If,
however, a given variable occupies a different level, the Movie Clip or script
must explicitly state in which level it's located.

18. At this point, your Actions panel should look like this:

19.
20. Repeat the process described in steps 12–17 to link each button to the appropriate text

file.
21. Test your movie by going to Control � Test Movie or Control � Test Scene.

Inspirational Design Model
The world of dynamic Flash is an exciting one that is just starting to grow in popularity.
Among the most interesting applications is real-time, web-based user feedback. One of the
recognized leaders in the field is OpinionLab (www.opinionlab.com).

Their primary system, OpinionOnline, includes two tools (see Figure 17.1). The first tool,
constructed using Dynamic HTML, facilitates the continuous collection of page-specific user
feedback through an unobtrusive "rating system" menu widget. The second tool, which is
facilitated with Macromedia Generator, consists of an amazingly varied toolset of statistical
representations that display the feedback collected from users.

Figure 17.1: OpinionLab provides an amazing Generator-based system to collect and display
real-time, page-specific user feedback.

Working in tandem, these two tools provide a powerful system by which to get almost
instantaneous marketing analysis—a process that traditionally took a great deal more time.

Summary
In this chapter, you explored the ways that Flash can push data to server-side applications as
well as receive and display data from server-side applications. You started off the chapter by
looking at the basic mechanics of dynamic database-driven sites. From there, you created the
dynamic frontend with Input Text and Dynamic Text. From there, you explored the dynamic
backend. You started with a look at the two most important actions in your quest to create
dynamic database-driven Flash sites: getUrl() and loadVariables()/loadVariablesNum(). Next,
you investigated the various server-side technologies used to serve dynamic data to the Flash
frontend, including ASP, ColdFusion, PHP, and CGI. To get some hands-on experience
loading dynamic data into Flash, you worked through a step-by-step tutorial on how to create
a Flash movie into which you load the contents of external text files.

Chapter 18: Troubleshooting ActionScript
Overview
In previous chapters, you have run the gamut as far as ActionScript is concerned. You have
been bombarded with the terms, elements, techniques, concepts, technical and syntactical
conventions, properties, methods, and commands of the language. You have probably been
working and experimenting with ActionScript in your movies and run into a problem here and
there.

Sometimes problems arise from unfamiliarity with the material you are using; other times
they are caused by a simple typing error or misplaced character in your script. And, of course,
there are times when an error or problem occurs and you have no idea whatsoever why
something has gone wrong. These kinds of situations can be frustrating and sometimes even a

little scary. The purpose of this chapter is to present a set of tools that you can use when the
problems with the ActionScript in your movie are not immediately recognizable.

Scripting and Working Smart: Some Suggestions
Even the most proficient and knowledgeable ActionScript gurus get stuck in technical ruts.
One thing that separates them, though, is their ability to get out of these ruts. Experience has
taught them how to step away from the problem, evaluate the situation, and dive in again with
an appropriate solution. Often, technical problems are easily solved not through scripting
wizardry but through a logical and methodical reevaluation of your code. Moreover, by
practicing good, consistent habits while planning and writing your scripts, many problems can
be avoided altogether. This section provides a set of useful tips and recommendations that
should help you practice good scripting form and avoid many common technical stumbling
blocks.

Although good physical form while typing (keeping your back straight, putting your feet on
the floor, and so on) is critical in preventing repetitive stress injuries, good scripting form
means good habits that minimize the possibility of errors. Good form ultimately means
working smarter. It can also help you flush out problems and find their solutions when they do
pop up. Following is a list of things you can do to help avoid problems while working on your
Flash projects and writing ActionScript.

Use appropriate variable names. Variables are storage locations for many different kinds of
information: values, properties, Movie Clip instances, frame labels—just about anything in a
movie. When you initialize a variable, try to select a name that is meaningful—ideally a name
that makes reference to the role or purpose of the variable. A variable name must be an
identifier. For more on variables, see Chapter 15.

Use ActionScript terms correctly. Some elements of ActionScript are read-only, which
means that they can be checked but not set. Many terms use a specific configuration or upper-
and lowercase letters and punctuation. When in doubt about a particular term, consult this
book's ActionScript Reference section or the built-in script help of the Reference panel
(Shift+F1).

Work deliberately; test movies and scripts often. While you are creating a Flash movie, it's
easy to be swept away by the pure joy of creativity and forget about the technical feasibility of
what you are doing. Without compromising your work style, try to approach the creative
process by taking small steps. With every little accomplishment or scripting victory, test the
movie to ensure that every element is still working properly.

Save multiple versions, and back up your files. Everyone knows about frequent saves; but
everyone forgets occasionally, too. Backup files are essential to ensure against disk errors,
hard-drive crashes, and other anomalies that can plague the citizens of a digital world. Saving
multiple versions of a file helps protect against major mistakes, lost data, corrupted files, and
so on. If a newer version has problems or is altered beyond repair, it can be helpful to return
to a previous version and start afresh.

Use the trace function to track variables and properties. The trace function is one of the
most helpful parts of ActionScript. It allows you to get feedback from the Flash Player and

tells you what is really going on in your movie with variables, loops, and other script
elements. To learn more about this, see the section "Using trace" later in this chapter.

Use comments to mark up your code. Comments, created by typing a double forward slash
(//), tell Flash to ignore whatever is written after the slashes. Use comments to leave notes to
yourself or another member of your team, to make citations about the portions that work and
the portions that don't, and so on. Comments can also help to keep script sections organized.

 Note For blocking out large chunks of code, also see the multiline comment operator (/* and
*/) in the ActionScript Reference section.

Storyboard a script to check the logic and flow. If you are going to tackle a large project
involving a lot of ActionScript, it can be helpful to start by working on paper. You can plan
and conceptualize your script outside of Flash, and then step into the program once you are
ready to begin development. It can also be helpful to plan complex loop structures on paper,
where you can do all the computations and logic in a medium that shows the flow of
information.

Build your movie in small chunks. It can be advantageous to break a project into sections
and tackle them one by one, a kind of divide-and-conquer approach. Get one portion of your
movie working before moving on to the next.

Identify problems as they arise. If something seems to be amiss, chances are it is. It's always
better to deal with problems right away than to let them linger. Also, as you troubleshoot and
try different solutions, think about how temporary fixes may negatively impact other movie
elements in the future.

This list of recommendations is not ActionScript dogma. Everyone has their own work style
and must approach their projects in a way that encourages both creativity and productivity.
The hope is that some of these techniques will help you avoid errors and focus on the more
important aspects of a project.

Troubleshooting Tips
Try as you might, some problems simply cannot be avoided. When they occur, they are like
sand in the gears of your scripting machine. Technical scripting errors can bring your
productivity to a screeching halt and create frustration in the ranks of your development team.
The good thing about technical errors is that you can overcome them. They are errors, and all
you have to do is set things straight; change them and make them the way they ought to be.

Sound too easy to be true? Well, probably, but it surely does feel good to think about
problems so confidently. Attitude can be a great asset when it comes to overcoming technical
problems and errors. When you are calm and collected, it is easier to think with perspective
and to examine the situation at hand logically. To do this, you must look at your scripts from
every possible angle to try and discover what portion or component is causing the problem,
and why.

Self-Help: Queries for Troubleshooting Common Mistakes

Following is a series of questions you can ask in order to get to the bottom of an ActionScript-
related problem with your movie.

Is the syntax correct? There are many different ActionScript elements: actions, properties,
methods, functions, and so on. It can be very easy to confuse one syntax for another, so be
sure that you are using each term properly.

Make sure that you correctly spell each term and use the right upper- and lowercase characters
where they are needed (for example, onClipEvent, not onclipevent).

Be sure to include a semicolon (;) at the end of statements, and be sure to use curly braces
({}) to enclose the statements of handlers and loops. ActionScript is often forgiving when it
comes to missing semicolons, but a misplaced or forgotten curly brace will stop the Flash
Player dead in its tracks when it is trying to read and process your scripts.

Watch your operators carefully! When evaluating a condition, 10<=10 evaluates as True
because 10 is equal to 10, whereas 10<10 evaluates False (10 is not less than 10). Similarly,
the assignment operator (=) and equality operator (==) have very different uses. The
assignment operator is used to assign a value:

var i=0;

The equality operator is used to test whether two expressions are equal and will return a
Boolean value:

if(this._x==bounds._x){
 //statement(s) if expressions are equal (returns True)
}
 Tip If you're not sure of your syntax, Flash will tell you! While working in the Actions panel,

simply click the Check Syntax button or press Cmd/Ctrl+T to verify the "correctness" of
your ActionScript statements.

Did you specify the arguments correctly? On a related note, many ActionScript elements
(actions and methods, in particular) can take arguments. Check to be sure that all arguments
are entered properly. For example, if you entered a variable or identifier where there should
be a string, your script will not function properly. The following statement will not execute
properly because the duplicateMovieClip action dictates that the name of the new instance
must be specified as a string:

duplicateMovieClip(bar,bar+i,1);

The correct syntax is:

duplicateMovieClip(bar,"bar"+i,1);

Here, using the right syntax, "bar" is specified as a string.

Is the handler getting executed? Every script is called from some kind of handler. However,
if a handler does not get executed, the scripts it contains will not be called. Use the trace
function to test for handler activity. For example, to test and see if a Movie Clip is responding
to a mouse click event, you could write:

onClipEvent(release){
 trace("clicked");
 //other statement(s);
}

Did you use the correct target path? When you are creating a movie with multiple Movie
Clip instances and Timelines, it can be easy to get confused and forget which clips and
movies reside where. Check to see that you have correctly specified all of your target paths to
functions, objects, Movie Clips, and their properties. For more specifics on this, see the
section "Monitoring Scripts with the Output Window" later in this chapter.

What's the scope? While global (_global) variables are available at any time throughout an
entire movie, others are not. Timeline-specific variables must be recalled using a target path
to the Timeline where they were created. To read more about variables and their scope, see
Chapter 15.

Does your math check out? How many expressions are you using in a script? Do they add
up correctly to achieve the results you desire? If it is helpful, you can use the trace function to
help with some in-context number crunching.

Are loops and conditionals executing properly? When you use a loop or conditional, you
set the parameters to test a condition and then have ActionScript do something as a result of
that condition. If a script is not behaving properly, check to see if loops and conditional
statements are functioning correctly.

Are all Movie Clips and Button objects instances? Unless a Movie Clip or Button object is
an instance, you will not be able to target (control) it with ActionScript. Consult the Property
Inspector (choose Window → Properties or press Cmd/Ctrl+F3) to be sure that each Movie
Clip or Button object you wish to target has a unique instance name.

Do all variables and functions have unique names? It is essential that all variables and
functions are uniquely named so that they won't be confused with other elements in your
movie.

Flash Troubleshooting Tools

Beyond the mental analysis of a technical problem, it's good to have additional resources that
can help dig you out of trouble when problems do occur. It's good to be able to look at a
script, walk through it slowly, step by step, and uncover the statements that are problematic.
However, sometimes this can prove to be an enormous task! In the same way that it is helpful
to create a movie in small, deliberate steps, it can be equally beneficial to troubleshoot in the
same manner. You hunt for problems carefully, and make sure that one area of the movie is
trouble free before moving on to the next area.

Flash provides a set of tools that can make this process easier. Using these as part of your
troubleshooting strategy can help you break a problem down by isolating different parts of a
script and testing them individually. Some of these tools are formalized; others are more like
scripting techniques. All the tools will help you work through ActionScript problems and get
your scripts running smoothly.

Comments were discussed earlier as a means of leaving notes and reminders within the body
of a script. You are able to do this because Flash will ignore anything that follows the double
slash (//). This feature makes comments the perfect tool for turning certain parts of a script on
and off. For example, in the following script, part of the conditional statement is turned off so
that the script will execute but not run the statements within the conditional.

onClipEvent(enterFrame){
 _root.Bbi._y-=j;
 i+=1;
 if(i>20){
 //_root.gotoAndPlay(1);
 }
}

The Debugger was introduced with Flash 5 and has since been improved for Flash MX. It
offers a series of menus that allow you to monitor Movie Clip instances, variables, properties,
and, in general, all of the technical happenings of your movie. To learn more about the
Debugger, see the next section of this chapter.

The Output window can be used several different ways in your movie. It is involved any
time you use the trace function. All items that you ask to trace will be printed in the Output
window. Additionally, it can be used to provide information about any objects and variables
that are active in your movie. To learn how to use this tool, see "Monitoring Scripts with the
Output Window" later in this chapter.

Using the Debugger
The Debugger is your window to all the inner workings of your movie. It displays all the
Movie Clip instances and levels in your movie, as well as the properties of each. The
Debugger will also track all the variables that are active within a given Timeline in your
movie. It is an extremely useful and efficient tool because it presents all of the technical
elements you need to monitor a movie within a single window. Use the Debugger to isolate
errors in your scripts and look "under the hood." A close examination of your scripts and how
they are executing can be invaluable when your movie isn't running properly.

In order to run, the Debugger requires additional software known as the Flash Debug Player.
This is a special version of the Flash Player that automatically installs with the main Flash
authoring application. The additional software is what allows Flash to load information about
your movie into the Debugger window as you test a movie.

Activating the Debugger

When you select Window → Debugger or press Shift+F4, the Debugger window appears.
However, it is in an inactive state and is nothing more than a shell waiting to receive
information. To initiate debugging in your movie, you must activate the Debugger. This
launches the Debug Player component and allows the Debug window to receive information.

To activate debugging in your movie, select Control → Debug Movie. Flash automatically
jumps into Test Movie mode. The Debugger window opens and displays the contents of your
movie. The Debugger is paused by default. To initiate debugging, click the green Continue
button in the Code View menu.

Debugger Elements

While activated and running in Test Movie mode, the Debugger no longer looks like a dead
window. It has several components, all of which are helpful in giving insight into the
workings of your movie. Figure 18.1 shows the Debugger in an active state.

Figure 18.1: When the Debugger window is activated, it displays information about various
components of your movie.

Status Bar

At the very top of the Debugger window is the status bar. It shows the following information:

• Debugging status—whether you're working in Test Movie mode from your local
computer, or in Remote Flash Player while debugging from a remote location

• The movie's local file path or URL

Display List

When the Debugger is activated, the Display List shows you a breakdown of each movie level
and Movie Clip instance, including a separate clip level for global variables (_global). This
list is updated as movies are duplicated, removed, loaded, or unloaded from the main
Timeline. The Display List shows these items in a format similar to the Movie Explorer so
that you can see the hierarchical relationship between clip instances. If your movie contains
lots of clips, you can resize the dimensions of the Display List so that it is taller, to show more
information.

Properties Tab

The Properties tab is used to monitor and change properties of a given Movie Clip instance.
You can monitor a clip's properties while you test a movie and change them directly from the
Debugger window. Any changes made in the Properties tab will not permanently affect your
movie. They can only temporarily alter clip parameters while you test the movie.

To display the properties for a Movie Clip, select the clip in the Display List and then click
the Properties tab. The tab will show a long list of clip properties. Depending on the clip and
the way you use it in your movie, some properties may be constantly updating and changing
in the Properties tab window.

To change the values for a property, select the clip instance you would like to modify from
the Display List. Double-click the property value and then enter a new value in the field. Press
Return/Enter, and your movie will update itself accordingly.

Variables Tab

The Variables tab gives you access to a live display of all the variables currently active on a
given Timeline. You can select a Movie Clip instance in the Display List, and the Variables
tab will list the current values of the variables that the instance contains. Selecting the _global
clip in the Display List will show any global variables that your movie contains.

It is also possible to change variable values as you are testing your movie. Simply select the
variable in the list, double-click its value, and enter a new value. Press Return/Enter, and your
movie will respond accordingly.

Watch List Tab

The Watch List provides an easy way to monitor a set of variables from one location. For
example, if you wanted to simultaneously monitor the variables in two different Movie Clips,
you would have to jump back and forth between them in the Display List while watching the
Variables tab. The Watch List allows you to select these variables and put them in one
location so that they can be monitored easily within a single window. To do this, you must
add the variables to the Watch List.

To create a Watch List, you can do one of two things:

• Select a variable in the Variables tab. Ctrl+click (Mac) or right-click (Win), and select
Add from the context menu. Alternatively, you can select the variable and choose Add
Watch from the Debugger pop-up menu. Any variables selected for a watch will be
marked with a blue dot in the Variables tab.

• Ctrl+click (Mac) or right-click (Win) in the Watch List window. Double-click the new
line and enter the target path to the variable you wish to watch.

It is not possible to directly assign an item from the Properties tab (like _alpha or
_currentframe) to the Watch List. Flash allows you to watch variables only. As a workaround,
initialize a variable to the property you would like to watch and then use the Debugger to set a
watch for that variable. For example, if you need to constantly monitor the horizontal position
of a Movie Clip, create a variable for the _x property:

onClipEvent(enterFrame){
 hPos=this._x;
}

Then use the Variables tab to set a watch for the variable hPos.

You can remove an item from the Watch List by Ctrl+clicking (Mac) or right-clicking (Win)
the item and then selecting Remove from the context menu. You can also highlight the item
and select Remove Watch from the Debugger pop-up menu.

Breakpoints

 New to MX In Flash MX, it's now possible to set and remove breakpoints in your script.
Breakpoints allow you to pause a script in your movie and walk through it step-by-step to
more closely examine how and when each line effects changes in your movie.

To set and remove breakpoints in the Actions panel:

1. In the Actions panel text box, click on the line where you would like to set your
breakpoint.

2. Do one of the following:

o Choose Set (or Remove) Breakpoint from the Debug Options button menu.
o Control+click (Mac) or right-click (Win) and choose Set (or Remove)

Breakpoint from the context menu.
o Type Cmd/Ctrl+Shift+B.

To set and remove breakpoints in the Debugger:

1. In the Code View box, click the line where you would like to set your breakpoint.
2. Do one of the following:

o Choose Toggle Breakpoint or Remove All Breakpoints from the Code View
menu (see Figure 18.2).

Figure 18.2: The Code View menu includes two options to set and remove
breakpoints.

o Control+click (Mac) or right-click (Win) and choose Set Breakpoint, Remove
Breakpoint, or Remove All Breakpoints from the context menu.

o Type Cmd/Ctrl+Shift+B.

Once you have set breakpoints, it's possible to move through your script line-by-line.
This is done by using the Step In, Step Over, and Step Out buttons (see Figure 18.3).

Figure 18.3: The controls for moving through a script line-by-line are Step Over, Step
In, and Step Out.

 Note Step In, Step Over, and Step Out work only within user-created functions.

Step Over causes your script to skip a line within the function.

Step In advances your script flow into a function.

Step Out forces the debugger out of a user-defined function.

For troubleshooting custom functions and subroutines, this feature cannot be beat. And as you
become more proficient with ActionScript, using Step In, Step Over, and Step Out is a topic
you should be sure to investigate further. For more details on how to monitor the flow of your
scripts, Choose Help → Using Flash. Then navigate to Testing a Movie → Using the
Debugger → Stepping through Lines of Code.

Remote Debugging

 New to MX Sometimes you may find it helpful to examine your scripts and do your
debugging while your movie is running "live." For example, if you are working on a movie
that involves heavy communication of variables to and from a server, it's essential to know
that all the information is being exchanged properly. To activate remote debugging of a Flash
movie, two steps are required: enable remote debugging for your movie, and activate the
Debugger from a remote location.

Enable Remote Debugging

To enable remote debugging for your movie:

1. Choose File → Publish Settings.

2. Select the Flash tab of the Publish Settings dialog box and check the Debugging
Permitted option.

3. If you'd like to password-protect your movie so that only a select few can access the
movie for debugging, enter a password in the Password box. If you don't enter a
password, no password will be required to debug your movie.

4. When ready, publish your movie. In addition to the SWF file, Flash will also create a
file with the .swd extension. This file is necessary for remote debugging. Upload it to
the server along with your SWF file(s), HTML, and so on. Be sure that the SWD and
SWF files are in the same directory on the server.

5. To prepare your movie for remote debugging, choose Window → Debugger
(Shift+F4) to open the Debugger. Click the Debugger pop-up menu and select Enable
Remote Debugging.

Your movie is now ready for remote debugging.

Activate Remote Debugging

Once you have made all the necessary settings in Flash, you are ready to do some remote
debugging. To activate the remote debugger:

1. Launch Flash MX if it isn't already running.

2. Use either a web browser or the stand-alone Flash Player to open your finished movie
from its remote location, by entering the movie's URL. The Remote Debug dialog box
appears automatically.

3. Choose either Localhost or Other Machine. Select Localhost if the Debug Player and
Flash MX are on the same computer; select Other Machine if they are on different
computers. Enter the IP address of the computer running Flash MX. Click OK.

4. If you published your movie so that it requires a debugging password, you'll be asked
to enter it. After doing so, click OK.

Your computer switches to Flash MX, and the Debugger is now activated.

To read the latest information on debugging movies in Flash MX, consult the Macromedia
website, www.macromedia.com/support/flash.

Monitoring Scripts with the Output Window
When Flash 5 introduced the Output window, it added a much-needed element to the
ActionScript equation. The Output window is an essential part of building any movie that uses
ActionScript. This is because the window allows you to ask specific questions of the Flash
Player and get feedback.

What kinds of questions can you ask it? Anything that pertains to your movie. Unfortunately,
you can't ask, "Why isn't this @#$%&!! thing working!" but you can ask for things like the
values of variables and properties, the location of objects on the Stage, the path to a Movie
Clip instance, or the name of the most recent frame label. The Output window will answer
questions about any of the properties or parameters known in ActionScript. Additionally, the
window is there to display any scripting errors as they arise. If you script something that Flash

doesn't understand, it will tell you where the problem lies by printing a message in the Output
window.

In some cases, it's possible to get the Output window to give you information without asking
it a question directly. The List Objects and List Variables functions allow you to get
information about the objects and variables in your movie by using simple menu commands.

In movie editing mode, the Output window is usually hidden and unnecessary. That's because
its role deals more with the testing of movies than creating them. As you compose
ActionScript and check its syntax, the window may pop open if there is an error to report.

When you're working in Test Movie mode, Flash will open the Output window whenever it
has something to tell you; it will either report an error or respond to a question that you had
asked it directly while using the trace function. (To learn more about trace, see its description
later in this chapter.)

To open the Output window on your own, select Window → Output or press Shift+F9. The
Output window will appear, and its contents will be blank. The Output window offers the
following commands in its Options menu (see Figure 18.4):

Figure 18.4: The Options menu of the Output window

Copy (Cmd/Ctrl+C) Copies the contents of the Output window to your computer's
Clipboard.

Clear Erases the contents of the Output window.

Find (Cmd/Ctrl+F) Searches the contents of the Output window.

Find Again (F3) Repeats the preceding search.

Save to File Saves all information in the window to a text file.

Print Prints all contents in the Output window.

Debug Level Sets the level of detail for information printed in the Output window.

List Objects Function

While working in Test Movie mode, you can call upon the Output window to give you
specific information about all the objects in your movie. This information is delivered in a
cascading, outline form to give you an idea of the hierarchy of objects as well. List Objects
will tell you the level number, frame number, type of object (MovieClip, Button, or shape),
and absolute target path to each Movie Clip instance. This feature can be especially handy
when taking stock of a movie's "cast" or tracking down an errant target path.

To list the objects in a Flash movie:

1. Save your movie and then select Control → Test Movie to jump into Test Movie
mode. (The List Objects feature isn't available in regular movie editing mode.)

2. Select Debug → List Objects (Cmd/Ctrl+L). The Output window appears and prints
the information for all movie objects in the window. For an example, see Figure 18.5.

Figure 18.5: The Output window will list all the objects in a movie while Flash is
running in Test Movie mode.

List Variables Function

List Variables is another function that is available only while Flash is running in Test Movie
mode. Its purpose is somewhat self-explanatory. When selected, List Variables will cause the
Output window to print all the variables in a movie, the target path to their location, and their
value when the function is called.

To list the variables in a Flash movie:

1. Save your movie and then select Control → Test Movie to jump into Test Movie
mode. (The List Variables feature isn't available in regular movie editing mode.)

2. Select Debug → List Variables (Cmd+Option+V [Mac]/Ctrl+Alt+V [Win]). The
Output window will immediately print all the variables in your movie, their target
path, and their value at the time they were printed.

 Tip Variables and objects are not tracked dynamically when you use the List Variables or List
Objects command. Rather, when you select either List Variables or List Objects, the
Output window prints the specified information at the instant it receives the command. To
continuously monitor variables or objects in your movie, it's best to use either the Display
List in the Debugger's Variables tab, or the trace function.

Using trace

The trace statement is every ActionScripter's best friend. It enables you to ask Flash to report
specific bits of information about your movie. Flash answers your queries by printing
information to the Output window each time you ask for it. This question-and-answer routine
can allow you to gather all kinds of information about your movie and to track things like
dead handlers, Movie Clip parameters, target paths, variable values, results of functions, and
so on. Once you get started using trace, you will wonder how you ever created scripts without
it.

Because it is an action, trace is entered in the Actions panel alongside all your other script
statements. The syntax is as follows:

trace("literal info in quotes"+variablesOrProperties);

You can see that trace will accept several different kinds of information. It can be helpful to
use literal statements when you use trace, especially if you are tracking multiple parameters,
for example:

trace("loopcount: "+i);
trace("horizLoc: "+_root.ball._x);
trace("vertLoc: "+_root.ball._y);
trace("instance: "+_root.ball.newBall+i);

This example demonstrates the fundamental techniques involved in using trace. Place quotes
around all information that you want to appear in the Output window exactly as it appears in
the trace action statement (such as the name of the thing you want to trace). Flash interprets
this as a literal string and prints it verbatim. This is extremely useful for creating labels for
your information. For an illustration of this, see the preceding script example. The labels
loopcount:, horizLoc:, vertLoc:, and instance: will appear in the Output window exactly as
they appear in the trace statement because they were entered as strings.

Another common feature is the string operator (+). This character concatenates information so
that it appears as one "thought" in the Output window. For example,

trace(":"+"-"+")");

would print to the Output window as simply

:-)

You can enter trace anywhere within a script, although you may find that some locations are
better than others. For instance, to track a variable that increments while a loop is executed,
you want to put the trace statement inside the loop so that it monitors the loop value each time
it cycles through.

Inspirational Design Model
When we decided to present an inspirational example for each chapter, the idea was that each
artist/site/game/movie/etc. we presented would be a shining example of the material covered
in the chapter. This chapter is an exception. No one wants their work to be remembered as an

example of debugging and troubleshooting! However, these tasks are something that everyone
has to do at one point or another during the development process.

The example presented for this chapter is the Macromedia website or, more specifically, the
Flash resources found at www.macromedia.com/software/flash/. This is an invaluable
resource for Flash users and has many things to offer developers of all abilities. Here is a
partial list of the Flash offerings at the Macromedia site:

• Training and tutorials
• Galleries of professional Flash work
• Application documentation and downloads
• Related software and products
• User forums, discussion groups, feature requests, and TechNotes

The Macromedia TechNotes and user forums are particularly helpful and can be a great
source of information if you are stuck figuring something out. Remember, nothing is created
in a bubble, and it can be good to get outside input. These resources are there to help members
of the Flash community, so take advantage of them. Remember to use proper "netiquette"
when interacting with any kind of user group, and be sure to read the FAQ sheet before
posting any messages.

Do you have an idea for improving Flash? Submit a feature request to Macromedia to let them
know what you think of the product.

Summary
This chapter concludes your initial lessons and introductions to ActionScript and brings the
topic full circle. You learned many different approaches to help streamline the ActionScript
writing process. Those tips are designed to help you work smarter and prevent script-related
problems before they have a chance to occur. You were also presented with a list of
troubleshooting questions to assist in more clearly defining a technical problem. The art of
fixing scripting errors doesn't lie in one's knowledge of the language, but in the ability to
understand the relationship and flow of ActionScript elements.

This chapter also introduced you to two essential problem-solving tools: the Debugger and the
Output window. Even though these tools won't fix problems for you, they do provide a useful
service by assembling all the script information contained in a movie. By organizing these
details, the Debugger and the Output window enable you to take a broad view of the entire
movie and the scripts it contains.

Hands On 5: Using ActionScript to Create
an Interactive, Multilayered Timeline
Overview
ActionScript makes it possible for you to create a Flash movie that performs any way you
want it to. Although there are some technical limits to what Flash can and cannot do,

ActionScript allows you to smash through the boundaries of Flash as an animation-only
application. Once you progress to this level, Flash becomes a tool for authoring interactive
experiences and creating robust, enveloping multimedia productions.

In this tutorial, you will expand some of the techniques you learned earlier. In Chapter 16, you
learned how ActionScript can be used to create a simple slider controller. A button is placed
within a Movie Clip, which is then locked to a set of coordinates on the Stage. When the
Movie Clip is made draggable, it becomes a slider that you can move across the Stage by
manipulating it with your mouse. As the slider moves, you can also track its position and use
that information to effect other changes in your movie.

This tutorial takes some of these basic slider concepts and expands them to create a more
advanced slider-one that "snaps" into place on the Stage when it reaches a hot spot. Also,
when this slider reaches a hot spot, it loads another, new movie (an SWF file) into the original
movie. In addition to all of this, you will learn how to write custom functions that can be used
to control the loaded movies from the main movie Timeline.

This lesson assumes that you have already learned the specifics of creating a basic slider. If
you have not yet done this or would like to review the steps, see the section on custom
controllers in Chapter 16.

 On the CD-ROM To begin this tutorial, you will need to locate the Hands On 5 folder on
the companion CD-ROM for this book. If you would like, you can also take a look at the
finished file, advSlider.fla, which is in that folder.

 Note If you want to look at this movie, it is important that you either open the movie and run
it from the CD-ROM drive, or copy the entire Hands On 5 folder to your computer's
desktop. This movie uses external SWF files. If you separate the main movie from the
additional files that it needs, it will be unable to perform correctly. If this is confusing,
don't worry; it will all be covered in detail when you learn about the loadMovieNum
action in this tutorial.

This movie (see Figure H5.1) is the finished version of what you will create in this tutorial.
The specific content of this movie is not really finished; a discussion of all the possibilities of
an interactive Timeline such as this would probably fill another book. What is included with
this tutorial are all the components you need to get started and to master this idea; you can
then tap your own creativity to add more visual content, additional external movies, and-the
works!

Figure H5.1: The finished movie has a Timeline slider that is used to load new movies into
the main movie.

Phase 1: Preparing the Movie
Are you ready to get started? Great! Launch Flash, copy the Hands On 5 folder to your
computer's hard drive, and open the handsOn5.fla file-and you should be set to begin.

1. When you open the initial file, you should see a Timeline with dates, and a green
slider knob sitting on top of the line in the left corner of the Stage. All of the
ActionScript for the slider has been written so that you can focus on the more
advanced topics of the tutorial. If you'd like, select Control → Test Movie to give the
slider a try.

2. This slider will have a unique functionality. When it reaches one of the points (dates)
on the Timeline, it will snap into position. To create this effect, you will need to add a
few components to the movie. In the main Timeline window, click the Insert Layer
button to create a new layer in your movie. Name it targets. Grab the layer and
drag it beneath the layer named text; slider.

3. Select Window → Library to open this movie's Library panel. The Library contains
several items, some of which are already in the movie. Drag the Movie Clip named
dropTarget to the first keyframe of the targets layer. Position it so that it is beneath the
first dot on the Timeline, under the phrase "1920-30."

Select the Movie Clip (if it isn't highlighted already) and choose Window →
Properties. In the Instance Name field, label the instance drop1.

Repeat this process for the remaining four dots of the Timeline. Drag the dropTarget
clip to the Stage, position it under a dot, and give the instance a name. From left to
right, the remaining instances should be named drop2, drop3, drop4, and drop5 (see
FigureH5.2).

Figure H5.2: The dropTarget instances are named consecutively across the stage.

4. The dropTarget instances are nearly complete. Although the gray color creates a
decent graphic look to the Timeline, the instances should really not be a part of this
design. Click the drop1 instance and go to the Color menu of the Property Inspector.
Choose Alpha from the menu and enter a value of 0 in the field. This makes the
instance invisible (but still functional) on the Stage. Repeat this process for the
remaining four drop instances.

Phase 2: Adding ActionScript
5. Now you are ready to enter some ActionScript to get the slider to function in a new

way; you will make the slider snap into position when it reaches one of the Timeline

dots. Click the Edit Symbols button and select Slider Knob from the pop-up menu.

Flash switches to Symbol Editing mode, and the slider knob is centered on the screen.
Highlight the symbol and select Window → Actions to display the Actions panel. You
should see some existing ActionScript that helps the slider perform its basic duties.
You will add to these.

Click after the stopDrag() action and press Return/Enter to start a new line. Tab over
and enter these statements:

if(eval(_root.slider._dropTarget)==_root.drop1){
 _root.slider._x=100;
 lock.start();
}
 Note All statements should fall within the curly braces ({}) for the

on(release,releaseOutside) handler. And what's with the double handler? Good
question! It's there to help ensure that the script fires, even if the mouse isn't over
the slider button when it's released. This is a "precautionary" handler to help
avoid potential buggy behavior.

These statements create the snapping behavior for the slider. The if statement
evaluates an expression that uses the _dropTarget property. The expression checks to
see if the slider instance was dropped over the drop1 instance. If it was, then the
expression evaluates true and the conditional statements are executed. In these
conditional statements, the slider instance is set to a horizontal position of 100
(snapped into place), and the sound lock is cued to play.

To read more about the start() method of the Sound object, see Chapter 22. It's
important to reinforce the snap with audio; that's why it's included here. Try running
the movie with the sound off. Its absence will show you that the sound is a helpful
addition to any kind of drag-and-drop behavior.

6. Close the Actions panel and return to movie editing mode. Select Window → Test
Movie and try the slider. Drag it over the first Timeline dot and watch it snap into
place. Also, make sure that you have your system volume turned up so that you can
hear the snap sound.

7. Leave Test Movie mode and return to your main Timeline. Again, click the Edit
Symbols button and select Slider Knob from the pop-up menu. Open the Actions panel
for the slider knob symbol. Enter this additional statement after the lock.start() line:

loadMovieNum("20.swf",1);

This statement provides a very important feature to your movie. It loads an additional
Flash movie into the main movie. More accurately, it loads the new movie above the
main Timeline into movie level 1. The loadMovieNum() action is used to load movies
into levels above the main Timeline. In this statement, the movie 20.swf is loaded into
level 1. When you use this action, the new movie is loaded and positioned at the
upper-left corner of the movie that is hosting it. 20.swf was created so that it would fill
the top half of the handsOn5 Stage.

You may have noticed that when you copied the Hands On 5 folder to your hard drive,
it contained several movies. The loadMovieNum action is the reason for this. When
you load an external Flash movie, the main movie must be able to locate that movie
before it can be loaded. The first parameter of this action asks you to specify a path to
the external movie. The path can be either absolute (full URL) or relative to the movie
where the action is called. This tutorial uses a relative URL. Since all the movies are
in the same folder (Hands On 5), Flash is able to find 20.swf and load it into _level1.

8. If you have not done so already, save your movie. Return to movie editing mode and
select Control → Test Movie. Drag the slider over the first dot; it should snap into
place and load the 20.swf movie.

9. Return once again to movie editing mode. Now you will enter the additional actions to
make the other drop instances work. This will make each dot of the Timeline a hot
spot, so that when the slider is positioned over it, a new movie is loaded into level 1.
Switch to Symbol Editing mode again and open the Actions panel for the slider knob
symbol. Add the following actions so that the entire contents of the
on(release,releaseOutside) handler look exactly like Listing H5.1.

 Note Two movies cannot occupy the same movie level simultaneously. In this tutorial,
each separate SWF file will be loaded into _level1. As a result, whatever SWF is
currently sitting in that level will be replaced by the next movie loaded into that
same position.

10. Listing H5.1: The on (release,releaseOutside) Handler for the Slider Knob Movie Clip
Symbol

11. on(release, releaseOutside){
12. stopDrag();
13. if(eval(_root.slider._dropTarget)==_root.drop1){
14. _root.slider._x=100;
15. lock.start();
16. loadMovieNum("20.swf",1);
17. }else if(eval(_root.slider._dropTarget)==_root.drop2){
18. _root.slider._x=200;
19. lock.start();
20. loadMovieNum("40.swf",1);
21. }else if(eval(_root.slider._dropTarget)==_root.drop3){
22. root.slider._x=300;
23. lock.start();
24. loadMovieNum("60.swf",1);
25. }else if(eval(_root.slider._dropTarget)==_root.drop4){
26. _root.slider._x=400;

27. lock.start();
28. loadMovieNum("80.swf",1);
29. }else if(eval(_root.slider._dropTarget)==_root.drop5){
30. _root.slider._x=500;
31. lock.start();
32. loadMovieNum("00.swf",1);
33. }else{
34. unloadMovie(1);
35. }
36. }

38. The ActionScript in Listing H5.1 may look a little daunting, but it's really quite
simple. In fact, you have already entered many of the basic components needed for
this script. You can break it down by looking at each drop location as a series of four
statements, like this:

39. conditional to check drop location;
40. position slider instance (snap effect);
41. play lock sound;
42. load external movie for the timeline location;

43. Using an Alternative Syntax for Long Conditional Statements
44. Flash MX introduces a very welcome alternative to the if...else statement-it's called

switch. It presents a series of separate conditions and allows a script to choose
accordingly depending on which condition is true. The script in Listing H5.1 could be
rewritten using the following much more elegant and easy-to-read syntax:

45. on(release,releaseOutside){
46. stopDrag();
47. dragging=false;
48. switch(eval(_root.slider._dropTarget)){
49. case eval(_root.drop1):
50. _root.slider._x=100;
51. lock.start();
52. loadMovieNum("20.swf",1);
53. break;
54. case eval(_root.drop2):
55. _root.slider._x=200;
56. lock.start();
57. loadMovieNum("40.swf",1);
58. break;
59. case eval(_root.drop3):
60. _root.slider._x=300;
61. lock.start();
62. loadMovieNum("60.swf",1);
63. break;
64. case eval(_root.drop4):
65. _root.slider._x=400;
66. lock.start();
67. loadMovieNum("80.swf",1);
68. break;
69. case eval(_root.drop5):
70. _root.slider._x=500;
71. lock.start();
72. loadMovieNum("00.swf",1);
73. break;
74. default:

75. unloadMovie(1);
76. }
77. }

78. Each "chunk" of script is specific to an instance of drop1 to drop 5. If the slider
instance is dropped over one of these instances, the statements within the conditional
are executed. Note that each set of statements is unique. Each locks the slider instance
to a different location, and each loads a different external SWF file.

79. There is also a final else part of the condition. If the slider instance is not dropped over
any of the drop instances, then whatever movie is playing at level 1 is unloaded.

 Note ActionScript does not require a URL to unload a movie; it requires only the level
that you wish to remove.

80. Return to movie editing mode and save your movie. Then select Control → Test
Movie and try out the new features of the Timeline. Each time you drag to a dot on the
Timeline, a new movie is loaded. Conversely, each time the slider is left off of a dot, a
movie is removed.

Phase 3: Adding Playback Controls
11. Your next step of the project is to include some buttons that allow you and your

audience to control the loaded movies from the main Timeline. Drag the navButton
button symbol from the Library panel to the Stage of the main Timeline. Position it
somewhere below the 150-pixel mark.

 Note Each external movie that is loaded is 150 pixels tall. If your buttons were
positioned above the 150-pixel mark, they would be covered by each external
movie when it is loaded into the main movie. To check your button positioning,
select View → Rulers to see exact pixel measurements.

12. Position the buttons so that one is to the left of the other. Highlight the leftmost button
and select Window → Panels → Transform. In the Rotate field, enter a value of 180 to
flip the button horizontally.

13.
14. Rather than write specific scripts to control each movie, you will use functions to

specify the scripts for each button. Functions are like preset routines that you can have
your movie perform. Once Flash has executed the actions where you initialize your
function, it acts as though it has "learned" the routine, and will be able to perform it
whenever the routine is called.

Click frame 1 of the targets layer in your main Timeline. Select Window → Actions to
display the Actions panel for this frame. Enter the following statements in the
window:

function rewind(){
 _level1.gotoAndPlay(1);
}
function skip(){
 _level1.gotoAndStop("end");
}

These statements do something very important. They create two functions (or preset
routines) for your movie. When you call the rewind routine, your movie knows to send
the movie Timeline at _level1 back to play at frame 1. The skip routine is similar;
when called, it will tell the movie Timeline at _level1 to go to a frame label named
end, and stop there. A function has advantages: Rather than scripting specific actions
each time you want to control an element of the movie, you can call the function. This
saves time and space, especially if the routine will be used many times throughout a
movie. To learn more about functions, see Chapter 15 or the ActionScript Reference
section.

It is also very important to note where these scripts are placed in your movie. They are
in frame 1, Scene 1, of the main Timeline. This means that when the movie starts
playing, these scripts are among the first things to be read. Flash will not know how to
perform a function routine unless you tell it what the routine involves. By putting this
information at the start of your movie, you can be assured that Flash will know how to
perform each function.

15. Constructing your functions is only the first part of the process. In order to use them in
your movie, they have to be called by an ActionScript statement. Click the leftmost
button (it should be pointing to the left side of the Stage). Select Window → Actions
and enter the following statements in the window:

16. on(release){
17. rewind();

}

This statement calls the rewind function when the mouse is released over the button.
Now, open the Actions panel for the other button (pointing to the right side of the
Stage) and enter these statements:

on(release){
 skip();
}

This script calls the skip function when the button is clicked. Because you wrote your
functions with nonspecific ActionScript, they will work for any movie that is loaded
into _level1. There is one catch, though: To perform the skip function, each external
movie has to have a frame label in its last frame named end. Without this feature,
Flash will not know how to interpret the function because it will be unable to find the
label specified by the function.

 Note In this example, it wasn't necessary to define a target path for the functions

because they were declared and called from the _root level or main Timeline. If
the functions were called from the movie in _level1 or from a Movie Clip, it
would be necessary to include a target path for the function-for example,
_root.rewind(). Functions, like Timeline-specific variables, have scope only
within the Timeline on which they were created. In this tutorial, the rewind()
function was created on the main Timeline. However, since it is also called from
the main Timeline, no target path is needed.

18. Close the Actions panel and return to movie editing mode. Save your movie; then
select Control → Test Movie. Experiment with your Timeline to see how it works.
The buttons you just added should be able to rewind and jump to the end of each
external movie.

Next Steps
This tutorial walked you through all the basic steps for creating an interactive Timeline that
can load external SWF files. You also learned how to create functions that can control loaded
movies from the main Timeline. This is just the beginning, however. With these basic
elements of construction, you should be able to take this Timeline project to new heights.
Here are just a few of the possibilities:

• Longer, more interactive external movies
• Additional navigational buttons that take your audience to different locations (not just

the beginning and end) of the external movies
• Dynamic background graphics that change when the slider isn't over a Timeline dot

Part VI: Working with Audio
Chapter List
Chapter 19: Understanding Digital Audio in the Flash Environment
Chapter 20: Flash Audio Basics
Chapter 21: Synchronizing Audio with Animations
Chapter 22: Controlling Audio with ActionScript
Hands on 6: Creating Dynamic Soundtracks with DoReMedia Sound Families

Part Overview
Part VI begins one of the most interesting, important, and, we daresay, fun aspects of working
with Flash-sound. Sound means all sorts of things: sound effects (BANG! KA-POW!
CRUNCH!), music, dialog, and any other audible elements of your Flash movie. Sound adds
life to your movies and animations. It provides extra impact for scenes that are funny or scary,
gives your characters voices, and allows your audience to take a break from reading and to
listen to your story or presentation.

Sound effects can offer feedback to your audience. For every button click or other interaction
with your movie, sound can let your audience know that their request was received. And
music…there are so many possibilities! Use music for theme songs, background ambience,

and dramatic flair. Or harness the power of ActionScript to create interactive audio
environments in which your movie's sound is dictated solely by the whims of the folks who
are experiencing it. Whatever the audio demands and goals of your Flash movie, this part of
the book will surely set you on the right path.

Chapter 19: Understanding Digital Audio in
the Flash Environment
Overview
Sound is one of the most neglected yet potent components of contemporary multimedia. In
this context, the word sound means many things: sound effects, music, narration, and dialog.
Although all of these elements can lift a work of multimedia to new heights, designers rarely
take advantage of the possibilities afforded by sound in their Flash productions. Sound in and
of itself is a powerful medium; it communicates through channels that are unavailable to
imagery and text. This characteristic doesn't make sound superior, but rather makes it
uniquely suited to capturing and holding the attention of an audience through their sense of
hearing.

There are many reasons why sound hasn't been a major player in the multimedia arena,
particularly with web-based multimedia applications. Most of these are not germane to the
topics surrounding Flash and will be saved for another time. What is very relevant, though, is
the fact that Flash works well with audio components. It provides several options that allow
you to include both sound and music in your movies. Every developer who opens or
downloads a copy of the software should take advantage of the richness it can bring to their
projects.

This chapter will introduce you to some of the possibilities that audio adds to the Flash
equation. If you are new to working with sound on your computer, you will also learn some of
the basic technical terms and theory surrounding digital audio.

Digital Audio, Technically Speaking
To a Flash designer or developer, the technical specifics of digital audio may seem remote,
abstract, and insignificant to the overall production of a Flash movie. Nothing could be further
from the truth. In fact, the technical specifics of digital audio have a very important impact on
your project, especially when it comes to publishing and delivering your final movie. A
developer who knows the ins and outs of digital audio will be able to prepare and plan for a
project while keeping sound in mind from the very beginning. Technical knowledge not only
allows you to select the right options for your movie at the outset of a project, it enables you
to troubleshoot problems when they arise. Plus, with a good understanding of how digital
sound files work, it's much easier to bend them to your creative will in the context of your
Flash projects and movies.

Sample Rate

It's likely that most of you reading this book have had some sound-recording experience using
some form of magnetic tape. Whether it was with a toy tape recorder, Dictaphone, open-reel
tape deck, or other recording device, magnetic tape has been accessible to people for both
professional and hobbyist recording for many years. In this medium, sound waves are
converted to magnetic impulses and stored on long strands of tape. When played back, these
impulses are able to re-create sounds by imitating the pulsation of the original sound waves.

If you have worked with sound in this way, you have experience with analog sound
recording. It's called analog because the magnetic information tries as closely as possible to
remain true, or analogous, to the shape and amplitude of the original sound wave. Positive
and negative curves in a sound wave are mimicked by the positive and negative magnetic
charges on the recorded audio tape. For an illustration of this, see Figure 19.1.

Figure 19.1: Magnetic tape is used in analog sound recording. Charged particles are scattered
on the tape to exactly represent the shape of the original sound wave.

In the world of interactive multimedia, analog recording has been supplanted by digital sound
recording. In digital recording, positive and negative magnetic impulses have been replaced
by the 1s and 0s of binary code. When making a digital recording, the digital recording device
(a computer, for instance) examines the sound wave and takes snapshots of its amplitude.
These snapshots are called samples, and the speed at which the snapshots are taken is called
the sample rate. See Figure 19.2 for an illustration of sample rate.

Figure 19.2: A digital recording device takes samples, or snapshots, of a sound wave. These
are interpreted by the playback device and used to re-create the original sound using the
digital information.

For most consumer digital audio, the sampling rate is 44.1kHz, or 44,100 samples per second.
This means that for every second of audio you wish to store digitally, there are over 44,000
pieces of information to represent that single second of sound. If you were to drop the
sampling rate by half (22.05kHz), you would still be able to represent the original wave.
However, because you would be trying to do it with half the amount of information, the
quality of the sound would suffer. As samples are removed from a digital sound, it has fewer
and fewer snapshots to re-create the original source sound.

Digital Sampling Rate and the Nyquist Theorem

The sample rate of 44.1kHz was neither selected whimsically nor plucked from a hat. It's
actually rooted in scientific study into the transmission of data signals.

In the 1920s, Harry Nyquist developed many theories surrounding sound recording. One of
these had an important impact on digital audio recording technology. The Nyquist theorem
states that in order to accurately represent a sound, the sample rate must be at least twice the
value of the highest frequency you wish to record. The reason for this is simple. A wave has
two portions: positive and negative. To represent this accurately, you must have at least one
snapshot from each of the extremes. Since human hearing tops out at around 20kHz, the
Nyquist theorem proposes that the sample rate for recording should be at least 40kHz. This
figure is twice as high, and can capture samples quickly enough to represent both the positive
and negative slopes of a sound wave within the range of human hearing.

The sampling rate for a standard audio CD is 44.1kHz, which is 4,100Hz over the minimum
value. This allows plenty of room to capture all the important frequencies and allows some
extra room for others that make their way into the sound recording.

Bit-Depth Resolution

Bit depth is another important term in the world of digital sound recording. It is the number of
values available to describe the amplitude of the wave for a given sample. Where sample rate
is used to describe a sound along the X axis, bit depth is a measurement along the Y axis. For
an illustration of this, see Figure 19.3.

Figure 19.3: Bit depth measures the amplitude (Y axis value) of a wave for each sample (X
axis) in the sound file.

Bit depth, like sample rate, has finite resolution. While most recording devices can sample
sounds at only 44.1kHz or 48kHz, they are also generally limited to a bit depth of 8 or 16. Bit
depth is represented by binary numbers. In an 8-bit system, there are 256 possible values (28 =
256), ranging from 00000000 to 11111111. With 16 bits, the values increase to a possible
65,536 (216 = 65,536): 0000000000000000 to 1111111111111111. Clearly, you can see that
16-bit quality offers a much broader spectrum of values. At this resolution, it's less likely for
samples to be rounded off to the nearest binary value. They will generally remain more true to
the original wave shape than an 8-bit sound. To see the difference between the two
possibilities, see Figure 19.4.

Figure 19.4: Eight-bit sounds have fewer values for each sample. Consequently, many

samples are rounded to the nearest value, and the original wave shape is compromised in the
digital recording. Because 16-bit sound offers a higher resolution with greater accuracy, there
is less rounding, and a wave remains more true to the original (although still far from perfect).

Stereo vs. Mono

If you have purchased any electronics during the last few decades, you have undoubtedly
heard the term stereo. Whether or not you know it, you have probably been enjoying stereo
sound recordings throughout most of your life. But what does it mean exactly? Most people
usually answer that question by saying, "It sounds better!" Sure, in many cases, it does sound
better, but that's not much of an answer. Stereo means that a sound is played through two
simultaneous channels: left and right. As their names suggest, each channel has a unique
position. A sound can be played back entirely in the right speaker channel, entirely in the left
speaker channel, or any combination in between. This creates the aural illusion of space and
position in an audio recording.

The process (and for many, the art) of assigning left and right channel information to a sound
is known as panning. In a stereo sound recording, each element can have its own unique pan
information. For instance, in a rock 'n' roll recording, you may hear drums and bass share the
right and left channels equally, while the lead guitar is panned to the left and the rhythm
guitar is panned to the right. There are no rules when it comes to stereo sounds; the best judge
is your ears. Later in this chapter, you will learn about some of the considerations in using
stereo sound from a sound design point of view.

The alternative to stereo sound is monaural, or mono, sound. The name is a bit of a giveaway.
Monaural sounds have only a single channel and can be played through a single speaker. In
the case of a two-speaker setup, mono sounds are shared equally between the left and right
speakers. Because they contain no positional information, mono sounds are great for dialog,
sound effects, and other elements in which position isn't crucial to the success of a sound, or
in which the sound's position can be assigned later through another means, such as an
ActionScript command.

 Note Flash has several options that allow you to control stereo and mono parameters for a
sound in your movie. To learn about the basic control options, see Chapter 20. To see
some of the more advanced options provided by ActionScript, see Chapter 22.

Storing Sound: Digital Audio File Types

All of the technical specifics surrounding a sound have to be stored somewhere so that a
sound can be played back and used in a Flash movie. As you can imagine, quite a lot of room
is required to store a sound file. For a CD-quality sound recording, you have 44,100 sound
samples per second, each with a 65,536-digit binary number to describe the sample value. If
the sound is stereo, and thus has information for two channels, you have to double all of the
sample and bit-depth information. For a 10-second, CD-quality, stereo sound, you need
1.7MB to store all of the necessary information. That amounts to around 30MB for your
average 3-minute song!

If you are scared off by this, don't be. There are many techniques you will learn to curb the
size of sound in your Flash movies. At this point, your major concern should be the kinds of
sounds that you can use in the Flash authoring environment. You know that digital audio

information is based on three things: sample rate, bit depth, and stereo/mono information. All
of this information is organized and packaged as a digital sound file that can be read by
software on your computer, including Flash.

Flash is capable of handling most of the contemporary sound file formats that you will
encounter. Each file format has its own particular idiosyncrasies. However, once the sound is
in the Flash environment, it's available for use in your movie in a variety of ways. Following
is a list of the different kinds of digital sound files that you can use with Flash. To learn more
about how you can incorporate these files in your Flash movie, see Chapter 20.

AIFF: Audio Interchange File Format (.aif) This format is for Macintosh import only,
although most Windows-based computers should be able to read and play AIFF files with the
help of QuickTime 4 or higher.

WAV: Windows Audio File Format (.wav) This format is primarily for Windows, although
Macintosh computers can import WAV files into Flash if QuickTime 4 or higher is present.

MP3: MPEG Layer 3 (.mp3) This format can be imported on both the Macintosh and
Windows platforms. This is the only compressed audio format that can be imported into
Flash. To learn more about MP3 compression, see Chapter 20.

The following sound types require QuickTime 4 or higher:

Sound Designer II Although Digidesign no longer manufactures the software, the Sound
Designer II format is still used with Pro Tools audio-editing and audio-mixing software.

QuickTime movies (sound only) QuickTime movies don't have to contain video information.
These video-less files are called sound-only movies and can be used in Flash on either the
Windows or Macintosh platform.

AU: Sun AU (.au) This format is used primarily with Sun or Unix computers and can be used
in Flash on either the Windows or Macintosh platform.

System 7 Sound This is a Macintosh-only sound format that is used for the general system
sounds of the Macintosh operating system.

Preparing Audio for Flash
Sound and music can add another dimension to your Flash movies. They can add the finishing
touches to your animations and graphics by communicating tone. With the right sound
components, a scene can be truly funny, dramatic, scary-whatever you like. Selecting or
producing the right sound can make a huge difference in the success of a Flash production.

You are probably excited about getting some sounds into your movie so that you can see how
all this works. However, it's important to be sure that your sounds are ready to be a part of a
Flash movie before they hit the vector stage. After you have either created or found the right
sounds, it's essential that you edit and prepare the files to fit your needs. This process
demands an extra step before a sound is used in your movie, but it ensures that the sound is
ready for the task.

Sound Resources

There are many, many sources where you can acquire audio for a Flash production. The first
(and best) resource may be yourself. If you sing, play an instrument, or beat on pots and pans,
you can create audio for a Flash production. Be creative! In many creative endeavors, the
sincerity and originality of a work can far outshine its technical attributes. Something doesn't
have to be "polished" to be good: It simply has to work. It must work in the context of your
movie and fit the mood or message you wish to convey.

So, to all of you closet minstrels out there who are working with Flash, get offline for a few
minutes and write some songs. Take a portable recording device outdoors someday and see
what sounds you can record in your neighborhood. Are you doing a movie about the
outdoors? Go for a hike and record everything: footsteps, birds, trees, water, and so on. You
will be amazed at how the audio experience of the hike translates to your sound recordings.
Do you need a sound effect of someone falling down? Record the sound of yourself kicking a
cardboard box. Professional foley artists and sound designers (people who create sound
effects for a living) don't always use a recording of an actual object or event to serve as the
sound for that specific object or event. Do you think that's actually fire you hear? No, it's the
sound of someone crumpling cellophane or a plastic shopping bag. The possibilities are vast
when it comes to producing your own sound effects and music. Use your resources, be
creative, and above all, follow your instincts over what you think is "right" or "expected."

As far as the technical side goes, when it comes to getting this done, you are on your own.
The technical considerations of audio production are beyond the scope of this book. At the
very least, you will need some kind of recording device, a cable to connect it to the computer,
a sound card or audio input jack on the computer, and some audio software to record the
sounds as digital files. If you have a laptop computer or a long audio cable, you can
experiment with recording directly into the computer. For details on this, consult your owner's
manual and the documentation for your sound card and audio software.

If you have tried and tried with no luck, or you simply don't have the time or resources, there
are alternatives to creating your own sounds and music for a Flash movie. Here is a brief list
of your options:

Sound effect CDs Sound effect libraries can be purchased for use in multimedia productions.
Generally, you have to buy them from a company that distributes licensed music products and
audio-sample libraries. There are too many to mention here; your best bet is to do a search for
sound effect libraries on the Internet. Be sure to read and obey the licensing agreement for
any library of this kind.

Royalty-free music and loop CDs These are also a fine source of music and loop material
for your projects. Again, there are too many to mention, but a quick search on the Internet
should give you plenty of options. As always, watch the licensing agreement to be sure that
you use the product legally. When appropriate, give credit to the composer whose work you
are using.

Flash and sound-effect resource websites Websites like www.flashplanet.com,
www.sonify.org, and www.flashkit.com offer links to many different sound resources where
you can go to find sound effects, music, and audio loops for your movies. Always be sure to

read the legal agreement before using anything you get on the Web. Just because you
downloaded something doesn't mean that you can use it any way you'd like.

DoReMedia Sound Families DoReMedia (www.doremedia.com) has developed a series of
music "families" that are designed specifically to create multi-track audio in Flash. These can
be licensed from the company directly at its website. To learn more about the techniques
involved with using Sound Families, see Chapter 21.

Editing Sound Files

No matter where or how you acquire your sound files, it's important to edit them and make
sure that they are ready for the Flash environment. Editing can accomplish several things.
Because sound files demand a fair amount of storage space and add to the final size of a Flash
production, it's important to make sure that any unneeded material is stripped from the sound
file. Also, you want to ensure that the file is free of clicks, pops, and other strange noises that
may have made their way into your recording.

If you can't hear a sound file, it is virtually useless unless you are going for an effect that
requires an especially low sound volume. Before you bring any sounds into a Flash movie,
you want to be sure that their output level is as healthy as possible. Once a sound is in Flash,
you can always turn it down, but you can never turn it up.

The next two sections cover the most important and essential audio editing techniques for
preparing a sound for a career in your Flash movie. While there are many other things you
may want to do to ready a sound, these techniques are considered to be the most important
and should be done to every single sound file before implementing it in a Flash movie.

Trimming and Cutting Sound Files

The name of this editing technique says it all, but why is it so important to trim your sound
files? Well, because an extra second of CD-quality, mono sound can add between 80 and 90
kilobytes to your final movie before it is published. If you have lots of sound files with lots of
extra space in them, this figure will really start to add up. The difference in file size between a
3-second drumbeat and 3 seconds of silence is … nothing. It takes exactly the same amount of
space to store silence as it does a full symphony orchestra, so make your files count!

Any time you open a recorded sound file or music file, you are bound to have some dead
space at the beginning and end of the sound. Your task is to make sure that this empty space is
eliminated. Not only does this help keep your movie file size down, but it helps the file to
play more quickly. If a sound has a quarter-second pause before anything is heard, it will
always sound as though it is starting late-not because Flash is running slowly, but because it
has to play through the silence or other junk before it gets to what is important (see Figure
19.5). Trimming sound files takes away the parts that are unnecessary and helps optimize
their performance in a movie.

Figure 19.5: This sound file of a bass riff has unnecessary information at the beginning. Of
course, listening is the key, but here you can tell where the musical information begins by the
"spike" in the waveform. The wave is most active (tallest) where notes and other sounds are
heard in the recording.

To trim a sound file:

1. Open the sound in your audio editor of choice. In a Windows environment, Sound
Forge is a great choice. If you use a Mac, you can choose between SoundEdit 16 and
Peak.

2. Navigate to the beginning of the sound file. Depending on the instrument or object that
makes the sound, the wave will look very different. Play the sound and watch the
playback head as you listen. You should be able to see and hear the point in the wave
where the significant part of the sound begins. You may need to do this several times
to pinpoint the spot.

3. Once you have found the "real" beginning of the sound, click that spot and drag a
selection to the beginning of the sound file. You should see something like the picture
in Figure 19.6.

Figure 19.6: To trim a sound file, you start by making a selection of the unneeded
material at the beginning of the file.

4. Play back the selection and listen. Do you hear anything important to the sound? You
shouldn't. Remember, you are trimming the unwanted material out of the file. When
you play back the selection, you should be listening to all of the dead space that you
want to trim off the file. If your audio editor supports this function, play back the
unselected portion of the sound file. In this case, playing the unselected portion should
allow you to hear exactly what you want with no extra space or silence.

5. If your selection is correct and all of the extra material is selected, clear the unwanted
material by either pressing Delete or selecting Delete from the Edit menu in your

audio editor. If your selection is not quite right, you can always delete the unwanted
material and go back for another pass to get the remaining portion of the wave. Or
choose Edit → Undo and start the process again.

6. Remember that a sound file has two parts, a head and a tail. You just learned how to
trim the head. To trim the tail, the steps are the same. The only exception, of course, is
that you will make changes to the end of the file rather than the beginning.

There are a few other considerations when it comes to trimming files. You should try as much
as possible to trim them at points where the wave crosses the zero-amplitude center axis.
There are many crossings in a single sound file, since a wave is constantly in flux between
negative and positive amplitudes. By trimming at an axis point, you eliminate the possibility
of a pop or click when the file plays back, because the wave is starting at a point of silence
(see Figure 19.7). Alternately, after making your edit, you can fade out a tiny portion (a few
samples or milliseconds) at the beginning of the sound to bring the wave down to zero
amplitude.

Figure 19.7: When the selection is deleted, the wave will be trimmed at a zero point (shown
here in Sound Forge as Infinity) to ensure a smooth start.

It can also be helpful to use fade-outs when trimming files, especially if you have a sound that
sustains. If you select the beginning or end portion of a waveform and apply the fade-out
effect, your audio editor will gradually decrease the sound's current volume to silence over the
portion of the wave you selected (see Figure 19.8). A fade-out allows you to shorten the
length of a sound that decays over a long time, like a gong or cymbal crash.

Figure 19.8: Here you can see the difference in a sound file before and after a fade-out effect
was applied.

Normalizing Audio Files

Volume is one of the most important aspects of sound. If a file doesn't have a strong volume,
you will be unable to hear it. In general, it's better to have to turn something down because it's
too loud than to crank it up because it's not loud enough. As the chief audio engineer for your
Flash movie, you have the responsibility for ensuring that all your sounds are heard, and heard
at the correct volume.

While assembling your audio, it can be difficult (if not impossible) to tell how loud a sound
should be out of context. The good news is that with Flash, you can bring all your sounds into
the program and then tweak the volume as you create your movie. This provides a great deal
of flexibility and takes much of the pressure and guesswork out of the audio production.

Since Flash allows you to manipulate volume from within your movie, you want to be sure
that all your sounds come into the movie at the strongest possible volume. Your audio editor
can help you do this with a command called Normalize. Normalize looks at an entire
waveform and boosts it proportionately within a volume range that you specify without
clipping or distorting the sound. Basically, it ensures that a sound is as loud as it can be
without going over its limit.

 Note Clipping and/or distortion is what happens when a sound's level is pushed beyond the

capabilities of the digital recording or playback device. Although in some analog
applications, distortion is an interesting effect, digital audio distortion is especially
harsh. Avoid it at all costs unless you are pursuing some wild, avant-garde effects.

To normalize audio for your Flash movie:

1. Open the sound file you wish to normalize. Choose Edit → Select All.
2. Depending on which editor you use, the Normalize command could be in a variety of

locations. Generally, it's on a menu named something like Effects or Process. Choose
Normalize from the menu where you find it.

3. A dialog box should appear, asking what settings you want to use for normalizing. For
most multimedia work, a good rule of thumb is to normalize between 96% and 98%.
This boosts the entire file proportionately to 96-98% of its maximum volume. After
Normalize has been executed, save the sound file.

You can see the difference between files that have normalized and those that have not. In
Figure 19.9, note the difference in the amplitudes of the various waveforms.

Figure 19.9: The sound on the left has been normalized, while the sound on the right has not.

Planning for Audio Interactivity

When it comes to audio, sound, and music, one of the most common flaws in contemporary
Flash work is a lack of planning and vision for the role of sound in the production. While
developers spend more and more time pushing the visual and interactive envelopes with
stunning graphics and ActionScript magic, there is a shortage of truly creative audio work. If
you want to have an engaging Flash website or interactive animation, you should look beyond
the visual possibilities Flash offers and explore some of its nonvisual aspects.

Sound is one of the keys to creating immersion, a sense of bathing in the content of a story or
production. To make an audience feel as though they cannot leave your movie or website, you
need to achieve this feeling of immersion. Sound helps create immersion because it draws an
audience into an image, feeds them additional information about the image, and allows them
to interpret its meaning within your story. Sound provides subtext to the dramatic flow and
helps communicate a message that is left incomplete or vague by the visual elements alone.
Sound can also create a sense of mood, and help to guide the audience on an emotional
journey.

You can take advantage of these characteristics by adding sound and music to your Flash
movies. This is not an "add audio and stir" recipe, however. To use audio to its fullest, you
must plan how it will be used and decide which portions of your movie are best suited to
audio components. You must select where sound will be used, and what sounds or music best
convey the message you want to communicate.

Let's say, for example, that you are creating a movie that is like a fairy tale storybook-
something that contains a collection of short stories and nursery rhymes. What kinds of
sounds would you want to use, and what portions of the movie should use those sounds?
There are no right or wrong answers to these questions. The important thing is that the sounds
support the movie and make it a better, more immersive experience. You could consider using
chimes, soft bells, mystical hums, and twinkle sounds for buttons or navigational elements.
You could use soft classical music behind story narration and insert story-specific sound
effects (such as knocks at the door) where appropriate. You could even add specific sounds to
elements when they are clicked or moused over, like comments from Snow White's magic
mirror.

The options for something like this go on forever; your creativity is the only limit. The
important thing to remember is to plan for this. In the same way that you will choose color
palettes, fonts, and other visual parameters, you will need to make some decisions about the
content and use of audio in your movie. Not only does such planning provide you with
direction, but it allows you to create the movie while knowing that sound will be a part of the
final production. Your movie can be designed and scripted so that the audio is included and
tested with all the other elements, rather than tacked on at the end.

Working with Sound Loops

Sound loops can be one of the most useful tools to a Flash developer. They can also be one of
the most dreaded aspects of Flash content for your audience. Sound loops are musical phrases
or rhythmic patterns that are played over and over and over ad nauseum. Sound loops often
get a bad (and generally well-deserved) rap simply because they are not used well. Granted,
listening to the same riff played repeatedly can grate on one's ears. However, there are
different techniques that you can employ to create more musical interest with your loops and
to get more mileage from them in a Flash movie.

First of all, loops are especially easy to use within Flash. The software supports looped sounds
very well and does a good job of keeping the loop going without dropping beats or losing
time. Because sound loops are somewhat "native" to the Flash environment, they can offer a
certain amount of reliability over other kinds of sounds. Another advantage of loops is that
they are compact. A loop may be only a few kilobytes large, but when it's played continuously
over a long period of time, it stretches the length of a several-hundred-megabyte sound file.
This is a definite advantage, and it can significantly affect the final size of your Flash movie.

One of the reasons that loops get a bad name is that they are too simple. The shorter the loop,
the less it contains, and consequently, less musical contrast occurs within the looped phrase.
Ultimately, this means that the loop sounds boring after a short listen because there is not as
much music to hold your interest. Drum loops are probably the greatest offender in this case.
This situation can be remedied, however: Simply use longer loops. The longer the loop sound
file, the more you get to hear before it repeats itself. This helps make the loop less obvious
and adds more contrast within the looped phrase.

You can take this technique a step further. Most loops tend to be broken into even chunks.
Musically speaking, this means that the loops are in even bar or beat phrases: 4 beats, 8 beats,
2 bars, 4 bars, and so on. How you count the bars and beats is irrelevant. What is important,
though, is that they are all even. The symmetrical structure makes it easy for your ears to
organize the sound and detect the loop. The remedy is to create uneven loops: 7 beats, 3 bars,
5 bars, and so forth. Although this doesn't eliminate the loop altogether, it does help to mask
the loop by placing the repeat point in an odd location within the musical phrase.

 On the CD-ROM On the companion CD-ROM, open the file loops.swf, found in the
Chapter 19 folder. It contains buttons that loop the playback of three sound files: oneBar,
fourBar, and fiveBar. Click the green Play buttons and listen to these files carefully. You
should be able to hear a distinct difference in the looped quality of these. Note how the one-
bar phrase has an immediately detectable loop, while the longer, four-bar phrase holds your
interest and is harder to spot. At the extreme end of things, there is a five-bar looping phrase.
Hopefully, you can hear how it is the least easy to identify as a loop.

Creating sound loops can be simple, but it requires some time and patience if you really want
to do it well. To create loops, all you really need is a digital audio editor that supports looped
playback of a sound file. Software currently available that will allow you to create loops
include Sound Forge and Cool Edit Pro for Windows computers, or SoundEdit 16 and Peak
for the Mac. Most of these applications have a loop utility or feature that allows you to ensure
a smooth loop that's free of clicks, pops, and other editing glitches. Additionally, Sonic
Foundry manufactures a program called Acid, which is used specifically for creating sound
loops and loop-based music. To learn more about working with these applications and
preparing audio content for your Flash movie, see Chapter 26.

Inspirational Design Model
Nineteen Point Five Collective, at www.npfc.org, is a group of artists who focus their efforts
on all forms of multimedia expression: sound, video, 3D imagery, and web/interactive media
development. Their music is transmedia-it sounds at home whether heard on the Internet, in a
multimedia application, or in a live-performance venue.

The NPFC website is designed entirely in Flash and does an excellent job of presenting the
group's music in an accessible, easy-to-use fashion (see Figure 19.10). Note especially how
their eclectic blend of musical sensibility meshes with the look and feel of their site to create a
seamless, distinct impression of the group.

Figure 19.10: Nineteen Point Five Collective can be heard via Flash at www.npfc.org.

Summary
In this chapter, you learned how digital audio and sound elements can add a new level of
interest to your Flash animations and movies. You saw all of the technical terms: sample rate,
bit depth, and stereo/mono. These digital audio parameters both help to describe the
information contained in a sound file and determine its overall quality. Also, once a file has
been recorded, there are several different file formats in which it can be saved and brought
into the Flash environment.

As a Flash developer, you have many resources available for either acquiring or creating
sound content for your Flash movies. And, once you have the sounds you need, it's essential
to prepare them for playback in a Flash production. This preparation should take place on
both technical and conceptual levels. Select your sounds well, integrate them within your
design or story, and use them to add potency to your message. This chapter has shown you
how audio-both music and sound effects-can greatly enhance your projects and animations.

Chapter 20: Flash Audio Basics
Overview
Audio elements like music, sound effects, and narration can add greatly to the depth and
interest of your Flash productions. Because sound is a unique, nonvisual medium, it is capable
of pushing your animations and interactive movies to a whole new level of creativity,
expression, and fun. Now that you have read a general introduction to digital audio, you are
ready to approach it specifically in the Flash environment.

Like most other interactive authoring applications, Flash has its own set of rules governing the
way it handles audio. These rules are what you are about to learn. When approaching them,
try not to think of them as rules, however, since rules carry a bad connotation. When one
thinks of rules, it's too easy to focus on the limitations of what can and cannot be done. Don't

think of this chapter's topic as rules for Flash audio, but as a set of techniques that you must
implement to work with audio in Flash. More specifically, the rules are a set of techniques
that can be mastered. And, when you are completely comfortable with them, your potential is
limited only by the ability to use the techniques creatively to achieve your goals. Not only can
Flash be a tool for dynamic animations and interactivity, but you can use it to deliver great
audio, as well.

Importing Sound Files
To begin the process of using audio in the Flash environment, you must first get the audio
files into your movie Library. You do this by importing a sound or sounds. Your computer's
operating system determines what kind of sounds you can import. In general, Flash can
import WAV files with Windows, AIFF files with Macintosh, and MP3 files with both
platforms. For more details on all the sound file types that are available to Flash, see Chapter
19.

To import sound files in Flash:

1. Select File → Import or press Cmd/Ctrl+R. The Import dialog box appears.
2. Choose the All Sound Formats option from the drop-down menu. This causes the

Import dialog box to show you only sound files and makes it easier to find the files
you need. Locate the folder containing the file(s) you wish to import. If you need to
select multiple files, use Shift+click (Mac) or Ctrl+click (Win).

 Note Sounds can be imported as a group (as discussed here) or individually,
depending on your needs and work flow.

3. When you're finished selecting all your sound files, click Open. All the selected files
will be imported into your movie. You can confirm this by checking the contents of
the Library. Select Window → Library (F11) to display the Library panel. All the
sounds you just imported should appear there with the speaker icon beside the
filenames (see Figure 20.1). When a sound is selected in the Library, its waveform
appears in the top of the Library window. You can audition the sound by pressing the
Play button in the upper-right corner of the panel.

Figure 20.1: The Library panel displays sound files with a speaker icon beside the
filenames.

4. Once the sound files are in your movie's Library, they will be available for unlimited
use within your movie. Sounds can also be part of Libraries that are shared among
several movies. To read more about Shared Libraries, see Chapter 7.

Adding Sound to a Movie
Importing sounds is the first part of the process. Once you have sounds in your Library, you
must then place them in the movie Timeline so that they become a part of a movie's playback.
To add sounds to a Timeline, you use the Property Inspector (see Figure 20.2). This
multifaceted interface element is your window to many of the parameters affecting sound
behavior in your movie.

Figure 20.2: The Property Inspector serves as the interface for sound control in your movie.

To add a sound to your movie:

1. Create a new layer and name it something like "sound." This isn't an essential step, but
it can be helpful for keeping individual sounds on their own separate layers in your
movie. Each layer can be named with a title that describes the sound it contains
(introRiff, for example). And it's easier to manipulate the positioning of sounds when
they are independent of other movie elements.

 Note Although Flash can play only eight sounds simultaneously, there is virtually no
limit to the number of sound layers you can have in a movie. On a very, very
basic level, this feature makes Flash behave like a multi-track audio application,

where you can stack many sounds on top of one another. To learn more about
the possibilities of Flash and multi-track audio, see Hands On 6.

2. Click the frame where you would like the sound to start playing and then select Insert
→ Keyframe to insert a new keyframe.

3. Select Window → Properties to display the Property Inspector. Alternatively, you can
Cmd+click (Mac) or right-click (Win) on the keyframe and select Properties from the
context menu. The Property Inspector appears.

At this point, you should already have imported sounds into your movie. If you
haven't, see the preceding section to learn how this is done.

4. Choose a sound from the Sound drop-down menu. The Property Inspector will display
the attributes of the file you select: its sample rate, bit depth, length in seconds, and
file size. The sound you select will be the sound that is cued when Flash plays the
current, selected keyframe.

5. If desired, select an option from the Effect drop-down menu. To learn more about
Effect options, see "Working with Audio Effects" later in this chapter.

6. Select an option from the Sync drop-down menu.

In general, use Event for shorter sounds that you wish to be played in time with a
visual event in your movie-for example, a "thud" sound of a cartoon character falling
down. Event sounds will play in their entirety until they are stopped or the sound is
over. Use the Stream sync if you want Flash to force the movie animation to lock
playback with a sound file.

 Note Some Notes on Stream Sounds: Unlike event sounds, stream sounds will only
play through the number of frames they occupy in the Timeline. You must add
extra frames to accommodate the length of a stream sound. To learn more about
these and other sound sync options, see Chapter 20. Also, if you plan to use an
MP3 file as a stream sound, you must recompress the file within Flash before
publishing your movie. To learn more about this, see "Exporting and
Compressing Audio Files" later in this chapter.

7. Enter a value in the Loop field. Flash will play the sound back the number of times
that you specify here. To loop a sound for the entire length of your movie, enter a very
high number (9999 works well). When you are finished, you should have something
that looks like Figure 20.3.

Figure 20.3: Here the sound drumGroove.aif is cued as an event sound with no effect
and will be looped eight times.

Stopping Sounds
Once a sound starts playing in Flash, there are few things to interrupt it. In most cases, a
sound will continue to play until either it runs out of frames (if it is a stream sound), it is

finished, or it runs out of loops. These events depend largely on the length of the sound file
and the parameters you assign the sound when it is first played in your movie. There are
times, though, when it may be necessary for you to intervene and stop a sound or series of
sounds explicitly.

To stop a specific sound from playing:

1. Click the frame in the sound layer where you would like to stop the sound.
2. Select Insert → Keyframe to insert a new keyframe.
3. Select Window → Properties to display the Property Inspector if it is not already

visible.
4. In the Sound drop-down menu, select the name of the sound file you would like to

stop playing. Choose the Stop option from the Sync drop-down menu. When the new
keyframe is reached, the specified sound will stop playing.

To stop all sounds from playing:

1. Choose the frame where you would like to stop the playback of every sound in your
movie. It is also common to have a button that can be used to stop your movie's
sounds.

2. Open the Actions panel for either the frame or the button you want to use. In Normal
scripting mode, drag the stopAllSounds() action from the Actions → Movie Control
category into the script window. In Expert mode, you can simply enter this statement:

stopAllSounds();

3. Depending on where you attached this action, when either the frame is played or the
button is clicked, every sound that is currently playing in your movie will stop.
Playback cannot resume until each sound is explicitly started once again.

This technique of stopping all sounds is particularly useful if you need to stop several sound
files simultaneously to sync with an animation, or to create a "sound off" button for your
movie.

Attaching Sound to a Button
It is common to use sounds in conjunction with a button. In the same way that the various
button states offer visual indications of interaction, sounds can help add to the interactive
experience by offering audible feedback. For example, if you wanted to create a button that
looked and sounded like the door to a haunted house, you could add the sound of a low
"creeeeak!" to the button's Over state. Then you could use the sound of a rusty latch or
doorknob for the Down state. Ultimately, both of these sounds would make the door button
much more interesting (and scary) in the context of your movie.

Adding sound(s) to a button is a very simple and effective way to add some audio interest to
your movie. Here is how you do it:

1. Import into your movie any sounds you need for the button. To learn how to do this,
see "Importing Sound Files" earlier in this chapter.

 Note Flash's built-in sound Library has a decent offering of general-purpose button
sounds. Select Window → Common Libraries → Sounds.fla to display this
Library. Grab any of the sounds you find there and either drag them to the Stage
or into the Library panel for your movie.

2. Select the button on the Stage where you would like to attach the sound and choose
Edit → Edit Symbols. Flash jumps into Symbol Editing mode for the button you
selected. In this mode, you should be able to see the button's Timeline with the Up,
Over, Down, and Hit keyframe states. To learn more about the various states of a
button, see Chapter 13.

3. Insert a new layer in the button Timeline and name it "sounds."
4. Click the Over state frame in the new layer and then select Insert → Keyframe to

insert a new keyframe.
5. Select Window → Properties to display the Property Inspector if it isn't already

visible. In the same way that you added a sound to the main Timeline, you will add a
sound to the button's Timeline (see Figure 20.4). Select a sound file from the panel's
Sound drop-down menu. Assign any effect you would like to use, and set the sync to
Start. To learn more about Start sync and the other sound sync options, see Chapter
21.

Figure 20.4: A button Timeline with a sound attached to the Over state keyframe

6. Select Edit → Edit Document to return to the main Timeline. You can test the button
sound in Movie Editing mode by selecting Control → Enable Simple Buttons. If you
would like to test the sound in the context of the entire movie, select Control → Test
Movie. Roll your mouse cursor over the button to hear the sound you just attached.

In the same way that you attached a sound to the Over state of a button, you can attach a
sound the Down state as well. This helps to create a more realistic "click" effect. Simply
follow the steps previously outlined in this section. Create a new keyframe for the Down state
and attach the sound you wish to use. Because the two keyframes represent different button
events, they will be cued separately-one when the cursor rolls over the button, and another
when the button is clicked.

 Note When working with button sounds, it is important that the waveform is trimmed so that
there is no dead space at the start of the audio file. If your sound has dead space, there
will be a lag between when the sound is cued and when you actually hear it.

Working with Audio Effects
One of the most overlooked aspects of audio production and design in interactive media is the
use of audio effects. Audio effects are accomplished by altering the volume level and pan
position of a sound's playback. Dramatic or even subtle changes of volume and position can
add a new dimension to even the most ordinary sounds. You can use audio effects to give a
sound a particular kind of character; for example, make it sound near or far, or make it sound

like it is on one side moving to another. Audio effects add depth to a sound by creating a
sense of space and presence.

Using your audio editor, you can apply audio effects to a sound before you import it into the
Flash environment. However, Flash allows you to set the audio effects for the sounds in your
movies, and there are several advantages to this feature. First of all, effects are applied to a
sound when it is placed in the Timeline, so each individual instance of a sound can have its
own effect. This keeps you from having to import multiple versions of the same sound, each
with a different effect. The other advantage of the Flash sound effects feature is that it helps
minimize the file size for sounds that require pan effects. If you remember from Chapter 19,
sounds that contain stereo information (left and right channels) require twice as much space in
your movie's Library. But by using the Flash audio effects, you can apply panning to a mono
sound and get the same results for half the number of audio file kilobytes. Not a bad deal!

 Note Pan effects are best for mono sound effects. For example, if you wanted a "swoooosh!"
sound to start in the left speaker and end in the right one, you could use a mono file and
have Flash take care of panning it for you. The alternative would be to create the pan
effect in your audio editor. While it would sound the same, the stereo "swoooosh!"
sound would be twice as large because it would contain the stereo information for left
and right speaker channels.

To apply audio effects to a sound in your movie Timeline:

1. Click the sound's starting keyframe and then select Window → Properties to display
the Property Inspector if it isn't already visible.

2. The Property Inspector will show you the name of the sound, its sync setting, and the
number of loops. There is also an Effect drop-down menu that contains several effects
options:

Left/Right Channel plays the sound in only the left or right speaker.

Fade Left to Right and Fade Right to Left pan a sound from one speaker to the other
over the duration of the sound file.

Fade In starts a sound at silence and gradually increases it to full volume.

Fade Out starts a sound at full volume and gradually decreases it to silence.

Custom opens the Edit Envelope dialog box, which can be used to create custom
audio effects. To learn more about this, see the next section of this chapter.

If you apply effects to looped sounds, you may experience some inconsistencies in
their playback. For instance, a Fade Left to Right effect will work for only the first
iteration of the sound. All subsequent loops will play in the right channel because that
is where this effect "leaves" the sound. To work around this, you can create a custom
effect to control the entire looped sequence. You can learn more about this in the next
section as well.

3. After you have applied an effect, select Control → Test Movie to listen to the effect in
the context of your movie.

If your movie is a linear animation in the Timeline and doesn't require any special
ActionScript to play properly, or if you are working with your sounds in a Movie Clip
Timeline, you can listen to audio effects in Movie Editing mode. Select Control → Play (or
press Return/Enter) to play the sounds in the Timeline.

Creating Custom Effects with Sound Envelopes

Depending on your audio design intentions, there are situations in which you will need to
have precise control over the effects applied to a sound. This can be done by creating custom
audio effects. Flash allows you to do this by manipulating the envelope: changes of volume
over time. By creating different envelope combinations in the left and right channels, you can
produce many different and interesting audio effects.

 Note Technically speaking, in the world of audio engineering and acoustics, envelopes make
changes to a sound over time. In Flash, the envelope happens to make changes in
volume.

To create a custom audio effect:

1. Click the starting keyframe of the sound whose effect you would like to edit and then
select Window → Properties to display the Property Inspector if it isn't already visible.

2. In the Property Inspector, either choose Custom from the Effect drop-down menu or
click the Edit button. The Edit Envelope dialog box appears (see Figure 20.5).

Figure 20.5: The Edit Envelope dialog box offers many options for changing various
sound parameters to create an audio effect.

3. The most important thing to understand about this editing tool is that it is controlling
the envelope (again, think volume) of each channel. Even if the sound is mono, you
are still able to manipulate it to create stereo effects, because it will be routed to both
the left and right channels, as defined by the envelope edits you make. By changing
the envelope of each channel, you put more or less of the sound in a particular
channel.

Click and drag the envelope handle for each channel to adjust the volume of the sound
to be played in each channel. For example, to create an effect that pans from left to

right and back again, click the left channel envelope line to create a new handle at the
end of the sound's waveform. Click in the middle of the envelope line to create another
handle, and drag it to the bottom of the envelope. Do this for the right channel, but
make it a mirror image of the left envelope (see Figure 20.6). This way, whatever is
happening in one channel, the opposite will take place in the other. As the left
channel's envelope fades, the right channel becomes louder, and vice versa. When
opposite channels carry different amounts of the sound, a pan effect is created.

Figure 20.6: This envelope configuration will create a pan effect from left to right and
then back again.

4. After you finish tweaking the envelope, click OK to return to the main Timeline.

The Edit Envelope dialog box has a few other features that can help you create effects and
edit a sound:

• Use the Play and Stop buttons to audition an effect.
• Use the Zoom buttons to see more or less of the sound wave. This is helpful if you are

trying to create very precise envelope changes.
• Use the Sound In or Sound Out slider to trim the beginning or end of a sound file. This

can be useful for last-minute tweaks to button sounds.
• If you apply an effect to a looped sound, the subsequent loops will be displayed in a

hazy, gray color. You can use the envelope handles to create effects for the remaining
cycles of the sound loop.

Exporting and Compressing Audio Files
When you finish creating a Flash movie, you must go through the process of publishing your
movie, or finalizing it for presentation to your audience. When you publish a Flash movie, all
of your audio content is exported, and included in the final movie. When a sound is exported,
it is often changed from its original format to something that is more manageable in a
bandwidth-sensitive environment. Because audio can greatly add to the size of a movie file,
the process of exporting sounds generally involves compression.

Compression comes in many different forms and is used to shrink, or compress, the final size
of a sound file. Compression takes the original file and squeezes it down to a more portable,
compact file that is easier to use in situations where file size is a crucial part of development.
Sound great? Not always. Compression can have an adverse affect on sound files. In general,

file size and sound quality are directly related. As you add more compression, the file size
drops, but so does the sound quality.

As a sound file is compressed, certain parts of the sound (usually those deemed least
important by the compression codec) are removed. Although this works to create a more
compact sound, it also takes away certain elements of the original. The more this is done, the
fewer original elements remain, which can leave you with a sound of very marginal quality.
Don't be too discouraged, though. Flash offers several different compression and resampling
options that allow you to strike a happy balance between file size and sound quality.

Adjusting Individual Export Settings

You have a great deal of control when it comes to exporting sounds in Flash. In general, it is
best to use individual settings for each sound in your movie, for a couple of reasons. First, all
sounds are different. Some sounds may sound fine at a low quality level or under high levels
of compression. Second, sounds that are short or not as important in your movie can be
squeezed down even further with high-compression, minimum-quality settings.

To set the export settings for a sound in your movie:

1. Select Window → Library to display the Library panel.

2. Highlight the sound name in the Library and then select Properties from the Options
drop-down menu in the Library panel. Alternatively, you can double-click the sound's
speaker icon. The Sound Properties dialog box appears.

3. If the sound has been changed outside of Flash since it was imported, click the Update
button. This retrieves the most recent version of the file.

4. Choose an option from the Compression drop-down menu and select the settings you
would like to use. To learn more about your options, see the next section of this
chapter.

5. Click the Test button to audition the sound and readjust the compression settings as
needed. When you are finished, click OK to return to your movie. Each sound you
adjust in this fashion will be exported with the settings you specify.

Selecting a Compression Option

Flash offers several compression choices, which are suited to different applications depending
on your needs. When you select one of these from the Compression drop-down menu, its
options (sample rate, bit depth, and so on) appear at the bottom of the Sound Properties dialog
box. Note that as you change these options, the dialog box updates information about the size
of the compressed sound.

Default Compression

To use the Default compression options, leave the menu selection as Default. This will apply
whatever options are set in the Publish Settings dialog box to the sound. To check the publish
settings for your movie, select File → Publish Settings (see Figure 20.7). Here you can set the
compression options for both stream and event sounds in your movie.

Figure 20.7: The Publish Settings dialog box enables you to define the default sound
compression parameters for sounds in your movie.
 Note To learn more about the export settings in the Publish Settings dialog box, see their

individual listings later in this section.

If the Override Sound Settings box is checked, Flash will export all sounds, regardless of their
settings in the Library, with the parameters defined in the Publish Settings dialog box. This
produces the same results as setting all sounds to Default compression in the Library.

ADPCM Compression

ADPCM, which stands for adaptive differential pulse-code modulation, is best for short
sounds that can work well at lower quality settings.

To use ADPCM compression:

1. Select ADPCM from the Compression drop-down menu.
2. Check the Convert Stereo to Mono box if you want to mix your stereo sounds into a

single channel.
3. Select a sample rate between 44kHz and 5kHz. In general, the higher the sample rate,

the better the sound quality you can expect.
4. Select ADPCM bits between 5 and 2. Again, a higher number of bits equals better

quality.

MP3 Compression

MP3 compression is very popular for distributing CD-quality or near-CD-quality audio in a
compact digital format. MP3 compression is probably the best choice for music, dialog,
longer sound effects, and any kind of stream sync sound in your movie. It yields great results
in terms of both final file size and sound quality. MP3 compression was not introduced until
Flash evolved to version 4, so be sure that your audience has a Flash Player version that can
support this feature.

To export with MP3 compression:

1. Select MP3 from the Compression drop-down menu.
2. Choose a bit rate between 160Kbps and 8Kbps (kilobits per second). You should get

good results with MP3 settings at just about any quality; however, the general rule that
higher settings equal better quality still applies. When in doubt, produce multiple
versions and weigh the aesthetics of exported sound quality versus file size. Your ears
should be the final judge. A setting of 56Kbps yields a happy medium between
acceptable quality and manageable size; use 112Kbps or higher to achieve near-CD-
quality sound.

3. If you select a bit rate of 20 or above, you have the option to mix stereo channels to a
single mono channel by checking the Convert Stereo to Mono box.

4. Select a quality setting:

Fast compresses files quickly but has the poorest quality. This option is not
recommended for sounds that are predominant or significant in your movie.

Medium takes longer to compress but renders the files at a better quality than Fast.

Best is your best choice for music or files where quality is important. Although it
takes longer to compress the files, it renders the highest quality MP3s for your movie.

Raw Compression

This option translates to no compression. Rather, the sound is either mixed to a single channel
and/or sampled down to a lower sampling rate.

To use the Raw settings:

1. Select Raw from the Compression drop-down menu.
2. Check Convert Stereo to Mono if you want to mix your stereo sounds into a single

channel.
3. Select a sample rate between 44kHz and 5kHz. In general, the higher the sample rate,

the better the sound quality you can expect.

Speech Compression

 New to MX New in Flash MX, the Speech compression option is designed specifically for
spoken sounds. When used on narration and dialog, it produces decent-sounding results while
maintaining a small file size.

To use Speech compression:

1. Select Speech from the Compression drop-down menu.
2. Select a sample rate between 44kHz and 5kHz. In general, the higher the sample rate,

the better the sound quality you can expect. Be sure to test each sound before settling
on a compression setting.

 Note Speech compression doesn't support stereo sounds. All sounds are automatically
converted to mono.

QuickTime Compression Options

Flash allows you to publish your movie as a QuickTime Flash movie rather than Shockwave
Flash. With this publish option, there are additional sound options that affect the quality of
sound in the QuickTime movie. Note that the compression options presented here are
available only if you plan to publish your movie as a QuickTime Flash movie.

When working with Flash movies that will be published as QuickTime, you have a good deal
of flexibility in terms of what you can do with audio. There is no limit to the number of
tracks, so feel free to use as much audio as you deem necessary. And, because QuickTime
files are linear, all the sounds will be mixed to a single audio track (or a pair of tracks if you
use stereo sounds).

To set QuickTime compression settings:

1. Select File → Publish Settings. In the Formats tab, check the box for QuickTime. A
QuickTime tab appears; select it.

2. Check the box for Streaming Sound that reads "Use QuickTime Compression." This
activates the Settings button.

3. Click the Settings button, and the Sound Settings dialog box appears. (There are
several different dialog boxes that carry the name Sound Settings. In this step, the
Sound Settings dialog box will affect QuickTime streaming sounds.)

Here you can choose from a variety of QuickTime sound settings, each of which has
its own individual options. See Table 20.1 for a complete listing of your choices. Since
some compression schemes are better suited to certain tasks than others, try to find a
codec that fits your specific needs. It can be helpful to experiment with several

different options and test them back-to-back on several systems before making a final
compression decision.

Table 20.1: QuickTime Sound Compression Options
Compression Codec Description/Application
24-bit Integer, 32-bit Integer Increases bit depth (sample size) to 24 and 32.
32-bit Floating Point
64-bit Floating Point

Increases bit depth (sample size) to 32 and 64. Most
computers are incapable of playing sounds at this high bit
depth and will convert back to 8- or 16-bit.

ALaw 2:1 Poor-quality compression; not recommended.
IMA 4:1 Decent compression ratios; must be 16-bit; fine for CD-

ROM delivery.
MACE 3:1, MACE 6:1 Dated codecs; not worth the trouble.
Q Design Music 2 Superb compression ratios; great for streaming music.
Qualcomm PureVoice Superb compression ratios; preferred format for streamed

dialog and narration.
uLaw 2:1 Old codec; not worth the trouble.
 Note For the latest information on QuickTime, visit the Apple website:

www.apple.com/quicktime/products/.

4. After you have selected the right compression options, click OK in the Sound Settings
dialog box. Then select the Flash tab. Click the Set button next to the Audio Stream
label. The Sound Settings dialog box appears again, this time for Flash streaming
sounds. Choose Disable from the Compression drop-down menu. This prevents extra
streaming sound instances from getting into your final movie. Click OK.

Repeat this process with the Set button beside the Audio Event label. This disables
event sound compression in your Flash movie. Click OK in the Publish Settings dialog
box when you have finished.

 Note It is necessary to disable sound options in the Flash tab when exporting a
QuickTime Flash movie; otherwise, sounds are doubled in the final QuickTime
file.

With these options in place, your QuickTime compression settings will be applied to the
streaming sounds of any movie you publish in QuickTime format. Event sounds will not be
published with the QuickTime settings you have chosen. If you are using event sounds in your
movie, use the Property Inspector and change their sync to Stream before publishing the final
movie file.

Inspirational Design Model
Since the birth of MTV, music videos have become a major part of pop culture. Both the
animation and sound capabilities of Flash make it an ideal tool for creating music videos of
your own design, and Joe Sparks is one Flash developer who is taking full advantage of this.

Sparks is responsible for the musically charged web serial "Radiskull & Devil Doll" (Figure
20.8), which can be found at http://joesparks.com.

Figure 20.8: "Radiskull & Devil Doll" can be found online at http://joesparks.com, "kickin' it"
for you and your listening pleasure.

Each episode features a music video in which Radiskull and his sidekick, Devil Doll, are
"kickin' it"-singing and rapping about their adventures of mischief and mayhem. These
animated musical numbers are a fantastic example of how you can use Flash to deliver
exceptional audio and animation over the Web.

Summary
This chapter outlined all the technical aspects of playing sounds in the Flash environment.
The intention is that you master the techniques first and then apply them to creative ends in
your projects. After all, once you understand how the application handles audio, creating
movies with stunning music and sound effects is just a matter of infusing your own creativity
and ingenuity.

You learned how to start and stop sounds on both animation and button Timelines. You were
also presented with several options for adding effects to audio playback. Finally, you learned
how Flash handles the delivery of sound in movies that can be distributed on either CD-ROM
or over the Internet. With these essential techniques under your belt, you are well on your way
to turning Flash into a delivery medium for creative and inspiring audio content.

Chapter 21: Synchronizing Audio with
Animations
Overview
When one thinks of animation, it is hard not to be reminded of the classic Warner Brothers
cartoons starring Bugs Bunny, Daffy Duck, the Road Runner, Wile E. Coyote, Elmer Fudd,
and Marvin the Martian. And, when you think about these animated cartoons, it's impossible
not to remember all the crazy sounds that were so much a part of the show: anvils clanking on
heads, zips, swooshes, and nimble violin strings plucking out the sound of a character's tiptoe

entrance onto the screen. All these sounds were crucial to the success of the animation; they
communicated the things left unsaid by the visual track.

As you know by now, Flash is much more than an animation program. It can be used to create
interactive menu systems, games, websites, and more. Are these animations? No, not really,
but in the Flash environment, you have to think about everything as if it were an animation.
Flash's Timeline structure applies to just about every element of the program, including
buttons, Movie Clips, and scenes; even graphics are affected by this structure because they are
used in Timelines. Whatever your design goals may be, try to think of every project as a kind
of animation.

As in the classic Warner Brothers cartoons, you will get more out of your Flash movies
through the creative use of sound, and one of the keys to this is synchronization. This chapter
discusses how Flash deals with sound in the context of animations, and how you can get the
best results through synchronization of audio and visual events.

Synchronization Options in Flash
Any time you attach a sound to a frame in the Timeline, you must assign a sync option in the
Properties inspector (see Figure 21.1). The sync options (short for synchronization)-Event,
Stream, Start, and Stop-tell Flash how to play a sound when it is encountered in your movie.
Synchronization determines the relationship between the sound (music, sound effects, dialog,
and so on) and animated components of your movie.

Figure 21.1: The Property Inspector has a pop-up menu where you can assign the type of sync
you wish to use for each sound. Here the sync option is set to Event.

In Flash, a sound can be made to play and loop independently of the animation in the
Timeline, resulting in loose synchronization. Or you can have the sound lock the movie's
frame rate to keep tight sync between audio and visual tracks. Flash also considers the act of
stopping a sound to be a kind of sync, and will allow you to halt playback to match a visual
event. Learning how these choices affect your movie is an important part of fine-tuning an
animation and getting the most out of your movie's sounds.

Using Event Sync

Event sync is one of the most commonly used means of audio synchronization in Flash. Its
name is fairly self-explanatory; this option creates a sound event by responding to an
animation event in your movie. When Flash plays a frame that contains an event-synced
sound, that sound is cued to play in its entirety, independently of the Timeline. If the Timeline
stops playing frames, an event sound will continue to play until it has finished or has run out
of loops. Think of an event sound as a kind of cue that you can attach to a Timeline frame.

Event sounds offer a lot of flexibility with your movie because all you have to do is set them
in motion and let the sound take it from there. Because event sounds play independently of
your animation, you don't have to worry about having enough frames to accommodate the

length of the sound. These characteristics make event sounds ideally suited to various
applications in a Flash movie:

Buttons Button sounds are usually attached to the Over and Down states of a button
animation. When the mouse cursor is moused over a button, a sound is played; when the
button is clicked, another sound is played. Because these button events (Over and Down) can
happen quickly, it is important to use a sync option that will respond quickly. If a button is
moused over or clicked more than once, the Event sync option will cue the sound each time
and will mix multiple instances of the sound together. Consequently, this allows you to create
interesting layered sound or musical effects with multiple button sounds. To learn more about
the specifics of this technique, see the section "Working with Event Sound Effects and Music"
later in this chapter.

 Note If you are adding sound to a button and you specifically don't want sounds to layer and
overlap, see the explanation of Start sync at the end of this section.

Sound effects If your movie calls for sound effects, the Event option is definitely the one to
use. It allows you to perfectly sync an animation event, like a basketball going through the
hoop, with the sound swish!! Create a new keyframe with an event sound on one of your
movie's sound layers. The frame should line up with the correct moment in the animation.
When your movie plays back, you will see the ball go through the hoop and hear a gratifying
swish!! to make the animation complete. To learn more about the specifics of this technique,
see "Working with Event Sound Effects and Music" later in this chapter.

Stingers In film scoring, sudden musical stabs that are played to add dramatic punch are
called stingers. For instance, a woman is peacefully sleeping in her bed when the French
doors to her chamber mysteriously open…you hear nothing. Then suddenly, as the vampire's
face appears, you hear a high violin tremolo, and the hairs on the back of your neck stand up
straight! This device has been used for years to enhance the dramatic tension of cinematic and
cartoon scenes. In the same way that you add sound effects, you can use the Event sync option
to cue dramatic musical stingers in your movie.

Using Stream Sync

Stream sync is quite a bit different than the other sync options available to you in Flash.
Stream sync locks the movie's frame rate to the playback of the sound and will skip (or
"drop") frames if the animation cannot keep the pace. This option makes Flash more like a
video editing application, where the audio and video tracks are locked together to preserve
their synchronization. The opposite of event sounds, stream sounds will play only if they have
enough frames to accommodate their length. In many cases, you will have to add frames to
enable long sounds to play completely. For an illustration of this, see Figure 21.2

Figure 21.2: The top sound (Layer 2) does not have enough frames to play the entire file. You
can tell because the waveform is cut off at the last frame. Notice that the bottom sound (Layer

1) does have enough frames. The waveform ends as a straight, horizontal line similar to what
you would see in a digital audio editor.

Due to the nature of the Stream sync option, we recommend that you avoid looping stream
sounds if possible. Audio data cannot be reused as efficiently when sounds are set to stream.
Flash will add unnecessary extra information to your final movie and create a larger SWF file.
The Stream sync option does, however, have some excellent uses:

Scored music If you have long sections of music that are supposed to sync precisely with an
animation, the Stream sync option is your best bet. The Stream audio will force Flash to
maintain a consistent frame rate and keep tight synchronization between audio and animation
events.

Lip sync To create tightly synchronized talking or singing animations, use Stream sync. It
allows Flash to maintain a consistent pace and keep the dialog or music in sync with the
mouth animation. To learn more about the specifics of this technique, see the section
"Creating Lip Sync Animations" later in this chapter.

Multitrack and component audio All sync options in Flash allow you to play up to eight
different sounds simultaneously. If you place each sound on its own layer, you can create a
multitrack sound movie. Using the Stream sync option, it is possible to do this in a way that
keeps all the tracks (individual sound layers) synchronized perfectly. To learn more about this
technique, see Hands On 6.

Using Start Sync

The Start sync option is very similar to Event sync. When the sound's frame is played, the
Start option cues the sound and plays it in its entirety. The only difference is that if another
instance of the sound is already playing, the new instance will not be heard. You can use Start
sync as a kind of filter to prevent too many occurrences of a single sound.

Start sync is the best choice for buttons in situations where you do not want a button's sound
to play more than once. For example, if you attach a sound to the button's Over state frame
and use Event sync, the sound will be heard each time your mouse moves over the button. If
the mouse crosses over the button frequently, this can cause too many simultaneous instances
of the sound. Start sync prevents this because only one instance of the sound is allowed to
play at a time.

 On the CD-ROM For an example of Event sync versus Start sync with buttons, open the
file buttonSync.swf in the Chapter 21 folder of this book's companion CD-ROM. Quickly
move your mouse over the button labeled "Event" several times. You will hear the sound
repeated each time your mouse crosses over the button. (This particular sound is Visor Hum
Loop from Window → Common Libraries → Sounds.fla.) The more you do this, the more
confusing things can start to sound. Next, do the same with the button labeled "Start." This
time, no matter how often your mouse crosses over the button, you will only hear one instance
of the sound. Start sync helps to keep your button sounds tidy.

Syncing Sounds to Stop

The final sync option Flash offers is Stop, and, as you probably guessed, this is what you use
to silence a sound's playback. Stop sync is used specifically to silence sounds that were cued
via Event or Start sync. To sync the end of a sound:

1. Insert a new keyframe where you would like the sound to end. The keyframe should
be positioned so that the sound will stop in sync with an animation event.

2. Select Window → Properties to display the Property Inspector. From the Sound pop-
up menu, choose the name of the sound you wish to stop from the Sound pop-up menu
and then select the Stop sync option. When the Timeline reaches this frame, the sound
you have specified will stop.

The Stop sync option works for event and start sounds, but stream sounds must be handled
differently. You must make the last frame of the stream sound exactly match the animation
event. To stop a stream sound:

1. Find the animation event in the Timeline you wish to sync with the end of a stream
sound. Remember the frame number where this event takes place.

2. Stream sounds will only play through the number of frames they occupy, so you must
calculate the number of extra frames to be cleared. Find the last frame of the stream
sound you wish to sync and subtract that from the frame number of the animation
event. For example, if you have a sound that plays until frame 46 and you want to
silence it in sync with an event at frame 20, you have the difference of 26 frames.

3. Click the first keyframe of the stream sound and press Shift+F5 once for every frame
you wish to clear. In the example in step 2, you would press this key combination 26
times. For an illustration of a synced stream sound, see Figure 21.3.

Figure 21.3: In this Timeline, the stream sound that starts at frame 1 is stopped to sync
with an event in the animation at frame 20.

 Tip Another way to clear frames is by selecting a range and clearing them from the
timeline. To do this, select the first frame you would like to remove and then
Shift+click to extend your selection to the last frame you want to clear. Press
Shift+F5 and the range of selected frames will disappear from the timeline.

4. After you have cleared the unnecessary frames, select Control → Test Movie to see
and hear how the sync works. You can add or subtract additional frames to the sound
if the sync needs some tweaking.

Flash Synchronization Techniques
Now that you know how Flash handles animation/sound synchronization, you are ready to dig
deeper into the subject and see how these techniques work in the context of your movie. As
with many things in Flash, the techniques are simple; the real magic comes through your
ability to use them creatively and move beyond the capabilities of the software. The examples
presented here should not be seen as absolute answers, but as points of departure for your own
wild and creative uses of sound synchronization.

Creating Lip Sync Animations

Many different options are available to you for creating lip sync animations. Depending on
the kind of animation you wish to create, Flash allows you to animate with either loose,
stylish synchronization or with lifelike accuracy, or with anything in between. A good lip
sync animation can make animated characters come to life in your movie.

This technique uses the Stream sync option to force the animation to keep pace with the audio
track. Another advantage of this option is that with stream sounds, you can scrub the audio
track. When you scrub a track, you use the mouse to move the playback head over the audio
waveform and hear what part is synchronized with a particular frame. Scrubbing allows you
to test certain sections manually to see how the audio and animation line up.

To create a lip sync animation, it is assumed that you have drawn a character, recorded some
dialog, and imported it into your movie. The only quirk to this technique is that your
character's mouth has to be on its own layer. The reason is that when you animate a lip sync,
you don't have to use just one mouth graphic. Rather, you can use several mouth graphics that
have different shapes representing the different mouth positions for the various words and
letters in your character's language.

 On the CD-ROM In this lesson, all of the media has been created for you. On the
companion CD-ROM, open the file named lipSync.fla inside the Chapter 21 folder and save it
to your hard drive. If you would like to see what you are getting yourself into, open
lipSync.swf to see and hear the finished file.

To create a lip sync animation:

1. Using the lipSync.fla file, insert two new layers; name one dialog and the other mouth.
2. Insert a new keyframe (select Insert → Keyframe) in the second frame of the dialog

layer. Select Window → Properties and choose woofwoofbark.aif from the Sound
pop-up menu. Select the Stream sync option. You want to use stream so that the
animation will be forced to keep pace with the audio and maintain a tight
synchronization.

3. You are now ready to create the animation for the phrase "woof woof, bark." Notice
that the waveform looks chunky in some places and flat in others. The dense, chunky

areas are where the sound is loudest (see Figure 21.4). If you click the playback head
and drag it across the Timeline (scrub the sound), you will hear the audio track play
back slowly. This should give you an idea of what "words" fall on which frames in the
Timeline.

Figure 21.4: The peaks of the audio waveform show you which places are the loudest,
and the valleys represent the quiet sections.

4. Select frame 1 of the mouth layer and insert a new keyframe. Drag the closed graphic
symbol from the Library to the Stage and place it where the mouth should be. This
will start the mouth animation in a closed position.

5. Create another new keyframe in frame 2 of the mouth layer and drag the W graphic
symbol to the Stage, placing it where the mouth should be (roughly X = 275, Y =
300). To be sure your alignment is consistent, use either the Align panel or Info panel.
The W graphic symbol creates a mouth position to say the letter w and starts the first
part of your animation.

6. Create yet another new keyframe in frame 3 of the mouth layer and drag the F graphic
symbol to the Stage. Add another keyframe to frame 4 and drag the closed graphic
symbol to the Stage. This completes the first word, "woof."

7. Continue adding new keyframes and placing symbols on the Stage until the entire
phrase is paired with mouth position graphics. It can be fun to experiment with this on
your own, but if it becomes frustrating, you can refer to Table 21.1 for a listing of
which symbols go in which frames.

Table 21.1: Frame and Graphic Symbol Combinations for the lipSync.fla Movie
Frame Graphic Symbol (Mouth Position)
1 Closed
2 W
3 F
4 Closed
5 W
6 F
7, 8 Closed
9 B
10 A
11 K
12 Closed

8. When you have finished, select Control → Test Movie to hear and see what the dog
has to say! This dialog is short, so the synchronization is not a great issue here.

However, when you select the Stream sync option, you can start to work with longer
lines of dialog, and the animation will keep the sync.

Lip sync animation is a topic that can grow extremely complex. Although this simple example
is just a glimpse of the big picture, all of the important concepts are addressed here. There are
several additional steps you can take to become more proficient with this technique:

• Keep a hand mirror with you when you work so that you can speak the words and
watch the position of your mouth as you speak.

• Don't lose sight of the entire phrase. Some letters and words don't always match with
the mouth shapes you think they should.

• Use temporary gotoAndPlay() actions to isolate and loop specific parts where you
need to focus on a word or words.

• Drawing good mouth shapes is critical! You can read about the art of drawing
animation in The Animator's Workbook by Tony White (Watson-Guptill Publications,
1988) or The Animation Book: A Complete Guide to Animated Filmmaking-From
Flip-Books to Sound Cartoons to 3-D Animation by Kit Laybourne (Three Rivers
Press, 1998).

Working with Event Sound Effects and Music

Event sounds offer you the greatest amount of freedom and flexibility when cueing your
sounds. As a result, it is also the loosest of all the sync options in Flash. This is not
necessarily a bad thing. Even though "loose sync" may sound negative, there are actually
times when it is especially useful.

Event sync is appropriately named because you pair the sound (music, effect, and so on) with
an event in your movie or animation. When the visual event occurs, the sound is triggered.
This is, of course, a very tight kind of sync, where both a visual event and a sound happen at
exactly the same moment. However, after the initial sound cue, the sync becomes much less
clear. Event sounds will play independently of the Timeline and continue to be heard until the
entire sound has finished playing or has been stopped explicitly. For example, if you wanted
to use the sound of a cymbal crash for a "falling down" animation, the cymbal would continue
to reverberate long after the character's rear end hit the pavement.

Because Event sync sounds will continue to sustain depending on their specific length, you
can achieve all sorts of interesting layering effects with multiple sounds in your movie. For
example, if a waiter drops a tray full of dishes and glasses, you would hear not one crash! but
a flurry of cracks, shatters, and smashes! Depending on how the scene is animated, you can
pair a specific sound effect to each event where a bowl, plate, or glass hits the floor. All you
need to do is create a separate sound layer for each effect you wish to use. Then, insert a new
keyframe that lines up with the animated event you wish to sync, and attach a sound with the
Event sync option. As the Timeline plays through the series of animated events, each sound
will be cued at the appropriate time. See Figure 21.5 for an example of this in your movie's
Timeline. Because each sound is left to play independently, each will continue to ring until
the sound is over, creating a great, layered sound effect to enhance your animation. The
advantage of this technique is this: Rather than have to create a long sound effect and guess
when each element falls into place, you can build the entire effect in Flash and get much
better synchronized results.

Figure 21.5: This Timeline shows how event sounds can be paired with animation keyframes
to create a layered sound effect.

There are a few things to keep in mind when working with Event sound effects:

• Event sounds are heard when they are first encountered in the Timeline. To prevent
latency, be sure that the sound is trimmed and has no dead space or silence at the start
of the sound file. To learn more about trimming audio files, see Chapter 19.

• If you are layering several loud sounds, you may need to adjust their envelopes so that
the sounds aren't distorted when played in your movie. To learn more about working
with sound envelopes in Flash, see Chapter 20.

• Flash can play only eight sounds simultaneously. Look at your Timeline to see if there
are any spots where eight different audio layers have active sounds at the same time. If
you encounter this in your Timeline, try some re-adjustments to prevent too many
overlaps.

• In the same way that this technique works for sound effects, it can also work for
music, particularly sweeping flourishes, melismatic vocal cues, horn and guitar riffs,
and so on. Experiment with this technique to see what kinds of interesting musical
effects you can create with event sounds.

Syncing Audio with Movie Clips

Movie clips are one of the most important elements in any Flash movie. They can perform
their own independent animations, apart from the activity taking place on the main Timeline.
Consequently, they can be a great asset to the synchronization of sound in your movies. You
can create Movie Clips that contain sound files attached to their various frames. Then, by
targeting a clip, you are able to control the sound or sounds it holds in its frames. This
technique takes you one step beyond playing sounds from your main Timeline and affords a
great deal of audio playback control.

 On the CD-ROM In this example, you will learn how to use Movie Clips to control sound
playback. You can take a look at the finished files, which are in the Chapter 21 folder on the
companion CD-ROM: audioMC.fla and audioMC.swf. To use Movie Clips to sync sounds,
there are two steps you must take: create the sound Movie Clip and set up a means of
controlling the clip.

To create a Movie Clip that can sync sounds:

1. If you have not done so already, import a sound into your movie. Then select Insert →
New Symbol, name the clip audio, and check the Movie Clip radio button.

2. Click frame 2 of the audio Timeline and insert a new keyframe; then press F5 twice to
insert two additional frames.

3. Create another new keyframe at frame 5 and add four new frames after it. Do the same
thing at frame 10, extending four new frames through frame 14. Finally, add one last
keyframe at frame 14. The finished frame construction should look like Figure 21.6.

Figure 21.6: The frame structure for the sound Movie Clip has keyframes at frames 2,
5, 10, and 14.

4. Now that the clip has its basic structure, you can start to fill in its components. Attach
the following actions to keyframe 2:

5. stop();
stopAllSounds();

This stops the clip from playing any farther in the Timeline and silences any active
sounds at frame 2.

6. Attach your sound to keyframe 5 and assign the Start sync option. Enter the number of
loops and any effects you desire. Here you use the Start sync option so that if the
sound is already playing, it will not be interrupted or overlapped.

7. Attach the following ActionScript statement to keyframe 14:

gotoAndPlay(10);

This line is the most important part of the Movie Clip because it creates a playback
loop. The clip cues the sound at frame 5; then, as it continues through the Timeline, it
reaches the playback loop action at frame 14. There the clip's playback head is sent to
frame 10. Since there is nothing in frame 10, the clip will continue to play toward
frame 14 once more. Again, it is sent back to frame 10, and on and on. This kind of
loop allows the clip to play its sound once, and then go into an "idle" state while it
awaits another command. Since the sound was cued with Start sync, it will play
independently of any Timeline until it has either finished playing or exhausted its
loops.

Now that you have completed the Movie Clip, you can create a means to control it in your
movie. There are many different ways to do this. Here you will learn both how to make the
controls part of the clip itself and how to control the clip from the main Timeline.

To put controls in the clip itself:

1. If you are not already in Symbol Editing mode, select the audio Movie Clip from the

Edit Symbols menu or double-click it in the Library.
2. Insert a new layer in the clip and drag a button onto its Stage. This will serve as your

Play button. Attach the following ActionScript statements to the button:
3. on(release){
4. this.gotoAndPlay(5);

}

These actions should make perfect sense: Since the sound file is cued at frame 5, you
have to send the Movie Clip to play at frame 5 in order to start the sound.

5. Drag a new button to the Stage once again to serve as your Stop button and attach the
following statements:

6. on(release){
7. this.gotoAndPlay(1);
8. }

 Note The term this is not absolutely necessary in these examples. It is used to make an
explicit reference to the current Timeline. A simple gotoAndPlay(5) or
gotoAndPlay(1) would work just as well.

9. This sends the Movie Clip back to frame 1. When it gets there, it will play through to
frame 2, where it will encounter both the stop() and stopAllSounds() actions. These
will halt the clip's playback and stop any currently active sounds in the movie.

10. Let's recap what is happening in the clip. When it is first loaded into the movie, it is
stopped at frame 2 and no sound is heard (remember, the sound is at frame 5). When it
receives a message to go to frame 5, the sound is cued and the clip is told to loop in
some inactive frames (10-14). Then, when you wish to stop the sound, the Stop button
sends the clip to play at frame 1, where it soon encounters the stop() and
stopAllSounds() actions in frame 2. This quiets the clip and prevents it from playing
any further.

11. These statements complete the controls for your Movie Clip. Exit Symbol Editing
mode and return to the main Timeline. Drag an instance of the audio Movie Clip to the
Stage of the main Timeline. Select Control → Test Movie and experiment with
switching the sound on and off.

It's great to be able to toggle the sounds on and off from the clip itself, but it's equally
important to control the clip from the main Timeline. To do this, you will need to target the
clip specifically so that you can send it to play at the correct frames:

1. Give your audio Movie Clip the instance name soundMC in the Property Inspector.
Then, drag two buttons to the Stage of the main Timeline (if there are no buttons in
your movie's Library, you'll need to create some). Use one for Play, and the other for
Stop.

2. Attach the following statements to the Play button:
3. on(release){
4. soundMC.gotoAndPlay(5);

}

5. Attach the following statements to the Stop button:
6. on(release){
7. soundMC.gotoAndPlay(1);

}

Both sets of actions target the soundMC instance with an absolute pathname.

8. Select Control → Test Movie. You should now be able to toggle the sound with both
sets of buttons-those in the Movie Clip and those on the main Timeline.

When you control a clip from the main Timeline, it's not necessary to have buttons built into
the clip itself. If you want, take the buttons out of the clip and leave it in your movie as a

sound-only Movie Clip. A Movie Clip does not have to have graphics to work, only frames.
In this case, the clip's frames are filled with nothing but actions, keyframes, and a sound cue.

Inspirational Design Model
There are so many excellent movies and websites using Flash audio synchronization that it
was really tough to pick one to speak for all the others. The solution was to pick one that, at
the time of writing, was exceptionally original and unique. Sometimes the most interesting or
memorable work is not the most technically dazzling but rather has a strong concept and is
ingeniously presented to its audience. "Eugene, the marvelous crooning child," at
www.eugenemirman.com, proves that even the simplest audio synchronization can render
hilarious results when done well. (See Figure 21.7.)

Figure 21.7: "Eugene, the marvelous crooning child" was created by Eugene Mirman, with
voice synchronization by Scott Bowers.

Summary
Audio in the form of music, dialog, and sound effects can add new levels of interest to your
Flash movies. When including these kinds of elements, it is important to pair the audio with a
visual component of your movie so that the two are linked in some kind of meaningful
relationship. This is accomplished by setting the sync. Flash allows you to establish tight
synchronization for things like spoken dialog and scored music. It also makes room for loose
syncs for things like button sounds, short musical cues, and sound effects. This chapter
presented the various sync options that Flash provides and walked through the specifics of
each. You learned the best type of application for each synchronization option and put them
into practice in three short examples.

Flash's sync options allow a fair amount of control over the way your movie will play the
sounds it encounters in the Timeline. Your next step is to dive into the world of ActionScript,
where you can tell Flash specifically how and when you wish to play sounds in your movie.
Through scripting, you are able to achieve complete control over sound playback.

Chapter 22: Controlling Audio with
ActionScript
Overview
Up to this point, your exposure to audio in the Flash environment has consisted mainly of
sounds that are attached to your movie's Timeline and cued when their host frames are played.
This technique works well for cueing music, sound effects, and dialog in such a way that they
line up in sync with an animation. The only disadvantage to this approach is that all sounds
are bound to frames, within either a Movie Clip or your main Timeline. As a result, if a
Timeline has sounds you need but is not currently loaded, you are forced to call it to the
Stage, adding an extra and often unwanted step to the process. Flash changes all of this with
ActionScript.

When Flash evolved to version 5, it introduced the Sound object. The Sound object is an
element of ActionScript that allows you to have complete control over every sound in your
movie, whether the sound is in a Timeline or not. Flash MX continues the tradition by
introducing additional terms that will allow you to load external sounds, manage sound
playback, and track sound-related events. The Sound object opens the possibilities for
interactive audio in Flash, and allows you to change every sound parameter dynamically
through scripting rather than with keyframes and sync options.

Working with the Sound Object
The Sound object is one of ActionScript's predefined objects. You use it to control the
playback parameters of sounds in your movie. The Sound object allows you to play and stop
sounds, set their volume level, and change their position and volume in the left and right
speakers. The Sound object also makes it possible for you to monitor the volume, panning,
and effects applied to a particular sound. To use this object, it's important to understand what
it is and how it works as part of the ActionScript language.

Understanding the Sound Object

Like all other objects in ActionScript, the Sound object holds information about various
components of your movie. Just as the MovieClip object holds information about the
properties of a particular clip, and the Math object stores specifics of arithmetic, this Sound
object stores information about a movie's sounds and their properties. More specifically, it
stores information as to whether a sound is currently playing and, if so, how loud, in what
speaker(s), and so on. To monitor or control a sound via ActionScript, you must create a new
Sound object. Once a sound has an object associated with it, the object allows you to pass
information to and from the sound.

Objects can encapsulate the specific attributes of an element in your movie and allow you to
control them. They also serve as a medium of exchange. In the exchange, you must have
currency—something common that can be understood and used by both your movie and its
objects. ActionScript refers to this kind of currency as methods. Methods are used to send and
retrieve information between your movie and its objects. Every object has a particular set of

methods that it implements. The Sound object has methods that check and set volume and
panning, play (start), and stop active sounds in your movie. When you need to communicate
with an object, you must use its methods.

Using the Sound Object

The first step toward working with the Sound object is knowing how to create a Sound object
instance. Without it, you will have no means of communicating with a particular sound. When
you create a new Sound object, it can be used to control:

• All sounds currently available in the Flash Player (all SWF files loaded in at various
levels)

• All sounds currently available in the movie
• The sounds in a specified Movie Clip instance
• A sound you specifically attach to the object

Depending on how you create the object, you will be able to use it for any of these
applications. The generic constructor for a Sound object is as follows:

soundObjectName=new Sound("targetInstance");

Here, soundObjectName is a placeholder for whatever you wish to call the object.
targetInstance is an optional argument (enclosed in quotes) for the function. If you plan to
control the sounds in a particular Movie Clip, you must target the clip specifically.

To create an object for every movie currently available in the Flash Player, no target argument
is necessary. Use this constructor:

globalMovieSound=new Sound();

Here, globalMovieSound is the name of a new object to control the sounds on all Timelines.

To create an object for all sounds in a Movie Clip or on a specific Timeline, you must create
the object and specify a target argument:

monkeyClipSound=new Sound("bananas");
loadedSound=new Sound("_level1");

In the first example, an object named monkeyClipSound is created to control the attributes of
sounds in the Movie Clip named bananas. The second statement creates an object named
loadedSound for all sounds on the Timeline of the movie loaded at _level1.

When a Sound object targets a sound in another Timeline, the object can only be used to
control the volume and panning of the sound. Play and stop don't work, because the sound is
bound to the frames of the Timeline where it resides. However, Sound objects can control
individual sounds that reside in a movie's Library. To facilitate this, you must attach the sound
directly to the object. To learn how to do this, see the later section "Attaching Sounds with
Linkage Identifiers."

Controlling Sound Playback

Creating a Sound object is an essential step to controlling your sounds dynamically with
ActionScript. Without the object, you have no means of issuing commands to the sound. After
you construct an object for a specific sound, you are free to invoke the methods of the Sound
object to control their playback.

Controlling a sound via ActionScript offers several advantages over the conventional frame-
based sound cues. First of all, if you only want to cue a particular sound, you don't have to
target a Movie Clip or Timeline to play a specific frame. In many cases, the Sound object
allows you to refer to a sound specifically, and you can cue it without having to play the
frame where it resides in your movie. Conventional ActionScript has provisions for you to
stop all sounds in your movie. In addition to providing this same stop feature, the Sound
object allows you to start all the sounds in your movie with a single set of script commands.

The other advantage of controlling a sound through ActionScript is greater flexibility. Any
element of your movie that uses scripting represents an opportunity to control sound
playback. As graphic elements of your movie are dynamically manipulated or moved, you can
echo these changes in your sound scripting.

Here are some of the Sound object methods used to control sound playback:

start(secondsOffset,loops) Used to cue sounds. start() can take two optional arguments. The
secondsOffset argument can be used to start a sound from any point within the sound file. To
start a 10-second sound at its halfway point, you would specify an offset of 5. The loops
argument establishes the number of times a sound will play. If no loop is specified, the sound
will play once (the default). To play it twice, enter a value of 2; enter 3 to play it three times,
and so on.

 Note To cue a sound using the start() method of the Sound object, the sound must first be
exported from the Library using the Linkage option. To learn more about this, see the
later section "Attaching Sounds with Linkage Identifiers."

stop("soundID") Used to stop sounds. stop() will silence all sounds in the object it is used to
control. The optional argument soundID is used to stop sounds that were attached to the
Sound object directly with symbol linkage.

To see specific examples using these methods, see the section "Playing and Stopping Sounds"
later in this chapter.

Setting Volume and Pan Parameters Dynamically

Without the help of ActionScript and the Sound object, you are forced to cue sounds by
placing them in frames of your main Timeline or a Movie Clip. The same is true for the
parameters that affect a sound's volume and panning. In order to change this kind of
information for a sound placed in a keyframe, you must use the Edit Envelope dialog box and
drag the envelope handles into position (Figure 22.1). Although this technique does give you
a convenient graphical representation of the changes affecting a sound's envelope, the changes
are permanent and cannot be altered after the movie is published. To make changes to an
envelope effect, you have to go back to the keyframe where the sound is cued, open the Sound
panel, and enter a new envelope shape.

Figure 22.1: The Edit Envelope dialog box.

ActionScript expands the possibilities tremendously by providing four methods for setting
and monitoring the volume and pan parameters of a sound. And because this can all be
accomplished via scripting, you have the potential to dynamically change volume and pan
information at any time and from any location in your movie. Here are the methods:

setVolume(volume) Controls the volume of a sound's playback. Specify the argument volume
between 0 (muted) and 100 (full volume). The default volume setting is 100.

getVolume() Monitors the volume of a Sound object. This method returns a value between 0
and 100, representing the current volume of the object.

setPan(pan) Sets the pan position for a Sound object. The argument pan determines where the
sound is positioned. A value of 100 indicates that the sound is panned hard right (panned
completely to the right speaker); –100 indicates that the sound is panned hard left (panned
completely to the left speaker); and 0 indicates that the sound is centered (the default pan
position). Once an object's panning has been set, it will remain in that position until it is
changed.

getPan() Monitors the pan position of a Sound object. This method returns values ranging
between –100 (hard left) and 100 (hard right), which represent the pan position of the object.
The value 0 (the default) means that a sound is shared equally between the two speakers.

To see specific examples using these methods, see the section "Setting Volume and Pan
Levels" later in this chapter.

Creating Special Stereo Effects

ActionScript provides a special Sound object method that allows you to create unique effects
with stereo sounds in your movie; it is called setTransform(). While the effects it creates are
similar to those accomplished with panning, there is a bit more to this method. You may
remember from Chapter 19 that stereo sounds are sounds that have been mixed with different
components in the left and right speaker channels. For instance, a barbershop quartet may
have the bass and lead voices mixed more heavily in the left channel, while the baritone and
tenor voices are mixed more to the right. If you were to listen to only one channel of a stereo
mix, you would hear an incomplete rendition of the audio because it would be missing about
half of its components.

The setTransform() method doesn't affect sounds directly. To use it, you must create a generic
object that applies the transform information to the sound object you wish to alter. The
generic object (call it a transformer) allows you control each channel of a stereo mix and
assign output values for each as percentages. For each channel of stereo sound, the
transformer object has two properties, one that controls a channel's left output, and one for the
right. This gives you a total of four properties that can be used to alter the stereo composition
of a sound. See Table 22.1 for a rundown of the generic object (transformer) properties.

Table 22.1: Properties for the transformer Used with setTransform()
Property Value Description
ll 0–100 Percentage of left channel sound to play in the left speaker
lr 0–100 Percentage of right channel sound to play in the left speaker
rr 0–100 Percentage of right channel sound to play in the right speaker
rl 0–100 Percentage of left channel sound to play in the right speaker

Confused? Take a look at two examples of property settings to see how they would work in
context. The following properties play a stereo sound as true stereo; all of the left information
is played in the left speaker, and all right information is played in the right speaker:

ll = 100
lr = 0
rr = 100
rl = 0

These next property settings swap the left and right channel information to create a reverse
stereo effect; all left information is played right, and all right information is played left:

ll = 0
lr = 100
rr = 0
rl = 100

Of course, by changing the values assigned to each property, you can create many different
kinds of interesting stereo effects.

Once the properties have been stored in the generic transformer object, it is passed to the
sound object via the setTransform() method. Here is a breakdown of the method's syntax:

setTransform(transformer) Applies the properties stored in the transformer object to a sound
object.

getTransform() Retrieves the properties applied to a sound object in the last setTransform
command.

For specific examples of using the setTransform() method and creating a generic transformer
object, see "Scripting Special Effects" later in this chapter.

Cueing Sounds with the Sound Object

The Sound object provides you with a great deal of flexibility in controlling sound playback.
You will find that it offers substantial advantages over conventional frame-based sound cues
because you can cue sounds at any time and manipulate their attributes dynamically. Now that
you know what the Sound object is and how it works, you're ready to put it to use in the
context of your Flash projects. This section shows you how to use the Sound object to export
and attach a sound from your movie's Library and then cue it in your movie.

Attaching Sounds with Linkage Identifiers

One of the most useful functions of the Sound object is that it allows you to play sounds that
are not directly inserted in a Timeline keyframe. However, before you can do this, you must
attach the sound to the object you are using to cue the sound and control it. By attaching a
sound, you are adding it to your movie while it is running. In some ways, this is the
ActionScript equivalent of cueing a sound from a frame. The main difference is that when a
sound is attached, it is done with ActionScript. Consequently, it can be paired with button
clicks, keystrokes, and other types of user interaction.

To attach a sound to a Sound object, you must first export the sound from your movie's
Library. Here are the steps:

1. In your movie's Library, highlight the name of the sound you wish to export.
2. In the Options pop-up menu, select Linkage. The Linkage Properties dialog box

appears (see Figure 22.2).

Figure 22.2: The Linkage Properties dialog box is used to export a sound from the
Library so that it can be attached to a Sound object.

3. Check the button next to Export for ActionScript and give it a unique name in the
Identifier box. The Identifier is the name you will use to attach the sound to a Sound
object. In Figure 22.2, the exported sound will be attached to an object as libSound.

4. Click OK when you are finished. The sound is now ready to be attached to a Sound
object.

 Note The Linkage Properties dialog box is also used to include sounds as a Shared Library
asset. Shared Libraries allow you to exchange common files between several different
Flash movies. To learn more about creating and working with Shared Libraries, see
Chapter 7.

After you export the sound from the Library, you are able to attach it to a Sound object. This
step officially associates the sound with an object, which in turn can be used to control the
various parameters of the sound's playback. An object can have only one sound attached at a
time. Attaching a new sound to an object will replace any sounds the object previously
contained. To attach a sound, you use the attachSound method, which has this syntax:

sndObj.attachSound("idName")

Here, sndObj is a placeholder for the name of the object to which you will attach the sound.
The argument idName (a string, entered in quotes) is used to declare the name of the identifier
associated with the exported sound you wish to attach.

The following example creates a new Sound object called movAudio and attaches the sound
exported from the Library as libSound:

movAudio=new Sound();
movAudio.attachSound("libSound");

After completing these steps, any methods applied to the movAudio object will affect the
playback of the sound file exported as libSound.

Playing and Stopping Sounds

Two of the most important methods of the Sound object are those used to play and silence
sounds. After all, a sound has to be cued (or stopped and recued) before you can make any
audible changes to its panning, volume, or stereo composition. To cue a sound from scratch:

1. Go through the steps of exporting the sound from the Library and assigning it an
identifier. To learn more about this, see the preceding section.

2. Once you have exported the sound, you can add the following script statements to the
script of a button, frame, or other movie element:

3. mySound=new Sound();
4. mySound.attachSound("bkgdLoop");

mySound.start(0,999);

The script example just above does three things:

• It creates a new Sound object named mySound.
• It attaches the sound exported as bkgdLoop to the object.
• It cues the sound from its beginning and loops it 999 times.

Assume for the moment that this object controls a sound that is 4 seconds long. To loop the
sound 999 times from its halfway point, you would enter:

mySound.start(2,999);

This statement uses the secondsOffset argument to start the 4-second sound 2 seconds (or
halfway) into the file.

Another variation on this would be to use a variable to set the number of loops for a particular
sound. For example:

loop=4
mySound.start(0,loop);

In this example, the variable loop is initialized to 4 and will cause the mySound object to loop
four times. However, because loop is a variable, you are able to manipulate its value with
ActionScript in other portions of your movie. You can create some sort of interactive

controller (slider, button, keystroke, and so on) that will increase or decrease the number of
times a sound will loop when it is cued.

When playing sounds via the Sound object, you'll find that you can also exert a fair amount of
control in stopping sounds. Consider the following statements:

addASound=new Sound();
addASound.attachSound("ambient");
addASound.start();
addASound.stop();

This script example does the following:

• It creates a new global Sound object named addASound.
• It attaches the linked sound ambient to the object.
• It cues the sound.
• It stops all sounds in the movie (because the object is global). If the addASound object

were targeted to a specific level or Movie Clip, this final statement would stop only
the sounds in that target.

The stop() method will also accept an argument in its parentheses; this argument is known as
soundID. The argument is available so that you can silence a specific sound by referring to its
symbol identifier. Consider the following example:

addASound=new Sound();
addASound.attachSound("ambient");
addASound.start();
addASound.stop("ambient");

Here you see the same set of commands as before. The main difference is that the stop
method uses an argument in its parentheses. In this case, even though addASound is a global
Sound object, the only sound that will be stopped is "ambient". Because "ambient" is an
attached sound, and because it is stopped explicitly, it will cease to play but leave other
sounds in the movie alone.

Scripting to Control Volume and Panning
At this point, you have learned about the Sound object, how it is used, and how to cue sounds
in your movie using ActionScript and the Sound object methods. The Sound object allows
you to control all parameters of sound playback through scripting; this includes ActionScript
techniques that can dynamically set the volume level and pan position of a sound in your
movie. Using ActionScript to create different kinds of controllers or script calls, you are able
to make changes to a movie's audio based on user interaction and various movie events. The
best thing about this is that the changes can take place at runtime and be continually updated
to match the interactive structure of your movie.

This section presents several key concepts that show you how to set volume and pan levels
using ActionScript. Related to this, there are also techniques for creating audio fades and
stereo effects. Like many of the examples presented in this book, these are germ ideas. The
intention is that you grasp the basic concepts here and then take them to new heights in
movies of your own. Dig in and, most of all, have fun! With the precise audio control that

ActionScript adds to your movies, you will find an entirely new level of sound possibilities in
Flash.

Setting Volume and Pan Levels

Volume and panning are two of the most important considerations when it comes to putting
together an audio mix. By assigning each sound its proper level, you are able to create an
ideal balance among all audio components of a movie: sound effects, music, dialog, and
narration. Positioning a sound in the stereo field helps create an audio environment where
each element has its own niche in the overall sound composition of your movie. With the help
of ActionScript, this can all be done using a few simple lines of code that set the audio
changes in motion.

When you manipulate volume and pan data in Flash, it is assumed that the sound you wish to
affect is already playing. If a particular sound associated with the Sound object has not yet
been cued, Flash will have nothing to control. However, once a sound is playing, you are free
to use the methods of the Sound object to change its pan and volume attributes.

To set the volume level of a sound, you must use the setVolume() method. This method uses
the dot operator to apply the volume information to the Sound object that you specify in your
script. For example, to set the level of a sound to full volume, enter the following statement:

myObject.setVolume(100);

In this example, myObject is the name of the Sound object you will affect. This script
example must be preceded by statements that create the Sound object myObject, attach a
sound from the Library, and cue the sound using the start() method. Of course, these elements
don't have to appear in the same script window as the setVolume() call, but they must be
executed in the movie before you can manipulate the sound's volume.

The setVolume() method can also be used to control a frame-based sound in your movie once
it has started playing. Sounds attached to the frames of Movie Clips or to loaded SWF files
can have their volume manipulated by the Sound object as well. Consider the following
example:

loaded=new Sound("_level1");
loaded.setVolume(50);

In this script, a new Sound object named loaded is created for the sound(s) of the SWF file
playing on level 1. The setVolume() method lowers the level of these sounds to 50% of their
total volume. Using this same syntax, the method can also target the volume of sounds in
Movie Clip instances. Simply enter the target path to the clip, and the Sound object will be
able to find it.

Controlling panning with ActionScript is very similar. The main difference is that the setPan()
method takes both positive and negative numbers as arguments: –100 to pan hard left, and
100 to pan hard right. Consider the following script:

bass=new Sound();
bass.attachSound("fenderjazz");
guitar = new Sound();

guitar.attachSound ("strat");
bass.start(0,100);
bass.setPan(-75)
strat.start(0,50);
strat.setPan(75)

This example cues two sounds after creating objects for each and attaching sound files from
the Library. After each cue, the setPan method is invoked to position each sound in an
individual location: bass is panned mostly to the left, and guitar mostly to the right. I say
mostly because each statement pans 75% of the sound to one speaker but leaves the remaining
25% in the opposite speaker. This pan configuration creates a fair amount of stereo separation
for the sounds but still allows them to mingle and blend a bit.

 Note You can also use setPan() to manipulate the panning of sounds in a Movie Clip or
loaded SWF file. Simply enter a target argument in the parentheses when you create the
Sound object. Any methods that manipulate that Sound object will apply to the targeted
Timeline.

When setting the pan position of sounds, there is no "golden rule" to follow. Your best bet is
to use your ears and develop a scheme that sounds good and fits your sound design goals.
Remember, to correctly hear the panned sound, you must have a two-speaker stereo setup for
your computer. If you don't have access to a set of speakers, headphones are always a good
way to hear the subtle details of an audio mix.

Scripting Volume Controls

Once you have mastered the basics of manipulating volume settings, it's possible to combine
that knowledge with what you already know about ActionScript, and create controls for
changing the volume of various sounds in a movie. In previous sections of this book, you used
ActionScript to control many different parameters of graphic elements in your movie. The
only difference here is that rather than use ActionScript to change the visual properties of
Movie Clips, you will use it with the Sound object methods to change the properties of audio
playback.

You already know that the setVolume() method is the part of ActionScript used to create
changes in audio level. Here you will incorporate that technique with a few basic actions
inside a Movie Clip to create a simple, yet flexible and powerful, volume controller.

 On the CD-ROM To get an idea of what you will be creating, open the volumePanner.swf
file found in the Chapter 22 folder on the companion CD-ROM. Although this example
doesn't cover the specifics of creating this movie's graphic component, you can take a look at
the finished Timeline structure in the volumePanner.fla file to get an idea of how it was
constructed.

To create a set of volume control buttons:

1. Prepare a couple of items before you begin working on this exercise:
o First, you will need a sound to control. Import a sound to your movie's Library

and export the sound symbol using the Linkage Properties dialog box. To learn
more about importing sounds, see Chapter 20; to learn more about linking
sounds, see "Attaching Sounds and Symbol Linkage" earlier in this chapter.

o You will also need at least one button to serve as part of your volume
controller. One button is sufficient because it can be used several times in the
same Timeline. However, if you would like to create two buttons, you can. To
learn more about creating buttons, see Chapter 13.

2. After you've set up your sound and button in step 1, begin by selecting Insert → New
Symbol. Name the symbol volume and select Movie Clip as its behavior. Click OK,
and Flash jumps into Symbol Editing mode.

3. Rename the first layer actions and enter seven new keyframes in the layer. Click the
first keyframe and select Window → Actions (if the panel is not already visible). Enter
the following statements:

4. cue=new Sound();
5. cue.attachSound("yourLinkedSound");

cue.start(0,100);

In this example, the reference yourLinkedSound is a placeholder based on whatever
name you assigned to the sound you exported using Linkage Properties. Also, the
name of the Sound object cue is arbitrary and can be changed if you like; just be sure
to use the new name consistently throughout your scripts.

6. Click the second keyframe and display the Actions panel once again. Enter these
statements:

7. cue.setVolume(100);
stop();

These statements set the initial volume and stop the playback head at frame 2.

8. In the remaining five keyframes, you will enter similar lines of ActionScript. See
Table 22.2 for a listing of scripts and the keyframes they go in. When you have
finished entering all of the statements in their various frames, you can close the
Actions panel and return to the volume Movie Clip Timeline. The role of these
statements will be explained shortly.

9. Grab a button from your movie's Library and drag it to the Stage of the volume Movie
Clip. Drag another button to the Stage and position it near the first button. If you use
different buttons, there is no need to change them once they are on the Stage. The
buttons used in volumePanner.fla are identical, but one has been rotated 180° so that it
looks different. It's not essential that the buttons look different, but it can be helpful to
show which one raises the volume and which one lowers it.

10. Click the button you wish to use as the "Lower Volume" button and open the Actions
panel. Enter the following statements:

11. on(release){
12. if(_currentFrame<7){
13. nextFrame();
14. }

}

Table 22.2: Keyframe Actions for the Volume Movie Clip
Keyframe ActionScript
3 stop();
 cue.setVolume(80);
4 stop();
 cue.setVolume(60);
5 stop();
 cue.setVolume(40);
6 stop();
 cue.setVolume(20);
7 stop();
 cue.setVolume(0);

When this button is clicked, the script checks to see the position of the playback head
in the Movie Clip. If it is sitting at a frame number less than 7, the clip is told to
advance a frame using the nextFrame() action. Your volume Movie Clip has seven
frames. Once the clip is sitting in frame 7, it doesn't advance if the button is clicked,
since 7 is not less than seven. Also, because each frame contains both a stop() action
and a statement that sets a new volume level, every new frame that is encountered
both halts the playback of the clip and updates the volume level of the Sound object.

15. Click the button you wish to use as the "Raise Volume" button and open the Actions
panel. Enter the following statements:

16. on(release){
17. if(_currentFrame>2){
18. prevFrame();
19. }
20. }

This button works in a similar fashion to the Lower Volume button. Each time the
button is clicked, the script checks the current frame where the clip is stopped. If it is a
frame greater than 2, the playback head moves to the preceding frame number, or to
the left across the Timeline. Because the setVolume statements increase in value from
right to left, the Sound object volume is gradually raised as the head moves closer to
frame 2.

21. Close the Actions panel and return to your movie's main Timeline. Grab an instance of
the volume Movie Clip and drag it from the Library to the Stage. At this point, there is
no need to assign an instance name to the clip. Select Control → Test Movie to give
this controller a spin. As you click the Lower Volume button, you should hear the
sound level drop; conversely, the Raise Volume button should increase the volume of
the sound.

Creating Audio Fade-Ins and Fade-Outs

What exactly is a fade-in or fade-out? It's an audio effect that gradually raises or lowers the
volume of a sound to either ease it up to full volume or taper it off to silence. As you've
probably already guessed, fade-ins and -outs require you to manipulate the volume of a sound
as you did to create a volume controller. This is true, but with one exception: Fades are
gradual effects; once you set them in motion, they happen slowly over time. To create a fade,
you must design a Movie Clip structure that can gradually take a sound from one volume
extreme to another in a single step, rather than with the individual mouse clicks you used to
create volume controls.

 On the CD-ROM Open the file fadeInOut.swf or fadeInOut.fla from the Chapter 22 folder
on the companion CD-ROM. Play around with the fade-in and fade-out buttons to see and
hear exactly what happens with a fade controller. The process of creating a fade is simple,
and, based on what you already know about volume controls, you should easily grasp the
concepts behind a fade controller.

To create controls that fade a sound in and out:

1. Prepare a couple of items before you begin working on this exercise:
o Here again, you need a sound to control. Import a sound to your movie's

Library and export the sound symbol using the Linkage Properties dialog box.
To learn more about importing sounds, see Chapter 20; to learn more about
linking sounds, see "Attaching Sounds with Linkage Identifiers" earlier in this
chapter.

o You will need at least one button to serve as part of your fade controller. One
button is sufficient because it can be used several times in the same Timeline.
However, if you would like to create two buttons, you can. To learn more
about creating buttons, see Chapter 13.

2. Begin by selecting Insert → New Symbol. Name the symbol fader and select Movie
Clip as its behavior. Click OK, and Flash jumps into Symbol Editing mode.

3. Rename the first layer actions and enter 12 new keyframes in the layer (you should
have a total of 13 in the entire clip). Click the first keyframe and select Window →
Actions to display the Actions panel (if it is not already visible). Enter the following
statements:

4. cue=new Sound();
5. cue.attachSound("yourLinkedSound");
6. cue.start(0,100);

cue.setVolume(100);

In this example, the reference yourLinkedSound is a placeholder based on whatever
name you assigned to the sound you exported using Linkage Properties. Also, the
name of the Sound object cue is arbitrary and can be changed if you like; just be sure
to use the new name consistently throughout your scripts.

7. Click the keyframe at frame 2 and enter a stop()action in the Actions panel. The
remaining 11 keyframes will need fairly repetitive and similar actions. See Table 22.3
for a listing of each keyframe and its corresponding action.

Table 22.3: Keyframe Actions for the Fader Movie Clip
Keyframe ActionScript
3 cue.setVolume(80);
4 cue.setVolume(60);
5 cue.setVolume(40);
6 cue.setVolume(20);
7 cue.setVolume(0);
8 stop();
9 cue.setVolume(20);
10 cue.setVolume(40);
11 cue.setVolume(60);
12 cue.setVolume(80);
13 cue.setVolume(100);
 gotoAndStop(2);

8. This step completes your work for the fader Movie Clip. If you looked at the
fadeInOut.fla file on the CD, you will notice that there some graphic enhancements to
the clip. These are optional, however, and won't influence the functionality of the
Movie Clip in your movie. Close the Actions panel and switch back to Movie Editing
mode and your main Timeline.

9. Drag the fader Movie Clip to your Stage and assign it the instance name fade in the
Property Inspector.

As it appears on the CD-ROM, fadeInOut.swf has a simple graphic element that
represents an LED volume meter. This can be added if you desire but is not totally
necessary. If you followed the preceding, the clip won't have any sort of significant

graphical representation—only a hollow circle to serve as a placeholder for the clip.
The fade instance (as described in this lesson) is what you call a sound-only Movie
Clip, meaning that the clip has sound(s), frame(s), and, in most cases, some
ActionScript. Sound-only clips can be targeted just like any other kind of clip; the only
difference is that they don't have any kind of visual animated components.

10. Create a new layer in the main Timeline and name it buttons. Drag two buttons to this
layer of the Stage to serve as your fade-in and fade-out controls. If necessary, change
one of the two buttons graphically so that it is distinguishable from the other.

11. Select the fade-out button and open the Actions panel. Enter the following statements:
12. on(release){
13. _root.fade.gotoAndPlay(3);

}

This script targets the clip instance fade when the button is clicked and sends it to play
at frame 3. The clip is sent to frame 3 because this is the button used to fade a sound
out. Frame 3 is the frame where the volume begins to decrease (see Table 22.3).
Notice, however, that there is no stop() action until the clip reaches frame 8. Between
frames 3 and 8, the setVolume() method gradually decreases the volume of the sound.
Then, once it has been set to a level of 0, the clip is stopped.

14. Select the fade-in button and open the Actions panel. Enter the following statements:
15. on(release){
16. _root.fade.gotoAndPlay(9);

}

This script targets the clip instance fade when the button is clicked and sends it to play
at frame 9. The reason should be clear. At frame 9, the volume is set to a level of 20;
at frame 10, a level of 40; and so on. When the volume finally reaches a level of 100 at
frame 13, the clip is sent to frame 2 and told to stop. It will sit there until another
button click executes a script that runs it through the fade-in or fade-out animation
once again.

17. Select Control → Test Movie and give your fade controller a try.

After testing this Movie Clip, you may find that the fade is either too short or too long for
your purposes. You can fix this easily because there are a couple of strategies for tweaking the
length of a fade.

If your fade is too short, do one of the following:

• Create a longer animation. If you put a greater distance between the keyframes that set
volume levels, it will take Flash longer to execute the animation.

• Adjust your volume levels in smaller increments. In this exercise, you adjusted the
sound in increments of 20%. Adjusting the volume in chunks of 5% or 2% will create
a longer, more gradual fade effect.

If you wish to shorten a fade (that is, decrease its length), simply reverse either of the
techniques for lengthening the fade.

Scripting Pan Controls

Another important element of audio control is panning. By placing sounds in the stereo field,
you can create a sense of space in the "world" of your movie. Panning assigns a source
location to ambient sound effects and allows you to balance the positioning of multiple music
tracks. And with the help of some additional ActionScript, the Sound object can be used to
create controllers that dynamically adjust the pan position of a particular sound.

 On the CD-ROM The finished file described in this exercise is the same that you used if
you worked with the volume control buttons. If you haven't yet seen and heard this movie,
open the volumePanner.swf or volumePanner.fla file found in the Chapter 22 folder on the
companion CD-ROM. In addition to the volume button controls, there is a slider that, when
moved left or right, adjusts the panning of the movie's sound accordingly. This exercise
assumes that you are already familiar with the basics of creating a slider type of controller. If
you would like to learn more about this topic, see Chapter 16.

To create a stereo pan controller:

1. Prepare a couple of items before you begin working on this exercise:
o You need a sound to control; for this exercise, either a mono or stereo sound

will do. However, since you will be manipulating the pan position, a mono
sound really makes the most sense. Import a sound to your movie's Library and
export the sound symbol using the Linkage Properties dialog box. To learn
more about importing sounds, see Chapter 20; to learn more about linking
sounds, see "Attaching Sounds with Linkage Identifiers" earlier in this chapter.

o You will need one button to serve as the knob of your slider. To learn more
about creating buttons, see Chapter 13.

2. Begin by selecting Insert → New Symbol. Name the symbol slider and select Movie
Clip as its behavior. Click OK, and Flash jumps into Symbol Editing mode.

3. Drag the button to the Stage of the slider Movie Clip and use the Align panel to
position it in the exact middle of the Stage. Click the button and choose Window →
Actions to display the Actions panel (if it is not already visible). Enter the following
statements in the window:

4. on(press){
5. startDrag("",false,l,t,r,b);
6. drag=true;
7. }
8. on(release,releaseOutside){
9. stopDrag();
10. drag=false;
11. }

These statements help to define the parameters of the slider. For a full explanation of
what each line accomplishes, see Chapter16. Close the Actions panel and return to
Movie Editing mode.

12. Now you are ready to begin putting together the components of the slider controller.
Create a new layer in the main Timeline and name it panner. Then drag the slider
Movie Clip to the Stage. Draw a horizontal line 100 pixels long on the layer beneath
the panner layer. (You can use the Info panel to confirm the length.) This guide line is
the other graphic component of the slider. Position it so that it is directly behind the
slider clip, making sure that the two elements have their centers aligned (see Figure
22.3). Pan information in Flash can have a maximum value of 100. By using a graphic

that is 100 pixels long, you guarantee that it will always be positioned beneath the
slider knob when it is moved, and the pan values will be updated accurately.

Figure 22.3: The pan slider knob (slider Movie Clip) should have its guide line
positioned behind it with the centers aligned.

13. With the major graphic elements in place, you can now get to the sound elements of
this movie. You will create a new Movie Clip that is a sound-only clip. It will have
one purpose: to cue a sound to play in this movie.

Select Insert → New Symbol. Give the symbol a name and set its behavior to Movie
Clip. In this new Movie Clip, insert two keyframes in the first layer. In frame 1, attach
the following actions:

cue=new Sound();
cue.attachSound("yourLinkedSound");
cue.start(0, 100);
 Note If you are looking at the volumePanner.fla file found on the CD-ROM, the

Sound object is created in the volume Movie Clip.

Again, "yourLinkedSound" is a placeholder for the sound you exported from your
movie's Library.

In the second keyframe, attach a stop() action. This series of ActionScript commands
creates a Sound object, attaches a sound from the Library, and plays the sound (all in
frame 1). When the clip finishes executing these statements and moves to frame 2, it is
stopped but the sound continues to play.

Return to Movie Editing mode and drag the clip onto the Stage of the main Timeline.
Use the Instance panel and assign the instance name audio for the clip. This will allow
you to target the clip so that you can control the panning of the sound it contains.

14. Now that you have a sound set to play, you can write the ActionScript necessary to
make the slider control the sound's pan position. Highlight the slider Movie Clip and
open the Actions panel. Enter the following statements:

15. onClipEvent(load){
16. t=_y;
17. b=_y;
18. l=_x-50;
19. r=_x+50;
20. mid=_x;
21. }
22. onClipEvent(enterFrame){
23. if(drag==true){

24. _root.audio.cue.setPan((_x-mid)*2);
25. }

}

These statements do two things. In the first chunk, within the onClipEvent(load)
handler, the bounds for the slider are set when it is first loaded into memory at
runtime. To set the horizontal bounds of the slider, you use the _x property plus or
minus 50. This allows the slider to move from the middle of the guide line to either the
right or left edge. The variable mid stores the original horizontal location of the clip
when it loads.

The second chunk of script is monitored on every enterFrame event. If the clip is
being dragged, it executes a statement that pans the sound in your movie. This third
line targets the sound using an absolute path from the main Timeline and uses the
setPan method to control the sound's left or right speaker position. The expression
((_x-mid)*2) returns a value between –100 and 100 based on the clip's current
horizontal position in the movie. It subtracts the starting position (mid) from the
current position (_x) and multiplies that by 2. Since the value for _x lies between –50
and 50, the expression will always return –100 to 100.

26. The pan slider is now complete! Select Control → Test Movie to give it a try.

 Note The preceding script example contains one slight difference from the
volumePanner.fla file. In that demo file, the instance name of the Movie Clip
that cues the audio is volumeControl. Rather than target the clip instance named
audio, it targets volumeControl. The two movies will perform the same, even
with a difference in clip names.

Scripting Special Effects

The setTransform() method is your key to creating interesting stereo effects in Flash. Like the
other techniques presented in this chapter, setTransform() can be combined with other
ActionScript elements to create a dynamic means of controlling or creating the effect. This
example presents the steps required to do just that.

 On the CD-ROM On the companion CD-ROM, you will find three files in the Chapter 22
folder: setTransformer.fla, setTransformer.swf, and stereoEffect.fla. You can open either of
the setTransformer files to see how this all looks and sounds once it is completed. However,
to go through the exercise presented here, you will need to open the stereoEffect.fla file and
save it to your computer's hard drive so that you can work with it. Many of the details have
already been completed so that you can focus on the more important scripting issues at hand.
Open the file, save it locally, and let's get to work!

To create a dynamically controllable stereo effect:

1. Let's assume that you already have all of your movie components in place. In the case
of this exercise, you do. There is a Movie Clip on the Stage that is draggable; you will
create an effect such that moving the clip to the left or right will change the stereo
composition of the movie's sound. The first thing you need to do is get some sounds
going in your movie.

In the main Timeline, create a new keyframe in the first frame of the layer named
actions. Open the Actions panel and enter the following statements:

1 sfx = new Sound();
2 sfx.attachSound("stereo");
3 sfx.start(0, 100);
4 xfadr = new Object();
5 xfadr.ll = 50;
6 xfadr.lr = 25;
7 xfadr.rr = 50;
8 xfadr.rl = 25;
9 sfx.setTransform(xfadr);

Here is what is happening with this code: Statements 1 through 3 create a Sound
object named sfx, attach a sound to it, and cue the sound. Note that a sound has
already been exported for you under the name stereo. If you were creating this from
scratch, you would have to go through the steps of exporting the sound from the
Library yourself.

Statement 4 creates a new generic object called xfadr. This object will be used as our
transformer, and hold the effect information you wish to apply to the sound object sfx.
Statements 5 through 8 initialize values for the properties of the transformer. The final
statement applies the transformer object properties (stored in xfadr) to the sfx Sound
object.

The stereo effect you will script here creates different balances between the contents
of the left and right channels of a stereo sound file. When the clip is positioned at its
extreme left, you will hear 100% of the sound's left channel. At the extreme right, you
will hear 100% of the right channel. In the middle (where the settings were
initialized), you will hear a 50/50 balance between left and right. You will also hear
25% of the right channel in the left speaker, and 25% of the left channel in the right
speaker. As the Movie Clip is moved toward the extreme left or right, though, these
values will slowly decrease to 0 so that there is no bleed across stereo channels. See
Table 22.4 for a breakdown of channel levels relative to clip position.

Table 22.4: Horizontal Position of Movie Clip Relative to Percentages of Stereo Channel
Levels

Clip _x Position LL Level LR Level RR Level RL Level
0 100 0 0 0
100 75 12.5 25 12.5
200 50 25 50 25
300 25 12.5 75 12.5
400 0 0 100 0

2. Create another new keyframe in frame 2 of the actions layer and attach a stop() action
to the frame. The ActionScript commands in these two frames will get the sound going
and apply the initial stereo effect in frame 1, and will then stop the movie in frame 2
while the sound continues to play. With all of this in place, you can script the actions
that will interactively manipulate the setTransform() effect.

3. Click the red sphere sitting in the middle of the Stage and select Window → Actions
to display the Actions panel. You will see that some script has already been entered. It
is there to set the drag parameters of the clip. Look at the script if you wish, but you
will not need to make any changes for this exercise.

Enter the following statements in the window below the existing script:

1 onClipEvent(enterFrame){
2 if(drag==true){
3 _root.xfadr.ll=(400-_x)/4;
4 _root.xfadr.rr=_x/4;
5 if(_x>mid){
6 _root.xfadr.lr=Math.abs(((_x-mid)/8)-25);
7 _root.xfadr.rl=Math.abs(((_x-mid)/8)-25);
8 }else{
9 _root.xfadr.lr=_x/8;
10 _root.xfadr.rl=_x/8;
11 }
12 }
13 _root.sfx.setTransform(_root.xfadr);
14 }

Let's break this down bit by bit so that it doesn't look so abstract:

Line 1 The enterFrame handler continually monitors the position of the Movie Clip
and updates values for the sfx (transformer) object.

Line 2 This if conditional executes statements only if the Movie Clip is being dragged
across the Stage.

Lines 3–4 The Movie Clip has bounds of 400 pixels. These statements set values for
the ll and rr properties using expressions to return a value based on the clip's current
position. As the clip moves to the left, ll gets closer to a value of 100 and rr drops
toward 0. As it moves right, rr is incremented toward 100 and ll decreases
proportionately. Since the xfadr object was created on the main Timeline, it is
necessary to use the _root reference to target the object and its properties correctly.
The same holds true for references later in this script to the sfx object (also created at
the _root level).

Line 5 The values of the lr and rl properties for creating this effect are a little strange.
Both properties have values that start at 25 (see Table 22.4) and then drop to zero as
the clip is moved 200 pixels in either direction from its starting point. Because the
draggable clip in this movie starts at _x position 200 (stored in the variable mid), there
is an if conditional to accommodate the math needed to create each value.

Lines 6–7 These expressions generate values for the lr and rl properties if the clip is
past the mid variable point (200). Refer back to Table 22.4 to see the corresponding
values between Movie Clip position and Stage pixel coordinates. Some values
generate a negative number, so the Math.abs() method is used to convert all values to
positive integers. You can read more about the Math object and its methods in the
ActionScript Reference section.

Lines 9–10 In the else condition for the if statement, the expression _x/8 produces a
value for the lr and rl properties if they are not greater than mid (meaning less than
200).

Line 13 This statement, which makes it all happen, targets the sfx object on the main
Timeline and applies the property information of the xfadr object via the
setTransform() method.

4. Close the Actions panel and select Control → Test Movie. Drag the sphere from side
to side and listen to how it changes. As the clip moves to the left, you hear less of the
right channel, and the left channel plays exclusively in the left speaker. The opposite is
true when you drag the clip to the right.

So what happens next? How can this be used in a real movie? Let's say that you were creating
a game in which a character could explore a world that is populated with ambient sounds and
music. This technique would allow you to manipulate their playback so that, depending on the
character's position in the world, the character would hear the nearest sounds clearly, while
others would be slightly obscured.

This stereo technique could also be used to dynamically change the sound-effects track of an
animation. Perhaps you are animating a propeller plane. As the plane gets "closer," the sound
becomes louder; if it's on one side of the Stage or another, you can hear the sound in that
channel at a higher volume. In this situation, you could script the sound controls so that the
animation is autonomous and controls the sounds according to its playback. Or everything
(both animation and sounds) could be controlled solely by audience input.

Loading External Sounds with ActionScript

 New to MX One of the most compelling new features of Flash MX is its ability to load
external MP3 sound files. Rather than include a sound or group of sounds in your movie, you
may now leave them outside your movie and call them in as needed.

This approach presents several advantages. First, sounds always add to the size of your final
SWF file. So keeping sounds outside the final movie allow it to be smaller and may help it
load more quickly. Additionally, because using external files cuts down significantly on
movie file size, you'll be able to use a Library of sounds from which your audience can pick
and choose. If they want to browse your movie while listening to classical music, reggae,
western swing…whatever, you can give them a host of files to choose from and then load the
appropriate soundtrack for each visitor. External sounds can be loaded into a Flash MX movie
from any location on the Internet. This means it's also possible to use Flash to create a forum
for MP3 playback. Your audience can share the URLs of sounds they would like you and
others to hear, making your movie a sort of MP3 jukebox.

The list of other possibilities goes on and on. As always, Flash is limited only by your time,
budget, and creativity. To help you accomplish these new feats, ActionScript's Sound object
has been given several new terms, including these:

Sound.loadSound("url",stream) Used to load external sounds into the specified Sound
object. loadSound() takes two arguments. Enter the external sound's URL as a string, and
enter a Boolean value for stream. A setting of false means that the sound must load entirely

before it can begin playback; true makes the sound a streaming sound, and it will begin to
play once a sufficient amount has been downloaded.

Sound.getBytesLoaded() Used to monitor the number of bytes in an external sound that have
been loaded into the specified Sound object.

Sound.getBytesTotal() Returns the total number of bytes for the specified Sound object. You
can use the methods getBytesLoaded() and getBytesTotal()to create preloaders for external
sound files.

 On the CD-ROM Now that you are familiar with some of the new Sound object terms, you
can get down to business. To make the following introductory procedure as simple as
possible, we have prepared a starter file for you on the companion CD-ROM. Go to the
Chapter 22 folder and open the file loadMP3.fla; copy it to your computer's desktop. Several
additional steps have already been completed so that you can focus on the most important
aspects of this technique.

To load an external sound:

1. First, you must have a remote MP3 file that you can load. We recommend that you
start with something small so that while you're testing this procedure, you don't waste
a lot of time waiting for a large file to load. Upload an MP3 file to your web server
and be sure to write down the file's URL.

 Note If you don't have a web server or an MP3 file to use, we have provided one for
you. Use the following URL to link to the file savvySound.mp3 at
www.vonflashenstein.com/resources/savvySound.mp3.

2. In the loadMP3.fla file, select the first (and only) keyframe of Layer 1. Choose
Window → Actions (F9) to open the Actions panel. You'll see something that
resembles Figure 22.4.

Figure 22.4: The actions for the first keyframe of the loadMP3.fla file You'll enter the
URL for your external sound within the quotes of the loadSound statement.

3. In line 2, notice the phrase "enterYourURLHere." Replace that phrase with the
absolute URL of the MP3 file you want to load into your movie. An absolute URL is
written as http://www.myDomain.com/file.mp3, where myDomain.com is the name of
your domain and file.mp3 is the name of your MP3 file.

Line 1 creates the Sound object load1. Line 2 uses the loadSound() method to load the
external file you just specified. false, an argument to loadSound(), determines that the
loaded sound will behave like an event sound and must be completely loaded into
memory before it can begin its playback. Line 3 initializes the variable audio to False
(this will be used later on).

4. Select the status Movie Clip on your movie's Stage (Figure 22.5). Open the Actions
panel (if it is not already open). The ActionScript attached to the status instance,
shown here, is responsible for monitoring the progress of the loading sound.

Figure 22.5: The status Movie Clip

Let's examine this script line by line:

Line 1 The handler onClipEvent(enterFrame) checks the statements in this script
continually every time a frame is played.

Line 2 Because the variable audio was created on the main Timeline, it must be
referenced using _root. This variable works as a sort of lynchpin. If it is False, the
sound is still in the process of loading. Once the sound has been loaded, Line 6 resets
the variable to True.

Line 3 This conditional statement checks the status of the sound while it's loading. It
tests two things: whether the total byte count of the sound is greater than 0 and
whether the bytes that have been loaded are equal to the total number of bytes. Only
when both of these statements are true will the script proceed with lines 4–6.

 Note It's good to check whether Sound.getBytesTotal() is greater than zero. This helps
prevent a sound that's slow to load from jumping the gun. If the sound hasn't

loaded at all, it contains 0 bytes. Because it has loaded 0 bytes and contains 0
bytes, the statement 0==0 will obviously return true, and Flash will think that the
sound has loaded completely.

Lines 4–6 When the sound is completely loaded, these statements update the status
instance by sending it to frame 7 for a change of appearance, cueing the load1 Sound
object, and setting the audio variable to True to prevent the sound from being cued
repeatedly, now that it has loaded into your movie.

Lines 8–13 If the sound hasn't loaded completely into load1, a series of alternative
statements will execute to show the load progress:

loadBytes is a variable storing the number of loaded bytes.

loadTotal is a variable storing the number of total bytes.

percent stores the percentage of the sound that has loaded.

loadBytes_txt is a text field variable that displays the current value of loadBytes.

loadTotal_txt is a text field variable that displays the current value of loadTotal.

percent_txt is a text field variable that displays the current value of percent.

Lines 8 and 9 use the Math.round() method to round the byte count to the nearest
integer. Values are divided by 1,024 to give the kilobyte count.

5. Select Control → Test Movie to give the loaded sound a try. As the sound is loading,
the gray and white wheel should spin, and the text fields should print a numeric
display of the loading sound's progress. Once the sound has finished loading, the
spinning wheel becomes a green dot, and the text display beside it changes to read
"playing."

If your movie doesn't work properly right away, here are a few things to check:

• Be sure you are connected to the Internet.
• Check the speed of your connection. A busy network will slow the loading process.
• Be certain that your URL to the external sound is correct.

This section has given you just a glimpse of the possibilities offered by external sounds. To
learn about additional ActionScript terms that can enhance your movies and their ability to
work with external sounds, see the Sound object section of the ActionScript Reference
section.

Inspirational Design Model
Creating a truly interactive audio experience is a very difficult thing to do, not so much from a
technical angle but from a point of communication. The designer's greatest task is deciding
how to make the sound interactive while ensuring that it still works synergistically with the

movie's graphic components. Even for movies that offer very little graphic interest, there is
still a need for some sort of control source that allows an audience to manipulate the
interactive audio.

Visit www.pianographique.com (see Figure 22.6). This site features work by Jean-luc
Lamarque and a group of other musicians and multimedia artists. You'll find a collection of
intriguing interactive audio movies. Not only is the music engaging, but it works very, very
well with the visual content to create an immersive, interactive experience that you may want
to explore for hours.

Figure 22.6: "Angular entropy," with code by Jean-luc Lamarque and sound and graphics by
Jean Pehuet and Xavier Pehuet. This piece was created in Flash and is an exceptional example
of the possibilities of interactive sound and imagery.

Summary
You are sound savvy. This chapter completes the discussion of sound topics for now. With all
the particulars covered in this part of the book, you have been introduced to basic digital
audio concepts and have run through the steps of preparing audio files for the Flash
environment. You learned how to work with sound in Flash, in terms of both getting sound
into your movies and syncing it with different kinds of animations. In this chapter, you raised
the bar a notch and started to explore the possibilities of sound control and manipulation using
ActionScript.

You were introduced to the Sound object: its nature, its function, and the ActionScript terms
or methods it understands. You learned how to cue and silence sounds, set their volume and
pan information, and create interesting effects with stereo sound files. Also, using elements of
ActionScript that are not sound related, you learned how to create several different kinds of
audio controllers for manipulating volume, panning, creating fades, and adjusting stereo
sound balance. In the next part of the book, you will put much of this knowledge together to
create an interactive, multitrack audio movie that loads quickly in a low-bandwidth
environment.

Hands On 6: Creating Dynamic
Soundtracks with DoReMedia Sound
Families
Overview
If you are a designer who wishes to make your Flash creations come alive with sound effects
and music, the cards are certainly not stacked in your favor. This is not to say that it can't be
done, but there are many obstacles that make the task difficult. If your Flash piece will be
delivered on the Internet, you have to be concerned with the size of your files. Digital audio
by nature takes up a good deal of storage space. File size alone is often prohibitive when it
comes to adding sound to a Flash website or animation. Another factor in the equation is
interactivity. This poses possibly an even greater challenge.

Sound is a time-based medium. In order to hear something, you have to wait for it to be cued
and then wait for it to conclude. Oftentimes it needs to be heard in combination with another
audio element. Lining up audio events becomes very difficult when there is nothing consistent
on which to base them. The whole idea of interactivity opens the possibilities to events that
cannot be scheduled; they are solely dependent on the whimsy of an audience who chooses
what they want to see or hear at any given moment. This unpredictability makes things
especially difficult for designers planning to use audio in their Flash animations; if sound
timing is so crucial, but there is no way to predict the timing, how can one possibly design
with it in mind?

The answer is creativity, ingenuity, and a good collection of useful sound files that have been
developed for interactive applications. With the right kind of audio source material, you will
find that it is actually possible to create dynamic soundtracks that can both hold an audience's
musical interest and support the interactive features of your movies.

DoReMedia Sound Families have been professionally produced to provide seamless
integration with Flash from a perspective of both tight synchronization and interactivity. In
this tutorial, you will learn how to take a set of audio and music components and use them to
create a rich, dynamic sound experience that supports interactive navigation.

Planning Your Movie for Audio Interactivity
If you were approaching this project for the first time (rather than taking a guided tour and
learning as you go), you would find it helpful to decide roughly what your audio goals are
before setting out to work. In other words, how do you want the piece to sound? It's best to
plan roughly, because it is never a good idea to box yourself in creatively. By all means, don't
eliminate ideas because they may not fit with the initial creative direction you decided on. The
best way to begin the conceptual process is to close your eyes, imagine someone interacting
with your movie, and listen: What do you think it should sound like? This technique will give
birth to your ideas and help forge the path toward a finished piece.

Since this is a tutorial and your task is to learn a technique rather than create an original
soundtrack, the creative work has been done for you already. After completing the steps
outlined here, you should be able to apply the skills you have learned to create your own
dynamic soundtrack.

 On the CD-ROM First, open the file whiskey100.swf from the Hands On 6 folder on the
companion CD-ROM to this book (or you can find the finished file, whiskey100.fla).
Experiment with the simple navigation in this movie and listen to the ways the music changes
as you navigate from one portion of the movie to another. You should be able to hear how the
tightly integrated audio elements work together to create one coherent audio statement that
fits in with the navigational structure of the movie.

DoReMedia Sound Families are divided into three main categories: layers, chunks, and SFX.
Layers are the most basic element; they are individual musical phrases or components of a
song. A song's bass line or a lead guitar riff are good examples of layers. Chunks are single
files that contain entire sections of a song. Several layers can be combined to create a new
chunk, or you can use them independently. SFX, as the name suggests, can be thought of as
sound or musical effects. They are sound files that can be cued independently to enhance the
overall musical direction or provide a transition without getting in the way. Cymbal crashes,
electronic swishes, or any kind of loose rhythmic phrase can all work this way.

In this tutorial, you will learn to combine these components in a way that creates a soundtrack
with shape and serves to support basic interactivity in a Flash movie. Let's get started!

Creating Your Soundtrack
 On the CD-ROM To begin this tutorial, you will need to gather a few files. Inside the
Hands On 6 folder on the companion CD-ROM, you will find a folder named DoReMedia.
Open it and import the following files into a new Flash movie:

SYNC_100.aif Whiskey_crash.aif
Whiskey_A.aif Whiskey_drums.aif
Whiskey_A_02.aif Whiskey_fill_01.aif
Whiskey_B.aif Whiskey_lead_01.aif
Whiskey_B_02.aif Whiskey_lead_02.aif
Whiskey_break.aif Whiskey_lead_03.aif

Once you've successfully imported all the sound files into your movie's Library, you can
begin to build your movie and an interactive soundtrack. This tutorial assumes a comfortable
familiarity with the Flash environment and audio elements. To learn more about how Flash
handles sound elements, see Chapter 20.

1. Set the frame rate of your movie. DoReMedia Sound Families use a sound file called a
Sync Track to ensure that your sounds lock to a consistent tempo. You will learn more
about this later, but for now, select Modify → Document and set the frame rate of
your movie to 10 frames per second.

2. Select Insert → New Symbol and create a new Movie Clip symbol named
soundtrack. You will create the entire soundtrack in this Movie Clip. Then, using

ActionScript, you will be able to direct the playback of the music based on the
interactive choices made in your movie. Rename Layer 1 graphic and create a simple
graphic to visually represent the Movie Clip. Drag an instance of the Movie Clip to the
Stage.

 Note From this point on, all changes you make concerning layers, frames, and so on,
will be made to the soundtrack Movie Clip Timeline, so be sure that you are
working with this clip in Symbol Editing mode.

3. Create 11 new layers in the Timeline (for a total of 12). From the bottom up, the layers
should be named graphic (created in step 2), markers, actions, sync, drum, fills, A
section, A2 section, loop riffs, B section, B2 section, and breakdown. (See Figure
H6.1.)

Figure H6.1: The layer names and Timeline for the soundtrack Movie Clip

4. Insert a keyframe on frame 1 of the sync layer. Attach the sound SYNC_100.aif to the
keyframe, enter a loop value of 50, and set its sync to Stream. Scroll to frame 1200,
select it, and press F5. (If Flash allows you to see only 500 or so frames in the
Timeline initially, that's okay. Scroll as far as you can, select a frame and press F5,
then scroll farther again and repeat the process. Flash will give you around 500 more
empty frames. Continue to scroll and press F5 until the looped Sync Track sound
completes its loops at frame 1200.) You should see the repetitions of the sound file
stretch along the length of the layer.

Then, click the Edit button on the Property Inspector to open the Edit Envelope dialog
box. Select Custom from the Effect drop-down menu and drag the envelope handles to
the bottom of each track to mute their playback. Click OK when you have finished.

Even with its volume muted, the Sync Track is the most crucial component of the
DoReMedia Sound Family. It is a low-quality sound file that has been optimized to
match the tempo of your music. When you use it, you set the sync of the Sync Track
to Stream so that Flash is forced to play back at a consistent frame rate. This
consistency allows your music to stay in line, beat for beat. Earlier, you set the frame
rate of your movie to 10 frames per second. The music you will use in this tutorial has
a tempo of 100 beats per minute. The Sync Track is designed specifically to be sure
that these tempos match and that every loop of the track lands within a new frame of
the Timeline. If you visit the DoReMedia website, you can use its Frame Rate
Calculator (www.expectaudio.com/fmxsavvy/calculator2.html) to decide which frame
rate is best for your movie and the tempo of the Sound Family you use.

The Sync Track has another purpose as well. If you look at it closely in the Timeline,
you will see that it has a large "spike" in the sound file. Use this spike as a visual
reference to help line up the beats of the music. Each spike tells you where the first
beat of each bar or measure begins. You set the loop count of this sound to 50. That
means that you will have markers at each measure for the first 50 bars of the
soundtrack.

5. With your Sync Track in place, you are free to assemble the musical components of
your soundtrack. Scroll to frame 1200, and for each remaining layer, select the frame
and press F5. This will insert more than enough frames needed to complete the
soundtrack.

Now, note the second audio spike at frame 25 in the sync layer. This shows the start of
a new measure in the music. Insert a new keyframe in the drum layer at frame 25 and
attach the sound Whiskey_drums.aif. Set the sync to Event. For all remaining sounds,
you will use Event sync. This is because Event requires much less memory for Flash.
Once an event sound has been played, it is loaded into memory and can be looped or
used over and over without adding to the size of the movie. Select Control → Play to
hear the track in context.

6. Now you can add a percussive embellishment to this track. Insert a keyframe at frame
25 of the fills layer. Attach the sound Whiskey_crash.aif and set the sync to Event.
Then, insert another new keyframe at frame 19 and attach the Whiskey_fill_01.aif file
with Event sync. Notice how it ends just as the file at frame 25 is cued. If you play
back the track, you should hear a short drum fill and crash that set up and punctuate
the beginning of the drum groove.

7. Scroll ahead in the Timeline. Insert a new keyframe at frame 73 in the A section layer.
Attach the sound Whiskey_A.aif, set its sync to Event, and enter a loop value of 2. If
you listen to this track, you will hear that it is the beginning of the song. You can add a

drum fill that helps lead into the beginning guitar riff, giving the track a little more
punch. Insert a keyframe at frame 67 of the fills layer. Attach the sound
Whiskey_fill_01.aif and set its sync to Event. Now, play the tracks back. You can hear
the drum intro, but when it gets to the drum fill, there is some disagreement between
the different drum tracks as to where the beats fall. This can be easily fixed. Look at
the two tracks and you'll see that at frame 68, there is a gap in the drum layer track,
where the fills layer track shows its first spike. You can edit the volume of the drum
track so that it drops out of the way and allows the fills track to take over. Select the
keyframe at frame 25 where you cued the Whiskey_drums.aif file. Click Edit in the
Property Inspector to open the Edit Envelope dialog box.

Click the Frames button in the Edit Envelope box so that you can see the sound in
relation to the frames of the Timeline. Select Custom from the Effect drop-down menu
and insert two handles so that the volume of the track drops out at frame 69. See
Figure H6.2 for an illustration of the envelopes. Click OK when you have finished.

Figure H6.2: Use the Edit Envelope dialog box to drop the volume of the drum layer,
clearing the way for the drum fill at frame 67.

8. Now you can continue to build the A section of the soundtrack. Insert a new keyframe
at frame 265 of the A2 section layer. Attach the sound Whiskey_A_02.aif, set its sync
to Event, and enter a loop value of 2. This last sound completes the A section of the
song. This part of the song will serve as the music for one section of your movie. This
lasts a little over 45 seconds. Since someone is likely to spend more than 45 seconds
looking at your movie, you need to make this section repeat so that the music doesn't
just stop or drop out altogether.

9. You can repeat sections of music by sending the playback head back to the frame
where the music was cued. However, when you do this, you will find that Flash is
unable to maintain a consistent tempo. In the process of skipping back, it always
misses a beat somewhere and disrupts the flow of the music. This is where the
DoReMedia SFX tracks come in handy. You can use them to smooth over the
transition and disguise the skip in the music.

Scroll ahead in the Timeline and insert a new keyframe at frame 457 in the actions
layer. Open the Actions panel and enter the following statement:

gotoAndPlay(25);

This action will send the playback head back to where the A section of your
soundtrack starts. Now, you can smooth over this transition using a short sound. Insert
another new keyframe at frame 457, this time in the loop riffs layer. Attach the sound
Whiskey_lead_01.aif and set its sync to Event.

10. Select Control → Test Movie to hear what you have created so far. After the A section
has finished, you will hear the slide guitar riff play and mix over the drum intro—a
seamless transition!

11. With the entire A section in place, you can now create the other half, or the B section,
of your soundtrack. Insert a new keyframe at frame 481 of the breakdown layer.
Attach the sound Whiskey_break.aif, set the sync to Event, and enter a loop value of 2.
Again, you can insert a cymbal crash to add punch to this chunk of music. Insert
another new keyframe at frame 481 of the fills layer. Attach the sound
Whiskey_crash.aif, and set the sync to Event.

12. The sound Whiskey_break.aif is a duet between the bass guitar and drums. In your
soundtrack arrangement, this section is repeated twice. You can add contrast to the
repetition by layering other sounds over this section of the song. Insert another new
keyframe at frame 577 of the loop riffs layer. Attach the sound Whiskey_lead_01.aif,
and set the sync to Event. In the same layer, attach the sound Whiskey_lead_03.aif to
a keyframe at frame 625, and Whiskey_lead_02.aif to a keyframe at frame 649. Notice
that all these keyframes are lining up with spikes in the Sync Track. The visual
reference it provides is extremely valuable for lining up chunks of music! If you like,
you can also add cymbal crashes to keyframes of the same number in the fills layer.
See Figure H6.3 for an illustration of this in the Timeline.

Figure H6.3: The B section of the soundtrack has slide guitar riffs and cymbal crashes
(optional) that add musical contrast to the bass and drum breakdown.

13. Continue to build the B section by inserting a new keyframe at frame 673 of the B
section layer. Attach the sound Whiskey_B.aif, set the sync to Event, and enter a loop
value of 2. Then, to wrap up the section, attach the sound Whiskey_B_02.aif to a
keyframe at frame 817 in the B2 section layer. Set its sync to Event as well.

14. You will notice that you have two tracks that overlap in the B section and B2 section
layers. If you give your soundtrack a listen, it sounds like a confused mess! In this
tutorial, the file Whiskey_B_02.aif is meant to be a two-bar concluding musical
phrase. In order to remain consistent with the eight-bar structure of this song, you will
mute the last two bars of Whiskey_B.aif (starting at frame 817) so that the concluding
phrase can be heard clearly. The result will yield six bars of Whiskey_B.aif plus two
bars of Whiskey_B_02.aif, for a total of eight bars.

Select keyframe 673 in the B section layer where Whiskey_B.aif is cued. Click Edit in
the Sound panel to open the Edit Envelope dialog box. Click the Frames button and
scroll the dialog box ahead to frame 817. Select Custom from the Effect drop-down

menu and create an envelope so that the volume of this track drops out completely at
frame 817. For an illustration, see Figure H6.4.

Figure H6.4: The Edit Envelope dialog box allows you to mute the B section track at
frame 817.

When you have finished creating the envelope, click OK. Now that the music of the B
section is finished, you can work on making it repeat smoothly.

15. To repeat the B section, you will implement the same technique used to repeat the A
section. Insert a new keyframe at frame 871 in the actions layer. Open the Actions
panel and enter the following statement:

gotoAndPlay(481);

This will send the playback head back to the frame where the B section begins. Now
you will attach two sounds to serve as transitions for the repeat. Insert new keyframes
at frame 865 in both the fills and loop riffs layers. Attach Whiskey_lead_03.aif to the
loop riffs keyframe, and Whiskey_crash.aif to the fills keyframe. This concludes the
music tracks for the B section.

 Note You may notice that the repeat action gotoAndPlay(481) and the transition
sounds are in different frames. We did this intentionally. By setting the loop
action later in the Timeline, you allow the transition sounds to be heard
independently for a brief moment. This gives the transition more prominence
and demonstrates that you have flexibility when creating these types of Timeline
loops using an audio transition. We selected frame 871 because we felt that it
provided the best-sounding result. Ultimately, the choice of positioning for the
repeat action is left to your discretion.

16. If you wanted to test your movie so that you could hear the B section in context, you
would be unable to do so. This is because the actions at frame 457 send the movie
back to the beginning of the A section. Your movie cannot currently make it past that
frame. To test your movie, open the actions at frame 457 and add two slashes (//) to
comment out these actions.

Select Control → Test Movie and give it a spin—now you should be able to hear all of
the A section and have it play right into the B section. The only catch is that your B
section will repeat! This will be more controllable in a while. For now, just understand
that the movie is incomplete and you have to use this workaround to test its
performance. When you are finished, be sure to uncomment (remove the slash
characters) for the actions at frame 457.

17. Musically, everything is working according to plan. You have two different sections
of a song to "score" two different sections of a Flash movie. The key now is to set
everything up so that the soundtrack Movie Clip can be controlled interactively. This
takes you back to the concept of time. You have no idea how long someone will spend
looking at a particular section of your movie. And for this reason, you have
constructed the soundtrack in such a way that each section will repeat to accommodate
visits of different lengths.

The catch is that you have used Event sync to cue all your sound files. Remember that
Event sync will start a file playing, and the file will continue until it is finished or has
run out of loops. If you were to skip between the A and B sections of your soundtrack
right now, the various event sounds would mix and create a whirl of musical
confusion. To make this soundtrack work so that you can switch between sections
freely, you have to stop each sound explicitly when you move to a new section. This
means stopping all of the A section sounds at the start of the B section, and vice versa.
To do this, attach the sound you wish to stop at a new keyframe, and assign the Stop
sync method to each. See Table H6.1 for a listing of the frame locations, layers, and
sounds where you will assign stops.

Table H6.1: Sound and Keyframe Stop Sync Combinations
Layer Keyframe Sound
breakdown 25 Whiskey_break.aif
B2 section 25 Whiskey_B_02.aif
B section 25 Whiskey_B.aif
A2 section 481 Whiskey_A_02.aif
A section 481 Whiskey_A.aif
drum 481 Whiskey_drums.aif

When you assign the Stop sync to each sound, you will notice that the Stop sync
frames for one section correspond with the Event sync frames for the other. Any time
the movie jumps to frame 25 or 481 to play a new section of music, the old section
will be stopped as the new one begins.

This step concludes the soundtrack portion of your movie. You should have two
independent sections of music that work together to make up a song. With this in
place, you can put the soundtrack Movie Clip to work and use it to play different song
sections based on interactive choices made in your main movie.

Adding the Final Interactive Touches
To complete the tutorial, you will need to add a few items to your Library. You will need at
least one button. The movie you create here has two buttons, each of which cues a different
section of music. You can use the same button twice or have two buttons—the choice is
yours. You may also wish to add some graphic components to your movie. Since this tutorial
is geared toward creating a two-part soundtrack, you may want to include two distinctly
different sets of graphics—one for each section. Again, it is up to you. The only graphic
element required is a button to signal interactive choices.

1. Insert two new layers in the main Timeline. Name one layer actions and the other
buttons. Then name the layer containing your soundtrack Movie Clip MC, and assign
the clip an instance name. Highlight it and enter the name soundtrack in the Property
Inspector.

2. Drag two buttons to the Stage, making sure they are on the buttons layer. Position
them wherever you like. For purposes of this tutorial, consider one button the A
section button and the other the B section button. Each button will eventually take you
to the section of music having the same name.

3. Insert a new keyframe in both the buttons layer and the actions layer. Then, add a
frame (F5) to the MC layer so that your clip stretches across two frames. When
finished, your main Timeline should resemble Figure H6.5.

Figure H6.5: The main Timeline has two frames, one for each section of the
soundtrack.

4. Highlight the first keyframe of the actions layer and open the Actions panel. Enter a
single stop() statement. Do the same for the keyframe at frame 2. This isolates each
frame of the movie and limits the playback to a single frame.

5. Highlight the B section button at frame 1 and open the Actions panel. Enter the
following statements:

6. on(press){
7. if(_root.soundtrack._currentframe<481){
8. _root.soundtrack.gotoAndPlay(481);
9. gotoAndStop(2);
10. }

}

These statements create the behavior that allows you to switch from one section of
music to another. In your soundtrack Movie Clip, the A section is contained in the
frames before frame 481. The if statement in this script makes sure that this button
will respond only if the clip is playing those frames (meaning you can't cue the B
section

unless the A section is currently playing). The next statement sends the instance
soundtrack to play at frame 481 (the B section), and the third statement sends the main
Timeline to frame 2.

11. Now you can script the interactivity for the other section of the soundtrack. Highlight
the A section button at frame 2 and open the Actions panel. Enter the following
statements:

12. on(press){
13. if(_root.soundtrack._currentframe>481){
14. _root.soundtrack.gotoAndPlay(25);
15. gotoAndStop(1);
16. }

}

These statements do the opposite of the other button. If the B section is playing
(frames greater than 481), the button will send the clip to frame 25, where the A
section starts, and send the main Timeline to frame 1.

Select Control → Test Movie to see and hear how this works.

17. One more thing you can do to enhance the musical interactivity of the movie (as well
as the soundtrack) is to add a sound to the button(s). When you click a button, not only
will you launch a new section of music, but you'll have a transitional sound
(DoReMedia SFX) to help bridge the gap.

Switch to Symbol Editing mode for one of your buttons. Add a new layer to the button
and insert a new keyframe for the Down state of the button. Attach one of the slide
guitar riff sounds to this keyframe and assign the Event sync option. For the
whiskey100.swf example you listened to earlier, the sounds Whiskey_lead_01.aif and
Whiskey_lead_02.aif were used as button sounds. These sounds were selected because
they are not very rhythmic and they taper at the end, making them perfect candidates
for layering over rhythmically strong tracks.

18. After you have finished with your buttons, select Control → Test Movie and give this
a try. Your interactive soundtrack is complete!

Before publishing your interactive soundtrack movie, it's a good idea to check the sound
options in the Publish Settings dialog box (File → Publish Settings). For Audio Event options,
select whatever settings best match the requirements of your project, based on delivery
medium, audience connection speed, and so on. Earlier, you dropped the volume of the Sync
Track. Since this track will be inaudible, you can drop its quality settings. Select MP3, 8Kbps,
and Mono for your Audio Stream options.

To conserve file size, it is necessary to remove the loops of the Sync Track in your soundtrack
Movie Clip. According to the DoReMedia Sound Family specifications, Flash needs only one
iteration of the Sync Track to lock in the frame rate. Because a looped stream sound adds
greatly to the size of a published movie, it's best to use only as much of a stream sound as is
necessary. However, to preserve the sync in the B section, you must attach another instance of
the Sync Track sound (SYNC_100.aif) to a keyframe at frame 481. Select the frame, select
Insert → Keyframe, and select the file SYNC_100.aif in the Sound panel. Set the sound's sync
to Stream. This additional instance of the Sync Track will regulate the frame rate when your
soundtrack is skipped ahead to the B section.

 Note In some cases, a Sync Track that starts at frame 1 will not properly lock in a movie's
frame rate. To work around this technical glitch, move the Sync Track to frame 10. This
gives Flash a little while to "get started" before it encounters the Sync Track and locks
the movie's frame rate into place.

Closing Thoughts on the Interactive Soundtrack
You have just completed a very significant chunk of Flash-based interactive media.
Congratulations! What you have learned here gives you exposure to all the basic techniques
and a few advanced topics concerning DoReMedia Sound Families. Clearly, you can see the
advantages that Sound Families provide, in terms of both musicality and compact file sizes in
a low-bandwidth, interactive environment. Here are a few suggestions for things you may
want to try on your own as you become more comfortable with these techniques:

• Experiment with different pan options for each chunk, layer, and SFX file you use. In
the whiskey100.swf demo file, there are several instances where slide guitar fills are
panned from one speaker to another. Also, a lot can be done by changing the volume
(dynamics) of the music tracks. Fine-tune your tracks by tweaking their volume with
the Edit Envelope dialog box.

• Try rearranging the chunks to create a third section of music for the soundtrack. Each
Sound Family provides you with enough material to create several permutations of the
same song.

• Experiment with the use of SFX sounds and buttons. It's possible to construct an entire
soundtrack from mouse clicks alone.

• Sound Families can be licensed from DoReMedia. The company has a large Sound
Family library containing a broad range of musical styles to choose from. Visit the
DoReMedia website (www.doremedia.com) for updates on available Sound Families
and additional discussions of the techniques described in this tutorial.

 On the CD-ROM If you enjoyed working with the Whiskey Sound Family you may also
have fun with techno-flavored Passive Aggression. Go the companion CD-ROM → Hands On
6 → DoReMedia. Here you will find two folders labeled Passive Aggression, one containing
AIFF files, the other WAVs. Use the techniques discussed here to create a soundtrack of your
own using the Passive Aggression Sound Family files.

Part VII: Integrating Flash with Other
Programs

Chapter List
Chapter 23: Working with Flash and Director
Chapter 24: Working with Flash and FreeHand
Chapter 25: Working with Flash and Digital Audio Applications
Chapter 26: Making Flash 3D
Hands On 7: Creating an Animated 3D Flash Logo

Part Overview
Great bodies of work—art, music, literature, drama, and so on—are not created in a bubble.
It's impossible to accomplish creative goals without some kind of outside input, and creating
in Flash is certainly no exception. Up to this point in the book, you have read, studied, and
practiced many different aspects of creative work you can do with Flash. Sometimes,
however, it's important to step away and consider the bigger picture. Flash is an excellent and
versatile application, yes. But it cannot do it all.

Depending on your creative goals, it's likely that you won't be able to do everything you want
to do or dream of doing in Flash alone. The good news is that, as one of the more versatile
applications available today, Flash shares common ground with plenty of other kinds of
software. Not only can you bring your Flash creations into other authoring environments, but
you can bring many foreign file types and media into Flash. This section explores the
relationships between Flash and other digital media applications.

Chapter 23: Working with Flash and
Director
Overview
In spite of the fact that Flash is a great multimedia authoring application, there are times when
it may not be able to deliver all the functionality that you require. Even with the flexibility
and speed of vector art and animation, and the interactive possibilities offered by
ActionScript, neither Flash nor any other application, for that matter, can do it all. Multimedia
by nature and definition is an enormous vein of expression; it embraces the synergy of various
forms and makes them one. When your projects are open to this kind of crossover, you will
find an entirely new realm of possibilities to satisfy your goals, whether they be rooted in art,
entertainment, business, learning, or another form of communication.

Whereas Flash is uniquely suited for fast delivery on the Internet and in other bandwidth-
conscious applications, Macromedia Director shines in the realm of CD and DVD-ROM
development, as well as in the creation of Shockwave content for the Web. There is no doubt
that Director is the multimedia authoring tool of choice for projects that are large in scope and
require many different kinds of media. Director allows you to work with 2D bitmap graphics,
2D vector graphics, digital video, sound, true 3D graphics (introduced in Director 8.5), and
most important to this discussion, Flash SWF files. In this chapter, you will learn how
Director and Flash can be used together to create interactive movies that possess the best
characteristics of each application.

Working with Flash in the Director Environment
Flash movies are supported in Director with the help of the Flash Asset Xtra. Currently,
Director 8.5 ships with a Flash Asset Xtra that supports the functionality of Flash 5. At the
time of this writing, Macromedia had not introduced a new Flash Asset Xtra to support the
expanded functionality of Flash MX and the Flash 6 Player. Until this is rectified by
Macromedia, any Flash movies you wish to run within Director should be targeted to the
capabilities of Flash 5. Older versions of Director may support Flash, but often with
limitations as to which versions. Table 23.1 provides a guide to Flash and Director version
compatibility.

Table 23.1: Director/Flash Asset Xtra Compatibility
Flash Player Version Director Version
6 (Flash MX) and earlier Unknown at time of publication
5 and earlier 8.5
4 and earlier 8.0, 7.02
3 and earlier 7.0
2 6.5, 6.02
 Note Movies created in Flash MX can always be saved to a lower version if you don't have a

version of Director that supports them. To learn how to do this, see Chapter 27. To read
the most up-to-date information concerning Flash and Director version compatibility,
see www.macromedia.com/support/director at the Macromedia website.

With the help of Lingo, Director's native scripting language, you are able to manipulate many
of the parameters that control the playback of a Flash movie while it is contained in a Director
movie. There are several advantages that this scheme can offer to your multimedia projects:

Graphics flexibility Director deals primarily with bitmap graphics. As a result, if any
stretching or scaling of graphics is required in your movie, Director will probably not be able
to do this very well (the graphics will be stretched into gigantic chunky blobs). Vector
graphics change this because they can be scaled without losing resolution. Although vector
graphics can be created in Director, the vector drawing tool it offers isn't nearly as
sophisticated as those found in Flash. Flash is championed as an animation application, but it's
also great for creating still images such as titles, credits, and interface elements.

Expanded control over animated elements Although Lingo gives you a great deal of control
over the elements of a Director movie, there are some tasks that Flash can make easier, simply
because of the way the application works. In Flash, the Movie Clip is an essential part of any
Flash production. As an independent Timeline, a Movie Clip can maintain animated
autonomy and keep a agenda that's separate from other elements of a Flash movie. In
Director, this works largely to your advantage. Use Flash to create an SWF marionette, where
each of the puppet's limbs is a separate Movie Clip. Then, in Director, you can use Lingo to
target each clip individually to make your marionette perform a variety of animated routines.
To read more about this technique, see "Manipulating Flash Sprites with Lingo" later in this
chapter.

Best of both scripting worlds Where Flash has ActionScript, Director has Lingo. Chances
are, if you know either of these languages or JavaScript, you have a good footing for picking
up the one you don't currently know. Although ActionScript is much closer to JavaScript than
Lingo, Lingo has changed over the years to adopt more conventions (mainly the dot syntax)
that bring it closer to ActionScript or JavaScript in terms of syntax. When working with both
Flash and Director, you can use ActionScript to control elements in Director, and Lingo to
control elements of a Flash movie.

Clearly there are many advantages, many of which are bound only by your creative ingenuity
for solving problems and combining or layering your work. Director can be used to create
something as simple as a gallery of your favorite SWF creations, or something as complicated
as a massive multiplayer world where users can create their own characters and interact with
other members of the online community. The first step to any of this involves getting Flash
into the Director environment and understanding how it behaves once it's there.

Importing Flash Movies

In order to incorporate Flash movies in your Director projects, you must first bring the Flash
file into the Director authoring environment. Similar to Flash, this process is called importing.
Once a file has been imported into Director, it is stored in the cast, and is ready to be used in
the Director movie.

Director? Cast? Wait a second… Yes, you see a pattern emerging here. Macromedia uses the
analogy of a theater or film production to describe the elements of the software. It is done
very well, too, and makes learning the software a little easier. Any media elements that can be
used in the movie are stored in the cast and called cast members, just like actresses and actors
sitting in the wings of a theater (this is like the Library in Flash). As you probably guessed, all
action in the movie takes place on the Stage.

Taking the analogy a step further (and closer to opera), the window that manages the
placement of cast members on the Stage is called the Score. As soon as a cast member is
placed in the Score, it is referred to as a sprite. The Score has horizontal rows for sprites
(called channels), and vertical columns for frames. (This is similar to the Flash Timeline,
which has layers and frames.) Additionally, the rows for sprite channels are numbered (see
Figure 23.1). When you manipulate an element in Director, you often refer to it by its sprite
number, such as sprite(1) or sprite(13). There are many levels of complexity in the Director
environment, depending on how much of the program you need to use. Consult the Director
Help files (Help → Director Help) for specifics on the interface and its components.

Figure 23.1: The Score in Director consists of sprite channels (rows) and Timeline frames
(columns).

In order for a Flash movie to be part of a Director production, it has to be a sprite in the Score
and on the Stage; in order for it to be a sprite, it has to be a cast member. And to be a cast
member, it must first be imported into a Director movie. Whew! So many steps! It may sound
confusing, but once you've grown accustomed to Director, it's very easy to understand how all
the elements are interrelated.

To import a Flash movie into your Director project:

1. In Director, select File → Import (Cmd/Ctrl+R). The Import Files dialog box appears.
It's similar to the one used in Flash, only larger and more detailed.

2. The window at the top allows you to browse for the files you need. Use the drop-down
menu to locate the SWF files you want to import.

3. After you locate and select the file you need, click the Add button. This will place the
file in the lower window, which is like an on-deck circle for files about to be imported.
Continue to use the top window to browse for any additional files you need.

4. When you have finished, click the Import button. This will make all of the selected
files part of your Director movie cast and a permanent part of the Director file.

In addition to the buttons and methods discussed here, Director offers a range of other import
options that go beyond the scope of this section. Consult the Director Help files (Help →
Director Help) for all the options available to you while importing media.

Understanding Flash Movie Properties

Once you have successfully imported a Flash movie into your Director project, it will appear
as a cast member in the Internal Cast window (see Figure 23.2). Director automatically
includes for you the Flash Asset Xtra that is needed to support the Flash cast member, so there
is no need to retrieve it from your computer's hard drive. However, if you plan to create a
stand-alone projector, be sure that the supporting Flash Asset Xtra and any other Xtras you
need are available for the final projector file.

Figure 23.2: Director's Internal Cast window holds Flash movies and many other types of
media for use in a Director production.

From here, you are free to use Director to work with the movie in any way you see fit. Flash
cast members are somewhat unique in the Director environment because they are interactive
multimedia movies within an interactive multimedia movie. As a result, there are many
parameters that can be assigned to the Flash cast member to determine how it will perform as
a cast member in Director. You can set these parameters using the Flash Asset Properties
dialog box. In this window, you can control many characteristics of a Flash movie: its
playback quality, scaling properties, sound options, and so on. Think of this dialog box as
your interface for customizing the technical details of a Flash cast member.

To access the Flash Asset Properties dialog box and edit the parameters of a Flash member,
double-click the cast member icon in the cast window. The Flash Asset Properties dialog box
appears. The window offers you the following options for editing a cast member:

Media management If you use the Browse button to link to a Flash file, the field at the top of
the window will show the path to that file, either on your computer's hard drive or on the
Internet.

Flash movies can be either imported or linked. If you check the Linked box, the file will be
handled from a remote location. When the movie is used in your Score, Director will go to the
remote location and call that member to the Stage. Linked members will stream into memory
unless Preload is checked. Preload requires that the entire Flash movie be loaded before
playback begins.

Unless you are creating a Shockwave movie that will appear on the Internet, it is
recommended that you leave the Linked option deselected so that a Flash member is imported
to the cast and saved as a permanent part of your movie.

Playback There are several playback options that control how the Flash movie will be
delivered in the Director movie:

Image determines whether the image track of a movie is visible. If the box is checked, you
will see the Flash movie; if it is unchecked, you will not. Deselect this option for sound-only
or script-only SWF files.

Sound toggles the audio track of a Flash member. If the box is checked, the movie will play
with its sound on; if unchecked, the movie will play silently.

Paused determines how the movie will play when it is first encountered in the Score. If
Paused is checked, the first frame of the Flash movie is displayed. After that, the movie will
have to be prompted either by Lingo or by a control in the Flash movie itself to begin
playback. If Paused is unchecked, the movie will play immediately when Director loads the
movie onto the Stage.

Loop is an on/off option that determines how a movie will act when it has finished playing. If
Loop is turned on (checked), the movie will resume playback at its first frame after it finishes
playing. If Loop is unchecked, the movie will play once and then stop.

Direct to Stage controls the priority that Director assigns to a Flash cast member. If this
option is checked, Director will devote resources to making the movie play back as smoothly
as possible. This option disables sprite ink effects and will always place a Flash sprite on top
of any others in the movie.

Quality Director has several quality options for Flash cast member playback. These options
produce the same results as those found in the HTML tab of Flash's Publish Settings dialog
box. The settings are High, Auto-High, Low, and Auto-Low. To read more about these
options, see Chapter 27.

Scale This field allows you to enter a scale value for the cast member. This value will be used
for the Flash movie each time it appears in your Director movie. Settings in this field are
directly related to choices made in the Scale Mode drop-down menu.

Scale Mode This menu offers several options concerning the scaling of Flash cast members
when they are manipulated either in the Score or by Lingo:

Auto-Size is the default setting. This option locks the scaling of the Flash movie to the scaling
of a sprite in your Director movie. As a sprite is scaled, so will the Flash movie be scaled.
This option defaults the value of the Scale field to 100% so that the Flash movie and the sprite
maintain the same scale relationship. If you change this number to 50%, the Flash movie will
retain the new scale value and always be one-half the size of the sprite that holds it. Change it
to 200%, and the Flash movie will be twice the size of the sprite and appear cropped within its
bounding box.

No Scale retains the size of the Flash cast member as it is set in the Scale field. No matter
how a sprite is stretched or shrunk, this option leaves the Flash movie at the size set by the
Scale option. If a sprite is scaled to a value less than that specified in the Scale field, the Flash
movie will be cropped by the sprite bounding box.

The remaining options—Show All, No Border, and Exact Fit—are identical to those found
in the HTML tab of Flash's Publish Settings dialog box. To read more about these options, see
Chapter 27.

Rate This option allows you to control the speed of playback (frame rate) of a Flash movie
cast member. This functionality is unavailable to you in Flash, and is thus another reason to
combine Flash and Director. Rate has three settings:

Normal retains the original frame rate settings of the SWF file.

Lock-Step matches the playback of your Director movie with the Flash member, frame for
frame. If the Director movie is set to play at 30 frames per second, so will a Flash cast
member when Lock-Step is enabled.

Fixed activates the fps (frames per second) field and allows you to enter a custom value to set
the frame rate of a Flash cast member. This setting is unique and will override tempo settings
in both the original Flash movie and Director's Score. However, a Flash movie will not play
faster than the frame rate that is set in the Director movie.

Besides the Flash Asset Properties dialog box, there is another means of changing the
parameters of a Flash cast member. One of the more important windows in the Director
interface is the Property Inspector (see Figure 23.3). It is very similar to the Property
Inspector found in Flash's interface and provides a lot of the same kind of functionality. It
allows you to access many commands and parameters that define a component of your movie:
scaling, color, name, and other specifics that are unique to each element or cast member.

Figure 23.3: The Property Inspector is an alternative means of setting the attributes of a Flash
cast member.

To display the Property Inspector for a Flash cast member, highlight that member in the cast
window and then click the Property Inspector button . This button, noticeable because it is
an italic letter i within a blue circle, is present in many different locations of the Director
interface but will always launch the Property Inspector. It will allow you to change the
following attributes of a Flash cast member:

• Member name and path
• Scale mode
• Quality
• Rate
• Playback options

By clicking the More Options button, you can launch the Flash Asset Properties dialog box to
change additional parameters not available in the Inspector. The Property Inspector is a quick
alternative to using the dialog box and provides a way to edit the most common attributes of a
Flash cast member.

Using Flash Movies as Sprites

To make a Flash cast member officially part of your movie, you must place that cast member
on the Stage. Unless a cast member is brought to the Stage (either physically or through
Lingo), it will not make an appearance in your movie. When you drag a cast member from the
cast window to the Stage, it becomes a sprite and is automatically assigned a sprite number
based on the next available sprite channel in the Score. For example, if you presently have six

sprites in your movie and you drag a Flash member to the Stage, it will be referred to as
sprite(7) throughout the Director movie. This number is very important, because it is how you
identify the Flash member when you want to control it with Lingo scripts. For instance,
sprite(7).visible=0 makes your Flash movie, sprite(7), invisible. You can also create a sprite
by dragging a cast member to the Score window directly. This allows you to place it in
whichever sprite channel you desire, and automatically centers the sprite on the Stage.

 Note Confused about the Score and the Stage? One of the greatest challenges in learning
Director is understanding the role of each window and how its elements are used in a
movie. If a cast member appears on the Stage, it is automatically also in the Score.
While the Stage is the window in which your movie takes place, the Score is where all
the technical elements of a movie are determined, such as a cast member's time on the
Stage, script placement, and overall movie structure (frames, markers, and so on).

Once a Flash cast member has become a sprite in your Director movie, there are several
behaviors that you can expect it to exhibit. Listed below are some of the capabilities and
limitations of a Flash movie once it's part of a Director project:

Playback A Flash movie will play back in a Director movie as long as the Director movie has
enough frames to accommodate its length. For instance, a Flash movie with 100 frames could
play only halfway in a Director movie with 50 frames. One workaround for this characteristic
is placing the Flash movie in a single Director frame and attaching the following Lingo
statements to the frame script channel of the Score:

on exitFrame
 go to the frame
end

This creates a continuous playback loop and allows the Flash movie to play in its entirety
while Director loops in a single frame. Additionally, if the Loop parameter of the Flash cast
member is turned on, the movie will loop inside Director continuously. To learn more about
working with Flash movies while Director is looping its playback, see the later section
"Controlling Flash Playback with Lingo."

Vector format As a vector graphic, your Flash movie is excellent for applications where you
need to stretch and resize graphics or text without distortion. With the help of Lingo, Director
allows you to do this dynamically, based on audience interactivity in your movie.

Sprite manipulation In addition to its own built-in animated characteristics, a Flash movie
member can be moved and repositioned on the Stage as a sprite to create another layer of
animated interest. To learn more about this, see the next section of this chapter.

Presentation If the Flash movie has Direct to Stage turned on, it will always appear on top of
other sprites, and Director will devote resources to ensuring the smooth playback of the
movie. Use the Direct to Stage option for Flash movies that are featured and must play back
with the highest priority. It is best to leave this option off for other kinds of movies, such as
button interfaces, animated characters, and other elements that must be more flexible as
sprites.

Ink effects Ink effects are settings that you can apply to sprites to change their appearance on
the Stage. There are four Ink settings that apply to Flash members: Copy, Background
Transparent, Transparent, and Blend.

Copy displays a Flash movie exactly as it was created, pixel for pixel. Copy is the default
option.

Background Transparent makes the background color of a sprite invisible (transparent) and
allows you to see through to the elements behind the sprite.

Transparent allows some color bleed between a movie and the color of the elements behind
it. This effect is more apparent with light colors than with dark.

Blend is similar to the _alpha property in ActionScript. Think of it as an opacity setting for
each sprite. Blend values and Ink effects can be set in the Sprite Toolbar area of the Score (see
Figure 23.4).

Figure 23.4: The Sprite Toolbar area of the Score window allows access to Ink and Blend
settings for the sprites in your movies. Ink settings can also be accessed by Cmd/Ctrl+clicking
a sprite and choosing an option from the context menu.

Macromedia recommends using the Copy setting for most applications because it requires the
least amount of memory to display. If possible, a good strategy is to create your movies with
the same background color so that knocking out an unwanted background color is
unnecessary.

Sound Working with simultaneous audio streams (from both the Flash movie and your
Director movie) can be a bit tricky. The difficulty is that Flash and Director are forced to
share sound channels. If you are using Windows, you can take advantage of the global
property soundMixMedia. When set to true, this property enables Director to mix Score
channel sounds with those playing in a Flash cast member. If it is set to false, then Flash and
Director sounds must be played at separate times.

 Note Mixing Flash audio into a Director movie can produce undesirable results throughout
your production. We recommend that you implement and control all audio elements
within Director and Lingo.

Communicating Across Movies with Lingo and
ActionScript
Now that you are familiar with some of the more technical aspects of working with Flash
movies as sprites and cast members, you are ready to begin working with the fun stuff: using
one type of media to pass information and commands to the other. This is an essential part of
authoring interactive movies. By combining Flash and Director, not only can you combine the
best of both worlds, but you can allow them to communicate with one another. This

relationship adds yet another layer of interactive possibilities and flexibility to your
interactive media productions.

Lingo is an enormous scripting language. If ActionScript is a stream, Lingo is a river; and
there are more Lingo topics related to Flash than could possibly be covered in a section of this
book. Here, we present some of the more essential elements of Lingo as it pertains to Flash.
For a complete listing of Flash-related Lingo, select Help → Lingo Dictionary from Director's
main menu bar.

 Note This section assumes that you have basic familiarity with Director, Lingo, and the
conventions of the Director authoring environment. To learn more about these topics,
consult the help files that ship with Director.

Controlling Flash Playback with Lingo

One of the more common uses of Flash cast members is to use them with movies within
movies. In the same way that Movie Clips in Flash are independent animations that can be
manipulated via ActionScript, Flash movies can be controlled in Director with Lingo. The
Lingo language reserves several special commands to do this. Plus, with a little Lingo know-
how, you can create your own scripts for various kinds of custom control options. Start here
with some of the basics and then take it from there.

Play Command

To play a Flash cast member, you can use Lingo's play() command. This statement tells a
specified Flash member sprite to play. For example:

on mouseUp
 sprite(1).play()
end

This script, attached to some kind of button, will play sprite 1 when the mouse button is
released.

 Note Remember to use the Paused option in the Property Inspector if you don't want a Flash
movie to start playing when it's encountered on Director's Stage. Alternately, you can
set this property in Lingo by using the pausedAtStart cast member property.

Stop Command

To stop a Flash cast member at its current location, you can use Lingo's stop() command. This
statement tells a specified Flash member sprite to stop playing. For example:

on mouseUp
 sprite(1).stop()
end

This script, also attached to some kind of button, will stop sprite 1 when the mouse button is
released.

Rewind Command

Use rewind() to send a Flash sprite back to its first frame, or, to use the tape metaphor, rewind
it.

on mouseUp
 sprite(1).rewind()
end

This script would serve well attached to a rewind button cast member or as part of a rewind
behavior script.

Unfortunately, there is no such thing as a fast-forward command for Flash movies in Lingo.
However, it is possible to create one. Consider the following script:

on exitFrame
 if gFfwd=true then
 swfFrame=sprite(1).frame
 sprite(1).goToFrame(swfFrame+2)
 end if
end

This script stores the current frame of the Flash movie in the variable swfFrame. Then, using
the goToFrame() command, it sends the movie ahead two frames. These statements are
executed every frame if the variable gFfwd is true. In context, you can use a fast-forward
button to toggle the variable off and on, which in turn will control this fast-forward function.

frame and frameCount Properties

You can use these properties to monitor the playback status of a Flash movie. frameCount
will get the total length of a Flash movie in terms of frames. For example, this statement:

put sprite(1).member.frameCount

prints to Director's Message window the total number of frames for the Flash cast member
that is sitting in sprite channel 1. If the Flash movie in sprite channel 1 had 19 frames, the
Message window would reveal the following:

The frame property monitors the current frame number that a Flash cast member sprite is
playing. In conjunction with the frameCount property, this can be used to create a script that
tells your Director movie to perform an action (such as going to a new frame) when the Flash
movie has finished playing. For example:

on exitFrame
 if sprite(1).frame<sprite(1).member.frameCount then
 go to the frame
 else
 go to "done"
 end if
end

This script checks a condition every time a frame loops. The condition uses the frame
property and checks to see if the current frame playing (sprite(1).frame) is less than the total
number of frames in the Flash movie member that occupies sprite channel 1 (see line 2). If it
is, then the script loops in the current frame. If it is not, meaning that the current frame is
probably equal to the total number of frames because it has finished playing, the script sends
the Director movie to the marker named done.

Toggling ActionScript

Use the actionsEnabled property to have Lingo turn a Flash movie's actions off and on.
Consider the following Lingo behavior:

on mouseDown
 if sprite(1).actionsEnabled=1 then
 sprite(1).actionsEnabled=0
 else
 sprite(1).actionsEnabled=1
 end if
end

This behavior script can be attached to a button to create a toggle switch for the actions of the
Flash movie in sprite channel 1. Using a simple if...then conditional in line 2, this script
checks the status of actions for sprite 1. If they are on, this turns them off; otherwise (if they
are off), it turns them on. This property can be helpful if you have a Flash movie containing
gotoAndPlay() loops. By setting actionsEnabled=1, you cause the Flash movie to ignore these
scripts (and all others, for that matter) and to play through its frames without interruption.

Passing Information from Flash to Director

Depending on the way you use Flash within Director, there may be times when it's necessary
to pass information directly from a Flash movie to the Director movie that is hosting it. This
kind of functionality would be useful if you had created a Flash navigation bar with animated
buttons to be used for controlling the playback of a Director movie. In this situation, it would
be helpful to have a means of allowing each Flash button to pass an argument to Director,
telling it to which frame it should jump. This can be accomplished using ActionScript's
getURL() action. This action will pass a string of information from the Flash movie (where
the action is called) to the Director movie that is hosting it.

To make a button in your Flash movie pass information to Director, select the button and open
the Actions panel. Enter the following statements:

on (release){
 getURL("directorMarker");
}

In this example, directorMarker is a placeholder for the name of a Score marker where you
would like to redirect Director's playback head when the Flash button is clicked. Flash will
pass the URL information as a string to Director.

Before the button will work completely, however, you have to enter some Lingo that prepares
Director to receive the string director Marker from Flash. In Director, create a behavior script
and attach it to the Flash sprite that contains the button. The Lingo for the behavior should
read like this:

on getURL me, flashStringInfo
 go to frame flashStringInfo
end

This Lingo enables the sprite to which it is attached to receive the URL string information and
store it in the variable flashStringInfo. This variable can be used later in the script. Here,
because this string is supposed to help with Director movie navigation, the string holds the
name of a marker in your Director movie. If you have a Flash movie with several buttons,
each with a different navigation-related string to pass, this behavior will be able to handle
each string and route the Director movie accordingly.

The getURL() action also allows you to specify a specific event in Director. An event could
be something like a custom handler that you write in Lingo to manage specific kinds of Flash
interaction. Take navigation for instance. Moving around in an interactive movie is something
that must be done repeatedly throughout the movie. You could write a custom handler to
direct navigation so that every time a Flash button is clicked, it moves the Director movie to
the proper location. To do this, you start by assigning the getURL() action to a Flash button.
Only this time, you must specify an event and an argument:

on(release){
 getURL("event:flashButton \"start\"")
}

In this example, the event protocol specifies an event named flashButton. The argument for
the event is "start".

 Note In this example, the argument "start" must include the quotation marks so that Director
can interpret the string correctly as the name of a marker. To prevent the quotes from
confusing and breaking the ActionScript string, each quote mark is escaped (ignored) by
using the backslash character (\).

For this technique to work, the event called in Flash must have a counterpart in Director.
Otherwise, the event will not be understood and will fail in your Director movie. You create a
counterpart by writing a custom function in Lingo and saving it as a Movie script. For the
preceding example, the custom function should be written like this:

on flashButton me, swfString
 go to frame swfString
end

Here, the name of the event specified in Flash is the name of the handler, flashButton. The
argument it passes as a string is stored in swfString, then used later in the script to send the
movie to a particular frame. In this example, the script would send the movie to a frame
marker named start.

This approach is similar to the previous example that uses on getURL me. There is a
difference that is important to understand, however. When using the event protocol, Flash
relies on a custom function in your Director movie. The advantage of the function is that you
needn't attach a Lingo script to every Flash sprite. Because your function is sitting in a Movie
script in your Director cast, it is always available when your Flash movie calls for it.

ActionScript's getURL() function provides yet another way to pass information from Flash to
Director. The lingo protocol is probably the most straightforward, but allows the least amount
of flexibility because all statements are hard-coded. Using this technique, you specify specific
Lingo statements in your Flash movie so that they can be passed directly to a Director host
movie. For example:

on(release){
 getURL("lingo:go to frame 10")
}

This script, when attached to a button in Flash, will pass a message to Director telling it to
jump to frame 10. Because the lingo protocol uses explicit Lingo statements, there is no need
for any additional scripting in Director.

Manipulating Flash Sprites with Lingo

As sprites under the control of Lingo in a Director movie, Flash movies seem to lose some of
their "Flash-ness," but you can still manipulate the sprites in much the same way as if they
were inside a Flash movie. For basic navigation, you can use tellTarget(), endTellTarget(),
and a handful of basic Timeline actions: play(), stop(), and gotoFrame(). To set and retrieve
the attributes of a Flash movie within Director, use setFlashProperty() and getFlashProperty().
The getFlashProperty() function monitors the current attributes of a Flash movie sprite, and
setFlashProperty() assigns a new value to a component of a Flash movie. For example, if a
Flash movie sprite contained a Movie Clip, you could use these functions to monitor the clip's
attributes and set them as needed. Their syntax is as follows:

sprite(spriteNum).setFlashProperty("targetName",#property,newValue)
sprite(spriteNum).getFlashProperty("targetName",#property,newValue)

In each, you must specify the sprite number of the Flash movie. Then you use the function
you need and specify the name of the clip you wish to target, the property you need to set or
retrieve, and a new value.See the following example:

on mouseUp
 if sprite(1).getFlashProperty("topleft",#alpha,"")=100
 then
 sprite(1).setFlashProperty("topleft",#alpha,50)

 else
 sprite(1).setFlashProperty("topleft",#alpha,100)
 end if
end

This script can be used to toggle the opacity (#alpha in Lingo, _alpha in ActionScript) of a
Movie Clip instance named topleft of the Flash movie in sprite 1. If the #alpha value of the
target equals 100, then it is set to one-half its value (50). If it is not 100, then it is set back to
its full value (100). If you are using getFlashProperty() and don't need to set a new value,
simply use an empty string ("") for that argument.

There are many properties that Lingo can use to manipulate targets and their values in a Flash
sprite. See Table 23.2 for a complete listing and description of each.

Table 23.2: Lingo Terms for Manipulating Flash Movie Properties
Name Type Description
#posX R W Pixel value for the X axis location of a target
#posY R W Pixel value for the Y axis location of a target
#scaleX R W Pixel value for the X scale of a target
#scaleY R W Pixel value for the Y scale of a target
#visible R W Determines whether a target is hidden or visible
#rotate R W Degree value for a target's rotation
#alpha R W Percent value of a target's opacity
#name R W Name assigned to a Movie Clip instance
#width R Pixel width of a target
#height R Pixel height of a target
#target R Full path in slash notation for a target relative to

a movie's main Timeline
#url R Full path in HTTP syntax for a target
#dropTarget R Full path in slash notation for a target on which

a draggable Movie Clip was dropped
#totalFrames R Total number of frames in a target
#currentFrame R Location of the playback head in a target's

Timeline
#lastFrameLoaded R Last frame number to be loaded for a Flash

sprite to be fully loaded into memory; see
_framesLoaded property in ActionScript

#focusRect R W G Controls the visibility of the button focus
rectangles in a Flash movie

#spriteSoundBufferTime R W G Determines how many seconds of sound should
preload before playback begins

R = a property that can be read or retrieved; W = write, or a property that can be set; G =
global property for an entire Flash movie.
 Note In Table 23.2, there are two global properties that apply to an entire Flash movie. When

working with these, enter an empty string ("") as the target argument—for example,
sprite(1).getFlashProperty("", #focusRect, "").

To control the playback of the main Timeline and Movie Clip instances in your Flash movie,
use the tellTarget() and endTellTarget()commands. Although these terms are deprecated in
Flash, they work within Director to target individual clip instances. The Lingo syntax is as
follows:

on mouseDown
 sprite(whichSprite).tellTarget("targetPath")
 --statements to target a clip or Timeline
 sprite(whichSprite).endTellTarget()
end

In this script "template," you use the tellTarget() and endTellTarget() statements like
bookends; they enclose the statements that control a clip instance or movie Timeline. In the
tellTarget() statement, you must specify, using slash syntax, the target path to the Timeline or
clip you wish to control. Consider the following example:

on mouseDown
 sprite(1).tellTarget("/menu")
 sprite(1).play()
 sprite(1).endTellTarget()
end

This Lingo example tells the clip menu to start playing. The equivalent ActionScript would
look like this:

on(press){
 _root.menu.play();
}

Here are a few other Lingo terms you can use to target clip instances and Timelines in your
Flash movies:

play() Starts the playback of a Movie Clip or Timeline when the statement is called.
Comparable to ActionScript's play() action.

stop() Halts the playback of a Movie Clip or Timeline when the statement is called.
Comparable to ActionScript's stop() action.

gotoFrame(frame) Skips the playback head to the specified frame of a Movie Clip or
Timeline when the statement is called. Comparable to ActionScript's gotoAndStop() action.

If you want gotoFrame()to skip to a particular frame and resume playback from that point
(like a gotoAndPlay() action), you can use the following script, which combines these two
terms. This script sends the Timeline of the menu instance ahead to frame 10 and resumes
playback from that point.

on mouseDown
 sprite(1).tellTarget("/menu")
 sprite(1).gotoFrame(10)
 sprite(1).play()

 sprite(1).endtellTarget()
end

This simple technique is the building block of something quite powerful. Remember
BubbleBody from Chapter 16? If not, skip back to "How Flash Manages Multiple Movie
Timelines" in that chapter. Consider the idea of a Movie Clip that consists entirely of other
nested Movie Clip instances, each of which is a body part of a digital puppet or marionette.
Because each clip can be targeted as an individual instance, you can control the animation of
any body part through scripting. Now, add this character to a Director movie. Not only can
your puppet exist as a scalable, vector-based cast member; it is a cast member that you can
control completely through Lingo scripting. You can use Lingo to skip your character ahead
to frames and animated loops, to perform lip sync animations, to create facial
expressions…the works!

Lingo can also be used to manipulate Flash sprites in the same way it does the other elements
of Director movies. This means that Flash movies can be scaled, spun, flipped, restacked, and
altered just like any other sprite. Lingo sprite properties present you with another option for
customizing the performance of a Flash sprite in your Director production. There are many
sprite properties that can be set and retrieved in Lingo. First, you should take a look at the
basic syntax structure:

sprite(spriteNum).property=value

In Lingo, you must first identify the sprite that you wish to control. Then you state the
property you would like to change, and assign a new value to that property. Consider the
following Lingo example:

on mouseUp me
 spin=sprite(me.spriteNum).rotation
 sprite(me.spriteNum).rotation=spin+90
end

This script works as a behavior to rotate by 90° the sprite to which it is attached each time that
sprite is clicked. This script stores the current rotation value in the variable spin. Then it
reassigns the sprite's rotation to the current value plus 90°.

There are many Lingo properties that can be used to control the attributes of a sprite. See
Table 23.3 for a partial listing and description of sprite properties that can be used to
manipulate a Flash movie sprite.

Table 23.3: Lingo Properties for Manipulating Flash Sprites
Property Description
rotation Sets the rotation value for a sprite by degrees of rotation.
scale Scales a sprite relative to its origin point.
locH The horizontal location of a sprite on the Stage in pixels, measured from

the Stage's upper-left corner.
locV The vertical location of a sprite on the Stage in pixels, measured from the

Stage's upper-left corner.
locZ Controls the layering order of sprites in the Score.

Table 23.3: Lingo Properties for Manipulating Flash Sprites
Property Description
flipV Determines whether a sprite has been flipped vertically on the Stage; if

so, this returns true.
flipH Determines whether a sprite has been flipped horizontally on the Stage; if

so, this returns true.
skew Sets the skew value for a sprite by degrees of tilt from an upright, vertical

position.
blend Sets the opacity of a sprite; 100 = fully opaque, 0 = transparent.
color Determines the foreground color of a sprite.

For a complete listing and description of sprite properties, see the documentation that ships
with Director and the Lingo Dictionary.

Inspirational Design Model
The possibilities given to you by Flash and Director—two very powerful authoring
applications—are vast. For a glimpse of something that's on the entertaining side of this
spectrum, visit www.lego.com/build. Here you can experience one of the more entertaining
games on the Web today: Junkbot (see Figure 23.5). In this LEGO game, your goal is to help
Junkbot through his daily task of emptying all the recycling bins at the local factory. The fun
and creativity of the LEGO world make Junkbot more than just another digital puzzle game.

Figure 23.5: Junkbot is an online game that incorporates both Flash and Director.
LEGO is a trademark of the LEGO Group ©2002 The LEGO Group.
The LEGO® trademarks and products are used with permission.
The LEGO Group does not sponsor or endorse this publication.

Developed by New York City's gameLab, Junkbot uses a combination of Director
(Shockwave) and Flash elements. Although most of the game was created in Director, its
introduction was animated in Flash to introduce players to Junkbot and provide the back story.

Summary
This chapter discussed the issues and techniques inherent in combining two powerful
multimedia creation tools: Macromedia Flash and Macromedia Director. Due to the strengths
of each application, there are clear advantages to using one with the other. This chapter
introduced Director "newbies" to some of the basic concepts behind Director's authoring
environment and to how it's compatible with the SWF file type. You also learned how to
import a Flash movie into the Director environment, or cast. Once in the cast, a Flash movie
has many parameters that will determine how Director handles the movie. This chapter
covered the specifics of these and other settings that affect how a Flash movie is displayed
and treated as part of a Director production.

One of the best features of combining media is the expanded scripting possibilities. Like
Flash, Director has its own scripting language, called Lingo. You learned that in the same way
ActionScript controls the elements of a Flash movie, Lingo has great control over a Director
movie. It's possible to use these languages to send information between movies as well.
ActionScript can pass messages to Director, and Lingo can target different elements of a Flash
movie. Together, the applications work to combine the flexibility of interactive vector graphic
animations with the depth of multimedia authoring and scripting.

Chapter 24: Working with Flash and
FreeHand
Overview
In Chapter 4 you explored all of the tools available for creating visual content in Flash. There
is little doubt that you can produce some pretty cool stuff by using Flash's native painting and
drawing tools. However, when it comes to creating multifaceted and precise works of art,
Flash's drawing tools sometimes fall a little short—especially for those users with print vector
illustration experience. The good thing is that Macromedia has provided some fairly powerful
ways to integrate Macromedia FreeHand, one of the industry's leading vector illustration
programs, into your grand creative process.

In this chapter, you're going to investigate the ways you can use FreeHand's vector illustration
capabilities with Flash's phenomenal animation and interactivity tools to engineer some truly
incredible creations.

An Introduction to FreeHand
Before this whole digital media revolution hit big, print was king. It's not like print is now
dead—quite the contrary! In fact, some of the most interesting, innovative, and exciting stuff
in design is happening in print. However, many of the tools used exclusively for print design
in the past have had to adapt to this digital world. As a result, you'll see traditional print
programs such as QuarkXPress, Adobe Illustrator, and Adobe PageMaker boasting web
features such as HTML export (to name just one).

The most recent version of Macromedia FreeHand is no different. A traditional vector-based
print design program (quite similar to Adobe Illustrator), Macromedia FreeHand is geared
toward illustration, productivity, and publishing. The difference between FreeHand and its
print design competitors is that it takes full advantage of Macromedia's suite of other digital
design tools. Early on, Macromedia astutely recognized the future of its company rested
primarily in the realm of web design and publishing. This prompted a refocusing of the
company's software development and resulted in the release of such industry-leading
programs as Dreamweaver, Dreamweaver UltraDev, Fireworks, and Flash. So, where does
this leave FreeHand? Well, unlike many other software developers (such as Adobe),
Macromedia was able to use its powerful software packages as a lever with which to add a
series of cool web features to FreeHand.

The most interesting of these features is Flash support. Because FreeHand produces vector-
based art, it seemed only natural to link it closely with Flash. In the most recent versions of
FreeHand (most notably, versions 9 and 10), Macromedia has added a series of powerful
features that let you export vector artwork directly into Flash. Even more exciting is
FreeHand's ability to create frame-by-frame animations and directly import them into Flash.

All in all, these additions make FreeHand a much more valuable tool to Flash developers as
well as maintaining its reputation as a topnotch print design program.

 On the CD-ROM A demo copy of Macromedia FreeHand 10 has been included on this
book's CD-ROM.

Creating Multiframe Animations in FreeHand
Exporting complex static vector artwork in a form easily importable by Flash is a great
laborsaving feature. However, FreeHand's greatest strength, at least when it comes to Flash, is
the ability to create animations that can then be seamlessly moved into Flash. This means you
aren't forced to create detailed vector art that is exported to Flash for animation—you can
actually take care of many of your animation needs from within FreeHand.

 Note Unfortunately, FreeHand doesn't have the ability to tween. As a result, any animations
you create within FreeHand that are destined for SWF export will be frame-by-frame
animations.

Let's take a look at how you can create a frame-by-frame animation in FreeHand. For the
purposes of this example, you're going to create an animation of a sphere moving across the
screen—not a particularly difficult or impressive animation. However, it will give you the
foundation to animate more complex images created in FreeHand. Follow these steps:

1. Open FreeHand, and create a new document by selecting File → New or by using
Cmd/Ctrl+N.

2. Go to View → Fit All. By doing this, you'll ensure that FreeHand automatically sets
the magnification so that your entire page is displayed. Because FreeHand is designed
primarily for print design, the default size of any new document created is 8.5×11.

3. Before you create the object you're going to animate, you need to create a new layer.
Open the Layers panel by going to Window → Panels → Layers. From here, choose

New from the Layers panel's Options menu (accessible by clicking the small right-
pointing arrow in the top-right corner of the panel).

 Note When it comes to creating animations in FreeHand, each layer's content will be
transformed into a discreet frame when imported into Flash.

4. Now create the object you're going to animate. With the Toolbox open (Window →

Tools), select the Ellipse tool .
5. Place your cursor at the top of the page. Click and drag to create a circle that is about 3

centimeters (1.25 inches) in diameter.

 Note To show the ruler in FreeHand, select View → Page Rulers → Show. If you
want to edit the units displayed on the ruler, go to View → Page Rulers → Edit.
This opens the Edit Units dialog box, where you can choose which units are
displayed on the ruler.

6. Now, to continue with the animation process, you need to turn the circle you've just
drawn into a symbol. To do this, either go to Modify → Symbol → Convert to Symbol
or use the shortcut F8. This will automatically insert the circle into FreeHand's Library
(which is accessible by going to Window → Library).

7. Now, create a new layer using the procedure in step 3.
8. With the Library open (Window → Library) and the new layer selected, click and drag

another circle symbol from the Library to a position just below the original circle.

9. Now that you've created the first two frames, simply repeat the process described in
steps 3 through 8 (creating a new layer and dragging the circle symbol into it) until
your circle has traversed the entire length of the page.

Congratulations, you've just created your first Flash-focused animation in FreeHand. Granted,
the way it appears in the FreeHand document isn't particularly pretty, but don't worry about
that too much right now. In "Previewing Flash Animations in FreeHand," you're going to see
the animation you've just created.

 Note Instead of using individual layers to simulate the frames in an animation, you can also
use discreet pages to create the frames in your animation. However, if you use pages
instead of layers, you won't be able to simulate a shape-tweened animation—a process
described in the next section.

Simulating a Shape-Tweened Animation in FreeHand
In the previous section, you created a frame-by-frame animation using layers and symbols.
Although you can't create a tweened animation like in Flash, you can get FreeHand to
simulate one object changing into another—the result of which is similar to a shape tween.
Let's take a look at how:

1. Create a new document by selecting File → New or by using Cmd/Ctrl+N.
2. Create a new layer by opening the Layers panel (Window → Panels → Layers) and

choosing New from the Options pop-up menu.
3. With the new layer selected, draw a large circle (with the Ellipse tool) in the top-left

corner of the document.
4. On the same layer, use Rectangle tool to draw a small square in the document's lower-

right corner.

5. Select both shapes with the Pointer tool (located in the top-left corner of the
Toolbox). To do this, you can either click and drag so that the marquee surrounds both
shapes or hold down the Shift key while you select each shape.

6. Now, go to Modify → Combine → Blend. When you do this, FreeHand creates a
series of intervening shapes to create a blend from the first shape to the second shape.

7. Without clicking anywhere (which would deselect the blend you've just created), open
the Object Inspector by going to Window → Inspectors → Object (if it is not already
opened).

8. In the Object Inspector, enter a value into the Steps field—the default is 25, but you
can enter any value you want. This essentially sets the number of images in the blend.
The more steps you have, the smoother the animation will be. Remember, however,
more steps mean a larger file size.

9. When you've set the number of steps in the blend, go to Xtras → Animate → Release
to Layers. This opens the Release to Layers dialog box. Make sure Sequence is
selected from the drop-down menu at the top of the dialog box. When you're finished,
click OK. By doing this, you're telling FreeHand to take each of the shapes in the
blend and stick them on individual layers.

 Note If you want your animation to play in reverse, select the Reverse Direction check box in
the Release to Layers dialog box.

You've just simulated a motion tween with FreeHand. All that you need to do is preview your
creation and then export it. You'll learn how to preview the animation in the next section.

Previewing Flash Animations in FreeHand
You've just created a frame-by-frame (or layer-by-layer) animation in FreeHand. This is all
fine and good, but what if you want to find out how it's going to look when it's exported to

SWF (covered later in "Exporting FreeHand Files to Flash")? To preview a Flash animation
from within FreeHand, follow these steps:

1. Open the document that contains the layer-by-layer animation you want to preview.
2. Go to Control → Test Movie. From there, your animation will open and play in the

Flash Player within FreeHand.
3. To control the movie while it's playing, you can use the Controller toolbar, which is

accessible by going to Window → Toolbars → Controller. This opens up a set of
VCR-like controls displayed at the top of the FreeHand environment.

Beyond the tools necessary to control the playback of your movie, the Controller toolbar also
contains buttons to preview the movie (which has the same effect as Control → Test Movie),
set the movie properties (something we'll talk about later in the chapter), and export the
movie.

 Note You can't preview your movie from directly within the FreeHand environment—you
need to open it in the Flash Player. As a result, unless you've told FreeHand to preview
your movie (by either selecting Control → Test Movie or clicking the Test Movie
button in the Controller toolbar), the VCR-like controls in the Controller toolbar will not
be accessible.

Using the Flash Anti-Alias Display Mode
If you look at the smooth, crisp appearance of the animations or static images you create in
Flash and compare it to the objects you create in FreeHand, you'll notice a marked difference.
Why do the vector images in FreeHand look different from the vector images in Flash?
They're all just vector images, right? Well, yes and no. The display engines that run Flash and
FreeHand are quite different. As a result, FreeHand, which is geared toward the creation of
print design, displays its vector-based art much differently than Flash (whose products are
ultimately destined for a computer screen). If you're creating artwork or animations in
FreeHand for importing into Flash, the difference in display can be a bit annoying.

One solution is to preview your creations in the Flash Player (as discussed in the previous
section). Unfortunately, this removes the artwork from the FreeHand authoring environment.
When you preview vector art in the Flash Player from within FreeHand, you are no longer
able to edit it. Switching back and forth between FreeHand and the Flash Player is a pretty
grim prospect if you want to get your work done quickly. Don't sweat it—FreeHand offers

you a great tool, the Anti-Alias display mode, for working on your artwork while viewing it
as it would appear in Flash.

To access the Flash Anti-Alias display mode, you have two options. First, you can go to View
→ Flash Anti-Alias. Alternatively, you can choose Flash Anti-Alias from the Drawing Mode
drop-down list in the status bar.

Once you've selected the mode, you'll see a marked difference between how FreeHand usually
displays artwork and how Flash displays it. Figure 24.1 illustrates the difference between the
two modes.

Figure 24.1: The image on the left illustrates how FreeHand normally displays artwork. The
image on the right illustrates the same artwork in Flash Anti-Alias display mode.

Attaching Actions in FreeHand
Easily one of the most useful features in FreeHand is the ability to attach Flash actions to your
artwork. Essentially, after creating your vector animations as static artwork in FreeHand, you
can integrate some limited ActionScript before even moving your creations into Flash.
Granted, it's nowhere near as involved a process as in Flash itself. However, it does provide
you with some genuinely interesting possibilities.

Follow these steps to attach a Flash action to your FreeHand image:

1. Select the object to which you want to attach the action.

2. Now, open the Navigation panel by selecting Window → Panels → Navigation.
3. Choose the action you want to assign to that object with the Action drop-down menu.

(For an in-depth look at your choices, see Chapter 12.)
4. Now, choose the event that will trigger the action from the Event drop-down menu.

(For an in-depth look at event handlers, see Chapter 12.)
5. If you've chosen Go To, Print, Load/Unload Movie, or Tell Target, you need to set the

action's parameters. The Parameters drop-down menu allows you to designate
different pages in your animation, and the Frame drop-down menu allows you to
designate different layers.

6. When you've finished, close the Navigation panel.

Setting Flash Movie Properties in FreeHand
Whether you've fashioned a frame-by-frame animation, a simulated shape tween, or a single
object to which an action is attached, your ultimate goal is to export your creation in SWF
format. FreeHand features some fairly robust tools for setting the properties of the SWF file
upon export.

 Note only exports in SWF format—and not FLA (Flash's native file type). As a result, you
can't open images created in FreeHand in Flash. Instead, you need to import them into
Flash.

Once you've crafted the animation or artwork you want to export as a SWF file, there are a
couple of ways to access the Movie Settings dialog box, the tool with which you'll access
your movie's various options:

• Go to File → Export. When the Export Document dialog box opens, choose
Macromedia Flash (SWF) from the Save as Type drop-down menu, and then click the
Setup button (just below the Save and Cancel buttons).

• Click the Movie Settings button located in the Controller toolbar (accessible by
going to Window → Toolbars → Controller).

 Note The Export button is only accessible after you’ve clicked the Test Movie button in the
Con-troller toolbar. Alternatively, you can also go to Control → Test Movie.

At this point, let's look at each option in the Movie Settings dialog box in detail:

Path Compression Determines how your artwork will be compressed upon export. The
options range from None, which maintains the original number of points and results in the
highest quality (but a larger file size), to Maximum, which results in the smallest number of
points possible and the lowest file size (and lowest quality).

Trace Dashed Strokes Guarantees that any dashed strokes in your art will be converted to a
discreet object upon export. As one would expect, the process increases the time it takes to
export the image as well as the final file size.

Image Compression Determines the quality at which bitmaps are converted to JPEGs. The
options range from None, which results in the largest file size with the greatest quality, to
Maximum, which results in the smallest file size with the lowest image quality.

Text Determines how FreeHand exports any text in your artwork. If you choose Maintain
Blocks, the text is exported as a text block, which is then editable in Flash. On the other hand,
if you choose Convert to Paths, the text is converted to a vector path, thereby making it
uneditable as text. If you choose None, all text is omitted from the exported file.

Pages Allows you to determine the range of pages that are exported (if you have more than
one page in your document).

Animation Lets you specify the way in which FreeHand exports any animation you've
created:

• Layers and Pages will export all the layers on the first page as a series of frames.
Then, it will move on to all the subsequent pages (one after another) and export all the
layers as frames.

• Layers will export all the layers in your document as a series of frames.
• Pages will export each page as a single frame in a single SWF file. If any of the pages

have more than one layer, they'll all be squished into one for the purposes of export.
• None will export each page as an individual SWF file. Multiple layers will simply be

compressed to comprise one frame in one SWF file.

Frame Rate Sets the frame rate of the animation in question in frames per second (fps). If
you're having trouble remembering exactly how frame rate works, see Chapter 10.

Autoplay Makes sure the animation begins playing automatically when opened in the stand-
alone Flash Player.

Full Screen Playback Makes the movie automatically take up the entire monitor (until the
user presses Esc). It's important to note that this option will only work if the user opens the
movie in the stand-alone Flash Player; it won't work if the movie is embedded in a web page
viewed by a browser.

Compatibility Lets you choose the version of Flash to which your exported SWF files is
targeted. Remember, the different versions of Flash have different levels of support (or total
lack thereof, in some cases) for ActionScript.

 Note Unfortunately, because FreeHand 10 was a generation before Flash MX, the highest
version of Flash you'll see in the Compatibility drop-down menu is Flash 5. Don't worry
too much, though, because Flash MX can easily import Flash 5 SWF files.

Protect from Import Makes sure no one can import your exported SWF file.

High Quality Printing Lets the user print each frame in the animation at high resolution
(regardless of whether they're viewing the movie with the stand-alone Flash Player or from
within a browser). If the option is deselected, the user's computer will print at the screen
resolution of 72dpi.

After you've set all the appropriate setting for your movie, click OK. From here, it's time to
export the file—a process you'll explore in the following section.

Exporting FreeHand Files to Flash
Now that you've looked at how to set the various properties of your creation with the Movie
Properties dialog box, you can export your artwork. After setting the movie's properties, you'll
find that exporting your file is somewhat anticlimactic. Follow these steps:

1. Click the Test Movie button located in the Controller toolbar (or simply go to Control
→ Test Movie).

2. When the Movie Player opens, click the Export Movie button . Alternatively, you
can go to Control → Export Movie after the Movie Player opens.

3. When the Export Movie dialog box opens, enter a name in the Name field, navigate to
the location on your hard drive where you want the movie exported, and click Save.

 Note You can also select File → Export. When the Export Document dialog box opens, enter
a name in the Name field, choose Macromedia Flash (SWF) from the Save as Type
drop-down menu, navigate to the location where you want to export the file, and click
Save.

Inspirational Design Model
Complex illustration has always featured fairly prominently in Flash creations. This is
especially true for Flash-based web cartoons (or webtoons), which live or die by the quality of
their illustrations. Although this book is full of great examples of Flash-based webtoons (hey,
what can I say—we love 'em), arguably one of the grooviest comes courtesy of Renegade
Cartoons (www.renegadecartoons.com), which is the digital arm of Renegade Animation
(www.renegadeanimation.com).

A small animation house run by Darell Van Citters and Ashley Postlewaite, Renegade
Cartoons produces all manner of incredibly stylish episodic webtoons—chief among them
being the adventures of the lovable Elmo the Ardvaark. Figure 24.2 shows a sample of this
terribly cool site.

Figure 24.2: Renegade Cartoons produces incredibly stylish Flash animations and webtoons.

Summary
In this chapter, you explored how you can integrate Flash with Macromedia FreeHand. You
started off by getting a brief introduction to the nature of FreeHand itself. From there, you
jumped into creating frame-by-frame animations in FreeHand with the layer-by-layer
technique and the simulated shape-tweening technique. You continued by previewing your
animation, using the Flash Anti-Alias display mode, and attaching Flash actions to artwork

created in FreeHand. You finished the chapter off by setting movie properties and exporting
files to Flash.

Chapter 25: Working with Flash and Digital
Audio Applications
Overview
Of all the different types of applications that can be used in conjunction with Flash, digital
audio programs are the least similar to Flash itself. In digital audio, there are no animated
frames, no movie clips, and no scripting language. It is just you, a sound file or sample, and
lots of tools to change the way something sounds. Additionally, audio applications demand a
completely different kind of mind-set. You must make the shift from a visual time-based
medium to an aural time-based medium. Your ears are most important!

You have learned quite a bit about digital audio in this book, particularly how to prepare
sound files for the Flash environment and how to handle them once they get there. Now it's
time to step back and look at some of the additional resources you can use outside of Flash to
give your movies a great sonic punch. With the right tools and a little know-how, you will
discover a world of creative possibilities.

Digital Audio Tools
More digital audio applications are available today than ever before. The range of software is
enormous: from robust, professional, multi-track systems to smaller, homemade sound
gadgets and audio modifiers or creators. Whatever your budget, you are bound to find
something that will help you create the music, vocal, or effects soundtrack that will
accompany your Flash movie.

The overview of software presented here is by no means complete. There are many additional
tools that will render excellent results in your Flash soundtrack. This collection is more or less
a highlight list of reputable applications that are often used in conjunction with digital
multimedia. Choosing the one (or two or three…) that works best for you can take some time.
It helps to have a little experience working with audio on your computer so that you know the
kinds of features that will be most helpful, based on your working style, your equipment, the
size of a typical project, and so on. In most cases, the manufacturers make it easy for you to
decide. Many software companies offer free trial downloads of their products. What better
way to shop for an application than to test-drive it for free and be absolutely sure that it is
right for you? For each entry in this section, you will find a list of online resources where you
get additional information about the software, manufacturer, compatibility, and pricing.

This section of the chapter is meant both to inform you about the audio tools that are currently
available and to offer some guidance based on the particular strengths and weaknesses of each
application. Consequently, it is divided into four parts: multi-track applications, waveform
editors, loop editors, and MIDI sequencers. If you are already familiar with these terms, you
should have no problem locating the information you need. If this is all very new, then keep

reading. With each description, you will find that it's easy to narrow things down based on the
demands of your current projects.

Multi-Track Audio Editors

Multi-track applications are used primarily for three things: recording audio, cutting and
editing, and mixing together the final song or piece. Because they have great depth and offer a
wide range of possibilities, most of them are used for large-scale projects, or projects that
require you to combine many different elements into a single song or composition. If you plan
to produce your own original music, or assemble a track using narration, dialog, music, and
sound effects, then a multi-track audio editor is for you.

Pro Tools

Pro Tools is currently the industry standard for professional-level recording, editing, and
mixing of digital audio. Manufactured by Digidesign, this application is built for large audio
projects involving many tracks, and it gives you complete control over the performance of
each element in your mix. Additionally, Pro Tools offers support for video, MIDI, and both
multi-channel and surround sound mixing.

Pro Tools has two types of systems. The primary one is known as TDM, which stands for
time division multiplexing. With a Pro Tools TDM system, audio information is routed
through additional hardware that's installed on your computer. The power of the TDM system
lies in this additional hardware, because it manages most of the DSP (digital signal
processing) and allows the computer to work with multiple simultaneous audio streams in real
time. TDM systems provide the greatest amount of power and flexibility, but they demand a
substantial financial investment and are recommended for serious users only.

The other kind of Pro Tools system is RTAS, or Real-Time AudioSuite. The main difference
is this: RTAS systems use host processing, or the CPU of the computer running the software,
rather than additional hardware. Consequently, the performance of the system is affected
greatly by the speed and efficiency of the computer running the software. RTAS systems (Pro
Tools LE) are great for smaller-scale projects and still offer all the editing capabilities of a
TDM system. For an illustration of the Pro Tools LE environment, see Figure 25.1.

Figure 25.1: Pro Tools LE has all the editing features of regular Pro Tools but depends on the
host computer to do any digital signal processing (DSP).

Currently, Pro Tools is supported on Macintosh, Windows 2000, Windows 98, and Windows
Me computers. Consult Digidesign (www.digidesign.com) for up-to-date information on
compatibility and system requirements. If interested, you can try Pro Tools for free. Visit the
Digidesign website and follow the link for Pro Tools FREE. This software is a scaled-down
but fully functional version of Pro Tools that will give you a taste of the application. Pro
Tools FREE is also supported on both Macintosh and Windows platforms.

Vegas Audio

Vegas Audio is a Windows-only multi-track audio editing and mixing tool manufactured by
Sonic Foundry (www.sonicfoundry.com). Unlike a Pro Tools TDM system, this software
requires no additional hardware and will run on your computer using the host processor.
Vegas boasts a simple drag-and-drop interface that allows you to combine and recombine
your audio to create multifaceted soundtracks. See Figure 25.2 for an illustration of the Vegas
Audio editing environment.

Figure 25.2: Sonic Foundry's Vegas Audio interface

Vegas offers an unlimited number of audio tracks and supports up to 18 Sonic Foundry
DirectX plug-in effects (XFX 1, 2, and 3). Additionally, it supports synchronization with

QuickTime 4, and can be used to score Flash movies that you publish in QuickTime format.
Sonic Foundry currently offers two versions of this application: Vegas Audio and Vegas
Audio LE. The scaled-down LE version offers many of the same features as Vegas Audio but
carries a few limitations, including a maximum of eight audio tracks. Both versions of Vegas
will run on Windows 98SE, Me, 2000, and XP systems.

For complete information on Vegas Audio, system requirements, and trial download offers,
consult the Sonic Foundry website.

Waveform Editors

Waveform editors are a step down from multi-track editors—not because they are less useful,
but because they take a different approach to audio editing. In reality, most waveform editors
have many of the features found in a multi-track system. The main difference is size.
Waveform editors are generally geared to handle only one or two simultaneous tracks (mono
and stereo files). While this may seem limiting, it has its advantages. It can be easier to work
quickly when you have fewer options. Waveform editors may not have all the bells and
whistles of a larger audio application, but they do provide a simple, streamlined environment
for editing, tweaking, and preparing audio files. Depending on your profession or your role on
a Flash development team, it's safe to say that a reliable waveform editor will be able to take
care of 85% to 90 % of the audio work that is required to produce a Flash movie.

Sound Forge

Sound Forge has quickly become one of the staples of the digital media industry. This
Windows-only waveform editor provides excellent support for cutting, pasting, trimming,
creating fades, recording, doing signal processing, editing loop points, and much more. Sound
Forge also includes three kinds of equalizers: graphic, parametric, and paragraphic. It can also
be used to encode MP3 files for direct import into Flash. Additionally, Sound Forge offers
several DirectX audio plug-ins: Amplitude Modulation, Chorus, Delay, Distortion, Flange,
Gapper, Noise Gate, Pitch Bend, Reverb, Vibrato, Time Compression, Wave Hammer, and
more. You can see an illustration of Sound Forge in Figure 25.3.

Figure 25.3: Sound Forge is a top-quality, intuitive waveform editor made by Sonic Foundry.

 On the CD-ROM Sound Forge is manufactured by Sonic Foundry
(www.sonicfoundry.com) and runs on the following systems: Windows 98SE, Me, 2000, and
XP. Look for a demo version of SoundForge on this book's companion CD-ROM.

Peak 3

Peak is manufactured by BIAS, or Berkley Integrated Audio Software. Currently, it is one of
the few professional-quality digital audio editing applications made expressly for the
Macintosh operating system. As an audio editor, it has the kinds of tools that you would
expect: You can cut, paste, fade, cross-fade, change pitch and duration, normalize, and
perform stereo-to-mono conversions. Besides the main, detailed waveform display, Peak
provides the useful "Audio Waveform Overview," a kind of panoramic display of the entire
sound file. If your main window shows a detail of the wave, the Overview window will still
display the entire file, along with an indicator of which area you are currently examining (see
Figure 25.4).

Figure 25.4: The Peak interface provides two levels of navigation for a sound file, regular
(detailed waveform) and Overview, shown in the topmost window.

In addition to its editing features, Peak 3 supports Steinberg VST plug-ins. You can use these
in a variety of ways to apply equalization, compression, reverb, and many other kinds of
processing to a sound file. Additionally, BIAS, Inc., has recently released its own 10-band
parametric equalizer called SuperFreq.

Peak 3 also offers a batch-processing feature. This asset comes as a huge relief if you have
ever had to convert a large collection of files to a different sample rate, file type, and so on.
Peak expands the possibilities of a batch processor by also providing an option to apply DSP
(normalize, stereo/mono conversion, and so on) to the batch-processed files.

Peak will run on any PowerPC-equipped or G3/G4 Macintosh computer. Peak 3 has also been
"carbonized" for users running Mac OS X. For additional system requirements and
compatibility information, or to download a trial version of Peak, visit BIAS at www.bias-
inc.com.

SoundEdit 16

SoundEdit 16 is a classic—or, if it isn't officially, it should be. It's very likely that anyone who
develops multimedia or does video editing on a Macintosh owns a copy of SoundEdit 16. This
is a unique audio application. At one time, it was manufactured by Macromedia. Today it is
no longer in development, but is still supported at the Macromedia website
(www.macromedia.com/software/sound) and is used throughout many circles of the digital
media industry. As a typical waveform editor, SoundEdit 16 has many of the features that you
would expect to see: copy, cut, paste, fade-in and out, normalize, pitch shift, backwards,
tempo, and so on. SoundEdit 16 also provides support for creating and inserting loop points in
an audio file or sample. Simply stated, SoundEdit (see Figure 25.5) is a great, compact, no-
frills editor.

Figure 25.5: SoundEdit 16 is rare in that it's one of the few waveform editors that
accommodates multi-track editing and mixing.

One big characteristic that makes SoundEdit 16 unique is that unlike most other wave editors,
it supports multiple, simultaneous audio tracks. This makes it uniquely suited to create all
sorts of strange and interesting layered sounds or to edit and mix a multicomponent
soundtrack. It is not multi-track-savvy to the extent of Pro Tools or some of the other editors
discussed here, but it can do much more with multi-track audio than both Sound Forge and
Peak. Another trait that sets it apart is its ability to zoom into the sample level, allowing you
to manipulate each sample individually as shown here:

As an older application, SoundEdit 16 has minimal system requirements: Mac System 7.1 or
higher; 68030 processor or faster. SoundEdit 16 is still available but is no longer evolving as a
software package. Consult your favorite software dealer for pricing and availability
information.

Loop Creation and Editing

If you are interested in putting together your own music but don't necessarily have the
inclination to dive into full-blown composition or song writing, loop software may be a good
choice for you. Working with loops is one part composing, one part editing, and features the
best of both worlds. When you work with loops, much of the musical material is finished and
has been prepared for you as repeatable audio segments known as loops. Audio loops can then
be cut, layered, mixed, remixed, and combined to produce an entirely new piece of music. Or,
using your own music, you can create your own loops and produce remixes or variations to
create a different kind of interactive sound experience. Used tastefully, loop software is a
great way to produce original music for your Flash movies. To read more about specific uses
of looped audio in Flash, see "Creating Seamless Audio Loops" later in this chapter, as well
as in Hands On 6.

ACID PRO

ACID PRO is Sonic Foundry's all-popular application for creating loops and loop-based
music. To use it, you simply assemble the loops you would like to use, arrange them in
ACID's timeline, click the Play button, and away you go! Because most loops you encounter
are "finished" chunks of music, there is often little work required in terms of editing sound
files. ACID PRO allows you to get right into the music and create your musical statements
almost instantly (see Figure 25.6).

Figure 25.6: The ACID PRO editing environment allows you to compose and produce music
using different combinations of looped sound files.

ACID PRO loop tracks can be manipulated in several ways. You are able to control overall
tempo, panning, and volume (envelope), and to create track fades and transitions. And, like
most other Sonic Foundry software, ACID PRO supports 18 Sonic Foundry DirectX plug-ins
to add effects and apply processing to your looped creations. ACID PRO ships with a CD that
contains a large loop library filled with musical gestures in a variety of styles. Additional
audio loop libraries are available from Sonic Foundry as well as other third-party
manufacturers. One of ACID's best features, though, is that it will allow you to bring in
original loops (edited in Sound Forge and other applications) to add a personal flair to your
project. ACID PRO will run on Windows 98SE, Me, 2000, and XP systems.

 On the CD-ROM If you use Windows and want to try your hand (and ears) at creating
music with ACID, check out the free ACID XPress 3.0 demo on this book's CD-ROM. This

introductory version of ACID allows you to explore the possibilities of loop-based music at
no cost whatsoever.

MIDI Sequencers

MIDI, or Musical Instrument Digital Interface, has been an important player in audio
production for years. It is another one of those topics that could easily fill an entire book unto
itself. In a nutshell, MIDI music has two main components: a sequence and a sound bank or
module. A sequence is a computer file saved in a MIDI-compatible format that serves as a
kind of digital piano roll. When it is played back by the computer, it communicates via MIDI
with a sound module. The sound module reads the MIDI information that is sent by the
sequence, provides the correct notes, sounds, and effects, and plays them back in real time. To
create MIDI music, you need to have both of these components: a sound module or sampler,
and a MIDI sequencer to create MIDI files and send musical information.

MIDI music is a topic more closely related to audio production than to Flash. However, MIDI
music can certainly provide a valuable musical asset to any Flash movie. The important thing
to remember, though, is that a MIDI sequence itself isn't music, but rather a list of instructions
sent to a sound module or bank. When the sound device receives the instructions, it plays the
notes accordingly. As a result, to capture MIDI music, you must record the sounds coming
from the device playing your MIDI file as a digital audio file.

Whether you use Windows or a Macintosh, there is a MIDI sequencing application for you.
Here is a brief list to check out:

Cakewalk Home Studio 2002 A Windows-based application for MIDI sequencing,
recording, and a little bit of everything else (including multi-track digital audio) described in
this chapter. See www.cakewalk.com for specific information, PC compatibility, and related
products like Cakewalk Pro Audio and Sonar.

Cubase VST Manufactured by Steinberg Media Technologies AG, this application, like
Cakewalk, can "do it all." The unique thing about Cubase is that Steinberg manufactures
versions for both Windows and the Macintosh. Visit www.steinberg.net for details.

Digital Performer A Macintosh native application for, you guessed it, MIDI sequencing and
everything else musical under the sun. This application is made by Mark of the Unicorn
(MOTU). For compatibility information, visit www.motu.com.

All the applications discussed here may seem to be very much the same, and to a certain
extent, this is true. After all, they are all geared to do one thing: produce digital audio in some
way, shape, or form. However, after experimenting with several of them, you will find that
each has its own unique personality, just like Flash. The key is to settle on a tool that works
for you and the demands of your Flash projects.

Digital Audio Techniques
So far, you have learned about the vast array of tools that are currently available for creating,
editing, mixing, and producing audio for Flash movies and animations. However, selecting a
tool for the job is only half the battle. Being able to use it to do the job creatively and

professionally is the real trick. And to reach this level, it takes some time to learn how the
features of audio editors affect the files they manipulate.

This section of the chapter focuses on different audio editing techniques that are particularly
useful in preparing audio for Flash and other kinds of digital media. If you are unfamiliar with
digital audio concepts, it may be helpful to refer to Chapter 19 and gain a basic understanding
before proceeding with the ideas presented here. Because there are so many different audio
applications, the instructions and steps described in this section are general. Each concept or
technique is presented in a way that applies to all applications.

Audio Effects and Processing

When working with digital audio, any time you need to change the way something sounds
you can apply digital processing or an effect. Depending on the effect, DSP will perform an
operation on the audio waveform to change the way it sounds. Like cutting and pasting, this is
part of the editing process.

In the world of digital audio, there are two kinds of editing: destructive and nondestructive.
The names are rather self-explanatory. Destructive editing means that the wave will be
forever changed, unless you undo the operation. Nondestructive means that the original will
not be altered. Generally, a new file is created with the particular edit and used in place of the
original. This applies to all kinds of edits, particularly edits that involve processing and
effects. Depending on which application you use, you will be doing either destructive editing,
nondestructive editing, or perhaps a bit of each. Be sure to check before you begin working so
that you won't ruin an irreplaceable file by accident. When all else fails, you can usually undo
(Cmd/Ctrl+Z) an operation to return to the last state of a file. Well, enough of the precautions;
let's do some editing.

Normalize

In some respects, normalization is the single most important kind of processing you can apply
to a digital audio file, especially if you are preparing the audio for computer-based
multimedia. The reason is that you never know how loud someone will have their system
volume or speakers set to play. And although you have no (or little) control over this, the one
thing you can do is ensure that your sounds are set at their highest possible volume. Plus, to
avoid possible audio distortion, it's always easier and better sounding to turn something down
than to have to turn it up.

Normalization is used to increase the overall volume of a sound. It looks at a sound file and
finds the loudest point. Then it boosts the loudest point to a specified value and brings
everything else along with it, keeping the dynamics of the file in proportion.

To normalize a sound file or sample:

1. Select the portion of the file you would like to normalize. Generally, this is the entire
sound file.

2. Choose Normalize from one of the application's menus (usually Process or Effects). A
Normalize dialog box appears:

3. Enter a value for the loudest point, generally 96–98%. This will boost the loudest
point of the file to 96–98% of its total possible volume and make the volume for the
rest of the file change relative to that.

4. Click OK, and the editor will perform the edit. You should see a change in the
amplitude of the sound file. For an example of this change, see Figure 19.9 in Chapter
19.

You should normalize all sounds before importing them to Flash to ensure the highest
possible volume. Once they are in your movie, you can always tweak volume levels using
either the envelope controls or methods of the Sound object.

Using the Level Meter to Monitor Clipping

If you have spent any time at all with a digital audio application, you have undoubtedly
encountered the word clipping. Clipping means that a sound's level has been boosted beyond
the capabilities of the playback system. (To read more about this, see Chapter 19.) While
working with a sound, you can monitor its level using the level meter in your digital audio
application. These are usually designed to resemble the LEDs (light-emitting diodes) found on
many professional mixing boards. The meter will track the level of a sound as it plays back,
and give you a readout of a sound's dynamics. As a sound approaches the point of clipping,
the meter will generally change from green to yellow to orange. If the sound goes over the
limit, the meter will usually display a red "clip indicator" to let you know that the sound's
dynamics are out of range, or the sound is distorting.

The accompanying graphic illustrates a typical level meter. This particular example (called
Play Meters) is drawn from Sonic Foundry's Sound Forge.

Equalizer

An equalizer is a tool that is used to alter the frequency balance of a sound file. Equalization
(also known by the slang term EQ) makes adjustments to the frequencies of a sound by either
boosting or cutting them. For example, cutting the low frequencies of a sound will take out
the "boominess" or "muddy" quality of a sound. Boosting the high range will make a sound
"brighter"; too much of this can make a sound shrill or tinny.

Generally, an equalizer is used to make a sound clearer. As with most effects, your ears are
the best judge. Work with the equalizer until the file sounds the way you think it should. And
as always, monitor the levels of a sound so that you don't clip, or distort, the file. Too much
EQ can send a sound flying off the meters!

To apply EQ to a sound file or sample:

1. Select the portion of the file you would like to equalize. This is usually the entire
sound file.

2. Choose Equalizer from one of the application's menus (usually Process or Effects). A
Equalizer dialog box appears (see Figure 25.7).

Figure 25.7: Sound Forge offers several kinds of EQ. This is the Graphic Equalizer.

3. Using the equalizer's slider controls (this is typical in most interfaces), set values for
the various frequencies of a sound.

As a general guide to frequency adjustment, see Table 25.1, "Bernie Mack's
Subjective EQ Terms." Chicago-based recording engineer and instructor Bernie Mack
developed this chart to help his students match sound characteristics or descriptions
with frequency ranges. For example, you might hear a sound and realize that it's
"muddy." Muddy is a great descriptive word, but it doesn't tell you how to make the
sound clearer. Using the chart, you can see that frequencies described as muddy are
usually in the range of 200–250Hz. By attenuating (reducing the level of) these
frequencies, you can make a sound clearer, or less muddy. Similarly, to adjust the bass
qualities of a sound you would add to or take away from the frequencies around 60–
80Hz. To give a sound more attack you could add to the frequencies at 7,000Hz.
Realize that these terms offer a general range for adjustment; every sound you work
with will yield slightly different results.

Table 25.1: Bernie Mack's Subjective EQ Terms
Frequency of Sound (in Hertz) Description of Sound
60–80 Bass
200–250 Muddy
350 Pinched, nasal
450 Warm
5,000 (5kHz) S's
7,000 (7kHz) Attack
12,000 (12kHz) High end, bright

4. Some equalizers allow you to preview the new settings. Click Preview to audition the
sound. When you have the sound dialed in to where it sounds best, click OK to
finalize the edit.

Equalizing Audio Files for Flash MP3 Compression

If you have exported sounds with Flash's internal MP3 compression, you have surely noticed
a drop in sound quality of the exported files. Every sound responds to compression

differently. For some, the changes rendered by the compression are minimal, while other
sounds show a definite difference in their overall character and quality. In general, the lower
you set the bit rate and encoding speed, the lower the quality of your sound file will be, and
the more drastically a sound will be changed.

These changes in sound quality, however, don't have to be a permanent part of your movie.
You can correct the effects of compression by using equalization to bring a sound to a point of
equilibrium. By attenuating the frequencies that compression boosts, and boosting the
frequencies that compression dampens, you will be able to retain more of a sound's original
character after your movie is published.

These changes should be applied to the original sound file (or copy of the original file) before
it is imported into Flash. By doing this, you will compensate ahead of time for the adverse
effects MP3 compression has on the sound file. Ideally, when the Flash movie is published,
all sounds will be brought back to their original character. A sound will probably never be
exactly the same, but it will be a definite improvement over the unequalized alternative.

Use the following image as a guideline for your EQ:

This EQ setting boosts the low end, cuts the low-to-mid range, and slightly boosts the high-
mids and the highs. All EQ settings affect different sounds in different ways, however. Use
this example as a starting point. With a little tweaking and experimentation, you should be
able to bring your compressed Flash sound files closer to the original.

Compression

Compression is like normalization in that it affects the volume of a sound. However, there is
more to it than just a change of volume. Whereas normalization boosts the peaks and valleys
of a sound and keeps their relationships intact, compression alters the overall dynamics of a
sound and can bring its peaks and valleys closer together. If you have a sound with very
erratic volume levels, a compressor can level the playing field by cutting the loud parts,
bringing them closer to the soft parts. Then, after bringing the levels closer together, a
compressor can boost the overall volume of the entire sound file with the new, closer
relationship of highs and lows.

To apply compression to a sound or sample:

1. Select the entire sound file or the portion of the file you need to compress.
2. Choose either Compressor or Dynamics from one of the application's menus (usually

Process or Effects). A Dynamics dialog box appears. With most compressors, you are
asked to specify five things: Threshold, Ratio, Attack, Release, and Output.

Threshold determines at what point the compressor kicks in.

Ratio sets the amount of compression. It is usually best to keep this between 2:1 and
6:1. For every 2dB of change, the compressor yields 1dB; for every 6dB of change,
the compressor yields 1dB, and so on.

Attack and Release set how quickly the compressor kicks in once it is beyond the
threshold.

Output allows you to boost the final volume of the compressed sound.

3. Once you have made your settings, you can click the Preview option to test the
compressor. If the results meet your satisfaction, click OK to compress the sound.

Compression can be a big asset to the production of Flash projects. Use it to compress dialog
and narration so that it sounds even and has no "dips" that obscure the meaning or clarity of
the words.

Reverb

Reverb is an effect used to make a sound or sample seem like it is heard in a particular
acoustic space. Reverb can make something sound like it is in a tiled bathroom, long hallway,
or cathedral. It is often used to simulate the natural mixing of sounds that occurs in a room
with reverberation.

When working with sounds for Flash movies, you can use reverb to create echo effects,
sweeten the quality of a vocal line (spoken or sung), add authenticity to environmental sound
effects, and much more. Although there are too many different kinds of reverb available today
to discuss using them in any kind of detail, here are a few of the parameters you can expect to
see:

Room size This causes the effect to simulate the natural acoustics of certain kinds of rooms.

High cut and low cut These are filters that dampen the high or low frequencies of the
reverberated sound.

Decay This parameter controls how long the reverb effect persists.

Diffusion This parameter controls the density of the reverberation.

Amount/mix This option allows you to set how much of the effect is applied to the sound.
The end result is a mixture of the original sound (referred to as "dry") and the reverberated
sound ("wet"). See Figure 25.8 for an illustration of the options provided in a reverb feature.

Figure 25.8: Digital Performer's eVerb plug-in has many options for fine-tuning the reverb
setting parameters

If you like the results of reverb but want something that has more of a bounce or more clear
repetitions, you can also try experimenting with echo and delay effects.

Pitch Shift

A pitch shift effect can produce wild and humorous results to sound samples, especially when
used in the extreme ranges. Pitch shifting basically takes the pitch of a sound and transforms it
to a lower or higher pitch; for example, it can make the human voice sound like that of a
chipmunk. Pitch shifting is a fabulous technique for modifying sounds to create new and
interesting sound effects.

Depending on the sophistication of the software you are using, pitch shifting can be done one
of two ways. In many cases, pitch shifting changes the duration of the sound: Pitch shifting up
(a higher pitch) makes a sound shorter, while pitch shifting down (a lower pitch) elongates a
sound. With newer pitch shift effects, you may have the option to preserve the original
duration of the sound or sample.

To apply pitch shifting:

1. Select the entire sample or portion of the sound that you would like to pitch-shift.
2. Choose Pitch Shift from the Effects (or similarly titled) menu. The Pitch Shift dialog

box appears.
3. Set the pitch shift value and click OK to perform the shift. Figure 25.9 illustrates

SoundEdit 16's pitch shift features.

Figure 25.9: The Pitch Shift window in SoundEdit 16 uses a keyboard graphic to set
changes in pitch based on the intervals of a keyboard.

Pitch shifting is a sound designer's best friend. With a little experimentation, you will be
surprised at how typical, everyday sounds can be transformed into wild sonic oddities. Use
this effect liberally in Flash cartoons to create crazy, over-the-top CLANKS!, BOINKS!, and
KA-BOOMS!

Time Shift

Time shift and pitch shift are similar in nature, but they affect different aspects of a sound.
Whereas pitch shift can raise or lower the pitch of a particular sound, the time shift effect will
increase or decrease a sound's duration. And unlike some pitch shift effects that alter the
duration of a sound, time shift will generally try to preserve the original pitch of the sound it
is shifting.

To apply a time shift effect:

1. Select the portion of the file or sample you would like to time-shift.
2. Choose Time Shift (or Tempo, Stretch, etc.) from the audio application's Effects

menu. The Time Shift dialog box appears.
3. Every interface varies; generally, you either use a slider to set the value, or type in a

number for the length of the "shifted" file.
4. If the application provides a Preview option, select it to audition the sound. When you

have created the right effect, click OK to apply the time shift.

Time shift effects are particularly good for making sound effects shorter or longer. For
example, if you have an explosion sound that you want to sustain for an extended period of
time, apply a time shift effect and stretch it to the length you desire.

Creating Seamless Audio Loops

Chapter 19 introduced you to loops, small chunks of music that can be repeated, or looped,
continuously. And in Hands On 6, you learned how loops can be inserted accurately into a
Flash movie Timeline to ensure accurate beat-timing between loops. When you combine
loops in different ways throughout the movie, they can serve as the impetus for a highly
interactive soundtrack. Yes, loops do carry a negative connotation, but hopefully these
techniques illustrate how loops can produce pleasing, musical results. Remember that loops
themselves are not always grating or annoying; rather, the unimaginative application of loops
can make them so.

Whatever creative solution you may devise for working with loops, it is important that they
are created in such a way that they sound clean and are free of pops, clicks, and bumps when
played back. The best way to do this is to be sure that the loop file has one continuous

waveform with no seams or gaps. If the line of the wave ever has to jump or skip, the break in
the wave will be unpleasantly audible when you play back the looped file (see Figure 25.10).

Figure 25.10: The image on top shows a sample with two loop points that meet smoothly; this
sound will play back without glitches. The sample on the bottom will pop every time it loops,
due to the gap in the waveform.

So, the key to a smooth-sounding loop is to have one continuous wave that never breaks.
Because it's nearly impossible to find a natural sound that's like this, you must edit the file to
create the loop. Many audio editing applications offer loop creation tools that assist you with
this, and generally they have names like "Loop Tuner." Built-in loop editing tools such as
these can be very helpful, but they don't always give you complete control over the file while
you are defining its loop points. These tools work very well for rhythmic loops, where the
beats of the music are clearly defined by the shape of the wave. For ambient, loosely
rhythmic, or rubato music, though, using the tools can be difficult.

In the following steps, you will learn how to create ambient loops that work as a musical
backdrop to your Flash movies. First, though, you should understand what is meant by an
ambient loop. An ambient loop is a sound, often with no particular rhythm or pulse, which
repeats continuously. It sounds boring by definition, but an ambient loop can sound absolutely
beautiful. Think of such loops as textures—or, as LucasArts' Peter McConnell calls them,
audio "wallpaper"—that create an environment without ever getting in the way. Ambient
loops serve as excellent musical backdrops for websites and interactive interfaces, because
they establish a mood without ever stepping in the way of the other design elements. In a
sense, the sound is as integral to the design as the type, colors, and images.

To create a smooth loop for an ambient sound:

1. Open a sound that you think will be appropriate for your purpose, and listen to it. Are
the beginning and the end drastically different? If so, you may need to do some
creative editing to reorder the parts of the music or sound collage that make up the
sound. To get the best results from this technique, work with a sound that has an
ending that will transition smoothly to the beginning without sounding strange or
awkward. Additionally, the sound should be at least 30 seconds long. Looped sounds
are most obvious when they are short, so work with the longest sound file your movie
can afford in terms of file size.

2. Using your audio editor's selection tool, select the last few seconds of the sound file.
(The portion that you select will ultimately have to blend with the audio at the
beginning of the file. Try to make a generous selection so that you leave plenty of
room to blend. Four to ten seconds is a good, flexible range with which to work.) Let's
assume that the sound is stereo and you have selected both tracks. It's critical that your
selection starts at a point where the sound wave is crossing the 0 amplitude line (see
Figure 25.11). If you make the selection at any other point in the wave, you'll get a
glitch when the file loops.

Figure 25.11: When making your loop selection, be sure that the selection begins at a
point in the sound wave (or waves, if stereo) where there is a zero crossing.

3. Select Edit → Cut (Cmd/Ctrl+X) to cut the audio chunk you selected. Then, create
two new tracks (or one stereo pair) in the sound file. Make the new tracks active by
dropping your cursor in the tracks. Make sure that the cursor is at the very beginning
of the sound file, and then select Edit → Paste (Cmd/Ctrl+V) to insert the information
you cut from the sound's tail end into the new tracks. Your file should now resemble
something like Figure 25.12. Depending on the editor you use, you may need to set the
pan position for each of the new tracks.

Figure 25.12: The original sound file after cutting the last few seconds and pasting it
into two new tracks

 Note If you are using an editor like Sound Forge or Peak that doesn't support multiple
tracks, you will still be able to use this technique but with less flexibility. Rather

than create two new tracks, perform a crossfade or blend edit to paste the tail-end
portion smoothly over the beginning of the file. Set the blend or crossfade so that
the pasted information starts at full volume and fades to silence, and the original
starts at silence and fades to full volume. Creating this effect with a multi-track
editor is much easier and gives you greater control over the outcome.

4. Now you are ready to blend the newly pasted tracks (the old tail end of the sound)
with the beginning of the sound. This can be done in one of two ways:

o Create a fade-in for the top stereo pair and a fade-out for the bottom pair. In
effect, this is fading out the tail while fading in the head.

o Create a crossfade transition (if your audio editor supports this feature).
Crossfade between the four tracks so that as two are fading in, the other two
are fading out.

 Note In some situations, you may also find that it is helpful to move the original track
slightly to the right to allow more room for the fades to take place.

5. Whichever method you choose, the idea is to create a seamless transition that blends
the various tracks. This final step creates the smooth loop. Because the new beginning
of the file exactly matches the tail (remember, one used to be attached to the other),
there is no glitch or gap in the loop. And, because you were able to fade one chunk of
the sound into another, there is no longer any differentiation between where the track
starts and where it stops (see Figure 25.13).

6.
Figure 25.13: The final file has a fade-out to contour the tracks that were pasted in,
and a gradual fade-in to raise the volume of the track's original beginning.

7. To finalize the process, mix the edited file to a two-track (stereo) file. It's now ready to
be imported into a Flash movie.

Ambient loops serve as nice background sounds and can loop whimsically due to their loose
rhythmic nature. Because they have no one section that sticks out above the others, ambient
loops provide a pleasant alternative to rhythmic loops. The absence of repetitive components
like prominent drumbeats and bass or guitar riffs makes the cycles of the loop less obvious.

Ambient Loops in Context

 On the CD-ROM On the companion CD-ROM for this book, there is a file that uses both
the ambient loop technique and rhythmic loops. In the Chapter 25 folder, open the file named

loopDesign.html in your web browser (be sure the Flash plug-in is installed). Here you can
hear two different looping techniques in action.

The ambient loop is stored in a sound-only SWF file that is loaded onto _level1 at the outset
of the main movie. This loop is cued as an event sound and uses the techniques described
earlier to create a seamless (and continuous) background loop.

Additionally, there are several rhythmic loops that are cued when you interact with the movie.
Each of these loops was composed to fit musically with the ambient background and provide
a different feel for each section of the movie. The visual and informational content of this
movie is incomplete. What is there is intended solely to serve as a navigational structure so
that the audio techniques can be tested. The idea is that the ambient piece provides a common
thread for the entire movie, while the loops add special flavor to the individual movie
sections.

Inspirational Design Model
An additional audio application not covered here but certainly deserving a mention is Beatnik.
Beatnik is not just an audio application, though. We mention it here because, like Pro Tools
and Sound Forge, it is a tool that can be used in the development of audio for websites,
Director/Shockwave, and of course Flash movies. However, unlike Pro Tools and Sound
Forge, Beatnik is neither an editing nor mixing environment. In a nutshell, it consists of four
main elements: the Beatnik Player, a plug-in that hosts many of the Beatnik sounds; MIDI
files that you create with a MIDI sequencing program to cue the Beatnik Player; and two
elements of code: the Beatnik Music Object, and your code (JavaScript, Lingo, or
ActionScript) that cues your music in the way you want. It is probably best to think of Beatnik
as an audio engine for delivering low-bandwidth music and sound effects. Using Beatnik
RMF (Rich Music format), Beatnik files are able to squeeze large amounts of audio
information through small pipes with great success. To learn more about Beatnik or to
download the plug-in and listen to Beatnik music, go to: www.beatnik.com.

For an additional example of Beatnik in action, check out the Nick.com Beatmixer at
www.nick.com/music/beatmixer/index.jhtml (see Figure 25.14). This audio mixer was
designed in Flash and uses Beatnik (a.k.a. Flashnik) to deliver interactive musical mixes for
"children" of all ages.

Figure 25.14: The Nick.com Beatmixer

Summary
This chapter is the final installment of sound and audio topics in this book. It introduced you
to many of the applications that are currently available for editing, mixing, recording, and
creating sound and audio elements for your Flash projects. Many applications are available,
and it's important that you find one or two that will serve your creative needs. This chapter
also provided some of the techniques that you can employ with applications of this kind. You
learned about several kinds of effects that you can use to enhance the audio content of your
movies: normalize, EQ, compression, reverb, pitch shift, and time shift. You were also
introduced to some additional looping concepts, which expand the possibilities of looped
sounds within interactive animations. With a little practice, you will find that these techniques
can significantly improve the quality of audio in your Flash creations.

Chapter 26: Making Flash 3D
Overview
Up until this point, all of your visual creations have existed in two dimensions. You've
simulated depth by using some nifty optical tricks—like creating perspective in Hands On 2,
"Creating a Garden with Objects and Layers." But they were just that: tricks.

The universe exists in three dimensions: height, width, and depth. A whole subset of digital
media specializes in creating 3D models and animations for games, television, and movies.
Unfortunately, the technology as well as the skills needed to create 3D models and animations
is extremely specialized. As a result, the worlds of 3D and Flash have remained separate—that
is, until recently. As Flash grew in prominence as a tool for authoring 2D visual creations,
developers inevitably started looking toward 3D as a new means by which to express their
digital vision.

Unfortunately, on its own, Flash's inherently 2D-focused painting and drawing tools are not
particularly suited for creating 3D models. But there are many techniques and third-party
applications designed specifically to integrate 3D into your Flash creations.

Simulating 3D in Flash
Although Flash is not particularly suited to creating 3D objects or animations, there are some
tricks you can use to integrate the appearance of the third dimension—depth—into your Flash
creation. For instance, in Hands On 2, "Creating a Garden with Objects and Layers," when
you created the flowerbeds in the image, you manipulated them using the Transform tool so
they looked like they receded off into the distance. This simulates depth; however, it's nothing
more than sleight of hand. The objects are only a two-dimensional drawing that you've
manipulated to fool the viewer's eye into believing they're three-dimensional.

 Note Although it is easy enough to create 3D sleight of hand in Flash, you can create "real"
3D using some fairly complicated and advanced ActionScript that employs pretty scary
math—a process well beyond the scope of this book. To see some great examples of
"real" Flash 3D, refer to the FLA section of www.ultrashock.com. Alternatively, you
can see some wonderful Flash 3D creations at Wireframe Studio

(www.wireframe.co.za).

Even though these tricks aren't designed to create real 3D, don't dismiss them immediately.
They have their uses, and in using them, you take your first step on the grand adventure of
Flash and 3D. In the following sections, you're going to take some of the skills you learned in
Chapter 4 and create static 2D objects that look like they're 3D. You'll then create a simulated
3D animation.

Creating Simulated 3D Objects with the Painting and Drawing Tools

If you think back to your high school geometry class, you'll remember that the textbook
featured a slew of diagrams that, although appearing to be 3D, were actually 2D. In this
section you're going to look at how you can replicate this effect by using Flash's painting and
drawing tools.

Creating a Pseudo-3D Sphere

You are going to start off by taking a step-by-step look at creating a pseudo-3D sphere:

1. Open a new document by going to File → New.
2. In the middle of the Stage, use the Ellipse tool to draw a circle about 3 centimeters

(1.5 inches) in diameter. Make sure you hold down the Shift key while you are
drawing the ellipse to ensure it's a perfect circle.

3. Make sure that the circle has a solid color fill by using the Fill Color picker in the
Toolbox's Colors section.

4. Now, select the circle's fill with the Arrow tool.
5. Go to Window → Color Mixer to open the Color Mixer panel.
6. From the Fill Style drop-down menu, choose Radial. At this point, your soon-to-be 3D

sphere should look something like this:

7. You'll notice that, by default, Flash makes the two colors in the gradient black and
white—with the white on the outside and the black in the inside. The colors
themselves need to be switched, with the light on the inside and the dark on the
outside, so that it gives the impression that a light source is reflecting off the curved
3D surface of a sphere. First, select the sphere's fill with the Arrow tool.

8. Now, with the Color Mixer panel still open, select the right gradient handle (the white
one). Next, click the color swatch to the left of the Fill Style drop-down menu and
choose a dark color (in this example, it's black).

9. From here, click the left gradient handle (the black one). Next, click the color swatch
to the left of the Fill Style drop-down menu and choose a very light color (in this
example, it's white). From here, the sphere should look something like this:

10. Now, you need to manipulate the gradient so that it gives a more realistic impression
that a light source is reflecting off the curved 3D surface of the sphere. With the Color
Mixer panel still open, click and drag the right gradient handle toward the center of the
Gradient Definition bar. By doing this, you restrict the size of the simulated reflection.

11. Now, you need to manipulate the shape and position of the gradient to enhance the
look of the simulated reflection. First, make sure the sphere's fill is deselected.

 Note If you hadn't noticed, the simulated reflection created by the gradient is what
changes the humdrum circle into a magnificent pseudo-3D sphere. As a result,
you should spend some time getting it to look exactly how you want.

12. Select the Fill Transform tool from the Toolbox and then click the sphere's fill. By
doing this, the gradient's bounding box and associated handles will appear. (If you are
having trouble remembering how to manipulate a gradient fill using the Fill Transform
tool, see Chapter 4.)

13. Now, to change the position of the simulated reflection, move your mouse over the
handle in the center of the fill. Notice that your cursor changes. Click and drag to the
upper-right rea of your sphere. By doing this, you change the center of the circle
gradient's position. At this point, your sphere should look something like this:

14. Next, to change the shape of the simulated reflection, move your cursor over the
square handle on the circle's edge (notice your cursor changes). Click and drag toward
the center of the circle slightly—this "squishes" the gradient, making it more linear.

 Note If, when you are editing the gradient, it snaps, then you'll need to turn the Snap
to Objects feature off (View → Snap to Objects).

15. At this point, you want to rotate the simulated reflection so that it looks like light is
hitting the sphere from the upper right. With the Transform Fill tool and the circle's fill
selected, move your cursor over the bottommost circular handle. You'll notice that
your cursor switches into four arrows arrayed in a circle. Click and drag so that your
simulated reflection is slanted at a roughly 45 degree angle.

16. Now, click and drag the center handle to reposition your radial gradient's center near
the upper-right corner of the sphere.

Congratulations, you've just created a pseudo-3D sphere using a simple circle and radial
gradient.

As you'll employ a sphere such as the one you've just created in the "Animating Simulated 3D
Objects" section later in this chapter, you might want to save this one.

 Note Fiddle around with the shape, size, and orientation of the gradient to get different looks
for your pseudo-3D sphere.

Creating a Wireframe Cube

The next trick you are going to try is how to create a wireframe cube using Flash's drawing
tools.

 Note The term wireframe is taken straight out of traditional 3D modeling. Essentially, it's a
display mode in which objects are represented by lines—resulting in the object looking
like it is made of a wire mesh.

Follow these steps:

1. Open a new document by going to File → New.
2. Draw a perfectly proportioned square with the Rectangle tool (remember to hold down

the Shift key to maintain the proportions).
3. As the pseudo-3D cube you are drawing is wireframe, you need to make sure it doesn't

have a fill. To do this, select the square's fill with the Arrow tool and delete it.
4. Now, select the square (which should simply be a black outline) with the Arrow tool

and group it by going to Modify → Group.
5. Now that you've created the front face of the pseudo-3D cube, you can create the back

face. Select the square, copy it (Edit → Copy), and then paste it (Edit → Paste).
6. Click and drag the newly pasted square so that it is located slightly up and to the right

of the first square. Make sure each square's bottom-left corners line up diagonally
lined. So far, the scene should look something like this:

7. Now that you've created the front and back face of the pseudo-3D cube, it's time to
create all the other faces. To do this, you are going to link each of the two square's
respective corners with the Line tool. First, you want to turn Snap to Objects on by
going to View → Snap to Objects. By doing this, you'll make sure the lines you draw
with the Line tool will snap exactly to the corners of the squares.

8. Now, select the Line tool from the Toolbox. Position your cursor over the bottom-left
corner of the lower square (which will serve at the cube's front face). Click and drag to
the bottom-left corner of the upper square (which will serve as the cube's back face).
Notice that your line will snap exactly to the square's corner. At this point, the cube
should look something like this:

9. Now, repeat the process for the two cubes' upper-right corners, their bottom-right
corners, and their upper-left corners.

Congratulations, you've created a pseudo-wireframe 3D cube that should look something like
this:

Animating Simulated 3D Objects

Now that you've learned how to create pseudo-3D objects using Flash's painting and drawing
tools, you'll now learn how to simulate 3D animation with your pseudo-3D objects. The main
goal in creating pseudo-3D animations with your pseudo-3D objects is, as you've probably
guessed, to create and maintain the illusion of depth. To do this, you can use a couple of
techniques. The most basic one involves creating an animation in which a single objects
moves in front of and behind another object, thereby creating the necessary illusion.

In this section, you are going to take the animation skills you already mastered in Part III and
create a simple animation in which a pseudo-3D sphere orbits around a second, larger pseudo-
3D sphere. To accomplish this, you're going to use a little ActionScript trickery—in
particular, you'll be leveraging the power of the setProperty() action.

 On the CD-ROM A working version of this project has been included in the Chapter 26
folder of the book's CD-ROM (in both SWF and FLA formats).

 Note If you are new to ActionScript, see Parts IV and V.

Follow these steps:

1. Open a new document by going to File → New. Open the Document Properties dialog
box (Modify → Document) and set the width of the Stage to 600 and the height to
400.

2. Start off by creating three pseudo-3D spheres using the process described earlier in
this chapter. Make one of the spheres small, and make the other two (which must be
exactly identical in size, shape, and color) larger. This is an example of what your
three spheres might look like:

3. Now, convert each 3D sphere to a Movie Clip. Although the name of the small spheres
(which will be doing the orbiting) doesn't really matter, make sure one of the large
spheres is named front, and the other is named back.

 Note The reason you are making these Movie Clips opposed to just plain Graphic
symbols is that the ActionScript you are going to use later in the tutorial only
works with Movie Clip symbols.

4. Now, because you've converted the three spheres to symbols, you can delete the
original spheres from the Stage.

5. Next, create three additional layers (which would give you a total of four). Name each
of the layers, from top to bottom: actions, front, small ball, and back.

6. Click the first keyframe in the front layer and drag the front symbol from the Library
onto the Stage.

7. Open the Info panel (Window → Info) and enter 253.3 for the X value and 153.3 for
the Y value.

 Note Remember, you can also add the X and Y coordinates using the Property
Inspector (Window → Properties).

8. Select frame 30 in the front layer and go to Insert → Frame (or use the shortcut F5).
9. Select frame 30 in the back layer, and go to Insert → Frame.
10. Click the first keyframe in the back layer and drag the back symbol onto the Stage.
11. With the back symbol still selected, open the Info panel (Window → Info) and enter

253.3 for the X value and 153.3 for the Y value. By doing this, you make it appear that
there is only one large sphere on the Stage while there are actually two.

12. Now, select the small ball layer and insert a motion guide by clicking the Add Motion
Guide button at the bottom left of the Timeline or by going to Insert → Motion Guide.

13. Select the first keyframe of the new motion guide layer (which appears just about the
small ball layer), and use the Ellipse tool to draw a compressed ellipse. Make sure the
newly created ellipse doesn't have any fill. Position the ellipse (which will serve as the
motion path for the small orbiting ball) over the large sphere. The result should look
something like this:

14. Now, it's time to fiddle with the motion path a bit so that it will function properly in
relation to your intended product. Hide the back and front layers by clicking their
Show/Hide buttons (represented by the little black dots below the eye icon in the
Timeline).

After you've manipulated the motion path, you can turn the back and front layers back
on by clicking their Show/Hide buttons.

15. Use the Zoom tool to zoom into a section of the motion path that is behind the large
sphere (make sure you are at the maximum magnification). With the Lasso tool, select
a small section of the magnified motion path, and then delete it. (Once you've cut the
small section out of the motion path, you can set the Stage's magnification back to 100
percent.)

By doing this, your motion path will no longer be closed but will have a small break.
The result should look something like this:

16. Now, you need to attach the small orbiting sphere to the motion path. Click the first
keyframe of the small ball layer, and drag the small sphere symbol onto the Stage.
With the Library open (Window → Library), click and drag the small sphere symbol
so that it snaps to one end of the motion path.

17. Select frame 30 in the small ball layer and go to Insert → Keyframe.
18. Select the final keyframe in the layer, and click and drag the small sphere so that it

snaps to the other end of the motion path.
19. Now, to add the motion tween, select the first keyframe in the small ball layer and go

to Window → Properties. Choose Motion from the Tween drop-down menu.
20. Test your motion tween by hitting the Return/Enter key or by going to Control → Test

Movie. You'll notice that the motion of your small orbiting ball is partially hidden by
the front symbol. In the next few steps, you're going to use some ActionScript to
dynamically change the visibility of both large spheres to create the illusion that the
small sphere is passing in front of and behind the same object.

21. Now, if you haven't already, you need to turn the visibility of the two large spheres
back on.

22. Click the front layer and select the front symbol. Now, go to Window → Properties,
and enter front into the Name field. Repeat the process for the back symbol in the
back layer (but instead enter back into the Name field). By doing this, you are
assigning a unique identifier to the instance; this is absolutely necessary if you want
the ActionScript you'll write in the next few steps to work properly.

 Note To select each symbol (remember, they are placed one on top of the other), you
could hide the back layer and then select the front symbol. Then, you could hide
the front layer and select the back symbol.

23. Now onto the ActionScript that makes it all possible. Select the first keyframe in the
actions layer and open the Actions panel by going to Window → Actions.

24. Expand the Actions category in the ActionScript Toolbox, expand the Movie Clip
Control category, and double-click the setProperty() action to add it to the
ActionScript text box.

25. Choose _visible from the Property drop-down menu, type front into the Target field,
type true into the Value field, and make sure the Value field's Expression check box is
selected. By doing this, you tell Flash to display the front symbol.

26. Now, repeat the process described in the previous step, but instead enter back into the
Target field and false in the Value field. By doing this, you tell Flash to hide the back
symbol. The resulting script in the ActionScript text box should look like the image
shown here.

If you don't enter the exact same name into the Target field as you put in the Name
field of the Property Inspector, the ActionScript simply won't work.

27. Now, you need to create the ActionScript that will hide the front symbol and display
the back symbol, thereby giving the illusion that the orbiting ball is passing in front of
the large sphere. First, select frame 10 in the actions layer (or the frame in which the
sphere has reached the maximum extent of its orbit).

28. Go to Insert → Keyframe.
29. Repeat the process described in steps 24–26. However, switch the value of the front

symbol to false and the value of the back symbol to true and change the appropriate
values instead of building the script from scratch.

 Note If you want, you can simply cut and paste the script created in steps 24 and 25.

30. Now that you've allowed the small sphere to pass in "front" of the large one, you'll
create a script that will hide the back symbol and display the front symbol, thereby
allowing the sphere to pass "behind" the large sphere and complete its orbit. First,
click frame 28 (or the frame just before the small sphere touches the larger one).

31. Repeat the process described in steps 25 and 26. Use the exact same script. By doing
this, you tell Flash to display the front symbol and hide the back symbol—allowing
the sphere to pass "behind." In the end, your Timeline should look something like this:

Congratulations, you've just created an animation in which a pseudo-3D sphere rotates around
another pseudo-3D sphere. Test your movie by going to Control → Test Movie. Now that
you've mastered the basics, you can play around with the effect. Try adding more orbiting
spheres to create a molecule or create an animation that is more than just two spheres.

Using Third-Party 3D Applications to Export Directly to
SWF
As the integration of Flash and 3D has become more popular, several astute 3D modeling
software companies have caught on and have added the ability to export SWF files from their

programs. This is a huge advancement for Flash and 3D. Now there is little need to resort to
visual trickery (like that described earlier) to add the illusion of depth to your Flash creations.
Now, you can simply create a 3D model or animation (which is exported to a SWF file) and
import it directly into Flash.

In the following sections, you are going to explore some of the more prominent 3D modeling
programs that feature SWF export, including Swift 3D, Amorphium Pro, Poser Pro Pack,
Amapi 3D, and Vecta3D. In some cases, like in the discussion of Swift 3D (designed purely
for creating 3D models destined for Flash export), you'll delve deeply into the program. In
other cases, such as in the discussion of middle- to high-end 3D modelers such as Amapi 3D
and Amorphium Pro (which do far more than create models for Flash export), you'll focus on
the process by which models are exported as SWF files.

Swift 3D

Electric Rain's Swift 3D (www.erain.com) was one of the first stand-alone programs designed
to create 3D models directly exportable to SWF. Although the program can't compare with
most of the more robust 3D modeling programs, it does have a hefty set of features, including
direct 3DS (3D Studio Max) import, EPS and AI import, complex lighting, and preset
animation templates, which allow you to create and optimize 3D models for Flash. Many
other programs lack these features. In addition, Swift 3D comes in both a Mac and a PC
version. Although cross-platform support should be a given, 3D modeling has traditionally
been the domain of the Windows and Unix operating systems. Up until fairly recently, Mac
users have been pretty cut off from the world of 3D modeling. As a result, Swift 3D's cross-
platform support is a welcome feature for all Mac users.

Despite Swift 3D's usefulness, you shouldn't mistake it for a full-featured 3D modeling
program. Comparing it with 3D modeling programs such as Maya, 3ds max, LightWave 3D,
or Cinema 4D would be inappropriate. Swift 3D's ability to create even marginally complex
3D models is limited. If you're interested in experimenting with the most basic of polygon
modeling techniques, Swift 3D is probably not for you. However, this doesn't mean the
program isn't useful; Swift 3D is quite easy to learn, which puts it in a category altogether
different from most of the full-featured 3D modeling programs (some of which require years
of study to learn and a small fortune to acquire). Those who have experience working with
high-end 3D modeling programs can use Swift 3D as a filter of sorts to set Flash-specific
properties of an imported 3ds max file before exporting it as an SWF file.

In the following sections, you're going to explore the Swift 3D creative process. Be aware,
however, that although Swift 3D is on the "light" end of 3D modelers, it still has a fair amount
of features. As a result, we won't cover Swift 3D in its entirety. To get an in-depth account of
the program and all of its options and tools, refer to the documentation that accompanies the
program.

 On the CD-ROM A demo copy of Swift 3D has been included on this book's CD-ROM.

Starting a Swift 3D Project

You have a handful of options for starting a new Swift 3D project:

• Go to File → New.

• Click the New button in the top-left corner of the program's interface.
• To open an existing document, click the Open button in the top-left corner of the

program's interface. When the Open File dialog box appears, navigate the location
where the file you want to open is located, and select it.

• Go to File → Import to import Encapsulated Postscript (EPS) or Adobe Illustrator (AI)
files. When the Import File dialog box appears, navigate to the location where the file
you want to open is located, and select it.

 Note Any Encapsulated Postscript or Adobe Illustrator image imported into Swift 3D
is converted into a three-dimensional object, while still retaining its original 2D
shape. Any previously applied color will be lost when the file is imported.

• To start a new document based on an existing 3ds max file (.3ds), go to File → New
from 3DS.

Working with the Swift 3D Property Toolbox

The Property Toolbox, which is located on the left side of the program's interface, is one of
the most vital tools in Swift 3D. With it, you can access all the properties of the scene on
which you're currently working. As you add objects to your scene, their properties become
accessible by clicking the appropriate heading in the Property Toolbox's list box.

Setting Layout Properties

The Layout properties allow you to control various aspects of your scene in Swift 3D.

By clicking the Layout heading located in Property Toolbox's list box, you'll see three discreet
groups of controls: Layout, Display, Keyboard Nudge.

Layout Lets you set the dimensions of your project. Simply choose a unit of measurement
from the Units drop-down menu and then enter values into the Height and Width fields.

Display Lets you manipulate the way in which the objects are displayed in the program's
viewport. You have the following options:

• The Shaded option displays your objects as closely as they would appear when
exported to SWF—complete with materials and lighting.

• The Fast Shaded option displays the object shaded, but without smooth gradients.
• The Outline option displays your objects as wireframe models.
• The Box option displays each object as a three-dimensional bounding box.
• When checked, the Pivots option displays the object's pivot point—which is kind of

like the registration point for a 3D object.
• When checked, the Paths option displays the motion paths in your scene as purple

lines.
• The Grid option toggles the XYZ coordinate system on and off.
• The Hidden option lets you either hide or show objects in your scene.

Keyboard Nudge Lets you set the value (in pixels) of the distance a selected object will
move when the user hits one of the arrow keys on their keyboard.

Setting Camera Properties

The Camera properties, accessible by clicking the Camera header in the Property Toolbox,
allow you to access the properties of any selected camera.

You have these options:

• The Name field displays the name of the currently selected camera. When selected, the
field becomes live, thereby allowing you to change the camera's name.

• The Lens Length setting (expressed in millimeters) behaves exactly like the lens
length of a camera. The longer the lens length, the more the camera will zoom in on
your scene. The shorter the lens length, the more distant you appear to be from your
scene.

 Note Just like with a camera lens, if the length is shortened, your image will get distorted as
the view becomes more panoramic in nature.

Setting Environmental Properties

The Environmental properties, accessible by clicking the Environment header in the Property
Toolbox's list box, allow you to access two rather important properties: Background Color
and Ambient Light Color.

The Background Color, as you may have already guessed, is the color of your final rendered
image's background. To set the background color, simply click the Background Color swatch
to open the Color Picker. From here, you can pick the color you want for the background or
mix your own custom color. When you're finished, just click the Apply button.

Ambient light, theoretically speaking, is the cumulative effect of all the light bouncing off of
all the objects in a given area. Practically speaking, the Ambient Light option equally
illuminates all objects in a given scene. To set the Ambient Light color, simply click the
Ambient Light Color swatch to open the Color Picker. From here, you can pick the color you
want for the scene's ambient light or mix your own custom color. When you're finished, click
the Apply button.

Adding Primitive Objects

A large part of the modeling you'll do in Swift 3D entails adding and manipulating a series of
shape primitives. Once you insert the shape into your scene, you can then manipulate its
properties (size, orientation, and so on).

To add a shape primitive to your scene, click the appropriate button. The corresponding shape
will be inserted at the intersection of the X, Y, and Z axes.

Using the Object Trackball

Now that you've added an object to your scene, you can manipulate its orientation. Located in
the bottom-left corner of the program interface, the Object Trackball lets you adjust the
orientation of objects in your scene.

The Object Trackball remains inactive until you select an object in the viewport. Once
selected, the object appears within the Object Trackball. From there, you can click and drag
the trackball to rotate the object itself.

You can also constrain the direction in which the trackball moves by clicking one of the Lock
Axis (Lock Horizontal or Lock Vertical) buttons located to the left of the Object Trackball.

The Lock Horizontal button constrains the movement of the selected object along its
horizontal axis.

The Lock Vertical button constrains the movement of the selected object along its vertical
axis.

The Lock Spin button constrains the movement of the selected object so that is can only
rotate in a clockwise or counterclockwise direction.

By clicking the Rotation Increment button , you can set the value (in degrees) that the
trackball rotates.

Adding and Manipulating 3D Text

Text is a powerful tool in any medium, including 3D. In Swift 3D, text is considered an object
just like any of the shape primitives you looked at previously. Let's take a look at a step-by-
step approach to adding and manipulating text in Swift 3D:

1. With a new document open, click the Create Text button . By doing this, the
program inserts a default text object into your current scene.

 Note Remember that you can only access the properties of a currently selected object.
As a result, make sure you select the text with which you’re currently working
by clicking it.

2. Click the Text heading in the Property Toolbox's list box.
3. Choose a font from the Font drop-down menu.
4. Enter the desired text into the Text field.
5. Choose one of the alignment options by clicking the appropriate alignment button.
6. Click the Apply button to apply your changes to the text in the viewport.
7. Now, click the Bevel heading in the Property Toolbox. From here, you'll be able to

manipulate the bevel properties of the text.
8. Choose a bevel style for the Style drop-down menu (to get an idea of your options,

experiment with each).
9. Enter a value into the depth field to set the depth of the bevel. The higher the value,

the higher the bevel will be.
10. Choose a Face option. By choosing front, the bevel will only appear on the front of the

text. Choosing back will only display the bevel on the back of the text. Choosing both
will apply the bevel to both faces of the text.

11. Adjust the Smoothness slider to alter how Swift 3D draws the curves of the text.
Moving the slider more toward Course makes the text more angular and block, and
moving it more toward Smooth makes the curves smoother.

 Note A higher level of Smoothness results in a higher file size, and less smoothness
results in a smaller file size.

12. Adjust the Mesh Quality slider—which lets you exert some control over the quality of
the 3D object's mesh.

13. Now, click the Sizing heading in the Property Toolbox's list box.
14. Enter a value into the Height, Width, and Depth fields to adjust the actual size of the

3D text.
15. Enter a value into the Inter Character field to adjust the space between characters.
16. Enter a value into the Inter Line field to adjust the space between lines.

Working with Preset Materials

Although delving too deeply into Swift 3D's limited ability to create and mix custom
materials is beyond the scope of this chapter, you are going to apply materials from a preset
library to the objects within your scene.

Unlike other 3D modeling programs where you've got access to all manner of tools and
techniques for creating and mixing materials, Flash's inherent limitations (especially when it
comes to bitmaps) limit the types of materials you can apply to objects in Swift 3D.

To apply preset materials to your objects, follow these steps:

1. Make sure the object with which you want to work is selected.

2. Click the Show Materials button in the Gallery (located in the bottom-right corner
of the program interface) to open the Materials palette.

3. Click one of the tabs in the Materials palette to access a particular subset of materials.
4. Simply click and drag the desired material from the Materials palette onto the

currently selected object.

 Note When it comes to text (or complex models imported), you'll need to apply materials to
each separate section of the object. For text, this means applying the material to both
faces as well as the bevel.

Working with Lights

One of the most important aspects of any 3D creation is lighting. With proper lighting, you
can turn a mediocre model into a great model. Don't get too excited, however; because of the
Flash medium, your lighting options in Swift 3D are somewhat limited. But this doesn't mean
you should spend any less time on lighting your 3D scene. When exported, a well-lit 3D Flash
scene can be quite compelling.

Swift 3D gives you two types of lights to work with: Point Lights and Spot Lights—which
can be added to a scene in two different ways (with the Lighting Trackball or directly into the
scene). Point Lights act somewhat like a light bulb, casting illumination in a more diffuse
area, and Spot Lights focus illumination on a specific area.

Adding and Subtracting Trackball Lights

You can add any number of lights to your scene by clicking either the Create Trackball Point
Light button or Create Trackball Spot Light button , both to the right of the Lighting
Trackball at the bottom of the program interface.

As you add lights, they'll be displayed on the Lighting Trackball.

To delete a light from your scene, select the light on the Lighting Trackball (by clicking it),
and click the Remove Light button .

Adding and Subtracting Scene Lights

You can also add lights directly into the scene. To do so, just click one of the four light
buttons (Create Free Point Light, Create Target Point Light, Create Free Spot Light, Create
Target Spot Light).

 Note When you add a light, it will appear in the scene as a small yellow symbol.

A free light (Free Point Light or Free Spot Light) acts like any other object in your scene. As
such, once you have added one, you can easily select and manipulate it using the Rotation
Trackball (below left).

 Note When you select a light in the scene (by clicking it), the symbol's color changes from
yellow to red.

A target light (Target Point Light or Target Spot Light), on the other hand, always points at
the pivot point of the object that was selected when it was inserted into the scene (below
right).

Manipulating the Position of Lights

Manipulating the position of a light in your scene is extremely easy. In the case of a trackball
light, all you need to do is select the light on the Lighting Trackball, and then drag the
trackball itself.

Much like with the Object Trackball, you can use the Lock Axis buttons (located to the left of
the Lighting Trackball) to constrain the movement of the light.

You'll notice that as you drag the Lighting Trackball, your scene will dynamically change to
reflect the new lighting scheme.

In the case of a scene light, all you need to do is click and drag the light symbol in the scene
(notice that your cursor changes), move it to its new position, and then release your mouse
button.

If you are moving the position of a target light, you'll notice that the line that links the light
symbol to the object's pivot point (which represents the direction in which the light itself is
pointing) remains no matter where you move the light.

Using Drag-and-Drop Animations

Swift 3D not only functions as a limited modeling program, but also as an animation program.
You can create true 3D animations (quite unlike those requiring the kind of visual trickery
employed earlier in the chapter) and then export them as SWF.

Swift 3D's animation tools use frames and keyframes just like Flash. There are, however,
some differences in the ways in which the two programs work. Much like with materials in
Swift 3D, you've got a whole library of preset animations you can apply to any given object in
your scene. These drag-and-drop animations, as they are called, are pretty useful for quickly
adding moderately sophisticated animations. Follow these steps to put these drag-and-drop
animations to work in your scene:

1. Make sure the object you want to work with is selected.

2. Click the Show Animations button in the Gallery (located in the bottom-right
corner of the program interface) to open the Animations palette.

3. From here, you see a single tab—Regular Spins—which gives you access to a series of
animations you can apply to your objects to make them spin in place.

4. Simply click and drag the desired animation from the Animations palette onto the
currently selected object.

5. To test your animation, click the Play button located just below the Timeline.

Exporting to SWF

Now that you've created your model, applied materials to it, and infused movement into it
with animations, you can now output your creation as an SWF file:

1. Click the Preview and Export Editor tab at the top of the program interface.

2. From here, you have quite a few different options you can set for the exported
animation—all of which are accessible through the Property Toolbox. To start off
with, click the General option in the Property Toolbox.

3. Select the file format to which you want to export your Swift 3D project from—in this
case, Flash Player (SWF).

4. Choose the version of Flash for your exported SWF from the File Level drop-down
menu.

5. Choose the level of detail for your exported SWF file from the Detail Level drop-
down menu. Remember, a higher level of detail means a larger file size. Also, the
lower the detail level, the faster your SWF file will render.

6. Adjust the Curve Fitting slider. When you adjust the slider toward the Curves end, the
program will smooth out the irregular curves in your objects.

7. If you want, select the Combine Edges and Fills option. By doing this, your object will
be rendered so that both the line and fill are part of the same object (kind of like being
grouped together). If, on the other hand, you leave the option unchecked, the exported
SWF file will contain an object (or objects) whose stroke and fill will be able to be
manipulated independently without having to break the object apart.

8. Now, select Fill Options in the Property Toolbox.
9. If you want the object (or objects) in the exported SWF file to have fill, check the Fill

Object option.
10. From here, select one of the options from the Fill Type drop-down menu. The more

colors in an exported SWF, the larger the file will be. Each will affect the way in
which your object's fill appears in the exported SWF:

o When you choose Cartoon Single Color Fill, the diffuse color of an object is
sampled and then applied to the entire object, thereby creating objects with
solid color.

o By selecting the Cartoon Average Color Fill, groups of individual polygons
that occur on similar surfaces will have the same color in the exported file.

o Like the Cartoon Average Color Fill, the Cartoon Two Color Fill option colors
groups of individual polygons on similar surfaces. The difference is that the
Cartoon Two Color Fill option applies two colors, instead of one, to the groups
of polygons.

o By selecting the Cartoon Four Color Fill, four colors, instead of two, will be
applied to groups of polygons on similar surfaces.

o When you choose Cartoon Full Color Fill, a separate color can be applied to
each individual polygon.

 Note Despite that the Cartoon Full Color Fill option results in a relatively
detailed image, there is no shading between the color areas.

o When you select Area Gradient Shading, the program looks for groups of
polygons that appear on similar surfaces and applies a radial gradient—thereby
creating the appearance of a light reflecting off a surface.

o When you select the Area Gradient Shading, the Include Specular Highlights
option becomes available. When checked, the program will search for surfaces
perpendicular to the scene's light source and apply a lighter color to them. Be
aware that turning this option on greatly increases the size of your exported
file.

o The Mesh Gradient Shading option results in the highest quality image by fully
merging all the colors in all the model's polygons.

11. If you want your exported scene to include shadows, select the Include Shadows
option.

12. From here, choose the light source that you want to cast shadows in the exported file.
Unfortunately, you can only select one light in your scene.

13. Select the Edge Options in the Property Toolbox.

14. If you want the object (or objects) in the exported SWF file to have a stroke, check the
Include Edges option.

15. Select an option from the Edge Type drop-down menu:

o When you choose the Outlines option, the edges of all objects will be outlined
with a solid line.

o By choosing the Entire Mesh option, the edges of all polygons in the 3D object
(objects) will be outline with a solid line—thereby creating a wireframe-like
result.

16. If you want the edges on the backside of a 3D object to be visible, select the Include
Hidden Edges option.

17. Both the Include Detail Edges and Detail Edge Angle options affect the amount (and
detail) of internal edges displayed in the final SWF exported file.

18. Select the width (thickness) of the line from the Line Weight drop-down menu.
19. To set the color of the line, double-click the color within the Line Color box. This

opens the Color Picker—from which you can either choose a new color or mix your
own.

20. From here, the animation needs to be rendered before it's exported. To render the
entire animation, click the Generate Entire Animation button. To render a single
frame, select the appropriate frame in the Render Preview bar, and then click the
Generate Current Frame button.

21. From here, Swift 3D will render each individual frame. The more frames, the longer it
will take to render the animation.

22. When it's finished rendering, you can click the Export Entire Animation button to
export the entire animation. To export an individual frame in the animation, select the
desired frame in the Render Preview bar, and click the Export Current Frame button.

23. When the Export Vector File dialog box pops up, navigate to the location where you
want the SWF file exported, enter a name into the File Name field, and click Save.

Poser and Poser Pro Pack

Creating believable and realistic characters is one of the most difficult undertakings in 3D
modeling. Whether a human being, a dog, or a three-headed alien from the planet Xyzax,
organic modeling is incredibly complex. Not only do you have to be exceedingly proficient
with the 3D modeling program in which you are working, but you also have to be intimately
familiar with principles of anatomy, biomechanics, and locomotion. Without these skills,
character models usually turn out fairly unsophisticated. So, what's a moderately skilled 3D
modeler to do? The discipline and skill necessary to create high-quality organic models is not
something one comes by easily or quickly. Wouldn't it be nice if there were a program
designed to provide an accessible and satisfying method to create high-quality character
models without having to spend years mastering the skills to manually create them? Well,
Curious Labs' Poser does exactly that.

Poser is one of those applications with a unique charm and usefulness all its own. With it, you
can create static images, movies, and exportable 3D figures from a diverse collection of fully
manipulatable, articulated human and animal models. Libraries of poses, facial expressions,
hand gestures, clothing, props, and animations can be quickly applied to your model using
Poser's unique interface (see Figure 26.1). A series of interactive controls exists for each part
of the character's anatomy, allowing you to manipulate morph targets. By manipulating the
model's morph targets, you can exert a great deal of control over the model's final appearance.
You can also use morph targets to smoothly animate facial expressions and changes in body
proportion. Aimed at novices and intermediate users alike, Poser offers a wealth of features
and options for creating animations and images based on human (and not-so-human) figures.

Figure 26.1: The unique Poser interface is designed to be extremely usable and ergonomic.

Originally developed by MetaCreations (the folks responsible for such notable titles as Ray
Dream, Infini-D, Bryce, and Painter), Poser was in danger of being left out in the cold when
the company, in a rather unpredictable move, divested itself of all of its 3D and 2D graphics
authoring programs. Lucky for the legions of Poser users who had sprung up over the years,
the program's original design team wisely decided to continue development. As with many
similar situations in the computer world, they scrambled to form their own company and
simply bought Poser. The new company, called Curious Labs, was quick on its feet, releasing
a free upgrade (version 4.03). Although the release was only a maintenance upgrade of sorts,
it boasted some major bug cleaning and feature tweaking, making it far more usable and
stable than before.

Early in 2001, in an effort to further push the boundaries of accessible 3D character modeling,
Curious Labs (www.curiouslabs.com) announced the release of the Poser Pro Pack. Situated
somewhere between a regular update and a new Poser release, the Pro Pack, which is sold
separately from Poser 4, is a series of extensions, enhancements, plug-ins, and improvements
that greatly enhance the power and usability of Poser. Among other serious enhancements, the
Pro Pack includes an improved interface, a 3ds max integration plug-in, a LightWave
integration plug-in, a Python-based scripting language, bones, and enhanced file compression.
The most noteworthy feature of the Poser Pro Pack, at least in terms of this chapter's topic, is
the ability to export models and animations as Flash files. When you think about it, this
feature alone is a monumental development for Flash developers. With companies such as
Mondo Media and Camp Chaos churning out extremely popular web shorts, Flash
entertainment is gaining steam quickly. Poser Pro Pack provides an accessible way for Flash
developers, who might not be that familiar with 3D, to create professional-looking Flash
characters.

 On the CD-ROM A demo copy of Poser 4 has been included on this book's CD-ROM.

 Note To download a demo version of Poser Pro Pack, point your web browser to
www.curiouslabs.com/products/ proPack/html/ proPackDemoDownload.html

In short, Poser is a remarkably accessible 3D program. When you add the enhancements
offered by the Pro Pack, you've got more program than can be covered in a single chapter (let

alone a section of a chapter). As a result, this section focuses solely on the process by which
you export a 3D character you've developed in Poser as an SWF file.

 Note If you are eager to jump into Poser's character modeling features, there are a couple of
good places to start. First, the 180-page user guide offers a decent walkthrough of the
program's tools. Second, the Curious Labs' website (www.curiouslabs.com) features
links to helpful tutorial sites.

Like in the case of many other 3D modeling programs that feature Flash export, outputting a
file to SWF with Poser Pro Pack is fairly easy. There are, however, some export properties
you need to be aware of so you can take full advantage of Flash output. To do this, follow this
step-by-step approach to the process:

1. With the file you want to export to Flash open in Poser Pro Pack, go to Animations →
Make Movie to open the Make Movie dialog box.

2. Enter a name for your movie into the Movie field.
3. Select Macromedia Flash (.swf) from the Sequencer Type drop-down menu.
4. From here, you've got a series of generic export options:

o The Resolution drop-down menu provides you with a choice of four preset
resolutions (Current, Full, Half, and Quarter). Notice that the actual size of
each choice is displayed just below the actual menu.

o The Quality drop-down menu provides you with two choices: Current Display
Settings or Current Render Settings. To adjust the render settings, go to Render
→ Render Options.

o The two frame rate options let you use either the movie's current frame rate (if
it's an animation you're exporting) or set your own by entering a value (in
frames per second) into the field.

o By default, the Time Span section of the Make Movie dialog box displays the
actual length of the movie. However, you can always change it by entering a
new value in Hours:Minutes:Seconds:Frames. This feature is particularly
useful if you only want to export a section of your animation (opposed to the
entire thing).

5. Click the Flash Settings button in the lower-left corner of the Make Movie dialog box.
This opens a second dialog box where you can set Flash specific properties.

6. From here, you've got a series of additional options:

o The Number of Colors field lets you specify the number of colors used in the
exported SWF file. Your decision will be based on the desired quality of the
exported file. More colors will add more visual variation but will increase the
file size. Fewer colors will create a lower quality image (colorwise), but will
result in a smaller file size.

o The Quantization options let you determine the process by which a specific
number of colors that best represent your model are selected.

o Selecting the Overlap Colors check box forces Flash to take the color used the
most to create a silhouette of the entire model. The next most-used color is
placed on top of the first, and so on. When you select this option, your
exported file will be larger, but will be better quality.

o When you select the Draw Outer Lines option, your model will be exported
with a line around its entire silhouette. The thickness of the line is set by
entering a value (in pixels) into the Line Width field in the bottom-right corner
of the dialog box.

o By selecting the Draw Inner Lines option, Flash draws a line (whose width is
set in the Line Width field) around each color layer.

7. Click OK to exit the Flash Export dialog box.
8. Click OK in the Make Movie dialog box.
9. When the Save File As dialog box opens, navigate to the location to which you want

the file to be exported, and click Save.

Amapi 3D

Amapi has been unconventional since its inception. The program features a natural design
interface that has the tool icons floating in an arc at the right corner of the screen (see Figure
26.2). Although its interesting interface makes it distinctly different than other 3D modelers,
Amapi 3D, which is now developed by Eovia (www.eovia.com), shouldn't be mistaken for
anything less than a topnotch professional 3D modeler. Placing it anywhere near Swift 3D in
terms of functionality would be most inappropriate. Amapi 3D is used all around the world
for 3D modeling in architecture, product design, marketing, engineering, illustration,
interactive entertainment, television, and film.

Figure 26.2: The Amapi 3D interface is considerably different from the vast majority of other
3D modeling programs.

Amapi 3D's primary strength is that it employs a set of modeling tools based on a hybrid
technology that allows users to work seamlessly on both Nonuniform Rational B-Splines
(NURBS) and polygon models. NURBS is an amazingly powerful type of modeling in which
a spline has control points residing on or away from the resulting curve. Amapi 3D's hybrid
modeling technology allows the program's construction and modeling tools to naturally adapt
themselves to the type of object being manipulated.

The program also boasts powerful modeling tools such as 2D and 3D primitives, advanced
surface construction tools, global and local deformers, subdivision and smoothing tools, and
unique 3D drawing assistants. Of course, Amapi 3D isn't just a modeling program. It features
a complex rendering system (called raytracing) as well as a sophisticated material system that
features a layered shader system. The most recent version of Amapi 3D (version 6.1) also
offers SWF export.

 On the CD-ROM A demo copy of Amapi 3D 6.1 has been included on this book's CD-
ROM.

A thorough exploration of Amapi 3D is beyond the scope of this chapter. You'd need an entire
book to do justice all the intricacies of the program. As a result, this section will focus solely
on the process of exporting a model in Amapi 3D as an SWF file.

 Note If you are interesting in getting into Amapi 3D as a modeler, dig into the program's
documentation or see the Tutorials section of the Eovia site (www.eovia.com).

Follow these steps to export a model or animation as a SWF file from within Amapi 3D:

1. Go to File → Export → Flash.

2. When the Flash Export Settings dialog box opens, there are several properties to set.
o By selecting the Details check box and adjusting the slider, you can either

increase or decrease the smoothness of the wireframe details.
o Adjusting the Silhouette Thickness slider, you can increase or decrease the

thickness of the object's silhouette.
o Checking either the Low Quality or Better Quality check box determines the

quality, and therefore the file size, of your exported SWF file.
o By checking the Animation Loop check box, you ensure your Flash animation

(if you are exporting an animation) loops.

 Note If you are exporting an animation, opposed to a static SWF file, you can go to
Animation → Save Animation as Flash to open the Export Flash Settings dialog
box.

3. Click OK.
4. When the Save As dialog box appears, enter a name into the File Name field, navigate

to the location on your hard drive where you want the file saved, and click Save.

Vecta3D

Vecta3D is one of the earliest programs designed to take traditional 3D files and output them
to Flash. Developed by Ideaworks3D (www.ideaworks3D.com), Vecta3D isn't a modeling
program but is a filter into which 3D files go in one end and come out the other end as Flash
files.

All in all, Vecta3D is a compact, handy program that doesn't have any pretensions toward
being a 3D modeler (see Figure 26.3). It's content to take 3D files you've created in another
program (exported as a 3ds max file or a DXF), fiddle with some export options, and then
output them to Flash SWF. You can also use the program to turn EPS and AI files into 3D
objects through a process called extrusion.

Figure 26.3: Vecta3D's interface is straightforward and uncomplicated, letting you convert 3D
files with a minimum of fuss.
 Note Don't worry too much that Vecta3D only imports 3DS and DXF files. Most, if not all,

good 3D modelers will export to 3DS or DXF.

Beyond simple import and export, Vecta3D lets you apply color to your model and define all
aspects of line style and weight, geometry settings, and output quality. Also included are a
series of tools that let you manipulate the position of the model when it's exported. Finally,
Vecta3D features some basic tools for animating your model.

 Note Vecta3D's animation tools are amazingly simple. However, you can use an animation
from your 3D modeler that you've exported as a sequence of files to create something
far more complex.

In the following sections, you're going to explore some topics that, when put together, will
allow you to take full advantage of Vecta3D's understated power.

Importing a 3D File

The first step in converting a 3D model into an SWF file with Vecta 3D is importing the
model:

1. Go to File → Open.
2. When the Open dialog box appears, choose the appropriate file type from the Files of

Type drop-down menu.
3. Navigate to the location on your hard drive where the intended file is located, and

select it.
4. Click Open.

You've probably noticed there is also an Import command in the File menu (File → Import).
The difference between this command and the Open command is that you use the Import
command on EPS and AI files.

Importing a Sequence of 3D Files

Despite that Vecta3D's animation tools are amazingly simple, you can still use them to export
high-quality, complex Flash animations. The process entails creating an animation in the 3D
modeling program of your choice, exporting it as a sequence, and then using Vecta3D to
string the files together into a Flash movie.

 Note Each imported file in the sequence is used as a single frame in the Flash animation.

To do this, follow these steps:

1. Go to File → Open.
2. When the Open dialog box pops up, navigate to the location on your hard drive where

the file sequence is saved.
3. Select the first file in the sequence (circle_00.3ds, for example) and click Open.
4. When the dialog box opens, click Load Sequence.

 Note If you want to import a single file in a sequence, click Single Frame instead of Load
Sequence.

Manipulating a 3D Model with the View Tools

After you've imported a single model or a sequence of models, you can use the View tools
(located in the bottom left of the screen) to manipulate the position and orientation.

Spin The Spin tool rotates the model in all axes (opposed to being constrained to one axis).

To use it, click the Spin button from the View section of the interface, move your cursor
over the model, and click and drag.

 Note While you're in Spin mode, holding down the Ctrl button will activate Zoom mode.

Zoom The Zoom tool moves the camera toward or away from the model. To use it, click the

Zoom button in the View section of the interface, move your cursor over the model, and
click and drag. Moving your cursor toward the top of the screen zooms out, and moving it
toward the bottom of the screen zooms in.

 Note While you're in Zoom mode, you can hold down the Ctrl key to temporarily activate
Spin mode.

Edit Registration Center Much like objects in Flash, every model brought into Vecta3D has
a center point around which it rotates. You can move this registration center, as it's called in
Vecta3D, using the Edit Registration Center tool. To manipulate a model's registration center,

click the Edit Registration Center button in the View section of the program's interface.
You'll notice that a red arrow appears in the center of the mode—this is the registration
center. From here, click and drag the model itself to another location, thereby changing its
position relative to the registration center.

Reset Model Position You might find yourself in a situation where you want to return the
model you're working with to its original position upon import. If this is the case, all you need

to do is click the Reset Model Position button in the View section of the program's
interface.

Save View You can use the Save View button to save the current scale and orientation of
your model. The view information is saved in a V3D file.

Load View When you click the Load View button , you can load a V3D file where you
saved position, scale, and orientation information.

Working with the Styles Window

The Styles window, accessible by clicking the Toggle Styles Window button in the View
section of the program's interface, allows you to manipulate the color and line style of your
Flash file when it's exported.

Objects List The Objects List, which takes up the entire left portion of the Styles window,
provides you with a list of all the individual objects in the imported 3D model. These objects
are named when the model is created in the original program. By clicking any of them, you
can set their individual style characteristics.

Object Style Fill Color You can change the fill color of the currently selected object by
clicking the Fill Color swatch and choosing (or mixing) a new color.

Object Style Outline Color By clicking the Outline Color swatch, you can choose (or mix) a
new color for the object's outline.

Line Thickness The thickness of the currently selected object's outline is set by entering a
value (in pixels) into the Line Thickness field. You can also use the arrows just to the right of
the field to adjust the value.

Detail Thickness By entering a value (in pixels) into the Detail Thickness field, you can
adjust the thickness of any internal details in the currently selected object.

Surface Detail Any imported 3D model will have surface detail created by its geometry. By
entering a value into the Surface Detail field, you can determine the amount of that detail
rendered in the final Flash file. A value of 0 results in a file without any internal detail. On the
other hand, a value of 100 results in the model to be rendered as a wireframe.

Double Sided For the most part, 3D models are composed of single-sided polygons. Vecta3D
can only render polygons that it is looking directly at. This can sometimes cause errors when
the model is rendered to SWF. By selecting the Double Sided check box, you make both sides
of the polygon visible. Be aware, however, that enabling the Double Sided option can result in
a longer render time.

Flip Faces By selecting the Flip Faces option, all outwardly facing surfaces on the currently
selected object flip to face inwardly (and vice versa).

Invisible When the Invisible option is turned on, the currently selected object will be invisible
when the object is rendered to SWF.

ReRender Surface Detail, Flip Faces, and Invisible are all render effects. This means they
will only take effect when the object is rendered (either by using the preview button or by

exporting the file). If you want to view your changes while still in the Styles window, click
the ReRender button.

Copy Styles By using the Copy Styles option, you can immediately copy the styles from one
object to another. To use the option, simply select the object whose styles you want to use,
hold down the Ctrl key and select the object to which you want the styles copied. Then,
simply click the Copy Styles button. When the dialog box appears, select the style you want
copied, and click Copy Styles.

Global Intersection Style Color In Vecta3D any two intersecting lines are given a single set
of styles. To set their color, click the Global Intersection Style color swatch and choose (or
mix) a new color.

Global Intersection Style Thickness Enter a value into the Thickness field to set the
thickness of intersecting lines.

When you've finished working with the Styles window, close it. All of your changes are
applied to the model immediately from within the Styles window, so there is no need to click
an Apply button (there isn't one) before you exit.

Creating a Simple Animation

In the "Importing a Sequence of 3D Files" section, you created an animation by importing a
sequence of 3D files. In addition to this method, Vecta3D offers some simple tools to create a
simple rotating animation:

1. Make sure you've got a model open in the workspace.
2. In the Animation section of the interface, enter a value into any of the Object

Rotation/World Rotation fields. By entering a value (in degrees) into any of the Object
Rotation axes fields, your object will rotate around its own rotation center. If you enter
a value into any of the World Rotation axes fields, the object rotates around the world
rotation center (which is smack dab in the middle of the workspace).

3. Once you've set the direction and axis along which your object will spin, enter a value
into the Frames field. The more frames there are in your animation, the slower the
animation will run.

4. Select one of the Animation Preview buttons:

o The Play Once button sets the animation so that it will only play once
when it's previewed.

o The Loop button sets the animation so that it loops indefinitely when it's
previewed.

o The Play Back and Fourth button sets the animation so that it plays from
beginning to end and then from end to beginning when it's previewed.

To preview your animation inside the workspace, click the Preview Animation button .
Please note that the animation will only preview in "dots" mode, not as it will look when it's
rendered to SWF.

Working with Render Settings

To determine the way in which your animation or still is rendered, you need to manipulate
some additional properties:

Render Outlines By clicking the Render Outlines button , your model exports looking
something like a line drawing.

Render fills When you click the Render button , your model exports with only its fill.

Render lines and fills By clicking the Lines and Fills button , your model exports with
both lines and fills.

Perspective The Perspective field lets you adjust the perspective of your model when it's
exported. By entering 1 into the field, you'll get a fish-eye perspective. On the other hand, if
you enter 0 into the field, the exported file will have a default isometric perspective.

Intersections When you select the Intersections option, the lines of intersecting surfaces are
visible when the model is rendered.

Surface Detail When you select the Surface Detail option, all of the model's surface detail is
visible when rendered.

Rendering an Animation or Still Image

Now that you've imported your model, set its style, determined its render settings, and
animated it (if that was your goal), you can now render it to SWF:

• To render the animation, click the Save Animation to Disk button . When the Save
As dialog box appears, enter a name into the Name field, navigate to the location on
the hard drive when you want the file saved, and click Save.

• To save a still image, click Save Still . When the Save As dialog box appears,
enter a name into the Name field, navigate to the location on the hard drive when you
want the file saved, and click Save.

 Note If you want to preview your still in the workspace, click the Preview Still button (just
above the Save Still button) in the Single Frame section of the interface.

Amorphium Pro

One of the major complaints of first-time 3D modelers is that the vast majority of programs
are painfully counterintuitive. The first time a 3D novice opens any of the middle- to high-end
modeling programs, they are often overwhelmed by the complexity of the authoring
environment. On the whole, polygon modeling is a pretty esoteric skill whose concepts alone
take a fair amount of time to get a handle on. 3D modeling programs just aren't designed for
those who have experience in more traditional forms of art such as sculpting, printmaking,
painting, or ceramics. You may be surprised to know that many traditional artists and graphic
designers are looking to the world of 3D for a new way to express their creative vision. Heck,
you might even be one of these traditional artists. So what's a person to do if they love the
kind of intuitive, tactile creative process that comes with traditional art forms, but doesn't
want to spend the time learning 3D modeling the "hard" way? Well, there is an alternative:
Amorphium Pro.

Electric Image's Amorphium Pro (www.electricimage.com) isn't like most 3D modeling
programs. The program's main focus is to provide a set of tools for sculpting and molding 3D
objects as if they were lumps of clay sitting in front of you. The program allows you to
manipulate 3D models by pushing, pulling, twisting, morphing, and painting them. Any
changes you make happen in real-time! Amorphium Pro is a great tool in this respect because
it introduces a whole different approach 3D modeling.

The program boasts a particularly interesting interface that is broken into separate "rooms"
(see Figure 26.4). The rooms, which are accessible through the menu bar at the top of the
program's authoring environment, features a set of tools designed to carry out specific
operations.

Figure 26.4: Amorphium Pro's interface is partitioned into a series of rooms (or modes) in
which you'll carry out specific tasks.

The main room, the Tools room, lets you to mold 3D objects by pushing and pulling on their
surfaces with different brushes. Other rooms, such as the FX room, let you deform your 3D
object by using special procedural deformers such as Bend and Twirl.

Aside from a good MetaBall-type modeling tool called Biospheres, which is great for
modeling complex organic shapes with a minimum of fuss, Amorphium Pro also features a
modeling technique called Wax that allows you to grow your 3D models.

 Note Biospheres are little blobby spheres of digital goo that interact with one another in
interesting ways. Comparing Biospheres to liquid mercury is pretty apt.

Beyond its modeling tools, the program has a full material-editing system complete with
infinitely stackable procedural textures that can be dragged about the surface of the model so
their placement is just right. In addition, the program's animations tools are based on standard
keyframe techniques that are easily picked by even the most inexperienced of users.

Amorphium Pro's rendering engine features full raytracing and radiosity. Finally, Amorphium
Pro lets you export models and animations as Flash files.

 On the CD-ROM A demo copy of Amorphium Pro has been included on this book's CD-
ROM.

Like many of the previous sections, you aren't going to spend any time going into Amorphium
Pro's modeling tools. Instead, this section simply discusses the features you need to know to
take advantage of the program's Flash export.

 Note If you're interested in getting into Amorphium Pro as a modeling tool, the first place to
look is Electric Image's website (www.electricimage.com), which has some pretty
useful tutorials. Also, Amorphium Pro's documentation is a good place to start.

After having created and animated an image destined for Flash export, you need to set the
file's output options.

You accomplish this through the RaydioCity Options dialog box, which you can open by

clicking the Radiosity button in the Composer Palette.

If you're going to output to Flash, you'll work with a number of the tabs in the RaydioCity
Options dialog box. At this point, it's best to take a step-by-step approach to the process:

1. With the RaydioCity Options dialog box open, click the Render tab.
2. Choose a camera from which the project will be rendered from the Camera drop-down

menu. Your choices include Top, Front, Right, and Isometric. You'll also be able to
choose from any additional camera you created.

3. Choose Flash from the Output drop-down menu.
4. Choose the size of your exported file from the Size drop-down menu. You can choose

from several preset sizes. Alternatively, you can enter a custom size into the Width
and Height fields. Remember, the larger the dimensions, the larger your file will be.

5. Leave the Radiosity option unchecked. Radiosity, which is an advanced shading
option that takes account for the energy of a light and how it falls off when hitting
other objects, doesn't factor into a file exported in Flash format.

6. Check the Shadows option if you want the shadows in your scene to be visible in the
final file.

7. Click the Antialiasing tab. From here, you'll be able to set the anti-aliasing properties
of your final file.

8. Choose either the Adaptive or Oversampling technique of the Antialias option. The
Adaptive technique results in a sharper image, and the Oversampling technique results
in a softer image.

9. If you want your image to be blurred slightly when it's exported, select the
Postblurring option.

10. If you are exporting an animation, opposed to a still image, click the Animation tab.
From here you'll be able to set the animation properties of your final file.

11. Enter value into the Start, Current, and End fields to determine the length of the
exported animation. The values entered into the respective fields are numerical
representations of the same information that is graphically displayed in the project
window.

12. Enter a value into the Frames per Second field. Remember, a higher frame rate results
in a larger, higher-quality movie. On the other hand, a lower frame rate results in a
small, lower-quality movie.

 Note If you are having trouble remembering exactly how frame rate relates to Flash,
see Chapter 9.

13. If you want a specific number of frames rendered, you can enter the exact value into
the Nr of Frames field. Amorphium Pro automatically adjusts the frame rate by taking
into account the Start Time and the End Time. For instance, if you set the Start Time
to 0, the End Time to 10, and the Number of Frames to 200, the Frames per Second
changes to 20.

14. Click the Flash tab.
15. Choose an option from the Lines drop-down menu:

o By choosing None, your final file will not include lines at the edges of
polygons or where objects intersect.

o The Outlines option renders your final file with lines at intersections of objects.
o When you choose Wireframe, your final file is rendered as a wireframe.

16. The Polygons drop-down menu determines how Amorphium Pro renders the polygons
of your object or objects:

o Selecting None causes your file to be rendered without filled polygons—as a
wireframe.

o When you choose Cartoon, the polygons in your model are exported with solid
colors opposed to gradients.

o The Gradients option simulates variable lighting across an object by using
gradients when it's exported to Flash.

17. Click the Lines color swatch to choose a color for the lines in your final files.
18. Click the Global Ambient swatch to choose a color for the ambient light in your final

exported scene. By setting this value to something other than black, areas hidden from
lights appear dark, but not black.

19. By default, the color of any exported Flash file is black; by clicking the Background
Color swatch you can choose an alternate color.

20. You can numerically set the quality of the exported Flash file by entering a value into
the Sampling Quality field. A larger value means a higher quality, but a larger file
size.

21. If you want to include specular highlights into the final Flash file, click the Separate
Specular Polygons option.

22. When you're finished, click the Render button in the bottom-right corner of the
RaydioCity Options dialog box.

23. When the Export dialog box opens, enter a name for your file into the Name field,
navigate to the location of your hard drive when you want the file to be exported, and
click Save.

Flash
Not all 3D modeling programs feature Flash export. In fact, the ones that don't may
outnumber those that do. The world of 3D is a really big place. People have been using 3D in
the television, game, film, architecture, and product-design industries well before Flash ever
came along. As a result, you're going to find that many of the more widely used, higher-end
3D modeling programs will be far likelier not to feature built-in Flash export. Most of the
programs that do feature Flash export, including those discussed in this chapter, are designed
for less-experienced 3D modelers and therefore are nowhere near as versatile, powerful, or
all-around cool as those high-end programs that have been around for a while.

This state of affairs places 3D Flash designers in a tough spot. If you are an experienced 3D
modeler who thinks 3D Flash is the coolest thing to come out since those little plastic tables
that keep the top of the pizza box from sticking to the top of the pizza, you certainly don't
want to abandon your favorite 3D modeling program in favor of one of these lower-end Flash
capable programs. Likewise, if you are a Flash designer who is willing to spend the time (and
the brain cells) to learn a high-end 3D modeling program for the sake of your creations, you'll
be disappointed by the lack of Flash export. However, you do have some other options. The
most notable is Vecta3D—a program discussed previously that will take either 3ds max files
(a fairly ubiquitous file type in the world of 3D) and export them to Flash. Also, a few
companies produce plug-ins that give your favorite 3D modeling program the ability to export
Flash. As a result, if you are thinking of becoming a dedicated 3D Flash guru, it's a good idea
to get a good handle on the higher-end 3D modelers. The following sections cover many of
these programs.

3ds max

3ds max, which is made by Canadian-based Discreet (a division of Autodesk), is one of the
most widely used 3D modeling programs on the market. In the interactive entertainment
industry, it is the leading 3D modeler. In fact, it's rare to find a game developer anywhere in
the world who doesn't use 3ds max.

The newest version of the program, 3ds max 4 offers 3D professionals extremely advanced
tools for character animation, next-generation game development, and visual effects
production. Many new features and architectural enhancements complement these three major
initiatives.

3ds max features all manner of modeling systems, including NURBS, Patch, polygon, spline,
and primitive, as well as exceedingly powerful animation, effects, materials, lights, scripting,
workflow, and rendering tools.

For those interested in 3D Flash, Electric Rain (the makers of Swift 3D) makes a plug-in for
3ds max called Swift 3D Max that allows direct Flash export.

In August of 2001, Macromedia announced a strategic partnership with Discreet to accelerate
the deployment of interactive 3D content on the Web. By bundling a complete version of
Macromedia Director 8.5 (the most recent version of the product has some powerful tools
geared toward the creation of interactive 3D web multimedia) with 3ds max, Discreet
expressed a decidedly solid commitment to 3D on the Web. Although the deal itself doesn't
directly affect the topic at hand, it does have some interesting ramifications for the future of
3D Flash.

 Note If you are interested in the mighty Director/3ds max one-two combination punch, visit
www.macromedia.com/director.

Cinema 4D

Cinema 4D is probably one of the best-kept secrets in 3D. Made by Maxon Computer,
Cinema 4D (www.cinema4d.com) is an astonishingly powerful 3D modeler and animator that
can easily compete on the same footing as 3ds max and LightWave 3D.

Cinema 4D's interface is fully customizable so that you can create exactly the kind of working
environment you are comfortable (see Figure 26.5). The program features numerous modeling
systems, including HyperNURBS (a variant of NURBS), parametric primitive modeling,
interactive symmetry objects, and MetaBalls.

Figure 26.5: Cinema 4D's interface is fully customizable, allowing you to tweak the working
environment to maximize your creative potential.

Cinema 4D features a complex shading and materials system, lighting systems, and
animations tools. The program also integrated seamlessly with BodyPaint, a program
designed to let you interactively paint directly on any 3D object.

LightWave 3D

LightWave 3D, which is produced by NewTek (www.newtek.com), is one of those programs
that has an extremely dedicated and loyal following. The most recent version (version 7)
incorporates real-time subdivision surfaces, extensive texturing tools, character animation
tools, radiosity, caustics, HyperVoxels, and ray tracing, and an extremely powerful animation
system.

On the topic of 3D Flash, Electric Rain, the makers of Swift 3D, have created a plug-in called
Swift 3D LW that allows LightWave 3D users to export their models directly to Flash.

Carrara Studio

The origins of Carrara Studio are similar to those of Poser 4.03. Originally developed by
MetaCreations, Carrara Studio (originally called Carrara) was in danger of disappearing into
that great processor in the sky when the company divested itself of all its creative 3D and 2D
software. Fortunately, the original development team got together, formed a company called
Eovia, and snatched up Carrara. They released a minor bug-fix upgrade and then, in June of
2001, released Carrara Studio.

Carrara Studio is designed to be an accessible, middle-range, one-stop rendering and
animation solution. Perhaps one of the most interesting features of the program is its highly
unorthodox and intuitive interface, which is divided into "rooms," each with its own toolset.
Carrara Studio has five such rooms: Assemble, Storyboard, Model, Texture, and Render,
which are accessed via a set of icons located in the top-right corner of the screen. The setup
allows you to flip between rooms, creating a model in one, adding texture in another, and then
rendering in another.

The focus of the workflow is the Assemble room, where you place and animate models,
lights, and cameras. The most interesting feature of the Assemble room is the 3D work area,
where you'll find three intersecting planes (X, Y, and Z) forming an open box. Any models
you import are displayed as solids with projections on the box "walls." These projections
enable you to locate the object in 3D space and can also be used to select, reposition, and
resize the object. This feature alone is quite interesting and diverges from the traditional 3D
modeling workspace.

Carrara features several modeling systems, each of which allows you to create objects using
splines, vertices, text, and MetaBall. The spline and vertex modelers are graphically enhanced
versions of those found in MetaCreations old modeling package Infini-D, and the MetaBall
modeler traces its origin back to Ray Dream. Boolean modeling is also fully supported in
Carrara Studio. If you're mathematically inclined (or particularly masochistic), you can also
create models with mathematical formulae. The program features a whole host of modifiers
that you can apply to models to change their physical shape or movement.

For those who want a little more robust modeling experience, Carrara Studio ships with a
fully functional version of Amapi 3D (version 5). So, Carrara Studio files can be exported into

Amapi 3D format and then output to SWF using Amapi 3D's native Flash export. This minor
miracle is courtesy of Eovia's new parent company, TGS, which was the original developer of
Amapi 3D. Carrara Studio also exports files to 3DS so that you can open them in Vecta3D.

Maya

Maya is the granddaddy of all 3D modeling programs. If you are looking for the pinnacle of
the 3D industry, Maya is it. You can't get any more powerful (or complicated and expensive,
for that matter). Maya is the 500-pound gorilla of the 3D industry. Need I go on?

Published by the Canadian-based Alias|Wavefront (www.aliaswavefront.com), Maya is
predominantly used in the film industry. It's not that individuals or groups outside the film
industry consciously choose not to use Maya, it's just that the $16,000 price tag is somewhat
inhibitive for average users. You can see Maya at work in such recent films as How the
Grinch Stole Christmas, The Mummy, The Mummy Returns, Star Wars: The Phantom
Menace, and Enemy at the Gates. At the hands of an extremely well-trained artist, Maya can
produce some truly beautiful things.

Because it's so high end, it seems a little foolish to even mention it and Flash in the same
sentence—right? Well, yes and no. Though the program doesn't feature a Flash export,
Alias|Wavefront is now distributing an exporter that outputs files to Shockwave3D (the 3D
format for Macromedia's Director 8.5 Shockwave Studio). This move has affirmed
Alias|Wavefront's commitment to interactive web 3D. Given the geometric expansion of
Flash as a creative medium, Maya is assuredly going to play a role in the undoubtedly bright
future of 3D Flash.

Inspirational Design Model
Though 3D Flash is a relatively young creative enterprise, quite a few motivating examples
exist. One of the most interesting is Titoonic (see Figure 26.6).

Figure 26.6: Titoonic's main focus is the creation of 3D characters and character animation for
consumption over the Web.

Founded in August 2000, Titoonic (www.titoonic.dk) is a creative web production company
located in Copenhagen, Denmark. Although the company specializes in all manner of web-
based multimedia, it is best known for its 3D character animation and design. It has been
responsible for the design and implementation of numerous 3D Flash characters whose
implementation includes visual guides on websites, character-based Flash games, greeting
cards, and "webisodes."

Founded by a group of highly creative individuals whose backgrounds include classical
animation and graphical storytelling, Titoonic is pushing the boundaries of the cutting-edge of
3D Flash development with its extremely stylish and compelling 3D character design.

Summary
In this chapter you explored creating 3D images in Flash. You started off with a basic, but
vital, exploration of 3D fundamentals. From there, you used Flash's painting and drawing
tools to simulate static 3D objects. Taking this knowledge to the next step, you explored how
to use ActionScript in conjunction with simulated 3D objects to create a pseudo-3D
animation.

Because Flash's 3D abilities are extremely limited, the chapter continued by looking at the
various programs designed to export 3D models to Flash. These included Swift 3D, Amapi
3D, Vecta3D, Poser, and Amorphium Pro. The chapter closed by exploring other 3D
modeling programs that, although not yet featuring Flash export, may well be the future of 3D
Flash.

Hands On 7: Creating an Animated 3D
Flash Logo
Overview
Throughout Part VII, you looked at how you can integrate Flash with other programs. For this
tutorial, you're going to take some of the skills you've mastered (as well as some new ones
introduced here) and create an animated 3D Flash logo for the splash page of a fictional
design studio called Retro Studios. You'll start off by taking the 3D model (which has already
been created in Amorphium Pro) and export it as an SWF file that you'll then import into
Flash and incorporate it with the other graphical elements of the logo. To finish up, you'll take
the animated Flash/3D logo (which will be exported as an SWF) and place it in a
Dreamweaver HTML document.

 Note Although it would be advantageous to go through the step-by-step process of creating
the 3D logo, such an undertaking would be outside the scope of this tutorial. If you are
interested in getting better acquainted with Amorphium Pro, you can download the
entire manual in PDF (if you don't already own the program) from Electric Image's
website. Simply point your browser to
www.electricimage.com/amorphium/manual.html.

 On the CD-ROM You'll find demo copies of both Electric Image's Amorphium Pro and
Macromedia's Dreamweaver on this book's CD-ROM. In addition, you can find all of the files
used in this tutorial in the Hands On 7 directory on your book's CD-ROM. There, you will
also find a copy of the finished files (so you can get an idea of what the final product might
look like). However, as with all the tutorials in this book, the process is far more important
than the final product.

Exporting the 3D Animation
You'll start off by working in Amorphium Pro:

1. Open Amorphium Pro. When the Save As dialog box opens, click Cancel.
2. Now, go to Project → Open Project. When the Open dialog box opens, navigate to the

Hands On 7 directory on the book's CD-ROM, select the logo.cmf, and click Open.

 Note If you had previously been working on a project in Amorphium Pro, the program
automatically reopens that project when you start off. You must close this
project before you can open a new one. To do this, go to Project → Close
Project. From there, the program prompts you to save the project. After you've
either saved or canceled out of the prompt, follow steps 1 and 2 to open the file
with which you'll be working in this tutorial.

3.
4. When the snazzy 3D logo animation opens, click the RaydioCity button , which is

located at the bottom of the Composer palette.
5. Now, click anywhere in the Camera (Perspective) window to open the RaydioCity

Options dialog box. From here, you'll set all of the properties of the animation when
it's exported as an SWF file.

6. Select the Render tab, if it isn't already selected, and choose 128×128 from the Size
drop-down menu.

7. Now, choose Camera from the Camera drop-down menu.
8. After you've done this, choose Flash Animation from the Output drop-down menu.
9. Now that you've set all the render options, select the Flash tab. First, choose Outlines

from the Lines drop-down menu.
10. Choose Average from the Polygons drop-down menu.
11. Now, you can set the various color values of your exported SWF. First, click the

(very) small color wheel icon located in the bottom-left corner of the Global Ambient
color swatch (located in the bottom-right corner of the Flash section of the RaydioCity
Options dialog box).

 Note Global ambient color is the color of the light that uniformly lights all objects

within the scene. Although it's customary in 3D modeling to turn off ambient
lighting, doing so in a file destined for SWF export can create an image (or
animation) in which all areas hidden by the scene's other sources of illumination
are completely black. As a result, you'll want to choose a color that isn't too dark,
but isn't too light.

12. When the Color Picker pops up, enter 128 into the Red field, 128 into the Green field,
and 128 into the Blue field. When you've finished doing this, click OK.

13. Now you can set the background color of the exported SWF file. Click the (very)
small color wheel icon located in the bottom-left corner of the Background Color
swatch.

14. When the Color Picker opens, enter 255 into the Red field, 255 into the Green field,
and 255 into the Blue field. Once you've done this, click OK.

 Note As you are going to leave the Line color black and the Line Width at 1 pixel,
which is the default, don't worry about changing anything in the Lines section.

15. After you've finished setting all the Flash properties, click Render.
16. When the Save As dialog box pops up, navigate to the location on your hard drive

where you want to save the SWF file (remember, as you are going to use it later, stick
it somewhere where it won't get lost), enter 3D_object into the File Name field, and
click Save.

17. From there, your SWF file will render frame by frame. Depending on the speed of
your computer, this could take a bit. Just sit back and relax while Amorphium Pro
does its thing. When it's finished, the program lets you preview the exported
animation.

18. From here, simply click the small square in the upper-left corner of the file's preview
window to close it down. This returns you to the main program interface.

19. Go to Project → Quit. Amorphium Pro will prompt you to save the project. Either
save the project (by hitting Save) or exit without saving (by hitting Don't Save).

Working with the Animation in Flash
Now that you've exported the snazzy 3D animation that you'll be using in the final product,
it's time to pull it into Flash and add some more elements to the logo:

1. Start Flash.
2. Go to Modify → Document.
3. When the Document Properties dialog box opens, change the dimensions to 550×300

pixels. Then, click the Background Color swatch, and select the #999999 gray color
(whose color square is located fourth from the top along the left side of the Color
Picker).

4. Once you've modified the background color and dimensions of the movie, the first
thing you are going to do is create the basic background shape of the logo. To do this,
start off by going to Insert → New Symbol. When the Create New Symbol dialog box
opens, select the Graphic radio button, enter background into the Name field, and
click OK.

5. When the Symbol Editor opens, use Flash's painting and drawing tools to create a
shape something like that shown here (make sure that the shape occupies only a single
keyframe):

It doesn't really matter which tools you use to create the shape. You could draw a
rounded rectangle and combine it with an ellipse. You could also use the Pen tool to
draw the shape freehand. The important feature is that, when complete, the shape
should have a fill of 255.152.0 (RGB). In addition, the shape's stroke should be black
and 3-pixels wide. Finally, the shape itself should also be roughly the size of the one
shown in the previous image.

 Note If you want to cut a few corners, you could open the finished FLA file (called
retro_logo.fla), located in the Hands On 7 directory on the book's CD-ROM, and
copy and paste the background symbol into your own movie.

6. When you've finished creating the background portion of the logo, insert an additional
layer called text.

7. Select the first keyframe in the text layer, select the Text tool, and insert the words
retro-labs. (For the time being, you can place the text anywhere—you'll move it into
position later.)

8. Select the text you just entered, and open the Property Inspector by going to Windows
→ Properties.

9. When the Property Inspector opens, choose Eight Track Program 3 from the Font
drop-down menu.

 On the CD-ROM Eight Track Program 3, created by Fontalicious
(www.fontalicious.com), isn't your run-of-the-mill font. As a result, it's highly
doubtful you'll have it installed on your machine, which is why we've included a copy
of the font (which you can install) in the Hands On 7 directory on the book's CD-
ROM.

10. Enter 35 into the Font Height field.
11. Enter 1 into the Character Spacing field.
12. If it isn't already, change the text's color to black.
13. Set the text's style to Italic and Bold.
14. Once you've finished manipulating the text, click your cursor anywhere off the text

box to deselect it.
15. Select the Arrow tool, and use it to reposition the text relative to the background

shape, as shown here:

16. Now that you've created the static elements in the project, it's time to take the SWF
file you exported from Amorphium Pro, and integrate it into the logo. To do this,
switch back to the main Timeline.

17. Go to Insert → New Symbol. When the Create New Symbol dialog box opens, select
the Movie Clip radio button, enter 3D object into the Name field, and click OK.

18. When you enter the Symbol Editor, go to File → Import.
19. When the Import dialog box opens, navigate to the location in which you saved the

3D_object.swf file, select it, and click open. When you do this, the animated SWF file
will be imported as a frame-by-frame animation in which each keyframe corresponds
to a frame in the original Amorphium Pro file.

 Note It is more than likely that, when imported, the 3D animation you exported from
Amorphium Pro will be placed slightly off center in the Symbol Editor. Because
the file is imported as a frame-by-frame animation, it would be quite difficult to
reposition it—you would need to move the contents of each keyframe
individually (a difficult and timely process). However, the imported animation
being off-center in the Symbol Editor won't affect your movie that much. It will
just result in the Movie Clip's registration point not being in the center of the
actual symbol when it is used in the main Timeline.

20. Now it's time to take the background symbol you created earlier and combine it with
the actual 3D animation into a Movie Clip that you'll then place on the main Timeline
to produce the finished logo movie. Start off by going to Insert → New Symbol.

21. When the Create New Symbol dialog box opens, select the Movie Clip radio button,
enter logo into the Name field, and click OK.

22. When the Symbol Editor opens, rename the existing layer background.
23. Add an additional layer, and call it 3D Animation.
24. If the Library isn't already open, open it by going to Window → Library.
25. Then, select the first keyframe of the background layer and drag the background

symbol from the Library onto the Stage.
26. Now, select the first keyframe of the 3D Animation layer, and drag the 3D object

Movie Clip from the Library onto the Stage. Position it relative to the background
symbol as shown here:

27. From here, hop back to the main Timeline, select the first keyframe of the single
existing layer, and drag the 3D animation from the Library onto the Stage. Position it
so that the logo is in the center of the Stage.

28. Now, you can test out the logo by going to Control → Test Movie.
29. All that's left to do before you move into the final stage of the project (which involves

placing your newly created 3D Flash animated logo into an HTML document using
Dreamweaver) is exporting the movie as a SWF file. To do this, go to File → Export
Movie.

 Note Although it may seem a little elementary, it's important to remember that the
native Flash file format (FLA) is not readable by web browsers with the Flash
plug-in. Instead, the SWF file format is the file type that you'll ultimately want to
export.

30. When the Export Movie dialog box opens, type retro_logo into the Name field,
navigate to the location on your hard drive when you want to save the SWF file, and
click Save.

31. When the Export Flash Player dialog box pops up, leave everything at its default
setting and click OK.

Inserting Your Animation into a Dreamweaver Document
Now that you've created your animated 3D Flash logo and exported is as a SWF file, you can
use Dreamweaver to insert it into an HTML file.

 On the CD-ROM We've included the Dreamweaver.pdf file, "Working with Flash and
Dreamweaver," on this book's CD-ROM to help you with this section of the tutorial. You'll
also find a demo copy of Dreamweaver 4 on the CD-ROM for your use.

1. Start off by opening Dreamweaver.
2. Go to Modify → Page Properties to open the Page Properties dialog box. From here,

you'll change the color of the page so that it matches the background color of your
animated Flash/3D logo, as well as the title of the web page.

3. In the Title field, type Retro Studios.
4. Click the Background color swatch, and click the system Color Picker icon (the small

color wheel in the upper-right corner of the color palette).

5. When the Color Picker opens, enter 160 into the Red field, 156 into the Green field,
and 160 into the Blue field. When you've finished, click OK.

6. When you are returned to the Page Properties dialog box, click Apply and then OK.
7. Now insert the animated Flash logo into the Dreamweaver document. To do this,

select Insert → Media → Flash.

 Note Alternatively, you can also click the Insert Flash button located in the Common
section of the Objects palette (accessible by going to Window → Objects).

8. When the Select File dialog box pops up, navigate to the location where you saved the
retro_logo.swf file, select it, and hit Select.

9. Before Dreamweaver inserts the Flash movie into your page, you'll be faced with a
series of prompts. For the first, which suggests you save your file to make the Flash
file's path document relative, you can hit OK. For the second, which asks you whether
you want to copy the Flash file to your local site, hit No.

 Note Dreamweaver is as much a website creation and management tool as it is a web
page creation tool. The program is designed to help you create, manipulate, and
manage entire sites. All of these tools revolve around the initial creation of a
local site, which will ultimately include all the files in your site and reside in a
specific location (usually a single folder) on your hard drive. There are a couple
of reasons for creating a local site, the most important of which is that when you
get to the point where you want to upload your site to a web server, you'll just
upload the entire site's folder. By doing this, you ensure that when you upload
your local site to a remote web server, you won't be missing any components.
When you set up your local site, you'll also be able to track and maintain your
links.

10. When it's initially placed in the Dreamweaver document, the Flash file is represented
by a gray box with a Flash icon in the center. Don't worry, as this is quite normal.
You'll be able to preview the Flash movie from within Dreamweaver—something
we'll explore a little later. After your SWF file has been inserted into the
Dreamweaver document, it's time to position it so that the overall page is a little more
aesthetically pleasing.

11. First, click your mouse just to the right of the Flash file (so that the file is no longer
selected). From there, go to Window → Properties to open the Property Inspector.

12. Now, click the Align Center button , which is the center button in the group of three
alignment buttons located in the top-right corner of the Property Inspector. This aligns
the Flash file to the center of the page.

13. Now, click your mouse just to the left of the Flash file and hit the Enter/Return button
three or four times. This simply moves the Flash movie down so that it is located more
in the center of the page.

14. Now that you've positioned the Flash movie, it's time to use the Property Inspector to
do some final tweaking. Select the Flash movie. If the Property Inspector isn't already
open, go to Window → Property Inspector.

15. If it isn't already, expand the Property Inspector by clicking the small Down arrow
located in its bottom-right corner.

16. If it isn't already, select High from the Quality drop-down menu.

17. Select the Autoplay check box located in the expanded section of the Property
Inspector. This ensures that the Flash movie will automatically play when the page is
located.

 Note Although selecting the Loop check box might seem like a good idea, it really
would have no effect on whether the movie actually loops. Because the
animation you created in Flash was composed primarily of a Movie Clip (which
automatically loops unless it includes some ActionScript that instructs it to do
otherwise), your groovy animated 3D/Flash logo will automatically loop
regardless of whether you select the Loop option.

18. Select Default (Show All) from the Scale drop-down menu.
19. To preview the Flash movie, click the Play button.
20. Now save the document by selecting File → Save. When the Save As dialog box

appears, navigate to the location in which you want to save the HTML file (which
should be in the same folder in which you saved the retro_logo.swf file), enter
retro_splash into the Name field, and hit Save.

 Note If you haven’t saved the HTML document in the same location as the SWF file,
you are going to have some problems. Essentially, when you try to view the
HTML file, the browser won’t be able to locate the SWF file and will therefore
not display it.

21. Finally, to preview your creation in a browser, hit F12 or go to File → Preview in
Browser.

 Note If you haven’t gone through the process of setting up a Target Browser, refer to
Dreamweaver’s Help files (Help → Using Dreamweaver).

Part VIII: Publishing and Distributing Your
Flash Movies
Chapter List
Chapter 27: Publishing Your Flash Movie
Chapter 28: Working with Flash and Video
Chapter 29: Using Flash for CD-ROM Development
Hands On 8: Creating a Macintosh/Windows Hybrid CD Using Flash and Toast 5 Titanium

Part Overview
So, you've spent hours creating your Flash masterpiece. You've created cool images, crafted
groovy animation, and added amazing interactivity with ActionScript. What's next? Well,
after a bit of a breather and a good pat on the back, its time to start thinking about what to do
with this amazing piece of brain sweat? Yeah, that's right, it isn't finished yet. The whole
point of creating interactive media of any kind is so that other people can enjoy, experience,
and explore your creative vision.

In this section of the book, you are going to explore the various ways in which you can get
your masterpiece "out there." First, you'll get a chnace to explore how you take your native
Flash FLA file and convert it to a wide variety of differnt file formats (the chief among them
being SWF) suitable for distribution. From there, you are going to delve into the world of
integrating Flash with video. Finally, you are going to investigate all the issues surrounding
taking your Flash movie and distributing it on a CD.

Chapter 27: Publishing Your Flash Movie
Overview
You've spent hours creating beautiful graphics, prodding your animation, and tweaking your
ActionScript, so what's next? Well, all of your hard work is for naught if others weren't able
to experience your beautiful creation.

The process of converting an FLA file (the native type of Flash) into a format that can be
distributed over the Web or via another medium is called publishing. Although publishing
your movie is pretty straightforward, you need to make sure the file's settings maximize your
movie for its intended audience and file format. As a result, it behooves you to become
familiar with the various file types available as well as their often copious publishing settings.

Working with Flash Publishing Settings
The majority of the time, you are going to publish your movies as SWF files (the format
viewable by browsers with the Flash plug-in). However, Macromedia has provided a series of
other file formats for publishing your movie. This enables you to tailor your Flash creation so
you can reach the maximum number of people. For instance, if you created a series of
noninteractive animated shorts, you could publish them as both SWF and QuickTime files to
take advantage of those two formats' wide installation base. Publishing your creation also
allows you to output your FLA file to a number of other formats simultaneously. As you
might have guessed, each of the various file types has quite a few settings that allow you to
further manipulate a movie's ultimate look and behavior.

In the following sections you are going to explore each of these various file types. You'll then
look at the individual publishing settings for each of the file types.

 Note Although the process of publishing your movie is relatively simple, it actually involves
two separate tasks. The first task, inputting the publishing settings, will be discussed
after you've thoroughly explored all the files types to which the Flash movie can be
outputted. The second task, telling Flash to publish your creation based on the settings,
will be discussed in "Publishing Your Flash Movie."

Publishing Formats

Flash offers a series of file types to which your creation can be published. Each has its own
particular strengths and weaknesses; therefore, you should learn about each one so that you
know which you to use.

Flash

Most of the time, you are going to publish your Flash creations as SWF files. The default
publishing format, SWF is viewable only if your intended audience has installed the Flash
plug-in on their computers. It's definitely important to know that, of all the possible file types,
SWF is the only one that fully supports all ActionScript and animation; other formats such as
QuickTime don't fully support these features. So, if you want to leverage the full power of
Flash, use SWF.

 Note If you are planning on distributing your SWF movie over the web (opposed to creating a
standalone SWF that is played by the Flash Player), you'll need to publish an HTML file
as well-a process discussed in the "Manipulating HTML Settings" section later in this
chapter.

HTML

Playing an SWF movie in a web browser requires an HTML document in which the Flash
movie is embedded. The HTML file serves to activate the movie, specify browser settings,
and, to a certain degree, determine how the SWF file appears. As a result, if your SWF file is
destined for distribution on the Web, you must publish it with an HTML file.

The Flash Player (placed on the user's computer when they install the Flash plugin) can
display SWF files without the help of an HTML file. As a result, if your movie is not destined
to be viewed in a web browser, you don't have to worrying about publishing an HTML file
along with your movie.

GIF

GIF stands for Graphic Interchange Format. Developed originally by CompuServe back in the
late 1980s, GIFs are the workhorse image of the Web. The format itself can only display a
maximum of 256 colors. As a result, GIFs are best used for relatively simple images with flat
colors and are generally smaller in size (in terms of kilobytes) than other formats such as
JPEG. One of the great things about GIFs is that they come in a few different forms:

• Transparent GIFs are partially transparent, causing the background upon which they
are placed to be visible.

• Interlaced GIFs are structured in such a way that they come into focus slowly as the
browser loads the image.

• Animated GIFs are simply a series of images saved in the same file. When an
animated image is loaded by a browser, all the images in the file are displayed in
sequence, creating an animation-sort of like a digital flipbook.

You can export a Flash movie as an animated GIF for distribution to users who don't have the
Flash plug-in installed on their computer. A Flash movie published as an animated GIF is
generally larger in size than if it had been published as a SWF file. In addition, any
interactivity in a Flash movie exported to an animated GIF will be lost.

JPEG

JPEG stands for Joint Photographic Experts Group. JPEGs came along after GIFs and were
designed specifically to display photographic or continuous color images. Their main strength
is that they can display millions of colors. As a result, JPEGs tend to have larger file sizes
than GIFs. A good way to think about it is that as the quality of the JPEG increases, so does
its file size. Unfortunately, JPEGs only come in one flavor: no transparency, no interlacing,
and definitely no animation.

By default, Flash exports the first frame of a movie as a static JPEG. There is, however, a
trick for forcing Flash to export an alternate frame (opposed to the first one). This is covered
in "Setting JPEG Publish Options."

PNG

PNG stands for Portable Network Group. Developed in part by Macromedia and established
as a web standard by the World Wide Web Consortium, PNGs are a little less straightforward
than GIFs or JPEGs. They were designed to combine the best of both GIFs and JPEGs. As a
result, they can support indexed-color (256 colors), grayscale, true-color images (millions of
colors), and transparency. The problem with PNGs is that they have spotty browser support.
Microsoft Internet Explorer (4.0 and later) and Netscape Navigator (4.04 and later) partially
support the display of PNG images. Because PNG is the native file type of Fireworks, Flash
MX has some sophisticated tools geared specifically toward their manipulation and
management.

Much like in the case of JPEGs, Flash exports a single static PNG image.

Windows Projector

A Windows Projector is probably one of the coolest formats available. Basically, it's a self-
executing EXE file that doesn't need a browser or a plug-in to view it. This has some definite
advantages over the other file types. First, you can distribute the Windows Projector without
having to worry whether the intended audience has the necessary Flash plug-in, a compatible
web browser, or even an Internet connection. They are self-contained little packages that are
great for distribution of media such as CD-ROMs or DVDs.

Macintosh Projector

The Macintosh Projector is the Mac equivalent of the Windows Projector. A self-executing
HQX file, the Macintosh Projector doesn't need the Flash plug-in or a browser to be viewed.

QuickTime

Publishing your Flash movie to QuickTime creates a MOV file that plays in the QuickTime
Player. This format retains the vast majority of your movie's interactive features. However,
users need to have the QuickTime plug-in installed to view Flash files published as MOV
files.

 Note If you don't have QuickTime (version 4 or later) installed on your computer, you won't
be able to publish your Flash movie in QuickTime format.

When rendered, your Flash creation occupies a single track in the QuickTime movie.

Manipulating Individual Publish Format Settings

Now that you've explored each of the various file formats to which your Flash movie can be
published, let's look at the publishing settings of those various file formats. All of the work
you'll do in this section is through the Publish Settings dialog box, which is accessed by going
to File → Publish Settings.

As you select individual file types in the Formats tab of the Publish Settings dialog box, you'll
notice that additional tabs (labeled with the specific file type) are added. By clicking any of
these tabs, you get access to that file type's settings. When you are finished manipulating the
settings of all the file types to which you are publishing your Flash movie, click OK.

By selecting the Use Default Names option, your file is published with the same name you
assigned to your FLA file. If this option is deselected, you can name the file uniquely.

 Note Because neither the Windows Projector nor the Macintosh Projector has any unique

publishing settings, they aren't discussed in the following sections. However, when you
export a movie to Windows Projector or Macintosh Projector, its properties are set by
the choices you make under the Flash tab.

Working with Flash Settings

After you select Flash (SWF) in the Formats tab of the Publish Settings dialog box, you'll be
able to click the Flash tab to access those settings.

The options include the following:

Version Specifies the version of Flash Player (1, 2, 3, 4, 5, or 6) with which your published
movie will be compatible. You'll have to be careful to which version you are publishing if
you've used newer Flash features not supported in older Flash Player versions. For the most
part, when it comes to backward compatibility with older plug-ins, you need to be most
concerned with the ActionScript you are using.

Load Order Sets the order (either Bottom Up or Top Down) in which the layers in each
individual frame load (and are displayed). Your choice is particularly important if the Flash
file is being loaded over a slow modem. In that case, you might want to set the load order to
reflect the position of the larger elements (large graphics, audio, and so on) so that they load
first. If, for instance, you set the load order to Top Down, and the top layer in your movie is
occupied by your ActionScript (which will load extremely quickly), you'll find that script
layer will load and run before some of the more bandwidth-intensive elements (that occupy
lower layers in the movie) even get a chance to load.

If, on the other hand, the movie is being accessed over a fast connection, your choice really
won't matter that much because the layers will load so fast that there won't be any perceivable
difference between the options.

Generate Size Report Tells Flash to output a SimpleText (Mac) or TXT (PC) file that reports
upon the bandwidth intensity of the various portions of the movie.

Protect from Import Prevents your published SWF file from being imported back into Flash-
a handy option for those conscious about their work being digitally plagiarized.

Omit Trace Actions Ignores any trace actions (which automatically open the Output
window) that you've added to your movie. For more information on the trace function, refer to
Chapter 18.

Debugging Permitted Allows the Debugger to work on the published file. In addition, when
selected, this option also allows remote debugging via a browser using the Flash Debug
Player plug-in or ActiveX control.

 New to MX Compress Movie Compresses the movie so that its file size and download time
are reduced. Beware, however, that movies that have been compressed using this option can
only be played with the Flash 6 Player.

Password Allows you to enter the password needed either to open the Debugger (remotely or
locally) or import the movie back into Flash. This option is only enabled if you selected either
the Protect from Import or Debugging Permitted option.

JPEG Quality Lets you adjust the level of compression applied to all bitmaps in your Flash
movie. Alternatively, you can also enter a value (from 0 to 100) into the field to the right of
the slider. The lower the value you set, the more compression will result. The kicker is that
although lower quality means smaller image size, it also means that the images will have a
lower visual quality. The trick is finding the right balance between appearance and file size.

Audio Stream By clicking the Set button, you access the Sound Settings dialog box. From
here, you can manipulate the settings of your movie's audio. The Compression drop-down
menu lets you set the type of compression used on your audio. Each of the options (MP3,
ADPCM, RAW, Disable, and Speech) has unique options you can manipulate.

 Note If you are having trouble remembering the theory behind audio (compression, bit rate,

sample rate, and so on), see Chapter 19. You can also refer to Chapter 20 for a more in-
depth look at the various compression options.

Audio Event By clicking the Set button, you open the Sound Settings dialog box. From here,
you'll be able to set the various compression properties of any event sounds in your movie.

 Note For a refresher on event and stream audio, see Chapter 21.

Override Sound Settings Uses the settings you established in the Flash tab of the Publish
Settings dialog box, automatically overriding any compression schemes set in the Library.

Manipulating HTML Settings

If your Flash movie is destined for distribution over the Web, it needs to be embedded in an
HTML file. Before Flash 5 came along, you had to use another program, called Aftershock, to
generate an HTML file into which your Flash movie was embedded. However, with Flash 5,
Macromedia integrated the functionality of Aftershock into the Publish Settings dialog box,
which is your one-stop tool for creating the HTML file that accompanies a published SWF
file.

If you don't have the Flash option selected in the Formats tab of the Publish Settings dialog
box, you don't have access to HTML as a file type. Likewise, if you select HTML from the
Formats tab, Flash is automatically selected.

After you select HTML in the Formats tab of the Publish Settings dialog box, you'll be able to
click the HTML tab to access the HTML-related settings.

The settings include the following:

Template Lets you choose from a set of predefined HTML templates that will be used to
display the Flash movie.

Most of the time, you won't need to choose anything but the Flash Only (Default) template.
However, some of the other templates are geared toward alternate file types, such as
QuickTime, and will be useful in other situations. (For more information on each of the
specific templates, see Flash MX's help feature.)

 Note To get information about a specific template, select it from the drop-down menu and
then click the Info button (to the right of the drop-down menu).

Dimensions Controls the HTML document's WIDTH and HEIGHT values in the OBJECT
and EMBED tags. It's important to understand that the value you enter into the Width and
Height fields (just below the Dimensions drop-down menu) doesn't actually affect that size of
your Flash movie, just the area of the web page through which your movie is viewed. The
way in which the movie fits in this area is determined by the Scale setting (discussed later).
These are the options in the Dimensions drop-down menu:

• Match Movie retains the same width and height of the actual movie.
• To enter a width and height value in pixels, choose Pixels from the drop-down menu

and then enter a value into the Width and Height fields.
• By choosing Percent and entering a value into the width and height fields, you set a

percentage of the browser window that the movie fills.

Playback Controls how the Flash movie plays when it's downloaded:

• By choosing the Paused at Start option, your movie automatically stops at the first
frame. A button with a play() action can restart the movie. In addition, selecting Play
from the movie's Ctrl+click (Mac) or right-click (Win) menu can restart the movie.

• When selected, the Loop option forces the movie to loop ad infinitum.

• The Display Menu option lets you determine whether the movie's Ctrl+click (Mac) or
right-click (Win) menu is active.

• When selected, the Device Font option, which only applies to movies when they're
played on a Windows machine, replaces any font that the user doesn't have installed
on their system with anti-aliased system fonts. This increases the legibility of small
text as well as decreases the overall size of the movie.

Quality Determines the quality at which your movie is played. Basically, the options
determine whether your movie sacrifices speed for quality or vice versa:

• By turning off any anti-aliasing, Low sacrifices speed over visual quality.
• Auto Low starts the movie playing without anti-aliasing but bumps the quality up to

High if the user's computer can cope with the improved quality while still maintaining
quick playback.

• Auto High begins playback at High quality but shifts into Low mode if the user's
computer can't cope with the increased visual quality and playback speed.

• By choosing Medium, your movie is partially anti-aliased with no bitmap smoothing.
The option results in a higher visual quality than Low, but a lower visual quality than
High.

• When you select High, you force your movie to be anti-aliased. If the movie contains
bitmaps that aren't animated, they are smoothed. On the other hand, if the bitmaps are
animated in any way, they won't be smoothed.

• When you choose Best, you force your movie to be played at the highest visual quality
possible with little regard for playback speed.

Window Mode Sets options for movies played in Internet Explorer 4.0 (and later) with the
Flash ActiveX control:

• By choosing Window, your movie is played in its own rectangular window on a web
page. It's important to note that this option results in the fastest animation speed.

• The Opaque Windowless option pushes any Dynamic HTML elements (specifically,
layers) behind, so they don't appear over the Flash movie.

• The Transparent Windowless option displays the background of the HTML page on
which the movie is embedded through all transparent areas of the movie.

 Note The Transparent Windowless option often results in slower playback.

HTML Alignment Positions your Flash movie within the web page. The default option
centers the Flash movie horizontally and vertically within the web page. The other options
align the Flash movie along the left, right, top, and bottom edges of the browser window.

Scale Works in conjunction with the option you set with the Dimensions drop-down menu:

• The Default (Show All) option expands the size of your movie (without distortion) to
fit the entire specified area while still maintaining the movie's aspect ratio. As a result,
even if you choose this option, you might have borders appear on either of the movie's
two sides.

• By choosing No Border, your movie is expanded (without distortion) to fill the entire
area defined by the Dimensions setting. As with the Show All option, the movie
maintains its aspect ration. However, the difference is that when you choose No

Border, your movie may actually expand to be larger than the area defined by the
Dimensions settings in order to maintain the movie's aspect ratio. As a result, the
edges of your movie might appear as if they've been cut off.

• Exact Fit displays the entire movie in the specified area without reserving the original
aspect ratio. As a result, your movie might be somewhat distorted.

Flash Alignment Determines the placement of the movie within the Dimensions area. You
set it by choosing an option from the Horizontal drop-down menu and the Vertical drop-down
menu.

Show Warning Messages Tells Flash to alert you to any conflicts created by your various
publishing settings.

Working with GIF Settings

By selecting the GIF option from the Formats tab and then clicking the GIF tab, you can set
GIF-specific options.

The settings include the following:

Dimensions Allows you to set the dimensions of the static image or animated GIF that is
published by entering values (in pixels) into the Width and Height fields. If you want the
dimensions of the GIF to match those of the Flash movie, select the Match Movie option.

Playback If you want to export a single frame of the Flash movie, select the Static option. By
default, Flash exports the first frame of your movie as the static GIF image. If you want to
force Flash to export an alternate frame, attach a #Static frame label to the desired frame by
using the Property Inspector. (If you've forgotten how to attach frame labels, see Chapter 9.)

If you want to export the Flash movie as a GIF animation, select the Animated option. If you
want to avoid publishing the entire movie as an animated GIF, attach a #First label to the
initial frame in the range you want to publish and a #Last frame label to the final frame in the
range.

From there, you can select Loop Continuously (to have the animation play over and over
again without stopping) or enter the number of repetitions for the animation into the Repeat
field.

Optimize Colors Tells Flash to remove any unused colors from the GIF's color table. This
can reduce the final file size.

 Note If you have chosen Adaptive from the Palette drop-down menu, selecting the Optimize
Color option has no effect.

Interlace Publishes the movie as an interlaced GIF. An interlaced GIF is structured in such a
way that it comes into focus slowly as the browser loads the image.

Smooth Anti-aliases all of the artwork in the movie when it's published to GIF format. Be
advised that this option results in a larger file size.

Dither Solids Applies dithering to both colors and gradients.

Remove Gradients Converts all of your gradients to solid colors. Because gradients don't
translate well to GIF format, leaving this option unchecked could result in some odd (and
visually unappealing) results.

Transparent Determines the level at which the background of the movie is transparent, as
well as how the Flash movie's Alpha settings are converted:

• By choosing Opaque, the movie is published as a GIF with a solid background.
• By choosing Transparent, the movie is published as a GIF with a transparent

background.

 Note Choosing the Transparent option in conjunction with the Smooth option can
result in semi-transparent halos around all objects.

• By choosing the Alpha option, you control the transparency of individual objects. By
entering a Threshold value between 0 and 255, you make all colors below the value
completely transparent and colors above the threshold partially transparent. A value of
128 corresponds to 50% Alpha.

Dither Generates colors not in the current palette by combining pixels from a 256-color
palette into patterns that approximate other colors. The options in the Dither drop-down menu
let you set the method by which the pixels are combined when the movie is exported to GIF:

• By choosing None, dithering is turned off, and colors not in the basic color table are
replaced with solid colors from the table that most closely approximate the specified
color. Although not dithering can produce smaller files, it often results in strange
colors.

• Choosing Ordered results in good quality images with a relatively small file size.
• Choosing Diffusion results in the best quality image. However, file size and load time

are increased.

Palette Type Lets you choose the type of palette is used when the GIF is published:

• The Web 216 palette is composed of 216 colors that are identical on both Windows
and Macintosh machines.

• By choosing Adaptive, you set a custom palette of colors derived from the actual
colors in the image. When you choose Adaptive, you can also limit the number of
colors by entering a value (up to 256) in the Max Colors field.

• The Web Snap Adaptive palette is almost the same as the Adaptive palette. The only
difference is that it converts similar colors to the Web 216 color palette.

• By selecting the Custom option, you can specify a custom-created palette by clicking
the button (…) just to the right of the Palette field and browsing for an ACT file.

Setting JPEG Publish Options

If you want to publish a single frame of your Flash movie as a JPEG file, select JPEG Image
from the Formats tab, and click the JPEG tab to manipulate its publishing settings. Much like
in the case of a GIF, you can force Flash to export a frame other than the first one by attaching
a #Static frame label to the desired frame with the Property Inspector (below left).

 Note Because the Dimensions in the JPEG tab are exactly the same as those in the GIF tab,
we're going to skip them in this section. However, if you need to refresh your memory,
see the previous section.

You can also set the following additional options:

Quality Adjusts the level of compression applied to the published JPEG. Alternatively, you
can also enter a value (from 0 to 100) into the field to the right of the slider. The lower the
value you set, the greater compression will result.

Progressive Creates a JPEG similar to an interlaced GIF.

Working with PNG Publishing Settings

If you want to publish a single frame of your Flash movie as a PNG file, select PNG Image
from the Formats tab, and click the PNG tab to manipulate its publishing settings. Much like
in the case of GIFs and JPEGs, you can force Flash to export a frame other than the first one
by attaching a #Static frame label to the desired frame with the Property Inspector (below
right).

 Note Because the majority of options for PNG are the same as those for publishing a GIF,
we're not going to go over them again. If you want to refresh your memory, see the
"Working with GIF Settings" section.

You have the following additional options:

Bit Depth Determines the amount of colors in the published PNG image:

• Choosing the 8-bit option results in an image with a maximum of 256 colors.
• The 24-bit option results in an image that can display a maximum of 16.7 million

colors. As one would expect, this produces larger files sizes but renders your Flash
movie far more accurately.

• The 24-bit with Alpha includes support for 16.7 million colors as well as an additional
8-bit channel for transparency support. When you choose this option, the unfilled
areas in a PNG image turn transparent when the file is published.

Filter Options Determines the compression algorithm used on the PNG image:

• By choosing None, no compression algorithm is applied to the image. The None
option results in a significantly larger image.

• The Sub option, which transmits the difference between each byte and the value of the
corresponding byte of the prior pixel, works best on images that have repeating
information (such as stripes or checks) along the horizontal axis.

• The Up option works in the opposite manner than the Sub option and is therefore most
effective on images that feature vertically repeating information.

• The Average option, which uses a pixel's two adjacent neighbors to predict its value,
works best on images that have a mix of both horizontally and vertically repeating
information.

• The Path option generates a linear function of the pixels above, to the left, and to the
upper left and then makes a prediction based on the neighboring pixel closest to the
computed value.

Setting QuickTime Publish Options

If you'd like to publish your Flash creation as a QuickTime movie (MOV), select the
QuickTime option from the Formats tab and click the QuickTime tab.

You can then manipulate the following options:

Dimensions Allows you to set the dimensions of the QuickTime movie that is published by
entering values (in pixels) into the Width and Height fields. If you want the dimensions of the
QuickTime movie to match those of the actual Flash movie, select the Match Movie option.

Alpha Lets you control the transparency of the Flash information in the QuickTime movie:

• By choosing Auto, the Flash movie becomes transparent if it is on top of any other
tracks in the QuickTime movie (such as additional QuickTime video tracks), but it
becomes opaque if it is the bottom or the only track in the movie.

• The Alpha-Transparent option makes the Flash track transparent, thereby displaying
the contents of any additional lower tracks.

• When you choose the Copy option, the Flash track is rendered as completely opaque,
thereby blocking all lower tracks.

Layer Controls the position of your Flash content relative to any QuickTime content in the
exported movie. Choose Top if you want the Flash content to occupy the top layer and bottom
if you want it to occupy the bottom layer. When you choose Auto, the Flash track is placed in
front of other tracks in the QuickTime file if the Flash objects in the movie itself are in front
of video objects. If they aren't, the Flash track is placed behind all other tracks in the
QuickTime file.

Streaming Sound Forces Flash to export all of the streaming audio in the movie to a
QuickTime soundtrack. In the process, the audio recompresses using the standard QuickTime
audio settings. To manipulate the default settings, click the Settings button to open the Sound
Settings dialog box.

From here, you can set the compressor used, the bit rate, and the audio to mono or stereo.

 Note If you are having trouble remembering the theory behind audio, see Chapter 19.

Controller If you've ever viewed a QuickTime file, you probably noticed that it had an
interactive controller at the bottom of the player. With it you can do such things as pause,
play, and adjust volume. The Controller drop-down menu lets you determine whether you
want the standard controller to be displayed (by choosing Standard), no controller (None), or
the QuickTime VR controller (QuickTime VR).

Loop Sets the QuickTime movie to loop indefinitely.

Paused at Start Sets the QuickTime movie to not automatically play. The user can begin
playback by clicking the Play button in the controller.

Play Every Frame Overrides the frame rate and plays every frame without any of the
skipping characteristics of QuickTime's attempt to maintain time. It's important to note that
when this option is selected, the audio track is turned off.

Flatten (Make Self-Contained) If this option is unselected, the Flash content won't be
combined with the QuickTime movie itself. Instead, the file content is published as a separate
file and referenced thusly by QuickTime. If all of the files are not located in the same place,
the QuickTime movie will be unable to display the Flash content. When you select the Flatten
(Make Self-Contained) option, all of the content is combined into one file.

Previewing Your Flash Movie
If you've gone to the trouble of painstakingly manipulating the publishing settings of each of
the file types to which your Flash movie will be published, it would be a shame if you
couldn't preview your movie to see how it looks. To preview your movie in any of the various
file types you selected in the Formats section of the Publish Settings dialog box, select File →
Publish Preview and select from the available list of file types.

 Note You'll only be able to access those file types that were selected in the Formats section of
the Publish Settings dialog box.

Flash automatically loads the selected file type.

Profiling Your Movie

To get a graphical representation of how your movie performs, check out the Bandwidth
Profiler-accessible by going to View → Bandwidth Profiler when you are testing your movie
(Control → Test Movie).

With it, you can see the size (in kilobytes) of each frame in the movie. To simulate how your
movie will play over different modems, go to View → Streaming when you are testing your
movie. You can set the specific modem to test by choosing one of the options from the Debug
menu.

Publishing Your Flash Movie
Now that you've manipulated the publishing settings of your various file types and previewed
those files (and done any necessary tweaking), you can publish your Flash movie. Having
gone to all the trouble to get here, the publishing process is rather anticlimactic. All you have
to do is go to File → Publish and Flash does all the work-all of the various file types you set
in the Publish Settings dialog box will be published simultaneously to the folder on your hard
drive where you saved the FLA file on which they're based.

Besides the Publish command, there is also an Export command in the File menu. The Export
command is almost the same as the Publish command; the difference is that, by using the
Export command, you bypass the Publish Settings dialog box and are faced with an Export
Movie dialog box where you set the file type and export location. The drawback of exporting
is that you don't have access to the file type's publishing settings.

Publishing Accessible Content
Although there are a myriad of different file types to which you can publish your movie-all of
which extend the scope of your audience-there is one aspect of publishing and distributing
Flash movies that we haven't discussed yet.

In recent years, there has been a growing desire to make web content accessible-that is, usable
for individuals with a variety of disabilities. One of the most pressing concerns is that, up
until now, Flash movies couldn't be interpreted by screen reader-a type of software the "reads"
the contents of a computer screen and then "speaks" it back to a visually impaired user. This
problem derives from the fact that visual information (opposed to text) involves a subjective
interpretation. In other words, one person's description of an image will probably differ from
another individual's description of the same image. As a result, screen readers, which are
simple pieces of software, are completely incapable of describing visual imagery. So, visually
impaired individuals are not only cut off from visual content, but they are often also cut off
from navigation schemes-many of which depend heavily on graphical interface elements
(buttons, menus, and so on).

So, where does this leave visually impaired individuals who want to access Flash content?
Well, in Flash MX, you can attach information to certain elements in your movie that can then
be interpreted by screen readers-cool, huh? That way, you determine how your visual creation
will be described.

There are, however, some pretty heavy caveats that need to be addressed. First, to make an
object accessible to screen readers, it must have an instance name. As a result, there are a
limited number of objects that can be made accessible to a screen reader: dynamic text, input
text fields, Button symbols, Movie Clips, and entire movies.

 Note To make Static Text accessible, you must first convert it to Dynamic Text.

Second, and perhaps most importantly, users must be running a Windows operating system,
complete with screen reader software and the Flash 6 plug-in, to access accessible content
created in Flash MX.

This having been said, let's take a look at how you go about making your movie accessible so
that you aren't excluding a portion of your potential audience:

1. First, select the object you want to make accessible to the screen reader.
2. Go to Window → Accessibility to open the Accessibility panel.

 Note If the object you've selected cannot be made accessible, you won't have access to
any options in the Accessibility panel.

3. If you want to make the currently selected object accessible, click the Make Object
Accessible option.

4. If the object you selected is a Movie Clip, you'll also see a Make Child Objects
Accessible option. If you select this, all the various elements within the Movie Clip
will also become accessible.

5. Enter a name into the Name field. The name, which will be "read" and vocalized by
the screen reader, is the most basic aspect of making your object accessible.

If you are making some Dynamic Text accessible, you won't have access to its Name-
the actual text will be automatically used.

6. Enter a description for the selected element into the Description field.
7. If you want to add a keystroke to individual Button symbols, Movie Clip, or Input

Text fields, enter a shortcut into the Shortcut field. There are, however, a few
guidelines to which you need to stick:

o Spell out the abbreviations of key names such as Shift, Ctrl, and Alt.
o Use capital letters for alphabetic characters.
o Use the plus (+) sign between key names-Alt+5, Ctrl+H, or Shift+9.

 Note To provide a keyboard shortcut, you must use the ActionScript Key object to
detect user keypresses during movie playback. For more information on how to
capture user keypresses, see Chapter 16.

8. When you've finished setting the accessibility options, simply close the Accessibility
panel.

This process is good for making certain objects accessible to a screen reader (a process that is
sometimes also referred to as exposing), but what if you want to make the entire movie
accessible? All you need to do is follow these steps:

1. Deselect all the elements on the Stage.
2. Go to Window → Accessibility.
3. If it isn't already, select the Make Movie Accessible option.
4. If you want all the accessible objects within the movie to be exposed to screen readers,

select the Make Child Objects Accessible option.

5. Enter a name for the movie into the Name field.
6. Enter a description for the movie into the Description field.
7. From here, if you want, select the Auto Label option. By doing this, Flash will use text

that's integrated into Buttons or Input Text fields as the object's name.
8. When you're finished, close the Accessibility panel.

Creating Printable Movies
By this point you are probably convinced that Flash content, because it is based on vectors,
looks pretty cool. You've heard it all: based on mathematically computations, scalable,
incredibly crisp-yadda, yadda, yadda. What you probably haven't realized is that, because it's
vector based, Flash movies look equally cool when they're printed. Wow, this is great-you can
create all sorts of content that looks just as good on a screen as it does when printed.

 Note The processes described in this section set your movie so that it is printed as vectors-
thereby maintaining the crisp, clean appearance. If you elect to skip this section, your
movie can still be printed. However, it will print like any other 72dpi image-very low
quality.

There are two methods you can use to configure your movie so that it prints out as vectors.
First, you can designate specific frames in the Timeline that will print-all the frames that
aren't designated as printable will not print. Second, you can designate certain areas within
certain frames that will print-all the space outside of the printable area will not print.

 Note The kicker about creating a printable movie is that you are controlling how your content
is being printed using the right-click context menu. Users can still print your movie
using their browser's Print command-you've got no control over that.

Before you learn how to configure your movie to be printable, there are a couple of important
details about which you should aware:

• All elements must be fully loaded to be printed.
• For a Movie Clip to be printed, it must be either on the Stage or in the work area, and

it must have an instance name.
• Flash Players earlier than 4.025 (Win) or 4.020 (Mac) do not support frame printing.

This having been said, let's take a look at how you go about configuring your Flash movie so
that it's printable.

Setting Printable Frames

To designate specific frames as printable, follow these steps:

1. In the Timeline, select the specific frame you want to make printable.
2. If it isn't already, open the Property Inspector by going to Window → Properties.
3. Enter #p into the Frame Label field to set that frame as printable.
4. Repeats steps 1 and 3 on any additional frames you want to make printable.

Setting Printable Areas

To designate a specific area in a frame as printable, follow these steps:

1. Select the frame you want to designate as a printable area-the frame itself must not
have already been designated as printable with the #p label.

2. Select the frame that contains the object you want to use to designate the frame as
printable.

3. If it isn't already, open the Property Inspector by going to Window → Properties.
4. Enter #b into the Label field.

Inspirational Design Model
As you've no doubt figured out, you can distribute your Flash creations in many different
ways. One of the most unexpected methods of distribution-console games-wasn't discussed in
this chapter because it's out of reach for average Flash users. Still, it's an incredibly interesting
use of Flash.

Take, for instance, the use of Flash in the user interface for the popular LucasArts game Star
Wars Starfighter, a flight action/adventure game for PlayStation 2 and Xbox. When LucasArts
designed the in-game interface for Starfighter, the developers realized they lacked a functional
out-of-game user interface. Enter Macromedia Flash.

So, LucasArts approached a small company in San Francisco called Secret Level
(www.secretlevel.com) that was developing a Software Development Kit (called Strobe) that
integrated Flash content into PlayStation 2 games. Pleased with the possibility of what Flash
could bring to Starfighter, LucasArts contracted Orange Design (www.orangedesign.com) to
design an out-of-game interface with Flash that was then integrated using Secret Level's

Strobe. The result is a creative and unorthodox use of Flash that shows the possibilities of
publishing and distributing your SWF creations.

 Note For more information on how Flash was used in Starfighter, see the Gamasutra article at
www.gamasutra.com/features/20010801/corry_01.htm. You'll need to register to read
the article, but it's free.

Summary
In this chapter you learned about the various file types to which you can output your dazzling
Flash creations. You also learned about each of their publishing settings. From there, you
looked at how to preview your movie and then publish it. You also learned about the
difference between publishing and exporting a file. The chapter finished off by creating
accessible movies and by creating printable movies.

Chapter 28: Working with Flash and Video
Overview
It is standard practice now to develop software applications that are versatile. Not only do you
expect them to perform their particular job, but you also expect them to work cooperatively
with other applications. This increases their effectiveness as well as your creative
possibilities. It's this kind of versatility that puts the multi in multimedia.

Flash is no exception to this standard. In fact, due to its popularity as well as the SWF file
format's wide applicability, Flash is one of the most portable ones available today. Not only
can Flash incorporate many kinds of media into an animation or interactive movie, but it can
also create and work with files that are usable in a variety of non-Flash applications.

This chapter explores the possibilities of Flash in a very different kind of setting: video. Flash
movies can be exported as video. Also, with the release of Flash MX, videos can be imported
into the Flash environment and controlled interactively like any other part of a Flash
production. Video and Flash are fundamentally unalike. Video has no vectors, no tweening,
no painting tools, and, above all else, no interactivity. However, video does have its own
advantages. Whereas Flash is great at displaying stylized, cartoon-like images, video can
show your audience images that are very lifelike and realistic. And unlike Flash, video can be
broadcast on television and incorporated into movies.

As Flash continues to develop, it's very likely that the application will branch out beyond the
Web and become a more important part of media production in general. This chapter
introduces you to some of the beginning concepts of this role.

Understanding Video in the Flash Environment
 New to MX One of the most sweeping changes in Flash MX is the addition of support for
digital video. When using previous releases of Flash, developers had to simulate video. They
usually did this by putting still-image sequences inside a Movie Clip to create a sort of digital
flipbook. From a functional standpoint, this technique worked fairly well, but it tended to

increase the size of the final movie appreciably because there was no way to compress (reduce
the file size of) the "video."

Well, all that has changed. Flash MX's support of video is a significant step forward for both
the application and its community of users. What was once the best means of delivering
animated content on the Web is now also one of the best means of distributing video content.
Anyone whose browser is equipped with the Flash 6 plug-in is now able to see both
traditional Flash movies and Flash movies that contain real video footage. One plug-in covers
it all! Now that we've got your attention, let's take a closer look at how all this works in Flash
MX.

Sorenson Spark Codec

The "wizard behind the curtain" responsible for video in Flash MX is a video
compression/decompression codec named Spark. Developed by Sorenson Media
(www.sorenson.com), Spark enables you to put high-quality video into your Flash movies
without entailing significant cost in terms of bandwidth or file size.

When you bring video into Flash, Spark automatically compresses it. The codec is actually
part of Flash MX; any video files that are imported and embedded in a Flash document must
have this compression applied to them.

Spark applies temporal compression to your video. This type of compression looks at areas of
change in a video file and encodes each frame based on the amount of change from one frame
to the next. If a frame doesn't exhibit a significant change, its information is simply copied
from the preceding frame. This kind of encoding is also known as interframe. When the
change between video frames is significant, however, Sorenson Spark automatically inserts a
video keyframe into the video file. A keyframe is a complete picture of a frame, and, like the
keyframes in your Flash Timeline, marks a significant change in content. So, to put it all in
perspective, Spark uses a combination of keyframes and interframes (temporal compression)
to deliver high-quality video while maintaining smaller video file sizes.

The version of Spark included in Flash MX is known as Sorenson Spark Standard Edition. If
you enjoy working with Spark, you may be interested in upgrading to Sorenson Spark Pro.
This expanded codec offers several advantages over the basic codec. Spark Pro is available to
you within the application Sorenson Squeeze. Squeeze can compress your video files in
Macromedia Flash Video format (FLV). Squeeze and the Spark Pro codec present a clear
advantage over standard Spark because they allow you to compress your video using a
Variable Bit Rate (VBR). Files compressed with VBR are generally much smaller because
they are compressed "intelligently." Video frames that contain complex changes in color or
motion are allowed more bandwidth than simple frames. This allows the file to use
compression where it needs it most, yielding a video file that's much smaller overall. Visit
www.sorenson.com/sparkpro.html for more details on Sorenson Squeeze.

 Note Sorenson Squeeze can also compress files for QuickTime video in MOV format, and for
Flash Player 6 in SWF format.

Importing Video

To get video into the Flash authoring environment, you must first import it-just as you do
sounds, bitmap images, and other media. Flash supports a wide variety of digital video
formats. For both Macintosh and Windows platforms, you must have QuickTime 4 (or higher)
installed on your computer in order to import most kinds of video into Flash MX. If you are a
Windows user, you can benefit from the added support of DirectX 7 (or higher), which allows
you to import additional Windows-specific video formats.

Table 28.1 gives you a summary of video import file formats supported by Flash MX.

Table 28.1: Video File Formats Supported for Import to Flash MX
File Type Platforms
Audio Video Interleaved (.avi)[*] Macintosh, Windows
Digital Video (.dv) Macintosh, Windows
Moving Picture Experts Group (.mpg, .mpeg)[*] Macintosh, Windows
QuickTime Movie (.mov) Macintosh, Windows
Windows Media File (.wmv, .asf)[*] Windows
Macromedia Flash Video (.flv)[**] Macintosh, Windows
[*]These formats are supported in Windows only if DirectX 7 (or higher) is installed.

[**]Macromedia Flash Video (.flv) files can be imported directly into Flash MX without the
help of QuickTime or DirectX, but they must be compressed using Sorenson Squeeze.

If Flash is unable to import a particular video format, it will display a message alerting you to
the fact. In some situations, you may be able to import the video but not the audio. In that
case, you do have the option to import the video without sound.

 Note Even with Sorenson Spark and the other great advances in video compression
technology, you should still take steps to ensure that you have made your video as
"compression friendly" as possible. This means optimizing video and audio content and
targeting the video to the bandwidth requirements of your audience. To read more about
this, see "About the Sorenson Spark Codec" in the help files that ship with Flash MX.

To import a video into Flash:

1. Choose either File → Import (Cmd/Ctrl+R), which will import your video and place it
directly onto your movie's Stage; or or File → Import to Library, which will drop the
video into the Library of the current document and leave you with the task of placing
it in your movie yourself.

2. In the Import dialog box, choose All Video Formats from the Show drop-down menu
(Figure 28.1). This acts as a filter, displaying only the video files that are available to
Flash. Select the video you want to import and click Open.

Figure 28.1: Only video files available to Flash are listed in the Import dialog box.

3. Flash asks whether you want to embed the video in your movie or create a link and
treat this video as an external video file. Make your selection and then click OK. (See
the next sections of this chapter for the specifics of working with video in each
context.)

Using Embedded Video Files

When you import a video clip into Flash, you have the option to make it an embedded video
clip. This means the video becomes a permanent part of your Flash document and will appear
in your movie's Library along with Movie Clips, graphic symbols, buttons, and the like.

To import a video file as an embedded video file:

1. Go through the initial steps of importing a video, as described in the preceding section.
Flash will prompt you to import the video as either an embedded or a linked file.
Choose the Embed Video in Macromedia Flash Document option and click OK.

The Import Video Settings dialog box appears (see Figure 28.2). Here you will make
several choices that affect the amount and nature of compression applied to your
video.

Figure 28.2: The Import Video Settings dialog box presents you with an array of
compression settings for your embedded video.

2. Use the Quality slider to control the amount of compression applied to the video.
Higher settings afford better video quality but produce larger file sizes. Low settings
do the opposite, yielding smaller files at the expense of quality. Settings at 60 or
higher for Quality generally give good results.

3. Set the frequency of keyframes using the Keyframe Interval slider. Generally, you
want to use as few keyframes as possible, since Spark will set keyframes for you as
needed.

4. Use the Scale slider to adjust the size (pixel dimensions) of your video by percentage.
Smaller dimensions yield smaller file sizes and tend to play more smoothly. If you
know a video must be scaled down for your movie, be sure to do this in order to save
on file size and improve performance once the video has been compressed.

5. Select Synchronize Video to Macromedia Flash Document to lock video playback
speed with that of your movie's Timeline. To let the video and your movie play with
their individual frame rates intact, deselect this option.

6. Select a ratio for Number of Video Frames to Encode per Number of Flash Frames.
This specifies the ratio of imported video frames to main Flash Timeline frames. For
example, to play one video frame per one Flash Timeline frame, select 1:1; to play one
video frame for every four Timeline frames, choose 1:4; and so on.

7. Click the Import Audio check box to include a video file's audio track. If a video has
no audio component, or the audio track isn't supported by Flash, this option will
display a small warning message saying that the audio cannot be imported.

8. When finished, click OK. If you chose to import the video directly to the Stage, a
warning appears, asking if you want to expand the frame count of the main Timeline
to accommodate the length of the video. Do one of the following:

o Click Yes so that the frame count extends to fit the length of your video.
o Click No to leave the frame count as is. You can add frames later as needed.

The imported video file appears in your movie's Library with a video icon beside its
filename. Once the video is in the Library, you can incorporate it into your movie. To read
about how this is done, see "Using ActionScript to Control Video Playback" later in this
chapter.

Using Linked Video Files

When you import a video clip into Flash, you have the option to make it an external, or linked,
video clip. This means that the video is linked to your Flash movie rather than being a direct
part of it. A Flash movie that uses linked video clips cannot be published as an SWF file,
because SWF doesn't support linked video clips. Flash movies using linked video must be
published as QuickTime movies (QuickTime Flash). The resulting QuickTime file will be
able to play both the Flash track and the linked video as a separate QuickTime track. (See
Chapter 27 to read more about publishing in QuickTime movie format.)

To import a video file as a linked video file:

1. Go through the initial steps of importing a video, which are listed in the earlier
"Importing Video" section. Flash will prompt you to import the video as either an
embedded or a linked file. Choose the Link to External Video File option and then
click OK.

2. If you chose to import the video directly to the Stage, a warning appears, asking if you
want to expand the frame count of the main Timeline to accommodate the length of
the video. Do one of the following:

o Click Yes so that the frame count extends to fit the length of your video.
o Click No to leave the frame count as is. You can add frames later as needed.

The imported video file appears in your movie's Library with a linked video icon beside its
file name.

Using ActionScript to Control Video Playback

Now that you've brought a video into your Flash movie, you might be wondering how to
manage its playback-how to make the video start, stop, rewind, skip ahead, and so on. The
good news is that the imported video will behave like other elements within the Flash
environment.

The best way to control your video is to create a video Movie Clip. Such a clip is a lot like an
ordinary Movie Clip, except that it has the frames of the video stretched across its Timeline.
Also, like ordinary Movie Clips, a video Movie Clip can be controlled via ActionScript. This
means that you can use scripting commands within Flash to dictate the playback of the video
Movie Clip's Timeline.

 On the CD-ROM To create a video Movie Clip, you must have a video imported into your
movie's Library. If you don't have a video of your own, we have provided a few that you can
use. Open the Chapter 28 folder on this book's companion CD-ROM. If you want to use a
QuickTime video, you can use mxVideo.mov. If you want to try using an FLV video, use
mxVideo.flv. This video can be either an embedded or a linked video file. You will also want
to have a few buttons on hand for use as controls to start and stop the video playback.

To create a video Movie Clip:

1. Choose Insert → New Symbol (Cmd/Ctrl+F8). Name the symbol video_mc, select
Movie Clip as its behavior, and click OK.

2. Flash switches to Symbol Editing mode. In the Movie Clip Timeline, rename Layer 1
as video. Then insert a new layer and name it actions.

3. Highlight the Video layer and drag your video clip from the Library onto the Stage.
Flash is likely to warn you that the current Timeline doesn't have enough frames to
display your entire video and ask if you would like to add frames. Click Yes to add the
necessary number of frames. Your video should now appear on the Stage, and your
Timeline should have new frames stretching far enough to accommodate the length of
the video. See Figure 28.3.

Figure 28.3: Frames are added to accommodate the video.

4. Use the Align panel (Cmd/Ctrl+K) to place your video in the horizontal and vertical
center of the Movie Clip Stage. Now that your clip is in place, you can add some
ActionScript to help monitor its playback.

5. Select the keyframe in the Actions layer and open the Actions panel. Enter a stop()
action and close the panel. At the very least, this is the only command your video
Movie Clip requires. With stop() placed at frame 1 of its Timeline, the clip won't start
playing until prompted to do so.

6. Save your movie and return to the main Timeline. Drag an instance of video_mc to the
Stage and use the Property Inspector to assign it the instance name trailer (or
something different if you prefer). This lesson uses trailer throughout.

7. Now that your clip has a unique name, you can add buttons that will allow you to
interactively control the playback of the Movie Clip. Drag two buttons from your
Library to the Stage: one for Play and one for Stop. Select the Play button, open the
Actions panel, and enter the following statements:

8. on(press){
9. frame = trailer._currentframe;
10. trailer.gotoAndPlay(frame + 1);

}

The function of this script should be fairly self-explanatory. When the button is
pressed, it stores the playback head location of the trailer clip and sends it to play at
the next frame. When sitting in frame 1, the trailer Timeline is stopped. Since there are
no other actions to stop the clip at the next frame, the video is allowed to play freely
after this script jumps it ahead to frame 2. Also, if the clip is ever paused somewhere
other than frame 1, the clip can always resume playback at the next frame.

11. Select the Stop button, open the Actions panel (if it's not open already), and enter the
following statements:

12. on(press){

13. trailer.gotoAndStop(1);
14. }

Again, a very straightforward script. When pressed, this button sends the clip instance
back to frame 1 of its Timeline. Since there is a stop() action waiting there, the clip
will halt when it arrives at frame 1.

15. Select Control → Test Movie or press Cmd+Return (Mac) or Ctrl+Enter (Win) to give
these buttons a try. You will notice that the Play button sets the clip in motion, and the
Stop button both halts it and sends it back to frame 1.

Additionally, you can add all sorts of controls to manipulate video playback. Here are just a
few samples:

Pause Add the following to pause the video:

on(press){
 trailer.stop();
}

Fast Forward This example involves a few more elements. Attached to a Fast Forward
button you have two handlers that toggle the variable ffwd on and off:

on(press){
 ffwd = 1;
}
on(release){
 ffwd = 0;
}

Then, to respond to the change in variable value, you assign a function for the video Movie
Clip instance trailer. This script is attached to frame 1 of the main Timeline. When ffwd is
"on," it sends the clip ahead by four frames. This number can be increased or decreased to
change the speed of the fast-forward:

trailer.onLoad = function(){
 ffwd = 0;
}
trailer.onEnterFrame = function(){
 if(ffwd == 1){
 frame = trailer._currentframe
 trailer.gotoAndPlay(frame+4);
 }
}

 On the CD-ROM There is a lot you can do to control the playback of a video within Flash.
Using actions and methods of the MovieClip object, you should be able to invent all sorts of
interesting techniques and video shuttle widgets. Check out the file(s) named video2MX.fla or
video2MX.swf in the Chapter 28 folder on this book's companion CD-ROM. They'll show
you these and other examples in the context of an actual movie.

Managing Video Files in Your Movie

There are a few techniques that can be helpful for managing your video media inside and
outside a Flash document. After you edit or change an embedded video file outside Flash, you
can update the file rather than re-import it.

To update an embedded video clip:

1. Select the video clip in the Library.
2. Ctrl+click (Mac) or right-click (Win) the video in the Library and choose Properties

from the context menu.
3. Click Update in the Update Video Properties dialog box. The embedded clip is

updated with the edited file.

Alternatively, you can replace the selected clip with an entirely different video clip. Click
Import and choose a different clip in the Import dialog box. That clip will replace the
embedded clip in your Library.

You might also want to replace the embedded video clip that is used for an embedded video
instance. To change clips in a video instance:

1. Select the clip on the Stage that you would like to change.
2. Open the Property Inspector (Cmd/Ctrl+F3) to display the instance information for the

selected clip.
3. Click the Swap button and choose the clip you would like to exchange for the clip on

the Stage.
4. Click OK, and the clip instance is updated accordingly.

When publishing a Flash movie as an SWF file, the soundtrack of any embedded video clip(s)
will be exported using the Stream sound settings. (These are the settings for Stream in the
Flash tab of the Publish Settings dialog box.) Be sure that these options are set at the
appropriate rate for your target audience. To read more about audio compression settings in
Flash, see Chapter 21.

Publishing a Flash Movie on Videotape
Given the power and flexibility of the Flash authoring application, you may wonder why
anyone would even consider putting their SWF masterpiece on videotape. After all, video is a
noninteractive, linear medium. One of Flash's greatest assets is its ability to deliver
animations and information in an audience-directed format: Your viewers can decide how the
piece is presented. Plus, with the visibility of the Flash plug-in on the Web, your pieces are
available to a worldwide audience of unprecedented size.

Video can be helpful in several situations, however. It may not provide the kind of
interactivity found on the Web, but video does allow you to use Flash for applications in
which the computer and interactivity are not part of the media equation. If you would like to
use Flash to create animated shorts or cartoon for television, you have to go to video. Flash
can be transferred to video for projected playback at concert venues and art galleries, and it
can used as source material for video-mix artists and performers. Or, if you are involved in
any kind of video postproduction work, you can use Flash to animate title sequences or
special effects and to composite the Flash animation with your video footage to create
interesting layered effects. As always, Flash gives you an endless variety of possibilities.

The steps for transferring a Flash animation to video are outlined in this chapter. Depending
on the specific kind of video you want to produce, you may find that some modifications are
needed in order to get the best results for your particular project. In general, the process
includes the following steps:

• Prepare the Flash Timeline graphics, including Movie Clips
• Prepare the audio tracks if you plan to use the Flash audio
• Export the Flash animation as QuickTime video (Macintosh) or AVI (Windows)
• Import the animation to a video editing application and make any needed adjustments

or edits depending on your specific goals

That's the process in a nutshell. Let's dive into the specifics and get things under way.

Preparing the Flash Timeline

The first part of the transfer-to-video process involves preparing your movie's Timeline. In
this case, preparing means simplifying so that the Timeline is free of actions, Movie Clips,
and any other items in your work that would not apply to a linear medium (such as
navigational buttons).

Actions must usually be cut simply because they can interrupt the flow of a linear animation.
For example, if you have any kind of gotoAndPlay() loops that send the movie back to a
previous frame, you'll need to delete these actions from your Timeline. If the actions are
somehow integral to the overall animation, you can work around this situation by copying and
pasting the frames in the loop. For instance, if you have an animation of a knock-knock joke,
you may have a gotoAndPlay() action that sends the movie back to frame 1 to repeat the
"Knock, knock! Who's there?" part of the joke. Because this action won't work when you
transfer to video, your best strategy is to copy and paste the frames you need to repeat.
Choose Edit → Copy Frames, then Edit → Paste Frames, to reconstruct the animation
structure as needed (see Figure 28.4). To learn more about manipulating frames in the
Timeline, see Chapter 9.

Figure 28.4: Use Edit → Copy Frames and Edit → Paste Frames to rebuild an animation so
that it is completely linear and free of actions
 Note It's okay to use this technique with a Flash animation that uses scenes. The animation

will be exported in the order the scenes are listed in the Scene panel (select Window →
Scene or press Shift+F2).

Additionally, if your animation uses Movie Clips, you will need to do some tweaking. As
self-contained animations, Movie Clips work fine in the Flash Player or in QuickTime Flash
movies but are not supported in linear video applications. Consequently, you have to include
them on their own layer(s) in the main Timeline. Using the same copy-and-paste technique
described earlier, you can move animated components out of a Movie Clip Timeline and into
your main Timeline.

To transfer a Movie Clip animation to the main Timeline:

1. Open the Movie Clip's Timeline by using the Edit Symbols pop-up menu or by
double-clicking the Movie Clip's icon in the Library. Flash jumps into Symbol Editing
mode.

2. While pressing Shift, click each layer's name or label to select the frames that make up
the Movie Clip animation. Take note of how many layers are used in the Movie Clip.

3. Choose Edit → Copy Frames to copy the frames to the Clipboard (see Figure 28.5).
Return to Movie Editing mode.

Figure 28.5: You can copy all frames of a Movie Clip to the Clipboard.

4. Now you're ready to add the elements of the Movie Clip to your main Timeline. Insert
new layers as needed to accommodate the components of the Movie Clip. If your
Movie Clip used four layers, insert four new layers.

5. Click the frame in the topmost new layer where you would like to paste the Movie
Clip. Then, Shift+click the lowest new layer to select the first frame for each, as
shown above:

6. Choose Edit → Paste Frames to paste the Movie Clip frames into the new layers,
starting at the frame you just highlighted. See Figure 28.6 for the results.

Figure 28.6: Movie Clip frames pasted into the main Timeline.

This is a fairly simple process, but it may require some additional tweaking depending on how
you used the Movie Clip in the original animation.

Some Advice about Monitors

Another point to consider if you are planning to display your video on a television monitor is
the aspect ratio. The aspect ratio for television is 4:3, meaning that for every 4 units of width,
there are 3 units of height. The standard size for television and video is 640×480 pixels. You
can adjust your Flash movie to a 4:3 aspect ratio by choosing Modify → Document to set the
width and height accordingly. Or, if your movie already conforms to this ratio but is smaller
(for example, 160×120), you can make the adjustments when you export the video.

Concerning screen size and television monitors, be aware that not all monitors will play a
video in exactly the same way. On some, information at the edge of the screen may be lost;
for this reason, you want to be sure that your animation contains nothing significant at the
edge of the Stage. There are two "safe zones" that will help you avoid problems with

inconsistent monitors: the action-safe zone and the title-safe zone. The action-safe zone is
exactly 90% of the total screen size; so for a 640×480 animation, you'll want to keep
important images and animation within the area 576×432. The title-safe zone is reserved for
text and is exactly 80% of the total screen size. This translates to an area of 512×384. Both
these safe zones are centered within the total area of the Stage. See Figure 28.7.

Figure 28.7: To prepare a Flash animation for playback on a television monitor, be sure that
important elements fall within the action-safe and title-safe zones.

Preparing the Flash Audio

Flash can work as an animator alone, and dealing with audio at this point may not be a
concern. If your plan is to bring an animation in and composite or edit it together with
existing video footage, it's probably best not to incorporate sound in the Flash movie itself,
but to wait and add your audio elements in the video application. However, if you plan to
deliver your entire Flash animation (including the soundtrack) as a video, you'll need to
follow some additional steps to prepare your movie.

When you export a Flash movie as video, there are several sound-related issues that you
should be aware of:

Mixing When you created your Flash animation, chances are you used the Edit Envelope
dialog box (shown just below) to adjust the relative volume level of each sound in your
movie. This is a crucial step because it allows you to assign each sound its proper place in the
audio spectrum. Some sounds, like narration and dialog, are important and need to be heard
clearly whenever they are present. Other sounds, like music and sound effects, can be adjusted
accordingly so that they don't impede on other audio elements.

Your goal is to use the envelopes to create an ideal sound balance for your movie's audio
components. Before you export to video, revisit these settings and be sure that your levels are
correct. Once the Flash animation has been exported, the audio track is permanently mixed
and cannot be changed. To tweak the audio, you would have to go back to your Flash file,
readjust the audio, and re-export the movie. To learn more about options concerning the Edit
Envelope window, see Chapter 20.

Synchronization Sync is a big topic when it comes to discussions of audio and video. It's
very important because, if these elements lose sync, your animation will begin to look like a
poorly dubbed monster movie. Regardless of the sync settings in your original animation,
when you prepare to export to video, you should use the Property Inspector (choose Window
→ Properties or press Cmd/Ctrl+F3) to set all of the audio to Stream sync. This will lock your
audio to the movie's frame rate and ensure tight synchronization. Also, be sure that each
sound has enough frames to play in its entirety. Stream sounds will only be heard for the
duration of the frames they occupy. To learn more about Flash synchronization options, see
Chapter 21.

A Word of Caution about Embedded Audio

Exporting sound from your Flash movie has its pros and cons. One of the benefits is that your
synchronization will be preserved and you don't have to worry about reconstructing your
audio track in a separate application later. Another plus is that your final video will be
complete, with all its audio and visual elements neatly packed in a single digital video file.

However, if you plan to take your Flash video into another application such as Adobe
Premiere for additional editing, you should take an additional step to prepare the audio. The
streaming audio tracks that are embedded within a Flash video file won't work in Premiere.
Any audio that is included with your Flash video will be distorted beyond recognition when
it's brought into Premiere for editing. To avoid audio distortion in your video, you must bring
the audio and video elements into Premiere separately. In the Mac OS, you can use
QuickTime Pro to extract the audio track from your video. In Windows, you can export two
separate versions of your Flash movie: one that is silent and one that is sound-only. To read
more about these techniques, see "QuickTime Video (Macintosh)" and "Video for Windows
(AVI)" in the next section of this chapter.

Exporting Flash as Video

After completing all of the previously outlined steps, you are ready for the next phase of
production: exporting your movie as video. If you are working on a Macintosh, you have the
option to export your animation as QuickTime video. If you are a Windows user, Flash allows
you to export under the AVI format. Both processes will convert your vector-based animation
to a raster-based video file that can be opened and manipulated in a video editing application.

QuickTime Video (Macintosh)

If you work on a Macintosh, Flash allows you to export your animation as a QuickTime video
file. You should note the fundamental difference between the different QuickTime file types,
QuickTime Flash and QuickTime video. One of the enhancements in version 4 of QuickTime
was its support for Flash files. Consequently, Flash can be exported as QuickTime Flash,
which allows the movie to retain all of its interactive properties and act like a regular Flash
file. To learn more about publishing interactive QuickTime Flash movies for both Macintosh
and Windows, see Chapter 27.

Of all Flash's export options, the QuickTime video format is the least like Flash itself. It is
raster-based (composed entirely of pixels) and has no interactive properties. However, it is the
easiest format for transferring a Flash animation to video. Assuming that you have followed
the steps outlined in the preceding section, your animation should be ready to export.

To export a Flash animation as QuickTime video:

1. Select File → Export Movie. A window appears, asking you to name the exported
movie and browse to the location where you would like to save it (Figure 28.8). Select
QuickTime Video from the Format drop-down menu and give the file a name. Note
that in the Name field, Flash appends a .mov extension to the untitled file to signify
that it will be a digital video file.

Figure 28.8: When you export a movie, you will be prompted to choose an export
format and location for the exported file.

2. Click Save, and the Export QuickTime Video dialog box appears (Figure 28.9). This
interface is where you set all the options for your exported video, as follows:

Figure 28.9: Export options

Dimensions Use these fields to specify width and height for the final video. Unless
your Flash animation contains bitmap images, it can be scaled up or down without
distortion to produce the final video. When the Maintain Aspect Ratio box is checked,
your movie will be constrained to the proportions defined in the Document Properties
dialog box.

Format Choose from the following color options for your movie:

o Black and white: very low quality
o 4-bit color: low quality
o 8-bit color: 256 colors (marginal quality)
o 16-bit color: comparable to the Macintosh setting "Thousands of Colors"
o 24-bit color: comparable to the Macintosh setting "Millions of Colors"
o 32-bit color: same as 24-bit color, plus it supports Alpha Channel information

for transparency effects

Smooth The Smooth option applies anti-aliasing to the exported QuickTime movie.
Smooth can produce a higher-quality video image but may also lead to some
distortion. Deselect this option if any unacceptable changes occur to your video.

 On the Web Compressor These options allow you to take advantage of one of
QuickTime's video-compression codecs. For vector-only Flash movies, you will
experience good results with the Animation compression option. The Cinepak and
Sorenson codecs are good for CD-ROM distribution. To learn more about individual
QuickTime codecs, see the QuickTime website: www.apple.com/quicktime/
specifications.html.

Quality The slider will control how much compression is applied to the video. If you
position the slider to the far right, the compression is minimal, affording better quality.
As you move the slider to the left, more compression is added and quality suffers.

Sound Format Use this drop-down menu to set the parameters for the quality of
sound exported from your movie. To learn more about sampling rates, bit depths, and
other sound-related issues, see Chapter 19. This option can also be set to Disable if
you wish to export your movie without its sound components.

If you plan to bring the exported video into another application outside of Flash, your
best bet is to export the audio at the highest possible quality. It can always be down-
sampled later if necessary.

3. Once you've set all your options, click OK, and Flash will begin the exporting process.
This can sometimes take a while, especially if you are exporting a long animation or a
complex soundtrack, or you are applying compression.

Your final QuickTime file will appear in the location you set; you'll see the capital-Q

filmstrip icon and a .mov extension after the filename. This file is suited for
distribution as digital video on a CD-ROM or the Internet, or as source material for a
video project, depending on what settings you applied.

If Your Video Has a Soundtrack

If you would like to go one step further and learn how this video file can be stored on
videotape using Adobe Premiere, see the section "Preparing the Video for Tape" later in this
chapter. If you plan to do this, and your video has a soundtrack, you'll have to take one
additional step. The soundtrack of a QuickTime video that has been exported from Flash
doesn't perform well in Premiere (see the sidebar "A Word of Caution about Embedded
Audio" earlier in this chapter). Namely, the Flash audio track gets distorted to the point of
being unrecognizable. In order to have a clear-sounding audio track, you must first strip the
audio from the video file using QuickTime Pro and then bring the new audio-only track into
Premiere and reconnect the two components. Sound like a pain? It is, sort of. But currently,
it's the only way to make this work.

To distill the soundtrack from a QuickTime video:

1. Open the video file in QuickTime Pro. If you don't have QuickTime Pro, you can
purchase a registration key that will unlock the "pro" features within your standard,
free version of QuickTime. To learn more about this, see the Apple website,
www.apple.com/quicktime/buy.

2. Choose File → Export (Cmd+E). A dialog box appears, where you set the following
options:

o Choose a name and destination for the exported soundtrack.
o Select Sound to AIFF from the Export menu.
o Choose the sample rate and bit-depth settings you require from the Use menu.

We recommend that you keep this file at the highest possible quality.

3. When finished, click Save, and QuickTime will export the track as an AIFF file to the
location you specified in step 2.

You now have all the elements you need to produce a video. Later, while working in
Premiere, you will remove your Flash video's original soundtrack and replace it with this file.

Video for Windows (AVI)

If you're working with Flash on the Windows platform, you'll need to export your video in
AVI (Audio Video Interleaved) format. Like QuickTime video, AVI is a raster-based video
format that will transfer nicely into a video editing application.

To export a Flash animation as an AVI:

1. Select File → Export Movie. A window appears, asking you to name the exported
movie and browse to the location where you would like to save it. Give the file a name
and select Windows AVI from the Save as Type drop-down menu. When finished
with these choices, click Save.

2. The Export Windows AVI dialog box appears (see Figure 28.10). This is where you
set all the options for your exported video.

Figure 28.10: The Export Windows AVI dialog box

Dimensions Use these Width and Height fields to specify dimensions for the final
video. Unless your Flash animation contains bitmap images, a video file can be scaled
up or down without distortion. When the Maintain Aspect Ratio box is checked, your
movie will be constrained to the proportions defined in the Movie Properties dialog
box.

Video Format Choose from the following color options for your movie:

o 8-bit color: low quality.
o 16-bit color: Windows High Color setting.
o 24-bit color: Windows True Color setting.
o 32-bit color: like 24-bit color, plus it supports Alpha Channel information for

transparency effects. This feature is not widely supported. Check the
documentation for your video software before exporting a 32-bit video file.

Compress Video When checked, this will open an additional dialog box (after the
current dialog box has been OK'd) that allows you to apply compression to your video.
In this format, compression is recommended to help keep file sizes down.

Smooth Check the Smooth box to turn on anti-aliasing. Note that this may add
unwanted pixels or noise to the final video image.

Sound Format Use this drop-down list to set the parameters for the quality of sound
exported from your movie. To learn more about sampling rates, bit depths, and other
sound-related issues, see Chapter 19. This option can also be set to Disable when you
wish to export your movie without its sound components.

 Note If you plan to do additional editing of your video in another application such as
Adobe Premiere, we recommend that you select Disable as the Sound Format
option. The soundtrack of an AVI video that has been exported from Flash
doesn't perform well in Premiere (see the earlier sidebar "A Word of Caution
About Embedded Audio"). Namely, the Flash audio track gets distorted to the
point of being unrecognizable. To have a clear-sounding audio track, you must
export separate versions of your Flash movie: one as a silent AVI video, and one

as a sound-only WAV file. To learn how to export a WAV version of your Flash
movie, see the next section, "Exporting Your Movie as a WAV (Windows)."

3. Click OK to acknowledge all these video settings and to export your animation as an
AVI video.

4. If you enabled compression in step 2, an additional dialog box appears (see Figure
28.11).

Figure 28.11: The Video Compression dialog box offers a list of possible compressors.

Compressor Choose the compression codec that best suits the video equipment and
software with which you are working. Consult the documentation that ships with your
video editing system (or software) for specifics on working with compressed AVI
footage. If you intend to view or distribute the animation as a stand-alone AVI, the
Cinepak codec is a good choice.

Compression Quality This slider sets the amount of compression applied to a file.

Key Frame Every To insert a keyframe at regular intervals, check this box and enter
a number in the field. Keyframes help the compressor handle video information.
Adding a keyframe at an interval equal to your movie's frame rate can be helpful. For
example, a movie at 30 frames/second should have one keyframe every 30 frames.

Data Rate Checking this setting limits the amount of data a video generates when it
plays back. A data rate of 150KB/second can help video stream smoothly from a CD-
ROM drive.

5. Click OK when you are finished with the compression settings. Flash will export the
AVI to the location you defined back in step 1.

When exporting is completed, you'll have a digital video file that is ready for use in a video
editing application or in part of a CD-ROM. If you want to go one step further and transfer
your video to tape, see the upcoming section on preparing your video.

Exporting Your Movie as a WAV File (Windows)

If you plan to bring your Flash video into Adobe Premiere, you must import it as two separate
elements: a silent AVI video and a sound-only WAV file. This allows you to avoid the
distortion that happens to Flash video soundtracks inside Premiere.

 Note To be certain that your movie is ready to be exported as a WAV, see the earlier section
"Preparing the Flash Audio" before proceeding.

To export your Flash movie as a WAV file:

1. Select File → Export Movie. A window appears, asking you to name the exported
movie and browse to the location where you want to save it. Name the file and select
WAV Audio from the Save as Type drop-down menu. When finished with these
choices, click Save.

2. The Export Windows WAV dialog box appears. This is where you set all the options
for your exported soundtrack. Choose the highest possible sampling rate and bit depth
from the Sound Format menu (you can always lower the quality later), and check the
Ignore Event Sounds box.

3. Click OK, and Flash exports the sound as a WAV file to the location you specified in
step 1. You now have all the elements you need to produce a video. Later, while
working in Premiere, you will remove your Flash video's original soundtrack and
replace it with this file.

Preparing the Video for Tape
And now, for your next trick… You may feel like a circus performer jumping between so
many different windows, rearranging frames, and setting video compression options. The
process can indeed be a bit crazy, but you are almost finished. This section outlines the steps
involved in using Adobe Premiere to transfer a Flash QuickTime video or AVI to videotape.
The nitty-gritty details of this process go far beyond the scope of this book-there are too many
variables to account for in both the video setup of various computers and the intricacies of
Premiere. What this section will do, however, is give you the basic, core information to get
you started so that you can adapt the ideas to your video equipment and particular projects.

At the time of this writing, Adobe Premiere is in version 6.0. It is a video editing software
package designed to assemble and create professional-quality video pieces using digital video
footage. Premiere cannot record video from the original source, but it can capture recorded
video from a digital video camera or camcorder. Premiere is equipped with an array of editing
tools and effects for creating video shorts or feature-length movies. Once you have finished
editing, Premiere also enables you to release your creation in a variety of formats, including
videotape and various digital video codecs suitable for CD-ROM and Internet delivery.

This section assumes a familiarity with Premiere and its windows and features. If you are new
to Premiere, select Help → Help Topics to access the HTML-based help files.

Importing Flash Components to a Video Editor

The first step is to launch Premiere and start a New Premiere Project. When you first launch
the program, it will prompt you to define your settings in the Load Project Settings dialog
box. You can select from one of the presets if there is an option that suits your needs. Or you
can click Custom to display the New Project Settings dialog box (see Figure 28.12) and start
from scratch.

Figure 28.12: Premier's New Project Settings dialog box allows you to define all the technical
parameters for a video editing project.

1. In the New Project Settings dialog box, use the drop-down menu in the upper left-hand
corner to set the following options for your Premiere project:

General Select an editing mode that will work with your system-either QuickTime, or
Video for Windows. Set a timebase that is either equal to or a multiple of the frame
rate for your video. For Flash animations exported at 12 frames per second, set a
timebase of 24.

Video Select a compressor, color depth, frame size, frame rate, and quality. For
videotape, keep the quality at 100%.

Audio Set the sample rate, bit depth, and compression options for your project's audio
track(s).

Keyframe and Rendering Use this to control the specifics of how Premiere renders
and plays back your video.

Capture This is unnecessary since Flash has already generated your video footage.

2. Click OK to accept the settings you defined and to open the new project file.
3. Save the project.

Once your project has been created, you are ready to start working with the video you
exported from Flash. To do this, you must import the files you need. Unlike Flash, Premiere
doesn't store the files it imports in any kind of Library. When you import a video resource in
Premiere, you are simply noting a path to that file on your computer's hard drive. Premiere
will access the file when it is called upon in your video composition. Otherwise, the file sits
on your hard disk and is never actually a permanent part of the Premiere project file. For this
reason, be sure that you don't delete any source video files that are used in Premiere projects.

To import the video footage you exported from Flash:

1. Select File → Import File.
2. The Import dialog box appears. Use this window to browse to the video source file

you wish to import. When you have found and selected the file, click Open to import
the footage. If you plan to use your Flash footage with other video or audio clips, you

can import multiple clips. Shift+click (Mac) or Ctrl+click (Win) the source video files
to select the ones you need.

3. An icon representing the imported file(s) appears in the Project window.

Once you have imported the video you require, you can begin to build your project.

Assembling Your Animation as a Video Composition

You have defined your project and imported some source footage, and now you are ready to
put the video together. Premiere makes this part of the process very easy. You can assemble
an entire video piece by simply dragging and dropping the clips you need into the Premiere
Timeline. Premiere's Timeline is similar to the Flash Timeline: Once a clip is in the Timeline,
it is officially part of the video project and will appear in the final piece.

To place a video clip in the Premiere Timeline:

1. Select the video clip in the Project window. Your mouse cursor will change from the
pointer to the hand cursor.

2. Drag the clip from the window to the Timeline. Drop it in the Video 1 channel. The
clip should snap into position and align itself at the first possible opening. If the clip
contains audio, you will see its audio track appear directly beneath the clip in the
Audio 1 channel.

 Note If this audio track was carried over from your Flash movie, be sure to delete it,
for it will be drastically distorted in Premiere and will sound horrible in your
final video production.

3. (Optional if your clip includes sound) Click the Toggle Sync Mode button. This
will "unlock" the video and audio components of the files in your Timeline. Once they
are unlocked, select the audio track and press Delete to clear the track from the
Timeline.

4. Import the audio track that you created for your Flash video (if you haven't already). If
you are working on a Mac, this is the track you created using QuickTime Pro. For
Windows users, this is the sound-only WAV version of your movie that you exported
from Flash.

5. Drag the audio track for your Flash movie from the Project window into the Audio 1
channel of Premiere's Timeline. Because this track was "distilled" from your original
Flash movie, it will exactly match the length of the Flash track in the Video 1 channel.

6. Select Timeline → Preview or press Return/Enter to preview the video. Premiere will
do the preview operation and then play the video for you in the Program side of the
Monitor window. This is an essential step. Premiere won't be able to play your video
until it has been previewed.

At this point, you have many options, depending on your specific goals. If you plan to use the
Flash video as a solo piece, your work is finished; you are ready to go to videotape. If you
intend to combine the video with additional footage, keep on going; you can continue to
import clips, drop them in the Timeline, and use the Source window to set any in points or out
points you need to perform video edits.

Exporting and Printing to Video

Premiere allows you to transfer the video you have edited to videotape. This process is called
printing to video. Depending on the equipment you own, it can be done in a variety of ways.
Premiere enables you to play back directly from the Timeline into a camcorder, VCR, or
various DV (digital video) devices. Due to the variety of computer systems, video capture
cards, and so on, discussing the specifics of each scenario is beyond the scope of this book.
But here are some general tips:

Project settings When you play back directly to a VCR or other video device, Premiere uses
the settings defined in the Project Settings dialog box. Make sure that these options afford the
best possible playback on your system.

Lead time Be sure to include either a black matte or color bars at the start of the video. This
allows the playback device to have a chance to establish sync with the tape before playing
your animation. Adobe also recommends a minimum of 30 seconds of color bars and tone if
your project will go out to a postproduction house for duplication.

To print a project to video:

1. Preview your project (Timeline → Preview) if you haven't already done so.
2. Set up your recording equipment and be sure that you have a tape on which to record.
3. Choose File → Export Timeline → Print to Video. The Print to Video dialog box

appears (see Figure 28.13). Specify the following options:

Figure 28.13: The Print to Video dialog box allows you to set options for transferring
your project from digital video to videotape.

o In the Color Bars field, enter the number of seconds for which you would like
to display colored bars.

o In the Play Black field, enter the number of seconds for black matte.
o Choose either Zoom Screen (Mac) or Full Screen (Win) to scale the video to

full size. The Macintosh version allows you to do this using either hardware
(via video capture card) or software.

o Check Loop Playback for continuous video playback.
4. When you have finished, start your recording device and click OK. Premiere will take

care of the rest.

When you are ready to stop playback, press the Escape key, and Premiere will cease video
playback. You should be able to rewind your videotape and view the finished Flash animation
on video. Cool!

Inspirational Design Model
As Flash continues to grow as a multimedia authoring tool, it will start popping up in some
rather unusual and unorthodox places. Given its history, the only place you might expect to
see Flash is the Web, or perhaps a CD-ROM. However, if you live in the U.K., you may have
had the opportunity to see Flash on the telly (that's TV for those of us on the other side of the
Atlantic).

Kerb (www.kerb.co.uk), a new media agency in the U.K. that specializes in all things Flash,
created the first animated television series that was developed entirely in Flash. The series,
Hellz Kitchen (see Figure 28.14), is currently being hosted on the Bravo Network website
(www.bravo.co.uk/toonz/hellz/hellz_archive.html). Hellz Kitchen was commissioned by the
Bravo Network and was scheduled to appear on television in the U.K. in 2001.

Figure 28.14: Hellz Kitchen by Kerb tells the tale of a bunch (pun intended) of criminally
deranged and trigger-happy vegetables.

Summary
This chapter presented several options involving Flash and video. Now that Flash MX
supports both embedded and linked video files, it's possible for you to bring video directly
into a Flash movie. This adds new dimensions to movies and gives you the best of both
worlds: Flash vector images and video raster images. You were also exposed to the process of
taking a vector-based Flash animation, exporting it as a raster-based digital video file, and
transferring the new file to videotape. This process eliminates the interactivity of the Flash
movie but opens the door to an entirely new set of options for displaying or showing your
Flash animations.

Chapter 29: Using Flash for CD-ROM
Development

Overview
One of Flash's greatest strengths is its ability to deliver high-quality audio and animation in a
single, compact file. This characteristic makes Flash ideally suited for the Internet and other
applications in which bandwidth is a major concern. What is often forgotten, though, is that
Flash can also be distributed in ways that are not limited by download-time or plug-in issues.

One of the best ways to distribute your Flash movies is to pass them to your audience on a
CD-ROM as stand-alone or self-contained applications. In this format, Flash can either rely
on the stand-alone Flash Player or be completely independent and run on both Macintosh and
Windows platforms without additional software. Plus, with the capacity of a CD-ROM, you
are able to deliver a greater amount of information without the concerns of bandwidth that
you encounter on the Web.

While no single delivery method can do it all, you will find that each has its particular
advantages and allows you to distribute your movies in new ways that open the door to many
new possibilities.

Stand-Alone Flash Files
Although Flash most commonly appears on the Internet in the context of a website, don't
forget that there are other options that help you to reach your audience. Flash can produce two
types of stand-alone movies that enable you to share your work without requiring that your
audience go to the Web. The first is a standard SWF file. If your audience has the stand-alone
Flash Player application, they will be able to see your movie without the aid of a web
browser. The other type of stand-alone movie is a self-contained Flash projector. This is a
self-running application that allows your movie to run on any computer, whether the Flash
Player is installed or not.

One of the best advantages of both stand-alone options is that you can create all your movies
so that they will run on all platforms. Regardless of the operating system that you use to run
Flash, you'll be able to create final files that match the playback capabilities of your audience.
This characteristic makes Flash one of the most portable multimedia applications currently
available.

Distributing Movies with the Flash Player

The Flash Player application comes with Flash. It can be used to play any SWF file
without the assistance of a web browser. The Flash Player (see Figure 29.1) offers several
menu commands with which you control the playback and appearance of a movie. You can
find the application in the Players folder, inside the folder where Flash resides on your
computer's hard drive. For Macintosh users, the stand-alone player is named SAFlashPlayer;
for Windows folks, it's named SAFlashPlayer.exe.

Figure 29.1: A movie running with the Flash Player application

Since the Flash Player will play any SWF file, it's very easy to distribute your movies in a
compact manner, over a variety of platforms, and with minimal fuss. The average computer
user won't have this application, however. Thus, it isn't the best delivery option if you're
trying to target a large number of people-unless you're sure they all have the Flash Player
application installed (meaning that they already own the Flash authoring application). To
make your movie deliverable to the widest possible audience, use a self-contained Flash
projector.

Delivering Movies as Self-Contained Flash Projectors

Self-contained Flash projectors are quite possibly the best way to distribute your movies
outside the Web. A self-contained projector is an executable file-a self-contained application
that will run your movie just as you created it on either Windows or a Macintosh operating
system. Anyone using Windows or a Mac (which is just about everybody) will be able to see
your Flash masterpiece without the help of any additional software or web-browser plug-in.
Fantastic! Plus, by putting a self-contained projector on a CD-ROM, you're able to hand it out
to fans, clients, customers, students, and so on, in a format that is easily accessible on any
computer with a CD-ROM drive. Figure 29.2 shows a Flash projector in context.

Figure 29.2: A self-contained projector can run in its own window or on the full screen (as
shown here).

Creating Flash Projectors

Creating, or, more appropriately, publishing, a Flash projector is very simple. And, because
Flash allows you to create both Macintosh and Windows projectors, you can take care of
creating both files in a single step. One minor disadvantage is that the self-contained projector
will be a few hundred kilobytes larger than the SWF version of the same movie. This is
because the projector file must contain information necessary for playing your movie using
the resources of the operating system on which the projector is running.

To publish a self-contained Flash projector:

1. When you've finished finished creating the movie, choose File → Save to save it with
any final changes in place.

2. Choose File → Publish Settings. The Publish Settings dialog box appears (see Figure
29.3).

Figure 29.3: The Publish Settings dialog box contains the options for creating self-
contained projectors.

3. Check the box next to Windows Projector or Macintosh Projector depending on what
kind of projector you need to create. Check both boxes if you would like to create both
varieties. You can give each version a name in the adjacent Filename field. Be sure to
leave the .exe suffix on the name of your Windows projector.

4. To finally publish the projector, do one of the following:
o Click the Publish button. This will publish your projector immediately. This

option is helpful if you need to publish several different kinds of movies in one
sitting.

o Click OK to accept the selections you've just made in the Publish Settings
dialog box. Then select File → Publish (Shift+F12) to publish your
projector(s).

The Publishing window appears, showing the progress made toward publishing your
movie. When it is finished, your projector file(s) should be sitting in the same folder as
the Flash file you are currently using.

5. Quit Flash (File → Quit/Exit). After being published, Flash stand-alone projectors are

given a circular icon showing the new Flash MX f . Double-click the

projector's circular icon to launch the self-contained projector application. The file is
now ready to be burned onto a CD-ROM.

Using Flash to Create CD-ROM Interfaces
Although publishing your self-contained projector is the final step of the process, there are
many additional things you can do with your movie to make it look and act more like a self-
sufficient application. With the help of a few ActionScript commands, you can take your
Flash movie and turn it into an independent multimedia production that is controlled in
precisely the ways you define. Not only does this give your piece a more professional look
and feel, but it allows you to set the stage for the ways in which your audience chooses to
view your work.

FSCommands

FSCommands are an element of ActionScript that allow Flash and the Flash Player to
communicate with the application that is hosting your movie. In the context of this chapter,
that application is either the Macintosh or Windows operating system. By issuing
FSCommands in your movie, you can set many different parameters for the movie's
presentation, and the options available to the audience who is viewing it. ActionScript's
FSCommands are as follows:

fullscreen This command takes one of two arguments, true or false. When set to true, the
projector will fill the entire monitor window and display no menu bar at the top of the screen.
When set to false, the projector will appear in a window whose size is set by the dimensions
specified in the Movie Properties dialog box.

allowscale This command, when set to true, allows the movie to stretch to fit the size of the
window (or monitor) playing it. When set to false, the window that contains the movie can be
stretched as needed, but the movie itself will not be scaled.

showmenu When set to true, this command enables the options in the context menu
(Ctrl+click/right-click) for a projector file. These options allow your audience to play, stop,
rewind, zoom, and change the display quality of the projector file. When set to false, all
options are grayed out or removed, with the exception of "About Macromedia Flash Player."

A word of caution: showmenu has been known to behave unpredictably on some operating
systems. Be sure to test your movie on a variety of platforms before distributing it to your
audience.

trapallkeys This command, when set to true, will disable the keyboard. When set to false (the
default), the movie can accept input from the keyboard.

Watch out-by setting trapallkeys to true, you are effectively cutting off the keyboard. If you
do this to prevent nonscripted interaction with your movie, be sure to include a button or other
element with the fscommand("quit") statement, for shutting down the projector.

exec Use the exec command to launch another application from the Flash projector. The new
application will appear over the projector file. The argument for this command is specified as

a string containing either the relative or absolute path to the application you would like to
launch. For example:

on(release){
 fscommand("exec", "Burroughs:Applications (Mac OS 9):SimpleText");
}

This statement shows the absolute path to launch the SimpleText application on a Macintosh
computer. The different components of the path are separated by the colon (:) character.

In Windows, the components are separated with the forward slash (/). For example:

fscommand("exec", "C:/Program Files/Accessories/Wordpad.exe");

quit This command takes no arguments. When it's issued, your computer will close the
projector file.

Concerning syntax, all FSCommands (quit, exec, and so on) and their arguments are entered
as strings. For example:

fscommand ("fullscreen", "true");

This statement sets a projector to play in full-screen mode. The command fullscreen and its
argument true are listed in quotation marks, making each a text string. If you don't enter the
arguments as strings, Flash won't be able to communicate properly with the operating system
and perform the actions you specify.

The best place for FSCommands is in a frame on the main Timeline. Put them in the first
frame of the movie so that they are executed before any other scripts are called. If you place
your FSCommands in your movie's first frame, they will require no handler and will be one of
the first movie parameters loaded into memory.

Letterbox Projectors and CD Interface Elements

Using FSCommands is the first step toward creating a truly unique CD-ROM for your Flash
movie. This section introduces you to a few design-related techniques that you can employ to
create a stylish and functional movie for cross-platform distribution.

The first technique involves creating a letterbox-style projector. Letterbox is a term used to
describe the appearance of a video image. When you go to a movie theater, you see films on a
screen that is quite different from the monitor on your television or computer. Rather than the
standard 4:3 aspect ratio, movie screens have a 16:9 aspect ratio. These screens are much
wider than they are tall and accommodate a broader field of view. Consequently, when studio
films are re-released on video for consumers' televisions and VCRs, they are often modified
to fit the 4:3 aspect ratio.

In some cases, though, this isn't done. To preserve the 16:9 cinematic aspect ratio, videos can
be released in letterbox format. Roughly the top one-third and the bottom one-third of the
screen are left black, and the image fills the entire width of the display. Ultimately, this format
makes the image smaller than if it were in the 4:3 ratio but preserves the original proportions

of the film. Although letterbox is used as a technical convention, it has a very stylish look and
can lend an interesting visual quality to Flash projector files.

Creating the letterbox effect is very simple and involves only a few small modifications to
your movie:

1. Select Modify → Document. The Document Properties dialog box appears. Set your
movie dimensions so that they conform to the 16:9 aspect ratio (such as 320×180 or
640×360).

 Note Changing the movie dimensions of a finished animation often creates problems
with the alignment and position of movie elements. So it's best to adjust the
dimensions before you create the Flash movie.

2. Set the background color of the movie to black, even if you want your movie to have a
different background color. When you create a self-contained projector, the
background color of the movie is used to determine the color of the monitor when you
play the movie in full-screen mode. Click OK to close the Document Properties dialog
box.

3. Create a new layer in your movie and name it letterbox. Drag this layer so that it's at
the bottom of all other layers in the Timeline. Select Insert → New Symbol and create
a new graphic symbol that is a rectangle exactly the same size as your Stage. Make the
rectangle whatever color you want for your movie background. Drag the rectangle
onto the letterbox layer, positioning it in the center of the Stage. Lock the layer once
it's in position.

4. Create another new layer and name it actions. Insert a new keyframe in frame 1 of this
layer, highlight it, and select Window → Actions to display the Actions panel. Enter
the following statements:

5. fscommand ("allowscale", "false");
fscommand ("fullscreen", "true");

The first statement in this script prohibits the movie from being scaled, and preserves
the dimensions set in the movie's properties. To scale the movie so that it fills the
width of the screen, you can set "allowscale" to true, but the letterbox effect is more
dramatic when it is false.

The second statement in the script, sets your projector so that it plays back full-screen-
meaning that it fills the entire monitor, covering the computer's desktop and any
applications that are running. The "fullscreen" statement is crucial to the success of the
letterbox technique, because it uses the background color of your movie (black) to
create the matte that surrounds the 16:9 area of your Stage.

6. Publish your movie as a self-contained projector and see the letterbox effect in
context.

By setting the movie dimensions to a 16:9 ratio, you established the initial effect. The black
background color created the black mask. Then, by using a symbol as a colored backdrop for
the movie, you created the impression that the Stage's color is something other than black.
The size of the backdrop matches your Stage size, and the letterbox effect is complete. See
Figure 29.4 for an illustration.

Figure 29.4: A letterbox projector playing in full-screen mode
 Note This technique treats the rectangular symbol like background scenery in a theater

production. In the same way that a stage crew might change props during a play, you
can change the color or other attributes of the background symbol in your movie.

You can also create custom menus for your movie. Using the button techniques outlined in
Chapter 13, you can create a series of buttons (menu bar) to serve as navigational controls for
your projector. Then, with some basic ActionScript, you can attach commands to the buttons
that will start, stop, rewind, skip, and perform all the necessary behaviors you require for
navigation and other kinds of interactivity. To learn more about actions that allow your
audience to interactively navigate through your movie, see Chapter 12 or the ActionScript
Reference section.

Something interesting that you can do with a menu bar is allow your audience to toggle it off
and on-it's there when they want it, and gone when they don't. This is especially useful for
full-screen projectors, where you don't want a permanent menu or other navigational element
cluttering your screen and distracting from your movie. There are many ways to toggle
something off and on; consider the following example:

onClipEvent(keyDown){
 if(Key.getCode()==Key.SPACE){
 _visible=1;
 }
}
onClipEvent(keyUp){
 if(Key.getCode()==Key.SPACE){
 _visible=0;
 }
}

This script creates a simple toggle behavior for the menu bar Movie Clip to which the script is
attached. Any time a key is pressed, keyDown and keyUp events are generated. The script
tests to see whether the key in question happens to be the spacebar. If it is, then the clip is
shown while the spacebar is down, and hidden when it is up. Of course, while the clip is
visible, all the navigation buttons it contains are available. This allows your audience to
toggle the menu "on" with the spacebar, and then click the buttons within the Movie Clip that
make your movie do whatever it is that the users need to do: rewind, skip to another section,
quit, and so on.

To make the foregoing script work properly, you must set the _visible property for the Movie
Clip equal to 0 (or false) at the outset of the movie. Attach this script to a menu bar Movie
Clip, and you'll be able to use the spacebar to toggle the menu on and off.

 On the CD-ROM To see both the letterbox projector technique and a spacebar menu toggle
in a self-contained projector, see the file projectorDemo (Macintosh) or projectorDemo.exe
(Windows) in the Chapter 29 folder on the companion CD-ROM for this book. To examine
the source file and to witness these scripts in context, see projectorDemo.fla in the same
folder.

Inspirational Design Model
One of the best ways to find the inspiration needed to produce your own CD-ROM is to see
just how easy it is to create the disc. A task that may have once seemed daunting and
mysterious is actually very doable, provided that you have the necessary resources. The
following list provides a good variety of information and advice for all your CD-ROM
burning needs.

www.macdisk.com/cdromen.php3 This Macintosh-focused site provides a great deal of
information about cross-platform CD burning. Windows users can read about MacImage, a
utility used to help produce hybrid CD-ROMs on a PC.

www.roxio.com Roxio is the manufacturer of Toast 5 Titanium, the premiere tool for cross-
platform (hybrid) CD burning in a Macintosh environment. To learn more about using Toast 5
Titanium, see Hands On 8.

www.nero.com Nero is the Windows-compatible CD-burning tool for creating hybrid CDs in
a Windows environment. It's manufactured by Ahead Software. To read more about Nero, see
"Beyond Burning Basics" in Hands On 8.

www.simplythebest.net/info/cdburninfo.html This informational website offers technical
details on the CD-burning process and other related topics.

Summary
This chapter demonstrates Flash as a highly portable application, and shows how easy it is to
distribute your movies in media other than the Internet. You learned how to create a self-
contained Flash projector: an executable file or application that will run your movie on a
Macintosh or Windows-based computer without any additional software. Related to the self-
contained file, ActionScript FSCommands were also introduced in this chapter. These
statements allow you to write scripts that directly communicate between your movie and the
system hosting it.

After you have created your movie and included the commands you need for it to run as a
self-contained file, you're ready to publish your projector(s) and burn a CD-ROM. Hands On
8 will take you through the steps.

Hands On 8: Creating a
Macintosh/Windows Hybrid CD Using
Flash and Toast 5 Titanium
Overview
A hybrid CD-ROM is a CD that can be read by both Macintosh and Windows-based
computers. Technically speaking, it contains HFS formatting for the Macintosh information
and ISO 9660 for DOS/Windows. Most importantly, the hybrid CD specifies which files are
viewable for each platform. The CD will appear on each OS exactly as you specify. Mac users
will see only the Macintosh-based files you want them to see, and Windows users will see
only the files readable by their system. By creating a hybrid CD, you can take both flavors of
a Flash projector and store them in a medium that will deliver your movie to anyone with
either a Macintosh or a Windows system.

This lesson discusses the steps involved in creating a hybrid CD using Roxio Toast 5
Titanium (formerly manufactured by Adaptec, among others). Toast 5 is an excellent
application; we selected it for its ease of use and its ability to handle many of the issues
surrounding multiplatform CDs. The topics in this tutorial are more about cross-platform CD
burning in general than an in-depth discussion of the Toast application. So if you have another
CD-burning application that you prefer, don't worry. The ideas presented here should translate
to your application.

 Note Toast 5 Titanium runs only on Macintosh systems. Windows users can see their cross-
platform CD-burning options in the section "Beyond Burning Basics" at the end of this
tutorial.

To prepare for this tutorial, you should have two Flash self-contained projector files-one for
the Macintosh and one for Windows. If you don't have these files, follow the steps in Chapter
29 for creating Flash projectors. With your completed projector files and a CD-R or CD-RW
in place, you'll be ready to begin.

Phase 1: Preparing Your Files
Begin by launching the Toast 5 Titanium application. It's a good idea to put all your
Macintosh files in a temporary partition on your computer before burning a CD. This allows
the files to be drawn from a clean, unfragmented portion of your hard drive.

To create a temporary partition:

1. Select Utilities → Create Temporary Partition. The Create Temporary Partition dialog
box appears.

2. Give the partition the same name you want the Macintosh CD to bear. Enter a number
in the Size field to set the size of the partition. It should be large enough to hold all the
files you wish to burn. Click OK when you are finished.

The partition appears on your desktop as a small rectangular icon that reads "toast."

With the partition in place, you can put your files in order. Copy all the Macintosh files onto
the new partition. Then, open the partition and arrange the files in the configuration you want
them to have on the CD. You can also set the shape, size, and position of the window this
way. Any changes you make at this stage will set the appearance of the CD when it is opened
from your audience's desktop.

To prepare the Windows files, create a new folder on your desktop, and name it with the title
you want for the Windows version of your CD. Copy the Windows projector (and any other
files you might need) to this location.

You're now ready to organize the disc.

Phase 2: Laying Out the Disc
Your files are organized, and you can now set them up in Toast as a hybrid CD. Move your
mouse cursor over the Other button in the main Toast window. You will see the context menu
icon appear alongside the cursor as though you were performing a Ctrl+click. Click the button
and hold the mouse button down. In the context menu that appears (see Figure H8.1), select
Custom Hybrid.

Figure H8.1: You can access this context menu by holding the mouse button down over
Toast's Other button.

The Custom Hybrid option changes the appearance of the window and shows you two
options: one for Macintosh and one for ISO.

To set the Macintosh data:

1. Click the Select Mac button. The Select Volume dialog box appears. Select the
volume that contains your Macintosh files.

2. If you want the projector (or any other file, for that matter) to launch automatically,
check the AutoStart box (Figure H8.2). In the adjacent field, select the file that you
want to start up automatically, and Toast will take care of the technical stuff.

Figure H8.2: You can choose to have your projector launched automatically.

3. Click OK to finish and return to the main window. You will see the cumulative size of
all Macintosh data in the Mac section of the Toast window. Now, let's move on to the
Windows files.

To select files for the Windows portion of the CD:

1. Click the Select ISO button. The ISO 9660 window appears.
2. Drag the folder containing the Windows files into the main section of the window

labeled with the Files tab. A disc icon appears and shows a hierarchical structure of
the Windows files (see Figure H8.3). If you need to add additional files, simply click
the Add button and browse to the extra files.

Figure H8.3: Windows files added to the hybrid CD

 Note One of the benefits of burning a hybrid CD in this fashion is the ability of the
hybrid format to share common files between the Macintosh and ISO portions of
the disc. Shared files should be copied to the Macintosh partition while you are
preparing the files for your CD (at the outset of the burning process). To share
files, simply drag them from the Macintosh partition to the Files tab of the ISO
9660 window. Toast will label the names of these files in blue so that you can
see they are shared between the two sections of your CD.

3. Click on the Settings tab. Choose Joliet (MS-DOS+Windows) from the Naming menu.
This option allows you to use long filenames (and names with spaces) on the
Windows CD.

4. (Optional) To make a file on the CD launch automatically in Windows, you have to
create a file called autorun.inf. This little file tells the computer to start an application
immediately after reading the contents of the CD. You can create the file using
BBEdit, Notepad, or a similar program that's capable of editing pure ASCII. The text
for the autorun.inf file is as follows:

5. [autorun]
6. open=flashProjector.exe
7. icon=iconGraphic.ico

Replace flashProjector.exe with the name of the file you want to launch. If you would
like the CD itself to have a graphic icon, specify the name of the graphic file in the
second line. Be sure to include the graphic on the CD. After entering these statements,
save the file as autorun.inf and put it with the other Windows files.

8. If you decided to use an autorun.inf file, there is one more step you should take. Click
the Layout tab. Highlight the autorun.inf file and click Move to Top so that the file
will be the first one on the list. This makes it easier for the computer to find the file
when it first reads the contents of the disc.

9. Click the Done button to return to Toast's main window. The total file size of the
Windows data is now listed in the ISO section.

That's it! Your CD has all of its contents, and you should be ready to burn the disc.

Phase 3: Burning and Testing the CD-ROM
At this point, all your files have been collected and assembled in Toast. Let the burning begin!

To burn your hybrid CD:

1. Be sure that you have a recordable disc (either CD-R or CD-RW) in the burner. Click
the red Record button.

2. After a little prep time, the Record dialog box appears. In the Speed menu, select the
speed that works best for your burning device. If you would like to do a test burn, you
can check the Simulation Mode box. Otherwise, click Write Disc, and away it goes.

3. When the disc is finished, Toast will ask if you want to verify the disc. This is
recommended and takes only a little while. When Toast finishes verifying, it will ask
you to eject the disc.

 Note Testing a disc is a crucial part of CD-ROM development. The best way to do this is to
run your CD on as many different machines as possible. As you do this, take note of
how it performs. Do all of the features work? Is there anything that performs sluggishly?
Look for recurring problems and troubleshoot accordingly.

Beyond Burning Basics
Now you know how to create a hybrid CD-ROM that will enable you to distribute your Flash
masterpieces to the far ends of the earth. This tutorial outlined the basic concepts, and here are
a few additional ideas that can help you get the most out of your CD-ROMs:

• Using Windows? Can't find a cross-platform CD-burning solution? You need look no
farther than Nero by Ahead Software (www.nero.com). Nero will run on Windows 95,
98, Me, NT 4, 2000, and XP systems. Furthermore, it supports CD-ROM burning in a
variety of formats, including ISO/HFS hybrid. To create a hybrid CD with Nero, your
PC must be connected to a SCSI hard disk that contains the Macintosh-native, HFS
partition that you wish to write to CD. Visit the Nero website for more information
about system and hardware requirements and the CD/CD-RW burning devices that are
supported.

• Multisession CDs can be used to create cross-platform CD-ROMs. Most burning
applications like Toast can burn multisession discs. This means that only a portion of
the CD is used, leaving room for more data in the future. You can burn two separate
sessions, one for Mac data and one for Windows data. This will achieve similar cross-
platform results.

• Enhanced CDs are CDs that contain both audio and data. You can create an enhanced
CD that is also a hybrid; that's three for the price of one! Burn your audio first as a
session rather than as an entire disc. Then, burn your hybrid data (Flash projectors,
HTML files, and so on) to the same disc. CD audio players cannot detect multiple
sessions, so all they see is the first chunk of information on the disc-your music. But
when you put the disc in a computer, it will be able to see everything and play your
music, animations, and whatever else your audience desires. This technique is

especially helpful for musicians, bands, and multimedia artists who need to distribute
a diverse body of work in a single, compact format.

• AutoStart (Mac) and Autorun (Windows) are features that must be enabled on the host
computer in order for the CD-ROM to function properly. Due to the threat of
computer viruses and worms, it's likely that many people have these options turned off
on their systems. Because there is no way to get around this, it's a good idea to include
some sort of instruction for launching your projector(s) if it isn't handled
automatically.

Part IX: Appendix and Reference
Appendix List
Appendix: Adding Cool Bells and Whistles
Reference: ActionScript Reference

Appendix Overview
In this section, you will find some supplemental information to help you enhance your Flash
and ActionScript skills. The Appendix provides step-by-step instructions for creating
navigational widgets and preloaders. The ActionScript Reference gives you the highlights and
essentials of ActionScript.

Appendix: Adding Cool Bells and Whistles
Overview
On the whole, you can use two strategies when it comes to your Flash learning experience.
First, you could master the hard-core theory and techniques and apply those to forging your
own Flash creations. Alternatively, you could start off by learning how to make specific
things. Through that process, you would learn the theory and techniques needed to go on and
craft your own stuff. Some people prefer to learn in one way; others prefer to learn the other
way. As a result, we've tried to cover both strategies. We've helped you master the theory and
technique behind Flash as well as showing you how to make specific kinds of gadgets.
Unfortunately, as you've probably figured out by now, there is so much you can do with
Flash. As a result, there are some techniques that just didn't fit into any of the chapters.

Never fear, we aren't going to let these fall totally by the wayside. This appendix features
step-by-step tutorials for creating some of the coolest Flash widgets and doohickeys that
didn't quite fit into any one place in the book. Granted, if we were to write a tutorial on every
cool thing you could create in Flash, we'd be sitting at our computers until the next Ice Age
descended. As a result, the appendix itself is populated with selected tutorials.

Building Navigational Widgets

Interactive design of any kind (whether HTML-, Flash-, or CD-ROM-based) either succeeds
or fails based on its navigation. Now, we're not just talking about buttons here-navigation has
as much to do with how you audience moves about your site as it does with how you
represent your content. As a result, efficient navigation can take any form.

So, what's the big deal with efficient navigation? Well, without efficient (and sometimes
innovative) navigation systems, your audience could have trouble locating the information
they're looking for and go elsewhere.

In the following section, you are going to look at how to create several useful navigational
widgets that will ultimately enhance your audience's experience.

Producing a Drop-Down, Drag-Out Menu System

A drop-down, drag-out menu is a commonly used navigation technique that enables you to
conveniently nest a number of different menu items under one button. This is usually how it
works: When the user moves their mouse over a button, a series of additional buttons (usually
stacked vertically) appear. From there, they can move their mouse over and click any of the
newly appeared buttons (let's call them secondary buttons). If the user moves their mouse off
of any of the secondary buttons, they disappear, leaving only the main menu button.

 On the CD-ROM An example of a drop-down, drag-out menu has been included in the
Appendix A directory of the book's CD-ROM (in both SWF and FLA formats).

Creating the Visual Elements

The process by which you create a drop-down, drag-out menu is quite easy. It just takes a
Movie Clip, a number of Button symbols, and some rudimentary ActionScript:

1. Because the menu is a self-contained Movie Clip, the first step is to create the Movie
Clip itself. Go to Insert → New Symbol, click the Movie Clip radio button, enter
menu into the Name field, and click OK.

2. Now, when the Symbol Editor opens, you need to start off by creating the main menu
button-let's call it the primary button. Go to Insert → New Symbol, click the Button
radio button, enter primary menu button into the Name field, and then click OK.

3. Now, when you're dumped into a second Symbol Editor, create a menu button of some
kind. For this tutorial, it might be easiest to create a straightforward rectangular button

like this one:
4. Now, it's time to create the secondary buttons. Go to Insert → Symbol, click the

Button radio button, enter secondary menu button into the Name field, and then click
OK.

5. When the Symbol Editor opens, create the first button (in the vertical stack). Because
of the nature of the menu (something that will be looked at momentarily), it's best to
create a button you can nestle up to the right side of the primary button without any
gaps. This image illustrates what your secondary button should look like in relation to

your primary menu button:
6. Now, repeat the process described in steps 4-5 until you have as many secondary

buttons as you want to appear when the user moves their mouse over the primary
menu button. Remember to give each button a unique name when you create it.

Putting the Visual Elements Together

Now that you've got the primary menu button and all of the secondary buttons created, it's
time to put them together:

1. Switch back to the menu Movie Clip you created at the beginning of this tutorial
(which until now has remained unused). In the first keyframe of the Movie Clip's
single layer (which you should rename to primary menu button), place the primary
menu button.

2. Select the second frame of the primary menu button layer, and insert a frame by going
to Insert → Frame.

3. Add an additional layer (rename it to secondary button 1).
4. Add a keyframe to the second frame of the secondary button 1 layer by going to Insert

→ Keyframe.
5. Select the newly created keyframe, and insert the secondary button symbol. Make sure

the left side of the secondary button symbol is flush with the right side of the primary
menu button symbol that's sitting in the primary menu button layer-as was shown
previously.

6. Now, add a new layer (rename it to secondary button 2), select the second frame, and
add a keyframe.

7. Now, add the next secondary button you created to the second keyframe of the
secondary button 2 layer. Make sure the top of this secondary button is flush (no
overlap) with the bottom of the first secondary button you added.

8. Continue the process of adding additional layers and adding successive secondary
buttons into the layer's second keyframe.

9. At this point, you should have something that looks a little like this:

Creating the ActionScript

Now that you've got all the visual elements in place, it's time to add the ActionScript that will
control the menu system:

1. First, select the primary menu button and open the Actions window (Window →
Actions).

 Note All the ActionScripting described in this tutorial is done in Normal mode. If you
want to do it by hand, feel free to work instead in Expert mode.

2. Add a goto() action (which is located in the Movie Control category). Then, with the
Parameters panel open, and the event section of the script selected in the ActionScript
text box, select Roll Over as the event.

3. Then, select the action line of the script, make sure Frame Number is selected in the
Type drop-down menu, enter 2 into the Frame field, and make sure that the Go to and
Play radio button is selected. This will cause the playhead to jump to frame 2-giving

the appearance that the secondary buttons appear when the user moves their mouse
over the primary menu button.

4. At this point, if you were to test the Movie Clip, you'd see that it loops, making the
secondary button rapidly appear and disappear as the playhead travels from frame 1 to
frame 2 and then back to frame 1. What you need to do is force the Movie Clip to stop
on frame 1 and wait until the user moves their mouse over the primary menu button
(whose action will push the playhead to frame 2-giving the appearance that the
secondary menu buttons appear). You can do this with a simple stop() action. So,
create a new layer in the Movie Clip and call it actions.

5. Select the first (empty) keyframe and open the Actions panel (Window → Actions).
6. Expand the Movie Control category and add a stop() action.
7. Now you need to do the same thing to frame 2 so that the playhead doesn't

automatically flip back to frame 1. Select the second frame in the actions layer, and go
to Insert → Keyframe.

8. Open the Actions panel (Window → Actions) and add a stop() action from the Movie
Control category.

9. At this stage, it's time to create the mechanism by which the secondary menu buttons
disappear if the user moves their mouse away from them. To do this, you are going to
create an invisible rectangular button that will be slightly larger than the entire menu
(with all the secondary buttons visible) to which a simple goto() action will be
attached that will send the playhead back to frame 1-giving the illusion that the
secondary buttons disappear. The button will reside below the entire menu so that it
will be activated when the user moves their mouse off the secondary buttons. To do
this, the first thing you need to do is create the invisible button. Go to Insert → New
Symbol, select the Button option, and enter invisible button into the Name field.

10. When the Symbol Editor opens, select the hit frame, insert a keyframe, and draw a
rectangle that is about 25 pixels larger than the entire menu (with the secondary
buttons visible).

 Note Because the button only has one state (hit)-thereby making it invisible-it doesn't
matter at all what color is used when it's drawn in the Symbol Editor.

11. Return to the menu Movie Clip. Add a new layer, and call it invisible button. Click
and drag the new layer so that it is at the bottom of the layer stack.

12. Select frame 2 of the invisible button layer, and add a keyframe.
13. When the newly created keyframe still selected, click and drag the invisible button

symbol from the Library onto the Stage. Position it so it is directly behind the menu.
When you've done this, the scene should look something like this:

14. Now, you need to add the ActionScript that will push the playhead back to frame 1
(simulating the disappearance of the secondary menu buttons) when the user moves
their mouse off the secondary menu buttons onto the invisible button you've just

added. First, select the invisible button, and then open the Actions window (Window
→ Actions).

15. Add a goto() action. Then, in the Parameters panel with the event section of the script
selected in the ActionScript text box, select Roll Over as the event.

16. Then, select Frame Number from the Type drop-down menu, enter 1 into the Frame
field, and make sure that the Go to and Play radio button is selected.

Congratulations, you've made a simple drop-down, drag-out menu. Go back to the main
Timeline, and drag the menu Movie Clip onto the Stage. To test your creation, go to Control
→ Test Movie.

Making a Draggable Pop-up Window

In HTML-based web design, you can use Dynamic HTML (DHTML) to create a pop-up
browser window whose size you can set. This is handy for providing your users with
information that is far better suited to a small, constrained space that is somewhat tangential.

In Flash, you can simulate the same sort of thing by creating a Movie Clip that appears when
the user clicks a button (or some other element) and whose position can be changed by a
simple click-and-drag movement. The cool thing about doing this sort of thing in Flash is that,
unlike in HTML where the appearance of the pop-up browser window is fixed, you can create
a draggable pop-up window that looks any way you want.

In the following sections, you're going to explore how to create one of these draggable pop-up
windows.

 Note Because the Movie Clip is part of the larger Flash movie, your users won't be able to
drag it outside the confines of the SWF file.

 On the CD-ROM An example of a draggable pop-up window has been included in the
Appendix A directory of the book's CD-ROM (in both SWF and FLA formats).

Creating the Window and Buttons

The first step in the process of creating a draggable pop-up menu is to create the button upon
which the user will need to click to drag the pop-up window around the screen. The look of
this button will be determined by the look of your pop-up window. For the purposes of this
tutorial, you're going to create a simple rectangular button that will be attached to the upper-
right corner of the pop-up window proper:

1. Go to Insert → New Symbol. When the Create New Symbol dialog box opens, make
sure the Button option is selected, enter drag button into the Name field, and click
OK.

2. When the Symbol Editor opens, create a simple rectangular button that looks

something like this:

 Note Although you can incorporate any kind of rollover change to the button, it
certainly isn't necessary for the functionality of the pop-up window.

3. Now that you've created the button upon which the user will click to drag the pop-up
window, it's time to create the window. Go to Insert → New Symbol. When the Create
New Symbol dialog box opens, select the Movie Clip option, enter pop-up window
into the Name field, and click OK.

4. When the Symbol Editor opens, rename the single existing layer window. From here,
select frame 1 (which is automatically a keyframe) of the window layer, and draw the
rectangle that will serve as the window.

5. Now, add a second layer, and call it actions.
6. With the first keyframe of the actions layer selected, open the Actions panel (Window

→ Actions), expand the Movie Control category, and add a stop() action.
7. Now, add an additional layer, and call it drag button.
8. Now, with the first keyframe of the drag button layer selected, move the drag button

symbol from the Library onto the Stage. Position it so that it is sitting just outside the
top-right corner of the window. At this point, the Movie Clip (complete with the pop-
up window and drag button symbols) should look something like this:

 Note Where you position the drag button symbol relative to the pop-up window
symbol is up to you. Remember, however, that it should probably be in close
proximity to the window so that users associate the two.

9. Now it's time to add the ActionScript that will let the user drag the pop-up window
around the screen when they click the drag button. First, select the drag button symbol.
Then open the Actions window by going to Window → Actions.

10. In either Normal or Expert mode (it's up to you), attach the following script to the drag
button:

11. on (press) {
12. startDrag ("");
13. }
14. on (release) {
15. stopDrag ();

}
 Note If you are entering the script in Normal mode, the startDrag() and stopDrag()

actions are located in the Movie Control category.

16. Now that you've created the button by which the user will drag the window around, as
well as the window itself, it's time to create a button that will close down the pop-up
window once it has been opened. First, go to Insert → New Symbol. When the Create
New Symbol dialog box opens, select the Button option, enter close button into the
Name field, and click OK.

17. When the Symbol Editor opens, create the button that the user will click to close the
pop-up window.

18. When you're finished, return to the pop-up window Movie Clip, create a new layer
called close button, select the new layer's first keyframe, and drag the close Button

symbol from the Library onto the Stage. Position it where you'd like it to reside in the
window. At this point, the pop-up window Movie Clip should look something like
this:

 Note As in the case of the drag Button symbol, where you position the close button
symbol relative to the pop-up window symbol is pretty much up to you.
Remember, however, that it should probably be near the window so that users
associate the two.

19. From here, you can add the ActionScript to the button that will close the pop-up
window. First, select the close Button symbol, and then go to Window → Actions.

20. When the Actions window opens, add the following script either in Normal or Expert
mode:

21. on (release) {
22. _root.window._visible = false;

}
 Note Instead of putting false as the value for the _visible property, you can also put 0.

Essentially, this script will set the visibility of the pop-up window Movie Clip to false
(making it invisible) when the user clicks the Close button.

Integrating the Window into Your Movie

Now, your pop-up Movie Clip is pretty much finished. From here, however, you have to
integrate it with the main Timeline. This will include a button (to which some elementary
ActionScript will be attached) on which the user will need to click to make the window "pop
up." Also, you'll need to include some script in the first keyframe of the main Timeline that
will make the pop-up Movie Clip initially invisible-it certainly wouldn't do any good if the
window was already visible before the user clicked the button to make it pop up, now would
it? Follow these steps:

1. First, switch back to the main Timeline. Create a new layer called actions, and add a
stop() action to its first keyframe.

2. Then, go to Insert → New Symbol. When the Create New Symbol dialog box opens,
select the Button option, enter open button in the Name field, and click OK.

3. When the Symbol Editor opens, create the button upon which the user will click to
make the pop-up window "pop up."

4. When you've finished, switch back to the main Timeline. Create a new layer and call it
open button. With the first keyframe of the newly created layer selected, drag the
Open button onto the Stage.

5. When you've got the Open button positioned exactly where you want, you can add the
ActionScript that will make the pop-up window appear. Select the Open button and go
to Window → Actions.

6. When the Actions window opens, add the following script (either in Normal or Expert
mode):

7. on (release) {
8. window._visible = true;
9. }

 Note Instead of putting true as the value for the _visible property, you can also put 1.

10. This script will set the visibility of the pop-up window Movie Clip to true (making it
visible) when the user clicks the Open button.

11. Now, you need to make sure the pop-up window Movie Clip is invisible when the
movie starts playing. To do with, you'll add a simple script to the first keyframe of the
main Timeline. First, select the first keyframe in the actions layer , and go to Window
→ Actions.

12. From here, add the following script above the stop() action you had previously added:

window._visible = false;

13. This script will set the visibility of the pop-up window Movie Clip to false (making it
invisible) when the playhead enters frame 1. From there, it will wait until the user
clicks the Open button-thereby making it appear (pop up).

14. Now that all the necessary ActionScript is in place, it's time to add the last component
to the main Timeline-the pop-up window. To do this, first create a new layer called
pop up window.

15. From here, simply select the first keyframe in the pop-up window layer, and drag the
pop-up window Movie Clip from the Library onto the Stage.

16. Now, for one of the most important parts: You need to give the pop-up window Movie
Clip an instance name. To do this, select the symbol on the Stage, and open the
Property Inspector by going to Window → Properties. Enter window into the Instance
Name field.

Voila! You've now created a draggable pop-up window. To test your amazing creation, go to
Control → Test Movie, and marvel at the power of Flash.

Opening a Local HTML File from a Flash CD-ROM

One of the greatest aspects of Flash development is that the software enables you to create
stand-alone Flash projectors that will run on both Macintosh and Windows platforms. This
feature makes it possible for you to distribute your Flash work via cross-platform or hybrid
CD-ROMs, thereby greatly increasing the scope of Flash projects that you produce. CD-
ROMs afford more storage space for large files and dodge many of the plug-in or connection
speed issues that can be so problematic when trying to deliver Flash content over the Web.

 Note To learn more about Flash and CD-ROM development, see Chapter 29.

When working with Flash to produce a CD-ROM you will find that the process of authoring
your movie is similar to what you do when targeting a production for an Internet audience.
There are a few minor differences, though. You will encounter one difference when trying to
access a local HTML file stored on your CD-ROM. If your Flash movie contains certain
content that is best displayed in a web browser, all you need to do is ask Flash to target the
URL and it will open the file in a browser window. The problem when it comes to CD-ROM
development is that Flash is geared to do this in a web environment, not from a local

computer. The getURL() action that works so well on the Web is comparatively crippled
when working with local files on a CD-ROM. If you have ever tried this, you are likely to be
acquainted with an error message.

Another difference with CD-ROM development is that when Flash is on the Internet, your
SWF movie will generally be stored in the same place, and by pointing to a particular URL,
you can direct your audience to the movie you want to present. Unfortunately, this is not the
case with CD-ROM delivery. Every computer and every CD-ROM drive is different. For
Macintoshes, users can name their hard drives. The default Macintosh HD name that ships
with a new G4 or iMac is not guaranteed to be the name of the computer. For Windows, this
is equally complicated. CD-ROM drives are named with letters and vary greatly from one
system to the next. One solution would be to hard-code the path, as in:

getURL("file:///Macintosh%20HD/Desktop%20Folder/FlashCD/index.html");

This works great-for one computer. Obviously if you are going to distribute your work to a
large audience it is essential to make sure everyone can access the local HTML files you need
to include with your project. To do this, you must be able to retrieve the absolute path to the
file you want to display. That way, no matter which computer plays your disc, regardless of
how it is set up, your movie will be able to find the correct files on the CD-ROM. Therefore,
in the world of CD-ROM development, an absolute path is crucial to the creation of an error-
free disc. The reason is that all files for the project are generally stored on the CD-ROM. If
you can point the movie to the root directory of the CD-ROM, finding any supporting or
related files is easy. This is because the hierarchy of the CD-ROM does not change; once the
disc is burned, it is final. The different configurations of your audiences' computers are not,
however, and that's why you need the absolute path.

Retrieving an Absolute Path

To retrieve the absolute path, you can write a function. This way, anytime you need to get the
path, the function can do the work for you. Here's how:

1. Create a new movie (File→ New). Save the file and name it HTML_Launcher. Click
the empty keyframe at frame 1, Layer 1 and choose Window → Actions. Enter the
following statement:

2. trace(_url);

Select Control → Test Movie. The Output window spits out a long string of
information. This is the absolute path to the file HTML_Launcher. The _url property
returns the absolute path to the SWF file as a string. Notice that the phrase
HTML%5Flauncher.swf is written at the end of the URL string. Where this is the
name of file itself, everything that comes before it is the absolute path that gets you to
the file.

 Note The character sequence %5F is the URL-encoded equivalent of the underscore
character (_). When Flash deals with URLs, all information is encoded in this

fashion. To learn more about working with encoded strings see the escape() and
unescape() functions in Flash MX's Reference panel.

3. Now that you have retrieved a URL for the movie, you have something with which to
work. The idea is that if you can get to the location of the movie, then you should be
able to find all of its associated files.

Return to the Actions panel where you entered the trace() action earlier, delete it, and
enter the following statements:

function moviePath(){
 var lastSlash=_url.lastIndexOf("/");
 var path=_url.substring(0,lastSlash+1);
 return path;
}

This function will return the absolute path of the folder where the movie
HTML_Launcher resides. Now that you have seen the ActionScript that will do this,
you can examine it in detail:

o The first line declares the function under the name moviePath(). This particular
function requires no arguments, so the parentheses that follow it are blank.

o The second line initializes the variable lastSlash. The string method
lastIndexOf stores the position of the last occurrence of the slash character (/)
as it appears in the URL to this movie.

o The third line initializes the variable path. The method subString() creates a
new string based on the movie's URL. This new string starts from the
beginning of the URL, at position 0, and ends at the last occurrence of the slash
character plus 1. The +1 expression ensures that the slash will be included in
the new string path. If the slash were not included, the path would not list the
URL to the movie location properly.

o The return statement in the fourth line allows your function to pass the string
contained in the path variable to other parts of your movie.

Now that the function is in place, you can call it from any location in your movie. It is
important to note that the function is located in frame 1, Scene 1 of the movie. This makes the
function one of the first things that Flash will read as it starts to play the movie, thus making it
accessible at anytime throughout the movie's playback.

Launching the External HTML File

 On the CD-ROM Before you can continue with this lesson you need to prepare a few
things. First, go to the Appendix A folder in this book's CD-ROM and copy the file
loadExternal.html to the same location where HTML_Launcher resides. Alternately, you can
create your own HTML document if you prefer. In any case, this will simulate having a local
HTML file on CD-ROM for the time being. Also, you will need to create a button. The look
and feel of the button is up to you. Once those tasks are complete, you can continue:

1. Drag your button to the Stage. Select the button and choose Window → Actions to
display the Actions panel. Enter the following statements in the panel:

2. on(release){

3. var link=_root.moviePath():
4. getURL(link+"loadExternal.html");

}

These statements are what call the function and execute the action to launch the
HTML file. The variable link calls the custom function moviePath() and stores its
value: the absolute path to your movie. Because the function was created on the main
Timeline, the _root reference is included to properly target the function. Then the
getURL() action opens the HTML file. It concatenates the path (stored in link) with
the name of HTML file. getURL() accepts its arguments as string data. Because the
link variable already contains string information from the moviePath() function, it is
easily joined with the name of the HTML file to create a path that points directly to
that file.

5. Save the movie and select Control → Test Movie. Click the button and watch the
HTML file open in your computer's default browser!

6. To test and see how flexible this is, try the following experiment: Quit Flash and
navigate to the folder where your movie and the HTML file are saved. Copy or move
HTML_Launcher.swf and loadExternal.html together to a different location. Open the
SWF movie, click the button, and see what happens. Because the ActionScript you
wrote will dynamically generate an absolute path for the location of the movie, you
can run it from anywhere! This should illustrate the effectiveness of the function.
Because the _url property will always tell you the location of the movie, you can strip
the filename from the end of the URL and use the absolute path to access supporting
files, other movies, and so on.

The important thing to remember is that this function will get you to the folder where the
main movie resides. From there, it is up to you to point to the correct file. For example, if
your movie were in the root directory of a CD-ROM and your HTML files were in a subfolder
named webDocs, you would have to change your script a bit. The new script would read:

getURL(link+"webDocs/loadExternal.html");

The actions attached to the button must reflect the correct path to the file. However, because
the location of files on the CD-ROM cannot be changed once the disc is burned, you are safe
with a hard-coded path like this. As long as you correctly enter the paths in your ActionScript,
you will always be able to access the files you need.

 New to MX Although this rendition of the lesson was geared toward loading an external
HTML file, Flash MX now supports several different kinds of external media. It is now
possible to load JPEG images and MP3 sounds directly into your Flash movies from an
external location. Use the techniques described in this section to ensure your movie is always
able to locate the directory where these external files are saved. For example:

var photo=root.moviePath();
loadMovie(photo+"loader_images/image1.jpg","frame");

Here, the moviePath() function is called and stored in the variable photo. The resulting path is
plugged into the loadMovie() action, where files in the folder loader_images are imported and
loaded into the clip instance named frame. To read more about loading JPEG images from an
external location, see Chapter 17; to read about loading external MP3 files, see Chapter 22.

Using Preloaders to Enhance Your Audience's Experience
As Flash has grown in complexity, so have the files that it produces. In fact, Flash movies can
now be far too bandwidth intensive to play immediately. As a result, a device called a
preloader has come into widespread use. Essentially, a preloader is a small animation that
plays while your movie is loaded. When the process is finished, the preloader stops and the
main movie begins playing. So, a preloader gives your audience something to watch while the
main movie loads. Otherwise, they would be stuck staring at a blank screen in their browser
window (something that can easily be mistaken for a computer crash) while your movie loads.

Generally speaking, there are two kinds of preloaders: simple and complex. A simple
preloader features a looping animation that plays repeatedly, giving no indication as to the
portion of the movie left to load. A complex preloader, on the other hand, not only features a
looping animation of some sort but also contains a dynamic indication of the amount of the
movie that has loaded—like a loader bar or a percentage indication.

In this section, you are going to create both a simple and a complex preloader.

Creating a Simple Preloader

The simple preloader, which features a straightforward looping animation, is the easiest way
to entertain your viewers while your main movie loads.

 Note Because the preloader animation plays while the main movie is loading, it must be small
enough (in terms of file size) to download and play immediately. If not, your audience
will have to wait for the preloader to load—which defeats its purpose.

 On the CD-ROM An example of a simple preloader has been included in the Appendix A
directory of the book's CD-ROM (in both SWF and FLA formats).

The process by which you create a simple preloader involves using a Movie Clip and some
relatively straightforward ActionScript:

1. First, make sure the movie to which you want to add the preloader is open.
2. Open the Scene panel by going to Window → Scene. (For the purposes of this tutorial,

we'll assume your entire movie resides in a single scene.)
3. Now, rename the existing scene to main movie.
4. Before you continue, select the final frame in your main movie, open the Property

Inspector (Window → Properties), and enter final into the Label field. The reason for
this will become apparent a number of steps down the line.

5. Now, add a second scene (by clicking the Add Scene button) called preloader. Make
sure the preloader scene is above the main movie scene in the Scene panel.

6. Select the preloader scene.
7. Select the single layer (Layer 1), and rename it to actions.
8. Select frame 5 in the newly named actions layer, and enter a keyframe by going to

Insert → Keyframe.
9. With the newly created blank keyframe selected, and the keyframe still selected, open

the Property Inspector (Window → Properties).
10. Enter check into the Label field.

11. Now, select frame 10 in the actions layer and add another keyframe.
12. With the Property Inspector, add the label loop to the newly created keyframe.
13. Select frame 5 (check), and open the Actions panel (Window → Actions).
14. Make sure you're in Expert mode (which can be accessed by selecting Expert Mode

from the Actions panel's View Options drop-down menu). Now, enter the following
script into the ActionScript text box:

15. if (_framesloaded<_totalframes) {
16. gotoAndPlay("loop");
17. } else {
18. gotoAndPlay("main movie", 1);

}

Essentially, this script will check the number of frames loaded against the total frames
in the movie. If the total number of frames loaded at the point that the script executes
is less than the total number of frames in the movie, the playhead will go back to the
loop frame. On the other hand, if the total number of frames loaded at the point that
the script executes is equal to the total number of frames in the movie, the playhead
will skip to frame 1 in the main movie scene.

19. Now it's time to insert the necessary ActionScript that will make sure the movie will
continue to recheck whether the main movie has loaded (after the initial check). First,
select frame 10 (loop).

20. Open the Actions panel, expand the Movie Control category, and add a goto() action
to the ActionScript text box.

21. In the Parameters pane, select <current scene> from the Scene drop-down menu, select
Frame Number from the Type drop-down menu, enter 1 into the Frame field, and
make sure the Go to and Play radio button is selected. By doing this, the movie will
automatically jump back to the first frame in the movie. From there, the playhead will
progress to frame 5 and reexecute the script that checks to see if all the frames have
been loaded.

22. Now that you've got the necessary scripts set up that will check whether the main
movie has loaded, you need to add the actual looping animation that will entertain
your audience while the ActionScript is doing its thing.

23. Create a Movie Clip of a simple animation. For example, you could create an
animation of the word Loading that fades in and out. The only real limitations you
have (beyond your own design constraints) is that the Movie Clip must be small
enough (in terms of file size) that it will load and play immediately.

 Note You probably want to craft your preloader animation so that it will loop
smoothly (without any jumps as it reaches the final frame and returns to the first
frame).

24. Now, return to the main Timeline in the preloader scene.
25. Create a new layer and call it preloader animation.
26. Click and drag the preloader animation layer so that it is below the actions layer.
27. Now, with the first keyframe in the preloader animation layer selected, click and drag

your animation Movie Clip from the Library onto the Stage. From here, you can
position it exactly where you want.

28. The final thing that you need to do is add a stop() action to the final keyframe of the
main movie scene so that, once it plays through, the playhead won't go back to frame 1

in the first scene (the preloader scene). To do this, switch to the main movie scene.
Add a new layer and call it actions.

29. Select the first keyframe in the newly created actions layer, open the Actions panel
(Window → Actions), expand the Movie Control category, and add a stop() action to
the ActionScript text box.

Congratulations—you've just created a simple preloader. The Movie Clip will continue to
loop while the movie checks (and, if necessary, rechecks) whether all the frames in the main
movie scene have loaded.

 Note Because you are running the entire movie off your hard drive, you'll find that the main
movie scene will load almost instantaneously, and therefore the preloader animation will
barely play. If you want to actually see your preloader in action, test your movie
(Control → Test Movie) and then go to View → Bandwidth Profiler. From here choose
View → Show Streaming. This will simulate the movie as if it were streamed.
Remember, you can choose the speed of the simulated modem from the View menu
while you are testing the movie.

Creating a Complex Preloader

A simple preloader is fine if you want to provide minimum feedback to your audience while
your main movie is loading. But let's face it, a simple looping animation can get pretty boring
if the user has absolutely no clue as to the amount of the movie that has loaded (or what is left
to load). This is where a complex preloader comes in. When you create a complex preloader,
you create a dynamic animation that changes based on the amount of the movie that has
loaded.

There are lots of different ways to create a complex preloader. In this tutorial, you are going
to learn how to create a preloader in which a hollow horizontal bar gradually fills as the movie
loads.

 On the CD-ROM An example of a complex preloader has been included in the Appendix
A directory of the book's CD-ROM (in both SWF and FLA formats).

 Note The preloader created in this tutorial is not what you might expect. Instead of filling
from left to right, it actually starts, out in the center and fills outward both to the left and
to the right. The reasons for the difference are purely aesthetic. There are so many
preloader bars out there that fill from left to right that you'll attract with something a
little out of the ordinary.

In this tutorial, you'll be employing the extremely useful getBytesLoaded and getBytesTotal
methods to determine the amount of your movie that's loaded and to drive the progress of
actual load bar animation:

1. With the movie open in which you want to add a preloader, create a new scene (before
the actual movie proper), and call it preloader.

2. Now, create a Movie Clip called preloader bar by going to Insert → New Symbol,
selecting the Movie Clip radio button, entering the name into the Name field, and
clicking OK.

3. When the Symbol Editor opens, draw a filled horizontal rectangle. Ultimately, the
rectangle will act as the actual preloader bar. As a result, you'll probably want to make
sure it's long—say 5 centimeters (2 inches)—and thin.

 Note Don't group the preloader bar symbol's stroke and fill.

4. Now, open the Library (Window → Library), select the preloader bar Movie Clip, and
duplicate it (by choosing Duplicate from the Library Options drop-down menu).

5. When the Duplicate Symbol dialog box opens, enter preloader bar outline into the
Name field, and click OK.

6. Next, open the preloader bar outline Movie Clip by either double-clicking it in the
Library or choosing it from the Edit Symbols drop-down menu located in the Scene
and Symbol bar (located in the top-right corner of your screen).

7. Select the preloader bar outline symbol's fill and delete it. When you do this, you'll be
left with an empty outline.

8. Now, switch back to the preloader bar Movie Clip. First, change the name of the layer
with the horizontal rectangle to bar. Then, add a second keyframe in frame 2.

9. Add a new layer and change its name to actions.
10. In Expert mode, attach the following script to the first keyframe of the actions layer:
11. setProperty (this, _xscale, (_root.getBytesLoaded() /

_root.getBytesTotal()*100));

12. Essentially, this script checks the percentage of the movie that has loaded (by dividing
the movie's total bytes by the bytes that have already loaded).

13. Now, switch back to the main Timeline. Rename the existing layer loader, and add an
additional layer called actions.

14. With the first keyframe of the loader layer selected, drag the preloader bar outline
Movie Clip onto the Stage. Use the Align panel (Window → Align) to align it
horizontally/center and vertically/center to the Stage. By doing this, the preloader bar
outline symbol will be placed in the middle of the Stage.

15. Select the second frame in the loader layer, and go to Insert → Keyframe.
16. Now, with the second keyframe of the loader layer still selected, drag the preloader

bar Movie Clip onto the Stage. Use the Align panel to align it horizontally/center and
vertically/center to the Stage. By doing this, you not only stick the symbol in the
middle of the Stage, but you also place it in the same space as the preloader bar outline
symbol—which is absolutely vital!

17. OK, now that you've placed the various preloader bar graphics, it's time to create the
script that checks to see if all the frames in the main movie have loaded. Using Expert
mode, attach the following script to the second keyframe in the actions layer:

18. if (_root.getBytesLoaded() != _root.getBytesTotal()) {
19. gotoAndPlay (2);
20. }
21. else {
22. gotoAndPlay ("intro", 1);

}

23. Basically, this script forces the movie to stay in frame 2 (and continually run and rerun
the script) if the amount of bytes does not equal the total bytes of the main movie.
Now, if the amount of bytes loaded does equal the main movie's total amount of bytes,
the script makes the movie jump forward to the main movie.

 Note In this example, the gotoAndPlay() action references the first frame in a scene
called intro. When it comes to making your own preloader, you'll need to enter
the name of the second scene in your movie (which contains the main movie
itself that needs to be preloaded) instead of intro.

24. Now, test your movie by going to Control → Test Movie. As was the case of the
simple preloader you created earlier, because you are running the entire movie off
your hard drive, you'll find that the main movie scene will load almost
instantaneously, and therefore the preloader animation will barely play. If you want to
actually see your preloader in action, go to View → Bandwidth Profiler. From here
choose View → Show Streaming. This will simulate the movie as if it were being
streamed.

Using an Array to Create a Dynamic Greeting
One of the most useful aspects of ActionScript is that you can use it to make your movie less
predictable. Rather than have text and graphics appear in the same place, at the same time,
and in the same color with each repeated visit to your website, you can pleasantly surprise
your audience with a little variety. In this section you will learn how to use ActionScript to
create a simple array that displays a different greeting each time someone navigates to the
home page of a website or interactive interface.

An array is an informational structure organized into compartments, with each compartment
holding a piece (or pieces) of information. An array is like a dresser (bureau, wardrobe, chest
of drawers, or whatever you'd like to call it). It is one large structure that holds containers (the
drawers). Each container can then hold information (the clothing). For example, a dresser has
drawers for socks, underwear, T-shirts, and sweaters. Each drawer is a discreet location for
each article of clothing. An array works in much the same way. Where a dresser has drawers,
an array has slots; each slot can contain a piece of information: a string, a number, a variable,
or even another array. And because an array is a single item, wherever it goes, it carries with
it all of the information it contains. This makes it much easier to move information around as
a group rather than as individual pieces. So, in a nutshell, arrays make it easier to store and
work with collections of information because they keep their contents neat and organized.

The variety of applications for arrays is almost dizzying. In fact, the usefulness of arrays
could fill not one but several books! This section shows you how to create an array in
ActionScript and use it to affect some interesting and dynamic changes in a Flash movie.

 On the CD-ROM To complete this exercise, you will need to retrieve some files from this
book's CD-ROM. Go to the Appendix A directory and copy the entire ARRAY folder onto
your computer's desktop. This project requires several SWF files. It simulates the interactive
interface or website for an international club or cultural service organization. You will make
changes to this project so that every time a visitor goes to the first section of the movie, a new
translation of hello is displayed in the upper-left corner of the movie. Open the file
international_club.fla and select Control → Test Movie. As you click the buttons that line the
bottom of the movie, you will notice that different words appear at the top. However, when
you click the yellow button to return to the first section, Greeting, you see no text at all. This
is where you will create your array.

To create an array that displays a greeting:

1. Open banner.fla included the ARRAY folder. At this point the entire ARRAY folder
should be saved on your computer. Click the middle of the Stage. If it is not open
already, press Cmd/Ctrl+F3 to open the Property Inspector. You will notice that what
you clicked is not the Stage, but a Movie Clip instance named text_clip. You will
create your array in a script attached to this Movie Clip.

2. With the Movie Clip still selected, choose Window → Actions to open the Actions
panel.

3. Enter the following statements:
4. onClipEvent(load){
5. greeting=new Array();

}

This script creates a new array named greeting when the Movie Clip is loaded onto the
Stage.

6. Click after the semicolon character to start a new line and type:

greeting[0]="Hello!";

The script should now read:

onClipEvent(load){
 greeting=new Array();
 greeting[0]="Hello!";
}

This line is very important. It creates the first slot in your array and stores in it the
string Hello! Arrays identify their slots with numbers, and they start counting at 0.

7. You can now add a few more slots to your array and fill each with another new string:
8. onClipEvent(load){
9. greeting=new Array();
10. greeting[0]="Hello!";
11. greeting[1]="Bonjour!";
12. greeting[2]="Hola!";

}

13. The greeting array has a more international flavor now. By adding strings in slots 1
and 2, the array now contains a grand total of three slots: 0, 1, and 2.

14. Now that the array has a few items, you can put them to use. Click after the last
semicolon, press Return/Enter, and add the following statements:

15. choice=Math.floor(Math.random()*greeting.length);
text=greeting[choice];

These lines should fall between the line that contains Hola! and the last curly brace.

So what do these statements do? Good question; actually they are some of the most
important in the entire movie:

o choice is a variable that stores a random number generated by the expression
on the other side of the assignment operator (=). The random number will
always be between 0 and the last number in the array.

o The length() method (part of ActionScript's array object) retrieves the length
of, or number of items in, an array. This number is multiplied by a random
number in the range of 0 to .999… and then rounded down to the next-lower
integer. Given the current length of the array, this will always be an integer
between 0 and 2. That information is used in the next line.

o With the help of the array access operator, the array item stored in slot choice
is retrieved from the greeting array and plugged into the variable text. For
example, if choice is 2, the variable text will be set to the value of the greeting
array's slot 2, or Hola! Of course the variable text is used for the text field
inside the banner Movie Clip. Whatever value is stored in text will appear in
the text field; in this case, it's Hola!

16. Take the opportunity to test this. Select Control → Test Movie. The movie will appear
on your screen and display one of the three greetings in the array. Close the movie and
test it again. You have a one-in-three chance of seeing the same thing; though,
hopefully you'll see a different greeting this time. If you don't believe it, test your
movie over and over. Each time you are likely to see a different greeting appear on
your screen.

17. Add a few more lines to your script. The final script should look like Figure A.1.

Figure A.1: The final script increases the number of international greetings to eight.

18. Save your movie and test it again. If you repeat the testing process several times, you
will see a greater variety of greetings. This script still works even though the size of
the array has more than doubled. Why? Because you are using the item count or length
property of the array to set the bounds for your selection. As the slots in the array
increase, so does the range of numbers it has to choose from when this script makes its
random selection.

19. To test this movie in context, close the banner.fla file and open international_club.swf.
Select Control → Test Movie and navigate to the various sections of this movie. Be
sure to click the yellow greeting button frequently. Notice that each time this button is
clicked a new greeting appears. This works because banner.swf is being loaded at
_level1 of the Flash Player. Each time the movie is loaded, the Movie Clip with your

array script is also loaded, thereby creating the array, making a greeting choice, and
printing it to the text field.

To see some of the other little scripting tricks going on with this movie, look at the scripts
attached to the brown, red, and green buttons on the Timeline of the international_club.fla
file.

Reference: ActionScript Reference
Overview
Welcome to the ActionScript Reference section. This section is unlike any other throughout
the rest of the book, but we hope you'll find it just as useful. Rather than present information
in a step-by-step fashion, we've intended this reference to be used on an "as-needed" basis. If
there is a term you want to use but are unsure of the syntax, or if you want to do something
but are not certain which ActionScript elements will be most useful, this is the section for
you.This section is organized by category of the ActionScript language:

Actions The built-in commands of ActionScript. You use actions for navigation and Timeline
control.

Functions Information processors that perform common tasks.

Properties Terms that set and retrieve the attributes of Timelines, Buttons, and Movie Clips.

Operators Used to evaluate and change the value of expressions.

Object and Timeline References Terms that allow you to target and define and the scope of
elements in your movies.

Predefined Objects Used to manipulate the data associated with Flash's built-in objects
(MovieClip, Sound, Color, and so on).

If you aren't sure how to find a particular term, this organization will prove to be most helpful.
Think about what it is you want to do; do you want to change the way something looks? Then
perhaps you will find it in the "Properties" section. Are you interested in controlling the
playback of a Timeline? See the "Actions" section. Conversely, there may be times when you
know the term but are unsure the category to which it belongs. You can overcome this easily.
If you wanted to find the entry for startDrag(), for instance, where would you begin to look?
Well, startDrag() controls the drag-and-drop ability of Movie Clips. This is a type of Timeline
control, so "Actions" would be the category to check. Once you have narrowed things down
to a particular category, entries are listed alphabetically.

This is not a complete ActionScript reference. ActionScript was a big language before the
release of Flash MX, and it is even larger now given all of the program's enhancements. A
truly complete reference would probably use more pages than this entire book. What you will
find here is a guide to terms we have deemed to be the essential elements of the ActionScript
language. These are the terms that, if you had to pack your "ActionScript suitcase" to live

abroad for a year, you would take with you. It's not everything, but it includes the things you
can't do without.

Sample Entry
The key to getting the most out of this section is understanding how each entry is constructed.
This section describes a sample entry.

Title and Version (1+, 2+, 3+, 4+, 5+, 6)

Components:

term(argument,"stringArgument")
argumentObject.term

Each term is listed in this regular, sans-serif type, while any arguments you must specify are
in sans-serif italics. Any arguments that must be specified as strings appear in quotes.

Example:

This section is not listed for each entry. In some cases, it is not needed because the term is
self-explanatory. For others, there are so many examples throughout the rest of the book,
another example seems like overkill. For many entries, however, this section presents a
contextual example of the term in action. Feel free to use this code in your own movies.
Expand it, change it, tear it to pieces, do whatever you need to do to get things running
properly.

For some entries, there is not enough room to print parts of the script on a single line. In these
cases, the character will be used to show you that the code should continue on the same line
but can't because of the size limitations of this book's pages.

Actions
Actions are the built-in commands of ActionScript. Use actions to create conditional
statements and loop routines and to direct the performance and playback of a Flash movie.

break (4+)

Components:

break

This action works within a loop and causes a script to jump out of the loop to the first
statement after the loop when the action is encountered. This action is helpful if you would
like to exit a loop before it has finished.

Example:

onClipEvent(load){
 taxRate=.0875;

 grandTotal=subTotal*taxRate;
 for(i=1;i<10;i++){
 if(eval("_root.selQty"+i)==0){
 this.attachMovie("alertClip",
 "alert",1);
 break;
 }
 totalQty+=eval("_root.selQty"+i);
 }
}

The loop in this script uses break to jump out of the loop and creates a new instance of the
clip alertClip if any of the variables named selQty1, selQty2...selQty9 are equal to zero. In
practical application, the alertClip would be some sort of alert box informing the audience that
there is a problem with how they entered data and telling them how to remedy the situation.
break is placed carefully within the script. It causes the script to cease before the crucial
statement updating the totalQty variable is executed. And it is called after the alert clip has
been attached. See also the continue action.

continue (4+)

Components:

continue

This statement disrupts the current flow of a loop. However, unlike break, the loop is not
abandoned entirely; continue resumes with the next iteration of the loop. continue behaves
differently depending on the kind of loop statement. In a while or do...while loop, the loop
condition is checked before the loop resumes. In a for loop, the loop count is incremented and
then the loop condition is checked. In a for...in loop, the loop resumes with the next property.
To avoid errors, pay close attention to the flow of your loop statement when using continue.

Example:

onClipEvent(load){
 taxRate=.0875;
 grandTotal=subTotal*taxRate;
 for(i=1;i<10;i++){
 if(eval("_root.selQty"+i)==0){
 continue;
 }
 totalQty+=eval("_root.selQty"+i);
 }
}

The loop in this script uses continue to jump out of the loop and resume iterations if any of the
variables named selQty1, selQty2...selQty9 are equal to zero. See also the break action.

do…while (4+)

Components:

do{
 statements;

} while(condition);

This loop syntax executes the statements and then checks the condition. The loop repeats in
this fashion for as long as the condition is true. The syntax of the do…while loop ensures that
the statements will be executed at least once before the condition is tested.

Example:

x=0;
trace("the first 10 integers are:");
do{
 trace(x);
 x++
}while(x<10);

This script prints the phrase the first 10 integers are: followed by the numbers 0 1 2 3 4 5 6 7
8 9. The 11th time through the loop, x equals 10. Because 10 is not less than 10, the condition
evaluates false and the loop ceases.

duplicateMovieClip (4+)

Components:

duplicateMovieClip("target","instance",depth)

The duplicateMovieClip() action copies an instance of a Movie Clip. The action takes three
arguments: target, the name of the instance to be duplicated entered as a string; instance, the
name (also a string) assigned to the new duplicate; and depth, the clip layer where the
duplicate is to be placed. The depth argument does not assign a movie _level for the new clip,
but rather an internal depth (stacking level) in relation to the target clip. If, for example, the
target clip is at a depth of 1, a duplicate can be placed below it at depth 0, or above it at depth
2. Internal depths are like virtual layers in the Timeline that host the clips. Clips with higher
depth numbers will cover, or appear to be on top of, clips at a lower depth. Duplicated clips
inherit the properties of the target clip but do not inherit any variables from the target
Timeline. You can delete a duplicate clip with the removeMovieclip() action.

for (5+)

Components:

for(initialize;condition;increment){
 statement(s);
}

The for action offers a compact alternative to the while loop syntax. Rather than use two
additional lines to initialize a variable and increment the loop, a for loop places all elements of
the loop syntax on a single line. The initialize argument sets an initial value for the loop
counter variable; condition defines the condition that must evaluate as true for the loop to
continue executing; and increment updates the counter variable. For as many times as
condition is true, the loop will cause the statement(s) argument to execute.

After executing statement(s), the for loop is updated before its condition is retested. If you
require the loop to have multiple variables (that is, more than one counter or updater),
separate them with commas.

Example:

The following two loops are equivalent; each will execute until both hi and lo equal 5. Notice
how the for syntax is much more economical:

for(hi=10,lo=0;hi!=lo;hi--,lo++){
 trace("hi: "+hi);
 trace("lo: "+lo);
}

hi=10;
lo=0;
while(hi!=lo){
 trace("hi: "+hi);
 trace("lo: "+lo);
 hi--;
 lo++;
}

for...in (5+)

Components:

for(variable in object){
 statement(s);
}

The for…in loop structure performs actions or executes statement(s) over a series of
properties belonging to an object or an array. The loop executes statement(s) for each property
(stored in variable) that exists in the specified object. Use this action to cycle through the
properties of an object and to either set, update, or retrieve information.

Example:

for(item in _level0){
 clip=_root[item];
 if(typeof clip=="movieclip"){
 trace("path: "+targetPath(clip));
 // actions to prep clips, etc...
 }
}

This series of statements checks all elements of the _root Timeline. If an element is a Movie
Clip, its target path is printed to the Output window. Additionally, you can use this as a
"housekeeping" script to perform other actions with each Movie Clip, such as set its X and Y
coordinates, visibility, and so on.

fscommand (3+)

Components:

fscommand("command","arguments")

Use fscommand to communicate with the application hosting a Flash movie. fscommand
facilitates interaction between a movie and the stand-alone Flash Player. To read more about
how fscommand can add to your stand-alone projectors, see Chapter 29. This term can also
facilitate communication between a movie and a web browser via JavaScript or VBScript
commands.

function (5+)

Components:

function funName(arg1,arg2...argX){
 statement(s);
}

The function action constructs functions. A function is a data processing routine that can be
performed many times. Use functions to create custom routines that do common or repetitive
tasks in your movies. To create a function, you must specify a name for it (funName) and a
job for it to perform (statement(s)). Optionally, you can specify arguments if they are
necessary to pass parameters to the function.

Example:

A simple function requires no arguments. The following function sends the main Timeline
back to its beginning when invoked:

function rewind(){
 gotoAndStop(1);
}

More complicated functions such as the next one require arguments but have greater
flexibility and power.

This function first checks to see if the correct number of arguments has been specified. If not,
it prints a message to the Output window and exits the function. If arguments have been
correctly specified, it returns the product of the arguments:

function times (op1, op2){
 if(op1==undefined || op2==undefined){
 trace("needs arguments");
 return;
 }else{
 return op1*op2;
 }
}

return produces a value, but it is not immediately accessible. To have the function return a
result you can use, assign it to a variable, such as in this statement:

prod=_root.times(2,2);

For the previous function, the variable prod would contain the value 4. The function would
return 4, and that value would then be passed to the prod variable.

getURL (2+/4+)

Components:

getURL("target","window","varMethod")

The getURL() action allows Flash to work outside the movie where the action is called. It can:

• Open a URL on the Internet
• Pass data to a server-side script
• Communicate with a host Director movie

getURL takes up to three arguments. target specifies the file to be opened or the command to
be sent; window allows you to target a specific window in a browser or frameset. Each
argument is specified as a string. ActionScript supports the following reserved names:

_self targets the current frame in the active window.

_blank targets a new default browser window.

_parent targets the current window and replaces only the frameset where the movie is
currently sitting.

_top targets the current window and replaces all framesets with the new URL.

The third argument, varMethod (only supported in Flash Player versions 4 and above), allows
you to pass information to a server-side application using either the GET or POST methods.
To learn more about these methods, see Chapter 17.

gotoAndPlay (2+)

Components:

gotoAndPlay(frameNumber)
gotoAndPlay("frameLabel")
gotoAndPlay("scene",frameNumber)
gotoAndPlay("scene","frameLabel")

This action sends the movie's playback to the specified frame, scene, or frame label and
resumes playing from the new location. Specify frameNumber as an integer and both
frameLabel and scene as strings (in quotes). If no scene is noted in the first argument slot,
Flash applies the action to the present scene.

gotoAndStop (2+)

Components:

gotoAndStop(frameNumber)

gotoAndStop("frameLabel")
gotoAndStop("scene","frameNumber")
gotoAndStop("scene","frameLabel")

This action sends the movie's playback head to the specified frame, scene, or frame label and
halts playback at the new location. Specify frameNumber as an integer and both frameLabel
and scene as strings (in quotes). If no scene is noted in the first argument slot, Flash applies
the action to the present scene.

if (4+)

Components:

if(conditionalExpression){
 statement(s);
}

Use the if action to compose a conditional statement. The conditionalExpression argument
must be an expression that returns a Boolean value. When the condition evaluates as true, the
statement(s) is executed; when it returns false, it is ignored. Additionally, use the else action
in conjunction with an if conditional statement. else provides alternative statements to be
executed if the statements that come before it evaluate false.

loadMovie (3+)

Components:

loadMovie("URL","target","varMethod")

Use the loadMovie() action to load additional SWF files. Parameters for this action are always
entered as strings (in quotes). The URL argument allows you to enter either an absolute or
relative path to the file you want to load. Use target to specify where the movie should be
loaded. Movies can be loaded at new document levels (_level1, _level4, and so on), or they
can replace levels if they already exist. For instance, the main Timeline can be replaced by
loading at _level0 or _root. The target argument can also specify a Movie Clip to be filled by
the new SWF file. It is also possible to pass variables when loading a new movie. Specify
either GET or POST for the varMethod argument to pass information to the new movie. GET
is recommended for small variable loads, and POST is best for larger quantities.

loadMovieNum (4+)

Components:

loadMovieNum("URL",level,"varMethod")

The loadMovieNum() action is nearly identical to loadMovie(). The main difference is that
with loadMovieNum(), the document level to be loaded is specified as a number rather than a
string. This makes it easier to dynamically load levels, but it makes it impossible to load new
movies into Movie Clip instances. If the specified level does not exist, it will be created for
the new movie. If the level does exist, then the movie currently playing there will be replaced.

Example:

The following statements are equivalent:

loadMovieNum("act1.swf",1,"GET");
loadMovie("act1.swf","_level1","GET");

The following loop cycles through document levels 0 to 8 and checks to see if each exists.
The variable top stores the number of the last level present in the movie. When the loop is
complete, high.swf is loaded into the next available document level:

l=0;
top=0;
do{
 if(eval("_level"+l)){
 trace("found@"+l);
 top++;
 } else {
 trace("not found@"+l);
 }
} while(l++<8);
trace("top=_level"+(top-1));
loadMovieNum("high.swf",top);

If there were movies present at levels 0 and 1 when this script was executed, high.swf would
be loaded into _level2.

loadVariables (4+)

Components:

loadVariables("URL","target","varMethod")

The loadVariables() action loads variables from the file specified in the URL argument into
the movie level or Movie Clip specified by target. Flash can read variable data from text,
CGI, ASP, PHP, and other server-side file types. All variables are passed as string data and
should reside at the same domain as the movie that requests them when called in a web
browser. Specify either GET or POST for the varMethod argument to pass information to the
target Timeline. GET is recommended for small, variable loads, and POST is best for larger
quantities.

loadVariablesNum (4+)

Components:

loadVariablesNum("URL",level,"varMethod")

loadVariablesNum() and loadVariables() are almost identical. The difference is that with
loadVariablesNum(), the target to receive the variables is specified as a number rather than a
string. This makes it easier to dynamically generate level numbers that will receive variables.
Variables cannot be passed to Movie Clips using this action, however.

nextFrame (2+)

Components:

nextframe()

This navigational action sends the playback head forward one frame and stops in the new
location. For simple navigation, this is a quick alternative to a gotoAndStop(_currentframe+1)
statement.

nextScene (2+)

Components:

nextScene()

The nextScene() action is helpful for managing simple navigation between the scenes of a
movie. When called, it will send the playback head to frame 1 of the next scene in the movie
and halt playback at that point. Scene order is established by the order of items in the Scene
panel. nextScene() will not work when attached to a Movie Clip and must be issued from the
main Timeline of a movie scene.

play (2+)

Components:

play()

The play() action represents one of the most fundamental tasks in Flash: playing an animation
or Timeline. play() sets an animation in motion and allows it to continue playback until it is
stopped by another action or until the Timeline runs out of frames. After using a nextScene()
or prevScene() action to skip a movie ahead, you can use play() to cue the Timeline of the
new scene.

prevFrame (2+)

Components:

prevFrame()

This navigational action will send the playback head back one frame and stop in the new
location. For simple navigation, this is a quick alternative to a gotoAndStop(_currentframe-1)
statement.

prevScene (2+)

Components:

prevScene()

The prevScene() action is helpful for managing simple navigation between the scenes of a
movie. When called, it sends the playback head to frame 1 of the previous scene in the movie

and halts playback at that point. Scene order is established by the order of items in the Scene
panel. prevScene() will not work when attached to a Movie Clip and must be issued from the
main Timeline of a movie scene.

print (5+)

Components:

print("target","printArea")

Use this action to print either an entire movie or portions of a movie. Define the Timeline you
want to print in the target argument. Unless specified, Flash will print all frames in the target
Timeline. To specify frames for printing, mark each with a frame label titled #p in the
Property Inspector. PostScript printers will print vectors and bitmaps alike; non-PostScript
printers will convert vectors to bitmaps before printing. Alpha and color effects cannot be
printed using the print() action; use printAsBitmap() instead.

The printArea argument allows you to define the area to be printed. This argument takes one
of three different string values:

"bmovie" tells Flash to use the content of a marked frame to define the print area. To
designate a frame that defines the print area, attach a frame label that reads #b and insert a
graphic to serve as the print boundaries or crop markers.

"bmax" uses a size combination of all printable frames to define the print area. Use this
option if the printed content is dynamically generated and varies from frame to frame.

"bframe" treats every printable frame separately. Printed content will fill the entire page, and
the elements of each frame will be scaled to fit accordingly.

Example:

This script prints all frames in the directions clip instance and limits their print area to the
frame with the #b frame label:

print("_root.directions", "bmovie");

If you want to designate specific frames that print, attach a #p frame label to each.

printAsBitmap (5+)

Components:

printAsBitmap("target","printArea")

This action is identical to the print() action but with one exception: It prints raster (pixel-
based) graphics instead of vectors. Despite the lower output quality, if you must print graphics
containing alpha or color effects, this is the action to use. See the print() action for parameter
specifics.

printAsBitmapNum (5+)

Components:

printAsBitmapNum(level,"printArea")

This action is almost identical to the printAsBitmap() action. The main difference is that
rather than specifying the target as a string, you specify a level as a number. Use this action if
you need to target a printable movie level. As an alternative, rather than specify the movie
level as an integer, you can use a variable that holds numeric data.

Example:

In this example, a variable passes information from the custom output function to the
printAsBitmapNum() action:

printNfo=output();
printAsBitmap(printNfo,"bFrame");

printNum (5+)

Components:

printNum(level,"printArea")

This action is almost identical to the print() action. The main difference is that rather than
specifying a target as a string, you specify a level as a number. Use this action if you need to
target a printable movie level. As an alternative, rather than specify the movie level as an
integer, you can use a variable that holds numeric data.

Example:

The following statements are synonymous:

printNum(3,"bmax");
print("_level3","bmax");

removeMovieClip (4+)

Components:

removeMovieClip("target")

Use the removeMovieClip() action to delete a Movie Clip from a Flash movie. Specify the
name of the instance or path to the instance you want to remove using the target argument.
This action works only on clips that were inserted in a movie using attachMovie() or
duplicateMovieClip().

Example:

When attached to a clip created via duplicateMovieClip(), this script will delete the clip when
it is clicked. Because this refers to the current clip, it is not entered as a string:

onClipEvent(mouseUp){
 if(this.hitTest(_root._xmouse,_root.
 _ymouse,true)){
 removeMovieClip(this);
 }
}

setProperty (4+)

Components:

setProperty("target",property,expression)

Use the setProperty() action to assign a value for one of Flash's predefined properties to a
Movie Clip instance. Specify the instance you would like to affect for the target argument,
specify a property (such as _alpha or _rotation) for property, and use expression to specify
value for the property.

startDrag (4+)

Components:

startDrag("target",lock,left,top,right,botm)

The startDrag() action makes the clip named by the target argument draggable. Draggable
means that the Movie Clip instance can be moved around on the Stage by clicking and
dragging it with the mouse cursor. The lock argument makes the cursor lock to the draggable
clip's registration point when set to true, or it allows the cursor to drag from any point on the
clip when set to false. This argument is optional; when not specified, it defaults to the false
setting. The arguments left, top, right, and botm define the coordinate boundaries for the
draggable clip. Boundaries are determined relative to the Timeline where the target clip
resides. Coordinates are determined relative to the (0,0) origin of the Timeline where the clip
resides. If the clip is sitting on the main Timeline, the origin is the upper-left corner of the
Stage. If the target is nested within another Movie Clip instance, the origin is the host clip's
registration point. Coordinate boundary arguments are optional as well. A clip can be made
undraggable by using the stopDrag() action.

Example:

See the stopDrag() action.

stop (2+)

Components:

stop()
target.stop()

The stop() action will halt the playback of a Timeline when it is encountered. To stop a
specific Timeline, enter its target reference for the target argument.

stopDrag (4+)

Components:

stopDrag()

The stopDrag() action ceases a startDrag() action that is active in your movie. Because Flash
allows for only one draggable clip at a time, this action takes no arguments and affects the
current clip that has been targeted by a startDrag() action.

Example:

The following statements create a simple drag-and-drop behavior for the clip instance blob. In
this script, the clip is draggable until the mouse is released, or the clip is "dropped":

blob.onMouseDown=function(){
 startDrag("blob",false,0,0,550,400);
}

blob.onMouseUp=function(){
 stopDrag();
}

switch (6)

Components:

switch(condition){
case(a):
 //statements if case a true
 break;
case(b):
 //statements if case b true
 break;
case(n):
 //statements if case n true
 break;
default:
 //default statements if no cases true
}

switch is a conditional statement structure that is an alternative to if...else. Use switch when
you have several different conditions to test and each has its own set of statements to execute
as a consequence. For condition, enter the conditional statement to be tested. For case (don't
italicize "case"), enter each possible result of the condition. Following each case, enter the
statement(s) you would like to execute if case returns true. Additionally, you must include a
break statement to prevent your script from jumping to other cases after one returns true, and
a default case if none of the specified conditions return true.

Example:

In this example, a Movie Clip monitors the current playback position of the main Timeline.
Depending on the main Timeline's current frame number, the Movie Clip is told to hold at
frames 1, 2, or 3 of its Timeline:

onClipEvent(enterFrame){
 switch(_root._currentframe){
 case(1):
 gotoAndStop(1);
 break;
 case(10):
 gotoAndStop(2);
 break;
 case(20):
 gotoAndStop(3);
 break;
 default:
 stop();
 }
}

unloadMovie (3+)

Components:

unloadMovie("target")

Use the unloadMovie() action to remove movies from stacking levels that were loaded using a
loadMovie() or loadMovieNum() action. unloadMovie() can also remove the contents of clip
instances from the Stage. Use the target argument to specify the movie or instance containing
a movie that you would like to remove. Specify target as a string.

Examples:

This statement unloads the movie at movie level 2:

unloadMovie("_level2");

This statement unloads the contents of a clip instance:

unloadMovie("feature1");

When a clip is unloaded, the contents of the instance are removed but the instance itself
remains on the Stage as an empty frame. The frame can be refilled with a new movie (SWF)
using the loadMovie() action.

unloadMovieNum (3+)

Components:

unloadMovieNum(target)

unloadMovieNum() is identical to unloadMovie(), with one exception: The target argument is
entered as a number to specify the level you need to unload. As a result, unloadMovieNum()
cannot unload Movie Clip instances. Use this action to dynamically unload movie levels.

Example:

The following statements are equivalent:

unloadMovieNum(2);
unloadMovie("_level2");

updateAfterEvent (5+)

Components:

updateAfterEvent()

This action is used in conjunction with the onClipEvent handlers mouseMove, mouseDown,
mouseUp, keyDown, and keyUp and the MovieClip object events onMouseMove,
onMouseDown, onMouseUp, onKeyDown, and onKeyUp. The updateAfterEvent() action
forces Flash to redraw the screen independently of a movie's frame rate. Because it's not tied
to a movie's fixed frame rate, updateAfterEvent() helps increase the responsiveness of
keystroke and mouse actions that occur between frames. Use this for custom cursors,
keyboard input, and other events that are cued via user input.

Example:

This function, assigned to the instance cursor, makes the instance into a custom cursor.
updateAfterEvent() ensures smooth cursor tracking:

cursor.onMouseMove=function(){
 cursor._x=_xmouse;
 cursor._y=_ymouse;
 updateAfterEvent();
}

while (4+)

Components:

while(condition){
 statement(s);
}

The while() action creates looped statements. In a while() loop, you specify a condition to be
tested. If the condition exists or is True, the loop will execute any statement(s) that it contains.
If the condition does not exist or is False, the loop body is skipped. In a while loop, the
condition is always tested before any statements are executed.

Example:

It is standard to initialize loop variable(s) first, then present the condition and body of the
loop. This loop duplicates the Movie Clip lite and scatters it across the Stage at various
intervals:

var z;
z=0;
while(z<10){
 ry=Math.random()*400;
 duplicateMovieClip(lite,"lite"+z,z);
 _root["lite"+z]._x=50*z;
 _root["lite"+z]._y=ry;
 z++;
}

with (5+)

Components:

with(object){
 statement(s);
}

The with action, introduced in Flash 5, replaced the tried-and-true tellTarget() action of Flash
versions 3 and 4. Use the with action to access and manipulate the properties of the object or
clip instance specified by object. For controlling clip instances, with prevents you from
having to repeatedly enter long target path references.

Example:

This script sets the transparency level and proportions of the menu instance to new values:

with(menu){
 _alpha=40;
 _xscale+=25;
 _yscale+=25;
}

This is an identical script using dot syntax:

_root.navigation.bar.menu._alpha=40;
_root.navigation.bar.menu._xscale+=25;
_root.navigation.bar.menu._yscale+=25;

Properties
ActionScript properties are the terms in the language that set and retrieve the status,
attributes, position, and so on of different elements in your movie. You can assign properties
to nearly every movie component. When assigned to elements individually, each is given its
own unique set of characteristics.

 New to MX Buttons now fall under the control of Flash MX's new Button object. Any
Button with an instance name can be manipulated via ActionScript to change its position,
dimensions, and more. See the following entries for details.

_alpha (4+)

Components:

Instance._alpha = value

The _alpha property gets and sets transparency values for Button objects and Movie Clip
instances. Values range between 100 (opaque) and 0 (transparent). Transparent Movie Clips
and Buttons are still active on the Stage and behave normally.

_currentFrame (4+)

Components:

clipInstance._currentFrame

This property returns the frame number that a Timeline is currently playing when it is called.
If no instance is specified, the property returns the current frame of the Timeline containing
the script.

_dropTarget (4+)

Components:

draggedClip._dropTarget

This read-only property returns the path of the Movie Clip over which draggedClip was
dropped. Flash defines over if the draggable clip's registration point is anywhere over the
bounds of the target Movie Clip. _dropTarget returns the path in slash notation, but you can
use the eval() function to convert the path to dot notation. For example:

onClipEvent(mouseUp){
 trace("slash: "+this._dropTarget);
 trace("dot: "+eval(this._dropTarget));
}

Example:

When the current, draggable clip is "dropped," this script checks to see if it is over the
instance hit. If it is not, then the draggable clip is sent back to the X Y position 100,100:

onClipEvent(mouseUp){
 stopDrag();
 if(eval(this.dropTarget)!=_root.hit){
 this._x=100;
 this._y=100;
 }
}

_framesloaded (4+)

Components:

_framesloaded
loadedSWF._framesloaded

This property gets the number of frames that have been loaded from the main movie Timeline
or an external SWF file. Use it to check that all movie assets have been loaded before
beginning playback.

Example:

if(_framesloaded==_totalframes){
 gotoAndPlay("start");
 }else{
 gotoAndPlay(1);
}

This script monitors the progress of loading the main movie. If all frames have been loaded, it
jumps to the marker start; otherwise, it loops back to frame 1.

_height (4+)

Components:

instance._height=value

Use this property to test and set the height of instance. Specify value in pixels. This property
applies to Movie Clip and Button instances alike.

_name (4+)

Components:

instance._name="name";

This property gets and sets Movie Clip and Button instance names. You can test to see if an
instance has a particular name and change the name of it as needed. To assign a new instance
name, enter it as a string for the argument name.

NaN (5+)

Components:

NaN

NaN stands for "not a number." This property represents a constant value for items that are
not numbers or cannot be handled as numeric data.

_quality (5+)

Components:

_quality="value"

This global property sets a display quality parameter for your movie. Display quality is
determined by the amount of anti-aliasing applied to a movie. The value argument is entered
as a string, and takes one of four possible arguments:

"LOW": No anti-aliasing is applied.

"MEDIUM": Anti-aliasing is applied sparingly to vectors only.

"HIGH": Vectors are anti-aliased; bitmaps are smoothed if there is no animation.

"BEST": Anti-aliasing is applied to both vectors and bitmaps.

_rotation (4+)

Components:

instance._rotation=value

Use the _rotation property to control the amount (in degrees) you want to rotate instance. This
property applies to both Buttons and Movie Clips. When value is a positive number, the clip
rotates clockwise. A negative value will rotate the clip counterclockwise. All rotations are
applied relative to a Button or Movie Clip's orientation in its own Timeline.

_soundbuftime (4+)

Components:

_soundbuftime=seconds

The _soundbuftime global property determines how many seconds of streaming audio should
be loaded before it begins playback. Flash defaults to a setting of 5 seconds.

_target (4+)

Components:

instance._target

This property returns the target path for either a Movie Clip or Button instance. The target
path will be returned in the older Flash 4 slash syntax. To get a target path in dot syntax, use
the targetPath() function.

_totalframes (4+)

Components:

clipInstance._totalframes

This property returns the number of frames contained in a Movie Clip or the main Timeline.
Use this property to create preloader movies that delay the main movie's playback until all

frames in a movie (in other words, _totalframes) have been loaded. For an example, see the
_framesloaded property.

_url (4+)

Components:

instance._url

The _url property returns the URL (Uniform Resource Locator) of the SWF file that contains
the Button or Movie Clip specified by instance. The URL is returned as a string that lists the
absolute URL to the particular file.

Example:

trace(this._url);

For a file loaded from your computer's hard drive, this statement will print the following:

file:///C/windows/Desktop/pathTest.swf

Or, for a file on the Web, it will print:

http://www.domain.com/folder/file.swf

_visible (4+)

Components:

instance._visible=Boolean

This property determines whether a Button or Movie Clip instance is visible on the Stage.
When set to true (default), the instance is fully visible; when set to false, the instance is
hidden. Though hidden (invisible) Movie Clip instances are still able to respond to events and
actions, Buttons that have been hidden via the _visible property are not.

_width (4+)

Components:

instance._width=value

Use this property to test and set the width of the Button or Movie Clip specified by instance.
value is specified in pixels.

_x (3+)

Components:

instance._x
instance._x=value

The _x property allows you to return and set values for the horizontal coordinate position of
the Button or Movie Clip specified by instance. The coordinate is determined by the
instance's registration point and is relative to the movie or Timeline that's hosting instance:

• If instance is on the main Timeline, its coordinates are determined relative to the left
side of the Stage. A Button or Movie Clip that's 225 pixels from the Stage's left side
has an _x value of 225.

• If instance is nested inside a Movie Clip, its coordinates are determined relative to the
registration point of the host clip. For example, a clip positioned 50 pixels to the right
of the host's registration point has an _x value of 50; if it's 50 pixels to the left, _x is –
50. Any changes made to the rotation or scaling of the host clip will affect the nested
clip's _x value. For example, if a host clip were rotated 180°, _x values to the right of
the host registration would be positive, and values to the left would be negative.

_xmouse (5+)

Components:

instance._xmouse

This property gets the horizontal position of the mouse pointer relative to instance.
_root._xmouse returns the position of the mouse relative to the left edge of the Stage;
moverClip._xmouse returns the mouse position relative to the registration point of moverClip.

Example:

This script keeps a Movie Clip in line with the horizontal position of the mouse, relative to the
main Timeline:

onClipEvent(enterFrame){
 _x=_root._xmouse;

}

_xscale (4+)

Components:

instance._xscale=value

Use this property to scale instance horizontally. All values are based on the original size of
the Button or Movie Clip instance when it was created. Values are determined by a
percentage of the original and adjusted symmetrically around the instance's registration point.

Example:

This script continuously scales a clip by increments of 50%. Because scaling occurs
symmetrically, the clip expands by 25% on both the left and right sides:

onClipEvent(enterFrame){
 _xscale=_xscale+50;

}

_y (3+)

Components:

instance._y
instance._y=value

The _y property allows you to return and set values for the vertical coordinate position of the
Button or Movie Clip specified by instance. The coordinate is determined by the instance's
registration point and is relative to the movie that's hosting instance:

• If instance is on the main Timeline, its coordinates are determined relative to the top
of the Stage. An instance that's 100 pixels below the top of the Stage has a _y value of
100.

• If instance is nested inside a Movie Clip, its coordinates are determined relative to the
registration point of the host clip. For example, a clip positioned 50 pixels below the
host's registration point has a _y value of 50; if it's 50 pixels above, _y is –50. Any
changes made to the rotation or scaling of the host clip will affect the nested instance's
_y value. For example, if a host clip were rotated 180°, _y values above the host
registration would be positive, and values below would be negative.

_ymouse (5+)

Components:

instance._ymouse

This property gets the vertical position of the mouse pointer relative to the Button or Movie
Clip specified by instance. _root._ymouse returns the position of the mouse relative to the top
of the Stage; launcher._ymouse returns the mouse position relative to the registration point of
the button launcher.

_yscale (4+)

Components:

instance._yscale=value

Use this property to scale instance vertically. All values are based on the original size of the
Button or Movie Clip when it was created. Values are determined by a percentage of the
original and adjusted symmetrically around the instance's registration point.

Functions
Functions are self-contained chunks of code that are part of the ActionScript language. They
are unique routines that can evaluate the data they are given. Use ActionScript functions to
perform common tasks that process and retrieve information in your Flash movies.

eval (5+)

Components:

eval(expression)

Where expression is a string or produces a string, eval() converts expression to an identifier
containing the variable value, property value, or Movie Clip reference held by the string. If
expression contains no information, eval returns undefined.

Example:

Use this function to help manage dynamically generated variables or instances:

j=1;
while(j<=5){
 this.duplicateMovieClip("cloud"+j,j);
 eval("_root.cloud"+j)._x=100*j;
 eval("_root.cloud"+j)._y=100*j;
 eval("_root.cloud"+j)._alpha=20*j;
 j++;
}

In this example, a Movie Clip is duplicated five times. Each new instance name (cloud1,
cloud2, and so on) is evaluated as a string and turned into a Movie Clip reference that can be
manipulated.

getProperty (4+)

Components:

getProperty(instance,property)

Use this function to retrieve a property for the specified Movie Clip instance. The argument
instance must be a valid reference to a Movie Clip instance.

getTimer (4+)

Components:

getTimer()

The getTimer()function returns the number of milliseconds that have passed since a movie has
started playing. It's useful for monitoring and setting timed actions or events.

Example:

onClipEvent(load){
 start=getTimer();
}
onClipEvent(enterFrame){
 if(start+10000<getTimer()){
 orb.gotoAndStop(orb._currentframe+1);

 start=getTimer();
 }
}

This script is a good example of a simple timer. The variable start records the elapsed
milliseconds when the Movie Clip is first loaded. At every frame, the current milliseconds are
checked against the value of the start time plus 10,000. If the current milliseconds are greater
than start+10000, meaning the movie has been running for 10 seconds, the orb Movie Clip is
sent to the next frame and stopped, and the counter is reset. Ten seconds later, orb will be sent
to its next frame, the counter will reset, and so on.

newline (4+)

Components:

newline

This statement inserts a line break (carriage return) in a string of text. newline is useful for
inserting line breaks in the contents of a text field.

String (5+)

Components:

String(expression);

Use the string function to convert an expression to a string and return the string value.

Boolean values return as Boolean. String(true); returns "true".

Numbers return as number strings. String(365); returns "365".

Movie Clips return as strings naming their absolute path. String(this); returns
"_root.main.sub1".

Objects return as the string value for the particular object. String() returns the same value as
the toString() method, which will differ depending upon the contents of the object.

targetPath (5+)

Components:

targetPath(clipInstance)

Use this function to return the absolute path to a Movie Clip instance. The path is returned as
a string, written in dot notation.

Example:

These statements assign a clip's absolute path to the variable me. You can use me in
subsequent script statements whenever it is necessary to reference the path:

onClipEvent(load){
 me=targetPath(this);
}

Operators
Operators both evaluate and change the value of expressions.

-- (decrement) (4+)

Components:

--expression
expression--

This operator will subtract 1 from expression. It can be used in two ways: as a pre-decrement
and a post-decrement. Pre-decrement subtracts 1 from the expression and returns the new
value. Post-decrement subtracts 1 from the expression but returns its original value.

Example:

x=2;
y=--x;

Using pre-decrement, the final values are y = 1 and x = 1.

x=2;
y=x--;

Using post-decrement, the final values are y = 2 and x = 1.

++ (increment) (4+)

Components:

++expression
expression++

This operator will add 1 to expression. It can be used in two ways: as a pre-increment and a
post-increment. Pre-increment adds 1 to the expression and returns the new value. Post-
increment adds 1 to the expression but returns its original value.

Example:

x=1;
y=++x;

Using pre-decrement, the final values are y = 2 and x = 2.

x=1;
y=x++;

Using post-decrement, the final values are y = 1 and x = 2.

! (logical NOT) (4+)

Components:

!expression

The NOT operator will always return the opposite Boolean value of the expression that
follows it. You can use this to test when a condition does not exist or is not true.

Examples:

!1 evaluates as 0.

!0 evaluates as 1.

!= (inequality) (5+)

Components:

expressionA!=expressionB

The inequality operator checks to see if two expressions are not equal and returns a Boolean
value. If the expressions are not equal, it returns true; if they are equal, it returns false.

Example:

Use the inequality operator as part of a preloader script. If a movie's frames are not loaded,
the movie is sent back to frame 1:

if(_framesloaded!=_totalframes){
 gotoAndPlay(1);
}else{
 gotoAndPlay(5);
}

!== (strict inequality) (6)

Components:

expressionA!==expressionB

The strict inequality operator, like the inequality operator, checks to see if two expressions are
not equal and returns a Boolean value. The only difference is that with strict inequality, an
expression's datatype is also considered in the evaluation.

Example:

Given the following statements:

str="1";
num=new Number(1);

This comparison returns false because the string 1 and number 1 are equal:

str!=num;

This second comparison returns true because the string 1 and number 1 are not strictly equal:

str!==num;

Each expression has a different datatype.

% (modulo) (4+)

Components:

expressionA%expressionB

This operator returns the remainder value of expressionA divided by expressionB.

Example:

17%4 returns 1.

17 ÷ 4 = 4 with a remainder of 1. The modulo operator returns the remainder for the
expression.

%= (modulo assignment) (4+)

Components:

expressionA%=expressionB

This operator returns the remainder value of expressionA divided by expressionB and assigns
the new value to expressionA.

Example:

x=2;
y=13;
y%=x;
trace(y);

In this example, trace would print the number 1 to the Output window. y is divided by x, and
the remainder (1) is assigned to y.

&& (logical AND) (4+)

Components:

expressionA&&expressionB

The logical AND operator evaluates two expressions and returns a Boolean true or false based
on the value of each.

true&&false evaluates as false.

true&&true evaluates as true.

false&&false evaluates as false.

For the AND operator to return true, both expressions must be true.

- (minus) (4+)

Components:

expressionA-expressionB

This operator either subtract expressionB from expressionA or makes an expression have an
opposite value.

Examples:

1.5-.4 returns 1.1.

4-3 returns 1.

-(4-3) returns –1.

-(1-2) returns 1.

* (multiply) (4+)

Components:

expressionA*expressionB

This operator multiplies expressionA and expressionB.

*= (multiplication assignment) (4+)

Components:

expressionA*=expressionB

This operator multiplies expressionA and expressionB and assigns the new value to
expressionA.

Example:

a*=b is equivalent to a=a*b.

The following statements reinitialize a as 200.

a=10
b=20
a*=b

?: (conditional) (4+)

Components:

expression?trueResult:falseResult

The conditional operator is a single-line alternative to the if…else conditional syntax. A
conditional expression is evaluated. If it is True, the first argument, trueResult, is returned;
otherwise, the expression returns the second argument, falseResult.

Example:

if(Key.getCode()==Key.RIGHT){
 nextFrame();
}else{
 stop();
}

This simple conditional advances the movie to the next frame if the right-arrow key is
pressed. It can be rewritten as follows:

Key.RIGHT?nextFrame():stop();

// (single-line comment) (1+)

Components:

//comments

The comment operator tells Flash to ignore the text that is between it and the end of the line
on which it appears. Use comments to leave notes or explanations about your scripts. Flash
will color all text behind the comment operator a light gray (default color).

/*…*/ (multiline comment) (5+)

Components:

/*comments begin…comments finish*/

The multiline comment operator is useful if you have long blocks of text that must be ignored
by Flash. Any text that appears between the opening asterisk and the closing asterisk will be
ignored. Be sure to use both an opening and closing version of the operator around your
comments.

/= (division assignment) (4+)

Components:

expressionA/=expressionB

This operator returns the value of expressionA divided by expressionB and assigns the new
value to expressionA.

Example:

x/=y is equivalent to x=x/y.

x is reinitialized as the quotient of the expression x/y.

|| (logical OR) (4+)

Components:

expressionA||expressionB

The OR operator evaluates expressionA and expressionB and returns a Boolean value. If
either expression is true, the statement returns true. It returns false only if both expressions are
false.

1||0 evaluates true because one expression is true.

0||1 evaluates true because one expression is true.

1||1 evaluates true because both expressions are true.

0||0 evaluates false because neither expression is true.

+ (addition) (4+)

Components:

expressionA+expressionB
"stringA"+"stringB"

This operator returns the sum of expressionA and expressionB. It is also used to concatenate
strings of information (only in Flash Player 5 or higher).

+= (addition assignment) (4+)

Components:

expressionA+=expressionB
expression+="string"

This operator returns the sum of expressionA and expressionB and assigns the new value to
expressionA. This operator works for numbers and strings.

Examples:

x+=1 is equivalent to x=x+1.

var x=10, y=20;

x+=y returns 30.

The operator can also concatenate a string with a variable to produce a new value:

x="Action";
trace(x+="Script");

In this example, trace will print the word ActionScript in the Output window.

< (less than) (4+)

Components:

expressionA<expressionB

If expressionA is less than expressionB, this comparison operator returns true. Otherwise, if A
is either greater than or equal to B, it returns false. This operator also works with strings.
Capital letters closest to A have the lowest value; lowercase letters closest to z have the
highest value.

<= (less than or equal to) (4+)

Components:

expressionA<=expressionB

If expressionA is less than or equal to expressionB, this comparison operator returns true.
Otherwise, if A is greater than B, it returns false. This operator also works with strings.
Capital letters closest to A have the lowest value; lowercase letters closest to z have the
highest value.

= (assignment) (4+)

Components:

identifier=expression

This operator assigns the value of expression to an identifier. An identifier is a name assigned
to an object property, variable, or array element.

-= (subtraction assignment) (4+)

Components:

expressionA-=expressionB

This operator returns the difference of expressionA and expressionB and assigns the new
value to expressionA.

Example:

y-=x is equivalent to y=y-x.

var x=10, y=20;

y-=x returns 10.

== (equality) (4+)

Components

expressionA==expressionB

If expressionA is equal to expressionB, this comparison operator returns true; otherwise, it
returns false.

=== (strict equality) (6)

Components:

expressionA===expressionB

The strict equality operator, like the equality operator, checks to see if two expressions are
equal and returns a Boolean value. The only difference is that with strict equality, an
expression's datatype is also considered in the evaluation.

Example:

Given the following statements:

str="1";
num=new Number(1);

The comparison str==num returns true because the string 1 and number 1 are equal. A second
comparison, str===num returns false because the string 1 and number 1 are not strictly equal.
Each expression has a different datatype.

> (greater than) (4+)

Components:

expressionA>expressionB

If expressionA is greater than expressionB, this comparison operator returns true. Otherwise,
if A is either less than or equal to B, it returns false. This operator also works with strings.
Capital letters closest to A have the lowest value; lowercase letters closest to z have the
highest value.

>= (greater than or equal to) (4+)

Components:

expressionA>=expressionB

If expressionA is greater than or equal to expressionB, this comparison operator returns true.
Otherwise, if A is less than B, it returns false. This operator also works with strings. Capital
letters closest to A have the lowest value; lowercase letters closest to z have the highest value.

Example:

The following comparisons return true:

2>=1
3>=3
"shockwave">="flash"

The following comparison returns false:

"Flash">="flash"

Flash is not greater than or equal to flash because uppercase letters come after lowercase
letters.

typeof (5+)

Components:

typeof expression

The typeof operator returns the datatype of expression. Datatypes (and the syntax in which
they are returned) include boolean, function, movieclip, number, object, and string.

Example:

obj = new Object;
trace("2: "+typeof 2);
trace("text: "+typeof "text");
trace("true: "+typeof true);
trace("obj: "+typeof obj);

These statements print the following to the Output window:

2: number
text: string
true: boolean
obj: object

2 is a number, "text" is a string, true is a Boolean value, and obj is a generic object. Items that
contain no data will be returned as undefined or null.

Object and Timeline References
The object reference terms target Movie Clips, movie levels, variables, objects, and functions
in your Flash movies. A thorough understanding of these terms is crucial to the success of
writing accurate target paths. If a target path is ever in question, you can check it using the
Movie Explorer, Debugger, or Insert Target Path button in the Actions panel.

_global (6)

Components:

_global.globalVariable
_global.globalFunction

This reference allows you to create global variables, objects, and functions. Global means that
a variable, object, or function is immediately available from any Timeline in your movie.
Rather than specify a target path, such as _root.myFunction, the _global reference allows you
to simply call myFunction. Use _global when you initialize a function or variable to make it
available by name from any Timeline.

Example:

In the following statement, the variable startGame is set to be available throughout a movie:

_global.startGame=getTimer();

This variable can be recalled throughout your movie by simply referencing startGame. If you
did not use the _global reference, and the variable was created on the main Timeline, you
would have to reference it using its target path: _root.startGame.

_level (4+)

Components:

_levelX

This global property makes reference to the Timeline loaded at level X. The Flash Player can
hold and play many Timelines at once. The main Timeline (the first movie loaded) is set at
level 0. All subsequent Timelines are loaded at levels above it: level 1, level 2, and so on. Use
the _level property to load and unload additional Timelines or to control their playback.

_parent (4+)

Components:

instance._parent

A Timeline that contains another Timeline or Button is referred to as a _parent. This property
references the Timeline or instance that contains the Button or Movie Clip instance where the
call is made. For example, Movie Clips and Buttons sitting on the main Timeline refer to it as

_parent. The main Timeline has no _parent because it is the lowest possible level (_level0 or
_root). This property is especially useful for creating relative target paths.

Example:

If arrow were sitting on the main Timeline, this statement (called from the arrow Timeline)
would halt the movie:

_parent.stop();

If arrow contained a nested instance named fletcher, this script (called from the fletcher
Timeline) would also stop the main Timeline, make the arrow instance semi-transparent, and
flip the head instance, which is also nested inside arrow:

_parent._parent.stop();
_parent._alpha=50;
_parent.head._rotation=180;

_root (4+)

Components:

_root.clipInstance
_root.action
_root.property

The _root property refers to the main movie's Timeline. _root is synonymous with _level0.
Use _root to create absolute target paths to clipInstance or to control the main Timeline from
anywhere within the movie.

this (5+)

Components:

this.action
this.property
this.nestedClipA.nestedClipB

this is a keyword used as a self-reference for the current Timeline. When called from inside a
mouse event handler (attached to a Button), this refers to the Timeline where the Button
resides. When attached to a Movie Clip and called from within an onClipEvent handler, this
refers to the Timeline of the same clip. You can use this to control playback and set/retrieve
properties of the current Timeline. It is also helpful for constructing target paths starting from
the current Timeline.

Predefined Objects
The predefined objects control the properties and information associated with Flash's built-in
objects: Array, Color, Date, Key, Math, Mouse, MovieClip, Object (Generic), Sound, String,
and TextField. This list is not representative of all objects available to Flash and ActionScript.
For a complete list of built-in objects, use Flash MX's Reference panel (Shift+F1).

Array Object (5+)

Components:

new Array()
new Array(length)
new Array(item0,item1,item2...itemx)

Simply put, an array is an ordered list of data or information. Arrays are used for storing
multiple pieces of data in a single location. You can use the properties and methods of the
Array object to store, retrieve, and manipulate the items within an array.

To create an Array object, you can use the constructor function new Array(). For instance:

list=new Array();

This lone statement creates a new, empty array. The array constructor function can take
optional arguments as well. Use a single integer in place of length to specify the length or
number of slots in an array. For example:

week=new Array(7);

Here, the array week is empty but has seven vacant slots that can later be filled with items.
Often, it is easiest to simply create an array and fill it with items from the start. For example:

groceries=new Array("pasta","bread","milk");

In this case, the array groceries is created and contains three items that happen to be string
data. An array can also hold a mixture of data—for instance:

home=new Array();
home[0]="Chicago";
home[1]=60657;
home[2]=["Lakeview","Wrigleyville"];

In this example, the array home is created using the array access operator ([]). It contains the
string "Chicago", the number 60657, and another array containing the strings "Lakeview" and
"Wrigleyville".

Items in an array are referenced in the order they appear. The first item is referenced by 0, the
second by 1, and so on. To access an array item by number, use the [] operator. For example,
trace(home[1]) returns 60657, the second item of the home array.

Properties:

Array.length returns the number of items (filled and empty) in an array.

Methods:

Array.concat() creates a new array by adding additional items to an existing array.

Array.pop() clears and returns the last item of an array.

Array.push() appends additional item(s) to the end of an array.

Array.shift() clears and returns the first item of an array.

Array.slice() creates a new array using a portion of an existing array.

Array.sort() arranges the items of an array according to a user-created rule.

Array.toString() returns the items of an array as a string, using commas to separate the items.

Array.unshift() appends additional items to the beginning of an array.

Array.concat (5+)

Components:

arrayObj.concat(item1,item2,...itemx)

Use this method to append items to the end of an existing array, creating an entirely new
array.

Example:

Create the array letters1:

letters1=new Array("a","b","c");

letters2 is created by adding two items to letters1:

letters2=letters1.concat("d","e");

The letters2 array consists of the following:

["a","b","c","d","e"]

Array.length (5+)

Components:

arrayObj.length

This array property will both set and return the length, or number of items, contained in
arrayObj. Because the first slot in an array is referenced by the number 0, an array's length is
always one value greater than the position of the last array element. The Array.length property
is updated as items are added or subtracted from an array and will always reflect the current
state of the specified arrayObj, even if slots in the array are currently empty.

Example:

Create a new array:

alphabet=new Array("a","b","c");

The following statement prints 3 in the Output window because the array alphabet contains
three items:

trace(alphabet.length);

Array.pop (5+)

Components:

arrayObj.pop()

Use this method to clear (delete) and return the last item of the specified arrayObj. When
invoked, the final slot of the array is removed and the item that it contained is returned. This
method is the opposite of Array.shift(), which clears and returns the first item in an array.

Example:

In the following statements, the array alphabet has its last item removed:

alphabet=new Array("a","b","c");
popped=alphabet.pop();

The following statement prints c has been cleared to the Output window because c was the
last item of the array:

trace(popped+"has been cleared");

Array.push (5+)

Components:

arrayObj.push(item1,item2...itemx)

This method appends the specified items to the array arrayObj. Unlike the Array.concat()
method, push() does not create a new array. And, unlike Array.unshift(), items are added to
the end of the array rather than the beginning.

Example:

Create a new array:

alphabet=new Array("a","b","c");

This statement adds d, e, and f to the array:

alphabet.push("d","e","f")

Array.shift (5+)

Components:

arrayObj.shift()

Use this method to clear (delete) and return the first item of the specified arrayObj. When
invoked, the first slot of the array is removed and the item that it contained is returned. This
method is the opposite of Array.pop(), which clears and returns the last item in an array.

Examples:

In the following statements, the array alphabet has its first item removed:

alphabet=new Array("a","b","c");
shifted=alphabet.shift();

The results are printed to the Output window.

The next statement returns a has been cleared because a was the first item of the array:

trace(shifted+" has been cleared");

Array.slice (5+)

Components:

arrayObj.slice(startRef,endRef)

Use the Array.slice() method to create a new array using a portion of the specified array
arrayObj. To sample a portion of arrayObj, you must specify two arguments: startRef and
endRef. Both numbers should be specified relative to 0, the start of the array. startRef
represents the first item of arrayObj to be included in the new array. If startRef is negative,
the first item will be counted starting from the last item in arrayObj. For example, –1 is the
last array item, –2 is next to last, and so on. endRef is the item in arrayObj that comes after
the last item of the new array. The endRef argument handles negative numbers in the same
manner as startRef. If endRef is left blank, the default value is arrayObj.length, and all
remaining items in arrayObj are included in the new array. Ultimately, the items in the new
array are startRef through endRef–1 for arrayObj.

Example:

Create a new array:

nums=new Array("one","two","three",
 "four","five");

These statements are equivalent. All create another new array with the last two elements of
nums; they return four,five:

sub1=nums.slice(3,5);
sub2=nums.slice(3);
sub3=nums.slice(–2,5);

Array.sort (5+)

Components:

arrayObj.sort()
arrayObj.sort(sortFunction)

The Array.sort() method sorts the items of arrayObj into a particular order. If no sortFunction
argument is entered, the array items will be sorted in a loose alphabetic order where integers
take highest precedence, followed by uppercase letters, then lowercase letters.

If sortFunction is specified, the array will be sorted according to the rules of the function.
You must create sortFunction so that it will sort according to your needs. The function can be
constructed as you see fit; however, there are a few simple rules you must follow. The
function must be prepared to compare two values. If you want the first value to be sorted
before the second, the function should return –1. If the first value should be sorted after the
second, the function should return 1. For values that are equal and do not need to be sorted,
the function should return 0. Items in the array are sorted so that the items with negative
numbers have the highest precedence (are sorted first) and the positive ones have the lowest
precedence (are sorted last). For example, consider sorting the values A and B in ascending
order:

A<B returns –1.

A>B returns 1.

A==B returns 0.

To sort in descending order, you only need to swap the return values. For low values (A<B),
you return 1 (lowest precedence). High values (A>B) return –1 (highest precedence), and
equal values return 0.

Example:

The following example assumes there is a collection of objects (plyr1, plyr2, and so on), each
having its own unique properties points and id. These objects are stored in the array players.
The function score is used to sort, in descending order, the contents of players based on the
value of points for each. Array.sort() calls the score function and then prints the name (id
property) of each player in descending order according to the sorted version of the players
array:

players=new Array(plyr1,plyr2,plyr3);

function score(a,b){
 if(a.points<b.points){
 return 1;
 }else if(a.points>b.points){
 return -1;
 }else return 0;
}

players.sort(score);

for(var i=0;i<players.length;i++){
 var prop=players[i];
 trace(prop.id+" scores "+prop.points);

Array.unshift (5+)

Components:

arrayObj.unshift(item1,item2...itemx)

This method appends the specified items to the array arrayObj. Unlike the Array.concat()
method, unshift() doesn't create a new array. And, unlike Array.push(), items are added to the
beginning of the array rather than the end.

Example:

Create a new array:

alphabet=new Array("d","e","f");

The following statement adds a, b, and c to the array:

alphabet.unshift("a","b","c");

Color Object (5+)

Components:

new Color(target)

A Color object is a container for information that will manipulate and retrieve both the color
content and the transparency value of the Movie Clip or the level specified by target. To
invoke the methods of the Color object, you must first create a new object using the
constructor new Color().

Methods:

Color.getRGB() retrieves the current RGB value of a Color object.

Color.getTransform() retrieves the current transform value for a Color object.

Color.setRGB() sets the RGB value of a Color object.

Color.setTransform() sets the current transform value for a Color object.

Color.getRGB (5+)

Components:

colorObject.getRGB

Use this method to return the RGB value of the specified colorObject.

Example:

These statements transfer the RGB values from one clip to another when the clip with the
attached script is clicked by the mouse. The getRGB() method retrieves the color value from
the orb Movie Clip's orbColor Color object and applies it to the current clip instance.

onClipEvent(mouseUp){
 if(this.hitTest(_root._xmouse,_root.
 _ymouse,true)){
 colorTrans=new Color(this);
 colorTrans.setRGB(_root.orb.
 orbColor.getRGB());
 }
}

Color.getTransform (5+)

Components:

colorObject.getTransform()

This method of the Color object retrieves the current transform properties that are applied to
the specified colorObject.

Color.setRGB (5+)

Components:

colorObject.setRGB

Use this method to set the RGB value of the specified colorObject.

Example:

This script sets the RGB value to red for the clip to which it is attached:

onClipEvent(load){
 clipColor=new Color(this);
 clipColor.setRGB(0xFF000000);
}

For another example, see the Color.getRGB() method.

Color.setTransform (5+)

Components:

colorObject.setTransform(transformObject)

The setTransform() method allows you to manipulate the following color components of the
specified colorObject: red, green, blue, and alpha. For each component, you can control both
its percentage and its offset. To use this method, you must first create a generic object and
assign the color properties specified in Table R.1. This object becomes the transformObject.
Its properties are applied to colorObject when the setTransform() method is called.

Table R.1: Properties for a transformObject
Property Name Property Range Property Description
ra –100 to 100 Percentage of red
rb –255 to 255 Red offset
ga –100 to 100 Percentage of green
gb –255 to 255 Green offset
ba –100 to 100 Percentage of blue
bb –255 to 255 Blue offset
aa –100 to 100 Percentage of alpha
ab –255 to 255 Alpha offset

Percentage is a value applied to a color component's initial value. For instance, setting ba=50
makes all blue in an object take on half its original value. Offset can either increase or
decrease a color component's initial value. Setting gb=255 bumps an object's green values up
to their maximum level. See "Scripting Color Changes" in Chapter 16 for an in-context
example of these properties and methods.

Date Object (5+)

Components:

new Date()
new Date(year,month,day,hours,minutes,
 seconds,milliseconds);

ActionScript's Date object will retrieve the present date relative to either local time, or
Universal Time, Coordinated. Local time measurements are based on the system clock
settings of the computer playing a Flash movie. Universal Time, Coordinated (abbreviated
UTC) is synonymous with Greenwich Mean Time (GMT)—time measured relative to the
prime meridian. The UTC methods of the Date object will not be covered in this reference.

The Date object allows you to retrieve the current time, store it, and use date information as
needed in your movies. There are two ways to create a Date object. You can use the
constructor function new Date() to create an object for the current day and time, or you can
create an object for a specific date using some of the Date object's arguments:

year, an integer value to specify the year. Use 0 to 99 to represent the years 1900 through
1999; for example, 73 means 1973. Use a four-digit number to represent the years 1000–1899
or the year 2000 and later, and use three-digit numbers for years prior to 1000 a.d.

month, an integer from 0 (January) to 11 (December) to specify the month.

day, an integer from 1 to 31 to specify the weekday. This argument is optional.

hours, an integer from 0 (midnight) to 23 (11 p.m.) to specify the hour. Note that the Date
object doesn't support a.m. and p.m. time syntax. The hours argument is optional.

minutes, an integer from 0 to 59 to specify the minute. This argument is optional.

seconds, an integer from 0 to 59 to specify the second. This argument is optional.

milliseconds, an integer from 0 to 999 to specify the millisecond. This argument is optional.
Milliseconds are important to ActionScript because all date information is stored in terms of
milliseconds relative to midnight, January 1, 1970. Methods of the Date object allow you to
manipulate these long, cumbersome numbers and translate them into more meaningful dates
with the day of the week, month, time, and so on.

Methods:

Once a Date object has been created, you can invoke the following methods with it to either
set or retrieve date information:

Date.getDate() retrieves the day of the month.

Date.getDay() retrieves the day of the week.

Date.getFullYear() retrieves the year as a four-digit number.

Date.getHours() retrieves the hour of day.

Date.getMilliseconds() retrieves the milliseconds.

Date.getMinutes() retrieves the minute of the hour.

Date.getMonth() retrieves the month of the year.

Date.getSeconds() retrieves the seconds of the minute.

Date.getTime() retrieves the number of milliseconds since January 1, 1970.

Date.getYear() retrieves the year relative to 1900.

Date.setDate() sets the day of the month.

Date.setFullYear() sets the year as a four-digit number.

Date.setHours() sets the hour of day.

Date.setMilliseconds() sets the milliseconds.

Date.setMinutes() sets the minutes of the hour.

Date.setMonth() sets the month of the year.

Date.setSeconds() sets the seconds of the minute.

Date.setTime() sets the date in milliseconds relative to January 1, 1970.

Date.setYear() sets the year in either two-digit or four-digit format.

Date.toString() returns a string that lists the date in both local time and UTC.

Example:

These statements create a new Date object for the current day and time; then they use various
methods to format the date and display it in a "clock" created by text fields:

//create a new Date object
today=new Date();
//format each unit of time
//in an individual text field
hours=today.getHours();
minutes=today.getMinutes();
seconds=today.getSeconds();

The following statements are attached to a Button and will compute the number of days
remaining until the birthday specified in the text fields month and day:

on(release){
 today=new Date();
 bDay=new Date(today.getFullYear(),
 month-1,day)
 var wait=Math.ceil((bDay-today)/86400000);
 if(wait<0){
 printout="Happy belated birthday!";
 }else{
 printout=wait+" days until your
 next birthday.";
 }
}

Here, there are two new Date objects: one for the current time, today, and another for the
birthday specified in the text fields month and day. Note that because ActionScript numbers
months starting with 0 (January equals 0), it's necessary to subtract 1 from the value that is
entered into the month field. The difference between these dates is computed by Flash in
terms of milliseconds. To return the result in a readable number, the final value is divided by
86,400,000 (the number of milliseconds in a day) and rounded to the next highest integer with
the Math.ceil() method. The results are displayed in the field printout accordingly.

Date.getDate (5+)

Components:

someDateObj.getDate()

Use the getDate() method to return the day of the month for someDateObj. The day will be
returned as an integer from 1 to 31.

Date.getDay (5+)

Components:

someDateObj.getDay()

Use the getDay() method to return the day of the week for someDateObj. Weekdays are
returned as an integer from 0 (Sunday) to 6 (Saturday).

Date.getFullYear (5+)

Components:

someDateObj.getFullYear()

The getFullYear() method returns the year for someDateObj as a four-digit integer.

Date.getHours (5+)

Components:

someDateObj.getHours()

The getHours() method returns the hour of day for someDateObj. Hours are returned as
integers from 0 (midnight) to 23 (11 p.m.). Note that the Date object does not support a.m.
and p.m. time syntax.

Date.getMilliseconds (5+)

Components:

someDateObj.getMilliseconds()

The getMilliseconds() method returns the milliseconds for someDateObj. Milliseconds are
returned as an integer from 0 to 999.

Date.getMinutes (5+)

Components:

someDateObj.getMinutes()

Use the getMinutes() method to return the minutes of the hour for someDateObj. Minutes are
returned as an integer from 0 to 59.

Date.getMonth (5+)

Components:

someDateObj.getMonth()

Use the getMonth() method to return the month of the year for someDateObj. The month is
returned as an integer from 0 (January) to 11 (December).

Date.getSeconds (5+)

Components:

someDateObj.getSeconds()

The getSeconds() method will return the seconds of the minute for someDateObj. Seconds are
returned as an integer from 0 to 59.

Date.getTime (5+)

Components:

someDateObj.getTime()

Flash stores all Date objects as a single number: elapsed milliseconds since midnight of
January 1, 1970. The getTime() method will return the number of milliseconds for
someDateObj. This measure allows you to access numbers for the easy comparison of two
dates.

Date.getYear (5+)

Components:

someDateObj.getYear()

Use this method to return the year of someDateObj relative to 1900. For example, the year
1973 is returned as 73, and the year 2002 is returned as 102.

Date.setDate (5+)

Components:

someDateObj.setDate(day)

The setDate method allows you to set the day of the month for someDateObj. A date is
specified in the argument day as an integer from 1 to 31.

Date.setFullYear (5+)

Components:

someDateObj.setFullYear(year,month,day)

This method allows you to set the exact date of someDateObj. It takes the following
arguments:

year, a four-digit number to set the year

month, an integer between 0 (January) and 11 (December) to set the month of the year

day, an integer between 1 and 31 to set the day of the month

Date.setHours (5+)

Components:

someDateObj.setHours(hour)

Use this method to set the hour of day for someDateObj. Hours are specified as an integer
from 0 (midnight) to 23 (11 pm).

Date.setMilliseconds (5+)

Components:

someDateObj.setMilliseconds(mSeconds)

Use this method to set the number of milliseconds for someDateObj. Milliseconds are
specified as an integer between 0 and 999.

Date.setMinutes (5+)

Components:

someDateObj.setMinutes(minute)

Use this method to set the minute of the hour for someDateObj. Minutes are specified as an
integer between 0 and 59. Minute values outside the 0 to 59 range will update the previous or
next hour of someDateObj accordingly. For example, a minute value of 60 is equivalent to the
first minute of the next hour.

Date.setMonth (5+)

Components:

someDateObj.setMonth(month)

Use this method to set the month of the year for someDateObj. Months are specified as an
integer between 0 (January) and 11 (December). Month values outside the 0 to 11 range will
update the previous or next year of someDateObj accordingly.

Date.setSeconds (5+)

Components:

someDateObj.setSeconds(second)

Use this method to set the second of the minute for someDateObj. Seconds are specified as an
integer between 0 and 59. Second values outside the 0 to 59 range will update the previous or
next minute of someDateObj accordingly. For example, a second value of –1 is equivalent to
the last (59th) second of the previous minute.

Date.setTime (5+)

Components:

someDateObj.setTime(mSeconds)

Use this method to set the number of milliseconds for someDateObj relative to January 1,
1970. Milliseconds are specified as an integer and represent the elapsed seconds between the
new Date object and the fixed marker in 1970.

Date.setYear (5+)

Components:

someDateObj.setYear(year,month,day)

This method allows you to set the exact date of someDateObj and takes the following
arguments:

year, an integer value of 0 to 99 represents the years 1900 through 1999. Use a four-digit
integer to represent the year 2000 and later and three-digit numbers for years prior to 1000
a.d.

month, an integer between 0 (January) and 11 (December) to set the month of the year.

day, an integer between 1 and 31 to set the day of the month.

Date.toString (5+)

Components:

someDateObj.toString()

Use this method to convert the information in someDateObj to a readable format that includes
the day of the week, month, calendar date, hours, minutes, seconds, GMT (or UTC) offset,
and year.

Key Object (5+)

Key.keyMethod()
Key.keyProperty

The Key object monitors and controls keystrokes in your movies, and it provides an excellent
means to create interactive controls using a computer keyboard. Key object methods are
useful for recording the identity of pressed keys, and Key object properties provide shortcuts
to identify many common keys for keyboard input. (For a complete listing of key codes, see
Table R.4 at the end of the ActionScript Reference section.)

Methods:

Key.getAscii() returns the ASCII value of the last key pressed.

Key.getCode() returns the key code value of the last key pressed.

Key.isDown() checks if the specified key is currently depressed.

Properties:

Table R.2 shows properties for the Key object.

Table R.2: Properties for a Key Object
Syntax Key Key Code
Key.BACKSPACE Backspace 8
Key.CAPSLOCK Caps Lock 20
Key.CONTROL Control 17
Key.DELETEKEY Delete 46
Key.DOWN Down arrow 40
Key.END End 35
Key.ENTER Enter (numeric keypad) 13
Key.ESCAPE Esc 27
Key.HOME Home 36
Key.INSERT Insert 45
Key.LEFT Left arrow 37
Key.PGDN Page Down 34
Key.PGUP Page Up 33
Key.RIGHT Right arrow 39
Key.SHIFT Shift 16
Key.SPACE Spacebar 32
Key.TAB Tab 9
Key.UP Up arrow 38

Key.getAscii (5+)

Components:

Key.getAscii()

Use this method to return the ASCII value of the last key pressed. Unlike getCode(),
getAscii() can distinguish between uppercase and lowercase letters, but it cannot tell the
difference between numbers on the regular keyboard and those on the numeric keypad. See
Key.getCode() for an example of this method in context.

Key.getCode (5+)

Components:

Key.getCode()

Use this method to return the key code value of the last key pressed. Key codes are built-in
values that represent all keys on the keyboard with numeric codes. (For a complete listing of
these, see Table R.4 at the end of the ActionScript Reference section.)

Example:

Use the following function to retrieve key code and ASCII code values from Flash MX
directly:

keyCheck=new Object();
keyCheck.onKeyDown=function(){
 trace("code: "+Key.getCode());
 trace("ascii: "+Key.getAscii());
}
Key.addListener(keyCheck);

The keyCheck object is registered as a listener that will respond to keystrokes, or more
specifically, the onKeyDown event.

Key.isDown (5+)

Components:

Key.isDown(keyCode)

Unlike the Key.getAscii() and Key.getCode() methods, this method tests whether the key
specified in keyCode is being pressed or held down. It's useful for controls that rely on
prolonged or constant key input. The argument for keyCode can be entered as a numeric key
code value or as a property of the Key object (for example, Key.SPACE).

Example:

This script demonstrates a simple Movie Clip navigation system using the arrow keys:

onClipEvent(enterFrame){
 if(Key.isDown(Key.UP)){
 this._y-=10;
 }else if(Key.isDown(Key.DOWN)){
 this._y+=10;
 }
 if(Key.isDown(Key.LEFT)){
 this._x-=10;

 }else if(Key.isDown(Key.RIGHT)){
 this._x+=10;
 }
}

Note in this example how up/down and left/right scripts are in separate if...else blocks. This
enables the script to execute movement in two directions simultaneously—the clip can go
either up or down and either left or right. Thus, the clip can move diagonally.

Math Object (5+)

Components:

Math.mathProperty
Math.mathMethod(expression)

The Math object enables you to write scripts that perform numeric calculations. The object
provides access to mathematical functions (via Math object methods) that can be used for
ActionScript number-crunching in your movies.

Methods:

Math.abs() calculates the absolute value.

Math.ceil() rounds a number to the next higher integer.

Math.floor() rounds a number to the next lower integer.

Math.max() calculates the larger of two numbers.

Math.min() calculates the smaller of two numbers.

Math.pow() raises a number to an exponential power.

Math.random() returns a random number between 0.0 and 1.0.

Math.round() rounds a number to the nearest integer.

Math.abs (5+)

Components:

Math.abs(expression)

Use the Math.abs() method to return the absolute value of expression. The absolute value is
the value of an expression relative to 0 without regard to whether it is positive or negative.
Math.abs() converts negative values to positive values and leaves positive values untouched.

Math.ceil (5+)

Components:

Math.ceil(expression)

The Math.ceil() method converts a floating-point number specified in expression to the
nearest integer that is greater than or equal to expression. Math.ceil(0.00001) evaluates to 1.

Math.ceil(1.9) evaluates to 2.

Math.floor (5+)

Components:

Math.floor(expression)

The Math.floor() method converts a floating-point number specified in expression to the
nearest integer that is less than or equal to expression. Math.floor(0.00001) evaluates to 0;
Math.floor(1.9) evaluates to 1.

Math.max (5+)

Components:

Math.max(num1,num2)

Use this method to return the larger of the two numbers specified in num1 and num2.

Math.min (5+)

Components:

Math.min(num1,num2)

Use this method to return the smaller of the two numbers specified in num1 and num2.

Math.pow (5+)

Components:

Math.pow(num,exp)

This method raises the number num to the power of exp.

Math.random (5+)

Components:

Math.random()

Math.random() produces a random number that is greater than or equal to 0 and less than 1
(0.0 to 0.9999…). Use this method to randomly generate numbers that can be used for

indeterminate functions, to make random selections, to arbitrarily position a Movie Clip on
the Stage, and so on.

Example:

This statement will generate a random integer between 0 and 10:

Math.floor(Math.random()*11);

Because Math.random() will never generate a number equal to 1, use an integer that's one
number higher to set the upper range. Math.floor() will round the resulting value down to the
nearest integer.

Similarly, you can establish both an upper and a lower range for the random number. These
statements generate a random number between 50 and 100 and use it to set the _alpha value of
a Movie Clip:

onClipEvent(load){
 vis=Math.floor(Math.random()*101)+50;
 this._alpha=vis;
}

Math.round (5+)

Components:

Math.round(expression)

Use this method to round floating-point numbers to the nearest integer value. Numbers with
decimal values equal to or greater than 0.5 will be rounded to the next higher integer value;
decimal values less than 0.5 will be rounded to the next lower integer value.

Example:

Math.round(1.5) returns 2.

Math.round(1.4) returns 1.

Math.round(-1.5) returns –1.

Math.round(-1.6) returns –2.

Mouse Object (5+)

Components:

Mouse.mouseMethod

You can use the Mouse object to make the mouse cursor hidden or visible when it appears
over the Flash Player. The methods of the Mouse object are usually used to replace the system
default cursor (arrow) with a custom cursor Movie Clip.

Methods:

Mouse.hide() hides the mouse cursor.

Mouse.show() shows the mouse cursor.

Mouse.hide (5+)

Components:

Mouse.hide()

This method effectively hides the mouse cursor when it is positioned over the Flash Player
(within a Flash movie's bounds). When the cursor is moved outside a movie, the default
system cursor becomes visible again.

Example:

These statements, when attached to a Movie Clip, will turn that clip into a custom mouse
cursor. The mouseMove event is helpful in this situation to ensure that the Movie Clip moves
smoothly with the cursor and doesn't skip between frames:

onClipEvent(load){
 Mouse.hide();
}
onClipEvent(mouseMove){
 this._x=_root._xmouse;
 this._y=_root._ymouse;

}

Mouse.show (5+)

Components:

Mouse.show()

This method restores the appearance of the default mouse cursor after it has been hidden by
the Mouse.hide() method.

MovieClip Object (5+/6)

Components:

clipInstance.methodName
targetPath.clipInstance.methodName

The MovieClip object cannot create new Movie Clips. Movie Clips are created in Flash by
selecting Insert → New Symbol and then selecting Movie Clip as the new symbol's behavior.
Rather, the MovieClip object is ActionScript-based and provides a series of methods for
controlling the playback of clip instances. Many of these are similar to the actions that you

can use to control clip and movie Timeline playback. However, there are some methods that
provide additional functionality beyond the scope of clip-related actions.

Methods of the MovieClip object can be used on clip instances and movie Timelines alike.
This includes both the main movie and SWF files that have been loaded into a new movie
level. To use methods of the MovieClip object on a clip, simply attach the actions to the clip
directly using the appropriate onClipEvent handler. If your movie requires that you control a
clip from another location, such as a Button, the clip must have a unique instance name. It can
be assigned in the Property Inspector or initialized when the clip is either duplicated or
attached from the Library. Additionally, it is often necessary to specify the target path to the
clip you want to control. A target path is required if your target clip resides at a different
movie level (_root, _level1, _level2, and so on) or is nested within one or more Movie Clip
instances. To read more about targeting clips and movie Timelines, see Chapter 16.

Methods:

MovieClip.attachMovie() creates a new clip instance using a clip exported from the Library.

MovieClip.duplicateMovieClip() creates a copy of the specified Movie Clip.

MovieClip.getBytesLoaded() returns the number of bytes loaded for the specified movie.

MovieClip.getBytesTotal() returns the size, in bytes, of the specified movie.

MovieClip.getURL() loads an external file found at the specified URL.

MovieClip.globalToLocal() converts coordinates from Stage coordinates to clip instance
coordinates.

MovieClip.gotoAndPlay() sends the specified movie or instance to a frame in its Timeline and
initiates playback from that point.

MovieClip.gotoAndStop() sends the specified movie or instance to a frame in its Timeline
and halts playback at that point.

MovieClip.hitTest() returns Boolean True or False if the specified clip intersects with a movie
coordinate or another clip.

MovieClip.loadMovie() loads an external SWF movie into the specified clip instance.

MovieClip.loadVariables() loads data found at a URL into the specified clip instance.

MovieClip.localToGlobal() converts clip instance coordinates to Stage, or main movie,
coordinates.

MovieClip.nextFrame() sends the playback head of the specified clip or movie ahead one
frame and stops it there.

MovieClip.play() initiates playback of the specified clip or movie.

MovieClip.prevFrame() sends the playback head of the specified clip or movie back one
frame and stops it there.

MovieClip.removeMovieClip() erases a dynamic clip instance created with either
duplicateMovieClip() or attachMovie().

MovieClip.startDrag() makes a clip instance draggable.

MovieClip.stop() halts playback of the specified clip or movie.

MovieClip.stopDrag() disables a clip instance from being dragged by the mouse.

MovieClip.unloadMovie() removes an external SWF file that was accessed via the
loadMovie() action or method.

MovieClip.valueOf() returns the absolute path to the specified clip instance in dot syntax.

MovieClip.attachMovie (5+)

Components:

clipInstance.attachMovie("id","name",depth)

The attachMovie() method calls a new MovieClip instance to the Stage and positions it at the
origin of clipInstance. The origin is the upper-left corner of the main movie or registration
point of a MovieClip instance. To attach a clip, you must first export it from the Library by
selecting Linkage from the Options menu. The exported name (specified in the Linkage
Properties dialog box) is used for the argument id. Additionally, you must provide the clip
with an instance name (name) and assign it a position in the internal clip stacking level
(depth). id and name are entered as strings, and depth is specified as an integer.

Example:

This script attaches the movie exported as sun and renames it as the instance yellow.
Attaching a movie at the _root level will position it in the upper-left corner of the Stage. In
this example, yellow is moved to the center of a 550×400–pixel Stage.

_root.attachMovie("sun","yellow",2);
_root.yellow._x=275;
_root.yellow._y=200;

MovieClip.duplicateMovieClip (5+)

Components:

instance.duplicateMovieClip("newName",depth)

This method duplicates the specified instance, gives it a new instance name (newName), and
assigns a position in the internal clip stacking level (depth). Enter the newName argument as a
string, and enter depth as an integer. Although the syntax is slightly different, the functionality

of this method is identical to the duplicateMovieClip() action. See the duplicateMovieClip()
action for an in-context example.

MovieClip.getBytesLoaded (5+)

Components:

clipInstance.getBytesLoaded()

Use this method to obtain the number of bytes that have been downloaded for the movie
specified in clipInstance. If you want to retrieve the bytes for the main movie, no target is
necessary, but it is good practice to specify _root or this. Because Movie Clips are considered
part of their host movie, you cannot retrieve the number of bytes loaded for clip instances.
This method is intended to monitor the load progress of main movies and external SWF files.

Example:

This script fills the text field loaded with the number of kilobytes of the main movie that have
been downloaded. The bytes value returned by getBytesLoaded() can be divided by 1,024 to
obtain the number of kilobytes:

loaded=Math.round(_root.getBytesLoaded()/
 1024)+"kB";

MovieClip.getBytesTotal (5+)

Components:

clipInstance.getBytesTotal()

This method returns the size, in bytes, of the specified movie or MovieClip instance.

Example:

This script fills the text field total with the total number of kilobytes of the main movie (the
overall size of the movie in kilobytes). The bytes value returned by getBytesTotal() can be
divided by 1,024 to obtain the number of kilobytes:

total=Math.round(_root.getBytesTotal()/
 1024)+"kB";

MovieClip.getURL (5+)

Components:

clip.getURL("target","window","varMethod")

This MovieClip object method has the same functionality as the getURL() action. It allows
you to pass variables directly from the specified movie or clip instance to a URL. For a
complete description and example, see the section about the getURL() action.

MovieClip.globalToLocal (5+)

Components:

clipInstance.globalToLocal(point)

The globalToLocal()method performs a conversion from Stage coordinates to Movie Clip
coordinates. It tells you where a certain coordinate point on the Stage appears, relative to the
registration point of a Movie Clip. The point argument represents an object with the properties
x and y. The object point is initialized to store coordinate values to be converted to local
values. Conversions are based on the coordinate system of the specified instance clipInstance.
The point object stores values for conversion and cannot set the position of a clip.

Example:

Examine this script line by line to see how the conversion works.

Create a generic object named pnt:

pnt=new Object();

Assign its x and y properties the current x and y values for the current clip instance:

pnt.x=this._x;
pnt.y=this._y;

Print the current x and y values in a text field. This reflects their global, or Stage, position:

_root.txt1="global: "+this._x+","+this._y;

Perform the conversion from global to local coordinates on the pnt object:

this.globalToLocal(pnt);

Print the local coordinates for the current clip:

_root.txt2="local: "+pnt.x+","+pnt.y;

Because the properties were initialized as the location of the clip, a global-to-local conversion
yields the coordinates (0, 0), or the registration point of this clip.

MovieClip.gotoAndPlay (5+)

Components:

clipInstance.gotoAndPlay(frameNum)
clipInstance.gotoAndPlay("frameLabel")

This method sends the playback head of the specified movie or clip instance or movie level
(noted in the argument clipInstance) to a location in its Timeline and initiates playback from

that point. You can set the location by supplying either a frame number as an integer or a
frame label as a string.

MovieClip.gotoAndStop (5+)

Components:

clipInstance.gotoAndStop(frameNum)
clipInstance.gotoAndStop("frameLabel")

This method sends the playback head of the specified movie or clip instance or movie level
(noted in the argument clipInstance) to a location in its Timeline and halts its playback at that
point. You can set the location by supplying either a frame number as an integer or a frame
label as a string.

MovieClip.hitTest (5+)

Components:

clipInstance.hitTest(x,y,shapeFlag)
clipInstance.hitTest("target")

This method returns a Boolean value and checks whether the specified clip clipInstance
intersects with a coordinate point or another clip instance. To test intersection with a point,
you must specify X and Y coordinates and enter a Boolean value for the shapeFlag argument.
When false (the default setting if no value is entered), intersection will be based on the
bounding box of clipInstance. When true, intersection occurs only with the actual pixels of
clipInstance. Set shapeFlag to true to test intersection with irregularly shaped Movie Clips, or
clips with large gaps. Alternately, to test for intersection with another clip, specify the target
path to that clip as a string. No other arguments are required.

Example:

The following syntax using the hitTest() method checks whether the current clip has collided
with the border clip instance. If it has (true), the text field display shows HIT; otherwise, it
shows nothing:

onClipEvent(enterFrame){
 if(this.hitTest("_root.border")){
 _root.display="HIT";
 }else _root.display="";
}

MovieClip.loadMovie (5+)

Components:

clipInstance.loadMovie("URL","varMethod")

This method has the same functionality as the loadMovie() action. The only difference
between the two is that as a MovieClip object method, it takes no target argument. Instead, it

loads the SWF found at the specified URL into clipInstance. For an in-context example, and
to learn about passing variables using the optional varMethod argument, see the section on the
loadMovie() action.

MovieClip.loadVariables (5+)

Components:

clipInstance.loadVariables("URL","varMethd")

This MovieClip method has the same functionality as the loadVariables() action. The main
difference is that as a method, it takes no target argument and instead loads the variables
found at the specified URL into clipInstance. For an in-context example, and to learn about
passing variables using the optional varMethd argument, see the section on the
loadVariables() action.

MovieClip.localToGlobal (5+)

Components:

clipInstance.localToGlobal(point)

The localToGlobal method performs a conversion from Movie Clip coordinates to Stage
coordinates. It tells you where a certain coordinate point in a Movie Clip appears, relative to
the upper-left corner of the Stage. The point argument represents an object with the properties
x and y. The object point is initialized to store coordinate values to be converted to Stage, or
global, values. Conversions are based on the coordinate system of the specified instance
clipInstance. The point object is used to store values for conversion and cannot set the
position of a clip.

Example:

Examine this script line by line to see how the conversion works. Create a generic object
named pnt:

pnt=new Object();

Assign its x and y properties the current x and y values for the current clip instance:

pnt.x=0;
pnt.y=0;

Print the current x and y values in a text field. This reflects their global, or Stage, position:

_root.txt1="global:"+this._x+","+this._y;

Perform the conversion from local to global coordinates on the pnt object:

this.localToGlobal(pnt);

Print the local coordinates for the current clip:

_root.txt2="local:"+pnt.x+","+pnt.y;

Because the properties were initialized as the point (0, 0), a local-to-global conversion yields
the coordinates (200, 130), or the position of this clip on the Stage.

MovieClip.nextFrame (5+)

Components:

clipInstance.nextFrame()

This method sends the specified Movie Clip instance or movie level (clipInstance) ahead one
frame in its Timeline and stops it there. It is particularly useful for creating frame-by-frame or
slide-show sequences.

MovieClip.play (5+)

Components:

clipInstance.play()

This method initiates playback of the specified Movie Clip instance or movie level. It is
particularly useful for the interactive control of clips and movies from separate Timelines.

MovieClip.prevFrame (5+)

Components:

clipInstance.prevFrame()

This method sends the specified Movie Clip instance or movie level (clipInstance) back one
frame in its Timeline and stops it there. It is particularly useful for creating frame-by-frame or
slide-show sequences.

MovieClip.removeMovieClip (5+)

Components:

clipInstance.removeMovieClip()

This MovieClip object method has the same functionality as the removeMovieClip() action. It
deletes from the Stage any clip instance that was created via attachMovie() or
duplicateMovieClip(). This method takes no target argument; instead specify the target path
to clipInstance to remove clipInstance from the Stage.

Example:

When the current clip is clicked, this script will delete the instance alert from the current
movie:

onClipEvent(mouseUp){

 if(this.hitTest(_root._xmouse,_root.
 _ymouse,true)){
 _root.alert.removeMovieClip();
 }
}

MovieClip.startDrag (5+)

Components:

clip.startDrag(lock,left,top,right,bottom)

Like the startDrag() action, the startDrag() method enables a clip to be dragged, or moved,
about the Stage by the mouse cursor. When called, clipInstance becomes draggable. The lock
argument is a Boolean value that specifies whether the clip's registration point should lock to
the tip of the mouse cursor (true) or remain in its original position (false) when first clicked.
The position arguments—left, top, right, and bottom—are entered as integers and determine
the coordinate boundaries for the draggable clipInstance. For an example using the startDrag()
action to create a slider, see "Creating a Slider to Scroll a Timeline" in Chapter 16.

MovieClip.stop (5+)

Components:

clipInstance.stop()

This method ceases playback of the specified Movie Clip instance or movie level. It is
particularly useful for the interactive control of clips and movies from separate Timelines.

MovieClip.stopDrag (5+)

Components:

clipInstance.stopDrag()

Like the stopDrag() action, this method ceases the dragging of any clip instances in the
current movie. For an example, see the startDrag() action.

MovieClip.unloadMovie (5+)

Components:

clipInstance.unloadMovie()

This method unloads the SWF movie specified by clipInstance.

MovieClip.valueOf (5+)

Components:

clipInstance.valueOf()

The valueOf method returns the absolute target path to the specified clip in dot syntax.

MovieClip Object Drawing Methods (6)

The drawing methods of the MovieClip object are new in Flash MX and can be used to
dynamically draw Movie Clips with ActionScript. To read more about the MovieClip object
drawing methods, see the Reference panel (Shift+F1) or the documentation that ships with
Flash MX.

MovieClip.beginFill() sets the current fill style and fills the area within a Movie Clip.

MovieClip.createEmptyMovieClip() creates a new, empty Movie Clip.

MovieClip.curveTo() draws a curve in the current drawing style.

MovieClip.endFill() applies the fill established by the last beginFill() call.

MovieClip.lineStyle() defines the attributes of the line used when drawing a Movie Clip using
ActionScript.

MovieClip.lineTo() draws a straight line in the current drawing style.

MovieClip.moveTo() resets the "pen" position when drawing a Movie Clip.

MovieClip.beginFill (6)

Components:

clipInstance.beginFill(rgb,alpha)

Use this method to paint a fill color for the Movie Clip clipInstance. When painting, you must
specify two things: an RGB color as a Hex color value in the format 0xrrggbb and a value
between 0–100 for the opacity, or alpha of the fill.

MovieClip.createEmptyMovieClip (6)

Components:

target.createEmptyMovieClip("instance",depth)

This method is the first step of drawing a Movie Clip with ActionScript. Use it to create a
Movie Clip on the Timeline specified by target. For the new clip, assign an instance name
(instance) as a string and give it a depth in the stacking level. There can only be one clip on a
stacking level at a time, so be sure to create the clip at a depth that is available.

MovieClip.curveTo (6)

Components:

clipInstance.curveTo(hanX,hanY,ptX,ptY)

The curveTo() method draws curves and arcs. The curved line is drawn from the current
drawing position as set by the last lineTo(), curveTo(), or moveTo() call. If not otherwise
specified, the curve begins at point (0,0) on the Timeline specified by clipInstance. To draw a
curve, you must specify four things: X and Y coordinates (hanX,hanY) for the tangent handle
that gives the curve its shape and X and Y coordinates (ptX,ptY) to set the destination of the
curve. The resulting curve is drawn in the current line style as set by the last lineStyle() call.

MovieClip.endFill (6)

Components:

clipInstance.endFill()

This method applies the fill established by the last beginFill() call to the specified
clipInstance. If endFill() is called, and the drawing position has changed since the last
moveTo() call, the path is closed and filled with the current fill style.

MovieClip.lineStyle (6)

Components:

clipInstance.lineStyle(stroke,rgb,alpha)

Use this method to set the attributes for the outlines (strokes) of your vector images. Specify a
line weight (stroke) as an integer. 0 represents hairline thickness; the maximum thickness is
255. Use a Hex color value (in the format 0xrrggbb) for rgb to set the color of the line, and
specify an opacity (alpha) setting between 0–100. Once a lineStyle() call is made, all line
attributes are fixed until a new call is made.

MovieClip.lineTo (6)

Components:

clipInstance.lineTo(x,y)

The lineTo() method draws a straight line. The line is drawn from the current drawing
position as set by the last lineTo(), curveTo(), or moveTo() call. If not otherwise specified, the
line begins at point (0,0) on the Timeline specified by clipInstance. To draw a line you must
specify the destination X and Y coordinates. The resulting line is drawn from the current
position to point (x,y) in the current line style as set by the last lineStyle() call.

MovieClip.moveTo (6)

Components:

clipInstance.moveTo(x,y)

The moveTo() method sets the initial drawing position of a line or curve. Specify the position
as X and Y coordinates, relative to the registration point of clipInstance. After the drawing

position has been set, the current drawing position is always determined by the coordinate
destination of the last lineTo() or curveTo() call.

Example:

This example uses ActionScript to dynamically draw a twilight scene. This first block draws a
black square named sky. Note that when the shape is drawn using only beginFill(), it has no
stroke:

_root.createEmptyMovieClip("sky",1);
_root.sky.beginFill(0x000000);
_root.sky.moveTo(0,0);
_root.sky.lineTo(0,200);
_root.sky.lineTo(200,200);
_root.sky.lineTo(200,0);
_root.sky.lineTo(0,0);

The second block draws a series of stars. They are randomly placed in a 190×190 box and
randomly rotated in the range 0–45 degrees:

for(i=2; i<23; i++){
 var ptX=Math.floor(Math.random()*191);
 var ptY=Math.floor(Math.random()*191);
 var spin=Math.floor(Math.random()*46);
 _root.createEmptyMovieClip("star"+i,i);
 with(eval("_root.star"+i)){
 _rotation=spin;
 linestyle(2,0xcccc66,100);
 beginFill(0xcccc00)
 moveTo(ptX+7,ptY-7);
 lineTo(ptX,ptY-8);
 lineTo(ptX+5,ptY-13);
 lineTo(ptX+4,ptY-20);
 lineTo(ptX+10,ptY-16);
 lineTo(ptX+16,ptY-20);
 lineTo(ptX+15,ptY-13);
 lineTo(ptX+20,ptY-8);
 lineTo(ptX+13,ptY-7);
 lineTo(ptX+10,ptY);
 lineTo(ptX+7,ptY-7);
 }
}

This last block draws a crescent moon using the curveTo() drawing method. The moon has a
dark purple stroke and a light-purple fill:

_root.createEmptyMovieClip("moon",i);
_root.moon.linestyle(8,0x663366,100);
_root.moon.beginFill(0x666699);
_root.moon.moveTo(40,50);
_root.moon.curveTo(116,12,150,40);
_root.moon.curveTo(190,73,160,160);
_root.moon.curveTo(162,109,126,74)
_root.moon.curveTo(85,35,40,50);

Object (Generic) Object Components (5+)

new Object()

Use this object to create a generic object that will hold information temporarily or to create
custom objects. To create a generic or custom object, use the constructor function new
Object(). For an example of this term in action, see the Color.setTransform(),
MovieClip.localToGlobal(), or Sound.setTransform() methods.

Sound Object (5+/6)

Components:

new Sound()
new Sound("target")

You can use the Sound object to control the playback of sounds in a Flash movie. To create a
Sound object, you must use the constructor function new Sound(). Using this syntax, you
create a global Sound object named globalSound that can control all sounds currently active
in a movie:

globalSound=new Sound();

This syntax uses the target argument to create a Sound object named bkgdSound for the
sounds at movie level 1:

bkgdSound=new Sound("_level1");

This final syntax creates a Sound object named clipSound for the sounds in the Movie Clip
note:

clipSound=new Sound("_root.note");

Once a Sound object has been created, you can use the Sound object methods to control the
volume and pan position of a sound. Additionally, individual sounds can be exported from the
Library and attached to a specific Sound object using the attachSound() method. This
technique offers complete control over all sound playback parameters, including where the
sound starts and how many times it is looped (repeated).

Events:

Sound.onSoundComplete takes place when a sound finishes its playback.

Sound.onLoad takes place when a sound is loaded into a Flash movie from an external source.

Methods:

Sound.attachSound() pairs a sound exported from the Library with a Sound object.

Sound.getPan() retrieves the pan position for the given Sound object.

Sound.getTransform() retrieves the percentage of a sound's stereo channels currently being
played in the left and right speakers.

Sound.getVolume() retrieves the volume level for the given Sound object.

Sound.setPan() assigns a pan position for the given Sound object.

Sound.setTransform() assigns the percentage of a sound's stereo channels to be played in the
left and right speakers.

Sound.setVolume() assigns the volume level for the given Sound object.

Sound.start() cues the sound attached to the given Sound object.

Sound.stop() silences the sound attached to the given Sound object.

Properties:

Sound.duration returns the length of the specified sound in milliseconds.

Sound.position returns the number of milliseconds a sound has been playing.

Sound.attachSound (5+)

Components:

soundObj.attachSound("identifier")

The attachSound() method pairs a sound exported from the Library with the specified Sound
object. To export a sound, select the sound in the Library panel and choose Linkage from the
Options menu. Check the Export for ActionScript box and assign it a name in the Identifier
field. When invoking the attachSound() method, use this name as a string (in quotes) for the
identifier argument, and the exported sound will be attached to the object you specify. Once
the sound has been attached, it can be cued, stopped, and manipulated by controlling its
Sound object. Only one sound can be attached to an object at a time. If you have multiple
Sound objects at various movie levels, be sure to include a target argument to control the
sounds attached to each.

Example:

In this example, the sound brass is attached to the new Sound object fanfare and cued to play:

fanfare=new Sound();
fanfare.attachSound("brass");
fanfare.start();

Sound.duration (6)

Components:

soundObj.duration

This property retrieves the total length, in milliseconds, for the sound attached to the specified
soundObj.

Example:

This script uses both the Sound.position and Sound.duration properties to create a progress
bar that tracks the position of a sound. As the sound plays back, the progress bar (which is
loaded at an _xscale value of 0) is scaled closer and closer to 100:

onClipEvent(load){
 bar_mc._xscale=0;
}
onClipEvent(enterFrame){
 played=_root.riff.position;
 total=_root.riff.duration;
 bar_mc._xscale=100*(played/total);
}

Sound.getPan (5+)

Components:

soundObj.getPan()

Use this method to retrieve the current pan position for the specified Sound object. Pan
position is measured between –100 (hard left) and 100 (hard right).

Sound.getTransform (5+)

Components:

soundObj.getTransform(transformObj)

This method returns an object storing the properties ll, lr, rl, and rr of the object transformObj.
These properties represent the channel percentages that are set by the setTransform() method
for transformObj and applied to the sounds in or attached to soundObj. For more information
about this method, see the entry for Sound.setTransform().

Sound.getVolume (5+)

Components:

soundObj.getVolume()

This method retrieves the current volume level for the specified Sound object. Values are
returned in the range of 0 (silence) to 100 (full volume).

Example:

This function drops the volume of all sounds in a movie to 10% of their total possible volume
if they are at full volume or restores them to full volume if they are turned down:

function volToggle(obj){
 if(obj.getVolume()==10){
 obj.setVolume(100);

 }else obj.setVolume(10);
}

Sound.onLoad (6)

Components:

soundObj.onLoad=function

This event is triggered when the sound attached to soundObj has completely loaded into your
movie via the loadSound() method. To make this event serve as a trigger to execute additional
scripts, assign a function that executes the statements you require.

Example:

You can use this event as a sort of preloader:

track1.onLoad=function(){
 track1.start(0,2);
 status.nextFrame();
}

When track1 finishes loading, it is cued, and the status Movie Clip jumps ahead to its next
frame.

Sound.onSoundComplete (6)

Components:

soundObj.onSoundComplete=function

This event is triggered when the sound attached to soundObj finishes playing. If the specified
Sound object is cued to loop, onSoundComplete will not occur until the sound has played
through its loops. To make this event serve as the trigger to execute additional scripts, assign
a function that executes the statements you require.

Example:

You can use this event to do all sorts of things. One of the most logical "next steps" would be
to cue the next song in a play list. For example:

track1.onSoundComplete=function(){
 track2.start();
}

When track1 finishes playing, track2 is cued.

Sound.position (6)

Components:

soundObj.position

This property retrieves the current playback position, in milliseconds, for the sound attached
to the specified soundObj. If soundObj is set to loop, the sound's position property resets to 0
with every loop iteration. For an example, see the Sound.duration property.

Sound.setPan (5+)

Components:

soundObj.getPan(panValue)

This method sets the pan position for the sound or sounds associated with soundObj. The pan
value can be set in the range of –100 (hard left) to 100 (hard right). When a sound is panned
hard left, it is heard only in the left speaker. Conversely, panning a sound hard right isolates
the sound in the right speaker.

Example:

This script causes the Sound object movSnd to gradually pan its sound(s) to the left each time
the button is clicked:

on(press){
 movSnd.setPan(movSnd.getPan()-10);
}

Rather than set a pan value explicitly, the getPan() method is used to retrieve the current pan
value. Then, setPan() adjusts the pan position to the current value minus 10. This script could
just as easily pan sounds to the right by adding 10 to the current pan value.

Sound.setTransform (5+)

Components:

soundObj.setTransform(transformObj)

Sound.setTransform() is one of the more interesting Sound object methods in ActionScript. It
allows you to dynamically redistribute the left and right channel components of a stereo sound
in the left and right speakers. This method enables you to completely rearrange the stereo
makeup of a sound by telling Flash to play, for example, all of the left channel sound in the
right speaker, none in the left, and all of the right channel sound in the left speaker, and 25%
in the right.

To use this method, you must create a Transform object: a generic object with the properties
ll, lr, rl, and rr. These properties are responsible for the distribution of the left and right
channel components in the left and right speakers. See Table R.3 for a description of each.

Table R.3: Properties for a Sound Transform Object
Property
Name

Property
Range

Property Description

ll 0–100 Percentage of the left channel sound to play in the left speaker

Table R.3: Properties for a Sound Transform Object
Property
Name

Property
Range

Property Description

lr 0–100 Percentage of the right channel sound to play in the left speaker
rr 0–100 Percentage of the right channel sound to play in the right speaker
rl 0–100 Percentage of the left channel sound to play in the right speaker

After creating a Transform object, assign values for each of the four properties and pass them
to the specified Sound object (soundObj) using the setTransform() method. For an in-context
example, see "Scripting Special Effects" in Chapter 22.

Sound.setVolume (5+)

Components:

soundObj.getVolume(volumeValue)

This method sets the volume level for the sound or sounds associated with soundObj. Volume
can be set in the range of 0 (silence) to 100 (full volume). When a sound's volume is at 0, it
will still play, but the sound will be inaudible and will sound as though it has been stopped.
Although it is not documented by Macromedia, there is no real maximum volume level for
sounds. However, if sounds are properly normalized before they are imported into a Flash
movie, volume settings higher than 100 are likely to cause distortion.

Example:

This script causes the Sound object movSnd to gradually decrease its volume each time the
button is clicked:

on(press){
 movSnd.setVolume(movSnd.getVolume()-10);
}

Rather than set a volume value explicitly, the getVolume() method retrieves the current
volume value. Then setVolume() adjusts the volume level to the current value minus 10. This
script could just as easily increase the volume level by adding 10 to the current volume value.

Also see the example for Sound.getVolume().

Sound.start (5+)

Components:

soundObj.start(secondsOffset,loops)

Use this method to cue a sound that has been paired with the Sound object soundObj via
Sound.attachSound(). This method takes up to two optional arguments: secondsOffset and
loops. secondsOffset starts the sound at any time within the sound file. Specify a number, and
the sound will start at that point—for example, 1.5 starts a sound one and a half seconds into

the audio file. A value of 0 (default) plays a sound from the file's beginning. loops tells the
sound how many times to repeat. A value of 1 (default) plays the sound once, 2 plays it twice,
and so on. If you specify a value for loopsOffset, the sound will repeat from that point to its
end for the number of loops that you specified.

Example:

The following examples illustrate the Sound.start() method in several different forms. First, a
Sound object must be created and have a sound attached from the Library:

groove=new Sound();
groove.attachSound("drums");

Then the sound is cued to play once from the beginning:

groove.start();

Or the sound is played once starting 1.8 seconds from the beginning:

groove.start(1.8);

Sound.stop (5+)

Components:

soundObj.stop("soundID")

Use this method to silence sounds in a movie. Which sounds you stop depends on how you
use the method. If soundObj is a global Sound object, this method silences all sounds in a
movie. Specify a name (as a string) for soundID if you want to stop a sound that was attached
with the Sound.attachSound() method.

Example:

Because bkgd is a global Sound object, this statement stops all sounds in a movie:

bkgd.stop();

This statement stops the sound drums that is attached to the object groove:

groove.stop("drums");

String Object (5+)

Components:

new String(expression)

The String object is a wrapper object that converts (if needed) the specified expression to a
string and returns the result as a property within the String object. The String object can also
be helpful for converting non-string datatypes to strings. However, these uses are often neither

practical nor necessary. Assigning a value to a string using a literal (stringName="text string")
or performing conversions with the String() function is recommended by most ActionScript
documentation. The power of the String object is in its methods. They can be invoked on any
string and provide many options for manipulating string data.

Methods:

String.charAt() returns the character in a string at a specified position.

String.concat() joins one or more strings to create a single string.

String.indexOf() locates the first occurrence of a specified item in a string.

String.lastIndexOf() locates the last occurrence of a specified item in a string.

String.slice ()extracts the specified portion of a string as a substring using positive and
negative integers.

String.substring() extracts the specified portion of a string as a substring using only positive
integers.

String.toLowerCase() returns a string containing only lowercase letters.

String.toUpperCase() returns a string containing only uppercase letters.

Properties:

String.length describes the number of characters in a string.

String.charAt (5+)

Components:

string.charAt(ref)

Use this method to return the character in string at the reference position specified by ref.
Reference positions are specified relative to 0. 0 represents the first character in the string, 1
represents the second, 2 represents the third, and so on.

Example:

For the string greeting, this script returns G:

greeting="Good afternoon!";
trace(greeting.charAt(0));

The next statement returns ! because the string is 15 characters long and ! is at reference
position 14.

trace(greeting.charAt(greeting.length-1));

String.concat (5+)

Components:

string.concat(item1,item2...itemx)

Use the String.concat() method to join together, or concatenate, string with the elements
specified for item1, item2, and so on.

Example:

For the string one, this script creates milestone:

one="mile";
pair=one.concat("stone");

This statement creates milestones:

trio=one.concat("stone","s");

String.indexOf (5+)

Components:

string.indexOf("substring",ref)

Use this method to search the elements of a string and return the position of the first
occurrence of substring in string. As an optional argument, you can specify an integer for ref,
the position where indexOf() will begin its search. ref must be a number between 0 (the
string's first character) and string.length-1 (the string's last character). indexOf() searches a
string for substring from left to right, starting at either position 0 (the default) or ref (if
specified). If substring isn't found, the method returns –1.

Example:

This function strips a user's network ID—the name before the @ symbol—from a supplied e-
mail address. The network ID is returned and is available for use in a movie to write greetings
or keep a log of site visitors:

function netID(id){
 var at=id.indexOf("@");
 var user=id.substring(0,at);
 return user;
}

String.lastIndexOf (5+)

Components:

string.lastIndexOf("substring",ref)

Use this method to search the elements of a string and return the position of the last
occurrence of substring in string. As an optional argument, you can specify an integer for ref,
the position where lastIndexOf()will begin its search. ref must be a number between 0 (the
string's first character) and string.length-1 (the string's last character). lastIndexOf()searches a
string for substring from right to left (backwards) starting at either position string.length-1
(the default) or ref (if specified). If substring is not found, the method returns –1. For an in-
context example of this term, see "Opening a Local HTML File from a Flash CD-ROM" in
the Appendix.

String.length (5+)

Components:

string.length

Use the length property to return the number of characters in string. Because string characters
are referenced starting at 0, a string's length will always be one value higher than the
reference position of its last character. For example, in the string "abc," the length is 3, but the
reference position for "c" is 2 ("a" = 0, "b" = 1, "c" = 2). If a string contains a space, the space
is counted as a character in the string's length.

Example:

The following script, using the name of the author's dog, returns 6:

name="Darsie";
trace(name.length);

This script returns 10:

name="Darsie Dog";
trace(name.length);

String.slice (5+)

Components:

string.slice(startRef,endRef)

Use the slice() method to extract a substring from string. To specify the contents of the
substring, you must enter two arguments: startRef and endRef. startRef represents the
reference position of the first character in the substring. endRef represents the reference
position of the character in string immediately following the last character of the substring. If
no endRef is specified, the length of the string (number of characters) is used as a default.
Both numbers are entered as integers relative to 0, where 0 represents the first character of the
string. Negative numbers are accepted as well, where –1 is the last character, –2 is the next-to-
last character, and so on. Ultimately, the elements of the final substring are the characters in
string between startRef and endRef-1.

Example:

For the string name, a first name, last name, and middle initial are extracted as substrings:

name="Darsie D Dog"
firstName=name.slice(0,6);
initial=name.slice(7,8);
lastName=name.slice(9,12);

You can achieve the same results using the substring() method. The only difference is that
substring() does not support negative numbers:

name="Darsie D Dog"
firstName=name.substring(0,6);
initial=name.substring(7,8);
lastName=name.substring(9);

Note that for the string lastName, no endRef is specified and the length of the string
(string.length) is used as a default. Using negative numbers, the names could also be
initialized using the following statements:

firstName=name.slice(-12,-6);
initial=name.slice(-5,-4);
lastName=name.slice(-3,12);

String.toLowerCase (5+)

Components:

string.toLowerCase()

Use this method to convert all letter characters in string to lowercase. Note that this method
doesn't change string; rather, it yields a lowercase copy of string. For an example, see the
String.toUpperCase()method.

String.toUpperCase (5+)

Components:

string.toUpperCase()

Use this method to convert all letter characters in string to uppercase. Note that this method
doesn't change string; rather, it yields an uppercase copy of string.

Example:

In this script, text is reformatted to all uppercase characters. The ampersand (&) is unaffected:

text="UPPER & lower";
format1=text.toUpperCase();
format2=text.toLowerCase();

The script sets format1 to UPPER & LOWER, and format2 to upper & lower.

TextField Object (6)

Use the TextField object to manipulate the attributes of dynamic and input text fields with
ActionScript. To do this, a text field must have a unique instance name. To assign an instance
name, click the text field and open the Property Inspector (Window → Properties or
Cmd/Ctrl+F3). Enter a name in the Instance Name field of the Property Inspector; this
becomes the field's instance name.

Properties:

TextField.hscroll sets and returns the current horizontal scroll position.

TextField.maxhscroll defines the maximum horizontal scroll position.

TextField.maxscroll defines the maximum vertical scroll position.

TextField.scroll sets and returns the current vertical scroll position.

TextField.hscroll (6)

Components:

textField.hscroll=expression

This TextField object property can both get and set the horizontal scrolling position for a text
field object. You can use hscroll to create "ticker-style" side-scrolling text boxes for sports
scores and stock quotes. An hscroll position of 0 will left-justify the text in a text field. See
the TextField.scroll property for an example.

TextField.maxhscroll (6)

Components:

textField.maxhscroll

This TextField object property returns the value for the rightmost position of text in a text
field. If a text field does not contain enough text to go beyond the right edge of the text box,
the maxhscroll property will return 0. This property cannot be set.

Example:

This script makes the text in the line text field jump to the end, where the last word appears in
the right corner of the text field:

on(press){
 edge=line.maxhscroll;
 line.hscroll=edge;
}

TextField.maxscroll (6)

Components:

textField.maxscroll

This TextField object property returns the value for the topmost line in a text field when the
bottommost line is visible. If a text field displays five lines, and there are 20 lines in a text
block, the field's maxscroll property will be 16. Line 16 will be the top line when line 20
appears at the bottom of the field. This property cannot be set.

TextField.scroll (6)

Components:

textField.scroll=expression

This TextField object property can both get and set the topmost line number displayed a text
field. scroll creates interactive and animated scrolling text boxes.

Example:

You can place any of these examples within an on(mouseEvent) or onClipEvent(event)
handler, or you can use the events of the MovieClip and Button objects to scroll the contents
of a text field object as you see fit.

To scroll a text field up:

vertField.scroll+=1;

To scroll a text field down:

vertField.scroll-=1;

To scroll a text field across (to the right):

horizField.hscroll+=10;

To reset the horizontal position of a text field:

horizField.hscroll=0;

Key Code Values for the Key Object
Table R.4 contains a complete listing of key code values for the Key object.

Table R.4: Key Code Values
Alphabet KEYS Key CODE
A 65
B 66
C 67

Table R.4: Key Code Values
Alphabet KEYS Key CODE
D 68
E 69
F 70
G 71
H 72
I 73
J 74
K 75
L 76
M 77
N 78
O 79
P 80
Q 81
R 82
S 83
T 84
U 85
V 86
W 87
X 88
Y 89
Z 90

Number KEYS Key CODE
0 48
1 49
2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57
Numeric Keypad Keys Key CODE
keypad 0 96

Number KEYS Key CODE
keypad 1 97
keypad 2 98
keypad 3 99
keypad 4 100
keypad 5 101
keypad 6 102
keypad 7 103
keypad 8 104
keypad 9 105
Multiply (*) 106
Add (+) 107
Enter 13
Subtract (–) 109
Decimal (.) 110
Divide (/) 111

Function KEYS Key CODE
F1 112
F2 113
F3 114
F4 115
F5 116
F6 117
F7 118
F8 119
F9 120
F10 121
F11 122
F12 123
Miscellaneous Keys Key Code
Backspace 8
Tab 9
Clear (Macintosh) 12
Enter 13
Shift 16
Control 17
Alt 18

Function KEYS Key CODE
Caps Lock 20
Esc 27
Spacebar 32
Page Up 33
Page Down 34
End 35
Home 36
Left arrow 37
Up arrow 38
Right arrow 39
Down arrow 40
Insert 45
Delete 46
Help 47
Num Lock 144
;: 186
=+ 187
-_ 189
/? 191
`~ 192
[{ 219
\| 220
]} 221
'" 222

Deprecated Terms
Since the release of Flash MX, the ActionScript elements listed in the left column of Table
R.5 have been relegated to the scrap heap in favor of newer, more efficient syntax and
terminology. Although these elements are still functional, it's best to avoid them whenever
possible to ensure the future compatibility of your movies.

Table R.5: Deprecated Terms and Their Replacements
Deprecated Term New Term
<> (inequality) != operator
add + operator
and &&
call function

Table R.5: Deprecated Terms and Their Replacements
Deprecated Term New Term
chr String.fromCharCode
eq ==
ge >=
gt >
_highquality _quality property
ifFrameLoaded _framesloaded property
int Math.floor
le <=
length String.length
lt <
maxscroll textField.maxscroll
mbchr String.fromCharCode
mblength String.length
mbord String.fromCharCode
mbsubstring String.substr
ne != (inequality)
not ! (logical NOT)
or || (logical OR)
ord String object
random Math.random
scroll textField.scroll
substring String.substring
tellTarget with
toggleHighQuality _quality property

Bonus Working with Flash and
Dreamweaver
One of the great things about Flash is that you can use many third-party programs to extend
its usability and functionality. In many cases, these programs also have native tools for
manipulating Flash movies and for creating Flash content.

One of the most notable among these is Macromedia's visual web design program,
Dreamweaver. The program allows you to carry out several useful Flash-oriented operations.
For instance, you can insert Flash movies into HTML documents by hand and then
manipulate the characteristics of the file from within Dreamweaver. In addition, you create,
insert, and manipulate Flash text and buttons directly from within Dreamweaver—all of
which are cool features indeed!

The Dream of Dreamweaver
In 1989, Tim Berners-Lee of the European Particle Physics Laboratory (CERN) wrote an
innocent little document entitled "Information Management: A Proposal," which, among other
things, outlined the development of Hypertext Markup Language (HTML). Little did he
realize that the modest 18-page document would forever change the way that the world
accesses, acquires, and shares information.

HTML caught on like wildfire. By July 1993, hundreds of computers worldwide could deliver
HTML documents. Up until that point, however, the majority of people in on this exciting
new technology were members of academia and hard-core computer users. Shortly thereafter,
a small group of students at the University of Illinois's National Center for Supercomputing
Applications (NCSA) decided that the text-based software being used to view HTML just
didn't cut it. The result of their work was Mosaic, a nifty program (dubbed a browser) that
changed everything. Among the browser's most important features was a graphic interface as
well as compatibility with the Windows operating system. No longer was the Web the domain
of scientists and computer geeks.

Fast-forward to 1987 when Macromedia released Dreamweaver 1.0, a WYSIWYG (What-
You-See-Is-What-You-Get) web design tool that made it possible to create web pages
visually instead of with the traditional method of writing the HTML manually. No more hand-
coding HTML, no more puzzling over cryptic lines of code, and certainly no more head
scratching for those who weren't trained programmers. Anyone could conceive, create, and
distribute their own web pages. The world had just gotten a whole lot bigger; the possibilities
were endless.

Although Dreamweaver certainly wasn't the first WYSIWIG web design tool, it was arguably
one of the best. Several years and several versions later, Dreamweaver is one of the most
popular visual web authoring tool available. Including such features as an intuitive and
flexible visual authoring environment, Roundtrip HTML, and support for Dynamic HTML,
Dreamweaver has more than 700,000 users and a marketshare of more than 75 percent,
according to Macromedia. In short, Dreamweaver has made high-level web page authoring
accessible to both professional and amateur designers alike.

 On the CD-ROM A demo copy of Macromedia Dreamweaver has been included on this
CD-ROM. If you don't have Dreamweaver, you'll need to install this demo version to follow
along with these examples.

 Note If you are interested in learning more about Dreamweaver, try Dreamweaver
4/Fireworks 4 Visual JumpStart by Ethan Watrall (Sybex, 2001).

Working with Flash Files in Dreamweaver
Flash will automatically create an HTML document and embed your movie when it's
exported.

 Note For more information on how to embed SWF files into an HTML document upon
export, see Chapter 27 in Flash MX Savvy.

This is great, but what if you run into a situation where you'd like to manually insert the Flash
movie into an HTML file? Say, for instance, you had a web page in which a Flash movie was
only a small part of the overall design and you wanted to manipulate the other parts of the
document. Well, Dreamweaver has several tools that allow you to manually insert Flash files
into a Dreamweaver document. In the following sections you are first going to explore how to
insert Flash files into a Dreamweaver document. Then, you'll look at how to manipulate an
inserted Flash movie with Dreamweaver's Property Inspector.

Inserting a Flash Movie into a Dreamweaver Document

Inserting a Flash movie into Dreamweaver is really quite easy. And, as with many things in
Dreamweaver, you have a couple of different ways to do it.

To insert a Flash file with the Objects panel, follow these steps:

1. Open the Objects panel by going to Window → Objects or by using the shortcut
Cmd/Ctrl+F2.

2. When the Objects panel opens, click the Insert Flash button , which is located in
the Common section.

3. When the Select File dialog box opens, navigate to the Flash file you want to insert
and click the Select button.

 Note Although Dreamweaver allows you to choose any file type, you need to make sure you
insert the SWF file (which is the web-ready version of Flash) and not the FLA file
(which is the native Flash format).

Alternatively, you can use the main program menu to insert the Flash file:

1. Go to Insert → Media → Flash or use the shortcut Cmd/Ctrl+Option/Alt+F.
2. When the Select File dialog box appears, navigate to the Flash file, and click the

Select button.

 Note When you initially insert a Flash file into Dreamweaver, you'll see a placeholder (a
Flash icon in the center of a gray box the size of the Flash file). This saves memory.
Don't worry; you'll be able to see your movie from within Dreamweaver by using the
Property Inspector.

Manipulating a Flash File with the Property Inspector

When it comes to working with Dreamweaver, the Property Inspector is indispensable. With
it, you can access the characteristics of any object in the Document window (Dreamweaver's
version of the Stage). The cool thing about the Property Inspector is that it's a dynamic tool. It
changes each time you select a new object in the Document window. So, when you select a
Flash movie that you've inserted by one of the methods described previously, the Property
Inspector only displays properties unique to that Flash movie. You open the Property
Inspector by selecting Window → Properties or by using the shortcut Cmd/Ctrl+F3.

Let's take a detailed look at each of the properties in the Property Inspector:

Name The Name field allows you to enter a unique identifier for the Flash movie for the
purpose of scripting.

W and H Although Dreamweaver inserts a Flash movie with its original dimensions, the W
and H fields (Width and Height) let you enter a new value in pixels.

 Note If you want to manually change the Flash movie's dimensions, simply click and drag the
resize handles located along the ends of the movie after it has been selected. If you want
to constrain the movie's proportions while it's being resized, simply hold down the Shift
key.

File The File field indicates the path of the currently selected Flash movie. If you want to
change the path, click the Browse icon (the small folder to the right of the field) and navigate
to the new location or simply type in a new path.

Align The Align drop-down menu lets you align the selected Flash movie to other elements
on the page (not the page itself). If you want to align the movie to the page, click to the right
or left of the movie (so that it's deselected), and then use the three align tools (center, left, or
right) located in the Property Inspector.

Bg When you click the Bg swatch, you can choose a background color for the movie area.
This color is also present when the movie isn't playing.

Reset Size If you've changed the size of your movie (and can't remember its original size),
click the Reset Size button and your movie automatically reverts to its original size.

Play/Stop The Play button (which turns into a Stop button after it is clicked) allows you to
preview your Flash movie from within Dreamweaver.

ID The ID field allows you to enter an optional ActiveX parameter to pass information
between ActiveX controls.

V Space and H Space The V Space (vertical) and H Space (horizontal) fields allow you to
specify an invisible border (in pixels) around the Flash movie.

Quality The Quality drop-down menu allows you to choose from several preset levels of
quality for your Flash movie. The settings (Low, Auto Low, High, and Auto High) correlate
to the degree of anti-aliasing used during the movie's playback. Although a movie generally
appears better with a high setting, it requires a faster processor to render properly. Auto High
ensures that both traits—speed and visual quality—are maintained. However, if forced, Auto
High first sacrifices speed in favor of visual quality. On the other hand, Low enables the

movie to play faster and more smoothly, at the price of decreased visual quality. Auto Low
emphasizes speed to begin with but improves appearance when possible.

Scale The options in the Scale drop-down menu define how the movie displays within the
area defined for the movie by the values in the Width and Height fields. Show All makes the
entire movie visible in the specified area, keeping the aspect ratio of the movie and averting
any distortion. No Border is similar to Show All, but it may result in portions of the movie
being cropped. Finally, Exact Fit causes the entire movie to fill the specified area, but it
sacrifices the aspect ratio, which can result in some distortion.

Loop/Autoplay The Loop and Autoplay check boxes affect how your movie plays. By
choosing Loop, your movie loops infinitely. Autoplay, on the other hand, makes sure your
movie plays automatically when the page loads.

Parameters The Parameters button opens a dialog box where you can manually insert
information passed to the Flash movie through the OBJECT, EMBED, and APPLET HTML
tags. For example, you can control the quality of a Flash movie by using the Parameters
dialog box.

Creating Flash Text in Dreamweaver
In Dreamweaver, Macromedia has generously given you the ability to create editable vector
text with Flash text. By using Flash text, you can avoid all those nasty restrictions (like font
and size limitations) inherent to HTML. In addition, if you use Flash text instead of an image
for text, your graphics are scalable, smaller in file size, and look nice and crisp when they're
printed.

 Note Users will need the Flash Player plug-in installed on their computers before they'll be
able to view any Flash text you insert into your Dreamweaver document.

Let's take a step-by-step approach to creating Flash text in Dreamweaver:

1. Place your cursor in the location where you want to insert the Flash Text.
2. If you don't already have the Objects palette open, go to Window → Objects or use the

shortcut Cmd/Ctrl+F2.

3. Click the Insert Flash Text button in the Common panel to open the Insert Flash
Text dialog box. Alternatively, you can also access the Insert Flash Text dialog box by
selecting Insert → Interactive Images → Flash Text. At this point, Dreamweaver will
prompt you to save the file.

4. Choose a font from the Font drop-down menu in the top-left corner of Insert Flash
Text dialog box. The menu includes all the fonts you have loaded on your system.
Remember, you aren't limited to system fonts like you are in HTML.

5. Enter the font size in the Size field. Unlike with normal web text, you use points for
Flash text.

6. Click the color swatch to open the color palette. From here you can choose the color
you want your Flash text to be. If you aren't happy with the available colors, simply
click the color wheel in the top-right corner of the Color palette to open the Color
Picker. From there you can mix your own color.

7. If you want your text to change color when the user moves their mouse over it, click
the Rollover color swatch and choose the color to which the text will change.

8. Type the text you want into the Text field. If you select the Show Font check box just
below the Text field, the text you enter will be displayed in the font you've chosen.

9. If you would like your Flash text to act as a link, enter an absolute URL
(http://www.whatever.com) into the Link field. If the file to which you want to create
the link is on your hard drive, click the Browse button and then navigate to where it's
located.

10. Use the Target drop-down menu to set the window location where the link will load.
11. Click the Bg color swatch to choose a background color for the movie area. This color

will also be present when the movie isn't playing.
12. Enter a filename in the Save As field to name the file. You can use the default

filename (text1.swf), but you must enter something in this field. The file is
automatically saved to the same directory as the current document.

13. Click Apply and then OK. Depending on what you entered in the Text field, the result
should look something like Figure DW.1.

Figure DW.1: Flash text gives you a clean and crisp effect, far superior to that of plain
HTML text.

 Note To reedit Flash text, double-click the text or hit the Edit button in the Property Inspector
(when the text is selected).

Inserting and Manipulating Flash Buttons in
Dreamweaver

One of the most widely used and popular features in Flash (especially for beginners) is the
Button symbol. Buttons are great—you can create all manners of interesting user-responsive
navigational tools by using them. This flexibility, coupled with the relative ease in which
they're created, gives you a lot of power.

Macromedia was quick to recognize the popularity of buttons, and, in Dreamweaver 4, added
a way to create them in your Dreamweaver project. Now, don't get too excited. Flash buttons
in Dreamweaver are nowhere near as powerful and functional as they are in Flash.
Unfortunately, you can't really create buttons from scratch. Instead, you select the different
states of the button from a predetermined library of styles. Granted, you can assign text labels
and links to these "preforms," but this really isn't the same as making the button from scratch.

To create Flash buttons in Dreamweaver, follow these steps:

1. The first thing you need to do when inserting Flash buttons into Dreamweaver is save
your document. To do this, go to File → Save (or Save As).

2. Now, to open the Insert Flash Button dialog box, click the Insert Flash Button icon

in the Common section of the Objects palette. Alternatively, you can go to Insert
→ Interactive Images → Flash Button.

3. When the Insert Flash Button dialog box opens, select a style from the available list. If
you want to test the appearance of the button when the user moves their mouse over it,
simply move your cursor over the button preview in the Sample window.

 Note If you aren't happy with the styles available, click the Get More Styles button.
This loads the Macromedia Exchange in your browser where you'll be able to
find additional styles (as well as many other funky Dreamweaver, Flash, and
UltraDev widgets).

4. Enter the text you want to appear on the button in the Button Text field. Unfortunately,
the Sample window won't display a preview of the button as it will look with your new
text.

5. Choose a font for the text from the Font drop-down menu. Then, enter a size (in
points) for the text. Remember, because you're working with Flash, you aren't
restricted by the usual HTML text limitations.

 Note The size of the button will not increase if you increase the size of your text. As a
result, it's best to leave the font size as the default.

6. If you would like your Flash button to act as a link (which you most likely will), enter
an absolute URL into the Link field. If the file to which you want to create the link is
on your hard drive, click the Browse button and then navigate to where it's located.

7. Use the Target drop-down menu to set the location in which the link will load.
8. Click the Bg Color swatch to choose a background color for the movie area. This color

will also be present when the movie isn't playing or is loading.
9. Just like with Flash text, you need to enter a filename in the Save As field to name the

file. You can use the default filename (text1.swf), but you must enter something in this
field. The file is automatically saved to the same directory as the current document.

10. When you're finished editing your button, click OK (or Apply to see how the text
looks without closing the dialog box).

 Note To reedit a Flash button, double-click the button or hit the Edit button in the
Property Inspector (when the text is selected).

Inspirational Design Model
When you're working with Flash and Dreamweaver, it's all about integrating Flash
components into an overall HTML-based creation. In a world where, for the most part, total
Flash products reign supreme, this can often be a daunting task. Why would you integrate
HTML and Flash when you can create slicker, cooler, and far sexier interactive experiences
completely in Flash? Ultimately, the answer lies in the desire to balance the proven usability
and acceptance of HTML with the cool "wow" factor of Flash.

One of the best examples of Flash/HTML integration is Phireworx (www.phireworx.com).
The website, which promotes a series of Macromedia Fireworks tools created by Stephen
Voisey and Steven Grosvenor, is a wonderful example of stylish and clean HTML design into
which a small Flash movie has been inserted (see Figure DW.2). The Flash movie, which
functions as a moving advertisement/announcement for their latest product, subtlety injects a
sense of life and movement into the overall design.

Figure DW.2: The Phireworx site utilizes both HTML and Flash to create a wonderfully
designed self-promotional site.

Summary
You've just explored how to use Dreamweaver and Flash together. You started off by learning
about the history of Dreamweaver. From there, you looked at the various ways you can insert
a Flash movie into a Dreamweaver document. You quickly switched over to learning how to
use the Property Inspector to set the inserted Flash movies' properties. You finished off the
chapter by looking at two cool tools that allow you to create Flash text and buttons from
within Dreamweaver.

Flash MX Savvy Color Gallery
This section is a full-color gallery of the best and brightest creations in the wonderful world of
Flash. Designed as a source of awe and inspiration, the gallery includes a wealth of examples
from the most creative, cutting-edge Flash designers around. What you will see here is just a
glimpse of the masterful work exhibited by a few select designers and developers. If you like
what you see, visit the actual websites to experience these pieces firsthand.

TOP: Developed jointly by NeonSky Creative Media (www.neonsky.com) and Terra
Incognita (www.terraincognita.com) for the Arizona State Institute for Human Origins,
Becoming Human is an original interactive Flash documentary that explores human evolution
from our earliest ancestors to the emergence of Homo sapiens. BOTTOM: Becoming Human
features a host of innovative and interactive tools (such as interactive exhibits) that allow you
to go beyond the Flash documentary itself and pursue your personal exploration into the
fascinating world of human evolution.

TOP: Becoming Human is partitioned into several sections that allow you to explore
questions about culture, hominid anatomy, archaeological evidence, and lineage. Each section
features not only a spectacular linear Flash documentary narrated by the prestigious
paleoanthropologist Dr. Donald Johanson, but also topical discussions by many other
prominent scholars in the field of human evolution. BOTTOM: The combination of the linear
documentary and the interactive exploratory tools (both of which are created totally in Flash)

makes Becoming Human one of the most interesting, innovative, and cutting-edge Flash
creations out there.

TOP: Conceived and designed by Michael Sten with programming help from Otty
Soemitro, DesktopImage is dedicated solely to the free distribution of high-quality desktop
images created by talented graphic designers and digital artists. BOTTOM: The
DesktopImage site features a very innovative three-dimensional isometric interface that
creatively emulates an early Macintosh graphic user interface.

TOP: Through the use of inspirational digital content and innovative design,
digitalorganism, a full-service multimedia and design studio based in Baltimore, strives to
merge cutting-edge aesthetics with functionality to advance corporate identity and branding.
BOTTOM: digitalorganism's interface, the center of which is a stunning 3D DNA menu
system, is remarkably stylish and sleek. Exploration is made easy and entertaining by the
site's immersive, integrated navigation system.

TOP: Many of Djojostudios's creations tend toward character animation. One of the most
recent is a wonderfully conceived and illustrated Talking Host character that will "speak" any
audio file uploaded by the user. BOTTOM: Taking the interactive, animated character one
step farther, Djojostudios is in the process of creating an experimental online experience
(www.djojo.com) that stars Djojo himself. Once completed, the new site will feature a
dynamic environment that changes depending on the time of day and the mood of Djojo
himself. Users will be able to interact with Djojo and enjoy regularly scheduled programs
starring—you guessed it—Djojo himself.

TOP: Created by the talented Brian Taylor (whose other work can be seen at
www.15design.com), Rustboy is a promotional site for a short film of the same name that is
currently being created and will ultimately be distributed online and on DVD. Rustboy (the

primary character of the film) originally began life as a simple 2D creation but has since been
thrust into the glorious world of 3D. BOTTOM: The site, which is a great example of simple
but stylish design, features a constantly updated diary on the current Rustboy milestones,
beautifully illustrated storyboards and concept art, short QuickTime teasers, and insights into
the creation of the film. The site perfectly captures the slightly dark feeling of Rustboy (and
the world in which he lives).

TOP: Located in Berlin, Moccu, which was founded in 2000, is a full-featured digital design
studio that specializes in Flash- and Generator-based web design, interfaces, animation,
applications, entertainment, and interactive storytelling. Their projects have included interface
and animation design for a proposed touch-screen gas pump, an online recruiting game for
Challenge Unlimited, and an online banking portal. BOTTOM: Beyond the stylish graphic
design, Moccu's most interesting feature is its 3D environmental interface. While the vast
majority of advanced Flash interface design conforms to a 2D computerlike GUI model,
Moccu has created an innovative interface that emulates an integrated 3D space.

TOP: G. P. Gaudreault originally created Zanpo with the humble goal of putting his
portfolio online. The results of his labor have yielded something quite spectacular: a
multiuser, web-based world where inhabitants can share ideas and stories and build their own
online home. As a result, the Zanpo community is a constantly evolving virtual society.
BOTTOM: The Zanpo online community is built around a grid format. All pathways and
structures conform to a set configuration of square tiles. On top of this framework, users can
construct their own home that will be visible to the entire Zanpo community. It's also possible
for citizens of Zanpo to leave messages, hyperlinks, and other bits of information they would
like to share with the rest of the community.

TOP: The website Once Upon a Forest hosts a collection of interesting and explorative
interactive work by Joshua Davis. Although the content ranges broadly, you are sure to find
thought-provoking pieces of interactive art. This website changes and updates its content
frequently; consequently, pieces that you see during one visit may not be available during
your next visit. Many of Davis's works feature elegant, intuitive interfaces. This piece
demonstrates a scrolling calendar or timeline. BOTTOM: This movie presents an interesting
ambient music track and allows its audience to enter text into the work itself. Through the use
of some clever ActionScript, the text is deconstructed and used as a kind of texture to enhance
the mysteriously beautiful background graphic.

TOP: Hands down, this is one of the most inviting game sites on the Web. The folks at Hui
Hui have really got something special going here. The funky interface and design have a very
retro feel and are a welcome alternative to the cyberpunk stylings of so many sites.
BOTTOM: You can use the drag-and-drop interface to "load" diskettes into the computer and
launch the various games offered at this site. Featured here are the games "Orbiter" and
"Squash."

TOP: Randy Jamison's Curious Media website features one of the most interesting and
playful interface concepts around. All menu items are found by "peeking" beneath the gray
curtain. Notice in this image how the link to "art" is exposed. BOTTOM: The animated short
"Internet Time" tells the story of nine Internet users from around the globe who enjoy
spending time in their favorite chat room. Reference to a popular American sitcom makes this
piece especially funny.

TOP: Yugo Nakamura is one of the most talked-about interactive designers currently on the
scene. He maintains a site called "MONO*crafts" (www.yugop.com), where he showcases his
interactive creations. The content of the site covers a wide range of interactive possibilities.
All things considered, his work can be described as organic, malleable, and open to
personalization by its audience. BOTTOM: Yugo's interface designs are fluid and intuitive;
don't expect to see anything very similar to conventional buttons or navigational widgets. His
site features interactive studies and experimental works of digital media and design.

TOP: Are Flash-based interactive games and cartoons a blessing or a curse? It's just too easy
to spend hours in front of your favorite web toon or game and forget all about tomorrow's
deadlines. Camp Chaos offers a unique blend of edgy humor and biting social commentary
that is sure to provide a welcome respite from the doldrums of your 9-to-5 gig. (Note this site
is not for all ages or sensibilities.) BOTTOM: If you are especially interested in whiling
away the afternoons in the blissful repose of Flash-based games, check out Camp Chaos's
"Timekillers" via the "Games" link. Here you'll find Sarbakan's "Goodnight Mr. Snoozleberg"
(see Chapter 14's "Inspirational Design Model") among other interactive delights.

TOP: The African Voices exhibit was developed by the Smithsonian Institution in
Washington, D.C., to document the richness of Africa and its people. The African Voices
website was created by both the Smithsonian Institution and Terra Incognita to bring

portions of the live exhibit to the Web. Flash and ActionScript are used extensively to present
information dynamically in an easily accessible format. BOTTOM: The site features a
section on the history of the people of Africa, from the dawn of humankind to the present
time. Timelines are employed throughout the site's interactive interface to help present a story
that spans thousands of years.

TOP: African living spaces are the foundations of family and community. Even in times of
change and upheaval, they are places of history, warmth, and beauty that create connections
among people and generations. The site focuses on the realities of living on one of the most
diverse and complex continents in the world. BOTTOM: One of the most interesting
interactive features of the African Voices site is the ability to tour an African marketplace and
be introduced to the merchants and artisans who conduct business at the Makola market in
Accra, Ghana. You can read about their trade and hear the sounds of the burgeoning
marketplace.

