
Flash™ 5 Bible

Robert Reinhardt and Jon Warren Lentz

Hungry Minds, Inc.

New York, NY ✦ Cleveland, OH ✦ Indianapolis, IN

Chicago, IL ✦ Foster City, CA ✦ San Francisco, CA

3515-3 FM.f.qc 1/18/01 5:39 PM Page iii

Flash™ 5 Bible
Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com

Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (electronic,
photocopying, recording, or otherwise) without the
prior written permission of the publisher.
ISBN: 0-7645-3515-5
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/QX/QS/QR/FC
Distributed in the United States by Hungry Minds, Inc.
Distributed by CDG Books Canada Inc. for Canada; by
Transworld Publishers Limited in the United Kingdom;
by IDG Norge Books for Norway; by IDG Sweden Books
for Sweden; by IDG Books Australia Publishing
Corporation Pty. Ltd. for Australia and New Zealand;
by TransQuest Publishers Pte Ltd. for Singapore,
Malaysia, Thailand, Indonesia, and Hong Kong; by
Gotop Information Inc. for Taiwan; by ICG Muse, Inc.
for Japan; by Intersoft for South Africa; by Eyrolles
for France; by International Thomson Publishing for
Germany, Austria, and Switzerland; by Distribuidora
Cuspide for Argentina; by LR International for
Brazil; by Galileo Libros for Chile; by Ediciones
ZETA S.C.R. Ltda. for Peru; by WS Computer
Publishing Corporation, Inc., for the Philippines;
by Contemporanea de Ediciones for Venezuela; by
Express Computer Distributors for the Caribbean
and West Indies; by Micronesia Media Distributor, Inc.
for Micronesia; by Chips Computadoras S.A. de C.V.
for Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.

For general information on Hungry Minds’ products
and services please contact our Customer Care
department within the U.S. at 800-762-2974, outside
the U.S. at 317-572-3993 or fax 317-572-4002.
For sales inquiries and reseller information, including
discounts, premium and bulk quantity sales, and
foreign-language translations, please contact our
Customer Care department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care Department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.
For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 650-653-7098.
For information on using Hungry Minds’ products
and services in the classroom or for ordering
examination copies, please contact our Educational
Sales department at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 650-653-7000 or fax
650-653-7500.
For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.
Library of Congress Cataloging-in-Publication Data
Reinhardt, Robert, 1973–
Flash 5 Bible / Robert Reinhardt and Jon Warren
Lentz.

p. cm.
Includes Index.
ISBN 0-7645-3515-3 (alk. paper)
1. Computer simulation. 2. Flash (computer file)
3. Interactive multimedia. I. Lentz, Jon Warren.
II. Title.
TR897.7 .R46 2001

006.6'96- -dc21 00-143896

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTATIONS
OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS
BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE
DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY
SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS OF
THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARANTEED
OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER NOR
AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES,
INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: Hungry Minds and It’s all possible! are trademarks or registered trademarks of Hungry Minds,
Inc. All other trademarks are the property of their respective owners. Hungry Minds, Inc., is not associated
with any product or vendor mentioned in this book.

is a trademark of
Hungry Minds, Inc.

3515-3 FM.f.qc 1/18/01 5:39 PM Page iv

About the Authors
Robert Reinhardt — Robert’s curiosity and autodidactic energy have carried him
from psychology (University of Toronto) to photography (Ryerson University) to
new media authoring, teaching, and writing. After discovering the Internet while
studying in the Image Arts department at Ryerson in Toronto, Robert began the
journey of discovery that eventually enabled him to fuse his interest in technology
and communication with his background in the visual arts.

Robert has developed and taught workshops addressing all aspects of content cre-
ation and has become increasingly involved with the development of systems for
interactive interfaces and data management. Although his head often leads him into
the land of scripting and programming, he remains dedicated to the world of images.
The main reward of digital literacy has been the ability to move freely between medi-
ums and tools to share ideas through art and design. Before leaving Toronto, Robert
worked as a collage and video artist to create set and screen art for the Warner Bros.
feature film, Gossip.

During their first year in Los Angeles, Robert and his partner, Snow Dowd, formed a
multimedia consulting and design company called the Makers (www.theMakers.com).
They created a broadband Web site for Gossip with Warner Bros. Online, as well as
graphics for a tie-in video with the band Tonic. Recently, the Makers has also created
screen graphics for The Pledge, a film directed by Sean Penn, and worked with Outlaw
Productions on previsualization graphics for the forthcoming Warner Bros. film
Training Day (to star Denzel Washington and Ethan Hawke). In addition to work for
entertainment companies, the Makers has done work for independent artists and
nonprofit organizations.

While establishing the Makers, Robert also worked as senior art director and program
developer with Rampt.com to create a unique Flash interface and search engine,
launched in November 1999. After being recognized as a Macromedia Site of the Day
and nominated in the FlashForward film festival in New York, Rampt received the
Bandies 2000 award for Best Interface Application, as well as an award of excellence
from the New Media Invision Awards 2000.

In addition to design and content creation through the Makers, Robert continues
an involvement with teaching, consulting, and writing. He currently develops and
teaches Flash workshops with Lynda.com and the Moviola Digital Education Center
in California, as well as doing onsite training and seminars for clients in the United
States and Canada. Robert was a speaker at the San Francisco and New York
FlashForward 2000 conferences, as well as the October 2000 DV Web Expo in
Long Beach, California.

3515-3 FM.f.qc 1/18/01 5:39 PM Page v

Jon Warren Lentz — In addition to the Flash 5 Bible, Jon Warren Lentz is involved
in a number of Flash-related projects, most notably, Flash-Guru.com. Jon founded
Flash-Guru.com because he observed the need for sustained, learner-centered
training on a variety of intermediate to advanced Flash topics. The courses at Flash-
Guru.com are designed to help you to implement advanced Flash techniques in
your workflow and include in-depth information and new developments as they
happen.

Jon’s favorite movie, Fellini’s Satyricon, was released the year that he graduated
from high school. A decade later, Jon graduated from the Classical Studies program
at UCSC, where he first received notice as a poet and translator. He then metamor-
phosed into a sculptor and began working with sand-carved glass — a process that
he helped to define as a fine art medium. Following a disabling accident, he rein-
vented himself as an artist working with cameras and computers. Jon’s images have
been featured in the Graphis Poster Annual, Mac Art & Design Magazine (Sweden),
IdN — The International Designer’s Network Magazine (Hong Kong), and Shutterbug
Magazine. His stock photography is represented by two agencies, AGE and
SuperBild. Jon’s abstract fine art and a selection of his glass sculpture may be
viewed online at www.uncom.com.

Jon is an occasional professor at Palomar College. Although he has taught and
lectured on digital art, design, and technology at many venues, he prefers to stay
home, work on his own projects, and go to the beach. He resides with his family
near San Diego, California.

3515-3 FM.f.qc 1/18/01 5:39 PM Page vi

Technical Editors
High school did not represent Jeffrey Bardzell’s glory years, and it concluded inaus-
piciously with the release of Dances With Wolves, “memorable,” he writes, “because
it was so popular and I absolutely hated it.” A decade later and a Ph.D. Candidate in
Comparative Literature (Indiana University), Jeffrey sought a way to pull together
his then-conflicting desires to teach, to express himself creatively with vectors, and
to sustain himself with electronic publishing. An interesting job listing prompted him
to check Flash out. The job didn’t materialize, but Jeffrey became taken with Flash’s
potential for online learning. For him, tools such as Flash and the Internet pose as
fundamental a revolution in human communication and teaching as another period
he knows something about: the advent of literacy in twelfth century Europe. He has
created online learning environments for Indiana University and Ignatius University,
while working as a Flash and Fireworks author for Flash-Guru.com and eHandsOn.
He is also coauthoring Fireworks 4 Expert Edge with Lisa Lopuck. In addition to his
computer-related publications, he has published on education finance reform, early
reading intervention, and epic poetry. Not only did Jeffrey work as a technical editor
for the Flash 5 Bible, but he also drafted the Quick Start section and formatted the
initial Generator chapters.

From his first introduction to the ever-changing world of computing in his sophomore
year of high school, Shane Elliott has found a familiarity in expressing his designs
and code ideas using a computer. While his years at North Carolina State University
revealed a certain duality between his fascination with computer programming and
his growing interest in acting and writing, he found a way to express himself both cre-
atively and logically through animation and design on computers. He was introduced
to Flash around the time Flash 4 was released, and learning the program wasn’t ever a
problem. As Shane puts it, “I had the author of the Flash Bible (Robert Reinhardt) sit-
ting next to me at work every day. How can you not learn Flash in that situation?”
Coming from an extensive background in the internet realm, including starting his
own company, Webshock, he quickly found a great value in Flash as a creative tool
and internet utility. “Robert suggested I begin teaching, and at first I was scared to
death, but the idea of sharing my knowledge with others was so fascinating, I couldn’t
pass it up.” And so he began teaching Flash part-time while continually pursuing his
acting and writing endeavors, which are still very much a part of his life. “I found that
creating designs in animation and movies on the internet isn’t such a far cry, on a cre-
ative level, from acting or any other type of creative expression. Currently Shane is
finishing up his first screenplay as well as working to continue his experimentation
with Flash technology involving other applications and languages such as Java, XML,
and the list goes on.

3515-3 FM.f.qc 1/18/01 5:39 PM Page vii

Credits
Acquisitions Editor
Michael Roney

Project Editor
Julie M. Smith

Technical Editors
Jeffrey Bardzell
Shane Elliot
Ellen Finkelstein

Copy Editors
Richard H. Adin
Laura Stone

Proof Editors
Cindy Lai
Patsy Owens

Project Coordinators
Louigene A. Santos
Danette Nurse

Permissions Editor
Carmen Krickorian

Media Development Specialist
Angela Denny

Media Development Coordinator
Marisa Pearman

Graphics and Production Specialists
Robert Bihlmayer
Rolly Delrosario
Jude Levinson
Michael Lewis
Victor Pérez-Varela
Ramses Ramirez

Quality Control Technician
Dina F Quan

Book Designer
Drew R. Moore

Illustrators
Gabriele McCann
Ronald Terry
John Greenough
Karl Brandt
Brian Drumm

Proofreading and Indexing
York Production Services

Cover Image
Lawrance Huck

3515-3 FM.f.qc 1/18/01 5:39 PM Page viii

To Snow, Stella, and Al. I won’t forget the year 2000.

RJR

I dedicate my efforts on this book to the memory of my mother-in-law, Phyllis Rogers.

I would also like to thank my family — near and far — for their unconditional love,
support, and encouragement, especially my wife, Roanne; my son, Rob; and my
mother and father. In addition, I am also thankful for my newfound friends, Jeffrey
Bardzell and Nik Schramm, for their wisdom, expertise, and encouragement.

JWL

3515-3 FM.f.qc 1/18/01 5:39 PM Page ix

3515-3 FM.f.qc 1/18/01 5:39 PM Page x

Foreword

The Web has certainly changed the way that people work, live, and communi-
cate. One cannot help but draw parallels between the digital revolution and

other innovations that changed and shaped generations of people — the telephone,
radio, and television. Though each of these technologies were rather crude when
they started, they eventually became much more dynamic, powerful and attractive
to use. The telephone changed from a two-piece handset box to a tiny wireless com-
munication device that acts as mobile office. Television has evolved into high-defi-
nition systems that are akin to a movie theater experience in a living room. The
Web started out and for many people is still a slow-loading, static, uncompelling
experience. Macromedia Flash has revolutionized the way in which designers, ani-
mators, and developers alike can express their creativity, enabling over two hun-
dred million viewers worldwide to catch a glimpse into what the Web can be.

With each evolution of Macromedia Flash, we have seen a larger audience of users
take advantage of the many innovative features it has to offer. First there were illus-
trators and animators creating amazing vector work, and then there were Web
designers creating interactive navigation systems, motion graphics, and full Web
pages. Developers started creating cutting-edge Web applications and database
front-ends. Others create rich-media advertisements, viral marketing content,
screensavers, and product simulations. Still others are using Macromedia Flash to
create original cartoon series for television and short films. It is no wonder the
Macromedia Flash community has grown to include over half a million users, with
dozens of dedicated resource Web sites and thousands of attendees at regional con-
ferences, all sharing a common thread — the Macromedia Flash authoring tool. Our
users have never ceased to amaze and encourage me with the innovative works they
are developing with each release of Flash, continuing to push the envelope of what
can be done. The incredible user base and the content they create is the inspiration
that drives our team at Macromedia to improve and iterate the Flash platform.

It has been my privilege to know and work with the coauthors of this book — Jon
Warren Lentz and Robert Reinhardt — two of the most respected experts in the
Flash community. To bring greater breadth and depth to this book, they assembled
a team of over forty guest tutorialists; a group that includes some of the finest
artists, developers, and authors working with Flash. The Flash 5 Bible is an essen-
tial all-purpose reference guide for Macromedia Flash, providing insights and tips
for mastering the creation of all types of Flash content. It is one book any serious
Web designer, developer, or animator should own.

Jeremy Clark
Flash Product Manager
Macromedia

3515-3 FM.f.qc 1/18/01 5:39 PM Page xi

3515-3 FM.f.qc 1/18/01 5:39 PM Page xii

Preface

In 1997, Macromedia acquired a small Web graphics program, FutureSplash, from
a company named FutureWave. FutureSplash was a quirky little program with

the astounding ability to generate compact, vector-based graphics and animations
for delivery over the Web. With Macromedia’s embrace, Flash blossomed. Now
Flash has obtained ubiquity. The Flash Player plug-in ships with most major
browsers and operating systems. Now Flash graphics appear all over the Web,
and the number of Flash users continues to increase at an astounding pace.

Flash 5 has greatly expanded the interactive and programmatic features of Flash
movies. Flash movies can now communicate directly with server-side scripts and
programs, using standard URL-encoded variables or XML-formatted structures.
Sounds can be imported and exported as MP3 audio, for high-quality music on the
Web at the smallest file sizes. The Flash interface now looks and feels like other
Macromedia products, with tool options contained in user-configurable panels.
Third-party developers are creating applications that output to the Flash movie
format, .SWF files. Flash is poised to be the central application for generating hot,
low-bandwidth, interactive content for delivery over the Web.

Is there any other Flash book for you?

The Flash 5 Bible is the most comprehensive and exhaustive reference on Flash. It
helps you get started on your first day with the program and will still be a valuable
resource when you’ve attained mastery of the program. When you are looking for
clues on how to integrate Flash with other programs so that you can deliver unique
and compelling content in the Flash format, you’ll know where to turn.

✦ Exhaustive coverage of Flash. We spent a great deal of time covering every
aspect of Flash functionality. The first part of the book is entirely dedicated
to the Flash interface, and Parts II and III explain how to integrate animations
and sound into your Flash movies.

✦ Flash is not just one tool. You can think of Flash as a multitasking application:
It’s an illustration program, an image and sound editor, an animation machine,
and a scripting engine, all rolled into one. In this book, we dissect Flash into
each of these components and explain how each works with the other parts.

✦ This is a real-world book. We’ve gone to great lengths to make sure that our
lessons, examples, and explanations are based in reality (not that the Web
isn’t real!). We have continued the use of expert tutorials to bring you tips
and techniques from some of the top names in the Flash industry, so that
you can benefit their years of expertise.

3515-3 FM.f.qc 1/18/01 5:39 PM Page xiii

xiv Preface

✦ The CD-ROM. The CD-ROM that accompanies this book includes many of the
source .FLA files and original artwork for the examples and lessons in the
book. It also includes trial versions of Flash 5 and other Macromedia products,
as well as many of the applications discussed in this edition.

✦ The book’s Web site. In order to create a forum for the delivery of updates,
notes, and sample files, we have also established a Web site:

www.flash5bible.com

Jon Warren Lentz has his own Flash Bible Web site: www.theflash5bible.com

At the Web site, you’ll find a detailed evaluation form for the Flash 5 Bible. We
invite you to contribute your comments and suggestions for this edition, so
that we can continue to improve our material.

How to get the most out of this book
Here are two things to know so you can get the most out of this book.

First, regarding menu and keyboard commands, here’s the convention for indicating
that you’re going to need to select a command from a menu: The menu and command
are separated by an arrow symbol. For example, if we tell you to open the Info Panel
from the Flash Menu Bar, the instructions will say to choose Window ➪ Panels ➪ Info.

Second, jump in anywhere. Although this book was written to take a beginner by
the hand, starting from page one, you can also use it as a reference. Use the index
and the table of contents to find what you’re looking for, and just go there. If you
already know Flash and want to get some details on sound, for example, just go
to the sound sections.

Icons: What do they mean?
Although the icons are pretty standard and self-explanatory (they have their names
written on them!), here’s a brief explanation of what they are and what they mean.

Tips offer you extra information that further explains a given topic or technique,
often suggesting alternatives or workarounds to a listed procedure.

Notes provide supplementary information to the text, shedding light on background
processes or miscellaneous options that aren’t crucial to the basic understanding of
the material.

When you see the Caution icon, make sure you’re following along closely to the
tips and techniques being discussed. Some external applications may not work
exactly the same with Flash on different operating systems.

If you want to find related information to a given topic in another chapter, look
for the cross-reference icons.

Cross-
Reference

Caution

Note

Tip

3515-3 FM.f.qc 1/18/01 5:39 PM Page xiv

xvPreface

The New Feature icons point out any differences between Flash 5 and previous
versions of Flash.

This icon indicates that the CD-ROM contains a related file in the given folder.

How this book is organized
Based on feedback from our readers, we have greatly expanded the content in this
edition of the Flash Bible, so much in fact that the book has doubled in page count.
This book has been written in a format that gives you access to need-to-know infor-
mation very easily in every section (or Part) of the book. If you are completely new
to Flash, then you’ll want to read Parts I through V. After you have developed a
familiarity with the Flash interface, then you can proceed to Parts VI, VII, and VIII.
However, if you’ve already used Flash 4, then you may want to review the changes
to the Flash 5 interface in Part I, and then jump right into Parts V through VIII to
learn more about ActionScript, working with Generator, creating artwork and con-
tent in other applications, and integrating Flash with HTML. Part VII is especially
useful if you have a favorite application such as Dreamweaver or Director in which
you want to use Flash movies.

Part I — Mastering the Flash Environment
The first part of this book explores the Flash file format and the interface of Flash 5,
explaining the context in which Flash movies interact on the Web (Chapter 1), and
working with the new panels and tools (Chapters 2-7). Specifically, you can read
about the new Pen Tool in Chapter 4, and you learn how to use the new Mixer
Panel in Chapter 6.

Part II — Creating Flash Graphics
After you’ve learned how to work your way through the Flash interface, you can
read about the timeline structures (Chapter 8) and the Flash Library (Chapter 9),
where you learn about the symbol types in Flash 5. You can learn how to draw
with Flash (Chapter 10), animate with Motion and Shape Tweens (Chapter 11), and
incorporate external media files such as JPEGs and GIFs into your Flash artwork
(Chapter 12). You see how to structure content on the Main Timeline and create
a simple scrolling text interface (Chapter 13).

Part III — Sound Planning
Because Parts I and II focus mainly on the visual presentation of a Flash movie, you
need to start thinking about the effect of sound within a Flash movie. In Chapter 14,
you learn the basics of digital sound and see which file formats can be imported
into Flash. Chapter 15 shows you how to control the playback of sounds within a
Flash movie, and you learn how to create interactive buttons with rollover sounds.
Chapter 16 explains how to adjust and optimize audio compression in an exported
Flash movie.

On the
CD-ROM

New
Feature

3515-3 FM.f.qc 1/18/01 5:39 PM Page xv

xvi Preface

Part IV — Adding Basic Interactivity to Flash Movies
Not everyone wants to use Flash to create animating buttons for HTML documents
on the Web. In Part IV, you learn how to start using Flash actions to create interac-
tive and responsive presentations. You learn the difference between Normal and
Expert Modes of the Actions Panel (Chapter 17). Flash 5 has greatly increased the
capacity of a Flash movie to communicate with its own internal elements, such as
nested Movie Clips (Chapter 18). Properties and methods of the Movie Clip Object
are introduced (Chapter 19), and you master the art of preloading and sharing Flash
.SWF files (Chapter 20).

Part V — Programming Flash Movies with ActionScript
Flash 5 brings with it a whole new interactive language and syntax called ActionScript.
While Flash 4 implemented new interactive functions and controls, Flash 5 enables
interactive designers to write code much more easily and fluidly. You learn about
solving interactive problems (Chapter 21), making functions and arrays (Chapter 22),
detecting Movie Clip collisions and using Smart Clips (Chapter 23), creating Flash
forms and loading XML (Chapter 24), and using HTML text fields and properties
(Chapter 25). Part V ends with an entire chapter dedicated to advanced Flash movie
examples (Chapter 26).

Part VI — Using Flash with Generator and Other Server Technologies
As the Web and Flash mature together, developers increasingly need more dynamic
content and data-driven systems for faster updates and maintenance of Web sites,
especially for large sites with hundreds (if not thousands) of pages and assets.
Macromedia Generator can create and load dynamic graphics and data into Flash
movie templates. Chapters 27–29 show you how to get up and running with
Generator 2 and other server-side technologies.

Part VII — Using Flash with Other Programs
Every multimedia designer uses Flash with some other graphics, sound, and
authoring application to create a unique workflow that solves the problems of daily
interactive project development. Part V shows you how to create content in popu-
lar applications such as Macromedia Fireworks, Freehand, and Director, as well as
Adobe Photoshop and Discreet 3D Studio Max — just to name a few. We’re sure that
you’ll find our coverage of RealPlayer, QuickTime 4, and QuickTime Flash movies
particularly interesting.

Part VIII — Distributing Flash Movies
Finally, you need to learn how to export (or publish) your Flash presentations to
the .SWF file format for use on a Web page, or within another presentation such
as a floppy disk or CD-ROM project. Chapter 25 details every option in the Publish
Settings of Flash 5, as well providing tips for optimizing your Flash movies in order to
achieve smaller file sizes for faster download performance. If you prefer to hand-code

3515-3 FM.f.qc 1/18/01 5:39 PM Page xvi

xviiPreface

your HTML, then read Chapter 26, which describes how to use the <EMBED> and
<OBJECT> tags, how to load Flash movies into framesets, and how to create plug-in
detection systems for your Flash movies. If you want to find out how to create a Flash
standalone projector, or use the Flash standalone player, then check out Chapter 27.

Appendixes
You’ll find directions for using the Flash 5 Bible CD-ROM and a listing of our contrib-
utors’ contact information in the appendixes.

Getting in touch with us
Unlike many authors, we aren’t going to make any promises about answering every
e-mail that comes to us. We already have more mail than we can possibly begin
to answer. However, if you have a really, really good tip or idea that you want to
share with us, we’d like to hear from you. You can also send us comments about
the book to:

robert@theMakers.com
jon@theFlashBible.com

Also check Appendix B for more information on contacting this book’s various
contributors and technical editors.

You can help make Flash better!
The latest version of Flash is more powerful, has more robust capabilities, and is
easier to use than any previous version of Flash. It’s also the best program that’s
capable of creating highly-compact, vector-based content for transmission over the
Web (although FreeHand can also export to the .SWF file format). We’re convinced
that Flash 5 is a great program. (That’s why we wrote this book!) But we also know
that Macromedia is probably already planning the next version. So, if you have an
idea or feature request for the next version, let the folks at Macromedia know. Send
an e-mail to:

wish-flash@macromedia.com

The simple fact is this: If more users request a specific feature or improvement, it’s
more likely that Macromedia will implement it.

3515-3 FM.f.qc 1/18/01 5:39 PM Page xvii

3515-3 FM.f.qc 1/18/01 5:39 PM Page xviii

Acknowledgments

Robert Reinhardt: This book would not have been possible without the help
and talent of many people. I am grateful for the added breadth and depth the

tutorials bring to this second edition. First and foremost, I would like to thank the
Flash development community. In my six years of multimedia research and produc-
tion, I haven’t seen another community that has been so open, friendly, and willing
to share advanced tips and techniques. It was a wonderful experience to meet many
of you at the FlashForward 2000 conferences in San Francisco and New York.

Along the lines of communal experiences, I would like to thank my award-winning
Flash team from Rampt.com. All of them have contributed to this book in one way
or another. With Scott Brown, Daniel Cluff, Sandro Corsaro, and Shane Elliott,
I learned more about real Flash production in one short year than any books,
tech notes, or tutorials could ever describe.

I would like to thank everyone at Hungry Minds (formerly IDG Books Worldwide)
who saw this book through a tough production schedule. As anyone in a creative
team can attest, a great manager can make or break a project — or, in this case,
a book. Julie Smith, our development editor, was always there (on ICQ and at the
phone, weekdays and weekends) to answer questions and steer us in the right
direction. A great deal of gratitude must also go to Mike Roney, our acquisitions
editor. Even when I was pushing deadlines, Mike trusted that I would do whatever
it took to see this book, doubled in size from its previous edition, to print.

I find it hard to believe that some authors can go without a literary agent. If it
weren’t for David Fugate, our agent at Waterside Productions, this book wouldn’t
have been written — at least, not before the next release of Flash. David, I couldn’t
have gotten through this without your invaluable guidance and encouragement.

Of course, a book about Flash would not be very useful if it wasn’t technically accu-
rate. Many thanks to the developers, engineers, and support staff at Macromedia,
especially Gary Grossman and Jeremy Clark, who answered my questions during
the development of Flash 5. Also, I am indebted to Jeffrey Bardzell and Shane Elliott
for their watchful eyes and keen observations of the material.

Finally, even though this book was considered a “revision” of the first edition, the
extensive new features of Flash 5 made the writing process no less grueling. There
were many weeks that I missed dog walks to the top of Runyon Canyon and weekend
outings to see a movie or swim in the ocean. I couldn’t have finished this project
without the love, support, and understanding of my partner, Snow Dowd.

3515-3 FM.f.qc 1/18/01 5:39 PM Page xix

xx Acknowledgments

Jon Warren Lentz: Over a year ago, when Robert and I were in the early phases
of development for the original Flash 4 Bible, I came up with the idea of solicitung
Expert Tutorials from eminent Flash artists in order to augment and deepen our
coverage of the program. At that time, I had no idea how popular and effective that
concept would be – but, judging by the emails from readers and comments to me in
person, the idea was clearly a huge success. Accordingly, this book is graced with
nearly 50 tutorials which are the contributions of nearly 40 guest tutorialists. In
soliciting these contributions, I’ve had the pleasure of collaborating with and edit-
ing the wisdom of some of the finest minds in the Flash world. (The contact infor-
mation for these contributors is listed in Appendix C.) These contributions have
added immeasurable breadth and depth to our book. On behalf of my readers, my
co-author, and myself, I want to thank all of you tutorialists for your generosity and
genius: you gals and guys ROCK!

I also owe an incredible debt to all of my friends and associates; both on the
Flash beta, and also the denizens of the many Flash lists and communities — your
unthreatened willingness to share your knowledge and ideas, confident that you
have an endless supply better ideas, is what makes our Flash community so
vibrant and personally rewarding.

I would like to thank my co-author, Robert Reinhardt for his unflagging support
and solidarity throughout all phases of this intensely demanding project. I would
also like to thank our agent, David Fugate of the Waterside Agency, for his insight
and counsel. I am also grateful to my students and readers: Your questions and
ideas have helped me to revise and improve this book on each and every page.

For all the people at Macromedia — especially Jeremy Clark, Flash product
manager — I heap high praise and infinite thank yous.

Finally, I would like to thank all of the people at IDG/Hungry Minds, Inc., for the
extraordinary efforts which they brought to this project. Thanks to Walt Bruce,
our publisher, for allocating so much special attention to this book. Thanks to Andy
Cummings for his careful management. Thanks to Michael Roney, our Acquisitions
Editor, for keeping us on track and for resolving so many natty details that threat-
ened to impinge on our progress. Thanks to Julie Smith, our Developmental Editor,
for your clear and consistent handling of our submissions. Thanks to all of the
other amazing people at IDG/Hungry Minds, Inc., for carrying this project from
manuscript to the book that you now hold in your hands.

Bravo.

3515-3 FM.f.qc 1/18/01 5:39 PM Page xx

Contents at a Glance
Preface . xiii
Acknowledgments . xix

Quick Start: Flash in a Flash . 1

Part I: Mastering the Flash Environment 37
Chapter 1: Understanding the Flash Framework 39
Chapter 2: Exploring the Interface: Panels, Settings, and More 49
Chapter 3: Using Tools for Navigation and Viewing 93
Chapter 4: Working with Selections and the Pen Tool 101
Chapter 5: Working with the Drawing and Painting Tools 123
Chapter 6: Applying Color . 157
Chapter 7: Working with Text . 183

Part II: Creating Flash Graphics . 201
Chapter 8: Exploring the Timeline . 203
Chapter 9: Checking Out the Library: Symbols and Instances 229
Chapter 10: Drawing in Flash . 263
Chapter 11: Animating in Flash . 299
Chapter 12: Using Bitmaps and Other Media with Flash 325
Chapter 13: Designing Interfaces and Interface Elements 355

Part III: Sound Planning . 389
Chapter 14: Understanding Sound for Flash . 391
Chapter 15: Importing and Editing Sounds in Flash 403
Chapter 16: Optimizing Flash Sound for Export 417

Part IV: Adding Basic Interactivity to Flash Movies 433
Chapter 17: Understanding Actions and Event Handlers 435
Chapter 18: Navigating Flash Timelines . 455
Chapter 19: Controlling Movie Clips . 493
Chapter 20: Sharing and Loading Assets . 557

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxi

xxii Contents at a Glance

Part V: Programming Flash Movies with ActionScript 587
Chapter 21: Planning Code Structures . 589
Chapter 22: Creating Subroutines and Manipulating Data 623
Chapter 23: Understanding Movie Clips as Complex Objects 659
Chapter 24: Sending Data In and Out of Flash . 691
Chapter 25: Understanding HTML and Text Field Functions in Flash 719
Chapter 26: Advanced Movie Clip Architecture and Beyond 729

Part VI: Using Flash with Generator and Other Server Technologies 751
Chapter 27: What Is Generator? . 753
Chapter 28: Revving Up Generator . 769
Chapter 29: Working with Third-party, Server-side Applications 801

Part VII: Using Flash with Other Programs 817
Chapter 30: Working with Raster Graphics . 819
Chapter 31: Working with Vector Graphics . 849
Chapter 32: Working with Audio Applications . 897
Chapter 33: Working with 3D Graphics . 929
Chapter 34: Working with QuickTime . 965
Chapter 35: Working with RealPlayer . 997
Chapter 36: Creating Full-Motion Video with Flash 1013
Chapter 37: Creating Cartoon Animation with Flash 1035
Chapter 38: Planning Flash Production with Flowcharting Software 1069
Chapter 39: Working with Authoring Applications 1103

Part VIII: Distributing Flash Movies 1147
Chapter 40: Publishing Flash Movies . 1149
Chapter 41: Integrating Flash Content with HTML 1181
Chapter 42: Using Players, Projectors, and Screensaver Utilities 1211

Appendix A: Using the CD-ROM . 1239
Appendix B: Contact Information for Contributors and Expert Tutorialists . . 1241

Index . 1245
End-User License Agreement . 1300
CD-ROM Installation Instructions . 1303

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxii

Contents
Preface . xiii

Acknowledgments . xix

Quick Start: Flash in a Flash . 1
The Tutorial . 1

Starting Flash projects . 1
The width of a circle . 4
Your first animation . 8
Movie Clip Symbols . 13
Frame labels and comments . 15
Working with text . 16
The Button symbol . 18
The sound and the fury . 26
Figuring items over time . 27
An ActionScript primer . 28
Adding actions . 31
Testing movies . 34

Tips for Effective Flash Development . 34
A process approach to Flash authoring 35
Know Flash 5’s capabilities and limitations 36

Part I: Mastering the Flash Environment 37

Chapter 1: Understanding the Flash Framework 39
Introducing the Flash 5 Framework . 39

Bitmap handler . 40
Vector program . 40
Vector animator . 41
Authoring program . 41
Animation sequencer . 41
Programming interface and database front end 42
Viewing Flash movies . 43

Finding Applications for Flash 5 Movies . 43
Planning interactive Flash projects . 45
Looking at Flash movie file types . 45

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxiii

xxiv Contents

Chapter 2: Exploring the Interface: Panels, Settings, and More . . . 49
Learning Flash Tool Basics . 49

The Toolbox . 50
Using tooltips . 52
Color and Flash tools . 52

Getting to Know the Fundamental Flash Interface 52
Cross-platform consistency . 53
Contextual menus . 56

Using the Menu Bar . 57
The File Menu . 58
Publishing . 61
Printing . 62
The Edit Menu . 63
The View Menu . 72
The Insert Menu . 75
The Modify Menu . 77
The Text Menu . 80
The Control Menu . 82
The Window Menu . 83
The Help Menu . 90
Offline learning resources . 91
Online learning resources . 91

Chapter 3: Using Tools for Navigation and Viewing 93
The Magnifier Tool . 93

Zoom In/Zoom Out . 94
The Hand Tool . 95
Zoom Control and View Commands . 95

The Zoom Control . 96
The Magnification commands . 96

Chapter 4: Working with Selections and the Pen Tool 101
The Lasso Tool . 101

Using the Polygon option with the Lasso Tool 102
Using the Magic Wand option with the Lasso Tool 103
Using Magic Wand properties . 103

The Arrow Tool . 104
Using the Arrow Tool to select items 105
Using the Magnet option of the Arrow Tool 106
Understanding shape recognition . 107
Using the Smooth option with the Arrow Tool 108
Using the Straighten option with the Arrow Tool 108

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxiv

xxvContents

Using the Rotate option with the Arrow Tool 109
Using the Scale option with the Arrow Tool 110
Using the Scale and Rotate dialog . 110
Using arrow states to reshape and reposition drawings 111

Introducing the Pen Tool . 113
Using the Pen Tool . 114
Using the Subselect (Arrow) Tool . 118
Stroke and color . 119

Chapter 5: Working with the Drawing and Painting Tools 123
Choosing Colors . 123
The Stroke and Fill Panels . 125

Stroke Color . 125
Stroke Height . 126
Stroke Style . 126
Applying and changing fills with the Fill Panel 128

Adjusting Stroke and Color . 129
The Pencil Tool . 130

Using the Pencil Mode pop-up options 131
Understanding line processing . 131

The Line Tool . 132
The Oval Tool . 133
The Rectangle Tool . 133
Using the (Paint) Brush Tool . 135

Using the Brush Mode option . 136
Using the Brush Size option . 138
Using the Brush Shape option . 139
Using the Brush Lock Fill option . 140
Using the Brush Pressure option . 140
The difference between the Brush Tool and the

Pencil Tool . 141
The Dropper Tool . 142
The Ink Bottle Tool . 144
The Paint Bucket Tool . 145

Using the Paint Bucket Gap Size option 147
Using the Paint Bucket Lock Fill option 147
Using the Paint Bucket Transform Fill option

(a.k.a. the Reshape Arrow cursor) 147
The Eraser Tool . 152

Using the Eraser Shape option . 153
Using the Eraser’s Faucet option . 154
Using the Erase Mode option . 154

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxv

xxvi Contents

Chapter 6: Applying Color . 157
Introducing Color Basics . 157

Discussing Web-Safe Color issues . 158
Using hexadecimal values . 158
Applying ColorSafe and other solutions 159
Using color effectively . 164

Working with Flash Color . 165
Using Toolbox Color . 165
Applying color from the Stroke and Fill Panels 167
Working with the Swatches Panel . 168
Working with the Mixer Panel . 170
Creating gradient colors . 172

Chapter 7: Working with Text . 183
Understanding Font Display Problems . 183

Problems with fonts on the Mac . 184
Problems with fonts on the PC . 184
Cross-platform issues and codevelopment problems 184

The Text Tool . 185
Working with Flash text boxes . 186
Using the Character Panel . 188
Using the Paragraph Panel . 191
Using the Text Options Panel . 193

Reshaping and Manipulating Text Characters 198

Part II: Creating Flash Graphics 201

Chapter 8: Exploring the Timeline . 203
Viewing the Timeline . 203
Manipulating the Timeline . 207

Layer specifics . 207
Timeline specifics . 208
General preferences . 210
Layer Properties . 212
Frame View options . 215
Scene and Symbol Bar . 217

The Timeline/Stage Relationship . 218
Stacking order . 218
Grouping . 219
Editing groups . 220

Editing on the Timeline . 220
Onion Skinning . 223

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxvi

xxviiContents

Chapter 9: Checking Out the Library: Symbols and Instances 229
The Library and Its Features . 230

Working with the Library . 231
Symbol Types . 236

Importing sounds, bitmaps, vectors, and QuickTime 237
Graphic Symbols . 238
Movie Clips . 239

Creating a Movie Clip using existing animation 239
Button Symbols . 245

Creating a button . 246
Adding animation to a button . 246
Adding sound to a button . 247

Organizing Your Library . 249
Adding Symbols to Movies . 250
Editing Symbols . 250

Editing a symbol in Symbol Editing Mode 250
Editing a symbol in a new window . 252
Editing a symbol in place . 252
Editing symbols from the Library . 253
Returning to the movie after editing a symbol 253

Modifying Instance Properties . 253
Modifying color effects with symbols 254
Changing the behavior of an instance 255
Switching symbols . 256

The Movie Explorer . 256
Shared Library and Shared Fonts . 261

Chapter 10: Drawing in Flash . 263
Simple Shapes and Items . 263

Creating shapes . 263
The Drawing Panels . 275

The Info Panel . 275
The Transform Panel . 277
The Align Panel . 280

Fill and Stroke Effects . 282
Spheres . 282
Stroke effects . 283

Static Masks . 289
Masking with a graphic . 290
Masking with a group . 291
Masking with a symbol . 291
Masking text . 292

Creating Type and Text Effects . 294
Text with an outline . 294
Text with drop shadows . 296
More text effects . 297

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxvii

xxviii Contents

Chapter 11: Animating in Flash . 299
Frame-by-Frame Animation . 300

Adding keyframes . 301
Creating frame-by-frame animation 301

Tweening . 303
The Frames Panel . 303
Shape tweening . 304
Motion tweening . 307
Motion Tweened effects . 310

Guide Layers . 313
Using Guide layers for layout . 313
Motion Guides . 315
Organizational Guides . 317

Masking Animations . 317
Animated mask text . 318
Masked moon phases . 320
Masked line progression . 321
Final notes about animated masks . 322

Chapter 12: Using Bitmaps and Other Media with Flash 325
Understanding Vector versus Bitmap Images 325
Importing External Media . 327
Importing Vector Graphics . 332
Preparing Bitmaps for Flash . 333

More about preparing bitmaps . 336
Importing Bitmap Images . 337

Importing a bitmap file into Flash . 338
Copying and pasting a bitmap into Flash 339

Setting Bitmap Properties . 339
Using Bitmaps as Fills . 341

Breaking a bitmap apart . 343
The Threshold setting of the Magic Wand 343
The Smoothing setting of the Magic Wand option 344

Tracing Bitmaps . 344
Cautionary Notes . 346

Bitmap shift . 346
Cross-browser consistency . 346

Color Insert: Bitmap Comparisons . 347
Generation of comparison images . 347
Observations and notes about the results

of the settings . 351

Chapter 13: Designing Interfaces and Interface Elements 355
The Main Timeline as the Site Layout . 355

Creating a plan . 355

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxviii

xxixContents

Determining Flash movie properties 356
Mapping site areas to keyframes . 357
Creating content for each area . 359

Adding Navigation Elements to the Main Timeline 370
Creating text buttons for a menu . 370
Browsing the product catalog . 373

Basic Text Scrolling . 383

Part III: Sound Planning 389

Chapter 14: Understanding Sound for Flash 391
Basics of Sampling and Quality . 391

What is sound? . 391
What you should know about sound for Flash 392

Sound File Import Formats . 397
Sound Export Formats Used by Flash . 399

Chapter 15: Importing and Editing Sounds in Flash 403
Importing Sounds into Flash . 403
Assigning a Sound to a Button . 405
Adding Sound to the Timeline . 407

Organizing sounds on the timeline . 408
Synchronizing Audio to Animations . 409

Types of sound synchronization in Flash 409
Stopping Sounds . 411

Stopping a single instance of a Stream sound 411
Stopping all sounds . 411

Editing Audio in Flash . 412
Sound editing controls in Flash . 412
Applying effects from the Effect pop-up of the Sound Panel 413

Chapter 16: Optimizing Flash Sound for Export 417
Sound Optimization Overview . 417
Publish Settings for Audio . 418

The Set options . 419
Fine-tuning Sound Settings in the Library 422

Settings for audio in the Library . 422
Publish Settings for QuickTime Sound . 426
Final Sound Advice and Pointers . 428

VBR (Variable Bit Rate) MP3 . 428
Extracting a sound from a .FLA editor file 430

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxix

xxx Contents

Part IV: Adding Basic Interactivity to Flash Movies 433

Chapter 17: Understanding Actions and Event Handlers 435
Actions and Event Handlers . 435

What is ActionScript? . 436
Setting up the Actions Panel . 436

Your First Six Actions . 440
Go To . 440
Play . 443
Stop . 444
Toggle High Quality . 444
Stop All Sounds . 445
Get URL . 445

Making Actions Happen with Event Handlers 447
Combining an action with an event handler

to make a functioning button . 448
The Flash event handlers . 451

Chapter 18: Navigating Flash Timelines 455
Movie Clips: The Key to Self-Contained Playback 455

How Movie Clips interact within a Flash movie 455
One movie, several timelines . 457

Flash 4 into Flash 5: Targets and Paths Explained 458
Paths: Absolute and relative modes 460
Using Tell Target and Movie Clips with interfaces 472

Targeting Movie Clips in Flash 5 . 473
Using Movie Clips to create Sound Libraries 474
How Movie Clips can add logic to a movie 490

Chapter 19: Controlling Movie Clips 493
Movie Clips: The Object Overview . 493

Movie Clip properties . 494
Movie Clip methods . 499
onClipEvent: The Movie Clip Object handler 499
Other objects that can use the Movie Clip Object 508
Related functions that target the Movie Clip Object 508

Working with Movie Clip Properties . 510
Positioning Movie Clips . 510
Scaling Movie Clips . 511
Rotating Movie Clips . 512

Manipulating Color Attributes . 513
Creating a Color Object . 515
Creating a Transform Object . 516

Enabling Sound with ActionScript . 519
Creating sound libraries with ActionScript 522

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxx

xxxiContents

Creating a soundTransformObject . 531
Creating Draggable Movie Clips . 531

Drag’n’drop basics . 532
Detecting the drop position: Using _dropTarget 534
Making alpha and scale sliders . 535

Printing with ActionScript . 551

Chapter 20: Sharing and Loading Assets 557
Managing Smooth Movie Download and Display 557

Building a basic preloader with ifFrameLoaded 558
Preloading with _framesLoaded and _totalFrames 560
Using getBytesLoaded() and getBytesTotal() in Flash 5 564

Loading Flash Movies . 570
Basic overview of Flash site architecture 570
Where are the multiple movies stored? 571
Loading an external .SWF file into a movie 572
How Flash handles loaded movies of differing sizes 574
Placing, scaling, and rotating externally loaded .SWF files 574
Communicating between multiple movies on different levels 576
Unloading movies . 577
loadMovie as a method or action for Movie Clip targets 578

Accessing Items in Shared Libraries . 583
Setting up a Shared Library file . 583
Assigning names to assets . 584
Specifying the Shared Library’s location 585
Publishing the Shared Library .SWF file 585
Linking to assets from other movies 585

Part V: Programming Flash Movies with ActionScript 587

Chapter 21: Planning Code Structures 589
Breaking Down the Interactive Process . 589

Define your problems . 590
Clarify the solution . 590
Translate the solution into the interactive language 591

The Basic Context for Programming in Flash 597
Normal Mode . 597
Expert Mode . 597
Accessing ActionScript commands 597
Actions list organization in the Actions Panel 598

One Part of the Sum: ActionScript Variables 599
String literals . 600
Expressions . 601
Variables as declarations . 602
Variables as text fields . 602

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxi

xxxii Contents

Declaring Variables in Flash . 603
Using actions to define variables . 603
Loading variables from a predefined source 603
Sending variables to URLs . 604
Establishing variables with HTML . 605

Creating Expressions in ActionScript . 605
Operators . 605
Checking conditions: If...Else actions 607
Loops . 609
Properties . 614
Built-in functions . 614
Creating and calling subroutines . 614

Make a Login Sequence with Variables . 615
Debugging Your Code . 619

Using the Debugger Panel . 620
Enabling remote debugging . 621

Chapter 22: Creating Subroutines and Manipulating Data 623
What Are Data Types? . 623

string . 625
number . 626
boolean . 627
movieclip . 628
object . 628
function . 628
undefined . 629
Checking data types with typeof . 629

Overview of Functions as Subroutines . 629
What functions do . 630
When to create a function . 630
How to define a function . 630
How to execute a function . 631

Managing Related Data: The Array Object 644
Creating a Dynamic Reusable Flash Menu 646
Functions as Methods of Objects . 651
Functions as Constructors for Objects . 654

Function definition . 655
Object creation and assignment . 655
Sound Object method execution . 656

Chapter 23: Understanding Movie Clips as Complex Objects 659
Movie Clip Collision Detection . 659

Using _dropTarget . 659
Collision detection with advanced scripting 660

Reusing and Repurposing Code with Smart Clips 683
Adding parameters to a Movie Clip symbol 684
Assigning values to Smart Clip instances on the Stage 688

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxii

xxxiiiContents

Chapter 24: Sending Data In and Out of Flash 691
Using Text Fields to Store and Display Data 691

Input Text fields . 691
Dynamic Text fields . 692

Defining a Data Process with States . 694
Input state . 694
Send state . 694
Wait state . 695
Output state . 696

Creating a Flash Form . 696
Using XML Data in Flash Movies . 702

Understanding XML . 703
Loading an XML document into a Flash movie 704

Using the Flash Exchange . 709

Chapter 25: Understanding HTML and Text Field Functions in Flash 719
Exploring HTML Usage in Text Fields . 719

Supported HTML tags . 720
Formatting text with the Character and Text Options Panel 721
Inserting HTML tags into Text Fields with ActionScript 723
Using asfunction in <A HREF> tags . 724

Controlling Text Field Properties . 725
Manipulating Text with the Selection Object 726

Chapter 26: Advanced Movie Clip Architecture and Beyond 729
Advanced Tutorials for Flash Interactivity 729

Part VI: Using Flash with Generator and
Other Server Technologies 751

Chapter 27: What Is Generator? . 753
An Overview of Generator 2 . 753

Generator Server . 754
Generator editions . 755
Online/Offline? . 756
Generator authoring extensions . 757

Your First Generator Template . 761

Chapter 28: Revving Up Generator . 769
An Overview of Data Representation . 769

Name/Value data . 769
Column Name/Value data . 770

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxiii

xxxiv Contents

The Chart Object . 771
Creating a Bar Chart . 773

Lists and Tickers . 775
Basic Lists . 777
Scrolling Lists . 782
Tickers . 784

Using Generator Templates in Production 787
Publishing Generator Templates (.SWT files) 788
Using Generator Templates in HTML 790
Using Generator Templates in other Flash movies 791

Chapter 29: Working with Third-party, Server-side Applications . . 801
Using ASP with Flash Movies . 801
Flash Generation Utilities . 813

Swift Tools’ Swift Generator . 813
SwiffPEG by SwiffTOOLS . 813
Blue Pacific’s Flash Turbine . 813
Form2Flash . 813
OpenSWF.org . 814

Part VII: Using Flash with Other Programs 817

Chapter 30: Working with Raster Graphics 819
Optimizing Images in Fireworks 4 . 819
Preparing Images for Flash with Photoshop 6 827

Creating alpha channels for .PNG files 827
Color management in Photoshop 6 832

Creating Image Effects with Corel Painter 836
Exporting Raster Images from Flash . 841

General export options in raster formats 843
Other raster file format options . 844

Chapter 31: Working with Vector Graphics 849
Preparing Vector Graphics for Flash Movies 849

Guidelines for using external vector graphics in Flash 849
Reducing path complexity . 850
Converting text to outlines . 854
Controlling color output . 855

Using FreeHand 9 with Flash . 856
Exporting Artwork from Illustrator . 875

Using the Macromedia Flash Writer plug-in 875
Using .SWF Export from Illustrator 9 877

Replacing Blends with Flash Gradients . 878
Using Layered FreeHand, EPS, or Illustrator Files 881

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxiv

xxxvContents

Going Wild with Expression . 883
Converting Rasters to Vectors . 889

Flash’s Trace Bitmap command . 890
FreeHand’s Trace Tool . 890
Tracing with Adobe Streamline . 892

Exporting Vector Graphics from Flash . 893
A word of caution: Using vector formats from Flash 895

Chapter 32: Working with Audio Applications 897
Sound-editing and Creation Software . 897

Sonic Foundry’s suite (PC only) . 898
Bias suite (Mac only) . 899
Cakewalk Pro suite (PC only) . 900
Studio Vision Pro (Mac only) . 900
Cubase (Mac/PC) . 900
Macromedia SoundEdit 16 (Mac only) 900
Digidesign’s Pro Tools (Mac/PC) . 901
Setting In and Out points . 903
Normalizing audio levels . 904
Fade in and fade out . 908
Creating a reverb effect . 909
Other effects . 910

Chapter 33: Working with 3D Graphics 929
Introduction to 3D Modeling . 929
Simulating 3D with Flash . 935
Using Adobe Dimensions to Create 3D Objects 943

How to extrude vector artwork . 944
Bringing a sequence into Flash . 947

Animating Figures with MetaCreations Poser 947
Creating a walking figure in Poser . 947
Preparing Poser sequences for Flash 950
Importing Poser sequences into Flash 953

Exporting Animations from Kinetix 3D Studio Max 954

Chapter 34: Working with QuickTime 965
QuickTime versus Video for Windows . 965
QuickTime Support in Flash . 967
Importing QuickTime into Flash . 968
Combining Flash and QuickTime Movies 970

Creating QuickTime Flash movies . 970
Creating QuickTime video with Flash 976
A word about QuickTime VR movies 979

Using Digital Video in Flash Movies . 982
Extracting frames from digital video clips 982
Importing a sequence into Flash . 995

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxv

xxxvi Contents

Chapter 35: Working with RealPlayer 997
Flash to RealPlayer . 997
Flash Versions and Content Considerations 998
Controlling RealPlayer Playback . 999
Evaluating Media Quality for RealFlash Movies 1000

Audio requirements . 1000
Bandwidth considerations . 1002

Publishing RealPlayer Presentations . 1004

Chapter 36: Creating Full-Motion Video with Flash 1013
High-Quality Video Output from Flash . 1013
A Quick Video Primer . 1014

A brief history of digital video . 1014
Adjusting Flash Movies for Video Output 1018
Creating Sequences from Flash Movies . 1023

Export process in Flash . 1023
Uses of each sequence format . 1023

Creating .AVI Files on the PC . 1026
Dimensions . 1027
Video format . 1027
Sound format . 1028
Video compression . 1028

Importing Sequences into Video Applications 1029
Adobe Premiere 5.1 . 1029
Adobe After Effects 4.1 . 1030

Chapter 37: Creating Cartoon Animation with Flash 1035
Working with Large File Sizes . 1035
The Storyboard . 1036
Backgrounds and Scenery . 1038

Bitmaps . 1039
QuickTime limitations . 1039
Building layered backgrounds in Flash with Photoshop 1040
Flash Mask layers . 1040
Long pans . 1040
Multiplane pans . 1041
Blurring to simulate depth . 1042

Some Cartoon Animation Basics . 1043
Expressing motion and emotion . 1043
Anticipation . 1043
Weight . 1044
Overlapping actions . 1044
Blurring to simulate motion . 1045

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxvi

xxxviiContents

Animator’s Keys and Inbetweening . 1045
Walk cycles (or walk loops) . 1046
Repeaters . 1047
Types of walks . 1048
Coloring the art . 1048

Flash Tweening . 1050
Panning . 1050
Instance swapping . 1050

Lip-synching . 1052
Shape morphing is not for lip-sync 1053
Expression and lip-sync . 1053
Lip-sync tricks . 1053
Synching with music and sound effects 1054

Finishing Up . 1058
Final output . 1059

Chapter 38: Planning Flash Production with
Flowcharting Software 1069

Workflow Basics . 1069
Phase I: Establishing the concept and goals 1070
Phase II: Producing, testing, and staging the presentation 1082

Using Inspiration to Create Flowcharts . 1085
Building an organizational chart . 1085
Creating a process chart . 1088

Chapter 39: Working with Authoring Applications 1103
Integrating .SWF Files into Dreamweaver 1104

Working with your Flash movie . 1104
Positioning your movie . 1107
Inserting a Flash Button . 1107
Editing a Flash Button . 1109
Inserting a Flash Text Object . 1109
Editing a Flash Text Object . 1110
Directing the browser to the Flash plug-in 1110
Publishing the HTML document . 1124
Animation techniques using layers 1124

Using .SWF Files in Macromedia Director 1125
Benefits and limitations of Flash movies in Director 1125
Creating Director-specific actions in Flash 1126
Controlling .SWF files in Director . 1129
Controlling .SWF files with Lingo . 1138

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxvii

xxxviii Contents

Part VIII: Distributing Flash Movies 1147

Chapter 40: Publishing Flash Movies 1149
Optimizing Flash Movies . 1149

Simplify artwork . 1149
Use symbols . 1151
Manage assets in the Flash Library 1152

Testing Flash Movies . 1153
Using the Test Scene or Movie command 1154
How to use the Bandwidth Profiler 1155
Using the size report . 1159

Publishing Your Flash Movies . 1159
Publish Settings . 1160

Selecting formats . 1160
Using the Flash settings . 1161
Using the HTML settings . 1164
Using the GIF settings . 1171
Using the JPEG settings . 1175
Using the PNG settings . 1176
Creating Windows and Macintosh projectors 1178
Using the QuickTime settings . 1178
Producing RealPlayer presentations 1179

Publish Preview and Publish Commands 1179
Using Publish Preview . 1179
Using Publish . 1179

Chapter 41: Integrating Flash Content with HTML 1181
Writing Markup for Flash Movies . 1181

Using the <OBJECT> tag . 1182
Using the <EMBED> tag . 1184

Detecting the Flash Player . 1189
Plug-in versus ActiveX: Forcing content without a check 1189
JavaScript and VBScript player detection 1191
Using a Flash Swiffer movie . 1194

Using Flash Movies with JavaScript and DHTML 1199
A word of caution to Web developers 1199
How Flash movies work with JavaScript 1199
Changing HTML attributes . 1200
Using the PercentLoaded() method 1204

Chapter 42: Using Players, Projectors, and Screensaver Utilities . 1211
The Flash Stand-alone Player and Projector 1211

Creating a projector . 1212
Distribution and licensing . 1214

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxviii

xxxixContents

Distribution on CD-ROM or floppy disk 1214
FSCommands . 1215

Stand-alone Limitations and Solutions . 1219
Using the Flash Player Plug-in for Web Browsers 1227

Supported operating systems . 1227
Supported browsers . 1227
Plug-in and Flash movie distribution on the Web 1228
Plug-in installation . 1228

Alternative Flash-Content Players . 1229
Flash Player Java edition . 1230
RealPlayer 8.0 with Flash playback 1231
QuickTime Player . 1231
Shockwave Player . 1232
Screensaver utilities . 1232
Future players, future features . 1237

Appendix A: Using the CD-ROM . 1239

Appendix B: Contact Information for Contributors and
Expert Tutorialists . 1241

Index. 1245

End-User License Agreement . 1300

CD-ROM Installation Instructions . 1303

3515-3 FM.f.qc 1/18/01 5:39 PM Page xxxix

3515-3 FM.f.qc 1/18/01 5:39 PM Page xl

Flash in a Flash

The tutorial in this chapter provides a working overview
of Flash 5. It guides you through a simple Flash project,

from start to finish. Along the way, you’ll gain experience with
common tools, learn the location and use of many of the new
Flash 5 panels, and gain more than passing familiarity with
key Flash concepts.

To get the most out of this tutorial, you are strongly encour-
aged to first work through the tutorials that ship with Flash 5 —
including those located in the Help menu as well as the kite
tutorial found in Using Flash 5. Let’s get started!

The Tutorial
In this tutorial, you create a bouncing ball and a button to
control the ball. It sounds simple, but completing this tutorial
will give you experience with all the major features of Flash.

Starting Flash projects
To begin, let’s open a new movie in Flash and prepare it for
our project.

1. Open Flash if it isn’t already open, or open a new file
(File ➪ New).

2. Open the Move Properties dialog. From the main menu, go
to Modify ➪ Movie. You can also use Ctrl+M/Command+M
to open this dialog, and you’ll work more efficiently if you
form a habit of learning as many keyboard shortcuts as
possible.

3. Set the Frame Rate to 12, if it is not already (this is the
default). The frame rate determines the speed at which
the animation will run. Although in theory a higher frame
rate generally smoothes animation, higher frame rates
can also bog down Flash files, which are built to be lean.

QSQS
✦ ✦ ✦ ✦

In This Quick
Start

Planning projects

Setting up .FLAs

Introducing timelines,
layers, keyframes,
and frames

Creating Graphic,
Button, and Movie
Clip symbols

Using basic
ActionScript

Using Motion Tweens

Editing strokes
and fills

Adding sounds

Using frame labels
and comments

Sizing and
positioning with
the Info Panel

Editing gradients

✦ ✦ ✦ ✦

3515-3 QS.f.qc 1/18/01 3:42 PM Page 1

2 Quick Start ✦ Flash in a Flash

4. Set the movie dimensions to 670(w) ×490(h). This size should fit well in the
browser windows of those using the common 800 ×600 resolution. For those
running at a smaller resolution, such as 640 ×480, these dimensions could be
a problem. However, as you progress through this book, you learn ways of
embedding Flash movies so that they scale to fit. In this tutorial, we chose
the larger size to give you plenty of room in which to work.

5. Click OK.

Now you are staring at an empty Stage and timeline.

The Stage should present no particular difficulties — it looks like what you’d find in
a drawing or page-layout program, or, for that matter, even in a word processor. But
for many of you, the timeline might be something new. A clear understanding of the
timeline is critical to productive work in Flash, so let’s take a moment to look it over.

The timeline is best understood if you imagine that this tool is used to order
graphic information across two dimensions: time and depth.

✦ Arranged horizontally, from left to right, is the sequence of frames as they
appear in time. Thus, if your movie is set to 12 frames per second, then the
frame 24 occurs at the 2-second mark of your animation.

✦ Arranged vertically, from bottom to top, are layers. The timeline layers enable
you to separate different content items on discrete layers. They also enable
you to separate content from actions, comments, labels, and sounds, which
are another kind of content. Items placed on layers above will block out any
items beneath them, without otherwise affecting each other. In the editing
environment, you can set layer visibility (the Eye icon), editablility (the Lock
icon), and the color of its outlines (the Square icon) — note, however, that
these settings do not affect the final movie — all layer content, regardless of
visibility or outline settings, is included in the final movie.

The red rectangle with a line extending down through all layers is the Playhead.
The Playhead indicates which frames are currently displayed on the Stage. Drag it
to activate and display another area of the timeline. You can also drag it for a pre-
view of your animation; this is called scrubbing the timeline.

As you’ll see soon, a powerful feature of the timeline is that a quick glance at the
frames of the timeline provides a lot of information about what is on those frames.
Sounds are represented by their waveforms, tweens are colored, actions are desig-
nated with an a, and labels are marked with a red flag.

Before we actually start populating these frames with items, let’s take a moment to
plan ahead. Flash is one of those programs that makes you stick to your early deci-
sions, for better or worse, so a moment spent planning can save hours down the line.

3515-3 QS.f.qc 1/18/01 3:42 PM Page 2

3Quick Start ✦ Flash in a Flash

There are really two ways in which you can plan your file. The first is to use a con-
sistent way of structuring your Flash files. One way to do that is to use a standard
set of layers in every new .FLA. These layers will be the same in every movie you
make. The second way to plan your file is to think through what items will populate
your movie and make room for them ahead of time by adding layers for them in
advance. These layers, of course, will vary by movie.

Always give every layer a meaningful name — Flash movies can get complex fast,
and one of the best ways to ensure that you’re putting everything where it belongs
is to give all of your layers a meaningful name.

Let’s cover the standard layers first. You can always add more later, but we suggest
you always begin with the following set of layers:

✦ Labels: In this layer, you’ll place frame labels. You can use frame labels to
identify certain timeline segments both for your own ease of reading the time-
line and to enable Flash to address specific frames. This is done with actions,
which we cover in more detail later in this tutorial.

✦ Comments: Frame comments are notes visible in the timeline that you make
to yourself and your collaborators. Flash ignores them.

✦ Actions: Although you can attach actions to any frame in Flash, it is not advis-
able. Keep all of your actions in one layer because this will make your file
much easier to author and maintain.

✦ Content layers: Under the preceding three layers you place all of the layers
that have content.

Inserting and naming layers is easy.

1. Double-click the name of the original (and only) layer in your timeline
(Layer1) to select it.

2. Type contents. Flash is case-sensitive, and although that does not make much
difference for layers, it does make a difference for other assets. It is probably
easier to keep everything lowercase.

3. On the lower left-hand side of the timeline, and beneath your new contents
layer, are two folded page icons, one white (with a plus sign) and one blue
(with a wavy line). These add new layers: The white adds regular layers, and
the blue adds guide layers.

4. Click the white Insert Layer icon to add a new layer.

5. Following Steps 1 and 2, rename the layer actions.

6. Now add two more layers, calling the first comments and the second labels. If
you can’t see all the layers in your timeline, you can either scroll up and down
or drag the gray line across the bottom of the timeline downward to give it
more room.

Tip

3515-3 QS.f.qc 1/18/01 3:42 PM Page 3

4 Quick Start ✦ Flash in a Flash

7. Locking layers prevents you from adding items — be it artwork, symbols, or
sounds — but it does not prevent you from adding labels, comments, or
actions. Thus, one way to make sure that you do not accidentally put a Button
in the actions layer is to lock it. Now lock the labels, comments, and actions
layers.

Now that you have your standard layers set up, it’s time to identify the items that
you intend to use in your project. Of course, these may well change during author-
ing, and you can make changes if necessary. But for now, you can still add new lay-
ers for the different kinds of content that you’ll be creating.

Here is the plan for the final output of this tutorial. You’ll create a simple interface
in which users can click a button and make a ball fall and bounce several times
before resting. They can click again, and the ball will go away. Onscreen directions
will explain this information to them.

You know from this plan that your content will include two Buttons, a bouncing
ball, and some text. Thus, a reasonable next step is to add new layers to accommo-
date these items.

1. Double-click the contents layer name and change it to buttons.

2. Insert two new layers above the buttons layer and call them text and ball. The
ball layer should be between the actions and text layers, and the buttons
layer should be on the bottom, as shown in the Figure QS-1.

Figure QS-1: The timeline layers that we’ll be using in this tutorial.

The width of a circle
In this section of the tutorial, you draw a circle, fill it with a gradient so that it looks
like a ball, and then animate the ball.

Insert Layer

Insert Guide Layer

Playhead

Locked layers

3515-3 QS.f.qc 1/18/01 3:42 PM Page 4

5Quick Start ✦ Flash in a Flash

Drawing, strokes, and fills
Now you have an empty Stage and all these empty layers just begging to be filled.
Let’s get to work. Our first major task is to create the ball animation.

1. Click the first frame of the ball layer.

2. Click to activate the Oval Tool in the Toolbox on the left. Alternatively, you
can press O to activate it.

3. Draw a circle anywhere on the screen. To constrain the oval to a perfect cir-
cle, hold down the Shift key as you drag. (This also works for drawing perfect
squares with the Rectangle Tool, for constraining lines to 45-degree angles,
and other operations.

If you have not changed Flash’s default settings, your circle is probably red with a
black border going around it. (If it is not — don’t worry, because we’ll change it in a
moment anyway.) The red color that fills the circle is called the fill, and the black
border around the circle is called the stroke. Every closed vector item (squares,
parallelograms, irregular polygons, and so on) is made up of these two components
(though you can set both stroke and fill to none).

Let’s modify this circle and make it look more like a ball.

1. Click the edge of the circle (in other words, the stroke). Notice that you can
select both the fill and the stroke separately simply by clicking them. Also,
you can double-click either to select both. For now, just select the stroke.

2. Using the Launcher Bar (at the bottom-right corner of the screen), click the
Show Info icon to open the Info Panel, if it isn’t already open.

3. Click the Stroke tab to open the Stroke Panel.

4. In the first drop-down list (Stroke Style), Solid should already be chosen for
you by default. Before continuing, why don’t you check out some of the alter-
natives? Then, when you’re done, select Solid.

5. Below the Stroke Style drop-down are two other controls. The first, Stroke
Height, which has a two-headed arrow beside it, is used to set the thickness
of the stroke. Set it to 2.

6. The third control is Stroke Color, which previews the current stroke color. It
should display the default to black, which is what we want. This control is
also a button. So, if another color is displayed, click the Stroke Color button
to invoke the swatches pop-up and choose black.

7. Next, click the fill of the ball to select it (and deselect the stroke), and then
click the Fill tab (beside the Stroke tab) to open the Fill Panel.

8. From the Fill Style drop-down, choose Radial Gradient.

3515-3 QS.f.qc 1/18/01 3:42 PM Page 5

6 Quick Start ✦ Flash in a Flash

9. Unless your installation of Flash has been reconfigured, the default black and
white spectrum appears in the dialog. The extreme left of the gradient is
black, and the extreme right of the gradient is white. This gradient should
change the fill of the ball immediately. Between the two extremes of this gradi-
ent, black fades into white. However, to make our circle appear spherical, we
want a red ball that fades to black around the edges.

10. Click the black Color Pointer located at the extreme left of the gradient. At
right, a Pointer Color control appears.

11. Click the Pointer Color control to open a color palette and choose the bright
red swatch midway down the left side of the palette. Your circle’s fill becomes
red fading to white.

12. Next, click the white Color Pointer, and change it to black. Now your circle
looks more like a ball!

13. But there’s one problem: The highlight of the ball is exactly in the center,
which isn’t very realistic. The most likely light source is from above the ball
and off to one side, so the lighting of the ball should reflect that. In the
Toolbox, choose the Paint Bucket Tool, which is used to modify fills.

14. Notice the Fill Color control in the Color Tray beneath the Toolbox; the gradi-
ent is shown. This indicates that it’s the active fill, so any shapes that you fill
with the Paint Bucket Tool will have this fill.

15. This may take some experimentation, but click within the ball about three-
quarters up from the bottom and a little off to the side until you have a more
realistic-looking ball (see Figure QS-2).

Sizing and positioning the ball
Now that the ball looks the way you want it to, let’s resize it and position it.
Although you can resize by using the Scale Tool in the Options Tray (when the
Arrow Tool is active) at the bottom of the Toolbox, and you can position simply
dragging items, it is more precise to use the Info Panel.

1. From the Launcher Bar, open the Info Panel (it is in the same set as the Stroke
and Fill Panels, so it might already be open).

2. The first two controls (W and H) are entry fields that enable you to set the
physical dimensions. In both fields, enter 75.

3. The next pair of controls (X and Y) enable you to modify the selected item’s
positioning, relative to the top-left corner of the Stage. Just like in high school
geometry, X modifies the item’s horizontal positioning and Y modifies its ver-
tical positioning. However, before we modify these settings, let’s talk about
the Alignment Grid. The Alignment Grid is located just to the left of the
numeric entry fields that are used for adjusting the X and Y location of any
selected item. This Alignment Grid consists of nine small squares. Together,

3515-3 QS.f.qc 1/18/01 3:42 PM Page 6

7Quick Start ✦ Flash in a Flash

these squares represent an invisible bounding box that encloses the selected
item. Every shape created in Flash, even circles, resides in a square or rectan-
gular bounding box that includes the extremities of the shape. Now, this align-
ment grid enables you to position the selected item relative to either its
upper-left corner or its center. Click either square to define which point to use
for positioning. Because this is a circle, which by definition doesn’t have any
corners (although it is still surrounded by an invisible bounding box), it
makes more sense to position it relative to its center. Click the center square
of the alignment grid, which should turn the middle square black, and the
upper-left square to white.

4. Enter 450 for the X position and 75 for the Y position. When you’re done, the
ball should appear at a new size, near the upper-right corner of the Stage. This
will be the origin point of the ball before it falls in the animation.

Figure QS-2: You can use off-center radial gradients to make a circle look
like a sphere.

Color Tray

Paint Bucket Tool

Keyframe with content

Fill Color Launcher Bar

3515-3 QS.f.qc 1/18/01 3:42 PM Page 7

8 Quick Start ✦ Flash in a Flash

Your first animation
Now that you have created and positioned the ball, you’re ready to set it in motion.
As you may be aware, Flash offers several different methods of animation, including
Frame-by-Frame and both Motion and Shape Tweens. For now, we’ll work with
Motion Tweening, which is perhaps the easiest of the three.

In the next couple of steps, we cover the full mechanics of a Motion Tween. For
now, what you need to know is that a Motion Tween enables you to make an item
move from one location to another over time. Now, for Flash to Motion Tween an
item over time, it has to understand that the item in the first frame of the animation
and the item in the last frame (and all the other items between) are all the same
item. In our case, we need Flash to know that the ball in the air at the beginning is
the same ball as the one hitting the ground at the end of the first Tween.

Simple graphics versus symbols and instances
To enable Flash to recognize that the item that occurs at the beginning and end of a
Motion Tween is the same, you need to change the ball from a standard piece of art-
work to a symbol, so that you can reuse the artwork throughout the movie. In other
words, by converting the artwork into a symbol, you make it possible for Flash to
recognize two pieces of art that are located in different frames on the timeline as
two instances of the same item. Once Flash sees that the ball in the air at the begin-
ning of the Motion Tween is the same ball as the one striking the ground at the end
of the Motion Tween, it’s capable of tweening, or drawing, the intervening positions
for you; that is, the series of ball pictures that change incrementally as it falls to the
ground. Tweening saves you a lot of time and work.

Converting artwork to symbols also saves you bandwidth. Because Flash refers
to the singular symbol to generate multiple instances, your user will only have to
download the ball once, even if you use it hundred of times on your site. Similar
to the programming distinction between an item class and an item based on that
class, when you create an instance of a symbol, behind the scenes you’re literally
reusing the same code. Flash keeps track of this by creating a link between your
many instances and the one symbol they are based upon — and every time you
deploy an instance, Flash simply inserts a copy of the symbol. Another bonus is
that if you decide that you need to edit the symbol, it will automatically update all
of the instances, saving you some painstaking work.

While it may be conceptually difficult to understand what symbols are and the pos-
sibilities they enable, actually making your graphic into a symbol is quite easy. So,
let’s get started working with symbols now and develop more of the conceptual
background as we go:

1. Select the sphere (make sure you select both the fill and the stroke by double-
clicking the fill).

3515-3 QS.f.qc 1/18/01 3:42 PM Page 8

9Quick Start ✦ Flash in a Flash

2. Then choose Insert ➪ Convert to Symbol. In the Symbol Properties dialog,
name it ball, then click the Graphic radio button, and then click OK or press
Enter to continue.

Notice that your ball is no longer selected with gray hatching; instead, there is a
blue bounding box around it. This change in the appearance of the selection indi-
cates a change in the architectural status of the item. The ball on screen is no
longer a piece of artwork. The ball is now an instance of the ball symbol that you
just created and which resides in your Library. Choose Window ➪ Library, or Ctrl+L
in Windows, or Command+L on a Mac, to open the Library panel.

Frames, keyframes, and frame sequences
In a tweened animation, an instance of a symbol is either moved or manipulated
across a span of frames, with incremental changes displayed in the intervening
frames. So, now that you understand the reason for symbols and instances and
understand the logic of tweening, you’re probably wondering how to designate
beginning and ending frames. In other words, how does Flash know when to start
and when to stop a tween?

The answer is that there are different kinds of frames in the timeline, and you use
these different frames to establish and define changes of content across a given
layer of the timeline.

✦ Keyframes: A keyframe is a frame in which something changes in a layer of
the timeline. The first frame of every layer is, by default, a keyframe. Key-
frames can be empty or they can have any number of items in them. You can
use empty keyframes as a way to stop the display of existing content on a
given layer.

✦ Frames: Also known as static frames, regular frames depend on keyframes.
By definition, no new content can be added in a regular frame. Thus, if a ball
appears in a keyframe, and is followed by ten static frames, the ball would
remain motionless throughout that span of ten frames (unless the first
keyframe initiates a tween).

✦ Frame Sequences: The new Flash 5 timeline makes heavy use of this concept:
A frame sequence is a keyframe and all of the static frames that follow it, up
to, but not including, the next keyframe in a layer. Frame sequences are
selectable as an entity, which means that they can be easily copied and
moved in the timeline.

To answer the question of how Flash knows when to begin and end a tween, the
answer is simple: keyframes. The item in one keyframe is tweened across the inter-
vening static frames until it reaches the next keyframe, which contains the item in
the final position of the tween. In this scenario, the intervening static frames
become tweened frames.

3515-3 QS.f.qc 1/18/01 3:42 PM Page 9

10 Quick Start ✦ Flash in a Flash

Creating a Motion Tween
Motion Tweens are animations between two keyframes. These animations can
involve a change in color, shape, size, space, or any combination of the preceding.
As regards an animation through space, the placement of the item in the first
keyframe determines the starting point of the item, and its placement in the
second keyframe determines the item’s ending point.

Now, let’s create a simple Motion Tween with the ball, wherein the ball will appear
to fall down to the bottom of the Stage. Before you can do that, you’ll need to insert
a second keyframe in the timeline, which will designate where the ball will land.

1. Click frame 20 in the timeline of the stage. Then, to insert a keyframe, choose
Insert ➪ Keyframe from the main menu, or press F6.

2. Notice that the ball is still at the top of the screen, just where it was in frame
1. Actually, this is a new instance of the same ball symbol. That’s because
Flash automatically creates a new instance of any placed instance that occurs
on the preceding keyframe, every time you create a new keyframe.

3. With frame 20 selected, drag the ball down so it is near the bottom of the
Stage. Remember that before you click and drag, you should hold down the
Shift key and then drag to force the ball to go straight down — you don’t want
a wobble, or for it to fall at a diagonal!

4. Now that the ball is correctly positioned in both keyframes, insert a Motion
Tween to let Flash do the animating. Click the first keyframe of the ball layer.

5. Next, from the main menu, choose Insert ➪ Create Motion Tween, or open
the Frame Panel (Windows ➪ Panels ➪ Frame, or Ctrl/Command+F). In the
Tweening drop-down menu, choose Motion.

6. You now have a Motion Tween (see Figure QS-3). Note that the span in the
timeline extending from one keyframe to the other is now blue and has an
arrow pointing from the first keyframe to the second.

7. You can preview your Tween by dragging the Playhead back and forth across
frames 1 through 20. This kind of preview is called scrubbing the timeline.

Figure QS-3: Motion Tweens appear in the
timeline as a blue-shaded region with an
arrow pointing from the first keyframe to
the second.

Motion Tween

3515-3 QS.f.qc 1/18/01 3:42 PM Page 10

11Quick Start ✦ Flash in a Flash

If you had a steady hand while you were scrubbing the timeline, you probably
noticed something. When a real-life ball is dropped, it accelerates. That is, it is mov-
ing faster when it hits the ground than it was when it left your hands. However, your
ball moves uniformly to the ground and stops. Is this just a case of a computer not
being able to animate as well as a human can?

Although there is no substitute for hand-drawn animation, Flash does have a few
tricks. One trick is Easing, which enables you to control acceleration and decelera-
tion in Motion Tweens.

Easing is an option that appears in the Frame Panel on the frame in which a Motion
Tween is initiated.

1. Click the first frame of the ball layer of the timeline.

2. Using the Launcher Bar, open the Instance Panel and then click the Frame tab
to open the Frame Panel.

3. In the Tweening drop-down menu, you should see Motion already selected.

4. Beneath that is a control labeled Easing, as shown in Figure QS-4. The drop-
down arrow pulls up a slider, which you can drag down into negative num-
bers, or up into positive numbers. Positive Easing, called Easing Out, causes
the tweened item to start quickly and to slow toward the end — just the oppo-
site of what we want. Drag the slider all the way down to the bottom, so that
the number is –75.

If you scrub the timeline again, with a steady hand, you’ll see the effect of the
Easing.

Figure QS-4: The Easing slider on the Frame Panel

Easing slider

Frame Panel is in the Instance Panel group

The Tweening drop-down menu (partially obscured)

Rotation options (partially obscured)

3515-3 QS.f.qc 1/18/01 3:42 PM Page 11

12 Quick Start ✦ Flash in a Flash

Of course, most balls, when dropped, bounce back up — and fall back down, and
bounce back up. Let’s add a few bounces, so that the ball goes up and down a few
times before resting on the ground.

If you think about it for a moment, you’ll realize that the bounces are going to
require more tweens — twice as many tweens as there are bounces. Also, you’ll
have to reverse the effect of Easing for each tween, because when the ball is falling,
it accelerates, and while it is rebounding, it decelerates.

In addition, you know that every time you add a keyframe, Flash simply copies
the contents of the last keyframe, which means that half of your work is already
done for you. The ball will bounce or land from the same spot on the ground each
time, meaning that the location of the ball in frame 20 will also be the location
of the ball in every other keyframe until (and including) the final keyframe, in
which the ball stops.

Let’s make the ball bounce three times and come to a rest on the fourth.

1. Press F6 to insert keyframes in frames 40, 55, 70, 80, 90, and 98. Notice that we
are shortening the span of time each bounce requires — because with each
bounce, the ball won’t travel as high as the previous bounce, the ball will need
less time to rise and fall.

2. Click frame 1 and note where the ball is. Then click frame 40 and drag the ball
about three-fourths of the way up — don’t forget to constrain with the Shift
key! (If you’re mathematically inclined, you can use the Y position in the Info
Panel to figure out exactly where the three-quarter mark is.)

3. Click frame 20 and from the Frame Panel, insert a Motion Tween, and set the
Easing to 100, to make the ball Ease Out.

4. Scrub the timeline to preview the effect.

5. Click frame 55. How convenient! The ball is already back on the ground.

6. Click frame 40 and insert a Motion Tween, setting the Easing at –75.

7. Click frame 70 and drag the ball to about half the height it was in frame 1.

8. Return to frame 55 and insert a Motion Tween, setting the Easing to 100.

9. Again, the ball in frame 80 is already where it needs to be. Click frame 70 and
insert a Motion Tween, setting the Easing to –75.

10. In frame 90, drag the ball up so that it is one-quarter the height it was in
frame 1.

11. Returning to frame 80, insert a Motion Tween and set the Easing to 100.

12. Finally, click frame 90, insert a Motion Tween, and set the easing to –75.

13. Scrub the timeline from beginning to end to watch the animation!

The animation of the ball is now completed, but we’re not quite through with it.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 12

13Quick Start ✦ Flash in a Flash

Movie Clip Symbols
Working with a Movie Clip is in many ways like working with the main movie. Each
Movie Clip has its own Stage, timeline, and layers. All of the drawing tools work in
the same ways that they work on the main Stage. You can even place other symbols
(for example, Button instances and other Movie Clips) inside Movie Clips. In short,
Movie Clips are like full-blown Flash movies that can be placed in a single frame of
the main movie. It’s this nesting that gives Flash Movie Clips their power.

A primary (and initially most obvious) structural benefit of Movie Clips is that
Movie Clip timelines play independently of the Main Timeline. This independence
facilitates great flexibility in the overall development of your movie. It enables your
movie to stop and keep moving at the same time. Later in this lesson, you’ll end up
with only two frames of content on your Main Timeline. In one of the two
keyframes, there will be the Movie Clip of the bouncing ball animation you’ve just
created, and the ball will bounce even though the Playhead of the Main Timeline
has stopped!

Convert the timeline-based animation to a Movie Clip
Enough theory — it’s time to find out how simple it is to convert a Main Timeline
animation into a Movie Clip.

1. Click any of the static frames in the ball layer (any blue-shaded nonkeyframe)
to select the entire animation from beginning to end.

2. Now, copy the frames: Proceeding from the Main Menu, choose Edit ➪ Copy
Frames; or, from the keyboard, Ctrl+Alt+C/Option+Command+C; or right-
click/Ctrl+click and choose Copy Frames.

3. Next, create a new Movie Clip symbol. Choose Insert ➪ New Symbol
(Ctrl+F8/Command+F8).

4. In the Symbol Properties dialog, name your symbol bb for bouncing ball.
Leave the behavior at its default, which is Movie Clip.

5. You should now be viewing a blank Stage with an empty timeline. You have
entered Symbol Editing Mode, which simply means that you’re authoring in a
symbol, and not in the main movie. One indication of this change in authoring
environments is the appearance of a new tab at the upper-left of the timeline.
This tab displays the Movie Clip icon, together with the title of this Movie
Clip, bb. Thus, both the timeline and Stage that you now see belong to the
symbol only. Click the first frame of the timeline (be sure that it is selected,
which is indicated by its being displayed with black), and choose Edit ➪ Paste
Frames, Ctrl+Alt+V/Option+Command+V, or right-click/Ctrl+click and choose
Paste Frames.

6. Notice that the first (and only) layer of the Movie Clip’s timeline is called
Layer1, which is not the most descriptive name in the world. Double-click
the name and rename it ball.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 13

14 Quick Start ✦ Flash in a Flash

Your animation is now in a Movie Clip. But there’s one hitch; this Movie Clip is just
sitting in your Library, and the original animation is still on the Main Timeline. Let’s
replace the Main Timeline animation with an instance of the Movie Clip animation.

1. Return to the main movie by clicking the Scene 1 button just above the left-
hand side of the timeline, shown in Figure QS-5. Alternatively, you can choose
Edit ➪ Movie from the main menu (Ctrl+E/Command+E).

Figure QS-5: These tabs above the timeline help you
determine which Stage you are editing — that of the main
movie or that of a symbol

2. Click any static frame in the tweened animation to select the entire animation
sequence. (Note: This selection method works only if the Flash 5 Selection
Style and Frame Drawing have been left as the default in Edit ➪ Preferences ➪
General.)

3. Choose Insert ➪ Remove Frames to remove both the contents of each of the
frames and the empty frames (including keyframes) themselves. When you’re
done, the entire layer should be entirely empty, lacking even a keyframe in
frame 1.

4. Now, insert a keyframe in frame 1 by pressing F6.

5. Then, open your Library (Ctrl+L/Command+L), if it isn’t already open.

6. Finally, with frame 1 of the ball layer still active, click and drag the bb Movie
Clip out of the Library and drop it on the main Stage.

All 98 frames of the bb Movie Clip are now placed entirely within frame 1 of the ball
layer of the Main Timeline. If the movie were to stop in frame 1, the complete ball
animation would still play, because all 98 of its frames are encapsulated in the bb
Movie Clip placed on frame 1.

Position the Movie Clip
The only problem now is that the ball is wherever you dropped it, and not where
we placed it so precisely using the Info Panel in an earlier step. Let’s reposition the
ball with the Info Panel again.

You can’t simply use the same numbers that you used earlier, though. Ensuring that
the bb Movie Clip is selected, you’ll notice a small crosshair symbol below and to
the left of the ball. This crosshair represents the center of the Movie Clip. This
might seem strange because the ball animation at no time even passes through
this crosshair. What is going on?

3515-3 QS.f.qc 1/18/01 3:43 PM Page 14

15Quick Start ✦ Flash in a Flash

Here is what happened: When you converted the ball animation to a Movie Clip,
Flash remembered the positioning of the ball relative to the center of the Stage. In
short, this crosshair now marks where the center of the Stage was before the con-
version. It follows, then, that to reposition the ball again, you would need to posi-
tion this crosshair exactly at the center of the Stage.

With the bb Movie Clip still selected, open the Info Panel and look at the Alignment
Grid. Make sure that the center box is still selected. Next, enter the center coordi-
nates of the movie: Set X to 335 and Y to 245 (half of 670 and 490, which are the
dimensions of the movie, as set at the beginning of this tutorial). The crosshair is
now at the exact center of the movie, and the ball is in its original position.

The bb Movie Clip is complete and in place. So now, with our star item ready, it is
time to flesh out the rest of the movie. But first, have you saved your project yet?

Frame labels and comments
We begin by defining different segments of our timeline using labels and comments.
Although this is not a complex movie, it is a good place to start developing good
work habits. As you develop long movies with many things going on at once, inter-
preting the timeline becomes more difficult. Labels and comments are two ways to
make logical divisions and help you (and Flash — as we’ll see shortly) keep track of
what is going on.

In the case of the movie we are developing — a simple interface in which users can
click a button and make a ball fall and bounce several times before resting, and
click again to make the ball go away — you’ll need to divide your timeline into two
major segments: One segment will have a button and some text indicating that
pressing the button will activate the ball animation, and the other segment will be
where the ball animation is accessed and played.

You can use frame labels and comments much like you might use bookmarks: to
identify sections or events (for example, the beginning of a given tween, or transi-
tion between an intro animation and a stopped frame in which the user has to click
a button to continue).

Labels or comments?
Why have two different kinds of timeline bookmarks? To serve two different pur-
poses, of course!

✦ Labels: Labels actually communicate with Flash. You can use frame labels as
targets of Go To actions (simple ActionScripts that move the Playhead to a
specified location). Consequently, labels are exported in .SWF movies — they
are necessary for the functioning of ActionScript. For this reason, you should
keep labels short.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 15

16 Quick Start ✦ Flash in a Flash

✦ Comments: Comments, much like comments in programming, are simply
notes that you can make to yourself or others developing the movie with you.
They are not exported in .SWF movies, so they neither add file size nor have
any functional impact. They simply help you keep track of what is going on in
complex timelines.

Inserting labels and comments
Let’s insert a couple frame labels:

1. Click frame 1 of the labels layer.

2. Using the Launcher Bar, click the Instance Button and click the Frame tab to
invoke the Frames Panel.

3. Enter intro in the Label text field.

4. In the timeline, if there is room to display it, a red flag will appear with the text
you entered next to it. In your file, there probably is not room yet.

5. Click frame 10 of the labels layer and insert a keyframe. Now you can see that
intro label!

6. Add a label to frame 10 as well, calling it ball. Again, you probably cannot see
the label, because there aren’t enough frames. You can click frame 20 and
press F5 to insert some extra frames.

All of the items in this movie will be placed within keyframes in two places: The first
set of keyframes will be in various layers of frame 1, while the others will be in
frame 10. For this reason, you could put the entire movie in the first two frames.
The only reason that we don’t is to provide room to view our labels and comments.
The extra frames (frames 2 to 9, which are empty in all layers) do not affect file size
or movie performance. If we wanted to (we don’t), we could put the second set of
keyframes on frame 100 or even on frame 15,999 — but 16,000 is the limit.

Although we aren’t going to insert any comments just yet, the process is nearly the
same as for adding labels, with one modification:

1. Follow the previous directions for entering a label.

2. Insert two slashes // before the text in the Label text field.

In the timeline, if there is room to display it, a green //, rather than a red flag, will
appear with the text that you entered next to it.

Working with text
Some interfaces are so well designed that users just know where to click. In our sim-
ple movie, however, we’ll provide simple directions.

Note

3515-3 QS.f.qc 1/18/01 3:43 PM Page 16

17Quick Start ✦ Flash in a Flash

1. Click the first frame of the text layer to activate that layer.

2. Choose the Text Tool from the Toolbox.

3. Click just inside the left edge of the Stage at about the same height as the ball.

4. Type the following (we’ll format the text in a moment): The button below con-
trols a cool animation.

5. Select the entire text that you just typed.

6. Using the Launcher Bar, open the Character Panel.

7. Use the Font Name drop-down menu to choose a sans-serif font such as Arial
or Helvetica.

8. Using the Font Size control, type in the field or drag the slider bar so that the
font size is 44.

9. Your text block probably runs right across the bb Movie Clip and off the Stage!
See Figure QS-6.

Figure QS-6: An Extending Text Block . . . Extending!

10. To resize the text block, and change its behavior to a Fixed Text Block, simply
drag the circle in the top-right corner of the text block to the left. As you drag,
the text block adds lines as necessary to wrap the text. When you let go, this
round corner-handle becomes a square corner-handle.

The (circle) Extending Text Block Handle indicates that the text block is expand-
able, and as you add text, the text block simply widens. The (square) Fixed Text
Block Handle indicates that the text block has a fixed width, and that — as you add
text — the block creates additional lines for new text below. By default, when you
first create a text block, it has an Extending Text Block Handle. After you manually
set the width of a text block, it automatically converts to a Fixed Text Block Handle.

Note

Extending Text Block Handle

3515-3 QS.f.qc 1/18/01 3:43 PM Page 17

18 Quick Start ✦ Flash in a Flash

These directions will appear in both frames of the movie; that is, even after the
user has clicked the button and started the animation, the text will still be visible.
Because the text won’t change, you don’t need a second keyframe in that layer.

The Button symbol
Buttons are one of the three symbol types. Buttons are used primarily for interac-
tivity, often triggering some sort of event. As you will soon see, Flash makes it easy
to create slick, responsive Buttons. The interactivity is where it gets more compli-
cated. Still, you can easily create interactive movies with Buttons and simple
ActionScripts — in fact, we do that next.

Buttons in Flash 5
The next step is to add the buttons, and from there, to add the ActionScripts that
will make the Buttons interactive. Let’s begin by going over some Button basics.

Like Movie Clips, Buttons are symbols and have their own timelines. Also like Movie
Clips, Button timelines run independently of the Main Timeline. But that’s pretty
much where the similarity ends.

Unlike Movie Clip timelines, Button timelines never run at 12 (or whatever) frames
per second. You cannot tween items across the frames of the Button timeline. (You
can, however, have animation — including tweens — within a Button.)

The major difference between Buttons and Movie Clips — and the most important
fact you can know about Buttons — is that Button timelines always have exactly
four frames. These frames aren’t played over time elapsed; rather, they are dis-
played in response to user interaction with the Button. Table QS-1 explains each
of the four frames of a Flash Button.

Table QS-1
Button Frames and Functionality

Frame Name Functionality

Up This is the natural state of the Button; the way the Button appears
when the page is first loaded.

Over Commonly called the rollover, this frame appears on screen when the
user’s cursor rolls over (without clicking) the Button.

Down The Down state appears during the moment that the user clicks the
Button (lasting only until the user releases it). As you learn later, this
state is the most common state during which an action (or behavior)
is triggered.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 18

19Quick Start ✦ Flash in a Flash

Frame Name Functionality

Hit This refers to the hot (or clickable) area of the Button. The user
never sees what is in this frame, but neglecting it can have some
unpleasant consequences.

Creating a Button
The first step in making a Button is drawing the shape itself.

1. Begin by clicking to select the first frame of the buttons layer.

2. Choose the Rectangle Tool from the Toolbox.

3. The Round Rectangle Radius button appears in the Options Tray at the bot-
tom of the Toolbox. Click this button to open the Rectangle Settings dialog.

4. Enter 11 as the Corner Radius setting. This rounds the corners of any rectan-
gles you draw, and it is a good way to make rectangular items look more but-
tonlike.

5. In the Color Tray, set the stroke to none and the fill to bright red.

• To set the color of the stroke or fill, click the adjacent Stroke or Fill Color
button, which will invoke either the Stroke or Fill swatches. Notice that
when you drag your cursor over either of the swatches, or elsewhere
within the interface, the cursor turns into an Eyedropper. Furthermore,
as you move over the colors in the palette or anywhere on screen, you’ll
notice a six-digit number in the hex field above the colors — it updates to
display the values for the color immediately beneath the dropper, as you
move. This number is the color’s hexadecimal value, which is simply the
unique color description that identifies each color. To the right of the
hex field is a white button with a red slash through it. Click this button to
set the stroke to none.

• For the red fill color, choose #FF0000 (this red can be found in the left-
most column of colors, about halfway down; or, you can simply type the
number in the hex field).

6. Draw a rectangle in the bottom half of the Stage. Don’t worry too much about
positioning just yet; eyeballing it is sufficient for now.

7. Select both the stroke and fill of the rectangle.

8. Using the Launcher Bar, open the Info Panel.

9. Set the rectangle’s width to 137 pixels and height to 55 pixels.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 19

20 Quick Start ✦ Flash in a Flash

10. With the rectangle still selected, convert it to a Button symbol, as follows:

• Choose Insert ➪ Convert to Symbol.

• In the Symbol Properties dialog, name your Button button and choose
Button as its behavior. Whenever you have the option to name some-
thing (for example, layers, symbols, and instances), use simple, meaning-
ful names — you will thank yourself in the end.

• Click OK.

11. The hatching that previously indicated that a drawing was selected has now
turned into a blue bounding box, indicating that it is now a symbol instance.

12. In the Library, double-click the button symbol icon to view it in Symbol
Editing Mode.

13. You’ll see that the timeline has changed; there are now four frames, labeled
Up, Over, Down, and Hit. Notice also that layers work the same way and that
there is a keyframe in the Up frame only. Keyframes work the same way in
Buttons as they do in other timelines: A keyframe signifies a change in the
content of a layer. Remember, too, that all subsequent layers up to the next
keyframe have the same content as this keyframe.

Modifying the Button
The next step is to turn this simple red rectangle graphic into a Button that
responds to the user. For this exercise, we’ll have the Button brighten when users
roll over it and appear to be depressed when users click it.

Of course, the graphic is already bright red! So, rather than brighten the Button fur-
ther, let’s darken the Button in the Up frame. Before you start modifying the graphic
in the four frames, though, you need to place it in the remaining three frames. To do
this, you could simply insert a keyframe in each of the frames, because you know
that Flash will copy the contents of the first keyframe into the next, unless you
insert a blank keyframe.

But copying the keyframes is not the most efficient way. If you distribute the art-
work across all four keyframes, then Flash will have to include four different pieces
of artwork, even though they are really all the same (albeit with minor modifica-
tions, which are covered in the next step).

You already know that you should use symbols whenever possible to keep file sizes
small. So, go ahead and convert this red rectangle in the Up frame into a Graphic
symbol. Then you can place instances of this symbol within each Button keyframe
and save Flash (and yourself, if you should later decide to make any edits to the
graphic) some work.

1. You should still be in Symbol Editing Mode for the Button, and if it’s not
already selected, select the rectangle artwork (hatching should cover the
Button to indicate that it is selected).

3515-3 QS.f.qc 1/18/01 3:43 PM Page 20

21Quick Start ✦ Flash in a Flash

2. Proceeding from the main menu, choose Insert ➪ Convert to Symbol. This
time, call it button shape and set its behavior to Graphic.

3. After it is converted, the selection style changes again, from hatching to a
blue bounding box.

4. Now, enter a keyframe (press F6) in each of the three remaining frames. New
instances of the button shape Graphic symbol will be inserted for you in each
frame.

Now you have identical instances of the same graphic symbol in each of the four
frames of your Button symbol. This is our first nested symbol — you are becoming
a bona fide Flash architect.

Next, let’s complete the visual design of the Button so that it brightens on rollover
and then, when clicked, appears depressed.

The Up frame, or Up state
The instance of our rounded rectangle that appears in this frame will be how the
Button looks when the page first loads, before the user approaches or clicks it. It’s
going to be darker than it will be on rollover, having a subdued appearance that will
beg users to click it.

Here is the catch: You cannot directly edit an instance of a symbol, so you cannot
change the fill to a darker color. In addition, changing the fill of the symbol itself
changes all instances, making it impossible to distinguish between the instances in
the three frames of the Button animation. What you need, then, is some special way
to distinguish among the symbol instances on the Button frames.

Flash provides just such a tool: Instance Effects. Instance Effects alter the appear-
ance of an instance without actually requiring Flash to redraw the graphic from
scratch; it simply modifies an existing symbol. These effects include Brightness,
Tint, Alpha (transparency), and a combination of these, which is called Advanced.
Each effect modifies the color of the instance. Although they may not be the most
robust graphics tools in the world, in concert with the other capabilities of Flash,
they pack a lot of punch.

In this step, we’re going to use the Tint Effect, which will mix another color with the
instance that will darken the rounded rectangle graphic (without forcing Flash to
download and draw it from scratch).

1. With the Up frame selected, click to select the button shape instance on the
Stage.

2. Using the Launcher Bar, click the Show Instance Button. Then click the Effect
tab to display the Effect Panel.

3. In the drop-down menu, choose Tint. The Tint Effect will tint your instance
with the color you select.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 21

22 Quick Start ✦ Flash in a Flash

4. Click the Tint Color button to choose black (hex: #000000). Your instance is
now completely black. We said dark, but we don’t want it that dark!

5. There are four sliders on the right side of the dialog. The lower three (R, G, B)
enable you to custom mix a color, while the first controls the percentage of
tint applied to the original color of the instance. A Tint setting of 100 percent,
the default, tints the instance completely with the tint color you selected: in
this case, black. At the other end of the spectrum, 0 percent (not surprisingly)
won’t tint the instance at all. Drag the slider up and down just to get an inter-
active sense for how the black tint affects the button instance. (You might
even try another tint color, such as a bright yellow, just to get an even better
sense for how the Tint Instance Effect works.) When you’re done experiment-
ing, set the tint color back to black and use the slider to set the tint amount to
34 percent, as shown in Figure QS-7. Now, the Up state of your Button is a
deep burgundy color.

Figure QS-7: The Effect Tab with
the Tint Effect selected.

The Over frame, or Over state
This frame is to be the brightest of the frames, and the rectangle is already quite
bright. Other than remembering that this frame is the one shown on rollover, you
need do nothing else for this frame.

The Down frame, or Down state
The rectangle in this frame is going to be the same color as it was on rollover, so
there is no need for you to add any instance effects. What you need, instead, is to
move it to give it the appearance that it’s been pushed down when clicked.

1. Click the rectangle in the Down frame to select it.

2. Working with the arrow keys on your keyboard, press the down arrow three
times, and the right arrow four times. You can use your arrow keys to nudge
items in small increments. Nudging this instance of the button downward and
to the right will create the effect that, when the Down state is displayed, the
button has been pushed.

Tint effect

Tint color

Tint amount

3515-3 QS.f.qc 1/18/01 3:43 PM Page 22

23Quick Start ✦ Flash in a Flash

The Hit frame, or Hit state
The Hit state is a bit trickier; because your users will never see it, it might be tempt-
ing to ignore the Hit state altogether. The Hit state determines the hot area of the
Button.

The appropriate use of Hit states can eliminate a few common pitfalls. These hap-
pen when your Button frames meet one of the following situations:

✦ Buttons with different shapes or shapes in different locations on each of the
four frames.

✦ Buttons made of shapes with no fills.

✦ Buttons made of text only without a surrounding shape.

In each of these cases, clicking the Buttons can create some embarrassing prob-
lems that could have been easily avoided with good Hit frames.

Usually, the problem with these buttons is that there is no consistent, clear, click-
able area throughout all states of the Button. As regards text Buttons, the problem
is that the spaces between the letter shapes are not active. For example, the user
must click precisely upon the shape of the O, — as clicking in the center of the let-
ter is not defined as hot. The solution is to make a shape in the Hit frame that
extends to include the aggregate outline of all preceding button states, and that
is a little bit larger.

Because the Button you’re making does not meet either of the previous criteria in
the Up or Over states, it won’t hurt just to leave it as is.

Using the Align Panel to position the Button
Exit Symbol Editing Mode (Edit ➪ Edit Movie [Ctrl+E/Command+E]). Your Button
should be on the Stage of the Main Timeline. If not, drag an instance of the Button
onto the Stage. Now, let’s position the button.

1. Drag the button so that it is near the bottom of the Stage, with a little white
space beneath.

2. Next, we use the Align Panel (shown in Figure QS-8) to center the button left-
to-right on the Stage. Open the Align Panel (Window ➪ Panels ➪ Align or
Ctrl+K/Command+K).

3. Click the To Stage button on the right side of the panel. You can use this panel
to align items relative to each other or relative to the Stage. We want the
Button centered left-to-right on the Stage, so we’ll align relative to the Stage.

4. Click the Align Vertical Center button.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 23

24 Quick Start ✦ Flash in a Flash

Figure QS-8: The Align Panel

Pushing your Buttons
Graphically, your Button is complete. Of course, you’ll need to attach some
ActionScript in order to make it do anything. Some sort of button label would also
help. But you should first test your Button, just to make sure everything looks the
way it should.

You can test buttons in the authoring environment by selecting Control ➪ Enable
Simple Buttons (Ctrl+Alt+B/Option+Command+B).

Roll your cursor over the Button and then click it. Cool! (We recommend uncheck-
ing Enable Simple Buttons as soon as you’re done testing; otherwise, you cannot
select the Button to move, modify, or attach actions to it.)

Adding a Button label
As a plain rectangle, the Button is a little nondescript, so let’s add a simple button
label so users know that it’s a Button.

1. Open the Button again in Symbol Editing Mode. (Double-click the button icon
in the Library.)

2. Right now, your Button only has one layer, called by default Layer1. Double-
click the name in the Layer Bar and rename it rectangle.

3. Next, insert a new layer (click the white page icon beneath the first layer). A
new layer should appear above the rectangle layer.

4. Rename this layer label.

5. If it’s not already selected, click the Up frame of the label layer.

6. Choose the Text Tool to activate it and then open the Character Panel.

Align Horizontal Center

Align Vertical Center

To Stage

3515-3 QS.f.qc 1/18/01 3:43 PM Page 24

25Quick Start ✦ Flash in a Flash

7. Choose a sans-serif font, such as Arial or Helvetica, if it isn’t already selected.
Set the font size to 27. Set the font color to white. Click the B button to make
it Bold.

8. With the Up frame of the label layer still selected, and with the Text Tool still
selected, click over the rectangle and type Click Me!

9. Now, switch to the Arrow Tool in the Toolbox.

10. Using the Arrow Tool, click the text block (that you just created) and then
Shift+click the rectangle (that is, the button), so that both are selected.

11. Using the Align Panel (Ctrl+K/Command+K), click To Stage and then click both
the Align Vertical Center and Align Horizontal Center buttons (if you’re not
sure which buttons these are, hold your cursor over the buttons for a pop-up
message indicating each button’s name). This will align both the button and
its text label perfectly to the center of the Stage (and to each other).

12. Next, insert keyframes in the Over and Down frames of the label layer. You do
not need to enter a keyframe in the Hit layer, because no one will ever see it,
and you know that the button area is already sufficiently covered.

13. Click the Down keyframe of the label layer. Oops! The text doesn’t line up with
the rectangle.

14. With the text selected, use your arrow keys to nudge the text down three
times and to the right four times.

15. Return to Movie Editing Mode (Ctrl+E/Command+E) and test the Button again.

At this point, your Stage and timeline should look like Figure QS-9.

Figure QS-9: The ball and its button

3515-3 QS.f.qc 1/18/01 3:43 PM Page 25

26 Quick Start ✦ Flash in a Flash

The sound and the fury
Now that your button looks good, let’s add some sounds to it, which will enhance
your user’s experience.

Although Flash has many options for using sound, many designers simply neglect
to add sound to their Flash movies. Yet, adding simple sounds to Buttons can be a
very effective way to provide users with feedback and to improve their experience.
Adding a quick sound to your Buttons is easy to do and, if done with a little intelli-
gent restraint, won’t affect your file size too much.

Sound basics in Flash 5
To import a sound into a Flash movie, simply use the Import dialog (File ➪ Import
[Ctrl+R/Command+R]) and navigate to the file. Flash 5 can import any of these
sound file types: .WAV, .AIFF, and .MP3. Upon import, sounds are placed in the
Library.

Sounds, like any other Library item, have to be placed into a frame of a timeline
(including the Main Timeline, any Movie Clip timeline, or any Button timeline). Also,
like any other symbol, you can deploy as many instances of the original sound sym-
bol as you like without affecting file size.

Because sounds, like animations, occur over time, audio synchronization is impor-
tant. In other words, you need your sounds to start and stop in sync with what’s
going on in the rest of the movie. Flash offers several ways to handle synchroniza-
tion as well as other sound options in the Sounds Panel.

✦ Event: Event sounds begin on the keyframe to which they are added and play
independently of the timeline.

✦ Stream: Stream sounds are locked to the timeline. In a browser, Flash will
force the frames and sounds to play in sync, even if it needs to drop frames
of animation to keep up.

✦ Start/Stop: These options simply start a sound (again, if it is still playing) or
stop it where it is.

Import and deploy two sounds
On the CD-ROM in the 00_QS folder are two sounds: buzz.wav and pop.wav. You’ll
need both of these sounds for the following steps.

1. Import both the buzz.wav and pop.wav sound clips from the 00_Flash in a
Flash folder on the CD-ROM. Choose File ➪ Import (Ctrl+R/Command+R) and
navigate to the each sound file. Select it and click Open.

2. The imported sound goes to your Library. Notice that sounds in the Library
have a speaker icon next to them.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 26

27Quick Start ✦ Flash in a Flash

Add sounds to the Button
When you import a sound, it goes directly to your Library. It will not appear in your
movie — even if you have a keyframe selected — until you drag it from your Library
to any keyframe on a Button, the Main Timeline, or a Movie Clip. Now, let’s associ-
ate the sounds with the proper frames of the Button.

1. Enter Symbol Editing Mode to edit the Button.

2. Add a new layer to the Button timeline and call it sounds.

3. Insert a keyframe in both the Over frame and the Down frame of the sounds
layer.

4. Click the Over frame of the sounds layer to select it.

5. With the Library open, drag buzz.wav onto the Stage and let go. Note that
nothing appears to be different on the Stage, but the squiggly blue line repre-
senting the sound waveform in the previously empty Over frame of the
sounds layer on the Button timeline indicates that you’ve successfully placed
the sound.

6. Following the preceding steps, add the pop.wav sound to the Down frame of
the sounds layer.

If you like, you can return to the main Stage (Edit ➪ Edit Movie), enable Buttons
(Control ➪ Enable Simple Buttons), and test your Button. Irresistible!

Figuring items over time
With your frame labels set up, your timeline now logically divided into two sec-
tions, and your text, Movie Clip, and Button items in place, you need to put these
items in their appropriate section(s).

Again, in our plan, the user will only see the text block and Button when the movie
first displays. The ball animation will only become visible after the Button has been
pressed, which will advance the Playhead to the ball label section. To begin, then,
the bb Movie Clip should not be visible in the first frame.

Of course, it’s currently visible in the first frame, so you’ll need to move the
keyframe to frame 10, so that it’s under the ball label.

1. Click the first frame of the ball layer.

2. Drag the keyframe itself to frame 10. The first frame no longer has a black cir-
cle in it, indicating that it’s empty. Now, frame 10 does have a black circle in it,
and all of the intervening frames have been filled with empty frames.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 27

28 Quick Start ✦ Flash in a Flash

3. Optionally, you can click frame 20 and press F5 to insert extra frames. While
the Playhead will only alternate between frame 1 and frame 10, you’ve added
extra frames to make the ball frame label visible. Adding these frames does lit-
tle more than make your timeline look tidier. They add no function and add
nothing additional to the file size of the exported .SWF.

The text block that you entered previously should be visible at all times. It should
not change when the Playhead is advanced to frame 10 (the ball label section).
When you dragged the bb Movie Clip to frame 10, you probably noticed that the
Stage was otherwise blank. Where did the text block go?

Well, look at the text layer in the timeline — it only has one frame. If you want the
text block to be visible in frame 10, then you should make sure that the frame
sequence extends at least that far, although extending it to frame 20 would be more
consistent with the rest of the movie.

1. Click frame 20 of the text layer.

2. Press F5 to insert frames up to and including frame 20.

3. Drag the Playhead back to frame 10. You can now see the text block.

The last concern is the Button. Certainly, we want the button to be visible at all
times, just like the text. However, if we have only one Button instance — the one in
the first keyframe — the Button can only point to frame 10, and never back to frame
1. Thus, we need to add a second instance (in a new keyframe) in frame 10, so that
the two Button instances can point to different frames.

1. Click frame 10 of the buttons layer.

2. Press F6 to insert a keyframe.

3. Again, optionally, you can click frame 20 and press F5 just to make your time-
line appear tidier.

All of your items are fully created, positioned on the Stage, and located in their
proper places on the timeline. All that’s missing are the ActionScripts to drive your
buttons and to make the movie work.

An ActionScript primer
ActionScript in Flash 5 is a robust object-oriented scripting language in its own
right. Rebuilt from the ground up for Flash 5, ActionScript closely resembles
JavaScript.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 28

29Quick Start ✦ Flash in a Flash

ActionScript is what makes things happen in Flash. Unless told otherwise, Flash
movies play through the timeline sequentially and at a steady rate (the frame rate).
In a word, ActionScript is how you tell Flash otherwise. If you want the movie to
stop at some point — so your readers can, for example, read some text, fill out a
form, or make a navigational decision — you use ActionScript. If you want the movie
to loop temporarily while the rest of the movie loads in the background (this kind
of loop is called a preloader), you need ActionScript. If you want your users to be
able to drag and drop a product into a shopping cart at your Flash e-commerce site,
you use ActionScript to accomplish this high level of interactivity.

ActionScript enables you to make your Flash movies truly interactive, so that users
can go where they want, see what they want, and get what they want — on demand.

Events and event handlers
You may be wondering how ActionScript works. Every action comprises two dis-
tinct items: event handlers and events.

✦ Event handlers are instructions that tell Flash to do something on a given
event: on (release) and on (rollover) are event handlers. When the user
clicks an item that has an on (release) event handler, something happens.

✦ Events are the triggered behaviors or actions. An example of an event is the
Go To And Stop action, which tells Flash to skip to a different frame (advance
the Playhead to a specified frame) and stop.

Consider the following short script:

on (release) {
stopAllSounds ();

}

The first line is an event handler; the action is triggered when the user releases the
mouse button after clicking the item. The curly bracket at the end of the first line
opens the list of actions that occurs on this event. In this case, there is only one
action, namely, Stop All Sounds. The second curly bracket (the only character in
the third line) indicates that there are no more actions associated with the mouse
release event for this item. You might see a script like this one on a mute button in
a movie that plays a looping soundtrack.

You might be surprised to learn how much you can do with just a handful of short,
easy scripts similar to this one. In short, ActionScript simply joins a predefined
event to a programmed response. This enables you to make your Flash movie fully
interactive.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 29

30 Quick Start ✦ Flash in a Flash

Frame actions versus object actions
You can put ActionScripts in two different kinds of locations, and, not surprisingly,
the nature of the events that trigger them are also somewhat different.

✦ Frame actions: These actions are associated with frames. The event that trig-
gers these actions is simply that the Playhead has come to the frame. Example:
Assume that you have a 20-frame movie with a simple Motion Tween spanning
all 20 frames. When converted to a .SWF, the movie will play to frame 20 and
then automatically loop back to frame 1. To stop the animation after one play-
through, you’d need to add a Stop action at frame 20. That way once the
Playhead reaches frame 20, the event is triggered, and Flash stops the play.

✦ Object actions: These actions are attached to objects (such as Buttons and
Movie Clips) and require some kind of user interaction, such as clicking,
rolling over, or dragging, before the event is triggered.

You’ll add both frame and object actions to your movie shortly.

Add object actions to instances, not symbols
One final note, before we actually start adding some ActionScripts: For object
actions to work, they must be placed on a Stage. You cannot, for example, add an
action to a Button symbol in Symbol Editing Mode. Why?

Object actions are all user triggered — through mouse clicks, rollovers, key entry,
and so on — but symbols, by definition, reside in the Library. Flash does not gener-
ally export unused Library assets to .SWF files — only placed instances. Therefore,
if your user has no access to a Library object in the .SWF movie, then your user
cannot trigger an event embedded in such an object.

The bottom line: Attach actions only to frames and to Button or movie instances,
never to symbols.

The Actions Panel
The Actions Panel (see Figure QS-10) is divided into three major sections, and you
use each to write an ActionScript.

The Toolbox List (top half, left side) is used to add or subtract lines of code.

✦ To add an action: Either click the Add a Statement (+) button, which will bring
up a menu of code categories (Basic Actions, Actions, Operators, Functions, and
so on) and select the desired action from the list, or use the categorized actions
list from the window to find an action, and then double-click it to insert it.

✦ To remove a line of code: Select the line of code in the right window and click
the Delete a Statement (–) button.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 30

31Quick Start ✦ Flash in a Flash

Figure QS-10: The Actions Panel

The Actions List (top half, right side) contains the script itself in a script pane; the
script is color coded to make reading easier. You can click individual lines of code
and delete them or modify them (see next paragraph).

In the Parameters Pane (bottom half), you can fill out an action-specific form to
modify the line of script selected in the script pane above.

Adding actions
As you may know by now, in the broadest terms, there are two types of actions
in Flash 5: frame actions and object actions. Frame actions are added directly to
frames, and they are usually triggered when the Playhead reaches the frame that
contains the action. Object actions are attached to Objects, including Buttons and
Movie Clips, and they can be triggered a number of ways.

Adding frame actions
By default, a Flash movie plays through all frames, in order, and at the specified
frame rate. When it reaches the end of the Main Timeline, it goes to the next Scene,
if there is one. When it has reached the end of the last timeline, it loops back to the
beginning and replays the movie. For this reason, there are a couple of basic and
common commands that you’ll need to force the Playhead to stop.

Toolbox list

Actions list

Parameter Pane

3515-3 QS.f.qc 1/18/01 3:43 PM Page 31

32 Quick Start ✦ Flash in a Flash

In the interface we are developing, we need to give users time to click the button.
If we do not stop the Playhead, they’ll have less than a second to click the button;
otherwise, the ball animation Movie Clip will appear anyway. Therefore, we need to
stop the movie on the first frame.

The Playhead of a Movie Clip timeline functions the same way. Thus, once the ball
animation plays, rather than coming to a rest, the ball will suddenly be jerked to the
top and start falling all over again. You need to stop the animation in the last frame
of that Movie Clip.

Let’s make an action to stop the Main Timeline first.

1. Click frame 1 of the actions layer.

2. Open the Actions Panel from the Launcher Bar.

3. Double-click to open the Basic Actions list.

4. Double-click Stop. A small a will appear in the frame to which you just added
the action.

5. If you like, you can add extra frames so that this layer has 20 frames as well.

To help yourself remember what action is in the first frame, you can add a comment
above the action, indicating what it is.

1. Click the first frame of the Comments layer.

2. Open the Frame Panel.

3. In the Label text field, enter //stop. The two slashes tell Flash that this is a
comment and not a label. If there is room, two green slashes and your com-
ment will appear in the timeline. However, there probably is insufficient room
for it to appear.

4. Click frame 20 and press F5 to insert frames — now the comment is visible!

Next, let’s add a Stop action to the end of the Movie Clip, to prevent it from looping.

1. Double-click the bb Movie Clip icon in the Library to open it in Symbol Editing
Mode.

2. Insert a new layer above all the others, and rename it actions.

3. In this new actions layer, click the frame over the last frame of animation
(frame 98) and insert a keyframe (F6).

4. Use the Actions Panel to add a Stop action.

5. Return to the main movie.

Your final timeline should appear as shown in Figure QS-11. (By the way, have you
saved your project recently?)

3515-3 QS.f.qc 1/18/01 3:43 PM Page 32

33Quick Start ✦ Flash in a Flash

Figure QS-11: The final timeline

Adding object actions
Earlier we claimed that all actions have both Events and Event Handlers, yet the
frame actions described previously had only events. This is because the event han-
dler is implied when the frame loads.

With object actions, however, the event handler is not implied; instead, it must be
made explicit. This makes the scripts a little longer. Let’s add a GoTo action to the
first Button instance, so that when the button is clicked, the Playhead is advanced
to the ball frame label.

1. Click the Button instance in the first frame of the buttons layer, so that it’s
selected.

2. Using the Launcher Bar, open the Actions Panel. The Object Actions Panel
opens. It looks and works just like the Frame Actions Panel.

Make sure that the title of the panel says Object Actions and not Frame Actions —
Flash sometimes opens the wrong one. The way to ensure that it selects the right
panel is to make sure an instance is selected rather than an individual frame.

3. Double-click GoTo from the Basic Actions list.

4. In the right pane, a script appears. Its first line should say on (release) {,
the second line should say gotoAndPlay (1);, and there should be a close
curly bracket in the third line. In the bottom half of the dialog are several
options that you need to modify.

5. In the Parameters Pane, leave the Scene drop-down menu alone, because your
movie has only this scene.

Caution

Frame label

Comment

Frame action

Empty frame sequence

Non-empty frame sequence

3515-3 QS.f.qc 1/18/01 3:43 PM Page 33

34 Quick Start ✦ Flash in a Flash

6. In the Type drop-down menu, change from the default Frame Number to
Frame Label.

7. In the third drop-down, choose ball. You might be wondering why you even
bothered with labels, because you can use frame numbers. Why not just enter
frame number 10 in the GoTo script? There are two reasons: first, frame num-
ber 10 is not terribly descriptive, and when you start making sophisticated
movies, labels will help you keep track of what content is where. Second, if
you decide to edit your movie later and add five frames between the intro and
ball labels, then any scripts that depend on those numbers would no longer
work. However, if you add 5 frames between the labels, the labels will move,
too, and your GoTo actions will still point to the right place.

8. Finally, uncheck the Go to and Play option at the very bottom. Unchecking it
changes the script (see the right pane above) to a GoTo And Stop action,
which ensures that your movie stops at the ball label, rather than playing,
which — when it ran out of frames in less than one second — would send the
Playhead looping back to the beginning.

9. When you’re finished, close the Object Actions Panel; it will save your
changes.

10. Following the same steps, add a GoTo And Stop action to the Button instance
in frame 10. Be sure that it points to frame label intro.

Save your work.

Testing movies
You’ve already seen that you can scrub the timeline, that is, preview the movie by
dragging the Playhead. If you were to scrub this timeline, however, you wouldn’t get
much of a preview. The animation in a Movie Clip would never be seen, the sounds
and animation in the Buttons wouldn’t be visible, and, of course, interactivity can-
not be previewed this way. At this point, you should probably test your movie for
real. You can test your movie by choosing Control ➪ Test Movie from the Main
Menu, or by pressing Ctrl+Enter/Command+Enter to have Flash export the movie
as a .SWF file so that you can experience your movie as your users will.

Tips for Effective Flash Development
To conclude this introductory Flash in a Flash, let’s go over some Flash authoring
tips. Most of the tips fall into one of two categories: (a) taking a process approach to
Flash authoring will both expedite authoring and lead to more mature final prod-
ucts, and (b) take advantage of the Flash’s inherent nature as a vector-authoring
program.

3515-3 QS.f.qc 1/18/01 3:43 PM Page 34

35Quick Start ✦ Flash in a Flash

A process approach to Flash authoring
Here are some ideas for taking a process approach when creating a Flash movie:

✦ Plan your files before you start authoring! This will not only save you develop-
ment time (and increase your profitability), it will also free your mind to add
creativity and sophistication to your final product.

✦ Storyboarding is a great way to get started. Just remember that you can
sketch in Flash, any vector drawing program (particularly FreeHand), and/or
scan drawings and place bitmaps.

✦ Remember that all human documents are supposed to be communicative,
which means that one party is communicating a message to a defined
audience.

✦ Use frame labels, rather than frame numbers, as a way to enable significant
flexibility without requiring major revision. Use comments to help you keep
track of what is going on. They are not exported with .SWF files, so be as ver-
bose as you need.

✦ When you first create a new file, before doing anything else, create a layer
scheme similar to the one in Table QS-2.

Table QS-2
Recommended Layer Scheme for All New .FLAs

Layer Name Purpose Comments

guides Place your fpo (for Make it a Guide Layer
placement only) items in
this layer

labels Place all of your frame Lock this layer — it will not prevent you
labels on this layer from adding labels, but it will prevent you

from adding items that belong in content
layers

comments Add comments in this layer; Lock this layer
one tip is to add comments
above frame actions that
say what the actions do

actions Add all your frame actions Lock this layer
to this layer

content Add content to designated Don’t forget to give these layers meaningful
content layers names!

3515-3 QS.f.qc 1/18/01 3:43 PM Page 35

36 Quick Start ✦ Flash in a Flash

Know Flash 5’s capabilities and limitations
Knowing Flash 5’s capabilities and limitations will make available all its possibilities
while avoiding problems:

✦ Take full advantage of the power of symbols. Never draw the same shape
twice.

✦ Vector file sizes (such as the text and lines that Flash draws) are unaffected by
changes in scale. So be bold and make it big, if that’s what you want.

✦ Because the contents of the Library are generally not exported with the
movie, you can put as much in the Library as you need.

✦ Make full use of layers to gain maximum control over your items (and to keep
them organized and easily editable!). Flash flattens them when it exports, so
layers are yet another feature that add great depth to development without
adding bytes to your final product.

✦ New for Flash 5, ActionScript is now a full-blown object-oriented language,
much like JavaScript. This improvement has many implications. In addition to
the enhanced power that you have at your fingertips, it also means that you
need to structure your movies in architecturally savvy ways to take advantage
of the power of ActionScript.

✦ Flash is an unusually architectural program: You need to think and plan verti-
cally (layers), horizontally (timeline frames), and structurally (symbols).
Mastery of all three axes is mastery of Flash architecture.

✦ ✦ ✦

3515-3 QS.f.qc 1/18/01 3:43 PM Page 36

Understanding
the Flash
Framework

In this chapter, we introduce Flash. We discuss the nature
of the Flash application and why it is so unique and power-

ful. We discuss both its similarity and dissimilarity to other
programs with which you may be familiar. Then, to wrap up,
we talk about the capabilities of Flash. Let’s get started.

Introducing the Flash 5
Framework

Flash is a hybrid application that is like no other application.
On the immediate surface, it may seem (to some) to be a sim-
ple hybrid between a Web-oriented bitmap handler, and a
vector-drawing program, such as Macromedia Freehand or
Adobe Illustrator. But while Flash is indeed such a hybrid, it’s
also capable of much, much more. It’s also an interactive mul-
timedia-authoring program. Also, it’s a sophisticated anima-
tion program suitable for creating a range of animations —
from simple Web ornaments to broadcast-quality cartoons.
As if that weren’t enough, it’s also the host of a scripting
language — Flash now supports a robust, fully featured
ActionScript language, grounded in the JavaScript standard.
This language enables Flash 5 to couple with XML (Extensible
Markup Language), HTML (Hypertext Markup Language), and
other content in many ways. So it’s also a scripting language
that’s capable of communication with other parts of the Web.
Furthermore, in alliance with Macromedia Generator, Flash 5
is also capable of serving as the front end and graphics
engine for the premiere, robust solution for the delivery of
dynamic Web content (graphics, charts, sounds, personalized

11C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing the
Flash 5 framework
and its capabilities

Using Flash 5
movies for various
applications

Understanding Flash
movie file types

✦ ✦ ✦ ✦

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 39

40 Part I ✦ Mastering the Flash Environment

Flash movies) from databases and other back-end resources. A final note to our list
of Flash capabilities: Just as this manuscript was going to press, we learned that
Macromedia has collaborated with the makers of ColdFusion to create a toolkit
that will enable dynamic data-driven Flash interfaces that are based on CFML
(ColdFusion Markup Language) or JSP (JavaServer Pages).

So, what’s this hybrid we call Flash capable of? That’s a question that remains to be
answered by developers such as you. In fact, we’re hoping that you will master this
application and show us a thing or two. That’s why we’ve written this book: to point
out the facets of the tool, hoping that you will take the tool in your hands and
amaze us — and the world!

So, if Flash is a hybrid application, and if this application is capable of just about
anything, a good place to start working with this powerhouse is to inquire: What
are the components of this hybrid? And if they were separated out, how might their
capabilities be described? Those are the questions that we answer in this chapter.

Bitmap handler
In truth, Flash has limited capabilities as an image-editing program. It is more accu-
rate to describe this part of the Flash application as a bitmap handler. Bitmap images
are composed of dots on a grid of individual pixels. The location (and color) of each
dot must be stored in memory, which makes this a memory-intensive application and
leads to large file sizes. However, for photographic-quality images, bitmap formats are
indispensable. One more drawback to bitmap images is that they cannot be scaled
without adversely affecting the quality (clarity and sharpness). The adverse effects of
scaling an image up are more pronounced than when scaling down. Because of these
two drawbacks — file sizes and scaling limitations — bitmaps images are not ideal for
Web use.

Vector program
Much of the Flash application is a vector-based drawing program, with capabilities
similar to either Macromedia Freehand or Adobe Illustrator. A vector-based drawing
program doesn’t rely upon individual pixels to compose an image. Instead, it draws
shapes by defining points that are described by coordinates. Lines that connect
these points are called paths, and vectors at each point describe the curvature of
the path. Because this scheme is mathematical, there are two distinct advantages:
Vector content is significantly more compact, and it’s thoroughly scalable without
image degradation. These advantages are especially significant for Web use.

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 40

41Chapter 1 ✦ Understanding the Flash Framework

Vector animator
The vector animation component of the Flash application is unlike any other pro-
gram that preceded it. Although Flash is capable of handling bitmaps, its native file
format is vector-based. So, unlike all other animation and media programs, Flash
relies on the slim and trim vector format for transmission of your final work. Instead
of storing megabytes of pixel information for each frame, Flash stores compact vec-
tor descriptions of each frame. Whereas a bitmap-based animation program (such
as Apple’s QuickTime) struggles to display each bitmap in rapid succession, Flash
quickly renders the vector descriptions as needed and with far less strain on either
the bandwidth or the recipient’s machine. This is a huge advantage when transmit-
ting Flash animations and Flash content over the Web.

Authoring program
You might say that the body of Flash is a multimedia-authoring program, or multi-
media-authoring environment. It authors movies that can contain multiple kinds of
media, such as sound, still graphics, and moving graphics. Yet it is also an interac-
tive multimedia program because it has the capability to assign action commands
to the movies that it authors.

Animation sequencer
Most multimedia-authoring programs have a component for sequencing content as
animation, and Flash is no exception. But in Flash, the animation sequencer is the
core of the application. The organization of sequences, also known as movies, is as
follows:

✦ The Movie may have any number of scenes, which may be arranged (or rear-
ranged) into a sequence to create a playing order. Scenes play through from
first to last (unless Flash’s interactive commands, known as “actions,” dictate
otherwise).

✦ Each scene may contain an unlimited number of layers, which are viewed from
front-to-back in the scene. The stacking order of these layers is arranged in the
timeline: The topmost layer in the timeline appears at the front of the scene,
while the bottom layer is at the back.

✦ Furthermore, each layer may also have a stacking order of the objects within it.
Always at the bottom level are ungrouped vector lines and shapes. Above, in the
overlay level, are bitmaps, text, groups, grouped items, and symbol instances.
Groups are one or more items that have been selected and “grouped.” Symbol
instances may be one or more references to an item that resides in the Library.
Any of these items may be moved in front or behind others on that layer with-
out moving them to another layer.

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 41

42 Part I ✦ Mastering the Flash Environment

Groups and grouping are covered in Chapter 8, “Exploring the Timeline,” while
symbols and symbol instances are covered in Chapter 9, “Checking Out the
Library: Symbols and Instances.”

✦ The units that are responsible for the illusion of time in an animation are
frames. Each layer may be composed of a sequence of one or more frames
that are controlled by the timeline.

✦ Finally, there are two basic kinds of frames: static frames and keyframes. Each
layer must begin with a keyframe, which may be empty. Static frames simply
repeat the content of the prior frame. Keyframes are where content or empti-
ness is either placed or changed. (Emptiness, or an empty keyframe, functions
as a stop frame.) Animation is achieved either by changing the contents on a
frame-by-frame basis — which is called frame-by-frame animation — or by
establishing two keyframes and instructing Flash to interpolate the change
between them — which is called tweening.

With the upgrade to Flash 5, the timeline has seen considerable changes to both
its terminology and functionality, as well to the options for controlling various
timeline behaviors. For detailed coverage of all this and more, please refer to
Chapter 8, “Exploring the Timeline.”

Programming interface and database front end
With Flash 4, Macromedia expanded the capabilities of Flash to include limited —
but powerful — programming capabilities that were capable of controlling the nature
and quality of Flash interactivity. Furthermore, these capabilities — augmented with
Generator 2 — gave Flash the ability to work as the database front end for sophisti-
cated interactive applications such as online shopping, forms, and other activities
not normally associated with an animation program. In fact, there were many inge-
nious creations that melded code with vector content in ways that no one could
have imagined! But that was Flash 4.

Flash 5 has changed all of that in ways that we cannot begin to describe — simply
because there is little, if any, limitation to what Flash 5 is now capable of. All one
need add is a dash of genius, and genius is in good supply among Flash aficionados.
What are we talking about? Well, with Flash 5:

✦ ActionScript matured from a limited quasi-scripting vocabulary to a robust
scripting language that’s backward compatible with Flash 4, yet based in
JavaScript. To be accurate, Macromedia developed Flash 5 ActionScript
from the ECMA-262 specification. (The ECMA is the European Computers
Manufacturers Association —www.ecma.ch.) This ECMA-262 specification
was derived from JavaScript to establish an international standard for the
JavaScript language. (Thus, technically, Flash ActionScript is not 100 percent
compliant with JavaScript.)

Cross-
Reference

Cross-
Reference

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 42

43Chapter 1 ✦ Understanding the Flash Framework

✦ Support for XML was added. You can now send and receive XML data from
Flash movies. You can also open live sockets for a constant XML data feed.

✦ Math operations have been greatly expanded with the Math Object, including
common sine, cosine, and tangent methods.

✦ The color and sound properties of Flash symbols can be controlled with
scripting.

✦ Using Symbol Linkage, Sounds and Movie Clips are now directly accessible
from the Library without appearing on the authoring timeline.

Viewing Flash movies
Generally, Flash movies are played back in one of three ways. The most common
implementation is for Flash movies to be played back within Web browsers — either
as part of an HTML page, or as a 100-percent Flash Web page that contains no visi-
ble content other than the Flash Movie. Flash movies can also be played through a
separate application called the Flash Player. In addition to the Flash Player, Flash
movies can also be created as Stand Alone Projectors that facilitate playback with-
out the need for either the player or the browser.

There are several other ways in which Flash movies, or their parts, can be played
back or displayed. Since Flash 4, the Publish feature has offered provisions for the
export of movies, or sections of movies, to either the QuickTime digital video for-
mat, the QuickTime Flash layer vector format, or to the Animated GIF format. Parts
of movies can also be exported as a series of individual bitmaps or as vector files.
Single frames can also be exported to these formats. Recently, methods were devel-
oped that enable Flash content to be used as screensavers.

Using Flash content for separate deployment — including screensavers — is covered
in Chapter 42, “Using Players, Projectors, and Screensaver Utilities.” QuickTime is
covered in Chapter 34, “Working with QuickTime.”

Finding Applications for Flash 5 Movies
A Flash movie can be many things, depending on the function and design of a pro-
ject. Because Flash has only just hit its adolescence, things are definitely getting
interesting. Already Flash has unforeseen relationships with all forms of communi-
cation, around the world. And Flash’s popularity continues to grow, unabated. But
that’s all based on Flash 4!

Cross-
Reference

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 43

44 Part I ✦ Mastering the Flash Environment

If you were to compare the functionality of a Flash 4 movie to that of a Flash 5
movie, you’d agree that, yet again, Flash movies have come a long way — but in an
even shorter time than when we last said that. There’s already an impressive legacy
of Flash movies and we don’t usually refer to youths as having a legacy. Here’s a
short list of the (known) possibilities for Flash 5:

✦ A splash page animation for a Web site

✦ An interactive map

✦ An interactive form on a Web page

✦ An interactive database that sends and retrieves information with server-side
scripts; this has been a function since Flash 4

✦ A live, multiuser game or chat with XML sockets that allows real-time commu-
nication between Internet users

✦ An online jukebox that can play MP3 audio that is delivered dynamically via
Macromedia’s Generator 2 application

✦ Stand-alone Web applications — check out the calculator sample in the Flash
Samples menu

✦ Entire Web sites, presented without any HTML-based graphics or textual con-
tent — which means absolute control over scaling and placement of items,
including fonts

✦ Interactive art presentations that involve 3D transformations and multiuser
experiences (check out www.yugop.com)

✦ Web installation art that offers access to high-quality bitmapped artwork and
rich audio experiences

✦ Interactive QuickTime Flash movie trailers that allow user feedback while
watching

✦ Stand-alone Presentations or Slide Shows on either CD-ROM or floppy disk

✦ With the help of third-party tools, screensavers for both Windows and
Macintosh made from Flash movies

✦ Web cartoons — in the last 18 months, there has been an explosion of Flash
cartooning

✦ Broadcast-quality cartoons — of which Turnertoons’ Weber, The Murkeys and
Richard Bazley’s Journal of Edwin Carp are groundbreaking examples

✦ As a platform for QuickTime editing and enhancements — there’s a world of
possibilities in the synergy of QuickTime and Flash 5 (We’ve developed work-
flows about which even Macromedia said, “It can’t be done.”)

✦ Flash movies can be integrated into a larger Shockwave Director movie that can
play QuickTime movies, MIDI audio, and other media formats that Flash doesn’t
support

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 44

45Chapter 1 ✦ Understanding the Flash Framework

As you can probably tell from this list, if you can imagine a use for Flash, it can
probably be accomplished.

Planning interactive Flash projects
Before you attempt to construct interactive projects in Flash, you should be familiar
with the structure of the authoring environment. Even if you already know Flash 4,
this is advisable. That’s because with the release of Flash 5, Macromedia has again
added many new features to the interface, and either moved or improved other fea-
tures and functionalities. So, to get a firm footing with the new interface, we strongly
suggest that you work your way through this book — from the beginning.

Moreover, you need to proactively plan your interactive projects before you
attempt to author them in Flash. An ounce of preplanning goes a long way during
the production process. Don’t fool yourself — the better your plan looks on paper,
the better it will perform when it comes to the final execution.

Interactive planning is discussed in several areas of the Flash 5 Bible, including in
Eric Jordan’s Expert Tutorial, “Interface Design,” which is located in Chapter 13.
You’ll also find this topic discussed in Chapters 26 and 38.

In this edition of the Flash Bible, we’ve opted to include a number of ways to
approach interactive planning. In general, you can teach yourself how to organize
interactive elements by creating simple flowcharts, such as Figure 1-1, that describe
the Flash-authoring environment.

Figure 1-1 shows how Flash movies are made up of individual scenes that, in turn,
contain keyframes to describe changes on the Stage. What you can’t see in the fig-
ure is the efficiency created (or time saved) by being able to share Flash Libraries
between Flash projects (.FLA files) and by linking other Flash movies to a parent
Flash movie using the Load Movie action, as well as other scripting methods that
are discussed in Part V. Before you start to try to do that level of interactivity,
though, you need to know the difference between Flash movies and .SWF movies.

Looking at Flash movie file types
Flash movie (.FLA) files are geared to work in an efficient authoring environment.
Within this environment, content can be organized into scenes, and the ordering of
scenes can be rearranged throughout the production cycle. Layers provide easy
separation of graphics within each scene, and, as guide or mask layers, they can
also aid drawing or even provide special effects. The timeline shows keyframes,
motion and shape tweens, labels, and comments. All imported bitmaps and sounds
are stored in the Flash Library (which can be shared with other Flash movie files).
The quality of these Library files (or symbols) is identical to that of the originals.

Cross-
Reference

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 45

46 Part I ✦ Mastering the Flash Environment

Figure 1-1: Elements of the Flash Environment

Keyframes

Frames

SCENE LIBRARY

Flash Movie
(.FLA file)

Project file

Storage for symbols, imported
 bitmaps, and sounds

A segment of a Flash movie

Stage
(where the action takes place)

Timeline
(where duration is controlled)

Layers
(used to keep objects separated)

Normal layer
(default layer type)

Guide layer
(used to create custom
registration lines or objects)

Motion guide layer
(contains a line along
which objects travel)

Mask layer
(contents determine what is shown
in masked layers underneath)

Timeline Header

Current Frame Indicator

Center Frame button

Normal frames

Blank keyframes

Onion Skin

Onion Skin Outlines button

Edit Multiple Frames button

Modify Onion Markers

Symbols
(multiple-use items)

Graphic
(still image)

Button
(four-state event handler)

Movie Clip
(self-contained animation)

Bitmaps
(imported raster images)

Sounds
(imported audio files)

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 46

47Chapter 1 ✦ Understanding the Flash Framework

However, when a Flash movie (.FLA) is exported to a Small Web Format file (.SWF),
much of this information is discarded in order to create small .SWF files (or as small
as possible) for network delivery (for example, the Internet or intranets). In fact,
just about everything that’s stored in the original FLA file will be transformed in
some way. The elements in the Library are loaded and stored on the first frame of
their use — while unused Library elements are simply discarded. (They are not
exported to the .SWF file.) Thus, for maximum efficiency, elements that are reused
are saved into the .SWF file only once because they are referenced from one loca-
tion in the SWF file. Layers and scenes are “flattened” in the order that is estab-
lished in the .FLA file. In other words, the .SWF file contains the all the elements
from the original .FLA in one layer, controlled by a single timeline. Technically,
.SWF files are not compressed like ZIP or SIT/HQX files — only individual bitmaps
and sounds are compressed according to the settings specified for each element
in the Library and/or during the export process.

Refer to Figure 1-2 for a graphic explanation of the characteristics of the Shockwave
Flash movie (.SWF) Format.

Figure 1-2: How a Shockwave Flash movie works

Portable Extensible Scalable

Shockwave Flash Movie
(.SWF File)

Exported movie format
for delivery over networks

Movies can be played at multiple resolutions

Maintain high-quality presentations
at any size

Open source code for developers
(other applications can support SWF output)

Can reuse any element without additional
storage requirements

Allows new features to be added
in subsequent revisions

Tagged format
(Each data type has a unique tag
to define its use and function)

No external resources required
(do not need fonts installed)
Do need to have Flash Player

Speed
(vector format draws quickly on
slower computers)

No compression used on entire file
(allows streaming playback)

Individual resource compression
(for example, bitmaps individually
compressed)

Small file sizes

Cross-platform binary format
(compatible with all major
operating systems)

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 47

48 Part I ✦ Mastering the Flash Environment

Flash movie (.FLA) files are referred to as Flash editor documents by some docu-
mentation included with the software. Also, the term “Shockwave Flash” no longer
exists in the Macromedia Flash documentation — Flash movies for the Web are sim-
ply called .SWF files. Originally, SWF stood for Shockwave Flash but later, according
to one source, Macromedia revisited the acronym and tweened it to mean, Small
Web File. (Because “Shockwave” originally referred to Shockwave Director movies,
perhaps Macromedia is trying to avoid confusion between the two?) Still, to the
general public, it appears that Flash movies are still considered to be Shockwave
movies; our position is to simply refer to Flash movies, when distributed for down-
load, as .SWFs (and avoid the unimportant controversy).

Summary
✦ Flash is a hybrid program that has combined many of the most powerful fea-

tures of various other types of programs, and then mixed them with some
unique capabilities.

✦ Flash is recognized as one of the most robust and capable programs available
for the creation of content for the Web.

✦ Flash is not limited to the Web. In fact, Flash is the software of choice in
numerous other niches.

✦ With Flash 5, ActionScripting has risen to a new level of robust capability,
modeled on JavaScript.

Now that we’ve given you a taste of the capabilities and distinctions of the Flash
Authoring Environment, and shown you how some of the larger pieces fit together;
it’s time for you to look at some of the particulars.

✦ ✦ ✦

Note

3515-3 ch01.f.qc 1/18/01 3:44 PM Page 48

Exploring the
Interface:
Panels, Settings,
and More

This chapter tours all Flash menus and panels. In some
cases, the basic function of a panel or menu item is dis-

cussed, while the deeper explanation is deferred to another
chapter or area of the book that’s dedicated to that particular
function — or group of functions. In most cases, however,
we’ve tried to deliver a full explanation right here in this
chapter. We hope you use it as both a learning device and
as a reference tool.

Learning Flash Tool Basics
Terminology: A book about a software program must be
clear and consistent in the terms and names that are used to
describe the various thingamajigs and doohickeys that make
the program work. As with the last edition of the Flash Bible,
we considered carefully before we settled upon the terminol-
ogy that has — we hope — been applied consistently through-
out this book. So, here’s our logic: Wherever possible, we use
terms derived from the Flash interface and Macromedia’s doc-
umentation. When we’ve discovered inconsistencies, we’ve
tried to choose terminology that’s most consistent with other
Macromedia products.

22C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Learning Flash
Toolbox Basics

Getting to know the
fundamental Flash
interface

Demystifying
preferences and
keyboard shortcuts

Working with menus
and panels

✦ ✦ ✦ ✦

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 49

50 Part I ✦ Mastering the Flash Environment

The Toolbox
The default location for the Flash Drawing Toolbox is in the upper-left corner of
the Flash Program window. However, if you haven’t just installed Flash, or if some-
one else has changed the defaults in Flash, you may not be able to find the Drawing
Toolbox.

The Toolbox consists of four main sections. The top section contains all 14 Flash
Tools, from left to right and top to bottom: Arrow, Subselect, Line, Lasso, Pen, Text,
Oval, Rectangle, Pencil, Brush, Ink Bottle, Paint Bucket, Dropper, and Eraser. The
second section contains the Flash View Tools: the Hand and Magnifier. Beneath
the View Tools is the Color Tray, and beneath that is the Options Tray.

Using Tool options
Depending on the tool selected, the Options Tray may display some of the options,
or properties, that control the functionality of each particular tool — while other
controls may appear in the new Flash 5 panels. Of the options that are located in the
Options Tray, some appear as a pop up or drop-down menus with multiple options,
while others are simple buttons that toggle a property on or off. Thus, if an option
turns a property on or off, then it’s a button. (For example, if the Lasso is selected,
the Magic Wand option can be turned on or off by clicking its button in the Options
Tray.) But if an option has more than two options, then it’s a menu.

With the release of Flash 5, Macromedia has introduced an extensive panels sys-
tem for the comprehensive control of many operations. These panels are intro-
duced and discussed in general within this chapter. Their functionality will be
discussed in relationship with specific tools, both in the subsequent chapters of
Part I and throughout the Flash 5 Bible.

Most of the options that appear within the Options Tray of the Toolbox can also be
accessed from menus on the Menu Bar, or with keyboard combinations. However,
all of the controls for the Line, Pen, Text, Oval, Rectangle, Pencil, and Ink Bottle
Tools are now located in the new panels system. The new Subselect Tool has no
options or controls. All of the controls and options for each tool are described in
detail in subsequent chapters of Part I.

Making the Drawing Toolbox visible
If the Drawing Toolbox is not visible on the PC Flash screen, it can be opened from
the Flash Menu Bar by choosing Window ➪ Tools. Conversely, when the Toolbox is
visible, unchecking the Tool menu item hides it. On the Mac, the Drawing Toolbox
is always a floating panel that can be dragged anywhere in the screen.

New
Feature

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 50

51Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

Docking the Flash Drawing Toolbox on the PC
On the PC only, the Drawing Toolbox can be deployed as either a floating panel or as
a panel that’s docked to either edge of the Flash program window. Docking means
that a floating panel is dragged to the edge of the program window, where it then
melds to the border of the window. It remains docked there until it is either moved
to another docked position, floated off to resume usage as a panel, or is closed. You
can drag the panel anywhere around the screen, or you can drag it to the edge of
the Flash program window, which docks it there.

On the PC, to drag the Drawing Toolbox to the edge of the program window, yet
prevent it from docking, press the Control key while dragging.

Quick work with keyboard shortcuts
All of the tools that are accessed from the Drawing Toolbox have keyboard equiva-
lents, or shortcuts, that are single keystrokes (see Figure 2-1). For example, to access
the Arrow Tool — which is the tool with the black arrow icon, located in the upper-
left corner of the Drawing Toolbox — you can simply press the V key when the Stage
or timeline is in focus. Thus, the V key is the keyboard shortcut for the Arrow Tool on
both the Mac and the PC. This is easier than moving the mouse up to the Drawing
Toolbox to click the Arrow Tool, and it saves mouse miles, besides. Henceforth,
throughout this book, when we mention a new tool, the keyboard shortcut for that
tool follows in parentheses, as follows: Arrow (V).

Figure 2-1: The PC Drawing Toolbox is shown
here with the keyboard shortcuts for each tool.
With the release of Flash 5, the Toolbox is now
identical on both the Mac and the PC.

Arrow (V) Subselect (A)
Line (N) Lasso (L)
Pen (P) Text (T)
Oval(O) Rectangle (R)

Pencil (Y) Brush (B)
Ink Bottle (S) Paint Bucket (K)

Dropper (I) Eraser (E)

Hand (H) Zoom (M, Z)

Color Tray

Options Tray

Tip

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 51

52 Part I ✦ Mastering the Flash Environment

Using tooltips
On both PC and Mac platforms, each tool has a cursor icon that resembles the tool’s
icon in the Toolbox. For example, when you select the Brush by clicking the Brush
button on the Toolbox, the cursor (or mouse pointer) turns into an icon similar to the
Brush icon in the Toolbox. In most other programs, these cursor icons are referred to
as tooltips: When you are working with a particular tool, the cursor icon for that tool
appears on screen. In Flash, this kind of tooltip cannot be turned off. That’s because
Flash uses the term tooltip to refer to a text label that appears onscreen, adjacent to
the cursor, when the cursor is paused over a tool button in the Toolbox. These text
labels — Flash Tooltips — tell you the name of the tool and its keyboard shortcut. You
can personalize Flash so that these Flash Tooltips are either visible or hidden.

✦ To change the Tooltips setting on the PC, choose Edit ➪ Preferences to open
the Preferences dialog; then, on the General Tab, in the Selection Options
area, either check or uncheck Show Tooltips.

✦ To change the Tooltips setting on the Mac, choose Edit ➪ Preferences to open
the Preferences dialog; then, on the General Tab, in the Selection area, either
check or uncheck Show Tooltips.

Tooltips display information only about the tools that are part of the actual Flash
program itself, and not about buttons that are part of a scene in a Flash movie. (If
you are familiar with Macromedia Director, then you know that Sprites — which
can be similar to buttons in Flash — can show or hide information about their prop-
erties. Flash does not offer this type of “tip.”)

Color and Flash tools
The Color Tray and other colorful matters are discussed in depth in Chapter 6,
“Applying Color.”

Getting to Know the Fundamental
Flash Interface

Before discussing the Flash menu items, panels, and miscellaneous dialogs, we take
a look at the interface and its default array of toolbars and panels. We look at the
way the program looks when first opened after installation, and some of the basic
possibilities for arranging these and other fundamental panels and toolbars.

Cross-
Reference

Note

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 52

53Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

Cross-platform consistency
There’s much to celebrate in this new version of Flash, and one improvement
that really shows is the consistency between the Mac and PC versions of Flash 5.
Although there are a few inconsistencies, many of them are attributable to the
nature of the divergent operating systems, and none of them are even remotely
as bothersome as with prior versions.

Figure 2-2 shows how Flash looks on the Mac. Note the Launcher Bar at the bottom
right, which can be used to invoke the default groupings of Flash panels. These are,
from left to right: Instance, Mixer, Character, Info, Explorer, Frame Actions, and the
Library.

Figure 2-2: Flash on the Mac with most of the panels closed

Launcher Bar

Work Area

Stage or Movie Area
(a.k.a. Editor or Artwork Area)

Zoom control

Scene Panel

Controller

TimelineToolbox

Menu Bar

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 53

54 Part I ✦ Mastering the Flash Environment

Figure 2-3 shows Flash on the PC with the panels closed. There are three optional
features that are absent from the Mac version. These include the Main Toolbar, the
dockable Controller, and the Status Bar. However, note the consistency especially
as regards the Toolbox (Tools), timeline, Launcher Bar, and the overall feel of the
interface.

Figure 2-3: Flash on the PC with the panels closed

One of the minor ways in which the PC version differs from the Mac version is that
the Toolbox and the Controller can be docked (or undocked) to the program win-
dow. As in Figure 2-3, the Toolbox and Controller were dragged to the edge of the
program window, where they’re docked seamlessly to the interface. Note that the
Toolbox docks only to the sides, while the Controller can also dock to the top and
bottom, as well as mesh with other toolbars. To move either the Toolbox or
Controller, yet prevent docking, press the Control key while dragging.

Note

Launcher Bar

Stage or Movie Area
(a.k.a. Editor or Artwork Area)

Work Area

Zoom control

Status Toolbar

Menu Bar ControllerTimelineToolbox

Main Toolbar

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 54

55Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

With Flash 5, Macromedia significantly altered the look and feel of Flash by replac-
ing the inspectors and palettes of Flash 4 with a comprehensive system of panels.
As was mentioned previously with regard to the Toolbox, some tool options have
also migrated to the panels system. The implementation of panels is consistent
across both the Mac and the PC. Throughout the book, we discuss each panel in
context with the tools and operations where it is used. As shown in the following
figures, there are many ways to arrange these panels for a customized workflow.
For examples of panels viewed simultaneously, see Figure 2-4 for the Mac version
and 2-5 for the PC version.

Figure 2-4: Here’s Flash on the Mac with the panels viewed simultaneously.

Mixer and Swatches

Info, Transform, Stroke, and Fill

Object Actions and Movie Explorer

Instance, Effect, Frame, and Sound

Character, Paragraph, Text options

Library

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 55

56 Part I ✦ Mastering the Flash Environment

Figure 2-5: Here’s Flash on the PC with all of the panels viewed simultaneously. Four
additional panels that are not included in the default groupings are also displayed.

On both the Mac and the PC, you can drag the panel tabs off the panels or onto
another panel. Figure 2-6 shows an alternative mega-panel grouping in which all of
the Flash panels have been joined using this method. This grouping is most suited
for a dual-monitor system, and has the advantage of displaying all of the informa-
tion within a single panel without scrolling.

Contextual menus
Flash contextual menus pop-up in response to a right-click (Control+click for the
Mac) on a selected item in the timeline, Library window, or on the Stage. Contextual
menus duplicate most functions and commands that are accessible either through
the drop-down menus of the Menu Bar, or through the many panels and dialogs,
which are discussed in this chapter.

Info, Transform, Stroke, and Fill

Instance, Effect, Frame, and Sound

Align and Scene

Object Actions and Movie Explorer

Clip Parameters and Generator

Character, Paragraph, and Text options

LibraryMixer and Swatches

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 56

57Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

Figure 2-6: Here’s an alternative mega-panel grouping in which all of the Flash panels
have been dragged together.

Although the Flash timeline is a central axis of the Flash interface, we defer dis-
cussion of the timeline for two reasons. First, the timeline has changed consider-
ably since Flash 4 and, as such, deserves more attention. Second, the Flash
drawing tools and most of the menus and panels can be introduced more clearly
(at first) without the complication of the timeline. If you must check out the time-
line, see Chapter 8, “Exploring the Timeline.”

Using the Menu Bar
Now that we’ve introduced most of the major elements of the Flash interface, we
begin at the far left of the Menu Bar and work through the major points of all the
drop-down menus, submenus, and panels. It’s a gruesome, tedious job, but some-
one has to dive in and make sense of all these interrelated and (sometimes) seem-
ingly duplicate or parallel operations.

Cross-
Reference

LibraryMovie Explorer

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 57

58 Part I ✦ Mastering the Flash Environment

Prior to Flash 4, there was only one area of the application that required users to pay
attention to focus—when selecting colors for either the stroke or fill—when it was
easy to confuse the two. Now, with the increased power and robust scripting envi-
ronment of Flash 5, focus has become an important aspect of the program. What is
focus? Focus is a term used to describe which part of the application has priority, or
focus, at a given time. For example, all panels, such as the Actions Panel, do not
automatically “have focus”— this means that you have to click within the panel to
commence working there. Similarly, to return to the movie editor (or screen), you
must click there to return focus to that aspect of the application. So, if a panel or dia-
log box doesn’t seem to respond, just remember to FOCUS on what you are doing.

The File Menu
The Flash File Menu (Figure 2-7) is like the front door of the program. Most of what
comes into or out of Flash passes in some fashion through the File Menu.

Figure 2-7: File Menu on the PC

✦ New: By default, Flash opens a new Flash document whenever the program is
launched (unless Flash is launched from an extant movie). But once the pro-
gram is open, File ➪ New generates all new documents.

Note

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 58

59Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

✦ Open: File ➪ Open launches the Open dialog, which is used to browse and
locate a Flash-compatible file. Compatible formats are:

• Flash Movie — .FLA

As of this writing, a number of lingering issues impact reverse compatibility
between Flash 5 and legacy Flash movies that were authored in earlier versions of
Flash. Although we anticipate that there will be a fix for this, it would be impossi-
ble for us to stress the following too strongly: ALWAYS (always!) make a copy of
any legacy Flash movie before opening it in Flash 5. Otherwise, if there is a prob-
lem with the file in Flash 5 and you have saved it as a Flash 5 .FLA, and you don’t
have a copy in the legacy flavor . . ., you will be stuck (and there will be no alter-
native but to start over, from zero).

• Futuresplash Movie — .SPA

• SmartSketch Drawing — .SSK

• Flash Player Movie — .SWF

✦ Open as Library: Use File ➪ Open as Library to launch the Open as Library
Dialog and browse for the Flash Movie whose Library you want to open. This
makes the components of that Movie available for use within another movie.
For more about working with the Flash Library, refer to Chapter 9, “Checking
Out the Library: Symbols and Instances.”

✦ Open as Shared Library: Use File ➪ Open as Shared Library to launch the
Open as Shared Library dialog and browse for the Flash Movie that you want
to open as a Shared Library, which is a powerful new functionality of Flash 5.
For more about working with the Flash Library, refer to Chapter 9, “Checking
Out the Library: Symbols and Instances.”

✦ Close: Close any open movie with File ➪ Close.

✦ Save: Save an open movie with File ➪ Save.

✦ Save As: To save an open movie to another location or with another name,
use File ➪ Save As.

To make saving a quickly accomplished task, File ➪ Save appends any changes to
the end of the .FLA file. So, if you delete a handful of bitmaps from your project
and then save, your file size may actually increase. By doing a File ➪ Save As, Flash
restructures and writes a new file from scratch, resulting in a cleaner, smaller file.
Consequently, File ➪ Save As takes a little longer to complete.

✦ Revert: Made a big goof that Edit ➪ Undo can’t undo? Use File ➪ Revert to
revert to the previously saved version of the current movie. Of course, this
won’t spare you much grief unless you save often and incrementally.

✦ Import: Many compatible formats can be opened directly into Flash. Use
File ➪ Import to launch the Import dialog for these formats:

• Adobe Illustrator — .EPS, .AI

• AIFF Sound — .AIF

Tip

Caution

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 59

60 Part I ✦ Mastering the Flash Environment

• AutoCAD DXF — .DXF

• Bitmap — .BMP, .DIB (Mac with QuickTime 4 installed)

• Enhanced Metafile — .EMF

• Flash Player — .SWF, .SPL

• FreeHand — .FH7, .FH8, .FH9, .FT7, .FT8, .FT9

• GIF Image — .GIF

• JPEG Image — .JPG

• Macintosh PICT Image — .PCT (Windows with QuickTime 4 installed)

• MacPaint Image — .PNTG (only with QuickTime 4 installed)

• MP3 Sound — .MP3

• Photoshop 2.5, 3 Image — .PSD (only with QuickTime 4 installed)

• PNG Image — .PNG

• QuickTime Image — .QTIF (only with QuickTime 4 installed)

• QuickTime Movie — .MOV

• Silicon Graphics Image — .SGI (only with QuickTime 4 installed)

• Sun AU — .AU

• TGA Image — .TGA (only with QuickTime 4 installed)

• Tiff Image — .TIFF (only with QuickTime 4 installed)

• WAV Sound — .WAV

• Windows Metafile — .WMF

✦ Export Movie: Flash can also directly export to several compatible formats.
Use File ➪ Export to write your movie to any of these formats:

• Adobe Illustrator Sequence — .AI

• Animated GIF — .GIF

• Bitmap Sequence — .BMP

• DXF Sequence — .DXF

• EMF Sequence — .EMF

• EPS 3.0 Sequence — .EPS

• Flash Player — .SWF

• Futuresplash Player — .SPL

• Generator Template — .SWT

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 60

61Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

• GIF Sequence — .GIF

• JPEG Sequence — .JPG

• PNG Sequence — .PNG

• QuickTime — .MOV

• WAV Audio — .WAV

• Windows AVI — .AVI

• WMF Sequence — .WMF

✦ Export Image

• Adobe Illustrator — .AI

• AutoCAD DXF — .DXF

• Bitmap — .BMP

• Enhanced Metafile — .EMF

• EPS 3.0 — .EPS

• Flash Player — .SWF

• FutureSplash Player — .SPL

• Generator Template — .SWT

• GIF Image — .GIF

• JPEG Image — .JPG

• PNG Image — .PNG

• Windows Metafile — .WMF

Publishing
One of the most celebrated features of Flash 4 was the Publish feature, which
replaced Aftershock. This is a powerful, robust aspect of Flash that required no
changes in this upgrade to Flash 5. So if you’re familiar with Flash 4, you’ll be thor-
oughly at home with the Publish workflow, which is covered in depth in Chapter 41,
“Integrating Flash Content with HTML.” The areas of the File Menu which pertain to
the Publish feature are:

✦ Publish Settings

✦ Publish Preview

✦ Publish

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 61

62 Part I ✦ Mastering the Flash Environment

Printing
Although Flash is considered a Web and animation program, it fully supports
printed output. The functionality and specific dialogs vary slightly from the Mac
to the PC — while other variations are subject to which printers and printer drivers
are installed on your machine. The Flash Page Setup dialog is the most standard
aspect of the program and the choices for paper size, margins, center positioning,
and orientation are pretty intuitive. However, the Layout area of the PC Page Setup
Dialog deserves a little more attention. The options here are:

✦ Frames: Use this drop-down menu to choose to print either All Frames of the
animation or the ecological default, which is to print the First Frame Only.

✦ Layout: There are three basic options:

• Actual Size: This prints the Frame at full size, subject to the accompany-
ing Scale setting: At what scale do you want to print your frames? Enter a
percentage.

• Fit on One Page: This automatically reduces or enlarges the Frame so
that it fills the maximum printable area, without distortion.

• Storyboard: This enables you to print several thumbnails per page in
the following arrangements: Boxes, Grid, or Blank. There are accompany-
ing settings for Frames Across, Frame Margin, and Label Frames. This is
a great tool for circulating comps and promotional materials.

When printing Storyboard Layouts, use File ➪ Print Preview to ensure optimal
results.

✦ Print Margins (Mac Only): Refer to the prior discussion (immediately preced-
ing) of Frames, Layout, and Actual Size for an explanation of these equivalent
options on the Mac. Note the Disable PostScript check box.

When printing single large areas of color surrounded by complex borders, prob-
lems may occur on PostScript Printers. If you encounter such problems, try using
the Disable PostScript check box in the Mac Print Margins dialog (Edit ➪ Print
Margins) or in the PC Preferences dialog (Edit ➪ Preferences ➪ General ➪ Printing
Options). Otherwise, divide the complex area into several simpler areas and use
the Modify commands (Modify ➪ Smooth / Straighten / Optimize) to reduce the
complexity of these areas (which may, however, drastically alter your artwork — so
save first!).

✦ Print Preview: Use Print Preview to see an onscreen preview of how the
printed output looks, based upon the options you’ve chosen in the Page Setup
and Print Margins (Mac Only) dialogs.

✦ Print: Just print it!

Note

Tip

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 62

63Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

✦ Send (PC only): This is a new command that invokes the default e-mail client
so that that you can readily send the Flash file as an attachment.

✦ Exit/Quit: Finally, at the very bottom of the File Menu is the command to close
Flash. On the PC, it’s File ➪ Exit; the Mac equivalent is File ➪ Quit.

The Edit Menu
The Edit Menu (Figure 2-8) isn’t nearly as complex as the File Menu. Still, it’s an
important menu because many of these commands are central to so many Flash
operations.

Figure 2-8: Edit Menu on the PC with the Equivalent Mac Menu Inset

✦ Undo: When you make a mistake, before you do anything else — Do the Undo.

Flash generates an Undo stack for several different parts of the interface: Each
timeline (Main Timeline and Movie Clip timelines) has its own undo stack, as does
the ActionScript Panel. Furthermore, Undo does not transcend Focus: You cannot
Undo work on the Stage from the ActionScript Panel — you must first return focus
to the Stage to exercise Undo.

Note

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 63

64 Part I ✦ Mastering the Flash Environment

✦ Redo: The anti-Undo, this undoes what you just undid.

✦ Cut: This removes any selected item(s) and places it on the clipboard.

✦ Copy: This copies any selected item(s) and places it on the clipboard, without
removing it.

✦ Paste: Disabled if nothing has been copied or cut, this pastes items from the
clipboard into the currently active frame on the currently active layer. You can
also paste into panel controls.

✦ Paste in Place: This is like Paste, except that it pastes the object precisely in
the same place (with regards to X and Y coordinates) from which it was copied.

✦ Paste Special (PC only): This is like Paste on steroids, with version control. It
pastes or embeds contents from the Clipboard in a specified format; it can
also paste and simultaneously generate a link to information in another
movie. The Paste Special Dialog has these fields:

• Source: This displays the local path to the source of the item that is on
the clipboard.

• Paste: This pastes the data on the clipboard.

• Paste Link: This pastes data on the clipboard, maintaining a link to the
original document, but is generally not available.

• As: This field may have several choices, depending both on the nature of
the item (including the application that created it) that is on the clip-
board, and also on which radio button is activated.

In the As section: (1) Flash Drawing pastes a portion of a Flash drawing. (2) Object
pastes an object together with the information needed to edit it. (You convert the
object to an editable Flash element with Modify ➪ Break Apart.) (3) Picture (Meta-
file) pastes in a form that Flash can edit. (4) Text (ASCII) pastes unformatted text.
(5) Text (Native) pastes text with formatting intact.

• Result: This indicates the result of the selected combination of the Paste
/ Paste Link and As options.

• Display as Icon: This check box is enabled when any combination of the
options permits the selected item to be pasted as an Icon.

• Change Icon: This button is evoked when Display as Icon is enabled.
Click this button to open the Change Icon dialog (complete with browse
capability), which facilitates selection of an alternate icon.

• OK: Once these settings have been determined, click OK.

✦ Clear: This removes a selected item(s) from the Stage without copying it to the
Clipboard.

Tip

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 64

65Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

✦ Duplicate: This command duplicates a selected item or items, without bur-
dening the Clipboard. The duplicated item appears adjacent to the original.

✦ Select All: Does what it says.

✦ Deselect All: Does what it says.

✦ Cut Frames: Cut a selected Frame or Frames with this command.

✦ Copy Frames: Copy a selected Frame or Frames with this command.

✦ Paste Frames: Pastes the Frame(s).

✦ Edit Symbols: Select an instance of a symbol and choose this command to
edit in symbol-editing mode. For more about symbols and editing symbols,
refer to Chapter 9, “Checking Out the Library: Symbols and Instances.”

✦ Edit Selected: This is only enabled if a group or symbol is selected on the
Stage. It opens a group or symbol for editing in a separate tab while dimming
the rest of the Flash Stage — similar to Edit in Place with symbols.

✦ Edit All: When editing a group, Edit All is used to go back to editing the nor-
mal Flash scene.

✦ Preferences: The Preferences item of the Edit Menu invokes a tabbed dialog.
A full explanation of this dialog follows.

Preferences
The Preferences dialog is one of the places where you get to tell Flash how you
want it to behave. After you’ve established your preferences, this is how the pro-
gram will be configured for every movie that you make. Nearly all options are iden-
tical on both platforms — with the exception of the clipboard settings, which are a
reflection of the different ways that the two platforms handle their clipboards.

As shown in Figure 2-9, options for the General tab of the Preferences dialog are:

✦ Undo Levels: This sets the number of undos that Flash holds in memory to
cover your mistakes. The maximum combined number of undos is 200. The
default is 100. Undo levels devour system memory, so if you work smart and
save incrementally, you can set your undos between 10 and 25. The only limi-
tation here is the RAM on your machine.

✦ Printing Options (PC only): As discussed previously in this chapter, in con-
text with the Printing commands of the File Menu, when printing single large
areas of color surrounded by complex borders, problems may occur on Post-
Script Printers. If you encounter such problems, try checking this option to
Disable PostScript. The equivalent option is available on the Mac by choosing
File ➪ Print Margins.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 65

66 Part I ✦ Mastering the Flash Environment

Figure 2-9: The General tab of
the Preferences dialog for the PC

✦ Selection Options:

• Shift Select: Shift Select controls how Flash accumulates multiple selec-
tions. When Shift Select is ON, Flash behaves normally: Hold down the
Shift key to select and acquire additional elements. When OFF, simply
click, click, click to continue adding elements to the selection. (Veteran
users of Flash may recall that this is also how Flash implemented Select
when it was Futuresplash and Flash 2.)

• Show Tooltips: Tooltips are little labels that appear adjacent to the cur-
sor when the cursor is held over a tool, prior to clicking the tool. These
labels tell the name of the tool and related keyboard shortcut. Deselect
this option to turn this feature off.

✦ Timeline Options:

• Disable Timeline Docking: This option prevents the timeline from attach-
ing to the application window once it’s been deployed as a floating panel.

• Flash 4 Selection Style: Flash 5 introduced a new methodology for
selecting frames in the timeline. This option toggles that functionality
back to Flash 4 Selection Style. For in-depth coverage of the timeline,
refer to Chapter 8, “Exploring the Timeline.”

• Flash 4 Frame Drawing: Flash 5 also introduced a new methodology for
drawing frames in the timeline. This option toggles that functionality
back to the Flash 4 style. For in-depth coverage of the timeline, refer to
Chapter 8, “Exploring the Timeline.”

✦ Highlight Color: This preference controls the highlight color for selected
objects: groups, symbols, or text — but not shapes.

• Use this color: Check this option to choose a highlight color for selec-
tions from the Swatches pop-up.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 66

67Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

• Use layer color: Check this option to use the layer color as the highlight
color for selections. This option enables you to distinguish selected
items according to their associated layer color. For a more detailed
explanation of the advantages of this option, refer to Chapter 8, “Explor-
ing the Timeline.”

✦ Actions Panel: This drop-down menu has two options that configure the
Frame Actions Panel each time you launch Flash. The options are Normal
or Expert Mode. For a detailed explanation of the Actions Panel, refer to
Chapter 17, “Understanding Actions and Event Handlers.”

As shown in Figure 2-10, options for the Editing tab of the Preferences
dialog are:

Figure 2-10: The Editing tab of
the Preferences dialog for the PC

✦ Pen Tool: With the release of Flash 5, Macromedia added a robust Pen Tool
to the Flash Toolbox. Three preferences to control the performance of the
Pen Tool are located here. Because fine, accurate use of the Pen Tool often
involves the use of selection tools in order to move and adjust control points,
we’ve chosen to introduce the Pen Tool at the end of the chapter on selections,
immediately prior to the chapter on drawing tools. For a detailed discussion of
the Pen Tool in context, refer to Chapter 4, “Working with Selections and the
Pen Tool.”

• Show Pen Preview: With this option checked, Flash will display a pre-
view of the next line segment, in response to moving the pointer, prior
to clicking to make the next end point and create the line segment.

• Show Solid Points: Check this option to display selected anchor points as
solid points, and unselected points as hollow points. The default, which is
unchecked, displays anchor points in the opposite manner: The default
is for selected points to be hollow and for unselected points to be solid.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 67

68 Part I ✦ Mastering the Flash Environment

• Show Precise Cursors: This option toggles the Pen tool cursor between
the default Pen Tool icon and a precision crosshair cursor. We advise
that you check this option to use the precision cursor.

✦ Drawing Settings: Previous versions of Flash had a drawing control that was
referred to as the Assistant. It controlled the performance of one of Flash’s most
celebrated features, the “automated helpers” that aid drawing, which include
Line Processing and Shape Recognition. With Flash 5, these controls have been
relocated — intact — here as the Drawing Settings. For more about the princi-
ples of Line Processing and Shape Recognition, please refer to Chapter 5,
“Working with the Drawing and Painting Tools.” In all cases, the Assistant con-
trols the degree of “automatic help” for each of six categories of assistance. For
all assistants, the options range from off, to lax, to moderately aggressive, to
aggressive. Only one assistant has an option that’s equivalent to always on.
Regardless of the particular assistant, here’s a universal translation for these
somewhat quirky settings:

Off = OFF

Must be close / Rough / Strict = Lax

Normal = Moderately Aggressive

Can be distant / Smooth / Tolerant = Aggressive

Always snap = Always ON

• Connect lines: Controls snapping between an extant line and a line that’s
being drawn. If the line that’s being drawn is within the threshold, it snaps
to the nearest point of the other line. This setting also controls vertical
and horizontal line recognition, which is the aspect of Line Processing that
makes nearly vertical or horizontal lines absolutely vertical or horizontal.

• Smooth curves: When drawing with the Pencil Tool, with the mode set to
either Straighten or Smooth, this setting controls how much smoothing
will be applied to curved lines.

• Recognize lines: This setting determines how nearly straight a line seg-
ment needs to be in order for Flash to make it perfectly straight.

• Recognize shapes: In Flash, roughly drawn circles, ovals, squares, rect-
angles, and arcs of either 90 or 180 degrees can be recognized as geomet-
ric shapes and automatically redrawn with absolute precision. This is
called Shape Recognition, and this setting controls the degree of what is
“permissible.”

• Click accuracy: This setting controls how close the cursor must be to an
item before Flash recognizes the item. A tolerant setting means that you
either inadvertently select an item, which is a bother, or that you can be
close and easily select an item, which may be cool. We think Normal is
the best setting for this.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 68

69Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

As shown in Figure 2-11, options for the Clipboard tab of the Preferences dialog are:

Figure 2-11: The Clipboard tab of the
Preferences dialog for the PC

✦ Bitmaps (PC) / PICT Settings (Mac):

• Color Depth (PC): Choose None if you are only pasting back into Flash.
This only copies the Flash vector format, which is faster and conserves
system memory. Otherwise, if you want to copy bitmaps to the clipboard
(in addition to the default Windows Metafile), choose a bitmap format —
which is only useful when pasting to and from bitmap applications,
such as Photoshop. In which case, choose the appropriate bit depth
for your use.

• Type (Mac): As with the PC, choose Objects if you are only pasting back
into Flash. This only copies the Flash vector format, which is faster and
conserves system memory. Otherwise, choose a bitmap format if you
want to copy bitmaps (in the PICT format) to the clipboard — which is
only useful when pasting into bitmap applications, such as Photoshop.
As with the equivalent setting for the PC, chose the appropriate bit
depth for your use.

• Resolution: Choose the resolution at which you want to capture
bitmaps.

• Size Limit (PC): Use this entry box to limit the amount of RAM (memory)
that will be gobbled up by bitmaps on the clipboard.

• Smooth (PC): Smooth is antialiasing, which means that the edges of
shapes and lines are dithered to look smooth on screen. Check Smooth
to turn antialiasing on.

• Include PostScript (Mac): Although mostly unused now, the original Pict
format had the capability to include postscript items.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 69

70 Part I ✦ Mastering the Flash Environment

• Gradients on Clipboard (PC): The Quality drop-down controls the qual-
ity of the gradient fills that are created when copying to the Windows
Clipboard. Copying higher quality gradients can be slow and consumes
system RAM. If you’re only pasting back into Flash, choose None,
because full gradient quality is preserved regardless.

• Gradients (Mac): As with the PC, the Quality drop-down controls the
quality of gradient fills that are created when copying to the Mac
Clipboard. Copying higher quality gradients can be slow and consumes
system RAM. Choose None if you’re only pasting back into Flash, as full
gradient quality is preserved regardless.

✦ FreeHand Text: This command confirms the marriage between Flash and
FreeHand. For more information about using FreeHand with Flash, refer to
Chapter 31, “Working with Vector Graphics.”

• Maintain Text as Blocks: When pasting text from a FreeHand file, if this
option is checked, the pasted text remains editable.

✦ Keyboard Shortcuts: This final item of the Edit Menu invokes the Keyboard
Shortcuts dialog, which is a powerful new feature of Flash 5. As shown in
Figure 2-12, the Keyboard Shortcuts dialog enables you to customize your
Flash keyboard shortcuts to maintain consistency with other applications or
to develop a personalized workflow. Not only can you choose keyboard short-
cuts developed from other applications, you can also save your modifications
and custom settings. A full explanation of this dialog follows.

Keyboard shortcuts
There is one major reason to applaud the inclusion of this feature in Flash 5: It
enables the disabled. Imagine how wonderful this facility might be for someone
who has lost the use of one of his or her hands. For other disabilities, this feature
could make the difference between the ability to work effectively in Flash or not.
We have a friend who is a quadriplegic; having the use of neither his hands nor his
feet, this intrepid fellow accomplishes amazing feats in Flash — with a mouth stick!
These keyboard commands enable him, and others with disabilities, to use the pro-
gram with a little more ease.

Another reason to celebrate this feature is that it facilitates the development of a
custom workflow — for example, drawing tablet with one hand, keyboard with the
other. The disadvantage of this feature is that, in a busy studio where artists are
swapping seats like musical chairs, irresponsible keyboard changes can lead to
team grief. In a studio, Keyboard Shortcuts must be implemented with regard for
others working in the same environment. But this is a small detraction from the
greater value of this feature. We hope that Macromedia will build upon their exam-
ple and continue to lead the way, and will offer greater accessibility for the disabled
with subsequent releases.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 70

71Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

Figure 2-12: The Keyboard Shortcuts dialog

To create a new keyboard shortcut, you must first duplicate an existing set, from
which you can then add or subtract existing shortcuts to form your custom short-
cut set. Here’s the process:

1. Select a shortcut set from the Current Set pop-up menu. This is now the
active set.

2. Duplicate the active set by clicking the Duplicate Set button. The Duplicate
dialog appears. Enter a new name for this set in the Duplicate Name field and
click OK.

A similar procedure is employed to rename a shortcut set. Simply click the
Rename Set button and enter the new name in the ensuing dialog. (But you
cannot rename the built-in sets that ship with the program.)

Shortcut list

Add / Delete shortcut buttons

Command list

Duplicate set button

Rename set button

Delete set buttons

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 71

72 Part I ✦ Mastering the Flash Environment

3. Select a commands list from the Command pop-up menu (Drawing Menu
Commands, Drawing Tools, or Test Movie Menu Commands) either to add
a command or to modify it.

4. Next, in the Command list, choose either a grouping or a command from one
of the previously chosen commands lists. Note that some lists have sublists.
Click the Plus sign (or small arrow on the Mac) to expand a particular cate-
gory. Figure 2-13 shows commands for the Window Menu.

5. Now choose a command that you want to add (or subtract) — a description of
the selected command appears in the Description area.

6. To delete the existing shortcut, click the (–) Shortcut button.

7. To add a shortcut for this command, click the (+) Shortcut button, and then
enter the shortcut key combination in the Press Key entry box. Click Change,
and then OK to close the dialog.

8. Or, to change an existing command, select the command and click the Change
button.

9. To delete a shortcut set, click the Delete set button, then select the set to
be deleted from the ensuing Delete Set dialog and click the Delete button.
(Because you cannot delete the built-in sets that ship with the program,
they do not appear in the Delete Set dialog.)

Keyboard Shortcut sets are stored within the installed Flash 5 program folder,
within the Keyboard Shortcuts folder. You can navigate to this location on your
hard drive and copy, backup, restore, delete, or otherwise manipulate any of these
files from this folder. Keyboard Shortcuts are transferable between machines,
although we had no success transferring them across platforms.

The View Menu
As shown in Figure 2-13, the View Menu is dedicated to controlling how movies —
and some tools — are viewed in Flash. There are also a few controls that toggle
functionality.

✦ Goto: The Goto command leads to a Pop-up menu of scenes in the current
movie, including four handy shortcuts to the First, Previous, Next and Last
scenes.

The next three commands — Zoom In, Zoom Out, and Magnification — are covered
in greater detail in Chapter 3, “Using Tools for Navigation and Viewing.”

✦ Zoom In: This increases the view by 50 percent.

✦ Zoom Out: This decreases the view by 50 percent.

✦ Magnification: This command leads to eight preset magnification levels. See
Chapter 3, “Using Tools for Navigation and Viewing,” for more detail.

Cross-
Reference

Tip

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 72

73Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

Figure 2-13: View Menu

The next four commands: Outlines, Fast, Antialias, and Antialias Text have no effect
on the way in which Flash exports your movie. Quality decisions are made in the
Publish Settings, which are covered in Chapter 40, “Publishing Flash Movies.”
These settings only affect screen quality and screen speed — meaning, “How much
longer until this picture appears?”

✦ Outlines: Use this command to display all shapes as outlines, and to show all
lines as thin lines. This command is useful for reshaping graphic elements,
and for getting the general timing and sense of a movie. It also speeds up the
display of complex scenes. It is a global equivalent of the outlines toggle of
individual frames.

✦ Fast: This command also speeds up display. It turns off both antialiasing and
dithering. Although the default is Off, the recommended setting is On. Unfortu-
nately, this setting is not saved as a preference — it must be set for every movie.

✦ Antialias: Not to be confused with the wife of your outlaw cowboy uncle,
antialiasing dithers the edges of shapes and lines so that they look smoother
on screen. It also slows the display. It works best with fast, 24-bit video cards.
This is really a toggle in opposition with the Fast command: turn this On and
Fast goes Off. The setting we recommend for Antialias is Off.

✦ Antialias Text: As with Antialias, this is also a toggle in opposition to the Fast
command. It smoothes the edges of text only and works best with large font
sizes — it can be dreadfully slow when there’s a lot of text.

Note

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 73

74 Part I ✦ Mastering the Flash Environment

✦ Timeline: Use this toggle to show or hide the timeline.

✦ Work Area: This command makes the light-gray area that surrounds the Stage
(or Movie Area) visible. This can be useful when your movie has items that
are either partially or completely off stage — as, for example, when you have
something move into or out of a scene. To work with these items (to place
or manipulate them) off stage, use View ➪ Work Area. To see the maximum
Stage/Work Area, use View ➪ Work Area, and then use View ➪ Show All.

A good example of the utility of the Work Area feature can be seen in both the
Weber movie, and the Journal of Edwin Carp; examples of both are on the CD-ROM
in the ch37 folder. Cartoonists such as Turner and Bazley rely upon this capability
of Flash for creating effects (such as long pans) in which very large background art-
work hangs off the Stage (or view area) until called upon or tweened through.

You cannot deselect items that are selected and offstage when View ➪ Work Area
is toggled off. This can lead to inadvertent deletions, so be careful!

✦ Rulers: This command toggles the Rulers (which display at the top and left
edges of the Work Area) on or off — use Modify ➪ Movie to change units of
measurement.

✦ Grid: Click this command to access three commands that control the parame-
ters and use of both Snapping and the Flash Grid.

• Show Grid: This command toggles the Drawing Grid on or off.

• Snap to Grid: This command toggles the Snap to Grid function on or off.
Snap to Grid works regardless of whether the Grid has been made visible
with View ➪ Grid ➪ Show Grid — if the Grid has not been made visible, it
just snaps to the invisible Grid.

• Edit Grid: Use this command to invoke the Grid dialog, where you can
change Grid Color, Spacing, and the settings for Snap accuracy. Snap
accuracy controls how close an item, symbol, or — while drawing — the
end of a line must be to a Grid intersection before the item, symbol, or
line endpoint snaps to the Grid. Both Show Grid and Snap to Grid check
boxes are also included in this dialog. Edited Grid settings can be saved
as the default by clicking the Save Default button, which enables you to
have these setting as presets for all subsequent Flash movies.

The default Grid size of 18 pixels is inherited from the origins of Flash in the
SmartSketch program — it’s because 18 pixels equals 0.25 inch! But you aren’t
stuck with that. Grid units can be changed by entering the appropriate abbrevia-
tion (for example: 25 pt., .5", .5 in, 2 cm, and so on) in the Grid Spacing entry
boxes. Although the specified units will be applied to the grid, they will be trans-
lated into the current unit of measurement for the Ruler. Thus, if the Ruler is set to
pixels, and the Grid units are changed to .5 in, then, on reopening the Grid dialog,
the Grid units will be displayed as 36 pix (because pixels are allocated at 72 pix =
1"). Changing Ruler Units via Modify ➪ Movie also changes Grid Units.

Note

Caution

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 74

75Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

✦ Guides: When Rulers are turned on, Guides, a new feature for Flash 5, can be
dragged onto the Stage from either ruler. These four commands control the
parameters of these Guides.

• Show Guides: This is a simple toggle to either show or hide the Guides.

• Lock Guides: This is a toggle that either locks or unlocks all current
Guides.

• Snap to Guides: This is a toggle that extends Snap behavior to Guides.
It works independently of the other Snap toggles — so, if Snap to Grid
is turned off in the Edit Grid dialog, and Snap to Objects is also turned
off, Snap to Guides is still active, unless, of course, it, too, is toggled off.

• Edit Guides: This command invokes the Guides dialog box, where Guide
Color and Guide-specific Snap accuracy can be adjusted. Also included
are check boxes for the other three Guide commands: Show Guides,
Snap to Guides, and Lock Guides. This enables you to establish Guide
settings and then click the Save Default button to have these setting as
presets for all subsequent Flash movies.

✦ Snap to Objects: Due to the recent trend among high-end Flash developers to
structure their Flash authoring as Object-Oriented Flash, it’s advisable — for
the sake of future clarity — to think of this command as a Snap to Items com-
mand. Snap to Items means that, when moving or manipulating an item, the
item snaps into alignment with items already placed on the stage.

✦ Show Shape Hints: This toggles Shape Hints to make them visible or invisible.
It does not disable shape hinting. Shape Hints are used when tweening shapes.
For more about Shape Tweens (or Shape Morphing) refer to Chapter 11, “Ani-
mating in Flash.”

✦ Hide Edges: Use this command to hide selection highlights, so that you can
edit items without the added confusion of their selection highlights.

If you want to Hide Edges permanently, in every movie you make, a similar, more
permanent effect can be obtained by first creating a Color Swatch with a Zero
Alpha, and then setting the Highlight Color to that color in the General tab of the
Edit ➪ Preferences dialog. For more about Color Swatches, refer to Chapter 6,
“Applying Color.”

✦ Hide Panels: This command hides all visible panels. However, it is not a tog-
gle because repeating the command does not return the panels to visibility. To
return the panels to visibility, you must invoke them from either the Launcher
Bar or the Window Menu. However, pressing Tab hides and returns your cur-
rently visible set of panels.

The Insert Menu
As shown in Figure 2-14, the Insert Menu is used to insert Symbols, Layers, Guides,
Frames, and Scenes into the current Movie.

Tip

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 75

76 Part I ✦ Mastering the Flash Environment

Figure 2-14: Insert Menu

✦ Convert to Symbol: Use this command to convert a selected item (or items)
on stage into a new Symbol and evoke the Symbol Properties Dialog. Refer to
Chapter 9, “Checking Out the Library: Symbols and Instances,” for a full expla-
nation of symbols.

✦ New Symbol: Use this command to create a new symbol in Symbol-editing
Mode. To use this command, first make sure that nothing is selected by using
Edit ➪ Deselect All. Refer to Chapter 9, “Checking Out the Library: Symbols
and Instances,” for a full discussion of symbols.

✦ Layer: This command creates a new layer directly above the currently active
layer. The new layer becomes the active layer.

✦ Motion Guide: Use this command to add a Motion Guide layer (also referred to
as a Motion Path). The Motion Guide layer appears above the selected layer.
For more information about using Motion Guides to tween along a path, refer
to Chapter 8, “Exploring the Timeline.”

✦ Frame: Use this command to insert a new frame at any selected point on the
timeline. If a frame is selected, then that selected frame (together with all
frames to the right on that layer) are shifted to the right to accommodate
the new frame — other layers are left alone. But if no layers (or frames) are
selected, then all layers get a new frame at the current position of the Playhead
(indicating the active frame) and preexisting frames on all layers shift right.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 76

77Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

✦ Remove Frame: This command deletes the selected Frame.

✦ Keyframe: Use this command to convert a selected Frame into a Keyframe.

✦ Blank Keyframe: This command inserts a new Keyframe at a selected point
on the timeline. If a frame is selected, then that selected frame (together with
all frames to the right on that layer) shift to the right to accommodate the
new frame — other layers are left alone. If no layers (or frames) are selected,
then all layers get a new frame at the current frame marker’s position and pre-
existing frames on all layers shift right.

✦ Clear Keyframe: This command changes a Keyframe back into a simple
Frame, whereupon the contents of the former Keyframe are replaced with
copies of the Keyframe immediately previous in the timeline.

✦ Create Motion Tween: This command is one step in the process of creating a
tweened animation. Refer to Chapter 8, “Exploring the Timeline,” for the full
scoop on tweened animation.

✦ Scene: This command inserts a new, empty Scene immediately following the
currently active Scene. By default, new Scenes are numbered — use the Scene
panel to rename and to organize Scenes.

✦ Remove Scene: This command deletes the currently active Scene.

The Modify Menu
As shown in Figure 2-15, the Modify menu is thick with commands that invoke pop-
ups, submenus, and panels. Not shown are the pop-ups for the first five items on
the menu: Instance, Frame, Layer, Scene, and Movie. Although all of these are intro-
duced here, substantial discussion of these items has been deferred until they can
be handled in context with the Flash workflow.

✦ Instance: The Modify ➪ Instance command evokes the Instance Panel, which is
used to control independent behaviors of Symbol Instances. In its default con-
figuration, the Instance Panel is accompanied by the Effect Panel. Together,
they have fields for Instance Behavior, Options, Name, and Color Effect. These
topics are introduced in greater depth in Chapter 9, “Checking Out the Library:
Symbols and Instances.”

✦ Frame: The Modify ➪ Frame command, opens the Frame Panel. In its default
configuration, the Sound Panel accompanies the Frame Panel. Together, they
have fields for the control of frame labels, tweening, and sound. These topics
are introduced in greater depth in Chapter 11, “Animating in Flash,” and in
Part III, “Sound Planning.”

✦ Layer: The Modify ➪ Layer invokes the Layer Properties dialog, which is used
to control and edit the properties of the active layer of the timeline. The time-
line is discussed fully in Chapter 8, “Exploring the Timeline.”

✦ Scene: Modify ➪ Scene opens the Scene Properties panel, which has only one
function: to rename the current scene.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 77

78 Part I ✦ Mastering the Flash Environment

Figure 2-15: The Modify Menu

✦ Movie: Modify ➪ Movie leads to the Movie Properties dialog, which is used to
change Frame Rate, Movie Dimensions, Background Color, and Ruler Units.

• Frame Rate: Changes the Frame Rate.

• Dimensions: Establishes the Dimensions of the Movie.

• Match: The Match Printer button matches the Movie Dimensions to the
currently selected printer’s maximum printable dimensions. The Match
Contents button adjusts the Movie Dimensions to include all active
items, from the upper left-hand corner to the lower right-hand corner of
the entire movie (including animation, and the space it may cover during
such movements). The expanse includes a narrow zone of white (stage)
around it.

• Background Color: Click the chip to choose a color from the Swatches
pop-up.

The Background Color can be changed at any time during an animation by adding a
new layer at the bottom of the layer stack, and then creating a Keyframe at the point
where you want the color to change. Next, draw a rectangle the size of the stage (or
larger) position it to cover the stage, and fill with the new color. Subsequent changes
of background color can be accomplished with the insertion of another Keyframe
and changing the color of the rectangle at that point. For more information, see
Chapter 9, “Checking Out the Library: Symbols and Instances.”

Tip

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 78

79Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

• Ruler Units: Use this drop-down menu to specify units for the movie.
Remember, Ruler Units also changes Grid Units — and impacts Snap to
Grid behavior.

• OK: Applies changes to the current movie only.

• Save Default: Click this button to add these settings to the prefer-
ences. They become the default for all subsequent movies created
with File ➪ New.

The next group of commands replaces the prior grouping of commands that were
located within the Curves submenu. These commands aren’t only for manipulating
curves — they’re useful for manipulating other things, too. See Chapter 10, “Drawing
in Flash,” for detailed explanations in context. These commands are as follows:

✦ Smooth: Reduces curves and bumps.

✦ Straighten: Straightens out lines and curves.

✦ Optimize: Lessens the number of curves in a shape. Use this command to
reduce the size of Flash files.

✦ Shape: Lets you convert lines to fills, expand and shrink fills, and soften the
edges of fills.

✦ Trace Bitmap: Use this command to convert an imported bitmap into a vector
graphic with editable, discrete areas of color. Please refer to Chapter 12, “Using
Bitmaps and Other Media with Flash,” for a full treatment of the use of various
media — including bitmaps — within the Flash vector environment.

✦ Transform: Use Modify ➪ Transform to access the Transform submenu,
home to the following commands: Scale, Rotate, Scale and Rotate, Rotate 90 °
CW, Rotate 90 ° CCW, Flip Vertical, Flip Horizontal, Remove Transform, and
Edit Center. These are explained in context in Chapter 10, “Drawing in Flash.”
As for the remaining commands, Add Shape Hint and Remove All Hints are
explained in Chapter 11, “Animating in Flash.”

✦ Arrange: Use Modify ➪ Arrange to open the Arrange submenu, which is used
to move selected items, symbols, and groups either forward or backward in
the stack of items that are layered in the currently active Layer. The options —
which are intuitive — are:

• Bring to Front: This moves the selected item to the absolute front of the
active layer’s stack.

• Bring Forward: This moves the selected item one step forward in the
stack.

• Send Backward: This moves the selected item one step backward in
the stack.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 79

80 Part I ✦ Mastering the Flash Environment

• Send to Back: This moves the selected item all the way back to the hin-
terlands of the stack.

• Lock: Use this to lock the selected item in its current position in the stack.

• Unlock: Use this to release the selected item from its locked status in the
stack.

✦ Frames: Modify ➪ Frames yields the Frames submenu, with four commands:

• Reverse: To reverse an animation sequence, first check that there’s a
keyframe at the beginning and end of the sequence. Next, select the
entire sequence — keyframe to keyframe — and choose Modify ➪
Frames ➪ Reverse.

• Synchronize Symbols: Sometimes an animation sequence is encapsulated
as a symbol and used as a graphic instance in a movie. If the number of
frames occupied by this graphic instance doesn’t jive with the number
of frames in the original sequence, erratic looping occurs. Although this
command is supposed to adjust timing and ensure synchronous looping,
it rarely works. The optimal solution is to synchronize the animations
manually.

• Convert to Keyframes: Use this command to convert a range of selected
frames into keyframes. This command is an obvious candidate for a cus-
tom keyboard shortcut.

• Convert to Blank Keyframes: Use this command to downgrade a range
of selected keyframes to blank keyframes. This command is another
obvious candidate for a custom keyboard shortcut.

✦ Group: Use this command to Group two or more selected items. Details and
advantages of grouping are discussed in Chapter 6, “Applying Color,” and
Chapter 7, “Working with Text.”

✦ Ungroup: This command ungroups items that have been grouped — it’s also
discussed in Chapter 6, “Applying Color,” and Chapter 7, “Working with Text.”

✦ Break Apart: This command is used to separate groups, blocks of type,
instances, bitmaps, and OLE items. It can be used to reduce the file size
of imported graphics. However, it may not be reversible, and it also has
some unintuitive effects, so refer to the discussion of this command in
Chapter 7, “Working with Text,” before using! Furthermore, because this
command turns blocks of type into graphics, applying it to type increases
file size — sometimes significantly.

The Text Menu
This menu (see Figure 2-16) contains duplicate commands for text controls that are
available in one of the three Text Panels.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 80

81Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

Figure 2-16: The Text Menu

These commands are:

✦ Font: Although this command duplicates the Font drop-down menu located at
the top of the Character Panel, it’s much easier to work with — if you know
your fonts. That’s because Text ➪ Font invokes a scrolling pop-up menu that
extends from top to bottom of your screen. The only disadvantage of this
menu is that it lacks the additional display that the Text Panel offers, which
shows the font name in the character set of the highlighted font.

✦ Size: This command offers 13 preset sizes ranging from 8 points to 120 points.
Although it’s quick and easy, it lacks the infinite precision of the Size control
located on the Text Panel, which presents both a numeric entry field and a
slider bar for the selection of point size.

✦ Style: This command gives you the easiest access for changing the style of
selected text. The options are Plain, Bold, Italic, Subscript, and Superscript.

✦ Align: This command duplicates the function of the upper pane of the Para-
graph Panel. Here the options are Align Left, Align Center, Align Right, and
Justify.

✦ Tracking: This command offers abbreviated control of text tracking. It isn’t
nearly as robust or as precise as the lower pane of the Paragraph Panel.
That’s because the options are limited to Increase, Decrease, and Reset.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 81

82 Part I ✦ Mastering the Flash Environment

✦ Character: This command invokes the Character Panel.

✦ Paragraph: This command invokes the Paragraph Panel.

✦ Options: This command invokes the Text Options Panel.

The Control Menu
Despite the Control Menu’s alluring title (see Figure 2-17), this is not the menu for
Type A personalities. Rather, like the VCR controller, which Type A’s always seem
to finagle onto their armrest, the Control Menu displays buttons that control the
movie playback features within Flash.

Figure 2-17: The Control Menu

✦ Play: This command plays the movie in the authoring environment.

✦ Rewind: This command returns the movie back to frame 1.

✦ Step Forward: Use this command to step the movie forward one frame.

✦ Step Backward: Use this command to step the movie one frame backward.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 82

83Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

✦ Test Movie: Some interactive functions will not work when the movie is
played within the Flash playback environment. This command uses the set-
tings established in the Publish Settings dialog to export the current movie
and instantly play it within a new Flash Player window. The exported movie is
not a temporary file; it is saved to the same folder as the parent .FLA file. The
Keyboard Shortcut for this command is Ctrl+Enter/Command+Return.

If you’re doing a lot of coding and are accustomed to using the default keyboard
shortcut to do Test Movie, you must first return focus from the Actions Panel to the
Editor. But that’s a pain! The easy fix is to use the Keyboard Shortcuts dialog to
assign a custom key for Control ➪ Test Movie.

✦ Debug Movie: This is a new feature of Flash 5 that enables developers to
debug a Flash movie for problems in their code. It launches the Debugger
Panel. Use of the Debugger is discussed in detail in Chapter 21, “Planning
Code Structures.”

✦ Test Scene: This command is similar to the Test Movie command; the only
exception is that it tests the current scene only, whereas Test Movie runs the
whole shebang.

✦ Loop Playback: This command is a toggle that enables looping with all subse-
quent implementations of the Play, Test Movie, and Test Scene commands.

✦ Play All Scenes: The default within the Flash Movie Controller is to play the
current scene only. So, like Loop Playback, this is another toggle — it overrides
the default single-scene playback and enables all scenes to be played with sub-
sequent implementations of the Play, Test Movie, and Test Scene commands.

✦ Enable Frame Actions: This is a toggle that controls whether Frame Actions
are enabled. Use Enable Frame Actions only during tests and playback within
Flash; otherwise, it may be difficult to edit a movie.

✦ Enable Simple Buttons: Like Enable Frame Actions, this toggle controls whether
buttons are enabled. It would be impossible to edit, move, or manipulate but-
tons if they were continually enabled. So, enable buttons only during tests and
playback within Flash. This is limited to simple buttons because complex but-
tons cannot be effectively tested within the Flash Editor environment.

✦ Mute Sounds: This command toggles sound on or off, within the Flash Editor
environment.

The Window Menu
The Window Menu, shown in Figure 2-18, is the launch pad for a number of key
panels and dialogs. It has several commands that are used to arrange the display
of multiple movies.

✦ New Window: This command opens the currently active movie in a new
window.

Tip

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 83

84 Part I ✦ Mastering the Flash Environment

Figure 2-18: The Window Menu

✦ Toolbars (PC Only): This command opens the Toolbars subpanel, which
contains the following commands.

• Main: The Main Toolbar is the just the Standard Toolbar from Flash
4, with a different name. As shown earlier in Figure 2-3, this toolbar
is similar to the production toolbars of many programs. It dupli-
cates commonly used tools for easier access, and is generally for
those who are unfamiliar with the program. Because it devours pre-
cious screen space, we urge that it be disabled.

• Status: The Status Toolbar, shown in Figure 2-3, gives text readouts
that may explain the use of tools, buttons, and many interface ele-
ments. Generally, the text is too limited to be much help. Leave this
option disabled; it, too, devours precious screen space and retards
learning.

✦ Controller (PC placement): This command toggles the display of the
Controller Toolbar. With buttons similar to a VCR, the Controller is used
to test animations within the Flash Movie Editor. (It can be used instead
of the commands on the Control Menu to play a movie within Flash.)
From right to left, the buttons are: Stop, Rewind, Step Back One Frame,
Play, Step Forward One Frame, and Fast Forward.

3515-3 ch02.f.qc 1/18/01 3:44 PM Page 84

85Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

✦ Tools: On both the Mac and the PC, this command toggles display of the
Toolbox, which was shown earlier in Figure 2-1.

✦ Controller (Mac placement): On the Mac, this command, which toggles dis-
play of the Controller Toolbar, is in the front lineup of the Window Menu com-
mands.

Experienced users usually disable these additional toolbars: Main Toolbar and
Status Toolbar.

✦ Panels: This command opens the Panels submenu, which leads to groupings
of most of the primary panels of Flash 5, which are:

• Info: The top pane of this panel has a readout for the width and height of
a selected item, as well as the x and y coordinates. These readouts are
also, numeric entry fields, permitting a numeric transformation of both
the dimensions and position of the selected item. There’s also an align-
ment grid that’s used to toggle the x,y coordinates between the item’s
center and the top-left corner of the item. The bottom pane delivers the
information about the (pixel precise) current mouse location: R, G, B,
and Alpha values as well as x,y coordinates. The Info Panel is discussed
in context in Chapter 10, “Drawing in Flash.”

• Fill: This panel is used to select or create fills — Solid, Gradient, or
Bitmap — that are applied with the Paint Bucket (K) Tool. Fills are dis-
cussed in context in Chapter 5, “Working with the Drawing and Painting
Tools,” and in Chapter 6, “Applying Color.”

• Stroke: Strokes are lines created by the Pen (P) or Pencil Tool (Y), as
well as the outlines of filled shapes. Three controls handle the qualities
that define a stroke: Stroke Style, Thickness, and Color. Like fills, strokes
are first discussed in context in Chapter 5, “Working with the Drawing
and Painting Tools,” and Chapter 6, “Applying Color.”

• Transform: This panel is a complement to the numeric transformation
capabilities of the Info Panel. The Transform Panel facilitates changing
the dimensions of a selected item according to percentage, with a check
box to constrain transformations to the original aspect ratio of the item.
Controls for Skew and Rotate are also located here. The Transform Panel
is discussed, in concert with the Info Panel, in Chapter 10, “Drawing in
Flash.”

With the default panel layout, you can use the Info Panel button on the Launcher
Bar to invoke the default Info/Transform/Stroke/Fill cluster.

• Align: The Align Panel is used to align multiple selected items according
to various criteria. This panel has intuitive, visual buttons that can be
used to align, resize, and evenly distribute two or more selected items.
These options can be used separately or in combinations. This panel is
discussed in context in Chapter 10, “Drawing in Flash.”

Tip

Note

3515-3 ch02.f.qc 1/18/01 3:45 PM Page 85

86 Part I ✦ Mastering the Flash Environment

• Mixer: The Mixer Panel is used to mix colors and save them as color
swatches. Colors may be assigned to either the Stroke or Fill Color Chips
of the Color Tray. Additionally, the readout for the color space can be
chosen from RGB (Red, Green, Blue), HSB (Hue, Saturation, Brightness),
or hex (hexadecimal) color specification types. The Mixer Panel is dis-
cussed in concert with the Swatches Panel in Chapter 6, “Applying Color.”

• Swatches: The Swatches Panel is used to load, organize, save, and
remove both individual Color Swatches and Color Sets. See Chapter 6,
“Applying Color.”

With the default panel layout, use the Mixer Panel button on the Launcher Bar to
invoke the default Mixer/Swatches cluster.

• Character: The Character Panel offers control over the following aspects
of text in Flash. Controls include font; point size; bold and italic; color;
tracking; kerning; character position; and URL entry. The Character Panel
is discussed — in concert with the Paragraph and Text Option Panels — in
Chapter 7, “Working with Text.”

• Paragraph: The Paragraph Panel controls the alignment and placement of
text in Flash. The controls include Align (Left, Center, Right, or Full Justifi-
cation), Left Margin, Right Margin, Indentation, and Line Spacing. The
Paragraph Panel is discussed in context in Chapter 7, “Working with Text.”

• Text Options: The Text Options Panel is used to select the type of text
that you will be using in Flash. The choices are Static, Dynamic, or Input
Text. There are other choices as well, subject to the type of text you will
be using. These details are introduced in Chapter 7, “Working with Text.”

With the default panel layout, use the Character Panel button on the Launcher Bar
to invoke the default Character/Paragraph/Text Options cluster.

• Instance: The Instance Panel is used to control various fundamental
properties of Symbol Instances. These properties vary according to
whether the instance Behavior is as a Movie Clip, Button, or Graphic.
The Instance Panel is first discussed in context in Chapter 9, “Checking
Out the Library: Symbols and Instances.”

• Effect: The Effect Panel controls color effects for symbol instances. The
choices are Brightness, Tint, Alpha, and Advanced, which is a combina-
tion of the preceding three choices. These controls are first introduced
in Chapter 9, “Checking Out the Library: Symbols and Instances.”

• Clip Parameters: The Clip Parameter Panel is where Smart Clips are
made. Smart Clips are a new feature of Flash 5, whereby Clip Parameters
can be defined for each movie clip in the Library. By defining attributes
(and default values for each attribute), a developer can create templates
for interactivity, for ease of use by designers, and other purposes yet
to be discovered by the indefatigable legions of Flash genius. The Clip
Parameter Panel is discussed in context in Chapter 40, “Publishing
Flash Movies.”

Tip

Tip

3515-3 ch02.f.qc 1/18/01 3:45 PM Page 86

87Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

• Frame: The Frame Panel has two functions: It is used to add labels and
comments to individual frames, and to hold the controls that manage the
finer aspects of Motion and Shape Tweening. The labeling aspect of the
Frame Panel is discussed in Chapter 8, “Exploring the Timeline,” while
the Tweening controls are discussed in Chapter 11, “Animating in Flash.”

• Sound: Controls for Flash sound are located in the Sound Panel, the
Library, and the Publish Settings. The Sound Panel controls are used
to set the Effect, Sync, and Loop for each sound, while the Edit button
launches the Edit Envelope. Sound is covered in depth in the three
chapters of Part III, “Sound Planning.”

With the default panel layout, use the Instance Panel button on the Launcher Bar
to invoke the default Instance/Effect/Frame/Sound cluster. (For better workflow,
we suggest that you consider adding Clip Parameters to this cluster. The procedure
for accomplishing this feat is discussed later.)

• Scene: The Scene Panel duplicates the function of the Edit Scene button,
which is located at the right side of the Timeline Header. When working
with Flash Movies that have two or more scenes, the Scene Panel facili-
tates switching from one scene to another, as well as duplicating, adding,
and deleting them.

• Generator: If you have Generator installed, the Generator Panel displays
common (as well as any custom) Generator Objects that have been
installed. Generator and the Generator Panel are discussed in Chapter
27, “What Is Generator?,” and Chapter 28, “Revving Up Generator.”

✦ Panel Sets: This command invokes the Panel Sets submenu, which displays
the command for the Default Layout, as well as any custom panel layout that
may have been saved.

✦ Save Panel Layout: Select this command to launch the Save Panel Layout
dialog, which has a Name field and rudimentary buttons. Enter a name with
which to save the current arrangement of panels. If you enter a name that’s
been saved previously, Flash queries whether you want to overwrite it.

✦ Close All Panels: This command closes all open panels. However, repeating
this command does not reopen those same panels — so it is not a toggle.

There is a toggle that closes and then reopens all open panels. On both platforms,
the shortcut key for this toggle is the Tab key.

✦ Actions: The Actions panel is used for assigning and authoring ActionScript.
Although excluded from the Panels submenu, both the Actions Panel and the
Movie Explorer Panel, which follows, can be arranged together with the other
panels and saved into a panel set. The Actions Panel — and ActionScript —
is covered in exhaustive depth in Part V, Programming Flash Movies with
ActionScript.

Tip

Tip

3515-3 ch02.f.qc 1/18/01 3:45 PM Page 87

88 Part I ✦ Mastering the Flash Environment

✦ Movie Explorer: The Movie Explorer is a powerful new feature of Flash 5. It’s
like the helpmate of the Library because it provides an asset overview (in a
file menu environment, analogous to the Mac Finder or the Windows Explorer)
of the current Flash Movie, and offers many shortcuts for editing, updating,
and troubleshooting many of the same items that would be much more diffi-
cult to sleuth out from the Library. A good example of the utility of the Movie
Explorer is changing text and font choice. Doing operations like this from the
Movie Explorer can be a serious time-saver. The Movie Explorer is introduced
in Chapter 9, “Checking Out the Library: Symbols and Instances.”

Working with Panels

Depending upon your point of view, the proliferation of panels in Flash 5 can be either an
enhancement to or the bane of your workflow. Even if you have dual 21" monitors, or a cin-
ema display, here are some tips that can make your work with panels a lot more productive:

✦ Double-click the title bar of any panel to collapse it upward into just a title bar with
the panel tab(s) showing. Unfortunately, collapsed status is not retained when clos-
ing the program, nor when saving a panel set.

✦ Use the Launcher Bar. As shown at the beginning of this chapter, in Figures 2-2 and
2-3, the Launcher Bar is located at the lower-right corner of the Flash Editor. It’s a
default that cannot be excluded from your working environment. It is very handy for
launching specific panels as needed, and then closing them.

✦ Alt/Option+Click the close box of any panel to close all panels simultaneously.

✦ Just because you open a panel doesn’t mean that it has focus. You have to click in
the field where you want to start typing, even if there is only one field.

✦ After you’ve typed text in a panel field (whether in the Actions Normal mode or
other panel), either hit Tab or Enter to make the change take. This is especially
useful when entering Frame Labels or Comments, or when entering a number of
Instance Names for Movie Clip instances. However, you still must have the field
selected or else hitting Tab just toggles all the panels on and off.

• If a panel isn’t open, choosing it from the Panels submenu, tapping the key-
board shortcut, or clicking its Launcher button opens it.

• If a panel is open and is at the back in the stacking order of other panels, then
choosing it from the Panels submenu, tapping the keyboard shortcut, or click-
ing its Launcher button brings it to the front.

• If a panel is open and is at the top of the stacking order of other panels, then
choosing it from the Panels submenu, tapping the keyboard shortcut, or click-
ing its Launcher button closes that panel.

• You can rearrange panels into new panel groups by dragging the panel of
choice by its tab. Because panels cannot be regrouped within an existing set,
you must plan the order for a panel group before you assemble the group.

• Alt/Option+double-click any item brings up all relevant panels.

3515-3 ch02.f.qc 1/18/01 3:45 PM Page 88

89Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

Both the Actions Panel and the Movie Explorer have buttons on the Launcher Bar
to access them without hesitation.

✦ Output: Unlike so many of the commands available from the Windows menu,
this one isn’t a panel — it really is a window, and cannot be ganged together
with the panels. After export to .SWF, this opens the Output Window, which
shows precise file-size reports on every scene, symbol, text, and so on. It’s
very helpful for analyzing download problems and testing the effectiveness
of preloaders.

✦ Debugger: Another new addition to Flash 5, the Debugger Panel is used for
troubleshooting Flash ActionScript code, and/or to monitor the properties of
Flash movies and symbols. The debugger can be enabled within Flash using
Control ➪ Debug Movie, or it can be evoked from a Web page in a browser. By
using the latter method, the Flash application gets focus and the Debugger
Panel becomes active (meaning that you don’t get a Debugger window/Panel
in the browser). This is intended for advanced authoring and can get complex,
quickly. For a full explanation of the Debugger, refer to Chapter 21, “Planning
Code Structures.”

✦ Library: The Library is also a true window and not a panel. As was shown
earlier in Figures 2-4 and 2-5, the Library is the repository of all recurring ele-
ments, known as Symbols, that are placed as Instances within a Flash movie.
Imported sounds and bitmaps are automatically placed in the Library. Upon
creation, both buttons and Movie Clips (which are symbols) are stored in the
Library. It’s a smart practice to make a Symbol for nearly every item within
a Flash movie. The Library is covered in depth in Chapter 9, “Checking Out
the Library: Symbols and Instances.” Although it differs from the Common
Libraries discussed next, they are related. The Windows ➪ Library is specific
to the current movie, whereas Common Libraries are available whenever
Flash is open.

✦ Common Libraries: The Libraries Menu is the one menu over which the user
has real control. That’s because — in addition to the Library items that are
placed there in the process of a default installation of Flash — you have the
option of placing your own items there, too. The default Libraries contain a
selection of buttons and symbols to get you started. These are located in the
Libraries folder of the Flash application folder. (And when you’re tired of them,
you can remove them!) To add your own buttons, symbols, or libraries for spe-
cific projects, first save them in a Flash file with a descriptive name, then place
that Flash file in the Libraries folder within the Flash Program folder on your
hard drive. Because these default Common Libraries have such obvious names,
we won’t waste valuable pages to describe them. They are Buttons, Graphics,
Learning Interactions, Movie Clips, Smart Clips, and Sounds.

✦ Generator Objects: This is another true window, and not a panel. This com-
mand is disabled, unless you have Generator installed. Generator is a sepa-
rate program, with a database engine that melds to the Flash’s pictorial and
animation engine. Refer to Chapter 27, “What Is Generator?,” for an introduc-
tion to Generator.

Tip

3515-3 ch02.f.qc 1/18/01 3:45 PM Page 89

90 Part I ✦ Mastering the Flash Environment

✦ Cascade: This command cascades all open windows so that they overlap in a
cascade descending from the top left to the bottom right, like fanned out play-
ing cards.

✦ Tile: This command tiles all open movie windows so that they are arranged,
side-by-side like an eclectic tile job. (Panels and application windows are
not tiled.)

The Help Menu
There are so many varied forms of Flash help that it’s astounding. In this chapter,
we look at a few of the sources for help. The Flash Help Menu, shown in Figure 2-19,
directs users to two kinds of help, offline and online. Unless you’ve opted for a cus-
tom install or have removed the help files from your Flash installation, there are
a number of offline Help resources directly accessible from the Help Menu. First,
beginners may benefit from the lessons and samples. In addition, there are four
Flash Help Topics, a sophisticated help system that’s viewed offline in your Web
browser. Finally, a vast array of online resources are available on the Web — some
of which are also linked directly from the Help Menu.

Figure 2-19: The Help Menu

3515-3 ch02.f.qc 1/18/01 3:45 PM Page 90

91Chapter 2 ✦ Exploring the Interface: Panels, Settings, and More

Offline learning resources
Aside from the normal Help files, Flash offers a beginner’s course with eight lessons,
sample movies, and ActionScript resources.

Lessons and samples
If you accepted the default installation, these are available to you from the Help
Menu. (Note, however, that you may not have the Lessons or Samples installed
if you chose to do a custom install. In this case, you’ll probably want to reinstall
Flash in order to have access to these terrific resources.) These excellent, free
Lessons and Samples are near the bottom of the Help Menu and are highly recom-
mended for all new Flash users.

Help resources
From the Menu Bar, any of the following four resource topics launch your Web
browser and open an offline Web page. Like the Lessons and Samples, these are
installed as a default with the program. (If you don’t have Flash Help Topics
installed, you have to reinstall Flash if you want to access this resource.) The
four main topics offer help and instruction in the following areas:

✦ What’s New in Flash 5: This is an overview of new features and tools. The
topics are linked to the relevant areas of the offline manual Using Flash.

✦ Using Flash: This is the offline manual, presented as a series of self-paced
seminars on the principal tools and methods of working with Flash.

✦ ActionScript Reference: This is a reference to the new, robust, Flash 5 Action-
Script language.

✦ ActionScript Dictionary: This is a dictionary of the new Flash 5 ActionScript
language.

Online learning resources
The Flash Help Menu also leads to three resources that are viewed online through a
Web browser; these are the new Macromedia Dashboard and the Flash Developers
Center.

✦ Macromedia Dashboard: This resource is like a mini-browser, built in Flash.
The menu has the following Flash-related items: News, Community, Support,
Resources, Training, Feedback, and Flash Player. The Dashboard is designed
to include a current featured site and a featured community. It also provides
an Auto-Update feature, to help you stay current on all features. Technically,
the Dashboard is another panel, so it can be grouped with any panel set.

3515-3 ch02.f.qc 1/18/01 3:45 PM Page 91

92 Part I ✦ Mastering the Flash Environment

If you have your monitor set to a high resolution (or if you happen to be getting on
in years) you may find the text at Dashboard a bit difficult to read. If so, remember
that this is scalable vector content: Simply grab any corner of the panel with your
mouse and drag out the Dashboard to a more legible size.

✦ Flash Support Center: This is Macromedia’s original online resource, the
Flash Support Center, sometimes also referred to as the Developer’s Resource
Center. This is Macromedia’s primary vehicle for the distribution of up-to-date
information about Flash and Flash related topics, so check here regularly for
the latest developments. This is a searchable area with current (and archived)
articles on many Flash topics. There are also links to downloads, documenta-
tion, forums, and many other gems.

✦ Register Flash: Although this isn’t exactly a resource for help, Macromedia
isn’t going to give you direct help unless you register your copy of Flash —
enough said?

Summary
✦ Flash 5 is the most consistent, cross-platform version yet.

✦ Flash 5 had many enhancements to the interface, preferences, and sundry set-
tings that help to make the program clearer and more powerful.

✦ Some of the most obvious changes are the addition of panels and the inclu-
sion of the new Movie Explorer, while keyboard shortcuts enable users to per-
sonalize Flash to facilitate their workflow.

✦ There’s not much to be done in Flash that doesn’t rely on these menus, pan-
els, settings, and preferences to get it accomplished. So, use this chapter as a
reference.

✦ Now that you’ve toured the Flash menus, panels, settings, and preferences,
you’re ready to step on out into Flashland and start creating.

✦ ✦ ✦

Tip

3515-3 ch02.f.qc 1/18/01 3:45 PM Page 92

Using Tools for
Navigation and
Viewing

Before you embark on a project in Flash, you need to
know how to get to the action — in a scene, a symbol,

or any other element in the movie. You need to know how to
change the size of your viewing area (not everyone has 21"
monitors). You also need to know how to move efficiently and
quickly to areas of the scene that might be off-screen. That’s
because (surprise!) scrollbars aren’t necessarily the easiest
way to shift among the contents of the screen. Flash offers
familiar navigation and viewing tools for changing the viewable
area of a scene and for moving to different areas of a scene.

The Magnifier Tool
The Flash Magnifier Tool (Z) is similar to the zoom tool of
many other programs. It has two options, Zoom In and Zoom
Out. The Z key is the keyboard shortcut for the Magnifier Tool
on both the Mac and the PC. Although this may seem counter-
intuitive, the Magnifier Tool is nearly synonymous with the
Zoom Tool — furthermore, this keyboard shortcut brings
Flash into alignment with usage established in other major
software. Keyboard shortcuts for tools located in the Drawing
Toolbar are single keystrokes. For example, simply press the
Z key to activate the Magnifier Tool. Throughout this book, we
indicate keyboard shortcuts with the following notation:
Magnifier Tool (Z).

33C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using Flash tools

The Magnifier Tool

Zoom In/Zoom Out
commands

The Hand (or
Grabber) Tool

The Zoom control
and View menu
commands

How Zoom affects
tool size and
accuracy

✦ ✦ ✦ ✦

3515-3 ch03.f.qc 1/18/01 3:45 PM Page 93

94 Part I ✦ Mastering the Flash Environment

Due to the redesign of Flash 5, keyboard shortcuts are now subordinate to what is
called focus, the active part of the Flash interface. When the Main Timeline and
Stage have focus, then the keyboard shortcuts work as they did previously: Simply
tap the appropriate key and the related tool is invoked. However, if you are work-
ing in any of the various new panels, because that panel has focus, the keyboard
shortcuts will not respond — in this case, Flash is not broken. Simply click any-
where on the Stage to switch focus and reenable the function of the keyboard
shortcuts.

Zoom In/Zoom Out
Zoom In brings you closer to the drawing so that you’re viewing it at a higher level
of magnification, whereas Zoom Out pulls you away from the drawing by showing it
at a lower level of magnification. Each level of Zoom In brings you in twice as close,
and each level of Zoom Out pulls you away in increments of one-half. In addition,
here’s a less obvious use of the Zoom Tool: If you double-click the Magnifier Tool
(see Figure 3-1), it forces the movie to display at 100 percent.

Figure 3-1: The Magnifier
Tool’s options are Zoom In
and Zoom Out.

To toggle the Magnifier Tool between the Zoom In and the Zoom Out options on the
PC, press Alt+click. On the Mac, press Option+click.

Magnifier Tool (Z)

Zoom Out
Zoom In

Note

3515-3 ch03.f.qc 1/18/01 3:45 PM Page 94

95Chapter 3 ✦ Using Tools for Navigation and Viewing

Flash 5 has added these keyboard zoom commands that bring Flash further into
alignment with other Macromedia programs. To Zoom In, press Ctrl/Command
with the plus (+) key). To Zoom Out, press Ctrl/Command with the minus (–) key).

Another way of working with the Zoom Tool, which is useful when you want to
zoom in on a specific area of your work, is to activate the Magnifier Tool either by
clicking it in the Drawing Toolbar or by pressing the (Z) key and then dragging out
a rectangle with the Magnifier Tool in the Flash work space. Flash opens the rectan-
gular area at the highest level of magnification that includes the entire area of the
rectangle.

The Hand Tool
When you’re zoomed in close on the screen, you have two methods for moving
around the stage. You can use the scroll bars, or you can use the Hand Tool, which
looks like a little gloved hand. Although the scroll bars might be more familiar, espe-
cially if you are unfamiliar with drawing and graphics applications, you’ll probably
find that you can navigate the Flash workspace contents more accurately and intu-
itively by using the Hand Tool (H). Use this tool by clicking and dragging (while hold-
ing down the mouse) in the direction that you want to move the screen. It’s important
to note that the Hand Tool does not move items in a scene to a new location — the
Arrow Tool does that. Rather, the Hand Tool shifts the viewable portion of a scene to
reveal another section that may be positioned awkwardly or somewhere off-screen. In
addition to this functionality, there’s a less obvious use of the Hand Tool — it will fit
the Stage in the frame.

The Hand Tool can also be activated temporarily by pressing the space bar; this is
a toggle that causes the Hand Tool mouse pointer (the little gloved hand) to
appear, regardless of what tool is currently selected in the Tool Palette.

Zoom Control and View Commands
In addition to the use of the Magnifier Tool, similar operations of magnification
can also be accomplished with either the Zoom Control (PC only) or with the View
Command. The only real difference between these tools and the Magnifier Tool is
where they are located within the program and the manner in which they are used
to control the level of magnification.

With the release of Flash 5, the Zoom Control has changed considerably. Although
it has been retained as an integral part of the PC version of Flash, it’s been moved
to the bottom left of the Stage, where it resides as part of the Launcher Bar. It has
been removed entirely from the Mac version.

Note

Tip

New
Feature

3515-3 ch03.f.qc 1/18/01 3:45 PM Page 95

96 Part I ✦ Mastering the Flash Environment

The Zoom Control
On the PC, the Zoom Control is a numeric entry box and pop-up menu, located at
the bottom-left corner of the Stage, as part of the Launcher Bar (see Figure 3-2). The
Zoom Control can be used as either a pop-up menu or a numerical entry box. Click
the pop-up to display a series of preset Zoom levels, or enter a number in the
numerical entry box and press Enter to view the Flash workspace at any other
zoom percentage that you desire.

Figure 3-2: The Zoom Control and Zoom
Control pop-up menu on the PC

The following preset Zoom levels can be selected from the Zoom Control drop-
down menu: Show Frame, Show All, 25%, 50%, 100%, 200%, 400% and 800%. Also,
a specific zoom level, such as 122%, can be obtained by typing the exact value in
the entry box. Selecting Show Frame or Show All often results in a zoom level other
than the evenly incremented zoom percentages available in the Zoom Control
drop-down menu. That’s because these selections are determined by two factors:
The pixel size of a given movie and the pixel area available to the scene on a given
computer monitor.

The Magnification commands
In addition to the Magnifier Tool, the new keyboard shortcuts, and the Zoom Control
(PC only), the Magnification commands, shown in Figure 3-3, are also available to
adjust your screen view. On both the Mac and PC, the Magnification commands are
accessed from the Menu Bar, View ➪ Magnification.

3515-3 ch03.f.qc 1/18/01 3:45 PM Page 96

97Chapter 3 ✦ Using Tools for Navigation and Viewing

Figure 3-3: The Magnification commands include three presets with keyboard
shortcuts. Also, note that the Work Area command is accessed from the View Menu.

The Magnification menu contains the following preset commands: 25%, 50%, 100%,
200%, 400%, 800%, Show Frame, and Show All. (For those of you on the PC, three
of these Magnification commands are equivalent to settings available through the
Zoom Control drop-down menu.) Three view commands also have corresponding
keyboard shortcuts:

✦ 100% (Ctrl/Command+1): Depending on your monitor resolution and video
card, this setting shows your work at actual size. For example, if your movie
size is 500 pixels ×400 pixels and your screen size is 800 ×600, then your
movie will occupy roughly 40 percent of your total screen area in Flash.

✦ Show Frame (Ctrl/Cmnd+2): This setting adjusts the zoom to show every-
thing within the frame boundary, as defined by the movie properties.

✦ Show All (Ctrl/Cmnd+3): This setting adjusts the zoom to fit the contents of
the current frame. If the frame is empty, the entire scene is displayed.

3515-3 ch03.f.qc 1/18/01 3:45 PM Page 97

98 Part I ✦ Mastering the Flash Environment

Another related command, also accessible from the View Menu, View ➪ Work
Area, is the Work Area command. (On prior versions of Flash, this command was
included with the Magnification commands.) This command adjusts the view to
include the work area displayed in gray outside the Stage. It’s useful when you’re
working with items that are completely or partially out of the scene (or out of
view). This command enables you to work with items positioned off-screen.

To see the broadest possible Work Area and Stage, choose View ➪ Work Area, and
then select either 50% or 100%, depending on your screen size and movie size.

Figure 3-4 compares two brush strokes made with the same exact brush at two
different levels of Zoom. Using the third largest brush, the stroke on the left was
painted at a Zoom level of 100%, while the stroke on the right was painted at a
Zoom of 200%.

Figure 3-4: How Zoom affects effective Tool Size

Tip

How Zoom Affects Tool Size

Zoom has a counterintuitive effect on brush sizes and other tools. For example, identical
brush sizes draw at different sizes, depending on the Zoom level that you have set! Similarly,
the Paint Bucket’s interpretation of gap (meaning, is that a big gap or a small gap?) is
entirely dependent on the zoom setting. It’s best to think of brush size and gap size as a fixed
screen image size. (Caution: This is unlike Photoshop and many other programs with fixed
image pixel size.) Whatever size the brush appears to be on the screen or Work Area is the
effective size of that brush. Its size is not measured in fixed pixels.

Other tools and functions that are affected by the Zoom setting are those that modify
shapes, such as the Smooth option and the functions available by choosing Modify ➪ Curves.

For optimum accuracy when manually placing or aligning items on Stage, use a consistent
Zoom setting. For example, if you are arranging several items around a particular point,
unless you use the same Zoom setting when you place each item, the accuracy of your
positioning may be compromised, which may result in an unwanted jitter in your anima-
tion. (Gap is discussed at length in Chapter 4, “Working with Selections and the Pen Tool.”)

3515-3 ch03.f.qc 1/18/01 3:45 PM Page 98

99Chapter 3 ✦ Using Tools for Navigation and Viewing

Summary
✦ Two basic tools that are common to many other programs, the Magnifier Tool

and the Hand Tool, facilitate moving around in Flash.

✦ The Magnifier Tool enables you to either zoom in or zoom out of the Flash
Stage. Similar functionality is also offered by the Magnification and Work Area
commands, which are accessed from the View menu.

✦ The Hand (or Grabber) Tool enables you to scoot areas of the Flash Stage in
or out of the viewable area of zoom.

✦ The level of zoom has a direct, counterintuitive effect upon both the apparent
Tool size and also the accuracy of positioning and aligning of items on stage.

✦ ✦ ✦

3515-3 ch03.f.qc 1/18/01 3:45 PM Page 99

3515-3 ch03.f.qc 1/18/01 3:45 PM Page 100

Working with
Selections and
the Pen Tool

Flash has a pair of tools — the Lasso Tool and the Arrow
Tool — that can be used to select lines, shapes, groups,

symbols, buttons, and other items. The Lasso Tool is primarily
used to make free-form selections and to select odd-shaped
sections of a drawing. The Arrow Tool is used primarily to
select discrete lines, shapes, groups, symbols, buttons, and
other items. In combination with the Magnet option and the
Shape Recognition options, the Arrow Tool has many unique
capabilities not found in any other program. In addition to
these tools, the new Subselect Tool, which also looks like an
arrow, can be used (in a limited way) to select these items.
However, the Subselect Tool is primarily a companion for
the Pen Tool, which is introduced at the end of this chapter.
We’ve chosen to address the Pen Tool among the selection
tools because the Pen Tool draws lines by laying down
editable points. Additionally, both the Pen Tool and the
Subselect Tool are used to manipulate those points, and,
thereby, edit lines. Nevertheless, both the Pen Tool and the
Subselect Tool are equally useful for selecting and editing
all lines and shape, so they’re selection tools, too.

The Lasso Tool
The Lasso Tool (L) is used to group-select odd or irregular-
shaped areas of your drawing. After areas are selected, they
can be moved, scaled, rotated, or reshaped as a single unit.
The Lasso Tool can also be used to split shapes, or select
portions of a line or a shape. As shown in Figure 4-1, it has
three options in the Options Tray: the Polygon Lasso, the
Magic Wand, and the Magic Wand properties.

44C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

The Lasso Tool

Magic Wand
properties

The Arrow Tool

Shape recognition

The Pen Tool

The Subselect
(Arrow) Tool

✦ ✦ ✦ ✦

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 101

102 Part I ✦ Mastering the Flash Environment

Figure 4-1: The Lasso Tool and options

The Lasso Tool works best if you drag a loop around the area you wish to select.
(Hence the tool name Lasso!) But if you slip or if you don’t end the loop near
where you started, Flash closes the loop with a straight line between your starting
point and the end point. Because you can use the Lasso Tool to define an area of
any shape — limited only by your ability to draw and use the multiple selection
capabilities of Flash — the Lasso Tool gives you more control over selections
than the Arrow Tool.

To add to a previously selected area, hold down the Shift key before initiating
additional selections.

Using the Polygon option with the Lasso Tool
The Polygon Lasso affords greater precision when making straight-edge selections,
or — in mixed mode — selections that combine freeform areas with straight edges.
To describe a simple polygon selection, click the Polygon option to toggle the Lasso
Tool on and commence Polygon selection mode. In Polygon Mode, selection points
are created by a mouse click, causing a straight selection line to extend between
mouse clicks. To complete the selection, double click.

Tip

Lasso

Magic Wand

Polygon Lasso

Magic Wand properties

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 102

103Chapter 4 ✦ Working with Selections and the Pen Tool

Mixed mode usage, which includes Polygon functionality, is available when the
Lasso Tool is in Freeform Mode. To work in Freeform Mode, the Polygon option
must be in the off position. While drawing with the Freeform Lasso, press the Alt
(Option) key to temporarily invoke Polygon Mode. (Polygon Mode continues only
as long as the Alt (Option) key is pressed.) Now, straight polygonal lines can be
described between selection points that are created by a mouse click. That is,
as long as the Alt (Option) key is pressed, a straight selection line extends between
mouse clicks. To return to Freeform Mode, simply sneeze — or release the Alt
(Option) key. Release the mouse to close the selection.

Sometimes aberrant selections — selections that seem inside out, or that have a
weird, unwanted straight line bisecting the intended selection — result from Lasso
selections. That’s usually because the point of origination of a Lasso selection is
the point to which the Lasso will snap when the selection is closed. It usually takes
a little practice to learn how to plan the point of origin so that the desired selec-
tion will be obtained when the selection is closed.

Using the Magic Wand option with the Lasso Tool
The Magic Wand option of the Lasso Tool is used to select ranges of a similar color
in a bitmap that has been broken apart. After you select areas of the bitmap, you
can change their fill color or delete them. Breaking apart a bitmap means that the
bitmap image is subsequently seen by Flash as a collection of individual areas of
color. (This is not the same as tracing a bitmap, which reduces the vast number
of colors in a continuous-tone bitmap to areas of solid color.) After an image is
broken apart, you can select individual areas of the image with any of the selection
tools, including the Magic Wand option of the Lasso Tool. You can restore a broken
bitmap by selecting the entire image (this causes it to look like a negative relief),
and then choosing Modify ➪ Group from the Menu Bar. The equivalent shortcut
is Ctrl (Command)+G.

Techniques and settings for using the Magic Wand when working with Bitmaps, as
well as Tracing Bitmaps, are covered in Chapter 12, “Using Bitmaps and Other
Media with Flash.”

Using Magic Wand properties
The Magic Wand properties option has two modifiable settings: Threshold and
Smoothing. To set them, click the Magic Wand properties button while the Lasso
Tool is active.

Cross-
Reference

Note

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 103

104 Part I ✦ Mastering the Flash Environment

The Threshold setting of the Magic Wand option
The Threshold setting defines the breadth of adjacent color values that the Magic
Wand option includes in a selection. Values for the Threshold setting range from
0 to 200: The higher the setting, the broader the selection of adjacent colors.
Conversely, a smaller number results in the Magic Wand making a narrower
selection of adjacent colors.

A value of zero results in a selection of contiguous pixels that are all the same color
as the target pixel. With a value of 20, clicking on a red target pixel with a value of
55 selects all contiguous pixels in a range of values extending from red 35 to red
75. (For those of you who are familiar with Photoshop, it is important to note that
the Flash Threshold is unlike Photoshop in which a Threshold setting of 20 selects
all contiguous pixels in a range of values extending from red 45 to red 65.)

The Smoothing setting of the Magic Wand option
The Smoothing setting of the Magic Wand option determines to what degree
the edge of the selection should be smoothed. This is similar to antialiasing.
(Antialiasing dithers the edges of shapes and lines so that they look smoother
on screen.) The options are Smooth, Pixels, Rough, and Normal.

The Arrow Tool
The Arrow Tool is used to select and move an item — or multiple items — on the
Stage. The Arrow Tool is also used to reshape lines and shapes, as those users
familiar with prior versions of Flash may remember. The Arrow Tool’s new neighbor,
which is also an arrow, but a white one, is the Subselect Tool. Its debut in Flash
was occasioned by the addition of the Pen Tool. Thus, it is most useful for moving
and editing anchor points and tangents on Bézier curves, as well as single items.

Now, with the addition of a new Pen Tool, Flash 5 enables you to draw and manip-
ulate lines and shapes using Bézier curves (or Bézier handles), much like other
vector-based programs. Often, this manipulation is accomplished with the
Subselect Tool. Because the Subselect Tool is technically a selection tool, and
because it is used in concert with the Pen Tool, which can also be used to select
and edit points on lines created by any of the other drawing tools, we present a
full discussion of both tools at the end of this chapter.

Use the Arrow Tool to reshape a line or shape by pulling on any unselected line
(or shape), or on its end points, curves, or corners. The Arrow Tool is also used to
select and move Flash elements, including lines, shapes, groups, symbols, buttons,
and other items. Five options appear in the Option Tray when the Arrow Tool (A) is
selected (see Figure 4-2): Magnet (or Snap), Smooth, Straighten, Rotate, and Scale.

When you are busy with another tool, you can temporarily toggle to the Arrow Tool
by pressing and holding down the Ctrl (Command) key.

Tip

New
Feature

Note

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 104

105Chapter 4 ✦ Working with Selections and the Pen Tool

Figure 4-2: The Arrow Tool and its five options

Using the Arrow Tool to select items
The Arrow Tool is the primary selection tool in Flash. When you click a line or
shape, a checkered pattern appears, covering it, to indicate that the line or shape
has been selected. If the item is either a Symbol or a Group, a thin, colored border
(called the Highlight) indicates selection status. This Highlight Color may be set
in the Preferences dialog by choosing Edit ➪ Preferences ➪ General.

Figure 4-3 shows a shape, a group, and a symbol as they look both when unselected
(the top items) and selected (the bottom items). The hatched pattern covers and
surrounds the square indicating that it is a selected graphic, while the thin borders
that surround the group and the symbol indicates that they have been selected.

Figure 4-3: Using the Arrow Tool to
select items

Magnet (Snap)
Smooth

Rotate

Arrow

Straighten
Scale

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 105

106 Part I ✦ Mastering the Flash Environment

In addition to clicking on a line to select it, you can also select one or more items by
dragging a rectangular marquee over them using the Arrow Tool. This operation is
called drag-select. Additional items can be added to a current selection by pressing the
Shift key and clicking the items. When you drag-select to select, previously selected
items are deselected and excluded from the selection. To include previously selected
items, press the Shift key as you drag-select.

Prior to Flash 4, the implementation of Shift Select was unlike other graphics
applications: Additional lines were added to a selection simply by clicking them.
Since Flash 4, the Shift key must be pressed in order to add to the current selec-
tion. To change this default setting for Shift Select, go to Edit ➪ Preferences, and
click the General tab. Then, in the Selection Options section, uncheck Shift Select.

Deselect one or more items by using any of these methods:

✦ Pressing the Escape key

✦ Choosing Edit ➪ Deselect All

✦ Using the keyboard shortcut Ctrl+Shift+A (Command+Shift+A)

✦ Clicking anywhere outside all the selected items

Using the Magnet option of the Arrow Tool
The Magnet (or Snap to Objects) option button is a toggle that causes items being
drawn or moved on screen to snap to existing items on the Stage. Click the option
button to toggle snapping on or off, or choose View ➪ Grid ➪ Snap to Objects.

As shown in Figure 4-4, the rectangular shape is being moved to the right with
the Arrow Tool and is snapping to the invisible grid. When snap is turned on,
Flash snaps the item to existing items. You can tell that an item is snapping by
the presence of an o icon beside the Arrow mouse pointer. For some shapes, the
icon or snap function will not work unless, when clicking to grab the shape before
moving, the shape is clicked either at the center, corner, or side.

Figure 4-4: Using the Magnet (Snap to Objects)
option of the Arrow Tool

Note

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 106

107Chapter 4 ✦ Working with Selections and the Pen Tool

Even if the Magnet option is turned on, you can temporarily override the Snap
function by holding down the Shift key as you drag or move an item.

The functionality and degree of precision of the Magnet (or Snap) button are
controlled by settings that can be customized in the Grid field of the Grid dialog,
which can be accessed by choosing View ➪ Grid ➪ Edit Grid. The settings are
measured in pixels, relative to the movie size (not the screen size).

Understanding shape recognition
Shape recognition is the general term for a set of options that can be set to assist
accurate drawing and manipulation of basic shapes. These options are the Smooth
and Straighten options, which are used in conjunction with the Arrow Tool to
clean up drawings by clicking their respective buttons to invoke their smoothing
or straightening action. This is fully explained in the sections that follow.

When used in conjunction with the Pencil Tool, more powerful shape recognition
can be invoked — the only real difference is that, with respect to the Pencil Tool,
shape recognition processes the lines automatically. For example, a crude lumpy
oval will be automatically recognized and processed into a true oval. Using shape
recognition with the Pencil Tool is explained in greater detail in the first section
of Chapter 5, “Working with the Drawing and Painting Tools.”

For the Arrow and the Pencil Tools, both the degree to which shape recognition
processes your drawings and also the strength with which the Smooth and Straighten
options interact with your drawings may be adjusted with the Drawing Settings pane
of the Editing tab of the Preferences dialog: Edit ➪ Preferences ➪ Editing.

Here’s how shape recognition works with the Arrow Tool: Sketch something
spontaneously (but not too wildly!). Then use shape recognition to transform your
sketch into precision geometric forms. Start by sketching a rough circle, square,
or rectangle. Then click the Arrow Tool and select the item you’ve just sketched.
Then click either the Straighten or Smooth button to begin shape recognition. For
hard-edged items such as a polygon, click the Straighten option button repeatedly
until your rough sketch is a recognizable and precise geometric form. For smooth-
edged items that approximate an oval, click the Smooth option button repeatedly
until your rough sketch becomes an exact circle.

In addition to the treatment here in this chapter, shape recognition is detailed
elsewhere in the book. The settings that control shape recognition are first
explained in Chapter 2, “Exploring the Interface: Panels, Settings, and More.”
Shape recognition is also discussed further, in context with drawing processes, in
Chapter 10, “Drawing in Flash.”

Cross-
Reference

Note

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 107

108 Part I ✦ Mastering the Flash Environment

Using the Smooth option with the Arrow Tool
The Smooth option is a button that simplifies selected curves, as shown in Figure
4-5. Smoothing reduces the number of bumps and variations (or points of transi-
tion) along the span of a complex curve so that the curve spans the same distance
with fewer points. Repeated use of the Smooth button on a line results in a curve
with only two points, one at either end. To use this option, a line must first be
selected with the Arrow Tool, and then the Smooth button can be used to reduce
the points in the selected line (or line segment). Action similar to the Smooth but-
ton can also be accessed by choosing Modify ➪ Smooth.

Figure 4-5: Using the Smooth
option with the Arrow Tool: The
curve on the left was drawn with
the Pencil Tool (in Ink Mode).
Then the curve was selected by
clicking it with the Arrow Tool and
smoothed by hitting the Smooth
option button twice. That result is
shown on the right.

Using the Straighten option with the Arrow Tool
The Straighten option is a button that is used to make selected line segments
less curved. The Straighten button operates on the same principle as the Smooth
button, except that it’s used for straightening (instead of smoothing) a selected
line segment. Repeated use of the Straighten button turns a curvy line into a series
of angled lines. Action similar to the Straighten button can also be accessed by
choosing Modify ➪ Straighten.

In Figure 4-6, the Pencil Tool (in Ink Mode) was used to draw the rough, freehand
T on the left. After selecting this rough T by clicking with the Arrow, the Straighten
option button was clicked once to create the refined T shown on the right.

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 108

109Chapter 4 ✦ Working with Selections and the Pen Tool

Figure 4-6: Using the Straighten
option with the Arrow Tool

The degree of the Smoothing or Straightening adjustments that can be made with
the Smooth or Straighten button is regulated by the number of times that the button
is clicked. Although it may appear that the degree of automatic Smoothing or
Straightening can be adjusted by choosing Edit ➪ Preferences ➪ Editing and then
selecting one of the four choices (Off, Rough, Normal, or Smooth), these options
only affect smoothing or straightening done during the drawing process (with
shape recognition turned on), not adjustments made with the Smooth or Straighten
buttons.

Using the Rotate option with the Arrow Tool
The Rotate option enables you to rotate, skew, or slant a selected line, group,
symbol, or item. With the graphic element selected, click the Rotate option to put
it into Rotation Mode. Eight circular handles appear. Drag a corner handle to rotate
the item. Drag either a middle or side handle to skew or slant. You can also rotate
items by choosing Modify ➪ Transform ➪ Rotate.

In Figure 4-7, the Rectangle Tool was used to draw the square shown at the upper
left. After it was selected by clicking with the Arrow Tool, the Rotate button was
clicked, resulting in the superimposed checker pattern and bounding box with
eight circular, draggable handles, as shown at the upper right. Then, the square
was rotated counterclockwise by click-dragging one of the four circular handles
located at the corners of the square, as shown at the bottom left. Click-dragging
any of the four internal handles (the handles not on the corners) results in a
skewing of the shape, as shown at the bottom right.

Note

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 109

110 Part I ✦ Mastering the Flash Environment

Figure 4-7: Using the Rotate
option with the Arrow Tool

When reshaping, scaling, or rotating a solid item with fills, Flash handles the filled
area as if a line of zero thickness enclosed it. As you readjust such an item to a
new shape, the fill either expands or contracts accordingly.

Using the Scale option with the Arrow Tool
The Scale option button enables you to scale or stretch a selected line, shape, group,
symbol, button, or other item. With the graphic element selected, click the Scale but-
ton. Eight square handles appear around the selected graphic element. Click and drag
a corner handle to scale the item. Click and drag either a middle or side handle to
stretch the item. You can also scale by choosing Modify ➪ Transform ➪ Scale.

As shown in Figure 4-8, after drawing the square on the upper left with the
Rectangle Tool, the square is first selected with the Arrow Tool and then the Scale
button is clicked, resulting in the superimposed checker pattern and bounding box
with eight square, draggable handles, as shown at the upper right. Clicking and
dragging on any corner handle, as shown at the lower left, symmetrically resizes
the square. Asymmetrical scaling is accomplished by clicking and dragging on any
of the side handles, as shown at the lower right.

Using the Scale and Rotate dialog
Choosing Modify ➪ Transform ➪ Scale and Rotate elicits a dialog that combines
the properties of both the Rotate and Scale option buttons in one dialog, enabling
you to input numeric values for the amount of scale and transformation. (It’s very
much like the Photoshop Numeric Transform Tool.) The keyboard shortcut for
this hybrid is Ctrl+Alt+S (Command+Option+S). This functionality is further dupli-
cated in the Transform Panel (Window ➪ Panels ➪ Transform). Although using
either numeric transform dialog may seem unintuitive and hard to use unless
you already know what you want to accomplish, they are extremely valuable
for repetitive production tasks.

Tip

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 110

111Chapter 4 ✦ Working with Selections and the Pen Tool

Figure 4-8: Using the Scale option with the Arrow Tool

Using arrow states to reshape and
reposition drawings
In addition to the actions accomplished by selecting a line (or line section) and
clicking an option, three arrow states — Move Selected Element, Reshape Curve
or Line, and Reshape Endpoint or Corner — enable you to reshape and move parts
of your drawings. It works like this: As you move the Arrow Tool over the Flash
Stage, the Arrow Tool changes the state of its cursor to indicate what tasks it can
perform in context with various items (the line or fill) closest to the Arrow Tool’s
current position.

When reshaping brush strokes and similar items with the Arrow Tool, make sure
that you don’t select the entire brush stroke before trying to reshape the outline. If
you do, you’ll only be able to move the entire brush stroke — you won’t be able to
reshape it.

Figure 4-9 shows a series of images that demonstrate the various Arrow states
in context with several kinds of shapes. These shapes are a filled shape, a brush
stroke, and a brush stroke with an outline applied. In the upper left, the Move
Selected Element Arrow state appears when the Arrow is passed over either one
of these shapes. In the upper right, the Reshape Curve or Line Arrow state appears
when the Arrow is hovered over any line or over the perimeter of a brush stroke.
At the lower left, the Reshape Endpoint or Corner Arrow state appears when the
Arrow is hovered over a corner. At the lower right, an Arrow state cursor is being
used to reshape each item.

Figure 4-10 shows the completion of the reshape operations indicated in Figure 4-9.

Tip

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 111

112 Part I ✦ Mastering the Flash Environment

Figure 4-9: Using Arrow states to reshape and
reposition items

Figure 4-10: The changes resulting from the
reshaping shown in Figure 4-9.

To make your reshaping go even easier, try these techniques:

✦ Press the Ctrl+Alt (Command+Option) keys, click a line or segment of a line,
and drag to create a new corner point.

✦ Selected lines cannot be reshaped. Click anywhere (outside all selected items)
to deselect, and then reshape the line by clicking it with one of the different
states of the Arrow Tool.

✦ Smooth complex lines to make reshaping easier.

✦ Increase magnification to make your reshaping easier and more accurate.

✦ Prior to reshaping, select any group of elements (as a multiple selection, using
Shift+select) that you want to change in unison.

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 112

113Chapter 4 ✦ Working with Selections and the Pen Tool

Moving grouped and ungrouped elements with the Arrow Tool
Text and Groups are selected as single elements and move as a single unit.
After you create text in a given frame (text functions are discussed in Chapter 7,
“Working with Text”), Flash treats the text as one block, or group, meaning that all
the individual letters move together when the box is selected. Similarly, a group of
graphic elements — such as lines, outlines, fills, or shapes — can be grouped and
moved or manipulated as a single element. However, when you move an item that
is not grouped, only the selected part is moved. This can be tricky when you have
ungrouped fills and outlines, because selecting one without the other could result
in detaching the fill from the outline or vice versa. To move separate elements
(such as a rectangular line and its colored fill area) in the same direction simulta-
neously, group them first. To group separate elements, first select them all, and
then group them with Modify ➪ Group. If necessary, they can be ungrouped later.
Grouping is further discussed in Chapter 10, “Drawing in Flash.”

Duplicating items with the Arrow Tool
The Arrow Tool can also be used for duplicating items. Simply press the Alt
(Option) key while dragging a selected item (or line segment) with the Arrow
Tool. The original item remains in place, and a new item is deposited at the end
of your drag stroke.

Introducing the Pen Tool
Finally, Flash has a Pen Tool. Some developers groused over the addition of this
new feature, saying that the original drawing set was fine and that this was only
being added to attract new users who might be more familiar with FreeHand or
other drawing programs. Frankly, these people sounded like members of a child’s
club, comfortable in their tree fort, as they haul up the rope ladder. The inclusion
of the Pen Tool and its close associate, the Subselect Arrow, shown in Figure 4-11,
has made the Flash drawing tools far more robust and gives artists more options
for creating, editing, and optimizing their art.

For example, previously, when trying to the reduce file size of a movie, an artist
might resort to one of the Optimize commands, hoping to reduce the number of
points in a drawing. But this had the disadvantage of being both unpredictable and
uncontrollable. Now, with the Pen Tool, an artist can select individual points and
delete them one by one, resulting in aesthetic precision and reduced file size!

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 113

114 Part I ✦ Mastering the Flash Environment

Figure 4-11: Neither the Pen Tool nor the
Subselect Tool has options in the Options Tray.

Using the Pen Tool
The Pen Tool (P) is used to draw precision paths that define straight lines and
smooth curves. These paths define adjustable line segments, which may be straight
or curved — the angle and length of straight segments is completely adjustable, as is
the slope and length of curved segments. To draw a series of straight-line segments
with the Pen Tool, simply move the cursor and click successively: Each subsequent
click defines the end point of the line. To draw curved line segments with the Pen
Tool, simply click and drag: The length and direction of the drag determines the
depth and shape of the current segment. Both straight- and curved-line segments
can be modified and edited by adjusting their points. In addition, any lines or shapes
that have been created by other Flash drawing tools can also be displayed as paths
(points on lines) and edited with either the Pen Tool or the Subselect Tool.

The Preferences for the Pen Tool are located in the Pen Tool section of the
Preferences dialog. (Choose Edit ➪ Preferences ➪ Editing.) There are three settings:
Pen Preview, Point display, and Cursor style. These settings are covered in detail in
Chapter 2, “Exploring the Interface: Panels, Settings, and More.” As regards your
preference for Cursor style, although you can choose between a precise crosshair
cursor and a tool icon cursor, you can also use a keyboard shortcut to toggle
between the two: Caps Lock toggles Pen Tool cursors between the precise
crosshair and the Pen icon.

Cross-
Reference

Subselect

Pen

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 114

115Chapter 4 ✦ Working with Selections and the Pen Tool

As Figure 4-12 shows, the Pen Tool cursor displays a number of tiny icons to the
lower right of the Pen Tool. These are the Pen states. Four of these Pen states are
shown in this composite image, which is a detail of a path describing a white line
over a light-gray background, shown at a zoom of 1600.

Figure 4-12: In addition to the choice between the cursor icon and crosshair,
the Pen Tool displays seven Pen states that indicate the Pen’s function under
various circumstances.

✦ The Pen displays a small (x) when it’s simply over the stage (A).

✦ When the Pen is over a path, it displays a (+) to indicate that clicking there
will add a point to the path (B).

✦ When the Pen hovers over an existing point, it displays a (^) to indicate that
clicking that point will turn it into a corner point (C).

✦ When the Pen hovers over a corner point, it displays a (–) sign to indicate that
clicking this corner point will delete it (D).

Working with the Pen Tool in a movie whose background color is set to black can
seem to be nearly impossible — if your Layer Outline Color is set to black! Change
the Layer Outline Color to contrast with your background and Pen away! This same
principle applies if your background is red (or any other color) and the Layer
Outline Color is set to that same color.

As shown in Figure 4-13, there are three more Pen states and a number of details to
be defined about the Pen Tool.

Tip

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 115

116 Part I ✦ Mastering the Flash Environment

Figure 4-13: More Pen states are shown in this composite image, together
with other functions of the Pen Tool.

✦ When the Pen is hovered over an end point, it displays an (o) to indicate that
this is an end point (E). Click this point to connect a continuation of this path
or, when making a closed shape, to close the path.

✦ With the Ctrl (Command) key pressed, when the Pen hovers over a path or
line, it displays as a hollow arrow with a filled black box (F). In this manner,
the Pen Tool is mimicking the Subselect Tool.

✦ With the Ctrl/Command key pressed, when the Pen hovers over a point, it
displays the same hollow arrow, but with a hollow box (G). In this manner,
too, the Pen Tool is mimicking the Subselect Tool.

✦ When adjusting a path with either the Pen Tool or the Subselect Tool, the
default for selected points is a filled circle (H), while unselected points
display as a hollow squares (I). Note that the unselected points display a
single tangent handle (J), bound toward the selected point, which displays
two tangent handles (K).

Now that we’ve toured the various Pen Tool icons and Pen states, and have
defined the fine details, points, and tangent handles, it’s time to start drawing
with the Pen Tool. To draw and adjust a straight-line segment with the Pen Tool,
follow these steps:

1. Click to initiate the beginning of your line.

2. Then, click to create subsequent points and define individual line segments.

3. Each subsequent click creates a corner point on the line that determines the
length of individual line segments.

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 116

117Chapter 4 ✦ Working with Selections and the Pen Tool

4. To adjust straight segments, press the Ctrl (Command) key and click a point
to select it. Continue pressing the Ctrl (Command) key as you drag and move
the point to change the angle or length of the segment.

5. Or, with the Ctrl (Command) key pressed, click and drag on the tangent handles
of the point to adjust the line. Remember that corner points occur on a straight
segment or at the juncture of a straight segment and a curved segment.

When drawing with the Pen Tool, press the Shift key to force constrain drawing to
either 45-degree or 90-degree angle.

To draw and adjust a curved line segment with the Pen Tool, follow these steps:

1. In one continuous motion, click to create the first anchor point.

2. Then, drag the Pen Tool in the direction you want the curve to go.

3. Repeat this process to create subsequent curve points for curved segments.

4. Or simply click elsewhere to change to make the subsequent segment a
straight line with a corner point.

5. As with adjusting straight segments, press the Ctrl (Command) key and click
a point to select it, continue pressing the Ctrl (Command) key as you drag and
move the point to change the angle or length of the segment.

6. Or, with the Ctrl (Command) key pressed, click and drag on the tangent
handles of the point to adjust the depth and shape of the curve.

Although both corner points and curve points may be adjusted, they behave
differently:

✦ Because a corner point defines a corner, adjusting the tangent handle of a
corner point only modifies the curve that occurs on the same side as the
tangent handle that is being adjusted.

✦ Because a curve point defines a curve, moving the tangent handle of a curve
point modifies the curves on both sides of the point.

✦ You can also use the arrow keys, located on your keyboard, to nudge corner
and curve points into position. Press the Shift key to augment the arrow keys
and to make them nudge 10 pixels with each click.

You can also reshape any lines or shapes created with the Pen, Pencil, Brush, Line,
Oval, or Rectangle Tools by dragging with the Arrow Tool, or by optimizing their
curves with Modify ➪ Optimize.

Note

Tip

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 117

118 Part I ✦ Mastering the Flash Environment

Using the Subselect (Arrow) Tool
The Subselect Tool (A) has two purposes:

1. To either move or edit individual anchor points and tangents. (You can use
the Subselect Tool to display points on both lines and shape outlines and
modify them by adjusting their points.)

2. To move individual objects. When moving the Subselect Tool over a line or
point, the hollow arrow cursor displays one of two states: When over a line it
displays a small, filled square next to it; when over a point, it displays a small,
hollow square. When either cursor appears, the item can be clicked and
moved about the stage.

If you use the Subselect Tool to drag a selection rectangle around two items, you’ll
find that although both may be selected, you can only move one of them.

Figure 4-14 shows the use of the Subselect Tool to move a path (A), to move a single
point (B), to select a tangent handle (C), and to modify a curve by adjusting its tan-
gent handle (D). Note that both the before and after are shown before releasing the
handle.

Figure 4-14: Using the Subselect Tool

The Subselect Tool is most useful for modifying and adjusting paths. To display
anchor points on a line or shape outline created with the Pencil, Brush, Line, Oval,
or Rectangle Tools, simply click the line or shape outline with the Subselect Tool.
This reveals the points that define the line or shape. Click any point to cause its
tangent handles to appear. If you have a shape that is all fill, without any stroke,
you’ll need to position the Subselect Tool precisely at the edge of the shape in
order to select or move it with the Subselect Tool.

To convert a corner point into a curve point, follow these steps:

1. Click to select the point with the Subselect Tool.

2. While pressing the Alt (Option) key, click and drag the point.

3. A curve point with tangent handles appears, replacing the original corner point.

Note

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 118

119Chapter 4 ✦ Working with Selections and the Pen Tool

By holding down the Ctrl (Command) key, the Pen Tool can also be used to mimic
the function of the Subselect Tool — except when converting a corner point.

An important use of the Pen Tool/Subselect Tool combo is editing lines for optimal
file size. The simpler your shapes, the smaller your file size and the faster your
movie downloads. Most often, this involves deleting extraneous points. There are
a couple of ways to delete points:

✦ Choose the Subselect Tool from the Toolbox, and then click to select the line
with the Subselect Tool, which causes the individual points to appear as hol-
low circles along the line. Select the point that you wish to delete. Click the
delete key.

✦ Choose the Pen Tool from the Toolbox, which causes all paths on the current
layer to be selected. Bring the Pen Tool over the point that you want to delete.
The cursor updates and displays a small inverted v (^) to the lower right,
which is the Corner Point cursor. Click the point with the Corner Point cursor,
and continue to hover over the point. After clicking with the Corner Point cur-
sor, the cursor updates and displays a small minus sign (–) to the lower right,
which is the Delete Point cursor. Click the point with the Delete Point cursor
to delete it.

✦ When deleting more than one point from a closed shape, such as an oval or
polygon, use the Subselect Tool to drag and select any number of points.
Press Delete to eliminate the selected points. The path heals itself, closing
the shape with a smooth arc or line.

If you used the Subselect Tool to select a path and then Shift+select several points
on it, those points will show handles, turning from solid squares to hollow circles,
which indicates that they are now moveable. However, if you attempt to move all
of the points simultaneously with the Subselect Tool, only one point will move.
However, all the points can be moved in unison by tapping the arrow keys.

Stroke and color
You may have noticed that we’ve been discussing the Pen Tool and the Subselect
Tool in a relative vacuum — that is, there’s been no mention yet of either stroke or
color. Well that’s easy enough to do, because both those controls are sequestered
off in the Stroke Panel. But that’s not why we’ve refrained from discussing the more
colorful aspects of the Pen Tool. Rather, in this chapter, we focused on the aspects
of the Pen Tool that are most closely related to selecting. We begin the next chapter,
“Working with the Drawing and Painting Tools,” with a rudimentary discussion of
color as it applies to all Drawing Tools. This is a discussion of the settings for the
Stroke and Fill Panels, which involve Stroke Height and Stroke Color — the color
settings for the Pen Tool. See you there.

Tip

Note

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 119

120 Part I ✦ Mastering the Flash Environment

Shifting Points? Too Many Points?

We’ve heard reports of perceived problems with the new Pen Tool. Some users noted that
Pen paths seemed to “add points” when adding keyframes, or between sessions. Naturally,
this seemed very odd, so we did some research through a contact at Macromedia — and
here’s what we found out.

The Macromedia Flash Player is driven by quadratic curves, which differ from Bézier curves
in two ways: They are faster drawing and they result in a more compact file. This is partially
because they employ a single tangent handle for each node, rather than the two tangent
handles per node in a Bézier format.

The Flash Editor is also driven by quadratics, and even when drawing with the Pen Tool, the
internal curve descriptions are still in quadratics—so, you can always push and pull on those
Pen Tool curves, and do many other things in the customary Flash manner. Therefore, each
time you choose the Pen Tool, Flash converts selected lines to an onscreen Bézier represen-
tation in order to support Bézier-style curve editing. When the editing is done, Flash converts
the curve back to quadratics for storage and display— the Bézier nodes aren’t stored.

At the next Pen Tool editing session, the Bézier representation is created, on the fly from the
stored quadratic definition. This can lead to some confusion, because it may appear as
though the number of points has increased. However, there’s no worry about too many
points, or changed points, because — in the strict Flash sense — those points don’t really
exist in the file. What is important is the overall shape complexity that is stored in the saved
quadratic representation. When you optimize a line by reducing points with the Pen Tool,
this reduces complexity and that is retained when the file is saved. Summary: You will see
your shapes accurately retained, but because the Bézier nodes are calculated on demand
and only appear while editing, the points may display differently between sessions.

Summary
✦ Flash provides a range of tools that are used to select and modify

items on the Stage.

✦ The Lasso Tool is useful for making free-form selections, while
the Magic Wand option is a powerful tool for selecting a range of
colors — particularly when working with imported bitmaps that
you break apart.

✦ The Arrow Tool has multiple uses. With its shape-recognition
features, it can be used to smooth or straighten selected
drawings — which simplifies their forms to create smaller
file sizes.

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 120

121Chapter 4 ✦ Working with Selections and the Pen Tool

✦ The Arrow Tool is also used to rotate, scale, and skew selected items.

✦ The Arrow states enable you to simply click lines, fills, and corners to reshape
items with rapid ease.

✦ The new Flash Pen Tool and its companion, the Subselect Tool, enhance the
Toolbox with their precision path-drawing and point-editing capabilities.

✦ ✦ ✦

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 121

3515-3 ch04.f.qc 1/18/01 3:45 PM Page 122

Working with
the Drawing and
Painting Tools

F lash 5 significantly revamped the former Toolbar and
renamed it the Toolbox. Flash 5 also added two new

tools: the Pen Tool and the Subselect (Arrow) Tool. Both
of these new tools were described in detail in Chapter 4,
“Working with Selections and the Pen Tool.” In this chapter,
we look at the rest of the drawing tools — the Pencil, Line,
Oval, Rectangle, Brush, Dropper, Ink Bottle, Paint Bucket,
and Eraser Tools.

Perhaps the most significant renovation of the Toolbox is in
the area formerly referred to as the Modifier Tray. This is now
called the Options Tray. Although that, in itself, is not a big
deal, this is: For most tools, many of the former modifiers (or
options) have been relocated to individual panels. General
routines for accessing and managing panels were discussed
in the Window menu section of Chapter 2, “Exploring the
Interface: Panels, Settings, and More.”

Choosing Colors
Whenever any Flash Drawing or Painting Tool is used, the
stroke and fill colors are determined by the current settings of
the color controls located in the Flash Toolbox. These controls
are present regardless of which tool is being used. Although
these controls operate like color chips that indicate the cur-
rent color, they’re really buttons: Click either Color button to
open the current Swatches pop-up, shown in Figure 5-1, and
select a new stroke or fill color.

55C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Choosing colors

Using tools

The Pencil Tool

The Line Tool and line
styles

The Oval and
Rectangle Tools

The Brush Tool

The Dropper Tool

The Ink Bottle Tool

The Paint Bucket Tool

The Eraser Tool

✦ ✦ ✦ ✦

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 123

124 Part I ✦ Mastering the Flash Environment

In addition to the basic reorganization of the Toolbox, the color controls include
three new buttons, arrayed across the bottom of the Color Tray. These are, from
left to right, buttons for Default Stroke and Fill, None, and Swap. The Default but-
ton sets the stroke to black and the fill to white. The None button (only active with
the Pen, Oval, and Rectangle Tools) sets the active control to apply no color. The
Swap button swaps the current colors between the Stroke and Fill controls.

Figure 5-1: This is the
current Swatches pop-up
for the Pencil Tool.

Clicking either the Stroke or Fill Color buttons invokes the current Swatches pop-
up. This pop-up displays the same Swatch that is currently loaded in the Swatches
Panel. It includes a hexadecimal color entry box, another iteration of the None but-
ton, and a button that launches the Color Picker. For all drawing tools, elementary
color selection is accomplished by clicking either the Stroke or Fill Color buttons
and then choosing a color from the Swatches pop-up. More advanced color usage
is detailed in the next chapter.

We’ve devoted Chapter 6, “Applying Color,” to an explanation of Flash Color. It
includes not only the details of working with Flash Color, but also a little primer on
color theory, computer color, and Web color.

Cross-
Reference

New
Feature

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 124

125Chapter 5 ✦ Working with the Drawing and Painting Tools

The Stroke and Fill Panels
Users of prior versions of Flash, when beginning to use the Drawing and Painting
Tools, might well inquire about the disappearance of the controls for Line Thickness
and Line Style, as well as the Fill Color control. But that’s because these controls now
reside in the Stroke and the Fill Panels, where they are now referred to as the Stroke
Height, Stroke Style, and Fill Style controls. These panels, and the controls they con-
tain, are consistently available regardless of which tool is being used. Panels are
accessed from the Window menu, by choosing Window ➪ Panels and then choosing
the individual panel from the submenu.

Stroke Color
To select a color for a stroke that you are about to draw, click the Stroke Color
button of the Stroke Panel (see Figure 5-2) to invoke the Swatches pop-up and then
select a color. To change the color of a stroke that’s already drawn, first select the
item with the Arrow Tool, click the Stroke Color button of the Stroke Panel, and
then select a new color from the Swatches pop-up.

Selecting stroke color and changing stroke color can be accomplished with either
the Stroke Color button in the Toolbox or in the Stroke Panel. This same procedure
can also be applied to paths drawn with the Pen Tool.

Figure 5-2: The Stroke Panel and Stroke Style
drop-down

Stroke Preview

Stroke Style drop-downStroke Height
(read-out and
numeric entry) box Stroke Height slider

Stroke Color

Stroke Style drop-down

Stroke Panel options

Note

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 125

126 Part I ✦ Mastering the Flash Environment

Stroke Height
In Flash 5, for all tools that draw or display a line or outline, the thickness of the
line — or stroke — is controlled by either dragging the Stroke Height slider or by
entering a value in the Stroke Height numeric entry box. When dragging the slider, the
numeric entry box updates and displays a height readout analogous to the current
position of the slider. This also functions as a precise numeric entry field. Simply
enter a value to create a stroke with a specific height, or thickness. Permissible val-
ues range from 0 to 10, with fractions expressed in decimals.

Depending upon the level of zoom, some lines may not be visible on screen —
even though they will print correctly on a high-resolution printer.

Stroke Style
The Stroke Style drop-down offers seven stroke, or line, styles: Hairline, Solid,
Dashed, Dotted, Ragged, Stippled, and Hatched.

Using the custom stroke styles
Click the Stroke Panel options (the triangular button at the upper right of the Stroke
Panel) and then choose Custom (the only option) to access the Line Style dialog.
The Line Style dialog, which remains unchanged from Flash 4, is used to generate
custom line styles by selecting from a range of properties for each preset line. Basic
properties include Stroke Weight and Sharp Corners. Depending on the preset line
style, additional properties are available for each style.

Points are the default unit of measurement for determining lengths in the Line
Style dialog.

To closely examine a custom line before you begin drawing with it, click the
Zoom 4 × check box beneath the preview area of the Line Style dialog. Note the
Sharp Corners check box, which toggles this Line Style feature on and off. The Sharp
Corners feature ensures that the end of a line component (such as a dash), rather
than a space, extends to each corner, so that the corners appears sharp.

Although there is no way to save custom line styles within Flash, you can create a
separate .FLA file and save your favorite lines there. This will ease your workflow if
you want to make more extensive use of Custom Line Styles. You can apply these
styles quite easily to other lines by using the Dropper Tool in conjunction with the
Ink Bottle Tool. For more information, see the sections on both the Dropper and
the Ink Bottle Tools in this chapter.

Tip

Note

Note

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 126

127Chapter 5 ✦ Working with the Drawing and Painting Tools

Hairline line style
If you need a line that always appears one pixel wide, and does not scale subject to
zoom, choose Hairline from the Stroke Style drop-down.

Solid Line Style
The Solid Line Style draws a solid, unbroken line. The customization variables for
the Solid Line Style are limited to Thickness and Sharp Corners. These two vari-
ables are always available in the Line Style dialog, regardless of which Line Style
is being customized.

The Solid Line Style is the optimal Line Style for Web viewing because it requires
fewer points to describe it and, consequently, is less file intensive. The smaller file
sizes theoretically translate into faster download times when the artwork is trans-
mitted over the Web. However, the difference in file size may be so nominal that
the difference in download time that it saves is negligible.

Dashed Line Style
The Dashed Line Style draws a solid line with regularly spaced gaps. Customization
variables that appear in the Line Style dialog for the Dashed Line Style are Line
Thickness, Sharp Corners, Dash Length, and Gap Length. Both Dash Length and
Gap Length are precisely adjustable by changing the numeric entries in their
respective fields.

Dotted Line Style
The Dotted Line Style draws a dotted line with evenly spaced gaps. At first glance,
the Dotted Line Style appears to have only one variable — Dot Spacing. Change the
numeric entry in this field to control the quality of the custom dashed line. But
don’t overlook the Thickness drop down, which offers a range of settings for Dot
Thickness.

Ragged Line Style
The Ragged Line Style draws a ragged line with various gaps between the dots. The
quality of both the raggedness and the gaps are adjustable. The Ragged Line Style
has three parameters unique to ragged lines: Pattern, Wave Height, and Wave
Length. Each has a drop-down menu with multiple variables that, in combination,
afford myriad possibilities.

Stippled Line Style
The Stippled Line Style draws a stippled line that goes a long way toward mimicking
an artist’s hand-stippling technique. The qualities of stippling are adjustable with
three variables unique to the nature of stippled lines: Dot Size, Dot Variation, and
Density. Each variable has a drop-down with multiple settings that can be combined
to generate a staggering array of line effects.

Note

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 127

128 Part I ✦ Mastering the Flash Environment

Hatched Line Style
The Hatched Line Style draws a hatched line of amazing complexity that can be
used to accurately mimic an artist’s hand-drawn hatched-line technique. As shown
in Figure 5-3, the numerous hatching qualities are highly adjustable, making this
perhaps the most complex of all the Flash drawing tools. The Line Style dialog has
six parameters unique to hatched lines: Thickness (hatch-specific), Space, Jiggle,
Rotate, Curve, and Length.

Figure 5-3: The Hatched Line Style wins the prize
for the most variables. With these six drop-down
lists, a plethora of unique line effects can be hatched.

The Hatched Line Style thickness settings are in addition to the usual Thickness
settings that are available as a default with the Line Style dialog. Combined, they
offer a much higher level of adjustment. The default thickness (measured in
points) defines the thickness of the overall hatched line, while this additional
thickness setting defines the thickness of the individual scrawls that comprise the
aggregate hatched line.

Applying and changing fills with the Fill Panel
The Oval, Rectangle, Brush, and Paint Bucket Tools all rely on the Fill Panel (shown
in Figure 5-4) to set or customize the type and color of fill applied to a new shape
that is about to be drawn, or to change the color of a selected shape (or shapes).

Note

Curve drop-down menu

Rotate drop-down menu

Length drop-down menu

Thickness drop-down menu

Jiggle drop-down menu

Space drop-down menu

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 128

129Chapter 5 ✦ Working with the Drawing and Painting Tools

Figure 5-4: The Fill Panel and the Fill Style
drop-down, which offers five kinds of fills: None,
Solid, Linear Gradient, Radial Gradient, and Bitmap.

The Fill Style can be changed as follows: Choose a Fill Style from the drop-down of
the Fill Panel. Then click the Fill Color button on the Toolbox to invoke the Swatches
pop-up. If you’ve chosen a Solid Fill Style, then select a color for your fill. If you’ve
chosen either gradient, clicking the Fill Color button causes a row of gradient color
chips to appear at the bottom of the Swatches pop-up. Choose a gradient for your
fill. For a more exhaustive discussion of color, including working with swatches, and
creating and selecting gradients, please refer to Chapter 6, “Applying Color.”

Adjusting Stroke and Color
Changes in stroke and color apply to lines or curves drawn with the Pen, Line,
Pencil, Oval, and Rectangle Tools. For ovals and rectangles, the changes apply only
to the outline, not to the fill.

Changing Stroke Height
To change the Stroke Height, or Thickness, of a line, follow these steps:

1. Use the Arrow Tool to select the line.

2. If it’s not already open, access the Stroke Panel from the Window menu by
choosing Window ➪ Panels ➪ Stroke.

3. Choose a new Stroke Height either by using the Stroke Height slider or by
entering a new Stroke Height in the numeric entry field and pressing Enter.

Changing Stroke Color
To change the Stroke Color of a line, follow these steps:

1. Select the line with the Arrow Tool.

Fill Style

Fill Color Fill Style drop-down

Fill Panel options

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 129

130 Part I ✦ Mastering the Flash Environment

2. Then, locate either one of these Stroke Color controls:

• The Stroke Color in the Color Tray area of the Toolbox

• The Stroke Color on the Stroke Panel (Window ➪ Panels ➪ Stroke)

3. Finally, choose a new color from the Swatches pop-up.

The Pencil Tool
The Pencil Tool is used to draw lines and shapes in any given frame of a scene
and — at first glance — operates much like a real pencil. (A frame is the basic unit
of a Flash creation. Frames and scenes are described in the Chapter 8, “Exploring
the Timeline.”) But a deeper examination reveals that — unlike a real pencil — the
Flash Pencil Tool can be set to straighten lines and smooth curves as you draw. It
can also be set to recognize or correct basic geometric shapes. Or, you can use the
Pencil Tool options to create specific shapes. In addition, you can modify lines and
shapes manually.

When the Pencil Tool is active, one option appears in the Options Tray. This is the
Pencil Mode pop-up menu, shown in Figure 5-5, which sets the Pencil Tool’s current
drawing mode. Users of prior versions of Flash might inquire about the disappear-
ance of the controls for Stroke Weight and Line Style — these now reside in the
Stroke Panel, where they are referred to as the Line Style and Stroke Height controls.

Figure 5-5: The Pencil Tool and the Pencil Mode
option are shown here with pop-up, which reveals
the Straighten, Smooth, and Ink processing options.

Pencil

Pencil Mode

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 130

131Chapter 5 ✦ Working with the Drawing and Painting Tools

Using the Pencil Mode pop-up options
The Pencil Mode pop-up menu has options that control how Flash processes the
lines that you draw. That’s right, unlike any other program we know of, Flash can
p-r-o-c-e-s-s the lines that you draw, as you draw them! We call this line processing —
it’s a kind of shape recognition specific to the Pencil Tool that may make drawing
easier for artists who are draftsmanship-challenged. It also has the benefit of gener-
ating drawings that are simpler and less complex (meaning that they are described
by fewer points). As a result, the drawings transmit across the Web at greater speed
because they require less data, which means a smaller file size, to describe them.
The Pencil Tool has three processing options. Two are Straighten and Smooth; the
third, for those who prefer the characteristics of hand drawing, is Ink Mode.
Working in Ink Mode lets you turn off all line processing.

Understanding line processing
So, what is meant by processing the lines? Processing differs from shape recogni-
tion in that it is automatic and occurs while the line is in the process of being drawn.
This differs from shape recognition with the Arrow Tool because that occurs after
the line is drawn — in fact, it can be done at any time after the line is drawn. (For
more information on shape recognition, refer to the section on the Arrow Tool, in
Chapter 4, “Working with Selections and the Pen Tool.”) The Straighten, Smooth,
and Ink processing options of the Pencil Tool control the degree to which automatic
processing occurs. Each of these options is detailed in subsequent sections of this
discussion of the Pencil Tool. These options are also affected by the settings in the
Drawing Settings Panel of the Editing tab of the Preferences dialog (choose Edit ➪
Preferences and click the Editing tab).

In addition to the treatment here, the settings that control line processing and
shape recognition are explained in Chapter 2, “Exploring the Interface: Panels,
Settings, and More.”

Straighten option
Drawing with the Straighten option processes your drawings while taking into
account line and shape recognition. This means that separate lines are automati-
cally connected, lines that approximately straight are straightened, and wobbly
curves are smoothed. In short, approximate shapes are recognized and automati-
cally adjusted.

Smooth option
Drawing with the Smooth option reduces the zeal with which Flash automatically
processes your drawings. With Smooth option, line straightening and shape recog-
nition are disabled. You can draw curved lines, and they will be smoothed slightly.
Additionally, a line that ends near another line will be joined to it.

Cross-
Reference

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 131

132 Part I ✦ Mastering the Flash Environment

Ink option
Drawing with the Ink option turns off all Flash processing. You’re left with the lines
as you’ve drawn them. Your lines are not smoothed, straightened, or joined.

For Web deployment, lines drawn with the Ink option can become unnecessarily
complex. If this happens to you, these lines can be selected with the Arrow Tool
and then slightly optimized by choosing either Modify ➪ Smooth or Modify ➪

Optimize from the menu.

You can also choose to smooth, straighten, or join lines and shapes that have been
drawn with the Ink option simply by using the Arrow Tool to select what you’ve
drawn and then using either the Arrow Tool’s Smooth or Straighten options. Or,
for maximum control, manually edit extraneous points with either the Pen or the
Subselect Tool.

The Line Tool
Drawing with the Line Tool creates a perfectly straight line that extends straight
from the starting point to the end point, simply choose the tool and start drawing.
As shown in Figure 5-6, the Line Tool has no options on the Options Tray. Line
Thickness is chosen from the Stroke Height control of the Stroke Panel, while the
basic Line Style may be chosen from the Stroke Style drop-down. As shown in
Figures 5-2 and 5-3, Custom Line Styles may be created with the Line Style dialog,
which is accessed from the Stroke Panel options.

Figure 5-6: The Line Tool
has no options.

Line

Caution

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 132

133Chapter 5 ✦ Working with the Drawing and Painting Tools

Depress the Shift key while drawing to constrain the Line Tool to angles of
45 degrees or 90 degrees.

The Oval Tool
Drawing with the Oval Tool creates a perfectly smooth oval. Ovals are drawn by
dragging diagonally from one “corner” of the oval to the other. Press the Shift key at
any time while the shape is being drawn to constrain the shape to a perfect circle.
As shown in Figure 5-7, the Oval Tool has no options.

Figure 5-7: The Oval Tool
has no options.

To either choose or change the Stroke Height or Style, use the Stroke Panel. To
choose or change the fill of an oval, use the Fill Panel.

The Rectangle Tool
Drawing with the Rectangle Tool creates a perfect rectangle, which means that all
four of the corners are at 90-degree angles. Rectangles are drawn by dragging from
one corner of the rectangle to the other. Pressing the Shift key at any time while
the shape is being drawn creates a perfect square. As shown in Figure 5-8, the
Rectangle Tool has one option — Rounded Rectangle Radius.

Oval

Tip

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 133

134 Part I ✦ Mastering the Flash Environment

Figure 5-8: The Rectangle Tool
has one option in the Options Tray:
Rounded Rectangle Radius.

As with the Oval Tool, to choose or change the Stroke Height or Style of a
Rectangle, use the Stroke Panel. To choose or change the fill, use the Fill Panel.

The Rounded Rectangle Radius Tool is useful for making rounded rectangles —
a.k.a. interactive button shapes. Click this option to elicit the Rectangle Settings
dialog (shown in Figure 5-9), which accepts numeric values between 0 and 999.
Subsequent rectangles will be drawn with this value applied to the corner radius,
until the value entered in this dialog is either changed or returned to zero. Note
that this button is not a toggle; to turn off rounded rectangle drawing, click the
option and enter a value of zero.

Figure 5-9: The Rectangle
Settings dialog with three
shapes drawn with the following
Corner Radius settings: (from
right to left) 25, 50, and 100.

Rectangle

Rounded Rectangle
Radius option

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 134

135Chapter 5 ✦ Working with the Drawing and Painting Tools

Using the (Paint) Brush Tool
The Brush Tool is used to paint with brushlike strokes and to fill enclosed areas.
Unlike the Pencil Tool, which creates a single, solid line, the Brush Tool creates filled
shapes with outlines of zero thickness. (This is easily demonstrated by painting a
stroke with the Brush, then choosing a new color for the Ink Bottle, and then clicking
that brushed line with the Ink Bottle. The Brush line of zero thickness will acquire
the line thickness and color from the Ink Bottle — if there were no line, the Ink Bottle
would be unable to alter the stroke in this manner.) The fills can be solid colors, gra-
dients, or fills derived from bitmaps. Additionally, the Brush Tool options permit you
to paint in unusual ways: You can choose to paint in front of or behind an element,
or you can apply paint only within a specific filled area, or within a selection. The
Brush Mode option drop-down reveals five painting modes that are amazingly useful
for a wide range of effects when applying brush strokes: Paint Normal, Paint Fills,
Paint Behind, Paint Selection, and Paint Inside, as shown in Figure 5-10.

Figure 5-10: The Brush Tool and options (left);
the Brush Mode drop-down (right)

Depending on whether you have a pressure-sensitive tablet connected to your com-
puter, four or five options appear in the Options Tray when the Brush Tool is active.
The Use Pressure option — which only appears if you have a pressure-sensitive
tablet attached to your computer — and the Brush Mode are both unique to the
Brush Tool. The Lock Fill option is common to both the Brush Tool and the Paint

Brush

Brush Mode
Brush Size
Brush Shape
Lock Fill

Use Pressure

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 135

136 Part I ✦ Mastering the Flash Environment

Bucket (which is discussed subsequently in this chapter). Although similar to
Stroke Weight and Line Style, the Brush Size and Brush Shape drop-downs are also
fairly unique to the Brush Tool. In the following sections, we run through all of the
Brush options — just to make certain that we’re clear on all points, even if there is
some review.

Painting with the background color (such as white) is not the same as erasing.
Painting with the background color may appear to accomplish something similar
to erasing. However, you are, in fact, creating a filled item that can be selected,
moved, deleted, or reshaped. Only erasing erases!

To choose or change the Brush Color, either click the Fill Color button on the
Toolbox, or use the Fill Panel. Because the Brush Tool creates filled shapes with
outlines of zero thickness, the Stroke Color button is defunct when the Brush Tool
is active.

Using the Brush Mode option
The Brush Mode option is a drop-down menu with five modes for applying brush
strokes: Paint Normal, Paint Fills, Paint Behind, Paint Selection, and Paint Inside.
Used in conjunction with selections, the Brush Modes option yields a broad range
of sophisticated paint masking capabilities. True masking is fully described and
defined in Chapter 10, “Drawing in Flash.”

The following images depict various ways in which the Brush Modes interact with
drawn and painted elements. The base image is a solid gray rounded rectangle
drawn with a black, hatched outline. Three white lines of various widths are drawn
on top of the gray fill of the rectangle.

Paint Normal Mode
Paint Normal Mode, shown in Figure 5-11, applies brush strokes over the top of any
lines or fills.

Figure 5-11: In Paint Normal
Mode, a black scrawl covers all
elements: background, outline,
fill, and drawn lines.

Note

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 136

137Chapter 5 ✦ Working with the Drawing and Painting Tools

Paint Fills Mode
Paint Fills Mode, shown in Figure 5-12, applies brush strokes to replace any fills, but
leaves lines untouched.

Figure 5-12: In Paint Fills Mode,
a black scrawl covers both the
gray fill and the background —
which, surprisingly, is considered
a fill in this case.

Paint Behind Mode
Paint Behind Mode applies brush strokes only to blank areas and leaves all fills,
lines or other items untouched. As shown in Figure 5-13, the only parts of the stroke
that cover are those over the background. Effectively, the scrawl has gone behind
the entire shape. If the stroke had originated within the gray fill, it would have cov-
ered the fill and gone behind the drawn white lines.

Figure 5-13: Scrawling again
in Paint Behind Mode, the only
parts of the stroke that cover are
those over the background.

Paint Selection Mode
Paint Selection Mode applies brush strokes only to selected fills. In Figure 5-14, a
selection was made by shift-clicking both the gray fill and the upper white line.

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 137

138 Part I ✦ Mastering the Flash Environment

The same black scrawl has been drawn with the selection described in the previous
figure still active, using Paint Selection Mode.

Figure 5-14: Only the selected
gray fill has been covered by the
brush stroke.

Paint Inside Mode
Paint Inside Mode, shown in Figure 5-15, applies brush strokes only to the singular
fill area where the brush stroke was first initiated. As the name implies, Paint Inside
never paints over lines. If you initiate painting from an empty area, the brush
strokes won’t affect any existing fills or lines, which approximates the same effect
as the Paint Behind setting.

Figure 5-15: Another scrawled
stroke with Paint Inside Mode —
the only difference between this
stroke and the others is that it
was initiated over the gray fill.

Using the Brush Size option
The Brush Size option, shown in Figure 5-16, is a simple pop-up menu with a range
of ten preset brush sizes. Although the sizes are shown as circles, the diameter size

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 138

139Chapter 5 ✦ Working with the Drawing and Painting Tools

applies to all brush shapes. In the case of an oblong brush, the diameter size refers
to the broadest span of the brush. You can combine brush sizes and shapes for a
great variety of custom brush tips.

Figure 5-16: The Brush Size drop-down
reveals ten well-distributed brush sizes,
ranging from pin line to humongous.

In Flash, the apparent brush size is always related to the Zoom setting. Therefore,
identical brush diameters applied at different Zoom settings result in different-
sized brush marks.

Using the Brush Shape option
The Brush Shape option, shown in Figure 5-17, is a simple pop-up menu with nine
possible brush shapes that are based on the circle, ellipse, square, rectangle, and
line shapes. The oval, rectangle, and line shapes are available in several angles.
Although no custom brush shapes are available, you can combine these stock
brush shapes with the range of brush sizes to generate a variety of nearly custom
brush tips. When using shapes other than circles, note that the diameter sizes indi-
cated in the Brush Size drop-down apply to the broadest area of any brush shape.

Figure 5-17: The Brush Shape drop-down
is loaded with nine preset brush shapes.

Note

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 139

140 Part I ✦ Mastering the Flash Environment

Using the Brush Lock Fill option
The Lock Fill option is a toggle that controls how Flash handles areas filled with a gra-
dient or bitmap fill. Once this button is pressed, all subsequent areas (or shapes) that
are painted with the same gradient or bitmap fill appear to be part of a single, contin-
uous filled shape. This option locks the angle, size, and point of origin of the current
gradient so that it remains consistent throughout the scene. This capability is useful,
for example, if you are creating a gradated sunset sky with gradated clouds, and the
clouds must appear to be part of one continuous gradient, while the sky needs to
appear to be another.

Working with gradient colors is discussed in Chapter 6, “Applying Color.”

To demonstrate the distinction between painting with or without the Brush Lock Fill
option, as shown in Figure 5-18, on the left, we created five shapes and filled them
with a gradient, using the Paint Inside setting — with Lock Fill off. The gradient is
noticeably not aligned from one shape to the next. On the right, those same shapes
were repainted with that same gradient, still using the Paint Inside setting — but with
Lock Fill on. Note how the gradient is now aligned from one shape to the next.

Figure 5-18: The Lock Fill option

When the Dropper Tool is used to pick up a fill or gradient from a scene, the Lock
Fill button is automatically engaged.

Using the Brush Pressure option
The Brush Pressure option appears only if you have a pressure-sensitive tablet.
This option button is a simple toggle that is used to enable or disable the finer

Note

Cross-
Reference

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 140

141Chapter 5 ✦ Working with the Drawing and Painting Tools

capabilities of a pressure-sensitive tablet. With pressure-sensitivity enabled, the
size of the brush stroke increases with increased drawing pressure.

The difference between the Brush Tool and the
Pencil Tool
A pencil stroke has no fill, whereas a brush stroke is technically a filled outline of
zero thickness. Regardless of the width of a pencil stroke, when viewed as an out-
line, it will always appear as a single vector. Conversely, when viewed as outlines,
brush strokes of varied thickness will be exhibited as outlines whose breadth varies
according to the thickness of the stroke. Yet the outlines themselves will always be
outlines (or vectors) of zero thickness.

Figure 5-19 displays a pencil line and a brush line, each drawn with a Stroke Height
of 10, (A) in what is regarded as regular mode (View ➪ Antialias), and again (B) as
outlines (View ➪ Outlines). The same lines are displayed both above and below. This
demonstrates the technical detail that brush strokes are filled vector outlines of zero
thickness, while a pencil stroke is a stroked vector of zero thickness.

Figure 5-19: Comparing the Brush and Pencil Tools

As shown in Figure 5-20, these differences have demonstrable consequences when
pencil strokes and brush strokes are edited with the selection tools: A brush stroke
can be pulled out of shape, whereas a pencil stroke can only be bent. The results of
each operation are shown at the right.

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 141

142 Part I ✦ Mastering the Flash Environment

Figure 5-20: A brush stroke (bottom) can be pulled out of shape, whereas a pencil stroke
(top) can only be bent.

The Dropper Tool
The Dropper Tool (shown in Figure 5-21), which is found at the bottom of the
Toolbox tools, is used to acquire (or copy) the color and style information from
existing pencil lines, brush strokes, and fills. The Dropper Tool has no options, but
then it doesn’t need options. That’s because the Flash Dropper Tool performs a
function entirely unlike any dropper tool in any other program that we know of.

Figure 5-21: The Dropper Tool is an amazingly
useful “one-trick pony.” It has no options.

Dropper

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 142

143Chapter 5 ✦ Working with the Drawing and Painting Tools

When the Dropper Tool isn’t hovering over a line, fill, or brush stroke, its cursor is
similar to the Dropper icon in the Drawing Toolbox. However, the Dropper Tool’s
cursor changes as follows to indicate when it is over a line or a fill:

✦ When the cursor is over a line, a tiny pencil appears to the lower right of the
standard Dropper Tool cursor.

✦ When the cursor is over a fill, a tiny brush appears to the lower right of the
standard Dropper Tool cursor.

When the Dropper Tool is over a line, fill, or brush stroke, and the Shift key is
pressed, the cursor changes to an inverted U shape. In this mode (that is, when
you Shift+Click), use of the Dropper Tool changes the attributes for all editing
tools in Flash (for instance, the Pencil, Brush, Ink Bottle, and Text Tools) to match
the attributes of the area clicked. That’s right! . . . Shift-clicking with the Dropper
Tool acquires the attributes of the clicked item and simultaneously changes the
color and style settings for the Ink Bottle Tool, as well as the Pencil Tool and the
Text Tool.

✦ When the clicked item is a line, the Dropper Tool is automatically swapped for
the Ink Bottle Tool, which facilitates the application of the acquired attributes
to another line. Similarly, when the clicked item is a fill, the Dropper Tool is
automatically swapped for the Paint Bucket Tool. This facilitates the applica-
tion of acquired fill attributes to another fill.

✦ When the Dropper Tool is used to acquire a fill that is a bitmap, the Dropper
Tool is automatically swapped for the Paint Bucket Tool and a thumbnail of
the bitmap image appears in place of the Fill Color option in the Color Tray
of the Toolbox.

This composite image shown in Figure 5-22 shows all Dropper Tool cursors as they
appear when the Dropper is brought to hover over various types of lines and fills.
The figure shows the Dropper Tool:

✦ Alone (A)

✦ Over a gradient fill created with the Rectangle Tool (B)

✦ Over a white line created with the Rectangle Tool (C)

✦ Over a line painted with the brush (D)

✦ Over a line drawn with the Pencil Tool (F)

✦ After pressing Shift and clicking to acquire the attributes of the clicked item
and simultaneously change the color and style settings for the Ink Bottle Tool,
as well as the Pencil Tool and the Text Tool (E)

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 143

144 Part I ✦ Mastering the Flash Environment

Figure 5-22: The Dropper Tool cursors

The Dropper Tool can be extremely helpful when changing the attributes of multi-
ple lines. However, the Ink Bottle cannot apply acquired attributes to lines that are
grouped. To work around this limitation, you must first ungroup the lines, then
apply the attributes to the lines (either individually or as a multiple selection), and
then regroup the lines.

The attributes of a group can be acquired using the Dropper Tool if the contents
are being edited. For more information on editing groups, please refer to Chapter 8,
“Exploring the Timeline.”

When used to acquire colors, the Toolbox Dropper Tool is limited to acquiring col-
ors from the Flash interface, which includes not only items created in Flash (that is,
on or next to the Stage), but also icons, buttons, and menus of the Flash applica-
tion. However, the Droppers that are accessed from the Color Palettes of the Mixer,
Stroke, Fill, and Character Panels can acquire colors from anywhere on the entire
computer interface, such as the system background, items on the desktop, or
items that are open in other applications. For more information about this new
feat, refer to Chapter 6, “Applying Color.”

The Ink Bottle Tool
The Ink Bottle Tool, shown in Figure 5-23, is used to change the color, style, and
thickness of existing outlines. It is most often used in conjunction with the Dropper
Tool. When the Ink Bottle Tool is in use, attention to three options may be required:
The current Stroke Color option on the Toolbox or the Stroke Panel, and both the
Line Height and Stroke Style options of the Stroke Panel.

The Ink Bottle Tool reveals the underlying consistency in the way that Flash “sees”
lines. Lines, outlines, and those lines of zero thickness that describe strokes of the
Brush are all treated as lines by the Ink Bottle Tool.

Note

New
Feature

Note

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 144

145Chapter 5 ✦ Working with the Drawing and Painting Tools

Figure 5-23: The Ink Bottle Tool
has no options on the Toolbox.

When you click a selected line with the Ink Bottle Tool, all other selected lines
(if any) are changed simultaneously.

The Ink Bottle is especially useful for applying custom line styles to multiple lines.
You can build a collection of custom line styles either off-screen, or in a special cus-
tom line palette that is saved as a single-frame Flash movie. You can then acquire
these line styles whenever necessary.

Depending on the level of zoom, some lines may not appear on the screen —
although they will print correctly on a high-resolution printer. Stroke Weight may
also be adjusted in the Stroke Style dialog that is accessible by choosing Custom
from the Stroke Style option drop-down list (the arrow at the top right of the
panel).

The Paint Bucket Tool
The Paint Bucket Tool is used to fill enclosed areas with color, gradients, or bitmap
fills. Although the Paint Bucket Tool is a more robust tool than the Ink Bottle, and
can be used independently of the Dropper Tool, it’s often used in conjunction with
the Dropper Tool. That’s because, as was discussed earlier in the section on the
Dropper Tool, when the Dropper Tool is clicked on a fill, it first acquires the fill
attributes of that fill and then automatically swaps to the Paint Bucket Tool. Because
this acquire and swap function of the Dropper Tool readily facilitates the application

Caution

Caution

Ink Bottle

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 145

146 Part I ✦ Mastering the Flash Environment

of acquired fill attributes to another fill, the Bucket Tool is frequently used in tandem
with the Dropper. When the Paint Bucket Tool is active, as shown in Figure 5-24, four
options are available from the Toolbox: Lock Fill, Transform Fill, Gap Size, and Fill
Color. The Gap Size drop-down, which is shown at the right, offers four settings to
control how Flash handles gaps when filling with the Bucket Tool.

Figure 5-24: The Paint Bucket Tool and its options

When the Dropper Tool is used to acquire a fill that is a broken-apart bitmap, the
Dropper Tool is automatically swapped for the Paint Bucket Tool and a thumbnail
of the bitmap image appears in place of the Fill Color Option chip. This procedure
also automatically engages the Paint Bucket Lock Fill Option. For more information
about working with bitmap fills, refer to Chapter 12, “Using Bitmaps and Other
Media with Flash.”

Using the Paint Bucket to paint with white (or the background color) is not the
same as erasing. Painting with white (or the background color) may appear to
accomplish something similar to erasing. However, you are, in fact, creating a filled
item that can be selected, moved, deleted, or reshaped. Only erasing erases!

Like the Ink Bottle, the Paint Bucket can be especially useful for applying custom fill
styles to multiple items. You can build a collection of custom fill styles either off-
screen or in a special, saved, custom-fills-palette, single-frame Flash movie. You can
then acquire these fills whenever necessary.

Caution

Paint Bucket

Gap Size

Transform Fill

Lock Fill

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 146

147Chapter 5 ✦ Working with the Drawing and Painting Tools

If you click with the Paint Bucket Tool on one of several selected fills, all of the
selected fills will be changed with the new fill.

Using the Paint Bucket Gap Size option
As shown in Figure 5-24, the Gap Size option drop-down offers four settings that
control how the Paint Bucket Tool treats gaps when filling. These settings are Don’t
Close Gaps, Close Small Gaps, Close Medium Gaps, and Close Large Gaps. These tol-
erance settings enable Flash to fill an outline if the end points of the outline aren’t
completely joined, leaving an open shape. If the gaps are too large, you may have
to close them manually.

The level of zoom changes the apparent size of gaps. Although the actual size of
gaps is unaffected by zoom, the Paint Bucket’s interpretation of the gap is depen-
dent upon the current Zoom setting. Thus, the Paint Bucket’s behavior in relation
to Gap Size is liable to change with the Zoom setting.

Using the Paint Bucket Lock Fill option
The Paint Bucket’s Lock Fill option is the same as the Brush Lock Fill option — it
controls how Flash handles areas filled with gradient color or bitmaps. When this
button is turned on, all areas (or shapes) that are painted with the same gradient
will appear to be part of a single, continuous, filled shape. The Lock Fill option
locks the angle, size, and point of origin of the current gradient to remain constant
throughout the scene. For further information, please refer to the earlier discussion
of the Brush Tool.

When the Dropper Tool is used to pick up a fill or gradient from the scene, this
Lock Fill button is automatically engaged.

Using the Paint Bucket Transform Fill option
(a.k.a. the Reshape Arrow cursor)
The Transform Tool option button is used to adjust the size, angle, and center of a
gradient or fill, including bitmap fills. When the Transform Tool option is selected,
the Paint Bucket Tool automatically becomes a Reshape Arrow cursor. (This Reshape
Arrow cursor is different from either of the Arrow Tool’s Rotate or Scale options.)
This is a lot like scooting, rotating, or skewing a larger piece of material so that a
different portion is displayed within a smaller frame. To use the Reshape Arrow to
transform a fill, first select the Transform Tool option, and then simply click an exist-
ing gradient or fill. A set of three or four adjustment handles appears, depending on
the type of fill. With this option, three transformations can be performed on a fill:
adjusting the fill’s center point, rotating the fill, and scaling the fill.

Tip

Note

Caution

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 147

148 Part I ✦ Mastering the Flash Environment

Adjusting the center point with the Reshape Arrow
To adjust the center point, follow these steps:

1. Deselect the fill if it has been previously selected.

2. Choose the Paint Bucket Tool.

3. Choose the Transform Fill option.

4. Click the fill.

5. Bring the Reshape Arrow Cursor to the small circular handle at the center of
the fill until it changes to a four-arrow cursor, pointing left and right, up and
down like a compass, indicating that this handle can now be used to move the
center point in any direction.

6. Drag the center circular handle in any direction you want to move the center
of the fill.

Figure 5-25 shows the Reshape Arrow cursor (A). It transforms into a compass point
when it’s brought near the round center handle of a gradient or fill (B). Click the
center handle and drag to move the center point (C).

Figure 5-25: Repositioning a gradient fill’s center

Rotating a fill with the Reshape Arrow
To rotate a gradient or bitmap fill, find the small circular handle that’s at the corner
of the fill. (In a radial gradient, choose the middle circular handle.) This circular
handle is used for rotating a fill around the center point. Click the handle and four
circular arrows appear, indicating that this handle will rotate the fill about the cen-
ter point.

Figure 5-26 shows how the Reshape Arrow cursor becomes a Rotate cursor when it
is brought near the circular handle at the corner of a gradient fill (A). Click the cir-
cular handle with the Rotate cursor and rotate the gradient fill (B).

A

B

C D

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 148

149Chapter 5 ✦ Working with the Drawing and Painting Tools

Reshape Arrow Anomalies

Fills can differ in their characteristics when you use the Reshape Arrow, primarily in the
placement of their handles, subject to a number of variables, including whether they are
applied horizontally or vertically:

✦ Some fills may not have the full complement of Reshape Arrow cursors available.

✦ For a horizontally applied fill: To rotate the fill, find the small circular handle that is at
the upper right, at the top of the hatched line. This circular handle is used for rotat-
ing a horizontally applied gradient or fill around the center point. Click the handle
and four circular arrows appear, indicating that this handle will rotate the fill about
the center point.

✦ For a vertically applied fill: To rotate the fill, find the small circular handle that is at
the upper left, at the end of the hatched line. This circular handle is used for rotating
a vertically applied gradient or fill around the center point. Click the handle and four
circular arrows appear, indicating that this handle will rotate the fill about the center
point.

✦ These general characteristics may differ if a fill (or bitmap fill) has been variously
copied, rotated, or pasted in any number of ways. The fundamental rule is this:
Round center handle moves the center point; round corner handle rotates; round
edge handles skew either vertically or horizontally; square-edge handles scale either
vertically or horizontally; and the square-corner handle scales symmetrically.

✦ Skewing and scaling of bitmap fills may have a counterintuitive effect: If the bitmap
fill is scaled smaller, it will tile to fill the space of the original fill.

✦ Due to their nature, gradient fills don’t support skewing; they can only be scaled on
the horizontal axis.

Figure 5-26: Rotating a gradient fill

A B C

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 149

150 Part I ✦ Mastering the Flash Environment

Skewing the fill with the Reshape Arrow
To skew a bitmap fill horizontally, find the small round handle at the middle of the
right-hand border. This round handle is used to skew the gradient or fill. Click the
handle and arrows appear, parallel to the edge of the fill, indicating the directions
in which this handle will skew the fill.

Figure 5-27 shows how the Reshape Arrow cursor changes to the Skew Arrow cur-
sor when it is brought near a small round horizontal skew handle (first image).
Click and drag the round horizontal skew handle with the Skew Arrow cursor to
skew the bitmap fill (second image). Release the skew handle to view the result
(third image). Note that the skew procedure is still active, meaning that the skew
may be further modified — this behavior is common to all functions of the Reshape
Arrow. To skew a bitmap fill vertically, locate the vertical skew handle. Vertical
skew is functionally equivalent to skewing horizontally.

Figure 5-27: Skewing a bitmap fill

Figure 5-28 hones in on radial gradients. A radial gradient has slight variations from
a linear gradient, mostly as regards the placement of the handles. So here’s a quick
tour: The Reshape Arrow cursor (A); Center Point cursor (B); Skew cursor (C) and
Skew handle (G); Radius cursor (D, F) and Radius handle (H); and, finally, the Rotate
cursor (E) and Rotate handle (I).

Symmetrically adjusting the scale with the Reshape Arrow
To resize a bitmap fill symmetrically, find the small square-corner handle, which is
usually located at the lower-left corner of the fill. This square-corner handle is used to
resize the fill while retaining the aspect ratio. The Symmetrical Resize cursor, shown
in Figure 5-29, has diagonal arrows, and appears when the Reshape Arrow cursor is
brought into proximity of this square-corner handle, indicating the direction(s) in
which the handle will resize the fill. Click and drag the square-corner handle to scale
the fill symmetrically.

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 150

151Chapter 5 ✦ Working with the Drawing and Painting Tools

Figure 5-28: Adjusting radial gradients: The final
skewed, scaled (with the Radius handle), and rotated
gradient is shown in the lower right.

Figure 5-29: The Symmetrical Resize
cursor appears when the Reshape Arrow
cursor is the square-corner handle.

Asymmetrically adjusting the scale with the Reshape Arrow
To resize a bitmap fill asymmetrically, find a small square handle on either a verti-
cal or a horizontal edge, depending whether you want to affect the width or height
of the fill. The Asymmetrical Resize cursor, which has arrows that appear perpen-
dicular to the edge, appears when the Reshape Arrow cursor is brought into prox-
imity of any one of these square-edge handles, indicating the direction in which
this handle will resize the fill, as shown in Figure 5-30. Click and drag a handle to
reshape the fill.

A

B
C
D

E
F

G
H

I

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 151

152 Part I ✦ Mastering the Flash Environment

Figure 5-30: The Asymmetrical Resize cursor appears
when the Reshape Arrow cursor is brought into proximity
of the square-edge handle.

The center of Figure 5-30 is a good example of a situation in which scaling a
bitmap fill with the Reshape Arrow cursor may have a counterintuitive effect.
When a bitmap fill is scaled in either dimension so that it is smaller than the shape
that encloses it, this causes it to tile — or repeat — and fill the space of the original
fill. As you can see, your author takes a rather narrow view of this feature.

The Eraser Tool
Although the Eraser Tool is neither a Drawing nor a Painting Tool, we feel that it
belongs together with the Drawing and Painting Tools rather than orphaned in a
category of its own. After all, without the Eraser Tool to complement the Drawing
and Painting Tools, the process of Drawing and Painting might get impossibly com-
plex — one mistake and you’d have to start over. The Eraser Tool is used in concert
with the Drawing and Painting Tools to obtain final, usable art. As the name implies,
the Eraser Tool is primarily used for erasing. When the Eraser Tool is active, three
options appear in the Options Tray, as shown in Figure 5-31. The Erase Mode option
and the Eraser Shape option are both drop-down menus with multiple options. The
third option, the Faucet button, is used to clear enclosed areas of fill.

The only alternative to using the Eraser Tool to remove graphic elements or areas
of drawings is to select them and then delete them by pressing either the Delete or
the Backspace key.

As has been mentioned previously, in context with various Drawing and Painting
Tools, Drawing or Painting with white (or the current background color) is not the
equivalent of erasing. Only the Eraser Tool erases! Either use the simple Eraser Tool
or harness the power of the Faucet option to take away filled areas and lines. Of all
the things that we have repeated about the Flash Tools, if you don’t “get” this one,
it can really come back to bite you!

Caution

Note

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 152

153Chapter 5 ✦ Working with the Drawing and Painting Tools

Figure 5-31: The Eraser Tool has three options:
the Erase Mode, Eraser Shape, and the Faucet.
Both the Mode and Shape options have menus.

The Eraser Tool only erases lines and fills that are in the current frame of the scene.
It won’t erase groups, symbols, or text. When you need to erase a part of a group,
you have two options: Select the group and choose Edit ➪ Edit Selected from the
Menu Bar, or select the group and choose Modify ➪ Ungroup from the Menu Bar.

Using the Eraser Shape option
The Eraser Shape option defines both the size and shape of the eraser. As shown in
Figure 5-31, it’s a simple drop-down menu with ten brushes available in two shapes:
circular and square. These are arrayed in two banks of five sizes each, ranging from
small to large.

Note

Eraser

Erase
Mode
Faucet

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 153

154 Part I ✦ Mastering the Flash Environment

Using the Eraser’s Faucet option
The Eraser Tool’s Faucet option is Flash’s version of selective annihilation — kind of
like a neutron bomb. The Faucet option deletes an entire line segment or area of fill
with a single click. Using the Faucet option is the equivalent of selecting and delet-
ing an entire line or fill in a single step. Select the Eraser Tool, and then choose the
Faucet Option button. Click the offending item to say goodbye. Clicking a selected
line or fill erases all selected lines or fills.

Using the Erase Mode option
The Erase Mode option both controls and limits what and how the Eraser Tool
erases. As shown in Figure 5-31, the Erase Mode pop-up reveals five options: Erase
Normal, Erase Fills, Erase Lines, Erase Selected Lines, and Erase Inside. These func-
tion in a similar manner to the Brush Mode options:

✦ Erase Normal: With this, the Eraser Tool functions like a normal eraser. It
erases all lines and fills that it passes over, as long as they are on the active
layer.

✦ Erase Fills: In Erase Fills Mode, the Eraser Tool becomes a specialty eraser,
erasing only fills and leaving lines unaffected.

✦ Erase Lines: When in Erase Lines Mode, the Eraser Tool works by erasing
lines only and leaving fills unaffected.

✦ Erase Selected Fills: In Erase Selected Fills Mode, the Eraser Tool becomes
even more specialized. In this mode, it only erases fills that are currently
selected, leaving unselected fills and all lines unaffected.

✦ Erase Inside: With Erase Inside Mode, the Eraser Tool only erases the area
of fill on which you initiate erasing. This is much like the Erase Selected Fills
Mode, except that the selection is accomplished with the initial erasure. In
this mode, the eraser leaves all other fills and all lines unaffected.

To quickly erase everything in a scene, double-click the Eraser Tool in the Drawing
Toolbox. (Don’t click in the scene! You have to double-click the Eraser Tool button
in the Drawing Toolbox. Okay?)

Summary
✦ The Flash 5 drawing tools are more robust and more capable than they were

in any previous version of Flash.

✦ The process for choosing colors and for editing Stroke Height and Style has
been streamlined. Lines drawn with the Pen Tool can be easily modified with
the Color options and with the controls on the Stroke Panel.

Caution

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 154

155Chapter 5 ✦ Working with the Drawing and Painting Tools

✦ The Pencil Tool is used to draw expressively with natural ease. A range of
options enable a user to fine-tune the manner in which Flash applies shape
recognition to lines and shapes drawn with the Pencil Tool.

✦ The Line and the Oval Tools are useful for creating perfect geometric shapes.

✦ The Brush Tool applies strokes of color to Flash artwork. Brush strokes can
be applied with a number of mask settings, called Brush Modes, that control
how color is applied.

✦ The Dropper Tool is used to acquire color from Flash art so that it may be
applied to other items with either the Paint Bucket or Ink Bottle Tools.

✦ The Ink Bottle Tool is used primarily to apply acquired color to lines, outlines,
and lines of zero thickness.

✦ The Paint Bucket is used to fill shapes and closed areas of drawings. It can
also edit the colors and properties of such fills.

✦ The Eraser Tool is used to erase anything that’s been drawn on the Flash
Stage. Like the Brush Tool, it has powerful masking capabilities that make it
easier to erase specific items without endangering other portions of your
Flash art.

✦ ✦ ✦

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 155

3515-3 ch05.f.qc 1/18/01 3:46 PM Page 156

Applying Color

Before we get into the specifics of applying color with
Flash, we think it’s essential to discuss some of the fun-

damental theory behind working with color that’s destined for
display on the Web. In the process, we also introduce some
cool resources that may be helpful to you, both in concert
with Flash and as bona fide Web resources on their own. Then
we look at how the Flash Tools access Flash Color; and we
show you how to work with the new Flash Color Panels to
select, change, mix, and apply both colors and gradients.

Introducing Color Basics
Computer monitors display color by using a method called
RGB color. A monitor screen is a tightly packed array of pixels
arranged in a grid, where each pixel has an address. For exam-
ple, a pixel that’s located 16 rowsdown from the top and 70
columns over from the left might have an address of 70,16.
The computer uses such an address to send a specific color
to each pixel. Because each pixel is composed of a single red,
green, and blue dot, the colors that the monitor displays can
be “mixed” at each pixel by varying the individual intensities
of the red, green, and blue color dots. Each individual dot can
vary in intensity over a range of 256 values: starting with 0
(which is off) to a maximum value of 255 (which is on). Thus,
if red is half-on (a value of 127), while green is off (a value of
0), and blue is fully on (a value of 255), the pixel appears
reddish-blue.

This is the description for unlimited, full color, which is some-
times referred to as 24-bit color. However, many computer
systems are still incapable of displaying full color. Limited
color displays are either 16-bit or 8-bit displays. Although a
full discussion of bit-depth is beyond the scope of this book,
it is important to note several points.

66C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing color
basics

Using hybrid color
swatches

Working with
Flash color

Creating harmonious
color schemes

✦ ✦ ✦ ✦

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 157

158 Part I ✦ Mastering the Flash Environment

✦ 24-bit color is required to accurately reproduce photographic images.

✦ Because 8-bit and 16-bit systems are color challenged, they can only display
a limited number of colors, and they must dither-down anything that exceeds
their gamut, which is their expanse of possible colors. Dithering means that,
in order to approximate colors that are missing from the palette, two near col-
ors are placed in close proximity to fool the eye into seeing intermediate
colors.

✦ Although most color-challenged systems have the capability to adequately
handle a few out-of-gamut colors without exceeding their palette, serious
problems occur once their palette is exhausted. This means that your Flash
site might look okay on a color-challenged system if it’s the first site visited
when the system is started up. However, the site may look much worse after
an hour of browsing the Web.

✦ Some image formats, such as GIF, use a color palette, which limits them to
256 colors. This is called indexed color.

✦ Calibration of your monitor is essential for accurate color work. For more
information check out www.colorpar.com.

Discussing Web-Safe Color issues
Web-Safe Color is a complex issue but what it boils down to is this: The Mac and PC
platforms handle their color palettes differently, thus the browsers don’t have the
same colors available to them across platforms. This leads to inconsistent, unreli-
able color — unless one is careful to choose their colors for Web design from the
Web-Safe Palette. The Web-Safe Palette is a palette of 216 colors that’s consistent on
both the Mac and the PC platforms for the Netscape, Explorer, and Mosaic browsers.
The Web-Safe Palette contains only 216 of 256 possible indexed colors because 40
colors vary between Macs and PCs. Use the Web-Safe Palette to avoid color shifting
and to ensure greater design (color) control.

The Swatches Panel has an option, Web 216, which is accessible from the options
triangle at the upper right of the panel. Web 216 restricts the color palette to Web-
Safe Colors. However, intermediate colors (meaning any process or effect that gen-
erates new colors from two Web-Safe Colors) such as gradients, color tweening,
transparent overlays, and alpha transitions, will not be snapped to Web-Safe Colors.

Using hexadecimal values
Any RGB color can be described in hexadecimal (hex) notation. Hexadecimal nota-
tion is used with HTML code and some scripting languages to specify flat color,
which is a continuous area of undifferentiated color. Hex code is used because it

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 158

159Chapter 6 ✦ Applying Color

describes colors in an efficient manner that HTML and scripting languages can
digest. In HTML, hexadecimal is used to specify colored text, lines, background,
borders, frame cells, and frame borders.

A hexadecimal color number has six places. It allocates two places for each of the
three color channels: R, G, and B. So, in the hexadecimal example 00FFCC, 00 signi-
fies the red channel, FF signifies the green channel, and CC signifies the blue chan-
nel. The corresponding values between hexadecimal and customary integer values
are as follows:

16 integer values: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 hex values: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Applying ColorSafe and other solutions
There are a couple of valuable tools used to create custom-mixed Web-Safe Colors.
They build patterns composed of Web-Safe Colors that fool the eye into seeing a
more desirable color. These are essentially blocks of preplanned dithers, built out of
the Web-Safe Palette, that augment the usable palette while retaining cross-platform,
cross-browser color consistency.

✦ ColorSafe is an Adobe Photoshop plug-in that generates hybrid color
swatches with this logic. ColorSafe (Mac and Win) is available directly from
BoxTop software at www.boxtopsoft.com. Furthermore, the ColorSafe demo
is included in the software folder of the Flash 5 Bible CD-ROM.

✦ ColorMix is an easily used online utility that interactively delivers hybrid
color swatches, much like ColorSafe. It is free at www.colormix.com.

Now that we’ve arrived at the millennium, there’s a growing trend among devel-
opers to consider the art of designing with Web-Safe Color something like building
Web sites for the Ice Age. As Dorian Nisinson remarked, “What can you do with
that many shades of weird green? Even a lime would be embarrassed.” We are
inclined to agree. It is true, especially in North America and Europe, that even the
most inexpensive systems are equipped to display full color. But we also feel
compelled to ask: What about the rest of the world? What about the poorer areas
of North America — as, for example, most school systems? <soapbox> If we are to
survive through this next century, then inclusion — no matter how inconvenient for
the privileged — needs to become a planetary priority. </soapbox> We urge you to
know your audience and design accordingly, but with a dash of generosity.

Note

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 159

160 Part I ✦ Mastering the Flash Environment

Expert Tutorial: Using Hybrid Color Swatches in Flash,
by Jon Warren Lentz

Both ColorSafe and ColorMix can be teamed up with the Flash Dropper Tool to expand the
available palette yet retain Web-Safe Color consistency. It takes a little fussing, but once
you’ve built a set of Flash hybrid color swatches they can be reused from the library, and
once you get the knack, new swatches are more easily created. (Note: In order to illustrate
the principle of hybrid swatches, the images that illustrate this tutorial were created at high
zoom levels. In normal practice, the checkered appearance would not be noticeable.)

Whether you use ColorMix online or use the ColorSafe plug-in for Photoshop, the optimal
size for your hybrid color swatch is about ten pixels square, as shown in the following fig-
ure. Some swatches for this tutorial were saved as TIFFs, others as GIFs. The optimal work-
flow is to generate all of your swatches first. Then, before proceeding further, open the
Photoshop Preferences dialog with File ➪ Preferences ➪ General, and make sure that Export
Clipboard is enabled. Don’t close Photoshop.

BoxTop Software’s ColorSafe Photoshop plug-in creates Web-Safe hybrid color
swatches.

Next, open a new Flash document and name it HybridSwatches.FLA. Next, turn off Flash’s
default dithering by unchecking the View ➪ Fast Toggle, and then save the document.
Return to Photoshop and open all of your Hybrid Color Swatches, as seen in the following
figure. Working with the topmost swatch, select and then copy the entire swatch as follows:
Select ➪ All and then Edit ➪ Copy. Now return to Flash and paste the swatch (that you’ve
just copied) into the Hybrid Swatches document with Edit ➪ Paste. Use the Arrow Tool to
position the swatch. Repeat this procedure for each swatch until they’ve all been pasted
into Flash. Save the PhotoShop document as a layered .PSD for possible reuse, and then
close Photoshop.

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 160

161Chapter 6 ✦ Applying Color

Ten hybrid color swatches were imported into Flash and arranged on
the Stage. For convenience, these were moved into the offstage Work Area.

Now for a few examples to show how this works: Add a new layer to your Hybrid Swatches
document and use the Rectangle Tool to drag out a rectangle, filled with any color. Return
to the Swatches layer and use the Arrow Tool to select a swatch with which to fill the rect-
angle. When the swatch is selected, break it apart with Modify ➪ Break Apart. (A bitmap
that’s broken apart is signified by a fine grid pattern that covers the bitmap.) Then use the
Dropper Tool to acquire the bitmap fill of this swatch. When you click the swatch, the
Dropper Tool is automatically swapped to the Paint Bucket Tool, as shown here. Click inside
the rectangle with the Paint Bucket — the fill has been replaced with the hybrid bitmap fill!

The edge of the shape on stage and to the right is an enclosed area, described
by a custom line — it has just been filled with the hybrid swatch.

Continued

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 161

162 Part I ✦ Mastering the Flash Environment

Continued

Follow the same procedure to fill other shapes — either on the same layer or on different
layers — with Web-Safe hybrid bitmap fills. (Note that a swatch layer can be saved with a
project and be excluded from the final animation simply by turning that layer into a Guide
layer.) As regards the procedure, the most common problem encountered in acquiring the
bitmap fill is either forgetting to break apart the bitmap or failing to do so properly.

The following figure shows a detail of the checkered pattern of our hybrid fill, accompanied
by a view of the Library that contains each of our bitmaps.

When bitmaps are brought into Flash, they automatically reside in the Library.

Before we leave our document behind, let’s see a little more about the way these imported
bitmaps behave. In the following figure, the same fill is selected, and the Fill Panel is shown,
with the Bitmap menu open, revealing all of the bitmaps that are currently used in the
.FLA — including those offstage. We’ve drawn a rectangle around the bitmap fill that was
originally broken apart and applied to the shape, which is also highlighted above the cursor
in the Fill Panel.

With the fill selected on Stage, the second bitmap in the Fill Panel was clicked. This caused
the bitmap to become highlighted in the Fill Panel. It also caused this newly activated fill to
be swapped in as the fill for our selected shape. This replacement fill is clearly different, as
the grid pattern is much larger than the grid of the original swatch.

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 162

163Chapter 6 ✦ Applying Color

Furthermore, the second fill has also replaced the original bitmap swatch (around which
we drew the rectangle), as shown in the following figure. Note, however, that swapping
bitmaps from the Fill Panel only works when the bitmaps are present on the Stage.

The Fill Panel’s Bitmap menu

Use the Fill Panel’s Bitmap menu to swap one bitmap fill for another.

Finally we need to prepare and save the Hybrid Swatches document so that it can be used
as a Library: To do this, add a new layer, leave it blank, and then delete all of the other lay-
ers, including the layer into which the swatches were originally pasted, because they aren’t
on any layer. Or if you’ve arranged your swatches off stage, you’ll need to select and delete
them, since they aren’t visible on any layer.

How does this work? Well, because imported bitmaps reside in the Library, and because we
want this document as a Library, you don’t need to keep them on Stage. Save the docu-
ment and close it. Now you can open a new Flash document and then access the hybrid
swatches library with File ➪ Open as Library and use the dialog to locate and open Hybrid
Swatches.FLA. As long as you open this file as a Library, all of the bitmap fills saved in
HybridSwatches.FLA will be available for use within any new Flash document.

Continued

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 163

164 Part I ✦ Mastering the Flash Environment

If you’d like to see the example swatches and associated Flash file for this tuto-
rial, open the Hybrid Swatches folder located in the ch6 folder of the Flash 5
Bible CD-ROM.

Using color effectively
According to some developers, the issue of color on the Web has been seriously
confused by the misperception that people can set numbers to give them Web-Safe
Colors, and that — if they do that — they will have good color. It’s given a lot of peo-
ple the idea that color has some absolute quality.

But when there over 16 million possible colors, why settle for a mere 216? Or, if you
do settle for 216 colors, you must understand that the value of color in Web design
(or any design or art for that matter) has to do with color perception and design
issues, and numbers have little to do with that. Humans perceive color relative to
the context of other colors in which the color is set.

Most art schools offer at least one course about color. They often start with color
experiments that are conducted with pieces of colored paper. An early assignment
is to make three colors look like more than three colors — this is done by placing
small scraps of the same color on larger pieces of different colors. Students are
always amazed to learn how much a person’s perception of a single color is tainted
by placing it on those different-colored backgrounds. The lesson is that color is not
an absolute — it never was before computers and never will be. Just step into a
computer classroom and note the range of variation between monitors. Do you
think it’s any different out on the Web?

Perhaps there is one thing that is more important than color: contrast. Here’s a
good test: Take a colorful design that you admire and render it to grayscale — does
it still work? Contrast is a major factor in good color composition. Good design
almost doesn’t need color because it leverages contrast instead.

So what’s the point? Consider your audience. Choose a color strategy that will
enable the preponderance of your viewers to view your designs as you intend them.

On the
CD-ROM

Continued

With the Library open, to use a hybrid swatch, select the appropriate swatch from the
Library and drag the swatch from the Preview window onto the work area, or onto any
active layer. If the swatch is not selected, use the Arrow Tool to select it, and then use
Modify ➪ Break Apart to break it apart. Next, use the Dropper Tool to acquire the bitmap fill,
which loads the Paint Bucket Tool. As we’ve shown, the Paint Bucket can now be used to fill
any shape with hybrid Web-Safe Color.

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 164

165Chapter 6 ✦ Applying Color

For example, if your audience is the public schools, then you must seriously con-
sider limiting your work to the Web-Safe Palette. (If you choose this route, then
hybrid swatches may enable you to access colors that are technically unavailable,
while remaining within the hardware limitations of you audience.) On the other
hand, if you are designing an interface for a stock photography firm whose clients
are well-equipped art directors, then please use the full gamut. But in either case,
understand that no one will see the exact same colors that you see. The variables of
hardware, calibration, ambient light, and environmental decor are insurmountable.

Here’s the bottom line: To achieve good Web design you’ll need to use color — to
achieve great Web design your colors should leverage contrast as well.

Working with Flash Color
Flash 5 has three levels for working with Flash Color. The first level is Toolbox Color,
which is discussed in this chapter and which was briefly introduced in Chapter 5. At
the intermediate level are the Stroke and Fill Panels, which can be used to set any
predefined color, or immediately capture a color from anywhere on screen with the
Eyedropper Tool, or invoke the system color picker. At the third level are the Mixer
and Swatches Panels, where Alpha can be set for individual swatches, colors can be
mixed and edited, and color sets can be added to, subtracted from, or loaded into
the Swatches Panel. For many operations, proceeding from any of these panels, you
can use existing swatches or any onscreen color, or set a color without needing to
access any other panels. Other more complex operations, such as creating a gradi-
ent, require adjustments across several panels.

Using Toolbox Color
Just as there are several ways to approach the subject of color, there are also a num-
ber of ways to access the various — but fundamentally similar — color-handling tools
in Flash 5. The quickest, and perhaps most convenient route is to approach color
from either of the Color buttons located on the Toolbox: the Stroke Color and the Fill
Color buttons located in the Color Tray. As we discussed in Chapter 5, these options
serve double duty: Although these controls appear to be Color Chips that indicate
the current color, they’re also buttons. Click either Color button to open the current
Swatches pop-up and select a new stroke or fill color. Whenever any Flash drawing or
painting tools are activated, the current stroke and fill colors are represented by the
Color controls located in the Flash Toolbox. These controls are present regardless of
which tool is being used.

As shown in Figure 6-1, clicking either the Stroke or Fill Color button opens the cur-
rent Swatches pop-up. This pop-up displays the same Swatch set that is currently
loaded in the Swatches Panel. It includes a hexadecimal color entry box — which
facilitates keyboard entry, as well as cut-and-paste of hex values — and a button that

3515-3 ch06.f.qc 1/18/01 3:46 PM Page 165

166 Part I ✦ Mastering the Flash Environment

launches the Color Picker. Depending upon the tool selected, the Fill Color pop-up
may also display a No Color button. The Swatches pop-up for Fill Color also includes
a row of Gradients at the bottom of the solid colors. For all Drawing Tools, elemen-
tary color selection is accomplished by clicking either the Stroke or Fill Color but-
tons, and then choosing a color from the Swatches pop-up. If the color you want is
not there, you may opt to invoke the Color Picker by clicking the Color Picker but-
ton. Alternatively, you may also open the Mixer Panel to create a new color and add
it to the Swatches.

Figure 6-1: The Toolbox Color Tray and the Stroke and Fill Swatches Panels

In addition to the basic reorganization of the Toolbox, the Color Controls include
three new buttons, arrayed across the bottom of the Color Tray. As shown at the
left of Figure 6-1, these are buttons for Default Colors (Stroke and Fill), No Color,
and Swap Colors. The Default button sets the stroke to black and the fill to white.
The No Color button sets the active control — which may be either the Stroke or
the Fill — to apply no color. The Swap button swaps the current colors between the
Stroke and Fill controls.

Tools that create a line include the Line Tool, Pencil Tool, Ink Bottle Tool, Pen Tool,
and — because they draw outlines around their fills — both the Oval and Rectangle
Tools. Each tool relies upon the Stroke Color button, which appears in the Toolbox

New
Feature

Stroke Color

Line

Fill Color

Swap Colors

No Color

Default Colors

Paint Bucket

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 166

167Chapter 6 ✦ Applying Color

Color Tray. Click the Stroke Color button to open the Swatches pop up, which con-
tains all colors in the current color set, including any new colors that have been
temporarily added to the set. It is identical for any tool that has a stroke color.

In addition to tools that create lines, there are also fill tools. The fill tools include the
Brush, Paint Bucket, Oval, and Rectangle Tools. Each of these tools is accompanied
by the Fill Color button, which also resides in the Color Tray of the Toolbox. Clicking
the Fill Color button invokes the Swatches pop up. Although the Fill Swatches pop-
up is similar to the line pop up, it has one significant difference: It has another row
of swatches at the bottom, which are gradient swatches — click one to fill with that
gradient. The Fill Swatches pop-up contains all of the colors and gradients in the
current color set, including any new colors or gradients that have been temporarily
added to the set. It is identical for any tool that has a fill color.

Applying color from the Stroke and Fill Panels
You won’t need to keep all of the color panels open to use colors. That’s because, for
most color operations, the colors are already present in any panel you’re using. Flash
5 color works best if you use the Mixer Panel to create new colors, and the Swatches
Panel to manipulate the display of colors that are available in the other panels. If you
already have a predetermined palette for your project (which is a smart workflow),
you may find that you do most of your color work from the Stroke and Fill Panels. The
Stroke and Fill Panels each have a single option available from their options triangles:
The Stroke option invokes the Line Style dialog, which was discussed in Chapter 5,
while the Fill Panel option invokes Add Gradient. In Figure 6-2, the Fill Panel is set for
solid colors only. For more information, please see Chapter 5.

Figure 6-2: The Stroke and Fill Panels

Current Color in Swatches

Solid Colors

Hex Edit and
Read-out

Color Picker
button

No Color button

Color Preview

Selecting a Color

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 167

168 Part I ✦ Mastering the Flash Environment

The Fill Panel is also used for working with bitmap fills. This topic is covered in
detail in Chapter 12, “Using Bitmaps and Other Media with Flash.”

Working with the Swatches Panel
Think of the Swatches Panel (Figure 6-3) as a way to organize your existing swatches
and to manipulate the display of colors that are available in the other panels. Use
the Swatches Panel to save color sets, import color sets, and reorder or change
selected colors.

Figure 6-3: On the left, the Swatches Panel is shown after using the Sort
by Color option. On the right, it’s shown with the default sort, and with the
Options pop-up displayed.

The Options pop-up of the Swatches Panel has options that are used to manipulate
and administrate individual swatches as well as various color sets:

✦ Duplicate Swatch: Use this to duplicate a selected swatch. This can be useful
when you want the make a range of related color swatches by duplicating and
then editing subsequent swatches from the Mixer Panel.

✦ Delete Swatch: Botched a swatch? Select and delete it here.

✦ Add Colors: Opens the Import Color Swatch menu, which is a simple dialog
used to locate, select, and import color sets. Add Colors retains the current
color set and appends the imported color set at the bottom.

Gradients

Solid Colors:
Sorted by Color

Options triangle

Solid Colors Options pop-up

Cross-
Reference

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 168

169Chapter 6 ✦ Applying Color

✦ Replace Colors: Also opens the Import Color Swatch menu. However, Replace
Colors drops the current color set when it loads the selected color set. If the
current set has not been saved it will be lost.

✦ Load Default Colors: Clears the current color set and replaces it with the
default Flash color set. Again, if the current set has not been saved it will
be lost.

✦ Save Colors: Opens the Export Color Swatch Menu, which is used to name
and save color sets to a specific location on your hard drive. Color sets may
be saved in either the Flash color set — on the PC (.clr), on the Mac (.fclr) —
or Color Table (.act) format.

By default, colors are saved within your Flash document, rather than as an external
file. Using the Add Colors, Replace Colors, and Save Colors menu options, Flash
can import and export solid colors from files in the Flash color set (.clr) format. But
Flash can also import and export solid colors from files in the Fireworks-savvy
Color Table (.act) format, which can be imported by Photoshop, and imported and
exported from Fireworks. Flash can also import solid colors from GIF files. If it isn’t
already obvious, this means greater workflow flexibility, which is a boon to project
management because you can save a specific color set for a project and load dif-
ferent color sets as needed. Gradients may only be imported and exported with
the Flash color set (.clr) format.

✦ Save as Default: Saves the current color set as the default — this action
replaces the original default Flash color set.

✦ Clear Colors: When Clear Colors is selected, the swatches in the current col-
ors window are removed, leaving only black and white.

✦ Web 216: Upon initial installation, this is the default Flash color palette that
is displayed in the Swatches Panel. Select this option to replace any current
color set with the Web-Safe Palette of 216 colors.

You can override the default Web 216 Palette by switching the Mixer Panel to
either the RGB or HSB (Hue, Saturation, Brightness) color spaces. You can then
mix your own fresh colors; add them to the Swatches; and save that palette as the
default. Another alternative is to locate the Photoshop Color Tables on your hard
drive (or download a specialty color table from the Web) and replace the default
set with a broader gamut.

✦ Sort by Color: Click this button to rearrange an accumulation of custom col-
ors into a palette that is freshly reordered according to color. It sorts by hues,
with the values of each are arranged together from light to dark in declining
order. However, once you’ve sorted a palette in this manner there is no toggle
to return to the other view — so save your palette before sorting, and then
save the sorted palette, too.

Tip

Note

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 169

170 Part I ✦ Mastering the Flash Environment

Be careful about creating huge color sets! On some systems (for example, a 17-
inch monitor set at 800 ×600 resolution),the Toolbox Color pop-ups may extend
beyond the visible screen and you’ll be forced to use the Swatches Panel to
choose colors that are hidden offscreen. This can get really bad if you add colors
from a GIF image.

Working with the Mixer Panel
The Color Mixer, which is shown in Figure 6-4, enables you to create new colors,
working within any of these three color spaces — RGB, HSB (Hue, Saturation
Brightness, or hex — using either the interactive Color Bar or the Color Value slider
controls. All colors are handled with four channels, which are RGBA (Red, Green,
Blue, Alpha). New colors can be added to the current Swatches, which causes a
new swatch to appear in the Fill, Stroke, and Character Panels — just select Add
Swatch from the Options pop-up. When working with the Mixer Panel, to add a new
color just select Add Swatch from the Options pop-up.

Figure 6-4: The Color Mixer gives you precise control over the creation of new colors,
including Alpha values.

There are two ways to change the Alpha value for a selected color: Either drag
the Alpha Slider until the Alpha readout looks right or enter a numeric value in the
Alpha readout. Numeric entry is useful when you already know what level of trans-
parency is required, while the slider is useful for interactive fiddling with transpar-
ency to get it just right — as indicated in either the Stroke or Fill Color button. In
Figure 6-5, a copy of the Flash icon is donating its orange color to our palette. On
the right, this orange is shown with the Alpha — or transparency — of the color set

Options triangle

Color values (RGB, HSB, or Hex)

Solid Colors Fill has focus

Alpha (transparency) value

Stroke and Fill buttons

Color Bar Options pop-up

Selecting a fill from the Color Bar

Default Colors, No Color, and Swap Color buttons

Caution

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 170

171Chapter 6 ✦ Applying Color

to 30 percent. Before proceeding, this swatch was saved from the Options pop-up
by clicking Add Swatch.

Figure 6-5: When selecting a color from the Swatches pop-up of the Mixer
Panel, the Dropper Tool enables you to pluck a color from anywhere in the
interface.

When working in the Mixer, Stroke, Fill (including Color Pointers), and Character
Panels, the Dropper associated with these panels enables you to pluck color infor-
mation from anywhere in the interface. Simply click the Color button of any of
these three panels, which will cause the mouse to display as a Dropper. Then drag
the Dropper over any open application — or panel of the Flash interface itself — and
click to acquire the color that’s at the end of the Dropper. (Although the Toolbox
Dropper doesn’t facilitate this move, it does have a unique trick of its own: It adds
a new swatch to the Swatches pop-up whenever a color is acquired.)

Figure 6-6 shows the Mixer and Swatches Panels on the left. Previous to this shot,
we used the Duplicate Swatch command of the Swatches Panel to duplicate the 30-
percent-orange swatch. You can see this duplicate swatch highlighted at the bottom
of the Swatches Panel on the left. Using the Mixer, we returned the Alpha of this
swatch to 100 percent. Then, as shown on the right in Figure 6-6, we used the Save
Colors command to add both swatches to the current color set.

If you’re working with a color and want to make it just a little darker, HSB color will
come to your rescue! You can do this dynamically, too. Here’s how: Click the
options arrow of the Mixer Panel and choose HSB. Now make sure your color is
selected on Stage and hide the selection with Ctrl/Command+H. Then, from the
Color values of the Mixer Panel, reduce the B value, which is brightness, either
numerically or by dragging the slider.

Tip

New
Feature

Grid indicates Alpha

Alpha Slider

Selecting a Color from the Interface

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 171

172 Part I ✦ Mastering the Flash Environment

Figure 6-6: Use the Mixer and Swatches Panels to add a new color Swatch and then
save the new color(s) to the current color set.

As shown in Figure 6-7, the new color — an Orange with an Alpha value of 30 per-
cent — is selected for a ten-point solid line. This same color may also be used as
a solid fill. However, to create gradients with new colors, including transparent
colors, you need to use the drop-down menu of the Fill Panel, as explained in the
next section.

Figure 6-7: A newly created color, with an Alpha value, is selected for
a solid line (left). The drop-down menu of the Fill Panel is used to initiate
the creation of custom gradient fills (right).

Creating gradient colors
Often you’ll find that creating a custom gradient swatch requires that you use sev-
eral panels. In addition to the Fill Panel, this usually requires the Mixer, and some-
times the Swatches Panel. The drop-down list of the Flash 5 Fill Panel lists two
gradient styles: Linear and Radial. When editing or creating a gradient, the current
changes can be saved by clicking the Save button at the bottom right of the Panel,
which adds another gradient to the Swatches Panel. The gradient shown in Figure
6-8 is being modified from a default black and white linear gradient.

New Swatch added here

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 172

173Chapter 6 ✦ Applying Color

Figure 6-8: The Pointer Color button displays the color
of the active Color Pointer.

Working with the tiny default Fill Panel to create or edit a complex gradient can be
tedious. Want a bigger work area? Simply grab any corner of the panel to resize
it — and expand the gradient editor simultaneously.

To change the color of the active pointer, which has focus, click the Pointer Color
button and then select a color from the Swatches pop-up. The Fill Color button is
updated to reflect the change. Note that the Swatches pop-up contains all of the
solid colors in the current color set, including any new colors that may have been
temporarily added to the set. As shown in Figure 6-9, the left-hand pointer is being
changed to a color that has an Alpha value, which is indicated by the grid pattern in
both the Color Preview and, upon release of the pointer, by the Fill Color button.

Figure 6-9: Changing the color of the active
pointer for a gradient

Tip

Gradient Preview

Gradient Editor (or Edit Gradient Range)

Fill Menu

Fill Color button

Color Pointer Save

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 173

174 Part I ✦ Mastering the Flash Environment

To customize another point of an existing gradient, click that Color Pointer to give
it focus. In the example shown in Figure 6-10, the right-hand Color Pointer was given
focus — which means that it is active and can be edited. Switching from one Color
Pointer to another changes the Fill Color button to display the color of the pointer
that has focus. While the Color Pointer has focus, click the Fill Color button and
choose a color from the Swatches pop-up, or drag the Dropper out into the inter-
face to acquire a color from any item onscreen, including any color displayed in
any open Flash panel.

Figure 6-10: Changing the second point of the gradient

A new color may also be specified in the Mixer Panel by numeric or hex entry in
the RGB entry fields.

In Figure 6-11, the gradient from the previous figure was applied to this simple com-
position of a circle described by a custom, fuzzy stroke. On the layer behind is a
black pattern of black lines, which is visible through the transparent portions of the
gradient fill that’s been applied to the circle on the top layer. Note the active swatch
in the Swatches Panel, and the Gradient Preview of the left-hand Color Pointer in
the Mixer Panel, which has focus in the Fill Panel.

Figure 6-12 was changed to a radial gradient and then the left-hand Color Pointer of
the previous figure was moved to the right by clicking and dragging it to a new posi-
tion. The Gradient Preview adjusts immediately to reflect this change. To add a new
color to a gradient, you need to add a new pointer to the Gradient Editor, by click-
ing slightly beneath the bar. To remove a pointer, drag it downwards, away from the
bar of the Gradient Editor.

Here’s how to obtain an interactive preview while adjusting the quality of an exist-
ing gradient fill: First select the fill, and then hide the selection grid with
Ctrl/Command+H. Next, open the Swatches, Mixer, and Fill Panels, and select the
appropriate gradient in the Swatches Panel. Next, in the Fill Panel, choose a Color
Pointer to edit and proceed to edit that color in the Mixer. As each Mixer slider is
released, the adjustment will be updated in all relevant Color buttons and in the
selected fill on the Stage. This same functionality also works with new gradients:
Simply make a new single color gradient, apply it as a fill, and then proceed to
edit — adding more colors and finessing Alphas to suit.

Tip

Note

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 174

175Chapter 6 ✦ Applying Color

Figure 6-11: Applying a new gradient, with a transparent color, to an object

Figure 6-12: Adding a new pointer to the Gradient Editor

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 175

176 Part I ✦ Mastering the Flash Environment

As shown in Figure 6-13 more pointers have been added to the gradient. In this
figure, the center Color Pointer is active and white is being selected from the
Swatches pop-up. Next, the Alpha for this pointer will be reduced to 30 percent
by entering this number into the numeric entry field of the Alpha value of the
Mixer Panel.

Figure 6-13: Changing the gradient type and adding more complexity to the gradient.

The Alpha (or relative opacity, or transparency) of a Color Pointer may be adjusted
either by entering a numeric value or by dragging the Alpha Slider. When using the
slider, the Alpha value is displayed as a percentage in the numeric entry box. When
adjusting Alpha, a visual cue for the level of transparency is the appearance of a
faint grid in the Mixer’s active Color button (Stroke Color, Fill Color, or Color Proxy).
If visible, other related Color buttons will also update as the Alpha is adjusted, par-
ticularly in the Fill Panel’s Gradient Preview, the active Color Pointer, and the
Gradient Fill Color button.

Figure 6-14 shows our final radial gradient, which is opaque at the center and pro-
ceeds through variations of transparency and color as it radiates to the outer edge.
The procedure for making a radial gradient is similar to those for creating a linear
gradient. The only real difference is that the Gradient Editor bar — when used in
conjunction with radial gradients — must be considered as a radius, or slice from
the center out to the edge, of the circular gradient. Color Pointers at the left end of
the Gradient Editor bar represent the center — or inside — of the radial gradient,
while Color Pointers at the right end represent the outside.

Note

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 176

177Chapter 6 ✦ Applying Color

Figure 6-14: The final radial gradient applied to an object in Flash 5.

When applying a gradient, it’s now easy to interactively orient the direction of the
gradient as it is applied: Simply click with the Paint Bucket and drag. A direction
line is drawn between the click point and the drag point. If you aren’t satisfied with
the orientation of the gradient, simply repeat the procedure and reorienting the
direction arrow as you drag.

New
Feature

Expert Tutorial: Creating Color Schemes
by Molly E. Holzschlag

Comparing Adobe LiveMotion to Macromedia Flash is like comparing proverbial apples and
oranges. Both offer something special and unique. Maybe you like them both, as I do. Each
has features that empower designers seeking to add life to their Web sites. In the realm of
color, LiveMotion (LM) offers one tool that is especially intriguing. Part of LM’s appeal is that
it is used for static as well as motion graphics for the Web, so the application has a lot of
color support built-in. One very tasty feature that will serve to inspire you in your color goals
is a specialty palette known as the Color Scheme. In fact, if you were to use LM for nothing
else, you might find that the Color Scheme palette is a worthwhile companion to Flash.

Continued

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 177

178 Part I ✦ Mastering the Flash Environment

Continued

Color Scheme palette, Triangle view

Think of a color wheel — you know, those standard wheels of color that you’ve certainly
seen before. With that wheel in your mind: Analogous colors are those that are next to each
other. Complementary colors are those that are across from each other.

LM works on the concept of analogous and complementary colors to make schemes, which
are especially helpful if you’re new to working with color, or for those design newcomers
and veterans who need inspiration in terms of setting up a palette for a design. Schemes
combine colors in interesting ways, and can really help you get creative. The Color Scheme
palette shows off its colors via two views, which are known as Triangle view and
Honeycomb view. Use the view that you like best. Sometimes I switch views. Variety, after
all, is the one true spice. Along with the views, there are six combinations of color available
in the palette:

✦ Analogous: This scheme provides a view of the original (referred to as base) color
plus any analogous colors.

✦ Split Complementary: This scheme shows the base color, its complement, and its
complement’s analogous colors.

✦ Complementary Analogous: Using this scheme shows a base color, its analogous
color, and the analogous color’s complements.

✦ Triad: This is a base color and two equidistant colors.

✦ Tetrad: This is a base color and three colors chosen at equal intervals along the
color wheel.

✦ Sextet: This is the base color plus five colors placed at equal distances from one
another along the color wheel.

Views and numeric combinations can be employed to
create a Color Scheme palette (Honeycomb view).

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 178

179Chapter 6 ✦ Applying Color

Getting excited? Great! If you already have LM, open it up because you’re about to create
your own color scheme. And, if you don’t have it, you can download a full-feature, 30-day
demo from Adobe. To begin a color scheme, follow me:

1. Select Window ➪ Color Scheme to bring up the Color Scheme palette.

2. Choose a color for your base color. To do this, select the Foreground color box in the
Toolbox. Open the Color Palette (Window ➪ Color Palette), and then choose the
color you like using the Color Picker.

3. In the Color Scheme palette, choose a number and scheme combo. There are lots of
combinations — play around until you find one you really like.

4. As you create your scheme, you’ll find that it appears in the Color Scheme portion of
the Toolbox. Got a scheme you’re happy with? Lock that puppy so that it stays until
further commands are given by clicking the Scheme Lock icon on the Color Scheme
palette.

5. Got a scheme that you want to use in Flash? Simply open your Color Scheme and
make a set of rectangular swatches on the LM stage. Then save it as a .SWF. When
you open this .SWF in Flash, you can access those colors with the Dropper and save
it out as a Flash color set.

Pretty creative, indeed. But what happens when you don’t know much about color and what
it represents? Well, here’s a little guide I created some time back, and I’m including it here for
you to enjoy. Color meanings and perceptions vary, and color meanings are often paradoxical.
I’ve kept this information very basic because getting more detailed would end up taking up a
whole, well, book. Instead, use this as a starting point and then put your own savvy to work to
come up with fun and interesting colors and color combinations for your designs. For a basic
introduction to the psychological responses to various colors, refer to the following table.

Color Psychological Response

Red Power, energy, warmth, passions, love, aggression, danger

Blue Trust, conservative, security, technology, cleanliness, order

Green Nature, healthy, good luck, jealousy (“green with envy”), renewal

Yellow Optimism, hope, philosophy, dishonesty, cowardice (a coward can be described
as “yellow”), betrayal

Purple Spirituality, mystery, royalty, transformation, cruelty, arrogance

Orange Energy, balance, warmth

Brown Earth, reliability, comfort, endurance

Gray Intellect, futurism, modesty, sadness, decay

White Purity, cleanliness, precision, innocence, sterility, death

Black Power, sexuality, sophistication, death, mystery, fear, unhappiness, elegance

Continued

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 179

180 Part I ✦ Mastering the Flash Environment

You can obtain functionality similar to what is available from the Color Scheme
Palette of LiveMotion without the expense of owning LiveMotion. It’s found in a
Photoshop plug-in called Color Harmony. The plug-in is from Hot Door, Inc. —
www.hotdoor.com. Although currently available only for the Mac, a Windows ver-
sion is planned for 2001.

Flash Symbols: Tweened Color Effects and Color Objects
Flash Symbols can be tweened so that they will change color over time. Although this
involves color, the selection of colors for the keyframes of the tween is merely a rudi-
mentary application of fill and line color, as described in this chapter. For information
regarding the tweening and keyframe aspects of Symbols and Tweened Color effects,
including the new Negative Alpha, please refer to Chapter 11, “Animating in Flash.”

One brilliant aspect of the improvements to ActionScript is that Flash 5 now has a
new Color object. This means that color is scriptable. As one developer remarked,
“Ahhh, the lengths to which we will no longer have to go in order to simulate this
effect!” Although beyond the scope of this chapter, some mention of it does
belong here. Technically, it means that you can use the methods of the predefined
Color object to change the color and transparency of any movie clip. This is cov-
ered in detail in Chapter 19, “Controlling Movie Clips.”

Summary
✦ The science of color on the computer is far from accurate. There are many

variables involved in the presentation of color over the Web. One variable
revolves around the issue of Web-Safe Color. When targeting color-challenged
audiences, one solution is to use Hybrid Color Swatches.

New
Feature

Tip

Continued

For a deeper examination of the complex subject of color, especially within the context of
World Wide Web design and the variegated impact of color on different cultures, check out
my recent article for Web Techniques, Color My World, at www.webtechniques.com/
archives/2000/09/desi/.

Honored as one of the Top 25 Most Influential Women on the Web, Molly Holzschlag was onto Flash from
the start. She first encountered it when, “It was Futuresplash, from a little company in San Diego called
FutureWave.” She’s the author of 15 books, including Teach Yourself Adobe LiveMotion in 24 Hours (New
York: Macmillan, Sam’s Publishing 2000). Some of the sites she’s worked on include The Microsoft Network,
Desert.Net, RedMeat.Com, and, of course, Molly.Com. Here are her answers to other questions: “Born:
Brooklyn. Raised: New Jersey. Do you have a problem with that?” And, after tremendous prodding about
her last days as a teenager, she reminisced, “If there was anything worth remembering, I don’t remember it.
Hey, it was the 70s!”

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 180

181Chapter 6 ✦ Applying Color

✦ Toolbox Color is available to every Flash drawing tool. It gives immediate,
intuitive access to the currently loaded swatches and all temporary colors.
It also permits direct insertion of hexadecimal values.

✦ At their basic level, the Stroke and Fill Panels are used to access deeper
features of the Flash Color system. They both permit sampling of color from
anywhere in the interface. Additionally, the Fill Panel is used to create and
edit gradients.

✦ The Swatches Panel is used to save out color sets, import color sets, and
reorder or change selected colors and gradients.

✦ The Color Mixer is used to create new colors, and adjust the Alpha of new or
existing colors. It’s also used to choose from three color spaces: RGB, HSB,
or hex. New colors can be added to the current Swatches, which causes them
to appear in the Fill, Stroke, and Character Panels.

✦ Although Flash doesn’t directly support Color Schemes, they can be devel-
oped outside Flash, imported (as either a .SWF from LiveMotion, or as an
.ACT from Color Harmony) and then sampled and saved into a color set with
the Swatches Panel.

✦ Advanced Color capabilities of Flash include color tweening, scriptable
color, and negative Alpha. These topics are discussed in depth in subse-
quent chapters.

✦ ✦ ✦

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 181

3515-3 ch06.f.qc 1/18/01 3:47 PM Page 182

Working
with Text

Type and text are often needed to convey information in
a Flash movie. In this chapter, we explain how to create

text and avoid font display problems.

Understanding Font Display
Problems

TrueType, Type 1 PostScript, and bitmap fonts can be used in
Flash. Although Flash exports the system information about the
fonts that are used, fonts may still appear incorrectly on other
platforms — if the end-user doesn’t have the font installed, the
font may appear incorrectly (even on the same platform). Often
this is a due to the fact that although Flash can display the font
within the editor, it does not recognize that particular font’s
outline and can’t export the text. One way to check for this is
to momentarily switch your view to View ➪ Antialias Text. If
the text appears jaggy, that’s a problem font.

Such problems can be avoided by using the _device fonts
(_sans, _serif, and _typewriter fonts), which can be chosen
either from the Text ➪ Font Menu or from the Character Panel.
These _device fonts tell the Flash player to use whatever
equivalent font is available on the local computer. For exam-
ple, _sans usually becomes Arial or Helvetica, while _serif
becomes Times or Times New Roman, and _typewriter
becomes Courier. Because these settings utilize the default
fonts on the user’s machine, these fonts also make the final
movie size smaller, because Flash doesn’t have to export their
outlines in the .SWF when the movie is exported. Of course,
the result of smaller movies is faster downloads.

77C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Avoiding font
problems

Solving Mac, PC,
and cross-platform
problems

Working with the Text
Tool and text boxes

Using the Character,
Paragraph, and Text
Options Panels

Using static, dynamic,
and input text fields

Reshaping and
manipulating text

✦ ✦ ✦ ✦

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 183

184 Part I ✦ Mastering the Flash Environment

Characteristics of these _device fonts are that they are always available, always
fast, never rotate, and may vary slightly in their metrics from player to player. You
can use _device fonts for text fields and areas of text that you don’t want antialiased
(processed for smoother edges).

Another way to avoid system conflicts with fonts is by breaking apart all text, which
turns it into shapes instead of fonts. (Breaking apart text is indispensable for cre-
ating the text effects explained in Chapter 10, “Drawing in Flash.”) However, bro-
ken-apart text usually increases the file size considerably, so use it sparingly.
Furthermore, text cannot be edited after it’s been broken apart — everything must
be written correctly before investing the time required to break the text apart and
to apply special effects to it.

Because Flash is a vector program, it enables the integration of most fonts within the
movie, without fuss. For normal blocks of text, this means that fonts don’t have to
be rendered into bitmap elements. The .SWF files that Flash publishes (or exports)
include all of the necessary information for the font to display properly on every
browser.

Problems with fonts on the Mac
Adobe PostScript fonts usually function on the Mac without problems. However,
if a font is not properly installed, it may appear to function and display properly
within the .FLA, yet falter when the movie is published. Often this is due to the
editor using what is called the screen font while you are working in the editor. If,
however, the actual font to which the screen font refers cannot be found when
the movie is published, that causes problems.

Problems with fonts on the PC
On the PC, it is reported that PostScript fonts that are used with Adobe Type
Manager can cause problems when publishing the movie. For this reason, it’s often
recommended that PC Flash users limit themselves to TrueType fonts. This is espe-
cially relevant for block text. But if a text block has been broken apart, this restric-
tion does not apply, because breaking type apart renders it into a vector shapes
(or objects) that will ship with the .SWF when the project is published. But the
primary disadvantages of breaking text apart are that it may increase the file size
considerably, and that once it’s broken apart, the text is no longer editable.

Cross-platform issues and codevelopment problems
Sometimes a project from the Mac will open on the PC with the Times font displayed
in substitution for all of the text! This isn’t anything strange — at least in terms of
how Flash is trying to help you — because Flash knows that you don’t have the font
on your machine.

Tip

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 184

185Chapter 7 ✦ Working with Text

If you select a text block and check you’ll most likely see the name of the original
font that was used, even though the text is displayed in the Times font. As long as
you don’t edit the text, Flash will continue to try to use the named font. You may
have the same font installed on both the Mac and the PC and notice (now) that there
is a slight difference in their names. Usually, there’s an extra space or an underscore
messing up the font sync.

The Text Tool
The Text Tool is used to create and edit text. Although Flash is neither a drawing
program like FreeHand, nor a page-layout program, its text-handling capabilities are
well thought-out and implemented. The Text Tool, shown in Figure 7-1, delivers a
broad range of control for generating, positioning, tuning, and editing text. Although
the basic Text Tool is located in the Flash Toolbox, the controls for working with
Text are located in three text panels: the Character, Paragraph, and Text Options
Panels.

Use the Eyedropper Tool to acquire text: Click extant text to acquire all of the for-
matting and attributes and apply these settings to subsequently entered text.

If your handling of text demands a more robust and thorough environment, you
can generate your text in Freehand (or Illustrator) and import that more refined
text into Flash. For more information on this type workflow, refer to Chapter 31,
“Working with Vector Graphics.”

Flash handles text as a group. This means that when you create type, you can use
the Text Tool to edit the individual letters or words inside the text area at any time.
But if you click once anywhere on the text, the entire text block is selected.

Cross-
Reference

Tip

Resources for Further Study in Typography

Although Flash offers the capability to deliver finely designed typography to 90 percent of the
Web-browsing population, too many Flash artists are typography challenged. Unfortunately,
it shows. If you are unfamiliar with typography, here are two excellent resources:

The Non-Designer’s Type Book (Berkeley: Peachpit Press, 1998) by Robin Williams. This is a
must-read (and study) for anyone who really wants to take their Flash Web designs to the
next level.

The Elements of Typographic Style (Vancover, B.C.: Hartley & Marks, 1997) by Robert
Bringhurst. This is a manual of typography and book design that concludes with “appen-
dices of typographic characters and currently available digitized fonts [and] a glossary of
terms.”

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 185

186 Part I ✦ Mastering the Flash Environment

Figure 7-1: The Text Tool has
no options in the Toolbox.

Working with Flash text boxes
Flash now generates three flavors of text in three kinds of text boxes: Label Text
(A), Block Text (B), and Editable Text (C), shown in Figure 7-2. The bottom example
shows an Editable Text box as it is being resized (D).

Each of the three kinds of text blocks has its own characteristics:

✦ Label Text: With Label Text, Flash creates text blocks that widen as you con-
tinue to add text. As shown in the top example of Figure 7-2, Label Text has a
round handle at the upper-right corner. To create a Label Text box, click once
in the movie area with the Text Tool and then commence typing. If you keep
typing without making line breaks in Label Text Mode, the Label Text box con-
tinues beyond the right edge of the movie area. When this happens, the text is
not lost. To regain view of this off-movie text, add line breaks, move the Label
Text box, or select View ➪ Work Area from the Menu Bar, to make the off-
movie area Label Text box entirely visible.

✦ Block Text: Flash creates Block Text when you drag out the text box as you cre-
ate it in the movie area. As shown in the second example in Figure 7-2, a Block
Text box has a square handle at the upper-right corner. The Block Text box has
a fixed width, and wraps words automatically. You create a Block Text box by
simply selecting the Text Tool, clicking, and then dragging out a box of the
desired width in the movie area. When you commence typing, the text wraps
automatically and the box extends downwards as you add more lines of text.

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 186

187Chapter 7 ✦ Working with Text

✦ Editable Text: With Editable Text fields, the content is variable. This means that
the page viewer can change the contents of an Editable Text field: for example,
when used in a password entry box or a form field. As shown in the third and
bottom examples in Figure 7-2, an Editable Text box has a square handle at the
lower-right corner that can be dragged in or out to resize it. Create Editable
Text by choosing either Dynamic or Static Text from the Text Behavior drop-
down of the Text Options Panel, and then click in the movie area to drag out
and define the text box. Because the use of Editable Text involves interactivity
and is rather complex, detailed discussion of Editable Text is deferred to
Chapter 25, “Understanding HTML and Text Field Functions in Flash.”

Figure 7-2: Shown here are examples of Flash text in
three kinds of text boxes, from top to bottom: Label
(or Extending) Text, Block (or Fixed) Text, and Editable
(or Dynamic or Input) Text.

A Label Text box can be converted into a Block Text box. Place the cursor over the
round text handle at the upper-right corner of the Label Text box. A double-ended
arrow appears, indicating that you can modify the Label Text box’s width. Drag to
reshape the Label Text box. When you release the mouse, the text handle at the
upper-right corner will now be square (formerly, it was round), indicating that this
is now a Block Text box. To revert back to Label Text, double-click the square text
handle.

A

B

C

D

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 187

188 Part I ✦ Mastering the Flash Environment

Can’t tell if it’s Label or Block Text? That’s because it’s not in Edit Mode. To return
the text item to Edit Mode, either double-click the item with the Arrow Tool or click
it once with the Type Tool.

Using the Character Panel
The Character Panel, shown in Figure 7-3, is readily accessed from the Launcher
Bar, or from the Window Menu with Window ➪ Panels ➪ Character. The main feature
of this panel is the Font Name drop-down, which is use to select fonts.

The Character Panel can also be accessed from the keyboard by pressing
Ctrl+T/Command+T.

Figure 7-3: The Character Panel is one of three panels
used to select and modify manipulated text.

✦ No options: There are no options for this panel. The options button here is
vestigial.

✦ Font Name drop-down: When the Text Tool is active, this displays the name
of the current font. Click the button (which is a downward-pointing triangle)
to invoke a scrolling menu of available fonts. Choose a font from this scrolling
menu to set the font for the next text element that you create. Or, to change
the font of existing text, first select the text in the movie area, and then choose
a different font from the scrolling menu. When selecting a font from the
Character Panel, the currently highlighted font is previewed in its typeface.

Font size

Tracking

Baseline
shift

Kern

Link entry

Italic

Bold

Font Name drop-down

Text Color button

No options

Tip

Tip

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 188

189Chapter 7 ✦ Working with Text

The font of existing text can also be changed from the Menu Bar with Text ➪ Font.
The advantage of this method is that the list is more expansive and easier to scan.
The disadvantage of this list is that it doesn’t preview the fonts in their typefaces.

✦ Text Color button: Click this button to invoke the Current Swatches, which —
in addition to current and temporary swatches — also enables you to acquire
a color from anywhere within the interface.

✦ Kern Check box: If the font includes built-in kerning information, which evens
out the spaces between letterforms, check this to activate automatic kerning.

✦ Bold and Italic: The Bold option is a simple button that toggles selected text
between either Normal or Bold. The Italic option is another simple button. It
toggles selected text between Normal and Italic.

Many computer programs (including Flash) that deal with type permit you to fake
a Bold and/or Italic version of fonts that you do have; this has led to a lot of con-
fusion. Each typeface has a basic or Normal form. The shape of the Bold version of
that typeface is not the same as the Normal form. Nor is the Italic simply a slanted
version. The shapes and proportions are different. With a well-designed font, the
real bold font will always look better than a Normal letter shape thickened with an
outline. A real Bold or Italic version of a typeface will be appropriately named and
will be selected as a separate font.

✦ Font size: This is both a pop-up and a text entry field. When the Text Tool is
active, it displays the current font size in a text entry field. You can change the
font size by entering a specific font size in this text entry field. If you click the
arrow to the immediate right of the text entry field, a pop-up displays a slider
of available font sizes.

✦ Tracking: In addition to the other controls that Flash affords for the arrange-
ment and adjustment of text, text can be manually tracked. Tracking is the
process of adjusting the space between two or more text characters. To track
characters from the Character Panel, first select the characters that you want
to adjust, and then either enter a numeric value in the read out, or drag the
interactive slider. The Text menu also has its own Tracking menu suboptions.
Menu tracking has the additional advantage that it can be applied either: (a)
to selected (highlighted) text characters or (b) to the pair of text characters
on either side of the cursor:

• Decrease Spacing by One Half-Pixel: To decrease text character spacing
by one half-pixel, press Ctrl+Alt+Left Arrow (Command+Option+Left
Arrow).

• Decrease Spacing by Two Pixels: To decrease text character spacing by
two pixels, press Ctrl+Shift+Alt+Left Arrow (Command+Shift+Option+Left
Arrow).

• Increase Spacing by One Half-Pixel: To increase text character spacing
by one half-pixel, press Ctrl+Alt+Right Arrow (Command+Option+Right
Arrow).

Note

Tip

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 189

190 Part I ✦ Mastering the Flash Environment

• Increase Spacing by Two Pixels: To increase text character spacing by
two pixels, press Ctrl+Alt+Right Arrow (Command+Shift+Option+Right
Arrow).

• Reset Spacing to Normal: To reset text character spacing to normal,
press Ctrl+Alt+Up Arrow (Command+Option+Up Arrow).

✦ Baseline shift: There are three options in this drop-down menu. Normal resets
text to the baseline, while Superscript and Subscript shift the text either
above or below the baseline.

✦ Link entry: This is used to link selected text as a hyperlink to another URL. To
do this, first select a text block on Stage, and then enter the URL in this Link
entry field.

Figure 7-4 shows several uses of the Character Panel, such as previewing and
selecting fonts, and adjusting the font size. On the left, this composite image shows
selected Block Text as the font is being changed from the _sans device font to Lithos
Regular. Note that the font preview displays the selected text, rather than the font
name, which is the default display when no text is selected. On the right, the point
size is being adjusted by dragging the Font size slider. As the text resizes, the Block
Text box, which has a constrained width, forces the text to break and stack verti-
cally, leaving only the M visible on stage.

Figure 7-4: Using the Character Panel

Using the Style submenu
Some of the settings of the Character Panel are also available from the Style sub-
menu that appears when you choose Text ➪ Style from the Menu Bar. These
include:

✦ Plain — Ctrl(Command)+Shift+P

✦ Bold — Ctrl(Command)+Shift+B

✦ Italic — Ctrl(Command)+Shift+I

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 190

191Chapter 7 ✦ Working with Text

✦ Subscript

✦ Superscript

Using the Paragraph Panel
The Paragraph Panel, shown in Figure 7-5, can be directly invoked from the
Window Menu with Window ➪ Panels ➪ Paragraph. If you use the default panels
layout, you can click the Character Panel button on the Launcher Bar and then
select the Para-graph tab to bring it forward in the panel stack. This Panel features
alignment controls that can be used to align selected text. When entering new text,
if you predetermine the alignment settings before text entry, subsequently entered
text will be aligned accordingly.

The keyboard shortcut for the Paragraph Panel is Ctrl/Command+Shift+T.

Figure 7-5: The Paragraph Panel
is used to set, edit, and adjust
the alignment of selected
characters and paragraphs.

✦ No Options: There are no options for this panel. The options button here is
vestigial.

✦ Alignment Options: The top area of the panel displays four buttons for the
arrangement of text: Left, Center, Right, and Full Justification. When editing,
alignment affects the currently selected paragraph(s) only. When entering
text, use these options to predetermine the alignment before text entry, and
all subsequent text will be aligned accordingly.

No options

Left
Margin

Indent

Line Spacing

Right Margin

Center

Left Right

Justify

Tip

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 191

192 Part I ✦ Mastering the Flash Environment

✦ Right Margins: Use this numeric entry field (or click the arrow button to
invoke the interactive slider) to define the space between the text and the
right border of the text box. By default, this space is described in pixels.

✦ Line Spacing: Use this numeric entry field or associated slider to adjust line
spacing. By default, Line Spacing is described in points. Regardless of settings
for individual fonts, the largest font on a line will always determine line spac-
ing for that line.

✦ Indentation: Use this numeric entry field or associated slider to adjust the
indent, also described by default in pixels, of the first line of a paragraph. The
indent is relative to the left margin.

✦ Left Margins: Use this numeric entry field (or click the arrow button to invoke
the interactive slider) to define the space between the text and the left border
of the text box. By default, this space is described in pixels.

Figure 7-6 shows how selected text can be realigned, formatted, and edited for size,
color, and other attributes. Here, the lower line of text is selected; it’s point size
reduced; and, as shown, its alignment set to Center.

Figure 7-6: Using the Character and Paragraph Panels to format selected text.

The default units of measurement for both the Margin and Indentation entries of
the Paragraph Properties dialog are determined by the Ruler Units for the movie.
Ruler Units can be reset in the Movie Properties dialog, which is accessed from the
Menu Bar with Modify ➪ Movie or from the keyboard by pressing Ctrl+M
(Command+M).

Using the Alignment submenu
Some of the settings of the Paragraph Panel are also available from the Alignment
submenu that appears when you choose Text ➪ Align from the Menu Bar:

✦ Align Left: Ctrl(Command)+Shift+L

Note

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 192

193Chapter 7 ✦ Working with Text

✦ Align Center: Ctrl(Command)+Shift+C

✦ Align Right: Ctrl(Command)+Shift+R

✦ Justify: Ctrl(Command)+Shift+J

Using the Text Options Panel
The Text Options Panel can also be directly invoked from the Window menu with
Window ➪ Panels ➪ Text Options. Or, if you use the default Panels layout, you can
click the Character Panel button on the Launcher Bar and then select the tab to
bring Text Options forward in the panel stack. This is the most varied of the text-
related panels. Depending upon your choice of Text Behavior, it displays three
option sets: Static, Dynamic, or Input Text.

There is no keyboard shortcut for the Text Options Panel, but you can make one
with the new Flash 5 Keyboard Shortcuts dialog, Edit ➪ Keyboard Shortcuts.

As shown in Figure 7-7, when the Text Behavior is set to Static Text, the Text
Options Panel has only two options (left). To choose another behavior, click the
Text Behavior drop-down (right).

Figure 7-7: The Text Options Panel

As with the other text-related panels, the options button is disabled on this panel.

Static (noneditable) text behavior
The default behavior for any text block created in (or pasted into) Flash is static.
So, for display text and many of the more ordinary implementations of text in Flash,
it’s unnecessary to use the Text Options Panel. Nevertheless, you may encounter a
situation that requires a text field to display information, but also enables users to
select and copy the information. Or you might want to fine-tune the display quality

Note

No options

Enable Selection

Device Fonts

Text Behavior drop-down

Tip

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 193

194 Part I ✦ Mastering the Flash Environment

of some text. That’s when the Static Text Behavior of the Text Options Panel
becomes indispensable:

✦ Selectable: Check this box to make selected text, or text that’s entered subse-
quently, selectable when displayed on users’ machines.

✦ Use Device Fonts: This little check box is the secret to a poorly documented,
yet extremely powerful enhancement to the way in which Flash 5 handles text.
It is not a substitute for selecting one of the three_ device fonts that appear at the
top of the Font Menu. Rather, it’s an innovative way in which Flash enables you
to use many common fonts without embedding the characters. It also pro-
vides a mechanism that improves text display at small point sizes. For more
details refer to the following sidebar.

As shown in the composite Figure 7-8, the chosen font is present on the system.
The variations are the result of different settings in the Text Options Panel for Static
Text. At the top, Use Device Fonts was unchecked. For the following two examples,
Use Device Fonts was checked. However, in the middle example, Global Activation
of the Type Manager was on, whereas for the bottom example, Global Activation of
the Type Manager was off.

Figure 7-8: Using various Device Font settings

Editable Text fields
All Flash Text is created in text blocks or text boxes. Editable Text is no different
except that Editable Text boxes are referred to as text fields, or Input Text boxes —
that’s probably because they are often used as empty fields in which users can input
text, as with a form or a password entry. Think of an Editable Text field as an empty
window with a variable — which is a name — attached to it. When text or data is sent
to the Flash Movie, it is sent to the variable, which ensures that it will be displayed
in the proper window. Flash 5 supports two kinds of editable text fields: Dynamic
Text and Input Text. Both of these are introduced in the subsequent sections of this
chapter.

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 194

195Chapter 7 ✦ Working with Text

Editable Text field’s content is variable. Depending on how it is set up, the content
of an Editable Text field can be selected, edited, or changed by the user, as in a
password entry field or a form field. Some of the advanced applications of Editable
Text fields are discussed in detail in Chapter 25, “Understanding HTML and Text
Field Functions in Flash.”

Dynamic Text fields
Dynamic Text fields are often fed data from a server. Common uses for this are
stocks, sports scores, or weather updates. Creative uses might include a daily
memo, frequently updated statements, an introduction, journal, or a randomly
selected poem. This content can be supplied from a database, read from a server-
side application, or be loaded from another movie or another part of the same
movie. Figure 7-9 shows the Text Options Panel when Dynamic Text is chosen
from the Text Behavior drop-down list.

Cross-
Reference

Use Device Fonts

When Use Device Fonts is checked, the font is not embedded — only the Font Name, Font
family/type (serif/sans serif/monospace), and other information are added to specify the
font — which adds no more than 10 or 15 bytes to the .SWF file. This information is used so
that the player on the user’s system will know if it has the font or not. If the font is not pre-
sent, it lets the system know whether the substitute font should be serif/sans serif.

Without Use Device Fonts checked, the font metrics for used characters are embedded,
which results in a larger file size.

However, even if the user has the font installed, the same test file with Use Device Fonts
checked and Use Device Fonts unchecked will not look the same:

✦ A font that is installed but has Use Device Fonts enabled renders better at smaller
sizes. That’s because there is no antialiasing or smoothing applied to any _device
font (including _device fonts), regardless of its existence on your system.

✦ If the font is installed, but does not have Use Device Fonts enabled, then the charac-
ters from that font are embedded. This means that all text is smoothed (regardless of
the fact that the font is available). Smoothed text can be illegible at small point sizes.

Finally, to accurately preview this Use Device Fonts setting on your machine, if you have a
font manager (as most Web designers do), then you’ll need to make sure you’re careful
about your font activation settings — make sure Global activation is turned off.

For best results with this specific Use Device Fonts option, we suggest that you limit your
font selection to those that most of your audience is likely to have, or which will translate
into one of the default _device fonts without disrupting the look of your design. Otherwise,
for unusual fonts, we suggest that you either embed the characters (Device Font option
unchecked) or, especially for headlines and display text, that you break the text apart.

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 195

196 Part I ✦ Mastering the Flash Environment

Figure 7-9: Dynamic Text fields are used to display
dynamically updating text, such as stocks, sports,
or weather updates.

✦ Line Display: Use this drop-down to choose between a Single Line and a
Multiline field.

✦ HTML: By enabling this check box, Flash preserves rich text styles when dis-
playing Dynamic Text. This includes font, font style, hyperlink, paragraph, and
other formatting consistent with permissible HTML tags. You can also enable
HTML in Text Options so that the entry field will accept formatting that has
been assigned to it in the Actions Panel. For more information on this, refer
to Chapter 25, “Understanding HTML and Text Field Functions in Flash.”

✦ Border/Background: Use this to draw the text field with a border and a back-
ground.

✦ Word wrap: With a Multiline text field, Word wrap will break lines at the end
of the box.

✦ Variable: This is where you name the text field, so that your dynamic data will
know where it is supposed to go.

✦ Embed Fonts: When embedding a font, Flash 5 gives you have control over
how much of the font is actually embedded. Choose one or more character
categories for the font — by clicking buttons for Full Font, Uppercase, Lower-
case, Numbers, and/or Punctuation. Or, simply enter specific characters in
the text field.

No options

HTML formatting

Selectable

Variable name

Line Display
drop-down

Full Font

Uppercase

Lowercase

Numbers

Punctuation

Text Behavior drop-down

Border/Background

Enter specific characters

Word wrap

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 196

197Chapter 7 ✦ Working with Text

The and <I> tags may cause text to disappear if you’ve included the font out-
lines. Apparently this is because the bold and italic variations of fonts are handled
as separate fonts by Flash. (Technically, they are separate!)

Input Text fields
When users fill out forms and answer Web surveys, or enter a password, they are
using Input text fields. Figure 7-10 shows the Text Options Panel when you choose
Input Text from the Text Behavior drop-down list.

Figure 7-10: The Input Text Behavior has many of
the same options as Dynamic Text. In addition to
Single Line and Multiline, there is also an option
to display the text as a Password.

No options

HTML formatting

Variable name (obscured)

Line Display
drop-down (open)

Full Font

Uppercase

Lowercase

Numbers

Punctuation

Text Behavior drop-down

Border/Background

Embed specific characters
Maximum input characters

Caution

Permissible HTML tags

You can use the following HTML tags to control the display of Dynamic and Input Text:

<A> <P>

 <U>

<I>

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 197

198 Part I ✦ Mastering the Flash Environment

Here are the options for Input Text fields:

✦ Line Display: In addition to Single Line and Multiline, there is also an option
to display text as a Password.

✦ HTML: By enabling this check box, Flash preserves rich text styles when dis-
playing Dynamic Text. This includes font, font style, hyperlink, paragraph, and
other formatting consistent with permissible HTML tags. For specifics, see the
explanation of Dynamic Text earlier in this chapter.

✦ Border/Background: Use this to draw the text field with a border and a back-
ground.

✦ Maximum Input Characters: Use this to limit the number of characters that a
user can enter in this particular text field. Simply enter the maximum number
of characters. This is most common when working with passwords.

✦ Variable: This is where you name the text field, so that your dynamic data will
know where it is supposed to go.

✦ Embed Fonts: When embedding a font, Flash 5 gives you have control over
how much of the font is actually embedded. Choose one or more character
categories for the font — by clicking buttons for Full Font, Uppercase, Lower-
case, Numbers, and/or Punctuation. Or, simply enter specific characters in
the text field.

Flash 5 enables you to use a Font as a Shared Library item, which means that you
can link to the font and use it without embedding the font. This is covered in
depth in Chapter 20, “Sharing and Loading Assets.”

Reshaping and Manipulating Text Characters
In addition to all of the powerful text-handling capabilities previously discussed,
Flash also gives you the ability to reshape and distort standard text to suit your
taste (or lack thereof). To manipulate text, the text must first be converted to its
component lines and fills. Then it can be reshaped, erased, manipulated, and dis-
torted. Converted text characters can be grouped or changed to symbols. These
items can also be animated. However, after text characters have been converted
to lines and fills, they can no longer be edited as text. Even if you regroup the text
characters and/or convert the text into a symbol, you can no longer apply font,
kerning, or paragraph options. For more information on reshaping, manipulating,
and animating text, see Chapter 10, “Drawing in Flash,” and Chapter 11, “Animating
in Flash.” But just to get you started, here are a few tips and guidelines for manipu-
lating text in Flash:

✦ To convert text characters to component lines and fills: First, the text charac-
ters that you want to convert must be selected, or highlighted. Then choose
Modify ➪ Break Apart from the Menu Bar. To undo, choose Edit ➪ Undo from
the Menu Bar.

New
Feature

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 198

199Chapter 7 ✦ Working with Text

✦ Rotation and Break Apart can only be applied to outline fonts such as
TrueType fonts.

✦ On Macs, PostScript fonts can only be broken apart if ATM (Adobe Type
Manager) is installed.

✦ Bitmap fonts disappear from the screen if you attempt to break them apart.

✦ Test whether a font is a bitmapped font by choosing View ➪ Antialias from the
Menu Bar. If the text still appears with ragged edges, it is a bitmapped font
and will disappear when broken apart.

Summary
✦ Although minor issues may come up when working with text in Flash, it is rel-

atively simple to work cross-platform and deliver high-quality textual presen-
tations to users on both Macs and PCs with many varied configurations.

✦ The Text Tool is used to create and edit text. Flash’s text-handling capabilities
are robust and well implemented. There are many improvements to the text
handling in Flash 5.

✦ The Text Tool delivers a broad range of control for generating, positioning,
fine-tuning, and editing text.

✦ The most powerful controls for working with text are located in the Character,
Paragraph, and Text Options Panels.

✦ Flash offers three kinds of text fields for use in interactive projects and for deliv-
ering dynamic textual content: Editable Text, Dynamic Text, and Input Text.

✦ Although textual characters and words are complex outlines, they can broken
apart in Flash so that they can be reshaped, morphed, manipulated, and
animated.

✦ ✦ ✦

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 199

3515-3 ch07.f.qc 1/18/01 3:47 PM Page 200

Exploring the
Timeline

The timeline is the backbone of Flash. A clear understand-
ing of the timeline is critical to productive work in Flash.

As you’ll soon learn, one of the most powerful features of the
timeline is that a quick glance at the timeline frames provides
a lot of information about what is on those frames.

Viewing the Timeline
The timeline graphically orders Flash content across two
dimensions: time and depth.

✦ Time: The sequence of frames is arranged horizontally,
from left to right, as they appear in time. Thus, if your
movie is set to 20 frames per second, frame 40 occurs
at the 2-second point of your animation.

Although they say that time and space are without limits,
there are limits to nearly everything, including the number
of frames (time) on any one Flash timeline. You get 16,000
frames—which will result in a timeline so unwieldy that it
will extend into next Christmas. If that’s not enough timeline
for you, you should be working with scenes and movie clips.

✦ Depth: The timeline layers enable you to separate
content on discrete layers. These layers are arranged
vertically, from bottom to top. They also enable you to
separate content from actions, comments, labels, and
sounds. Any items placed on layers above will block
out any items in layers beneath them, without otherwise
affecting each other. In the editing environment, you can
set layer visibility (the eye icon), editability (the lock
icon), and the display mode — regular or just outlines
(the square icon). Note, however, that these settings
do not affect the final movie: All layer content, regard-
less of visibility or outline settings, is included in the
final movie.

Note

88C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
the timeline

Layer Specifics

Preferences for
the timeline

Layer properties and
Frame View options

Exploring the
timeline/Stage
relationship

Using Stacking Order
and Grouping

Editing on the
timeline

Onion skinning

✦ ✦ ✦ ✦

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 203

204 Part II ✦ Creating Flash Graphics

At this point, it’s worth noting that Flash 5 occasioned several changes to the way
the timeline works. These changes were designed to make frame spans more easily
recognized and manipulated. (A frame span is the group of frames ranging from one
keyframe to, but not including, the next.)

Because the frames between two keyframes do not add any new information to
the movie, they really depend on the keyframes preceding them. Thus, in a logical
sense, it’s reasonable to be able to select them as a singular entity (the keyframe
and all of the frames that depend on it), rather than individually. This group selec-
tion also makes moving frame spans easier — clicking a frame span turns the cursor
into a hand and enables dragging.

Although some accomplished Flash artists say that they find the new Flash 5 timeline
confusing, we recommend that you use the new timeline because it really is better.
But, if you’ve tried and find that you are more comfortable with the Flash 4 timeline,
you’ll be happy to know that you may revert to some of the Flash 4 functionality. To
revert to Flash 4 functionality, Choose Edit ➪ Preferences ➪ General, check the Flash 4
Selection Style and Flash 4 Frame Drawing check boxes, and then click OK.

Figure 8-1 shows the many features, options, and controls of the timeline.

As shown in Figure 8-1, the principal parts of the timeline are:

✦ Title Bar: This identifies the timeline if the timeline is not docked near the
top of the screen.

✦ Active Layer Toggle: This is more of an icon, really. To make a layer active,
either click the layer’s name, or select a frame or group of frames. Then the
pencil icon appears, indicating that the layer is now active — that’s in addition
to this more obvious clue: The Layer Bar of the active layer is black, whereas
inactive Layer Bars are gray. Only one layer can be active at a time.

✦ Show/Hide Layer Toggle: This is a true toggle. Click the dot beneath the
eye icon to hide the contents of this layer from view on the stage. When the
layer is hidden, a red X appears over the dot. To return the layer to visibility,
click the X.

Hidden layers export, and any content on stage within a hidden layer will become
visible upon export. Even if the content is offstage and not visible, it may add con-
siderably to the file size when a Flash movie is published, so you should save your
.FLA and then purge these layers before your final export.

✦ Lock/Unlock Layer Toggle: This toggle locks or unlocks the layer to either
prevent (or enable) further editing. As with Show/Hide, when the layer is
locked, a red X appears over the dot.

Caution

Tip

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 204

205Chapter 8 ✦ Exploring the Timeline

Figure 8-1: Because animation is the art of making things happen with pictures that
change over time, the timeline might be considered the backbone of Flash. The timeline
uses layers and frames to organize and control a movie’s contents.

✦ Layer Color Toggle: This toggles the colored layer outlines on or off. When
on, the dot changes into a small square outline of the same color as the
outlines for the layer. When on, the items in the layer are displayed only as
colored outlines, which can be useful for analyzing and finessing animated
effects. The Layer Color can be changed with the Outline Color control of
the Layer Properties dialog (shown in Figure 8-7), which is accessed by
choosing Modify ➪ Layer.

Active Layer Toggle

Layer Color Toggle

Playback Head or Current Frame Indicator

Timeline Header

Frame View Options

Timeline Frames

Lock/Unlock Layer Toggle

Show/Hide Layer Toggle

Title Bar

By default,
new layers
are stacked

on top

Cursor resizing timelineElapsed Time

Current Frame

Modify Onion Markers

Edit Multiple Frames

Onion Skin Outlines

Onion Skin

Center
Frame

Delete
Layer

fps = Frame Rate Indicator

Add Guide
Layer

Add Layer

Layer Names,
Layer Bars

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 205

206 Part II ✦ Creating Flash Graphics

✦ Playhead or Current Frame Indicator: The red rectangle with a line extend-
ing down through all layers is the Playhead. The Playhead indicates the
current Frame. Drag it left or right along the timeline to move from one area
of the timeline to another. Push it beyond the visible area to force-scroll the
timeline. You can also drag the Playhead at a consistent rate for a preview
of your animation; this is called “scrubbing the timeline.”

✦ Timeline Header: The Timeline Header is the ruler that measures the time
of the timeline — each tick is one frame.

✦ Frame View options button: This button, at the far right end of the timeline,
accesses the Frame View options pop-up, which — as shown in Figures 8-8 and
8-9 — affords many options for the manner in which both the Timeline Header
and the Frames are displayed.

✦ Add Layer: Simply click this button to add a new layer above the currently
active layer. By default, layers are given numeric names. Double-click the
Layer name in the Layer Bar to change the name.

✦ Add Guide Layer: Guide layers are used to move elements along a path.
This button adds a Guide Layer directly above (and linked to) the currently
active layer. To learn about using Guide Layers, refer to Chapter 11, “Animating
in Flash.”

✦ Delete Layer: This button deletes the currently active layer, regardless of
whether it is locked. Of course, the final layer cannot be deleted.

✦ Center Frame: Click this button to shift the timeline so that the current frame
is centered in the visible area of the timeline.

✦ Onion Skin: The Onion Skin feature enables you to see several frames of
animation simultaneously. (Onion skinning is further described in the next
section of this chapter.)

✦ Onion Skin Outlines: This enables you to see the outlines of several frames
of animation simultaneously.

✦ Edit Multiple Frames: Normally, onion skinning only permits you to edit the
current frame. Click this button to make each frame between the Onion Skin
Markers editable.

✦ Modify Onion Markers: Click this button to evoke the Modify Onion Markers
pop-up, as shown in Figure 8-15. In addition to manual adjustments, the
options are used to control the behavior and range of onion skinning.

✦ Current Frame: This indicates the number of the current frame. It’s most
useful when working with small frame sizes, which, as shown in Figure 8-8,
can be specified from the Frame View options.

✦ Frame Rate Indicator: This indicates the Frame Rate of the movie, measured
in fps, or frames per second. Although the program default is 12 fps, usually
20 fps is a good starting point. The Frame Rate is specified in the Movie
Properties dialog, which is accessed by choosing Modify ➪ Movie (Ctrl/
Command+M). You can also double-click the Frame Rate Indicator to invoke
the Movie Properties dialog.

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 206

207Chapter 8 ✦ Exploring the Timeline

The fps setting is not a constant or absolute — it means maximum frame rate. The
actual frame rate is dependent upon a number of variables, including download
speed, processor speed, and machine resources — these are variables over which
you have no control. However, another factor, over which you do have control, is
the intensity of the animation: Complex movement with multiple moving parts is
more processor intensive than simple movement. It is very important that Frame
Rate be established — with a little testing on various machines — early on in your
development process.

✦ Elapsed Time: This indicates the total movie time, measured in fps, which
would elapse from frame 1 to the current frame — provided that the movie is
played back at the specified speed.

Manipulating the Timeline
The position, size, and shape of the timeline can be manipulated to better suit your
workflow, much like any other Flash window or panel. On a dual monitor system,
the timeline can be exiled to the second monitor, together with all the panels —
leaving the stage clear and unencumbered for wild creativity.

✦ Move the timeline by dragging it by the Timeline Title Bar, which is the bar at
the top that says timeline. If the timeline is docked, click anywhere in the gray
area above the layer stack to undock the timeline and reposition it.

✦ If undocked, resize the timeline by dragging on the lower right corner (PC),
or the size box (Mac), which is also in the right corner. If docked, drag the bar
at the bottom of the timeline that separates the layers from the application
window, either up or down.

✦ To resize the name and icon controls (either to accommodate longer names
or to apportion more of the timeline to frames), click and drag the bar that
separates the name and icon controls from the frames area.

Layer specifics
Knowing how to work with layers makes the Flash creation process flow much
more smoothly.

By default, new layers are stacked on top of the currently active layer. To rearrange
layers, click in the blank area (between the layer name and the layer toggle icons),
and drag the Layer Bar to the desired position in the layer stack and release.

For enhanced functionality and control, as well as to enable reliable interactivity
and ActionScripting, it’s a good habit to give your layers meaningful names. Simply
double-click the layer’s name on the Layer Bar and enter a meaningful name.

Note

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 207

208 Part II ✦ Creating Flash Graphics

Timeline specifics
The new Flash 5 timeline still offers you many clues about what’s going on with
your animation, as shown in Figures 8-2 and 8-3.

Figure 8-2: Flash 5 Style Layer specifics

✦ Keyframe: A keyframe is any frame in which the contents of the frame may
differ from the contents of either the previous or subsequent frames. Solid
circles designate keyframes with content.

✦ Keyframe spans: Keyframe spans — newly designated in Flash 5 — are the
sections from one keyframe up to (but not including) the next keyframe,
which are separated from each other by vertical lines. Thus, as shown, the
span between frames 3 and 6 in the buttons layer is a keyframe span. Note
that these spans can now be dragged intact, as a whole to a different location.
This functionality is shown in the selected span between frames 8 and 13 in
the buttons layer.

• Final keyframe: The final frame of a keyframe span with content is
marked with an empty rectangle (that is, frame 6 of the buttons layer),
and a vertical line to the right of the rectangle.

Motion Guide Layer icon

Motion Guide Layer (generic icon)

Mask Layer icon

Masked Layer icon Frame-by-Frame Span
(successive keyframes)

Frame action

Frame comment (green hatch marks)

Frame label (red flag)

Shape Tweened Span
(green tint)

Motion Tweened Span
(blue tint)

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 208

209Chapter 8 ✦ Exploring the Timeline

Figure 8-3: Here’s the same timeline that was shown in
Figure 8-2, except that it’s cropped to show just the frames area
of the timeline, with three varieties of keyframes called out.

• Intermediate frame(s): The intermediate frames of a nonempty
keyframe span are gray.

• Empty span(s): Empty spans are white (for example, the visible
portion of the sweep mc layer).

✦ Frame-by-Frame Animation: Frame-by-Frame Animation is animation
composed entirely of keyframes. In a Frame-by-Frame Animation, the
contents of each individual frame differs from both the previous and
subsequent frames. For more information on Frame-by-Frame Animation,
refer to Chapter 11, “Animating in Flash,” and Chapter 37, “Creating
Cartoon Animation with Flash.”

✦ Tweened Animation: Tweened Animation is an animation where the
movement or change is interpolated, or tweened, over a range of frames
that extend between two keyframes. (For more information refer to
Chapter 11, “Animating in Flash.”) An arrow stretching across a colored
keyframe span designates a Tween, of which there are two varieties:

• Motion Tweens: Motion Tweens are indicated by a blue tint.

• Shape Tweens: Shape Tweens are indicated by a green tint.

✦ Motion Guide Layer: A Motion Guide Layer is used to guide an animated
item along a path, which can be drawn with either the Pencil or the Line
Tool. For more about Motion Guide Layers, refer to Chapter 11,
“Animating in Flash.”

Empty keyframes

Keyframes Final keyframes

Final keyframes

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 209

210 Part II ✦ Creating Flash Graphics

✦ Mask Layer: A Mask Layer is a layer that is used to selectively obscure the
layers beneath it. For more about Mask Layers, refer to Chapter 10, “Drawing
in Flash,” and Chapter 11, “Animating in Flash.”

✦ Label: Labels are used to give layers meaningful names, rather than using
frame numbers. The advantage of this is that named layers can be moved
without breaking ActionScript calls assigned to them. Upon export, Labels
are included as part of the .SWF, so it makes sense to keep them short. Use
the Frame Panel to add a Label to a selected frame. Press Enter/Return after
typing a frame label or comment to ensure that the label takes.

✦ Comment: Comments are special Labels, preceded by a double-slash “//” —
Comments do not export, so you can be verbose (within the confines of the
timeline) without adding to the .SWF. Use the Frame Panel to add a Comment,
which is merely a label preceded by “//,” to a selected frame.

Jon begins nearly every Flash project with the creation of four labeled layers at the
top of the layer stack of the new timeline. The consistency of his working method-
ology ensures clarity and simplicity when returning to edit old files or when sharing
files with other contributors. These abbreviations are as follows (it’s not important
that you adopt these conventions, but it is important that you institute some con-
ventional consistency to structure your work): lbls = labels, cmnts = comments,
atns = actions, and snds = sounds.

✦ Waveform: This squiggly blue line in the snds layer is the waveform of a
placed sound.

✦ Frame Actions: The small a’s in frames 1, 20, 40, and 60 of the atns layer
designate the presence of frame actions.

If you copy multiple frames extending down through multiple layers and paste
them into another timeline, you’ll usually lose your layer names.

General preferences
The General Tab of the Flash Preferences dialog, which is accessed from the Main
Menu by choosing Edit ➪ Preferences, has two sections specifically related to the
timeline and its behavior in Flash 5. These are Timeline Options and Highlight
Color. For more about the other aspects of the Flash Preferences dialog, refer
to Chapter 2, “Exploring the Interface: Panels, Settings, Preferences, and More.”
Otherwise, you’ll find that the relevant timeline behaviors are discussed in
greater detail here.

Timeline options
The Disable Timeline Docking option prevents the timeline from attaching to the
application window after it’s been deployed as a floating panel.

Caution

Tip

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 210

211Chapter 8 ✦ Exploring the Timeline

On both the Mac and PC, to undock the timeline and deploy it as a floating palette
as shown in Figure 8-4, click the gray area to the left of the eyeball icon and then,
with the mouse still depressed, drag the palette away from the application window.
To prevent the timeline from docking, press the Control key while dragging. To
permanently disable timeline docking, use Edit ➪ Preferences and, under Timeline
Options, check the Disable Timeline Docking check box. As shown in Figure 8-4,
the timeline can be dragged away from its docked position by clicking the Timeline
Header and dragging the timeline away from the edge of the Flash application.

Figure 8-4: The timeline deployed as a floating palette

The next two options in the Preferences dialog let you revert to the Flash 4
timeline style:

✦ Flash 4 Selection Style: Flash 5 introduced a new methodology for selecting
frames in the timeline. This option toggles that functionality back to Flash 4
Selection Style.

✦ Flash 4 Frame Drawing: Flash 5 also introduced a new methodology for
drawing frames in the timeline. This option toggles that functionality back
to the Flash 4 style.

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 211

212 Part II ✦ Creating Flash Graphics

Figures 8-5 and 8-6 show the difference between the timelines in Flash 5 and Flash 4.

Figure 8-5: Flash 5 frame drawing

Figure 8-6: Flash 4 frame drawing

Highlight color
The Highlight Color options in the Preferences dialog control which colors are used
for selected objects:

✦ Highlight Color: This preference controls the highlight color for selected
groups, symbols, or text — excluding shapes.

✦ Use this color: Check this option to choose a Highlight Color for selections
from the Swatches pop-up.

✦ Use layer color: Check this option to use the layer color as the Highlight
Color for selections. This option enables you to distinguish selected items
according to their associated layer color (which you set in the Layer
Properties dialog).

Layer Properties
Layer Properties dialog is most readily accessed by Right/Ctrl+clicking any Layer
Bar and then choosing Properties from the layer contextual menu. It can also be
invoked by choosing Modify ➪ Layer.

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 212

213Chapter 8 ✦ Exploring the Timeline

The layers contextual menu
As shown in Figure 8-7, the layers contextual menu affords convenient access to
a number of layer-specific operations, many of which are duplicated elsewhere.

✦ Show All: Shows all layers. If some layers have had their visibility turned off,
this makes them all visible.

✦ Lock Others: Unlocks the active layer and locks all other layers.

✦ Hide Others: Makes the currently active layer visible, if it is not visible, and
hides all others.

✦ Insert Layer: Inserts a new layer above the currently active layer.

✦ Delete Layer: Deletes the active layer.

✦ Properties: Invokes the Layer Properties dialog for the currently active layer.

✦ Guide: Transforms the current layer into a Guide Layer.

A Guide Layer differs from a Motion Guide Layer. A Motion Guide Layer is linked to
a Guided Layer, which usually has a Motion Tweened animated item that follows a
path that is drawn on the Guided Layer. A Guide Layer is independent. A Guide
Layer is most often used for placing a bitmap design composition, or other items
that should not export with the project. Neither a Guide Layer nor a Motion Guide
Layer export with the project.

✦ Add Motion Guide: Inserts a new Motion Guide Layer directly above the
current layer and automatically links the current layer to the Guided Layer.

✦ Mask: Transforms the current layer into a Mask Layer.

✦ Show Masking: Use this command on either the Mask or the Masked Layer
to activate the masking effect — essentially, this command locks both layers
simultaneously, which enables the masking effect.

The Layer Properties dialog
The Layer Properties dialog is used to control and edit the properties of the active
layer and to facilitate routine layer operations.

✦ Name: Use this option to change the name of the layer.

✦ Show: With this option checked, the layer is visible; otherwise, it’s hidden.

✦ Lock: This option enables you to lock or unlock the layer.

✦ Type: These options are used to set the type of layer:

• Normal: This is the default, used for drawing and animation.

• Guide: Guide Layers have two purposes. They can be used either as
Motion Guides or as drawing guides. Guide Layers aren’t exported, so
they aren’t visible and they don’t add to the exported file size. Guided
Layers are linked to a Guide Layer.

Note

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 213

214 Part II ✦ Creating Flash Graphics

Figure 8-7: This composite screen shot shows the layer contextual menu and
ensuing Layer Properties dialog.

An empty Guide Layer can be used to organize multiple layers of related content
for better timeline organization. It can also be used as a repository for custom
strokes and fills.

• Mask: A Mask Layer is used in conjunction with a Masked Layer to
create special effects. The Masked Layer is hidden except beneath
filled areas of the Mask Layer that it’s linked to.

✦ Outline Color: Use this to choose the color of the layer’s outlines.

✦ View layer as outlines: When this is checked, all items on the layer appear
as outlines, according to the color chosen in the previous option. Viewing as
outlines speeds the display while editing because all items are shown as thin
outlines. As discussed in the previous section regarding General Preferences,
this option can be used in conjunction with the Highlight Color options of the
General tab of Edit ➪ Preferences, to either give each layer a unique color, or
to employ a global color for all outlines.

✦ Layer Height: Use this to increase the height of the individual layer. This
means that you can have most layers displayed tiny, and yet have others
display with more visible content. This is useful if you use the Preview or
Preview in Context Timeline options on the Frame View options pop-up.
It’s also useful when viewing the waveforms of sound files.

Tip

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 214

215Chapter 8 ✦ Exploring the Timeline

Frame View options
As shown in Figure 8-8, the Frame View options pop-up is used to customize the
size, color, and style of frames displayed within the timeline. These features can
prove very helpful when you are working with cartoon animation, and want to see
each frame previewed. Or, if you are working on an extremely long project with a
huge timeline, it can be helpful to tweak the size of the individual frames, so that
you can see more of the timeline at a single glance.

Figure 8-8: The Frame View options pop-up is used to
customize the size, color, and style of frames displayed
within the timeline.

When used in conjunction with the Layer Height option of the Layer Properties
dialog, you can customize your timeline in myriad ways to better suit your particu-
lar project. Your options include:

✦ Tiny, Small, Normal, Medium, Large: These options afford a range of sizes
for the width of individual frames. When working on extremely long anima-
tions, narrower frames facilitate some operations.

✦ Short: This option makes the frames shorter in height, permitting more Layer
Bars to be visible in the same amount of space. When working with many lay-
ers, short layers help squelch the tedium of scrolling through layers of layers.

✦ Tinted Frames: This option toggles tinted frames on or off. With Tinted
Frames on, the tints are as follows:

• White: Empty or unused frames (for any layer). This is the default.
The white color of empty or unused frames is unaffected regardless
of whether Tinted Frames is on or off.

• Gray: There are two kinds of gray frames: (a) The grayed-out gray frames
in the default (empty) timeline are a quick visual reference that indicates
every fifth frame, like the tick marks on a ruler. These tick frames appear
regardless of whether Tinted Frames are enabled. (b) The solid gray color,
which appears when Tinted Frames are enabled, indicates that a frame
is either filled or otherwise used. Frame usage means that the frame has
something in it, which may be either visible or invisible as, for example,
an item with an alpha of 0 percent, or a hidden symbol.

• Blue: Indicates a Motion Tween span.

• Green: Indicates a Shape Tween span.

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 215

216 Part II ✦ Creating Flash Graphics

Regardless of whether Tinted Frames is enabled, Flash displays tween arrows (and
keyframe dots) to a tween. However, with Tinted Frames disabled, tweened spans
are indicted by a faintly checked gray pattern, and the arrows display in color to
the indicate the type of tween:

• A red arrow: Indicates a Motion Tween span, when Tinted Frames
are off.

• A green arrow: Indicates a Shape Tween span, when Tinted Frames
are off.

✦ Preview: As shown at the top of Figure 8-9, the preview option displays tiny
thumbnails that maximize the element in each frame. Thus, the scale of ele-
ments is not consistent from frame to frame. (Frame 1 of the animation is
shown in Figure 8-9.) In this Frame-by-frame animation, the phases of the
moon increase over a span of 15 frames.

✦ Preview in Context: As shown at the bottom of Figure 8-9, when previewed
in context, the same animation is seen with accurate scale from frame to
frame (because elements are not maximized for each frame).

Figure 8-9: In this composite screen shot, the Frames are shown with
Preview option (top) and Frames shown with Preview in Context option
(middle) for the same animation (bottom).

Note

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 216

217Chapter 8 ✦ Exploring the Timeline

Scene and Symbol Bar
Nested between the Menu Bar and the top of the timeline is the Scene and
Symbol Bar shown in Figure 8-10. This bar is also shown in context in Figure 8-1
and elsewhere in this chapter. The Scene Name button, at the far left, indicates
the name of the current scene. When in Symbol Editing Mode, click this button
to return to the current scene. To the right is the Edit Scene button, and at the far
right is the Edit Symbols button. Click either button to evoke a menu of scenes or
symbols that are editable within the current movie.

For more about Symbols, and the Symbol Editing Mode in particular, refer to
Chapter 9, “Checking Out the Library: Symbols and Instances.”

Figure 8-10: The Scene and Symbol Bar

Scenes are used to organize a Flash project into logical, manageable parts. By
default, on export Flash plays back all of the scenes within the movie in the order
in which they are listed in the Scene Panel.

Since Flash 4, with the increasingly robust power of ActionScript, there’s been a
trend among many advanced developers to move away from Scene-based archi-
tectures. Although this may require a shift in thinking, it has been shown to result
in files that download more efficiently and that are easier to edit due to their mod-
ular organization. It’s like the difference between one huge ball of all-purpose
twine that’s the size of a house, and a large drawer filled with manageable
spools — sorted neatly according to color and weight. The primary area in which
this shift doesn’t apply is among more traditional cartoon animators, such as
Richard Bazely or Bill Turner, whose work is exampled in Chapter 37, “Creating
Cartoon Animation with Flash.”

To navigate to other scenes from within the Movie Editor:

✦ Click the Edit Scene button at the far right of the Scene and Symbol Bar, and
then click the desired scene.

✦ Navigate to a specific scene from the View Menu with the View ➪ Go To
command.

Use the Scene Panel, shown in Figure 8-11, to manage your scenes. The Scene Panel
may be accessed with either of these commands: Modify ➪ Scene or Window ➪
Panels ➪ Scene.

Note

Cross-
Reference

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 217

218 Part II ✦ Creating Flash Graphics

Figure 8-11: The Scene Panel

When your movie is published to .SWF, the scenes play in the order in which they
are listed in either the Scene Panel or the Scene pop-up.

✦ To delete a scene, either use the Scene Panel’s delete button or, from the
Insert menu, use the Insert ➪ Remove Scene command.

✦ To add a scene, either use the Scene Panel’s add button or, from the Insert
menu, use Insert ➪ Scene.

✦ Use the duplicate button on the Scene Panel to duplicate a scene.

✦ To rename a scene, simply double-click the scene name and type the
new name.

✦ To rearrange scene order, simply click and drag a scene to alter its position
with in the Scene Panel. You can use actions to force the movie to access
scenes outside the default linear order. For more about actions, refer to
Part IV, “Adding Basic Interactivity to Flash Movies.”

There are several limitations to the use of scenes in more advanced, ActionScript
environments. For example, you can’t issue a command from within a Movie Clip
to go to and play a frame in another scene.

The Timeline/Stage Relationship
So far in this chapter, we have focused on the features of the timeline and we have
shown how the timeline offers detailed control of Flash functionality, especially as
regards its ordering of time from left to right. Now we are going to look at the man-
ner in which timeline relates to the depth of a Flash movie, or the arrangement of
items from the front to the back of the Stage.

Stacking order
Within a single layer, Flash stacks like items in the order in which they are placed
or created, with the most recent item on top, subject to the kind of item. The rules
that control the stacking order of various kinds of items are simple:

✦ Within a layer, ungrouped, drawn lines and shapes are always at the bottom
level, with the most recently drawn shape or line at the top of that layer’s
stack. Furthermore, unless you take precautions, drawn items either com-
pound with, or cut into, the drawing beneath them.

Caution

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 218

219Chapter 8 ✦ Exploring the Timeline

✦ Groups and symbols (including bitmaps) stack above lines and shapes in
the overlay level. To change the stacking order of several drawings, it’s often
advisable to group them first, as described in the next section of this chapter.

To change the stacking order within a layer, first select the item that you want to
move. Then, do one of the following:

✦ Select Modify ➪ Arrange ➪ Bring to Front or Send to Back to move the item
to the top or bottom of the stacking order.

✦ Select Modify ➪ Arrange ➪ Move Ahead or Move Behind to move the item
ahead or back one position in the stacking order.

Remember the stacking order rules: You won’t be able to bring an ungrouped
drawing above a group or symbol — if you need that drawing on top, group it
and then move it.

Layers are another factor in the stacking order. To stack an item in a lower layer
above an item in a higher layer you simply change the order of the layer among
the other layers: First activate the layer, and then drag the Layer Bar to the desired
position in the layer stack of the timeline.

Although having a million layers in your Flash movie might be hard to manage and
will, most likely, result in a huge and unwieldy .FLA that requires massive RAM,
neither the file size nor the performance of the final .SWF will be adversely
impacted because Flash flattens movies upon export to .SWF.

Grouping
Grouping drawings makes them easier to handle. Rather than manipulating
a single drawing, group several drawings to work with them as a single item.
Grouping also prevents shapes from being altered by other shapes. Furthermore,
the stacking of groups is more easily controlled than ungrouped drawings. Here’s
how to create groups:

1. Use Shift+click to select everything that you want to group — any combination
of items: shapes, lines, and symbols — even other groups.

2. Select Modify ➪ Group (Ctrl+G or Command+G). The selected elements are
now grouped.

3. To ungroup everything, select the group then use Modify ➪ Ungroup
(Ctrl+Shift+G or Command+Shift+G).

Be careful when ungrouping — your newly ungrouped drawings may alter or
eliminate drawings below in the same layer.

Caution

Tip

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 219

220 Part II ✦ Creating Flash Graphics

Editing groups
To edit a group:

1. Either select the group and then choose Edit ➪ Edit Selected, or double-click
the group.

2. Everything on stage — except for the parts of the group — is dimmed, indicating
that only the group is editable.

3. Make the changes in the same way you would edit any items.

4. To stop editing the group, choose Edit ➪ Edit All (or double-click an empty
part of the stage). Items on stage return to normal color.

Editing on the Timeline
After you create your artwork and animations, you may find that you need to edit
it. Flash has features that make such edits quick and easy. You can move frames
and keyframes, copy and paste frames and keyframes, insert frames and keyframes,
delete frames and keyframes, change the sequence of an animation, and edit the
contents of a keyframe. You can also use onion skinning to view frames at one time,
and you can even edit multiple frames at once.

✦ Selecting Frames: The methods for selecting single frames and spans of
frames differ slightly. For users of previous versions of Flash, this may take
a little getting used to. Overall, however, we find the new methodology is an
improvement. Of course, if you aren’t happy with the Flash 5 timeline, you can
use Edit ➪ Preferences ➪ General, to make your timeline behave more like the
familiar Flash 4 timeline (as explained earlier in this chapter).

If you’re comfortable with Flash 4, you need to know this: Selecting multiple frames
and then hitting F6 to generate multiple keyframes no longer works. Instead, select
your multiple frames and then use this command, Modify ➪ Frames ➪ Convert to
Keyframes. If you still want F6 to generate multiple keyframes, then make a custom
Keyboard Shortcut with Edit ➪ Keyboard Shortcuts. (For more on Edit ➪ Keyboard
Shortcuts, refer to Chapter 2, “Exploring the Interface: Panels, Settings, and More.”)

• Frame Spans: To select a span of frames extending between two
keyframes, click anywhere between the keyframes. The cursor will
switch to a hand and the entire span will be selected.

• Single Frames within a Span: To select a single frame within a span,
press the Ctrl/Command key and click a frame. Keyframes at either
end of a span can usually be selected with a simple click.

• Single Frames not within a Span: To select a single frame that is not
implicated with a span, simply click to select it.

Tip

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 220

221Chapter 8 ✦ Exploring the Timeline

✦ Moving Frames: Select the frame(s) that need to be moved, and drag them to
the new location.

✦ Extending the Duration of a Span: To extend the duration of a span, which is
the same result as extending a keyframe, select the keyframe and then drag
the keyframe to the position where you want the span to end.

✦ Copying Frames: Select the frame(s) that you want to copy. Either Choose
Edit ➪ Copy Frames from the menu, or press the Alt/Option key and drag to
copy the selected frames to another location in the timeline.

You can select a range of frames that you want to copy and drop them anywhere
in the timeline — even if there are no frames in the destination area. Any gaps that
might result in the timeline will be automatically filled with static frames. In addi-
tion, you can Alt/Option+Drag from one layer to another, or even select frames
from multiple layers and drag and drop to multiple layers — provided the destina-
tion layers exist prior to the operation!

✦ Pasting Frames: Select the frame(s) that you want to paste the copied
frame(s) into, and select Edit ➪ Paste Frames from the menu.

✦ Inserting Frames: Select the point at which you would like to insert a new
frame, and select Insert ➪ Frame (F5) from the menu.

✦ Inserting Keyframes: Select the point at which you would like to insert a
new keyframe, and select Insert ➪ Keyframe (F6) from the menu. Or, you can
Right+Click/Ctrl+Click the frame that you want to make a keyframe and then,
in the contextual menu, select Insert Keyframe.

✦ Inserting Blank Keyframes: Select the point at which you would like to insert
a new blank keyframe, and select Insert ➪ Blank Keyframe (F7) from the menu.
Or, you can Right+Click/Ctrl+Click the frame that you want to make a keyframe
and then, in the contextual menu, select Insert Blank Keyframe.

If you already have content in the current layer and you insert a keyframe, a new
keyframe will be created that duplicates the content of the keyframe immediately
prior. But if you insert a blank keyframe, the static content of the prior keyframe
will cease and the blank keyframe will, as its name implies, be void of content. For
a hands-on example, refer to the keyframes folder within the ch8 folder of the
CD-ROM.

Figure 8-12 shows a timeline that illustrates some editing points. The top layer shows
the original layer, which has content in the first frame, followed by 19 empty frames.
This layer was copied into all three lower layers, with the result that the initial con-
tent of all four layers was the same. When a keyframe was inserted at Frame 10 of the
Keyframe layer, the content of keyframe 1 was copied into the new keyframe, and the
gray color of the subsequent frames indicates the continuity of static content. But,
when a blank keyframe was inserted at frame 10 of the Blank Keyframe layer, a blank
keyframe was inserted and the continuity of content was stopped, as indicated by the

Note

Note

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 221

222 Part II ✦ Creating Flash Graphics

white frames extending from frame 10 to frame 20. The dotted line running through
the frames of the bottom layer shows what happens when a tween is missing the final
keyframe, which often happens when editing on the timeline.

Figure 8-12: Editing on the timeline

✦ Adding Content from the Library: To add content from the Library to a
selected keyframe, drag an instance of the item from the Library and onto
the Stage.

✦ Deleting Frames (Remove Frames): Select the frame(s) that you want to
delete, and then select Insert ➪ Remove Frames (Shift+F5), or else Right/
Ctrl+click the frame and select Remove Frames from the contextual menu.
This no longer works for deleting keyframes; instead, it will remove an
intervening frame and scoot the keyframe backward toward frame 1.

✦ Clearing a Keyframe: To obliterate a keyframe and its contents, use Clear
Keyframe. Select the keyframe and use Insert ➪ Clear Keyframe (Shift+F6),
or use the contextual menu, Right/Ctrl+click, and choose Clear Keyframe.
When deleting a keyframe, the deleted keyframe and all of the frames follow-
ing, up to the next keyframe, are replaced with the static contents of the
previous keyframe.

✦ Reversing Animation: Select the animation sequence that you would like
to reverse, and select Modify ➪ Frames ➪ Reverse from the menu. For this
to work, you must have keyframes at both the beginning and the end of the
selected sequence.

✦ Editing the Contents of a Keyframe: Select the keyframe that you want to
edit. Then, on the Stage, edit the contents of the keyframe.

There are several issues regarding single-frame movies, which are movies whose
architecture has shifted all content off of the Main Timeline and, via Movie Clips,
has planted that content in a single frame on the Main Timeline: (a) Netscape can
have a problem loading these movies properly. (b) Because ActionScripts on
frames are evoked before the frame itself is drawn, the player can have problems
if it has not finished loading all the necessary components before it starts to run
the script. The fix for both issues is to delay contents and scripts by placing them at
the second frame of the Main Timeline.

Caution

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 222

223Chapter 8 ✦ Exploring the Timeline

Onion Skinning
Onion skinning enables you to view multiple frames at once. When any of the three
Onion Skin buttons is clicked, Onion Skin Markers appear on the timeline, centered
over the current frame. These markers indicate the range of frames that will be
displayed with onion skinning applied. To reposition either of these markers manu-
ally, click and drag it to another location on the timeline. Or, you can use the Modify
Onion Markers pop-up to manage the manner in which onion skinning displays.
By default, the current frame is displayed in full color, while the remaining frames
are dimmed out. As shown in Figure 8-13, they appear as if they were each drawn
on a sheet of onion skin paper and then stacked in order. (Note how the frames
are dimmed with increasing opacity as they move farther away from the current
time marker. This is an important visual clue that works both in filled and outline
modes.) Only the selected frame can be edited, but this feature is useful because
it enables you to see how your edits will affect the flow of the entire selected anima-
tion. It’s also useful for Frame-by-Frame Animation, because you can see each part
of the animation without having to switch back and forth.

Figure 8-13: With onion skinning turned on, the current frame is shown normally,
while the surrounding frames are successively dimmed. The Onion Skin Markers are
visible here on the Timeline Header, which surrounds the Playhead.

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 223

224 Part II ✦ Creating Flash Graphics

For examples of the implementation of the onion skinning feature, refer to the
“Animating Figures with MetaCreations Poser” section of Chapter 33, “Working
with 3D Graphics,” and also Chapter 37, “Creating Cartoon Animation with Flash.”

Figure 8-14 shows how you can view the Onion Skin as Outlines, which is useful for
complex animations. (If you have trouble seeing the outlines, remember that the
color of the outlines can be changed with the Layer Properties dialog.)

Figure 8-14: You can view the Onion Skin as Outlines.

To set up onion skinning, you first turn onion skinning on, and then adjust the
features to suit you, following these steps:

1. Click the Onion Skin button.

2. Move the Start Onion Skin and End Onion Skin markers to contain the frames
that you want to view simultaneously.

Cross-
Reference

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 224

225Chapter 8 ✦ Exploring the Timeline

3. If you’d like to view the Onion Skin as outlines, as shown in Figure 8-14, click
the Onion Skin Outlines button.

4. To edit frames between Onion Skin markers, click the Edit Multiple Frames
button.

It has been reported that everything moves, except whatever’s on the last frame, if
you choose to Edit Multiple Frames, and then set the Start and End Onion Skin
Markers to encompass the whole timeline, and then select all and try to nudge
everything with the arrow keys. So, we suggest that you first save a copy of your
working file. Then, before proceeding after such an adjustment, confirm that this
was not a problem.

5. Change the display of the Onion Skin Markers by clicking the Modify Onion
Markers button. Choose one of the following from the menu:

• Always Show Markers: Check this option to always show the Onion
Skin Markers, regardless of whether onion skinning is on or not.

• Anchor Onion: Usually, the Onion Skin Markers follow the position of
the current frame. Check this option to anchor the Onion Skin Markers
at their current position on the timeline, thus preventing the Onion
Skinning effect to move in relation to the position of the current frame
pointer.

• Onion 2, Onion 5, and Onion all: These options apply the onion skin-
ning effect as follows: (2) to two frames on either side of the current
frame, (5) to five frames on either side of the current frame, or (All) to
All frames.

When you enable onion skinning and drag the Onion Markers to display a specific
range of frames, the range will migrate in unison with the Playhead. This way, you
can always see the same span of frames relative to the current frame, while you
are working. If this annoys you, you can click the Anchor Onion Markers to lock the
markers at their current position.

In Figure 8-15, the Onion 5 option was clicked. If you compare this figure to the
previous figure, you’ll note that the range of the Onion Markers has changed
accordingly.

Note

Caution

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 225

226 Part II ✦ Creating Flash Graphics

Figure 8-15: In addition to manual adjustments, the Modify Onion Markers pop-up
offers several other options for managing Onion Markers.

Summary
✦ The timeline is the backbone of Flash. A clear understanding of both the

logic and the many features of the Flash timeline is essential to competency
with Flash.

✦ The timeline organizes Flash content with regards to both time and depth.

✦ On the timeline, time is incremented from left to right, while depth is orga-
nized in the stacking order of layers, as well as the order of content within
each individual layer.

✦ Animations are organized and controlled by using various kinds of frames
on the timeline. The characteristics of these frames can be edited, and the
frames themselves can be moved, copied, and adjusted on the timeline.

✦ There are three kinds of animation possible in Flash: Frame-by-Frame, Shape
Tweened, and Motion Tweened Animation.

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 226

227Chapter 8 ✦ Exploring the Timeline

✦ The content of the individual frames can be created, edited, manipulated,
and otherwise orchestrated on the Stage.

✦ Onion skinning is useful for the manipulation of the content of frames in
the context of surrounding frames.

✦ ✦ ✦

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 227

3515-3 ch08.f.qc 1/18/01 3:49 PM Page 228

Checking Out
the Library:
Symbols and
Instances

Symbols are the key to both the file-size efficiency and
the interactive power in Flash. A symbol is a reusable

element that resides in the current movie’s Library, which is
accessed with Window ➪ Library. Each time you place a sym-
bol on the stage or inside of another symbol, you’re working
with an instance of that symbol. Unlike using individual graphic
elements, you can use many instances of a given symbol, with
little or no addition to the file size.

Using symbols helps reduce the file size of your finished movie
because Flash only needs to save the symbol once. Each time
that symbol is used in the movie, Flash refers to this original
profile. Then, to support the variations of an instance, Flash
only needs to save information about the differences — such
as size, position, proportions, and color effects. If a separate
graphic were used for each change, Flash would have to store a
complete profile of all the information about that graphic — not
only the size and color, but also what the graphic looks like.

Furthermore, symbols can save you a lot of time and trouble,
particularly when it comes to editing your movie. That’s
because changes made to a symbol are reflected in each
instance of that symbol throughout the movie. Let’s say that
your logo changes halfway through production. Without sym-
bols, it might take hours to find and change each copy of the
logo. However, if you’ve used symbol instances, you need only
edit the original symbol — the instances are automatically
updated throughout the movie.

99C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Checking out the
Library

Understanding
symbol types:
Graphic symbols
and Button symbols

Importing sound,
bitmap, and
QuickTime files

Working with
Movie Clips

Organizing your
Library

Adding symbols
to movies

Editing symbols

Modifying instance
properties

Using the Movie
Explorer

Sharing fonts and
Libraries

✦ ✦ ✦ ✦

3515-3 ch09.f.qc 1/18/01 3:49 PM Page 229

230 Part II ✦ Creating Flash Graphics

With the advent of the increasingly robust Flash ActionScript language, symbols
can be considered as objects within an object-oriented authoring environment.

In this chapter, you learn to create and edit symbols. You also learn to use symbols,
both within the movie and within other symbols, and to modify each instance of a
symbol. Flash stores symbols, as well as imported sounds, bitmaps, and QuickTime
movies, in the Library. Understanding how to use the Library is crucial to working
with symbols — so to start, let’s take a tour of the Library itself.

The Library and Its Features
The Library is the repository of all recurring elements, known as symbols, that are
placed as Instances within a Flash movie. Imported sounds and bitmaps are auto-
matically placed in the Library. Upon creation, both Buttons and Movie Clips are
also stored in the Library. It’s a smart practice to make nearly every item within a
Flash movie a symbol, and to develop every item within a Flash movie from compo-
nent symbols.

The Library is also a true window, not a panel. As shown in Figure 9-1, the Library
Window (left) — Window ➪ Library — is not the same as the six default asset Libraries
(right) that are accessed from the Menu at Window ➪ Common Libraries. However,
they are related. When you choose Window ➪ Library, you open a Library specific to
the current movie, while Common Libraries are available whenever Flash is open.

Choose Window ➪ Common Libraries to open the submenu of Common Libraries that
ship with Flash. The Libraries menu is the one menu over which the user has real
control. That’s because — in addition to the Library items that are placed there in the
process of a default installation of Flash — you can place your own items there, too.
The default Libraries contain a selection of buttons and symbols to get you started.
These are located in the Libraries folder of the Flash application folder. (And when
you’re tired of them, you can remove them!) To add your own buttons, symbols, or
libraries for specific projects, first save them in a Flash file with a descriptive name,
and then place that Flash file in the Libraries folder within the Flash Program folder
on your hard drive. Because these default Common Libraries have such obvious
names, we won’t waste valuable pages to describe them here. They are Buttons,
Graphics, Learning Interactions, Movie Clips, Smart Clips, and Sounds.

In previous versions of Flash, when working with more than one .FLA movie open
at a time, it was easy enough to get confused and start working in the wrong
Library. This is no longer possible. Although it’s still possible to drag items from the
Library of a movie that does not have focus, in Flash 5 that Library is grayed out,
indicating that it is not associated with the current movie. Furthermore, double-
clicking a symbol within that Library will not transport you to the associated movie.

New
Feature

3515-3 ch09.f.qc 1/18/01 3:49 PM Page 230

231Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Figure 9-1: The Library window is specific to the current movie, while the other
windows, known as the Common Libraries, are available whenever Flash is open.

Working with the Library
Every Flash movie has its own Library, which is used to store and organize symbols,
sounds, bitmaps, and other assets such as video files. As shown in Figure 9-2, the item
highlighted — or selected — in the Sort Window is previewed in the Preview Window.

If the item selected in the Library is an animation or sound file, you’ll see a con-
troller in the upper-right corner of the Preview window. This Preview Stop/Play
controller pops up to facilitate previewing these items. It’s almost equivalent to
the Play option that’s found in the Options menu. The Options menu is accessed
by clicking the Options triangle, which is located at the upper right of the Library
window. As shown in Figure 9-3, the Library options pop-up menu lists a number
of features, functions, and controls for organizing and working with items in the
Library.

3515-3 ch09.f.qc 1/18/01 3:49 PM Page 231

232 Part II ✦ Creating Flash Graphics

Figure 9-2: The Library window as viewed in Normal state.

✦ New Symbol: Choose this item from the Options menu to create a new symbol.
When a new symbol is created, it is stored at the root of the Library Sort win-
dow. To create a new symbol in a folder, select the desired folder first — the
new symbol will be placed in the selected folder.

✦ New Folder: Items in the Library can be organized in folders. The New Folder
button simply creates a new folder within the Sort window.

✦ New Font: Use this option to invoke the Font Symbol Properties dialog, which
is the first step in creating a Font Symbol for use within a Shared Library. For
more information about Shared Libraries and Font symbols, refer to the end
of this chapter, as well as to Chapter 20, “Sharing and Loading Assets.”

✦ Rename: Use the Rename option to rename an item.

✦ Move to New Folder: Use the Move to New Folder to open the New Folder
dialog.

Properties

Delete

Library options

Preview Window

Folder

Preview, Stop/Play

Current Item (display
in Preview Window)

Wide State

Movie Clip icon

Narrow State

Bitmap icon

QuickTime icon

Sound icon

Duplicate

New Folder

Sort Window

Title Bar

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 232

233Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Figure 9-3: Library window and the Options pop-up menu

Library items can also be moved between folders by dragging.

✦ Duplicate, Delete: Click Duplicate to duplicate an item and Delete to delete
an item.

✦ Edit: Click Edit to access the selected symbol in Symbol Editing Mode.

Double-clicking a symbol on stage takes you to Edit in Place Mode, which is variant
of Symbol Editing Mode.

✦ Edit With: Provided that you have appropriate external applications installed,
most imported assets (such as sounds, bitmaps, and vectors) will have this
command available to jump to the external editing environment.

✦ Properties: Click to invoke the related Properties dialog for the particular
symbol type — Sound Properties, Bitmap Properties, Symbol Properties, or
(for QuickTime) Video Properties.

✦ Linkage: Use this command to invoke the Linkage Options menu. Linkage means
that you can assign an identifier string to a Font symbol or to a sound so that
it can be accessed as an object with ActionScript. This is an aspect of Shared
Libraries. For more information about Shared Libraries and Linkage, refer to
the end of this chapter, as well as to Chapter 20, “Sharing and Loading Assets.”

Tip

Note

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 233

234 Part II ✦ Creating Flash Graphics

✦ Define Clip Parameters: With Flash 5, you can now assign clip parameters
to a movie clip to create a Smart Clip. This control invokes the Define Clip
Parameters dialog, which is used to assign variables with values to movie
clips. Smart Clips are discussed in Chapter 25, “Understanding HTML and
Text Field Functions in Flash.”

✦ Select Unused Items: Select Unused Items to find unused items within the
Library.

✦ Update: Use this option if you’ve edited items subsequent to importing them
into Flash. Items will be updated without the bother of reimporting.

✦ Play (or Stop, if currently playing): If the selected asset has a timeline or is
otherwise playable (such as a sound), click this to preview the asset in the
Library Preview window. If the asset is currently playing, this option is updated
to Stop — in which case, click to stop playing.

✦ Expand Folder/Collapse Folder: Use this command to toggle the currently
selected folder open or closed.

✦ Expand All Folders/Collapse All Folders: Use this command to toggle all folders
open or closed.

✦ Shared Library Properties: Use this command to invoke the Shared Properties
dialog, which is another aspect of Shared Libraries. For more information about
Shared Libraries, refer to the end of this chapter, as well as to Chapter 20,
“Sharing and Loading Assets.”

✦ Keep Use Counts Updated: Use this command to tell Flash to continuously keep
track of the usage of each symbol. If you are working with multiple, complex
graphics and symbols, this feature generally slows things to a crawl.

✦ Update Use Counts Now: Use this option to tell Flash to update the usage of
each symbol. This command is a one-time check, and is probably less of a drain
on system resources than the previous command, which checks continuously.

As shown in Figure 9-4, the Library can also be expanded. Expand the Library by
clicking the Wide State button. When displayed in this manner, all of the column
headings are visible in the Sort Window. Click any heading to sort the window by
Name, Kind, Usage Count, or Date.

Selecting New Symbol, Duplicate, or Properties from the Options Menu launches
the Symbol Properties dialog, shown in Figure 9-5. Use this dialog to give the sym-
bol a unique name and assign it a behavior (as a symbol type — graphic, button, or
Movie Clip). However, if the Properties Option is chosen for a sound asset, then the
Sound Properties dialog appears. For more information on Sound Properties, refer
to Part III, “Sound Planning.”

If you’re having trouble moving elements from the Library to the Stage on the Mac
version of Flash, you may have a corrupt folder on your system. This problem is
not due to Flash — it seems to be related to Mac OS 9. For more information, refer
to the Macromedia technote at www.macromedia.com/support/flash/ts/
documents/cantdrag.htm.

Tip

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 234

235Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Figure 9-4: The Library deployed in Wide State with the waveform of a
sound shown in the Preview window.

Figure 9-5: Symbol Properties dialog (top),
and the Update Media dialog (bottom)

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 235

236 Part II ✦ Creating Flash Graphics

Symbol Types
There are three types of symbols. Each type is unique and suited for a particular
purpose. Figure 9-6 illustrates the icons associated with each type of symbol.

Figure 9-6: Each symbol type has an icon associated with it.

Native symbols
A typical Flash Library may contain these objects that are created within Flash:

✦ Graphic symbols are great for static images and simple animations controlled
by the main movie’s timeline. However, Flash ignores sounds or actions inside
a Graphic symbol.

✦ Movie Clips are actually like movies within a movie. They’re good for anima-
tions that run independently of the main movie’s timeline. They can contain
actions, other symbols, and sounds. Movie Clips can also be placed inside of
other symbols and are particularly useful for creating animated buttons.

✦ Button symbols are used for creating interactive buttons. Buttons have a spe-
cialized timeline with four frames, which are referred to as states. These states
are Up, Over, Down, and Hit. Each of these button states can be defined with
graphics, symbols, and sounds. After you create a button, you can assign
actions to its instances within both the main movie and Movie Clips.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 236

237Chapter 9 ✦ Checking Out the Library: Symbols and Instances

✦ Shared Fonts are a new feature of Flash 5. Refer to the end of this chapter as
well as to Chapter 20, “Sharing and Loading Assets,” for more details.

✦ Smart Clips are another new feature of Flash 5. Refer to Chapters 23,
“Understanding Movie Clips as Complex Objects,” for more details.

Imported symbols
A typical Flash library may also contain these imported objects:

✦ Bitmaps are handled as symbols. The topic of importing and using bitmaps in
Flash is covered in detail in both Chapter 12, “Using Bitmaps and Other Media
with Flash,” and Chapter 30, “Working with Raster Graphics.”

✦ Sounds are also handled as symbols. Importing and using sounds effectively
is a complex subject. This critical topic is covered in Part III, “Sound
Planning,” as well as in Chapter 32, “Working with Audio Applications.”

✦ QuickTime Assets are handled as symbols, too. Chapter 34, “Working with
QuickTime,” is devoted to using QuickTime with Flash.

Importing sounds, bitmaps, vectors, and QuickTime
When you import a sound, a bitmap, or a QuickTime (QT) asset (which may be either
a QT Movie, or a Sound Only QT Movie), Flash stores these assets in the Library. The
advantage of this is that you only need one copy of each asset — regardless how many
times, or how many different ways, it might be used throughout your movie. Although
each of these assets will be covered in greater depth within their own chapters, we
introduce them here, in context with the Library.

Sounds
Flash can import (and export) sounds in a range of sound formats. Upon import,
these sound files reside in the Library. To use a sound, drag an instance of the
sound out of the Library and onto the stage. Export settings for sound files are
managed from within the Library by choosing Properties from either the contextual
menu or the Library Options menu. For more information about sounds, refer to
Part III, “Sound Planning.”

Bitmaps and vectors
Flash can also import (and export) a range of artwork formats, of both vector and
bitmap type. Upon import, bitmaps reside in the Library. To use a bitmap asset,
drag an instance out of the Library and onto the Stage. Export settings for individ-
ual bitmaps are managed in the Bitmap Properties dialog, which is invoked by
choosing Properties from either the contextual menu or the Library Options Menu.
Bitmaps are discussed in greater detail in Chapter 12, “Using Bitmaps and Other
Media with Flash,” and again in Chapter 30, “Working with Raster Graphics.”

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 237

238 Part II ✦ Creating Flash Graphics

Unlike bitmaps, upon import, vectors arrive on the Flash stage as a group, and may
be edited or manipulated just like a normal group drawn in Flash. Vectors are dis-
cussed in greater detail in Chapter 12, “Using Bitmaps and Other Media with Flash,”
and again in Chapter 31, “Working with Vector Graphics.”

Use care in managing the properties of 8-bit images in the Flash Library. The
Smoothing option renders custom predithered hybrid Web colors differently from
the original colors.

QuickTime
If you have QuickTime 4 or later, you can import QuickTime assets into Flash in the
form of either a QT Movie, or a Sound-only QT Movie. QuickTime assets also reside
in the Library. Using QuickTime in concert with Flash is covered in Chapter 34,
“Working with QuickTime.”

Graphic Symbols
Graphic symbols are the simplest kind of Flash symbol. Use them for static images, as
well as animations. Note, however, that animations within Graphic symbols are tied
to the Main Timeline of the movie — when you stop the movie, the animated Graphic
symbol stops, too. Furthermore, actions and sounds don’t work within Graphic sym-
bols. You can create an empty symbol first and then add the elements to the symbol
or you can convert existing elements into a Graphic symbol.

To create an empty symbol, use the following steps:

1. Use Insert ➪ New Symbol (Ctrl+F8) to initiate a new, empty symbol. This opens
the Symbol Properties dialog.

2. Enter a name for your symbol and select a Behavior — Graphic, Button, or
Movie Clip. The Behavior setting specifies the default behavior of this symbol
as a Graphic, a Button, or a Movie Clip. For this symbol, set the Behavior to
Graphic, and then press OK.

3. Click OK. Flash switches to Symbol Editing Mode, in which you can create
content for your symbol just as you might normally do in the Movie Editor.

4. When you’ve finished the symbol and are ready to return to the Stage, use
Edit ➪ Edit Movie (Ctrl+E/Command+E) to exit Symbol Editing Mode.

To create a Graphic symbol from existing elements do the following:

1. Select the element or elements that you want to include in the symbol.

2. Use Insert ➪ Convert to Symbol (F8) to access the Symbol Properties dialog.

3. As shown in Figure 9-7, type a name and select a Behavior for the symbol. Then
click OK. The Behavior setting specifies the default behavior of this symbol as a
Graphic, a Button, or a Movie Clip. For this symbol, set the Behavior to Graphic,
and then press OK.

Caution

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 238

239Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Figure 9-7: Type a name in the Symbol
Properties dialog, and then select the
Behavior type.

Movie Clips
Movie clips are nested movies inside the main movie. You can add animation, actions,
sounds, other symbols, and even other Movie Clips to Movie Clips. Movie Clips have
their own timelines, which run independently of the Main Timeline. This can be useful
for animations that continue running after the main movie has stopped. Unlike ani-
mated Graphic symbols, Movie Clips only need a single keyframe (the initial one) in
the timeline of the main movie to play.

A Movie Clip with 40 frames will run to its conclusion, even if it is placed at the first
frame of a Main Timeline that has only a single frame.

Creating a Movie Clip using existing animation
You can create a Movie Clip from an empty symbol, as explained in the previous
section. However, the simplest way to create a Movie Clip is to use existing anima-
tion from the Main Timeline. To do this:

1. Select every frame of every layer of the existing animation that you want to
turn into a Movie Clip.

2. Copy the animation by doing one of the following:

• Right-click or Ctrl+click and select Copy Frames from the pop-up menu.

• Select Edit ➪ Copy Frames (Option+Command+C or Ctrl+Alt+C) from the
Main Menu.

3. Select Insert ➪ New Symbol (Command+F8 or Ctrl+F8) from the Main Menu.

4. Again, as shown previously in Figure 9-7, the Symbol Properties dialog appears.
Give the symbol a name and select Movie Clip as the Behavior. Click OK.

5. Now select the first frame of the -timeline in the new symbol that was just
created, and paste the frames you copied by doing one of the following:

• Right-click (Ctrl+click) and select Paste Frames from the pop-up menu.

• Select Edit ➪ Paste Frames from the Main Menu.

6. Use Edit ➪ Edit Movie (Command+E or Ctrl+E) to return to the main movie.

7. Select the frames from the main movie’s timeline (if they aren’t still selected
from the first step), and delete them with Insert ➪ Delete Frame (Shift+F5).

Note

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 239

240 Part II ✦ Creating Flash Graphics

Expert Tutorial: Graphic Symbols versus Movie Clips,
by Robin and Sandy Debreuil

A very important yet often confused aspect of Flash 5 are the different methods, and relative
advantages of those methods, for storing information — both graphic images and interactiv-
ity. This is especially true about Graphic symbols and Movie Clip symbols. In this tutorial, the
Debreuils discuss the general nature of the types of information handled by Flash. They
then focus on the advantages and disadvantages of both Graphic symbols and Movie Clip
symbols.

Flash Information Types
There are six main types of information created by Flash: raw data, groups, buttons, Graphic
symbols, Movie Clips, and loaded movies.

Raw Data — These are the raw shapes that are drawn right on the stage. Each separate
keyframe of the Main Timeline can contain and display raw data. Note, however, that every
time the Flash player encounters a new piece of raw data, even if that same data was dis-
played in the previous frame, it will be reloaded across the Internet. That’s a no-no. For
absolute maximum file efficiency, never (ever) leave raw data in the Main Timeline.

Groups — Groups are very useful, but they are not symbols and they don’t have any trim-
ming effect on file size. Why? Because, as commonly implemented, groups are usually just
groups of raw data. They are only there for your convenience; unfortunately, they give the
illusion of being symbols. Just like raw data, placing groups on the stage of the Main
Timeline will cause your file size to swell very quickly. That’s no-no number two.

Button symbols — Buttons are a straightforward special case—use them for making buttons!
(They are also useful for creating other types of interactivity.) Although buttons are symbols,
the optimal practice is to use other symbols as the graphic material to build buttons.

Graphic symbols: static — These are collections of data that reside in the Library and that
are given a name and ID number. When a Graphic symbol is used, essentially the Flash
Player says something like, “get the Contents symbol number 47 from the Library and put it
right here.”

Graphic symbols: animated — These are nearly the same as static Graphic symbols, except
that these symbols have more than one frame. Accordingly, now the Flash Player must say,
“put the contents of the nth frame of symbol 47 right there” — and it must say this for each
frame. And that tedious statement gets longer for each frame that has raw data in it. This
causes the Flash player to think evil thoughts. Another reason to always use symbols, even
as that the components that make up your symbols.

Movie Clip symbols: static — Error! By definition, all Movie Clips should animate. If a Movie
Clip just contains raw graphic, information it should be a Graphic symbol (although a single
frame Movie Clip containing other Movie Clips is fine). The reason for this rule is that Movie
Clips require slightly more overhead (bytes) to store and to render because they include a
new timeline. Again, placing raw graphics on any timeline should make you squeamish,
even if the file size is not terribly affected.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 240

241Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Movie Clip symbols: animated—These are similar to Graphic symbols, but with a few differ-
ences. The big difference is that Movie Clips have their own timeline that runs independently
of the Main Timeline. This means the Flash player just says, “Oh, hi, Mr. Movie Clip. I see that
you’re here, so do what you do.” Thus, the Movie Clip does its own thing, in its own sweet time.
Because of this -timeline independence, you can give the Movie Clip a name and tell it what to
do. This is where ActionScript comes into play with things like:

bob.gotoAndPlay(4);
judy._rotation=45;

(If you run out of aunt and uncle names, you can use cousins and close friends.) One
downside of authoring with Movie Clips is that ActionScript only runs while the .SWF is play-
ing, so it isn’t possible to scrub or preview the Main Timeline and view a placed Movie Clip
while designing.

Loaded movies — These behave much like Movie Clips, except that (a) they are separate
.SWF files and (b) each loaded movie is inserted into a new level, so they can’t appear be
beneath the Main Timeline. Also, loaded movies have an obvious restriction: Because they
are loaded from a separate file, there needs to be a mechanism to verify that they are loaded
before giving them instructions. (It’s a big Internet and all kinds of things can happen.) There
are other differences, between Movie Clips and loaded movies, but those are the main ones.

Graphic versus Movie Clip
That brings us to the difference between Graphic symbols and Movie Clip symbols: Graphic
symbols are a quick and tidy way of placing static information into a timeline, while Movie
Clips animate independently on their own timeline. Graphics should be used to hold single
frames of raw data, or multiple frames when it is important to preview your work while
designing it, as with linear animation. Movie Clips must be used when ActionScript is
involved, or when an animation must run regardless of what is happening around it.
However, the use of one type of symbol rather than the other may not always involve clear-
cut choices, because often either will work. Consequently, to use symbols effectively, it’s
important to know the pluses, minuses, and absolutes of both Graphic symbols and Movie
Clips. Here are some tips to keep in mind:

✦ Instance properties of graphics (height, color, rotation, and so on) are frozen at
design time, whereas Movie Clips can have their instance properties set on the fly.
This makes Movie Clips essential for programmed content such as games.

✦ Scrubbing (previewing while working) is not possible with Movie Clips, although it is
possible with Graphic symbols. This makes Graphic symbols essential for animating
cartoons. Eyes open, eyes closed — it’s that big of a difference.

✦ Movie Clips can’t (easily) be exported to video or other linear medium. This is only
significant if you plan to convert your .SWF’s to another medium.

Continued

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 241

242 Part II ✦ Creating Flash Graphics

Continued

✦ A Graphic symbol’s instance properties are controlled (modified) at design time, in the
Effect and Instance Panel. One advantage is that this is simple and sure, because you
have an instant preview of what’s happening. In addition, this information is embed-
ded right in that particular instance of the Graphic symbol—meaning that, if it is either
moved or copied, all of this information comes with it.

✦ A Movie Clip’s instance properties are set with ActionScript. This gives it great flexibility,
although it’s a little more abstract to work with. One advantage is that the actions do
not need to be directly linked to the Movie Clip, which has the concurrent disadvantage
that care must to be taken when moving Movie Clips.

✦ Graphic symbols that are animated (have more than one frame) and are nested (a.k.a.
nested animated graphic symbols) may have problems with synchronization. For exam-
ple: (a) If you have a pair of eyes that blink at the end of a ten-frame Graphic symbol,
and you put the graphic symbol containing those eyes within a five-frame Graphic sym-
bol of a head . . . the eyes will never blink. The Graphic symbol will run from frame 1 to
frame 5, and then return to frame 1. (b) If you put them in a 15-frame Graphic symbol,
they will blink on the 10th frame, and then every 15 frames. That’s ten frames, then
blink, and then they loop back to frame 1; however, when reaching frame 5 this time,
the movie they are in loops back to frame 1 (it’s a 15-frame movie), and thus resets
the eyes to frame 1.

✦ Movie Clips do not have the problem/feature described in the preceding bullet point.

✦ When using Graphic symbols, looping actions that occur over long timelines result in
larger file sizes. While this may seem trivial, understanding this goes a long way toward
understanding the Graphic symbol/Movie Clip issue. To understand why the use of
Graphic symbols for looping actions is more file intensive, it helps to visualize what the
Flash Player is being told to do. The next section goes over this in some detail.

Now that we’ve given you some background information on Graphic symbols and Movie
Clips, let’s put our knowledge into practice!

How Flash Sees the World
The miracle that we know as the .SWF format performs two functions: It stores graphical
information, and it displays it.

The majority of the file is consumed with information that both defines the symbol and
places it. The definition information describes shapes, fills, bitmap fills, and sounds, while
the placement information includes instructions for locating these objects, which includes
setting their x,y coordinates, scaling, rotating, skewing, coloring, or otherwise manipulating
their properties with ActionScript.

Drawing creates shape information. Try drawing a head — this creates lots of curves, and
color information as well. If this drawing is confined to a single frame, Flash will play this
frame by saying “curve-curve-color-etc.”

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 242

243Chapter 9 ✦ Checking Out the Library: Symbols and Instances

However, if, at this point, before making it into a symbol, you animate it in a new keyframe,
that new keyframe will be required to duplicate (or reload) all the curve and color information
again. That is, for each frame, Flash will be required to reiterate, completely, “curve-curve-color-
etc.” (Don’t be fooled by groups; although they look like symbols, they are not symbols—all the
information inside the group is duplicated in each keyframe in which the group appears.)

However, if you make this drawing a Graphic symbol (press F6), and call it head, and then
distribute instances of head in those same frames, something different occurs. Things will
look the same, but there has been an important change. Now, instead of that first frame
containing “curve-curve-color-etc.,” it contains these instructions: “head placed at 37,42.”
And the “curve-curve-color-etc.” data is stored in the Library as the head definition.
Consequently, all subsequent appearances of head in another keyframe will only require a
few bytes of reference and placement data, not all the shape information.

Flash will only rewrite this information when something changes. Adding a keyframe and
changing nothing only adds 2 bytes for the keyframe.

However, if, in this new keyframe, you move head to a new position the reference will now
be something like “head placed at 45,51” and this will animate the head. Furthermore,
because head is a symbol, you can also scale it (“head placed at 45,51, scaled 110 percent”),
rotate it (“head placed at 45,51, scaled 110 percent, rotated 45 degrees”) and modify its
color instance (“head placed at 45,51, scaled 110 percent, rotated 45 degrees, tinted with
light blue 20 percent”). Any of these instructions will add information to the placed instance
but this is typically very compact, and not something to worry too much about. The savings
in file size, compared to animation without Graphic symbols, is tremendous. If a symbol is
just moved, very little new data is added, scaling adds a bit more — about 5 bytes, and once
it is rotated, skewed, or colored a matrix function kicks in and 10 bytes are added.

What about symbols inside symbols? Let’s make a hat for the head — make it a Graphic
symbol called hat. We’ll put this hat on the head symbol, and then select both symbols and
make them into a third Graphic symbol called hatAndHead. Now the timeline contains a
reference to the hatAndHead symbol along with its placement information (rotate, scale,
and so on), as well as a reference to the hat symbol, its placement information, and lastly a
reference to the head symbol, and its placement information. Whew. That might seem like
a lot, but it’s really only about 35 bytes of new information.

Now things start to get interesting. Just remember, we’re still working with a Graphic symbol.
If you insert another keyframe into the hatAndHead symbol and move things around, this
new information won’t be added to the exported .SWF. That’s because the Main Timeline is
still only one frame, so only the first frame of the hatAndHead symbol is exported. In fact, the
Mona Lisa could be added to frame 2 of hatAndHead, and the exported .SWF would never
know about it.

Continued

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 243

244 Part II ✦ Creating Flash Graphics

Continued

However, if you now extend the Main Timeline to 100 frames, Flash would repeat the first
frame’s data into the Main Timeline 50 times (frames 1, 3, 5, 7 . . .) and would also repeat
the Mona Lisa frame’s data 50 times (frames 2, 4, 6, 8 . . .). With an average of 35 bytes per
frame, that would come to 35 ×100 = 3500 bytes, or about 3.4KB (1024 bytes per kilobyte).
Although that might seem reasonable enough, note that a simple animation of a person run-
ning can easily require 20 symbols, which would be something like 34KB over 100 frames.
As you can see, this can get significant.

How can Movie Clips accomplish a smaller file size with these looping Graphic symbols?
Well, the only thing that really changes is they have a separate timeline. Imagine, the
hatAndHead symbol is now a Movie Clip. It has its own two-frame timeline that runs inde-
pendently of the Main Timeline, so if the Main Timeline is back to being one frame long, the
exported .SWF will contain both frames. This means that, even though the .SWF will just sit
on frame one of the Main Timeline, hatAndHead will loop through it’s own timeline. It will
bounce back and forth between its own two frames, because a Movie Clip’s timeline is not
affected by what is happening around it, it just plays on its own. Unless told otherwise, a
Movie Clip will loop, which is the default setting.

But because it’s a Movie Clip, another interesting difference occurs. Even if a stop action is
placed on frame one of hatAndHead, so that the Mona Lisa frame will never be displayed,
it will still be loaded. This is necessary, because a movie can be told to go to any of its
frames by other movies, by button clicks, or even by JavaScript in the browser, so it must be
loaded and ready to play.

Finally, even though this seems to be a one-frame movie, there are actually three keyframes
here: one in the Main Timeline, and two in the hatAndHead timeline. Consequently, at this
point it is slightly bigger than had it been a graphic, because Movie Clips must load all their
frames, and because making a new timeline involves an extra overhead. However, it is ani-
mating, and equivalent Graphic symbol wouldn’t be. So, to compare them properly, the
timeline for both examples should be extended by 100 (or more) frames. Now we see that
the size of the Movie Clip version only increased by about one or two kilobytes, while the
Graphic symbol version has increased by 30 + KB.

Why is the Movie Clip so much more efficient than the Graphic symbol? It’s because the
Movie Clip only has 3 frames with information in it, while the Graphic symbol has 100.

In the example mentioned previously of an animated runner, if the running animation loop
required 6 frames, there would be about 35 bytes in each of the 6 frames inside the runner
Movie Clip, and 1 frame in the Main Timeline placing it, so the file size for that animation
would be about (6 ×35) + (1 ×5) = 215 bytes. This is much better than 3500. But the
downside is that there is now no preview while you are designing it, so it’s hard to deter-
mine whether the running feet will be sliding or not. On the other hand, if the Movie Clip
were subjected to a tween (especially a Rotating Tween), much of the benefit would be
lost. That’s because each frame of the tween would need to contain placement information
for the Movie Clip. The important thing is to understand how Graphic symbols and Movie
Clips differ in size and functionality, and choose accordingly.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 244

245Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Button Symbols
Button symbols have four states, based on the mouse states, which are:

✦ Up: The mouse is neither over nor clicking on the button

✦ Over: The mouse is over the button

✦ Down: The mouse is clicking on the button

✦ Hit: This represents the active area of the button

Each button state can present a different image. Buttons can also have actions
assigned to them for each of the four mouse states. The images are set inside of the
button symbol, while the actions are set in each of the button’s instances. Actions
cannot be assigned directly to the button symbol itself — only to an instance (or
instances) of the symbol. Instances are discussed later in this chapter.

Refer to Chapter 17, “Understanding Actions and Event Handlers,” for more about
adding actions to button instances.

The timeline for a Button symbol, as illustrated in Figure 9-8, is different from other
symbols. It consists of four frames, each one labeled for a mouse state: Up, Over,
Down, and Hit. These are the only frames that can be used when creating a button;
but you can use as many layers as you like — go ahead, get crazy.

Figure 9-8: The Button symbol timeline always consists of four keyframes
labeled Up, Over, Down, and Hit. This button has sounds associated with
the Over and the Down states.

The source file for this button discussion is included on the CD-ROM. It’s in the
button folder of the ch09 folder.

On the
CD-ROM

Cross-
Reference

The Debreuil brothers, Robin and Sandy, are from Miami, Manitoba, Canada — and they are still there.
Understandably, they reported that their favorite thing to do is: Robin, “Not drive a combine,” and Sandy,
“Not drive a swather.” They also confided that they enjoy an occasional rough game of scrub hockey. They
discovered Flash in the olden days of Flash 2, through the fabled RealFlash Animation Festival. In the ensu-
ing years, they have worked on “theromp.com, honkworm.com, FoxSports . . . various animation sites.”
Responding to our attempt to place them chronologically via the memorable pop music and/or film of
the year they graduated from high school, they returned, unsurprisingly, “Eh?” Their other interests include,
“travel, travel, travel, children, children, children, Flash, Flash, Flash.”

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 245

246 Part II ✦ Creating Flash Graphics

Creating a button
Here are the steps for creating a simple button:

1. Select Insert ➪ New Symbol to create a new (empty) symbol and launch the
Symbol Properties dialog. Name the button and set the Behavior to Button.
Click OK.

2. A Button Symbol Editing window opens. It displays each of the four states as a
separate frame: Up, Over, Down, and Hit. By default, the initial state automati-
cally has a keyframe. Draw a graphic for this initial state of the button — the
Up state. Note that a Graphic symbol or imported graphic (including a bitmap)
may also be used or pasted into the keyframe for the Up state.

3. Next, insert a keyframe (Insert ➪ Keyframe) in the Over state. This is the frame
that appears when the mouse passes over the button. If you’d like your button
to do something interesting on mouseover, this is where you make it happen. A
Graphic symbol, imported graphic, or bitmap (or even a Movie Clip) may also
be used or pasted into this keyframe for the Over state — as well as for the
next two states.

4. Insert a keyframe in the Down state. This is the frame that appears when the
button is clicked. If you don’t want the button to change when it’s clicked, just
insert a frame here instead of a keyframe.

5. Finally, insert a keyframe in the Hit state. This frame defines the effective hit
area of the button. If you’re only using text for your button, this is particularly
important, because without a Hit state the effective hit area is limited to the
letter shapes of the text itself — which makes it very hard to hit the button. So,
in this frame, draw a shape to define the hit area. Because the user never sees
this state, it doesn’t matter what it looks like, as long as it defines a usable hit
area. It’s good practice to add a Hit state to every button you make — this way
you won’t forget to add one when it’s necessary.

For another pass at creating a button, refer to the button section of the QuickStart,
“Flash in a Flash.”

Adding animation to a button
To add an animated state to a button:

1. Follow the procedure outlined previously to make a new button.

2. Next, follow the procedures outlined earlier in this chapter to create a Movie
Clip for the animated state.

3. Now, open the Library with Window ➪ Library (Ctrl+L or Command+L) and
select the button that you’ve just made, and then open it in Symbol Editing
Mode by right-clicking it and then selecting Edit from the contextual menu.

4. For the sake of clarity, add a new layer to the button and name it MC, for Movie
Clip. Give it four keyframes to match the keyframes of the button states.

Cross-
Reference

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 246

247Chapter 9 ✦ Checking Out the Library: Symbols and Instances

5. Select the frame to which you want to add an animated state. This can be the
Up, Over, or Down state. (As you already know, the Hit state is never seen in
the movie, so there’s no reason to animate it.)

6. Now, return to the Library with Window ➪ Library (Command+L or Ctrl+L),
and select the Movie Clip that you created for the animated state. Then, with
the appropriate keyframe active for the desired state, drag the Movie Clip into
place, as shown in Figure 9-9.

7. Finally, test your work by selecting Control ➪ Test Movie (Ctrl+Enter or
Command+Enter).

Figure 9-9: This figure illustrates a Movie Clip added to the Over state of a Button
symbol.

Adding sound to a button
Here’s how to add sound to a button:

1. Make a button with all the necessary states, as described previously, and then
add an animated state or two if you want.

2. Now, create a second layer to put your sounds in. Although this isn’t absolutely
necessary, it’s recommended because it keeps the button organized.

3. In the new layer, add a keyframe to each state for which you want a sound.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 247

248 Part II ✦ Creating Flash Graphics

4. Import the sound(s) that you’d like to add to the button state(s).

5. Add the appropriate sound to each state that requires sound. Figure 9-10
shows a button with a sound in both the Over and Down states. Commonly,
the Over and Down states have sounds associated with them, but you can add
sound to the Up state too.

Figure 9-10: This is the Button to which we previously added the animated state.
Now, it also has a sound in the Over and Down states.

Follow these steps for each state that you want associated with a sound:

a. Select the keyframe in the sound layer of the desired Button state.

b. Open the Library and drag the sound onto the Stage.

c. Open the Sound Panel (Window ➪ Panels ➪ Sound), select your sound in
the Sound drop-down menu, and set the Synch to Event (it’s actually the
default).

Refer to Part III, “Sound Planning,” for more information about importing external
sound files.

Cross-
Reference

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 248

249Chapter 9 ✦ Checking Out the Library: Symbols and Instances

6. After you’ve added all your sounds, test the Button (Control ➪ Test Movie) to
see how well it works with the sounds.

Organizing Your Library
When your movies start to become complex, you’ll find that the Library gets crowded,
and it can be hard to find symbols. When this happens, you’ll probably appreciate the
capability to create and name folders for your symbols. You can organize your Library
folders however you like, but here are a few suggestions for greater productivity:

✦ Create a separate folder for each Scene.

✦ Create folders for certain kinds of symbols, such as Buttons, sounds, or
bitmap imports.

When you nest complex symbols with each other — a Graphic symbol on the first
frame of a Button symbol, with a text symbol on the layer above it — the Library
doesn’t indicate this hierarchy. But you can — just put all the associated symbols
in a folder! You can even nest folders within other folders. Organizing with folders
is easy:

✦ To create a folder, click the folder icon at the bottom-left corner of the Library.

✦ To move a file or folder into another folder, simply drag it over the target folder.

✦ To move a folder that’s been nested within another folder back to the top
level of the Library, drag the folder until it is just above the Library list and
over the word Name and release.

Putting symbols in different folders does not affect the links between them and their
instances (in the same way, for example, that moving a graphic file into a new folder
will break an existing link on a Web page). Flash tracks and updates all references to
Library items whenever they are renamed moved into separate folders.

The new Flash 5 Movie Explorer gives you a view of the nested interrelationship of
symbols, Movie Clips, and other items. Refer to the end of this chapter for more on
the Movie Explorer.

There is one Library action for which there is neither undo nor escape: Delete. Any
item that is deleted from the Library is gone forever, including all instances
throughout the current .FLA editor file.

Caution

Note

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 249

250 Part II ✦ Creating Flash Graphics

Adding Symbols to Movies
Now that you’ve created some symbols, you can use them in movies and modify
each instance. Use the Library to put them in a movie. But remember that, in addi-
tion to putting symbols on the stage of the main movie, you can also add them to
or include them within other symbols as well.

When you add a symbol to the Stage, you are placing an instance of the symbol on
the Stage rather than the symbol itself. An instance is simply a copy of the original
symbol. To put symbols on the stage:

1. Add a Keyframe to the appropriate layer at the point in the timeline where
you want the symbol to appear.

2. Use Window ➪ Library (Command+L or Ctrl+L) to open your Library.

Don’t choose Common Library from the Windows menu. Those libraries come
with Flash and — unless you’ve put them there — won’t contain your symbols.

3. Use the Library to find and select the symbol that you want to add to the movie.

4. Drag the symbol onto the Stage by dragging either the graphic of the symbol
from the Preview window or the symbol’s name as it appears in the Sort window.

Editing Symbols
Because every instance of a symbol is a copy of the original, any edit applied to
that original is applied to every instance. There are several ways to edit a symbol.

Editing a symbol in Symbol Editing Mode
On the Stage, select an instance of the symbol that you want to edit, and then do
one of the following:

1. Choose Edit ➪ Edit Selected from the Edit Menu.

2. Right-click (Ctrl+click) the instance and choose Edit (or Edit in Place) from the
contextual pop-up menu.

3. Double-click the instance on stage.

4. Select a symbol from the Library, right-click (Ctrl+click) and choose Properties,
and then click the Edit button in the Symbol Properties dialog, as shown in
Figure 9-11.

Note

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 250

251Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Figure 9-11: Click the Edit button in the Symbol Properties dialog to open Symbol Editing
Mode (shown behind).

Editing and Developing

Development in Flash occurs in one of two places: (a) in the Main Timeline and on the
Main Stage; or (b) within a symbol, which has its own Stage and a timeline. You can always
tell in which mode you are authoring in a couple ways:

The Main Stage (if it is not too large to fill up your screen) is surrounded by a gray area; this
is the Work Area, which indicates the edges of the movie, as defined in the Movie
Properties. The dimensions of the Main Stage, however, do not limit the symbol Stage. If
you make your symbols too large, when you place them on the Main Stage, portions that
fall outside of the Main Stage will not appear in the final .SWF. In that event, you can scale
the symbol.

Continued

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 251

252 Part II ✦ Creating Flash Graphics

Editing a symbol in a new window
This method is useful if you want to quickly open a new window to work in. When
editing in a new window, the movie remains open and available. You can switch
between these windows by choosing from the Window menu. Or, you can divide
the workspace between both windows by choosing Window ➪ Arrange All.

1. Select an instance on the Stage of the symbol that you want to edit.

2. Then right-click (Ctrl+click) the instance, and select Edit In New Window
from the contextual pop-up menu.

Editing a symbol in place
Edit in Place Mode is very useful. The advantage is that, rather than opening the
Symbol Editing Mode, you simply edit your symbol in context with the surrounding
movie. Everything else on the stage is visible, but dimmed out. To do this:

1. Select an instance of the symbol that you want to edit.

2. Right-click (Ctrl-click) the instance and select Edit In Place from the contextual
pop-up menu.

Continued

But how do you know when you are on the Main Stage or when you are in Symbol Editing
Mode? Here’s one clue: At the upper-left of the timeline is a tab. If you’re working on the
Main Stage, you will see a single tab with the name of the scene. Unless you name your
scenes, this tab should simply say, Scene 1 (or Scene 2). However, in Symbol Editing Mode,
a second tab appears to the right of the scene name: This tab displays the name and sym-
bol icon (Movie Clip, Button). If you have nested symbols, more tabs may appear. In this
manner, you have convenient access to the hierarchy of your files, no matter how deeply
you nest your symbols.

Symbol Editing Mode is much like working on the regular Stage. You can draw with any of the
drawing tools; add text, place symbols, import graphics, and sound, and (within limitations)
use ActionScript. When you’re done working with a symbol, you have an encapsulated ele-
ment, whether it is a static Graphic, a Movie Clip, or a Button. This element can be placed as
many times as needed on your Stage or within other symbols. Each time you place it, the
symbol’s entire Stage and timeline (if it is a Button or a Movie Clip) will be placed as well,
identical to all other instances and the symbol itself.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 252

253Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Editing symbols from the Library
You might not have an instance of your symbol available to select for editing, but
you can still edit it. Just edit it from the library.

1. Open your movie’s library with Window ➪ Library (Command+L or Ctrl+L)
from the Main Menu.

2. Select the symbol that you want to edit and do one of the following:

• Double-click the symbol.

• Right-click (Ctrl+click) and select Edit from the contextual pop-up menu.

3. Flash switches to Symbol Editing mode. Edit your symbol any way you want.

Returning to the movie after editing a symbol
After you’ve edited your symbol, you’ll want to go back to the movie to make sure
that your changes work properly. Just do one of the following:

✦ Select Edit ➪ Edit Movie (Command+M or Ctrl+M) from the Main Menu.

✦ Select the scene name in the left corner of the timeline as shown in Figure 9-12.

Figure 9-12: Select the scene name to return to editing the movie.

Modifying Instance Properties
Every instance of a symbol has specific properties that can be modified. These prop-
erties only apply to the specific instance — not to the original symbol. Properties
such as the brightness, tint, alpha (transparency), and behavior can all be modified.
An instance can also be scaled, rotated, and skewed. As previously discussed, any
changes made to the original symbol will be reflected in each instance — this still
holds true even if the instance’s properties are modified.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 253

254 Part II ✦ Creating Flash Graphics

Modifying color effects with symbols
Each instance of a symbol can have a variety of color effects applied to it. The basic
effects are changes of brightness, tint, and alpha (transparency). Tint and alpha
changes can also be combined for special effects. To apply color effects to a symbol
instance:

1. Select the instance that you want to modify.

2. Open the Effect Panel with Window ➪ Panels ➪ Effect.

3. Select one of the options from the drop-down menu. Figure 9-13 shows the
Effect Panel drop-down with the Tint option selected.

Figure 9-13: The Effects Panel has several options to
choose from. Shown here is the Effect drop-down with
the Tint option selected.

The options available from the Effect drop-down are as follows:

• None: No effect is applied.

• Brightness: Adjusts the relative brightness or darkness of the instance. It
ranges from 100 percent (black) to 100 percent (white). Use the slider to
change the value or just type a numeric value into the entry field.

• Tint: Enables you to change the color of an instance. Either select a hue
with the color picker, or enter the RGB values directly. Then, select the
percentage of saturation (Tint Amount) by using the slider or by enter-
ing the percentage in the entry field. This number ranges from 0 percent
(no saturation) to 100 percent (completely saturated).

• Alpha: Enables you to modify the transparency of an instance. Select
a percentage by using the slider or by entering a number directly. The
Alpha percentage ranges from 0 percent (completely transparent) to
100 percent (no transparency).

• Advanced: Enables you to adjust the tint and alpha settings of an instance.
The controls on the left reduce the tint and alpha values by a specified per-
centage, while the controls on the right either reduce or increase the tint
and alpha values by a constant value. The current values are multiplied by
the numbers on the left, and then added to the values on the right.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 254

255Chapter 9 ✦ Checking Out the Library: Symbols and Instances

The Advanced option includes the potential for negative alpha values. Potential
uses for this capability, together with more information about using the Effects
Panel, are detailed in Chapter 11, “Animating in Flash.”

Changing the behavior of an instance
You don’t need to limit yourself to the native behavior of a symbol. There may be
times when you want an animated Graphic symbol to have the behavior of a Movie
Clip. You don’t have to go through the extra effort of creating a new symbol — just
change the behavior of the instance as needed:

1. Select the instance that you want to modify.

2. Open the Instance Panel with Window ➪ Panels ➪ Instance, or click the
Instance Button on the Launcher.

3. From the Behavior drop-down, select the desired behavior. As shown in
Figure 9-14 you can select Graphic, Button, or Movie Clip, which is the
default behavior.

Figure 9-14: As this composite screen shot indicates, you can change the
Behavior of an instance from the Instance Panel.

Working with Symbol Instances is covered in great depth in Parts IV, “Adding Basic
Interactivity to Flash Movies,” and V, “Programming Flash Movies with ActionScript.”

Cross-
Reference

Duplicate symbolEdit symbol

Swap symbol Edit Actions Button options Play options

Enter Frame Number field

Behavior Type icon

Behavior drop-downInstance Name field No options

Note

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 255

256 Part II ✦ Creating Flash Graphics

Switching symbols
There may be times when you need to replace an instance of one symbol with another
symbol. You don’t have to go through and recreate your entire animation to do this —
just use the Switch Symbol feature. This feature only switches the instance of the sym-
bol for an instance of another symbol — all other modifications previously applied to
the instance will remain the same. Here’s how to switch symbols:

1. Select the instance that you want to switch.

2. Open the Instance Panel with Window ➪ Panels ➪ Instance (or use the
Instance Button on the Launcher).

3. Click the Swap Symbol button and, from the ensuing Swap Symbol dialog
(shown in Figure 9-15), select the symbol that you want to switch to.

4. Click OK to swap symbols.

Figure 9-15: Click the Swap Symbol button
of the Instance Panel to invoke this Swap
Symbol dialog.

The Movie Explorer
The Movie Explorer Panel is a powerful new tool for deciphering movies and finding
items within them. It can be opened from the Launcher Bar, or from the Main Menu
by choosing Window ➪ Movie Explorer (Ctrl+Alt+M/ Option+Command+M).

The Movie Explorer is one of the best new features of Flash 5. It will help you to
organize, build, and edit your projects with greater clarity and efficiency. For exam-
ple, if your client decides to change the font at the last minute, you can use the
Movie Explorer to locate and update all occurrences of the original font — without
a tedious manual search.

The Movie Explorer is an especially useful tool for getting an overview and for analyz-
ing the structure of a Flash movie. This means that you can now see every element in
its relationship to all other elements, and you can see this all in one place.

New
Feature

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 256

257Chapter 9 ✦ Checking Out the Library: Symbols and Instances

However, it’s also useful for troubleshooting a movie, for finding occurrences of a par-
ticular font, and for locating places where you refer to a certain variable name in any
script throughout a movie. As an editing tool, you can use it as a shortcut to edit any
symbol, for changing the properties of an instance, or even for doing multiple selec-
tions and then changing the attributes of the selected items. Furthermore, the Find
function is an incredible timesaver.

The new Movie Explorer has so many features that it may be difficult to get used
to — however, it’s well worth the effort to become familiar with this organizational
powerhouse. Figure 9-16 shows the Movie Explorer as well the Movie Explorer
Settings dialog, which you can open by clicking the Customize Which Items to
Show button in the Movie Explorer.

Figure 9-16: The Movie Explorer displays the file structure for Jake Smith’s
Flash Clock, featured in an Expert Tutorial in Chapter 26.

Show Text

Show Buttons, Movie Clips, and Graphics

Show Action Scripts

Show Video, Sounds, and Bitmaps

Show Frames and Layers Movie Explorer Settings dialog

Show Movie Explorer Settings dialog Options menu

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 257

258 Part II ✦ Creating Flash Graphics

Filtering Buttons
As shown in Figure 9-16, there are several icon buttons across the top of the Movie
Explorer Panel. These are called Filtering Buttons and they have icons representative
of their function. Click any button to toggle the display of those elements in your file.
Note, however, that the Movie Explorer’s display becomes more crowded as you
select more buttons — and that it performs more slowly because it has to sift more
data. From left to right, the buttons filter the display of the following kinds of content:

✦ Text

✦ Buttons, Movie Clips, and Graphics (placed instances)

✦ ActionScripts

✦ Video, Sounds, and Bitmaps (placed instances)

✦ Frames and Layers

✦ Customize which Items to Show

Note also the Find entry field, which enables you to search for movie items by name.

The Display List
Below the icons is a window with the Display List. Much like Windows Explorer, or
the Mac Finder, the Movie Explorer displays items hierarchically, either by individ-
ual scene or for all scenes. These listings are expandable, so if you have selected
the Text button, a plus sign will appear beside the name of any Scene that includes
text. Clicking the plus sign (or right-pointing arrow on the Mac)displays all of the
selected items included in that Scene. At the bottom of the Display List, a status
bar displays the Path for the currently selected item.

In Figure 9-17, two buttons have been selected: Text, and ActionScripts. As shown,
clicking the plus sign beside the ActionScript icon displays the entire ActionScript.
Note, too, that the complete text appears, including basic font information.

The contextual menu
Select an item in Movie Explorer and right-click/Ctrl+click to invoke the contextual
menu related to that particular item. Irrelevant commands are grayed-out, indicat-
ing that functionality is not available in context with the item.

Figure 9-18 shows the contextual menu of the Movie Explorer. Among the most use-
ful commands is the Goto Location option at the top. When you can’t find an item
(because it’s on a masked layer or is invisible), this command can be a lifesaver.

Next, we cover the Movie Explorer Options menu.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 258

259Chapter 9 ✦ Checking Out the Library: Symbols and Instances

Figure 9-17: The Movie Explorer for one
of Jake’s Clocks, from Jake Smith’s Expert
Tutorial, “Using getTimer to Make a Flash
Clock,” in Chapter 26.

Figure 9-18: The Movie Explorer’s
contextual menu

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 259

260 Part II ✦ Creating Flash Graphics

The Movie Explorer Options menu
The Options menu is accessed by clicking the Options triangle, which is located in
the upper-right corner of the Movie Explorer Panel. These commands are the same
as the commands that are found in the Movie Explorer’s contextual menus:

✦ Goto Location: For a selected item, this transports you to the relevant layer,
scene, or frame.

✦ Goto Symbol Definition: (For this to work, both Show Movie Elements and
Show Symbol Definitions must be toggled on.) This jumps to the symbol defi-
nition for the symbol that’s selected in the Movie Elements area. (At the time
of this writing, this feature was not functional.)

✦ Select Symbol Instances: Jumps to the scene containing instances of the sym-
bol that is selected in the Symbol Definitions Area. (For this to work, both
Show Movie Elements and Show Symbol Definitions must be toggled on.)

✦ Find in Library: If the Library Window is not open, this opens the Library
and highlights the selected item. Otherwise, it simply highlights the item in
the Library.

✦ Panels: Click this to open all relevant panels (or panel) for the selected item.

✦ Rename: Enables you to easily rename selected items.

✦ Edit in Place: Use this to edit the selected symbol in context on the Stage.

✦ Edit in New Window: Use this to edit the selected symbol in Symbol
Editing Mode.

✦ Show Movie Elements: One of two broad categories for how filtered items are
viewed in the Display List, Show Movie Elements displays all elements in the
movie, organized by scene.

✦ Show Symbol Definitions: This is the other category of the Display List, which
shows all of the components that are related to each symbol. Both Show Movie
Elements and Show Symbol Definitions may be displayed simultaneously.

✦ Show All Scenes: This toggles the display of Show Movie Elements between
selected scenes, or all scenes.

✦ Copy Text to Clipboard: Use this command to copy selected text to the clip-
board. Text may then be pasted into a word processor for editing, spell checking
and other textual operations not found in Flash.

✦ Cut: Use this command to cut selected text.

✦ Copy: Use this command to copy selected text.

✦ Paste: Use this command to Paste text that has been copied from Flash
or another application.

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 260

261Chapter 9 ✦ Checking Out the Library: Symbols and Instances

✦ Clear: Use this command to clear selected text.

✦ Expand Branch: This expands the hierarchical tree at the selected location;
it’s the menu equivalent of clicking the tiny + sign/right-facing arrow.

✦ Collapse Branch: This collapses the hierarchical tree at the selected location;
it’s the menu equivalent of clicking the tiny – sign/down-facing arrow.

✦ Collapse Others: This collapses the hierarchical tree everywhere except
at the selected location.

✦ Print: The Movie Explorer prints out, with all of the content expanded,
displaying all types of content selected.

Make sure to use Movie Explorer! When planning or looking for ways to improve a
project, this tool can provide an excellent map to the structure and function of what
you’ve already accomplished. Whenever relevant, print out the Movie Explorer; this
document can function as a project file for finished work, providing a reference of all
scripting and Movie Clip placement. As such, it can make it much easier to return to a
project months later. It can also facilitate collaboration amongst developers, whether
they share the same office or are geographically distributed. Finally, for all of the rea-
sons listed previously, the Movie Explorer can also be used as a tool for both learning
and teaching.

Shared Library and Shared Fonts
Shared Library is a new feature of Flash 5. The idea behind this is very good. It is
intended to enable you to create a Library of assets that can be uploaded to the
server and then share those assets with multiple movies. These assets would include
any asset that is normally included in a Flash movie, with the inclusion of shared
fonts. Furthermore, because an asset file is not added to the movie that references
it, this method would enable a developer to trim bandwidth and also obtain a more
streamlined authoring procedure.

Unfortunately, at the time of this writing, some users have reported that it does not
seem to perform consistently in some intensive situations.

Exercise extreme care when using any aspect of the Shared Library. If you want to
use the Shared Library feature, we suggest that you research the Macromedia site
for any technotes on the topic, and that you also search Flash user groups for
information, before you commence work.

For more information about Shared Libraries, refer to Chapter 20, “Sharing and
Loading Assets.”

Cross-
Reference

Caution

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 261

262 Part II ✦ Creating Flash Graphics

Summary
✦ Symbols are the building blocks of Flash. They save you time, reduce your file

size, and add flexibility to your movies. With the advent of the increasingly
robust Flash ActionScript language, symbols can be considered as objects
within an Object Oriented authoring environment.

✦ Flash handles imported sounds, bitmaps, and QuickTime assets as symbols.
They reside in the Library and instances of these assets are deployed within
a Flash project.

✦ In addition to imported assets, there are three other kinds of symbols that can
be created within Flash: Graphic symbols, Movie Clips, and Buttons.

✦ The Library can be organized with folders and symbols and assets can be rear-
ranged without breaking their linkage to instances deployed within the project.

✦ Using symbols within a project is as easy as dragging an asset or symbol from
the Library and onto the stage, although it’s usually best to have a new layer
ready and to have the appropriate keyframe selected.

✦ Symbols can be edited in a number of ways. Any edits to a symbol are reflected
by all instances of that symbol throughout the project.

✦ The color and transparency of individual instances of a symbol can be modi-
fied, via the Instance Panel. Furthermore, specific instances can be switched
for other symbol instances by using the Behavior Panel.

✦ The new Flash 5 Movie Explorer is a powerful new tool for deciphering movies
and finding items within them.

✦ Shared Libraries and Shared Font symbols are a promising new feature of
Flash 5.

✦ ✦ ✦

3515-3 ch09.f.qc 1/18/01 3:50 PM Page 262

Drawing in Flash

F lash has a variety of drawing tools that enable you to
create whatever you need for your projects. You should

already know how to use these drawing tools from your read-
ing of Chapter 1, “Understanding the Flash Framework.” This
chapter provides a more in-depth look at using these tools —
and several others — when working with your drawings. We
manipulate drawings, create special effects, and more.

Simple Shapes and Items
To learn Flash, it’s essential to know how to create simple
shapes and items with the drawing tools, as described in
Part I, “Mastering the Flash Environment.” Drawing simple
shapes with Flash has always been easy, but with the addition
of the Pen Tool in Flash 5, drawing has become even easier.
Individually, these basic drawing tools are quite powerful, but
when used in combination, they enable you to create an end-
less variety of complex shapes.

Creating shapes
In Flash, it takes little effort to draw most primitive shapes
such as circles or rectangles. But what happened to the
Triangle Tool? And how do you create irregular shapes?

Creating complex shapes requires adding or removing parts.
If you’ve already been playing around with shapes, you may
have noticed that by joining or overlapping two shapes of the
same color on the same layer, a brand new shape is created.
(To pull the pieces apart you need to use the Undo [Edit ➪
Undo] command a few times.) This feature is used to create
irregular and complex shapes.

Creating shape combinations
Add a rectangle to a circle of the same color (on the same
layer) and you’ll combine them into a new shape (as shown in

1010C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing simple
shapes and items

Using Scale, Rotate,
Skew, and Flip Tools

Looking at the
drawing panels

Demystifying Stroke
and Fill effects

Using Static Masks

Creating type and
text effects

✦ ✦ ✦ ✦

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 263

264 Part II ✦ Creating Flash Graphics

Figure 10-1). This can be accomplished by either drawing the second shape directly
over the first, or by selecting the second shape elsewhere on the stage and then
dropping it over the first shape. If you find that this doesn’t seem to work, be sure
that you aren’t trying to combine shapes that have been grouped. Remember that
even single shapes can be grouped, and thereby protected from shape combination.

Figure 10-1: Using shape combinations to generate a complex shape
from primitive shapes.

Creating shape cutouts
Another effect that can be created by playing around with shapes is a cutout, by
combining shapes of different fill colors. For example, add the same circle to a rect-
angle of a different color, and the circle acts like a cookie cutter, creating another
brand-new shape. A similar result is obtained by drawing a shape of a different
color directly over the top of an existing shape: the one drawn last (or dropped)
acts as the cutter. Drop a collection of selected lines on a rectangle, then deselect,
and then reselect and move them away — and you’ll create a filigree knockout.

The Flash resource files for this example are located in the Moon folder of the
ch10 folder on the CD-ROM.

As shown in Figures 10-2 through 10-4, a moon shape is achieved by drawing the
cutout shape, then dragging it over the top of the background shape, and then
deleting the cutout, as follows:

1. Let’s begin with a black background, as if it were the night sky. This is accom-
plished by using Movie Properties (Modify ➪ Movie Properties).

On the
CD-ROM

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 264

265Chapter 10 ✦ Drawing in Flash

2. Select the Oval Tool, change the fill color to white for the moon, set the
stroke color to transparent, and then hold down the Shift key and draw a
perfect circle.

3. Now, copy the original circle as follows: Select the circle with the Arrow Tool,
and then hold down the Alt/Option key while dragging a copy of the circle off
to the side. This second circle will be the shape cutter.

4. Next, with the new circle still selected, change its fill color by choosing a new
color (gray) from the Fill Color control of the Toolbox (as shown in Figure 10-2).
If you don’t change the fill color for this secondary circle, it will merge and
become part of the original circle shape (as in the preceding example) in our
next step.

Figure 10-2: The full moon and the shape cutter

5. Use the Arrow Tool to drag the gray circle over the top of the original white
circle and position it so that it reveals a sliver of crescent-shaped white (as
shown in Figure 10-3). After the gray circle is positioned appropriately, dese-
lect it by clicking off the circle at the edge of the stage.

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 265

266 Part II ✦ Creating Flash Graphics

Figure 10-3: Dragging the shape cutter over the full moon

6. Use the Arrow Tool to click the gray shape-cutter circle to select it and drag it
away (see Figure 10-4). Then delete the gray circle. What remains? You should
now have a sliver of white in the shape of a crescent moon.

You can apply this technique to any number of shapes, limited only by your ingenu-
ity and patience.

Grouping
Here’s how to use grouping so that items won’t cut out the shapes that occur
beneath them.

In the previous example, cutting into the full-moon shape with the gray shape cutter
created a sliver of moon. In such cases, there’s always a potential for problems if
the shape cutter is accidentally deselected. The potential for problems is increased
if more than one shape is being used as a cutter. However, if the cutter shape (or
shapes) is grouped before it is placed over the shape that’s being cut, the problem
is eliminated. Furthermore, the group enables you to nudge and align until the
cutter is precisely where you want it. And you don’t have to decide immediately,
either. If you choose the appropriate color for the cutter shape(s), you can wait
until later to commit to the cut. When you’re ready to make the final cut, simply
ungroup the cutter shape(s), and then deselect before selecting and finally
deleting them.

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 266

267Chapter 10 ✦ Drawing in Flash

Figure 10-4: With the shape-cutter circle dragged away, the original circle is cut,
leaving a crescent moon shape.

Although grouping doesn’t usually add significantly to file size, it certainly does not
reduce file sizes. Here are a few facts: Although the “grouping” itself requires only
a few more bytes, the vectors hidden behind a group do mount up. Because Flash
doesn’t distinguish between what is in front and behind, it renders everything
both within and behind a group. Thus, for the smallest possible files, it makes
sense to ungroup most groups before final publication of your project. This will let
all of the grouped pieces cookie-cutter themselves down into one unified piece of
artwork. Nevertheless, before ungrouping to trim file size, be sure to save an
archive of the file with all of the components grouped.

Drawing a triangle
The easiest way to create a triangle is to take the Pencil, draw three lines to outline
the shape, and then fill it in. However, you might be interested in drawing a more
precise triangle, as follows:

1. Select the Rectangle Tool. Set your Line Color to No Color, and select a fill
color. Press the Rounded Rectangle modifier to open the Rectangle Settings
dialog, and make sure that the Corner Radius is set to 0 points.

Note

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 267

268 Part II ✦ Creating Flash Graphics

2. Draw a rectangle that’s about twice the size of the triangle that you want to
create.

3. Choose View ➪ Snap to Objects to turn on object snapping.

4. Use the Line Tool to draw a line from the top-left corner of the rectangle to
the bottom-right corner as shown in Figure 10-5.

Figure 10-5: Draw a line from the top-left corner of the rectangle to the
bottom-right corner.

5. The line has bisected the rectangle into two triangular filled areas. Use the
Arrow Tool to select one of the triangular filled areas and drag it away from
the rest of the shape. Then select the rest of the shape (the remaining triangle
and bisecting line) and delete it. The finished triangle is resting on its side; we
discuss how to change that later in this chapter.

Here’s how to draw a similar triangle using the Line Tool and the Grid with Snap
enabled:

1. From the View Menu, enable both View ➪ Grid ➪ Show Grid and View ➪ Grid ➪
Snap to Grid.

2. Select the Line Tool from the Drawing Toolbox. Choose your line color using
the Stroke Color control, and then choose a Stroke Height and Weight from the
Stroke Panel.

3. Beginning at one intersection of the Grid, draw a baseline for the triangle, and
then draw one of the sides, either by eyeballing the center point above the
base line, or by quickly counting grid spaces.

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 268

269Chapter 10 ✦ Drawing in Flash

4. Finally, as shown in Figure 10-6, draw the final side of the triangle; the Line
Tool will snap to close the shape. When drawing with Snap enabled, a small
circle appears adjacent to the cursor whenever snap is active.

Figure 10-6: This triangle was created with the Line Tool, using Snap to
Grid, with the Grid’s visibility enabled with View ➪ Grid ➪ Show Grid.

Drawing a polygon
A polygon is a flat shape with four or more sides. Polygons are more complicated to
make than triangles, but they’re not difficult. Figure 10-7 shows a five-sided polygon,
drawn directly in Flash.

Figure 10-7: This polygon was created with the Line Tool, and is about to
be filled with the Paint Bucket.

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 269

270 Part II ✦ Creating Flash Graphics

The simplest way to draw a polygon is to use the Line Tool to draw an outline, and
then fill it in with the Paint Bucket Tool. Another method is to draw several rectan-
gles, rotate and adjust them — using the Scale and Rotate Tools — and then place
them on top of each other. Yet another method is to draw a rectangle and then chop
its corners off by drawing intersecting lines, as demonstrated in the earlier section
on Drawing a Triangle. Furthermore, the shape of any polygon can be modified and
perfected using:

✦ The Line Processing and Shape Recognition techniques described in Chapter 4,
“Working with Selections and the Pen Tool,” and Chapter 5, “Working with the
Drawing and Painting Tools.”

✦ The Pen Tool and Subselect Tool techniques discussed in Chapter 4, “Working
with Selections and the Pen Tool,” and Chapter 5, “Working with the Drawing
and Painting Tools.”

✦ The Arrow Tool techniques discussed in Chapter 4, “Working with Selections
and the Pen Tool.”

The Flash resource files for the following tutorial are located in the Larry D. Larsen
folder of the ch10 folder on the CD-ROM.

On the
CD-ROM

Expert Tutorial: Pill Technique, by Larry D. Larsen

Larry has contributed to many sites, including The Poynter Institute, Flash Foundry (con-
tent), Machoman Randy Savage, The Alien Containment Facility, E-Hands on Flash tutorial,
and Kung Foo Flash.

Making Pill-Shaped Buttons
Pill-shaped buttons are particularly valuable for text buttons. That’s because it can be pretty
hard to make circular buttons look good with text on them and because rectangular but-
tons are just plain boring. It’s very easy to create oval buttons in Flash, but pill-shaped
buttons take a little bit more work. Thus, the procedures used in this tutorial are valuable
not only as a solution to the pill problem, but also for their delivery of an advanced way of
thinking with the Flash drawing tools.

Start by opening a new Flash file with File ➪ New, which should default to a single, active
layer. We want to create a gradient fill that can be applied so that the circle will look three-
dimensional. Select the Oval Tool, and then, proceeding from the Window menu, use
Window ➪ Panels ➪ Fill to access the Fill Panel (shown in the following figure). Choose
Radial Gradient from the Fill Style drop-down. The default black-and-white Radial Gradient
should appear. If not, click the Swatches tab and choose the default black-and-white Radial
Gradient from the bottom of the panel, and then return to customize this Radial Gradient
with the Fill Panel.

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 270

271Chapter 10 ✦ Drawing in Flash

Click twice just beneath the Edit Gradient Range to add two new Color Pointers and posi-
tion them as shown. (If you have any problems with the color terminology or operations,
please refer to Chapter 6, “Applying Color,” for a complete explanation before proceeding
further.) Next, change the colors of the Color Pointers: From left right, change the first Color
Pointer to light yellow, the second and fourth to bright orange, and the third to dark red.
Finally, click Add Gradient in the option pop-up (which is the triangle near the upper-right
corner of the panel) to add this Radial Gradient to the Swatches Panel. Hold down the Shift
key and draw a perfect circle, filled with the new gradient color (see the following figure).

If you’ve drawn a circle with an outline, click to select and then delete the outline. The cir-
cle doesn’t look very dimensional, does it? The next step is to reapply the same gradient to
this circle in a more convincing way.

Choose the Paint Bucket Tool and confirm that the custom gradient is still the fill color. (If
not, return to the Swatches Panel and reselect it.) Now, click somewhere in the upper-left
corner of the circle. The light yellow highlight of the gradient should appear in the upper left
and there should be a dark red shadow in the lower right. The resulting orange ball (shown
in the following figure) will be used as the basis from which the pill shape is created.

Continued

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 271

272 Part II ✦ Creating Flash Graphics

Continued

Finally, the dimensional orange ball needs to be centered on the Stage. Select the ball with
the Arrow Tool, and then use Edit ➪ Cut to cut it. Center the stage by double-clicking the
Hand Tool. Then, paste the ball back onto the stage using Edit ➪ Paste. (Don’t use the
Ctrl+Shift+V (Command+Shift+V) keyboard shortcut because that pastes the ball in its
original location!) This process centers the ball.

Create a new layer above Layer 1. (When you create this new layer — Layer 2 — Flash will
make it the current layer, which is what we want.) Then select the orange ball and copy it
with Edit ➪ Copy. Next, we need to paste a new copy of the orange ball onto Layer 2,
directly over the original. This is easily accomplished with Edit ➪ Paste in Place, which
pastes a copy in the same exact position that it was copied from. Now we’re going to use a
vertical line to bisect the orange ball on Layer 2. To do this, draw a vertical line off to the
side of Layer 2 that’s taller than the orange ball, as shown in the following figure.

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 272

273Chapter 10 ✦ Drawing in Flash

Then, select the line with the Arrow Tool and — as with the ball in the previous step — cut it
with File ➪ Cut. Paste the line back into Layer 2 using Edit ➪ Paste. This will paste the verti-
cal line in the center of the stage directly over the center of the orange ball, which is also
centered on the stage (see the following figure).

Deselect the vertical line so that it will bisect the ball. Now, select the right side of the
orange ball. (Only the right half of the orange ball should be selected.) Hold down the Shift
key (to constrain the movement to the horizontal axis) and move this half to the right.
Repeat this procedure for the left half of the ball. Then, use the Arrow Tool to select and
delete the line (as shown in the following figure).

Now, make Layer 1 the current layer. Working off to the side, use the Rectangle Tool — with
the fill color set to no fill — to draw a very narrow, empty vertical rectangle, taller than the
orange ball. Repeat the procedures used with the line to copy and paste this rectangle over
the center of the orange ball on Layer 1. The lines of the vertical rectangle have cut the
orange ball into three pieces (as shown in the following figure).

Continued

3515-3 ch10.f.qc 1/18/01 3:50 PM Page 273

274 Part II ✦ Creating Flash Graphics

Continued

Because we only need the center piece, use the Arrow Tool to select both the left and right
pieces of the orange ball on Layer 1 and delete them, and then delete the rectangle.

Select the remaining vertical slice of the orange ball on Layer 1 with the Arrow Tool, and
then click the Scale option. Now, drag the right-middle handle to the right until it snaps to
the left edge of the orange ball half on Layer 2 (as shown in the following figure). Then,
repeat the procedure on the left side. Drag the left-middle handle to the left until it snaps
to the left edge of the orange ball half on Layer 2.

Finally, select all, cut, and then paste into Layer 1. Then delete Layer 2. This will take all of
the pieces and put them on the same layer. Group them and you have your pill shape
(shown in the following figure).

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 274

275Chapter 10 ✦ Drawing in Flash

The Drawing Panels
When drawing in Flash, the drawing panels — Info, Transform, and Align — can be
your best friends. Use the Info Panel to modify the coordinates and dimensions of
an item. Or use the Transform Panel to scale, rotate, and skew an item. Use the
Align Panel to align, regularize (match the sizes of), or distribute several items on
Stage either relative to each other or to the Stage.

The Info Panel
Use the Info Panel, shown in Figure 10-8, to give precise coordinates and dimen-
sions to your items. Type the numbers in the spaces provided, and your item will
be transformed relative to its top-left corner. Or, when working with groups and
symbol instances, use the Alignment Grid to apply changes from the center. To
open the Info Panel, use Window ➪ Panels ➪ Info.

Turn it into a symbol and you won’t have to repeat these steps again. (For a discussion of
Symbols, refer to Chapter 9, “Checking Out the Library: Symbols and Instances.”)

A native of St. Petersburg, Florida, Larry D. Larsen is a true Flash pioneer. This is evident in his claim that
“Flash found me.” He says that in the year that he graduated from high school, the most memorable media
production was the movie Die Hard. “I don’t know what was on the radio, but I was listening to The Police —
“Ghost in the Machine.” It was old at the time.”

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 275

276 Part II ✦ Creating Flash Graphics

Figure 10-8: Use the Info Panel options to
change the location and dimensions of an item.

The Info Panel has these controls:

✦ Width: Use this numeric entry field to alter the width of a selected item.

✦ Height: Use this numeric entry field to alter the height of a selected item.

Units for both Width and Height are measured in the units (pixels, inches, points,
and so on) as set in Ruler Units option of the Movie Properties dialog. Note, how-
ever, that upon changing the unit of measurement, the item must be deselected
and then reselected in order for these readouts to refresh and display in the cur-
rent units.

✦ Alignment Grid: The alignment grid is located just to the left of the numeric
entry fields that are used for adjusting the X and Y location of any selected
item. This alignment grid consists of nine small squares. Together, these
squares represent an invisible bounding box that encloses the selected item.
Every shape created in Flash, even circles, resides within an imaginary rectan-
gular bounding box that includes the extremities of the shape. The alignment
grid enables you to position the selected item relative to either the upper-left
corner or to the center of its bounding box. Click either square to define
which point to use for positioning.

The X (horizontal) and Y (vertical) coordinates are measured from the upper-left
corner of the Flash Stage, which is the origin with coordinates 0,0.

✦ X: Use this numeric entry field to either read the X coordinate of the item or
to reposition the item numerically, relative to the center point on the X (or
horizontal) axis.

Note

Tip

Width and Height

Current X,Y read-outs

Current Red, Green, Blue and Alpha values

Edit X,Y coordinates

Symbol type

Alignment Grid

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 276

277Chapter 10 ✦ Drawing in Flash

✦ Y: Use this numeric entry field to either read the Y coordinate of the item or
to reposition the item numerically, relative to the center point on the Y (or
vertical) axis.

✦ RGBA: This sector of the Info Panel gives the Red, Green, Blue, and Alpha val-
ues or graphic items and groups at the point immediately beneath the cursor.
Values for symbols, the background, or interface elements do not register.

✦ + X: / + Y: This sector of the Info Panel gives the X and Y coordinates for the
point immediately beneath the cursor — including offstage values. A negative X
value is to the left of the Stage, while a negative Y is located above the Stage.

To scale or reposition an item, select the item and then open the Info Panel with
Window ➪ Panels ➪ Info, as shown in Figure 10-8:

✦ First you must choose to scale or reposition the item relative to either the
center, or to the upper-left corner. (The selected square turns black to indi-
cate that it is selected.)

• To work relative to the center, select the center square of the
Alignment Grid.

• Or to scale relative to the upper-left corner, click that square of the
Alignment Grid.

✦ To scale the item numerically, enter new values in the Width and Height fields,
and then click elsewhere or press Enter to effect the change.

✦ To reposition the item numerically, enter new values in the X and Y fields
(located in the upper half of the panel), and then either press Enter or click
elsewhere, outside the panel, to effect the change.

The Transform Panel
This panel gives precise control over scaling, rotation, and skewing of an item. With
this panel, instead of using manual techniques — which may be imprecise — numeric
values are entered in the appropriate fields and applied directly to the item. However,
once transformations are applied to an item, these numbers disappear when it is
deselected.

With an item selected, open the Transform Panel with Window ➪ Panels ➪
Transform, as shown in Figure 10-9.

Figure 10-9: Use the Transform Panel
to scale, rotate, and skew items.

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 277

278 Part II ✦ Creating Flash Graphics

The Transform Panel has several options that relating to scaling, rotating, and
skewing:

✦ Scale: Use this to scale the selected item numerically by percentage. Enter a
new number in the Scale field and press the Return or Enter key. The shape
scales to the specified percentage of its previous scale. To constrain the
shape to its current proportions, click the Constrain check box. To restore
the shape to its original size, press the Reset button However, once the shape
is deselected, it cannot be Reset. The only way to get back your original
object’s size is to immediately choose Edit ➪ Undo (probably more than once)
or exit your movie without saving your changes (in which case you’ll probably
lose other work as well).

When using the Transform Panel with groups and symbol instances, the original
settings can be reset even after the item has been deselected.

✦ Rotate: Click the radio button and then apply a rotation to the selected item
by entering a number in the Rotate field, and then pressing the Return or
Enter key.

✦ Skew: Items can be skewed (slanted in the horizontal or vertical direction)
by clicking the Skew radio button, and then entering values for the horizontal
and vertical angles. Click Apply and the item will be skewed to the values
entered.

✦ Copy and Apply Transformation: Note this Copy button! It’s the left button
at the bottom-right corner of the panel. Press it and Flash makes a copy of the
selected item (including shapes and lines), with all Transform settings applied
to it. The copy is pasted in the same location as the original, so select it with
the Arrow Tool and scoot it to a new position.

✦ Reset: This button, at the bottom-right corner of the panel, removes the trans-
formation you just performed on a selected object. However, once the object
is deselected, this button does not work. For simple items, this is really an
Undo button, rather than a Reset button. However, you can use the Reset but-
ton for instances, groups, or type blocks even after they have been deselected
(but not after you save your movie).

The Transform submenu
If you’ve already mastered Part I, “Mastering the Flash Environment,” you know that
the Arrow Tool options enable you to interactively scale, rotate, or skew an item rela-
tive to its center point. In conjunction with a watchful eye over either the Transform
Panel, or the Info Panel, the Arrow Tool options can be used for a measure of numeric
control over these processes. But there’s another area of Flash (only briefly men-
tioned in Part I) that can be indispensable. It’s the Transform submenu, Modify ➪
Transform, shown in Figure 10-10.

Tip

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 278

279Chapter 10 ✦ Drawing in Flash

Figure 10-10: The Transform
submenu of the Modify menu

The Transform submenu has these items:

✦ Scale: Use this command to interactively scale an item, several selected
items, or a group.

✦ Rotate: Use this command to interactively rotate an item, several selected
items, or a group.

✦ Scale and Rotate: Use this command to invoke the Scale and Rotate dialog to
numerically scale and rotate an item, several selected items, or a group.

✦ Rotate 90° CW: Use this command to rotate an item, several selected items,
or a group 90° clockwise.

✦ Rotate 90° CCW: Use this command to rotate an item, several selected items,
or a group 90° counterclockwise.

✦ Flip Vertical/Flip Horizontal: Use either Flip command to flip an item, several
selected items, or a group on either their vertical or horizontal axis — while
leaving the relative position of the item intact, as shown in Figure 10-11.

Figure 10-11: The item on the left is the original. The item in the middle has
been flipped vertically, while the item on the right was flipped horizontally.

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 279

280 Part II ✦ Creating Flash Graphics

✦ Remove Transform: Use this command to remove previous transformations.
Depending on the item transformed, this command remains viable as follows:

• Simple items — until deselected.

• Instances, groups, and type blocks — until the movie is saved.

✦ Edit Center: Use this command to relocate the center, or axis, of a group,
instance, type block, or bitmap to a position that is off-center. This command
does not work on simple graphic shapes.

While nearly all the commands of the Transform submenu are redundant of com-
mands that might be more easily accessed elsewhere in Flash, Edit Center is a
unique and powerful command because it enables you to freely decentralize the
axis about which an item (a group, instance, type block, or bitmap) will transform —
or animate! For example, by moving the center of a grouped rectangle to its lower-
right corner, the rectangle could be animated so that it expands from that corner,
and then rotates around that same point.

Figure 10-12 shows the same item as in the previous figure, except that the center,
as shown on the left, is being edited, so that the new center will be at the lower
right. As shown in the middle, this affects the way that it responds to a rotation
as well as how it sits when scaled, as at the right.

Figure 10-12: Changing an item’s center for rotation and scaling.

The Align Panel
The Align Panel, shown in Figure 10-13, is one of many features for which you’ll be
grateful every time you use it. It enables you, with pixel-perfect precision, to align
items to each other and the Stage and to distribute items evenly on the Stage. To
open the Panel, choose Window ➪ Panels ➪ Align (Ctrl+K/Command+K).

Tip

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 280

281Chapter 10 ✦ Drawing in Flash

Figure 10-13: Use the Align Panel to both
size and line up items without fuss.

The Align Panel has five controls. The icons on the buttons are relatively self-
explanatory:

✦ Align: There are six buttons in this first control. The first group of three but-
tons is for horizontal alignment, and the second group of three is for vertical
alignment. These buttons align two or more items (or one or more items with
the Stage) horizontally (top, middle, bottom) or vertically (left, middle, right).

✦ Distribute: This control also has six buttons, three for horizontal distribution
and three for vertical distribution. These buttons are most useful when you
have three or more items that you want to space evenly (such as a set of but-
tons). These buttons distribute items equally, again vertically or horizontally.
The different options enable you to distribute from edge to edge, or from item
centers.

✦ Match Size: This control enables you to force two or more items of different
sizes to become equal in size; match items horizontally, vertically, or both.

✦ Space: This option enables you to space items evenly, again, vertically or hori-
zontally. You might wonder how this differs from Distribute. Both are similar in
concept, and if your items are all the same size, they will have the same effect.
The difference becomes more apparent when the items are of different sizes:

• Distribute evenly distributes the items according to a common reference
(top, center, or bottom). For example, if one item is larger than the oth-
ers, it may be separated from the other items by less space, but the dis-
tance between its top edge and the next item’s top edge will be consistent
with all the selected items.

• Space ensures that the spacing between items is the same; for example,
each item might have exactly 36 pixels between it and the next.

✦ To Stage: On the right, you will also notice a To Stage button. By clicking this,
you include the full Stage in the operation.

To align an item to the exact center of the Stage, do the following:

1. Click to select the item that you wish to center.

2. Click To Stage in the Align Panel.

3. Click the Align horizontal center button.

4. Click the Align vertical center button.

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 281

282 Part II ✦ Creating Flash Graphics

Fill and Stroke Effects
Gradient fills are one kind of important fill effect. They give extra depth and rich-
ness to shapes that are drawn in Flash and are commonly used to give a three-
dimensional effect to shapes.

Colors are discussed in great detail in Chapter 6, “Applying Color.” Refer to that
section to learn more about creating and working with gradient fills.

Spheres
Spheres are very easy to make. To make one, draw a circle on the stage, and then
apply a radial gradient fill to it — but don’t just stop there! Learn to use the gradient
fill to give it some depth by adding highlights and shadows.

As shown in Figure 10-14, starting with a simple sphere (left), a highlight effect is
added to the sphere (middle). Then, working with the Radial Gradient drop-down of
the Fill Panel, a unique radial fill is generated to apply highlight and shadow effects
to the sphere (right).

Figure 10-14: Creating highlights and shadows for a 3D effect.

Here’s how to make a simple sphere look more realistic.

1. Select the Oval Tool and choose a radial gradient for the fill. (Refer to
Chapter 6, “Applying Color,” for more about working with fills.)

Cross-
Reference

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 282

283Chapter 10 ✦ Drawing in Flash

2. Shift-drag across the stage with the Oval Tool to make a circle, which should
look like the sphere shown at the left.

3. To give the sphere a little highlight effect, transform the fill by reapplying it
with the Bucket Tool, so that the lightest part is at the top left of the circle, as
shown in the middle sphere of the figure.

4. Now play around with the colors in the fill until you get a nice looking sphere,
as shown in the figure at the right. Add colors to the radial gradient to tweak
the effect of highlight and shadows.

Refer to Chapter 6, “Applying Color,” for more information on using fills, as well as
modifying gradients. Also, refer to Chapter 5, “Working with the Drawing and
Painting Tools,” for information about Transform and Lock Fill modifiers, which are
useful when modifying fills.

The sphere illustrates a very simple 3D effect created with gradient fills. Although it’s
not really three-dimensional, it does give the illusion of it. More complex and detailed
3D effects can be created by judiciously combining the power of gradient fills.

Refer to Chapter 33, “Working with 3D Graphics,” for a look at creating 3D effects
in Flash.

Stroke effects
Stroke effects — which are controlled by the Stroke Panel in concert with the Line,
Oval, Rectangle, and Pencil Tools — can be used to give more life to lines. One really
neat way of using this effect is to apply a stroke style (stipple, hatch, custom) to a
line, and then turn the line into a fill (Modify ➪ Shape ➪ Convert Lines to Fills) and
apply various effects to the resulting fill. Then you can apply both Gradients and
Bitmap Fills to your lines. Beware that overuse of this technique on complex styles
can significantly increase .SWF file size and download time. On slower machines, it
may also cause the animation to drag.

Strokes are discussed in detail in Chapter 5, “Working with the Drawing and
Painting Tools.” Refer to the “Using the custom stroke styles” section to learn how
to control strokes and how to customize their styles.

Cross-
Reference

Cross-
Reference

Cross-
Reference

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 283

284 Part II ✦ Creating Flash Graphics

Expert Tutorial: Using Modify ➪ Curves,
by Dorian Nisinson

To see the examples for Dorian’s tutorial in a real Flash (.FLA) file, open the DNCurves.fla in
the ch10 folder on the CD-ROM.

Lines to Fills
Here are three examples where the Modify ➪ Shape ➪ Convert Lines to Fills command is
indispensable. The following figure shows an example of using Convert Lines to Fills to cre-
ate square corners.

Here’s how to get real square corners:

1. First, select the Rectangle Tool and draw a square complete with both an outline
and a fill.

2. Then, with the Arrow Tool, double-click the outline to select the entire outline.

3. With only the outline selected, use Modify ➪ Shape ➪ Convert Lines to Fills.

4. Now, reselect the converted line with the Arrow Tool and click the Straighten option.
The corners will be nice and sharp.

If you create a complex shape, put a line around it, and then use this process, the results are
less predictable. Some corners may gain an extra facet or two.

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 284

285Chapter 10 ✦ Drawing in Flash

Scalable Lines
What about real scalable lines? In the old days of Flash 3, an item created with lines would
look fine at 100 percent view, but if an instance was made of that item (which was con-
structed of lines) and then reduced to 20 percent, the thin lines would not scale properly.
Instead, they looked huge and ugly. And because lines (unlike fills) can never be represented
by anything smaller than one whole pixel, reducing the line width in the original would not
improve the scaled appearance. Well, here’s a solution, shown in the following figure:

1. If a symbol will appear at different scales, convert those pesky lines to fills.

2. Then, fill the lines as you choose; they will scale with the artwork!

Converting Styled Lines Retains Style
Now, converting styled lines retains style! That’s right, you can convert a dashed or dotted
line yet maintain the line style (see the following figure)!

Here’s how:

1. Select the Pencil Tool, choose 8 points for the line width, and create a line using the
dotted line style. This will draw a line with a row of big dots.

2. Next, use Modify ➪ Shape ➪ Convert Lines to Fills. You’ll notice that, although you
converted the line to fills, the dots are still there.

Continued

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 285

286 Part II ✦ Creating Flash Graphics

Continued

3. Click a single dot; each dot is a separate item that can be filled. But each dot can
also be edited much more extensively than if it were a line.

4. So what about lines? As you can see in the example .FLA, even plain lines can be
filled with gradients, and even the opacity can be controlled.

Faux 3D
Now we look at making a slightly 3D rectangle. Here’s how to create the effect shown at the
left in the following figure:

1. Start with a light gray for the movie background and draw a rectangle with rounded
corners set to 10 and no outline.

2. Fill this rectangle with a linear gradient that goes from blue-green to white and back
to blue-green.

3. With the Paint Bucket Tool selected, choose the Transform Fill Option. Click the gra-
dient to select it and then rotate it to approximately 45 degrees.

4. Next, expand or contract the gradient so that the full color ends of the gradient are
at opposite corners of the filled shape.

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 286

287Chapter 10 ✦ Drawing in Flash

5. Now, we’re ready to make our 3D effect. To do this, select the rectangle with the
Arrow Tool and use Modify ➪ Shape ➪ Soften Fill Edges with the following settings:
Distance: 16, Steps: 6 px, Expand. Click OK to apply.

6. Then, with the Arrow Tool, select the outer band of this softened shape and copy it.
Create a new layer, drag it beneath the first layer, and use Edit ➪ Paste in Place to
put the outermost band in the same position as the original rectangle (but on the
new layer underneath it).

7. Now, return to the top layer and click the eye icon (in the Layers Panel) of the top
layer to hide it, so that you can see what you’re doing to the lower layer in the
next step.

8. Next return to the bottom layer, make it the active layer, and then fill the center of
the pasted shape with a white-to-black opaque gradient.

9. Then edit this lower gradient to a 45-degree angle and squeeze it so that 25 percent
of the filled area is either pure white or pure black. (This can be adjusted later.)

10. When you make the top layer visible again, you’ll notice a 3D effect.

Continued

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 287

288 Part II ✦ Creating Flash Graphics

Continued

Making a 3D bevel

Here’s how to create the effect shown at the right of the figure:

1. Start with a circle of 150 pixels in diameter filled with an intermediate color.
(To draw a perfect circle, remember to hold down the Shift key to constrain the
Oval Tool.)

2. Select the circle (with the Arrow Tool) and use Modify ➪ Shape ➪ Soften Fill Edges
with these settings: Distance: 140, Steps: 2, Inset. Click OK to apply.

3. Now, select the center of the circle and delete it, leaving a donut shape with a per-
fectly centered hole. Because Soften Fill Edges works by creating a series of bands
that are the same color as the original shape, yet of gradually decreasing opacity,
it’s necessary to fill this donut with a new color that’s 100 percent opaque.

4. Choose the Paint Bucket Tool and a fill with a middle value color, and then use it
to fill the donut hole.

5. Next, select the donut shape and apply Modify ➪ Shape ➪ Soften Fill Edges with
these settings: Distance: 20, Steps: 2, Expand. Click OK. This results in a donut
shape with a band 10 pixels wide around both the inside and outside edges.

6. Now, in the Linear Gradient drop-down of the Fills Panel, create a linear gradient
that goes from white to a darker shade of the original donut color. Use this gradient
to fill first the outer and then the inner band of the donut. Take care, as the bands
must be filled individually and with the Lock Fill Modifier turned off in order to
enable subsequent manipulation of these fills — which will complete the 3D effect.

7. Next, with the Paint Bucket Tool and Transform Fills option, click the outer band and
edit the application of the gradient. Assuming a light source from the upper left,
rotate the gradient approximately 45 degrees until the outer band is whitest at the
upper left edge and darkest color at the lower right.

8. Finally, edit the gradient for the inner band. As a dimensional item, the upper left of
the inner band would be in shadow, while lower right would be illuminated — so,
rotate this gradient until the inner band to opposes the orientation of the outer band.

9. Now the donut is 3D!

The Settings in the Soften Edges Panel are:

✦ Distance: The number of pixels the selected shape will expand or contract

✦ Number of steps: The number of bands around the edges of a shape

✦ Expand or Inset radio buttons: Tells Flash whether to enlarge or contract the
original shape

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 288

289Chapter 10 ✦ Drawing in Flash

Static Masks
In the real world, a mask is used to selectively obscure items beneath it. In Flash,
a Mask layer is used to selectively obscure items on the specific layers beneath it.
To create a mask effect, a Mask layer is used in conjunction with a Masked layer,
or multiple Masked layers.

When a mask is enabled, everything on the Masked layer is hidden except what’s
beneath filled areas of the Mask that it’s linked to. Almost any content, (excluding
lines) may be used to create a mask. Masks may be animated or static. The only
limitation is that motion paths cannot be used to animate a mask, nor can layers
within buttons be masked. Animated masks are covered in Chapter 11, “Animating
in Flash.”

When working with circular shapes, the width of each band will be equal to the Distance
number divided by the number of steps. For example:

✦ If the distance is 10 and the number of steps is 2, then each band will be 5 pixels
larger or smaller, depending on whether Expand or Inset is checked. However, the
innermost band (the band closest to the original shape) will become the same color
as the original shape. (This means that the inner band automatically becomes part
of the original shape.)

✦ But with an original circle of 40 pixels in diameter with Expand checked, distance
set to 10 and number of steps set to 2, the result will be a circle 45 pixels in diame-
ter with a band of 5 pixels surrounding it — for a total diameter of 50 pixels.

✦ Using those same original numbers but with Inset rather than Expand, the result will
be a circle 35 pixels in diameter, with a 5-pixel band— for a total diameter of 40 pixels.

✦ Finally, note that transparency increases successively with each larger band. If
Distance is 20 and number of steps is 6, then the inner band will be opaque, while
the next smallest band will have 80 percent opacity, the next band will have 60 per-
cent opacity, the next band will have 40 percent opacity. The final band, with the
largest diameter, will have an opacity of 20 percent.

When asked how near she lives to New York City, Dorian once replied, “You couldn’t get any closer, I was
born and raised and live there — right uptown.” This was the perfect answer from the woman who perfected
the methodology for using the new Flash 5 hitTest method in Chapter 23. In the year that she graduated
from high school, “the movie [she] remember[s] most from that time was not new — quite old, in fact:
Murders of the Rue Morgue with Bela Lugosi, with gorgeous black and white cinematography.” She discov-
ered Flash when it was still Future Splash, just before MM bought it. It was love at first sight. Her favorite
thing is, “I don’t have one favorite. Draw, design, sing, talk, learn, write, creative problem solving.” She’s the
cofounder of www.FlashCentral.com and designed the graphic intro for www.flashability.org. She
has her own motion graphics company, Dorian Nisinson Design.

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 289

290 Part II ✦ Creating Flash Graphics

Although groups, text, and symbols can be used as a mask, such items fail to mask
when they share a masking layer with a simple shape that’s also applied as a mask.

The source files for the next three examples are located in the ch10 folder on the
CD-ROM, in the Static Masks subfolder. You can also refer to the sample file, 10_Mask
Tests, and examine all of the scenes, for more complex examples of the exceptions
to masking.

Masking with a graphic
Here’s how to create the simplest form of mask:

1. To begin with, the content that will be visible through the mask should be in
place on its own layer, with visibility turned on. This is called the Masked layer.

2. Next, create a new layer above the Masked layer.

3. Then, create the aperture through which the contents of the Masked layer
will be viewed. This aperture can be any filled item, text, or placed instance
of a symbol. The only constraint is that the aperture must be a filled item. (Of
course, lines can be used as masks if they are first converted to fills with the
Modify ➪ Shapes ➪ Convert Lines to Fills command.) This layer is called the
Mask layer.

4. Now, situate your Mask over the contents of the Masked layer so that it
covers the area that you will want to be visible through the mask.

5. Finally, right-click/Ctrl+Click the layer bar of the Mask layer to invoke the
contextual menu, and then choose Mask from the menu.

6. The Masked layer will become subordinated to the Mask layer and both
layers will become locked. The contents of the Masked layer are now visible
only through the filled portion(s) of the Mask layer (as shown at the left in
Figure 10-15.)

Figure 10-15: A simple mask

Caution

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 290

291Chapter 10 ✦ Drawing in Flash

7. To reposition the Mask layer, unlock it (as shown at the right in Figure 10-15.)

8. To reactivate masking, lock the Mask layer (and confirm that the Masked layer
is locked, too).

Masking with a group
A group can also be used as a mask, as long as it consists of filled shapes and as
long as the mask doesn’t also include simple ungrouped shapes:

If a mask is composed of multiple items, using a group usually facilitates positioning
the mask, as shown in Figure 10-16.

Figure 10-16: Who is that masked man?

Masking with a symbol
Working with symbols is working smart because doing so can help to reduce file
size. Because symbols comprised of filled items can be used as masks, there’s no
reason not to use a symbol from your Library to make a mask. Let’s return to our
moon example from earlier in this chapter and see what we might be able to do
with our primitive shapes.

Figure 10-17 shows the original shapes that we used to create a moon shape. The
only difference here is that the shape that was used to cut out the bulk of the moon
(the gray shape cutter), leaving only a sliver of moon, is now on its own separate
layer — and the layers are set up as a Mask layer and a Masked layer.

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 291

292 Part II ✦ Creating Flash Graphics

Figure 10-17: Using a circular moon shape for both a Mask layer and a Masked layer

Unfortunately, when we enable masking (by locking both layers), we don’t get a
sliver of moon. Instead, as seen in Figure 10-18, we get a silly lemon shape! What
happened? Well, if you think about it, you’ll notice that the upper shape reveals the
content beneath it. So, as you can see, masking involves a logic that’s the opposite
of the cookie-cutter interaction that we used to create shapes earlier in this chap-
ter. As you learn in the Chapter 11, “Animating in Flash,” a clear understanding of
this principle is critical to animating masks.

Masking text
Not only can text be masked, it can also be used to mask. To mask text, simply set
up your layers as described in the previous section, with the text to be masked on
the Masked layer, and the filled item that you’ll use for your aperture on the Mask
layer, as shown in Figure 10-19.

The source files for these examples are located in the ch10 folder on the
CD-ROM, in the Static Masks subfolder.

On the
CD-ROM

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 292

293Chapter 10 ✦ Drawing in Flash

Figure 10-18: The upper circle reveals only the part of the lower circle that it covers.

Figure 10-19: Masking text

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 293

294 Part II ✦ Creating Flash Graphics

To use text as a mask, the layers should be set up as described previously. In this
situation, the text (which goes on the Mask layer) will look as though it were filled
by whatever is place on the Masked layer. For this to be effective, a larger point size
and fuller, bold letterforms are advised, as shown in Figure 10-20.

Figure 10-20: Using text as a mask

Creating Type and Text Effects
Whenever you set out to create a Type or Text effect, you’ll want to make sure that
the text you’re working with is the final copy. Do this before you apply any effects,
because once you’re done, the text will no longer be editable. Thus, if changes need
to be made, you’ll have to redo both the text and the effect.

Text with an outline
The text used as a mask in the previous example didn’t stand out as sharply as it
might. The effect could be helped a lot by adding a faint outline to the letters.
Here’s how to do it:

1. First, turn off the visibility of the sky, which is the Masked layer, and then
unlock the Text Mask layer and copy the contents. Then relock the Text
Mask layer.

2. Add a new, normal layer beneath the Sky layer. If you inadvertently create a
Masked layer, use the contextual menu to access the Properties dialog and
assign the layer as a normal layer. Rename the layer Outline. Then paste the
copied text in perfect alignment with the Text Mask by using Edit ➪ Paste in
Place.

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 294

295Chapter 10 ✦ Drawing in Flash

Do you find that you rely heavily on Paste in Place? Do you wish that this was the
default, instead of Paste, for the keyboard shortcut Ctrl/Command+V? You could
try using the new Flash 5 keyboard shortcuts (Edit ➪ Keyboard Shortcuts) to cus-
tomize your shortcuts. Or did you know that when you right-click/Ctrl+Click any-
where on the Stage, the contextual menu offers both the Paste and Paste in Place
commands?

3. Select the text on the Outline layer and then break it apart using Modify ➪
Break Apart. Then, with the text still selected, choose Modify ➪ Shape ➪
Expand Fill. In the ensuing Expand Fill dialog, enter a value of 3 pixels, and
check that the Direction is set to Expand. Click OK.

4. Check to ensure that none of your letters have been obliterated by this pro-
cess; sometimes, if the expand value is too high, the letterforms become
corrupt.

5. Reactivate the masking, as previously described. If you’ve done it right, your
letters should now have a thin outline.

Figure 10-21 shows the effect of adding a thin outline to the text that has been used
as a mask.

Figure 10-21: Adding a thin outline to text that has been used as a mask
helps to sharpen the letters.

The source files for these examples are located in the ch10 folder on the
CD-ROM, in the Text Effects subfolder.

On the
CD-ROM

Tip

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 295

296 Part II ✦ Creating Flash Graphics

Text with drop shadows
Drop shadows are special effects that can be added to text to make the text stand
out. There are many ways to achieve such effects. We discuss two of them here.

Type some text. Then, with the text still selected, copy the text with Edit ➪ Copy.

1. Paste the copied text onto the Stage. Then, select it and change its color to
something appropriate for a drop shadow — perhaps dark gray, or something
slightly transparent.

2. Now, position the shadow on the Stage, and then send it to the back of the
stacking order (behind the original text) with Modify ➪ Arrange ➪ Move
Behind or Modify ➪ Arrange ➪ Move to Back.

3. Finally, select the original text and position it over the shadow text. Move the
text and the shadow around until the shadow effect is optimal. To join the
shadow and the text, select both and use Modify ➪ Group.

But that shadow is too crisp, and it doesn’t look convincing. So:

4. For a softer shadow, repeat the preceding steps, and then break apart the
shadow text using Modify ➪ Break Apart.

5. You may find that it’s easier to manage Text Effects if you move the Text and
the Shadow onto separate layers.

6. Soften the shadow’s edges by selecting Modify ➪ Shape ➪ Soften Fill Edges.
Either leave the settings in the Soften Edges dialog at their defaults, or play
around with them to obtain an ideal, soft shadow. Another alternative is to
reduce the Alpha value to 75 or 80 percent.

Figure 10-22 shows the result.

Figure 10-22: Drop shadows make text stand out
from the page.

Although a soft drop shadow looks good, it can add a lot to the file size — particu-
larly if the edges are softened with a lot of steps. This may cause long waits during
download and slow animations on less-capable processors. So use this effect
sparingly!

Tip

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 296

297Chapter 10 ✦ Drawing in Flash

More text effects
Text effects aren’t limited to plain drop shadows. Any of the effects and modifica-
tions that have been discussed in this chapter can also be applied to text. You can
skew, rotate, and scale text just like any other item. Break text apart and the use the
Soften Edges and Expand Shape commands to invent your own effects. Or break
text apart to apply fills. Finally, to radically reshape text use the methods discussed
in Chapter 5, “Working with the Drawing and Painting Tools,” regarding both pro-
cessing lines and shape recognition.

Don’t sacrifice readability for cool effects. The special effects listed in this section
are great for text that really needs to stand out, such as headings and button
labels. However, the effects aren’t advisable for large blocks of text. Although the
final decision is up to you, consider the impact that your decision will have on the
readability of your project.

Glowing text
You can also give text a glowing look with a method similar to the Drop Shadow
effect. First, break apart the shadow text. Then apply a light-colored fill to it. Now,
soften the edges — just increase the distance in the Soften Edges dialog, and make
sure that the Direction is set to Expand. Then, move this modified text squarely
behind the original text. Or modify this technique to create an embossed look by
using a dark fill for the shadow text.

Gradient fills in text
Adding gradient fills to text can also make it stand out. Here’s how:

1. Select the text and then break it apart with Modify ➪ Break Apart (Ctrl+B or
Command+B). The text appears as selected shapes on the stage. Be careful
to keep these shapes selected.

2. Choose the Paint Bucket Tool and select a gradient fill from one of the
Gradient drop-downs of the Fill Panel.

3. Apply the gradient fill to the selected shapes of the broken-apart text. The gra-
dient will fill the text as if it were one shape. To add the gradient to each text
character individually, deselect the text and apply the fill to each character.

4. A similar effect can be accomplished by choosing a Bitmap Fill, instead of a
Gradient Fill, from the Fill Panel.

Tip

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 297

298 Part II ✦ Creating Flash Graphics

Summary
✦ Once you’ve mastered the basics of drawing, there are innumerable manipula-

tions, effects, and combinations of them that can be used to develop your
drawings.

✦ Using the basic Flash drawing tools, you can create irregular shapes, modify
simple and complex strokes and fills, and apply many effects to those strokes
and fills.

✦ Nearly anything that you can draw or create in Flash can be masked or even
be used as a mask.

✦ Using these same Flash drawing tools, you can also create custom text and
apply multiple effects to it.

✦ ✦ ✦

3515-3 ch10.f.qc 1/18/01 3:51 PM Page 298

Animating in
Flash

In this chapter, we discuss the basic methods and tools
used to create animations in Flash. Animation is the pro-

cess of creating the effect of movement or change over time.
Animation can be the movement of an item from one place to
another, or it can be a change of color over a period of time.
The change can also be a morph, or change in shape, from one
shape to another. Any change of either position or appearance
that occurs over time is animation. In Flash, changing the con-
tents of successive frames (over a period of time) creates ani-
mation. This can include any or all of the changes discussed
previously, in any combination. There are two basic methods
of Flash animation; frame-by-frame and tweened animation:

✦ Frame-by-frame animation is achieved by changing the
individual contents of each of any number of successive
frames.

✦ Tweened animation is achieved by defining the contents
of the end points of an animation, and then allowing Flash
to interpolate the contents of the frames in between. As
discussed previously, this is often referred to as tweening.
There are two kinds of tweening in Flash — shape tween-
ing and motion tweening.

There’s a growing trend among many Flash developers to
regard animation as a form of programming. After all, com-
puter animation is the art of orchestrating items according
to various properties over time. Perhaps this is a shift in
thinking occasioned by the increasingly robust implemen-
tations of ActionScript that have accompanied these last
two releases of Flash? It is worth mentioning, however,
that a tremendous amount of animation is possible by
using Movie Clips instead of simple groups and graphics.
But before you can go there, you need to know how to ani-
mate on the Main Timeline with those simple groups and
graphics.

Note

1111C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Animating frame-by-
frame

Using Shape Tweens

Using Motion Tweens

Using Guide layers

Masking animations

Editing animations

✦ ✦ ✦ ✦

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 299

300 Part II ✦ Creating Flash Graphics

Frame-by-Frame Animation
The most basic form of animation is frame-by-frame animation. Because frame-by-
frame animation employs unique drawings in each frame, it’s ideal for complex
animations that require subtle changes — for example, facial expression. However,
frame-by-frame animation also has its drawbacks. It can be very tedious and time-
consuming to draw unique art for each frame of the animation. Moreover, all those
unique drawings contribute to a larger file size. In Flash, a frame with unique art is
called a keyframe. As shown in Figure 11-1, frame-by-frame animation requires a
unique drawing in each frame, which makes every frame a keyframe.

Figure 11-1: You can see the progression across seven frames because onion skinning
has been activated. (Note the cursor, having just clicked the Onion Skinning button.)

All of the source files, including the files that were used to generate these shapes
for the lunar phases, are included on the CD-ROM — they’re in the frame-by-frame
folder of the ch11 folder. The timeline shown in Figure 11-1 is from the file named
moon_phases_fbf_06.fla. If you examine the files leading to this animation, you’ll
gain an insight into one process for generating unique drawings. The final .SWF
plays like an elapsed time-shot of the moon; 14 days in less than 1 second!

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 300

301Chapter 11 ✦ Animating in Flash

Adding keyframes
To add a keyframe to the timeline, select the frame that you would like to turn into
a keyframe. Then, do one of the following:

✦ Right-click or Control+click the keyframe and select Insert Keyframe.

✦ Select Insert ➪ Keyframe from the main menu.

✦ Press F6 on the keyboard.

Creating frame-by-frame animation
Here are the steps for creating a frame-by-frame animation:

1. To create your own frame-by-frame animation, start by selecting the frame in
which you’d like your frame-by-frame animation to begin.

2. If it’s not already a keyframe, use Insert ➪ Keyframe (F6) to make it one.

3. Then, either draw or import the first image for your sequence into this
keyframe. Wherever possible, use symbols and flip, rotate, or otherwise
manipulate them to economize on file size.

4. Then click the next frame and make it another keyframe. Change the contents
of this second keyframe.

5. Continue to add keyframes and change the contents of each keyframe until
you’ve completed the animation. Finally, test your animation by returning to
the first keyframe and then selecting Control ➪ Play from the menu.

Deciphering Flash Source Files

This sidebar is based substantially on content that was developed by Jon Warren Lentz and
Jeffrey Bardzell for their interactive Flash curricula at www.Flash-Guru.com. They’ve taken
a uniquely structural approach to teaching Flash, and the course is titled accordingly: Flash
Five, An Architectural Approach.

There’s an old saying, “Give a man a fish, and he’ll eat for a day. Teach a man to fish, and he
will eat for a lifetime.” We think the same concept applies to Flash. There’s limited value in
delivering linear examples that don’t explore the innumerable possibilities for variation at
every step — unless you want to duplicate the example precisely, you are headed for
unknown territory . . . and you’re heading there without a guide.

Beginning with the preceding chapter, we’ve pointed you toward many source files that are
located on the CD-ROM. Many of these source files were designed to lead you from the gen-
eral example in the book to more particular variations of the same concept. Others are just
plain indispensable, because you won’t understand the concept until you’ve seen it in Flash.

Continued

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 301

302 Part II ✦ Creating Flash Graphics

Continued

But examining these Flash source files requires that you decipher them. In a manner of
speaking, after you learn how to decipher Flash source files, you are ready to fish with Flash.
So, if you aren’t familiar with the process of deciphering source files, or if you’d like a few
tips, this sidebar is for you.

When you take the time to decipher a Flash file, and persevere until you get the methodol-
ogy, you’ll discover that this process has numerous advantages. Although deciphering
source files can be a daunting task for beginners, knowing how to decipher a .FLA is defi-
nitely a skill that you want in your Flash repertoire. With this skill, you’ll be able to

✦ Understand what your colleagues have done, even if they weren’t careful enough to
give all symbols and layers meaningful names.

✦ Learn from others, especially by taking advantage of the innumerable online Flash
resource sites that offer .FLAs for this purpose.

✦ Engage with Flash architecture by examining a file from a top-down viewpoint, in
which you increasingly and systematically discover its functionality.

✦ Explore a file by using the full Flash interface (timeline, Library, Actions Panel, Movie
Explorer). This helps you make the kinds of connections among disperse interface
elements that will enable you move forward into creative and powerful Flash
development

Preliminary Steps
Start with these steps when preparing to decipher a .FLA file:

1. Open the .FLA file.

2. View the .SWF by choosing Control ➪ Test Movie (Ctrl+Enter/Command+Enter). The
best way to understand a .FLA is to know what the final movie looks like!

3. Return to the .FLA and make sure that the timeline and the Library are visible
(View ➪ Timeline and Window ➪ Library).

Kinds of Information
When deciphering a .FLA, you seek different kinds of information:

✦ There are three structural axes that organize and structure any Flash architecture: the
horizontal timeline; the vertical layers; and the deploying and nesting of symbols:

• The timeline organizes content, from left to right, according to time.

• The layers organize content, from front to back, according to space — or depth.

• Symbols, Movie Clips, and nested symbols and Movie Clips organize reusable
content through the magic of instances. Generally, this is the most difficult axis
to comprehend and decipher.

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 302

303Chapter 11 ✦ Animating in Flash

✦ An understanding each axis is a prerequisite to a thorough understanding of:

• The functionality of a Flash movie — meaning, how users can interact with it.

• How (or how well) the movie was created.

Deciphering Procedures
In most Flash movies, the information that you seek is found in a few predictable locations
of the Flash interface, as schematized in the following table:

Kind of Information Likely Interface Location

What elements are in the file? Main Timeline and layers (don’t forget to look at all
the Scenes, if appropriate)

What is the structural nature of Library and Symbol Editing Mode
the elements in the file?

How does the movie function? Actions, Labels, and Comments in the timeline;
Actions attached to objects (such as Buttons)

All of the above Movie Explorer (discussed in depth in Chapter 9)

Tweening
Tweening is great for a couple of reasons. Tweened animation is a huge time-saver
because it doesn’t require that you draw out your animation frame-by-frame. Instead,
you establish endpoints and make drawings for each of those end points. Then you
let Flash interpolate, or tween, the changes between them. Tweening also minimizes
file size because you do not have to save the contents for each frame in the anima-
tion. Because you only define the contents of the frames at each end point, Flash only
has to save those contents, plus the values for the changes between the end points.
Two kinds of tweens can be created in Flash — Shape Tweens and Motion Tweens —
each with its own unique characteristics.

The Frames Panel
To work with tweens, you need to become familiar with the Frames Panel, shown in
Figure 11-2, which is used for choosing the kind of tween and for assigning the prop-
erties for each tween. Additionally, the Frames Panel is used for adding labels and
comments to keyframes, which is most often associated with ActionScripting opera-
tions. For more information on ActionScript, refer to Part V, “Programming Flash
Movies with ActionScript.”

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 303

304 Part II ✦ Creating Flash Graphics

Figure 11-2: The Frames Panel, in three configurations: as a Label maker (A), when
used for assigning properties for a Shape Tween (B), and when assigning properties
for a Motion Tween (C).

Shape tweening
Shape tweening is useful for morphing basic shapes between end points. Flash can
only shape tween shapes, so don’t even try to shape tween a group, symbol, or
editable text — it won’t work. You can shape tween multiple shapes on a layer, but for
the sake of organization it’s clearer (and advised!) that each shape be put on its own
layer. This makes it much easier to return to the animation later and to make changes,
because it can be nearly impossible to figure out what’s going on if a number of
tweens share the same layer. Shape tweening also enables you to tween colors.

In Figure 11-3, you can see the progression across seven frames because onion skin-
ning has been activated. Although this appears similar to the frame-by-frame exam-
ple as shown in Figure 11-1, the two animations play quite differently.

The source file for this example is located on the CD-ROM, in the shape tweening
folder of the ch11 folder. Take some time to compare this file, and how it plays,
to the frame-by-frame previous example.

Here are the steps for creating a Shape Tween:

1. Select the frame in which you’d like to start the animation. If it’s not already a
keyframe, make it one.

2. Next, before drawing anything, add a second keyframe at the point on the
timeline where you want the tween to complete.

On the
CD-ROM

A B C

Scale
check box

Blend drop-down
(Shape Tween only)

Easing entry field
and slider button

Rotate drop-down
and times entry field

Tweening drop-down

Label/Comments field

Options check box:
• Orient to path
• Synchronize
• Snap

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 304

305Chapter 11 ✦ Animating in Flash

Figure 11-3: Shape tweening enables you to accomplish easy morphing of basic shapes.

3. Now reselect the first keyframe, and then draw your starting image on the
stage. Always remember that shape tweening only works with shapes — not
groups, symbols, or editable text. To shape tween such an element, you first
need to break it apart into shapes (Modify ➪ Break Apart).

4. Next, select the second keyframe and draw your ending image on the stage.

5. Open the Frames Panel by choosing Window ➪ Panels ➪ Frames. You can also
select a frame between the end points and right-click to invoke the contextual
menu. Choose Panels from the menu and then choose Frames from the ensu-
ing submenu.

6. Choose Shape from the Tweening drop-down menu. The panel updates to pre-
sent several options for modifying the shape tween, as shown in Figure 11-2:

• Set the Easing slider if necessary. Easing determines the rate of your ani-
mation from start to finish. This is useful if you want to create the effect
of acceleration or deceleration. If you want your animation to start
slowly and progressively speed up, push the slider down. This will cause
In to display adjacent to the slider and will also cause a negative number
to display in the numeric readout. For an animation that starts out fast,
and then progressively slows, push the slider up, causing it to display
Out and a positive number in the readout. If you want the rate of your
animation to stay constant, leave the slider in the middle. You can also
type in a number for the Easing value (–100 to 100).

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 305

306 Part II ✦ Creating Flash Graphics

• Select a Blend Type. Distributive blending creates smoother interpolated
shapes, whereas Angular blending creates interpolated shapes with cor-
ners and straight lines. If your end points contain shapes with corners
and lines, select Angular blending. Otherwise, select Distributive blend-
ing, which is the default.

7. Test the animation by selecting Control ➪ Play (Enter) from the menu.

Shape hints
Shape hints give you more control over complex Shape Tweens. As shown in
Figure 11-4, they link corresponding points on each shape at both end points of
the Shape Tween. The best way to see why shape hints are so useful is to actually
work with them.

When copying a span of frames and then pasting that span of frames elsewhere —
into a Movie Clip — Flash 5 drops the shape hints (in addition to dropping any layer
names). When pasting is confined to the Main Timeline, hints are retained.

Figure 11-4: Shape hints are small, circled letters at the end points of a Shape Tween.

Using shape hints in a Shape Tween
To use shape hints, follow these steps:

1. Create a more complex Shape Tween using the method described
previously — one that would not succeed without a few hints. For example,
satisfactorily tweening from the shape of one numeral to another would usu-
ally require shape hints.

2. Select the starting frame of your Shape Tween (you can’t initiate shape hints
from the ending frame). Use Modify ➪ Transform ➪ Add Shape Hint, or press
Ctrl/Command+Shift+H to add a shape hint. At first, theshape hint will appear
as a red circle with a letter inside of it (the letters start with a and go to z) as
shown in Figure 11-4.

Caution

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 306

307Chapter 11 ✦ Animating in Flash

3. Move the shape hint to where it’s needed — try to visualize points that must
correspond from shape to shape over the course of the tween.

4. Now go to the last frame of your tween. You’ll see another small red circle
with the same letter as your starting shape hint. Move this shape hint to the
corresponding point to which the first shape hint will move during the Shape
Tween. After you’ve placed the second hint, the initiating hint turns yellow
and the final hint turns green.

5. Play your movie (Control ➪ Play) to see how the shape hint affects the tweening.

6. Continue adding shape hints until you’re satisfied with the results. Remember
to match shape hints at the start and end frames — a goes with a, b with b,
and so on.

To get a better idea of just what shape hints do, take a look at the sample in
the shape hints folder of the ch11 folder on the CD-ROM. A good experiment
is to compare the hinted example to the same example with all hints removed.
You just might be amazed!

7. After you’ve added the first hint, you can simply return to the initiating
frame and right-click/Control+click the hint to invoke a contextual menu with
options for further shape hinting, including Add Hint, Remove Hint, Remove
All Hints, and Show Hints — which is a toggle that’s on by default. When you
want to see the shape hints again, just use this toggle or View ➪ Show Shape
Hints. To remove all the shape hints, you can also use Modify ➪ Transform ➪
Remove All Hints.

Surprising and interesting results can be obtained by using Shape Tweens in,
ahem, unconventional ways. Although the results can be unpredictable, a certain
amount of experimentation will yield shapes that might be difficult to obtain
through other means. When encapsulated within a Movie Clip, a specific slice of a
tween can be captured, by using the Behavior Options of the Instance Panel, or by
attaching a stop or using a gotoAndStop action, and used with few limitations.
For more information on Actions, refer to Part IV, “Adding Basic Interactivity to
Flash Movies.” For example source files, refer to the weird hinted shape tween
folder, within the ch11 folder on the CD-ROM.

Motion tweening
Motion tweening is useful for animating groups, symbols, and editable text; how-
ever, it cannot animate regular shapes. As the name suggests, motion tweening is
used to move an item from one place to another, but it’s capable of much more.
Motion tweening can be used to animate the scale, skew, or rotation of items; it
can also animate the color and transparency of a symbol.

Motion tweening can only be applied to one item per layer — use multiple layers
to motion tween multiple items.

Note

Tip

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 307

308 Part II ✦ Creating Flash Graphics

A motion tweened item can be started and stopped as much as you want — simply
insert a keyframe for each change of pace. Using the easing controls can further
finesse this pacing control of Motion Tweens. Furthermore, the kind of tween can
be changed; for example, the symbol can be tweened to rotate in the opposite
direction. So, if you use a tween to move a symbol from frame 1 to frame 10 and
stop the tween on frame 11, you can have the symbol sit still for 10 frames, and
then start a new tween (of this same symbol on same layer) from frames 20 to 30.
The possibilities are almost endless.

A Motion Tween, such as the one shown in Figure 11-5, is more efficient because it
doesn’t require unique content for each frame of animation. Yet it is not appropriate
for all effects — sometimes you’ll need to use either frame-by-frame or shape tween-
ing to accomplish what you have in mind.

Figure 11-5: The extent of a Motion Tween is revealed here with Onion Skin outlines.

Create a Motion Tween
Here’s how to create a Motion Tween:

1. Select the frame in which you’d like to start your animation. If it’s not already
a keyframe, make it one by selecting Insert ➪ Keyframe (F6).

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 308

309Chapter 11 ✦ Animating in Flash

2. Draw or import the image that you want to tween. Just remember that you
can only motion tween groups, symbols (including imported bitmaps — which
are, by default, symbols), and editable text (a text block).

• If you are using an image, group it or turn it into a symbol (refer to
Chapter 9, “Checking Out the Library: Symbols and Instances,” for a
review of creating symbols).

• If you already have the image as a symbol in your movie’s Library, you
can just drag it from the Library onto the stage.

• If you are using editable text, you don’t have to do anything — it’s
already an item.

3. Select the frame where you want the tween to end and make it a keyframe
by selecting Insert ➪ Keyframe (F6).

4. Position your images in the two end points. Remember that you can move
tweened elements, as well as scale, skew, and rotate them. If your end point
images are symbols, you can also use the Effects Panel to apply color effects
to them.

5. Right-click/Control+click a frame between your two end points and select
Create Motion Tween. Test your animation by choosing Control ➪ Test Movie.

6. Open the Frames Panel by choosing Window ➪ Panels ➪ Frames. You can also
select a frame between the end points and right-click to invoke the contextual
menu. Choose Panels from the menu and then choose Frames from the ensu-
ing submenu.

7. Choose Motion to make it a Motion Tween. The animation shown in Figure 11-6
involves both diminishing scale and deceleration to mimic the moon as it
moves further away.

Open the easing source file folder located in the ch11 folder on the CD-ROM.
Look inside the Frame Properties dialog, under the Tweening tab. Pay special
attention to the Easing option.

Figure 11-6: Using the Easing option to decelerate animation

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 309

310 Part II ✦ Creating Flash Graphics

• Rotate: You can rotate your items using this option. Select a rotation
type from the drop-down menu and then type the number of rotations
in the entry field. Automatic rotation rotates your item in the direction
that requires the least amount of motion, while Clockwise and Counter-
clockwise rotate your item in the indicated direction. In both cases, the
rotation will be completed as many times as you specify in the entry
field. If you type 0 in the entry field, or select None from the drop-down
menu, no rotation will occur.

• Orient to path: When your item follows a path, turning this selection on
forces the item to orient its movement to that path. We discuss paths in
the next section of this chapter.

• Synchronize: This option ensures that your animation loops properly
in the Main Movie. It forces the animation to loop properly even if the
sequence is not an even multiple of the number of frames occupied by
the symbol in the Main Movie’s Timeline. This is only important if your
animation is contained within a graphic symbol.

• Snap: This option snaps your animated item to a Motion Guide. Motion
Guides are discussed later in this chapter.

Flash 4 added a feature that automatically adds new keyframes between the end
points of a Motion Tween. This is very useful if you decide to add a third point to
your animation (you aren’t stuck with only two!). Just select the frame that you
want to turn into an end point, and move the item that it contains to the desired
location — a new keyframe appears like magic.

Tweened Zooms (where an item is initiated at a reduced scale and then tweened
to full-scale or larger) and tweened alpha effects can be both CPU and bandwidth
intensive — not only do they result in larger files that take longer to download, but
they also require more computing horsepower on the user’s machine. Our advice:
Use such effects judiciously, and always double-check them for performance spikes
by using the bandwidth profiler when testing your work. The bandwidth profiler is
accessed from the Test Movie player (Control ➪ Test Movie) with View ➪ Bandwidth
Profiler. For more discussion about the Bandwidth Profiler, refer to Chapter 20,
“Sharing and Loading Assets,” and Chapter 40, “Publishing Flash Movies.”

Motion Tweened effects
Because symbol instances have properties that can be manipulated separately from
their root symbol, it’s possible to scale, rotate, and skew an instance. This feature
of symbols makes it possible to generate a wide range of animated effects that rely
almost entirely upon the file efficiency of Flash symbols. While this is indeed great,
it gets even better: There’s one more class of instance properties that can be
tweaked — these properties are tint, brightness, alpha (or opacity), and advanced
combinations of all three.

Caution

Tip

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 310

311Chapter 11 ✦ Animating in Flash

Using the chromatic options of the Effects Panel in concert with motion tweening
gives you great control over the color and opacity of symbol instances in your ani-
mations, with good file size economy too. In Figure 11-7, our lunar example has
been modified to slowly become the fabled blue moon.

Figure 11-7: Using the chromatic options of the Effects panel along with motion
tweening

As shown in Figure 11-8, the Effects Panel enables you to control color and opacity
of motion tweened symbol instances. There are five iterations of this panel, each
of which is accessed from the Effect drop-down. If you look closely, you’ll notice
that nearly all of the sliders have the capability to reduce a value by a negative
percentage.

The source file for the examples discussed in this section can be found in the
effects folder, which is located in the ch11 folder on the CD-ROM.

On the
CD-ROM

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 311

312 Part II ✦ Creating Flash Graphics

Figure 11-8: The Behavior drop-down of the Effects Panel is shown
with four of the five Behaviors and their many options. The fifth behavior,
None, has been omitted.

Here’s a rundown on the gamut of controls that are available in this colorful
workhorse of a panel:

✦ None: Use this when you don’t want to use this control.

✦ Brightness: Use this control to adjust the brightness of the selected instance,
on a relative scale that ranges from black to white, which is represented as
–100 percent to +100 percent.

✦ Tint: Use this control to color (or tint) an instance with a singular color. The
tint color that’s to be applied can be chosen from the Swatches Panel, which
is accessible from the Tint Color button. Alternative methods of choosing the
tint color are by entering numeric values in the R, G, B fields, or by adjusting
the associated R, G, B sliders. After the tint color is set, the intensity of the
tint can be adjusted with the Amount control — which can also be operated
as an entry field or as slider.

✦ Alpha: Use this control to adjust the alpha, or transparency, of the selected
instance on a relative scale that ranges from completely transparent to fully
visible, which is represented as 0 percent to 100 percent.

Alpha effects in Motion Tweens will slow most fps settings. The only way to make
sure that the fps is honored, no matter what, is to use a stream sync sound that
loops over the course of any critical fps playback. For more on the relationship
between streaming sounds and fps rate, see Chapter 16, “Optimizing Flash Sound
for Export.”

Tip

No options Amount control
Red, Green, and
Blue controls

Color Bar

Tint Color

Red, Green,
Blue, and Alpha

% controls

Constant Value
Red, Green, and Alpha

controlsEffect drop-down

A

B

C

D

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 312

313Chapter 11 ✦ Animating in Flash

✦ Advanced: This truly is the advanced control, and it may take some getting
used to. It enables you to adjust the R, G, B, and alpha values independently.
The controls on the left are used to adjust values on a relative scale — mean-
ing that adjustments are relative to the current colors. The colors on the right
are used to adjust values subject to constant values — meaning that an abso-
lute value, ranging from 0 to 255, can be assigned for R, G, B, or A. When used
independently (that is, without tweaking the other bank of controls) these
controls are intuitive. When used in conjunction with each other, they become
quite powerful, albeit confusing at first blush. We suggest that you take some
time, experiment, and take notes — your effort will be repaid in many colorful
instances.

Animating with negative alpha: If you take a close look at the Advanced option of
the Effect drop-down of the Effects Panel you’ll notice that, in this implementation,
alpha can be assigned a negative value. Huh? Of course, an instance can’t get any
less visible than invisible. So what’s that good for? A little experimentation yielded
this one of many possible answers: Suppose you want to make a motion tweened
item go from invisible to visible, but that you want it to commence visibility part
way through a 100-frame tween. If you set the alpha to negative 100 in frame 1
and then, in frame 100, set the alpha to a positive 100, then the item will begin to
be visible at frame 50. A similar logic might be employed to cause a tweened item
to rotate only one-half rotation — simply make it invisible for the first half of it’s
rotation. For more information, refer to the examples on the CD-ROM in the nega-
tive alpha folder of the ch11 folder. (This same logic applies to negative brightness,
which can be applied from the Brightness option of the Effects Panel.)

Guide Layers
Guide layers make it easy to keep the layout of your movie consistent, or to trace
images, drawings, or other materials from which you want to develop an item.
When employed as Motion Guides, you can use Guide layers to create the complex
motion of a frame-by-frame animation with the ease of a tweened animation. Guide
layers are not exported with the rest of the movie — they’re just guides. So use
them as much as you want.

The source file for the examples discussed in this section can be found in the
guide layers folder, which is located in the ch11 folder on the CD-ROM.

Using Guide layers for layout
Guide layers are great when you need a little help drawing in Flash. Use them as
guides for your layout, as aids for drawing a complex graphic, or for anything else
that you might need. To reemphasize, because Guide layers aren’t exported with

On the
CD-ROM

New
Feature

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 313

314 Part II ✦ Creating Flash Graphics

the movie, they do not add to the file size of the final .SWF. As shown in Figure 11-9,
Guide layers are marked with unique icons next to the layer name.

Figure 11-9: Guide layers have unique icons next to the layer name. Shown here is a
guided Movie Clip together with its motion path. Note that the motion path is static.

Adding a Guide layer
Here are the steps for adding a Guide layer:

1. Draw or import your guide art into a layer by itself. This can be anything from
a hand-drawn sketch of your layout to a full-blown prototype of your design.

2. Open the Layer Properties dialog for this layer by double-clicking the icon to
the left of the layer’s name.

3. Set the Layer Type to Guide, as shown in Figure 11-10 (using either the Layer
Properties or the Contextual Menu, which is accessed with a right-click/
Control+click on the Layer name), and then press OK.

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 314

315Chapter 11 ✦ Animating in Flash

4. Use Control ➪ Test Movie to test the movie. Do you see the guide art in the
movie? You shouldn’t! Remember, because it’s a guide layer, it isn’t exported
with the rest of the movie.

Figure 11-10: This composite screen shot shows how you can choose Guide from
the contextual menu, or set the type to Guide in the Layer Properties dialog.

Motion Guides
You already know how to move an item from point A to point B. What if you don’t
want to move it in a straight line? This is when tweening along a path comes in
handy. Motion tweening along a path requires a Motion Guide layer, which defines
the path. One or more guided layers that follow the path accompany this Motion
Guide layer. The Guide layer does not export with your movie — it’s only visible
within the editing environment. Figure 11-11 shows an item and its motion path.

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 315

316 Part II ✦ Creating Flash Graphics

Figure 11-11: Moving items along a path is simple! Just use a Motion Guide. For
multiple (as shown) guided items, use multiple Guide layers.

Create a Motion Tween along a path
Follow these steps to create a Motion Tween along a path:

1. Create a Motion Tween as described previously in this chapter.

2. Select the layer containing the tween, and then insert a Guide layer by doing
one of the following:

• Click the Add Guide Layer icon.

• Right-click or Control+click the layer and select Add Motion Guide from
the pop-up menu.

• Use Insert ➪ Motion Guide from the main menu.

3. Draw a path in the Guide layer. You can use the Line, Pen, Oval, Rectangle,
Pencil, or Brush Tools to do this.

4. Snap the center of the items in the end-point keyframes to the path. If you
selected Snap to Guide in the Tweening tab of the Frame Properties dialog,
it should snap automatically to the item in the starting keyframe.

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 316

317Chapter 11 ✦ Animating in Flash

5. If you want the item to orient itself to the path it’s following, select a frame
between your Motion Tween’s end points, open the Frame Properties dialog,
choose the Tweening tab, and make sure that the Orient to path direction
option is selected. This forces the item to move so that its center remains
parallel to the path.

If the item ends up oriented sideways or upside down when you orient it to path,
simply rotate it and reattach it to the path.

Be sure to look at the Guide layer source files in the ch11 folder on the CD-ROM.
They are commented with useful notes to help you understand this process a lit-
tle better.

Organizational Guides
An empty Guide layer can be used to organize multiple layers of related content for
better timeline organization. It can also be used as a repository for custom strokes
and fills. To use a Guide layer for organizational purposes:

1. Create an Organizational Guide layer.

2. Give the Guide Layer a meaningful name.

3. Arrange subordinate layers as Guided layers by:

• Using the Layer Properties dialog; click the Guided radio button to set
the layer type to Guided, or

• Clicking and dragging the layer bar until it hovers just underneath the
Guide layer, and then releasing.

Masking Animations
When animating with Flash, a mask can be used either to hide or to reveal ele-
ments, with the added complication of movement. As with static masks, an ani-
mated mask effect is created by integrating a Mask layer with one or more Masked
layers. The Mask and the masked content can be moved at varied rates or in differ-
ent directions — the possibilities are endless. For more background on static masks,
see Chapter 10, “Drawing in Flash.”

Some obvious possibilities for masked animations include: spotlights, moonbeams,
text that is progressively revealed, a view through a periscope (or binoculars), sim-
ulated x-ray vision, navigational devices, and many more. Aside from your imagina-
tion, the only limitations upon animated masks are that motion paths cannot be
used to animate a mask, and that layers within buttons cannot be masked.

On the
CD-ROM

Tip

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 317

318 Part II ✦ Creating Flash Graphics

Be sure to look at the masking animation source files in the masking animations
folder of the ch11 folder on the CD-ROM. There are several advanced examples
that will inspire you to learn this process, as well as to test your facility with the
deciphering of source files. In order of complexity, the examples are animated
mask, masked moon animation, masked line animation, and kaleidoscopic but-
ton animation.

Animated mask text
Here’s how to create one of the simplest forms of animated mask:

1. To begin with, we need to make the content that will be visible on its own
layer beneath the mask and the mask content. For this example, we mask
some text so that it appears to be spot lit. The text we use is MMF5. Create
this text on frame 1 and make it big and bold! See Figure 11-12.

Figure 11-12: This example of animated mask text is among the simplest uses for
animated masks.

2. Name this layer MMF5 reveal. Then give it about 55 frames, by clicking frame
55 and then hitting the F5 key, to insert a frame.

On the
CD-ROM

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 318

319Chapter 11 ✦ Animating in Flash

3. Add another layer above MMF5 reveal, and name it MMF5 mask. Make sure
that visibility is turned on. Then return to the first layer that you created,
MMF5 reveal, and click in the middle of the frame span in order to select all
55 frames.

4. Next, press the Alt/Option key and drag this span of frames up over the MMF5
mask (which is the second layer that you created) to copy the span of frames.

5. Now you’re ready to make your masked content, which will be the spotlight.
As with static masks, this is called the Masked layer. But first, turn off the
visibility for the MMF5 Mask layer.

6. Add a new layer between the two previous layers, and name it Spot. Then,
with frame 1 selected, use Insert ➪ New Symbol to create a symbol. For this
exercise, any behavior and name is fine.

7. Next, use the Oval Tool to draw a red circle. Click the Scene 1 button to return
to the Main Timeline. Open the Library (Window ➪ Library) and drag an
instance of your symbol onto the Stage. This red circle should be as tall as
the text, so adjust its size, if necessary. Position it off to the left, so that it is
next to the first M, almost touching, as shown in Figure 11-13.

Figure 11-13: Position the red circle to the left, so that it’s next to the
first M, almost touching the M.

8. Next, select frame 55 of the Spot layer and press F6 to add a keyframe there.

9. Then select the Arrow Tool to reposition the red circle so that it is on the
opposite side of the 5, almost touching the 5. If you use the arrow keys to
move the item or press Shift to constrain the movement, you will be assured
that the circle will animate in a smooth, straight line.

10. Now click anywhere in the middle of the Spot frame span, and then proceed
to the Frame Panel and choose Motion from the Tweening drop-down.

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 319

320 Part II ✦ Creating Flash Graphics

11. Now, return to MMF5 Mask layer, and then right-click/Control+click the layer
name and choose Mask (as the layer type) from the ensuing contextual menu.
The icons of both this layer and the Spot layer beneath it should update to
indicate that they are the Mask and Masked layers, respectively. Both layers
should automatically lock.

12. Save your work, and then use Control ➪ Test Movie to preview your work. It
should appear as though the Black MMF5 text is being lit by a red spot that
moves from left to right.

Now you’ve probably succeeded with this example, but you might still be wonder-
ing how this animated mask text works. Well, here’s an explanation.

The first layer that you created, MMF5 reveal, which is at the bottom of the layer
stack, is a simple static text layer — it just sits there showing text.

The layer just above MMF5 reveal, which is named Spot, is a simple Motion Tween —
the red circle moves from the left of the Stage to the right. Nothing fancy about this,
either.

The uppermost layer, MMF5 mask, is the Mask layer, and it’s responsible for the
effect that you see. As a mask, this layer defines which portions of the Masked
layer — which is Spot — will be seen. As Spot moves across the text beneath it, the
text forms above Spot define where Spot will be seen: only within the shapes of let-
terforms. So, as Spot moves from left to right, it appears to be illuminating dimen-
sional letterforms, and the “light” falls off the edges where there are no letters.

Masked moon phases
Here’s another way in which the phases of the moon might be animated with Flash:
by using an animated mask. This is a little more complex because it involves the
use of an inverse shape to obtain the desired effect. Consequently, it’s a lot less
intuitive than the previous example. We strongly urge you to study the sample file
on the CD-ROM until you understand why this works.

Figure 11-14 shows the setup for a masked animation of the phases of the moon.
The background is black. Shown here are the Masked layer (A), the mask (B), the
mask over the Masked layer — but with the layers unlocked and masking conse-
quently disabled (C), and finally, the composite effect with the mask enabled and
at frame 30 (D).

Here’s the explanation. As shown in Figure 11-14, the Mask layer begins in perfect
alignment with the masked shape of the full moon — which is the white circle
shown in (A). Because the Mask layer is the inverse of the moon, it covers none
of that shape and, consequently, the moon is not revealed. As the mask is moved
to the right, a sliver of the mask covers the moon and causes it to be revealed. This

3515-3 ch11.f.qc 1/18/01 3:51 PM Page 320

321Chapter 11 ✦ Animating in Flash

continues until the moon is fully masked and, thus, fully revealed. Then the mask
is reversed and the moon continues through the other half of its cycle.

Figure 11-14: The setup for a masked animation of the phases of the moon

Masked line progression
This is a relatively simple effect that’s simply repeated to create the effect of a line
that appears progressively. Creating such an effect requires either a good bit of clar-
ity before you set to work, or a willingness to tinker and tweak until all of the hic-
cups are smoothed out. When you decipher this file, and its variations, located in
the masking animations folder of the ch11 folder on the CD-ROM, take care to notice
how the entire effect was built with multiple instances derived from two symbols.

The animation shown in Figure 11-15 begins with a blank white screen. Starting at
the upper-right corner, the first mask moves onscreen from right to left and pro-
gressively reveals the hatched line. The effect continues around the screen, until
the complete line has been revealed.

This effect is accomplished by creating a stack of four pairs of mask and outline.
The first pair is revealed above the others — this mask is Mask 1, together with
Outline 1. The only part of Outline 1 that will be revealed is this upper portion.

Next, beginning at frame 25, the left-side portion of Outline 2 is progressively
revealed as Mask 2 slides down from the upper offscreen area. Following this, at
frame 50, Mask 3 progressively reveals the bottom portion of Outline 3. Finally,
the right side of Outline 4 is revealed. Each of these reveals is accomplished with
a simple linear Motion Tween.

A

C

B

D

3515-3 ch11.f.qc 1/18/01 3:52 PM Page 321

322 Part II ✦ Creating Flash Graphics

Figure 11-15: Progressively revealing a hatched line

Final notes about animated masks
If you find that these masked animations are a little hard to grasp, don’t panic. For
most people, the logic of animated masks is slightly inverted. That’s because

✦ The mask goes above the item that is revealed by it.

✦ Flash uses an opaque window to reveal items below.

✦ Items that are not covered by the opaque window will not be visible when the
mask is enabled by locking the Mask layer together with the Masked layer.

✦ Sometimes mild confusion over the elementary aspects of animation, com-
pounded with the nature of masks, can lead to trouble. If this happens to you,
just be patient — separate the animation from the masking. Then, when you’ve
got them both working separately, combine them.

3515-3 ch11.f.qc 1/18/01 3:52 PM Page 322

323Chapter 11 ✦ Animating in Flash

Summary
✦ Animation is an integral part of almost any Flash movie. There are three basic

ways to create animated effects, including frame-by-frame animation and two
kinds of tweened animation: Shape and Motion Tweens.

✦ More sophisticated animations often involve a combination of all three types
of animation. The kind — or combination — that you use will depend on what
you’re trying to achieve, as demonstrated by the examples in this chapter.

✦ Unless you are working with Shape Tweens, you should always endeavor to
work more efficiently by using the Symbols and Instances capability of the
Library.

✦ Guide layers can be used in two ways with animations: to organize content
and to create Motion Guided Tweens, or motion along a path.

✦ The final ingredient, aside from imagination and creativity, which Flash offers
for the creation of animations, is the animated mask.

✦ Combined, these several types of animation, together with guides and masks,
can be used to create an endless variety of expressions, effects, and styles. If
you have any doubt, just look at the range of Flash animation available for
your viewing pleasure on the Web!

✦ ✦ ✦

3515-3 ch11.f.qc 1/18/01 3:52 PM Page 323

3515-3 ch11.f.qc 1/18/01 3:52 PM Page 324

Using Bitmaps
and Other Media
with Flash

A lthough the Flash drawing tools give you a powerful
environment in which to create a variety of graphics,

you don’t have to limit yourself to the capabilities of Flash.
That’s because Flash also has the capability to import artwork
from a wide range of sources. You can import both vector
and bitmap graphics, and you can use both types in a variety
of ways. In this chapter, we discuss the differences between
vector and bitmap graphics. We also learn how to import
external artwork so that it can be used in a Flash movie,
as well as the Flash features that can be used to handle
imported bitmap images.

Understanding Vector versus
Bitmap Images

Flash supports two types of image formats: vector and bitmap.

Vector graphic files consist of an equation that describes the
placement of points and the qualities of the lines between
those points. Using this basic logic, vector graphics tell the
computer how to display the lines and shapes, as well as what
colors to use, how wide to make the lines, where to put it on
the Stage, and at what scale.

Flash is a vector program. Thus, anything that you create
with the Flash drawing tools will be described in vector format.
Vector graphics have some important benefits: They’re small in
file size and they scale accurately without distortion. However,
they also have a couple of drawbacks: Highly complex vector
graphics may result in very large file sizes, and vectors aren’t
really suitable for creating continuous tones, photographs, or
artistic brushwork.

1212C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Comparing vector
and bitmap images

Importing
external media

Importing vector
graphics

Preparing bitmaps
for Flash

Importing bitmap
images

Setting bitmap
properties

Using bitmaps as fills

Tracing bitmaps

Cautionary notes

Explaining the
color insert: Bitmap
comparisons

✦ ✦ ✦ ✦

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 325

326 Part II ✦ Creating Flash Graphics

Bitmap (sometimes also referred to as Raster) files are described as an arrange-
ment of individual pixels which are mapped in a grid like a piece of graph paper
with tiny squares. Each square represents a single pixel, and each of these pixels
has specific color values assigned to it. So, as the name implies, a bitmap image
maps out the placement and color of each pixel on the screen.

Do not be confused by the name bitmap. You might already be familiar with the
bitmap format used by Windows, which has the file extension .BMP. Although
bitmap may refer to that particular image format, it’s frequently applied to raster
images in general, such as .GIF, .JPEG, .PICT, and .TIFF files, as well as many others.

Although bitmap images aren’t created in Flash, they can be used within Flash pro-
jects. To do this, you need to use an external bitmap application and then import
the bitmaps into Flash. Unlike vector graphics, bitmap images aren’t very scalable,
as shown in Figure 12-1. Simple bitmap images are often larger in file size than sim-
ple vector graphics, but very complex bitmap images, for example a photograph,
are often smaller (and display better quality) than comparable vector graphics.

Figure 12-1: Here’s JWL’s logo — compare the unscaled vector graphic on the
left to the unscaled bitmap image on the right. They both look almost equally
acceptable, although the vector graphic is sharper.

The rule of thumb is to use scalable, bandwidth-efficient, Flash-compatible vector
graphics as much as possible within Flash projects, except for situations in which
photographs — or photographic quality, continuous-tone images — are either
desired or required.

Note

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 326

327Chapter 12 ✦ Using Bitmaps and Other Media with Flash

Figure 12-2 shows the difference between vector and bitmap graphics when scaled.

Figure 12-2: Here’s JWL’s logo again. Now compare the scaled vector graphic
on the left to the scaled bitmap image on the right — the vector is clearly superior.

Most 8-bit raster images are .GIFs, and they are most frequently used for images
with large areas of solid color, such as logos and text. Rather than use this image
type in Flash, consider re-creating or tracing this artwork with Flash drawing tools.
The final .SWF will not only be smaller, it will also look better in Flash.

Importing External Media
Flash can use a variety of external media, including vector graphics and bitmap
images. You can import this media directly, or you can copy from another applica-
tion and paste directly into Flash.

For a complete listing of all importable media supported by Flash 5, refer to section
“The File Menu” in Chapter 2, “Exploring the Interface: Panels, Settings, and More.”
For a full discussion of the importation and handling of sound media, refer to Part
III, “Sound Planning.” For further discussion of the use of Flash with bitmap applica-
tions refer to Chapter 30, “Working with Raster Graphics.” For now, take a look at
the Table 12-1 for image formats for Flash Import.

Tip

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 327

328
Part II

✦
Creating Flash G

raphics

Table 12-1
Image Formats for Flash Import

File Type Extension Description Win Mac QuickTime

Adobe Illustrator .ai, .eps Adobe Illustrator files are imported into X X
Flash as vector graphics (unless they
contain bitmap images). Flash supports
import of files saved as Adobe Illustrator
files.

AutoCAD DXF .dxf .DXF is the original inter-program format X X
for AutoCAD drafting software. It was
subsequently used for the original
AutoCAD 3D Studio, now known as
Kinetix 3DS MAX. This format is used by
most other CAD, 3D, and modeling
programs for transferring drawings to
other programs.

Bitmap .bmp, .dib Bitmap is a Windows format for bitmap Mac with
images. Don’t be confused by the QT4
format name — not all bitmap images
are Windows Bitmaps.

Can be used with all PC and some X
Mac applications. Variable bit depths
and compression settings with support
of alpha channels. Supports lossless
compression. Ideal for high-quality
graphics work.

Enhanced Metafile .emf Enhanced Metafile is a proprietary X
Windows format that supports vectors
and bitmaps internally. This format is
generally used to import vector graphics.

3
5
1
5
-
3

c
h
1
2
.
f
.
q
c

1
/
1
8
/
0
1

3
:
5
2

P
M

P
a
g
e

3
2
8

329
C

hapter 12
✦

U
sing B

itm
aps and O

ther M
edia w

ith Flash

File Type Extension Description Win Mac QuickTime

Flash Player .swf, .spl Flash player files are exported Flash X X
movies. The movie is flattened into a
single layer and scene, and all animation
is converted to frame-by-frame animation.

FreeHand .fh7, .fh8, .fh9 This is the vector-based format of X X
Macromedia’s FreeHand 7, 8, or 9.

GIF Image .gif Graphic Interchange Format (.GIF was X X
developed by Compuserve) is a bitmap
image type that uses lossless
compression. Limited to a 256-color
(or less) palette. Not recommended as
a high-quality Flash export format,
even for Web use. (See Caution.)

JPEG Image .jpg Joint Photographic Experts Group (.JPEG) X X
images are bitmap images that use
lossy compression.

Supports 24-bit RGB color. No alpha
channel support. Recommended for
most high-quality graphics work. Note
that this format does throwout color
information due to its lossy compression
method.

MacPaint Image .pntg This is a legacy format for the old Mac and
Mac Paint program. Win with QT4

Continued

3
5
1
5
-
3

c
h
1
2
.
f
.
q
c

1
/
1
8
/
0
1

3
:
5
2

P
M

P
a
g
e

3
2
9

330
Part II

✦
Creating Flash G

raphics

Table 12-1 (continued)

File Type Extension Description Win Mac QuickTime

PICT Image .pct, .pict Can be used with many PC and all X Win with
Mac applications. Variable bit depths QT 4
and compression settings with support
of alpha channels (when saved with no
compression at 32 bits). Supports
lossless compression. Can contain vector
and raster graphics. Ideal for high-quality
graphics work.

PNG Image .png The Portable Network Graphic format X X
(.PNG) is another type of bitmap image.
Supports variable bit depth (PNG-8 and
PNG-24) and compression settings with
alpha channels. Lossless compression
schemes make it an ideal candidate
for any high-quality graphics work. This
is the best media type for imported
images with alpha settings.

Photoshop 2.5, 3, 5, .psd This is the layered format for most Mac and
5.5, 6 Image versions of Photoshop — from version Win with

2.5 through version 6. Although it is QT4
possible to import .PSD files, it’s not
the best alternative. If you have the
.PSD, open it in Photoshop, optimize it
for use in Flash, and then export it as
either a .JPEG or a .PNG for ideal import
into Flash.

QuickTime Image .qtif This is the image format created by Mac and
QuickTime. Win with QT4

3
5
1
5
-
3

c
h
1
2
.
f
.
q
c

1
/
1
8
/
0
1

3
:
5
2

P
M

P
a
g
e

3
3
0

331
C

hapter 12
✦

U
sing B

itm
aps and O

ther M
edia w

ith Flash

File Type Extension Description Win Mac QuickTime

QuickTime Movie .mov QuickTime is a video format created X X Mac and
by Apple Computers. Flash imports Win with
it with a link to the original file. QT4

Silicon Graphics Image .sgi This is an image format specific to Mac and
SGI machines. Win with QT4

TGA Image .tga The .TGA, or Targa, format is a 32-bit Mac and
format that includes an 8-bit alpha Win with
channel. It was developed to overlay QT4
computer graphics and live video.

Tiff Image .tiff .TIFF is probably the most widely used Mac and
image format for photography and Win with
printing. It’s available across Mac and QT4
PC platforms.

Windows Metafile .wmf Windows Metafile is a proprietary X
Windows format that supports vectors
and bitmaps internally. This format is
generally used to import vector graphics.

3
5
1
5
-
3

c
h
1
2
.
f
.
q
c

1
/
1
8
/
0
1

3
:
5
2

P
M

P
a
g
e

3
3
1

332 Part II ✦ Creating Flash Graphics

Although you can use the Publish settings to export to the .GIF format from Flash,
this should be considered as a utility for information transfer, as raw .GIFs — and not
as a means for creating final .GIF art. For optimal quality and control, Flash-created
.GIFs should be brought into Fireworks for fine-tuning and optimization. An even
better workflow is to avoid the Flash .GIF entirely by exporting as a .PNG sequence
and bringing that into Fireworks for fine-tuning and output to .GIF. For more infor-
mation, refer to Chapter 30, “Working with Raster Graphics.”

Importing Vector Graphics
Vector graphics from other applications can be easily imported into Flash. These
graphics are imported as groups, as illustrated in Figure 12-3 and can be used just
like a normal group drawn in Flash.

Most vector graphics are imported as grouped items. FreeHand vectors may be
imported as a flattened group or as discrete, aligned, layers. The lovely, craftsman-
inspired logo shown in Figure 12-3 is from Nik Scramm’s www.industriality.com,
which is featured in his expert tutorial, “Scripting for Interfaces,” in Chapter 26.

Figure 12-3: Most vector graphics are imported as grouped items.

Caution

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 332

333Chapter 12 ✦ Using Bitmaps and Other Media with Flash

Refer to Chapter 8, “Exploring the Timeline,” for more information about using
grouped items in Flash. Refer to Chapter 31, “Working with Vector Graphics,” for
more information about working with vector graphics from other applications,
such as FreeHand.

Importing a vector file into Flash
To import a vector file into Flash, follow these steps:

1. Make sure that there’s an active, unlocked layer. If no layer is available for
placement of the imported item, the Import command will be dimmed and
you won’t be able to import anything.

2. Select File ➪ Import (Ctrl+R/Command+R).

3. The Import dialog opens, as shown at the left of Figure 12-4. Navigate to the
file that you’d like to import, and then select it and click the Open button. If
it’s a FreeHand file, then — as shown at the right in Figure 12-4 — the FreeHand
Import dialog opens.

Figure 12-4: Use the Import dialog to navigate to the file that you’d like to
import. FreeHand files receive special care upon import.

Preparing Bitmaps for Flash
Flash is a vector-based application, but that shouldn’t stop you from using bitmaps
when you need to use a bitmap. There are many situations in which either the
designs or the nature of the client require that photographic images be included in
a Flash project. You can import a wide variety of bitmap image types, including
.JPEG, .GIF, .BMP, and .PICT using the method described previously in this chapter.

Cross-
Reference

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 333

334 Part II ✦ Creating Flash Graphics

Considering that it’s a vector-based program, Flash 5 supports bitmap graphics
extraordinarily well. However, because the most common use of Flash movies is for
Web presentations, you always need to keep file size in mind — slower Internet con-
nections still dominate the Web. Here’s what you can do to offset this problem:

✦ Limit the number of bitmaps used in any one frame of a Flash movie.

✦ Remember that, regardless how many times the bitmap is placed on Stage,
the actual bitmap (or its compressed version in the .SWF file) is downloaded
during the first occurrence of the bitmap (or its symbol instance).

✦ Try spreading out bitmap usage, or hide a symbol instance of the bitmap in an
earlier frame before it is actually needed.

If you need to include several high-resolution bitmap images in your Flash movie,
consider the use of an ActionScript preloader (see Chapter 20, “Sharing and
Loading Assets”), or try breaking up the Flash movie into several linked Flash
movies. These linked movies could use the Load Movie action to appear in the
main (or parent) Flash movie.

Basic tips for preserving bitmap quality
When you choose to use bitmap images, remember that they won’t scale as well
as vector drawings. Furthermore, bitmaps will become distorted if your movie is
resized so that the bitmap is displayed larger than its original size. Here are a few
points to consider so that you can avoid this, or at least minimize the effects:

✦ Know your audience and design for the largest screen (at the highest resolu-
tion) that your audience may have. (Or, if you deviate from this, know that
audience members with optimal equipment will see a low-quality version
of your work.)

✦ Measure your hypothetically largest image dimensions in pixels. (One way to
determine these dimensions is to take a screen capture of your mockup, and
then measure the intended image area in Photoshop. Another way is to use
the Info Panel.)

✦ Create or resize your bitmap image to those hypothetical dimensions. If there
are any rotations or skews to be applied, do them within your image-editing
application — prior to importing into Flash.

✦ Import it into Flash at that size, and then scale it down in Flash to fit into
your movie.

The advantage of the previous method, or similar methods, is that the movie can be
allowed to scale for larger monitors without causing the bitmap images to degrade.
The disadvantage is that it will require sending the same large bitmap to all users. A
more sophisticated solution is to use JavaScript to detect browser dimensions and

Tip

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 334

335Chapter 12 ✦ Using Bitmaps and Other Media with Flash

then send the appropriate bitmaps to each user. Other, simpler — albeit partial —
solutions might include the following:

✦ Just don’t let your movie resize!

✦ Set the bitmap’s compression to lossless.

✦ Trace the bitmap to convert it to a vector graphic (covered later in
this chapter).

Raster Images: Resolution, Dimensions, and Bit Depth

Resolution refers to the amount of information per a given unit of measurement. Greater
resolutions mean better quality (or better resemblance to the original). With respect to raster
images, resolution is usually measured in pixels per inch (when viewed on a monitor) or
dots per inch (when output on film or paper).

What is Resolution?
The resolution of an original image changes whenever the dimensions of an image are
changed, while the pixel dimensions remain fixed. Thus, if an original photograph is
scanned at 300 pixels per inch (ppi) with dimensions of 2" ×2", subsequently changing the
dimensions to 4" ×4" will result in a resolution of 150 ppi. Although a 4" ×4" image at 300
ppi could be interpolated from the original image, true resolution will be lost in such a
jump. When an image is enlarged like this, the graphics application simply doubles every
pixel, which softens the image considerably. Conversely, reducing the scale of an image has
few undesirable side effects — although a smaller version of the original may display
reduced (or destroyed) fine details.

Because all raster images consist of pixels, and because resolution simply describes how
closely those pixels should be packed, the most accurate way of referencing raster images is
by using the absolute pixel width and height of an image. For example, a 4000 ×5000 pixel
image can be printed or displayed at any size with variable resolution. This image could be
4" ×5" at 1000 ppi, or it could be 8" ×10" at 500 ppi—without any loss of information.
Remember that resolution simply describes how much information is shown per unit. When
you reduce the pixel width and height of an image, the resolution becomes lower as well.
However, once any pixels are thrown out, discarded, or interpolated, they’re gone for good.

Bringing Images into Flash
When you want to bring raster images into Flash movies, you should know what portion of the
Flash Stage the image occupies. Let’s assume that you are working with the default Flash
movie size of 550×400 pixels. If you want to use a bitmap as a background image, it won’t
need to be any larger than 550×440. So, assuming that you are starting with a high-resolution
image, you would downscale the image to the largest size at which it will appear in the Flash
movie before you import it into Flash; for our example, that would be 550×440.

Continued

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 335

336 Part II ✦ Creating Flash Graphics

More about preparing bitmaps
Before sizing and importing bitmaps, you need to consider how you will set the
Dimensions for the Flash movie in the HTML tab of the Publish Settings. You also
need to know whether the bitmap is to be scaled in a Motion Tween. If the Flash
movie scales beyond its original pixel width and height (or if the bitmap is scaled
in a tween), then any placed bitmap images will be resized and appear at a lower
resolution with a consequent degradation of image quality. Scaling of Flash movies
is discussed in the Publishing sections of Chapter 40, “Publishing Flash Movies,”
and Chapter 41, “Integrating Flash Content with HTML.”

If you are unsure of the final size that you need for a bitmap in Flash, then import
a low-resolution version of the image into Flash (being careful not to erase or over-
write your high-resolution version in the process!). Then, make a symbol with a
graphic behavior and place the low-resolution bitmap into that symbol. Whenever
you need to use the bitmap, place its symbol on the Flash Stage. Then, during final

Continued

Use an image-editing program such as Macromedia Fireworks or Adobe Photoshop to
downsize the pixel width and height of your image.

If you mask bitmaps with a Mask layer in the Flash timeline, the entire bitmap is still
exported. Consequently, before import you should closely crop all images that will be
masked in Flash. For example, if all you need to show is a face, crop the image so that it
shows the face with a bare minimum of extraneous detail.

Raster Images: Bit Depth
Bit depth is another factor that influences image quality and file size. Bit depth refers to the
amount of information stored for each pixel of an image. The most common bit depths for
images are 8-bit and 24-bit, although many others exist. An 8-bit image contains up to 256
colors, while a 24-bit image may contain 16.7 million color values. Depending on their file
format, some images can also use an 8-bit alpha channel, which is a multilevel trans-
parency layer. Each addition to an image’s bit-depth is reflected in a great file size increase:
A 24-bit image contains three times the information per pixel as does an 8-bit image.
Mathematically, you can calculate the file size (in bytes) of an image with the following for-
mula (all measurements are in pixels):

width×height×(bit depth ÷ 8) = file size

Author’s Note: You divide bit depth by 8 because there are 8 bits per byte.

The optimal bit depth for us in Flash movies is 24-bit. This is due to the fact that Flashes
defaults to 24-bit .JPEG compression for all exported bitmaps. You can, however, import 8-
bit images in formats such as .GIF, .BMP, and .PICT. In this circumstance, especially for peo-
ple viewing your Flash artwork with 8-bit video adapters, you’ll have a greater degree of
viewing predictability with 8-bit images that use Web-safe color palettes.

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 336

337Chapter 12 ✦ Using Bitmaps and Other Media with Flash

production and testing, after you’ve determine what pixel size is required for the
better quality bitmap, create and import a higher resolution image, as follows:

✦ Double-click the icon of the original low-resolution bitmap in the Flash Library
to access the bitmap’s properties.

✦ In the Bitmap Properties dialog, click the Import button and select the new,
higher resolution version of the bitmap.

✦ Upon reimport, all symbols and symbol instances will update automatically.

Although .TIF is now a supported file format for import, it’s not a listed file format
when you try to use the Import button in the Library properties of a bitmap. To
import a .TIF from the Library Properties, you have to switch the file menu to display
All Files, instead of All Formats. Consequently, when you select a .TIF and want to
import a new .TIF to replace the original image, it only works if All Files is selected.

Be aware that Flash doesn’t resize (or resample) an image to its viewed or placed
size when the Flash movie (.SWF file) is created. We tested the same source image,
resized it into two different pixel dimensions, and placed it in two different Flash
movies. In both movies, the image was viewed at 200 ×300 pixels. The first version of
the image had a 400 ×600 pixel dimension, while the second version had a 200 ×300
pixel dimension — exactly half the size of the first. In one Flash movie (we’ll call it
Movie A), the first version was imported and resized (using the Info Panel) to the
size of the second. In the other Flash movie (Movie B), the second version was
imported and placed as is, occupying the same portion of the Flash Stage as Movie
A. Even though both Flash movies contained a bitmap of the same view size on the
Flash Stage, the resulting .SWF files, which used the same level of .JPEG compression
on export, had drastically different file sizes. Movie A was 44.1KB, whereas Movie B
was 14.8KB! Movie A is nearly three times larger than Movie B. However, when a view
larger than 100 percent was used within the Flash Player, the difference in resolution
was readily apparent in the higher quality of Movie A.

Importing Bitmap Images
There are two ways to bring bitmap images into Flash. You can import bitmap
images, as we describe next, or you can copy them from an external application,
such as Fireworks, and then paste them directly into Flash. Although the latter
process is quick and easy, it doesn’t capture any transparency settings, so it may
not be the best choice for all of your needs.

When importing bitmaps, Flash 5 supports all of the formats that QuickTime sup-
ports — as long as QT4 is installed (refer to Table 12-1). However, the implementation
of this reliance upon QuickTime can be confusing. If you attempt to import any previ-
ously unsupported format, the following dialog appears: “Flash doesn’t recognize the
file format of Image.PSD. Would you like to try importing via QuickTime?” If you
ignore this dialog and click Yes, the image is imported as a bitmap. According to

Note

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 337

338 Part II ✦ Creating Flash Graphics

Macromedia, you will always get this warning (which you must override in order to
complete the import) so that you will be aware that QuickTime is used to complete
the import. Other than this rather odd work flow, there are no adverse consequences
to importing .PSDs in this manner.

With QuickTime support, Flash 5 now enables you to import .TIF images, which is
a widely used professional image format in the world of print graphics. .TIFs can
also include alpha channels similarly to .PICT and .PNG files. To import a .TIF, you
must choose All Files from the Files of type drop-down menu of the Import dialog.

Importing a bitmap file into Flash
To import a bitmap into Flash, follow these steps:

1. Make sure that there’s an active, unlocked layer. If no layer is available for
placement of the imported item, the Import command is dimmed and you
can’t import anything.

2. Select File ➪ Import (Ctrl+R or Command+R).

3. The Import dialog opens. Navigate to the file that you’d like to import, select
it, and click the Open button.

As shown in Figure 12-5, the Import dialog also appears when importing bitmaps.
Note that any file that requires QuickTime support will invoke the dialog shown at
the right — in this case, it’s OK to click Yes; the file will import properly.

Figure 12-5: The Import dialog, along with the message that you see when trying to
import files that require QuickTime support.

New
Feature

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 338

339Chapter 12 ✦ Using Bitmaps and Other Media with Flash

If you attempt to open a file that has a number at the end of its name, and there are
additional files in the same location with sequential numbers at the ends of their
names, Flash prompts you to import the files as a sequence. If that’s what you want
to do, select Yes when prompted. Flash imports all the files in sequential frames on
the timeline. Otherwise, select No, and only the single file that you’ve selected will
be opened.

Copying and pasting a bitmap into Flash
Here’s how to use the Clipboard to import a bitmap into Flash:

1. Copy the bitmap from the other application.

2. Return to Flash and make sure that you have an active, unlocked layer that
you can paste the bitmap into.

3. Paste the bitmap onto the stage by selecting Edit ➪ Paste from the menu
(Ctrl+E/Command+E). When pasting a selected area from Photoshop, any
transparency (alpha channel) is ignored.

Because Flash 5 offers full support for the .PNG image format (including lossless
compression and multilevel transparency), .PNG is the ideal format for images that
you intend to import into Flash. The .PNG format has two types, PNG-8 and PNG-24.
While both provide greater flexibility with compression, only PNG-24 images sup-
port 24-bit color and an alpha channel. The .PNG format is discussed in depth in
the Photoshop section of Chapter 30, “Working with Raster Graphics.”

When using a .PNG image with a transparent area masked by an alpha channel,
many 16-bit systems may display the background appearing behind the masked
area with a faintly dithered variation of the actual background color. For more infor-
mation, refer to the tech notes at www.macromedia.com/go/13524 and
www.macromedia.com/go/13901.

Setting Bitmap Properties
The Bitmap Properties dialog, shown in Figure 12-6, has several options that are
used to control the quality of your bitmaps.

Follow these steps to use the Bitmap Properties dialog:

1. Open the movie’s library with Window ➪ Library and select the bitmap.

Caution

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 339

340 Part II ✦ Creating Flash Graphics

Figure 12-6: The Bitmap Properties dialog

2. Double-click the bitmap’s icon, or right-click/Ctrl+click the bitmap’s name and
select Properties to open the Bitmap Properties dialog. You can also select
Properties from the Library’s Options menu or, with the bitmap highlighted,
click the Properties button. Now, set the properties of your bitmap as desired:

• Preview Window: This displays the bitmap according to the current
settings.

• Name: This is the name of the bitmap, as indicated in the Library. To
rename the bitmap, highlight the name and enter a new one.

• Image Path, Date, Dimensions: Beneath the name Flash lists the local
path, dimensions, and date information for the source of the imported
image (not available if you pasted the image from the Clipboard).

• Update: This feature enables you to reimport a bitmap if it’s been altered
outside of Flash. Flash tracks the original location of the imported
bitmap and will look for the original file in that location when the Update
button is clicked.

• Import: This opens the Import Bitmap dialog. When using this button,
the new bitmap will replace the current bitmap (and all instances, if
any), while retaining the original’s name.

• Test: This button updates the file compression information, which appears
at the bottom of the Bitmap Properties dialog. Use this information to
compare the compressed file size to the original file size.

Use Original
Compression

Compression Type
drop-down

Image Path, Date, DimensionsPreview Name

Smoothing (dither) check box

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 340

341Chapter 12 ✦ Using Bitmaps and Other Media with Flash

• Compression Type drop-down: The compression setting enables you to
set the bitmap’s compression to either Photo (.JPEG) or Lossless (.PNG/
.GIF). Photo is good for very complex bitmap images (photographs for
example); Lossless is better for bitmap images with areas of flat color.
Play around with these settings to see which works best for each particu-
lar image.

• Use imported .JPEG data/Use document default quality: If the imported
image is a .JPEG, the first option will appear — check this check box to
avoid double-JPEG compression. If the image is not a .JPEG, the second
option will appear — check this check box to retain the original compres-
sion of the image.

• Allow Smoothing (dither): Check this check box to enable Flash to
attempt to dither, or smooth, the image. Results may vary according
to the image. Generally, this is ill advised because it blurs an image. If
you’ve imported and placed a perfectly optimized image, at 100 percent
scale, this will noticeably degrade the image quality. It’s better to opti-
mize images outside of Flash and then insist that Flash doesn’t mess
with them.

3. Click OK. All copies of this bitmap used in Flash are updated to the new
settings.

Using Bitmaps as Fills
Procedures for working with bitmaps as fills have changed significantly since Flash
4. Upon import, a bitmap appears on the Stage in the current frame of the active
layer. However, it also lands in the Library, where it truly resides. In fact, you can
delete the bitmap from the Stage without clearing it from the Library. However,
you might not have noticed that, on import, the bitmap was also deposited in the
Bitmap Swatches drop-down of the Fill Panel, shown in Figure 12-7. Bitmaps that
appear in this new Bitmap Swatches are automatically broken apart on import and
may be modified with any of the Flash drawing and painting tools.

Figure 12-7: This is the Bitmap Swatches
drop-down of the Fill Panel.

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 341

342 Part II ✦ Creating Flash Graphics

Flash 5 offers improved handling of bitmap fills. Now they live where they are eas-
ily accessed, as swatches in the Bitmap Swatches drop-down of the new Fills
Panel and are automatically broken apart on import. This means that they don’t
have to be brought out onto the stage and acquired with the Eyedropper in order
to reuse them, as was the case with prior versions of Flash. Nice touch!

Here’s how to acquire and apply a bitmap fill (of a bitmap that’s already been
imported) in Flash 5:

1. Open the Fill Panel and choose Bitmap from the Fill drop-down menu.
A display of all imported bitmap swatches appears.

2. Click to select the bitmap swatch that you want from the Bitmap Swatches.
(If there is only one, it is automatically selected for you.) The Fill Color button
in the Toolbox automatically updates to display the selected bitmap fill.

• If a fill is currently selected, it is updated with the bitmap you have
selected.

• If no fill is currently selected, choose the Paint Bucket Tool and use it to
fill any shape.

3. In either case, as shown in Figure 12-8, the resulting fill contains your bitmap,
which can be manipulated with the Paint Bucket Transform Fill modifier, as
described in Chapter 5, “Working with the Drawing and Painting Tools.”

Figure 12-8: Using a bitmap as a fill can produce
some interesting designs.

New
Feature

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 342

343Chapter 12 ✦ Using Bitmaps and Other Media with Flash

If you drag a bitmap from the Library and position it onstage and then attempt to
acquire the bitmap fill by first tracing the bitmap and then clicking with the
Dropper Tool, you may obtain the following unexpected, undesired results. If the
bitmap is still selected, clicking with the Dropper acquires the color immediately
beneath the Dropper, and replaces the entire bitmap with a solid fill of the
acquired color. If the bitmap is not selected, the Dropper simply acquires the color
immediately beneath the Dropper.

Breaking a bitmap apart
Breaking apart a bitmap means that the bitmap image is subsequently seen by
Flash as a collection of individual areas of color. After an image is broken apart, it
may be modified with any of the Flash drawing and painting tools. You can select
individual areas of the broken apart image with any of the selection tools, including
the Magic Wand option of the Lasso Tool. (This is not the same as tracing a bitmap,
which reduces the vast number of colors in a bitmap to areas of solid color and
turns it into vector format.) The command duplicates the new Flash 5 automatic
conversion of an imported bitmap as it arrives as a swatch in the Bitmap Swatches
of the Fills Panel. You cannot use Modify ➪ Break Apart to generate a variant fill
from the same bitmap.

The Magic Wand Option of the Lasso Tool is used to select ranges of a similar color
in either a bitmap fill or a bitmap that’s been broken apart. After you select areas of
the bitmap, you can change their fill color or delete them, without affecting the
Bitmap Swatch in the Fills Panel. For more information about the Lasso Tool, refer
to Chapter 5, “Working with the Drawing and Painting Tools.” Click the Magic Wand
option in the Toolbox to invoke the Magic Wand Settings dialog.

The Threshold setting of the Magic Wand
The Threshold setting defines the breadth of adjacent color values that the Magic
Wand will include in a selection. Values for the Threshold setting range from 0 to
200 — the higher the setting, the broader the selection of adjacent colors. Conversely,
a smaller number results in the Magic Wand making a narrower selection of adjacent
colors. To see the threshold settings see Figure 12-9.

A value of zero results in a selection of contiguous pixels that are all the same color
as the target pixel. With a value of 20, clicking a red target pixel with a value of 55
will select all contiguous pixels in a range of values extending from red 35 to red 75.
(For those of you who are familiar with Photoshop, it’s important to note that the
Flash Threshold is unlike Photoshop, in which a Threshold setting of 20 will select
all contiguous pixels in a range of values extending from red 45 to red 65.)

Caution

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 343

344 Part II ✦ Creating Flash Graphics

Figure 12-9: The Magic Wand
Settings dialog

The Smoothing setting of the Magic Wand option
The Smoothing setting of the Magic Wand option determines to what degree
the edge of the selection should be smoothed. This is similar to antialiasing.
(Antialiasing dithers the edges of shapes and lines so that they look smoother on
screen.) The options are Smooth, Pixels, Rough, and Normal. Assuming that the
Threshold setting remains constant, the Smooth settings will differ as follows:

✦ Smooth: delivers a selection with more rounded edges

✦ Pixels: the selection clings to the rectangular edges of each pixel bordering
similar colors

✦ Rough: the edges of the selection are even more angular than with Pixels

✦ Normal: results in a selection that’s somewhere between rough and smooth

Tracing Bitmaps
Trace Bitmap is used to convert a Library image from a bitmap to a native Flash
vector graphic with discrete, editable areas of color. This unlinks the image from
the original in the Library (and also from the Bitmap Swatch in the Fills Panel). It
is possible to create interesting bitmap-based art with this command. However, if
your intention is to preserve the look of the original bitmap with maximum fidelity,
you will have to work with the settings — and you will most likely find that the origi-
nal bitmap is less file intensive than its traced cousin. Here’s how to trace a bitmap:

1. Use the Arrow Tool to select the bitmap that you want to trace — it should be
either a symbol, in Edit Symbol Mode, or on the Stage.

2. Use Modify ➪ Trace Bitmap to invoke the Trace Bitmap dialog and set the
options according to your needs:

• Color Threshold: This option controls the number of colors in your
traced bitmap. It limits the number of colors by averaging the colors
based on the criteria chosen in Color Threshold and Minimum Area.
Color Threshold compares RGB color values of adjacent pixels to the
value entered. If the difference is lower than the value entered, then adja-
cent pixels are considered the same color. By making this computation
for each pixel within the bitmap, Flash averages the colors. A lower
Color Threshold delivers more colors in the final vector graphic derived
from the traced bitmap.

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 344

345Chapter 12 ✦ Using Bitmaps and Other Media with Flash

• Minimum Area: This value is the radius, measured in pixels, that Color
Threshold uses to describe adjacent pixels when comparing pixels to
determine what color to assign to the center pixel.

• Curve Fit: This value determines how smoothly outlines are drawn.
Select Very Tight if the curves in the bitmap have many twists and
turns. If the curves are smooth, select Very Smooth.

• Corner Threshold: The Corner Threshold is similar to the Curve Fit, but
it pertains to the corners in the bitmap image.

3. Click OK. Flash traces the bitmap, and the original bitmap disappears. If the
bitmap is complex, this may take a while. The traced bitmap does not look
exactly like the original bitmap.

If your objective is for your traced bitmap to closely resemble the original bitmap,
then set a low Color Threshold and a low Minimum Area. You’ll also want to set the
Curve Fit to Pixels and the Corner Threshold to Many Corners. Be aware that using
these settings may drastically slow the tracing process for complex bitmaps and
result in larger file sizes. If animated, such bitmaps may also retard the frame rate
dramatically. Furthermore, if the image is noisy (grainy) it should be smoothed
(despeckled) as much as possible prior to tracing to save time, as well as to reduce
file size.

As shown in Figure 12-10, the traced bitmap (right) looks quite different from the
original bitmap (left). While you can change the settings in the Trace Bitmap dialog
to make a traced bitmap look more like the original, it often requires a lot of work
from your computer. This comparison was done with the Trace Bitmap settings at
a Color Threshold of 25, Minimum Area of 10 pixels, Curve Fit of Very Smooth, and
Corner Threshold of Few Corners.

Figure 12-10: The traced bitmap (right) looks quite different from the original
bitmap (left).

Tip

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 345

346 Part II ✦ Creating Flash Graphics

Cautionary Notes
Flash retains existing .JPEG compression levels on any imported .JPEG image, but,
unless specified otherwise in the Library, it reapplies .JPEG compression when the
movie is published or exported. Recompressing an image that has already been
compressed usually leads to serious image degradation, due to the introduction of
further compression artifacts. When importing .JPEGs (and other bitmaps), you’ll
note that Use document default quality in the Library is checked by default. This is
a feature, not an annoyance. That’s because (a) Flash has a relatively generic .JPEG
compression engine, which is easily surpassed by both Fireworks and Photoshop,
and because (b) as mentioned previously, recompressing a .JPEG is routinely disas-
trous to image quality.

If you import .JPEG images, make sure that you either test the results of further
.JPEG compression or else choose the Lossless compression setting in Bitmap
Properties dialog, which is accessible from the Flash Library.

Apply compression settings to each individual bitmap in the Flash Library to deter-
mine the quality that you need before you use the general .JPEG settings in the Export
Movie or Publish Settings dialog. You’ll find .JPEG export settings for Flash movies
(.SWF files) discussed in greater detail in Chapter 40, “Publishing Flash Movies.”

Bitmap shift
There is a known problem in Flash that’s referred to as bitmap shift, which means
that colors may shift slightly from one instance to another of the same image. This
has been attributed to several reasons. Some developers have reported that turning
off compression has, at times, eliminated problems with bitmap shift. Another
reported method for eliminating bitmap shift is to make the image a symbol, and
then assign it an alpha of 99 percent. Yet the clearest explanation, and related fix,
are as follows: Flash renders a bitmap while animating or transforming it, and then
rerenders the bitmap as a static image when the motion or transformation ceases.
Often, the two don’t quite match. From this perspective, the optimal solution is to
set the final bitmap’s scaling to 99 percent. The advantage of this solution (aside
from the fact that it works) is that it’s less processor intensive, because any alpha
adjustment burdens the processor with computations.

Cross-browser consistency
We’ve received more than a few queries about image formats and Flash’s capability
to transcend issues of browser inconsistency, so here’s the answer. Many image for-
mats, such as .PNG, are not supported across all browsers. When you import such
an image format into Flash and publish or export to the .SWF format, you have
accomplished browser independence — because the .SWF is browser independent
and because the image has been encapsulated within the .SWF format. (The image
is not being sent to the browser in the imported format and then magically empow-
ered to display.) Conversely, if you export any .FLA to .PNG or to any other format
that’s subject to cross-browser inconsistency, browser independence is lost.

Tip

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 346

347Chapter 12 ✦ Using Bitmaps and Other Media with Flash

Color Insert: Bitmap Comparisons
The color insert of this Flash 5 Bible is dedicated to comparing bitmap quality
within Flash, subject to various settings. Using two example photographs, we’ve
generated a series of bitmap examples to help you understand the consequences
of some of the procedures that have been discussed in this chapter.

To facilitate your deeper exploration into the subject of bitmap settings and their
impact upon image quality, we’ve included the .SWF’s that were built to collect and
test our sample shots. They are located in the folder titled, BitMap_Comparison_
8-SWF’s, which is located in the ch12 folder on the CD-ROM. Because this is all
about how images look on screen (and print is merely an approximation of this), we
encourage you to use the Flash Player’s zoom facility to take a good look at these
examples. We’ve chosen to supply these as eight separate .SWF’s because this will
enable you to open several pages simultaneously for side-by-side comparison.

Generation of comparison images
Before you can make intelligent use of bitmaps in Flash, it’s imperative to know
about the options for creating bitmaps for use within Flash. That’s because all
bitmaps are not created equal. A bitmap from one program, created with similar
settings, can be twice the file size — with no appreciable increase in quality — of
a bitmap created in another program. It makes no sense to study optimization
constraints within Flash if you ignore your exposure to fatty imports.

To create a set of controlled images that could be used for comparison, we chose
a portrait (with a background that shifts contrast) and a landscape (with a broad
expanse of graduated color). Both images were derived from high-quality film shots,
scanned at a very high resolution, down-sampled to equivalent dimensions and reso-
lution, 227 ×287 pixels at 96 ppi, and saved as uncompressed .TIFs. These files were
used as the source files from which all other variations were derived (with the sole
exception of the double-JPEG example, in which an image that had been previously
.JPEG’d was used as the source image for the double-JPEG example).

Because the native resolution of most PC monitors is 96 ppi, we used 96 ppi as
the originating resolution in order to circumvent the possibility that Flash would
need to scale these images in order to display them on the PC. This means that
the image is scaled down to display on the Mac, which has a native resolution of
72 ppi. Unfortunately, this procedure also requires a slight bit of extra care when
placing images, because Flash has a tendency to import these images ballooned
out. Thus, when working with images at 96 ppi, it’s advisable to check the Info
Panel to ensure that the image dimensions, as measured in inches, has been
retained. If the image dimensions haven’t been retained, then the image must be
scaled down to the image dimensions that correlate with the resolution of 96 ppi.

Note

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 347

348 Part II ✦ Creating Flash Graphics

Our principal comparisons were done with Adobe Photoshop and Macromedia
Fireworks, simply to establish a comparison of the quality and degree of compres-
sion available from each program. However, when preparing .JPEGs for comparison,
we added a choice alternative, BoxTop Software’s ProJPEG, which is a Photoshop-
compatible plug-in. Because each program offers different options and different
combinations of options, it is absolutely impossible to perform a direct one-for-one
comparison. As such, our results are necessarily subjective and may not equate
with your findings.

BoxTop Software’s ProJPEG plug-in is available for both the Mac and the PC. It may
be obtained online from www.BoxTopSoft.com.

The BoxTop interface
As shown in Figure 12-11, the interface for the BoxTop ProJPEG Photoshop-compati-
ble plug-in is roomy and clear. For the purpose of our comparison we retained all
settings as shown — except for the Quality setting, which was set at 94, 60, and 30
for the High, Medium, and Low samples.

Figure 12-11: Here’s the BoxTop ProJPEG interface. Note the check
box options at the right for both Better Image Sampling and Huffman
code optimization.

Tip

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 348

349Chapter 12 ✦ Using Bitmaps and Other Media with Flash

The Fireworks interface
As shown in Figure 12-12, Fireworks’ Export Preview interface is also roomy and
clear. It also provides the option — which we did not use — of comparing the before
image with three other previews. Again, for this comparison we retained all settings
as shown — except for the Quality setting, which was set at 94, 60, and 30 for the
High, Medium, and Low samples. The Fireworks’ Export Preview has several
options that may have tipped the compression contest in its favor. Note that we
used the default, No Smoothing, and that we left the Remove Unused Colors check
box activated.

Figure 12-12: The Fireworks Export Preview

The Photoshop interface
The Photoshop Interface that was used for these comparisons is shown in Figure
12-13. In all fairness, it should be noted that Photoshop also sports a roomy inter-
face complete with preview, which is accessed from Photoshop with the File ➪ Save
for Web command. (But it should also be noted that, in preliminary testing, the
Save for Web interface, in multiple configurations, failed to deliver competitive com-
pressions.) For this comparison we retained all settings as shown — except for the
Quality setting, which was set at 11, 9, and 7 for the High, Medium, and Low sam-
ples. The deviation in these settings is due to the Quality range of 1 to 12, rather
than 1 to 10.

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 349

350 Part II ✦ Creating Flash Graphics

Figure 12-13 shows the familiar Photoshop .JPEG dialog. Note that the Quality range
is from 1 to 12, rather than the expected 1 to 10. However, this difference was not
the deciding factor in Photoshop’s failure to produce competitive compression —
we experimented with multiple settings and with the Save for Web dialog. In all
cases, Photoshop delivered much heavier .JPEGs than either Fireworks or the
BoxTop plug-in ProJPEG.

Figure 12-13: The Photoshop .JPEG dialog

Compression Results
To make reasonable sense of the results of our compression tests on the portrait
and road images, we assembled the results into Table 12-2.

Table 12-2
Compression Comparison

Image and Type Quality BoxTop Fireworks Photoshop

Base Tif: Portrait Uncompressed – – 196KB

Base Tif: Road Uncompressed – – 196KB

Jpeg L (=30%) 7KB 6KB 15KB

Variations: Portrait M (=60%) 11KB 10KB 19KB

H (=94%) 33KB 27KB 50KB

Jpeg L (=30%) 3KB 3KB 10KB

Variations: Road M (=60%) 5KB 5KB 12KB

H (=94%) 16KB 13KB 28KB

Png: Portrait 24-bit – 112KB 128KB

Png: Road 24-bit – 66KB 76KB

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 350

351Chapter 12 ✦ Using Bitmaps and Other Media with Flash

Observations and notes about the results
of the settings
When we set out to create this test, we had some preconceptions — based on prior
experience — that dissolved in the face of this metrical analysis. In some instances,
the results were even counterintuitive, or clearly subject to the specific nature of
the bitmap’s final use.

As shown in Figure 12-14, in all cases, unless specified otherwise (for smoothing
comparisons and to demonstrate double-JPEG corruption), the settings in the
Flash Bitmap Properties dialog were maintained to preserve the compression and
quality of the imported image. Unless otherwise noted, the .JPEGs and .PNGs were
generated with Fireworks from the same Photoshop source .TIF.

Figure 12-14: Regardless of
the kind of image imported,
these settings in the Flash
Bitmap Properties dialog usually
deliver the highest quality image
while preserving the imported
compression.

Basic image-type comparisons in the color insert
The following is a description of each image in the color section, plate by plate.
To see the images discussed, flip to the insert.

Color Plate 1: At the top left, the uncompressed Photoshop .TIF source file is
displayed, as rendered by Flash with no compression. In the adjacent panel, this
original .TIF is compared to 24-bit .PNGs from both Fireworks and Photoshop; note
the slight color shift in the Photoshop .PNG. In subsequent panels, high quality (94
percent) and low quality (30 percent) .JPEGs are compared. Although the quality is
nearly the same, on close inspection, at 200 percent zoom (right-click/Ctrl+click),
the BoxTop images are slightly less chunky, with less artifacts.

High-quality .JPEG smoothing comparisons
Color Plate 2: Here, high-quality .JPEGs are compared when deployed in the Flash
Bitmap Properties dialog either with or without smoothing enabled. At 100 percent,
the unsmoothed image is superior. However, if you intend to scale the image
smoothing may, as shown, improve the quality. The difference is more noticeable
with the portrait.

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 351

352 Part II ✦ Creating Flash Graphics

High-quality Fireworks .JPEG scaling comparisons (no smoothing)
Color Plate 3: Here the high-quality .JPEGs of both images are compared to
the same image, when scaled to 200 percent. Note how the horizon detail of the
landscape is adversely affected by the zoom, while the portrait is chunky but
almost acceptable.

Medium-quality Fireworks .JPEG scaling comparisons (no smoothing)
Color Plate 4: Here the medium-quality .JPEGs of both images are compared to the
same image, when scaled to 200 percent. At 100 percent, both images are accept-
able. But at 200 percent, it’s a different story: Here, you’ll note that the portrait is
too chunky and unacceptable — many areas have a marked checkerboard pattern.
Conversely, the zoomed horizon detail of the landscape isn’t much worse than the
same view of the high-quality version.

Low-quality Fireworks .JPEG scaling comparisons (no smoothing)
Color Plate 5: Here the low-quality .JPEGs of both images are compared to the same
image, when scaled to 200 percent. At 100 percent you’ll note that the portrait is
barely usable — too many areas of soft transition have been chopped and flattened.
At 200 percent, the portrait is so corrupted and badly discolored that it’s unusable.
It’s easier to tolerate distortion in landscapes, thus the 100 percent view of the land-
scape is still usable, although not advisable for anything more than a background or
an incidental shot. However, the zoomed horizon detail of the landscape is far worse
than the zooms of both the high- and medium-quality versions — note, especially, the
shimmer of artifacts both immediately above the horizon and around the clouds.

Medium-quality double-.JPEG corruption comparisons (no smoothing)
Color Plate 6: This image was created by first saving a low-quality .JPEG from
Photoshop, then opening it in Fireworks, and then saving it as a low-quality .JPEG
from Fireworks. Although the portrait faired worse than the landscape, the results
weren’t nearly as monstrous as we had expected. The double-.JPEGs are chunkier
and have more artifacts in transition areas, but they aren’t as bad as the print
world’s admonition that precedes them.

Bit depth and color comparisons
Color Plate 7: These images demonstrate the effect of reduced bit depth — or range
of color — through a series of three reductions. The 24-bit .PNG is a full-color image,
with a range of millions of possible colors. Subsequent images have been reduced
to 256, 128, and 64 colors. Note the increased posterization (or clumping of flat-
tened color) in the transition of the cheek from light-to-dark, as well as the blue
sky. Also note the successive banding of the accompanying spectrum.

High-quality .JPEG rotation comparisons
Color Plate 8: This is perhaps the trickiest comparison to analyze. We had this prob-
lem when building our Web site for the Flash 4 Bible. When the animation resolved
and the book was displayed at a slight, 14-degree angle, it was distorted — and it was

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 352

353Chapter 12 ✦ Using Bitmaps and Other Media with Flash

distorted regardless of whether it was rotated in Photoshop and imported with the
angle, or if it was imported into Flash on the square and subsequently rotated —
the manner of the distortion changed, but not the perception of distortion!

✦ When rotated in Flash, hard edges, such as text, may appear choppy — as if
they had been cut out with pinking shears. Yet, when zoomed, this effect is
less problematic.

✦ When rotated in Photoshop, prior to import into Flash, hard edges are less
choppy, although the file will increase (to accommodate the larger overall
shape), the background will become a fixed color, and a certain flutter may
occur along the edges of the transition between the background and the
image. Yet, other straight lines and text will appear smoother and more
acceptable. However, at 200 percent zoom, text looks worse than the same
image rotated in Flash.

Before rotating a bitmap in Flash, you should perform a few tests to see how your
specific bitmap will be affected by the combination of compression, zoom, smooth-
ing, and rotation (either in or out of Flash). Your choices and your decision will
certainly vary, subject to the nature of the bitmap and the manner in which it
will be used within Flash.

Summary
✦ Flash can use a variety of external media, including vector graphics, bitmap

images, and sounds.

✦ Importing external media, such as vector graphics and bitmaps is very easy.

✦ Preparing bitmaps for use within Flash requires considerable forethought and
some preliminary design work in order to determine the optimal dimensions.
Otherwise, bitmaps may be subjected to unsightly degradation of quality.

✦ A basic understanding of both bitmap resolution and bitmap depth is a pre-
requisite for the successful implementation of bitmaps within a Flash project.

✦ Bitmap properties are controlled in the Bitmap Properties dialog, which is
accessed from the Flash Library.

✦ Bitmaps can be used as fills within vector shapes and drawings. With Flash 5,
the new Bitmap Swatches drop-down of the Fills Panel greatly simplifies the
application of bitmap fills.

✦ Bitmaps can also be traced to convert them into vector art, although usually
with a loss of detail. If a traced bitmap is forced to approximate photographic
quality it may incur a larger file size than the original photograph.

✦ The Bitmap Comparisons in the color insert of this Flash 5 Bible are dedicated
to comparing bitmap quality within Flash at various settings.

✦ ✦ ✦

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 353

3515-3 ch12.f.qc 1/18/01 3:52 PM Page 354

Designing
Interfaces
and Interface
Elements

Now that you’ve learned the basic principles behind
Flash artwork creation, you probably want to start cre-

ating a presentation to put on a Web site. For this edition of
the Flash Bible, we decided to write a chapter that teaches
you how to make a simple interactive Flash movie that has
basic navigation and text functionality, before we get into
the nitty gritty of ActionScript in Part IV of the book.

The Main Timeline as the
Site Layout

Before you can start digging into Flash, you need to know what
you’re excavating — what is the basic concept of the experi-
ence? Is this an all-Flash Web site? Is this a Flash animation
that introduces some other type of content (HTML, Shockwave
Director movies, and so on)? For the purposes of this chapter,
we create a Flash movie for a basic all-Flash Web site.

Creating a plan
Once you know what goals you want to achieve with your
Flash content, you should map the ideas on paper (or with
your preferred project planning or flowchart software). We
create a basic site for a computer parts company that has four
areas: main menu (and welcome page), products, services, and

1313C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Creating a Main
Timeline layout

Making a product
slide show

Principles of interface
design

Scrolling text with
Motion Tweens

✦ ✦ ✦ ✦

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 355

356 Part II ✦ Creating Flash Graphics

contact information. Our organizational chart for this site has four discrete areas, as
shown in Figure 13-1.

Figure 13-1: Our organizational chart will help us
plan our Flash movie architecture.

Flowchart creation and project planning are discussed with greater detail in
Chapter 38, “Planning Flash Production with Flowcharting Software.”

Determining Flash movie properties
After you’ve made your organizational chart, you’ll want to determine the frame
rate, size, and color of the Flash movie. We’ve skipped much of the “real-life” plan-
ning involved with Flash Web sites, which is discussed in Chapter 38, “Planning
Flash Production with Flowcharting Software.” For this example, we use a frame
size of 640 ×400 (a cinematic aspect ratio), a relatively fast frame rate of 20 fps (for
smoother animations), and a white background color. These are set in the Movie
Properties dialog, shown in Figure 13-2, which is accessed by Modify ➪ Movie
(Ctrl+M or Command+M).

Figure 13-2: The Flash Movie Properties

Cross-
Reference

Welcome

Products Services Contact
Information

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 356

357Chapter 13 ✦ Designing Interfaces and Interface Elements

Mapping site areas to keyframes
After you have set up your Flash movie properties, you can create a Main Timeline
structure for the site. Because we have four areas in our site (main menu, products,
services, and contact information), we’ll have keyframes on the timeline that indi-
cate those sections.

1. Rename Layer 1 to labels, by double-clicking the Layer 1 text in the timeline
window.

2. With the Arrow Tool, select frame 10, and press F6. This creates a keyframe on
frame 10.

Always leave some empty frame space in front of your “real” Flash content. We can
later use these empty frames to add a preloader, as discussed in Chapter 20,
“Sharing and Loading Assets.”

3. With the keyframe selected, open the Frame Panel (Ctrl+F or Command+F).
In the Label field, type welcome. After you have typed the text, press Tab
(or Enter) to make the name “stick.”

4. Repeat Steps 2 and 3 with frames 20, 30, and 40, with the frame labels prod-
ucts, services, and contactInfo, respectively.

5. Select frame 50 of the labels layer, and press F5. This will enable you to read the
very last label, contactInfo. Your Main Timeline should resemble Figure 13-3.

Figure 13-3: Frame labels will be used to differentiate each section
of the site.

Tip

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 357

358 Part II ✦ Creating Flash Graphics

6. Save your Flash movie as mainMovie.fla.

7. Make a new layer, and rename it actions. Add a keyframe on frame 10, and
open the Frame Actions Panel (Ctrl+Alt+A or Option+Command+A). Make
sure the Actions Panel is in Normal Mode by clicking the menu option in the
top-right corner and selecting Normal Mode.

8. Click the Basic Actions booklet (located in the left-hand column of the Actions
Panel) to expand the actions contained there. Double-click the Stop action.
This adds the following code to the Actions list in the right-column of the
Actions Panel:

stop();

9. Close the Actions Panel, and open the Frame Panel. In the Label field, type
//stop. The // characters assign a frame comment instead of a frame label.
Although this step isn’t necessary for the functionality of the movie, frame
comments can provide quick and easy access to the designer’s or program-
mer’s notes. Your Main Timeline should now look like Figure 13-4.

Figure 13-4: Unlike labels, frame comments can not be used
in ActionScript. Comments can provide quick visual references for
ActionScript code.

10. Save the Flash movie again.

At this point, the Flash movie has a skeleton architecture (a blueprint) for our inter-
active functionality. Now, let’s add some content to each section of the movie.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 358

359Chapter 13 ✦ Designing Interfaces and Interface Elements

Creating content for each area
For the purposes of this example, we add placeholder elements that would be filled
in with actual content for live production.

In the ch13 folder of the Flash 5 Bible CD-ROM, you’ll find a Flash file called
content.fla that contains Graphic symbols of computer parts. Copy this .FLA file
to your local hard drive.

1. Using the File ➪ Open as Library command, select your copy of the content.fla
file from the Flash 5 Bible CD-ROM. This opens the Library of the content
.fla file.

2. Move the playhead in the timeline window of your mainMovie.fla movie to the
welcome label (frame 10).

3. Create a layer named companyLogo. Add a keyframe at frame 10 of the
companyLogo layer.

4. Drag an instance of the companyLogo Graphic symbol from the content.fla
Library window to the Stage of your mainMovie.fla movie. Place the symbol
instance near the top-left corner of the Stage, as shown in Figure 13-5.

5. Create a new layer named heading. Add a keyframe on frame 10 of this layer.

6. On frame 10 of the heading layer, use the Text Tool to add the text Welcome.
For this example, we use the typeface Verdana at 36 points (using the Char-
acter Panel). We place the text near the top-center of the movie Stage, as
shown in Figure 13-6.

On the
CD-ROM

Main Timeline versus Scene Structure

Arguably, you might be wondering why we are using keyframes to delineate each section,
instead of new scenes. There are two reasons to use one scene (in other words, one Main
Timeline):

1. We can see the entire layout of our site very easily on one timeline.

2. We can blend interstitials (transitions between each area of the site) over two sec-
tions more easily. It’s much easier to have one Movie Clip instance span the area
between two section keyframes on the Main Timeline.

Ultimately, the decision is yours. Make sure that you determine your Flash architecture well
before you start production within the Flash authoring environment. It’s not a simple task to
rearchitect the layout once production has begun.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 359

360 Part II ✦ Creating Flash Graphics

Figure 13-5: The Acme Computer Parts logo should be placed at the
top-left corner of the Stage.

Figure 13-6: Use the Text Tool to add a welcome heading to
the movie.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 360

361Chapter 13 ✦ Designing Interfaces and Interface Elements

7. Add a keyframe at frame 20 of the heading layer. The Welcome text block from
the previous keyframe will be copied into this keyframe. Change the text to
Product Catalog, as shown in Figure 13-7.

Figure 13-7: Change the text block on frame 20 to indicate the
current frame label section.

8. Repeat Step 7 for frames 30 and 40 of the heading layer. Change the text block
to indicate the appropriate section of the site (for example, Assembly Services,
Contact Information).

Now lets add a slide show of the computer parts that the company sells. For
this, we create a Movie Clip symbol that has each product graphic on a sepa-
rate keyframe.

9. Create a new symbol using Insert ➪ New Symbol (Ctrl+F8 or Command+F8).
Leave the Behavior option at the default Movie Clip setting, and give it a
name of productMovie.

10. Flash automatically switches to Symbol Editing Mode, on the productMovie
timeline. Rename Layer 1 to products.

11. Add keyframes to frames 2, 3, 4, 5, and 6 of the products layer. We have six
computer parts in the content.fla Library, and each product graphic is put
on its own keyframe.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 361

362 Part II ✦ Creating Flash Graphics

12. Move the playhead to frame 1 of the productMovie timeline, and drag the
monitor_1 Graphic symbol from the content.fla Library to the Stage of the
productMovie symbol, shown in Figure 13-8.

13. Continue moving the playhead to the next frame, dragging another computer
part to the Stage for each frame. When you’re finished, press the < and > keys
to review your frames. You may want to center each graphic on the Stage
using the Align Panel (Ctrl+K or Command+K).

Figure 13-8: You should have six filled
keyframes on the products layers of the
productMovie timeline.

14. Now we need to insert an actions layer for this Movie Clip symbol. Create a
new layer, and rename it actions. Select frame 1 of the actions layer, and open
the Actions Panel. Add a Stop action:

stop();

15. Return to the Main Timeline (Scene 1) by clicking the Scene 1 tab in the upper-
left corner of the timeline window.

16. Create a new layer, and rename it productMovie. Insert a new keyframe on
frame 20 of the productMovie layer.

17. Open the mainMovie.fla Library by pressing Ctrl+L or Command+L. Drag the
productMovie symbol from the Library to the Stage. Place it just left of the
center of the Stage, as shown in Figure 13-9.

18. Select frame 30 of the productMovie layer, and press F7. This inserts a blank
keyframe. Now, the productMovie instance will only show in the product area
of the timeline.

19. Save your .FLA file.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 362

363Chapter 13 ✦ Designing Interfaces and Interface Elements

Figure 13-9: The productMovie instance will only be present in
the product section of the movie.

Now we have some content in the Flash movie. The following Expert Tutorial pro-
vides an excellent overview of the design process for Flash user interfaces. If you
want to continue with the demo site, then skip to the next section, “Adding
Navigation Elements to the Main Timeline.”

Expert Tutorial: Interface Design, by Eric Jordan

An important aspect of delivering content on the Web is the method in which it is pre-
sented to the audience. In the relatively short period of time since Flash first hit the market,
interface design has become an art in and of itself. Now, Flash 5 has empowered designers
with the ability to create rich Web-based environments with more interactivity and sophisti-
cation than ever before. In the pursuit of attracting attention to information, designers seek
to package content within an intuitive interface, through which the user can navigate and
react with on a new level. Designing a Flash interface is much like designing a product
package, as it attempts to represent its contents in the most fashionable way possible. By
tapping the new enhancements of the Flash 5 toolsets and property panels, designers now
have a much more efficient approach to interface design.

Continued

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 363

364 Part II ✦ Creating Flash Graphics

Continued

Conceptualization and implementation
Whenever I begin the process of creating a Flash interface, I keep in mind one important
factor: Once an interface is animated, it is intensely difficult to backtrack if the client should
desire a change in the overall design layout. Although the greatest impact of a Flash site
normally comes from it’s animated elements, it is important to lock down an interface
design that pleases the client from the very start. We have developed a process at Design
Insites that works very effectively for conceptualizing and finalizing an interface design. This
process normally begins with three roughs, which are three stylistically different interface
concepts envisioned by the designer. These designs vary in look and feel, to give the client
an opportunity to settle on a general aesthetic style for the Web site. Then we move onto
the next phase, in which we provide three comprehensive designs that follow the same
aesthetic theme of the chosen rough, yet vary in their execution of the layout structure.
After the client has selected the final comprehensive, we then proceed to create a working
model of the interface that includes the use of animated elements and functionality.

Aesthetic considerations
In my time as a Flash designer, I’ve developed many different types of interfaces, with a
wide range of navigation types, thematic approaches, and bandwidth considerations. Based
on the individual requirements of each project I undertake, I attempt to create the most
aesthetically pleasing and intuitive interfaces I can, while still maintaining control over the
boundaries that have been set forth. Technical requirements aside, the visual appearance of
an interface is a creative endeavor that is entirely subjective. It is a matter of one’s style.
Although my imagination tends to run wild at times, it is a designer’s duty to execute a site
design that properly delivers it’s content based on the branding strategy, corporate mental-
ity, and goals of the client. At Design Insites, our strength lies in our ability to implement
interfaces that organize content in a fashionable, yet straightforward manner. To showcase
this, we began development of our new site —www.designinsites.com, shown in the fol-
lowing figure — using the enhancements of Flash 5. In doing this, we considered the same
design principals that we follow when constructing interfaces for our clients. My implemen-
tation of an interface tends to lean toward emulating an operating system, as with
www.2advanced.com. The new Design Insites interface uses some of the same concepts,
as I have found that draggable panels and drop-down menus provide the user with more
interactive navigation and a sense of control over the environment. These elements are by
no means a requirement for an interface design; they simply lend themselves to my style of
design and layout. The key is to provide the user with straightforward navigation and orga-
nized content, and couple it with a visually pleasing environment.

Color is also an indispensable factor for successful interface design. It is an integral part of
the visual appeal, and it plays a crucial role in functionality.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 364

365Chapter 13 ✦ Designing Interfaces and Interface Elements

The Design Insites Web site, after the opening animation has completed and the
interface has peaked.

The correct colors attract the eye to the most important areas of the interface. They enhance
readability and diminish optical exhaustion. Incorrect colors distract the user and decrease
the level of comprehension. In all user-interface designs, we concentrate on four issues
simultaneously: optical effects, symbolism, aesthetics, and technological components.
Paying attention to color theory as it applies to interface design will help you to successfully
communicate your message to the audience.

Beginning the design process
Typically, I create my conceptual rough layouts within Flash itself. With the addition of the
new Bézier pen tools in Flash 5, sophisticated interfaces can be created easily, without the
aid of an illustration program such as Freehand. The new Pen and Sub-Selection Tools
enable precise control over strokes, curves, and so on by allowing manipulation of point-to-
point drawing. I find that the Flash 5 drawing tools are more than sufficient for creating the
overall interface.

Continued

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 365

366 Part II ✦ Creating Flash Graphics

Continued

However, if I choose to implement the use of raster graphics in combination with the vec-
tor graphics of Flash, then I have to use a raster-based authoring application such as
Photoshop. Then, with feedback from the client, I begin my three rough designs, keeping in
mind the various aspects of the decided GUI traits, which include:

✦ Target resolution (640 ×480, 800 ×600, and so on)

✦ Color palette support

✦ Navigation (horizontal, vertical, drop-down, draggable, and so on)

✦ Color scheme

✦ Percentage relation of graphics to text

Once these elements have been established, I begin laying out interface concepts using the
drawing tools in Flash. However, I continue to pay attention to every factor that may affect
the outcome of the final file. The most prominent advantage of using Flash to develop an
interactive environment is its combined capability to carry out the construction of graphical
layout, content delivery, and functionality, all in one place. This does, however, require care-
ful planning on the part of the designer to ensure that he doesn’t back himself into a corner
by making a few wrong turns within the complete design process. Without forethought, a
Flash site can quickly become an ill-fated nightmare full of unforeseen hurdles such as non-
linear navigation and file size limits.

Roughs
Although the three roughs that I create are simply conceptual interfaces, I still maintain con-
stant scrutiny of the file size during the design process. I am well aware that two of the
designs are likely to be thrown out, but if I do not pay attention to the optimization of the file
from the very start, the chosen rough might have to be redesigned in order to ensure that it
makes efficient use of symbols, and other structural elements. While designing the new ver-
sion of the Design Insites Web site, my main concern was file size. Although this site was a
project of our own undertaking, and would not come under the scrutiny of a client, we used
the same rough-and-comp approach to ensure that we thoroughly explored the possibilities
for our own branding in a similar fashion. As I envisioned the site, the main background of
the interface would consist of a large raster graphic that would add a great deal of size to the
Flash file. The upper and lower portions of the interface would be built in vector to accom-
modate navigation and so on. To avoid further bloating the file size, I focused my efforts on
using symbols wherever possible. This included reusing simple shapes such as rectangles,
lines, and circles within the upper and lower interface bars. Although these areas of the
interface appear to consist of 13 gray rectangular shapes, each was derived from a singular
symbol. If some rectangles needed to be a different color or size, I didn’t draw another. (This
is what eventually causes the file size of a Flash movie to inflate.) Instead, I simply used
instances of the same symbol, while changing the tint (in the Effect Panel) and size (in the
Info or Transform Panel) of the instance. The advantage of this method is that the final movie
needs to load only 1 shape during playback, rather than 13 different shapes of various colors
and sizes. I used the same technique with lines. Everywhere a line appears, no matter what

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 366

367Chapter 13 ✦ Designing Interfaces and Interface Elements

color or size, it’s always an instance of the same symbol. Changes are only made to each par-
ticular instance, by using the Effect panel to modify the tint color and by using the Info panel
to modify the length. By paying close attention to details such as this, many design
headaches can be eliminated from the process. Thus, I end up with three optimized designs
that are ready to be refined and built out.

Comprehensives
Once a rough has been chosen, we move onto the comprehensive phase. In this stage, we
develop three new designs that have their aesthetic roots based in the stylistic elements of
the rough. The only variance is the way in which these elements are structured. Using the
symbols that I’ve already created, I shift the layout around and come up with three distinctly
different renditions of the same basic theme. In this phase, we have already locked down
the visual feel of the site, and we are developing options to offer the client further choices for
the way in which that feel will be executed. A comprehensive can be thought of as the peak
of the Web site, where animation ceases and the full interface is revealed in all its glory.

The following figure is a view of the source .FLA for the completed Design Insites Web site.
Note how many layers appear in the Main Timeline, yet how many more are obscured — as
evinced by the scroll bar to the far left of the timeline. In this shot, the playhead is halfway
to the peak of the interface animation.

Continued

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 367

368 Part II ✦ Creating Flash Graphics

Continued

I use layers to design the basic levels of the interface elements, so that when it comes time
to animate the site, everything is organized on it’s own layer and ready for movement
and/or functionality. As I add elements to the timeline, each layer is labeled in order to pro-
vide clarity for the execution of the animation process. At the end of this phase, I will have
a series of layers with one keyframe on each layer. Each keyframe consists of a single sym-
bol that makes up a different part of the interface.

Build out
After our client has chosen one of the three comprehensives, we begin the process of
Flashing the interface. In this phase, we add motion and functionality to the site design.
Because I’ve placed each element of the layout on a different layer, it’s easy for me to now
animate each symbol so that the design will move and manifest into the peak design that
I’ve created. It is almost like deconstructing the interface, so that it may reconstruct itself
through animation when played back. I typically insert a set of new keyframes about 100
frames deep in my Flash timeline to be the predetermined peak moment when the site will
have achieved its full manifestation. I then proceed to set the properties for the symbol
instances at frame 1. This is the very beginning of the animation, where the interface begins
to manifest itself. Usually, I set items to have an alpha value of 0, a tint value similar to that
of the background, or — if I want the element to slide into place — a position off stage. After
I create my Motion Tweens for each animated element of the interface, I set values for eas-
ing in the Frame Panel to ensure fluid motion of each symbol. For aggressive and energetic
interfaces, I usually have elements ease in and use short Motion Tweens to simulate fast
movement. For calmer, more relaxed interfaces, I have elements ease out and use longer
Motion Tweens to simulate conservative motion. These techniques are, of course, com-
pletely subjective, and each project may follow a different style and/or feel. Of course,
some interfaces may not require animation at all, and some interfaces may only use Flash
for its implementation of functionality through ActionScripting.

Now that we have a semianimated site, with a key moment in time acting as the peak of the
interface, we begin developing content sections either within the main movie (using scenes)
or externally for sections that will be loaded into the main movie (using loadMovie). The
Design Insites interface requires the use of loadMovie to introduce additional content into
the host Flash movie. Thus, the steps that were pursued during the design and build out pro-
cess differed from the normal process. The navigation and content windows for the Design
Insites Web site were intended to consist of draggable panels, and would be externally
loaded into the host movie to avoid bloating it’s file size. But rather than design the naviga-
tion panel and the content window blindly in a separate movie file, I created them on their
own layers within the host movie. This working method enabled me to see how they would
appear aesthetically within the main interface. During build out, I simply copied the frames
being used by the navigation and content panels and pasted them into their own Flash file,
which was then saved out as a separate .SWF file to be externally loaded using button trig-
gers in the main movie. By copying and pasting the frames, I was able to retain all position-
ing or animation properties they possessed while in the main movie.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 368

369Chapter 13 ✦ Designing Interfaces and Interface Elements

After the layout was completed and the file structures established for the externally loaded
interface elements (the navigation and content windows), we began ActionScripting to
make everything function, such as the navigational elements or the loading of the external
.SWF’s into the host movie.

Within the upper navigation panels of the main movie, drop-down menus were utilized to
control audio, offer downloads, and provide site updates. These are implemented as movie
clips that begin with an empty frame on keyframe one of their individual timelines. This
allows them to be initially invisible in the interface, and to become visible only when their
respective navigation buttons are rolled over. Using drop-down menus is an effective way to
organize an interface because they avoid cluttering the main GUI. Considerations such as
these are important for providing an intuitive interface that is easily navigable and that
doesn’t overwhelm the user with too many options at once.

Author’s Note: For more information on loading external .SWF files with the loadMovie
action, see Chapter 20, “Sharing and Loading Assets.”

Reflection
Interface design within Flash concerns two factors: (a) how effectively users complete tasks
(in other words, comprehend content), and (b) how well-represented the content is aes-
thetically. Flash 5 has accelerated our ability to create new forms of advanced interactive
environments. Without a fundamental understanding of interfaces in general, however, it
can be difficult to make these environments become a reality. Our current understanding of
interface design, usability, and layout in non-Web–based interfaces can be applied and
expanded to maximize the impact and comprehension of information on the Web. To take
full advantage of Web efficiency, it is important to explore the use of guidelines, develop
new methods of interactivity, and push beyond the existing boundaries of conventional
interface design.

“I came across Flash when viewing Gabocorp.com — which was one of the first Flash sites. I set forth to pur-
chase the program and engulf myself in its powerful ability to deliver a new level of interactivity and atmo-
sphere,” says Eric Jordan of his indomitable pursuit of Flash. In the year that he graduated from San Clemente
High in southern California, Eric says that, “The most memorable movie was Mission Impossible — which,
through its use of futuristic interfaces, actually greatly influenced my design style.” Eric’s personal site,
2advanced.com, was nominated for best interface at Flash Forward 2000, featured in the launch issue of
CreateOnline Magazine: The Web Designers Bible, and has received various design awards throughout the
past year. Other sites that he has worked on include www.centrata.com, www.createlabs.com, and
www.cyberspaceguide.com. Eric says that his single most favorite thing is to “turn out the lights, boot up
the system, and pursue the creation of the ultimate user experience.” This tutorial is a reflection upon the
general process that led to the interface design for www.designinsites.com.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 369

370 Part II ✦ Creating Flash Graphics

Adding Navigation Elements to the
Main Timeline

In the last section, we created a Flash movie timeline for a computer parts Web site.
We inserted content placeholder for the welcome, services, and contactInfo sections
of the timeline, and we made a Movie Clip with product graphics to place in the prod-
uct section. However, we had no way of actually getting to any section except the
welcome frame. In this section, we create a menu that will control the position of the
playhead on the Main Timeline.

Creating text buttons for a menu
In this part of the exercise, you make menu buttons that will enable the user to nav-
igate to the different areas of the Flash movie.

1. On the Main Timeline of your mainMovie.fla movie, add a new layer and
rename it menu. On this layer, we create text buttons to navigate the site.

2. Insert a keyframe on frame 10 of the menu layer. Select the Text Tool, and,
with a 16-point Verdana font face, type the word Home. Place this text under-
neath the company logo graphic, on the left-hand side of the Stage (see
Figure 13-10 for placement).

Figure 13-10: The homeButton instance will always take us
to the welcome area of the site.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 370

371Chapter 13 ✦ Designing Interfaces and Interface Elements

3. With the Arrow Tool, select the Home text block. Press F8 to convert this text
into a symbol. In the Symbol Properties dialog, name the symbol homeButton.
Assign it a Button behavior.

4. Now we need to add a Hit state to the homeButton timeline. By default, Flash
will use the last frame of a Button symbol timeline for the Hit state, unless
content is added to the Hit state keyframe. Double-click the homeButton
instance on the Main Timeline to switch to Symbol Editing Mode.

5. Select the Hit frame of Layer 1 on the homeButton timeline, and press F7 to
insert an empty keyframe.

6. Click the Onion Skin Outlines button in the timeline window toolbar. This
enables you to view the previous frames of the homeButton timeline, as
shown in Figure 13-11.

Figure 13-11: Onion skinning enables you to accurately
align the contents of several keyframes.

7. Select the Rectangle Tool, and draw a filled rectangle that covers the same
area of the Home text block. You can use any fill color because the user never
sees the Hit state. Your button’s timeline should resemble the one shown in
Figure 13-12.

3515-3 ch13.f.qc 1/18/01 3:52 PM Page 371

372 Part II ✦ Creating Flash Graphics

Figure 13-12: The Hit state defines the “active” area of the
Button instance in the movie. If the user’s mouse pointer
enters this area, then the Over frame of the Button will
be displayed.

8. Next we add an Over state to the homeButton, so that the user knows it’s an
active button. Select the Over frame of Layer 1, and press F6. This copies the
contents of the previous keyframe into the new one. Select the Home text block
with the Arrow Tool, and change the fill color to blue. You can also turn off
Onion Skin Outlines at this point.

9. Return to the Main Timeline of your movie, and save your Flash movie file.
Select Control ➪ Test Movie to test the states of the homeButton.

You can also use Control ➪ Enable Simple Buttons to preview the graphical
states of a Button instance.

10. Now we put an action on the homeButton instance. Select the homeButton
instance, and open the Actions Panel. In Normal Mode, double-click the
Go To action in the Basic Actions booklet. Flash automatically adds the
on(release){} code to store the Go To action, in the right-hand Actions list.
In the parameter area of the Actions Panel, uncheck the Go to and Play option.
In the Type drop-down menu, select Frame Label. In the Frame drop-down
menu (located at the end of the field), select welcome. Your Actions Panel
options should match those shown in Figure 13-13.

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 372

373Chapter 13 ✦ Designing Interfaces and Interface Elements

Figure 13-13: With these actions,
the homeButton instance will move
the Main Timeline playhead to the
welcome frame label.

11. If we test our movie at this point, our homeButton won’t do anything — our
playhead is already on the welcome frame label. Let’s add a button for each
section on the site. Repeat Steps 2 to 8 for each section name in our movie. You
should end up with four buttons: Home, Products, Services, and Contact Us.

12. Repeat Step 10 for each new button instance. For each button instance, change
the Frame drop-down menu selection to match the name of the button’s area
(for example, gotoAndStop(“products”); on the productsButton).

13. Save your Flash movie, and test it (Ctrl+Enter or Command+Enter).

When you test your Flash movie, you should be able to click each button to go to
each area of the movie. If a button isn’t functioning, double-check the code on the
instance. Make sure that each Button instance has a Button behavior in the Instance
Panel. In the next section, we add buttons to the productMovie Movie Clip symbol,
so that the user can browse the pictures of the computer parts.

Browsing the product catalog
In this section, we go inside the productMovie symbol and add some navigation
buttons for our product catalog.

1. From the Main Timeline of our mainMovie.fla, double-click the productMovie
instance on frame 20 of the productMovie layer. Flash switches to Symbol
Editing Mode.

2. Make a new layer on the productMovie timeline, and rename the layer to
buttons.

3. Open the Buttons Library (Window ➪ Common Libraries ➪ Buttons). In the
Buttons Library window, double-click the (circle) Button Set folder. Drag the
Circle with arrow Button symbol to the productMovie Stage. Place the Button
instance below and to the right of the monitor_1 Graphic symbol.

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 373

374 Part II ✦ Creating Flash Graphics

4. With the Circle with Arrow instance selected, open the Actions Panel. Double-
click the Go To action to add this action to the Actions list. In the parameters
area of the panel, change the Type menu option to Next Frame. This action
moves the productMovie playhead one frame forward with each mouse click
on the Button instance.

5. With the Circle with Arrow instance selected, press Ctrl+D (Command+D) to
duplicate the instance on the Stage. Move the duplicate instance to the left
of the original arrow button. With the Arrow Tool selected, enable the Rotate
modifier in the Toolbar. Rotate the duplicated button 180 degrees. Press the
Shift key while rotating, to lock in 45-degree steps.

6. Select both arrow buttons, and align them horizontally to each other, as
shown in Figure 13-14, by using the Align Panel.

Figure 13-14: Position the arrow Buttons underneath the
product graphic.

7. Select the left arrow, and open the Actions Panel. Select the nextFrame();
action in the Actions list. In the parameter area, change the Go To action’s
Type menu option to Previous Frame.

8. Save your Flash movie, and test it. Click the Products button, and try the new
navigation arrows for your product catalog.

You can further enhance your presentation by adding more information in the
productMovie Movie Clip symbol. After the following Expert Tutorial, we add a
scrolling text window to the catalog that displays text descriptions of the products.

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 374

375Chapter 13 ✦ Designing Interfaces and Interface Elements

Expert Tutorial: Interface Usability,
by Merien Quintus Kunst

This tutorial’s focus is on the use of Flash as a tool for creating straightforward, serviceable,
functioning Web sites. In the past year, Flash design has been under attack by Web usabil-
ity experts. Although bad interface design is by no means limited to Flash movies, planning
and designing interfaces should be a primary concern before building Flash movies.

Looking at Flash
For the last two years I have been running the Quintus Flash Index, which is a rather large
collection of links to Flash sites. The reason I started it was simple enough: At the time, there
weren’t any decent collections of Flash work on the Web. Yet, I wanted to check sites out to
see what Flash could do. So I went searching, exploring the world of Flash. As I explored, I
decided to bookmark all the Flash sites that I came across. I ended up with a categorized,
static list of about 150 links, which I then posted as a Web page, thinking that others might
find it useful. Suddenly, I was getting 150 visitors a day to my Web site, which is really not
bad for a 1-page site. As part of my internship, my supervisor suggested that I implement the
site in ASP, add some ding-dongs, and put it online like that. So I did — and it took off. Today,
the QFI has links to over 2,200 Flash sites, and (amazingly) over 12,000 visitor comments.

The comments area was just something I added because I thought it would be a nice fea-
ture for people to show their approval or disapproval of a site, which would be very useful
for the developers. At first, I posted a lot of comments myself, trying to inspire people to fol-
low my example. I focused mainly on overall impression and user friendliness, not really
from an expert point of view, but rather like a regular user. However, the more sites I
reviewed, the more I found similar errors and mistakes that would confuse visitors. Over
time, many other people at my site also helped the site developers by indicating what ele-
ments of the sites were unclear, confusing, or even irritating.

Usability: The user experience
Consequently, I have had the opportunity to learn a lot about Internet usability and inter-
face design. I found that many the site critiques on the Quintus Flash Index could be traced
back to basic usability design rules. Not a big surprise, but rather a very clear indication of
the value of some of these rules.

Usability may sound mystifying to some people, and some best-selling books may cham-
pion the obscurity of this subject, but there’s really nothing too complex about it. Usability
is the extent to which a system supports its users in completing their tasks efficiently, effec-
tively, and satisfactorily — which may also include the experience of aesthetic pleasure. On
the Web, this leads to topics such as navigation, speed, clarity, and readability. The real trick
about usability is the horrible task of letting it seep through in your design. Usability extrem-
ists call out for Web sites with barely any graphics, using only default browser fonts (and
default colors), and certainly no plug-ins.

But the fact is that Flash is one of the best design tools to effectively break most of those
extreme rules of usability — and in a very short time. This tutorial attempts to steer both
beginning and experienced Flash designers toward a more responsible use of Flash.

Continued

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 375

376 Part II ✦ Creating Flash Graphics

Continued

While this may sound a bit loaded, you should realize that, by now, quite a few sites have
banned the use of Flash entirely — simply because they had the unfortunate experience of
having Flash implemented on their behalf, but in the wrong way. When Flash is used the
wrong way, it creates havoc. However, the same can be said of HTML. (The designers
should have been blamed, rather than the tool!) So, to help Flash designers avoid making
the same errors all over again, I’ve written out some pointers, highlighting many of the
common errors I’ve encountered when reviewing Flash sites. I hope these hints will be use-
ful to you.

Flash is a tool, not a platform
Flash sites are either sites with Flash elements or 100 percent Flash sites. The latter is a very
decent option for small sites such as personal sites or sites that are meant purely for enter-
tainment by animation and sound. But you may want to develop a more elaborate site with
features such as a forum, chat room, response forms, user registration, content manage-
ment, or a search option. While doing this strictly in Flash is certainly a great technical chal-
lenge, it’s not a very wise decision. The fact is that Flash is just a tool that offers a means for
designers to turn their ideas into reality. It is not a platform on which to build a Web site.

The best sites out there combine Flash with other techniques and formats such as DHTML,
streaming video, MP3, Java, and the common image formats such as JPEG and GIF, as well
as any other medium that will offer the needed content in the most appropriate way to the
visitor. The magic rule is to consider every possible medium for each element you want to
develop. If you understand the strengths and weaknesses of Flash, you can apply it where
it is suitable, or decide when it may not be the best solution.

Button hit area: Number 1 mistake
The single most common error should be mentioned first. When a text button is created, it
is essential that the hit area frame of the button be filled with a solid shape in roughly the
same size as the button text field. The effect of an empty hit area frame is a very jerky reac-
tion of the mouse pointer. Often, such buttons require surgical precision to simply use the
button. When creating any button, it is best to choose a filled shape that covers the maxi-
mum dimensions of your button and put it in the hit area frame of the button.

Author’s Note: Flash 5 adds a new option for Static Text fields in the Character Panel: URL
links. If you need simple text buttons, then you don’t need to make a Button symbol — sim-
ply specify a URL in the Character Panel. You won’t experience hit area problems with this
URL-linked Static Text fields. For basic coverage of Button symbols, refer to Chapter 9,
“Checking Out the Library: Symbols and Instances.”

Font size, font type: Squint, ignore
Designers often choose to use a Flash movie to display textual content in their Web site or
presentation. Whenever large pieces of static text are involved, you should question
whether Flash is the best medium to present this information to your audience. The down-
side of embedding large text areas in your Flash movies is mostly an issue of legibility, but
there are also concerns about further processing of the information by the viewer.

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 376

377Chapter 13 ✦ Designing Interfaces and Interface Elements

Often, users aren’t prepared to read through pages of small, antialiased text, and usually
choose to skip this information — which may be vital information. One technique to solve
this problem in Flash 5 is offered in the form of Dynamic Text fields.

Dynamic Text fields are presented as aliased, selectable text that increases the legibility of
small fonts while providing a more useful way to present the text. That’s because this tech-
nique enables users to select an area of text and copy it to the clipboard. This is more user
friendly, because it provides better access to the information. Many visitors will want a way to
extract specific pieces of information. This technique enables them to store this information
wherever they want, exactly like copying text from HTML pages. (For more about Dynamic
Text fields, refer to Chapter 7, “Working with Text.”)

For large amounts of text, Flash is usually not the best medium, and other media, such as
HTML, plain text, Adobe Acrobat, or word processor documents, should be considered.
Think twice before you start pasting long passages of text into your Flash movie.

Menu look and feel: Is this a button?
To hang a painting you need a hammer and a nail (and a wall); to water plants you need a
hose. How about this one: To find a phone number, you need to start reading each page in
the phone book from page one until you reach the page where the wanted name is listed.
No? To view your favorite TV show, you zap to the right channel, watch 30 seconds of a
creepily familiar introduction video clip, and then the show starts. If you change the chan-
nel, but then come back again, you get to watch the introduction all over again. Does that
sound right? When you take the elevator, you just press any of the new symbols that are dis-
played on a huge array of buttons to learn what each does. You keep pressing them, one by
one, until you reach the right floor. Oh, and the buttons look like chewing gum stuck to the
wall. In fact, some of the buttons aren’t even buttons — that is gooey chewing gum that you
just stuck your finger in! Getting annoyed yet? Well, you’re not alone.

Usability is all about offering people something they are looking for. That means offering it
quickly, correctly, and with maximum accessibility. On a Web site, accessibility depends on
factors such as loading times, user requirements, and navigation. Navigation breaks down
into buttons, structure, and guidance. Flash offers wonderful tools to create menus, navi-
gation tricks, and really exotic buttons. Everyone who is working with Flash will think about
interfaces such as an interactive phone for a menu, or a tree, a remote control, body parts,
cubes, balls, subway maps, giant fruit baskets, planetary models — but remember, no mat-
ter how cute or cool or ingenious your interface might seem to you, it doesn’t work if it
doesn’t work.

Not many people think, “Gray, square buttons . . .”
Yet, the gray, square buttons are what people know and understand, just like blue, under-
lined text. Not very exciting, so we need to work out how to merge our galaxy model (or
fruit basket) with the user’s idea of a menu, and motivate them to navigate through the
Web site with it. A solution might be to reconsider your ideas and shape them into a more
recognizable menu scheme, making your menu items look a bit more like classic buttons
and placing them on the top, side, or bottom of the screen.

Continued

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 377

378 Part II ✦ Creating Flash Graphics

Continued

A less drastic solution might be to have people test your interface. This way, you could see
how (or if) they figure out that those thingies are functional buttons, and then make design
improvements based on that information.

A menu design can often be improved by adding pointers, like small pop-ups with your but-
tons, or a help function that delivers a quick explanation. You should expect that Web site
visitors aren’t very patient, so make sure that a minimal effort is required to use your bril-
liant interface.

Finally, you won’t really be testing your navigation with people if you help them, as this will
make this a useless test — unless, of course, you also have an ingenious plan to be there to
help everyone that visits your site. If you want to design usable Web sites, you must be hard
on yourself — because your visitors will certainly be unforgiving of your self-indulgent design
lapses.

Some pointers based on problems I often recognize in Flash menus:
✦ Transitions should be short. It doesn’t help if the needed segment takes 10 seconds

or more to unfold . . . only to show submenu items.

✦ Try to have the current location highlighted in the menu; this visual cue helps
people figure out where they are.

✦ Avoid moving or rotating buttons. Even buttons that stop when you move the mouse
over them are often very confusing. Slow movement is sometimes acceptable.

✦ Have buttons show their function. Sometimes, buttons don’t reveal their function
until they’re clicked, which is not user friendly. If a square shape takes me to the
links page, does the triangle shape mean I can send an e-mail? What about the
donut? Good practice is to use the right icons, or add text to your buttons.

Skip intro: All the way
If you really want an animated Flash introduction, start it with a SKIP button. In general,
don’t make intros. They can be interesting for some entertainment sites, or designer agen-
cies, but it’s not right to assume that:

✦ The visitor wants to wait for the loading of the intro

✦ The visitor will be entertained for 30 seconds

✦ The visitor will then wait for the first page to load

✦ The visitor will stay long enough to access your information

Intelligent, clear, user-friendly employment of Flash on your Web site is a much better ref-
erence than an indulgent intro that takes too long to load. Furthermore, if that visitor
decides to return to your site, it’s not very useful to force them through that intro again.

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 378

379Chapter 13 ✦ Designing Interfaces and Interface Elements

The only fully justified intro is a light one that entertains the visitor while the main Web site
loads. But visitors with fast connections should still be able to skip it—all of it. I could take the
next ten pages to tell you the long, long story about how the Flash intro phenomenon started,
but that’s not very useful, either. However, if I were to tell that story, at least you’d have the
mechanism—by turning the page— to move on to the real content. The best advice on this
subject is to consider what, if any, added value an intro animation will give to your site.

Finally, here’s one option that’s not really used often enough. If you really feel driven to cre-
ate animations that delight and amaze, why not create a separate area of your site for Flash
experiments? In such an area, there is no reason to hold back because in that context, your
animation is the content, rather than an impediment to content.

Browser navigation: Back, Help!
It doesn’t seem likely that Flash will ever be well enough integrated into the browsers to
eliminate this problem: Using browser navigation buttons is disastrous! When someone’s
found their way to the information they needed from your Flash site, and then decides to
hit the Back button to return to the previous segment, they usually end up somewhere
unexpected.

A similar annoying result occurs when a visitor attempts to bookmark a particular moment
in your Flash movie — the bookmark will only return the visitor back to the start of your
Flash movie.

Although a self-made Back button can be included in your Flash movie, visitors aren’t likely
to get used to such features very quickly. Your regular visitors may get the hang of it, but
seeing two buttons with the same label (that is, the browser’s Back button, plus your own
Back button) may confuse first timers.

To facilitate bookmarking of specific parts of the Flash content drastic measures would be
required: Split your movie into several segments, and distribute them over Web pages that
can be individually bookmarked. Usually this effort is worth the extra work, because it has
additional advantages. Of course, it saves visitors the drag of navigating back to the point of
interest every time they visit the site. However, it also helps improve the speed of your Web
site. Plus, if you update just one of the movies, you’ll be working on a less complex .FLA.
And, finally, when the update is completed, caching can still be used to retrieve the other
pages. Only the changed page will have to be reloaded from the server.

Site statistics: Split up your movies or go blind
The method indicated previously to facilitate the bookmarking of your Flash pages could
also solve the analysis problem of fully Flashed sites. Because a single movie is grabbed
from the Web server, it’s virtually impossible to tell what people are doing inside your site.
What segments attract most visitors, what are the common exit points, and which pages are
never viewed? Web site statistics are a valuable developer tool for Web site improvements
and visitor analysis. Complex schemes can solve this problem, involving database logging
and/or posting to forms from within your Flash movies, which I do not discuss.

Continued

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 379

380 Part II ✦ Creating Flash Graphics

Continued

The easiest, if somewhat crude, way to generate proper statistics is by splitting your movie
into segments that reflect the structure of your site. This enables you to use classic tools to
view the statistics of your site, because every segment sits in it’s own HTML page.
Furthermore, this solution, when coupled with <META> tags, can also ensure that your Flash
site is properly represented among the search engines.

Use of sound: Music on demand
With every release, Flash delivers better support for sounds and music. The new support for
MP3 import in Flash 5, makes it even easier to balance quality sound with streaming and
small file sizes. Sounds can be used to add effects to navigation elements, create cool back-
ground music loops, or to offer sound samples to visitors. However, because many people
without audio available on their systems view the Internet, the best way to incorporate the
sounds with your Web creations is to make the sounds passive. Even if your guests have
sound on their system, it may not be turned on. If the experience of your movie depends on
the sound effects and music that come with it, tell everybody that they need to turn on their
speakers. If you use items such as a background loop, it’s thoughtful to make the sound
optional before your visitor starts loading the (often large) music files into your Flash. That
way those with sound-challenged systems won’t have to wait for it to download even
though they have no way to enjoy it.

Always consider whether Flash is the best way to offer your music items. In many cases,
other techniques (or technologies) may have better support. For example, if you want to
present a streaming audio clip, then you might want to use RealAudio instead of Flash. (See
Chapter 32, “Working with Audio Applications,” for alternate means of delivering sound in
concert with Flash. Methods for deploying sound with both Beatnik and the MP3 Player are
discussed in Expert Tutorials.)

Another setting that deserves mention is the volume of your sound clips. Test the audio ele-
ments in a movie with normal system volume, to ensure that it’s not too low or doesn’t
cause hearing discomfort.

It’s tempting to use sound bytes as a way to improve navigation. For example, a button that
tells you all about it’s functionality would be nice to add extra clarity to a menu. However,
as useful (and impressive) as this technique might be, don’t rely on it too much. As men-
tioned before, much of the Web population relies purely on the visual part of Web sites.

Print option: Will people understand?
Flash offers a great way to embed specific content into your Flash movie that can be sent
directly to a user’s printer. A common example for this technique is a small Flash banner
that sends a full-page advertisement to the printer when the user hits the print button in
the movie. It’s a nice way to avoid cluttering Web pages with sundry advertisement details,
but it’s also a way to offer any single- or multipage document (poster size images, spread-
sheets, background details) with the click of a small button. (For more information about
Flash printing capabilities, refer to Mike Richards’ Expert Tutorial, “Creating Printable Paper
Airplanes,” in Chapter 19, “Controlling Movie Clips.”)

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 380

381Chapter 13 ✦ Designing Interfaces and Interface Elements

Unfortunately, Flash printing is a functionality that’s quite new on the Web, and it’s a func-
tionality that can’t be properly explained in one or two words. So, if you choose to use this
feature, make sure to give a clear indication of its function, with button text similar to “Send
the details of this product to my printer” or “Print a full-page version of this image.”

Progress indicators: What’s going on?
This topic is easily dealt with. It comes down to this: Even though loading bars aren’t a
pleasant sight to look at (a funny or informational preloader is much better), some movies
give no indication of what’s happening during download. “Are we there yet?” For modem
users, this can be especially frustrating, because there is no way of knowing whether the
movie has ended, or the connection was lost, or the last bit is being loaded in the back-
ground. (A blank or frozen screen is not very entertaining either.) Progress bars are not the
most aesthetic solution. If they are designed properly, they’ll at least provide clarity about
loading time. Many good tutorials can be found online to help you create a reliable
progress indicator.

Obviously, the best loading scheme is one that goes unnoticed. But for heftier movies (or
really slow connections) a loading scheme and a progress indicator are needed. A great
solution is a small game or animation that also indicates progress (percentage). In case
you’re wondering, yes, Pong has been done, just like Memory, Simon Says, and Tic-Tac-Toe.
But you just can’t beat the classics!

Forms: Better let them know
Flash offers reasonable support to embed forms. Many elements, such as drop-down lists
and the use of the Tab button, don’t respond as they do in classic HTML forms. To get
around these problematic defaults, some clever ActionScript is needed.

Another problem worth mentioning is that forms in Flash aren’t always easily recognized as
forms. This is attributable to the two issues: The design of the form is rarely that of a classic
Web form, and users are not (yet) used to Flash forms. So, some help is required. Try
putting a blinking cursor in the first entry field, or, better yet, something like a big arrow that
says Please Use This Form, to reduce the chance that people will leave the page mystified.
(For more information about Flash forms, refer to Chapters 21, “Planning Code Structures,”
and 24, “Sending Data In and Out of Flash.”)

There are few examples on the Web in which Flash forms really use the specific advantages of
the Flash medium. Good examples are chat room applications with interactive characters and
interactive games that require keyboard input. One clear advantage of Flash is its capability to
make form posts without (re)loading a page. This is a feature that can be exploited in clever
ways, but consider the visitors’ expectations (based on classic HTML forms): Give clear feed-
back about post results after submission, or they’ll wait forever for a form to submit.

Conclusion: The Flash experience
This tutorial has addressed only a few of the many topics that are relevant to Flash devel-
opers who care about the user friendliness of their creations.

Continued

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 381

382 Part II ✦ Creating Flash Graphics

Continued

Although some of the topics may be very obvious, this is no guarantee that they aren’t eas-
ily overlooked. Flash has become so versatile that it’s hard to tell people how they should
use it, largely because it is used for so many different goals. The focus of this article has
been on the use of Flash as a tool for creating rather straightforward Web sites. These are
sites that want to inform, entertain, and maybe educate their visitors.

The most important concept to realize about Flash is that it really is just a tool. If you need to
create something, first think about what you want to make; then think about how you’re
going to realize it afterwards. It’s bad practice to assume that Flash is such a cool program
that it will be a good way to create anything that you might conjure. If the project has ele-
ments that would benefit from the features Flash offers, use it the best way possible. Again,
that doesn’t mean using all the imaginable tween effects that you can think of; it does mean,
however, thinking about the user experience you want to create.

That user experience is dependent on overall impression, entertainment value, ease of nav-
igation, loading times, and the sense of control by the visitor. These criteria pose quite a
challenge to the best designers and developers. At times, it may be boring or frustrating to
address these criteria, but in the long run, it will make your Flash masterpieces more
durable and appreciated.

Online reference
This tutorial wouldn’t be complete without some interesting links. To ensure that they
remain current, I’ve added an area to the Quintus Flash Index where you’ll find additional
information about this subject: www.quintus.org/use.

A native of Utrecht, Netherlands, Merien Quintus Kunst wins the prize for the most amazing name. He says
that his middle name is an old family tradition. In fact, it’s Latin for “fifth,” while his last name, Kunst, is
Dutch for art. So, we might expect him to know a thing or two about art and design. When he came of age,
he was rockin’ to Nature Boy by Primus, while the rest of Holland succumbed to Let The Beat Control Your
Body, by 2 Unlimited. Merien’s single most favorite thing to do is snowboarding. He also enjoys, “inline skat-
ing, buying CDs, my girlfriend, renting videos, being online, English and American literature, and modern art.”
Currently employed at BSUR Concepting & Communications Amsterdam, he’s also the man behind QFI, the
Quintus Flash Index —www.quintus.org— and has worked on many other sites, including www.sarah.nl
and www.vastned.nl. How did Quintus find Flash? “Like half the world, through www.gabocorp.com.
He introduced Flash to the masses.”

The topic of Flash usability has received a lot of press lately, particularly because
many Flash interfaces are considered experimental or nonintuitive to the average
Web user. In December 2000, Macromedia released a new section to their Web
site — Macromedia Flash Usability. You can read their usability tips and view
examples of interface design at:

www.macromedia.com/software/flash/productinfo/usability

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 382

383Chapter 13 ✦ Designing Interfaces and Interface Elements

Basic Text Scrolling
Continuing from our previous Flash movie example with the computer parts cata-
log, we demonstrate basic scrolling text using Motion Tween animation and Button
actions. We demonstrate this technique for one product in the catalog to get you
started.

1. In the mainMovie.fla from the previous section, double-click the productMovie
instance on the productMovie layer, located on the Main Timeline. Flash
switches to Symbol Editing Mode.

2. Add a new layer, and rename it scrollingText. On frame 1 of the scrollingText
layer, draw a filled rectangle shape (with any fill color) to the right of the
product graphic, as shown in Figure 13-15. The size of the rectangle should
match the size of the text area you wish to display in the scrolling text win-
dow. The rectangle shape will become a Mask Layer inside another symbol
for the text.

3. Select the rectangle shape, and press F8 to convert it into a symbol. Give the
new symbol the name scrollingText, and keep the default Movie Clip behavior.

4. Double-click the instance on the Stage, and Flash switches to Symbol Editing
Mode. The timeline of the scrollingText symbol will be displayed.

Figure 13-15: This rectangle will be used to mask the text
in our scrolling text window.

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 383

384 Part II ✦ Creating Flash Graphics

5. Rename Layer 1 to textMask. Add a new layer, rename it text, and move this
layer below the textMask layer. Switch the viewing mode of the textMask to
Outline Mode by clicking the colored square at the right end of the textMask
layer options. Also, lock the textMask layer so that you won’t accidentally
alter its shape or position. The outline of the shape will indicate where our
text should be placed.

6. Select the first frame of the text layer, and, using the Text Tool, insert the text
that follows into a Static Text block, as shown in Figure 13-16. You can copy
and paste this text from the monitor_1_text symbol in the content.fla Library.
Keep the right margin of the text block at the right edge of the outlined rectan-
gle in the textMask layer, and don’t worry about the text that extends below
the Stage edge:

This generic flat-screen CRT 22” monitor is optimal for
intense graphics production, ideal for desktop publishing,
video, and 3D art professionals. With a premium dot pitch and
a large viewable area, this monitor can handle all the
demands of accurate color-calibrated output.

Viewable area:

21”

Dot pitch:

.23 mm

Refresh rates:

640 x 480, 67 Hz
800 x 600, 85 Hz
1024 x 768, 85Hz
1152 x 870, 75 Hz
1280 x 1024. 75Hz
1600 x 1200, 75Hz

7. Select the Static Text block you created in Step 6, and press F8. This new sym-
bol will be named monitor_1_text, and will have a Graphic symbol behavior.

8. Now we create a Motion Tween over ten frames. We add buttons that will
move the playhead one frame with each click. Therefore, nine clicks will get
us to the end of the text. Select frame 10 in both the textMask and text layers,
and then press F5. Then, select just the frame 10 of the text layer, and press
F6. Right-click (or Ctrl+click on the Mac) any frame between frames 1 and 10
of the text layer, and select Create Motion Tween from the contextual menu.

9. On frame 10 of the text layer, select the monitor_1_text instance, and move
the instance toward the top edge of the Stage, until the bottom edge of the
text aligns with the bottom edge of the mask outline, as shown in Figure 13-17.
For greater accuracy, use the up arrow key (with the Shift key pressed) to
move the instance.

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 384

385Chapter 13 ✦ Designing Interfaces and Interface Elements

Figure 13-16: The text in Step 6 will be too lengthy to keep
within the area of the rectangle outline. Don’t worry — we’ll
be adding scroll buttons that will enable the viewer to see
the text outside of the mask.

Figure 13-17: By aligning the contents of the end keyframe,
you are setting the lower limit of the scrolling window.

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 385

386 Part II ✦ Creating Flash Graphics

10. To complete the masking effect, right-click (or Ctrl+click on the Mac) the label
name for the textMask layer. Select Mask from the contextual menu. This auto-
matically nests the text layer with the textMask layer.

11. Now, add two Button instances to this timeline, just like we did in the product
Movie symbol. Create a new layer named buttons, and place it above the
textMask layer. Open the Buttons Library (Window ➪ Common Libraries ➪
Button), and drag an arrow button from the Library on to the scrollingText
Stage.

12. If necessary, rotate the arrow instance so that it points upwards.

13. With the arrow instance selected, open the Actions Panel, and add a Go To
action, changing the Type to Previous Frame. The Actions list should read:

on(release){
prevFrame();

}

14. Select the arrow instance and duplicate it (Ctrl+D or Command+D). Move this
instance below the original arrow instance, and rotate the arrow so that it
points downward. With the instance selected, open the Actions Panel. Select
the prevFrame() action in the Actions list, and, in the parameters area,
change the Type menu to Next Frame. The Actions list should now read:

on(release){
nextFrame();

}

15. Now we should draw a visual frame from our scrolling text area. Create a new
layer, and rename it frame. Place this layer underneath the buttons layer, but
above the textMask layer. Draw an unfilled rectangle with a 1-point black stroke,
just slightly larger than the original rectangle used to create the textMask.

16. Finally, we need to stop this timeline from automatically playing. Add a new
layer, and rename it actions. Place this layer above the buttons layer. Select
frame 1 of the actions layer, and open the Actions Panel. Add a Stop action
(stop();) to this keyframe, as shown in Figure 13-18. Optionally, you can
add a frame comment of //stop in the Label field of the Frame Panel.

17. Go back to the productMovie symbol timeline, and select frame 2 of the
scrollingText layer. Press F7 to add a blank keyframe. This restricts
the scrollingText layer to the first keyframe, for the monitor_1 graphic.

18. Save your Flash movie, and test it. You should be able to click the Products
button, and scroll the description text for the first monitor graphic in the
catalog.

To add more descriptions for each product, simply duplicate the scrollingText
symbol, change the text (and alignment) in the duplicate symbol, and place it on
the corresponding keyframe in the productMovie symbol. Of course, this example
is just a functional prototype with placeholder graphics. The next step in real pro-
duction would be to finesse the artwork, and to add transitional effects between
each area of the movie. Perhaps some sound effects would be useful, too. The next
chapter introduces Part III of the Flash 5 Bible, “Sound Planning.”

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 386

387Chapter 13 ✦ Designing Interfaces and Interface Elements

Figure 13-18: The complete scrollingText timeline

Summary
✦ Before you can start to create an interface in Flash, you need to have a plan

for your Flash movie timeline. Create an organizational chart outlining the
sections of the presentation.

✦ Determine your Flash movie properties (frame size, frame rate, and back-
ground color) before you undergo production in Flash.

✦ If you don’t have final art for a Flash production, you can still create a func-
tional prototype of the presentation using placeholder graphics. When the
final artwork is ready, replace the placeholder graphics with the final artwork.

✦ You can create simple slide shows or product catalogs using sequential
keyframes and buttons with nextFrame() and prevFrame() actions.

✦ The Hit area of a text-based Button symbol should always be defined with a
solid shape.

✦ Basic nonscripted scrolling can be added to a presentation with simple Motion
Tweens and buttons using nextFrame() and prevFrame() actions.

✦ ✦ ✦

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 387

3515-3 ch13.f.qc 1/18/01 3:53 PM Page 388

Understanding
Sound for Flash

This chapter introduces the basics of digital audio for
Flash. Properly implemented, the integration of sound

with your Flash project adds dimension to your creation.
That’s because sound introduces another mode of sensory
perception. Coordinated with visual form and motion, sound
deepens the impact and can even enhance the ease of use of
your Flash creation. With careful planning and attention to
technical detail, sound can be leveraged to great advantage.
Rather than add sound as an afterthought, we encourage you
to create a seamless multisensory experience for your audi-
ence. In this chapter, we explain sample rate and bit resolu-
tion, and the difference between the two. We also discuss how
audio files sizes are calculated, and the audio formats that are
supported by Flash.

Basics of Sampling and Quality
Before you begin integrating sound with your Flash project,
it’s important to understand the basics of digital audio. To
help you with this, we’ve dedicated this chapter to an intro-
duction to sampling, bit resolution, and file size — and the
relevance of these topics to sound in Flash 5.

What is sound?
Sound, or hearing, is one of our five principal sensations; it’s
the sensation that’s produced when vibrations in the air strike
the aural receptors located within our ears. When we hear a
sound, the volume of the sound is determined by the intensity
of the vibrations, or sound waves. The pitch that we hear —
meaning how high (treble) or low (bass) — is determined by
the frequency of those vibrations (waves). The frequency of
sound is measured in hertz (which is abbreviated as Hz).

1414C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Sampling and quality

Distinguishing
sample rate from
bit resolution

Calculating audio
file sizes

Working with audio
formats

✦ ✦ ✦ ✦

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 391

392 Part III ✦ Sound Planning

Theoretically, most humans have the ability to hear frequencies that range from 20 to
20,000 Hz. The frequency of the sound is a measure of the range of the sound — from
the highest high to the lowest low. It’s important to note here that, when starting to
work with sound, the most common error is to confuse the frequency of the sound
with the recording sample.

What you should know about sound for Flash
When integrating sound with Flash, a number of factors affect the final quality of
the sound and the size of the sound file. The quality of the sound is important
because it determines the aesthetic experience of the sound, while the file size is
important because it determines how quickly (or not) the sound will arrive at the
end user’s computer. The primary factors that determine the quality and size of a
sound file are sample rate and bit resolution.

Sample rate
The sample rate, measured in hertz (Hz), describes the number of times an audio
signal is sampled when it is recorded digitally. In the late 1940s, Harry Nyquist and
Claude Shannon developed a theorem that determined that, for optimal sound qual-
ity, a sampling rate must be twice the value of the highest frequency of a signal. Thus,
the higher the sample rate, the better the audio range. Generally, higher sample rates
result in a richer, more complete sound. According to Nyquist and Shannon, in order
for the audible range of 20 to 20,000 Hz to be sampled correctly, the audio source
needs to be sampled at a frequency no lower than 40,000 Hz, or 40 kHz. This explains
why CD audio — which closely resembles the source sound — is sampled at 44.1 kHz.

A sound sample refers to one “analysis” of a recorded sound, whereas a sound file
refers to the entire collection of samples recorded, which comprise a digital
recording.

The less a sound is sampled, the further the recording will deviate from the original
sound. However, this tendency toward loss of the original quality of the sound yields
one advantage: When the sample rate of a sound file is decreased, the file size drops
proportionately. For example, a 300KB, 44.1 kHz sound file would be 150KB when
saved as a 22.05 kHz file. See Table 14-1 for more details on how sample rate affects
quality.

Table 14-1
Audio Sample Rates and Quality

Sample Rate Quality Level Possible Uses

48 kHz Studio quality Sound or music recorded to digital medium
such as miniDV, DAT, DVCam, and so on

44.1 kHz CD quality High-fidelity sound and music

Note

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 392

393Chapter 14 ✦ Understanding Sound for Flash

Sample Rate Quality Level Possible Uses

32 kHz Near-CD quality Professional/consumer digital camcorders

22.05 kHz FM radio quality Short, high-quality music clips

11.025 kHz Acceptable for music Longer music clips; high-quality voice; sound
effects

5 kHz Acceptable for speech “Flat” speech; simple button sounds

Because the native playback rate of all audio cards is 44.1 kHz, sound that is destined
for playback on any computer should be a multiple of 44.1. Thus, we recommend sam-
ple rates of 44.1 kHz, 22.05 kHz, and 11.025 kHz for any use on computers. (Although
sample rates that deviate from the rule of 44.1 may sound fine on your development
platform, and may sound fine on many other computers, some may have problems.
This simple rule will go a long ways toward reducing complaints of popping and dis-
torted sound.) This becomes more important with Flash. When Flash imports sounds
that are not multiples of 11.025, the sound file is resampled, which causes the sound
to play at a lower or higher pitch than the original recording. This same logic applies
to sound export, which is discussed later in this chapter. Finally, although Flash menus
list sample rates as 11, 22, and 44, these are abbreviations for the truly precise sample
rates of 11.025, 22.05, and 44.1 kHz.

Bit resolution
The second key factor that influences audio quality is bit resolution (or bit depth).
Bit resolution describes the number of bits used to record each audio sample. Bit
resolution is increased exponentially, meaning that an 8-bit sound sample has a
range of 28, or 256, levels, while a 16-bit sound sample has a range of 216, or 65,536,
levels. Thus, a 16-bit sound is recorded with far more information than an 8-bit
sound of equal length. The result of this additional information in a 16-bit sound
is that background hiss is minimized, while the sound itself is clearer. The same
sound recorded at 8 bits will be noisy and washed out.

Reducing file size
Another point to remember is that the 16-bit sound file is twice the size of the same
file saved at 8-bit quality. This is due to the increase in the amount of information
taken to record the higher quality file. So, if your sound is too big, what can you do?
Well, a sound that’s been recorded at a higher bit resolution can be converted to
a lower bit resolution, and a sound with a high sample rate can be converted to a
lower sample rate. Although a professional studio might perform such conversions
with hardware, either of these conversions can also be done with software. For
more information on down sampling and conversion, refer to Chapter 32, “Working
with Audio Applications.”

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 393

394 Part III ✦ Sound Planning

If you’re having difficulty understanding the significance of bit depths yet are familiar
with the intricacies of scanning photographic images, consider the difference
between an 8-bit grayscale image and a 24-bit color image of equivalent dimensions.
The file size for the 8-bit grayscale image (such as a black and white photograph) is
much smaller than the 24-bit color image (such as a color photograph). The gray
scale image doesn’t have as much tonal information—only 256 levels of gray—yet
the 24-bit color image records a range of 16.7 million colors. Unlike photographs,
sound samples don’t require anything close to a range of 16.7 million values. Sixteen-
bit sound samples deliver a dynamic range of over 64,000 values, which is more than
the human ear can detect.

Table 14-2 lists the various bit depths of sound along with their quality level and
possible uses.

Table 14-2
Audio Bit Resolution and Quality

Bit Depth Quality Level Possible Uses

16-bit CD quality High-fidelity sound and music

12-bit Near-CD quality Professional/consumer digital camcorder audio

8-bit FM radio quality Short, high-quality music clips

4-bit Acceptable for music Longer music clips; high-quality voice; sound
effects

Refer to Figures 14-1 and 14-2 for a comparison of the differences between sounds at
different sample rates and bit depths. Both figures show a wave form derived from
the same original sound file, differing only in their sample rates and bit depths. The
waveform of the 16-bit 44.1 kHz sound has twice as many “points” — or samples of
information — as the 8-bit 11.025 kHz sound. Because the 16-bit 44.1 kHz sound has
more samples, the gap between each sample isn’t as large as the gaps of the 8-bit
11.025 kHz sound. More samples result in a much smoother, cleaner sound.

A common mistake that novices make with sound is the assumption that 8-bit
audio is acceptable, especially because it ought to result in a much smaller file size
than 16-bit sound. This is wrong for at least two reasons. First, 8-bit is unaccept-
able because it sounds incredibly worse than 16-bit sound. Second, the horrible
sound will not pay for itself in diminished file size because most compression
codecs won’t work on 8-bit sound.

Tip

Tip

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 394

395Chapter 14 ✦ Understanding Sound for Flash

Figure 14-1: This is a waveform of a sound sampled at 44.100 kHz with a 16-bit
resolution, as displayed in a high-end sound application.

Figure 14-2: Here’s the same sound as shown in Figure 14-1, but down sampled
to 11.025 kHz with an 8-bit resolution.

Channels
Audio files are either mono (single channel) or stereo (dual channel: left and right).
Stereo files are twice the size of mono files because they have twice the information.
Most audio-editing applications offer the option to mix the two stereo channels
together and either save or export a stereo sound to a one channel mono sound.
Most audio applications also have the ability to save the right or left channel of a
stereo sound separately as a .WAV or .AIF file.

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 395

396 Part III ✦ Sound Planning

With the more robust, multitrack-editing applications, such as Deck II, ProTools, or
AudioLogic, it’s not unusual to work with eight or more audio tracks — limited only
by your system configuration. As you might imagine, these applications give the
sound artist greater control over the final sound mix. For use in Flash, these multi-
track audio project files need to be “bounced” or mixed down to a stereo or mono
file in order to be saved as WAV or AIF files. For a more detailed description of this
process, refer to Chapter 32, “Working with Audio Applications.”

File size
You should be concerned about the file size of your audio clips for a several reasons.

✦ Sound files require a large amount of drive space.

✦ Managing large sound files, and importing them into Flash can be cumbersome
and slow.

✦ Download times for large, elaborate sound clips (even when heavily com-
pressed upon export from Flash) can be detrimental to the appreciation of
your Flash project, even if you have what might be considered a high speed
Internet connection.

Production tips
When working with audio clips, it’s important to create the shortest audio clips
possible. That means trimming off any excess sound that you don’t need, especially
any blank lead-in or lead-out handles (also called in and out points) at the either
the beginning or the end of a clip. This procedure is discussed briefly in Chapter 15,
“Importing and Editing Sounds in Flash,” with reference to Flash’s sound tools, and
then again in greater detail in Chapter 32, “Working with Audio Applications,” where
external audio applications are introduced.

If you plan to have a background music track in your Flash project, it’s a good idea
to use a small audio clip that can be looped. Looping audio clips are described in
both Chapter 15, “Importing and Editing Sounds in Flash,” and in Chapter 32,
“Working with Audio Applications.”

Here is a simple formula to determine the file size, in bytes of a given audio clip:

Seconds of audio × sample rate* × # of channels × (bit depth ÷
8**) = file size

*Expressed in hertz, not kilohertz.
**There are eight bits per byte.

Thus, a 20-second stereo audio loop at 8 bits, 11 kHz would be calculated like this:

20 sec ×11,025 Hz ×2 channels × (8 bits ÷ 8 bits/byte) = 441,000 bytes = 430 KB

There are two schools of thought regarding the ideal quality of sound files for import
into Flash. These schools are pretty much divided into those who have high-end

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 396

397Chapter 14 ✦ Understanding Sound for Flash

sound-editing tools and those who don’t. In an effort to delineate the best path for
each group, we’ve noted the following: (a) If you don’t have high-end sound tools
available, then you may be among those who always prefer to start with audio
source files of the highest possible quality (16 bit, 44.1 kHz is ideal), and then use
the Flash sound settings to obtain optimal compression upon export. See Chapter
16, “Optimizing Flash Sound for Export,” for detailed information on the Flash sound
export settings for .SWF movies. (b) If you do have high-end sound tools available,
then you may prefer to compose most of your clients’ music from scratch and that
you very rarely work with the MP3 format before importing into Flash. You may also
disagree with those who advise that one should bring their sound into Flash at the
highest quality before optimizing. This workflow difference may be attributable to
the plethora of options that are available to those with high-end sound tools. We
know of one sound engineer who converts all of his audio to 16-bit 22.1 kHz mono
files, “with major bass reduction,” before importing into Flash. For more information
on high-end sound tools, refer to Chapter 32, “Working with Audio Applications.” As
with so many things, individual mileage may vary.

Sound File Import Formats
Prior versions of Flash could import several different file formats — but the format
you chose depended primarily on the platform you were using to develop your con-
tent. Flash still supports those formats and, regardless of whether a sound file was
imported on a Mac or PC, the resulting .FLA file can still be edited on either platform.
The big news with Flash 5 is that it imports MP3.

Flash 5 now supports direct import of MP3 sound files!

Flash supports more than just MP3 files. Here’s the entire list:

✦ MP3 (MPEG-1 Audio Layer 3): Among the many advantages of MP3 sound
files for Flash 5 users, the most obvious is that they are cross-platform. Flash
5 can import MP3 sound on either the PC or the Mac. This single advantage
improves Flash workflow in cross platform environment. Other advantages
are the efficiency of MP3 compression and the resultant wealth of sound files
that are increasingly available in this format. For more information about
MP3’s please seen the sidebar at the end of the section.

✦ .WAV (Windows Wave): Until the recent support for MP3, .WAV files reigned
for nearly a decade as the standard for digital audio on Windows PCs. Flash
can import .WAV files created in sound applications and editors such as
Rebirth, SoundForge, and Acid. The imported .WAV files can be either stereo
or mono, and can support varying bit and frequency rates. Unassisted, Flash 5
for Macintosh cannot import this file format. But with QuickTime 4 installed,
.WAV files can be imported into Flash 5 on a Mac. Flash 5 recognizes, properly
opens, and can edit .FLA files created on a Windows PC that contain .WAV
sounds — with the limitation that any previously imported .WAV sound cannot
be updated or edited.

New
Feature

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 397

398 Part III ✦ Sound Planning

✦ .AIFF or .AIF (Audio Interchange File format): Much like .WAV on the PC,
prior to the success of the MP3 format, the .AIFF format was the most com-
monly used digital audio format for the Mac. Flash can import .AIFF sounds
created in sound applications and editors such as PEAK, DECK II or Rebirth.
Like .WAV, .AIFF supports stereo and mono, variable bit, and frequency rates.
Unassisted, Flash 5 for PC cannot import this file format. But with QuickTime
4 installed, .AIFF files can be imported into Flash 5 on the PC. Flash 5 recog-
nizes, properly opens, and can edit .FLA files created on the Mac that contain
.AIFF sounds — with the limitation that any previously imported .AIFF sound
cannot be updated or edited.

✦ QuickTime: Unfortunately QuickTime Audio files (.QTA or .MOV files) cannot
be imported directly into Flash. However, QuickTime audio files can be pre-
pared for import into Flash by saving them as either .WAV or .AIFF files. This
requires that you have QuickTime Pro 4.0 (or greater) installed. QuickTime
Pro is available from Apple at www.apple.com.

If you’re working in a cross-platform environment, unless you’re importing MP3
sounds exclusively, it may be important to take a few precautions to ensure that
the sound aspect of your .FLA’s will be editable on both platforms. Don’t rely upon
the imported sound that’s embedded in the .FLA as your master sound file. Do
make sure that the master sound is retained as both a .WAV and as an .AIFF, and
that both sound sources are distributed with the .FLA. Of course, this becomes a
moot point in environments where QuickTime 4 is installed and maintained on all
machines.

Note

MP3s Demystified

MP3 is a noteworthy technology as well as a file format. It excels at the compression of a
sound sequence—MP3-compressed files can be reduced to nearly a twelfth of their original
size, without destroying sound quality. MP3 was developed under the sponsorship of the
Motion Picture Experts Group (MPEG) using the following logic: CD-quality sound is typically
sampled at a bit depth of 16 (16-bit) at sample rate 44.1 kHz, which generates approximately
1.4 million bits of data for each second of sound—but that second of sound includes a lot of
data for sounds that most humans cannot hear! By devising a compression algorithm that
reduces the data linked to imperceptible sounds, the developers of MP3 made it possible to
deliver high-quality audio over the Internet without excessive latency (the delay between
playing a sound and hearing it back). Another way of describing this is to say that MP3 uses
perceptual encoding techniques that reduce the amount of overlapping and redundant infor-
mation that describe sound. As implemented by Flash 5, MP3 has the added advantage that
it streams longer sounds, which means that the sound begins to play before the sound file
has been received in its entirety. Shockwave Audio, the default audio compression scheme
for Director-based Shockwave movies, is actually MP3 in disguise.

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 398

399Chapter 14 ✦ Understanding Sound for Flash

Sound Export Formats Used by Flash
Although the default in Flash 5 is to export all audio as MP3, sound can also be
exported in the ADPCM format. You can also decide what export format to use for
audio when exporting .FLA project files to .SWF movies (see Chapter 39, “Working
with Authoring Applications”). The benefits and drawbacks of each format are
noted in the list that follows.

Regardless of the format that you choose for exporting your sounds, you can indi-
vidually specify a compression scheme for each sound by using the Flash Library.
Furthermore, each format has specific options and settings. For more information on
the export settings for sound, see Chapter 16, “Optimizing Flash Sound for Export.”

✦ ADPCM (Adaptive Differential Pulse-Code Modulation): ADPCM is an audio
compression scheme that converts sound into binary information. It is primar-
ily used for voice technologies, such as fiber-optic telephone lines, because
the audio signal is compressed, enabling it to carry textual information as well.
ADPCM works well, because it records only the difference between samples,
and adjusts the encoding accordingly, keeping file size low.

ADPCM was the default setting for older versions of Flash, such as Flash 2 and 3. It
isn’t as efficient as MP3 encoding, but is the best choice for situations in which
compatibility is required with all older Flash Players.

✦ MP3 (MPEG-1 Audio Layer 3): Over the last 18 months, MP3 has become the
standard for digital audio distributed on the Internet. Although MP3 compres-
sion delivers excellent audio quality with small files, it’s much more processor-
intensive than other compressors. This means that slower computers may
gasp when they encounter a high-bit-rate MP3 audio while simultaneously pro-
cessing complex animations. As always, it’s wise to know your audience, and,
when in doubt, to test your Flash movie with MP3 audio on slower computers.
As a final note, the Flash Player only supports MP3 at versions 4 and above.

✦ RAW (Raw PCM): Flash can export sound to .SWF files in a RAW format. If you
use this setting Flash won’t recompress any audio. However, uncompressed
sound makes very large files that would be useless for Internet-based distribu-
tion. Even for those people who develop Flash content for QuickTime, it’s more
effective to use either Premiere or Final Cut to add uncompressed sound to a
Flash animation. The only advantage of exporting RAW sounds might be back-
ward compatibility with earliest versions of Flash.

Table 14-3 shows the compatibility of Flash’s audio import formats with various
platforms.

Note

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 399

400 Part III ✦ Sound Planning

Table 14-3
Audio Import Formats in Flash 5

Import Mac PC Flash 4
Formats Compatibility Compatibility Compatibility Comments

.MP3 Yes Yes No Cross-platform, wealth
of available sources

.AIF Yes No Yes Default sound format
for Macintosh

.WAV No Yes Yes Default sound format
for PC

Table 14-4 shows the compatibility of Flash’s audio export formats with various
platforms.

Table 14-4
Audio Export Formats in Flash 5

Export Mac PC Flash 4
Format Compatibility Compatibility Compatibility Comments

ADPCM Yes Yes Yes Good encoding
scheme; Flash Player
3 and earlier
compatibility

MP3 Yes Yes Yes Best encoding
scheme; not
compatible with
versions 1, 2, and 3
of Flash Player

RAW Yes Yes Yes No compression;
lossless; large file
sizes

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 400

401Chapter 14 ✦ Understanding Sound for Flash

Summary
✦ The sample rate (or sampling rate) of a sound file describes the number of

times the source sound is “analyzed” per second. The higher the sample rate,
the better the sound quality.

✦ The bit resolution, or bit depth, of a sound file describes the breadth of infor-
mation recorded at each sample. The higher the bit depth, the better the
sound quality.

✦ Because the unaided human ear can perceive frequencies between 20 and
20,000 Hz, the best sampling rate for sound reproduction is 44.1 kHz. This
is the sampling rate that’s used for high-fidelity audio, such as CDs.

✦ Sound files with high sampling rates and bit depths result in ideal sound quality,
but they also have large file sizes. In order to transmit audio over the Internet
effectively, without losing your audience, most sounds need to be down sampled
or encoded with processor-intensive audio compression schemes. For this, the
MP3 format is ideal.

✦ Flash 5 can now import MP3, the most popular audio format.

✦ Flash can import .WAV files in the Windows version of Flash, and .AIFF files in
the Macintosh version. However, after the audio files have been imported, the
Flash movie (.FLA files) can be exchanged between platforms with the sounds
intact in the Flash Library. In such cases, everything is editable except the
previously imported, foreign-platform sounds.

✦ Flash .SWF movies have three types of audio compression: ADPCM, MP3, and
RAW. Although ADPCM is compatible with earlier versions of the Flash Player,
MP3, which is compatible with versions 4 and 5 of the Flash Player, delivers
the best sound quality with the least addition to file size.

✦ ✦ ✦

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 401

3515-3 ch14.f.qc 1/18/01 4:57 PM Page 402

Importing and
Editing Sounds
in Flash

Sound can be used in Flash to enhance interactive design
with multisensory elements such as buttons, to layer the

visitor’s experience with a background soundtrack, to add nar-
rative, or for more experimental uses. This chapter focuses on
the fundamentals of importing and integrating sound files into
your Flash project.

Importing Sounds into Flash
In Chapter 14, we explained the basic principles relevant to
the use of digital sound within Flash. We also discussed the
various sound formats that Flash can import and export. We
championed the inclusion of .MP3 among the sound formats
that Flash 5 can import. In addition to our discussion of the
merits of .MP3 sound, we also explained the uses of platform
specific .AIFF (Mac) and .WAV (PC) audio files. But we didn’t
delve into the process of importing sound into Flash. So, let’s
get started.

When working with sound, you may encounter some inter-
changeable terminology. Generally, these terms — sound
file, sound clip, or audio file — all refer to the same thing, a
single digital file in one of several formats, which contains
a digitally encoded sound.

Unlike other imported assets, such as bitmaps or vector art,
Flash doesn’t automatically insert an imported sound file into
the frames of the active layer on the timeline. In fact, you don’t
have to select a specific layer or frame before you import a
sound file. That’s because all sounds are sent directly to the
Library immediately upon import. At this point, the sound

Note

1515C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Importing sounds
into Flash

Adding sounds to
Buttons

Understanding sync
settings

Controlling In and
Out points

Adding basic effects
to Flash sounds

✦ ✦ ✦ ✦

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 403

404 Part III ✦ Sound Planning

becomes part of the .FLA editor file, which may make the file size balloon signifi-
cantly if the sound file is large. However, the sound does not become part of the
.SWF, nor will it add to the size of the .SWF file unless it is assigned to a keyframe,
as an instance. Although this may seem peculiar, it does serve a useful purpose: It
helps to ensure that instances of the sound will be employed within your project,
rather than duplicates of the same large sound file, which keeps the .SWF file size
down. So, to use an imported sound within Flash you must first import the sound,
and then assign an instance of that sound to a specific layer and keyframe.

Refer to Chapter 9, “Checking Out the Library: Symbols and Instances,” to learn
more about how to organize and access sound assets in the Library, as well as
how to work with instances.

To import a sound file into the Flash authoring environment:

1. Choose File ➪ Import.

2. From the Files of Type drop-down, choose All Sound Formats.

3. Select the .MP3, .AIFF, or .WAV file that you want to import.

4. Click Open.

The selected sound file is imported into your Flash editor document (.FLA) and
arrives in the Flash Library with its filename intact. If the Library is closed, you
can open it by choosing Window ➪ Library, or by using the keyboard shortcut
(Ctrl/Command+L). With the Library open, locate the sound, and click it to high-
light the name of the sound file where it appears in the Library Sort Window.
The waveform appears in the Library Preview Window, as shown in Figure 15-1.
Click the Play button above the waveform to audition the sound.

Figure 15-1: This is a stereo sound in the Flash Library.

Cross-
Reference

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 404

405Chapter 15 ✦ Importing and Editing Sounds in Flash

Refer to Chapter 16, “Optimizing Flash Sound for Export,” for an explanation of how
unique compression settings can be specified for each sound in the Flash Library.

Sounds may also be loaded from a shared library. Refer to Chapter 9, “Checking
Out the Library: Symbols and Instances,” to learn how to assign an identifier string
to an asset, such as a sound file, in the Flash Library. Refer to Chapter 20, “Sharing
and Loading Assets,” to learn how to load an asset, such as a sound, from a shared
Library.

Assigning a Sound to a Button
The experience of interactivity is enhanced by the addition of subtle effects. The
addition of sounds to correspond with the various states of a button is perhaps
the most obvious example. Although this effect can be abused, it’s hard to overuse
an effect that delivers such meaningful user feedback. Here, we show how different
sounds can be added to both the Over (mouseover) and the Down (click) states
of a button. For more general information about creating the buttons themselves,
see Chapter 9, “Checking Out the Library: Symbols and Instances,” and Chapter 13,
“Designing Interfaces and Interface Elements.” Because buttons are stored in the
Library, and because only instances of a button are deployed within the Flash movie,
sounds that are assigned to a button work for all instances of that button. However,
if different sounds are required for different buttons, then a new button symbol must
be created. You can create a new button symbol from the same graphic symbols as
the previous button (provided it was built out of symbols) or duplicate it in the
Library using the Duplicate command on the Library’s Option menu.

To add a sound to the Down state of a Flash button:

1. From the Common Library, choose a button to which you want to add sound
effects. Open it for editing by either double-clicking it, or by choosing Edit from
the Library Options menu. Both methods invoke the Symbol Editing mode.

2. Add a new layer to the button’s timeline, label the new layer Sound, and then
add keyframes to this layer in the Over and Down columns. Your timeline
should look similar to Figure 15-2.

Figure 15-2: The timeline for your button should resemble this timeline.

Cross-
Reference

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 405

406 Part III ✦ Sound Planning

3. Next, select the frame of the button state where you want to add a sound for
interactive feedback (such as a clicking sound for the down state), and then
access the Sound Panel by doing one of the following: (a) right-click/Ctrl+click
the selected frame, choose Panels from the ensuing contextual pop-up, and
then choose Sound; or (b) proceed from the menu with Window ➪ Panels ➪
Sound. An alternative method (with the frame selected) is to simply drag the
sound from the Library and onto the stage.

You should now have the new Flash 5 Sound Panel open, as shown in Figure 15-3.
For more information about the Flash 5 Panels, refer to Chapter 7, “Working with
Text.”

Figure 15-3: The new Flash 5 Sound Panel.

4. Choose the sound clip that you want to use from the Sound drop-down menu.
This menu lists all of the sounds that have been imported and that are avail-
able in the Library of the current movie.

5. The next step is to use the Sync drop-down menu to choose how you want
the sound to play. For this lesson, simply use the default, which is the Event
option. We defer our exploration of the other options in the Sync pop-up for
a later section.

You have now added a sound to your button state. Remember, you’re still in Symbol
Editing mode, so to test the button, return to the movie editor either by clicking the
scene tab at the upper-left of the timeline or by pressing Ctrl+E (Command+E). From
the movie editor, choose Control ➪ Enable Simple Buttons, or Control ➪ Test Scene.

To add a sound to the Over state of a Flash button, simply retrace the previous
steps, referencing the Over state of the button wherever appropriate. Remember
that different sounds can be assigned to the Over, Down, and Hit states of a button.

For a completed example of this button, refer to the Flash movie push_bar_button_
01.fla located in the ch15 folder of the Flash 5 Bible CD-ROM. This movie has a but-
ton with sounds attached and was made with the same technique described
in this section.

On the
CD-ROM

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 406

407Chapter 15 ✦ Importing and Editing Sounds in Flash

Adding Sound to the Timeline
In addition to the use of sounds to enhance the interactivity of buttons, another
popular use of sound in Flash is to provide a background “score.” The simplest way
to achieve this is to place the sound within its own layer in the timeline, at the pre-
cise frame in which you want the sound to begin. To do this, you must first import
the sound (as described earlier in this chapter) and also create a new layer for it.

If you don’t have access to sounds, you can use the sample sound counting 123,
or repeatable beat to practice. These sounds are in the ch15 folder of the Flash 5
Bible CD-ROM. They are available in both .WAV and .AIF formats. There’s also a silly
example, titled jwl_silly_soundtest, that may help you get started in your work
with sounds.

Adding sound files to the timeline is similar to assigning sound to a button. To add
sounds to a movie’s timeline, follow these steps:

1. Add a new layer to the timeline and label the layer with the name of the sound.

2. Create a keyframe on the sound layer at the frame where you want the sound
to begin.

3. With that keyframe selected, either (a) right-click/Ctrl+click the selected
frame, choose Panels from the ensuing contextual pop-up, and then choose
Sound; or (b) proceed from the menu with Window ➪ Panels ➪ Sound.

You should now have the new Flash 5 Sound Panel open. (See how similar
this is to the methodology for adding sound to a button?)

4. If you remembered to import the sound that you want to use, you can now
choose that sound clip from the Sound drop-down menu. If you find yourself
stuck at this point, review the preceding steps and/or retrace your steps
through the methodology for adding sound to a button.

5. From the Event pop-up, choose how the sound should be handled by Flash.
The Event pop-up offers several preset effects, plus custom, which invokes
the Edit Envelope. For no special effect, choose None. For more about the
Event presets and the Edit Envelope, refer to the subsequent section,
“Applying Effects from the Effect Pop-up of the Sound Panel.”

6. From the Sync pop-up, choose one of four options — Event, Start, Stop, or
Stream — to control how you want to the sound to be synchronized. (See
the next section for a detailed explanation of Sync options.)

7. Specify how many times you want the sound to loop. To loop indefinitely,
enter a high number, such as 999. (For specific information about looping
stream sounds, refer to the next section.)

On the
CD-ROM

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 407

408 Part III ✦ Sound Planning

8. Perform any last minute editing or finessing of the sound file (see “Editing
Audio in Flash,” later in this chapter). Then return to the Main Timeline and
save your work.

Your sound is now part of the timeline. Its waveform is visible on the layer to which
it was added. Test your sound by pressing Enter on your keyboard, which plays the
timeline. Or, for sound with a Sync setting of Stream, manually “scrub” the sound by
dragging the Playhead across the timeline. To perform the most accurate test of the
sound, use either Control ➪ Test Scene or Control ➪ Test Movie to see and hear it as
a .SWF file.

If you sync a sound to the timeline using the Stream feature, you should test your
.SWF movie on various platforms and machines with different processor speeds.
What looks and sounds good on the latest Power Mac G4 Cube might be less
impressive on an underpowered legacy machine.

Organizing sounds on the timeline
There is no technical limit to the number of sound layers; each layer functions like
a separate sound channel, and Flash mixes them on playback. (This capability of
Flash might be considered an onboard, economy sound mixer.) There is, however,
a practical limit, because each sound layer increases the movie’s file size, while
the mix of multiple sounds may burden the computer it’s being run on.

If you can’t recall the name of a particular sound in the timeline, remember that
with Tooltips enabled from the Preferences dialog (Edit ➪ Preferences), the file-
name of the sound will pop-up whenever the cursor is allowed to settle over the
waveform.

Enhanced viewing of sound layers
Because sound is different from other types of Flash content, some users find that
increasing the layer height of the sound layers eases working with multiple sounds
in the timeline. That’s because a taller layer height provides a better visual cue due
to the unique waveforms of each sound. To increase the layer height for individual
layers:

1. Right-click/Ctrl+click the layer bar, and then choose Properties from the con-
textual pop-up.

2. At the bottom of the ensuing Layer Properties dialog, change the layer height
from the default 100 percent to either 200 or 300 percent.

3. Note that these percentages are relative to the settings chosen in the Frame
View Options pop-up. For more information on the intricacies of the timeline,
see Chapter 8, “Exploring the Timeline.” For an actual example of this, open
the file titled, jwl_silly_soundtest.fla, located in the ch15 folder on the CD-ROM
in the counting 123 folder.

Tip

Tip

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 408

409Chapter 15 ✦ Importing and Editing Sounds in Flash

Your movie’s frame rate, as specified in the Movie Properties dialog, affects the
expanse (or number) of frames that a sound occupies on the timeline. For exam-
ple, at Flash’s default setting of 12 frames per seconds (fps), a 30-second sound
clip extends across 360 frames of the timeline. At 18 fps, the same 30-second clip
expands to 540 frames — but in either case, the time length of the sound is
unchanged.

Organizing sound layers with a mask
A helpful trick for organizing sounds is to use a Mask layer. Because Flash doesn’t have
a utility to group, nest, or collapse multiple sound track layers (or other content, for
that matter), a Mask layer (or a Guide layer) can be used to achieve a similar result.
Here’s how:

1. Create a new empty layer above the sound track layers.

2. From the layer bar, right-click/Ctrl+click to open the Layer Properties dialog.
Give it a meaningful name, such as Sound Gang, and change the layer type to
Mask. (Leave this Mask layer empty.) Click OK.

3. Drag each of the sound track layers up to the Sound Gang layer. They’ll indent
beneath the Sound Gang layer, neatly organizing sound content within the
timeline.

For more information about working with the timeline and Mask layers, refer to
Chapter 8, “Exploring the Timeline.”

Synchronizing Audio to Animations
In film editor’s lingo, to synchronize, or sync, means to precisely match picture to
sound. It’s a conjunction of the Greek words syn, meaning with, and chronos, meaning
time. In Flash, sound is synchronized to the visual content of the timeline. Flash sync
affords several options for the manner in which the audio component is related to
animation on the timeline. Each of these sync options is appropriate for particular
uses, which are discussed in the following section.

Types of sound synchronization in Flash
The Sync options on the Sound Panel control the behavior of sound in Flash, rela-
tive to the timeline in which the sound is placed. The Sync option you choose will
depend on whether your sound is intended to add dimension to a complex multi-
media presentation or to add interactivity in the form of button-triggered sound, or
whether it is intended to be the closely timed sound track of an animated cartoon.

Cross-
Reference

Tip

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 409

410 Part III ✦ Sound Planning

✦ Event: Event is the default Sync option for all sounds in Flash, so unless you
change this default to one of the other options, the sound will automatically
behave as an Event sound. Event sounds begin contemporaneously with the
keyframe in which they occur, and then play independently of the timeline. If
an event sound is longer than the timeline movie, it will continue to play even
though the movie has stopped. If an Event sound requires considerable time
to load, the movie will pause at that keyframe until the sound has loaded com-
pletely. Event sounds are the easiest to implement, and are useful for back-
ground soundtracks and other sounds that don’t need to be synced. Event is
the default Sync setting in Sound Panel.

Event sound can degrade into a disturbing inharmonious round of out-of-tune
sound loops. If the movie loops before a sound has completed, the sound may
begin again — over the top of the initial sound that has not finished playing. After
several loops, this can become intolerable — although in some circles, among the
unsound, it may be an esteemed feature. To avoid this effect, use the Start Sync
option.

✦ Start: The Start Sync option is similar to an Event sound, but with one crucial
difference: If it’s already playing, a sound that is assigned the Start option will
stop and begin over again. A good example of the utility of this option is but-
tons. Suppose you have three identical buttons that play the same two-second
sound on the mouseover. In practice, the sound will begin when any button is
moused over. When a second or third button is moused over, the sound will
play again with each mouseover.

✦ Stop: The Stop Sync option is similar to the Start Sync option, except that
the selected sound stops playing when the Sync event occurs. The Stop
Sync option can also be used to stop a specific sound.

✦ Stream: Stream sounds are similar to a traditional track in a video-editing
application. A Stream sound locks to the timeline, and is given priority over
visual content. When Stream sound is chosen, the Flash player attempts to
pace the animation in sync with the sound. However, when animations either
get too complex or are run on slower machines, Flash will skip — or drop —
the frames as needed to stay in sync with the Stream sound. A Stream sound
will stop once the animation ends (at the end of the timeline) or, more specifi-
cally, when the playback head reaches the last frame that includes the wave-
form of the streamed sound. A Stream sound can be scrubbed; by dragging the
Playhead along the timeline, the Stream sound will play in direct relationship
to the content as it appears, frame by frame. This is especially useful for lip-
synch and coordinating the perfect timing of sound effects with visual events.
See Chapter 37, “Creating Cartoon Animation with Flash,” for more information
on lip-synch.

To use sound effectively, it’s important to understand how stream sounds work. When
the Sync option for a sound is set to Stream, on export or publish, Flash breaks the

Note

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 410

411Chapter 15 ✦ Importing and Editing Sounds in Flash

sound into chunks that are tied to the timeline. Although this is transparent to you,
it is nearly the equivalent of breaking a single sound file into many separate files and
adding them to the timeline as individual pieces — but that would be a lot of work.
Luckily, Flash does this for you.

When adding sounds to the timeline, no matter how many times you tell a Stream
sound to loop, a Stream sound will stop at the end of its timeline. To extend a
Stream sound’s looping capacity, add as many frames as necessary to a stream
sound’s layer.

Stopping Sounds
The default behavior of event sounds is for them to play through to the end, regard-
less of the length of the timeline. However, there’s a trick that can be used to stop
any sound, including event sounds. Place another instance of the same sound at
the keyframe where the sound should stop and assign this instance as a Stop Sync
sound. This Stop setting can be on any layer, it will stop all instances of the sound.

Stopping a single instance of a Stream sound
A single instance of a sound can also be stopped, if it’s sync option is set to Stream.
To do this, simply place an empty keyframe in the sound layer at the point where
the sound should stop.

Stopping all sounds
You can stop all sounds that are playing in any timeline (including Movie Clips) at
any point by doing the following:

1. If there isn’t already an actions layer on your timeline, add a new layer, label
it Actions (or atns), and then select the frame that occurs at the point where
you want all sounds to stop. Make this frame into a keyframe.

2. With the keyframe selected, proceed to the Frame Actions panel by either
clicking the Show Actions Icon near the far-right end of the Launcher Bar,
or by navigating to Window ➪ Actions.

3. From the Basic Actions group in the left side of the Normal Mode (or in Expert
Mode, for the Action group) double-click the Stop All Sounds action. The fol-
lowing ActionScript code,

stopAllSounds ();

appears in the right side of the Frame Actions panel, as shown in Figure 15-4.

4. Return to the Movie Editor, save your work, and then test it with Control ➪
Test Movie.

Tip

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 411

412 Part III ✦ Sound Planning

Figure 15-4: Any sound that’s currently playing stops when the movie reaches a
keyframe with a Stop All Sounds action. Note that all of the panels are ganged here
into a mega-panel.

Editing Audio in Flash
Although Flash was never intended to perform as a full-featured sound editor, it
does a remarkable job with basic sound editing. If you plan to make extensive use
of sound in Flash, we recommend that you consider investing in a more robust
sound editor. You’ll have fewer limitations and greater control over your work. In
Chapter 19, “Controlling Movie Clips,” we discuss several popular sound editors
that are commonly used in concert with Flash.

Sound editing controls in Flash
Flash has basic sound editing controls in the Editing Envelope control, which is
accessed by clicking the Edit button of the Sound panel. (As you may recall from
previous sections, you must first select the keyframe containing the sound, and
then open the Sound Panel by choosing Window ➪ Panels ➪ Sound.) The Time In
control and the Time Out control, or Control Bars, in the Editing Envelope enable
you to change the In (start) and Out (end) points of a sound, and the Envelope
Handles are used to create custom Fade-in and Fade-out effects.

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 412

413Chapter 15 ✦ Importing and Editing Sounds in Flash

Edits applied to a sound file in the Edit Envelope only affect the specific instance
that has been assigned to a keyframe. The original file that resides in the Library is
neither changed nor exported.

Setting the In and Out points of a sound
A sound’s In point is where the sound starts playing, and a sound’s Out point is
where the sound finishes. The Time In control and the Time Out control are used
for setting or changing a sound’s In and Out points. Here’s how to do this:

1. Start by selecting the keyframe of the sound you want to edit, and then access
the Sound Panel, either from the menu by choosing Window ➪ Panels ➪ Sound,
or from the contextual menu, with a right-click/Ctrl+click on the keyframe.

2. Open the Edit Envelope dialog, shown in Figure 15-5, by clicking the Edit button
of the Sound panel.

3. Drag the Time In control and Time Out control (located in the horizontal strip
between the two channels) onto the timeline of the sound’s waveform in order
to define or restrict which section will play.

4. Use the Envelope Handles to edit the sound volume, by adding handles and
dragging them up or down to modulate the volume.

5. Click the Play button to hear the sound as edited before returning to the
authoring environment. Then, rework the sound if necessary. When you’ve
finessed the points and are satisfied with the sound, click OK to return to
the Sound Panel. Then return to the Movie Editor and save your work.

Applying effects from the Effect pop-up of the
Sound Panel
You can apply a handful of preset fades and other effects to a sound by selecting
the effect from the Effect pop-up of the Sound Panel. (For many uses, the Flash pre-
sets will be more than sufficient, but if you find yourself feeling limited, remember
that more subtle effects can be created in an external sound editor.) Flash’s preset
effects are described in detail here:

✦ None: No effect is applied to either of the sound channels.

✦ Left Channel/Right Channel: Plays only the right or left channel of a stereo
sound.

✦ Fade Left to Right/Fade Right to Left: This effect lowers the sound level of
one channel while raising the level of the other, creating a Panning effect.
This effect occurs over the entire length of the sound.

Note

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 413

414 Part III ✦ Sound Planning

Figure 15-5: The sound-editing tools and options of the Edit Envelope, which is
accessed from the new Sound panel.

✦ Fade In/Fade Out: Fade In gradually raises the level of the beginning of a
sound clip. Fade Out gradually lowers the level at the end of a sound. The
default length for either effect is approximately 25 percent of the length of
the clip. We’ve noticed that even if the size of the selection is edited with
the control bars, the duration of the Fade In/Fade Out will remain the same.
(Thus, a 35-second sound clip with an original default Fade In time of 9 sec-
onds, still has a 9-second Fade In time even when the selection’s length is
reduced to, say, 12 seconds.) This problem can be resolved by creating a
Custom Fade.

✦ Custom: Any time you manually alter the levels or audio handles on this screen,
Flash automatically resets the Effect menu to Custom.

Envelope handles (left channel)

Edit button (invokes Edit Envelope control)

Time In control bar Time Out control bar

Stop

Zoom InPlay (Test)

Zoom Out View by seconds

View by frames

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 414

415Chapter 15 ✦ Importing and Editing Sounds in Flash

Creating a custom Fade In or Fade Out
For maximum sound-editing control within Flash, use the envelope handles to create
a custom fade or to lower the audio levels (or amplitude) of a sound. In addition to
creating custom fades, the levels can be lowered creatively to create subtle, low-vol-
ume background sounds. Here’s how:

1. Select the keyframe of the sound you want to edit.

2. Access the Sound Panel by either (a) right-clicking/Ctrl+clicking the selected
frame and choosing Panels ➪ Sound from the ensuing contextual pop-up, or
(b) proceeding from the menu with Window ➪ Panels ➪ Sound.

3. Click the Edit button of the Sound Panel to open the Edit Envelope control.
Click the envelope lines at any point to create new envelope handles.

4. After handles have been created, you can drag them around to create your
desired volume and fading effects. The lines indicate the relative volume level
of the sound. When you drag an envelope handle down, the line slopes down,
indicating a decrease in the volume level, while dragging an envelope handle
up has the opposite effect. The Edit Envelope control is limited to eight enve-
lope handles per channel (eight for left and eight for right).

Envelope handles may be removed by dragging them outside the Edit Envelope.

Other controls in the Edit Envelope control
Other useful tools in the Sound tab warrant mention. See Figure 15-5 for their
locations.

✦ Zoom In/Zoom Out: These tools either enlarge or shrink the view of the wave-
form, and are particularly helpful when altering the In or Out points or envelope
handles.

✦ Seconds/Frames: The default for viewing sound files is to represent time in
seconds. But viewing time in frames is advantageous for syncing sound with
the Stream option. Toggle between viewing modes by clicking either the
Seconds or Frames button at the lower right of the Edit Envelope control.

The Loop control
This control appears on the Sound panel, yet a measure of its functionality occurs in
conjunction with the Edit Envelope control. The Loop numeric entry field is used to
set the number of times that a sound file will loop (or repeat). A small looping selec-
tion, such as a break beat or jazz riff can be used for a background soundtrack. A
short ambient noise can also be looped for an interesting effect. To test the quality
of a looping selection, click the Edit button, which will take you to the Edit Envelope
control where you can click the Play button for a preview of your loop. If the loop
isn’t perfect, or has hiccups, use the Control Bars and envelope handles to trim or
taper off a blank or adversely repeating section. In Chapter 32, “Working with Audio
Applications,” we show you how to create precise loops with Sonic Foundry’s Acid
Pro and other sound editors and mixers.

Tip

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 415

416 Part III ✦ Sound Planning

Flash links looped sounds and handles them as one long sound file (although it’s
really one little sound file played repeatedly). Because this linkage is maintained
within the editing environment, the entire expanse of a looped sound can be given
a custom effect in the Edit Envelope. For example, a simple repeating 2-measure
loop can be diminished over 30 loops. This is a subtle effect that performs well, yet
is economical as regards file size.

Summary
✦ When sound is imported to a Flash movie, it’s added to the Library. You assign

sounds from the Library to a keyframe on a timeline.

✦ Different sounds can be assigned to the Over, Down, and Hit states of a Flash
button.

✦ The Sync settings control how a sound will play with relation to the rest of the
Flash timeline. Event sounds play in their entirety, regardless of the timeline’s
playback. Stream sounds are frame-exact, meaning that they are locked to the
timeline’s playback. Start sync initiates a new instance of a sound, and can be
useful when the same sound is used on multiple buttons. Stop sync stops an
instance of a sound, if it is playing.

✦ Because sounds are measured and played in seconds (not frames), the frame
rate of a Flash movie affects a stream sound’s apparent duration in the timeline.

✦ Use the Loop setting in the Sound Panel to repeat a soundtrack in the time-
line. Because there’s no infinite loop setting, use high numbers for extended
playback.

✦ Stream sounds force the Flash Player to keep the timeline in pace with the
sound. If the Player can’t play every frame (especially with faster frame rates),
some frames may be dropped from playback to insure that the sound stays
in sync.

✦ Use a Stop All Sounds action to stop all sounds that are currently playing in any
current timeline. This is useful during transitions between scenes. For more
information about using actions to control sounds, refer to Part V, specifically
Chapter 19, “Controlling Movie Clips.”

✦ The Effect menu of the Sound panel contains useful presets for sound channel
playback. Click the Edit button of the Sound Panel to access the Edit Envelope
and create a custom effect.

✦ Basic sound editing can be easily done within the Edit Envelope. Sounds can
be trimmed with the Time In and Out Control Bars, or faded in or out with the
envelope handles.

✦ ✦ ✦

Tip

3515-3 ch15.f.qc 1/18/01 4:57 PM Page 416

Optimizing Flash
Sound for Export

A fter you have added sound to buttons and timelines
in a Flash movie, you need to know how to modify the

audio’s export settings for optimal sound quality and file size.
In this chapter, we discuss the intricacies of controlling audio
output, with particular attention to MP3 bit rates. We also dis-
cuss how to use the Publish Settings dialog and compare that
with the enhanced control that is available for customizing
compression from within the Sound Properties dialog of the
Flash Library. Finally, we discuss sound export and the meth-
ods available for converting Flash sounds into QuickTime
sound tracks.

Sound Optimization Overview
There are several considerations to be cognizant of when
preparing Flash sound for export. For Web-based delivery,
the primary concern is to find an acceptable middle ground
between file size and audio quality. But the concept of accept-
ability is not absolute; it is always relative to the application.
Consider, for example, a Flash Web site for a record company. In
this example, sound quality is likely to be more important than
file size because the audience for a record company will expect
quality sound. In any case, consideration of both your audience
and your method of delivery will help you to determine the
export settings you choose. Luckily, Flash 5 has new capabili-
ties that can enhance the user’s experience both by optimizing
sounds more efficiently and by providing improved program-
ming features to make download delays less problematic.

There are two ways of optimizing your sound for export.
sThe quickest, simplest way is to use the Publish Settings and
apply a one-setting-optimizes-all approach. This works well
only if all of your sound files are from the same source. It also
will not deliver the highest possible level of optimization.

1616C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Choosing MP3
bit rates

Compression in the
Publish Settings

Customizing
compression in
the Library

Converting Flash
sounds to QuickTime
sound tracks

VBR (Variable Bit
Rate) MP3

Export tips

Extracting a sound
from a .FLA editor file

✦ ✦ ✦ ✦

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 417

418 Part III ✦ Sound Planning

If you demand that your Flash movie has the smallest possible file size, or if your
Flash project includes audio from disparate sources, or uses a combination of audio
types — such as button sounds, background music, speech — it’s better to fine-tune
the audio settings for each sound in the Library. This method gives you much bet-
ter control over output.

This chapter discusses the Publish feature of Flash 5, which is explained in greater
detail in Chapter 39, “Working with Authoring Applications.”

Publish Settings for Audio
Choose File ➪ Publish Settings to access the Publish Settings and to take a global
approach to the control of audio output quality. Then choose the Flash tab of the
Publish Settings dialog, shown in Figure 16-1. This dialog has three areas where the
audio quality of an entire Flash movie can be controlled globally.

Figure 16-1: The Flash tab of Publish Settings has three
options to control audio quality.

The Flash tab of the Publish Settings dialog has three options for controlling audio
quality:

✦ Audio Stream: Controls the export quality of Stream sounds (see Chapter 15,
“Importing and Editing Sounds in Flash,” for more information on Stream
sounds in Flash.) To customize, click Set. This gives you a number of options,
which are described in the section that follows. Flash 5 supports .MP3, which
is the optimal streaming format.

Cross-
Reference

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 418

419Chapter 16 ✦ Optimizing Flash Sound for Export

✦ Audio Event: Controls the export quality of Event sounds. (See Chapter 15,
“Importing and Editing Sounds in Flash,” for more information on Event
sounds in Flash.) To customize, click Set. This gives you a number of options,
which are described in the section that follows.

✦ Override Sound Settings: If this box is checked, Flash uses the Publish Settings,
rather than the individual audio settings that are fine-tuned in the Library. For
more information, see the section “Fine Tuning Sound Settings in the Library,”
later in this chapter.

The Set options
Audio Stream and Audio Event have individual compression settings, which can be
specified by their respective Set button options. If you click ether Set button on the
Flash Tab, the same Sound Settings dialog appears — it is identical for both Audio
Stream and Audio Event, which means that the same options are offered for both
types of sound. The Sound Settings dialog, shown in various permutations in Figure
16-2, displays numerous settings related to the control of audio quality and audio
file size. The type of compression chosen governs the specific group of settings that
appear.

Figure 16-2: The Sound Settings dialogs

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 419

420 Part III ✦ Sound Planning

The impact of individual sound settings may be overridden by another setting. For
example, a Bit Rate setting of 160 Kbps will not result in good sound if the Quality
is set to Fast. Optimal results require attention to all of the settings. This is like a
set of interlinked teeter-tooters: A little experimentation will reveal the cumulative
or acquired impact of each setting on the others. However, the need to experi-
ment here is hobbled by the lack of a preview mechanism. By contrast, tuning a
sound in the Library is much more serviceable, because there’s a sound preview
button adjacent to the settings controls. For more about this workflow, refer to the
following section of this chapter, “Fine-tuning Sound Settings in the Library.”

The specific options that are available in the Sound Settings dialogs are always
related to the compression, or audio-encoding scheme, selected in the Compression
drop-down menu. That’s because different compression technologies support differ-
ent functionalities:

✦ Disable: This option turns off all sounds that have been assigned — in the
Sound panel — to Sync as either Audio Stream or Audio Event. If this option
is selected, no sound of that Sync type will be exported when the .SWF movie
is published. There are no further options for this setting.

✦ ADPCM: With ADPCM selected in the Compression menu, the following
options are available:

• Convert Stereo to Mono: Mixes the right and left channel of audio
into one (mono) channel. In sound engineer parlance, this is known
as “bouncing down.”

• Sample Rate: Choose from sampling rates of 5, 11, 22, or 44 kHz.
(Increasing the sample rate of an audio file to something higher than the
native sample rate of the imported file simply increases file size, not qual-
ity. For example, if you import 22 kHz sounds into the Flash movie, select-
ing 44 kHz will not improve the sound quality. For more information on
sample rates, see Chapter 14, “Understanding Sound for Flash.”)

• ADPCM Bits: Set the number of bits that ADPCM uses for encoding. You
can choose a rate between 2 and 5. The higher the ADPCM bits, the bet-
ter the audio quality. Flash’s default setting is 4 bits.

✦ MP3: If you select MP3 in the Compression menu, you can set the following
options:

• Convert Stereo to Mono: Mixes the right and left channel of audio into
one (mono) channel. This is disabled at rates below 20 Kbps, because
the lower bit rates don’t support stereo.

• Bit Rate: MP3 measures compression in kilobits per second (Kbps). The
higher the bit rate, the better the audio quality. Because the MP3 audio
compression scheme is very efficient, a high bit rate still results in a rela-
tively small file size. Refer to Table 16-1 for a breakdown of specific bit
rates and the resulting sound quality.

Note

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 420

421Chapter 16 ✦ Optimizing Flash Sound for Export

• Quality: Choose Fast, Medium, or Best quality. Fast optimizes the audio
file for faster delivery on the Internet, although there’s usually a signifi-
cant loss in quality. The truth about the Fast setting is this: Unless you’re
only using the sound as a rudimentary button click, or (in conjunction
with the 8 Kbps bit rate) as the voice track for a simulated moonwalk,
this setting is useless. Medium is a usable setting that delivers accept-
able quality but sacrifices some speed in favor of quality. Best is the
highest quality setting, chiefly intended for files distributed through
broadband connections, intranets, or on CD-ROMs.

✦ Raw: When Raw (a.k.a. Raw PCM audio) is selected in the Compression menu,
there are two options:

• Convert Stereo to Mono: Mixes the right and left channel of audio into
one (mono) channel.

• Sample Rate: This option specifies the sampling rate for the Audio
Stream or Audio Events sounds. For more information on sample rate,
please refer to Chapter 14, “Understanding Sound for Flash.”

Table 16-1
MP3 Bit Rate Quality

Bit Rate Sound Quality Good For

8 Kbps Very bad Best for simulated moonwalk transmissions.
Don’t use this unless you want horribly
unrecognizable sound.

16 Kbps Barely acceptable Extended audio files where quality isn’t
important, or simple button sounds.

20, 24, 32 Kbps Acceptable Speech or voice.

48, 56 Kbps Acceptable Large music files; complex button sounds.

64 Kbps Good Large music files where good audio quality
is required.

112–128 Kbps Excellent Near-CD quality.

160 Kbps Best Near-CD quality.

As a general rule, if you use the Publish Settings to control audio export globally,
we recommend choosing MP3 at 64 Kbps. This will result in moderate to good
sound quality (suitable for most Flash projects), and the ratio of file size-to-quality
will give reasonable performance.

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 421

422 Part III ✦ Sound Planning

Supporting the MP3 Player
Although this is becoming less of an issue with the release of Flash 5, it may still
be important to consider that MP3 is not supported by Flash 3 (or earlier) players.
There may be a number of users in your audience that haven’t upgraded their Flash
Player plug-in to version 4, much less to version 5. Although, as Flash developers, it
would be nice to assume that your audience will eventually upgrade, it’s more real-
istic, and therefore advisable, to consider implementing a transitional solution. For
example, you could provide both a Flash 3 movie with ADPCM-encoded audio and
a Flash 5 movie with MP3-encoded audio. Include information on the splash page
about the benefits of the Flash 5 player: reduced download time and increased
audio quality. This is an incentive for you users to upgrade. You’ll also want to pro-
vide a link to Macromedia to download the new plug-in. Another, more “invisible”
solution is to add intelligence to your splash page with a “plug-in detection” script
that automatically serves users the movie that corresponds to the version of the
Flash Player they have installed.

To add plug-in detection to your Flash movies, use one of the HTML templates
installed with Flash 5. HTML templates are discussed in the “Using the HTML set-
tings” section of Chapter 40.

Fine-tuning Sound Settings in the Library
The Publish Settings menu is convenient because it permits you to tweak a minimal
set of sound adjustments, whereupon Flash exports all of your “noncustomized”
Stream sounds or Event sounds at the same rate. However, if you have many
sounds and you are seriously concerned about obtaining the ideal balance of both
optimal sound quality and minimum file size, you will need to export them at differ-
ent rates. Consequently, for the fullest level of control over the way in which Flash
compresses sound for delivery, we recommend that each sound should be opti-
mized, individually, in the Library. In fact, it would be impossible for us to overem-
phasize this bit of sound advice: We recommend that each sound should be
optimized, individually, in the Library.

Settings for audio in the Library
Audio settings in the Library are similar to those discussed previously for the
Publish Settings. These settings appear in the Sound Properties dialog, shown in
Figure 16-3. To access these settings, either (a) double-click the icon of the sound
in the Library, or (b) select the sound as it appears in the Library and (i) click the
Properties button, or (ii) choose Properties from the Library Options popup.

There are four groupings of information and controls in the Sound Properties dia-
log: Status, Export Settings, Estimated Results, and Buttons.

Cross-
Reference

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 422

423Chapter 16 ✦ Optimizing Flash Sound for Export

Figure 16-3: The Sound
Properties dialog enables you to
control the compression settings
and to precisely balance all other
related settings for each individual
sound in the Library.

The top half of the Sound Properties dialog displays status information about the
sound file: To the far left is a window with the waveform of the selected audio; to
the right of the waveform is an area that displays the name of the file together with
its location, date, sample rate, channels, bit depth, duration, and file size.

The lower half of the dialog is titled Export Settings. The first setting is a drop-down
menu that is used to select the Compression scheme. The Compression options,
and the subsequent compression related options that appear in the other settings,
are exactly the same as the sound options of the Publish Settings dialog, discussed
earlier in this chapter.

Beneath the Export Settings is where Estimated Results are displayed. Here, the
estimated final file size (after compression) of the clip is displayed, together with
the compression percentage. This is an extremely important tool that is easily
overlooked.

The buttons to the right of the Sound Properties dialog offer the following options:

✦ Update: Click this button to have Flash check for an update of the audio file, if
the original .MP3, .WAV or .AIFF file has been modified, and update it accord-
ingly. Generally, this only works on the machine the audio file was originally
imported to.

✦ Import: Enables you to import another audio file into the Flash environment.
For more information on importing audio files, see Chapter 15, “Importing and
Editing Sounds in Flash.”

✦ Test: This excellent feature enables you to audition the export quality of the
sound based on the options that you’ve selected from the Compression drop-
down list.

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 423

424 Part III ✦ Sound Planning

✦ Stop: Click this button to stop (silence) the sound Test.

✦ Help: Launches the Flash Help system within your default Web browser.

There are three benefits to fine-tuning your audio in the Sound Properties dialog of
the Library. Foremost of these benefits is the ability to set specific compressions
and optimizations for individual each sound. Another benefit is the Test button —
this is an excellent way to audition your audio file and to know what it will sound
like when it is exported with different compression schemes and bit rates; hearing
is believing. Finally, the Estimated Results, which display how each setting will
affect the compressed file size, is a powerful tool that helps to obtain the desired
balance of quality and file size. In contrast, optimizing sounds with the Publish
Settings is more of a blind process — it is not only more global; it’s also more of
a painful trial-and-error method.

Combining methods for controlling sounds
One of the coolest things about Flash audio is that you can combine the two meth-
ods of controlling sounds, using both the Publish Settings and the Library Sound
Properties dialog to streamline your work flow while still maintaining a relatively
high degree of control over sound quality. (This method works best if you already
have some experience with sound behavior in Flash.)

For example, let’s assume that you have three different Event sounds in your Flash
project. Two of these are simple button sounds. You decide that you won’t require
optimal sound for buttons, so based on your prior experience of sound behavior in
Flash, you go directly to the Publish Settings and set Event sounds to publish as .MP3
at 48 Kbps with Medium Quality. Then, in the Library, by setting the Compression to
default, you tell Flash to handle the compression for these sounds with the Publish
Settings. But the third sound is a loop of background jazz that you want to be heard
at near-CD quality. For this sound, you return to the Sound Properties tab and try a
number of combinations — and test each one — until you find a balance between file
size and audio quality that pleases your ears. You assign this sound to export as an
.MP3, stereo at 112Kbps, with Quality set to Fine.

Expert Tutorial: Sound Clipping on the Flash Player,
by William Moschella

William Moschella is a sound engineer with extensive Flash experience. He’s provided a
number of Expert Tutorials for this edition of the Flash 5 Bible. Refer to Chapter 32,
“Working with Audio Applications,” to read his other contributions, as well as to scoop his
personal information.

If you’ve spent much time with Flash, you’ve probably noticed an annoying clipping sound
that sometimes occurs with event and stream sounds (especially on Windows PCs) in pre-
vious versions of Flash. Well, I’ve volunteered to report that it’s still there.

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 424

425Chapter 16 ✦ Optimizing Flash Sound for Export

Here’s the reason: Flash Player acts as a preamp to its sounds, which means that the sound
becomes a few decibels louder after the movie is published. It’s important to know this,
because it means that what you put in isn’t what really comes out. This clipping sound is
more noticeable with certain types of sounds and instruments than others. Particular offend-
ers include heavy bass, deep vocals, and ultrahigh twangy sounds. This happens because
these sound waves tend to peak above and below the threshold of both the Player and
sound cards. When overamplified by the Flash Player, this will even happen with sounds that
you may have already have optimized. Although the ultimate fix lies with Macromedia, there
are a few workarounds. These solutions apply to projectors, CD-ROMs, and Web browsers.

If your clipping is minimal, you may get good results with a custom setting in the Edit
Envelope Control to lower volume (stereo channels have two volumes which must be low-
ered). Move the envelope handles down evenly for both channels; this acts like a volume
knob. By testing and making adjustments, you should be able to minimize, if not eliminate
the clipping entirely. For more about the Edit Envelope Control, refer to Chapter 15,
“Importing and Editing Sounds in Flash.”

When the clipping sound is more pronounced, you might need to take additional steps to
optimize your sound. Start by using a third-party sound editor, such as Sound Forge,
SoundEdit, or Cool Edit to normalize the sound. By removing the high peaks in the sound
wave, you help to reduce clipping. For more about using sound applications, refer to
Chapter 32, “Working with Audio Applications.”

The previous steps usually help, but they aren’t the true solution to the problem.
Unfortunately, certain sound cards will clip Flash audio at most settings. This is due to a
communication issue between the Flash Player and the sound card. So far, there’s no way
to prevent this before publishing your movie. However, there is a way that this particular
clipping can be eliminated after your movie is published. Unfortunately, it means devising a
mechanism for moving the user through another step before they finally enter your movie.
The answer lies with the mouse. I’ve determined two actions that clear the communication
path between the Flash player to the sound card. Once either of these mouse actions has
been performed, the annoying sound clipping will go away.

While an audio track is playing, the viewer must either execute a right mouse-click over the
movie, or else act to either minimize or maximize the screen. Although the first of these
options is the most user friendly, it will not work if the movie is viewed full-screen. This “fix” will
clear up the clipping problem for the current movie as well as for any other movie that is sub-
sequently loaded into the current projector—but it will not work if you open another projector.

The ultimate solution will come from users who choose not to accept this flaw. Send an
e-mail to Macromedia at wish-flash@macromedia.com. Perhaps this problem will be
resolved in Flash 6.

The Options pop-up menu of the Library has new sound features. When a sound is selected
in the Library, the pop-up displays one or two menu items related to editing the selected
sound. These menu items will either directly open the sound in a sound-editing application,
or lead to the Select External Editor dialog. One such menu item is Edit With; however, the
particular menu items that are available will vary depending on both the platform and the
software installed on the host computer. For more information on the use of an External
Editor with sounds, refer to Chapter 32, “Working with Audio Applications.”

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 425

426 Part III ✦ Sound Planning

Publish Settings for QuickTime Sound
Flash 4 introduced a hot new feature: the capability to export your Flash movies as
QuickTime Flash (or Windows AVI) movies. With the release of Flash 5, this is an
important and growing area of Flash usage. This section offers brief coverage of the
audio options available from within Flash for export to the QuickTime (QT) archi-
tecture. Note that these options only pertain to a Flash sound that’s converted to
a QuickTime sound track. The resulting QuickTime sound track is a new sound
track — it is not merged with preexisting QT sound tracks. When authoring for
export to QuickTime, there is no limit to the number of sounds or sound channels.
That’s because all sounds are combined into a single sound track upon export to
QuickTime (or Windows AVI). When exporting to QuickTime, neither the lack of
sounds nor the number of sounds has any effect upon the size of the final file. When
exporting a Flash movie (or sound track) to QuickTime, you have two choices:

✦ If you want to export Flash sounds (such as background music) to use com-
pression schemes currently unavailable in Flash 5, then you can opt to con-
vert the Flash sound to a QuickTime-supported audio codec such as QDesign
Music.

✦ If you are exporting your Flash movie to QuickTime but want to keep the Flash
sound embedded with its original Flash media track, you can disable QuickTime
sound compression.

For more information on QuickTime support in Flash, see Chapter 34, “Working
with QuickTime.”

To access the QuickTime audio export Settings:

1. Choose File ➪ Publish Settings.

2. In the Formats tab, check the QuickTime option.

3. A QuickTime tab appears. Click the QuickTime tab.

4. Now, at the Streaming Sound setting, check Use QuickTime Compression.

Finally, click the Settings button. The Sound Settings dialog appears, shown in
Figure 16-4, with several options to select your audio compression settings.
Depending upon the configuration of your machine, different QuickTime audio-
encoding options appear. Depending upon the intended use of your QuickTime
movie, you may want to choose different options. Table 16-2 explains some of
the popular QuickTime encoding methods and their intended uses. Table 16-3
demystifies alternative formats.

Cross-
Reference

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 426

427Chapter 16 ✦ Optimizing Flash Sound for Export

Figure 16-4: The QuickTime tab of Publish Settings
has options to control the conversion of Flash sounds
into QuickTime audio tracks with the Streaming
Sound setting.

Table 16-2
QuickTime Sound Compressors

Popular Codecs Best For Description

Qdesign Music Codec Internet Very good compression ratio, great for music.
Downloads progressively.

Qdesign version 2 Internet Excellent compression ratio, great for music,
streaming audio.

Qualcomm PureVoice Internet Excellent compression ratio. Very good for voice.

IMA CD-ROM Good quality, only encodes 16-bit audio.
Inadvisable for low frequencies (booming bass)
or Web use.

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 427

428 Part III ✦ Sound Planning

Table 16-3
Alternative Formats

Other Formats Description

24-bit Integer, 32-bit Integer Increases bit rate to 24- and 32-bit, respectively.

32-bit Floating Point, 64-bit Increases bit rate to 32-bit and 64-bit, respectively. Note
Floating Point that current computer systems generally are only capable

of playing back 16-bit sound.

ALaw 2:1 European standard compression scheme. Low quality, not
recommended.

MACE 3:1, MACE 6:1 Old Macintosh standards. Low quality, high file size.
Forget about using these codecs.

uLaw 2:1 Old Internet standard for Japan and North America. Low
quality, high file size.

Final Sound Advice and Pointers
Here are a few final notes about sound and some pointers to more complex sound-
related topics that are presented later in the book.

VBR (Variable Bit Rate) MP3
Flash 5 has licensed the Fraunhofer MP3 codec, which supports streaming MP3 with
a constant bit rate. However, Flash 5 does not support Variable Bit Rate (VBR), or
VBR MP3. VBR MP3 is a variant of MP3 that utilizes specialized algorithms to vary
the bit rate according to the kind of sound that is being compressed. For example, a
soprano solo would be accorded a higher bit rate than a crashing drum sequence,
resulting in a superior ratio of quality to file size. There are a number of sound appli-
cations, such as the Xing Audio Catalyst 2.1 codec, that export VBR MP3. If you have
access to a sound application that exports VBR MP3, you’ll be happy to know that
you can import your VBR MP3 sound files, which are (theoretically) optimized for
file size and quality beyond the compression capabilities of Flash, and that the com-
pression of such files can be maintained by doing the following:

✦ In the Flash tab of the Publish Settings, leave the option to Override Sound
Settings unchecked.

✦ In the Sound Properties dialog, which is accessed from the Library, choose
Default for the Compression option in Export Settings.

✦ The Sync Option in the Sound Panel may not be set to Stream.

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 428

429Chapter 16 ✦ Optimizing Flash Sound for Export

If you choose to use VBR in your Flash projects, please refer to Table 16-4 for a
guide to the optimal use of this format.

Table 16-4
Quick Guide to Common VBR Quality Settings

CBR Bitrate Supported
VBR +/– 10% Channels Recommended Use

Low 96kbits/s Mono Joint Near-CD quality; good choice
Stereo Stereo for portable MP3 Players

(smallest file size). Use when
storage space is a consider-
ation; when playback is
performed with low-end sound
equipment and listening
environment, such as portable
players or car players.

High Frequency Not supported Not supported Not supported at this rate.
at this rate at this rate

Low/Normal 112 Kbits/s Mono Joint CD-quality; best choice for
Stereo Stereo portable MP3 players where

file size is limited.

Normal 128 Kbits/s Mono Joint CD-quality; best choice for
Stereo Stereo most users. Normal use;

similar to encoding moderately
difficult to difficult content
with a CBR of 128 Kbits/s.

Normal/High 160 Kbits/s Mono Joint Archival quality; for high-end
Stereo Stereo stereo (larger file size).

Compromise between
Normal and High settings.

High 192 Kbits/s Mono Joint Archival quality; for highest-
Stereo Stereo end stereo unlimited file size.

Use when storage space is
not a consideration; when
playback is performed with
high-end sound equipment
and listening environment;
and when heavy equalization
adjustments might be used
on playback.

Continued

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 429

430 Part III ✦ Sound Planning

Table 16-4 (continued)

CBR Bitrate Supported
VBR +/– 10% Channels Recommended Use

Very High 224 Kbits/s Mono Joint Archival quality; for highest-
Stereo Stereo end stereo unlimited file size.

Ultra High 256 Kbits/s Mono Joint Archival quality; for highest-
Stereo Stereo end stereo unlimited file size.

Extracting a sound from a .FLA editor file
Sometime you may be handed a .FLA file that has sound embedded within it, and
told that the original sounds have either been lost or are no longer available. Here’s
how to extract a sound from such a file:

Unfortunately, an equivalent process does not exist for the Macintosh. However,
for users with QuickTime Player Pro, a workaround is to export the movie as a
QuickTime Video movie and then use QuickTime Player Pro to extract the audio
channel.

1. Back up the file. If the original file is named, Mess.fla, then you might resave it
as Mess_Sound_Extraction.Fla.

2. Add a new layer in the timeline, at the top of the layer stack. Label this layer
Sound Extraction. Add nine empty frames to this layer by selecting frame 10
and then using the keyboard shortcut, which is F5. (If it’s a long sound, you’ll
probably want to add more frames.)

3. Delete all other layers.

4. Open the Library and locate the sound that needs to be extracted from the
file. In this case, the sound is named Buzz.wav. Note that any other assets
within this file are irrelevant to this process. That’s because Flash will only
utilize Library items that have been actually used within the movie.

5. Double-click Buzz.wav to invoke the Sound Properties dialog. Set the Com-
pression to default, if it’s not that way already. This ensures that the Library
won’t alter the sound upon export. Note the sound specifications just to the
right of the waveform display, as you’ll be double-checking for these specifi-
cations in only a few steps. See Figure 16-5.

6. Click frame 1 of the Sound Extraction layer to select it. This should now be the
only keyframe on the only layer in this file.

7. With frame one selected, drag Buzz.wav onto the Stage. Assuming it’s a short
sound, the waveform will appear in the timeline across the ten frames of the
Sound Extraction layer.

Note

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 430

431Chapter 16 ✦ Optimizing Flash Sound for Export

Figure 16-5: The Sound
Properties dialog, which is
accessed from the Library,
includes the original
specifications for each
sound, located down and
to the right of the waveform.

8. Next, on the Flash tab of the Publish Settings dialog, make sure that the
Override Sound Settings check box is not checked.

9. Now we’re ready to extract Buzz.Wav from this .FLA. We’ve created a .FLA that
will ignore all other assets in the Library except this sound, and we’ve told
Flash to honor all of the original specifications of the sound. Choose File ➪
Export Movie, and specify a file location, name, and file type — in this case,
.WAV — and click Save.

10. The Export Windows WAV dialog appears with those sound specifications. If
you’ve done everything correctly, these should match the original specifica-
tions that appeared in the Library Sound Properties dialog. If not, go back and
recheck your work.

Several sound-related topics must be deferred until after our discussion of Flash 5’s
enhanced Action Scripting capabilities. Work your way forward to Chapter 19,
“Controlling Movie Clips,” for a discussion of the following topics:

✦ How to determine whether a sound is currently playing: Despite powerful
enhancements to Flash’s scripting capabilities, there is no method to deter-
mine whether a sound is currently playing. We’ve found a simple workaround
that fits into the Smart Clip, a new Flash 5 feature.

✦ Using the Flash 5 sound control: The Flash 5 Sound Object supports pan and
zoom control. Expert tutor Jay Vanian shows how to make sound fade and
move from side to side, with incredible realism as a bouncing basketball fol-
lows your mouse from side to side and in and out of a virtual basketball court.

✦ Loading sounds from the Library: By using the power of the Flash Library
and Movie Clips, sounds can be preloaded from the Library and started and
stopped. Robert’s soundLib.fla method provides that any asset will be avail-
able when it’s required to play.

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 431

432 Part III ✦ Sound Planning

Summary
✦ Audio compression for Flash movies is controlled on the Flash tab of the

Publish Settings dialog. The compression settings here are applied to all
sounds used in the Flash movie, unless the sound is given custom settings
in the Flash Library.

✦ You can use the Override sound settings check box in the Flash tab of the
Publish Settings dialog to cancel the custom settings applied to sounds in
the Flash Library.

✦ Flash 5 enables you to compress sound files as MP3-encoded audio. MP3
provides near-CD quality at higher bit rates.

✦ Generally, MP3 bit rates below 20 Kbps produce low-quality audio. Use bit
rates between 20 and 32 Kbps for acceptable quality audio with the smallest
file-size gains.

✦ While MP3 provides the best sound quality with the smallest file sizes, it is not
compatible with Flash 3 Players. You may want to create two versions of your
Flash movie: one with ADPCM audio encoding, and another with MP3 audio
encoding. Both movies could be available to Web visitors to choose from.
Alternatively, a JavaScript plug-in detector could automatically deliver the
right movie to the visitor’s browser.

✦ Use the Flash Library to customize the audio compression schemes of individ-
ual sounds.

✦ The Sound Properties dialog enables you to test different compression set-
tings and to hear the results. Useful file size information is also provided in
the Export Settings section of this dialog.

✦ Variable Bit Rate (VBR) MP3 sound files can be brought into Flash and exported
without degrading the encoding; however, Flash itself cannot encode using VBR.

✦ Orphaned or lost sound files that are embedded within a .FLA file can be
extracted without degrading the original sound file.

✦ Flash sounds can be converted to QuickTime sound tracks in QuickTime Flash
movies. If you are creating QuickTime Flash movies, then you can access a
wide range of Apple and third-party audio compressors.

✦ ✦ ✦

3515-3 ch16.f.qc 1/18/01 4:57 PM Page 432

Understanding
Actions and
Event Handlers

Interactivity in a Flash movie can broadly be thought of as
the elements that react and respond to a user’s activity or

input. A user has many ways to give input to a Flash movie, and
Flash has even more ways to react. But how does interactivity
actually work? It all starts with actions and event handlers.

Actions and Event Handlers
Even the most complex interactivity in Flash is fundamentally
composed of two basic parts: (a) the behavior (what happens),
and (b) the cause of the behavior (what makes it happen).
Here’s a simple example: Suppose you have a looping sound-
track in a movie and a button that, when clicked, turns the
soundtrack off. The behavior is the sound turning off, and the
cause of the behavior is the mouse clicking the button. In Flash,
behaviors are referred to as actions. The first step in learning
how to make interactive movies is becoming familiar with the
list of possible actions. However, actions can’t act without
being told to act by something. That something is often the
mouse coming in contact with a button, but it can also be a
keystroke, or simply a command issued from a keyframe. We
refer to any occurrence that can cause an action to happen
(such as the button click in the preceding example) as an event.
The mechanism we use to tell Flash what action to perform
when an event occurs is known as an event handler.

This cause-and-effect relationship seems obvious, but it is
an extremely important concept. For the purposes of creating
basic interactivity, the difference between an action and
the cause of an action is merely a practical detail. But with

1717C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Introducing events
and event handlers

Understanding
ActionScript

Using the
Actions Panel

Learning your first
six Flash actions

Making actions
happen with event
handlers

✦ ✦ ✦ ✦

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 435

436 Part IV ✦ Adding Basic Interactivity to Flash Movies

Flash 5’s new programmatic actions and the scripting capabilities that they provide,
understanding the relationship between actions and the things that cause them can
be the key to adding more sophisticated behavior to your movies with traditional
programming techniques.

Don’t worry, we’re taking it one step at a time. First, we set up the new Frame and
Object Actions Panel. Then we look at the Basic Actions booklet. Later, we see how
to call these actions in various ways with three kinds of event handlers: button
manipulation, keyframes, and keystrokes.

What is ActionScript?
Every interactive authoring system uses a language (or code) that enables elements
within the system to communicate. Just as there are several languages that people
use to speak to one another around the globe, there are hundreds of programming
languages in use today. In an effort to make Flash more usable to computer pro-
grammers, Flash’s scripting language, called ActionScript, has changed much of its
formatting to mirror JavaScript, a fundamental component for DHTML and HTML
Web pages. Right now, we focus on using the most basic Flash ActionScript.

We look at more advanced ActionScript in Chapters 19 through 26.

Setting up the Actions Panel
Unlike previous versions, Flash 5 has a new way of adding interactive commands to
Flash movies — the Actions Panel. Unlike with previous versions of Flash, you do
not have to double-click frames and buttons to access actions. Also, you don’t have
to use menus to select Actions — you can type them by hand in or out of Flash! To
open the Actions Panel, go to Windows ➪ Actions (Option+Command+A or Ctrl+
Alt+A). If you have a frame selected in the timeline, you will see the Actions Panel
with the name Frame Actions (see Figure 17-1). If you have a Button or Movie Clip
symbol selected on the stage, you’ll see the name Object Actions. Don’t be con-
fused — there is only one Actions Panel. Flash simply lets you know the event
handler to which you are assigning actions.

Most actions have user-definable parameters that can be set in the gray area
below the left and right panes of the Actions Panel. You can show or hide this
area by clicking the arrow in the lower-right corner of the panel. You can also
hide the left pane of the Actions Panel by clicking the arrow on the divider line
between the left and right panes.

In the Flash 5 Bible, we do not differentiate between the Frame and Object
Actions Panel. We simply use the term Actions Panel.

Note

Cross-
Reference

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 436

437Chapter 17 ✦ Understanding Actions and Event Handlers

Figure 17-1: The new Actions Panel enables you
to instantly add, delete, or change Flash interactive
commands.

Normal versus Expert Mode
Flash has two authoring modes for actions: Normal and Expert. By default, Flash
uses the Normal Mode (Command+N or Ctrl+N when the Actions Panel is active).
In this mode, Flash arranges actions in the left pane into six booklets, each booklet
containing sets of ActionScript. You can choose actions from any of the sets by
double-clicking a specific action. For this chapter, we work entirely within the first
booklet, Basic Actions. In Expert Mode (Command+E or Ctrl+E when the Actions
Panel is active), Flash eliminates the Basic Actions booklet (they’re all included
in the Actions booklet), and enables you to type, copy, cut, and paste code at
will into the right pane of the Actions Panel. You can change the mode setting
by accessing the Actions Panel options, located at the upper-right corner of the
panel (see Figure 17-2).

You can add actions by dragging them from the left pane to the right pane, by select-
ing them from the plus (+) menu button in the upper-left corner of the Actions Panel,
or by double-clicking them from an Action booklet. To delete actions, select the action
line(s) in the right pane, and press the Delete key on the keyboard. Or you can select
the action line(s) and push the minus (–) button in the upper-left corner.

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 437

438 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 17-2: You can control the Actions Panel’s
look and feel by switching between Normal and
Expert Modes.

The Basic Actions are listed as unsorted groups according to the functions they
can perform. The first group, comprised of Go To, Play, and Stop, control the play-
back of the movie. The second group, which includes Toggle High Quality and Stop
All Sounds, provides global tools for handling sounds and visual quality. The third
group — Get URL, FSCommand, and Load/Unload Movie — let movies load external
files and communicate with the browser, a Web server, or the standalone player.
The fourth group is effectively made up of Tell Target and If Frame Is Loaded.
These two actions afford, respectively, communication between Movie Clips
and control over the display of movies as they are downloading.

We omit On Mouse Event from the Basic Actions list because it’s not an Action in
and of itself — it’s an event handler for buttons.

The remaining Action booklets primarily offer extended ActionScript programming
capabilities. We discuss their use in later chapters.

Note

Shortcut to action menus

Deletes selected actions in right pane

Action window options

Target Path selectorParameter area

Action booklets

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 438

439Chapter 17 ✦ Understanding Actions and Event Handlers

Deprecated and Incompatible Actions: What Are They?

As the ActionScript language of Flash continues to expand and encompass new functionality,
older actions will coexist with newer and better actions (or methods, which we discuss later).
While the Flash 5 Player will continue to support older Flash 4 and earlier actions, it’s better
not to use these older actions, which are called deprecated actions. If your Publish Settings for
the Flash format are set to Flash 5, certain actions such as tellTarget and ifFrameLoaded
will be highlighted in green (in all but the Basic Actions booklet), as shown in the following fig-
ure. Why shouldn’t you use these actions? As we see in more advanced scripting, Flash 5 has
introduced new ways of targeting Movie Clips and determining if certain frames have loaded.

Actions that are highlighted in green should
be avoided if possible. However, the Flash 5
Player will support these older actions.

Flash 5 will also let you know if certain actions are not supported with the Player version that
is selected in the Flash format’s Publish Settings. These actions are highlighted in yellow as
shown in the following figure.

The Flash 4 Player will not support the
for...in or function actions (among others),
as these actions have been introduced to
Flash in Version 5.

Continued

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 439

440 Part IV ✦ Adding Basic Interactivity to Flash Movies

Your First Six Actions
So, now that you have a general picture of what actions do, let’s look at the first six
in detail (the remaining actions are covered in later chapters). At this point, we’re
only describing the functionality of each action, not how to add an action to your
movie. Information on adding an action is covered in the next section, “Making
Actions Happen with Event Handlers.”

As they appear in the Flash interface, the actions are coincidentally sorted from top
to bottom roughly according to their complexity. Let’s take it from the top.

Go To
The Go To action changes the current frame of the movie to the target frame specified
in the Go To settings. The Go To action has two variations:

✦ Go to and Stop: Changes the current frame to the frame specified and then
halts playback. Go to and Stop is often used to produce toolbar-style interfaces
where the user clicks buttons to view different areas of content in a movie.

Continued

Finally, Flash will tell you if you have added conflicting actions to one keyframe or object.
For example, if you have several Go To actions on one frame or button, Flash will highlight
the offending action(s) in red, as shown in the following figure. The red highlighting will
only appear in Normal Mode.

Highlighted actions are in conflict with
previously added actions. You must
remove or correct the parameters if you
want your movie to behave correctly.

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 440

441Chapter 17 ✦ Understanding Actions and Event Handlers

✦ Go to and Play: Changes the current frame to the frame specified, and then
executes a Play Action. Like Go to and Stop, Go to and Play can be used to
create toolbar interfaces, but provides the capability to show animated intro
sequences as preludes to individual content areas. Go to and Play also gets
frequent use in choose-your-own-adventure style animations, in which the
user guides an animated character through different paths in a narrative.
Note that Go to and Stop is the default type of Go To action. To create a Go
to and Play action, you must first add a Go To action, and then check the
Go to and Play option in the Parameters area of the Actions Panel.

Each Go To action enables you to jump to certain areas of the Flash movie. The
parameters of the Go To actions start with the largest time unit, the Scene, and
end with the smallest one, the Frame.

You can specify frames in other scenes as the target of Go To actions with the Scene
parameter. In the Scene drop-down menu, you can find a list of all the scenes in your
movie, as well as built-in references to <current scene>, <next scene>, and <previous
scene>, as shown in Figure 17-3. The Scene drop-down can be used together with the
Type and Frame parameters to target a frame in any Scene in a movie.

Figure 17-3: Setting the Go To action that targets a specific Scene.

There are five methods of specifying the frame to which the movie should go when
it receives a Go To action. You set the method by selecting the appropriate Type
and Frame parameters. After you’ve chosen the method to use to refer to your tar-
get frame, enter or select the frame’s name or number under that setting’s options
(see Figure 17-4).

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 441

442 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 17-4: Setting the Go To action
with a Frame Number type.

The methods for specifying the frame are:

✦ Number: Specify the target frame as a number. Frame 1 is the beginning of
the movie or scene. Number spans scenes, so if you have a movie with two
scenes, each containing 25 frames, and you add a Go to action with Frame
Number set to 50, your action advances the movie to the 25th frame of the
second scene.

Using frame numbers to specify the targets of Go To actions can lead to serious
scalability problems in Flash movies. Adding frames at the beginning or in the mid-
dle of a movie’s timeline causes the following frames to be renumbered. When
those frames are renumbered, all Go to Frame Number actions must be revised to
point to the correct new number of their target frames.

In the vast majority of cases, Go To actions that use Label to specify target frames
are preferable to Go To actions that use Number to specify target frames. Unlike
numbered frame targets, Go To actions with labeled frame targets continue to
function properly even if the targeted frame changes position on the timeline.

✦ Label: Individual keyframes can be given names via the Label text field in the
Frame panel. Once a frame is labeled, a Go To action can target it by name. To
specify a label as the target of a Go To action, select Frame Label in the Type
drop-down menu. Then either type the name of the frame into the Frame text
field, or select it from the automatically generated list of frame labels in the
Frame drop-down menu as seen in Figure 17-5.

The automatically generated list of labels that appears in the Label drop-down can
include labels from other scenes, but cannot include labels that are inside Movie
Clips. To target a label in a Movie Clip, you have to embed the Go To action in a Tell
Target action and type the label in manually. However, Flash 5 offers a new way of
targeting Movie Clips and their frame labels. For more information, see Chapter 18,
“Navigating Flash Timelines.”

Note

Caution

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 442

443Chapter 17 ✦ Understanding Actions and Event Handlers

Figure 17-5: Setting the Go To action with a Frame Label.

✦ Expression: Specify the target frame as an interpreted ActionScript code seg-
ment. Expressions are used to dynamically assign targets of Go To actions.
Expressions are covered in Chapter 21, “Planning Code Structures.”

✦ Next Frame: Specify the target frame as the frame after the current frame.
Next Frame can be used in conjunction with Previous Frame to quickly set up
a slide-show-style walkthrough of content, where each of a series of contigu-
ous keyframes contains the content of one “slide.”

✦ Previous Frame: Specify the target frame as the frame before the
current frame.

Play
This simple action is one of the true foundations of Flash. Play sets a movie or a
Movie Clip in motion. When a Play action is executed, Flash starts the sequential
display of each frame’s contents along the current timeline. The rate at which the
frames are displayed is measured as frames per second, or fps. The fps rate can be
set from 0.01 to 120 (meaning that the Play Action can cause the display of as little
as 1 frame every 100 seconds to as many as 120 frames in 1 second, subject to the
limitations of the computer’s processing speed). The default fps is 12. Once Play has
started, frames continue to be displayed one after the other, until another action
interrupts the flow, or the end of the movie or Movie Clip’s timeline is reached. If the
end of a movie’s timeline is reached, the movie either loops (begins playing again at
frame 1, scene 1), or stops on the last frame. (Whether a movie loops or not depends
on the Publish settings described in Chapter 40, “Publishing Flash Movies.”) If the
movie is set to loop, once the end of the Movie Clip’s timeline is reached, playback
loops back to the beginning of the clip, and the clip continues playing. To prevent
looping, add a Stop action to the last frame of your Movie Clip.

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 443

444 Part IV ✦ Adding Basic Interactivity to Flash Movies

A single Play action affects only a single timeline, whether that timeline is the main
movie timeline or the timeline of a Movie Clip instance on the Main Timeline
(Scene 1). For example, a Play action executed inside a Movie Clip does not cause
the Main Timeline to begin playing. Likewise, any Go To action on the Main
Timeline doesn’t migrate to the Movie Clips that reside there. A timeline must be
specifically targeted to control it. If there is no specified target, then the action is
referring to its own timeline. However, this is not the case for animations within
Graphic symbol instances. An animation in a Graphic symbol is controlled by
actions on the timeline in which the symbol instance is present — Flash ignores
actions on a Graphic symbol’s timeline.

Stop
Stop, as you may have guessed, halts the progression of a movie or Movie Clip that
is in a Play state. Stop is often used with buttons for user-controlled playback of a
movie, or on frames to end an animated sequence.

Movie Clip instances placed on any timeline will begin to play automatically. It’s
important to remember to add a Stop action on the first frame of a Movie Clip if
you don’t want it to play right away.

Toggle High Quality
Here’s a straightforward action that changes the entire movie’s visual rendering
quality setting to High if it is currently set at Low, and to Low if it is currently set
at High. In High-Quality Mode, the edges of lines and text appear smooth because
they are antialiased (or blurred slightly between shifts in color). In Low-Quality
Mode, the edges of lines and text appear choppy because they are not antialiased.
Low Quality is occasionally set on movies that are played back on slower comput-
ers because it causes animation to play back more quickly. See the difference for
this toggle setting in Figure 17-6. Toggle High Quality is considered a deprecated
action because of the new Flash 5 _quality and _highquality properties. All quality
settings are global, which means that every timeline (including Movie Clip time-
lines) will be affected regardless of where the action is executed.

The Toggle High Quality Action is most frequently used to set the Quality of stan-
dalone Flash movies. (On the Web, the quality of a movie can be set with HTML
attributes.) If the Quality is not explicitly set to High, it defaults to an automatic
mode where the Quality shifts between High and Low depending on how
demanding each frame of the movie is on the computer. The effect is rather jar-
ring, so most designers avoid it by simply choosing the often slower, but more
attractive High Quality.

Tip

Tip

Note

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 444

445Chapter 17 ✦ Understanding Actions and Event Handlers

Figure 17-6: Low Quality (left) versus High Quality (right)

Stop All Sounds
A simple but powerful action that mutes any sounds playing in the movie at the time
the action is executed. Stop All Sounds does not disable sounds permanently — it
simply cancels any sounds that happen to be currently playing. It is sometimes used
as a quick-and-dirty method of making buttons that shut off background looping
soundtracks. Stop All Sounds is not appropriate for controlling whether multiple
sounds are played or muted. For information on more accurate control over sounds,
please see Chapter 18, “Navigating Flash Timelines,” and Chapter 19, “Controlling
Movie Clips.”

Get URL
Want to link to a Web page from a Flash movie? No problem. That’s what Get URL is
for. Get URL is simply Flash’s method of making a conventional hypertext link. It’s
nearly exactly the equivalent of an Anchor tag in HTML, except that Flash’s Get URL
also allows for form submission. Get URL can be used to link to a standard Web
page, an ftp site, another Flash movie, an executable, a CGI script, or anything
that exists on the Internet or on an accessible local file system. Get URL has three
parameters that are familiar to Web builders (the first one, URL, is required for
this Action to work):

✦ URL: This is the network address of the page, file, script, or resource to which
you are linking. Any value is permitted (including ActionScript expressions),
but the linked item can only be displayed if the reference to it is correct. URL
is directly analogous to the HREF attribute of an HTML Anchor tag. You can
use a relative or absolute URL as well. Examples:

http://www.yoursite.com/
ftp://ftp.yoursite.com/pub/documents.zip
menu.html
/cgi-bin/processform.cgi

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 445

446 Part IV ✦ Adding Basic Interactivity to Flash Movies

Since Flash 4, Get URL can now link to documents on the Web from the stan-
dalone Flash player. Execution of a Get URL action in the standalone player
causes an external Web browser to launch and load the requested URL (see
Figure 17-7).

Figure 17-7: Setting the URL of a Get URL action

✦ Window: This is the name of the frame or window in which you wish to load
the resource specified in the URL setting. Window is directly analogous to the
TARGET attribute of an HTML Anchor tag. In addition to enabling the entry of
custom frame and window names, Window provides four presets in a drop-
down menu:

• _self: Loads the URL into the same frame or window as the current movie.

• _blank: Creates a new browser window and loads the URL into it.

• _parent: Removes the current frameset and loads the URL in its place.
Use this option if you have multiple nested framesets, and you want your
linked URL to replace only the frameset in which your movie resides.

• _top: Loads the URL into the current browser and removes all framesets
in the process. Use this option if your movie is in a frame, but you want
your linked URL to be loaded normally into the browser, outside the
confines of any frames.

Frame windows and/or JavaScript windows can be assigned names. You can target
these names by manually typing the name in the Window field. For example, if you
had a frame defined as <FRAME NAME=”main”. . .>, you could load specific
URLs into “main” from a Flash movie.

✦ Variables: This option enables Get URL to function like an HTML form submis-
sion. For normal links, the Variables setting should be left at its default value,
Don’t Send. But in order to submit values to a server-side script, one of the sub-
mission methods (Send Using GET or Send Using POST) must be selected. For a
complete tutorial on using Get URL to submit data to a server, see the “Creating
a Flash Form” section in Chapter 24, “Sending Data In and Out of Flash.”

Note

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 446

447Chapter 17 ✦ Understanding Actions and Event Handlers

Get URL functions in the Test Movie environment. Both the Flash stand-alone
player and the Test Movie command give you access to external and/or local URLs.

Although this chapter focuses on using Basic Actions, you should start familiarizing
yourself with the ActionScript notation that Flash uses for each action (see Table
17-1). As you use Flash for more advanced interactivity, you’ll need to have a firm
grasp of code notation. Part V, “Programming Flash Movies with ActionScript,”
teaches you how to start building code from the ground up.

Table 17-1
Basic Actions and ActionScript Notation

Action ActionScript Notation Arguments

Go to and Stop gotoAndStop(arguments); Scene Name (Frame Label,
Number, or Expression)

Go to and Play gotoAndPlay(arguments); Scene Name (Frame Label,
Number, or Expression)

Go to Next Frame nextFrame(); None

Go to Previous Frame prevFrame(); None

Go to Next Scene nextScene(); None

Go to Previous Scene prevScene(); None

Play play(); None

Stop stop(); None

Toggle High Quality toggleHighQuality(); None

Stop All Sounds stopAllSounds(); None

Get URL getURL(arguments); URL, Target frame
or window, Variable
send method

Making Actions Happen with Event Handlers
The first six Basic Actions — Go To, Play, Stop, Toggle High Quality, Stop All Sounds,
and Get URL — provide all the behaviors that you need to make an interesting inter-
active Flash movie. But those six actions can’t make your movies interactive on
their own. They need to be told when to happen. To tell Flash when an action
should occur, you need event handlers. Event handlers specify the condition(s)
under which an action can be made to happen. For instance, you might want to

Tip

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 447

448 Part IV ✦ Adding Basic Interactivity to Flash Movies

mouse-click a button to initiate a Play action, or you might want a movie to stop
when a certain frame in the timeline is reached. Creating interactivity in your
movies is simply a matter of deciding what event you want to detect (mouse click,
keystroke, and so on), adding the appropriate event handler to detect it, and speci-
fying the action(s) that should be performed when it happens.

Before we describe each event handler in detail, let’s see an example of exactly how
an event handler merges with an action to form a functioning interactive button.

Combining an action with an event handler to make
a functioning button
Imagine that you have a short, endlessly looping movie in which a wire-frame
cube rotates. Now imagine that you want to add a button to your movie that,
when clicked, stops the cube from rotating by stopping the playback of the
looping movie. Here’s what you need to do.

For this exercise, you can use the rotatingCube.fla file located in the ch17 folder on
the Flash 5 Bible CD-ROM. The finished file is named rotatingCube_complete.fla.

1. Open your Flash movie (.FLA file), and make a new layer called button.

2. Place a button on the button layer. (You could use Flash 5’s sample VCR stop
button found in Window ➪ Common Libraries ➪ Buttons, in the (circle) VCR
Button Set folder.)

3. Bring up the Instance Panel for the button (as shown in Figure 17-8) by
selecting the symbol instance on the Stage and choosing Modify ➪ Instance
(Command+I or Ctrl+I). If the Instance Panel was already open, then this
command will close the panel. Reapply the command to open it again. With
the button selected, make sure that the Behavior menu reads Button. If some
other Behavior is shown, then change it to Button.

Selecting buttons and editing button properties can be sometimes be tricky if but-
tons are enabled in the Flash authoring environment. For easier button manipulation,
disable buttons by unchecking Enable Simple Buttons under the Control menu.

4. Open the Actions Panel (Option+Command+A or Ctrl+Alt+A), and then
open the Basic Actions booklet in the left pane. A list of all the Basic
Actions appears.

5. Double-click the On Mouse Event action, or drag it to the right pane. A list of
parameters for On Mouse Event appears on the lower portion of the Actions
Panel. This list contains all the event handlers for buttons.

Tip

On the
CD-ROM

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 448

449Chapter 17 ✦ Understanding Actions and Event Handlers

Figure 17-8: The Instance Panel for the VCR Stop button.

6. By default, the Release option of the Event setting (shown in Figure 17-9) is
already checked. The Release event handler is one of two kinds of mouse-click
handlers (the other is Press; both are described later in this chapter in the
section titled “The Flash event handlers”). You should notice that the Actions
list in the right pane indicates the event handlers that are selected. You’ve
now told Flash that you want something to happen when the mouse clicks the
button. All that’s left is to tell it what should happen. In other words, you need
to nest another action with the on (release){ and } code.

Figure 17-9: Adding a Release
event handler

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 449

450 Part IV ✦ Adding Basic Interactivity to Flash Movies

7. Now we try another method for adding an action to the Actions list. Select
the top line on (release){ in the Actions list (in the right pane). Then, click
the plus (+) button in the top-left corner of the Actions Panel. From the pop-
up menu, highlight Basic Actions, and select Stop from the submenu. A Stop
action will be placed between the code on (release){ and }. The Actions
list box should now read as follows:

on (release){
stop();

}

The Stop action, represented by the code stop() shown in Figure 17-10, is
contained by the curly braces { and } that mark the beginning and end of the
list of actions that are executed when the release event occurs (there could
be any number of actions). Each action line must end with the semicolon (;)
character.

Figure 17-10: This code will stop
the Main Timeline playback when
the button is clicked.

In this example we selected the event handler before adding our action. This
helped illustrate the individual role that each of those components plays. During
real production, however, you may simply drag or add any action to the right pane
without first specifying an event handler — Flash automatically adds a Release
event handler to actions that are added to buttons.

We now have a button in our Flash movie that stops the movie’s playback when it
is clicked. You can use the Control ➪ Test Movie command to see if the button is
working correctly. To make any interactivity in your movies, you simply have to
apply the basic principles we used to make the stop button: Decide which action
(or actions) you want to happen, and then indicate when you want that action to
happen with an event handler.

In the first part of this chapter, we explored six actions. Let’s look now at the list of
Event Handlers you can use to make those actions happen.

Tip

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 450

451Chapter 17 ✦ Understanding Actions and Event Handlers

The Flash event handlers
Three primary event handlers exist in Flash. Those that detect mouse activity on
buttons (button manipulation), those that recognize when a key is pressed on the
keyboard (key presses), and those that respond to the progression of the timeline
(keyframes).

Flash 5 adds some new event handlers such as onClipEvent and data-driven
events such as XML.loaded and XMLSocket.onConnect. There is also a new
Key Object and methods associated with it (for example, Key.isDown and
Key.isToggled). We look at advanced actions in later chapters.

Button manipulation
Event handlers that occur based on the user’s interaction with a button rely entirely
on the location and movement of the mouse pointer. If the mouse pointer comes in
contact with a button’s Hit area, it changes from an arrow to a hand symbol. At that
time the mouse is described as “over” the button. If the mouse pointer is not over a
button, it is said to be out or outside of the button. General movement of the mouse
without the mouse button depressed is referred to as rolling. General movement of
the mouse with the mouse button depressed is referred to as dragging.

Event handlers and actions on buttons must be placed only on Button instances
on the Stage, not on the four frames in the timeline of the original Button symbol.
Flash 5 will not allow you to place actions on any event handlers in the Button
symbol timeline.

Here are the mouse-based event handlers for Flash buttons.

Press
A single mouse click can actually be divided into two separate components: the
downstroke (the press) and the upstroke (the release). A Press event occurs when
the mouse pointer is over the Hit area of a button and the downstroke of a mouse
click is detected. Press is best used for control panel-style buttons, especially toggle
switches. Press is not recommended for important user moves (such as irreversible
decisions or primary navigation) because it does not give users an opportunity to
abort their move.

Release
A Release event occurs when the mouse pointer is over the Hit area of a button and
both the downstroke and the upstroke of a mouse click are detected. Release is the
standard button click Event Handler.

New
Feature

Note

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 451

452 Part IV ✦ Adding Basic Interactivity to Flash Movies

Release Outside
A Release Outside event occurs in response to the following series of mouse move-
ments: The mouse pointer moves over a button’s Hit area; the mouse button is
pressed; the mouse pointer is moved off the button’s Hit area; and the mouse but-
ton is released. Release Outside can be used to react to an aborted button click.

Roll Over
A Roll Over event occurs when the mouse pointer moves onto the Hit area of a
button without the mouse button depressed.

The Roll Over event handler should not be used to make visual changes to a but-
ton (such as making it appear “active” with a glow or size increase). Flash has a
built-in method of handling strictly visual changes on buttons that is described in
Chapter 9, “Checking Out the Library: Symbols and Instances.” The Roll Over event
handler should only be used to initiate actions.

Roll Out
A Roll Out event occurs when the mouse pointer moves off of the Hit area of a
button without the mouse button depressed.

Drag Over
A Drag Over event occurs in response to the following series of mouse movements:
The mouse button is pressed while the mouse pointer is over the Hit area of a but-
ton; the mouse pointer moves off the Hit area (mouse button still depressed); and
the mouse pointer moves back over the Hit area (mouse button still depressed).
Drag Over is rather obscure, but could be used for special cases of interactivity
such as revealing an Easter egg in a game (for example, when the mouse button is
held down and mouse movement occurs over a specific area, then ActionScript can
detect the coordinates of the mouse movement and reveal a Movie Clip instance
that is otherwise invisible on the Stage).

Drag Out
A Drag Out event occurs in response to the following series of mouse movements:
The mouse button is pressed while the mouse pointer is over the Hit area of a but-
ton; and the mouse pointer moves off the Hit area (mouse button still depressed).

Key Press (or keystroke)
The Key Press event handler for an On Mouse event action lets you execute an
action (or series of actions) when the user presses a key on the keyboard. The
implementation method for a Key Press event handler may be confusing: To add a
Key Press event handler, you must first place a button onstage at the frame where
you want the keyboard to be active. You then attach the keystroke event handler
to the button.

If you are only using the button as a container for your keystroke event handler
and you do not want the button to appear on Stage, you should make sure that (in
Symbol Editing Mode) all the frames of the button are blank.

Tip

Cross-
Reference

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 452

453Chapter 17 ✦ Understanding Actions and Event Handlers

The Key Press event handler, which was introduced with Flash 4, opens up many
possibilities for Flash. Movies can have keyboard-based navigation, buttons can
have keyboard shortcuts for convenience and accessibility, and games can have
keyboard-controlled objects (such as ships and animated characters). But watch
out for some potential “gotchas” to keyboard usage, specifically with On Mouse
event actions. If you’re planning ambitious keyboard-based projects, you may
want to check this list of potential issues first:

✦ The Esc key does not work as a key press.

✦ Multiple key combinations are not supported. This rules out diagonals as
two-key combinations in the classic four-key game control setup. It also means
shortcuts such as Ctrl+S are not available. Uppercase is functional, however.

✦ If presented in a browser, the Flash movie must have “focus” before keystrokes
can be recognized. To “focus” the movie, the user must click anywhere in the
space it occupies. Keyboard-based movies should include instructions that
prompt the user to perform this initial mouse click.

When a Flash movie is loaded into a Web browser, Key Presses cannot function
until the user has clicked at least once somewhere in the Flash movie.

✦ Because the Enter, less than (<), and greater than (>) keys are used as author-
ing shortcuts in the Test Movie environment, you may want to avoid using
them as control keys in your movies. If you need to use those keys in your
movies, make sure that you test the movies in a browser.

✦ Key Press events are case sensitive. For example, an uppercase letter “S” and
a lowercase letter “s” can trigger two different actions. No case-insensitive
keystroke event handler exists (one that would enable both cases of a letter
to trigger the same action). Achieving case-insensitivity would require dupli-
cation of event handler and action statements.

Flash 5’s new Key Object and its methods enable you to do much more with Key
Press events than the On Mouse event action does. You can find .FLA files that
demonstrate the Key Object in the ch25 folder on the CD-ROM. The Key Object is
discussed in the Macromedia ActionScript Reference Guide (which ships with the
software) on pages 279–288.

Keyframes
The keyframe event handler depends on the playback of the movie itself, not on the
user. Any action (except On Mouse event) can be attached to any keyframe on the
timeline. An action attached to a keyframe is executed when the playhead enters
the keyframe, whether it enters naturally during the linear playback of the movie or
as the result of a Go To action. So, for instance, you may place a Stop action on a
keyframe to pause the movie at the end of an animation sequence.

In some multimedia applications, keyframe event handlers can differentiate
between the playhead entering a keyframe and exiting a keyframe. Flash has only
one kind of keyframe event handler (essentially, on enter). Hence, as an author,
you do not need to add keyframe event handlers explicitly — they are a presumed

Note

Note

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 453

454 Part IV ✦ Adding Basic Interactivity to Flash Movies

component of any action placed on a keyframe. As mentioned in an earlier note,
Flash 5 has a new onClipEvent handler, which allows an argument of enterFrame.
We look at this new handler in Chapter 19, “Controlling Movie Clips.”

Complex movies can have dozens, or even hundreds of actions attached to
keyframes. To prevent conflicts between uses of keyframes for animation and uses
of keyframes as action containers, it is highly advisable to create an entire layer
solely for action keyframes. Name the layer actions and keep it on top of all your
layers for easy access. Remember not to place any symbol instances, text, or art-
work on your actions layer. You can also create a labels layer to hold — you
guessed it — frame labels.

Summary
✦ ActionScript is Flash’s interactive language. It is a set of actions that enables

Flash to communicate with internal elements (timelines, symbols, sounds, and
so on) and external Web pages and scripts.

✦ Flash interactivity is based on a relatively simple structure: An event handler
waits for something to happen (a playback point being reached or the user
providing input), and when that something does happen, it executes one or
more actions (which alter the movie’s playback, behavior, or properties; loads
a file; or executes a script).

✦ There are two authoring modes for adding actions in Flash: Normal and
Expert. Normal Mode enables you to add interactivity easily by clicking
action names and using menus to set parameters. Expert Mode enables
experienced Flash users to type actions directly and to copy text from other
applications into Flash.

✦ The Basic Actions booklet contains the fundamental actions for navigating
Flash playback through multiple scenes and keyframes, as well as controlling
soundtracks and accessing external Web resources such as HTML pages and
ftp downloads.

✦ All actions need an event handler to activate them. Event handlers include
keyframes on a timeline, button clicks, mouse movements, and key presses.
More advanced event handlers are discussed in later chapters.

✦ ✦ ✦

Tip

3515-3 ch17.f.qc 1/18/01 4:58 PM Page 454

Navigating Flash
Timelines

Unlike most multimedia authoring applications, Flash
has the capability to use multiple timelines simultane-

ously. So far, most of the examples in this book have only one
timeline and one scene. You’ve seen how to add basic actions
to your movies to make them interactive. Now, we begin
exploring the world of multiple movie timelines using the
Movie Clip symbol.

Movie Clips: The Key to
Self-Contained Playback

A powerful addition to Flash was the Movie Clip symbol, which
was introduced in version 3. Movie Clips enabled Flash devel-
opers to create complex behaviors by nesting self-contained
sequences of animation or interactivity inside each other.
These sequences could then be placed as discreet, self-playing
modules on the Main Timeline. The key to the power of Movie
Clips was their capability to communicate with and control
each other via the Tell Target action. In Flash 4, the role of
Movie Clips was expanded — they could be used with Action
Script. That capability put Movie Clips at the foundation of
advanced interactivity in Flash.

How Movie Clips interact within a
Flash movie
Previous chapters have dealt with Flash movies as a single
sequence of frames arranged along a single timeline. Whether
the playback along that timeline was linear (traditional anima-
tion) or nonlinear (where the Playhead jumps arbitrarily to
any frame), our example movies have normally comprised

1818C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Working with
Movie Clips

Explaining Flash 4
into Flash 5: Targets
and paths

Exploring absolute
and relative paths

Learning Tell Target

Using dot syntax

Creating Sound
Libraries

✦ ✦ ✦ ✦

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 455

456 Part IV ✦ Adding Basic Interactivity to Flash Movies

only the frames of a single timeline. Ostensibly, a single timeline may seem to
provide everything you’d need to create any Flash behavior, but as you get more
inventive or ambitious, you’ll soon find yourself conceiving ideas for animated
and interactive segments that are thwarted by the limits of a single timeline.

Suppose you want to create a looping animation of a character’s face. You decide
that the character’s eyes should blink every 2 seconds, and that the character’s
mouth should yawn every 15 seconds. On a single timeline, you’d have to have a
loop of 180 frames for the mouth (assuming a frame rate of 12 frames per second),
and repeating keyframes for the closed eye artwork every 24 frames. Although cre-
ating your face in that manner would be a bit cumbersome, it wouldn’t be impossi-
ble — until your character’s face had to move around the screen as an integrated
whole. Making the mouth and eyes loop while the whole face moved around com-
plex paths for extended periods of time would quickly become impractical, espe-
cially if the face were only one part of a larger environment.

Now imagine that you could make your character’s face by creating two whole sep-
arate movies, one for the eyes and one for the mouth. Could you then place those
movies as self-contained animating objects on the timeline of your main movie, just
like a graphic or a button? Well, you can — that’s what Movie Clips are all about.
Movie Clips are independent sequences of frames (timelines) that can be defined
outside the context of the main movie timeline and then placed onto it as objects
on a single frame. You create Movie Clips the same way you create a Graphic sym-
bol (in the Edit Symbol environment). Unlike a Graphic symbol, a Movie Clip (as the
name implies) acts in most cases just like a fully functional .SWF file, meaning, for
instance, that frame actions in Movie Clip timelines are functional. After you have
created a Movie Clip as a symbol, you drop instances of it into any keyframe of the
main movie timeline or any other Movie Clip timeline. The following are some gen-
eral Movie Clip principles:

✦ During playback, a Movie Clip instance placed on a timeline begins to play as
soon as the frame on which it occurs is reached, whether or not the main
movie is playing.

✦ A Movie Clip plays back autonomously, meaning that as long as it is present
on stage it is not governed by the playing or stopping of the Main Timeline.

✦ Movie Clips can play when the Main Timeline is stopped, or stay halted when
the Main Timeline plays.

✦ Like a Graphic or a Button symbol, Movie Clips can be manipulated on the
stage — you can size them, skew them, rotate them, place effects such as
Alpha blending on them, or tween them, all while the animation within them
continues to play.

✦ All timelines play at the frame rate specified by the Modify Movie dialog.
However, it is possible to control a timeline’s frame rate with ActionScript
routines.

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 456

457Chapter 18 ✦ Navigating Flash Timelines

In our character face example, the animated eyes and mouth could be looping Movie
Clips, and then those movie clips could be grouped and tweened around the Stage
on the Main Timeline to make the whole face move. The same principle could be
used to move a Movie Clip of a butterfly with flapping wings along a motion path.

One movie, several timelines
Because a Flash movie can have more than one timeline existing in the same
space and time, there needs to be away of organizing Movie Clips within the Main
Timeline (Scene 1) of your Flash movie. Just like artwork can be placed inside of
any symbol, symbol instances can be “nested” within other symbols. If you change
the contents of the nested symbol, the parent symbol (the symbol containing the
other symbol) will be updated as well. Although this may not seem special, it’s of
extreme importance to movie clips and Flash interactivity. Because the playback of
each Movie Clip timeline is independent from any other timeline, you need to know
how to tell Flash which Movie Clip you want to control.

The Flash movie diagram in Figure 18-1 illustrates multiple timelines. This Flash
movie has two layers on the Main Timeline, Layer 1 and Layer 2. Layer 1 has a Movie
Clip (instance “A”) which exists for 19 frames on the Main Timeline. Layer 2 has a
Movie Clip (instance “B”) which exists for 10 frames on the Main Timeline, but also
contains a nested Movie Clip (instance “C”).

Figure 18-1: This figure shows one method of diagramming Flash timelines.

Main Timeline

1

Layer 1

10 20

Layer 2

Movie Clip instance "A"

Movie Clip instance "B"

Movie Clip instance "C"

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 457

458 Part IV ✦ Adding Basic Interactivity to Flash Movies

In Figure 18-1, if the Main Timeline has a Stop action on the first frame, then all
three Movie Clips will continue to play unless there are Stop actions on their first
frames or they are told to stop by actions targeted to them. If the Main Timeline
plays to frame 20, then instance “A” will no longer be on the Stage, regardless of
how many frames it may have on its timeline. A more practical diagram of a time-
line hierarchy can be found in Figure 18-2.

Figure 18-2: Flash movies can be
flow-charted in this fashion. This
diagram is similar to the new Movie
Explorer’s method of displaying Flash
movie information.

In Figure 18-2, you can see three Movie Clips. Two of them, ballAnim and dog,
occupy space on the Main Timeline. The other one, dogTailAnim, is nested within
the dog Movie Clip. Each Movie Clip instance on any given timeline needs to have
a unique name — you can’t have the two Movie Clip instances on the same timeline
with the same name. The instance name is specified in the Instance Panel, shown
in Figure 18-3.

Figure 18-3: Among other things, the Instance Panel
enables you to name each Movie Clip instance that
appears on the Stage.

Now that you understand how multiple timelines can exist within a Flash movie,
let’s see how you can make Movie Clips communicate with one another.

Flash 4 into Flash 5: Targets and
Paths Explained

If you already studied Movie Clips in Chapter 9, “Checking Out the Library: Symbols
and Instances,” you probably know that they provide the solution to our animated
face problem. However, you might not have guessed that Movie Clips can also add

Main Timeline

"ballAnim" MC

"dog" MC

"dogTailAnim" MC

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 458

459Chapter 18 ✦ Navigating Flash Timelines

logic to animation and Flash interfaces. Let’s take our animated face example a
little further: When people yawn, they generally close their eyes for as long as they
are yawning. Our hypothetical character’s face may look strange if it is blinking and
yawning at the same time. Suppose we wanted to make our character’s eyes stay
closed during every yawn. We’d have to have some way for the mouth Movie Clip
to control the eyes Movie Clip so that we could tell the eyes to go to a “shut” frame
when the mouth opens, and then tell them to return to their blink loop again when
the mouth closes.

Well, we have a few ways to control the eyes Movie Clip from the mouth Movie
Clip. In Flash 3 and 4, the Tell Target action was used to let actions on any timeline
(including Movie Clip timelines and the Main Timeline) control what happens on
any other timeline. How? Tell Target simply provided a mechanism for extending
actions, enabling them to specify (or target) the timeline upon which they should be
executed. Targets are any Movie Clip instances that are available at any given frame
in a Flash movie. In addition to Tell Target, Flash 5 enables you to direct actions to
specific timelines by attaching the same actions as methods to the Movie Clip
object. If you’re new to scripting, please read the “The New and Improved
ActionScript” sidebar.

The Tell Target action is a deprecated action; it’s still supported in Flash 5, but it’s
been replaced with more versatile actions and syntax that make its use outdated.
For an overview of deprecated actions, see the sidebar in the previous chapter. We
show you how to use both Tell Target and Flash 5 methods in this chapter. First,
however, you need to understand how targeting works in Flash movies.

The New and Improved ActionScript

Flash 5 has introduced a new method of writing all ActionScripts called dot syntax. Earlier
versions of Flash used a natural-language scripting environment that was menu-based, in
which actions could be read and understood easily and accessed via pop-up menus. While
most people prefer easy-to-use scripting environments, the production demands of complex
interactive projects are often compromised by such menu-driven scripting environments.
Computer programmers prefer to create, edit, and debug scripting with a language that can
be accessed and modified easily. Consequently, we see the best of both worlds with Flash 5.

Flash 5 ActionScript adheres closely to the ECMA-262 specification that is based on
JavaScript, the universal scripting language used by most browsers for interactive HTML and
DHTML documents. Therefore, Flash ActionScript uses a dot syntax. What does that mean?
It means that all actions are written within a standard formula that is common with object-
oriented programming (OOP) languages:

Object.property = value;

or

Object.method();

Continued

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 459

460 Part IV ✦ Adding Basic Interactivity to Flash Movies

Paths: Absolute and relative modes
Earlier in this chapter, you learned how multiple Movie Clip timelines appear on the
Flash Stage. It’s entirely possible to nest several Movie Clips within another Movie
Clip. To understand how Movie Clips communicate with one other by using actions,
you need to have a firm grasp on Movie Clip paths. A path is simply that — the
route to a destination, an address per se. If you have a Movie Clip instance named
dogTailAnim inside a dog Movie Clip instance, how is Flash supposed to know?
What if there was one than one dogTailAnim in the entire movie, with others nested
in other Movie Clips besides the dog instance? You can specify a Movie Clip’s path
in an absolute or a relative mode.

An absolute path is the full location (or target) information for a given Movie Clip
instance from any other location (or target). Just like your postal address has a

Continued

The examples beg four things to be defined: objects, properties, methods, and values. An
object is any element in a program (in this case, the Flash movie) that has changeable and
accessible characteristics. Objects can be user-defined (in other words, you create and
name them) or predefined by the programming language. Flash has several predefined
Objects, meaning that they’re already built into the ActionScript language. We look at both
types in more detail in later chapters. An important object (and perhaps the easiest to con-
ceptualize) is the Movie Clip Object. Any Movie Clip instance on the Stage is an object, such
as ballAnim or dogTailAnim. An object has characteristics, or properties, that can be
updated or changed throughout the movie. An example of a Movie Clip property is scale,
which is referred to as _xscale and _yscale. We look at Movie Clip properties in the next
chapter. Properties always have some data accompanying them. This data is called the
property’s value. Using the previous example, at full size, a Movie Clip’s _xscale is 100
(the scale property uses percent as the unit of measure). For a Movie Clip instance named
ballAnim, this would be represented in ActionScript syntax as:

ballAnim._xscale = 100;

Finally, objects can be enacted upon by procedures that do something to or with the object.
These procedures are called methods. One method for the Movie Clip object is the
gotoAndPlay() method, which we used as a Basic Action in the previous chapter. In Flash
5, methods can be created for your own objects or predefined for existing Flash objects.
Any Basic Action can be attached as a method to any Movie Clip instance, as in:

ballAnim.gotoAndPlay(“start”);

The preceding example tells the ballAnim Movie Clip to direct its playback head to the
frame label start on its timeline. This chapter helps you understand how to use the
gotoAndPlay method for Movie Clips.

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 460

461Chapter 18 ✦ Navigating Flash Timelines

street name and number and a zip code so that people can find you on a map, all
Movie Clips have a point of origin: the Main Timeline (Scene 1). Before Flash 5, the
Main Timeline was represented in a Movie Clip path as a starting forward slash (/)
character. The absolute path of a Movie Clip instance named dog on the Main
Timeline is:

/dog

Any nested Movie Clips inside of the dog instance would be referenced after that
starting path. For example, the absolute path to dogTailAnim, an instance inside
the dog Movie Clip instance would be:

/dog/dogTailAnim

Another / character was put between the two instance names. Think of the / as
meaning “from the timeline of,” as in dogTailAnim is from the timeline of dog. Use
of the / character in Movie Clip paths is known as the Slashes notation.

In Flash 5, you can use either the Slashes or Dots notation with absolute paths. The
Dots notation follows the new ActionScript language conventions. With Dots nota-
tion, the Main Timeline becomes:

_root

Using our previous example, a Movie Clip instance named dog on the Main Timeline
(or _root) would have an absolute path of:

_root.dog

And, following in suit, a Movie Clip instance named dogTailAnim that is nested
within the “dog” Movie Clip would have the absolute path of:

_root.dog.dogTailAnim

Just like Tell Target is considered a deprecated action in Flash 5, the Slashes nota-
tion is deprecated syntax. It will still work with the Flash 5 Player, but subsequent
versions of the Flash authoring program will be built of the new Dots notation.

A relative path is a contextual path to one timeline from another. From a conceptual
point of view, think of a relative path as the relationship between the location of
your pillow to the rest of your bed. Unless you have an odd sleeping habit, the pil-
low is located at the head of the bed. You may change the location of the bed within
your room or the rooms of a house, but the relationship between the pillow and the
bed remains the same.

With Flash, relative Movie Clip paths are useful within movie clips that contain sev-
eral nested movie clips. That way, you can move the container (or parent) Movie

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 461

462 Part IV ✦ Adding Basic Interactivity to Flash Movies

Clip from one timeline to another, and expect the inner targeting of the nested
movie clips to work. As with absolute paths, there are two methods of displaying
relative paths: Slashes and Dots notations. To refer to a timeline that is above the
current timeline in Slashes notation, use:

../

The two dots here work just like directory references for files on Web servers; use
a pair of .. for each timeline in the hierarchy. You can use relative Slashes notation
to refer up and down the hierarchy at the same time. For example, if you have two
nested movie clips, such as dogTailAnim and dogPantingAnim, within a larger Movie
Clip named dog, you may want to target dogTailAnim from dogPantingAnim. The rel-
ative Slashes path for this is:

../dogTailAnim

This path tells Flash to go up one timeline from dogPantingAnim to the dog time-
line, and then look for the instance named dogTailAnim from there.

The relative Dots path for a timeline that is located above the current timeline is:

_parent

To target one nested Movie Clip from another nested movie clip in the same con-
tainer Movie Clip instance, you would put the targeted Movie Clip’s name after
_parent, as in:

_parent.dogTailAnim

As with absolute paths, we recommend that you become familiar with using the
Dots notation for relative paths.

Okay, that’s enough theory. We’re going to let Colin Moock ease the transition of
Flash 4 to Flash 5 targeting by showing how he uses Tell Target and Movie Clips
with GWEN!, the star of his online animated series by the same name. (If you
want to see more of GWEN! after you’ve finished the tutorial, you can visit www.
moock.org/gwen/.) Note that Colin’s material from the previous edition of
the Flash Bible has been updated to reflect the Flash 5 look and feel of adding
ActionScripts to Movie Clips. We have kept his original procedure intact. In
addition to the intrinsic value of his methodology, we’re also using this tutorial
as an example of one way to migrate Flash 4 content to Flash 5. As you’ll see
later, though, ActionScript offers new ways to address targets in Flash 5.

To do this tutorial, you need the gwen.fla file in the ch18 folder on the Flash 5
Bible CD-ROM. If you want to see the finished product, open gwen-finished.fla
located in the same folder.

On the
CD-ROM

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 462

463Chapter 18 ✦ Navigating Flash Timelines

Expert Tutorial: Making GWEN!’s Eyes Shut
When She Yawns, by Colin Moock

Colin’s tutorial uses the Flash 4–compatible action tellTarget to enable communication
between multiple timelines. If you wish to retain backward compatibility with Flash 4, then
you cannot use Dots notation to enable actions of Movie Clips (for example, _root.
mcName.gotoAndStop() will not work in the Flash 4 Player). While you can use the Dots
notation as the path name to a Movie Clip instance, you will need to use tellTarget if
you’re “targeting” a Flash 4 audience.

GWEN! was born as a Flash 2 animation. In Episode One, she didn’t blink much, or yawn at
all. By the time Episode Two was nearly finished, Flash 3 had hit the streets, and oh, the joy
to GWEN! when she discovered Movie Clips and Tell Target. Now, after much convincing,
GWEN! has agreed to be dismantled a little so that you can see how her eyes and mouth
work. We’re going to show you how to put her back together in this tutorial. Don’t worry,
GWEN!, this won’t hurt a bit.

Begin by opening gwen.fla (it’s in the ch18 folder on the Flash 5 Bible CD-ROM). Open the
Library for gwen.fla by choosing Window ➪ Library. In the Library, are five symbols and one
folder: gwen’s face, gwen’s eyes, gwen’s eyes shut, gwen’s mouth, gwen’s mouth open,
and the folder face artwork. Drag a copy of the gwen’s face graphic symbol, shown in the
following figure, from the Library onto the Stage.

Gwen’s face graphic symbol

Next we’re going to make a Movie Clip with GWEN!’s eyes blinking. Make a new Movie Clip by
choosing Insert ➪ New Symbol. In the Symbol Properties dialog, enter the name eyes and
keep the Movie Clip option of the Behavior setting, as shown in the following figure. Click OK.

Continued

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 463

464 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

Enter the name of the Symbol and leave
the Behavior option set to Movie Clip.

When you create a new Movie Clip symbol, you are automatically taken into Symbol Editing
Mode where you work on your Movie Clip. Rename Layer 1 to Eyes Blinking. Click Frame
24 of the Eyes Blinking layer, and then select Insert ➪ Frame. While still on Frame 24, select
Insert ➪ Blank Keyframe. You can add a blank keyframe to frame 24 by selecting it and
pressing the F7 key (see the following figure).

Click Frame 1 and drag the symbol gwen’s eyes onto the Stage. Make sure gwen’s eyes is
still selected, and then open the Align Panel (Ctrl+K/Command+K). Center the symbol on
the Stage by clicking To Stage, and then clicking the middle button in the left and right sets
of the Align buttons, shown in the following figure.

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 464

465Chapter 18 ✦ Navigating Flash Timelines

The new Align Panel features a To Stage button, along with the familiar
Align Modes.

Click Frame 24 and drag the symbol gwen’s eyes shut onto the Stage. Center the symbol on
Stage as you did in the previous step.

Drag the symbol gwen’s eyes shut onto the Stage.

Continued

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 465

466 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

Next we need to label our eyes shut frame so that we can move to it whenever GWEN!’s
mouth opens. Add a new layer by choosing Insert ➪ Layer. Name the new layer Labels.
Labels should always be kept on their own layer. Click Frame 24 of the Labels layer, and
then select Insert ➪ Blank Keyframe (or press F7). Open the Frame Panel by choosing
Modify ➪ Frame (Ctrl+F or Command+F). In the Label text field, type shut (as in the follow-
ing figure). Make sure you press Enter or Return after typing any frame label name to make
sure it “sticks” to the current frame.

It’s better to refer to frame labels (rather than frame numbers) in any Go To actions.

We’re done with the eyes, so let’s make the mouth. Make a new Movie Clip by choosing
Insert ➪ New Symbol. In the Symbol Properties dialog, enter the name mouth and select
the Movie Clip option of the Behavior setting, as shown in the following figure. Click OK.

Name the symbol and select the Movie Clip option.

As with the eyes, you are automatically taken into Symbol Editing Mode for your new Movie
Clip. Rename Layer 1 to Mouth Yawning, as in the following figure. Click Frame 180 of the
Mouth Yawning layer, and then select Insert ➪ Frame. Click Frame 160 and select Insert ➪

Blank Keyframe.

3515-3 ch18.f.qc 1/18/01 4:58 PM Page 466

467Chapter 18 ✦ Navigating Flash Timelines

Get in the habit of giving yourself a timeline “workspace” with many
frames to prepare your Flash content.

Click Frame 1 and drag the symbol “gwen’s mouth” onto the Stage. Make sure “gwen’s
mouth” is still selected, and then open the Align Panel. Center the symbol on the Stage as
you did with previous symbol instances.

Continued

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 467

468 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

Click Frame 160 and drag the symbol. Center the symbol on Stage with the Align Panel,
shown in the following figure.

Drag gwen’s mouth open onto the Stage and use the Align Panel
to center the symbol.

It’s time to place our eyes and mouth onto GWEN!’s face. Return to the main stage by
choosing Edit ➪ Edit Movie (Ctrl+E or Command+E). Create two new layers, and name
them eyes and mouth. Drag the newly created Movie Clip symbols, eyes and mouth, out of
the Library onto GWEN!’s face, as shown in the following figure. Make sure you select their
respective layer before dragging each onto the Stage.

At this point, you have a functional animated girl. If you test your movie now, you’ll see that
GWEN!’s eyes blink, and her mouth opens for her yawn, but we still have to add the inter-
activity that lets the mouth tell the eyes when to shut and reopen. To do that, we first have
to name the instance of the eyes Movie Clip you created and dragged onto the Stage so
that the mouth Movie Clip instance can identify it. Then we have to add the Tell Target
actions that control the eyes instance. Hang on GWEN!, we’re almost there!

Select the eyes Movie Clip on Stage, and then open the Instance Panel by choosing
Modify ➪ Instance (Ctrl+I or Command+I). In the Instance Panel, you see a text field next to
Name (see the following figure). That text field is where we give our Movie Clip instance a
unique identification. Instance names are something like serial numbers — they enable
actions in the movie to address a specific copy of a Movie Clip. Type her-eyes in the Name
text field, and then press Enter or Return.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 468

469Chapter 18 ✦ Navigating Flash Timelines

Drag the eyes and mouth symbols out of the Library and onto
GWEN!’s face.

Remember that, like any symbol, a Movie Clip that is placed on Stage is only a reference to
the symbol in the Library. That’s why you name the symbol instance on the Stage, rather
than simply referring to the symbol by name in the Library. You could place multiple copies
of GWEN!’s eyes on the Stage and give them all different names so that each could be indi-
vidually controlled and manipulated without any effect on the others. With eyes, the results
can be a little trippy . . . look at Episode Two of GWEN! at www.moock.org/gwen/.

The Name text field in the Instance Panel

Now that the eyes Movie Clip instance is named her-eyes, we can return to the mouth to
add the Tell Targets that control the her-eyes instance. Deselect all selections by clicking in
a blank area of the Stage. Now, select only the mouth symbol. Choose Edit ➪ Edit Selected
to resume work on the mouth Movie Clip. Add a new layer by choosing Insert ➪ Layer.
Name the new layer Actions. Actions should always be kept on their own layer.

Continued

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 469

470 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

Author’s Note: You can also deselect all selections by pressing the Esc key.

Click Frame 160 of the Actions layer, and then select Insert ➪ Blank Keyframe. Open the
Frame Actions Panel by double-clicking frame 160 or by right-clicking (Ctrl+clicking on Mac)
the frame and selecting Actions from the contextual menu. Click the plus (+) button at the
upper left of the Frame Actions Panel, shown in the following figure, select the Basic Actions
menu item, and then select Tell Target. In the parameters area of the Actions Panel, find the
Target text field and type /her-eyes. Now every Action we add between the tellTarget
(“/herEyes”){ line and the } closing line in the Actions list is applied to the Movie Clip
instance named her-eyes on the Main Timeline. We’re now ready to add the action that
controls the playback of the her-eyes instance.

Frame Actions Panel

With the line tellTarget(“/her-eyes”){ highlighted in the actions list, click the plus (+)
button, select the Basic Actions menu item, and select Go To. In the parameters area, select
the Frame Label option in the Type drop-down menu, and type shut in the Frame text field.
This makes the her-eyes instance playhead move to the shut frame label and stay there
until told otherwise. Make sure that you uncheck the Go to and Play option, as shown in the
following figure.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 470

471Chapter 18 ✦ Navigating Flash Timelines

Frame Actions Panel with the parameters area displayed

The Actions list should now read as follows:

tellTarget (“/her-eyes”){
gotoAndStop (“shut”);

}

Click Frame 180 of the actions layer, and select Insert ➪ Blank Keyframe. Again, open the
Frame Actions Panel by double-clicking frame 180. Click the plus (+) button at the upper
left of the Frame Actions Panel, select the Basic Actions menu item, and then select Tell
Target. In the Target text field type /her-eyes (as in the following figure). With the line
tellTarget(“/her-eyes”){ highlighted in the Actions list, click the plus (+) button and
select Play from the Basic Actions menu. This will make the eyes resume their two-second
blink loop.

This simple tellTarget action nest will tell the her-eyes instance to play.

Continued

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 471

472 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

That’s it. Test your movie with File ➪ Publish Preview ➪ Flash, or by using Control ➪ Test
Movie (Ctrl+Enter or Command+Enter). You should now see GWEN!’s eyes close when she
yawns. If things aren’t working perfectly, compare your work closely with the finished ver-
sion of GWEN!, called gwen-finished.fla, in the ch18 folder of the Flash 5 Bible CD-ROM.

A final hint: Tell Targets can be a little finicky — always be sure to check your target names
and instance names to be sure that they match, that they are in the correct location, and
that they are referred to correctly. You may make a few mistakes at first, but it won’t be long
before you’ll know where to look to find the cause of the most common problems. Oh, and
if you want to play with GWEN! some more, visit her at www.moock.org/gwen/. She’s kind
of snooty, but you never know . . . she might pay more attention to you now that you’ve
seen how she works. Don’t forget to pinch her cheeks.

Although we asked Colin Moock the same questions that we asked the other tutorialists, Colin won the prize
for the fewest, most evasive answers. He first encountered Flash when, “Futurewave mailed it to me as a
trial while I was working at Softquad (makers of Hotmetal Pro).” When we inquired, what was the most
memorable movie or song in the year that he graduated from high school, Colin replied, “Can’t remember.”
When we explained that we are doing a media-date thing this time, rather than spell out the ages of all the
contributors, he insisted, “Honestly, I didn’t really watch movies or listen to hit songs at the time.” So, we
have little information to give you about Colin Moock; except that he lives in Toronto, is highly regarded
among the Flasheratti, and that he has worked on many Flash sites, most notably: www.moock.org/
webdesign/portfolio and www.moock.org/webdesign/flash/sandbox.

Using Tell Target and Movie Clips with interfaces
GWEN! is an example of using Tell Target to create enhanced animation. However, the
same technique can also be used to produce interfaces. Interface-based Tell Targets
are often implemented on buttons. Just as you used Tell Targets with actions on
keyframes in Colin’s tutorial, so can you also use Tell Targets with actions on buttons.
While working at ICE during the spring of 1999, Colin produced much of the interac-
tive component of McClelland and Stewart’s The Canadian Encyclopedia 1999
CD-ROM in Flash. Most of the interactive pieces used Movie Clips and Tell Targets
extensively. A simple but good example of using Tell Targets to enhance an interface
comes from the Painting Retrospective in the encyclopedia as seen in Figure 18-4.

Figure 18-4 depicts the Painting Retrospective in action. Painting thumbnails are
shown on a carousel that the user moves by clicking the right and left arrows.
Below the carousel is a status window that displays the painting title, date, and
artist when the user rolls their mouse over a painting. The status window is a Movie
Clip that has one frame for each of the painting descriptions. The painting thumb-
nails in the carousel are all buttons. When the user points to a painting, the but-
ton’s Roll Over event handler initiates a Tell Target action that makes the status

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 472

473Chapter 18 ✦ Navigating Flash Timelines

window Movie Clip go to the frame that contains the appropriate painting descrip-
tion. Even when the paintings are moved along the carousel, the status window
stays put because it’s a separate Movie Clip, not a part of the thumbnail buttons.

Targeting Movie Clips in Flash 5
With Flash 5’s new ActionScript syntax comes a new way to target and control
movie clips. In the last section, you learned about the difference between the
Slashes and Dots notations for absolute and relative paths. In Colin’s tutorial, you
learned how to use the Slashes notation with the Tell Target action to control movie
clips. Now, you’ll see how to make Movie Clips interact with one another with the
Dots notation and Flash 5 ActionScript.

If you want your Flash movies to retain compatibility with the Flash 4 Player, then
you need to use Tell Target actions. The methods described in this section will only
work with Flash 5 Player and subsequent releases of it.

Figure 18-4: The Painting Retrospective from McClelland and Stewart’s
The Canadian Encyclopedia 1999

Caution

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 473

474 Part IV ✦ Adding Basic Interactivity to Flash Movies

Using Movie Clips to create Sound Libraries
In Chapters 14 through 16, the ins and outs of sound import and use in Flash
movies was discussed. In this chapter, we show you to create sound Movie Clips
that are nested within a larger Sound Library Movie Clip. With Sound Library Movie
Clips, you can transport sets of sounds easily between timelines and other Flash
movies. In this section, you learn the importance of:

✦ Consistent timeline structure

✦ Naming conventions for Movie Clip instances

✦ Nested Movie Clip instances

✦ Streamlining Movie Clip production

These production principles are rather straightforward, and relatively simple to learn.

You’ll find sound files (.WAV and .AIFF) in the ch18 folder of the Flash 5 Bible
CD-ROM. You can use the pianoKeys_starter.fla file or one of your own Flash
movies for this exercise.

Overview of the pianoKeys Movie Clip
Open the pianoKeys_starter.fla file from the Flash 5 Bible CD-ROM. A pianoKeys
Movie Clip instance is already on the Stage of the Main Timeline. Double-click the
pianoKeys instance to enter the Symbol Editing Mode, as shown in Figure 18-5.

Figure 18-5: The timeline of the pianoKeys Movie Clip

On the
CD-ROM

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 474

475Chapter 18 ✦ Navigating Flash Timelines

The timeline for pianoKeys has several layers, with Button instances and Label layers.
If you test this movie using Control ➪ Test Movie (Ctrl+Enter or Command+Enter),
you’ll see that the Button instances over each piano key will tell the playback head of
the pianoKeys timeline to go to that key’s frame label. For the first key on the left, the
button on layer keyButton_1 has the following action list:

on (press, keyPress “a”) {
gotoAndStop (“key_1”);

}
on (rollOver) {

gotoAndStop (“keys_full”);
}

These actions don’t use any Tell Target actions — they are simple navigation actions
that you learned in the last chapter. When the keyButton_1 Button instance is clicked
with the mouse, the playback head moves to the key_1 label on the current timeline,
which is the pianoKeys timeline. Unless targeting is used, all actions on a Button
instance will target the timeline on which the Button exists.

When the timeline goes to the key_1 frame label, a new .PNG bitmap of a “pressed”
piano key (key_01.png on the keys layer) appears on top of the pianoKeys_full.png
bitmap that is placed on the bottom keysFull layer. Note that the pianoKeys_full.png
bitmap is present throughout the entire pianoKeys timeline. Each Button instance in
the pianoKeys Movie Clip sends the playback head to the appropriate piano key
frame label.

Now that you have an understanding of what’s happening in this Movie Clip, let’s
create some sound Movie Clips that the pianoKeys instance can target.

Making sound Movie Clips
Before we start making new Movie Clip symbols, we need to establish a naming con-
vention for our sounds. A naming convention is simply a way of consistently identify-
ing components in any project, in or out of Flash. As a member of a Web production
team, the importance of naming conventions can not be overemphasized — every-
one involved with the project should know how to give names to images, sounds,
symbol names, instance names, and so on. Even if you work by yourself, a naming
convention provides a system of integrating elements from project to project, and
enables you to identify elements much more easily when you open old files.

1. For each key on the piano, we’ll make a unique sound. Each sound will be on
its own timeline where it can be targeted to play. Because there are seven keys
on the piano, we need to import seven sounds into Flash. Using File ➪ Import,
locate the ch18 folder on the Flash 5 Bible CD-ROM. Import each of the key
sounds (.AIFF or .WAV) into your Flash movie.

Imported sounds do not show up on the timeline — they go straight into the
movie’s Library. If you need to know how to import sound files into Flash, refer to
Chapter 15, “Importing and Editing Sounds in Flash.”

Cross-
Reference

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 475

476 Part IV ✦ Adding Basic Interactivity to Flash Movies

2. Create a new Movie Clip symbol (Insert ➪ New Symbol) and give it the name
sound_1, as shown in the Figure 18-6. This Movie Clip’s timeline will be dedi-
cated to the key_1 sound that you imported in the previous step.

Figure 18-6: The Symbol
Properties dialog with the
Movie Clip behavior
selected

3. Flash will automatically move you into the Symbol Editing Mode for the
sound_1 Movie Clip symbol. Rename Layer 1 to labels and make a new layer
called sound. On the labels layer, we need to establish three “states” or posi-
tions for the sound: no sound, initiate sound, and mute sound. Why? Remember
that all Movie Clips will try to play as soon as they appear on a timeline. So, we
need to make sure there’s nothing on the first frame (no sound state). For the
remaining two states, add two frame labels: one called start on frame 3, and
another called mute on frame 15 (see Figure 18-7). Make sure that you add these
labels to unique keyframes — if you try to add a label to a regular frame, the
label will be attached to an earlier keyframe. Add an empty frame (F5) on
frame 30 for both the labels and sound layers.

Figure 18-7: Each sound
will use the same structure
as the sound_1 Movie Clip:
an empty first frame and
two labels for starting a
sound and stopping a
sound.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 476

477Chapter 18 ✦ Navigating Flash Timelines

4. Add an empty keyframe (F6) on frame 3 of the sound layer. With that frame
selected, open the Sound Panel (Window ➪ Panels ➪ Sound), and select the
key_1.aif (or key_1.wav) sound from the Sound drop-down menu. Leave the
Sync setting at Event so that multiple instances of the key_1 sound can over-
lap (play on top of one another). See Figure 18-8 for reference.

Figure 18-8: When the
start label is played on
the sound_1 timeline, the
key_1 sound will play.

5. Repeat Step 4 for frame 15 on the sound layer. This time, however, change the
Sync setting to Stop, as shown in Figure 18-9. When this keyframe is played, all
instances of the sound key_1 will stop playing.

Figure 18-9: Whenever the
Stop Sync setting is selected,
the sound graphic on the
timeline will appear as a
short blue line.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 477

478 Part IV ✦ Adding Basic Interactivity to Flash Movies

6. Now we need to add some Stop actions to the timeline. Because we want each
sound Movie Clip to play each time its respective key is pressed, we need to
make sure playback from one action doesn’t run into the timeline space of
other labels. Add a new layer called actions and move it above the other two
layers. Double-click its first frame to open the Actions Panel. Select the Stop
action from the Basic Actions booklet, and drag it to the right pane of the
Actions Panel, as shown in Figure 18-10.

Figure 18-10: This Stop action will prevent the sound’s timeline from playing when
the Flash movie first loads.

7. With the first frame of the actions layer selected, open the Frame Panel
and type //stop in the Label text field. Labels that start with // are consid-
ered comments and cannot be targeted like ordinary frame labels. The
//stop comment gives you a quick indication of what this keyframe does.

Many thanks to Shane Elliott, one of the technical editors of this book, for sharing
his //stop frame comment technique.

Note

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 478

479Chapter 18 ✦ Navigating Flash Timelines

8. Copy the Stop keyframe on frame 1 by selecting the keyframe and pressing
Ctrl+Alt+C (Option+Command+C). You can also right-click (Ctrl+click) the
keyframe and select Copy Frames from the contextual menu. Then, select
frame 10 of the actions layer and press Ctrl+Alt+V (or Option+Command+V)
to paste the Stop keyframe. Repeat for frame 20. The placement of these Stop
actions is a bit arbitrary — we only need to stop the playhead from playing
into labels that occur later in the timeline. When you’re finished with this
step, your timeline should resemble the one shown in Figure 18-11.

Figure 18-11: These Stop actions will keep each area
of the timeline from playing into the others.

9. Next, we add an icon to this Movie Clip so that it can be seen on the Stage.
Make a new layer and name it icon. On its first frame, draw a white rectangle.
Then, use the Text Tool to add the text Sound (with a black fill color) on top
of the rectangle. Select both items and align them to the center of the Stage
using the Align Panel. With both items still selected, choose Insert ➪ Convert
to Symbol (F8). In the Symbol Properties dialog, name the symbol soundIcon,
and select the Graphic Behavior, as shown in Figure 18-12. Click OK.

10. Add keyframes for the soundIcon Graphic instance on frames 3, 10, 15, and 20
of the icon layer, as shown in Figure 18-13.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 479

480 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 18-12: The soundIcon will provide a visual representation for this sound on
the Stage.

Figure 18-13: The soundIcon needs to have
dedicated instances for each state of the
sound_1 timeline.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 480

481Chapter 18 ✦ Navigating Flash Timelines

11. Select the instance of soundIcon on frame 3, and open the Effect Panel.
Choose the Advanced option from the drop-down menu, and type 255 in the
second column text field for the Green color channel (see Figure 18-14).

Figure 18-14: When the sound_1 timeline reaches
the start label, the soundIcon will turn green.

12. Repeat Step 11 for the instance of soundIcon on frame 15. This time, however,
type 255 in the Red color channel (see Figure 18-15). This step completes the
first sound Movie Clip.

Now, we need to repeat this process for key sounds 2 through 7 — but don’t
worry! Because we created a coherent structure for the sound_1 timeline,
creating the other Movie Clips will be relatively painless.

13. Open the movie’s Library (Ctrl+L or Command+L). Right-click (Ctrl+click) the
sound_1 Movie Clip and choose Duplicate from the contextual menu (see
Figure 18-16).

14. Name the new Movie Clip copy sound_2, and make sure that the Movie Clip
behavior is selected. Click OK.

15. Double-click the sound_2 Movie Clip in the Library to edit this symbol’s time-
line. Remember that we’re no longer working on the sound_1 timeline.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 481

482 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 18-15: When the sound_1 timeline
reaches the mute label, the soundIcon will
turn red.

Figure 18-16: You can access many options
by right-clicking (Ctrl+clicking) Symbols in
the Library.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 482

483Chapter 18 ✦ Navigating Flash Timelines

16. Select frame 3 of the sound layer, and open the Sound Panel (shown in Figure
18-17). Choose key_2.aif (or key_2.wav) from the Sound drop-down menu.
Leave all other settings the same.

Figure 18-17: In Step 16, you’re changing the sound
that will be played back on the sound_2 timeline.

17. Repeat Step 16 for frame 15 of the sound layer (see Figure 18-18).

Figure 18-18: In Step 17, you’re changing the
sound that will be muted to key_2.aif (or key_2.wav).

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 483

484 Part IV ✦ Adding Basic Interactivity to Flash Movies

That’s it! You can now easily create the remaining sound Movie Clips (3 through 7)
by repeating Steps 13 through 17 and incrementing the Movie Clip’s name by one
number each time. When you’ve finished creating all seven sound Movie Clips,
you’re ready to create a Sound Library Movie Clip.

You can refer to the pianoKeys_starter_sounds.fla file located in the ch18 folder of
the Flash 5 Bible CD-ROM. This file has the seven sound Movie Clips in the Library,
sorted in the keySounds folder.

Nesting sounds into a Sound Library Movie Clip
We have seven sound Movie Clips all ready to go, but we need somewhere to put
them on the Stage. It’s feasible to place each sound Movie Clip on the Main Timeline’s
Stage, but your Stage will start to get cluttered if many Symbols populate that space.
So, we’ll make a Movie Clip container for all those sounds. We refer to a container for
sounds as a Sound Library, or soundLib for short.

1. Create a new Symbol by choosing Insert ➪ New Symbol (Ctrl+F8 or Command
+F8). Name the symbol soundLib and give it a Movie Clip behavior. Click OK.
The Stage switches to Symbol Editing Mode for the soundLib Movie Clip
timeline.

2. Rename the first layer to sound_1 and drag an instance of the sound_1 Movie
Clip to the Stage. Open the Instance Panel and give the name sound_1 to the
instance, as shown in Figure 18-19.

Figure 18-19: The sound_1 instance on the soundLib timeline.

On the
CD-ROM

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 484

485Chapter 18 ✦ Navigating Flash Timelines

For consistency, it’s not a bad idea to give your instance (and the layer it occupies)
the same name as its parent symbol in the Library. If the sound is not going to be
replicated on the same timeline more than once, then you won’t have any target-
ing issues. It makes it simpler to match up instances with their symbols in the
Library as well.

3. Create six more layers in the soundLib Movie Clip, named sound_2 through
sound_7. Drag an instance of each remaining sound Movie Clip onto its
respective layer. Make sure that you name each instance after its symbol in
the Library, just as you did in Step 2. Place each instance on the Stage from
top to bottom, with the sound_1 instance at the top (see Figure 18-20 for refer-
ence). Use the Align Panel to center the instances horizontally and to space
them evenly.

Figure 18-20: The soundLib timeline contains all seven
sounds as individual instances.

4. Go to the Scene 1 timeline (the Main Timeline). Create a new layer called
soundLib. Place an instance of the soundLib Movie Clip on the first frame of
the soundLib layer. Give the instance the name soundLib in the Instance
Panel, as shown in Figure 18-21. You may need to resize the soundLib instance
so that it fits on the Stage.

Note

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 485

486 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 18-21: The sound Movie Clips will be accessed from the soundLib instance
on the Main Timeline.

Our Sound Library is now complete. All that remains is to add actions to our
pianoKeys Movie Clip to target the sounds in the correct order.

You can compare your working Flash movie to the finished Sound Library in
the pianoKeys_starter_soundLib.fla file, located in the ch18 folder of the Flash 5
Bible.

Targeting sounds with ActionScript syntax
Now you have a Movie Clip instance called soundLib along with the instance
pianoKeys, both located on the Main Timelime. Instead of using the Tell Target
action, we show you how to use the Movie Clip Object in ActionScript. You may
want to the review the sidebar “The New and Improved ActionScript” earlier in this
chapter before you proceed. The remainder of this exercise shows you how to add
Flash 5 actions to the pianoKeys timeline that will target the sounds in the Sound
Library.

There will be more than one actions layer in this timeline. The actions layer in Step 1
is a new layer in addition to the existing actions layer (with the //stop comment).

Note

On the
CD-ROM

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 486

487Chapter 18 ✦ Navigating Flash Timelines

1. Enter the Symbol Editing Mode by double-clicking the pianoKeys instance in
Scene 1. On its timeline, add a new layer and name it actions. Move this new
actions layer underneath the layer that contains the key_1 frame label, as
shown in Figure 18-22.

Figure 18-22: Don’t be afraid to keep information separated on actions and labels
layers. Separating the information will make it much easier for you to access the
appropriate sections of your timelines.

2. On frame 3 of the new actions layer, we need to add actions that will play the
first sound in our Sound Library. Remember that the button Instances on the
pianoKeys timeline already move the playback head to each key’s label. Insert
a blank keyframe (F7) on frame 3.

3. Double-click the keyframe to open the Actions Panel. In the panel’s options
menu (located in the right corner), switch to Expert Mode (Ctrl+E or
Command+E). Click the Actions list area of the panel (on the right side),
and type the following ActionScript:

_root.soundLib.sound_1.gotoAndPlay(“start”);

See the Actions Panel in Figure 18-23 for reference. This code looks at the
Main Timeline (_root), and then looks for a Movie Clip named soundLib.
Then, it tells the timeline of sound_1 instance inside of soundLib to move
the playback head from the stopped first frame to the start label keyframe.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 487

488 Part IV ✦ Adding Basic Interactivity to Flash Movies

For the sound to play more than once, we use the gotoAndPlay() action instead
of the gotoAndStop() action. If a timeline goes to and stops on a keyframe, any
other actions that tell the timeline to go to the same keyframe won’t work. Why?
Because the playback head is already on that frame, it doesn’t need to go any-
where. By using gotoAndPlay(), the playback head on the sound_1 timeline
will go to the frame label and continue playing until it reaches the Stop keyframe
just after the frame label.

Figure 18-23: This one line of ActionScript is equivalent
to the three lines of code using Tell Target (as in,
tellTarget(“/soundLib/sound_1”){gotoAndPlay
(“start”);}).

4. Click the Stage, and open the Frame Panel. In the Label text field, type //play
sound. Your stage should resemble Figure 18-24.

Figure 18-24: The //play sound comment
lets you know what the actions on this
keyframe do.

Note

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 488

489Chapter 18 ✦ Navigating Flash Timelines

At this point, you will want to test your movie to see if the action is finding the tar-
get and playing the sound. Save your movie, and use Control ➪ Test Movie to create
a .SWF movie. Make sure that the action on the keyframe works, and that you hear a
sound. Notice that you’ll also see the soundIcon Graphic change to green when you
hit the first key.

5. Now, we need to enable all the other sounds in the soundLib instance. Create
a new layer and name it actions. Place the new layer underneath the label
layer that contains the key_2 frame label. Copy the //play sound keyframe
from the previous actions layer, using the method described in Step 8 of the
“Making Sound Movie Clips” section. Then, paste the copied keyframe to the
new actions layer, on frame 5.

6. Double-click the new //play sound keyframe underneath the key_2 frame label
layer. In the Actions Panel, we need to change the sound’s target to sound_2:

_root.soundLib.sound_2.gotoAndPlay(“start”);

See Figure 18-25 for reference.

Figure 18-25: This timeline has enabled two sounds from the Sound Library.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 489

490 Part IV ✦ Adding Basic Interactivity to Flash Movies

7. Repeat Steps 5 and 6, for each key and sound. Each key_ frame label should
have its own actions layer with a //play sound keyframe. When you’re finished
with this task, your pianoKeys timeline should resemble the one shown in
Figure 18-26. Test your movie each time you add a new keyframe with Action
Script. If a particular key doesn’t work, then check two things: the target’s
name in the ActionScript, and the instance name of the sound in the soundLib
Movie Clip. Most errors occur as a result of not naming a Movie Clip instance.

Figure 18-26: The completed pianoKeys
timeline

When you’ve finished adding frame actions for every key, save the movie and test
it. After all’s been said and done, you should have a functional Flash piano that
plays a sound whenever you click a piano key. If you want to change the sounds,
you can either update the sound file in the Flash Library or import new ones.

How Movie Clips can add logic to a movie
A not so obvious yet significant aspect to Movie Clips is that they do not need to
have any content in them. They can be used solely as empty devices that instigate
interactive behavior. A Movie Clip can be just a string of empty frames with only
Labels and Actions. Tell Targets from other timelines can move the playhead of

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 490

491Chapter 18 ✦ Navigating Flash Timelines

empty Movie Clips in order to achieve basic levels of memory and logic in a Flash
movie. We refer to these empty Movie Clips as Logical Movie Clips. An example of
interactivity with a Logical Movie Clip is keeping score in a simple game.

Suppose you have a movie consisting of three true-or-false questions with a true but-
ton and a false button for each question. The user answers each question by clicking
one or the other button. You also have a Logical Movie Clip with four keyframes. The
first frame has a Stop action on it. The last frame has a Tell Target action on it that
tells the main movie timeline to go to a keyframe that has a congratulations mes-
sage. Finally, all the “correct” answer buttons have Tell Target actions that tell the
Logical Movie Clip to go to the next frame. Here’s what happens when the user plays
and gets all the questions right: question one, the user clicks the correct button, and
the Logical Movie Clip moves to frame 2; question two, the user clicks the correct
button, and the Logical Movie Clip moves to frame 3 and so on. When the user gets
to frame 4, the last frame of the Logical Movie Clip, it tells the Main Timeline to go to
the congratulations frame, which says, “Congratulations, you got a perfect score!”
So, what happens if the user gets a question wrong? Well, when the user gets any of
the questions wrong, the Logical Movie Clip does not advance, so by the end of the
game, the playhead never reaches frame 4, and the Tell Target action that causes the
congratulations message to be displayed is not executed.

Tricks such as the score keeper were common tools for Flash 3 developers. Using
Logical Movie Clips, inventive developers produced impressive results — even
a primitive version of Pac Man exists as a Flash 3 movie (see www.spookyand
thebandit.com/ for the game and to download the free .FLA file). However, now
that Flash 4 and 5 movies support variables and scriptable Movie Clip properties,
those kinds of Movie Clip uses are less important. Nevertheless, conceptually, it’s
useful to understand that Movie Clips can serve as more than just devices for
embedded animation. They can also serve as containers for meta-information
stored in movies.

Summary
✦ Movie Clips are the key to Flash interactivity. Each Movie Clip has its own

independent timeline and playback.

✦ Each Movie Clip instance needs a unique name on any given timeline. You
cannot reuse the same name on other movie clips on a timeline. You can,
however, use the same instance name on different timelines.

✦ There are two types of target paths for Movie Clips: absolute and relative.
Absolute paths start from the Main Timeline and end with the targeted
instance name. Relative paths start from the timelines that’s issuing the
action(s) and end with the targeted instance name.

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 491

492 Part IV ✦ Adding Basic Interactivity to Flash Movies

✦ The Slashes and Dots notations are formats for writing either absolute or
relative paths. The Slashes notation is considered deprecated, and should be
avoided unless you are authoring for Flash 4 or earlier players. The Dots nota-
tion is new to Flash 5 and has a more complete syntax for programming in
ActionScript.

✦ The Tell Target action can be used to control Movie Clip playback in all Flash
Players, while the Movie Clip Object method introduced with the new version
of ActionScript works only in Flash 5 or later players.

✦ All movie clips and Flash movie elements should adhere to a naming
convention.

✦ The use of a Sound Library Movie Clip enables you to store sounds in one
area, and target them from others. Sounds used in a Sound Library can be
updated easily, and reused in other Flash movies.

✦ ✦ ✦

3515-3 ch18.f.qc 1/18/01 4:59 PM Page 492

Controlling
Movie Clips

In the previous chapter, we established the key role that
Movie Clips have within the Flash movie structure. By

having a timeline that plays separately from other timelines,
Movie Clips enable multiple events to occur — independently
or as part of an interaction with other Movie Clips. This chap-
ter explores how to manipulate movie clips beyond navigation
actions such as gotoAndPlay or stop.

Movie Clips: The Object Overview
Flash 5’s implementation of ActionScript mirrors true object-
oriented programming languages. Much like JavaScript, each
element in a Flash movie has a data type. A data type is sim-
ply a category to which an element belongs. According to the
Flash 5 documentation, there are five data types available:
Boolean, number, string, object, and Movie Clip. For our pur-
poses, the Movie Clip is an object, and we’ll refer to it as such
throughout the remainder of the book. An object is any ele-
ment in Flash 5 that has changeable and accessible character-
istics through ActionScript. Objects can be user-defined (you
create and name them) or predefined by the programming lan-
guage. The Movie Clip Object is a predefined object, meaning
that all of its characteristics are already described in the
ActionScript language.

For a brief overview of object-oriented programming con-
cepts, please review the sidebar titled The New and
Improved ActionScript located in Chapter 18, “Navigating
Flash Timelines.”

Cross-
Reference

1919C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding the
Movie Clip Object

Using the Color
Object

Accessing the
Sound Object

Creating Mouse
Drag behaviors

Printing Flash movie
frames

✦ ✦ ✦ ✦

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 493

494 Part IV ✦ Adding Basic Interactivity to Flash Movies

A Movie Clip Object is the same Movie Clip instance we’ve seen in previous chap-
ters. Any instance of a Movie Clip is a unique object in ActionScript. However, we
haven’t treated it like an object in our scripting. Before we can proceed with a dis-
cussion of Movie Clips as Flash movie assets, you need to understand what prede-
fined characteristics are available in the Movie Clip Object. See Figure 19-1 for more
information.

Figure 19-1: An overview of the Movie Clip Object

Movie Clip properties
Each Movie Clip instance has definable properties, or attributes, that control its
appearance, size, and position. For example, you can move a Movie Clip instance
to a new position on the Stage by changing the value of its X or Y coordinate. This
property in ActionScript is denoted as _x or _y, respectively. Some properties have
values that are read-only, meaning that these values can’t be altered. One read-only
property is _url, the value of which indicates the download location of the Movie
Clip (or .SWF file) such as http://www.yourserver.com/swf/background.swf.
Figure 19-2 is a summary of the properties of the Movie Clip Object. For more infor-
mation on each property, please refer to Table 19-1.

PROPERTIES

Characteristics of
Movie Clip symbols

METHODS

Actions that are specific
to the Movie Clip Object

HANDLERS

Actions that detect system or
user events and direct the
execution of other actions

RELATED FUNCTIONS

Actions that target or
address the Movie Clip
Object

RELATED OBJECTS

Other ActionScript Objects that can
target or store information in the
Movie Clip Object

Movie Clip Object
Symbol instance for

advanced interactivity

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 494

495Chapter 19 ✦ Controlling Movie Clips

All properties are preceded by the underscore (_) character. In Table 19-1, each
property has an “R” (as in “read”) and/or “W” (as in “write”) designation. All proper-
ties can be read, which means that you can retrieve that property’s current value.
In Flash 4, these properties were retrieved using the getProperty action. The values
of some properties can also be changed, through ActionScript. The table represents
these properties with the “W” designation.

Figure 19-2: Properties of the Movie Clip Object

Use the propInspector Movie Clip in the Library of the property_inspector.fla file on
the Flash 5 Bible CD-ROM to see the values of Movie Clip or Movie properties.

On the
CD-ROM

PHYSICAL
ATTRIBUTES

Movie Clip Properties
Characteristics of
Movie Clip Objects

Position

_x
_y
_xmouse
_ymouse
_rotation

Size

_xscale
_yscale
_width
_height

Appearance

_alpha
_visible
Color ()

LOCATION

Internal Path

_name
_target
_dropTarget

External Path

_url

Timeline

_currentFrame
_totalFrames

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 495

496
Part IV

✦
A

dding B
asic Interactivity to Flash M

ovies

Table 19-1
Flash Movie and Movie Clip Properties

Category Property Timeline Flash 4 Flash 5 Definition

Position _x MC RW RW The horizontal distance between a Movie
Movie RW RW Clip’s center point and the top-left corner of

the stage upon which it resides. Increases as
the clip moves to the right. Measured in pixels.

_y MC RW RW The vertical distance between a Movie Clip’s
Movie RW RW center point and the top-left corner of the stage

upon which it resides. Increases as the clip moves
downward. Measured in pixels.

_xmouse MC N/A R The horizontal distance (in pixels) between the
Movie R zero point of a Movie Clip (or the Movie) and

the current position of the mouse pointer.

_ymouse MC N/A R The vertical distance (in pixels) between the
Movie R zero point of a Movie Clip (or the Movie) and

the current position of the mouse pointer.

_rotation MC RW RW The amount (in degrees) that a Movie Clip is
Movie RW RW rotated off plumb. Returns values set both by

the Transform Panel (or Rotation modifer of the
Arrow Tool) and by ActionScript.

Size _xscale MC RW RW The width of a Movie Clip instance (or Movie)
Movie RW RW as a percentage of the parent symbol’s

actual size.

_yscale MC RW RW The height of a Movie Clip instance (or Movie)
Movie RW RW as a percentage of the parent symbol’s

actual size.

_width MC R RW The width (in pixels) of a Movie Clip or the
Movie R R main Movie Stage. Determined not by the width

of the canvas but by the width of the space
occupied by elements on the Stage (meaning it can
be less or greater than the canvas width set in Movie
Properties).

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

4
9
6

497
C

hapter 19
✦

Controlling M
ovie Clips

Category Property Timeline Flash 4 Flash 5 Definition

Size _height MC R RW The height (in pixels) of a movie clip or the
Movie R R main movie stage. Determined not by the

height of the canvas but by the height of the
space occupied by elements on the Stage.

Appearance _alpha MC RW RW The amount of transparency of a Movie Clip or
Movie RW RW Movie. Measured as a percentage: 100 percent

is completely opaque, 0 percent is completely
transparent.

_visible MC RW RW A Boolean value that indicates whether a Movie
Movie RW RW Clip instance is shown or hidden. Set to 1 (or

true) to show; 0 (or false) to hide. Buttons in
“hidden” movies are not active.

Color()* MC N/A RW Color() is a Flash Object, not a property of the
Movie N/A RW Movie Clip Object. Because Movie Clips can be

specified as the target of the Color Object, color
values of a Movie Clip can be treated as a user-
definable property.

Internal Path _name MC RW RW Returns or reassigns the Movie Clip instance’s
Movie R R name (as listed under the Instance Panel).

_target MC R R Returns the exact string in Slashes notation that
Movie R R you’d use to refer to the Movie Clip instance.

retrieve the Dots notation, use eval(_target).

Internal Path _droptarget MC R R Returns the name (in Slashes notation) of the
Movie R R last Movie Clip upon which a draggable Movie

Clip was dropped. To retrieve the Dots notation, use
eval(_droptarget). For usage, see “Creating
Draggable Movie Clips” in this chapter.

External Path _url MC R R Returns the complete path to the .SWF file in
Movie R R which the Action is executed, including the

name of the .SWF itself. Could be used to prevent a
movie from being viewed if not on a particular server.

Continued

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

4
9
7

498
Part IV

✦
A

dding B
asic Interactivity to Flash M

ovies

Table 19-1 (continued)

Category Property Timeline Flash 4 Flash 5 Definition

Timeline _currentframe MC R R Returns the number of the current frame (for
Movie R R example, the frame on which the playhead

currently resides) of the Movie or a Movie Clip
instance.

_totalframes MC R R Returns the number of total frames in a Movie
Movie R R or Movie Clip instance’s timeline.

_framesloaded MC R R Returns the number of frames that have
Movie R R downloaded over the network.

Global _highquality Movie W W The visual quality setting of the Movie. 0=Low,
1=High, 2=Best. For details, see “Toggle High
Quality” in Chapter 17. This is considered deprecated
syntax in Flash 5.

_quality Movie N/A RW The visual quality of the Movie. The value is a
string equal to: “LOW” (no antialiasing, no
bitmap smoothing),
“MEDIUM” (antialiasing on a 2 ×2 grid, no
bitmap smoothing),
“HIGH” (antialiasing on a 4 ×4 grid, bitmap
smoothing on static frames),
“BEST” (antialiasing on a 4 ×4 grid, bitmap
smoothing on all frames)

_focusrect Movie W W A Boolean value that indicates whether a yellow
rectangle is shown around buttons when accessed
via the Tab key. Default is to show. When set to 0, the
Up state of the button is shown instead of the yellow
rectangle.

_soundbuftime Movie W W The number of seconds a sound should preload
before it begins playing. Default is 5 seconds.

R = Read property (cannot be modified); W = Write property (can be modified)

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

4
9
8

499Chapter 19 ✦ Controlling Movie Clips

Movie Clip methods
Although the name might sound intimidating, don’t be scared. Methods are simply
actions that are attached to objects. As you well know, Movie Clips qualify as objects
in Flash. A method looks like a regular action except that it doesn’t (and in most
cases, can’t) operate without a Dots notation reference to a target or an object:

Action: gotoAndPlay(“start”);

becomes

Method: _root.gotoAndPlay(“start”);

As actions, interactive commands are executed from the timeline on which they are
written. As methods, interactive commands are tied to specific (or dynamic) targets.
Figure 19-3 lists the methods and Table 19-2 reviews every method associated with
the Movie Clip Object. Some methods can be used with Movie Clip instances and
with the entire Flash movie (_root, _level0, and so on), while others can only be used
with Movie Clip instances. The “Flash 4” column indicates if the method (when used
as an action) is compatible in the Flash 4 Player. Some commands need to be written
in Dots notation, as a method (designated as “M” in the table) of a timeline or Movie
Clip Object. Other commands can be used as actions (designed as “A” in the table),
meaning that the Movie Clip Object name need not precede the command.

Figure 19-3: Methods of the Movie Clip Object

onClipEvent: The Movie Clip Object handler
Yet another exciting addition to Flash 5 ActionScript is the onClipEvent handler.
In previous versions of Flash, our only event handlers were keyframes and Button
instances. Now, we can add Actions to the wrapper of a Movie Clip instance —
meaning that these actions are not added to keyframes on the Movie Clip’s timeline.
Nine events can be used with the onClipEvent handler. Refer to Table 19-3 for a
summary of these events.

Movie Clip Methods
Actions that are specific
to the Movie Clip Object

POSITION

getBounds
hitTest
globalToLocal
startDrag
stopDrag

PLAYBACK

play
stop
gotoAndPlay
gotoAndStop
nextFrame
prevFrame

INTERNAL
ASSETS

duplicateMovieClip
removeMovieClip
attachMovie
swapDepths

EXTERNAL
ASSETS

loadMovie
unloadMovie
loadVariables
getBytesLoaded
getBytesTotal

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 499

500
Part IV

✦
A

dding B
asic Interactivity to Flash M

ovies

Table 19-2
Flash Movie and Movie Clip Methods

Category Method Flash 4 Definition Usage

Position getBounds No Returns an object containing the timeline.getBounds(target space);
M minimum and maximum X and Y myBounds = myMovieClip.¬

coordinates, as properties of that getBounds(_root);
object: xMin, xMax, yMin, and yMax. current_xMin = myBounds.xMin;
These values can be used to
compare the positions of two or
more Movie Clips.

hitTest No Returns a true value if the Movie Clip timeline.hitTest(x, y, shapeFlag);
M touches or overlaps a specified timeline.hitTest(target space);

coordinate space or target. var isTouching = myMC.¬
hitTest(otherMC);

trace(“isTouching is “ + ¬
isTouching);

globalToLocal No Translates coordinates from the timeline.globalToLocal(object
M Main Timeline’s stage to a specified reference);

Movie Clip’s stage. Requires the _root.myPoint = new Object();
creation of a new Object with X and Y _root.myPoint.x = _root.¬
properties. _xmouse;

_root.myPoint.y = _root.¬
_ymouse;

_myMC.globalToLocal(_root.¬
myPoint);

localToGlobal No Translates coordinates from a Movie timeline.localToGlobal(object
M Clip’s stage to the Main Timeline’s reference);

stage. Same requirements as myMC.myPoint = new Object();
globalToLocal. myMC.myPoint.x = myMC._x;

myMC.myPoint.y = myMC._y;
myMC.localToGlobal(myMC.¬
myPoint);

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
0

501
C

hapter 19
✦

Controlling M
ovie Clips

Category Method Flash 4 Definition Usage

Position startDrag Yes Enables the user to move a Movie Clip timeline.startDrag(lock, min X, min Y,
M, A instance on the Stage. The Movie Clip max X, max Y);

moves (or drags) in tandem with the myMC.startDrag(false, ¬
movements of the mouse. You can 200,0,200,200);
specify whether the mouse pointer
locks to the center of the Movie Clip
instance and if the drag area is
constrained to a range of X and Y
coordinates (in the parent symbol or
timeline space). Constraining the
drag area is useful for slider controls.

stopDrag Yes Stops any startDrag action currently timeline.stopDrag();
M, A in progress. No target needs to be myMC.stopDrag();

specified with this action.

Playback play Yes Starts playback from the current timeline.play();
M, A position of the playhead on a // plays the Main Timeline

specified timeline. _root.play();
// plays myMC
_root.myMC.play();

stop Yes Stops playback on a specified timeline. timeline.stop();
// stops the Main Timeline

M, A _root.stop();
// stops myMC
_root.myMC.stop();

gotoAndPlay Yes Jumps the playhead of a specified timeline.gotoAndPlay(position);
M, A timeline to a label, frame number, // plays from the “start”

or expression, and starts playing // label of the myMC timeline
from there. _root.myMC.gotoAndPlay ¬

(“start”);

Continued

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
1

502
Part IV

✦
A

dding B
asic Interactivity to Flash M

ovies

Table 19-2 (continued)

Category Method Flash 4 Definition Usage

Playback gotoAndStop Yes Jumps the playhead of a specified timeline.gotoAndStop(position);
M, A timeline to a label, frame number, // stops playback on the

or expression, and stops playback. // “mute” label of myMC
_root.myMC.gotoAndStop¬
(“mute”);

nextFrame Yes Moves the playhead of the specified timeline.nextFrame();
M, A timeline to the next frame. _root.myMC.nextFrame();

prevFrame Yes Moves the playhead of the specified timeline.prevFrame();
M, A timeline to the previous frame. _root.myMC.prevFrame();

Internal duplicate Yes Makes a copy of a Movie Clip instance timeline.duplicateMovieClip
Assets MovieClip on the Stage (or nested in another (new name*, depth);

M, A Movie Clip). The new copy is placed myMC.duplicateMovieClip¬
directly above the parent instance, at a (“myMC_2”, 20);
specified depth. Higher depth numbers myMC_2._x = 200;
appear above lower depth numbers *You should not specify a new path for
(for example, a Movie Clip at depth 2 is the copy. It will be located from the
stacked above a Movie Clip at depth 1). same root as the parent MC instance.

removeMovieClip Yes Deletes a previously duplicated Movie timeline.removeMovieClip();
M, A Clip instance. When used as a method, myMC_2.removeMovieClip();

you do not need to specify a target.
You can not remove a Movie Clip
instance that is manually inserted on
any timeline frame from the Library.

attachMovie No Places an instance of a Movie Clip timeline.attachMovie(ID*, new name,
M symbol from the Library into the depth);

specified timeline. Each attached _root.attachMovie(“eye”, ¬
instance requires a unique name “eye_1”, 1);
and depth. Attached Movie Clip *You need to specify a unique
instances can be deleted with identifier to attached MC symbols
removeMovieClip. in the Library, using the Linkage

Properties.

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
2

503
C

hapter 19
✦

Controlling M
ovie Clips

Category Method Flash 4 Definition Usage

Internal swapDepths No Switches the depth placement of two timeline.swapDepths(depth);
Assets M duplicated or attached Movie Clips. timeline.swapDepths(target);

This method is useful for placing one // depth
Movie Clip instance in front of eye_1.swapDepths(10);
(or behind) another instance. // target

eye_1.swapDepths(eye_2);

External loadMovie Yes Loads an external .SWF file into the timeline.loadMovie(path, send
Assets M, A main movie .SWF. As one of the most variables*);

powerful features of Flash, this myMC.loadMovie(“menu.swf”);
method enables you to break up your *You can also send Flash variables to
Flash movie into several smaller the newly loaded .SWF file with an
components, and load them as needed. optional “GET” or “POST” parameter.
This method can load .SWF files into This is discussed in Chapter 24.
Movie Clip targets.

loadMovieNum Yes Same functionality as loadMovie. This timeline.loadMovieNum(path, send
M, A method can load .SWF files into Levels variables*);

instead of Movie Clip targets. _level1.loadMovieNum¬
(“menu.swf”);

*See note in loadMovie.

unloadMovie Yes Removes an externally loaded .SWF timeline.unloadMovie();
M, A file from the main movie .SWF. This myMC.unloadMovie();

method enables you to dump .SWF
assets when they are no longer needed.
Use this method for assets loaded into
Movie Clip targets.

unloadMovieNum Yes Same functionality as unloadMovie. timeline.unloadMovieNum();
M, A This method is used to remove _level1.unloadMovieNum();

externally loaded .SWFs that exist in
Levels, not Movie Clips.

Continued

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
3

504
Part IV

✦
A

dding B
asic Interactivity to Flash M

ovies

Table 19-2 (continued)

Category Method Flash 4 Definition Usage

External loadVariables Yes Loads external text-based data into the timeline.loadVariables(path, send
Assets M, A main movie .SWF. This method enables variables*);

you to access data (in the form of myMC.loadVariables¬
variable name/value pairs) from (“info.txt”);
server-side scripts or text files, and *See note in loadMovie.
place it in a Movie Clip target.

loadVariablesNum Yes Same as loadVariables, except that timeline.loadVariablesNum(path, send
M, A this method is used to load data into variables*);

Levels, not Movie Clips. _level1.loadVariablesNum¬
(“info.txt”);

*See note in loadMovie.

getBytesLoaded No Returns the number of bytes that have timeline.getBytesLoaded();
M streamed into the Flash Player for a loadBytes = ¬

specified Movie Clip (or main movie). myMC.getBytesLoaded();

getBytesTotal No Returns the total file size (in bytes) for timeline.getBytesTotal();
M a loading movie or Movie Clip. totalBytes = ¬

Combined with getBytesLoaded(), myMC.getBytesTotal();
you can use this method to calculate loadBytes = ¬
the movie’s loaded percentage. myMC.getBytesLoaded();

newPercent = (loadBytes/¬
totalBytes)*100;

Note: Throughout this table the ¬ character indicates continuation of the same line of code.

M = Method, A = Action

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
4

505
C

hapter 19
✦

Controlling M
ovie Clips

Table 19-3
onClipEvent Handler for Movie Clip Objects

Category Event Definition Usage

Playback load This event is triggered when (a) a Movie Clip onClipEvent(load){
instance first appears on the Stage; (b) a new trace(_name + “ has loaded.”);
instance is added with attachMovie or }
duplicateMovieClip; or (c) an external
.SWF is loaded into a Movie Clip target.

unload This event occurs when (a) a Movie Clip onClipEvent(unload){
instance exits the Stage (just after the last trace(_name + “ has unloaded.”);
frame has played on the Main Timeline), or
(b) an external .SWF is unloaded from a }
Movie Clip target. Actions within this handler
type will be executed before any actions in
the keyframe immediately after the Movie
Clip’s departure keyframe.

enterFrame This event executes when each frame on a onClipEvent(enterFrame){
Movie Clip instance’s timeline is played. The trace(_name + “ is playing.”);
actions within this event handler will be }
processed after any actions that exist on the
keyframes of the Movie Clip timeline. Note
that enterFrame events will execute repeatedly
(at the same rate as the movie’s frame rate),
regardless of whether any timelines within the
movie are actually playing frames.

User Input mouseMove This event is triggered each time the mouse onClipEvent(mouseMove){
moves, anywhere on the Stage. Combined myX = _root._xmouse;
with the hitTest method, this event can myY = _root._ymouse;
be used to detect mouse movements over if(this.hitTest(myX, myY, ¬
Movie Clip instances. All Movie Clip true) == true){
instances with this event handler receive trace(“Mouse move over MC.”);
this event. }

}

Continued

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
5

506
Part IV

✦
A

dding B
asic Interactivity to Flash M

ovies

Table 19-3 (continued)

Category Event Definition Usage

User Input mouseDown This event occurs each time the left mouse onClipEvent(mouseDown){
button is pressed (or down) anywhere on the myX = _root._xmouse;
Stage. All Movie Clip instances with this event myY = _root._ymouse;
handler receive this event. if(this.hitTest(myX, myY, true) == ¬

true){
trace(“Mouse press on MC.”);

}
}

mouseUp Each time the left mouse button is released onClipEvent(mouseUp){
(when the user lets up on the mouse button), myX = _root._xmouse;
this event is triggered. All Movie Clip instances myY = _root._ymouse;
with this handler receive this event. if(this.hitTest(myX, myY, true) ¬

== true){
trace(“Mouse release on MC.”);

}

}

keyDown When the user presses a key, this event onClipEvent(keyDown){
occurs. Combined with the Key.getCode newKey = Key.getCode();
method, you can use this event handler to myKey = Key.UP;
detect unique key presses. if(newKey == myKey){

trace(“UP arrow is pressed.”);
}

}

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
6

507
C

hapter 19
✦

Controlling M
ovie Clips

Category Event Definition Usage

User Input keyUp This event happens when the user releases onClipEvent(keyUp){
a key (when the finger leaves the key). Same newKey = Key.getCode();
functionality as the keyDown event. myKey = Key.LEFT;

if(newKey == myKey){
trace(“LEFT arrow released.”);

}
}

External data This event is triggered when (a) the onClipEvent(data){
Input loadMovie action retrieves an external trace(“New data received.”);

.SWF and puts it in a Movie Clip target, or }
(b) the data from a file or script with the
loadVariables action (targeted at a
Movie Clip instance) is finished loading.

Note: Throughout this table the ¬ character indicates continuation of the same line of code.

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
7

508 Part IV ✦ Adding Basic Interactivity to Flash Movies

Other objects that can use the Movie Clip Object
Movie Clips can be used with other ActionScript objects to control appearance and
sounds, and to manipulate data.

Color Object
This object requires a Movie Clip as a target. After a new object is created with the
Color() action, you can control the color effects of the targeted Movie Clip. We’ll
look at the Color Object more closely in this chapter.

Sound Object
With this object, you can create virtual sound instances on a Movie Clip timeline,
and target them for later use. We’ll explore this object later in the chapter as well.

Mouse Object
This object controls the appearance of the mouse pointer within the Flash movie
Stage. After the Mouse Object is hidden, you can attach a Movie Clip Object to the
X and Y coordinates of the mouse pointer.

XML Object
If you’re working with XML (Extensible Markup Language) data from a server-side
script or file, then you can store the output within a Movie Clip instance for better
data management. The XML Object is discussed in Chapter 24, “Sending Data In and
Out of Flash.”

Related functions that target the Movie Clip Object
Some ActionScript functions work directly with Movie Clip instances for printing
and targeting. Refer to Table 19-4 for a summary of these functions.

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 508

509
C

hapter 19
✦

Controlling M
ovie Clips

Table 19-4
Related Functions with a Movie Clip Target

Function Definition Options

print() This action prints a frame (or series print(target, [“bmovie”,” bmax”, or “bframe”]);
printNum() of frames) in the targeted timeline. where:

The printNum function is used when target is the path to Movie Clip instance. Each frame of
targeting Levels. Each frame prints to the Movie Clip is printed unless you designate printable
one piece of paper. Use this function frames with a #p frame label.
to print high-quality artwork. Note and one of the following options:
that alpha and color effects do not “bMovie” assigns a cropping area for printing, by
print reliably with this method. placing artwork sized to the printable area on a keyframe
We discuss this function later in with the label #b
the chapter. “bmax” uses the frame with the largest-sized artwork to

determine the printable area.
“bframe” prints each frame at its largest size to fill the
paper width.

printAsBitmp() Same functionality as the print() print(target, [“bmovie”,”bmax”, or “bframe”]);
printAsBitmapNum() function. Use this action to print See the print() function earlier in this table for

artwork that employs alpha or color descriptions of options.
instance settings. We discuss this
function later in the chapter.

targetPath() This function is an advanced substitute targetPath(path to Movie Clip instance){ [actions here] }
for the Flash 4 tellTarget action. targetPath(_root.myMC){
Actions within the curly braces are stop();
targeted at the Movie Clip instance. }

tellTarget() This Flash 4 action can direct actions tellTarget(path{ [actions here] }
to a specific Movie Clip timeline. To be tellTarget(“/myMC”){
compatible with Flash 4, you need to stop();
use Slash notation for the target path. }

with() This function enables you to avoid with(path to Object){ [actions here] }
needless replication of object with(_root.myMC){
references and paths. By specifying stop();
a target for the with function, you }
can omit the path from nested actions.

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
0
9

510 Part IV ✦ Adding Basic Interactivity to Flash Movies

Working with Movie Clip Properties
Now that you have a sense of what a Movie Clip can do (or be told to do), let’s get
some practical experience with the Movie Clip properties. This section shows you
how to access Movie Clip appearance properties that control position, scale, and
rotation.

The following exercises use Button Symbols from the prebuilt Common Libraries
that ship with Flash 5. To access buttons from the Common Libraries, use
Window ➪ Common Libraries ➪ Buttons to open the .FLA library file, and drag an
instance of any button into your Flash movie.

Positioning Movie Clips
You can change the location of Movie Clip instances on-the-fly with position proper-
ties such as _x and _y. How is this useful? If you want to create multiple Movie Clip
instances that move randomly (or predictively) across the Stage, then you can save
yourself the trouble of manually tweening them by writing a few lines of Action-
Script code on the object instance:

1. Create a new movie file (Ctrl+N or Command+N).

2. Draw a simple shape such as a circle. Select the shape and press F8 to convert it
into a symbol. Accept the default Movie Clip behavior in the Symbol Properties
dialog, and give the new Movie Clip symbol a unique name such as circle.

3. With the Movie Clip instance selected on the Stage, open the Actions Panel
(Ctrl+Alt+A or Option+Command+A). Turn on Expert mode (Ctrl+E) and type
the following code:

onClipEvent(enterFrame){
this._x += 5;

}

4. Save your movie as a new .FLA file, and test the movie (Ctrl+Enter or
Command+Enter). The Movie Clip instance moves across the Stage.

How does this code work? In step 3, you specified that the onClipEvent
(enterFrame) handler should be assigned to the Movie Clip instance. Because
this particular Movie Clip has only one frame (with no stop() action in it), the
enterFrame event is triggered continuously. Therefore, any actions nested within
the handler will be executed repeatedly.

Our nest contains one action: this._x += 5. On the left side of the action, this
refers to the object instance to which this handler and code has been applied. In
our case, this refers to our circle Movie Clip instance. Immediately after this is the

Note

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 510

511Chapter 19 ✦ Controlling Movie Clips

property for X position, _x. By adding the property _x to the object this, Flash
knows that we want to change the value of this property.

On the right side of the action are the operators += and the value 5. By combining
the + and = operators, we’ve created a shortcut to adding the value of 5 to the cur-
rent X position of the circle Movie Clip instance. Each time the enterFrame event
occurs, the circle Object moves 5 pixels to the right.

We dissect operators and expressions in Chapter 21, “Planning Code Structures.”

To show how quickly you can replicate this action on multiple Movie Clips, select the
instance of the circle Movie Clip on the Stage, and duplicate it (Ctrl+D or Command+D)
as many times as you wish. When you test your movie, each instance moves indepen-
dently across the Stage.

To move the instance diagonally across the Stage, add the action this._y += 5 to
the onClipEvent handler nest. This moves the instance down 5 pixels each time
the handler is processed.

Scaling Movie Clips
In the last example, you learned how to access the _x and _y properties of the
Movie Clip Object. The next example shows you how to use a Button symbol to
enlarge or reduce the size of a Movie Clip on the Stage.

1. Create a new movie file (Ctrl+N or Command+N).

2. Draw a shape (or multiple shapes), select the shape(s), and press F8 to con-
vert the artwork into a symbol. Give the Movie Clip symbol a distinct name
to identify it in the Library.

3. Select the instance of the Movie Clip on the Stage, and open the Instance
Panel. Give the Movie Clip a unique name. In this example, we’ve named the
instance circle.

4. From the Button Library, drag an instance of a button onto the Stage.

5. Now we create an ActionScript that will enlarge our circle Movie Clip instance.
Select the Button instance on the Stage, and open the Actions Panel. In Expert
mode, type the following code:

on (release){
with (circle){

_xscale += 10;
_yscale += 10;

}
}

Tip

Cross-
Reference

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 511

512 Part IV ✦ Adding Basic Interactivity to Flash Movies

This code uses the with() function to target the circle Movie Clip instance
with a nested group of actions. In this case, we’ve increased the values of the
_xscale and _yscale properties by 10 percent. With each release event on
the Button symbol, the scale properties of the circle instance will be changed.

6. Save your movie as a new .FLA file, and test the movie (Ctrl+Enter or Command+
Enter). Each time you click the Button instance, your circle Movie Clip instance
enlarges by 10 percent.

7. Duplicate the Button instance (Ctrl+D or Command+D). With the new copy of
the Button instance selected, change the code in the Actions Panel so that it
reads:

on (release){
with (circle){

_xscale -= 10;
_yscale -= 10;

}
}

By changing the += operator to -=, each click on this Button instance will
reduce (shrink) the circle Movie Clip instance by 10 percent.

8. Resave your Flash file and test the movie again. Make sure that each Button
instance behaves appropriately. If one doesn’t work (or works in an unex-
pected manner), go back to the Flash movie file and check the code on both
Button instances.

In this simple exercise, we haven’t placed any limits on the how much the Movie
Clip can be reduced or enlarged. If you click the reduce button enough times, the
Movie Clip instance will actually start enlarging again. We look at creating condi-
tions and logic for Movie Clips in Chapter 21, “Planning Code Structures.”

Rotating Movie Clips
Let’s move along to the rotation property, _rotation, which is used to control the
angle at which our Movie Clip is shown. In this sample, we’ll use the same .FLA file
that we created in the previous section.

If you had drawn a perfect circle in past exercises for the Movie Clip Object, then
you will want to edit your Movie Clip symbol to include some additional artwork
that provides an indication of orientation and rotation. If you try to rotate a perfect
circle, you won’t see any visual difference on the Stage. Because the value of the
rotation property is determined from the center point of the Movie Clip, you can
also move the contents of the Movie Clip (in Symbol Editing Mode) off-center to
see updates in the _rotation value.

Note

Caution

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 512

513Chapter 19 ✦ Controlling Movie Clips

1. Select the Button instance we used to enlarge the circle Movie Clip instance.
Change the button’s ActionScript in the Actions Panel to:

on (release){
circle._rotation += 10;

}

2. Now, select the Button instance we used to shrink the circle Movie Clip
instance. Change the button’s ActionScript in the Actions Panel to:

on (release){
circle._rotation -= 10;

}

3. Save your movie as a new .FLA file, and test the movie. Each button should
rotate the circle Movie Clip instance accordingly.

At this point, you should have a general knowledge of how to access a Movie Clip’s
properties. Repeat these examples using other properties that can be modified,
such as _width and _height. Try combining all the properties into one Button
instance or one onClipEvent handler.

Manipulating Color Attributes
The new Color Object in Flash 5 gives you unprecedented control of your Movie
Clip Objects. By controlling the color (and transparency) of your artwork with
ActionScript’s Color Object, you can:

✦ Create on-the-fly color schemes or “skins” for Flash interfaces.

✦ Enable users to select and view color preferences for showcased products on
an e-commerce site.

✦ Instantly change the color attributes of a Flash design-in-progress for a client.

Because color is controlled through the Color Object, we’ll quickly review the
unique methods available to this object. Refer to Table 19-5 for more information.
Note that this table is organized by order of practical use.

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 513

514
Part IV

✦
A

dding B
asic Interactivity to Flash M

ovies

Table 19-5
Methods for the Color Object

Method Definition Options

setRGB Changes the RGB offset for the colorReference.setRGB(0xRRGGBB);
specified Color Object (and targeted where:
Movie Clip). This method changes colorReference is the name of the Color Object. We’ll
all colors in the targeted instance discuss the creation of Color Objects in this section.
to one solid RGB color. RR, GG and BB are the offset values (in hexadecimal) for

the Red, Green, and Blue channels, respectively.

getRGB Retrieves the values established with colorReference.getRGB();
the last setRGB execution. If you No options or arguments for this method.
want to reapply RGB offsets to a
new Color Object, use this method.

setTransform Changes the RGB offset and percentage colorReference.setTransform(colorTransformObject);
values for the specified Color Object where:
(and targeted Movie Clip). This method colorTransformObject is the name of a Object that has
produces visual results that resemble percentage and offset properties for Red, Green, Blue, and
both left- and right-hand color controls Alpha channels. We’ll discuss the intricacies of these
in the Advanced section of the Effect Panel. properties in the following sections.

getTransform Retrieves the values established with the colorReference.getTransform();
last setTransform execution. Use this No options or arguments for this method.
method to reapply color transforms to
new Color Objects.

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
1
4

515Chapter 19 ✦ Controlling Movie Clips

Creating a Color Object
To manipulate the color attributes of a Movie Clip instance, you need to create a
new Color Object that references the Movie Clip instance. In the following steps,
you learn to use the constructor for the Color Object. Constructors are explained in
more detail in Part V, “Programming Flash Movies with ActionScript.” For now, we’ll
work out the steps required to take control of color properties.

For the exercises with the Color Object, use the dog.fla movie in the ch19 folder of
the Flash 5 Bible CD-ROM. Thank you, Sandro Corsaro of spanktoons.com, for sup-
plying the artwork of the dog!

1. Select the instance of the dog graphic on the Stage. Open the Instance Panel
and name this Movie Clip instance dog.

2. Open the Button library (Window ➪ Common Libraries ➪ Buttons) and drag an
instance of a Button symbol onto the Stage. In this example, we used the Grey
button-stop in the (rectangle) Button Set.

3. Select the Button instance on the Stage, and open the Actions Panel. In Expert
Mode, type the following actions:

on(release){
redSolid = new Color(_root.dog);
redSolid.setRGB(0xFF0000);
}

With the on(release) handler, this Button instance’s actions create a new
Color Object called redSolid, which refers to the _root.dog Movie Clip
instance we made in step 1. Once the redSolid Object is initiated, we can
access methods of the Color Object, such as setRGB. In this example, we
changed the color of the Movie Clip instance to pure red, designated by FF
in hexadecimal.

4. Save the movie as a new .FLA file, and test the movie. Click the Button
instance on the Stage. The color of the dog Movie Clip should change to
bright red. Close the test .SWF, and return to the Flash authoring environment.

5. To see the getRGB method in action, let’s create some trace messages for the
Output window. Select the Button instance on the Stage, and open the Actions
Panel. Add the following line of code to the end of the nest of actions inside
the on(release) handler:

trace(“redSolid’s RGB numeric value = “ + redSolid.getRGB());

6. Save the .FLA file and test the movie. When you click the button, the Output
window should open and display the following text:

redSolid’s RGB numeric value = 16711680

On the
CD-ROM

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 515

516 Part IV ✦ Adding Basic Interactivity to Flash Movies

7. To change this value back to the hexadecimal value that we entered in the
setRGB method, we need to convert the value to base 16. Add the following
action to the on(release) action nest:

trace(“redSolid’s RGB hex value = “ +
redSolid.getRGB().toString(16));

8. Save the .FLA file and test the movie. When you click the button, the Output
window should open and display the new value:

redSolid’s RGB numeric value = 16711680
redSolid’s RGB hex value = ff0000

9. However, you won’t need to convert getRGB’s native return value to set
another Color Object equal to a previous setRGB value. Duplicate the dog
Movie Clip instance on the Stage, and name the new instance dog2. Duplicate
the Button instance on the Stage. Change the new Button instance actions to:

on (release) {
redSolid2 = new Color(_root.dog2);
redSolid2.setRGB(redSolid.getRGB());

}

10. Save the FLA file and test the movie. When you click the first button, the
dog Movie Clip instance turns red. When you click the second button,
the dog2 Movie Clip instance turns red.

If you click the second button first, the dog2 Movie Clip instance will turn black.
Why? Because the first button’s actions were not executed, there was no previous
setRGB method execution for the getRGB method to refer to. Moreover, there
was no redSolid Object either. Consequently, Flash returns a zero or null value
for the getRGB method. In hexadecimal color, zero is equivalent to black.

Now that you’ve had some experience with the Color Object’s setRGB and getRGB
methods, let’s move on to the more complex colorTransformObject. We’ll use
the.FLA file from this exercise, so keep the dogs on the Stage!

Creating a Transform Object
The two remaining methods of the Color Object, setTransform and getTransform,
require a more thorough understanding of RGB color space. Before the setTransform
method can be used with a Color Object, we need to create a generic object using the
object constructor. This generic object will become a colorTransformObject once
we have assigned color properties to the generic object.

The properties of the colorTransformObject are:

✦ ra, the Red channel percentage

✦ rb, the Red Channel offset

Note

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 516

517Chapter 19 ✦ Controlling Movie Clips

✦ ga, the Green channel percentage

✦ gb, the Green channel offset

✦ ba, the Blue channel percentage

✦ bb, the Blue channel offset

✦ aa, the Alpha channel percentage

✦ ab, the Alpha channel offset

The a properties are percentage-based, ranging in value from –100 to 100. The b
properties are offset-based, ranging from –255 to 255 (derived from 24-bit RGB color
space, in which each 8-bit color channel can have a range of 256 values).

While these properties and values may seem complex, refer to the Advanced
options of the Effect Panel for guidance. With the Advanced option chosen in the
Effect Panel drop-down menu, the left-hand color controls are percentage-based,
while the right-hand controls are offset-based. Admittedly, color is difficult to visu-
alize from numbers. To accurately predict the color changes with setTransform,
we’ll use the Effect Panel to help us out.

1. Using the same .FLA file from the previous exercise, select the original dog
Movie Clip instance on the Stage. Open the Effect Panel (Window ➪ Panels ➪
Effect), and select the Advanced option in the drop-down menu. Enter the fol-
lowing value on the left-hand side: –100% Blue. On the right-hand side, enter
these values: 37 G and 255 B. With these values, the dog instance should be a
monochrome blue with yellow eyes. Normally, you would want to write these
values down so that you had them to use later. Because you have them printed
here, erase them by choosing None from the Effect Panel drop-down menu.

2. Duplicate one of the existing Button instances on the Stage. On this new
instance, we’ll create some code that will initiate a new Color Object, and a
new colorTransformObject. The colorTransformObject will be given
properties that have the same values as those determined in Step 1. Then,
we’ll execute the setTransform method for the Color Object, using the
colorTransformObject’s data for the color change. Select the new Button
instance, and add the following code in the Actions Panel:

on (release) {
dogColor = new Color(_root.dog);
rabidLook = new Object();
rabidLook.ba = -100;
rabidLook.bb = 255;
rabidLook.gb = 37;
dogColor.setTransform(rabidLook);

}

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 517

518 Part IV ✦ Adding Basic Interactivity to Flash Movies

In the preceding code, we created two objects: dogColor and rabidLook.
rapidLook is assigned the ba, bb, and gb colorTransformObject proper-
ties. Each of these properties is given the values we determined in Step 1.
Then, we specified that the rabidLook Object be used as the target for
dogColor’s setTransform method.

3. Save the Flash movie file, and test the movie. Click the new Button instance
that you added in Step 2. The colors of the dog Movie Clip instance should
change to match those we saw in Step 1. Close the .SWF file, and return to the
Flash authoring environment.

4. Now let’s create a button that restores the original look of the dog Movie Clip
instance. The code structure resembles that of Step 2, but we use a different
way to assign color properties to the colorTransformObject. Duplicate the
button created in Step 2, open the Actions Panel, and change the ActionScript
code to:

on (release) {
dogColor = new Color(_root.dog);
restoreLook = new Object();
restoreLook = {

ra: ‘100’,
rb: ‘0’,
ga: ‘100’,
gb: ‘0’,
ba: ‘100’,
bb: ‘0’,
aa: ‘100’,
ab: ‘0’

}
dogColor.setTransform(restoreLook);

}

In the restoreLook Object, we defined all the default properties using
name/value pairs separated by the colon character (:). Notice that all the
properties of the restoreLook Object can be declared and given values
within a {} nesting.

5. Save the .FLA file, and test the movie. Click the Button instance you created in
Step 2. After the dog Movie Clip instance changes color, click the Button
instance you created in Step 4. Voila! The dog Movie Clip instance reverts to
its original color. Click the first Button instance that you created in the previ-
ous section. This Button instance (which uses the setRGB method) changes
the appearance of the dog Movie Clip instance to a solid red color. Now click
the Button instance with the restoreLook Object — the dog Movie Clip
instance reverts to its original look!

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 518

519Chapter 19 ✦ Controlling Movie Clips

While the setRGB method can alter basic color properties of Movie Clip Objects,
the setTransform method is the color-control powerhouse. Any look that you
can accomplish with the Effect Panel, you can reproduce with the setTransform
method and the colorTransformObject.

Just as the getRGB method can retrieve the values of a past setRGB method, you
can transfer past setTransform values using the getTransform method.

Enabling Sound with ActionScript
Flash 5 offers many new object types, and one of the most exciting objects to use is
the Sound Object. Like most objects, the Sound Object has predefined methods that
you can use to control each new Sound Object. Table 19-6 provides an overview of
the Sound Object and its methods.

Reasons for using Sound Objects over traditional Sound Movie Clips or keyframe
sounds:

✦ Dynamic event sounds that play in a random or user-defined order.

✦ Precise control over volume and panning.

✦ The ability to dump (or erase) a Sound Object when the sound is no longer
needed.

All Sound Objects are treated as Event sounds. You can not use Sound Objects for
Stream sounds. For more information on Synch modes for sound, please refer to
Chapter 15, “Importing and Editing Sounds in Flash.”

Unlike the Color Object that uses Movie Clips as targets, the Sound Object uses
sounds directly from the movie’s Library. You cannot use the Sound Object to
control sounds that are specified in the Sound Panel for any given keyframes.

The next section shows you how to create Sound Objects, using the object construc-
tor with the attachSound and start methods.

Note

Tip

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 519

520
Part IV

✦
A

dding B
asic Interactivity to Flash M

ovies

Table 19-6
Methods for the Sound Object

Method Definition Options

attachSound Creates a new instance of a sound file (.AIF soundObject.attachSound(libraryID);
or .WAV) available in the Library. The new where:
instance becomes a part of the Sound Object soundObject refers to the sound Object’s name
and can be targeted with Sound Object libraryID is the name of the sound in the Symbol
methods. Unlike attached Movie Clips, Linkage properties (available in the Library)
attached sounds do not require a depth
number.

start Plays the targeted Sound Object. A sound soundObject.start(inPoint, loopFactor);
must be attached to the Sound Object where:
before it can play. inPoint is the time (in seconds) in the sound where

playback should begin.
loopFactor is the number of times the sound should
be repeated.
Both of these parameters are optional and can
be omitted.

stop Stops playback of the targeted Sound Object. soundObject.stop(libraryID);
If no target is specified, then all sounds will where:
be stopped. Note that this is not equivalent libraryID is the name of the sound in the Symbol
to pausing a sound. If a stopped sound is Linkage properties (available in the Library)
played later, it will start at the beginning
(or at the inPoint).

setVolume Changes the overall volume of the specified soundObject.setVolume(volume);
Sound Object. This method accepts values where:
between 0 and100 (in percentage units). volume is a number between 0 and 100
You can not enter percentages greater than
100 percent to increase sound output
beyond its original recording level.

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
2
0

521
C

hapter 19
✦

Controlling M
ovie Clips

Method Definition Options

getVolume Retrieves the values established with the last soundObject.getVolume();
setVolume execution. If you want to reapply No options or arguments for this method.
RGB offsets to a new Color Object, use this
method.

setPan Changes the offset of sound output from soundObject.setPan(panValue);
both the left and right channels. where:

panValue is a value between –100 (full left-speaker
output) and 100 (full right-speaker output).
Use a value of 0 to balance sound output evenly.

getPan Retrieves the values created with a previous soundObject.getPan();
setPan execution. Use this method to apply No options or arguments for this method.
Pan settings consistently to multiple Objects,
or to store a Pan setting.

setTransform Changes the volume for each channel of the soundObject.setTransform(soundTransformObject);
specified Sound Object. This method also where:
enables you to play the right channel in the soundTransformObject is the name of an object that
left channel and vice versa. has percentage properties for left and right output

for the left channel, and left and right output for
the right channels.

getTransform Retrieves the values established with the last soundObject.getTransform();
setTransform execution. Use this method No options or arguments for this method.
to reapply sound transforms to new Sounds
Objects, or to store setTransform values.

3
5
1
5
-
3

c
h
1
9
.
f
.
q
c

1
/
1
8
/
0
1

4
:
5
9

P
M

P
a
g
e

5
2
1

522 Part IV ✦ Adding Basic Interactivity to Flash Movies

Creating sound libraries with ActionScript
In the previous chapter, you learned how to create a sound library Movie Clip that
stored several individual sound Movie Clip instances. You learned how to target
these sounds in order to play them (or mute them). From a conceptual point of
view, manually creating each sound Movie Clip enabled you to see each sound
“object” on the Stage very easily. However, we can produce the sounds for a sound
library much more quickly using ActionScript.

In this section, we start with the soundLibrary Movie Clip that you made in the
previous chapter. You can also open the pianoKeys_complete.fla file from the ch18
folder of the Flash 5 Bible CD-ROM.

1. Using the Open as Library command in the File menu, select the pianoKeys.fla
file that you made in the previous chapter. Opening a Flash file as a Library
enables you to access symbols and media in that file.

Do not use the Open as Shared Library command in Step 1. This is a special option
that we explore in the next chapter.

2. If you don’t have a new untitled Flash document open, then create a new Flash
file (Ctrl+N or Command+N). Drag the soundLib Movie Clip from the pianoKeys
Library onto the Stage of your new movie. If you open the Library for your new
movie, you’ll see that all the elements contained within the soundLib Movie
Clip have been imported into your new movie. Close the pianoKeys Library
window, and save your new Flash movie as soundLib_ActionScript.fla.

3. Select the soundLib instance on the Stage, and open the Instance Panel. Give
the instance the name soundLib. Press the Return or Tab key to make the
name “stick.”

4. Double-click the soundLib instance on the Stage. In Symbol Editing Mode,
create a new blank layer and delete all of the sound layers. (You always need
to have at least one layer in a Movie Clip.) On the empty layer, draw an icon
representing the soundLib Movie Clip. In this example, we made a white-filled
rounded rectangle with soundLib black text. Center the icon elements to the
Movie Clip Stage.

5. Go back to the Main Timeline (click the Scene 1 tab in the upper right, or
choose Edit ➪ Movie). Before we can attach sounds to the soundLib instance,
each sound in the Library needs to be given a unique ID name in order for
ActionScript to see it. Open the Library (Ctrl+L or Command+L), and select
key_1.aif (or key_1.wav). Right-click (or Contrl+click on the Mac) the high-
lighted item, and choose Linkage in the contextual menu. In the Symbol
Linkage Properties dialog, check the Export this symbol option and type
sound_1 in the Identifier text field, as shown in Figure 19-4. Click OK.

6. Repeat the naming routine from Step 4 on each sound in the Library. Increase
the number that you append to the end of sound_ for each new sound (for
example, sound_2 for key_2.aif, sound_3 for key_3.aif, and so on).

Caution

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 522

523Chapter 19 ✦ Controlling Movie Clips

Figure 19-4: The attachSound method can only
use sounds that have been set to export with the
Flash .SWF file.

7. Now, we need to add the ActionScript code that will create our Sound Object.
We will construct a function that, when executed will form a list of sound
instances. Create a new layer named actions and double-click its first keyframe.
This will open the Actions Panel. With Expert Mode turned on, type the follow-
ing code:

function createLib(num){
for(i=1;i<=num;i++){

These first lines establish the name of our function, createLib. We will want
to dynamically change the number of sounds we create with this function.
Therefore, we assign an optional parameter (called an argument) num that
will be passed to the nested actions within the function.

The second line starts a for loop that cycles its nested actions until the
condition i<=num is no longer true. i starts (or initializes) with a value of 1,
and the syntax i++ tells i to increase by 1 with each pass of the for loop.

In the next step, we want the for loop to (a) create an array to store a refer-
ence to each sound instance; (b) create a new instance of the Sound Object
for each sound in the Library; and (c) attach each sound in the Library to its
new instance.

We do not discuss the overall structure and purpose of functions, arrays, and logic
in this exercise. We do, however, use these mechanisms in this exercise.

8. In the Actions Panel, add the following ActionScript to the code from Step 6:

if(i==1){
this.snd = new Array();
trace(“new array created.”);

}
trace(“this=”+this);
this.snd[i] = new Sound(this);
this.snd[i].attachSound(“sound_”+i);

}
}

The first line of code in Step 7 checks whether i’s current value is 1. During
the first pass in the for loop, this will be true. So, the contents of the if nest
will be executed.

Note

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 523

524 Part IV ✦ Adding Basic Interactivity to Flash Movies

The second line of code occurs within the if nest. This line creates a new Array
named snd and is made a property of this. this refers to the object that tar-
gets (or evokes) the createLib function. Because we’re only defining our func-
tion, we haven’t made this function a target for any Movie Clip instance. This
line will only be executed once, while the value of i is 1. When i’s value
increases in subsequent passes of the for loop, this line will be ignored.

The third line executes a trace action, which sends alert messages to the
Output window (in the Test Movie environment). The trace action in the third
line will tell us that the actions in the if nest have been executed by sending
new Array created to the Output window.

The fourth line is also a trace action that tells us what object is evoking (or
executing) the createLib function.

The fifth line makes a new element in the snd array. The new element is a
new Sound Object that is targeted at the this timeline. Ultimately, our Sound
Objects will be tied to the soundLib Movie Clip instance, which you’ll see
later. Each element in an array has a number indicating its position in the
array. Because the value of i increases with each pass of the for loop, each
Sound Object will have a unique position within the snd array.

The sixth line uses the attachSound method to take a sound element in the
Library and attach it to the Sound Object in the snd array. The target for the
attachSound method is specified as “sound_” + i. On each pass of the for
loop, this expression will return “sound_1”, “sound_2”, and so on until our
limit prescribed by the num argument is reached.

The complete block of code on the first keyframe of the actions layer should
look like this:

function createLib(num){
for(i=1;i<=num;i++){

if(i==1){
this.snd = new Array();
trace(“new array created.”);

}

trace(“this=”+this);

this.snd[i] = new Sound(this);

this.snd[i].attachSound(“sound_”+i);
}

}

9. Now that we have a function defined to create all the Sound Objects on a this
Object (or timeline), we need to have an object (for this to refer to) that uses
the createLib function. In the Actions list for frame 1 of the Actions layer,
type the following code after the function createLib:

soundLib.createLib = createLib;
soundLib.createLib(7);

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 524

525Chapter 19 ✦ Controlling Movie Clips

The first line of code defines a method called createLib that used the func-
tion createLib as a value. Because createLib is a function, the createLib
method of soundLib will execute the createLib function whenever the
method is evoked.

The second line of code evokes the createLib method — the use of () after the
method name indicates that the method is being executed, not defined. In addi-
tion to executing the createLib method, we’re also sending the function the
number 7 as the num argument. Therefore, seven Sound Objects will be created.

10. Save the Flash movie file and test it (Ctrl+Enter or Command+Enter). The
Output window should open and display the trace statements:

new array created.
this = _level0.soundLib

11. Close the Test Movie window and return to the authoring environment.
Double-click frame 1 of the actions layer, and add this last bit of code to the
Actions list:

soundLib.snd[1].start();
soundLib.snd[2].start();

The first line of code targets the first declared element, 1, of the snd array,
and tells it to begin playback with the start method. Remember that element 1
in the array is a Sound Object, which references the sound_1 ID in the Library.

The second line of code targets the second declared element, 2, of the snd
array, and tells it to start.

12. Save the Flash movie and test it. Both lines of code will execute simultaneously.
So, you will hear sound_1 (which is key_1.aif or key_1.wav) and sound_2 (key_2.
aif or key_2.wav) play together.

Now you should practice targeting these Sound Objects with Button instances and
other keyframes. To access a different sound, simply change the number in the
array brackets. In the next chapter, you’ll learn to load a Flash movie (a .SWF file)
into another Flash movie. You can use the loadMovie action to place this sound
library file into another movie.

You can view the completed sound library movie, soundLib_AS.fla, located in the
ch19 folder of the Flash 5 Bible CD-ROM.

The next tutorial introduces the pan methods of the Sound Object, and shows you
how to use Sound Objects with interactive projects.

During our testing of Flash 5 and the Sound Object methods, we learned that you
should only attach one sound per timeline (or Movie Clip instance). While you can
create more than one Sound Object instance on a timeline, you can not use the
setVolume to control each individual sound — the volume will be set for all
Sound Object instances on the targeted timeline.

Caution

On the
CD-ROM

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 525

526 Part IV ✦ Adding Basic Interactivity to Flash Movies

Expert Tutorial: Sound Control, by Jay Vanian

Jay’s tutorial introduces the setPan method, and provides a compelling use of Sound
Objects with draggable Movie Clips, which are discussed in more detail near the end of this
chapter. Note that Jay’s tutorial uses some Flash 4 syntax for Slash notation and property
usage. As such, the tutorial will help those making the transition from Flash 4 Actions to
Flash 5 ActionScript.

Sound is one of the most powerful tools available to a designer with which to enhance a
Flash project, yet it’s probably been the most overlooked aspect of Flash. I think this will
change with the introduction of Flash 5’s new sound controls. But to use these controls
(and to begin this tutorial), you first need a compelling reason to adjust either the volume
or the left-to-right pan of Flash sound. Randomly setting the audio to go wild in your Flash
movie won’t endear you to anyone, and isn’t likely to encourage repeat visits to your site.
So, for this tutorial, I’ve chosen to use a bouncing basketball to create an interactive design
situation that demonstrates this control appropriately.

For the first time, Flash 5 delivers the means to dynamically adjust the sound levels of
movies by using the new sound object to control both the volume and to alter the left-to-
right pan of a sound.

1. Before we get started, I’d like to offer a little bit of advice: Always determine the
dimensions of your movie before you do anything else. Set these dimensions in the
Movie Properties dialog. You might eventually learn this the hard way, but once
you’ve had to resize an entire movie, you won’t readily repeat the mistake. For this
project, set the movie dimensions to 500×300. Also, be sure to save frequently as
you work through these steps!

2. With the file size set, the first task is to import the background image, floor.jpg, posi-
tion it on the default layer, and then rename this layer as Floor.

3. Next, import the vector basketball, gfx_basketball.ai, convert it to a graphic symbol and
name it gfx_basketball. Follow the same procedure for the shadow, gfx_shadow.
Now create a movie clip and name it mov_basketball; then drag an instance of
gfx_basketball into the movie clip, and animate the basketball (along with a shadow)
with a Motion Tween so that it bounces up and down. Be sure to use the easing con-
trols for a more realistic bounce. (For more information on animating a bouncing ball,
refer to the introductory Quick Start section of the book, “Flash in a Flash.”)

Author’s Note: You’ll find the source .FLA and related assets for this tutorial in the
ch19 folder on the accompanying CD-ROM.

4. The last asset to be imported is the ball-bounce sound; name this ballbounce. In
the Library, double-click the ballbounce icon to access the Sound Properties Panel,
where the properties for this sound can be adjusted and tested until an acceptable
balance between quality and file size is achieved. Click OK and return to the Library.
Now, right-click the sound and choose Linkage from the pop-up menu. In the ensu-
ing Symbol Linkage Properties dialog, type ballbounce in the Identifier box, and
under Linkage options choose the radio button for Export this symbol.

3515-3 ch19.f.qc 1/18/01 4:59 PM Page 526

527Chapter 19 ✦ Controlling Movie Clips

5. Still working within the basketball movie clip, add a keyframe on the sixth frame.
The bounce sound needs to be in synch with the bounce animation. For our sound,
the sixth frame is the appropriate synchronized frame. With that keyframe selected,
open the Actions Panel (Ctrl+Alt+A/Commnad+Option+A). There, we’ll add
actions to link this keyframe to the sound that was identified in the previous step
as ballbounce.

As the basketball bounces and follows the cursor, the sound
mimics the change in space: The sound fades or rises as the
ball moves backward and forward, and moves from left to
right in synch with the position of the ball.

6. For the first action, in Normal Mode, under the Objects ➪ Sound menu of the left
pane of the Actions panel, set the value for the variable s to new Sound.

7. Still, within the same menu (Objects ➪ Sound), double-click attachSound and enter
ballbounce as the idName, and then scroll back to add s to the beginning of this
action.

8. For the last action in this menu, click start, and then delete both secondsOffset
and loops from inside the brackets. Finally, scroll back again and add s to the
beginning of this action. The actions for the sixth frame of the basketball movie
clip should now look like this:

s = new Sound();
s.attachSound(“ballbounce”);
s.start();

9. Now return to the Main Timeline and drag an instance of this basketball Movie Clip
onto the stage and center it by using the Align Panel (Ctrl+K/Command+K). Name
this instance, basketball. Save your work!

Continued

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 527

528 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

10. To make the basketball respond to mouse movements, we’re going to make it into
a draggable object. To do this, select the first frame of the top layer (labeled A for
actions) and add a startdrag action from the Objects ➪ Movie Clip menu, located
within the Actions Panel. The target will be the basketball Movie Clip, /basketball.
Both options, Constrain to rectangle and Lock mouse to center must be
checked at the bottom of the panel. Coordinates for the Constrain to rectangle
options should be Left: 10, Top: 10, Right: 490, Bottom: 200. These settings lock the
Movie Clip to the center of any mouse movement, while constraining it to remain
within an area of the Stage, as defined by the coordinates. The actions for the first
frame of the Main Timeline now look like this:

startDrag (“/basketball”, true, 10, 10, 490, 200);

Author’s Note: Because this movie uses Flash 5-specific ActionScript, you may
opt to use Dots notation for target names. In Step 10, /basketball would be
_root.basketball.

11. On the second frame of the Actions layer, add the following actions:

basketball.s.getVolume();
basketball.s.getPan();

These actions are used to get (and then store) the volume and pan properties for
the sound inside of the movie clip, basketball.

12. Next, set the variable n to equal the _y position of the basketball Movie Clip. This
variable is used to scale the basketball with relationship to the mouse as it moves
forwards and backwards. But because the basketball shouldn’t be allowed to scale
down too small, an If (n<=50) statement is used to set the variable n back to 50
if it is recognized as being any value less than 50. The code is as follows:

n = getProperty(“/basketball”, _y);
if (n<=25) {

n = 25;
}

Author’s Note: The value for n in Step 12 could also be written as n = _root.
basketball._y; (in Flash 5 Dots notation).

13. With n set, the _xscale and _yscale properties of /basketball must now be set
to equal n. When setting these properties, it’s important to check the Expression box
for the value n; otherwise, the movie attempts to set these properties to equal the
name n instead of to the value derived from the mouse’s _y position (which is what
n is set to be). Here’s the code:

setProperty (“/basketball”, _xscale, n);
setProperty (“/basketball”, _yscale, n);

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 528

529Chapter 19 ✦ Controlling Movie Clips

Author’s Note: You can change property values with the following Dots notation:
_root.basketball._xscale = n; and _root.basketball._yscale = n;.

14. (If you still haven’t saved the .FLA, you are courting disaster.) For the volume to be
dynamic, the sound must change with the movement of the viewer’s mouse. The
mechanism for this is much like the scaling of the basketball, shown previously.
Because n has already been set to equal the value of the _y position, this can also
be used to set the volume. All that’s needed is to set the pan. To do this, a variable
is assigned to get the _x position of the basketball Movie Clip:

s1 = (getProperty (“/basketball”, _x));

Author’s Note: In Flash 5 ActionScript, the preceding code could be written as
s1 = _root.basketball._x;.

15. This variable, which equals the _x position of the viewer’s mouse, is used to set the
variable that returns the value for the left-to-right pan. Before setting this value, it’s
important to understand the sliding scale for the pan. The pan is controlled by a
scale of values that range from –100 to 100, with 0 being equal balance. This works
fine, on a one-to-one relationship for movies that are precisely 200 pixels wide. But
for movies where the range of possible value for the _x position exceeds 200, there
will be a discrepancy between the possible values of the _x position and the scale
of 200 units that is used for controlling the sliding pan. Thus, if a movie is anything
other than 200 pixels wide, an adjustment has to be made for the difference. A
magic number must be conjured that, when multiplied by 200, will equal the width
of the movie. For this particular movie, we divide the width of our movie by 200.
Because the width of this movie is 500, the magic number is 2.5.

16. Now, to set s2, which will be the final value of the pan, divide the value of s1
(which is the _x position of the mouse) by the magic number, 2.5. This equation
scales the width of the movie to synch with the pan scale of 200. For example, if the
_x position of the mouse is 350 (in our 500-pixel-wide movie), we divide by 2.5 to
get a value of 140. We always subtract 100, because our scale goes from –100 (full
left) to 100 (full right). This delivers a final value of 40 for s2; in other words, 40
percent full right pan. If the _x position is 50 (in a 500-pixel-wide movie), the value
for s2 is 80 percent full left pan ((50/2.5 = 20) – 100) = –80. Thus:

s2 = ((s1/2.5)-100);

If your movie were less than 200 pixels wide, you would substitute multiplication for
division. In other words, if your movie was 100 pixels wide and the _x position of
the viewer’s mouse was at 50, you would multiply 50 ×2 (which is the number that,
when multiplied by the width of your movie, gives you 200), and then subtract
100 — giving you a final value of 0, or equal left-right balance.

Continued

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 529

530 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

17. Next, to keep the value of the pan between –100 and 100 without any slop in either
direction, an if statement is added to ensure that s2 will not be greater than 100 or
less than –100:

if (s2<=-100) {
s2 = -100;

}
if (s2>=100) {

s2 = 100;
}

18. Finally for the last actions in this keyframe, the volume of /basketball is assigned
to the value of n, and the pan to the value of s2. As follows:

basketball.s.setVolume(n);
basketball.s.setPan(s2);

19. In the third and final keyframe, an action is added to continuously return the movie
to the second frame, whereupon the variables are reevaluated and the properties
are reset:

gotoAndPlay (2);

20. The scripting is done. Have you saved your movie yet? If not, save it, and then pub-
lish the movie and bounce on!

Jay Vanian’s single most favorite thing to do is actually three things, foremost of which is “taking pictures of
buildings.” He’s also prone to “plan world strategies.” Jay also enjoys Krav Maga, practice of which includes
frequent visits to the emergency room. Perhaps these interests explain why he has no memories of popular
culture from the year (1992) that he graduated high school, in his home town of Newport Beach, CA. Jay is
billed as a multimedia artist with Pixelpushers, Inc. He was inspired to learn Flash because he “saw two sites
that really stood out — Balthaser’s and Shiny Entertainment’s.” He’s worked on a number of sites, including:
11th Hour (www.hourtogo.com), THQ/Evil Dead (www.evildeadgame.com), Rhythmcraft (www.
rhythmcraft.com), Crave Entertainment (www.cravegames.com), 2thebiz (www.2thebiz.com),
Irvine Barclay Theatre (www.thebarclay.org), Ghosts (www.vanian.com/ghosts), and Alien Dog
(www.alien-dog.com).

You can also use the getPan method to store values of the setPan method. In the
tutorial example, you could create a hovering object that follows the basketball
wherever you drag it. Instead of duplicating the value of the setPan, you could use
getPan to retrieve the current Pan value of the sound of the basketball. The next
section provides an overview of the ultimate sound control methods,
setTransform and getTransform.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 530

531Chapter 19 ✦ Controlling Movie Clips

Creating a soundTransformObject
The two remaining methods of the Sound Object, setTransform and getTransform,
work in the same manner as the transform methods of the Color Object. You need
to create a generic object using the object constructor before the setTransform
method can be used with a Sound Object. This generic object will become a sound
TransformObject once we have assigned sound channel properties to the generic
Object.

Luckily, the soundTransformObject doesn’t have as many properties as the
colorTransformObject, and they’re much simpler to predict with trial and error
testing. The properties of the soundTransformObject are:

✦ ll, the percentage of left channel output in the left speaker

✦ lr, the percentage of right channel output in the left speaker

✦ rr, the percentage of right channel output in the right speaker

✦ rl, the percentage of left channel output in the right speaker

The first letter of each property determines which physical speaker is being
affected. The second letter determines which channel’s output (or its volume) is
played in that speaker. Each property can have a value between –100 and 100.

The steps to produce and incorporate a soundTransformObject are nearly the
same as the colorTransformObject. The only difference is that you specify paths
to Sound Objects rather than Movie Clip Objects for the setTransform and get
Transform methods. Refer to the steps described earlier in this chapter for
colorTransform Objects.

Use the soundTransformObject to vary the output of the sounds in the soundLib
example you created in this section. Just like the setTransform example for the
Color Object, create buttons that create and execute unique transform settings.

Creating Draggable Movie Clips
Flash 4 introduced the drag’n’drop feature, which enables the user to pick up objects
with the mouse pointer and move them around the movie stage. Flash 5 has added
some new ways to use drag’n’drop with the new onClipEvent Movie Clip handler.
Drag’n’drop in Flash is based entirely on Movie Clips. The only objects that can be
moved with the mouse are Movie Clip instances. So, if you want a drawing of a trian-
gle to be moveable by the user, you have to first put that triangle into a Movie Clip,
and then place a named instance of that clip onto the Stage. Flash’s drag’n’drop
support is fairly broad, but more-complex drag’n’drop behaviors require some
ActionScript knowledge. We’ll cover building drag’n’drop Movie Clips in two parts:
“Drag’n’Drop Basics” and “Advanced Drag’n’Drop.”

Tip

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 531

532 Part IV ✦ Adding Basic Interactivity to Flash Movies

Drag’n’drop basics
In mouse-based computer interfaces, the most common form of drag’n’drop goes
like this: A user points to an element with the mouse pointer, clicks the element to
begin moving it, and then releases the mouse button to stop moving it. In Flash 4,
drag’n’drop functionality could only be achieved with the use of a nested Button
instance in a Movie Clip symbol. Why? The Button symbol was the only Flash sym-
bol that responded to mouse clicks. Furthermore, because Buttons couldn’t be
targeted like Movie Clips, a Button instance needed to exist within a Movie Clip in
order for it be draggable. Then, a Drag Movie Clip Action (in Flash 4) was added
to that Button instance. This method still works in Flash 5 (with the startDrag
method or action), and uses the least amount of ActionScript to enable drag
behavior. Here’s how:

1. Start a new movie. Create a new Movie Clip named dragObject.

2. Create a simple button and place it on Frame 1, Layer 1 of the dragObject
Movie Clip.

3. Return to the main stage by choosing Edit ➪ Edit Movie (Ctrl+E or Command+E).
Place a copy of the dragObject Movie Clip on Stage and, with it still selected,
open the Instance Panel (Ctrl+I or Command+I). Type dragObject in the Name
text field, and then press the Enter or Tab. This names our Movie Clip instance
so that it can be referred to by the startDrag action.

4. Return to the Symbol Editing Mode for the dragObject Movie Clip by double-
clicking the instance. Select the Button instance on the Stage, and open the
Actions Panel. In the upper right-hand corner of the Actions Panel, make sure
Normal Mode is selected in the options menu.

5. Click the plus (+) button in the top-left corner of the Actions Panel and
select Actions ➪ startDrag. In the parameter area of the Actions Panel, type
_root.dragObject in the Target text field. The Target option specifies which
Movie Clip should begin dragging when the startDrag action is executed.
Note that though our startDrag action will be applied to the same Movie Clip
that houses our button, a startDrag action can target any Movie Clip from
any button, or from any keyframe.

You can also specify an empty string (in other words, leave the Target field blank)
to refer to the current timeline on which the Button instance exists. Another way of
specifying the current timeline (or Movie Clip Object) is to use the term this.

6. Now remember that we want to make our Movie Clip start moving as soon
as the user presses the mouse button. So, change the button’s Event Handler
from on (release) to on (press) by selecting the on (release) line in the
Actions list, unchecking the Release option of the Event setting, and then
checking Press.

Note

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 532

533Chapter 19 ✦ Controlling Movie Clips

7. At this point, our button, when clicked, causes the dragObject Movie Clip
instance to start following the mouse pointer. Now we have to tell the Movie
Clip to stop following the pointer when the mouse button is released. With the
last curly brace (}) highlighted in the Actions list, click the plus (+) button and
select Actions ➪ stopDrag. The default Event Handler added is on (release),
which is what we want, so that’s all we have to do. The stopDrag action stops
any current dragging Movie Clip from following the mouse pointer.

It is possible to use a button that is not contained in the draggable Movie Clip to
stop the dragging Action. If you use a button like that, remember that when your
only Event Handler is on (release), your Action will not be executed if the
mouse button is released when it is no longer over the button (which is likely to
happen when the user is dragging things around). You should also add an on
(releaseOutside) event handler to capture all Release events.

8. Test your movie with File ➪ Publish Preview ➪ Flash or Control ➪ Test Movie
(Ctrl+Enter or Command+Enter).

Did it work? Great! Now we can tell you about the other basic settings for the
startDrag action.

Constrain to rectangle
Check this setting in order to specify the limits of the rectangular region within
which a draggable Movie Clip instance can be dragged. After you’ve checked
Constrain to Rectangle, enter the pixel locations of the four corners of the rectan-
gle. The pixel coordinates are set relative to the top-left corner of the Stage
upon which the draggable Movie Clip instance resides. For example startDrag
(“drag-me”, false, 0, 0, 300, 300) would constrain the draggable Movie Clip
instance named drag-me to a 300-pixel square region in the top-left corner of the
Main Timeline’s Stage.

If the draggable Movie Clip instance is located outside of the defined drag region
when the Drag Movie Clip action occurs, then the instance is automatically moved
into the closest portion of the drag region.

Lock mouse to center
This setting makes the dragged Movie Clip instance center itself under the mouse
pointer for the duration of the drag. If the dragged Movie Clip instance is not already
under the mouse pointer when the Drag Movie Clip action occurs, the instance will
automatically be moved under the pointer, providing that the pointer is not outside
the region defined by Constrain to Rectangle. When checked, this setting will add a
Boolean value of true just after the specified instance name in the startDrag
action.

Note

Caution

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 533

534 Part IV ✦ Adding Basic Interactivity to Flash Movies

Detecting the drop position: Using _dropTarget
In “Drag’n’Drop Basics,” we showed you how to make Movie Clip instances that
the user can move around. But what if we wanted to force the user to move a Movie
Clip Object into a certain location before we let them drop it? For instance, consider
a child’s shape-matching game in which a small circle, square, and triangle should be
dragged onto corresponding larger shapes. If the child drops the small circle onto
the large square or large triangle, the circle returns to its original location. If, on the
other hand, the child drops the small circle onto the large circle, the small circle
should stay where it is dropped, and the child should receive a “Correct!” message.
That kind of game is quite possible in Flash, but it requires some understanding of
Movie Clip properties.

Here’s how it works — we’ll use the circle as an example. First, create a draggable
instance of the little circle Movie Clip just as you did earlier in the “Drag’n’Drop
Basics” section (put a button in a Movie Clip, put a named instance of that clip on
stage, and then add the startDrag and stopDrag actions to the button). Then, you
create a large circle graphic Symbol, put it into a Movie Clip, and place an instance
of that Movie Clip onto the Main Timeline’s Stage. Name the large circle Movie Clip
circleBig. Here’s where the Movie Clip properties come in: When the user drops
any Movie Clip instance, the instance’s _droptarget property is updated. The
_droptarget property specifies the name of the Movie Clip instance upon which
the dragged Movie Clip instance was last dropped. So if the user dropped the little
circle Movie Clip instance onto the large circle instance, the _droptarget property
for the little circle instance would be set to /circleBig. Knowing that, we can add
an if . . . else condition to check whether the little circle was dropped onto the
big circle. If it was, we simply let the little circle stay dropped, and we display a
“Correct” message by targeting a Movie Clip to update a status-message contained
within it. If the little circle wasn’t dropped onto the big circle, we return the little
circle to its place of origin by setting the X and Y coordinate properties of the little
circle instance. Here’s what the code on the little circle button would look like (note
that the stopDrag action must occur before we check the _droptarget property):

on (press){
startDrag (“_root.circle”)

}
on (release){

stopDrag();
if (_root.circle._droptarget) eq “/circleBig”){

_root.status.gotoAndPlay (“correct”);
} else {

_root.circle._x = 112;
_root.circle._y = 316;

}
}

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 534

535Chapter 19 ✦ Controlling Movie Clips

For further study, we’ve included this basic child’s drag’n’drop game as a sample
movie called dragndrop.fla on the Flash 5 Bible CD-ROM in the ch19 folder.

Making alpha and scale sliders
A compelling use of a draggable Movie Clip is a slider that can alter the properties of
another object. By checking the position of a Movie Clip, you can use the position’s
X or Y coordinate value to alter the value of another Movie Clip. In this section, we
create two sliders (one for alpha and another for scale) that will dynamically change
the transparency and size of a Movie Clip instance on the Stage. Many thanks to
Sandro Corsaro of spanktoons.com for supplying the artwork of Robert’s dog Stella
and the park sign.

You need to copy the slider_basic_starter.fla file from the ch19 folder of the Flash
5 Bible CD-ROM. You’ll use premade artwork to understand the functionality of
startDrag, stopDrag, duplicateMovieClip, and the colorTransform
Object.

Assembling the parts
In this section, we set up the basic composition of the Stage, using elements from
the slider_basic_starter.fla Library. You will add artwork of a dog and a park sign
to the movie. The dog artwork will be duplicated using the duplicateMovieClip
method, and the duplicate instance will be manipulated by the sliders that we cre-
ate in the next section. The park sign will be used to remove the duplicate instance
using the _dropTarget property and the removeMovieClip method.

1. Open your copy of the slider_basic_starter.fla. Rename Layer 1 to dog_1.

2. Access the movie’s Library by pressing Ctrl+L (Command+L). Open the
dogElements folder, and drag the dog Movie Clip symbol onto the Stage. Place
the instance in the upper-left corner of the Stage.

3. With the dog instance selected, open the Instance Panel. In the Name field,
type dog_1, as shown in Figure 19-5.

4. Using the Text Tool, add the words Original Dog under the dog_1 instance.
You don’t need to make a new layer for this artwork.

On the
CD-ROM

On the
CD-ROM

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 535

536 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 19-5: The dog_1 instance will be used as our reference Movie Clip Object.
The scale and transparency of this dog instance will not be changed.

5. Create a new layer and name it parkSign. Move this layer below the dog_1
layer. Drag the parkSign Movie Clip symbol, located in the parkSignElements
folder in the Library, to the lower-right corner of the Stage. In the Instance
Panel, assign the instance the name parkSign. In the Transform Panel, reduce
the size of the parkSign instance to 50.0%, as shown in Figure 19-6.

6. Create a new layer called actions, and place it above all the other layers.
Double-click the first keyframe of this layer. In the Actions Panel (in Expert
Mode), add the following actions:

_root.dog_1.duplicateMovieClip (“dog_2”, 1);
_root.dog_2._x = 350;
_root.dog_2._y = 175;

The first line of code duplicates the instance dog_1, names the new instance
dog_2 and places it on the first depth layer of the _root timeline.

The second and third lines of code position the dog_2 instance at the X coor-
dinate of 350 (350 pixels from the left corner of the Main Timeline Stage) and
the Y coordinate of 175 (175 pixels down from the left corner).

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 536

537Chapter 19 ✦ Controlling Movie Clips

Figure 19-6: The parkSign instance will be used to remove duplicates of the
dog_1 Movie Clip instance.

7. Save your movie as a new .FLA file, and test the movie (Ctrl+Enter or
Command+Enter). You should see a new instance of the dog_1 Movie Clip
appear on the right side of the Stage (see Figure 19-7).

Now that we have some artwork on the Stage, we can manipulate the duplicated
Movie Clip with a pair of dynamic sliders.

Building the sliders
In this section, you’ll create two sliders: one for scale, and one for transparency.
We’ll only need to make one slider Movie Clip symbol, and use a new instance for
each slider. The basic “problems” of a dynamic slider are to (a) retrieve the position
value of an object on the slider (we’ll call this the slider bar), and (b) set the value
of another object equal to (or some factor of) the position value of the slider bar.
Finding the position of a slider bar is relatively straightforward. The difficulty lies
in creating the value scale for the slider.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 537

538 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 19-7: The duplicateMovieClip method creates a new instance of a Movie
Clip Object. Unless you alter the new instance’s X and Y position, it will appear
directly above the parent instance.

Because we have already determined the properties that will be altered (scale and
transparency) we need to establish a range of values that each property can use.
Luckily, both scale (as _xscale and _yscale in ActionScript) and transparency
(as _alpha) use percentage units. However, scale can be any value that’s greater
than 0 percent and less than 3200 percent. Alpha has a range of 0 to 100 percent.
If we want to use the same parent slider for each property slider, then we need to
manipulate the position values of the slider bar differently for each property. Let’s
start with building the basic slider.

1. Create a new Movie Clip symbol (Ctrl+F8 or Command+F8) and name it slider.
In Symbol Editing Mode, rename the first layer sliderRule. On this layer, drag
an instance of the sliderRule Graphic symbol (located in the sliderElements
folder of the Library) onto the Movie Clip Stage.

The sliderRule artwork contains a line that is 200 pixels long, bound with a circle
on each end. The length of this line determines the position range for the slider
bar. Therefore, our absolute range is between 0 and 200.

Note

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 538

539Chapter 19 ✦ Controlling Movie Clips

2. With the sliderRule Graphic selected, open the Info Panel. On the right side
of the Info Panel (on the diagram of the square bounding box), make sure that
the registration point is set to the top-left corner of the selection’s bounding
box. Then, enter the values –28.4 for the X coordinate and –12.4 for the Y
coordinate, as shown in Figure 19-8.

Figure 19-8: The sliderRule’s starting point (just to the right of the first left-hand
circle) needs to be at the slider Movie Clip’s zero X coordinate.

3. Create another layer for the slider Movie Clip and name it position. Drag an
instance of the sliderBar Movie Clip (located in the sliderElements folder of
the Library) to the slider Movie Clip Stage.

4. With the sliderBar instance selected, open the Transform Panel. Type 90 in
the Rotate field, and press Enter. In the Info Panel, click the center registration
point in the bounding box diagram (on the right side), and enter 100 for the
X coordinate and –0.3 for the Y coordinate.

5. To see the position of the sliderBar instance, we need to assign a unique
instance name. Select the sliderBar instance and type position in the Name
field of the Instance Panel, as shown in Figure 19-9.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 539

540 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 19-9: The starting X coordinate for the position Movie Clip instance is
set to 100. When the Flash movie starts, this value will be applied to the scale
and alpha properties of the dog_2 instance on the Main Timeline.

6. Now we need to make the position Movie Clip instance draggable. In earlier
sections of this chapter, you saw how to embed an invisible button in the
draggable Movie Clip in order to receive mouseDown and mouseUp events.
In this example, we’re going to make a button-free draggable Movie Clip
instance, using the new onClipEvent handler for Movie Clip Objects. Select
the position Movie Clip instance and open the Actions Panel. Add the follow-
ing code to the Actions list:

onClipEvent (mouseDown) {
if(this.hitTest(_root._xmouse,_root._ymouse, true)){

this.startDrag (true, 10, 0, 200, 0);
_root.state = “down”;

}
}

To make the position instance draggable, we need to detect the mouseDown
event. Any Movie Clip that has the onClipEvent(mouseDown) handler will
receive any and all mouse clicks on the Stage. Because this is the case, we
need to determine whether the mouse click occurs within the space that the
position instance occupies on the Main Timeline Stage.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 540

541Chapter 19 ✦ Controlling Movie Clips

The first line of code uses the onClipEvent handler to detect the mouseDown
event (the act of pressing down on the left mouse button). When a mouse
click occurs, the actions nested within the onClipEvent action will be
executed.

The second line of code uses an if action to test whether the mouse click
occurs on the position instance. The hitTest method can test the overlap of
spaces in one of two ways: (a) by comparing a specific X and Y coordinate to
an instance’s occupied space, or (b) by comparing one Movie Clip instance’s
occupied space to another Movie Clip instance’s space. If the hitTest
method is used in the first way, then you can also check whether the X and Y
coordinate intersects with the bounding box of the instance (false) or the
entire shape of the instance (true). In this example, we use the hitTest
method to retrieve the current X and Y coordinates of the mouse pointer
(_root._xmouse and _root._ymouse) and compare them to the occupied
space of this, which is a reference to the current instance of the position
Movie Clip. If the mouse pointer is over the position instance on a mouse
click, then the hitTest method will return a true condition, and execute
the nested if actions.

Don’t confuse the true argument of the hitTest method with the return value
of the hitTest method. In this example, we have omitted the condition to check
for hitTest. By doing this, ActionScript knows to infer a true comparison,
meaning that the actions below the if action will only occur if hitTest returns a
true value.

The third line of code will execute only if the if condition on the second line
is true. Here, we enable the dragging behavior of the position instance by
using the startDrag method on this. Because it’s used as a method and not
as an action, we don’t need to specify a target instance in the arguments. The
arguments prescribed here lock the mouse to the center of the object and
constrain the draggable region to a bounding box defined by 10, 0 and 200, 0.
This effectively keeps the position instance confined to the line of our
sliderRule Graphic.

We’ve limited the left end of the startDrag to the X coordinate of 10. This keeps
the scale properties from going below 10 percent. If you try to assign a value of 0
or less to the scale properties, Flash will start scaling the instance back up to posi-
tive values in an unpredictable manner.

The fourth line of code sets a variable called state on the Main Timeline
(_root) to the value of down. Because we’ll be using two instances of the slider
Movie Clip symbol, we need to know whether any instance has received the
mouseDown event. We’ll see why we need this code in later steps.

Note

Caution

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 541

542 Part IV ✦ Adding Basic Interactivity to Flash Movies

7. Now we need to be able to stop dragging the position Object when the left
mouse button is released. Again, we’ll use the onClipEvent handler to define
our actions. Open the Actions Panel for the position instance:

onClipEvent (mouseUp) {
if(this.hitTest(_root._xmouse,_root._ymouse, true)){
this.stopDrag ();
_root.state = “up”;

}
}

This block of code performs in the same manner that our code in Step 6 did.
Once a mouseUp event (the act of releasing the left mouse button) is detected
(line 1), we check whether the event occurred over the space of the position
instance (line 2). If it did, then we stop the dragging of the position instance
initiated in Step 6 (line 3). Finally, we set the state variable on the Main
Timeline (_root) to up.

Next, we’ll create two instances of the slider Movie Clip symbol on the Main
Timeline Stage: one for scale, and one for alpha.

8. Exit the Symbol Editing Mode, and return to the Scene 1 timeline (the Main
Timeline). Create a new layer called scaleSlider. Open the Library and drag an
instance of the slider Movie Clip to the Stage. Name this instance scaleSlider
in the Instance Panel.

9. Rotate the scaleSlider instance 180˚, so that the registration point is on the
right side of the slider. Move the scaleSlider instance to the lower right of the
Stage.

10. Create another layer called alphaSlider. Drag another instance of the slider
Movie Clip on to the Stage, and name the instance alphaSlider. Rotate this
instance –90˚. Place the instance near the right edge of the Stage, as shown
in Figure 9-10.

11. Save your Flash movie file and test it. You should be able to drag the position
instances on both sliders.

Checking the positions of the sliders
Once we have a slider bar that is draggable, we need to access the new values of
the position instance and apply the values to the properties of the dog_2 instance.
To do this, we need to have a Movie Clip whose sole job is to check the X coordi-
nate of the position instance. In this section, you’ll learn how to make a Movie Clip
that uses the onClipEvent(enterFrame) handler.

1. Create a new layer on the Main Timeline, and name it checkPosition. In the
Library, you’ll find a Movie Clip symbol with the same name. If you double-
click this symbol in the Library, you’ll find that there’s nothing inside of this
symbol except some artwork indicating the symbol’s name on a single
keyframe.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 542

543Chapter 19 ✦ Controlling Movie Clips

Figure 19-10: At this point, your Flash movie Stage should contain the dog
and parkSign artwork, as well as two instances of the slider Movie Clip symbol.

2. Name the new instance checkPosition in the Instance Panel. Select the instance,
and open the Actions Panel. In the Actions list, type the following code:

onClipEvent(enterFrame){
_root.dog_2._xscale = _root.scaleSlider.position._x;
_root.dog_2._yscale = _root.scaleSlider.position._x;
_root.dog_2._alpha = _root.alphaSlider.position._x;

}

Because the event enterFrame is specified for the onClipEvent handler, this
block of code will execute continuously in our Flash movie. Why? Any timeline
will continuously enter a frame for playback, even if a stop() action is applied
to all timelines. The speed at which the enterFrame event occurs is deter-
mined by the frame rate of the Flash movie (as defined by the Modify ➪ Movie
dialog). The frame rate of 20 fps was already set in the sample file before you
opened it. Therefore, this block will execute 20 times each second.

What happens on each execution of the enterFrame event? The second and
third lines of code set the X and Y scale properties of the dog_2 instance to
the value returned by the current X coordinate of the position instance (rela-
tive to the coordinates within the slider Movie Clip symbol).

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 543

544 Part IV ✦ Adding Basic Interactivity to Flash Movies

Notice that the target path for the position instance is the scaleSlider instance
in lines 2 and 3. The fourth line sets the alpha property of the dog_2 instance
equal to the X coordinate of the position instance within the alphaSlider
instance.

3. Save your Flash movie, and test it. When you drag the bar on the bottom scale
slider, notice how the size of the dog_2 instance increases as you drag it to
the left. Remember that we rotated this instance 180˚, so it increases from
right to left, not left to right. When you drag the bar down on the left alpha
slider, you’ll see that the opacity of the dog_2 instance decreases.

You may be wondering why the X coordinate of the position instance is used for
the alphaSlider instance, instead of the Y coordinate. Indeed, you do drag the bar
on a vertical axis instead of a horizontal one. However, the position instance exists
within the space of the slider Movie Clip symbol, which has a horizontal orienta-
tion in the Symbol Editing Mode. The X coordinate is derived from the stage of the
Symbol Editing Mode, regardless of the instance’s orientation.

Okay, we have the sliders changing the size and opacity of the dog_2 instance.
However, nothing happens as we drag the bar on the alphaSlider instance
toward its upper limit. Because the X coordinate of the position instance starts
at 100, we won’t see any visual effect to the alpha property as it increases
beyond 100 percent. The lower limit of the alpha slider is 10 percent — it’s
prevented from going below that value by the coordinate arguments of the
startDrag method. Therefore, it would be better to have the alphaScale slider
convert the X coordinate of the position instance to a true 0 to 100 range of
values.

To do this, we need to develop an equation that will do the work of automati-
cally remapping values to a 0–100 scale. We know that the lowest X coordinate
of the position instance is 10, and that the highest X coordinate is 200. If we
want the highest position of the bar to provide 100 percent opacity, then we
need to divide 200 by a number that will give us 100. Dividing 200 by 2 gives
us 100. How does that work for the low end? If the X coordinate returns the
lowest value of 10, then our lowest opacity value will be 5.

4. Open the Actions Panel for the checkPosition instance, and modify the fourth
line to read:

_root.dog_2._alpha = (_root.alphaSlider.position._x)/2;

5. Save your movie and test it. Now, as you drag up with the bar for the
alphaSlider, the opacity increases. As you drag down, it decreases.

So far, so good. However, it would be useful if the alphaSlider’s position instance
started with an X coordinate of 200. This would initialize the dog_2 instance
with an opacity of 100 percent. We could physically move the position instance
within the slider symbol to an X coordinate of 200, but that would increase the
scale of the dog_2 instance to 200 percent at the start. To change only the
alphaSlider’s position instance at the start of the movie, we’ll add an onClip
Event(load) handler to the position instance in the slider Movie Clip symbol.

Note

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 544

545Chapter 19 ✦ Controlling Movie Clips

load events will be triggered as soon as a Movie Clip Object appears on the
Stage. Within the onClipEvent action, we’ll check whether the position
instance is within the alphaSlider instance. If it is, then we’ll move the position
instance to an X coordinate of 200; otherwise, nothing will happen to the posi-
tion instance.

6. In the Library, double-click the slider Movie Clip symbol. In Symbol Editing
Mode, select the position instance. Open the Actions Panel and add the fol-
lowing code to the Actions list:

onClipEvent (load){
if(_parent._name == “alphaSlider”){

this._x = 200;
}

}

This block of code will execute once, when the position instance (a Movie
Clip Object) first appears (or loads) on the Stage. Remember that the position
instance occurs twice: once inside scaleSlider, and again inside alphaSlider.
The second line of code checks which slider instance is executing this code.
We use the _parent target to access the properties of the outer Movie Clip
containing the position instance. Then, we access its name property (_name)
to see if its name is alphaSlider. If it is, then, in line 3, we’ll change the X coor-
dinate (_x) of this (which is the position instance) to 200.

7. Save the Flash movie and test it. This time, the alphaSlider’s bar (its position
instance) will immediately start at the upper limit.

Removing Movie Clips
At this point in the chapter, you have two sliders that dynamically control the scale
and alpha of the dog_2 Movie Clip instance on the Stage. What if you wanted to get
rid the dog_2 instance? How would you delete it? The only way to remove a dupli-
cated Movie Clip instance is to use the removeMovieClip method or action. In this
section, we show you how to use the _dropTarget property and the remove
MovieClip method of the Movie Clip Object.

1. Select the dog_1 instance in the upper-left corner of the Stage, and open the
Actions Panel. Type the following code into the Actions list:

onClipEvent (mouseDown) {
if(this.hitTest(_root._xmouse,_root._ymouse, true) ¬

&& this._name != “dog_1”){
this.startDrag (true, 0, 0, 550, 400);

}
}
onClipEvent (mouseUp) {

if(this.hitTest(_root._xmouse,_root._ymouse, true)){
this.stopDrag ();

}
if(eval(this._dropTarget) == _root.parkSign){

this.removeMovieClip();
}

}

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 545

546 Part IV ✦ Adding Basic Interactivity to Flash Movies

Most of this code is already familiar to you. Here we want to make only our
duplicate dog instance (dog_2) draggable. We don’t want to be able to remove
our original dog. Even if we wanted to, we couldn’t delete the dog_1 instance,
as it is physically placed on the Stage of the Flash movie. Only duplicated
Movie Clip instances can be removed with ActionScript.

When a mouseDown event is detected, this code uses the hitTest method to
see if the mouse pointer is over the current dog instance (this) and if the cur-
rent dog instance (this) is not named dog_1. If both of these conditions are
true, then the startDrag method of the current dog instance (this) will be
enabled and constrained to the dimensions of the Flash movie Stage.

When a mouseUp event is detected over the dog instance, then the stopDrag
method will be executed. The last if statement checks whether the _drop
Target property of the current dog instance is equal to the target path of the
parkSign instance. If the dog instance is over the parkSign instance on the
Stage when the dragging stops, then the current dog instance is removed.

We use the eval() action on the _dropTarget property because _dropTarget
returns the path of the target in Slashes notation (for Flash 4 compatibility). If we
use eval() on the _dropTarget property, then Flash will return the target path
in Dots notation.

2. Save your Flash movie and test it. When you drag the dog_2 instance over the
parkSign instance, it disappears.

Duplicating Movie Clips with new colors
What do we do after we’ve removed the dog_2 instance? How do we get more dog
instances to use in the movie? This next section explores using the duplicate
MovieClip method on a Button symbol. Not only will we duplicate the dog instance,
but we’ll also change its color attributes using the colorTransformObject.

Please see the Color Object coverage earlier in this chapter for details on the
colorTransformObject.

1. On the Main Timeline, create a new layer and name it duplicateButton. Drag
the crossHairsButton symbol from the Library onto the Stage. Place it in the
lower-right corner, between the two sliders, as shown in Figure 19-11.

2. With the crossHairsButton instance selected, open the Actions Panel and type
the following code:

on (release) {
_root.dog_1.duplicateMovieClip (“dog_2”, 1);
_root.dog_2._x = 350;
_root.dog_2._y = 175;
dogColor = new Color(_root.dog_2);
colorTransform = new Object();

Cross-
Reference

Note

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 546

547Chapter 19 ✦ Controlling Movie Clips

colorTransform = {
ra: randomPercent(),
rb: randomOffset(),
ga: randomPercent(),
gb: randomOffset(),
ba: randomPercent(),
bb: randomOffset()

}
dogColor.setTransform(colorTransform);

}

Figure 19-11: The crossHairsButton will contain actions that duplicate the dog_1
instance and apply different color attributes to the new instance.

Because we already covered the colorTransformObject earlier in this chap-
ter, we won’t explain its use here. However, we will describe the use of two
new user-defined functions, randomPercent() and randomOffset(). These
functions will be added to the Main Timeline (_root) in the next step. Instead
of assigning fixed values to the color attributes, we supply new random values
each time this button is clicked.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 547

548 Part IV ✦ Adding Basic Interactivity to Flash Movies

3. Return to the Main Timeline and select the first keyframe in the actions
layer. Open the Actions Panel, and add the following code to create the
randomPercent() and the randomOffset() functions:

function randomPercent(){
newPercent = Math.round(Math.random()*100 + 1);
return newPercent;

}
function randomOffset(){

newOffset = Math.round(Math.random()*255 + 1);
return newOffset;

}

Both of these functions work the same way. When each function is evoked, it
will return a new random percent or offset value to the line of code that called
the function. Each percent attribute (ra, ga, ba) evokes the randomPercent()
function, while each offset attribute (rb, gb, bb) accesses the random
Offset() function. The only difference between the two functions is the
number multiplied to the Math.random() method. For percent, we need a
value between 1 and 100. For offset, we need a value between 1 and 255.

4. Save your Flash movie and test it. Click the Duplicate button and the dog_2
instance will be replaced with another instance of the same name. The new
instance will have random color attributes.

Using the Mouse Object
While the onClipEvent(mouseDown) handler can be used instead of nested Button
instances for draggable behavior, you may have noticed one small difference: The
mouse pointer does not change the finger icon when you rollover a Movie Clip
Object with onClipEvent(mouseDown or mouseUp) event handlers.

In Flash 4, we could emulate new mouse pointers by using the startDrag behavior
(with lock to center true) on Movie Clips containing icon graphics. However, this
technique did not hide the original mouse pointer — it would appear directly above
the dragged Movie Clip instance. In Flash 5, there is a Mouse Object, which has two
simple methods:

✦ show(): This method reveals the mouse pointer. By default, the mouse
pointer will appear at the start of a movie.

✦ hide(): This method turns off the mouse pointer’s visibility. To reveal the
mouse pointer again, execute the show() method.

Once the Mouse Object (the mouse pointer) is hidden, you can lock a Movie Clip
Object (containing a new icon graphic) to the position of the mouse pointer. If you
have only one Movie Clip Object that works like a Button symbol, then attaching a
new Movie Clip instance to the mouse pointer is relatively straightforward. However,
in our slider example, we have two different sliders with draggable bars. If we want
to enable a custom icon, we need to know which bar is being moused over, and
which bar isn’t.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 548

549Chapter 19 ✦ Controlling Movie Clips

1. On the Main Timeline, select the checkPosition Movie Clip instance. Open the
Actions Panel, and add the following code to the Actions list:

onClipEvent(load){
overSlider = false;

}

onClipEvent(mouseMove){
scaleSliderOver = _root.scaleSlider.position.hitTest ¬
(_root._xmouse,_root._ymouse,true);

alphaSliderOver = _root.alphaSlider.position.hitTest ¬
(_root._xmouse,_root._ymouse,true);

if (scaleSliderOver == true || alphaSliderOver == true){
if (overSlider != true){
_root.attachMovie(“fingerIcon”,”fingerIcon”,2);
Mouse.hide();
overSlider = true;

}
_root.fingerIcon._x = _root._xmouse;
_root.fingerIcon._y = _root._ymouse;

} else {
if(_root.state != “down”){
Mouse.show();
_root.fingerIcon.removeMovieClip();
overSlider = false;
} else {
_root.fingerIcon._x = _root._xmouse;
_root.fingerIcon._y = _root._ymouse;

}
}

}

The first onClipEvent handler detects the load event. Remember that the
load event happens when a Movie Clip instance first appears on the Stage.
When the Movie Clip instance checkPosition appears on the Stage, the vari-
able overSlider will equal false. This variable remembers if we’re currently
mousing within one of the position instances.

The second onClipEvent handler detects any mouse movements on the
Stage with the mouseMove event. The two variables, scaleSliderOver and
alphaSliderOver, will be either true or false, depending on the return of
the hitTest method for the mouse pointer and the position instances.

The first if statement checks to see if either hitTest returned a true value.
The || operator indicates that only one hitTest needs to return a true value
for the nested actions after the if statement to execute.

If the mouse is over either slider, then the next if statement checks whether
overSlider is not equal to true. When the checkPosition instance first loads,
overSlider is equal to false. Therefore, the actions in this second if state-
ment will execute.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 549

550 Part IV ✦ Adding Basic Interactivity to Flash Movies

If overSlider is false, then the attachMovie method will be executed from
the Main Timeline (_root). In this example, we are attaching the fingerIcon
Movie Clip from the Library to a new instance of the same name. This new
fingerIcon instance is a child of the _root timeline, and is located on its second
depth layer — the dog_2 instance occupies the first depth layer. After the
fingerIcon is attached to the _root timeline, we need to hide the mouse pointer.
The code line Mouse.hide(); does just that. Then, we set overSlider to
equal true so that these nested actions are not repeated until we leave a posi-
tion instance and reenter its space.

To use attachMovie on Movie Clip symbols in the Library, you need to assign a
unique identifier to the symbol. You can assign an identifier to a symbol by right-
clicking the symbol in the Library and choosing Linkage. In our example, the iden-
tifier fingerIcon was already assigned as the identifier. We discuss Linkage
Properties in more detail in Chapter 20, “Sharing and Loading Assets.”

Then, we need to change its X and Y coordinates to match the position of the
mouse pointer — we can still track its position even if it’s hidden. The next
two lines of code set the X and Y coordinates of the fingerIcon to the X and Y
coordinates of the mouse pointer.

If the mouse pointer is not over either of the sliders, then the else condition
tells Flash what to do on mouseMove events: If the mouse isn’t currently drag-
ging a slider’s bar (_root.state != “down”), then show the mouse pointer,
remove the fingerIcon Movie Clip instance, and set overSlider back to false.
If the mouse has clicked a position instance and is overdragging the area of the
position instance (see the following Tip), we still want the fingerIcon to move
with the hidden mouse pointer.

Why do we need to check the state variable if the mouse isn’t over the position
instance in either slider? If you start to drag the position on a slider, your mouse
pointer might move ahead (or beyond) the entire slider as you drag. If the mouse
is dragging a position instance, we don’t want to see the mouse pointer — only the
fingerIcon instance should show.

2. Save the Flash movie, and test it. When you mouse over the bar of each slider,
you should see the fingerIcon instance appear instead of the mouse pointer.

That might have seemed like a lot of work to hide a mouse pointer, but in the pro-
cess, you learned how to attach your own icons to the mouse pointer. If you want
more than two Movie Clip instances to use the fingerIcon instance, you would add
them to the first if statement that checks hitTest with the mouse pointer.

Tip

Note

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 550

551Chapter 19 ✦ Controlling Movie Clips

Printing with ActionScript
Table 19-4, earlier in this chapter, summarizes the printing functions of ActionScript.
Using the print and printAsBitmap functions, you can enable your Flash movies
to output Flash artwork, text and bitmaps. With these actions, you can:

✦ Create Flash ads that have printable specifications for e-commerce mer-
chandise. Imagine if the next car ad you saw on your favorite Web site auto-
matically printed dealer locations and maps without having going to the car
manufacturer’s Web site?

✦ Make Flash coupons. You could design printable coupons for e-tailers on the
Web that can be printed and redeemed at their brick-and-mortar stores.

✦ Automate dynamic Web-generated invoices and receipts at e-commerce
sites. With Flash 5, you can format ordered items and add dynamic data to
printable sheets.

✦ Print rich vector illustrations or photorealistic bitmaps from a Web site.
Design Flash portfolio sites that print samples of stock images, or create per-
sonalized vector artwork that can be print unique images for each visitor.

✦ E-mail printable Flash artwork to clients. The next time you have proof of
concepts or finished artwork that needs final approval, you can e-mail your
clients the Flash artwork in a standalone projector or .SWF file.

✦ Design custom contact information pages. Sick of HTML tables that won’t
print your nice row-and-column–formatted pages of information consistently
from browser to browser? Printable Flash frames will print beautifully each
time. You could even add a visitor’s contact information to a dynamic
database and print it.

Although we can’t describe how to do all these tasks in the space of this chapter,
we will show you how to get started with the last idea. The following Expert
Tutorial by Mike Richards shows you how to add print and printAsBitmap
functions to his cool Flash paper airplane creator.

Because Flash natively uses vector artwork, it translates best when output to a
PostScript printer. Nevertheless, both print and printAsBitmap actions will
produce high-quality output to both PostScript and non-PostScript printers.

Note

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 551

552 Part IV ✦ Adding Basic Interactivity to Flash Movies

Expert Tutorial: Creating Printable Paper Airplanes,
by Mike Richards

Mike’s tutorial provides a great example of distributing interesting printable content on the
Web. Instead of formatting and printing text and standard layouts, this tutorial shows you
how to print Mike’s paper planes. He has already prepared a paperplane_starter.fla file that
you can find in the ch19 folder of the Flash 5 Bible CD-ROM. We invite you to review this
file’s contents and timeline structure, and copy the file to your hard drive before you start
this tutorial.

This tutorial focuses on printing using the print and printAsBitmap actions, which can
print frames in any timeline within the Flash movie. These actions become a powerful tool
for creating printable content for the Web.

Using the print action to print content in the Main Timeline
When completed, this first section will demonstrate how to print content located on the Main
Timeline using the basic print action. Additionally, we will control the printable area using
the Flash movie’s bounding box option in conjunction with the frame labels #b and #p.

1. First we set the printing boundary box for the paper wing folding instructions. Open
your copy of paperplane_starter.fla and select frame 54 on the layer print content.

2. With frame 54 of the layer print content selected, drag the Graphic symbol named
bounding box from the Library to the Stage. In the Frame Panel, enter #b for its
label name.

3. Next, we specify the frame to be printed. With frame 55 of the layer print content
selected, drag paper wing to the Stage. In the Frame Panel, enter #p for it’s label. It
is important to note that all frames on the Main Timeline will print if #p is not used
to designate printable content.

4. Because we will specify a bounding box to define the printable area, it is necessary
to horizontally and vertically center the two symbol instances. At the bottom of the
timeline window, click the Edit Multiple Frames icon and select the two symbols that
we previously placed on the Stage. With both symbols selected, align the horizontal
and vertical centers to the Stage using the Align Panel. When finished aligning to cen-
ter, be certain to click again on the Edit Multiple Frames icon to disable its function.

6. Now we are ready to add the print action to the button in our movie. Move the play-
head on the timeline to frame 65 and select the printer button in the lower-right cor-
ner of the Stage. Choose Window ➪ Actions to add actions to the Button instance.
With the Actions Panel open, click the Actions booklet on the left-hand side of the
panel. Double-click print to place the print action in the Actions list on the right side,
as shown in the following figure. Because there are no alpha effects to preserve in the
printed material, choose As vectors in the Print drop-down menu. Because our con-
tent resides on the Main Timeline, select Target for the Location option and enter
_root in the field. Finally, because we specified a bounding box on the Main Timeline,
select Movie for the Bounding box option.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 552

553Chapter 19 ✦ Controlling Movie Clips

6. Save your Flash movie file and select Control ➪ Test Movie to view the results. In Test
Movie mode, select standard wing and click the printer icon in the lower-right corner
to print the one page of wing folding instructions.

Using the printAsBitmap action with content in a Movie Clip instance
This next section demonstrates how to print content residing in a Movie Clip using the
printAsBitmap action. The print area is controlled by using the Frame bounding box
option. The Frame bounding box option scales the print area for each frame of content,
thus ensuring that every page is printed at its maximum printable size. Note that Movie Clip
instances can use either print or printAsBitmap actions, depending on the contents of
the Movie Clip symbol. For purposes of demonstration, we use the printAsBitmap action.

1. With frame 27 of the layer print content selected, drag the Movie Clip symbol named
paper shuttle from the Library to the work area located to the right of the Stage. With
the instance still selected, enter shuttle in the Name field of the Instance Panel. It is
not necessary to designate printable frames with #p in the Movie Clip Symbol time-
line because we intend to print all frames within this timeline.

2. Now we are ready to assign actions to our print button. Move the playhead on the
Main Timeline to frame 27 and select the printer button in the lower-right corner of
the Stage. With the Actions Panel open, click the Actions booklet at the left side.
Double-click print to place the print action in the Actions list on the right side. For
the Print option, choose As bitmap because the Movie Clip symbol contains alpha
effects on the second frame artwork. For the Location option, choose Target. Our print-
able content resides in the shuttle instance on the Main Timeline. Therefore, we enter
_root.shuttle to correctly target the movie, as shown in the following figure. Finally,
we choose Frame for our Bounding box option because we want to scale each page
of printable content to it maximum size.

Continued

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 553

554 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

3. Save your Flash movie and select Control ➪ Test Movie to view the results. In Test
Movie mode, select the first plane and customize the paper plane with art and text.
To print the plane and instructions, press the printer icon in the lower-right corner of
the Stage.

Printing a loaded .SWF file
For this last example, we walk through the basics of printing Flash content that is loaded into
a target. This method is optimal if the content that you intend on printing is significant in size.
The Flash 5 Bible discusses loading .SWF files in Chapter 20, “Sharing and Loading Assets.”

1. Move the playhead on the Main Timeline to frame 47 and select the printer button
in the lower-right corner of the Stage. Choose Window ➪ Actions to view the Actions
list for the Button instance. In this example, the loadMovie action is used to load a
two-frame .SWF file, classic_instructions.swf.

2. Next, with the Actions Panel open, select the word Placeholder, which is located just
outside the top-right corner of the Stage. The onClipEvent(load) handler, along
with this._visible = 0, is used to make the content invisible during playback. Even
though it is hidden, this Movie Clip instance is still printable. Because content needs
to be completely loaded to print, the clip event data is used in conjunction with the
methods getBytesTotal and getBytesLoaded to confirm the completion of load
before printing. For the Print option, As vectors was chosen because the printable
content does not contain alpha effects. For Location, Target was chosen. The printable
content will load into this Movie Clip with an instance name of classic_placeholder.
Therefore, _root.classic_placeholder was entered to correctly target the movie, as
shown in the following figure. Finally, the Bounding box option of Frame was chosen
because we want to scale each page to its maximum printable size.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 554

555Chapter 19 ✦ Controlling Movie Clips

3. Save the Flash movie and select Control ➪ Test Movie to view the results. In Test
Movie mode, select the center plane and customize the paper plane with art and
text. Press the printer icon in the lower-right corner of the Stage to print the plane
and instructions.

Mike Richards claims that his most favorite thing to do is, "Using Flash." Perhaps that
explains why he relocated to San Francisco last year to work for Macromedia. Prior to that
move, he worked for American Greetings (american greetings.com) creating animated
flash cards and games. It was there that he discovered Flash, "when we were looking for an
alternative to Macromedia Director that artists could easily learn and use." From the year
that he graduated from High School in Cleveland, Ohio, Mike deems the Chocolate War as
the most memorable movie. In addition to his work for Macromedia, Mike’s current site
development is devoted to www.hipid.com.

Summary
✦ The Movie Clip Object has unique properties, methods, and handlers. Using

Dots notation, you can access these characteristics of the Movie Clip Object.

✦ You can change a Movie Clip instance’s position, scale, and rotation using
ActionScript. Most physical attributes are accessed by specifying the Movie
Clip’s path followed by the property name, as in _root.myMCinstance._
rotation.

✦ The Color Object can store new color values and apply them to Movie Clip
instances using the setRGB and setTransform methods.

✦ Sound libraries can be created in less time by using ActionScript and the
Sound Object. Sound Objects are created by using Linkage identifiers for sound
files in the movie’s Library.

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 555

556 Part IV ✦ Adding Basic Interactivity to Flash Movies

✦ Flash 5 enables you to change the volume and pan values of any Sound Object
at any point in your Flash movie.

✦ You can add mouse drag behaviors to your Movie Clip symbols in two ways:
(a) by using nested Button instances; or (b) by using the new onClipEvent
(mouseDown) handler combined with the hitTest method.

✦ The _dropTarget property of Movie Clip instance (instance A) indicates the
path of the Movie Clip instance (instance B) upon which a Movie Clip instance
(instance A) is dropped.

✦ As the sliders example demonstrated, you can use the values of one Movie
Clip instance’s properties to change the property values of another Movie Clip
instance.

✦ The onClipEvent(mouseMove) event handler does not give any visible
representation of a mouseOver on Movie Clip instances with onClipEvent
(mouseUp or mouseDown) handlers. The Mouse Object can be hidden, and a
custom Movie Clip instance can be attached to the coordinates of the mouse
pointer.

✦ By using the print and printAsBitmap functions, you can output high-
quality artwork to a PostScript or non-PostScript printer.

✦ ✦ ✦

3515-3 ch19.f.qc 1/18/01 5:00 PM Page 556

Sharing and
Loading Assets

Because most Flash movies are downloaded and viewed
over the Web, Flash 5 has a number of advanced actions

that are dedicated solely to controlling the download and dis-
play of movies and Library assets. Actions that check movie
frame counts and file size properties let developers prevent
a movie from playing before a specified portion of it has fin-
ished loading. The loadMovie and unloadMovie actions
enable movies to be broken into small pieces or assets that
are downloaded only if required by user choice.

Managing Smooth Movie
Download and Display

When Flash movies are played back over the Internet, they
stream, meaning that the plug-in shows as much of the movie
as it can during download, even if the whole file has not been
transferred to the user’s system or browser cache. The benefit
of this feature is that users start seeing content without hav-
ing to wait for the entire movie to finish downloading.

Nevertheless, streaming has potential drawbacks. First, dur-
ing streamed playback, the movie may unexpectedly halt at
arbitrary points on the timeline because a required portion
of the movie has not yet downloaded. Second, ActionScript
code is ignored when it refers to segments of the movie that
have not downloaded. These drawbacks can lead to unpre-
dictable and often undesired playback results.

2020C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using preloaders
with Flash movies

Streaming external
.SWF audio files

Loading .SWF files
into other .SWF files

Accessing .SWF files
from all over the Web

✦ ✦ ✦ ✦

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 557

558 Part IV ✦ Adding Basic Interactivity to Flash Movies

Thankfully, there’s a solution. You can regulate the playback of the movie by using
ActionScript code to prevent the movie from playing until a specified portion of
it has downloaded. This technique is often referred to as preloading. A common
preload sequence, or preloader involves displaying only a short message, such as
“Loading . . . Please Wait,” while the movie loads. Once the appropriate amount of
the movie has been retrieved, the movie is allowed to play. Flash 5 provides basic
and advanced methods of producing a preloader. This section of the chapter shows
you how to use three different actions (or methods) to check the download status
of a Flash movie:

✦ If Frame is Loaded or ifFrameLoaded: This action has been around since
Flash 3, and enables you to check whether a specified frame label in the Flash
movie has been downloaded by the plug-in. This is the simplest action to use
to check a movie’s download progress.

✦ _framesLoaded and _totalFrames: Introduced with Flash 4, these proper-
ties can be checked on a Movie Clip timeline or the main movie timeline
(Scene 1, Scene 2, and so on). _framesLoaded returns the current number
of frames that have downloaded into the plug-in, while _totalFrames returns
the number of frames that exist on the specified target timeline.

✦ getBytesLoaded() and getBytesTotal(): These methods are new to
Flash 5 ActionScript. The most accurate way to check the progress of a Flash
movie download is to use these methods with other ActionScript code.

The following examples show you how to use each of these actions to monitor the
download of a Flash movie over the Web.

Technically, Flash movies are a progressive download file format, similar to original
QuickTime 3 video movies. A progressive download is one that can be viewed
before the entire file has been received by the browser. Streaming file formats are
never saved as actual files in the browser cache. You can’t save a streaming file,
but you can typically save a shortcut or link to the file’s location on the Web.

Building a basic preloader with ifFrameLoaded
In this example, we explain how to create a preloader for a 100-frame movie, where
the movie doesn’t begin playing until all 100 frames have been downloaded. For this
exercise, make sure the Actions Panel is in Normal Mode.

1. Create a new movie with 100 frames. Rename Layer 1 to actions.

2. Create a new layer and name it labels. On the labels layer, create a blank
keyframe on frames 2, 5, and 100. Label those frames preload_loop,
begin_movie, and minimum_loadpoint, respectively.

Note

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 558

559Chapter 20 ✦ Sharing and Loading Assets

3. Create a new layer and name it content. Create blank keyframes at frame 5
and frame 100. On each of those keyframes, place a large symbol such as a
complex vector shape or a bitmap (you need some content in order to see
the load sequence working in Test Movie Mode). See Figure 20-1 for reference.

Figure 20-1: Add content to the Main Timeline that will
be preloaded.

4. On frame 1 of the Content layer, use the Text Tool to type the words
Loading . . . Please Wait.

5. On the actions layer, create a blank keyframe at frames 3, 4, and 100.

6. Edit the actions of frame 3 by double-clicking it in the timeline. This opens
the Actions Panel. Click the plus (+) button in the top-left corner of the panel
and select Basic Actions ➪ If Frame is Loaded. Choose the Frame Label option
in the Type setting, and select minimum_loadpoint from the Frame drop-down
menu.

7. With the line ifFrameLoaded (“minimum_loadpoint”){ highlighted in the
Actions listbox, click the plus (+) button and select Basic Actions ➪ Go To.
Choose the Frame Label option of the Type setting, and then select begin_
movie from the Frame drop-down menu. Then check the Go to and Play
option at the bottom of the parameter area. This Go To action, which
starts playback of the real movie, will only be executed if the frame labeled
minimum_loadpoint has been downloaded.

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 559

560 Part IV ✦ Adding Basic Interactivity to Flash Movies

The ifFrameLoaded action is a one-time check. If the frame specified in
ifFrameLoaded action has already downloaded, then the action(s) contained
within the ifFrameLoaded statement are executed. If, on the other hand,
the frame specified has not yet downloaded, then the action(s) contained
are not executed, and the movie simply continues playing. In most cases,
however, you won’t want the movie to carry on playing until your desired
frame has been downloaded, so you have to force the movie to perform the
ifFrameLoaded check repeatedly until the specified frame is loaded.

8. To loop the ifFrameLoaded action, edit the frame actions of frame 4 on
the actions layer by double-clicking the frame in the timeline. In the Actions
Panel, add a Go To action to the Actions list. Choose Frame Label from the
Type menu, and select preload_loop from the Frame drop-down menu. Then
check the Go to and Play option.

9. Finally, add a stop() action on frame 100 of the actions layer. Now you’re
ready to test your movie and see the preloader work its magic. Choose
Control ➪ Test Movie (Command+Enter or Ctrl+Enter). Once in Test Movie
Mode, you’ll have to configure the environment a bit to watch the simulated
download. Enable the Bandwidth Profiler by checking View ➪ Bandwidth
Profiler. Click frame 1 in the Profiler timeline. Select View ➪ Frame by Frame
Graph. Choose Control ➪ 28.8 (2.3KB/s) (this simulates a 28.8-baud modem).
To watch your movie playback as it would over the Web, choose Control ➪
Show Streaming. You’ll see the playhead in the timeline looping around your
ifFrameLoaded action while it waits for the movie to download. The green
bar in the timeline indicates how much of the movie has downloaded.

For further study, we’ve included this basic preloader movie as a sample movie
called preloader_1.fla on the Flash 5 Bible CD-ROM in the ch20 folder.

There are some general guidelines to keep in mind when you make a preloader.
First, preloaders do not work inside Movie Clips. You cannot preload individual
portions of a Movie Clip. If a Movie Clip instance is placed on a frame, the frame is
not considered loaded until the entire instance has finished loading. Second, you
don’t need to preload the entire movie when using preloaders. In our previous
example, you could move the minimum_loadpoint keyframe to any point in the
movie after frame 5. By using the streaming emulator in Test Movie Mode, you can
determine approximately how much of your movie should be loaded before you
allow it to play. Also, by using more than one preloader you can show the first part
of a movie and then reenter a loading state before showing any subsequent parts.

Preloading with _framesLoaded and _totalFrames
In Flash 3, the only tool developers had to create preloaders was the If Frame is
Loaded action. Using multiple preloaders, developers attempted to simulate a
percentage-loaded feature that told the user how much of the movie had been

On the
CD-ROM

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 560

561Chapter 20 ✦ Sharing and Loading Assets

downloaded. Although they demonstrated the ingenuity of the developers, these
percentage-loaded indicators were mostly inaccurate. With the introduction of
ActionScript in Flash 4, developers had a way to precisely determine the percent-
age of frames that have been downloaded to the user’s system. In this section,
we convert the preloading mechanism of the preloader_1.fla movie to the
_framesLoaded and _totalFrames method.

1. Open the preloader_1.fla that you created in the last section. If you didn’t do
that exercise, then open a copy of the same file from the Flash 5 Bible CD-ROM.

2. On frame 3 of the actions layer, remove the ifFrameLoaded and Go To actions.

3. On frame 4 of the actions layer, remove any existing actions and add the
following ActionScript in the Actions list (in Expert Mode):

loadedFrames = _root._framesloaded;
totalFrames = _root._totalframes;
if (loadedFrames < totalFrames){

percentageOutput = int((loadedFrames / totalFrames)¬
* 100);

gotoAndPlay(“preload_loop”);
else{

gotoAndPlay(“begin_movie”);
}

4. Create a new layer called textField. On this layer, create keyframes on frames
2 and 5. On frame 2 of the textField layer, create a text block with the Text
Tool. In the Text Options Panel, change the text type to Dynamic Text, as
shown in Figure 20-2. In the Variable field, enter the name percentageOutput.
Uncheck the Selectable option.

5. Save your Flash movie as preloader_2.fla and test the movie.

When the playhead reaches frame 4, Flash executes the script. If, at that time,
it finds that the number of frames downloaded is fewer than the number of
total frames in the movie, it sends the playhead back to the preload_loop
keyframe. Then it updates the percentageOutput variable to show, as a per-
centage, how many frames have loaded relative to the total number of frames
in the movie. If, on the other hand, the number of frames loaded is not less
than the total number of frames in the movie (in other words, if all the frames
have loaded), then the playhead is moved to the begin_movie keyframe, and
the movie proper starts playing.

An interesting variation on this advanced style of preloading is a graphical
preload bar. A preload bar would simply be a small Movie Clip that contains
a rectangle shape. Once placed on stage, the width of the bar would be set
using the _xscale property to adjust the width percentage of the rectangle
Movie Clip instance. The following steps show you how to do this.

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 561

562 Part IV ✦ Adding Basic Interactivity to Flash Movies

Figure 20-2: Make sure you change the text block into a dynamic text field.

6. Create new layer called loaderBar. Create keyframes on frames 2 and 5 of the
loaderBar layer. On frame 2, draw a long rectangle, as you want it to be appear
when the movie has finished loading. Select the rectangle, and press the F8 key.
Call this Movie Clip symbol loaderBar.

7. With the loaderBar instance selected on the Stage, open the Instance Panel
and name the instance loaderBar. Double-click the instance to enter the
Symbol Editing Mode, and position the rectangle shape so that the left edge
is at the zero X coordinate, as shown in Figure 20-3.

8. Go back to the Main Timeline, and reposition the loaderBar instance so that
it’s centered on the Stage.

9. Double-click frame 4 of the actions layer, and change the ActionScript to the
match the following code block:

loadedFrames = _root._framesloaded;
totalFrames = _root._totalframes;
if (loadedFrames < totalFrames){

percentageOutput = int((loadedFrames / totalFrames)¬
* 100);

_root.loaderBar._xscale = percentageOutput;
gotoAndPlay(“preload_loop”);

}
else{

gotoAndPlay(“begin_movie”);
}

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 562

563Chapter 20 ✦ Sharing and Loading Assets

Figure 20-3: Because we want to the bar to grow from left to right, we need
to make sure that the registration point is on the left edge of the rectangle.

10. Save your Flash movie, and test it.

You can examine the finished Flash movie, preloader_2.fla, located in the ch20
folder of the Flash 5 Bible CD-ROM.

Both the text-based and graphical preloaders are not accurate measurements
of downloaded file size. They measure only the number of frames that have been
downloaded. So, if the content of your movie is distributed evenly over the frames
of the timeline, the frames-based percentage values will closely match the real file-
size transfer percentage.

If, however, your heaviest content occurs only on sporadic frames (as our examples
have demonstrated), then the frames-based percentage values may appear imprecise
to the user. When such a movie is streamed, the progress bar will jump to discrete
sizes regardless of connection speed or duration. Our next example demonstrates a
new Flash 5 method for measuring the load progress of a Flash movie.

On the
CD-ROM

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 563

564 Part IV ✦ Adding Basic Interactivity to Flash Movies

Using getBytesLoaded() and getBytesTotal() in Flash 5
By far the most accurate way to check the loading progress of a streaming Flash
movie is to use the new Flash 5 methods getBytesLoaded() and getBytesTotal().
As their names indicate, you can now access the actual number of bytes that have
downloaded to the browser or stand-alone player. With these new methods, we don’t
need to try to disperse content evenly over frames on the Main Timeline — we can
simply place our content where and when we want it.

We continue with the preloader_2.fla that we created in the last exercise. If you want
to open a fresh file, use a copy of the preloader_2.fla file from the Flash 5 Bible.

1. Double-click frame 4 on the actions layer. In the Actions Panel, change the
Actions list to match the following code block. Pay particular attention to
the new variable names we’ve assigned:

loadedBytes = _root.getBytesLoaded();
totalBytes = _root.getBytesTotal();
if (loadedBytes < totalBytes){

percentageOutput = int((loadedBytes / totalBytes)¬
* 100);

_root.loaderBar._xscale = percentageOutput;
gotoAndPlay(“preload_loop”);

}
else{

gotoAndPlay(“begin_movie”);
}

In Step 1, we’ve changed loadedFrames to loadedBytes, and more impor-
tantly, we’ve made the value of loadedBytes equal the current number of
bytes of the main movie file (_root) that have loaded into the Flash Player.
Likewise, we’ve switched totalFrames to totalBytes, and made its value
equal to the total number of bytes for the main movie file. Make sure you’ve
also changed the if condition to indicate the new variable names, as well as
the math expression for the percentageOutput variable.

2. Save your Flash movie as preloader_3.fla, and test it. Make sure the
Bandwidth Profiler is in Show Streaming Mode.

After you’ve tested your movie, you’ll see that the loaderBar displays the true
loading progress of the Flash movie. Not only can you check the progress of the
Main Timeline, but you can also use getBytesLoaded() and getBytesTotal()
on loaded .SWF movies. The following Expert Tutorial by Gareth Pursehouse
shows you how to check the progress of .SWF files that are loaded into the main
movie .SWF. We discuss the actual process of loading external .SWF files later in
this chapter.

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 564

565Chapter 20 ✦ Sharing and Loading Assets

Expert Tutorial: Preloading Audio .SWF Files,
by Gareth Pursehouse

Gareth’s tutorial demonstrates the new getBytesTotal() and getBytesLoaded() meth-
ods of the Movie Clip Object. He also uses the loadMovie action, which is discussed in more
detail in the next section of this chapter. Gareth’s ActionScript code uses a combination of
Flash 4 and 5 syntax. You will want to make a copy of the music_preloader.fla and stream.swf
files located in the ch20 folder of the Flash 5 Bible CD-ROM.

Ever need to play and control music in a Flash movie? Unfortunately, it’s not as easy as just
dropping a song on to the Stage, with a prebuilt interface or control bar that Web visitors
can access to control the sound. You need a loading display, a progress display for playback,
and playback controls. Otherwise, your Flash movie might end up on worstsites.com, in
which case, you’re out of a job and your kids never get braces. Luckily you bought this book
because we’re going to show you how to control your external music .SWF files.

This example focuses on several new Movie Clip Object methods such as getBytesTotal()
and getBytesLoaded(). You learn to create a loop to evaluate properties of an external
.SWF file that is loaded into a target, how to display loading and playblack progress on a dis-
play bar, and how to create play control buttons for .SWF files that use Stream audio synch
modes.

Concept overview
Open a copy of the music_preloader.fla file located in the ch20 folder of the Flash 5 Bible
CD-ROM. You’ll see three top layers on the Main Timeline, named !song, _song and song.
The instances !song and _song use the same Movie Clip symbol, load checker, found in
the Library. We will use this Movie Clip symbol to show the loading status and the playback
status. In order to let the ActionScript routine know which status to display, we name the
instance with either an _ or a ! as the first character.

A simple check of the first character of the instance’s _name value will tell the script inside
of load checker which routine to run:

if (substring(_name, 1, 1) eq “_”) {
// insert actions for playback status display...

} else if (substring(_name, 1, 1) eq “!”) {
// insert actions for loading status display...

}

Because the whole idea of programming is to make code as flexible and dynamic as possible,
we will have the routine check the _name of the instance to define whether to display the
loading progress, or the playback progress.

After the initial _ or ! character, the word song is used in the name of both instances. We’ll
use this suffix to also indicate the Movie Clip instance that is being targeted with a
loadMovie action (which we’ll see later).

Continued

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 565

566 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

The Movie Clip instance that will display the playback progress will be called _song, and the
instance that will display the loading progress on the display bar !song. These names will
also direct our ActionScript code to check the loading or playing status of the Movie Clip
instance named song.

The load checker Movie Clip symbol, which has two unique instances on the Stage, will
continuously check the progress of the loading .SWF file, targeted at the instance song.
Because we don’t want the ActionScript code to display status information before the
Movie Clip has been loaded, we put a variable in the first frame of the song Movie Clip
instance (which is the load placeholder symbol in the Library) to define that the load has
not yet begun:

loading = false;

In our load checker Movie Clip symbol, we start the ActionScript routine on frame 2 with
an if statement that checks for that variable:

if (_parent[substring(_name, 2, -1)].loading != false) {

By referring to a substring (a particular section) of the current instance’s name, we can
access a completely different instance nested outside of the current instance. This method
of addressing Movie Clip instances allows easier alterations to the code and display mech-
anisms, so that you can reuse the load checker in different sections of your .SWF movie.

This advanced syntax for addressing Movie Clip objects is discussed in Chapter 18,
“Navigating Flash Timelines” and Chapter 19, “Controlling Movie Clips.”

Building the progress bar
To display the results of the ActionScript code within the load checker symbol, some other
Movie Clips are needed. One of the Movie Clips, which we call msize, will be the back-
ground for the loading and playback display bars. This Movie Clip must be the exact size of
the full display bar, as its width is used within the routine to determine placement and
length of the marker Movie Clip. With an instance of the display bar named msize in the
load checker symbol, we set a variable called mw that stores the width value (in pixels) of
the display bar:

mw = msize._width;

This line of code occurs on the first frame of the load checker Movie Clip symbol.

The marker Movie Clip will be our second Movie Clip for the display bars. In this example,
we use a simple rectangle. Because it will be continually stretched (or moved, depending
upon the instance) along the background msize Movie Clip, its size shouldn’t interfere with
any artwork or design on it.

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 566

567Chapter 20 ✦ Sharing and Loading Assets

Initiating the loadMovie action
On the loadButton layer of the Main Timeline, we have a Button instance with the text
Load. If you select this instance and open the Actions Panel, you’ll see the following code:

on (release) {
loadMovie (loadfile, “song”);
song._visible = 0;

}

When a user clicks the button, a loadMovie action will execute. It will load a .SWF file,
whose name will be determined by the loadfile variable, into the song Movie Clip
instance. The loadfile variable, in our example, is actually the text field located on the
loadfile layer of the Main Timeline. You’ll see that the text field already contains the text
stream.swf. Therefore, the stream.swf file will be loaded into the song Movie Clip instance.

The second action on the Button instance will set the _visible property of the song Movie
Clip instance to 0, which makes it hidden on the Stage.

Once the stream.swf file starts to load into the song instance, the !song instance will start
to monitor the loading progress.

Loading progress display
Once the loadMovie action has been initiated, the loading variable in the song Movie Clip
instance will no longer exist. Therefore, the first if statement on the second frame of the
!song and _song instances will no longer prevent the remaining if . . . else state-
ments from executing. The !song instance, which monitors our loading progress, will exe-
cute the code within the

} else if (substring(_name, 1, 1) eq “!”) {

nest. The first line of code after the else . . . if statement will set a variable named
check to the path of the song instance on the Main Timeline:

check = eval(“_parent.” + substring(_name, 2, -1));

Then, we get to use the new getBytesLoaded() and getBytesLoaded() methods now
available in Flash 5. The getBytesLoaded() method will evaluate what percentage of the
.SWF has loaded:

loaded = check.getBytesLoaded();
total = check.getBytesTotal();
percentage = int(loaded/total)*100;
currentKB = int(loaded/1024);
totalKB = int(total/1024);

Continued

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 567

568 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

After the loaded and total variables are determined, we can find the current percent loaded
by dividing the current loaded amount by the total amount, and then multiplying by 100, to
return a true percent. By using the int function, we get the whole-number integer of the
percent in order to cut off any trailing decimals.

We also use the loaded variable to determine the kilobyte equivalent of getBytesLoaded(),
by declaring another variable named currentKB which divides the value of loaded by
1024—there are 1024 bytes to 1 kilobyte. We establish another variable called totalKB,
whose value is equal to the total size (in bytes) divided by 1024.

Then, our ActionScript will display the percent that has loaded into the main movie by (a)
putting the percentage, totalKB and currentKB variables into our text field named disp
within the !song instance, and (b) stretching the width of the marker Movie Clip instance
to the same width as the msize Movie Clip instance. As the stream.swf file loads into the
song instance, the marker Movie Clip instance will extend itself over the width of the
msize instance:

disp = percentage + “% of “ + totalKB + “kb ¬
loaded.(“ + currentKB + “ kb)”;

marker._x =0;
marker._width = mw*(percentage/100);

Playback progress display
When the stream.swf file has fully loaded into the song instance, then the _song instance
will start to execute its portion of the ActionScript code in the loader check Movie Clip
symbol. Because there is no stop() action on the timeline of the stream.swf file, the con-
tents of stream.swf will begin play automatically.

Because stream.swf has just one sound set to Stream Synch Mode, the timeline has as
many frames as required to play the sound on its timeline. That means that there is a play-
head whose position we can check. Using _totalframes and _currentframe properties,
we can retrieve the playhead’s position in the audio clip currently being played:

total = check._totalframes;
current = check._currentframe;
percentage = int((current/total)*100);

Using the percentage variable, we can display what percent of the audio clip has played,
and also change the position of our marker Movie Clip, compared to the msize width, to
display a graphic representation of the songs progress:

disp = “at “ + percentage + “% of “ + total + ¬
“ frames. (frame “ + current + “)”;

marker._x = (mw-10) * (percentage/100);
marker._width = 10;

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 568

569Chapter 20 ✦ Sharing and Loading Assets

Audio control buttons
To achieve the playback control over the audio clip in our song instance, a variable is estab-
lished to know whether the audio is playing or has been stopped.

The first example of this type of variable will be used in the Rewind button. Just like in pro-
grams such as Winamp, or hardware such as your car CD player, the Rewind and Fast
Forward buttons scan through the music and begin playing as soon as you release the
mouse button. To correctly gauge how each control button should work, we need to know
whether the song timeline is playing. We’ll use a variable named play on the Main
Timeline (_root). If play is equal to a Boolean value of false, then we know playback is
paused or stopped. If it’s equal to true, then we know the timeline is playing. Let’s start
with the Rewind button.

The Rewind button code looks like this:

on (press, keyPress “<Left>”) {
if (_root.play == false) {

song.gotoAndStop(song._currentframe-5);
} else {

song.gotoAndPlay(song._currentframe-5);
}

}

If the song timeline is currently stopped, then a gotoAndStop method is used. If the time-
line is playing, then a gotoAndPlay method is used.

With the Play button, two outcomes are possible: (a) If the Play button is pressed while the
audio is playing, then the song will start over at the beginning; or (b) if the audio is in a
paused state, then the playback will resume from the current frame. The Play button code
contains the following ActionScript:

on (press, keyPress “x”) {
if (play == false) {

song.play();
} else {

song.gotoAndPlay(1);
}
play = true;

}

The Pause button uses the following code:

on (press, keyPress “c”) {
play = false;
song.stop();

}

Continued

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 569

570 Part IV ✦ Adding Basic Interactivity to Flash Movies

Loading Flash Movies
Long sequences of animation in Flash naturally require the preloading described in
the previous section to guarantee smooth playback. But traditional information-based
Web sites done in Flash require a different kind of download management. Suppose
you’re building a Web site with three sections: products, staff, and company history.
Each section is roughly 100KB in size. In a normal Flash movie, you’d place those sec-
tions in a sequential order on the main movie timeline. The last section you place on
the timeline would, of course, be the last section to download. Might sound fine so far,
but here’s the problem: What if the section that appears last on the timeline happens
to be the first and only section the user wants to see? They’d have to wait for the
other two sections to download before they could view the one they want — but they
don’t even want to see the other two sections, so really they’re waiting for nothing.
The solution to this problem is the loadMovie action.

loadMovie provides a means of inserting one or more external .SWF files into a
Flash movie (whether that movie resides in a browser or on its own in the stand-
alone player). loadMovie can be used to replace the current movie with a different
movie or to display multiple movies simultaneously. It can also be used, as in our
company Web site example, to enable a parent movie to retrieve and display con-
tent kept in independent .SWF files on a need-to-retrieve basis (similar to the way
a frame in an HTML frameset can call external pages into different frames).

Basic overview of Flash site architecture
There are two primary ways to produce and distribute straight Flash content on
the Web: (a) create several small .SWF files, each one living within a standard HTML
page on a Web site; or (b) create one HTML page that hosts one main .SWF file that
loads additional content through the Flash Player plug-in. Figure 20-4 illustrates
these alternatives.

Continued

The remaining buttons use similar ActionScript to fast forward or stop the audio clip. Select the
remaining Button instances to see their code in the Actions Panel.

That wraps up this tutorial on preloading and controlling playback of streamed audio in
Flash movies. For further enjoyment, you might want to try adding ActionScript that enables
you to drag’n’drop the marker Movie Clip instance to your desired playback position.

Hanging out in San Diego, California, Gareth Pursehouse’s single most favorite thing to do is practice
Capoeira, which is considered, by some, a type of martial art. Capoeira blends dance, music, rituals,
acrobatics, and fighting. This blend originates in Brazil, where it is played like a game. We wouldn’t be
surprised if Gareth conquered Flash ActionScript with the help of some good mojo from Capoeira.
He earned his Flash recognition with one of his first Flash sites, www.infinovation.com.

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 570

571Chapter 20 ✦ Sharing and Loading Assets

Figure 20-4: The diagram on the left illustrates a Web site that uses multiple HTML
pages, each with an individual .SWF file. The diagram on the right shows a Web site
that uses one HTML page (or frameset) that has one primary .SWF file, which loads
other .SWF files as needed.

If you decide to break up your Flash movies across several HTML pages, your Web
visitors will experience:

✦ Short download times for each page

✦ Easier bookmarking of discrete sections of your Web site

✦ Abrupt transitions between each section of the Web site

However, if you use one primary Flash movie in one HTML page (or frameset), your
visitors will benefit from:

✦ Short download times for each .SWF file (download times vary with file size)

✦ Seamless integration of new Flash content

✦ Controllable transitions between .SWF asset changes

Which method should you use for your Flash projects? The answer depends on
the specifics of each Web project. You may decide to use a combination of both
methods, especially for larger sites that use several Web technologies (QuickTime,
Flash, RealPlayer, Windows Media, and so on). In either scenario, you can use the
loadMovie action to manage Flash content more easily.

Where are the multiple movies stored?
You may already be wondering how these newly loaded movies are managed rela-
tive to the original movie. Flash uses the metaphor of levels to describe where the
movies are kept. Levels are something like drawers in a cabinet; they are stacked

HTML #2

SWF #2

HTML #3

SWF #3

HTML #1

SWF #1

HTML #4

SWF #4

SWF #2 SWF #3

HTML #1

SWF #1

SWF #4

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 571

572 Part IV ✦ Adding Basic Interactivity to Flash Movies

on top of each other, and can contain things; you can place things in any drawer
you like, but once a drawer is full you have to take its contents out before you can
put anything else in. Initially, the bottom level, referred to as _level0 (“Level 0”),
contains the original movie. All movies subsequently loaded into the Flash Player
must be placed explicitly into a target Level. If a movie is loaded into Level 1 or
higher, it appears visually on top of the original movie in the Player. If a movie is
loaded into Level 0, it replaces the original movie, removing all movies stored on
Levels above it in the process. When a loaded movie replaces the original movie,
it does not change the frame rate, movie dimensions, or movie background color
of the original Flash stage. Those properties are permanently determined by the
original movie and cannot be changed.

You can effectively change the background color of the stage when you load a
new movie by creating a rectangle shape of your desired color on the lowest layer
of the movie you are loading.

Loading an external .SWF file into a movie
A new movie is imported onto the main movie Stage when a loadMovie action
is executed. Here’s how to make a button click load an external movie named
movie2.swf:

1. Place a Button instance on the Stage of your main movie. Bring up the Actions
Panel for the Button by selecting the instance and pressing Ctrl+Alt+A (PC) or
Option+Command+A (Mac). Make sure the Actions Panel is in Normal Mode
(see Figure 20-5).

Figure 20-5: With the Actions Panel in Normal Mode,
you can clearly see the options and settings of the
loadMovie action.

Tip

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 572

573Chapter 20 ✦ Sharing and Loading Assets

2. Click the plus (+) button in the top-left corner of the Actions Panel, and
select Basic Actions ➪ Load Movie. Type movie2.swf (or your external .SWF
file name) into the URL text field. The URL text field contains the network path
to the movie file that you want to load. That path must be specified relative
to the location of the page that contains your main movie, not relative to the
location of the movie itself.

3. Select the Level option in the Location menu, and type 1 into the Location
text field. This instructs Flash to load movie2.swf into _level1. If there had
already been a movie loaded into _level1, it would automatically have been
replaced by movie2.swf.

4. Click OK.

Internet Explorer 4.5 (or earlier) for the Macintosh does not resolve paths correctly.
For more information, please see Macromedia’s tech note at: www.macromedia.
com/support/flash/ts/documents/mac_ie_issues.htm

When a movie is loaded above any other movie (including the main movie), the
Buttons in the movies on lower levels will continue to be active, even though they
may not be visible. To prevent this undesired behavior, you need to send movies on
lower levels to an idle or blank frame where no buttons are present. Do that by
adding a Go To action before your loadMovie action that sends the current movie
to the idle frame. This technique is known as “parking” the movie. If you have to
park multiple movies, you’ll need to know how to communicate between movies on
different levels. This will be discussed shortly.

Note

Caution

_level0 or _root: What’s the Difference?

Until now, we have referred to the Main Timeline as _root in ActionScript. If you don’t
employ Levels in a Flash movie, then _root will always refer to the Main Timeline of the
Flash movie that is loaded into a browser. However, if you start to use Levels to load external
.SWF files, _root will be relative to the Level that’s executing actions.

For example, if the main movie uses a _root reference in an action, such as:

_root.gotoAndStop(10);

then the Main Timeline playhead will go to frame 10 and stop.

If a loaded Movie has the same action within its timeline, then it will go to frame 10 on its
timeline and stop.

While this works with movies that are loaded into Level locations, it will not work with
Movie Clip instance targets. As you’ll see in the following sections, a movie that is loaded
into a Movie Clip target becomes an instance located within Level 0. Therefore, _root will
still refer to the main movie’s timeline (the Scene 1 timeline).

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 573

574 Part IV ✦ Adding Basic Interactivity to Flash Movies

How Flash handles loaded movies of differing sizes
A movie loaded onto Level 1 or above that is smaller than the Level 0 movie is posi-
tioned in the top-left corner of the Stage. In this situation, elements on the Level 1
movie’s Stage are displayed even when they go beyond the bottom and right dimen-
sions of the Level 1 movie. To prevent objects from being displayed off Stage you
would have to create a curtain layer above all the other layers in the Level 1 movie
that covers up the work area (the space outside the movie’s Stage).

Movies loaded onto Level 0 that are smaller than the original Level 0 movie are
automatically centered and scaled up to fit the size of the original movie (the man-
ner in which they are scaled depends on the Scale setting in the Publish settings).

Movies loaded onto Level 0 that are larger than the original Level 0 movie are cropped
at the right and bottom boundaries defined by the original movie dimensions.

Placing, scaling, and rotating externally loaded
.SWF files
Especially when your movies are different sizes, it’s not very convenient to have
newly loaded movies dropped ingloriously in the top-left corner of the Stage. To
give you more flexibility with the placement, rotation, and scale of your loaded
movies, Flash provides the capability to load a movie into a Movie Clip instance.
So far, this may not make a whole lot of sense. Loading a movie into a Movie Clip
instance seems like a strange feature at first, until you find out what it can do —
then it seems indispensable. The easiest way to understand what happens when
you load a movie into a Movie Clip is to think of the loadMovie action as a Convert
Loaded Movie-to-Movie Clip action.

When a movie is loaded into a Movie Clip instance, many attributes of the original
Movie Clip instance are applied to the newly loaded movie:

✦ The timeline of the loaded movie completely replaces the original instance’s
timeline. Nothing inside the original Movie Clip (including actions on keyframes)
remains.

✦ The loaded movie assumes the following Properties from the original
Movie Clip instance:

• Name

• Scale percentage

• Color effects, including alpha

• Rotation degree

• Placement (X and Y position)

• Visibility (with respect to the _visible property)

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 574

575Chapter 20 ✦ Sharing and Loading Assets

✦ Any onClipEvent handlers (and actions within them) that are written for
the original Movie Clip instance will still be available (and executing) on the
loaded Movie.

We like to refer to Movie Clips that are used to load other movies as Movie Clip
holders. Usually, you will load movies into empty Movie Clips that don’t have any
artwork or actions. However, because you’ll need a physical reference to the actual
area your loaded movie will occupy on the Stage, it’s useful to create temporary
guides or artwork that indicate this area. The following steps show you how to
create a Movie Clip holder, and how to load an external .SWF file into it.

1. Create a new Movie Clip symbol (Ctrl+F8 or Command+F8) that contains a
square or rectangle. This shape can be drawn with the Rectangle Tool. The
shape should have the same dimensions as the external .SWF movie’s Stage,
as defined in the Movie Properties dialog.

2. Place the shape so that its top-left corner is at the 0,0 X,Y coordinate. To do
this, select the shape and open the Info Panel. Click the top-left corner of the
bounding box diagram, and type 0 in the X and Y fields. Make sure that you
press Enter after you type each zero.

3. Go back to the Main Timeline (Scene 1), and place an instance of this Movie
Clip on the Stage. In the Instance Panel, give this Movie Clip instance the name
movieHolder. Position it where you want the external .SWF movie to appear.
At this point, you can also tween, scale, or apply color effect to the instance
as well.

4. Add a loadMovie action to a Button instance or keyframe.

5. Specify the loaded movie’s network path and filename in the URL field. Select
the Target option in the Location menu. Type movieHolder into the Location
field. The field specifies the name of the Movie Clip instance into which you
want to load your external .SWF file.

The instance must be resident on Stage at the time the loadMovie action occurs.
Any instance can either be manually placed on the timeline, or created with
ActionScript code, such as the duplicateMovieClip or attachMovie method.
If any specification of the loadMovie action is incorrect, then the movie will fail to
load. Flash will not start a request for an external .SWF file if the Movie Clip
instance target is invalid.

6. Save the Flash movie file and test it. Your .SWF file’s top-left corner will match
the top-left corner of the original Movie Clip instance.

7. You may have noticed that there was a quick flash of the original Movie Clip’s
rectangle artwork before the external .SWF loaded into it. To avoid this, go
into the Movie Clip symbol for movieHolder and turn the layer containing
the rectangle artwork into a Guide Layer. Guide Layers will not export
with the .SWF file.

Note

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 575

576 Part IV ✦ Adding Basic Interactivity to Flash Movies

If you need to add functionality to the loaded movie, then use ActionScript to control
the new loaded movie instance. The next section shows you how to communicate
with loaded movies.

For further study, we’ve included a loadMovie example as a group of files on the
Flash 5 Bible CD-ROM in the ch20 folder. Open movie1.html in a browser to view
the files in action.

Communicating between multiple movies on
different levels
After a movie or two are loaded onto different levels, you may want each timeline
to control the other, just as Movie Clips can control each other. To communicate
between different Levels, you simply need to address actions to the proper Level.
The method for addressing a Level that controls a timeline on a different Level is
identical to the method for addressing a Movie Clip target that controls the timeline
of another Movie Clip instance, except for one small change. You have to indicate
the name of the Level you want target rather than the name of the Movie Clip. Level
names are constructed like this: First, there’s an underscore (_), then there’s the
word level, and then there’s the number of the Level that you want your Action
to occur on.

On the
CD-ROM

loadMovie versus loadMovieNum

You may have noticed that a loadMovie action will be shown as loadMovieNum when a
Level location is chosen. Because you can specify variables (that point to dynamic targets)
as a Location value, Flash ActionScript needs a way to distinguish a numeric Level location
from a Movie Clip instance.

Consequently, if you choose a Level location for a loadMovie action (in Normal Mode),
then the action will show as:

loadMovie(“external_1.swf”, “movieHolder”);

which specifies that the file external_1.swf be loaded into Level 1.

If you specify the Movie Clip target as movieHolder for the loadMovie action, then the
action will appear as:

loadMovie (“external_1.swf”, “movieHolder”);

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 576

577Chapter 20 ✦ Sharing and Loading Assets

This tells the movie loaded onto Level 1 to go to frame 50:

_level1.gotoAndStop(50);

This tells the main movie timeline to go to frame 50:

_level0.gotoAndStop(50);

You can also target Movie Clips that reside on the timelines of movies on other lev-
els. Here’s an example:

_level3.products.play();

This sends a play() action to the Movie Clip named products on the timeline of
the movie loaded onto Level 3.

Unloading movies
Even though a movie loaded into an occupied Level (one that already contains a
loaded movie) will automatically be removed before the new movie is displayed,
the transition can be choppy. To ensure a smooth transition between movies, or to
lighten the memory required by the Flash player, you can explicitly unload movies
in any Level or Movie Clip target by using the unloadMovie action. The only option
for unloadMovie is the path to the desired location (for example, _level1,
_root.instanceName).

Loading External Files through Proxy Servers

If you are creating Flash movies that will be loaded through proxy servers on the Internet,
then you’ll need to know how to trick them into loading “fresh” .SWF files every time a user
visits your site. What is a proxy server? With the growth of high speed Internet connections
such as DSL and cable, many Internet service providers (ISPs) will process all outgoing HTTP
requests through a go-between computer that caches previous requests to the same URL.
Anytime you type a Web site URL into a browser, you’remaking an HTTP request. If that com-
puter, called a proxy server, sees a request that was made previously (within a certain time
frame), then it will serve its cached content to the end user, instead of downloading the
actual content from the remote server.

Similarly, when a Flash movie makes an HTTP request with a loadMovie action, then a
proxy server may serve the cached .SWF file instead of the one that actually exists on your
server. Why is this a problem? If you are updating that .SWF file frequently, or if you want
precise Web usage statistics for your Flash movies and content, then you’ll want users to
download the actual .SWF file on your server each time a request is made.

Continued

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 577

578 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

The question remains: How do you trick a proxy server into serving the real .SWF file instead
of its cached one? The proxy server knows what’s in its cache by the URL for each cached
item. So, if you change the name of the loaded Flash movie each time you make a request
for it, then the proxy server won’t ever see an identical match with its cached content.

To change the name of a loaded Flash movie, simply add a random number to the end of
the movie’s name in the loadMovie action. This random number won’t actually be part of
the movie’s filename. Rather, it will appear as a query at the end of the filename. Place the
following actions on a Button instance that initiates a loadMovie action:

on(release){
randomNum = Math.round(Math.random()*9999999999);
loadMovie(“external_1.swf?” + randomNum, “movieHolder”);

}

In the preceding example, a variable called randomNum is established and given a random
value, a number in the range of 0 to 9999999998. Each time a user presses this button, a
different number is appended to the filename of the loaded movie. The proxy server will
think that each request is a different, and route the request to your Web server.

Not only does this method prevent a proxy server from server a cached Flash movie file, but it
also prevents most browsers from caching the loaded movie in the user’s local cache folder.

loadMovie as a method or action for
Movie Clip targets
Both loadMovie and unloadMovie can be used as either an ActionScript method
or action for Movie Clip targets. What does this mean? You can apply actions in
Flash 5 in two ways: as methods of a Movie Clip Object (or some other ActionScript
Object), or as a stand-alone action.

As an action, loadMovie and unloadMovie start the ActionScript line of code. When
you use actions in this manner, the target of the action is specified as an argument
(option) within the action. In the following example, the file external_1.swf is loaded
into Level 1:

loadMovie (“external_1.swf”, “movieHolder”);

As a method, actions are written as an extension of the object using the action.
Therefore, the target is already specified before the action is typed. The same

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 578

579Chapter 20 ✦ Sharing and Loading Assets

example shown previously could be rewritten as a method of the movieHolder
Movie Clip Object:

movieHolder.loadMovie(“external_1.swf”);

or

_root.movieHolder.loadMovie(“external_1.swf”);

Because we have specifically referenced the movieHolder instance as an object,
the loadMovie action (now a method) knows where to direct the loading of
external_1.swf.

Expert Tutorial: Keeping Content Fresh and Dynamic
Using the Load/Unload Movie Action, by Derek Franklin

Derek’s tutorial shows you how to randomize the external files that load into a Flash. He
provides some examples of interesting uses of the loadMovie action for creative projects.

A quick way to lose visitors who are returning to your Web site is for them to realize that
every time they visit your site, nothing has changed. The graphics are always the same, the
text is always the same, and — after only two visits — they feel that another visit to your site
is an utter waste of time. This is known as boredom, and we all know that it’s sacrilege to
mix the term boredom with Flash site, but it happens.

There are numerous reasons why a Flash developer might not want to update or revise a
completed project. One reason is fear of messing up something that already works, espe-
cially if it has a complex structure. Or, it could be just the drudgery of having to refamiliarize
themselves with a movie’s structure, which is often no small task.

To combat the issue of stale Flash content, Macromedia developed Generator. Generator cre-
ates dynamic Flash movies on the fly, complete with custom text and graphics. While
Generator is a very cool development tool for keeping Flash content fresh, it’s not for everyone.
Generator involves learning new concepts, and the price of the software may be prohibitive to
a lot of Flash. Luckily, there’s a functionality already built into Flash that gives you power to
deliver dynamic, Generator-like presentations with very little extra effort. It’s the loadMovie
action, which is part of the Flash 5 ActionScript arsenal. Due its power to enable you to keep
content fresh and exciting, I think of this action as the “pseudo-Generator” action. How does it
do this?

Continued

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 579

580 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

How loadMovie works
The loadMovie action enables you to compartmentalize different elements of your movie
by enabling you to separate them into separate .SWF’s that can be loaded at any time into
the main movie. While the loadMovie action is commonly used for loading .SWF’s that are
complete productions in themselves, you can just as easily use it to load:

✦ Navigational controls

✦ The movie’s soundtrack

✦ A background image

✦ Any single image

✦ Any text content

✦ An ActionScript functionality

The significance of this is twofold:

First, updating and keeping content fresh becomes much easier. For example, you could
create a separate .SWF file for the text content that first displays on your site. You could
name this movie text.swf and then place a loadMovie action in your main movie that loads
text.swf into level 1 (the main movie is always Level 0). Then, whenever you want to edit or
update the text content, you wouldn’t have to go through the hassle of reopening the main
authoring file, finding the text on the timeline, changing the text, making sure you don’t
mess anything up, testing, and then finally reexporting and uploading the entire movie
again. Instead, by using the loadMovie action, you could simply open and edit the text.swf,
reexport it to the same name (text.swf), and then upload the updated .SWF to your
server. When the main movie plays again and text.swf gets loaded, it will reflect the
updated text. You can just as easily use this trick for updating a graphic or even a sound-
track in your movie. By making your movie modular, updating or changing content
becomes less of a hassle.

The second functionality that loadMovie offers is to make your movie truly dynamic — each
time a visitor returns to your site! Believe me, after learning this trick, you’ll never look at
Flash construction the same way.

Imagine how unique and fresh a user’s experience would be if you could randomly play 1
of 10 different soundtracks each time a visitor stops by; or, if you could pack 24 different
bitmaps, 1 for each hour in the day, and have the proper one displayed depending on the
hour of the day a user visits. I know what you’re thinking, “That sound’s great, but with that
much content in a single movie, the user would have to wait a week for the whole movie
to download.” Think again! Using the loadMovie action along with some additional, yet
very simple, ActionScripting you can accomplish amazing feats of dynamism without adding
any more download time to your users’ experience than if you’d placed a single soundtrack
or bitmap inside a single movie. Let me show you how:

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 580

581Chapter 20 ✦ Sharing and Loading Assets

A random soundtrack
The first step in building a movie that contains a randomly generated soundtrack is to create
ten different .SWF files (could be more or less for your purposes). Each .SWF will contain a sin-
gle frame with a looping soundtrack in that single frame. Export these soundtrack .SWF’s as
soundtrack0.swf, soundtrack1.swf, soundtrack2.swf, and so on. Save them in the same direc-
tory in which the main .SWF will be placed. Next, in your main movie, place the following
ActionScript wherever you would like the music to begin:

randomNum = random(10);
loadMovie (“soundtrack” + randomNum + “.swf”, 1);

Note that the preceding code is derived from Flash 4. Ideally, you should use the recom-
mended Flash 5 version of the script, which requires a bit more code to generate a random
number:

randomNum = Math.Round(Math.random () * 10);
loadMovie (“soundtrack” + randomNum + “.swf”, 1);

When this script is run is a random number is generated between 0 and 9 (not 0 and 10, as
you might suspect, because 0 is one of the possible numbers generated) and placed in the
variable randomNum. Next, using an expression, the loadMovie action uses the randomNum
variable to load one of the soundtrack movies into Level 1. This delivers a randomly gener-
ated soundtrack each time someone visits the site, yet download is not increased any more
than if you had given them only a single choice.

Placing your soundtrack in it’s own Level is an easy way to facilitate sound on/off function-
ality. That’s because turning the music on or off simply involves loading/unloading it from
that Level.

A time-based image
The first step in building a Flash movie that will load 1 of 24 images at the appropriate hour,
is to create 24 different .SWF files: Each .SWF should contain a single bitmap graphic, placed
on frame 1. (There are 24 .SWF’s to represent each hour of the day.) The graphic can be any
size that your design requires. Export the .SWF’s with meaningful file names, such as:
hour0.swf, hour1.swf, and so on. Save these into the same directory in which the main .SWF
will be placed. Then, in your main movie, place the following ActionScript in the appropriate
frame, wherever you would like the picture to appear:

myDate = new Date()
currentHour = myDate.getHours();
loadMovie (“hour” + currentHour + “.swf”, 1);

This script first creates a Date Object that is named myDate. Next, using the getHours method
of the Date Object, Flash determines the current hour on the user’s system and places a num-
ber representing that hour into the variable currentHour (0 = 12 a.m., 23 = 11 p.m.). Then,
using an expression, the loadMovie action uses the currentHour variable to load the appro-
priate .SWF, which represents the particular hour, into Level 1 of the main movie.

Continued

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 581

582 Part IV ✦ Adding Basic Interactivity to Flash Movies

Continued

If you want the image in the loaded .SWF to appear in particular place in the movie window,
add the following code to the end of the previous script:

setProperty (_level1, _x, 100);
setProperty (_level1, _y, 100);

(This particular code example will cause the top-left corner of the loaded movie to be placed
100 pixels from the top and 100 pixels from the left of the main movie’s top-left corner.)

And that’s the joy of authoring Flash with pseudo-Generator! Harness the power and flexi-
bility of this command by creating separate .SWF’s for different parts of your movie, and
you’ll find many ways to keep your site fresh and dynamic. Whatever you do, have loads of
fun with the loadMovie action.

The .SWF file format that’s used with the loadMovie action has become a standard file for-
mat in its own right. This means that you have even more tools to help you make your
movie modular with separate .SWF files. For example, there are a growing number of tools
that enable you to export content directly from them to the .SWF format, including:

✦ Macromedia Fireworks: Fireworks 3 allows you to export bitmaps created within
its environment as .SWF files. This enables you to easily update individual bitmap
graphics in your movie.

✦ Macromedia FreeHand: FreeHand 9 not enables you to create vector graphics, as
well as simple animations that can be exported to the .SWF format.

✦ Adobe LiveMotion: LiveMotion is Adobe’s entry into the Web animation market.
Although it’s interactive capabilities don’t compete with Flash, its interface is fabu-
lous and it enables you to quickly create beautiful graphics or animations that can
be exported as .SWF files.

✦ Adobe Illustrator: Illustrator 9 enables you to create vector graphics as well as
simple animations, along the same lines as FreeHand, and then export them to
the .SWF format.

✦ Swift 3D: Want to add 3D elements to your project? This great software creates 3D
objects, complete with animation, that can be exported as .SWF files. You can find it
at www.swift3d.com.

✦ SWisH: Very cool text effects are what SWisH is all about. SWisH provides an amaz-
ing assortment of effects that are all configurable and that are easily exported to the
.SWF format. You can find it at www.swishzone.com.

Derek Franklin is the coauthor of “Flash 5!” Creative Web Animation,(Berkeley: Peachpit Press, 2000) one of
the most authoritative and usable books on the subject. Born in Illinois and raised in Bloomington, Indiana, he
recently moved back to Bloomington. He recalls Kenny Loggin’s “Footloose” as the most memorable tune from
his last year of high school. Derek claims to have found Flash “by accident really. At first glance (Flash 2), I
wasn’t all that impressed. But when I saw what people were doing with it, there was no turning back.” He says
his favorite pastime is “either playing my drums or being the life of the party— they kind of go hand-in-hand.”

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 582

583Chapter 20 ✦ Sharing and Loading Assets

Accessing Items in Shared Libraries
Flash 5 adds an exciting new feature to asset management in Flash movies: the
capability to link external .SWF files (and the symbols, sounds, bitmaps, and font
symbols within) to each Flash movie that you use on your Web site. These external
.SWF files, called Shared Libraries, are different than loaded .SWF files.

A Shared Library .SWF doesn’t load into a Level or a Movie Clip instance location.
Instead, you set up a the Library of a Flash movie (.FLA file) with assets that you
want to use in other Flash movies. This movie is the basis of the Shared Library
.SWF file. After you assign an identifier to each asset in the Library, you save the
.FLA file, publish a .SWF file, and close the .FLA file. Then, you open another Flash
movie .FLA file, and using File ➪ Open as Shared Library, you open the Shared
Library .FLA file. Its Library window will open (in a dimmed gray state), and
you can drag and drop assets to your new Flash movie file.

Even though the assets are linked to the external Shared Library .SWF file, the Flash
movie will actually store copies of the assets in its .FLA file. However, they will not
be exported with the .SWF file that is published.

After you have established a Shared Library file, any changes to the actual contents
of the Shared Library .FLA and .SWF files will propagate to any Flash movie that
uses the shared assets. In the following sections, you learn how to create a Shared
Library file and use it with other Flash movies.

At the time of this writing, the Shared Library feature of Flash 5 has proven to work
very inconsistently. It is recommended that you use only small (low byte size) ele-
ments in your Shared Libraries, to ensure that they are downloaded and available
for Flash movies that use them. As with any Web production, make sure that you test
early and often before you develop an entire project that fails upon final delivery.

Setting up a Shared Library file
To share assets among several Flash files, you need to establish a Shared Library file
(or files) that is available to other Flash movie files. To create a Shared Library file:

1. Open a new Flash movie (Ctrl+N or Command+N).

2. To place Flash artwork into the Library, draw the shapes and other elements
(text, lines, gradients, and so on). Select the artwork and convert it to a Flash
symbol. Choose a symbol type (for example, Graphic, Button, or Movie Clip)
that best suits the nature of your artwork.

3. To place bitmaps and sounds into the Library, import the source files as you
normally would, using File ➪ Import (Ctrl+R or Command+R).

4. Delete all artwork that you have placed on the Stage. Every asset that you
want to share should be in the Library.

Caution

Note

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 583

584 Part IV ✦ Adding Basic Interactivity to Flash Movies

5. To place an entire font (or typeface) into the Library, open the Library (Ctrl+L
or Command+L), and choose New Font from the Options menu, located at the
top-right corner of the Library window. In the Font Symbol Properties dialog,
type a reference name for the font, choose the font face from the Font menu,
and select a faux font Style (Bold or Italic) to be applied (optional). (See
Figure 20-6.)

Figure 20-6: Give each embedded font face a
descriptive name that indicates its functionality
within the Flash movie.

Assigning names to assets
After you have placed each asset into the Library of your starter .FLA file, you’ll
need to assign a unique identifier to each asset.

1. Select the symbol, bitmap, sound, and font in the Library. Choose Linkage
from the Library’s Options menu.

2. In the Symbol Linkage Properties dialog, shown in Figure 20-7, choose Export
this symbol for the Linkage option. This forces the asset to export with the
published .SWF file. Then, type a unique name in the Identifier field. Click OK.

Figure 20-7: Each asset in the Library of the Shared
Library .FLA file needs a unique name.

3. Repeat Steps 1 and 2 for each asset in the Library.

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 584

585Chapter 20 ✦ Sharing and Loading Assets

Specifying the Shared Library’s location
An optional setting for the Shared Library .FLA is the relative or absolute path (as
a URL) to the Shared Library .SWF on your Web server. You only need to specify
this URL if you plan to store the Shared Library .SWF file within a different directory
on the Web server, or on a completely different Web server.

1. In the Options menu in the Library window, choose Shared Library Properties.

2. In the URL field, type the location of the Shared Library .SWF file (or where
you intend to publish it on the Web). This location will be preappended to
each shared asset’s identifier in the movies that use the assets.

Make sure that you specify this URL before you start using the Shared Library .FLA
file with other .FLA files. The URL location is stored within the each movie that
uses the Shared Library .SWF file, and will not update if you decide to change the
URL later in the Shared Library .FLA file.

Publishing the Shared Library .SWF file
After the assets of the .FLA file have been assigned identifiers and the URL of the
Shared Library has been set (optional), you need to publish a .SWF version of
the .FLA file.

1. Save the .FLA movie. Use a descriptive name that notifies other members of your
Web production team that this is a Shared Library file, such as sharedLib.fla.

2. Publish the Flash movie as a .SWF file. No other publish formats are necessary.
In the Publish Settings (File ➪ Publish Settings), select only the Flash format in
the Format tab. Click OK. Choose File ➪ Publish to create a .SWF file from your
.FLA file.

3. Close the .FLA file.

Linking to assets from other movies
After the Shared Library .SWF file is published, you can use the shared assets in
other Flash movies.

1. Create a new Flash movie, or open an existing one.

2. Using the File ➪ Open as Shared Library command, browse to the folder where
your Shared Library .FLA was saved. For testing purposes, you should keep
this .FLA file in the same folder as the .FLA files that share it. Select the Shared
Library .FLA file, and click Open. A separate grayed-out Library window for
the Shared Library .FLA file will open in the Flash authoring environment.

3. Drag the asset(s) that you wish to use into the new Flash movie’s Library and
onto its Stage. Even though Flash will copy the contents of each shared asset,
the asset will load from the separate Shared Library .SWF file.

Caution

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 585

586 Part IV ✦ Adding Basic Interactivity to Flash Movies

4. To see whether an asset is native to the Flash movie or from a Shared Library
.SWF file, right-click (or Control-click on the Mac) the symbol or asset in the
Library. Select Linkage from the contextual menu. The Symbol Linkage
Properties dialog, shown in Figure 20-8, will indicate whether the symbol
(or asset) will be imported from an external Shared Library .SWF file.

Figure 20-8: If a Shared
Library asset is used in
another movie, the Symbol
Linkage Properties will
indicate the name (and
path) of the Shared Library
.SWF file.

Do not try to use the Open as Shared Library command when the Shared Library
.FLA file is already open. Likewise, you cannot open a Shared Library .FLA file with
File ➪ Open if it’s already opened as a Shared Library. Close the grayed-out Library
window before you attempt to open the Shared Library .FLA to edit its contents.

When you are done dragging the assets from the Shared Library file, close its Library
window. When you publish the new Flash movie(s) that use the Shared Library .SWF
file, make sure you put all of the files on your Web server for live testing.

Summary
✦ If you want to make sure that your larger Flash movies don’t pause during

playback over the Web, then you may want to make a preloader for each
Flash movie you make.

✦ Preloaders can use three different ways to test the download progress of the
Flash movie .SWF file: ifFrameLoaded, _framesLoaded/_totalFrames, and
getBytesLoaded()/getBytesTotal. The most accurate mechanism uses the
new Flash 5 getBytesLoaded()/getBytesTotal() methods.

✦ You can breakup large Flash projects into several smaller Flash movie compo-
nents that are loaded into a primary .SWF file when they’re needed.

✦ The loadMovie action enables you to download .SWF files into Level or Movie
Clip instance locations.

✦ Flash 5 offers a new way to share movie assets with the Shared Library feature.
As this is a new mechanism to load assets, we recommend that you thoroughly
test any Shared Libraries on live production servers before you make the
content accessible to the public.

✦ ✦ ✦

Caution

3515-3 ch20.f.qc 1/18/01 5:00 PM Page 586

Planning Code
Structures

For many serious Web developers, Flash 5’s enhanced
programming capabilities are the single most important

new feature of the product. Now, more than ever, elements
inside Flash movies can be dynamic, have machine-calculated
properties, and respond to user input. Movies can now com-
municate with server-side applications and scripts by sending
and receiving processed and raw data. What does this mean
for your movies? It means you now have the tools that you
need to produce truly advanced movies (such as Flash
asteroids, a multiplayer role-playing adventure game, or a
navigational interface with a memory of the user’s moves
are entirely possible). It also means that Flash can be used to
produce many complex Web applications (such as database-
driven e-commerce product catalogs) without the need for
Macromedia Generator. This chapter introduces you to the
new programming structure of ActionScript and explains
how to start using code within your Flash movies.

Breaking Down the Interactive
Process

Before you can become an ActionScript code warrior, you
need to realize that this isn’t just a weekend activity — if you
want to excel at Flash ActionScripting, you’ll need to commit
the time and energy necessary for the proper revelations to
occur. It’s not likely that you’ll understand programming sim-
ply by reading this chapter (or the whole book). You need to
create some trials for yourself, to test your textbook knowl-
edge and allow you to apply problem-solving techniques.

You might be thinking, “Oh no, you mean it’s like geometry,
where I’m given a problem, and I have to use theorems and

2121C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Describing interactive
problems

Speaking the
ActionScript
language

Appreciating the
value of variables

Understanding
object-oriented
systems

Using the
Debugger Panel

✦ ✦ ✦ ✦

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 589

590 Part V ✦ Programming Flash Movies with ActionScript

postulates to create a proof?” Not exactly, but programming, like geometry, requires
strong reasoning and justification skills. You need to be able to understand how val-
ues (for example, the height of a Movie Clip instance) are determined, what type of
changes you can perform on those values, and how changes to one value might
affect another value. Confused? Don’t worry, we take this one step at a time.

See Chapter 38, “Planning Flash Production with Flowcharting Software,” for more
detailed information regarding project planning and management.

Define your problems
Regardless of what interactive authoring tool you use (DHTML and JavaScript,
Flash, Director, and so on), you can’t begin any production work until you have a
clear idea of the product. What is it that you are setting out to do? At this point in
the process, you should use natural language to describe your problems; that is,
define your objective (or problem) in a way that you understand it. For example,
let’s say that you want to make a quiz. You’ll have to run through a list of goals for
that interactive product:

✦ Is it a true/false test?

✦ Or will it be multiple choice?

✦ Or fill-in-the-blank?

✦ An essay test?

✦ How many questions will be in the quiz?

✦ Will there be a time limit for each question?

✦ Will you notify the person of wrong answers?

✦ How many chances does the person get to answer correctly?

There are other questions, of course, that could help define what your product will
encompass. Don’t try to start Flash production without setting some project param-
eters for yourself.

Clarify the solution
After you have defined the boundaries for the project, you can start to map the pro-
cess with which your product will operate. This step involves the procedure of the
experience (in other words, how the person will use the product you are creating).
With our quiz example, you might clarify the solution as:

1. User starts movie, and types his/her name.

2. After submitting the name, the user will be told that they have 10 minutes to
complete a 25-question quiz that’s a combination of true/false and multiple-
choice questions.

Cross-
Reference

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 590

591Chapter 21 ✦ Planning Code Structures

3. Upon acknowledging the instructions (by pressing a key or clicking a button),
the timer starts and the user is presented with the first question.

4. The timer is visible to the user.

5. The first question is a true/false question, and the correct answer is false.

6. If the user enters a true response, then a red light graphic will appear and
the sound of a buzzer will play. The user will be asked to continue with the
next question.

7. If the user enters a false response, then a green light graphic will appear and
the sound of applause will play. The user will be asked to continue with the
next question.

8. This process repeats until the last question is answered, at which point the
score is tallied and presented to the user.

The preceding eight steps are very close to a process flowchart, as discussed in
Chapter 38 “Planning Flash Production with Flowcharting Software.” In real-life
production, you would want to clarify Step 8 for each question in the same amount
of detail as Steps 5 to 7 did. As you can see, once you start to map the interactive
experience, you’ll have a much better starting point for your scripting work. Notice,
that we’re already using logic, with our if statements in Steps 6 and 7. We’re also
determining object properties such as _visible in Step 4. While we may not know
all the ActionScript involved with starting a timer, we know that we have to learn
how time can be measured in a Flash movie.

Translate the solution into the interactive language
After you have created a process for the movie to follow, you can start to convert
each step into a format that Flash can use. This step will consume much of your
time, as you look up concepts and keywords in the ActionScript Reference Guide.
It’s likely that you won’t be able to find a prebuilt Flash movie example to use as a
guide, or if you do, that you’ll need to customize it to suit the particular needs of
your project. For our quiz example, we could start to translate the solution as:

1. Frame 1: Movie stops. User enters name into a text field.

2. (a) Frame 1: User clicks a submit Button symbol instance to initiate the quiz.
The instructions are located on frame 2. Therefore, the Button action uses a
gotoAndStop(2) action to move the playhead to the next frame.

2. (b) Frame 2: Static text will be shown, indicating the guidelines for the quiz.

3. Frame 2: User clicks a start quiz Button symbol instance. An action on the
Button instance starts a timer and moves the playhead to frame 3.

4. Frame 3: The current time of the timer is displayed in a text field, in the
upper-right corner of the Stage.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 591

592 Part V ✦ Programming Flash Movies with ActionScript

5. Frame 3: The first question is presented in the center of the Stage. A button
with the text True and a button with the text False are located just beneath
the question. The correct answer for the question is hidden in a variable
name/value. The variable’s name is answer, and its value is false. This
variable declaration appears as a Frame Action on frame 3. A variable, called
score, will also be declared to keep track of the correct answer count. Its
starting value will be 0.

6. (a) Frame 3: If the user clicks the True button, then an if/else action will check
whether answer’s value is equal to true. If it is, then an action will set the
_visible of a greenLight Movie Clip instance to true, and initiate and play a
new Sound Object for the applause.wav file in our Library. Also, the value of
score will increase by 1. If the value of answer is not true, then an action will
set the _visible of a redLight Movie Clip instance to true, and initiate and
play a new Sound Object for the error.wav file in our Library. The value of
score will be left as is.

6. (b) Frame 3: A Button instance will appear, and when clicked, take the user to
frame 4.

7. (a) Frame 3: If the user clicks the False button, then an if/else action will check
whether answer’s value is equal to true. If it is, then an action will set the
_visible of a greenLight Movie Clip instance to true, and initiate and play a
new Sound Object for the applause.wav file in our Library. Also, the value of
score will be increased by 1. If the value of answer is not true, then an action
will set the _visible of a redLight Movie Clip instance to true, and initiate
and play a new Sound Object for the error.wav file in our Library. The value of
score will be left as is.

7. (b) Frame 3: A Button instance will appear, and when clicked, it will take the
user to frame 4.

While there is more than one way we could have translated this into ActionScript-
like syntax, you’ll notice that a few key concepts are presented in the translation:
where events occur (frames or buttons), and what elements (for example, Button
symbols or Movie Clip instances) are involved.

Most importantly, you’ll notice that we used the same procedure for both the True
and the False buttons. Even though we could hardwire the answer directly in the
Button actions, we would have to change our Button actions for each question. By
placing the same logic within each Button instance, we only have to change the
value of the answer variable from frame to frame (or from question to question).

Granted, this example was already translated for you, and 90 percent of your script-
ing woes will be in the translation process — before you even have a testable Flash
movie. You need to learn the basic terminology and syntax of the ActionScript
language before you can start to write the scripting necessary for Steps 1 to 7. And
that’s exactly what the rest of this chapter (and the rest of Part V) do.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 592

593Chapter 21 ✦ Planning Code Structures

Expert Tutorial: Object-Oriented Design in Flash:
The Fundamental Concepts, by Philip Fierlinger

As the scale and sophistication of your Flash projects increase, you will want to streamline
your development process. You will need to find ways to optimize your projects, making
them more efficient, more flexible, more manageable, and more scalable. One of the best
techniques to do this is called object-oriented design.

The basic concept
In object-oriented design, a project gets divided into self-contained modules, simply called
objects. In software, each object can be duplicated infinitely, without increasing the file size
of your project. Each duplicate of an object can operate independently and be modified
independently from the source object. However, making changes to the single source
object will automatically apply those changes universally to every duplicate of the object. In
object-oriented design, you can easily add or subtract objects to your project or make
changes to an object without breaking the overall system. Objects can exchange data
directly with each other and they can form complex interconnected relationships.

At its core, Flash is an object-oriented tool. You may not even realize it, but every time you
place a Symbol from the Library onto the Stage, you are using an object-oriented design
process. Symbols are object based, which means that you can create infinite Instances of
the same Symbol without increasing the file size of your movie. In addition, you can modify
the properties of each Instance independently.

Think of an object as a worker. Imagine that you can infinitely clone one worker, but you
only have to pay for the first one, the rest are free. Then imagine that you can assign each
cloned worker to an independent task, so that no two workers have to duplicate the same
exact work. That’s one stunningly efficient and flexible worker.

All three types of Symbols — Graphic, Button, and Movie Clip — let you independently mod-
ify certain properties of their respective Instances while authoring in Flash. These properties
include the scale, position, color, and opacity. In the case of Graphic and Button instances,
after you export your Flash file as a .SWF movie, those properties are fixed. Those properties
cannot be changed despite dynamic conditions such as user input, loaded data, or the state
of other properties in your movie.

Dynamic objects
On the other hand, Instances of a Movie Clip can be changed dynamically during runtime.
Movie Clips are objects that you can explicitly target. The properties of Movie Clips can be
queried and changed at any time. Most important of all, you can also query and set vari-
ables within any Movie Clip.

Continued

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 593

594 Part V ✦ Programming Flash Movies with ActionScript

Continued

Because Movie Clips can be changed dynamically, they can be constructed as general-
purpose templates that are customized during runtime. For instance, you can build an
object-oriented menu system using Movie Clips in which the buttons have no predefined
names. Instead, the button names are created as Movie Clips containing empty text fields
that can be dynamically set during runtime, based on specific conditions in the movie. You
can also duplicate the entire menu system, at no cost data wise, and apply entirely different
values to the button names each time.

Using Movie Clips in this way makes your project very flexible, scalable, and efficient.
Because your menu system is object oriented, you can easily reuse and infinitely duplicate
the menu system without affecting the project’s file size. It also makes your project more
manageable. You only need to test and debug a single general-purpose object — the menu
system — rather than testing and debugging numerous unique menu items. By the same
token, changes made to the foundation object are applied to all of its derivatives, so that
fundamental changes to the system are easy to implement.

In most large-scale Flash projects common user interface features such as preloaders,
menus, floating windows, and scroll bars are usually built as object-oriented systems. In
fact, there’s a new feature in Flash 5.0 called Smart Clips. Smart Clips enable you to set vari-
able properties and data values of a Movie Clip through a convenient editor, rather than
having to modify the source code of your Movie Clips in ActionScript. This makes project
management easier. It provides developers with a simple system to package, reuse, and
share Smart Clip objects. Smart Clips can be reused within a single movie, but they can also
be shared across multiple projects with numerous team members.

Nesting: Parent-child relationships
Nesting is another powerful technique in object-oriented design. When you place one
object inside of another object you are linking the objects in something called a parent-
child relationship. The “host” object is called the parent; the nested object is the child.
Parent-child relationships are extremely powerful because child objects inherit properties
from the parent. However, child objects also maintain their own separate properties, inde-
pendent of the parent.

To demonstrate the concept of nesting let’s use an animated character as an example. Let’s
say that we nest a character’s finger object inside of its hand object, which is nested inside of
the arm object, that’s nested inside of the body object. All the subsequent child objects will
inherit any property that we change in the parent object. Scaling the body scales the arm,
hand, and finger accordingly. Moving the body moves the arm, hand, and finger accordingly.
However, moving the hand only affects the finger, not the arm or the body, because child
objects can act independently of their parents (remember, the arm and the body are parents
of the hand). That’s exactly how our own human anatomy works: Our fingers must go wher-
ever our body takes them, but they can also move independently from our body.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 594

595Chapter 21 ✦ Planning Code Structures

Object-oriented Flash site architecture
These same fundamental principles of object-oriented design also apply to the development
of your entire site. By building your Flash site in modular object-oriented components, you
can dramatically improve site performance, site management, and site scalability.

Flash sites should be segmented into small, self-contained Flash movies that are treated as
independent objects within the overall site structure. These independent movies are loaded
and nested into the site by using the loadMovie command.

When loading in a new movie you must specify and replace an existing Movie Clip. Often,
the Movie Clip that you will want to target and replace will be designed as an empty place-
holder, a blank Movie Clip that serves only to load external movies.

Like all other nested objects, your nested movies will be linked through a parent-child rela-
tionship. It’s very important to remember that the nested movie will inherit the position,
scale, color, and opacity of the targeted Movie Clip.

The primary advantage of segmenting your Flash site into independent objects is the ability
to load content only if and when it is needed, on demand, rather than forcing users to
download your entire site all at once. A word to the wise: For optimum performance, the
first movie that users download, the parent movie, should contain only code and graphics
that are absolutely necessary for the user to navigate the rest of your site.

In terms of site development, by segmenting your site into independent objects you only
need to edit, test, and debug the specific file that needs attention, rather than having to han-
dle one enormously confusing file. It also makes the site infinitely scalable, making it easy to
add or remove new content to your site simply by adding or removing individual movies. In
a team environment, it’s much, much easier to divide development among multiple team
members.

Object-oriented scripting
In most software development, object-oriented programming (OOP) is fundamental.
Although OOP could be simulated in version 4.0, ActionScript in Flash 5.0 is now a full-
fledged OOP language.

The protocol, syntax, and strategy for using object-oriented scripting (OOS) in Flash can get
extremely complex. You will find more in-depth coverage of this topic elsewhere in this
book. For this section, the general concept is what we want to cover.

Fundamentally, OOS serves the same purpose as all other object-oriented techniques that
we’ve covered so far: OOS makes project development more efficient, more manageable,
more scalable, and more flexible.

The basic idea is to avoid writing code that is hardwired, meaning code that is written for
only one purpose that can only be used one time, under one set of conditions. Instead, it’s
better to compartmentalize your code into general-purpose routines that can be accessed
and reused multiple times, for multiple purposes, in multiple combinations.

Continued

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 595

596 Part V ✦ Programming Flash Movies with ActionScript

Continued

In Flash, code objects are known as functions. A function describes a specified set of proce-
dures that will be run whenever the function is invoked. The objective is to build functions
that have an explicit task, but the data that they process is relative to the current conditions
of the movie. By treating all data as relative, your function is flexible — it can operate under
many conditions, producing dynamic results that are based on the specific conditions at
hand. In addition, you can combine and nest functions to produce very complex and
dynamic results.

As an example, let’s take the object-oriented menu system that was used as an example
earlier. You would probably want to build a number of functions to handle the operation of
the menu system. One function would put the menu system Movie Clip on Stage and posi-
tion it properly. Another function would fill in the button names. An additional function
would handle the actions to be performed based on which Button was pressed.

By segmenting various functions into specialized objects, you can reuse each function for
other purposes. For instance, the function that puts the menu on stage and positions it
could be reused in order to place a character on stage and position it. A well-written func-
tion performs a specialized task, but it handles data in a relative manner, so that the
Function will be flexible, scalable, manageable, and efficient.

Final thoughts
Over the years, Flash has evolved from a quirky little animation tool into a mighty Internet
platform. Its key to success has been the capability to deliver dynamic content in an
extremely small file format. While the vector graphics technology behind Flash usually gets
all the credit for its zippy performance and slender file size, there is a deeper concept inher-
ent to Flash that is more sublime and ultimately more powerful.

Flash is an intrinsically object-oriented development environment. I hope that you now
understand that by using object-oriented design techniques you can dramatically improve
your site’s performance — making it more efficient and more dynamic. At the same time,
you will improve your development process by making your site more manageable, flexible,
and scalable.

Born and raised in Penn Wayne, Pennsylvania, Philip Fierlinger’s single most favorite thing to do is to spend
time with his wife and their baby. Philip works at Turntable (www.turntable.com), a multimedia company
in San Francisco, where he has created Flash experiences for De La Soul and the Beastie Boys (for
www.shockwave.com); interactive demos of Palm Computing’s Palm III; and iTV development for Disney,
among other exciting projects. During his final year of high school, Philip remembers seeing Robocop and
seeing U2 perform at the Meadowlands for their Joshua Tree tour. Philip recognizes the value of “laughing
with good friends, eating great food, visiting beautiful places, listening to great music, watching great
movies, being inspired by great design, and incorporating all of the above into great work.”

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 596

597Chapter 21 ✦ Planning Code Structures

The Basic Context for Programming in Flash
With the new Actions Panel in Flash 5, you can program interactivity in two ways:
by using a drag’n’drop menu-based set of actions (Normal Mode), or by writing
interactive commands directly into the Actions list pane of the Actions Panel
(Expert Mode).

Normal Mode
This mode consists primarily of attaching actions to keyframes and buttons, and
selecting parameters for those commands from drop-down menus (or Action book-
lets) and/or entering parameters by hand into option fields. Although this method
of programming can feel unnatural to traditional programmers, the resulting
ActionScript looks and reads the same as the code produced with Expert Mode.

Expert Mode
In Expert Mode, you can type your code from scratch, as well as insert your code
with the help of Action booklets. Syntactically, ActionScript looks and feels very
much like JavaScript. Macromedia has gone to great lengths to make ActionScript
compatible with ECMA-262 (the standard programming guidelines derived from
JavaScript). And like other object-oriented languages, ActionScript is composed
of many familiar building blocks: variables, operators, conditionals, loops, expres-
sions, built-in properties, subroutines, and native functions.

Accessing ActionScript commands
All of the ActionScript commands are found easily in the Flash interface in the Action
booklets or plus (+) button menu in the Actions Panel. However, the assembly of
actions with one another is not something Flash automatically performs. Although
it is beyond the scope of this chapter to fully explain fundamental programming
principles, we can give a sense of the whole of ActionScript by providing you with
an organized reference to each of its parts.

If you use the plus (+) menu to access ActionScript commands, you’ll notice that
shortcut keys are defined after the name of the command. You can use these short-
cuts in either Normal or Expert Mode. For example, loadMovie has a keyboard
shortcut of Esc+lm. If you give the Actions Panel focus and press Esc+lm, then the
loadMovie action will appear in the Actions list, complete with placeholders for
arguments

Tip

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 597

598 Part V ✦ Programming Flash Movies with ActionScript

Actions list organization in the Actions Panel
In Normal Mode, you can add a line of code below any existing statement by high-
lighting the existing statement in the Actions list, and then adding your action. If
you accidentally add your code in the wrong place, or if you want to move code
around, simply select the lines that you want to move and drag them with the
mouse. You can also cut, copy, and paste code within the Actions list or from one
list to another using Ctrl+X (Command+X), Ctrl+C (Command+C), and Ctrl+V
(Command+V), respectively.

In Expert Mode, the highlighting mechanism for selected actions changes. You are
free to select partial or entire lines of code, and modify the code in any way you
want. With Flash 5, you can even edit your code in your preferred text editor! If you
want to create your own programming macros in other programming applications,
then you can write your scripts outside of Flash and copy the final code into the
Actions Panel when you’re done.

To make sure that you don’t have any syntax errors after reorganizing code in Expert
Mode, temporarily switch to Normal Mode. Flash will alert you if there are scripting
errors, and won’t let you enter Normal Mode until the error(s) has been fixed.

Tip

Using the New #include Action

Flash 5 ActionScript now has an action that enables you to insert external text files (with an
.AS file extension). Now, you can write ActionScript in any text or script editor and save that
text separately from the Flash movie (.FLA file). When you publish a .SWF movie from the .FLA
file, Flash 5 will retrieve the .AS file, and insert the actions to the Action list where the
#include action was issued. For example, the following code could be written in a contact.as
file, which, as the name implies, contains a person’s contact information for the Flash movie:

contactName = “Joseph Farnsworth”;
contactStreet = “675 Locust Street”;
contactCity = “Chicago”;
contactState = “IL”;
contactPhone = “312-555-1342”;
contactEmail = “jfarnsworth@mycompany.com”;

In a Flash movie, you could insert this code into a Main Timeline (or a Movie Clip timeline)
keyframe* by using the #include action (you can use the #include action within any
Flash event handler including keyframe, Button instance, onClipEvent, and so on):

#include “contact.as”

Make sure you do not insert a semicolon at the end of the #include line. Think of
the #include action as a special tag for Flash 5, letting it know that it should replace the
#include line of code with all the code within the referred file. The following code will result
in a “malformed” error in the Output window, upon testing or publishing the Flash movie:

#include “contact.as”;

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 598

599Chapter 21 ✦ Planning Code Structures

One Part of the Sum: ActionScript Variables
After you have a clear understanding of Movie Clip instances and how to control
their playback and properties, you can move on to the fundamentals of learning a
system of composing more complex scripts with Flash actions. If you are familiar
with JavaScript or Director Lingo, then your transition to Flash’s scripting environ-
ment will be smoother.

If you are new to scripting, we highly recommend that you review Part IV, “Adding
Basic Interactivity to Flash Movies,” before you begin this chapter. Also, you may
want to review Chapters 1 and 2 of the Flash 5’s ActionScript Reference Guide.

In any scripting or programming language, you will need some type of “memory”
device — something that can remember the values and properties of Objects or
significant data. This type of memory device is referred to as a variable.

Variables are named storage places for changeable pieces of data (numbers and
letters). One of the first obstacles for designers learning a scripting language to
overcome is the concept that variable names in and of themselves have no meaning
or value to the computer. Remember that the computer can’t perform anything
unless you tell it to. Even though any given scripting language has a certain set of
“built-in” properties and functions, variables can simplify our scripting workload
by creating shortcuts or aliases to other elements of the ActionScript language of
the script. One prime example of a shortcut variable is the pathname to a deeply
nested Movie Clip instance, such as:

_root.birdAnim.birdHouse.birdNest.birdEgg

truncated to a variable named pathToEgg as:

pathToEgg = _root.birdAnim.birdHouse.birdNest.birdEgg;

Once pathToEgg is declared and given a value, then we can reuse it without referring
to the lengthy path name, as in:

with(pathToEgg){
gotoAndPlay(“start”);

}

Cross-
Reference

Why is the #include action useful? For experienced programmers, the #include com-
mand allows freedom to write ActionScript in any text editor. You can define entire code
libraries of custom functions. These .AS libraries can then be reused from movie to movie.

Note that the #include action is only executed upon publishing or testing the Flash movie.
You can not upload .AS files to your Web server for “live” insertion of Flash ActionScript.
Anytime you change the .AS file, you will need to republish your .SWF file.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 599

600 Part V ✦ Programming Flash Movies with ActionScript

The important concept here is that you could just as easily have given pathToEgg a
different name, such as myPath, or robPath, or whatever word(s) you’d like to use.
As long as the syntax and formatting of the expression is correct, then you have
nothing to worry about.

Variables in ActionScript are now “typed,” meaning that their value is explicitly set
to be either a string, number, Boolean, or object. When working with variables, you
must therefore know what data type the value is. We discuss data typing in the
next chapter.

Variables in Flash are attached to the timeline of the movie or Movie Clip instance
on which they are created. If you create a variable x on the Main Timeline, that vari-
able is available for other scripting actions on that timeline. However, from other
Movie Clip timelines, the variable is not directly accessible. To access the value of
a variable on another timeline (such as a Movie Clip instance), enter the target path
to the clip instance in which the variable resides, a dot (.), and then enter the vari-
able name. For instance, this statement sets the variable x to be equal to the value
of the variable y in Movie Clip instance named ball:

x = _root.ball.y;

Whereas this statement sets the variable y to be equal to the value of the variable x
on the Main Timeline:

y = _root.x;

Variables in ActionScript are not case sensitive and cannot start with a number.

String literals
In programmer speak, a string is any combination of alphanumeric characters. By
themselves, they have no meaning. It is up to you to assign something meaningful
to them. For example, giving a variable the name firstName doesn’t mean much.
We need to assign a value to the variable firstName to make it meaningful, and we
can do something with it. For example, if firstName = “Susan”, then we could
make something specific to “Susan” happen.

You can also use much simpler name/value pairs, such as i = 0, to keep track of
counts. If you want a specific Movie Clip animation to loop only three times, you
can increment the value of i by 1 (for example, i = i + 1, i += 1, and i ++ all do the
same thing) each time the animation loops back to the start. Then, you can stop
the animation when it reaches the value of 3.

Tip

New
Feature

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 600

601Chapter 21 ✦ Planning Code Structures

Expressions
Flash uses the term expression to refer to two separate kinds of code fragments in
ActionScript. An expression is either (a) a phrase of code used to compare values in
a Conditional or a Loop (these are known as conditional expressions), or (b) a snip-
pet of code that is interpreted at runtime (these are known as numeric expressions
and string expressions). We discuss conditional expressions later in this chapter.

Numeric and string expressions are essentially just segments of ActionScript code
that are dynamically converted to their calculated values when a movie runs. For
instance, suppose you have a variable, y, set to a value of 3. In the statement x =
y + 1, the y + 1 on the right side of the equal sign is an expression. Hence, when the
movie runs, the statement x = y + 1 actually becomes x = 4, because the value of y
(which is 3) is retrieved (or “interpreted”) and the calculation 3 + 1 is performed.
Numeric and string expressions are an extremely potent part of ActionScript because
they permit nearly any of the options for Actions to be set based on mathematical
calculations and external variables rather than requiring fixed information. Consider
these two examples:

1. The Type option of a Go To action could be set as an expression that returns
a random number in a certain range, sending the movie to a random frame

2. The URL option in a getURL action could be made up of a variable that
indicates a server name and a literal string, which is the file path.

To change all the URLs in your movie from a staging server to a live server you’d
just have to change the value of the server variable. Anywhere that you see the
word expression in any Action options, you can use an interpreted ActionScript
expression to specify the value of the option. Just enter the code, and then check
the Expression option.

To use a string inside an expression, simply add quotation marks around it.
Anything surrounded by quotation marks is taken as a literal string. For example,
the conditional: if (status == ready) wrongly checks whether the value of the
variable status is the same as the value of the nonexistent variable ready. The
correct conditional would check whether the value of status is the same as
the string “ready” by quoting it, as in: if (status == “ready”).

You can even have expressions that indirectly refer to previously established vari-
ables. In Flash 5, you can use the new Dots notation (and array access operators) to
indirectly refer to variables, or you can use Flash 4’s eval() function (to maintain
backward compatibility).

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 601

602 Part V ✦ Programming Flash Movies with ActionScript

Array access operators
If you have a variable called name_1, you can write the expression _root[“name_”
+ “1”] to refer to the value of name_1. How is this useful? If you have more than
one variable, but their prefix are the same (for example, name_1, name_2, name_3,
and so on), you can write an expression with two variables as a generic statement
to refer to any one of the previously established variables: _root[“name” + i],
where i can be any predefined number.

Eval()function and Flash 4’s Set Variable
If you want to use old-fashioned ActionScript to indirectly refer to variable names
and values, then you have two ways to go about it:

1. Use the Set Variable action, specifying the variable name as a Slash-notated
expression as:

set(“/name_” add i, “Robert Reinholdt”);

2. Use the eval() function, specifying the variable as an expression:

eval(“_root.name_” add i) = “Robert Reinholdt”;

Variables as declarations
In most scripting languages, you usually don’t have to declare a variable without
its value; that is, you don’t need to say variable firstName and then address it
again with a value. In Flash, you don’t need to preestablish a variable in order
to invoke it. If you want to create a variable on the fly from a Movie Clip to the
Main Timeline, you can. Most variables that you use in Flash will be declared in
a timeline’s keyframes.

Variables as text fields
Since Flash 4, text could be specified as text fields. A text field can be used as a
dynamic text container whose content can be updated via ActionScript and/or
the intervention of a server-side script (known in Flash 5 as Dynamic Text), or it
can accept input from the user (known in Flash 5 as Input Text).

You can access its properties by selecting a text field and opening the Text Options
Panel. In this panel, you can define the parameters of the text variable, including
its name.

An Input Text field is editable when the Flash movie is played; the user can enter
text into the text field. This newly typed text becomes the value of the text field
variable. On a login screen, you can create an Input Text field with a name login,
where the user enters his/her name, such as Joe. In ActionScript, this would be
received as login = “Joe”. Any text that you type into a text field during the
authoring process will be that variable’s initial value.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 602

603Chapter 21 ✦ Planning Code Structures

Declaring Variables in Flash
There are several ways to establish, or declare, variables in a Flash movie. You can
create them directly with ActionScript (or with Text Fields, as seen in the last sec-
tion), load them from a text file or CGI (Common Gateway Interface) script, or
include them in HTML tags.

Using actions to define variables
The most common way to create a variable is to type the variable’s name and value
in the Actions list of the Actions Panel, on a specific timeline’s keyframe, accessed
in the Frame Properties or Instance Properties dialog. Most basic variables will
have values that are string literals.

If you are using Normal Mode in the Actions Panel, then a var action has one
option: variables. Note that the var action is used for local variables that only
exist for the duration of a function execution.

We discuss local variables in the next chapter.

Loading variables from a predefined source
You can also establish variables by loading them from an external source, such as
a text file located on your Web server or even through a database query. By using
the loadVariables action, you can load variables in this fashion. There are three
primary options for the loadVariables action: URL, Location, and Variables (see
Figure 21-1).

Figure 21-1: The options of the loadVariables action

Cross-
Reference

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 603

604 Part V ✦ Programming Flash Movies with ActionScript

URL specifies the source of the variables to be loaded. This can be a relative link to
the variable source (you don’t need to enter the full path of the resource). You can
specify whether this URL value is a literal value (“http://www.theMakers.com/
cgi-bin/search.pl”) or an expression that uses a variable or a combination of
variables (serverURL + scriptPath + scriptApp). If you want to point to a spe-
cific file, type its relative path and name here. If you want to access a database
that returns dynamic data, insert the path to the script, such as “http://www.
domain.com/cgi-bin/search.pl”.

The Location option determines where the variables are to be loaded. You can send
the name/value pairs to a level or a timeline target. If you want the variables to be
available on the Main Timeline, use _root or _level0. You can also specify a Movie
Clip target using a relative or absolute address. To load to the current Movie Clip
(the one initiating the loadVariables action), use the target this.

The last option is Variables, and this drop-down menu specifies whether you are
sending and loading (in other words, receiving) variables. If you want to load vari-
ables from a static source, like a text file, you should choose Don’t Send. If you are
sending a query to a database-driven engine, then you will need to choose either
GET or POST. Note that the use of loadVariables in GET or POST method means
that you are sending variables declared on the active timeline to the specified URL,
which, in turn, will send name/value pairs back to the Flash movie.

The formatting of name/value pairs is standard URL-encoded text. If you want to
encode name/values in a text file (or a database), you need to use the following
format:

variable=value&variable=value...

Basically, in URL-encoded text, name/value pairs are joined by an ampersand (&).
To join multiple terms in a value, use the plus (+) symbol, as in:

name1=Joe+Smith&name2=Susan+Deboury

Sending variables to URLs
You can also send variables to a URL by using the getURL action. Any name/value
pairs that are declared on the active timeline will be sent along with the getURL
action, if a variable send method is defined (GET or POST). Note that getURL is
only used to send variables out of a Flash movie — it will not retrieve or load any
subsequent name/value pairs. If you use a getURL action on a Movie Clip timeline
as follows:

firstName = “Robert”;
getURL(“/cgi-bin/form.cgi”, “_blank”, “GET”);

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 604

605Chapter 21 ✦ Planning Code Structures

then the Flash movie will send the following request to your server:

http://www.server.com/cgi-bin/form.cgi?firstName=Robert;

The output of the form.cgi script would be opened in a new browser window
(“_blank”).

Establishing variables with HTML
You can also send variables to Flash movies in the <EMBED> and <OBJECT> tags that
call the Flash movie. In the SRC attribute of <EMBED> or the PARAM NAME=movie subtag
of the <OBJECT> tag, attach the name/value pairs to the end of the Flash movie
filename, separated by a question mark (?).

<OBJECT...>
<PARAM NAME=movie VALUE=”flash.swf?name=Rob”>
<EMBED SRC=”flash.swf?name=Rob”>

We discuss data sending and receiving with greater detail in Chapter 24, “Sending
Data In and Out of Flash.”

Creating Expressions in ActionScript
You can write expressions either by manually typing in the primary option fields of
ActionScript commands, or by dragging and dropping Actions from Action Booklets
in the Actions Panel. There are no scripting wizards in Flash; Flash 5 will not auto-
matically script anything for you. However, it will provide you with Booklets of
operators and functions available in Flash 5.

Operators
Operators are used to perform combinations, mathematical equations, and to
compare values.

General and numeric operators
These operators are used for common mathematical operations of adding, subtract-
ing, multiplying, and dividing. You can also use these operators to compare numeric
values, such as > or <.

if (results > 1)
name = “Robert”;
root[“name” + i] = newName;

Cross-
Reference

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 605

606 Part V ✦ Programming Flash Movies with ActionScript

String operators
These Flash 4-specific operators are used to declare, join, or compare string literals
with other string literals or expressions. If you want to concatenate two variables to
create a new variable, use the string operators.

set (“fullName”, “firstName” & “ “ & “lastName”);

Logical operators
These operators join several expressions to create conditions. We discuss these
further in the “Checking conditions: If...Else actions” section of this chapter.

// Flash 5 syntax below

if (results > 1 && newResults < 10){
// do something...

}

// Flash 4 syntax below

if (results > number(“1”) AND newResults < number(“10”)){
// do something...

}

Table 21-1 describes the ActionScript operators available in both Flash 4 and 5 syntax.

Table 21-1
ActionScript Operators

Flash 5 Flash 4 Definition

+ + Adds number values and joins (concatenates) strings
in Flash 5

- - Subtracts number values

* * Multiplies number values

/ / Divides number values

= = Equals; used for assignment of variables, properties,
methods, and so on in Flash 5; can be used for
comparison in Flash 4

== = Equals; used for comparison in if/else . . .
if conditions

!= <> Does not equal

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 606

607Chapter 21 ✦ Planning Code Structures

Flash 5 Flash 4 Definition

< < Less than

> > Greater than

<= <= Less than or equal to

>= >= Greater than or equal to

() () Group operations together, as in x = (x+y) * 3;

“” “” Indicate that the enclosed value should be interpreted as
a string, not as an expression

== eq Is equal to; for example, if (name == “derek”){ or
if (name eq “derek”){

!= ne Is not equal to

< lt Alphabetically before; if the strings compared have
multiple characters, then the first character determines
the alphabetical position

> gt Alphabetically after

<= le Alphabetically before or the same as

>= ge Alphabetically after or the same as

+ add Join two strings together or add a string to a variable

&& and Logical comparison; requires that two or more conditions
be met in a single comparison

|| or Logical comparison; requires that one of two or more
conditions be met in a single comparison

! not Logical comparison; requires that the opposite of a
condition to be met in a single comparison

Checking conditions: If...Else actions
Conditions lie at the heart of logic. In order to create an intelligent machine (or
application), we need to create a testing mechanism. This mechanism (called a con-
ditional) needs to operate on rather simple terms as well. Remember the true/false
tests that you took in grade school? if/else statements work on a similar principle:
If the condition is true, then execute a set of actions. If the condition is false, then
disregard the enclosed actions and continue to the next condition or action.

You can simply create isolated if statements that do not employ an else (or then)
statement. Solitary if statements are simply ignored if the condition is false. Else
statements are used as a default measure in case the tested condition proves false.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 607

608 Part V ✦ Programming Flash Movies with ActionScript

Else if statements continue to test conditions if the previous if (or else if)
was false. Refer to following examples for more insight.

✦ Basic if statement: The code between the curly braces is ignored if the con-
dition is false.

if (condition is true){
then execute this code

}

✦ Extended if/else if/else statement: If the first condition is true, then code
immediately after the first condition is executed and the remaining else if
and else statements are disregarded. However, if the first condition is not
true, then the second condition is tested. If it is true, then its code executes
and all other statements in the if group are ignored. If all conditions prove
false, then the code between the curly braces of the final else is executed.

if (first condition is true){
then execute this code

} else if (second condition is true){
then execute this code

} else {
otherwise, execute this code

}

In production, you could have an if/else structure that assigned the value of one
variable based on the value of another, such as:

if (x == 1){
name = “Margaret”;

} else if (x == 2){
name = “Michael”;

} else {
name = “none”;

}

Do not use a single = sign in a condition, as this will actually set the variable’s
value. For example, if you wrote if (x = 1){}, then Flash will actually set x = 1,
and not check whether x’s value is equal to 1.

In Normal Mode, you can add an if statement in ActionScript by choosing the if
action from the plus (+) button in the top-left corner of the Actions Panel, or by
selecting it from the Actions Booklet. In the Condition text field, enter the expres-
sion that identifies what circumstance must exist for the statements in your condi-
tional to be executed. Remember that, in your expression, literal strings must be
quoted, and the == operator must be used for string or numeric comparisons. To
add an else clause, select the first line of the if statement, and then double-click
the else or else if action in the Actions Booklet.

Caution

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 608

609Chapter 21 ✦ Planning Code Structures

You can join two conditions using Logical compound operators such as and (&&),
or (||), or not (!), as in:

if (results >1 && newResults < 10){
gotoAndPlay (“end”);

} else if (results > 1 ! newResults < 10) {
gotoAndPlay (“try_again”);

}

Loops
A loop is a container for a statement or series of statements that are repeated as
long as a specified condition is exists. A basic loop has three parts: the condition,
the list of statements to be repeated, and a counter update. There are four types of
loops in Flash 5 ActionScript:

✦ while

✦ do . . . while

✦ for

✦ for . . . in

Each of these loop types has a specific use. Depending on the repetitive actions
you wish to loop, you need to decide how best to accommodate your code with
loop actions.

while(condition){ actions }
This loop was called the Loop While action in Flash 4. In this loop type, the condi-
tion of the loop is evaluated first, and, if it is true, then the actions within the curly
braces will be executed. The actions will loop indefinitely (causing a script error)
unless there is a way out of the loop — a counter update. A counter update will
increment (or decrement) the variable used in the while condition. Here you see
a breakdown of a typical while loop. Note that a variable used in the condition is
usually set just before the while action is executed.

Initial variable count = 1;

Condition while (count <= 10){

Statements to be repeated _root[“clip_” + count]._xscale = 100
/ count;

Counter update count = count + 1;

Termination of loop }

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 609

610 Part V ✦ Programming Flash Movies with ActionScript

In this example, a variable named count starts with a value of 1. The first time the
while action executes, counter’s value is less than (or equal to) 10. Therefore,
the actions within the curly braces are executed. The first action in the loop
uses the count value to form the name of a Movie Clip instance, clip_1, and alter
it’s X Scale property by a value of 100/1 (which is equal to 100). Then, the count
variable is incremented by 1, giving it a new value of 2. The while condition is
then reevaluated.

The second time the while action executed, count’s value, 2, is still less than (or
equal to) 10. Therefore, the actions within the curly braces are executed again. This
time, though, the first action in the loop will address the “clip_2” instance’s X Scale
property, and make that property’s value 50 (100/2 = 50). Then, count will be incre-
mented by 1, giving it a new value of 3. Again, the while condition is reevaluated.

The while condition will continue to execute its nested actions until count exceeds
a value of 10. Therefore, clip_1 through clip_10 will show a decrease in X Scale.

do { actions } while(condition);
This type of loop is very similar to the while loop discussed previously, with one
important exception: The actions in the do{} nesting will always be executed at
least once. In a do . . . while loop, the condition is evaluated after the actions
in the loop are executed. If the while condition is true, then the actions in the
do{} nesting will be executed again. If the while condition is false, then the loop
will no longer execute.

Initial variable count = 1;

do loop do{

Statements to be repeated _root[“clip_” + count]._xscale = 100
/ count;

Counter update count = count + 1;

Condition } while (count <= 1);

In this example, the actions within the do{} nesting will execute automatically with-
out checking any condition. Therefore, the X Scale of “clip_1” will be set to 100, and
the count value will increase by 1, giving it a new value of 2. After the actions exe-
cute once, the condition is checked. Because the value of count is not less than
(or equal to) 1, the loop does not continue to execute.

for (initialize; condition; next) { actions }
The for loop is a supercondensed while loop. Instead of assigning, checking, and
reassigning a variable action in three different actions, a for loop enables you to
define, check, and reassign the value of a counter variable.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 610

611Chapter 21 ✦ Planning Code Structures

Initial variable value, condition, for(i = 1; i <= 10; i++){
and update

Statements to be repeated _root[“clip_” + i]._xscale =
100 / i;

Termination of loop }

This for loop does exactly the same as the while loop example we used earlier.
When the loop is started, the variable i is given a starting value of 1. A condition
for the loop is specified next, i <= 10. In this case, we want the loop to repeat the
nested actions until the value of i exceeds 10. The third parameter of the for loop,
i++, indicates that i’s value should be increased by 1 with each pass of the loop.
Note that this parameter can use ++ (to increase by 1) or -- (to decrease by 1)
operators. You can also use expressions like i = i*2 for the update.

for(variableIterant in object){ actions }
The final type of loop, for . . . in, is the most complex looping mechanism. A
for . . . in loop does not need a condition statement. Rather, this loop works
with a find-and-replace keyword mechanism. Basically, a variableIterant is declared,
which is simply a placeholder for a property or position index within an object or
array, respectively. For every occurrence of the variableIterant, the actions within
the for . . . in {} nesting will be executed. The for . . . in loop can only
be used with objects and arrays, and even then, not all properties of this elements
can be enumerated.

Placeholder and object for(name in _root){

Statements to be repeated _root[name]._xscale = 50;

Termination of loop }

In the preceding code example, the word name is used to designate a property of
the _root timeline. In this case, we want to change all Movie Clip instances on the
Main Timeline to a 50 percent X Scale value. We don’t need to specify the actual
target paths of each individual instance — the for . . . in loop will search for
all instances on the Main Timeline, apply the change, and exit the loop.

Although this might look a bit confusing, it can be more helpful than you can imag-
ine. Have you ever had a bunch of nested Movie Clip instances that all need to play
at the same time? In Flash 4, you would have had to use several tellTarget(){}
actions, each one specifying the target path. You could use a while loop to shorten
the lengthy code, but, even still, you would need to list the specific parts of the
each Movie Clip path, as in:

count = 1;
while(count <= 10){

path = eval(“_root.clip_” + count);

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 611

612 Part V ✦ Programming Flash Movies with ActionScript

tellTarget(path){
play();

}
count++;

}

The preceding code block would tell clip_1 through clip_10 to start playing. But
what if you didn’t know (or care to remember) all the paths to several differently
named Movie Clip instances? For example, if you had a Movie Clip instance named
nestAnim with several nested Movie Clip instances with different names (for exam-
ple, squareAnim, triangleAnim, and circleAnim), then you would have to specifically
name these instances as targets. In Flash 5, the for . . . in loop would let you
control any and all nested Movie Clip instances simultaneously:

for(name in nestAnim){
nestAnim[name].play();

}

With just three lines of code, all Movie Clip instances in the nestAnim Movie Clip
instance will start to play. How? Remember that the variableIterant name is simply a
placeholder for a property of the nestAnim Movie Clip object. The for . . . in
loop will find every occurrence of an instance inside of nestAnim. And the word
name has no significance. We could use a variableIterant myName, and everything
would still work fine. Think of the variableIterant as a wildcard in file searches or
directory listings in MS-DOS or UNIX:

nestAnim[*].play();

Although this syntax won’t work with ActionScript, it does illustrate the processing
of a for . . . in loop. Everything and anything that is playable on the nestAnim
timeline will play.

Check out the mcPlay.fla and forInLoop.fla files, located in the ch21 folder of the
Flash 5 Bible CD-ROM.

break
The break action is not a type of loop — it is an action that enables you to quickly
exit a loop if a subordinate condition exists. Suppose you wanted to loop an action
that hides, at most, clip_1 through clip_10 (out of a possible 20 Movie Clip instances),
but you want to have a variable control the overall limit of the loop, as upperLimit
does in the following code block. upperLimit’s value could change at different parts
of the presentation, but at no point do we want to hide more than clip_1 through
clip_10. We could use a break action in a nested if action to catch this:

count = 1;
while(count <= upperLimit){

if(count > 10){
break;

}

On the
CD-ROM

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 612

613Chapter 21 ✦ Planning Code Structures

root[“clip” + count]._visible = false;
count++;

}

Break statements, though, should be reserved for catching errors (such as during
a debug process) or the need for an immediate exit from the loop.

continue
Like the break action, continue enables you to exit the execution of actions within
a loop. However, a continue action won’t exit the loop action. It simply restarts
the loop (and continues evaluating the current condition). Usually, you will place
a continue action with an if nest — otherwise, it will always interrupt the actions
within the loop action. For example, if you wanted to omit a particular value from
going through the loop actions, you could use the continue action to bypass that
value. In the following code block, we will hide clip_1 through clip_10, except for
clip_5:

count = 1;
while(count <= 10){
if(count == 5){
count++;
continue;

}
root[“clip” + count]._visible = false;

}

Adding a loop to your Actions list
To create a loop, add one of the loop-type actions in the Actions Panel, using the
plus (+) button in the top-left corner of the panel (or selecting it from the Actions
booklet). In the Condition text field, enter an expression that describes the condi-
tions under which the loop should continue repeating. Before the end of the loop,
be sure to update whatever the loop relies on in order to continue, usually a
counter. If you forget to update a counter, you will be stuck forever in the loop,
and Flash will imperiously stop the script from continuing.

Loops in Flash are not appropriate for running background processes that listen
for conditions to become true elsewhere in the movie. While a loop is in progress,
the screen is not updated and no mouse events are captured, so most Flash actions
are effectively not executable from within a loop. Loop Actions are best suited to
abstract operations such as string handling (for example, to check each letter of
a word to see if it contains an @ symbol) and dynamic variable assignment.

Loops to execute repetitive actions, which affect tangible objects in the movie,
should be created as repeating frames in Movie Clips. To create a permanently run-
ning process, make a Movie Clip with two keyframes. On the first frame, call the
subroutine or add the statements that you want to execute; on the second frame use
a gotoAndPlay(1); action to return to the first frame. Alternatively, you can use
Flash 5’s new onClipEvent(enterFrame) handler to execute repetitive actions.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 613

614 Part V ✦ Programming Flash Movies with ActionScript

The onClipEvent handler is first discussed in Chapter 19, “Controlling Movie Clips.”

Properties
Properties are characteristics (such as width and height) of movies and Movie Clips
that can be retrieved and set. You can use variables to store the current value of a
given property, such as:

xPos = _root._xmouse;

which will store the current X position of the mouse pointer (relative to the stage
coordinates of the Main Timeline) in the variable xPos.

See Chapter 19, “Controlling Movie Clips,” for detailed tables and explanations of
Movie Clip (and movie) properties.

Built-in functions
Flash 5’s ActionScript contains a number of native programming commands
known as functions. Among others, these functions include getTimer, getVersion,
parseFloat, parseInt, int, string, substring, escape, and unescape. It’s
beyond the scope of this chapter (and this book) to discuss the practical use of
every new function and ActionScript element in Flash 5. We do, however, discuss
many built-in functions throughout this part of the Flash Bible.

Creating and calling subroutines
Whether they’re called functions or subroutines, most programming languages
provide a mechanism for programmers to create self-contained code modules that
can be executed from anywhere in a program. ActionScript supports subroutines by
using the new Flash 5 ActionScript function constructor. You can create functions
on any timeline, and, just like Movie Clip instances, functions have absolute or rela-
tive paths that must be used to invoke them. For example, if you have the following
function on a Movie Clip named Functions, located on the Main Timeline:

function makeDuplicate(target, limit){
for(i=1;i<=limit;i++){
root[target].duplicateMoviecClip(target+””+i, i);

}
}

then to invoke it from another timeline, you would execute it as follows:

_root.Functions.makeDuplicate(“clip”,5);

Executing it would create five duplicates of the Movie Clip instance named “clip”,
naming the duplicates “clip_1”, “clip_2”, “clip_3”, “clip_4”, and “clip_5”.

Cross-
Reference

Cross-
Reference

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 614

615Chapter 21 ✦ Planning Code Structures

We discuss functions in greater detail in the next chapter.

Make a Login Sequence with Variables
In this section, we show you how to use variables to create an interactive form in
Flash that accepts or rejects user input. You will create two Input Text fields into
which Web visitors will type a username and password. Using ActionScript, we will
check the values of the entered data with predefined name/value pairs.

Do not use the following example for secure information over the Web. You could
use a login sequence like this in a Flash adventure game, or modify it to work in a
Flash quiz. The login information is not secure within the confines of a Flash .SWF
movie.

1. Open a new Flash movie. Assign a frame rate of 20 fps, using the default width
and height. Use your preferred background color.

2. Create two text fields on one layer called Text Fields. Make each text field
long enough to accommodate a single first name and/or password. For
demonstration purposes, make the text in the text fields large, around
36 points. Make sure that you use a nonwhite fill color for the text.

3. Access the properties for each text field by selecting the text field (with the
Arrow Tool) and opening the Text Options Panel, shown in Figure 21-2. In
the top drop-down menu, select the Input Text option for both fields. For the
top text field, assign the variable name userEnter. For the other text field,
assign the variable name passwordEnter, enable the Password option, and
restrict the text length to 8 characters.

Caution

Cross-
Reference

Subroutines in Flash 4

To create a subroutine in Flash 4-compatible movies, first attach an action or series of
actions to a keyframe. Next, give that keyframe a label. That’s it, you’ve got a subroutine. To
call your subroutine from any other keyframe or button, simply add a Call action, and then
enter the name of the subroutine into the Frame text field using the following syntax: Start
with the target path to the timeline on which the subroutine keyframe resides, enter a
colon (:), and then enter the subroutine name (for example: Call (“/bouncingball:
getRandom”)). When you call a subroutine, all the actions on the specified keyframe are
executed. The subroutine must be present on the movie timeline (either as an keyframe or
an embedded Movie Clip instance) for it to work.

Subroutines in Flash do not accept passed parameters, nor do they return any values. To
simulate passing and receiving variable values, set the necessary variable values in the
action list that calls the subroutine before it is called, and then have the subroutine set
other variables that can be retrieved afterward by any other actions.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 615

616 Part V ✦ Programming Flash Movies with ActionScript

Figure 21-2: The passwordEnter variable will be an Input
Text field with the Password option enabled and a
restricted character length of 8 characters.

4. On a separate layer in the Main Timeline, create text blocks that describe the
two text fields, as shown in Figure 21-3. For example, make a text block with
the word Login: and another one with the word Password:. Align these text
blocks to the left of the text fields. Note that these text blocks do not need
the Input Text behavior; they should be Static Text blocks.

Figure 21-3: Here we have four text areas: two Static Text
blocks on the left, and two Input Text fields on the right.
The Static Text cannot be altered and/or “read” by ActionScript.

5. Create a new Movie Clip symbol (Ctrl+F8 or Command+F8), called errorMessage,
that displays an error message, such as INVALID or LOGIN ERROR. Rename
Layer 1 of its timeline to actions. On that layer, the first frame of the Movie Clip
should be blank with a stop() frame action.

6. Create another layer called labels. On frame 2 of this layer, make a keyframe
and assign it the label start in the Frame Panel.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 616

617Chapter 21 ✦ Planning Code Structures

7. Then, create a new layer called anim and move it underneath the actions
layer. On this layer, create a tweening animation of your message fading in
and out (or scaling up and down, and so on). Start the Motion Tween on frame
2 of the anim layer, underneath the start label of the actions layer. You’ll need
to make the message a Graphic symbol of its own in order to tween the alpha
state. Add enough frames and keyframes to cycle this message animation
twice. The very last frame of the animation should have a frame action (on
the actions layer) gotoAndStop(1);. When you are finished with this step,
your Movie Clip timeline should resemble the one shown in Figure 21-4.

Figure 21-4: The errorMessage Movie Clip symbol contains an
empty first frame, and an animation that begins on the start label.
This animation will only play if the user enters an incorrect login.

8. In the main movie timeline (Scene 1), create a new layer called errorMessage.
Drag the Movie Clip symbol from the Library on to the Stage. Position it under-
neath the user and password text fields. Select the Movie Clip instance on the
Stage and access its settings in the Instance Panel. Assign the instance name of
errorMessage.

9. Create a new layer on the Main Timeline called button, and make a Button
symbol on it. You can make one of your own, or use one from Flash’s Button
library (Window ➪ Common Libraries ➪ Buttons). Place it to the right of or
underneath the user and password fields. Select the Button symbol instance,
and open the Actions Panel. Add the following ActionScript code in the
Actions tab (note that the ¬ character indicates a continuation of the same
line of code; do not type or insert this character into your actual code):

on (release){
if (userEnter == “Sandra” && ¬
passwordEnter == “colorall”){
gotoAndStop (“success”);

} else {
_root.errorMessage.gotoAndPlay(“start”);

}
}

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 617

618 Part V ✦ Programming Flash Movies with ActionScript

You can change the userEnter and passwordEnter values to whatever
string you desire.

10. On the Main Timeline, create an actions layer, and place it at the top of the
layer order. On the first frame, add a stop() frame action.

11. Create another layer named labels. Assign a frame label of start to frame 1 of
the labels layer. Add a keyframe to the frame 2 of the labels layer, and label it
success. Make sure all other layers on frame 2 have empty keyframes.

12. Make a new layer called success and place a text block and/or other graphics
suitable for a successful login entry. It should only appear on frame 2, so, if
necessary move its initial keyframe to that frame. When you’re finished with
the step, your Stage and Main Timeline should resemble Figure 21-5.

Figure 21-5: Your Main Timeline should have three
“states”: a login page, an error message, and a
success page.

13. Test the movie’s functionality with the Test Movie command
(Control ➪ Test Movie).

Most login forms like this work with the Return or Enter key active to submit the
information. However, this key press also has functionality in the Test Movie envi-
ronment, so only assign a key press to the Button symbol instance after you have
tested the initial ActionScript code.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 618

619Chapter 21 ✦ Planning Code Structures

Debugging Your Code
As you start to program your Flash movies with the latest and greatest ActionScript,
you’ll likely encounter more than one error or experience frustration something
you’ve written isn’t working as it should. You can track down errors in your code
in three different ways:

✦ Debugger Panel: Flash 5 has added a new comprehensive dedicated debug-
ging tool to the authoring environment. The Debugger Panel can be activated
in two ways:

• Debug Movie command: Accessed with the Control ➪ Debug Movie com-
mand, this method of testing .SWF files enables the Debugger Panel.

• Remote Debugging: You can now debug Flash movies from the Flash
Player plug-in (or ActiveX Control), as the Flash movie plays in a Web
browser window. You’ll need to take some steps to enable this feature,
though. We discuss the Debugger Panel in more detail shortly.

✦ Output window: The Output window will automatically open upon using the
Test Movie (or Debug Movie) command when a trace action occurs (see
the description later in this list) or when a syntax error is detected in the
ActionScript. Syntax errors will appear in the Output window as soon as the
export process for the .SWF file is completed. You can also manually update
the Output window with useful moving information by using the List Objects
and List Variables commands:

• List Objects. While in Test Movie (or Debug Movie) mode, use Debug ➪
List Objects to obtain a list of every element currently present on the
movie stage, including Movie Clip instances, buttons, graphics, shapes,
and text. List Objects displays the full names and paths of any Movie
Clip instance or loaded movies. Useful for checking target names.

• List Variables. While in Test Movie (or Debug Movie) mode, use Debug ➪
List Variables to obtain a list of all variables currently initialized, and to
find out their locations and values. This is very useful for checking whether
a variable is resident at specific points on the movie timeline and for
checking the name of the timeline upon which the variable resides.

• trace(expression). Add a trace action to send a string or the value of
an interpreted expression to the Output Window during Test Movie (or
Debug Movie) mode. The value is sent when the trace action occurs.
As a debugging tool, trace is analogous to alert() in JavaScript.

✦ Custom debugging interfaces: You can also create your own debugging
windows within a Flash movie, using draggable Movie Clips (such as the
propInspector.fla from Chapter 19, “Controlling Movie Clips”). Usually, Flash
programmers will employ a temporary text field variable to display code output
during development. Put temporary text fields on their own layer and make that
layer a Guide Layer when exporting the production version of your movie.

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 619

620 Part V ✦ Programming Flash Movies with ActionScript

If you think whole sets of actions are being ignored, you may have a simple syntax
error in just one line of your code. If any syntax errors are detected in any container
(a frame, Button instance, or Movie Clip onClipEvent handler), then the entire list
of actions for that container will be effectively disabled. After you correct the syntax
error and retest (or republish), the actions in that container will all function again.

Using the Debugger Panel
When you use the Control ➪ Debug Movie command, Flash 5 will create a .SWF
file from your .FLA movie file, and open the Debugger Panel. The Debugger Panel
(see Figure 21-6) provides useful information about your .SWF file as it plays:

Figure 21-6: When it comes to tracking down
scripting problems, the Debugger Panel is a
welcome addition to Flash 5.

The elements of the Debugger Panel are as follows:

✦ Status Bar: Located at the top of the Debugger Panel, the Status Bar indicates
where the .SWF file resides. If you used the Test Movie (or Debug Movie)
command within Flash 5, then the Status Bar will read Test Movie. If you are
debugging a .SWF file from a Web browser, then the Status Bar will show the
full path (or URL) to the .SWF file.

✦ Display List: The top pane of the Debugger Panel lists the absolute path (and
nesting of) all of the current playing timelines for the Flash movie, including
all native Movie Clip instances, all loaded .SWF files (in Levels or Movie Clip
targets), and all duplicated or attached Movie Clips (created with
ActionScript).

Caution

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 620

621Chapter 21 ✦ Planning Code Structures

✦ Properties tab: This first tab in the lower-left portion of the Debugger Panel
lets you view all properties of a selected timeline in the Display List. You can
even alter the values of the properties with string, numeric, or Boolean values.
You cannot enter expressions (for example, x + 50) as a value of any property.

✦ Variables tab: This middle tab in the lower portion of the panel enables you
to view the variables on a selected timeline in the Display List. As with proper-
ties in the Properties tab, you can alter the values of any variable (with the
same data type restrictions).

✦ Watch tab: This right tab in the lower portion of the panel enables you to
monitor specific variables on any timeline. You can add variables to the
Watch list in one of two ways:

1. By right-clicking (or Ctrl+clicking on the Mac) the variable name in the
Variables tab and choosing Watch from the contextual menu

2. By right-clicking (or Ctrl+clicking on the Mac) the empty area of the
Watch list and choosing Add from the contextual menu.

You can remove variables from the Watch list by right-clicking (or Ctrl+clicking
on the Mac) the watched variable, and choosing Remove from the contextual
menu.

Enabling remote debugging
As mentioned previously, you can now debug your Flash 5 .SWF files (served over
the Web or from your local disk) as they play live in a Web browser. To enable
debugging from a Web browser, you need to do two things:

1. Allow debugging in the Publish Settings. Open the Publish Settings dialog
(File ➪ Publish Settings), and select the Flash tab. Check the Debugging
Permitted option, and enter a password if you are uploading the .SWF file
to a live Web server. You do not need to supply a password, but we highly
recommend it for security purposes.

2. Install the Flash Player (Debug Version) for your preferred Web browser(s).
You will find the plug-in installer (or ActiveX Control installer) inside the
Debug folder of the Players folder, located in the Flash 5 application folder.
Make sure you delete any previously installed plug-ins or ActiveX Controls
before attempting to install the Debug Player.

After you have enabled debugging and installed the Debug Player, you can point your
browser to the .SWF’s location on the Web (or on your local disk). Alternatively, you
can use the Publish Preview command (File ➪ Publish Preview ➪ HTML) to load the
.SWF file (and supporting HTML file) into your preferred Web browser. After the movie
has loaded into the browser, right-click (or Ctrl+click on the Mac), the movie’s Stage
and select Debugger from the contextual menu. Focus will go back to the Flash 5
application, and you will be prompted to enter the debugging password as you sup-
plied it in the Flash format tab of the Publish Settings dialog. If you left the password
field blank, then simply click OK. Flash will open the Debugger Panel, providing you
instant access to your movie’s timeline information, properties, and variables!

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 621

622 Part V ✦ Programming Flash Movies with ActionScript

You need the Flash 5 application installed on any machine from which you wish to
debug your Flash movies. The Debugger Panel can only be displayed within the
Flash 5 authoring environment.

Make sure that you disable debugging (or use a password-protected debugger)
before you launch your Flash movies on your live Web server. Otherwise, other
people can debug your Flash movie.

Summary
✦ Before you begin to add complex interactivity to your Flash movie, you need

to break down the steps in the interactive process in a natural language that
you can understand.

✦ After you know what you want your presentation to do, you can start to clarify
the interactive steps, and translate those steps into Flash-compatible actions.

✦ You can add Flash ActionScript to your Flash movie with the Actions Panel.
The Actions Panel operates in two modes: Normal and Expert. If you want
to see the options of each action in fields and drop-down menus, then add
actions with Normal Mode. If you want the most flexibility with editing your
code, then use Expert Mode.

✦ Variables are a programming device that enable you to store property values,
strings, paths, or expressions in order to reduce the redundancy of code and
to simplify the process of computing information.

✦ Variables can be declared with actions, Input or Dynamic Text fields, or by load-
ing them from an external data source, such as a CGI script, text document, or
HTML query.

✦ Expressions are equations that refer to a mathematical operation, a string
concatenation, or an existing code object (another variable or object value).

✦ You can use if/else if/else actions to add intelligence to your interactive
actions. These actions test a condition and execute a certain set of actions if
the condition is true.

✦ Loop actions execute a given set of actions repeatedly until a loop condition is
no longer true.

✦ You can debug your ActionScript code with the new Debugger Panel, the
Output window, or your own debugging interfaces (for example, temporary
text fields that display Flash ActionScript data).

✦ ✦ ✦

Caution

3515-3 ch21.f.qc 1/18/01 5:02 PM Page 622

Creating
Subroutines and
Manipulating
Data

Once you understand how to work with basic data in the
form of variables, you can start to explore the program-

ming concepts behind subroutines and arrays. This chapter
introduces you to data types, subroutines, arrays, and com-
plex uses of functions.

What Are Data Types?
In Flash 4, any data that you had in Flash movie was not
“typed.” A data type is a classification or group to which a
piece of data belongs. Some data types cannot be converted
into other data types, but some can. To illustrate data typing,
take this working example in a Flash 4 movie:

Set Variable: “path1” = “/ballAnim/ballPath”
Set Variable: “path2” = “/ballAnim”
Begin Tell Target (path1)

Stop
End Tell Target
Begin Tell Target (path2)

Stop
End Tell Target

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Data typing in
ActionScript

Using functions in
Flash Movies

Adding arrays to
manage data

Creating dynamic
menus

✦ ✦ ✦ ✦

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 623

624 Part V ✦ Programming Flash Movies with ActionScript

In this code example, we have two Flash 4 variables, path1 and path2. The values
of these variables are string paths to two different Movie Clip instances, ballAnim
and ballPath. In Flash 4, we could use path1 and path2 as the target paths in a Tell
Target action. In Flash 5, this code would still work:

path1 = “_root.ballAnim.ballPath”;
path2 = “_root.ballAnim”;
tellTarget(path1){

stop();
}
tellTarget(path2){

stop();
}

Because the tellTarget action is Flash 4-compatible, it can accept string data (for
example, “_root.ballAnim.ballPath”) for a target path in Flash 5. However, if
we try to use Flash 5’s new Movie Clip Object methods to control the targets, then
path1 and path2 will not work:

path1 = “_root.ballAnim.ballPath”;
path2 = “_root.ballAnim”;
path1.stop();
path2.stop();

Why? Because path1 and path2 have string values, Flash 5 does not “see” path1
and path2 as a reference to a real object in ActionScript. If we change the code to:

path1 = _root.ballAnim.ballPath;
path2 = _root.ballAnim;
path1.stop();
path2.stop();

then Flash 5 will see path1 and path2 as references to the ballPath and ballAnim
Movie Clip Objects. At this point, you might be wondering how you can use the old-
fashioned eval() statement to refer to dynamic Movie Clip paths. In Flash 4, you
could do this:

Set Variable: “i” = 1;
Set Variable: “path1” = “/ballAnim/ball_” + i;
Begin Tell Target (path1)

Stop
End Tell Target

In Flash 5, if you want a variable to point to a Movie Clip object, then the value of
the variable must be an object type. To do the same thing in Flash 5 with Movie
Clip methods, you would change the preceding code to:

i = 1;
path1 = eval(“_root.ballAnim.ball_” + i);
path1.stop();

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 624

625Chapter 22 ✦ Creating Subroutines and Manipulating Data

By using eval(), Flash 5 will evaluate the string concatenation of “_root.
ballAnim.ball_” + i, which will produce the final string of “_root.ballAnim.
ball_1”. At this point, Flash doesn’t “know” that the string refers to a Movie Clip
Object. When this is evaluated, Flash will change the string data into object data,
referring to the Movie Clip instance _root.ballAnim.ball_1.

But even the eval() function is a little dated for Flash 5. In the last chapter, we dis-
cussed the use of array access operators — the []— to bypass the eval() func-
tion. As with variables, the array access operators can be used to refer to Movie
Clip expressions:

i = 1;
root.ballAnim[“ball” + i].stop();

This code will join the “ball_” string to the value of i, and look for ball_1 Movie
Clip object on the ballAnim timeline.

So far, we have seen two data types at work: strings and objects. If a variable’s value
is in quotes, as in “_root.ballAnim”, then Flash 5 sees this value as a string. If the
variable’s value is evaluated or referenced directly, as in _root.ballAnim, then
Flash 5 sees this value as an object. Flash 5 has a built-in action, typeof, which tells
you the data type of a value or an expression. We discuss this action later in this
section. Before we look at typeof, let’s examine the five data types in Flash 5
ActionScript.

string
We’ve seen string data types throughout the Flash 5 Bible already. Anytime you
have a value in quotes, it is typed as a string. If you have an expression that refers
to string data types, then its data type will be a string as well. All of the following
examples have a string data type:

firstName = “Frank”;
lastName = “Houston”;
fullName = firstName + lastName;
pathSuffix = “1”;

All Input and Dynamic Text fields have a data type of string. If you need to perform
numeric operations with text field values, then make sure you convert the string
data to number data. We discuss the number data type in the next heading.

If a variable has a string data type, then any of the String methods can be used with
that data. For example, if you want to convert the case of all characters in the value
of firstName to uppercase (turn “Frank” into “FRANK”), then you could do the fol-
lowing operation:

firstName = “Frank”;
firstName = firstName.toUpperCase();

Tip

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 625

626 Part V ✦ Programming Flash Movies with ActionScript

Here, the String method toUpperCase() converts any lowercase characters in a
string value to uppercase characters. Likewise, you can extract specific information
from a string. For example, if you wanted to find where a space occurs within a
string, and return the value of the string from the point in the value to the end of
the value, you could use the following code:

myVersion = “Netscape 4.71”;
startChar = myVersion.indexOf(“ “) + 1;
myVersion = myVersion.slice(startChar, -1);
trace(“myVersion = “ + myVersion);

In the preceding code, the indexOf() method searches for the first occurrence of a
space (“ “) within the string value for myVersion. indexOf(“ “) for myVersion will
return the position (as a number, counting from left to right) of the space character.
For this example, indexOf(“ “) will return a 9. Then, we add 1 to this value to the
character position after the space. In our example, the tenth position of myVersion’s
value is a “4.” Then, by using the slice() method, we can extract the rest of the
string from the startChar value of 10. The –1 option tells Flash to continue all the
way to the end of the string’s value, from the starting point of startChar. Note that
in this example, the final value of myVersion is a string value of “4.71.”

For more information on methods that can be performed upon String objects and
string values, see pages 376–383 of the Macromedia ActionScript Reference
Guide.

number
A number data type is any value (or expression value) that refers to a discrete
numeric value in Flash. A value must be typed as a number in order for it to work
properly in mathematical operations. Note in the following code that the ¬ indi-
cates a continuation of the same line of code. Do not insert this character into
your actual code.

myAge = “27”;
futureYears = “5”;
myAge = myAge + futureYears;
trace(“I will be “ + myAge + “ years old in “ ¬
+ futureYears + “ years.”);

If this code was added to a Flash movie and tested, the following trace information
would appear in the Output window:

I will be 275 years old in 5 years.

Obviously, this isn’t the answer we were looking for. Because myAge and future
Years were specified as string values (with quotes), Flash simply concatenated
(joined) the two string values as “27” + “5”, which is “275”. To see these values as

Cross-
Reference

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 626

627Chapter 22 ✦ Creating Subroutines and Manipulating Data

numbers, we need to change the code to the following (note that the ¬ indicates a con-
tinuation of the same line of code; do not insert this character into your actual code):

myAge = 27;
futureYears = 5;
myAge = myAge + futureYears;
trace(“I will be “ + myAge + “ years old in “ ¬
+ futureYears + “ years.”);

Now, the values of myAge and futureYears appear as real numbers to Flash, and
the mathematical operation will add the values of myAge and futureYears cor-
rectly. The trace output will now read:

I will be 32 years old in 5 years.

You can convert string data values to number data values by using the Number()
function. In our string example from the last section, we could convert the
myVersion string value to a number value by adding this line of code:

myVersion = Number(myVersion);

So, we can now perform mathematical operations on the “4.71” value of myVersion,
which is now simply 4.71.

boolean
There will be times when you will designate a variable’s value as either true or
false. Variables that use true or false are said to have a Boolean value. Boolean
values are useful for either/or situations, or when you need a toggle switch —
just like a light switch, which is on or off. In the code below, a variable named
isLoading is initialized with a true value, but later switched to a false value
when loading is complete:

onClipEvent(load){
_root.isLoading = true;
trace(“isLoading’s type = “ + typeof(_root.isLoading));

}
onClipEvent(enterFrame){

if(this._framesLoaded >= this._totalFrames){
_root.isLoading = false;

}
}

This code could be placed on a Movie Clip instance (as Object actions). When the
Movie Clip instance appears on the Stage, the load event will occur, and the Output
window will display:

isLoading’s type = boolean

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 627

628 Part V ✦ Programming Flash Movies with ActionScript

movieclip
As the data type name implies, Movie Clip instances on the Stage have a data type
of movieclip. You can check the data types of declared variables and objects with
the typeof operator. Flash distinguishes Movie Clip Objects from other code-based
objects so that you can more easily detect Movie Clip Objects in your code. The fol-
lowing variable value will be typed as movieclip:

path = _root.ballAnim;

As long as a physical Movie Clip instance named ballAnim exists on the Main
Timeline, then path’s data type will be movieclip. If ballAnim did not exist, then
path’s data type would be undefined.

object
This data type refers to any code-based objects that you create with ActionScript.
For example, in previous chapters, we used the Color and Sound Objects to enhance
interactive presentations. The following code would be typed as object:

myColor = new Color(_root.ballAnim);
mySound = new Sound();
myObject = new Object();

If you used this code in your Flash movie, you would see object types in the
Output window when Debug ➪ List Variables is used in the Test Movie environment:

Level #0:
Variable _level0.$version = “MAC 5,0,30,0”
Variable _level0.myColor = [object #1] {}
Variable _level0.mySound = [object #2] {}
Variable _level0.myObject = [object #3] {}

Movie Clip: Target=”_level0.ballAnim”

function
In Flash 5, you can define your own subroutines of ActionScript code. We discuss
subroutines and constructor functions later in this chapter. The function data type
will be assigned to any ActionScript code that begins with the function command,
such as:

function myGoto(label){
gotoAndStop(label);
}

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 628

629Chapter 22 ✦ Creating Subroutines and Manipulating Data

undefined
If you check for the data type of a nonexistent code element, then Flash 5
ActionScript will return a data type of undefined.

Checking data types with typeof
Now that you know the various data types in Flash 5 ActionScript, you’ll want to know
how to check the data type of a given piece of information. Using the typeof operator,
you can determine the data type of an ActionScript element. The typeof operator
accepts only one option: the name of the ActionScript element that you wish to test.
For example, you can trace a variable (or object) type in the Output window:

firstName = “Robert”;
trace(“firstName has a data type of “ + typeof(firstName));

When this movie is tested, the Output window will display:

firstName has a data type of string

You can use typeof in for . . . in loops, so that actions will be executed with
specific data types. The following ActionScript code will take any string variables
on the Main Timeline and move them to an object (or Movie Clip instance) named
globalVar:

for(varName in _root){
if(typeof(_root[varName])==”string” && ¬
_root[varName] != _root[“$version”]){
_root.globalVar[varName] = _root[varName];
delete _root[varName];

}
}

The preceding code block will move all variables except the native $version vari-
able to the Movie Clip instance (or object) named globalVar.

You can see the returned values of the typeof operator in the typeof_simple.fla,
typeof_advanced.fla, and moveVariables.fla files, located in the ch22 folder of the
Flash 5 Bible CD-ROM.

Overview of Functions as Subroutines
A primary building block of any scripting or programming language is a subroutine.
A subroutine is any set of code that you wish to reserve for a specific task. A subrou-
tine is useful for code that you wish to reuse in multiple event handlers (for exam-
ple, Button instances and keyframes). In Flash ActionScript, subroutines are called
functions, and are created with the function action.

On the
CD-ROM

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 629

630 Part V ✦ Programming Flash Movies with ActionScript

What functions do
A function (or subroutine) sets aside a block of code that can be executed with just
one line of code. Functions can execute several actions, and pass options (called
arguments) to those actions. All functions must have a unique name, so that we
know what to reference in later lines of code. In a way, functions are equivalent to
your own custom additions to the Flash ActionScript language. In Flash 4, we used
the call action to execute code blocks located on other keyframes in the Flash
movie. In Flash 5, we can define a function on a specific timeline, and refer to its
path and name to execute it.

When to create a function
For people new to scripting, perhaps the most confusing aspect of functions is
knowing when to create them in a Flash movie. Use the following guidelines to help
you determine when a function should be created:

✦ If you find yourself reusing the same lines of code on several Button instances,
Movie Clip Objects, or keyframes, then you should consider moving the
actions to a function. In general, you should not pile up ActionScript on any
single Button instance or keyframe.

✦ If you need to perform the same operation throughout a Flash movie, such as
hiding specific Movie Clip instances on the Stage, then you should consider
defining a function to take care of the work for you.

✦ When you need to perform complex mathematical operations to determine a
value, then you should move the operations to a function.

How to define a function
When you add a function to a keyframe on the Main Timeline or a Movie Clip time-
line, you are defining the function. All functions have a target path, just like other
Objects in Flash. All functions need a name followed by opening and closing paren-
theses, but arguments (options to pass to the function) inside the parentheses are
optional.

Functions are usually defined at the very beginning of a Flash movie (or within a
Movie Clip instance that loads within the first frames of Flash movie). You should
only place functions on timeline keyframes — you can, however, execute functions
from any event handler in Flash.

As a simple example, let’s say you wanted to create a function that has one goto
AndStop() action. This function will have a shorter name than gotoAndStop(), and
will be faster to type and use in our ActionScript code. We’ll place this on the first
keyframe of our Main Timeline.

Tip

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 630

631Chapter 22 ✦ Creating Subroutines and Manipulating Data

function gts(){
_root.gotoAndStop(“start”);
}

This function, when evoked, will send the Main Timeline playhead to the start
label We could further expand the functionality of gts() by adding an argument,
which we’ll call frameLabel:

function gts(frameLabel){
_root.gotoAndStop(frameLabel);

}

In this version of the gts() function, instead of hard-coding a frame label such as
start into the actual gotoAndStop() action, we specify an argument with the
name frameLabel. Just like variable names, the names of your function and its
arguments are entirely up to you — the name frameLabel has no significance. Flash
simply knows that if we pass an argument to the gts() function, that it should
place that argument where the frameLabel term occurs in our actions. An argu-
ment acts as a placeholder for information that will be supplied to the function on a
per-use basis; that is, we can specify a different value for frameLabel each time we
evoke the gts() function.

Beware of naming your functions (and arguments) after already existing ActionScript
terms. If in doubt, you should probably choose a word that does not resemble any
JavaScript syntax (with later upgrades to ActionScript in mind). You’ll see many
examples in tutorials or books in which programmers always prefix names with my,
as in myColor or myLabel, to avoid any potential naming conflicts.

How to execute a function
After you have defined a function on a timeline’s keyframe, you can create actions
that refer to the function’s actions. The standard method for executing a function is:

[path to function].functionName(arguments);

At the end of the previous section, we defined a function named gts() on the Main
Timeline. If we added a Button instance to our movie, we could then execute the
function from the Button instance with the following code:

on(release){
_root.gts(“start”);
}

When this Button instance is clicked, then the function gts() on the _root timeline
(the Main Timeline) is executed, and passed the argument “start”. In our function
gts(), we defined frameLabel as an argument that occurs in the gotoAndStop()
action. Therefore, the Main Timeline will go to and stop on the “start” frame label.

Caution

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 631

632 Part V ✦ Programming Flash Movies with ActionScript

Later in this chapter, we use functions to create a dynamic reusable menu system in
a Flash movie.

A function cannot be executed unless it was previously defined and recognized by
the Flash Player. The keyframe containing the function declaration needs to be
“played” before the function is available for use. For example, if you define a func-
tion on frame 10 of a Movie Clip instance that has stopped on frame 1 (and never
played to frame 10), then Flash will not have registered the function in memory.

Caution

Expert Tutorial: Using ActionScript with a Games Focus,
by Mark Burrs

Since the introduction of Flash, one of its most exciting effects has been the wealth of
dynamic capabilities that it has brought to the Web. Flash 4 expanded our horizons by
enabling users to actively participate in the Web experience. With this expansion of capabil-
ity, it’s no wonder that there has been an explosion of Flash games on Web sites and dis-
tributed in our e-mails as Projector files. Now that Flash 5 has increased our available tools
exponentially, I think we’ve only seen the tip of the iceberg.

This tutorial helps you make a little ice. It takes you systematically through a nontechnical
analysis of architecting a game using a case study, followed by a technical look at how Flash
5 helps solve some of the challenges this case study presents.

The source .FLA and other assets relevant to this tutorial can be found in the ch22 folder of
the CD-ROM.

Keys to success
Before opening Flash, a few tasks must be completed. Use a procedure such as the follow-
ing to help give your development time better focus and structure. A whiteboard is very
helpful at this stage, especially if it’s a team project.

✦ Write out a complete functional specification for what you want to create.

✦ Identify major components.

✦ List properties of those components.

✦ List methods (actions) that each component needs to be able to do.

Case study: An air hockey game
The following steps take you through the creation process for an air hockey game such as
the one in the following figure.

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 632

633Chapter 22 ✦ Creating Subroutines and Manipulating Data

Here’s the graphic layout of the air hockey game.

Step 1: Write out a complete functional specification for what you want to create. You
should include wish-list items as well. You may not know now if or how to do them, but
that can be evaluated more fully later. If you don’t list it, it won’t happen. The idea here is to
start formulating what you want to do so that your brain can start planning a path to get
there. Here are some examples:

✦ Human versus computer play mode

✦ Persistent (on the screen all the time) scoreboard with score and time remaining

✦ Demo mode

✦ At start — player-selectable sides (right or left)

✦ At start — player-selectable difficulty settings

✦ At start (or maybe even during a game) — player-selectable ice conditions (fast, slow,
or maybe a slider for anything in between)

✦ At start — player-selectable win conditions: first to x, or high score after x minutes

✦ At start — player-selectable paddle color

✦ Ricochet sound

✦ The player and computer should be able to score by knocking the puck into the goal
(It may seem silly to have to say it, but so far, while I’m writing this, my prototype
does just about everything but this).

Continued

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 633

634 Part V ✦ Programming Flash Movies with ActionScript

Continued

Step 2: Now that you have a functional specification, it’s time to identify the major compo-
nents that will be necessary to realize that functionality. To do this, simply start a descriptive
listing of all the major components that come to mind after creating the functional specifi-
cations. Remember that this is a brainstorming session, so don’t hold back:

✦ Graphically pleasing rink

✦ Player paddle

✦ Computer paddle

✦ Player goal

✦ Computer goal

✦ Puck

✦ Scoreboard

✦ Opening screen

✦ Ricochet sounds

✦ Game settings screen

Step 3: Now it’s time to get more specific by listing the properties of those components.
(Understand that this procession of steps does not need to be completed in a single meet-
ing, or in a single day. In fact, your preplanning will probably be enhanced if you take some
time between steps, or revisit the completed process after you’ve given your subconscious
some time to gnaw on the details. You may be surprised at how your creativity can be
sparked in the interim!):

✦ Graphically pleasing rink

• Height

• Width

• Friction — how much constant drag will affect the puck

✦ Paddle — player or computer

• xLocation

• yLocation

• xSpeed

• ySpeed

• maxSpeed— this is a cap on the xSpeed and ySpeed

• color

• size

• type— human or computer

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 634

635Chapter 22 ✦ Creating Subroutines and Manipulating Data

✦ Goal — player and computer

• x

• y

• owner— player or computer

• width (visually height, mentally width)

✦ Puck

• xLocation

• yLocation

• xSpeed

• ySpeed

• color

• size

• maxSpeed— this is a cap on the xSpeed and ySpeed

✦ Scoreboard

• playerScore

• computerScore

• timeRemaining

✦ Opening screen

• status — visible, invisible

✦ Ricochet sounds

• Panning — should correspond with horizontal position of the ricochet

✦ Game settings screen

• playMode— “Human versus Computer” or “Demo”

• playerSide— “right” or “left”

• playerColor— “red”, “blue”, . . .

• difficultyLevel— options: 0–10

• friction— options: 0–10

• gameType— “timed” or “first to score x”

Continued

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 635

636 Part V ✦ Programming Flash Movies with ActionScript

Continued

You may have noticed that, in this step, I got rather technical. However, you need not get so
technical. If you are not the team’s ActionScript guru, but are, instead, the visionary, you can
still describe the action in clear, natural language that communicates your vision to the
other team members.

Step 4: At this step, we list the methods (or actions) that each component needs to be
capable of doing. Again, this list can be written in natural language. The primary purpose of
all these preliminary steps is to clarify what will be built in Flash and how its many parts will
interrelate:

✦ Graphically pleasing rink — none

✦ Paddles — player and computer

• Calculate xSpeed and ySpeed— these represent how fast the player is moving
the paddle and what direction

• Calculate whether a collision has occurred with the puck

• Stay within the rinks boundaries

• The player paddle must be draggable

• The Computer paddle must have some level of artificial intelligence

✦ Goals — player and computer — none

✦ Puck

• Animate within the boundaries of the rink with proper rebounds

• Rebound off the paddle when a collision is indicated by the paddle

• Calculate the locations of the goal and indicate to the score board if a score
occurred

✦ Scoreboard

• Display Player and Computer scores

• A countdown timer

✦ Opening screen — initialize the game

✦ Ricochet sound

• Play

✦ Game settings screen — none, it is an information-gathering screen

✦ Challenges

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 636

637Chapter 22 ✦ Creating Subroutines and Manipulating Data

Now that we have created an outline of the programming challenges we will face with our
Flash movie, we need to start thinking about how we will solve these challenges. We work
with the puck animation challenge next.

Puck animation
Challenge: Animate the puck within the boundaries of the rink and make it react when hit
by paddles.

To control the puck animation I will make an ActionClip and call it Puck Director. This is a
Movie Clip that has no graphical elements; it is a container for ActionScript code only. This
Puck Director Movie Clip will be attached to the Puck, so all references made to the actual
Puck Movie Clip will be referenced using the _parent object. By using the keyword
_parent, I automatically refer to the Movie Clip that contains my current Movie Clip. To do
any kind of animation in Flash, I follow the same basic guidelines:

Get current value:

curX = _parent._x

Modify current value by applying velocity and friction:

newX = curX + xSpeed - friction

Check flags — This means to check for various boundaries that exist. In this case, we need
to make sure that the puck stays within the confines of the rink. This is usually a series of
if statements to check whether the new value has reached or exceeded a boundary. If
the boundary has been reached or exceeded then the new value is usually set to that
boundary.

if(newX+(_root.puck1._width*0.5) >= _root.dir_scene:bottom){
newX = _root.dir_scene.bottom - (_root.puck1._width * .5);

}

Set properties:

parent._x = newX;

It is possible to do all of these actions in one frame, but that can easily become unwieldy.
To avoid that, I usually use one frame that has a list of Call actions. A Call statement will
execute the ActionScript found in the specified frame. This could also be accomplished by
executing a function, but I prefer this method because it keeps everything in one, easy-to-
manage location. I use functions in another situation. As shown in the following figure, the
loop frame contains these call statements:

call (“getCurrent”);
call (“modify”);
call (“setFlags”);
call (“setProperties”);

Continued

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 637

638 Part V ✦ Programming Flash Movies with ActionScript

Continued

By using a call command, you are able to break out the basic animation
functions and keep them in one easy-to-manage location.

I’ve often observed the process of other developers. I’ve observed that other developers
work to a point of frustration, whereupon they either start over or try a new approach.
(That’s one of the reasons why I do so much preplanning!) Using this model, if the confu-
sion is in calculating a new X location based on some trigonometry or physics equation, you
can focus on just the modify frame. If you want to refine the puck’s boundaries, you would
go to the setFlags frame.

Translating paddle activity
Challenge: Translate the movement of the paddle into values that convey direction and
power to the puck upon collision.

If the paddle is moving fast when it hits the puck, then the puck should move fast.
Conversely, if the paddle hits the puck lightly, then the puck should move a small amount.
The challenge is to calculate how fast and in what direction the paddle was moving when it
collided with the puck. To do this, we need a snapshot of its movement over time:

counter=counter+1;
if(counter==2){

oldPad1X = curPad1X;
oldPad1Y = curPad1Y;
counter=0

}
curPad1X = pad1._x;
curPad1Y = pad1._y;

This code is located in an ActionClip that I call the Puck Director. It keeps track of the pad-
dles and detects for collisions with the puck. The difference between oldPad1X and
curPad1X is equal to the distance along the X axis that the paddle has moved in two
frames. This is similar to miles per hour but the units are more arbitrary, pixels per two
frames. (If you want a long sampling just increase this number of frames.) If a collision is
detected, then these values are translated to xPaddleSpeed and yPaddleSpeed and then
transferred to the Puck Director ActionClip located inside the puck so that it reacts appro-
priately.

Computer player artificial intelligence
Challenge: Create a “mind” for the computer opponent that will give the user a fun and
variable experience.

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 638

639Chapter 22 ✦ Creating Subroutines and Manipulating Data

An interesting challenge in creating a game that has a computer opponent is the creation of
the artificial intelligence (AI) code. Several levels of complication can be put into creating AI.
For some excellent reading on this subject, as well as several other game programming
concepts, I highly recommend Tricks of the Windows Game Programming Gurus by André
LaMothe, SAMS Publishing. For this example, I’ve used a very simple play profile for the AI.
It consists of three variables:

✦ skill: How good it is at perceiving puck position.

✦ aggr: How aggressive it is at pursuing the puck.

✦ maxSpeed: This is a cap on how fast it can deliver the puck.

Additional options might include thresholds for changing play profiles. For instance, if the
computer gets down five points it goes from low aggressiveness to high aggressiveness, or,
if it is losing and only ten seconds are left on the clock, it gets very aggressive, but skill goes
down. The number of options is only limited by your imagination (and project budget).

An ActionClip accomplishes this AI with the same setup as the Puck Animation: In the first
frame there are three different play profiles and one is selected at random.

playType=random(3)
//Fast sharp player
if(playType == 0){

skill = 1;
aggr = 1;
maxSpeed = 60;

}
//Medium player
if(playType == 1){

skill = 20;
aggr = 7;
maxSpeed =30;

}
//Poor player - I hope he can get the puck across the ice
if(playType == 2){

skill = 20;
aggr = 20;
maxSpeed =20;

}

In this example, a low number means a good aptitude. Of course, I could have used ran-
domization for each attribute, but I wanted some distinct identifiable play styles so I could
tell if it was working.

The modify frame includes checking for the perceived location of the puck using skill as a
variable. Then, based on that location, a new paddle location would be calculated using
appropriate aggression.

Continued

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 639

640 Part V ✦ Programming Flash Movies with ActionScript

Continued

The setFlags frame contains boundary checking to make sure the paddle stays in the rink.

Creating a demo mode
Challenge: Create a demo mode in which the game runs with two computer opponents.

After the Artificial Intelligence ActionClip has been created, it’s very simple to create this
demo mode for the game. Here is some code from the initGame function:

_root.attachMovie(“paddle”, “paddle1”, 201);
c = new Color(_root.paddle1);
c.setRGB(parseInt(“666699”, 16));
_root.paddle1.side=”right”;
_root.paddle1.control=”computer”;
_root.attachMovie(“paddle”, “paddle2”, 1);
_root.paddle2.side=”left”;
if (playMode == “demo”){

_root.paddle2.control=”computer”;
} else {

_root.paddle2.control=”human”;
}

Notice that, in the if statement, _root.paddle2.control is set to human or computer.
This works because in the Paddle Movie Clip, this code is found in the first frame:

if (control eq “computer”) {
this.attachMovie(“ai”, “ai”, 210);

}

The ai Movie Clip that is being attached is the Artificial Intelligence Movie Clip. That would
mean that each paddle would have its own AI Movie Clip controlling it. Sounds like a demo
mode. (Note, too, that this code also demonstrates how to change the color of a Movie
Clip.)

Detecting paddle/puck collision
Challenge: Detect whether the paddle and puck have collided.

There are many ways to detect collision. Flash 5 has introduced a new Movie Clip method
called hitTest.

Author’s Note: For a more detailed implementation of the new Flash 5 hitTest Movie
Clip method, refer to Dorian Nisinson’s Expert Tutuorial, Using hitTest for a Range of
Movie Clips, in Chapter 23, “Understanding Movie Clips as Complex Objects.”

The syntax for hitTest is:

myMovieClip.hitTest(target);

Unfortunately, because my objects (pucks!) are round, the hitTest method is not very
effective. That’s because it checks whether the rectangular regions occupied by the Movie
Clips have overlapped. This is shown in the following figure.

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 640

641Chapter 22 ✦ Creating Subroutines and Manipulating Data

Collision detection using the hitTest method would report this as a collision because
the boundaries overlap. Collision detection using Pythagorean Theorem would not
register this as a collision because the circles do not overlap.

I used the Pythagorean Theorem to calculate the distances the centers of each object were
from each other and then compare that calculation’s result to the total of their radii. The
Pythagorean Theorem states that a2 + b2 = c2. (See the following figure.) We want c, which
is the distance between the centers of the two objects.

a = the difference between paddle._y and puck._y
b = the difference between paddle._x and puck._x
c = Math.sqrt((a*a)+(b*b))

The Pythagorean Theorem can be used to calculate the distance of objects.

Continued

Paddle

Puckb

a

c

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 641

642 Part V ✦ Programming Flash Movies with ActionScript

Continued

I put this all in a function that I could call at anytime from anywhere:

function checkCollision (source, target) {
// Applying the Pythagorean theorem to
// check for collision.
a = target._y - source._y;
b = target._x - source._x;
c = Math.sqrt((a*a)+(b*b));
dist = (target._width *.5) + (source._width*.5);
if (c<=dist) {

return true;
} else {

return false;
}

}

When a function encounters the keyword return, it returns the value that follows the
return statement and stops executing. To call the function, I have to reference the Movie
Clip that contains it, the function, and then pass the required parameters in parenthesis like
this (note that the ¬ indicates a continuation of the same line of code; this character does
not appear in the actual code):

If (_root.functions.checkCollision(_root.paddle1, ¬
_root.puck1)

//Collision did occur!;
} Else {

//Collision did not occur!;
}

Ricochet sound
Challenge: Animate the sound so that it adjusts the pan from left speaker to right speaker
according to the horizontal location of the impact.

One of the new opportunities that Flash 5 affords us is the capability to control sound
through ActionScript. This is accomplished with the new Sound Object, which enables us to
adjust the panning of the ricochet sound based on where on the rink the sound occurs. The
following function can be called from anywhere a ricochet occurs.

Author’s Note: For another example of the new Flash 5 Sound Object, refer to Jay Vanian’s
Expert Tutorial “Sound Control,” in Chapter 19, “Controlling Movie Clips.”

function playSound(name,start,duration,vol,x){
max=_root.dir_scene.right;
inc=max/200;
//The line below puts it on a scale of -100 to 100
pan = (x/inc)-100;
s = new Sound();

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 642

643Chapter 22 ✦ Creating Subroutines and Manipulating Data

s.attachSound(name);
s.setPan(pan);
s.setVolume(vol);
s.start(start,duration);

}

Explanation of passed variables:

✦ name— The name specified in the Linkage properties for a sound

✦ start— The offset from the beginning of the sound

✦ duration— How long to play

✦ vol— Volume, how loud to play (range from 0 to 100)

✦ x— The horizontal position of the ricochet, which will be translated to –100 to 100
so that pan will be set appropriately

To get the panning to work correctly, we just need to pass _root.puck1._x for the x argu-
ment.

It is very convenient to organize your functions in a central place. Here is an example of the
Functions Movie Clip used for this game.

A Movie Clip can be used as a container
for several functions.

Wrap Up
With a functional specifications sheet in front of us, a break down of each of the major ele-
ments required for the game, and some of the challenges identified and researched, you
are now ready to open Flash and start making some ice.

Mark Burrs says that he found Flash when he “was looking for a Web-based diagramming solution I could
integrate with Lotus Notes.” He’s from Stillwater, Minnesota, and is CEO and founder of CyBurrs Solutions,
Inc. in White Bear Lake, Minnesota, and a member of the training staff at Lynda.com’s Ojai Digital Arts Center
in Ojai, CA. Some of his most impressive work includes www.cyburrs.com, www.swfstudio.com, and
www.swfstudio.com/demo-lessons, which, “is a very extensive Flash-based training system that uses
Lotus Notes as an organization and development tool.” In the year that he graduated high school, “Total
Eclipse of the Heart” was the big hit. What’s Mark’s single most favorite thing to do? “Play with my kids and
spend time with my wife. Programming in Flash and Lotus Notes is great, too, but I couldn’t list them first.”

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 643

644 Part V ✦ Programming Flash Movies with ActionScript

Managing Related Data: The Array Object
Have you ever had a bunch of variables that have a lot in common? For example, do
you have variables such as name_1, name_2, name_3, name_4, and so on? These
variables look like lists of common information, such as:

name_1 = “John”;
name_2 = “Vanessa”;
name_3 = “Jennifer”;
name_4 = “Frank”;

In programming languages, an array is a list of values that can be addressed by
their position in the list. An array is created by using the Array constructor:

visitors = new Array();

The preceding code object simply creates the array container for data. You create
an array with information already specified, such as:

visitors = new Array(“John”,”Vanessa”,”Jennifer”,”Frank”);

To access an item in visitors, you would use the array access operators with an
array index number. To access the first position’s data, you would use the following
code:

message = “Hello “ + visitors[0] + “, and welcome.”;

Here, visitors[0] will return the value “John”. If you traced the message variable,
it would read:

Hello John, and welcome.

In most programming languages, the first index value (the starting position) is 0,
not 1. In the following table, you’ll see how the index number increases with our
sample visitors array.

Index Position 0 1 2 3

Index Value John Vanessa Jennifer Frank

You can set and get the values within an array using the array access operators.
You can replace existing array values by setting the index position to a new value,
and you add values to the array by increasing the index number, as in:

visitors = new Array(“John”,”Vanessa”,”Jennifer”,”Frank”);
visitors[3] = “Nicole”;
visitors[4] = “Candice”;

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 644

645Chapter 22 ✦ Creating Subroutines and Manipulating Data

In the example, “Nicole” replaces “Frank”, and “Candice” is added to the end of the
array. You can also add elements to the array using the push method of the Array
Object, as in:

visitors = new Array(“John”, “Vanessa”,”Jennifer”,”Frank”);
newLength = visitors.push(“Nicole”,”Candice”);

This code will add “Nicole” and “Candice” after “Frank”, and set the variable
newLength equal to the length of the visitors array. length is an Array property
that returns the number of elements in the array. In the preceding example,
newLength is equal to 6, because there are now six names in the array.

You can read more about methods of the Array object on pages 214–224 of the
Macromedia’s ActionScript Reference Guide.

We look at arrays in a function example later in this chapter.

Cross-
Reference

Emulating Arrays in Flash 4 Movies

In Flash 4, you could only emulate arrays, using expressions for variable names. In our array
examples for Flash 5 ActionScript, you could create an arraylike structure for a Flash 4 movie
by using the following code:

name_1 = “John”;
name_2 = “Vanessa”;
name_3 = “Jennifer”;
name_4 = “Frank”;

Then, you could use another variable, i, to indirectly refer to different name_ variables, as in:

i = 2;
currentName = eval(“name_” add i);
message = “Hello “ add currentName add “, and welcome!”;

For Flash 4 compatibility, the add operator (instead of the + operator) and the eval() func-
tion are used to return the current value of the name_ variable we want to insert. If you
traced the message variable, then the Output window would display:

Hello Vanessa, and welcome!

We only mention array emulation in this section because many Flash developers may
encounter clients who wish to have Flash movies (or sites) that will work with the Flash 4
Player plug-in, because that plug-in version is likely to be installed on more computers.

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 645

646 Part V ✦ Programming Flash Movies with ActionScript

Creating a Dynamic Reusable Flash Menu
In this section, we use arrays to create a dynamic code-built menu that you can
adjust for any Flash movie. You create a Main Timeline with six sections for a pho-
tographer’s site, and a menu that navigates to those four sections. While that
sounds simple enough, we create the menu entirely from ActionScript code.

1. Create a new Flash movie (Ctrl+N or Command+N). In the Movie Properties
dialog (Ctrl+M or Command+M), set the frame rate to 20 and the background
color to white. Use any movie frame size you prefer.

2. Rename Layer 1 to labels. Create new keyframes (press F6) on frames 2, 10,
20, 30, 40, and 50. Select frame 60 and press F5.

3. Starting on frame 2 of the labels layer, assign the following label names to the
keyframes you created in Step 2: about, interiors, exteriors, landscapes, por-
traits, and editorial.

4. Add a new layer, and name it actions. Add a keyframe on frame 2 of the actions
layer. With that keyframe selected, open the Actions Panel and add a stop()
action. In the Frame Panel, type //stop in the Label field. This will create a
frame comment of stop. The stop() action on frame 2 will prevent the Main
Timeline from playing past our about section, when the movie first loads.

5. Create another layer called artwork. Add keyframes on this layer, matching
the keyframes in the labels layer. Insert some graphics in each keyframe for
each section. As a starting point, you can simply add text headings to each
section (for example, About the Company, Interior Photography, and so on).
We need this artwork layer so that we have some indication that the playhead
on the Main Timeline actually moves when an item in the menu is clicked.

6. Now we create an array that contains the names of each our frame labels. Add
a new layer to the Main Timeline, and name it menu actions. Double-click the
first keyframe on the menu actions layer. In the Actions Panel, add the follow-
ing code (note that the ¬ indicates a continuation of the same line of code; do
not insert this character into your actual code):

sectionNames = new Array(“about”, “interiors”, ¬
“exteriors”, “landscapes”,”portraits”, “editorial”);

This line of ActionScript will create an array object named sectionNames.
We can now refer to each section of our timeline using array syntax, such as
sectionNames[0], sectionNames[1], and so on. We use this array to build
the actual button text in our menu.

7. In the same block of code, add the following line to the Actions list for frame 1
of the menu actions layer:

sectionCount = sectionNames.length;

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 646

647Chapter 22 ✦ Creating Subroutines and Manipulating Data

This code creates a new variable named sectionCount. The length property
of an array will return the current number of elements inside of the array.
Therefore, because we put six elements into the array (in Step 6), sectionCount
will be equal to 6. You may be wondering why we just didn’t manually insert the
value 6 here. The point to using an array is that we can change the elements of
the array at any point, and the rest of our code will update automatically to
reflect the changes. In this way, we are building a dynamic menu system.

8. Save your Flash movie as menuArray.fla. At this point, your Flash movie
should resemble Figure 22-1.

Figure 22-1: The Main Timeline has frame labels and artwork for each
section of the presentation.

9. Now we need to create some menu elements that we can use to build a
dynamic menu from ActionScript. First, we need to make a Movie Clip “con-
tainer” for the menu items. This container will be a Movie Clip instance on the
Stage. Press Ctrl+F8 (Command+F8) to create a new symbol. Name this sym-
bol menu, and keep the default Movie Clip behavior. Flash automatically
switches to Symbol Editing Mode.

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 647

648 Part V ✦ Programming Flash Movies with ActionScript

10. Within the timeline of the menu symbol, rename Layer 1 to menuItemBase.
This layer will hold a template Movie Clip instance for the menu item(s).
Again, create a new Movie Clip symbol by pressing Ctrl+F8 (Command+F8).
Name this symbol menuItem, and keep the default Movie Clip behavior.

11. Within the timeline of the menuItem symbol, rename Layer 1 to button. On
this layer, create or add a Button symbol. In our example, we used the Pill
Button from the Buttons Library (Window ➪ Common Libraries ➪ Buttons).
This will be the actual button that appears in our menu. Make sure that the
Button is wide enough to accommodate the names of our sections. We
stretched our button, shown in Figure 22-2, to 175 percent. Also, center
your Button instance on the Stage, using the Align Panel.

Figure 22-2: The menuItem instance will be used to create each button in the
dynamic menu. Using ActionScript, the labelName text field will be filled with the
appropriate section name.

12. Add a new layer to the menuItem symbol, and name it textField. On this layer,
create a Dynamic Text field that is the length of the Button instance. In the Text
Options Panel, give this Dynamic Text field the variable name labelName. Use
whatever font face you prefer, in the Character Panel. In the Paragraph Panel,
align the text to the center of the text field.

13. Add another layer to the menuItem symbol, and rename it actions. Add a
stop() action and frame comment of //stop to the first frame of the actions
layer. (See Step 4 for more information.)

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 648

649Chapter 22 ✦ Creating Subroutines and Manipulating Data

14. Select the Button instance that you added in Step 10. Open the Actions Panel,
and type the following code in the Actions list:

on(release){
_root.gotoAndStop(labelName);

}

This code will use the value of the labelName text field as the frame label for
the gotoAndStop() action. Notice that we will control the Main Timeline’s
playhead by indicating _root. Shortly, we will assign each instance of
menuItem a unique labelName value.

15. Open the menu Movie Clip symbol by double-clicking it in the Library. Drag an
instance of menuItem from the Library to the menuItemBase layer on the menu
timeline. With this instance selected, open the Instance Panel and assign a name
of menuItemBase, as shown in Figure 22-3. We will use this instance as a tem-
plate for the real buttons in the menu symbol. Align this instance to the center
of the Stage.

Figure 22-3: We will duplicate the menuItemBase instance in ActionScript,
to build each button in the menu symbol.

16. Save your Flash movie.

17. Go back to the Main Timeline and create a new layer named menu. On this
layer, place an instance of the menu Movie Clip symbol from the Library. In
the Instance Panel, give this symbol the name menu.

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 649

650 Part V ✦ Programming Flash Movies with ActionScript

18. Open the Actions Panel for frame 1 of the menu actions layer. At the end of
the Actions list, type the following line:

menuItemSpacing = 10;

This line of code establishes a variable named menuItemSpacing. This value
will designate the space (in pixels) to space each menuItem instance apart.

19. Then, add the following ActionScript to the Actions list for frame 1 of the
menu actions layer (note that the ¬ indicates a continuation of the same line
of code; do not insert this character into your actual code):

for(i=1;i<=sectionCount;i++){
_root.menu.menuItemBase.duplicateMovieClip ¬
(“menuItem_”+i, i);

root.menu[“menuItem”+i].labelName = ¬
sectionNames[i-1];
if(i != 1){

root.menu[“menuItem”+i]._y = ¬
root.menu[“menuItem”+(i-1)]._y + ¬
root.menu[“menuItem”+(i-1)]._height + ¬
menuItemSpacing;

}
}

This code inserts a for loop that will duplicate the menuItemBase instance
(inside of the menu instance) for each element in the sectionNames array. It
will also set the value of labelName in each duplicated menuItem instance to
the name of the appropriate section name. Notice that we specify i-1 for the
index number of the sectionNames array because the position index of every
array starts at 0 and our menuItem numbering starts at 1.

After an instance is duplicated for the section name, we then reposition the
menuItem instance below the previous one. We only need to perform this
operation for instances greater than 1 because the starting instance does not
need to be moved down. Notice also that we use the menuItemSpacing vari-
able add a buffer space between the menu items.

20. Before we can test the movie, we need to hide the menuItemBase template
instance in the menu instance. After the for loop code, insert the following
action:

_root.menu.menuItemBase._visible = false;

21. Save your Flash movie again, and test it (Ctrl+Enter or Command+Enter).
Unless you had a syntax error in your ActionScript or forgot to name a Movie
Clip instance, you will see a dynamic menu, built by ActionScript (as shown in
Figure 22-4).

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 650

651Chapter 22 ✦ Creating Subroutines and Manipulating Data

Figure 22-4: The ActionScript code in the menu actions layer duplicates the
menuItemBase instance in the menu instance. Each duplicated instance has
a unique labelName value, which is used in the gotoAndStop() action by each
Button instance.

You can enhance this dynamic menu by adding animation to the menuItem symbol
timeline. You can also restructure the ActionScript to work with separate Movie Clips
for each sectionName, instead of frame labels. If used properly, you may never need
to script a menu again! Simply change the Button instance artwork and text styles for
unique menu interfaces.

In the ch22 folder of the Flash 5 Bible CD-ROM, you will find basic (menu
Array_basic.fla) and advanced (menuArray_advanced.fla) implementations of the
menu system. The advanced menu uses a function to check each button’s ani-
mated state.

Functions as Methods of Objects
We’ve already discussed functions as subroutine mechanisms in Flash movies.
Functions can be used to define a set of actions that are later executed when the
function is invoked. In Flash 5, you can use also functions as methods of other
code objects. Methods are actions specific to actions. Unlike properties and val-
ues, methods carry out a task with that object. In this section, we deconstruct a
.FLA file that uses a function to create a menu completely from ActionScript.

On the
CD-ROM

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 651

652 Part V ✦ Programming Flash Movies with ActionScript

Make a copy of the createMenu.fla file, located in the ch22 folder of the Flash 5
Bible CD-ROM.

Open a local copy of the createMenu.fla file in Flash 5. You’ll notice that the Main
Timeline has a setup similar to the arrayMenu.fla file that was discussed in the last
section. We have a series of labels, indicating sections of the Flash movie. If you test
this Flash movie, you’ll see a dynamic menu display. Clicking each button takes you
to the corresponding section of the Flash movie.

Unlike our previous arrayMenu.fla example, though, notice that we have different
text on the menu buttons than the text used in the frame labels. For example, the
Our Products menu button takes you to the products label on the Main Timeline.
For this Flash movie, a function with multiple arguments enables you to specify the
text of the menu buttons separately from the targeted labels (and timelines).

Double-click the first frame of the functions layer. In the Actions Panel, you’ll see
this function appear in the Actions list (note that the ¬ indicates a continuation of
the same line of code; this character does not appear in the actual code):

function createMenu(names,targets,labels){
this.itemName = names.split(“,”);
this.itemTarget = targets.split(“,”);
this.frameLabel = labels.split(“,”);
_root.menuBase.duplicateMovieClip(“menu_1”,1);
for(i=1;i<=this.itemName.length;i++){
this.attachMovie(“menuItem”,”menuItem_”+i,i);
this[“menuItem_”+i].name = this.itemName[i-1];
this[“menuItem_”+i].itemTarget = this.itemTarget[i-1];
this[“menuItem_”+i].frameLabel = this.frameLabel[i-1];
if(i>1){
this[“menuItem_”+i]._y = this[“menuItem_”+(i-1)]._y ¬
+ this[“menuItem_”+(i-1)]._height;

}
}

}

The createMenu() function has three arguments: names, targets, and labels.
The value for these arguments will be supplied as a method of a Movie Clip instance
when the function is executed. Similar to our previous arrayMenu.fla example, we
will use arrays to store the values of our frame labels (and section names). However,
we’ll also create an argument (and array) to store the button text that will appear on
the menu buttons. In this way, we can create ActionScript that correctly uses frame
labels in other Go To actions, without worrying about the text that is actually used
as a button item. The targets argument is used to create an array of timeline tar-
gets for each button item.

On the
CD-ROM

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 652

653Chapter 22 ✦ Creating Subroutines and Manipulating Data

The function also uses the attachMovie method (instead of duplicateMovieClip)
to use the menuItem Movie Clip symbol in the instance timeline executing the func-
tion. In our example, there is a menu Movie Clip instance on the Stage. This empty
Movie Clip instance is assigned the createMenu() function as a method, just as
duplicateMovieClip or attachMovie is a method of the Movie Clip object:

_root.menu.createMenu = createMenu;

This line of code creates a new method called createMenu, specifically for the
menu instance (object) on the Stage. It also set this method to use the function
createMenu as its value. Therefore, whenever we evoke the createMenu method
of the menu object, the actions within the createMenu function will run.

The act of creating and assigning a method name for an object does not actually
execute the method or the function. We’re simply defining a method for the
object, so that it can be evoked later. Do not use parentheses for method (and
function) assignment — doing so results in an error.

Note that you can use any method name you prefer — it need not match the name
of the function as our example does. So, you could write:

_root.menu.customMenu = createMenu;

The function createMenu also uses the this syntax to make the function work
in relation to the object that is executing it. this will equal _root.menu for the
method assignment, _root.menu.createMenu = createMenu. However, if we had
another menu instance, such as menu_2, that used the createMenu function as a
method, then this would refer to its path for its method. Herein lies the power of a
function as a method of an object — you can assign the same function (and argu-
ments) to unique objects (or Movie Clip instances) on the Stage.

To execute the method createMenu for the menu instance, you need to specify the
method and any arguments you will supply the method. In our example, the follow-
ing line (note that the ¬ indicates a continuation of the same line of code; this char-
acter does not appear in the actual code) executes the createMenu method for the
menu instance:

_root.menu.createMenu(“Home,Our Products,Our ¬
Services”,”_root,_root,_root”,”main,products,services”);

In this line of code, the following arguments are passed to the createMenu function
arguments:

names = “Home,Our Products,Our Services”
targets = “_root,_root,_root”
labels = “main,products,services”

Caution

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 653

654 Part V ✦ Programming Flash Movies with ActionScript

When the createMenu method is evoked, the createMenu function parses this
argument into the actions contained with the function. The split method (for String
Objects) takes the values of names, targets, and labels, and makes each comma-
delimited item (item separated by a comma) into a separate array element:

itemName[0] = “Home”
itemName[1] = “Our Products”
itemName[2] = “Our Services”

While you will never see those lines of code in the function, you will see references
to these array items.

this.itemName[i-1]

is used to take each itemName element and put it on the proper menuItem Movie
Clip instance in the menu object.

The itemTarget array is used to let the menuItem instances know to which time-
line target to address the gotoAndStop() action (contained on the Button instance
within the menuItem symbol in the Library). The frameLabel array assigns the
proper frame label for the gotoAndStop() action for the Button instance.

This movie also uses a resetMenu function (and method) to delete the menuItem
instances and arrays.

Functions as Constructors for Objects
Functions can also be used with the new constructor to create objects with proper-
ties and methods assigned by the function. This means that you can use a function
to create unique objects, based on parameters that you pass as arguments to the
function upon invocation. In this section, we deconstruct another function example
that creates an entire Sound Library with ActionScript, without using any Movie
Clip instances.

Make a local copy of the soundObjects.fla file, located in the ch22 folder of the
Flash 5 Bible CD-ROM.

Open your copy of the soundObjects.fla file in Flash 5. You’ll notice that there aren’t
any Movie Clips and/or physical elements on the Stage. Double-click the first (and
only) frame on the actions layer. In the Actions Panel, you’ll see the following code:

function createLib(start,end){
for(i=start;i<=end;i++){

if(i==start){

On the
CD-ROM

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 654

655Chapter 22 ✦ Creating Subroutines and Manipulating Data

this.snd = new Array();
}
this.snd[i] = new Sound();
this.snd[i].attachSound(“sound_”+i);

}
}
this.soundLib = new createLib(1,7);
this.soundLib.snd[1].start();
this.soundLib.snd[2].start();

There are three sections to this code: the function definition; the object creation
and assignment; and the method execution of the Sound Objects.

Function definition
The createLib function has two arguments: start and end. Again, these are user-
defined function names and arguments. You could rename the function and argu-
ments to your own preferred terms. The for loop in the createLib function will
create a snd array object within the calling object (this). This array will contain
Sound Objects that use the .AIFF sound files in the Library. Note that each of the
sounds in the Library have been set to export with the .SWF file, as defined by the
Linkage Properties for each sound.

See Chapters 19, “Controlling Movie Clips,” and 20, “Sharing and Loading Assets,”
for more information on Symbol Linkage.

Object creation and assignment
After the createLib function is defined, we can use it for new objects. In our exam-
ple, a new object named soundLib is created after the function definition:

this.soundLib = new createLib(1,7);

First, the object is declared as being on the this timeline. This enables us to load
this Flash movie into other Flash movies and retain proper targeting paths for the
createLib function. If you test this movie on its own, this will simply be equal to
_root or _level0. Using the new constructor, we create the snd array and Sound
Objects relative to the soundLib object. We are creating a unique object with spe-
cific properties and values. This enables you to make as many objects as you
desire, all from one function:

this.soundLib_1 = new createLib(1,3);
this.soundLib_2 = new createLib(4,7);

These actions (not used in our example) would create two separate soundLib
objects, each using a specific range of Sound Objects from the Library.

Cross-
Reference

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 655

656 Part V ✦ Programming Flash Movies with ActionScript

The numbers specified in the parentheses indicate the sounds to use from the
Library. Remember that in our function createLib, the start and end arguments
are used to form the linkage identifiers:

“sound_”+i

where i is defined by the start argument, and incremented until the end argument
value is reached.

Sound Object method execution
Finally, after the Sound Objects are created within the soundLib object, we can
play the sounds with the Flash 5 built-in start method for Sound Objects:

this.soundLib.snd[1].start();
this.soundLib.snd[2].start();

These lines of code tell the Sound Objects located in the 1 and 2 index positions of
the snd array (for example, sound_1 and sound_2 from the Library) to play.

This is just one example of using functions to create new objects. You can use func-
tions to create other types of data-based objects for record storage and retrieval, as
well as to create unique Color Objects to reference with more than one Movie Clip
target.

During further testing, we discovered that the setVolume method of the Sound
Object controls all Sound Object instances on a given timeline. This means that
you should create one Sound Object instance per timeline. For example, if you
wanted to separately control the volume of five individual sounds, then make sure
you create each of those Sound Object instances on a separate Movie Clip
instance.

Summary
✦ Flash 5 ActionScript has five data types: string, number, movieclip, object,

and function.

✦ The data type of an ActionScript element can be checked using the typeof
operator.

✦ The most common use of a function is as a subroutine, which is a set of
actions that execute when the function’s name is evoked.

✦ A subroutine function should be created when the same actions are repeated
within a Flash movie, or when you want to avoid storing long action lists
within Button instances.

Caution

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 656

657Chapter 22 ✦ Creating Subroutines and Manipulating Data

✦ A function is defined with the function action, in the format function
name(arguments){actions}.

✦ A function can be executed when the name of the function is evoked. The for-
mat of a function call is targetPath.functionName(arguments);, as in
_root.createLib(1,7).

✦ Arrays can manage related information, such as lists. An array is initiated with
the Array constructor, as in myArray = new Array();.

✦ Array elements have an index number, indicating their position in the array.
Array index numbers start with 0 and increment by 1 with each new element.

✦ Functions can be used as methods of ActionScript objects. A method is
prescribed by creating a unique method name after the object and setting
the method’s value equal to a function name (for example, _root.menu.
createMenu = createMenu;). Parentheses and arguments are omitted from
the method assignment.

✦ Objects can be created with the function constructor. Functions intended for this
use describe properties and methods for objects using the this target path. A
new object is created by specifying an object name and setting it’s value equal to
a new instance of the function name, as in myObject = new createLib(1,7);.

✦ ✦ ✦

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 657

3515-3 ch22.f.qc 1/18/01 5:02 PM Page 658

Understanding
Movie Clips as
Complex Objects

This chapter explores the ins and outs of advanced colli-
sion detection for Movie Clip Objects. If you’ve ever

wanted to start building a space game with ships exploding
upon the impact of a missile, then this is the place to start.

Movie Clip Collision Detection
Have you ever wanted to detect the intersection of two ele-
ments in a Flash movie? If two Movie Clip instances overlap
on the Stage, how would you know? How would you tell
ActionScript to look for an overlap? In Flash 5, there are
two primary types of intersections (or collisions):

✦ User-dragged collisions

✦ Script- or time-based collisions

Using _dropTarget
A collision between two Movie Clip Objects can occur if the
user drags one Movie Clip instance to the location of another
Movie Clip instance. We first examined the startDrag()
action and method in Chapter 19, “Controlling Movie Clips.”
In the dog movie, we used the _dropTarget property of a
Movie Clip Object to detect whether the area of one Movie Clip

2323C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Defining collisions

Understanding
_dropTarget

Using the hitTest
method

Building a maze
game

Learning the basics of
Smart Clips

✦ ✦ ✦ ✦

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 659

660 Part V ✦ Programming Flash Movies with ActionScript

Object occupied the area of another Movie Clip Object. To recap, you can test the
intersection of two Movie Clips with the following code:

on(press){
this.startDrag(true);

}

on(release){
if(eval(this._dropTarget) == _root.mcInstance2){
trace(“this MC instance overlaps mcInstance2”);

} else {
trace(“this MC instance does not overlap mcInstance2”);

}
this.stopDrag();

}

This code could occur on a Button instance within the first Movie Clip instance.
When the user clicks the Button instance, the Movie Clip startDrag method is
invoked and the user can drag the Movie Clip instance on the Stage. When the user
releases the mouse, the _dropTarget property (which returns target paths in
Slashes notation) is evaluated to convert the target path to Dots notation. If the
_dropTarget property returns the path to another instance, then the if condition
will see whether the path matches _root.mcInstance2. If the paths match, then
the trace action indicating an overlap is executed. Otherwise, a separate trace
action will notify us that the instance is not on top of mcInstance2.

To see a fully functional example of the _dropTarget property in action, please
review the section “Detecting the Drop Position: Using _dropTarget” in Chapter 19,
“Controlling Movie Clips.”

Collision detection with advanced scripting
You can also perform more advanced collision detection using the hitTest method
of the Movie Clip Object. hitTest will do exactly what it says, it will test to see if a
“hit” occurred between two elements. hitTest has two formats:

mcInstance.hitTest(anotherInstance);

or

mcInstance.hitTest(x coordinate, y coordinate, shapeFlag);

The latter method was demonstrated in Chapter 19, “Controlling Movie Clips,” with
the hit detection on the sliderBar Movie Clip instance. With this method, you can
determine whether the X and Y coordinates are within the space occupied by the
Movie Clip instance. onClipEvents such as mouseMove can be used to constantly
check for a hit occurrence:

Cross-
Reference

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 660

661Chapter 23 ✦ Understanding Movie Clips as Complex Objects

onClipEvent(mouseMove){
if(this.hitTest(_root._xmouse, _root._ymouse, true)){
trace(“A hit has occurred”);

}
}

This code will report a trace action anytime the mouse pointer is moved within the
artwork of the Movie Clip instance to which the onClipEvent action is attached.
The shape flag attribute of hitTest defines the actual test area for the hit. If the
shape flag is set to true, then a hit only occurs if the X and Y coordinates occur
within the actual artwork of the Movie Clip instance. If the shape flag is set to
false, then a hit will occur whenever the X and Y coordinates occur within the
bounding box of the Movie Clip instance. In Figure 23-1, if the left circle uses a
shape flag of true, then a hit is reported whenever the X and Y coordinates occur
within the shape of the circle (not within the bounding box). If the right circle uses
a shape of false, then a hit is reported when the X and Y coordinates occur within
the bounding box.

Figure 23-1: The shape flag determines the boundary of
the Movie Clip instance for the hitTest method.

You can see a working example of shape flags and the hitTest method in the
hitTest_xy.fla file, located in the ch23 folder of the Flash 5 Bible CD-ROM.

The other format for the hitTest method is to simply specify a target path to com-
pare for a hit occurrence. With this syntax, you cannot use a shape flag option; if any
area of the bounding box for a Movie Clip instance touches the bounding box of the
tested instance, then a hit occurs. For example, you can modify the ActionScript used
earlier to indicate a hit between instances, instead of X and Y coordinates:

onClipEvent(mouseMove){
if(this.hitTest(_root.mcInstance2)){
trace(“A hit has occurred.”);

}
}

On the
CD-ROM

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 661

662 Part V ✦ Programming Flash Movies with ActionScript

This code assumes that other actions are actually initiating a startDrag action.
Also, we have omitted the other half of the if condition in both this example and
the previous example. If you omit a condition operator and test condition, then
ActionScript assumes that you are testing for a true result (as a Boolean value).
The following if conditions are exactly the same:

myMouseClick = true;
if(myMouseClick){
trace(“myMouseClick is true.”);

}
if(myMouseClick == true){
trace(“myMouseClick is true.”);

}

Therefore, to test for a true value with any if statement, specify the variable (or
method) that has a Boolean value. The hitTest method will yield either a true (a
hit has occurred) or a false (no hit has occurred) result. Note that, with scripting
languages, it is more common to use the former example for testing true conditions.

You can see a working example of targets and the hitTest method in the
hitTest_target.fla file, located in the ch23 folder of the Flash 5 Bible CD-ROM.

On the
CD-ROM

Expert Tutorial: Using hitTest for Multiple Targets, by
Dorian Nisinson

This tutorial teaches you one method for structuring a complex Flash 5 project. You also
learn about the new Flash 5 Dots notation, and how to use the new onClipEvent handler
and scripts attached to Movie Clips. In addition, you’ll use the hitTest method of the
Movie Clip Object and the getBounds method of the Movie Clip Object. But before we get
started, it will be best if you launch Flash 5 and open the file redMaze.fla. Then, select
Control ➪ Test Movie to see how the completed movie plays and what it does.

In this tutorial, you learn how to structure a Flash 5 movie using the redmaze.fla as an
example. You’ll find the finished .FLA, together with the diagrams for this tutorial, on the
CD-ROM in the ch23 folder.

Structuring a Flash 5 movie
When setting up a Flash project it is a good idea to create a diagram of the contents and
how they relate to each other. The more complex the movie gets, the more helpful this dia-
gram will be. This project gets very complex, so take some time to study the diagram.

The following figure is a diagram of the symbol elements and assets of this movie. The sec-
ond type of diagram represents your ActionScript and how it flows between the different
segments of code in the movie. First, decide what the movie has to be capable of doing and
then decide the most efficient way to structure your ActionScript to achieve those goals.

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 662

663Chapter 23 ✦ Understanding Movie Clips as Complex Objects

Movie layout diagram — the big picture

The ActionScript diagram, shown in the following figure, is the second thing to create dur-
ing the planning stage of a Flash project. Combined, these two diagrams can make coming
back to a project later very much easier. The more detailed the goals are to begin with, the
less time that you will have to spend rethinking and reworking the movie.

ActionScript diagram

Continued

a

ball
a a

mazeGrid winMC

main timeline up down right left

initialize
up, down
right, left
variables

toggle
up
true
 or
false

toggle
down
true
 or
false

toggle
right
true
 or
false

toggle
left
true
 or
false

test move
variables

if true
move

initialize
position
tracking
vairiables
update
constantly

test for
collision
with ball

if yes
test on which
side was the
collision

toggles that
direction
variable
false

test for
collision
with ball
if yes
goto
next
frame
+ move
ball to
start

frame 1
stop

frame 2
stop

diagram actions key

aframe button movieClip

movie clip: ball
instance name: ball
frames: 10
of instances: 1

movie clip: mazeGrid
instance name: gridXn_n
frames: 2
of instances: 137

movie clip: winner
instance name: win
frames: 2
of instances: 1

main timeline
labels: --------------
frames: 2
of buttons: 5

redMaze.fla - movie structure diagram

button: reset button: up button: right button: down button: left

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 663

664 Part V ✦ Programming Flash Movies with ActionScript

Continued

Defining the goals of the maze game
Before we can start production within Flash, it’s a good idea to also map out the primary
goals of the game. For our example, we establish the following guidelines:

1. The user has to be able to control a small Movie Clip (ball) so that it can go left,
right, up, or down by means of programming.

2. The movement of the ball should be as fluid and responsive as possible.

3. The ball should not be able to cross the boundaries of the maze, so some form of
collision detection needs to be set up.

4. Any collision must be noted so that code can be added to stop the movement of
the ball. It is crucial to the proper functioning of the maze game to know which side
of a grid piece was collided with so that the ball’s movement can be turned off in
that direction as long as the ball is colliding with that side of the grid piece.

5. When the ball completes the maze, there should be recognition competition.

Now, we go over the goals that you need to implement to complete the project.

Goal 1. The User Controlled Game Piece.
Graphic assets:

✦ A small circle, eight pixels high and eight pixels wide, in a Movie Clip with the
instance name of ball.

✦ An arrow button. Place four copies of the arrow button on the stage and rotate
them individually so that you have an arrow button pointing up, down, right,
and left.

✦ A rectangle, 4 pixels high by 20 pixels wide, in a Movie Clip with the instance name
of gridH or Vn.

Each button will contain ActionScript that allows the ball to move. If we attached the code
for moving the ball to the arrow button, the ball would move one pixel for each button
press. As the ball should keep moving as long as an arrow button remains pressed, we cre-
ate a variable that an arrow button press or release can toggle between two states, pressed
or released. If the ball only needed to move in one direction, pressed would be a good
choice for the variable name, but we need to know which direction button is pressed, so
we will use variable names that give us that piece of information as well. The variable
names are up, down, right, and left. Pressing the up arrow button changes the content of
the variable up to true. All of the direction variables are initialized as set to false because
we do not want the ball to move without a button being pressed. We define these four vari-
ables on the Main Timeline in a frame action to look like this:

up = false;
down = false;
left = false;
right = false;

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 664

665Chapter 23 ✦ Understanding Movie Clips as Complex Objects

To enter these lines of ActionScript in Normal Mode, you need to select and double-click
evaluate from the Action Booklet in the Actions Panel for each line that you want to add.
The following figure shows code in Normal Mode. The evaluate action enables you to type
in a whole expression without predefining the fields for you. In Expert Mode, you can type
whatever you want directly into the script pane with no prompting as you type.

The button actions for the up direction arrow button that do this are:

on (press) {
up = true;

}
on (release, releaseOutside) {

up = false;
}

As long as the up button remains pressed, the value for the up variable will remain set to
true. If the user releases the up arrow, the variable up will be reset to false.

The code looks different from Flash 4 ActionScript. We still have the mouse event handlers
as in Flash 4, but now the actions to be executed when a mouse event occurs are contained
in curly brackets. For those of you who are familiar with JavaScript, this way of formatting
code will be very familiar. The curly brackets define the actions that relate to that particular
segment of script.

The same script attaches to each direction arrow button except that the variable name must
be changed to the correct direction for that arrow button. The ActionScript is now set up to
know which button is being pressed so that it can tell in which direction to move. The next
thing we need is ActionScript that actually moves the ball in the right direction.

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 665

666 Part V ✦ Programming Flash Movies with ActionScript

Continued

Goal 2. Setting up the user controls to make the ball move.
onClipEvent actions:

So far, we have used button actions and frame actions, both of which existed in Flash 4. For
the ball movement, however, we will use a new addition to Flash 5 ActionScript: Movie Clip
actions. If you open redMaze.fla in Flash and click once on the ball Movie Clip on the stage
and then right-click (PC) or Control+click (Mac) you will get a context-sensitive drop-down
menu (see the following figure) that contains a new choice along with the expected ones.
This new choice is Actions. Be sure that no other items are selected on the stage when you
do this or you will not get the correct drop-down menu.

A context-sensitive drop-down
menu that contains the Actions
choice

The new onClipEvent has its own set of event handlers just as buttons do. The syntax for
this action is:

onClipEvent (movieEvent)

There are nine new Movie Clip events:

1. load

2. unload

3. enterFrame

4. mouseMove

5. mouseUp

6. mouseDown

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 666

667Chapter 23 ✦ Understanding Movie Clips as Complex Objects

7. keyDown

8. keyUp

9. data

Author’s Note: onClipEvent is discussed in Chapter 19, “Controlling Movie Clips.” The
data event is discussed in Chapter 24, “Sending Data In and Out of Flash.”

Putting a script in this new location enables the use of these new event handlers and takes
advantage of the special features of the enterFrame event handler.

The entire contents of this enterFrame event are contained within curly brackets. These
curly brackets define what lines of code are to be evaluated and executed when the speci-
fied event occurs.

The ActionScript for the ball Movie Clip is:

onClipEvent (enterFrame) {
if (_root.right == true) {

this._x+=1;
}
if (_root.left == true) {

this._x-=1;
}
if (_root.up == true) {

this._y+=1;
}
if (_root.down == true) {

this._y-=1;
}

}

Line-by-line analysis: Line 1 of the onClipEvent for the ball Movie Clip

onClipEvent (enterFrame) {

The event that this script uses is enterFrame. The enterFrame event handler executes
whatever script is placed inside it each time the playhead enters the frame. Because a
Movie Clip has its own separate timeline, it does not matter whether the Main Timeline is
stopped. The enterFrame will repeatedly execute its script over and over as long as the
movie that contains the Movie Clip and the Movie Clip itself exist on the Main Timeline. This
has an application to the code that we want to set up for redMaze. We do not want to check
only once to see if the user has pressed any of our buttons. We need to constantly check
the state of those direction buttons and enterFrame will execute our test of the button
state variable every time the Movie Clip enters a frame.

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 667

668 Part V ✦ Programming Flash Movies with ActionScript

Continued

Line-by-line analysis: Line 2 of the onClipEvent for the ball Movie Clip

if (_root.right == true) {

The test to see what the contents of our direction-setting variables are is an if statement.
Each if statement has its own set of curly brackets nested inside the event handler’s curly
brackets. These nested curly brackets define what to do if the result of the if test is true.

Next is the == sign. This is not the usual equal sign. This operator tests whether the element
on the left of the == sign has the same value as the element on the right. If both items have
the same value, it returns the value true and enables the code inside the if statement to
be executed. This kind of comparison operator is called a Boolean operator. All if state-
ments require a comparison that yields the results true or false. Do not be confused by
the fact that the word true is on the right side of this comparison. The == operator only
cares that the contents (value) of the variable named right, on the left side of the com-
parison, is the same as the expression on the right side.

Author’s Note: When you are testing true conditions, you can omit the == true, and sim-
ply refer to the variable name, as in if(_root.right){. Remember also that all equality
operators have two characters — do not use a single = in a comparison. This will actually set
the variable to the value declared in the if statement.

The code wasn’t written as if (right == true). Instead, the word _root precedes the
variable name. This is an example of the new Dots notation and _root refers to the Main
Timeline. All of our direction variables were initialized (named for the first time) in the first
frame of the Main Timeline. Thus, putting _root (separated by a dot) in front of the variable
name tells the script to look for the variable right on the Main Timeline.

If the user has the right button pressed, triggering the change in the variable right on the
Main Timeline, then the statement inside that if statement’s curly brackets is executed and
the ball moves. If the test result is false, then the statement inside is ignored. Flash then
proceeds to the next if statement and evaluates it in the same manner. As long as no
direction button is pressed, the instructions to move the ball are ignored.

Line-by-line analysis: Line 3 of the onClipEvent for the ball Movie Clip

In this section, we look at the following code:

this._x+=1;

At this stage of the ActionScript, the ball knows when it is all right to move in one of the four
directions. Now we must tell the ball how much to move and in which direction. That hap-
pens in the previous line of code.

this is a new way of telling the script which Movie Clip to act on. It is a keyword that is a
special kind of container for the target information of the Movie Clip in which it occurs. If
this line of code was in an onClipEvent, or a frame action of a Movie Clip whose instance
name was square, and that Movie Clip was inside another Movie Clip whose instance name
was circle, and circle was on the Main Timeline, then this would be translated by Flash to
mean _root.circle.square

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 668

669Chapter 23 ✦ Understanding Movie Clips as Complex Objects

In the example in the redMaze script, this is interpreted as _root.ball. Now we look at
each part of the code from line three separately.

✦ this: Using this instead of the actual instance name of a Movie Clip allows for a
lot of flexibility. It can make your scripts reusable. If you place those lines of code
in another Movie Clip, Flash will then read this as the name of the Movie Clip to
which it has moved.

✦ Dot: Next is the dot after the keyword this. The dot is used as a separator between
an object and its properties or methods. A Movie Clip is an object in Flash 5, as are
many other things. The dot is also used as a separator between the instance names
of nested Movie Clips. Just as we use an actual space between words in English to
make it more readable, dots define where one word (object, instance name, prop-
erty, variable, expression, and so on) ends and another one starts. The order in
which objects are written with dot syntax is crucial to the meaning of the script.
As in English, dog bites man is very different from man bites dog.

✦ _x: The _x refers to the same property in Flash 5 as it did in Flash 4. It is the x posi-
tion of whichever Movie Clip instance name precedes it. The x position property
refers to the horizontal location. The 0,0 coordinates of the stage are at the upper-
left corner of the stage. Both the right and the left arrow button move the ball on
the horizontal plane so that the x position is the one to change for those buttons.

The x and y values of a Movie Clip are always measured from the center point of the
Movie Clip. If you select the ball Movie Clip on the stage and open the Info Panel
you will see the width, height, x, and y properties for that instance of ball on the
stage. The x number tells where the center point of the Movie Clip is from the left
edge of the stage to the right and y tells where the center point of Movie Clip is
from the top edge of the stage to the bottom. The center point of the Movie Clip
does not necessarily refer to the center of the artwork. A dotted line square is next
to the x and the y boxes. This diagram has a black square at either the center of the
dotted line square or at the upper-left corner, and a white square at the other posi-
tion. Clicking one of these two squares will toggle it black and toggle the other one
white. The black square tells Flash whether to use the center of the art or the upper-
left corner of the art.

✦ +=: So far in this line of code, we have specified the x position of the ball Movie Clip
instance on the Main Timeline. The next item in the code is +=. This is a compound
assignment operator. It tells Flash to take the x position of the Movie Clip ball, add
that number to the x position number on the right side of the equation, and then
assign the total of those two numbers to the x position property of the ball Movie
Clip. Thus, in one step you accomplish a task that would have taken 3 lines of code
in Flash 4!

To sum up this line of code: It specifies the Movie Clip on which to act and tells Flash to
move the x position of that Movie Clip 1 pixel to the right.

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 669

670 Part V ✦ Programming Flash Movies with ActionScript

Continued

Line-by-line analysis: Line 4 of the onClipEvent for the ball Movie Clip

Look at the following code:

}

Line 4 consists of only the closing curly bracket for the first of the four if test statements
nested inside the onClipEvent. The closing curly bracket for the onClipEvent comes after
all the other lines of code in this ActionScript.

Line-by-line analysis: Lines 5 to 13 of the onClipEvent for the ball Movie Clip

if (_root.left == true) {
this._x-=1;

}
if (_root.up == true) {

this._y+=1;
}
if (_root.down == true) {

this._y-=1;
}

These lines handle movement in the other three directions for the ball Movie Clip. They
have the same structure as lines 2, 3, and 4 except that three elements need to be changed.

✦ The variable name: There must be a variable name for right, one for left, one for up,
and one for down.

✦ The position property: _x is the horizontal position so we change the x position for
right and left movement. _y is the vertical position so we change the y position for
up and down movement.

✦ The compound assignment operator: If the x position should move to the right, or if
the y position should move down, we use the += assignment operator. If the y posi-
tion should move up, or if the x position should move left, we use the -= assign-
ment operator.

Line-by-line analysis: Line 14 of the onClipEvent for the ball Movie Clip

}

This is the closing curly bracket for the entire onClipEvent (enterFrame) code segment.
If we were adding another type of onClipEvent (), for example load, we would use a
separate set of curly brackets to enclose the code that should be executed on that movie
event.

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 670

671Chapter 23 ✦ Understanding Movie Clips as Complex Objects

Goal 3. Creating the maze and defining the collision detection.

The ball Movie Clip must not move through any grid piece that makes up the maze. There
needs to be a way to test whether the ball location on the Stage is already occupied by any
grid piece. Collision detection needs to be set up for the maze and the ball; the new, built-
in ActionScript function hitTest is does this. hitTest works by comparing the bounding
box of the artwork of one Movie Clip with the bounding box of the artwork of another
Movie Clip. See the hitTest examples that preceded this tutorial for more information on
the area measured by the hitTest method.

Because each grid piece must detect a collision with the ball, it’s necessary to construct the
maze from many instances of the grid piece rectangles and scale and rotate them as
needed. Making the grid pieces rectangular means the area occupied by the artwork will be
exactly the same as the bounding box parameters tested by hitTest. The syntax for
hitTest is:

anyMovieClip.hitTest(target);

hitTest has another way to specify the bounds of a Movie Clip, but that option is outside
the scope of this tutorial. Please refer to the hitTest coverage that preceded this tutorial.

hitTest is a built-in function of the Movie Clip object. This function requires two Movie
Clip instance names, let’s call them the testerMC and the testeeMC. The testerMC is in front
of hitTest and the testeeMC is enclosed within brackets after it.

Where to put the collision code
This code segment must be capable of constantly and repeatedly executing so that any col-
lision is caught immediately. It would seem at first that we could put it in another
onClipEvent(enterFrame) but this would require that we copy and paste our final colli-
sion detection code 136 times into each instance of the mazeGrid Movie Clip. Aside from
the tedium of the task, that method of construction would make it very difficult to change
the code if something wasn’t working. We would have to fix the error in the code and make
the same change 136 times. This would be arduous and it would increase the chances for
further error. In this case, it is more efficient to put our code in a frame action inside the
actual Movie Clip mazeGrid, and to make mazeGrid a two-frame movie with no stop
actions in it. This will enable it to loop continually and therefore execute the code every
time the playhead loops into frame 1. Thinking about coding in this way beforehand can
save hours of troubleshooting later. To enter this code, we need to edit the actual mazeGrid
symbol itself. To do this:

✦ Either double-click any instance of mazeGrid on the Stage to edit the Movie Clip in
place on the Main Timeline Stage

✦ Or, select mazeGrid in the library and double-click the Movie Clip icon (not the
Library name of the Movie Clip) to edit it as a separate symbol without the other
content of the movie showing

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 671

672 Part V ✦ Programming Flash Movies with ActionScript

Continued

The complete code for our collision detection script in frame 1 of mazeGrid
if (this.hitTest(_root.ball)) {
trace (“ball intersects grid”);
location = this.getBounds(_root);
if (_root.ball.nowBx < this.location.xMax -1) {
_root.left = false;
_root.ball._x -= 5;

}
if (_root.ball.nowBx > this.location.xMin-1) {
_root.right = false;
_root.ball._x += 5;

}
if (_root.ball.nowBy < this.location.yMax -1) {
_root.up = false;
_root.ball._y -= 5;

}
if (_root.ball.nowBy > this.location.yMin-1) {
_root.down = false;
_root.ball._y += 5;

}
}

Line-by-line analysis: Line 1 of the mazeGrid

Look at the following code:

if (this.hitTest(_root.ball)) {

First, we set up an if statement to be the decision-maker or trigger for this code segment.
We use the keyword this again and it is particularly necessary here. If the code reads:

if (_root.gridH2_V7.hitTest(_root.ball)) {

then no matter what grid piece the ball collided with, the if statement’s test result would
return false unless the grid piece that the ball collided with was the one that was named.
Specifying _root.ball as the target is correct though, because that is the only moving
Movie Clip and is therefore the only one that can cause a collision. The opening curly
bracket at the end of this line signals the start of the code segment to be executed if the if
statement returns true.

Line-by-line analysis: Line 2 of the mazeGrid

Now, for line 2:

trace(“ball intersects grid”);

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 672

673Chapter 23 ✦ Understanding Movie Clips as Complex Objects

This line does not contribute to or control any aspect of the collision detection ActionScript.
Its purpose is as an information generator while testing the movie, using the Control ➪ Test
Movie command. Any element inside the parentheses is displayed in the output window
during a test movie if Flash executes the if statement. In this case, it simply displays the
words ball intersects grid whenever the ball Movie Clip collides with a grid piece.
Notice that those three words are within quotes. Enclosing any words inside the parenthe-
ses in quotes tells Flash to treat those words as words, or strings, and to display them as
written. If a keyword such as this was used and not enclosed in quotes, Flash would inter-
pret the contents of this, which in this case is the instance name of the particular grid
piece that had a collision with the ball. Try changing this line of code to:

trace(“ball intersects” + this)

Be sure to check the Expression box to the right of the code entry box and do not omit the
plus sign between the quoted text and the keyword this. The plus sign in this case con-
catenates (joins) the quoted text with the evaluated keyword. Trace can be a very useful
tool in helping to see how your ActionScript is working and as an aid in debugging.

Line-by-line analysis: Line 3 of the mazeGrid

Now look at line 3:

location = this.getBounds(_root);

location is a new variable that is initialized within the collision detector to hold the results
of the ActionScript method getBounds. A method is a function of a particular object. In this
case, getBounds is a method of the Movie Clip Object. The syntax for this method is:

anyMoveClip.getBounds (targetCoordinateSpace)

✦ anyMovieClip: Defines the Movie Clip (instance name) whose bounding box coor-
dinates we want to get.

✦ getBounds: Returns the minimum and maximum x and y coordinates of the speci-
fied Movie Clip. X minimum (xMin) and Y minimum (yMin) define the upper-left
corner of the bounding box. X maximum (xMax) and Y maximum (yMax) define
the lower-right corner of the Movie Clip’s bounding box. The getBounds method
returns these four coordinates for the instance of the grid piece that triggers the
collision detection.

✦ (targetCoordinateSpace): Defines which coordinate space is to be used.

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 673

674 Part V ✦ Programming Flash Movies with ActionScript

Continued

The Main Timeline Stage has its own coordinate space but, less obviously, each Movie Clip
has its own timeline as well as its own coordinate space. This difference in coordinate
space is very important to keep in mind. Open the Info Panel, click once on a Movie Clip on
the Stage, and look at the x and y position numbers in the Info Panel. If you then double-
click that Movie Clip on the Stage to go into the Edit (Movie Clip) in Place Mode, and then
click the object (graphic) on the Movie Clip’s Stage, you will see that the x and y numbers
showing in the Info Panel have changed. This is because Flash puts art that you convert into
a Movie Clip on the Movie Clip’s Stage with the upper-left corner of the art work’s bound-
ing box at the 0,0 point on the Movie Clip’s Stage. You can change this placement by mov-
ing the art on the Movie Clip’s Stage.

So, the actual code here specifies that the Movie Clip bounding coordinates to get are those
of the grid instance that registered a collision. Remember that the code that contains the
keyword this is inside a frame action of the Movie Clip mazeGrid. The coordinate space to
be used is the _root, which always refers to the Main Timeline and its coordinate space,
which is the Stage. As this code is contained in a frameAction of mazeGrid inside an if
statement, it will be updated whenever a collision with the ball is detected. Therefore, the
variable location will hold the current bounding box of grid piece that was hit.

Here’s an example of why it is important to specify the targetCoordinateSpace. Select
the top grid piece, second from the left, of the maze on the Main Timeline. In the Info Panel,
look at its width and height numbers. They are w = 364 and h = 4. Now double-click that
instance to go to Edit in Place Mode of the Movie Clip, which is an instance of mazeGrid.
Click the graphic rectangle on mazeGrid’s Stage and look at the height and width numbers
in the Info Panel now. They are w = 20 and h = 4. In this case, the reason for the difference
is that all of the grid pieces on the Main Timeline’s stage are made from the same Movie
Clip, mazeGrid whose dimensions are w = 20 and h = 4. But the different lengths and
widths needed to make up the entire maze are achieved by scaling and/or rotating
instances of mazeGrid on the Main Stage; and the scaling and rotating occur within the
coordinate space of the Main Timeline. Therefore, to get the correct size of any grid piece
we need to use the coordinate space that contains the scaling and rotating that define what
size a section of actual maze is.

Now a plan is needed to set up a test to compare the contents of location with the loca-
tion of the ball when it hits a grid piece.

Setting up variables for lines 4 through 19 of mazeGrid to test against
After the hitTest inside the top level if statement has done its job, we need to nest four
additional if statement tests to trigger one of the direction arrow buttons to stop allowing
movement. As before, when a button is pressed it resets one of the direction variables (up,
down, right, or left) to true allowing the ball to move. Then a collision creates an exception to
disallowed movement. The information that is significant to the collision detection is not which
grid piece collided with the ball, but with which side of a grid piece did the ball collide. Here’s
a summary of what the collision detection code needs to do after a collision is detected:

✦ If the ball hit a grid piece on the left side of the grid piece, the ball cannot be
allowed to move right.

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 674

675Chapter 23 ✦ Understanding Movie Clips as Complex Objects

✦ If the ball hit a grid piece on the right side of the grid piece, the ball cannot be
allowed to move left.

✦ If the ball hit a grid piece on the top of the grid piece, the ball cannot be allowed to
move down.

✦ If the ball hit a grid piece on the bottom of the grid piece, the ball cannot be
allowed to move up.

How do you test to determine on which side the collision occurred? First, a variable needs
to be created that keeps track of the x and y position of the ball Movie Clip. For clarity, we
will name these variables nowBx and nowBy.

✦ now: As a reminder that this variable’s content is constantly updating

✦ B: For ball to remind us that it is the ball’s position that we are tracking

✦ x or y: For the x position or the y position of the ball

Because these two new variables need to constantly update, it is easiest and clearest to put
these two new variables within the onClipEvent action of the ball Movie Clip along with
the other code that is constantly updating. Click evaluate in the actions toolbox and type in
these two lines of code:

nowBy = _root.ball._y;
nowBx = _root.ball._x;

On the left side of the equal sign (assignment operator) is the variable’s name; on the right
side is a new Flash 5 ActionScript way of defining exactly what property of which Movie Clip
is to be tracked. Don’t use the keyword this in this instruction because there’s only one
Movie Clip (ball) that we want to track. Also notice that we specified the Movie Clip from
_root. This tells Flash to get the x position of ball using the coordinate space of the Main
Timeline’s Stage. Because the coordinates of the grid location will be tracked in the Main
Timeline coordinate space, the ball coordinates that we are comparing it to must be in that
same coordinate space, or the results will not work as expected.

Line-by-line analysis: Lines 4 through 7 of the mazeGrid

Look at the following lines:

if (_root.ball.nowBx < this.location.xMax -1) {
_root.left = false;
_root.ball._x -= 5;

}

These are the first of four if statements that test which side of the grid piece the ball col-
lided with and then set the appropriate direction variable to false. These if statements
only need to be tested if a collision has been detected; therefore, they must be nested
inside the ifhitTest statement. These four sub if statement tests execute only
if there has been a collision.

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 675

676 Part V ✦ Programming Flash Movies with ActionScript

Continued

The if statement compares the x position of the ball to the contents of location, which is
the xMax of the bounding box of the grid piece that registered the collision. xMax is the
larger of the two x parameters that getBounds uses to determine the bounding box of the
Movie Clip specified. There are four tests because you need one to test each side of the gird
piece. The sub if test that is being analyzed checks whether the ball has collided with the
grid on the right side of the grid piece.

Then, the –1 at the end subtracts 1 from the xMin number so that the x position of the ball
matches the xMax position of the gird piece’s x position of its bounding box just a bit ahead
of time. Line 5 sets the ball movement variable for going left to false.

Line 6 subtracts 5 from the x position of the ball, which makes the ball appear to bounce
off the grid when it touches the grid. Line 7 closes the curly bracket for this nested if
statement

Line-by-line analysis: Lines 8 through 11 of the mazeGrid

if (_root.ball.nowBx > this.location.xMin-1) {
_root.right = false;
_root.ball._x += 5;
}

This next nested if test does the same job as the previous one, but it uses the xMin of the
grid for the comparison test. It tests whether the ball has collided with the grid on the left
side of the grid piece. Line 10 adds 5 to the x position of the ball, which makes the ball
appear to bounce off the grid when it touches the grid. Line 11 closes the curly bracket for
this nested if statement.

Line-by-line analysis: Lines 12 through 15 of the mazeGrid

if (_root.ball.nowBy < this.location.yMax -1) {
_root.up = false;
_root.ball._y -= 5;
}

This if uses the yMax of the grid for the comparison test. It tests whether the ball has col-
lided with the grid on the bottom of the grid piece. Line 14 subtracts 5 from the y position
of the ball, which makes it appear to bounce off the grid when it touches the grid. Line 15
closes the curly bracket for this nested if statement

Line-by-line analysis: Lines 16 through 20 of the mazeGrid

if (_root.ball.nowBy > this.location.yMin-1) {
_root.down = false;
_root.ball._y += 5;

}
}

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 676

677Chapter 23 ✦ Understanding Movie Clips as Complex Objects

This if uses the yMin of the grid for the comparison test. It tests whether the ball has col-
lided with the grid on the top of the grid piece. Line 18 adds 5 to the y position of the ball,
which makes the ball appear to bounce off the grid when it touches the grid. Line 19 closes
the curly bracket for the nested if statement. Line 20 closes the curly bracket for the entire
frame action.

Goal 4. The “You Win!” message on completing the maze.

The maze only needs a “you win!” acknowledgment for the completion of the maze. The
ActionScript for winMC is a Movie Clip event:

onClipEvent (load) {
this._alpha = 0;

}
onClipEvent (enterFrame) {
if (this.hitTest(_root.ball)) {
this.nextFrame();
this._alpha = 100;
_root.ball._x = 65;
_root.ball._y = 25;

}
}

Line-by-line analysis: Line 1 of the winMC

onClipEvent (load) {

The clip event here uses the loading of the Movie Clip to trigger this action because it con-
tains instructions that must execute immediately and then do nothing after that. The
onClipEvent (load) only executes once because the Movie Clip only loads once in this
movie.

Line-by-line analysis: Lines 2 and 3 of the winMC

this._alpha = 0;
}

winMC is set to be 0 percent alpha to make it invisible but still active. Line 3 contains the
closing curly bracket that defines the end of clip event.

Line-by-line analysis: Line 4 of the winMC

onClipEvent (enterFrame)

The second clip event uses enterFrame as the triggering event so this code will execute
repeatedly.

Line-by-line analysis: Line 5 of the winMC

if (this.hitTest(_root.ball)) {

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 677

678 Part V ✦ Programming Flash Movies with ActionScript

Continued

An if statement tests for the collision of the winMC and the ball. winMC is placed across the
exit from the maze so that when the ball crosses over it, the maze has been completed.

Line-by-line analysis: Line 6 of the winMC

this.nextFrame();

This line tells winMC to go to the next frame in its own timeline and stop. The graphic in
frame 2 of winMC contains the words, “You Win!” in big letters on the stage.

Line-by-line analysis: Line 7 of the winMC

this._alpha = 100;

Resets the alpha property of winMC to 100 percent so that it is no longer invisible. If we
didn’t do this, the “You Win!” would remain invisible.

Line-by-line analysis: Lines 8 and 9 of the winMC

_root.ball._x = 65;
_root.ball._y = 25;

These two lines move the ball back to its starting position ready to go again.

Line-by-line analysis: Lines 10 and 11 of the winMC

}
}

Line 10 closes the if statement in onclipEvent(enterFrame) and line 11 closes the
onClipEvent itself.

Now, test your version of the movie and compare its function to redMaze.fla, which is found
on the CD-ROM.

For more information about Dorian, see her tutorial in Chapter 10, “Using Modify ➪ Curves.”

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 678

679Chapter 23 ✦ Understanding Movie Clips as Complex Objects

Expert Tutorial: Complex Hit Detection on the Z Axis,
by James Robertson

In this section, we enter the third dimension and show you how to make the built-in Flash
5 collision detection work with your 3D creations. The first and most important lesson we
need to teach you is this: Don’t panic! Despite the title of this section, it’s not that complex
and you won’t need to worry about detailed mathematical formulas or trigonometry — so,
put down your scientific calculator and relax.

You’ll find the source files for this tutorial, as well as a demo version of Edesign’s 10-Pin
Bowling Game in the ch23 folder, on the accompanying CD-ROM.

Displaying 3D scenes
There are several ways to display a 3D scene on your computer screen, but in this section,
we look at vanishing point perspective. This technique enables us to give the illusion of
depth on your flat computer screen without too much effort or mathematical wizardry. So,
what is it and how does it work? Imagine that you are standing in the middle of a flat desert
area and this desert has a long, straight road running through the middle of it. If you were
to stand on the road and look toward the horizon, what would you see? You should see
something like the following figure, where the road would appear to get narrower as it
nears the horizon and, eventually, it seems to vanish into a single point — hence the term,
vanishing point perspective. Remember, if we were to stand on this road and watch a car
driving away from us, it would appear to become gradually smaller as it moves away.

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 679

680 Part V ✦ Programming Flash Movies with ActionScript

Continued

It’s reasonably simple to recreate this scene in Flash. To give the illusion of a car driving into
the distance all we have to do is move a car graphic slowly up the screen, gradually reduc-
ing the size of the image as it moves nearer to the vanishing point. Of course, that can be
done as a tweened timeline animation, but let’s take a look at using code for this. If we
were to drive this car with code, how would we go about it? First, we need to set up the ini-
tial variables for the position and size of the car. We have the usual x and y coordinates,
which you are already familiar with — but we will also define a z coordinate, which will tell
us how far the car has moved into the distance. For this example, imagine the z coordinate
to be like the odometer of the car — it tells us how far the car has moved. The start_size and
end_size variables are used to scale the car as it moves away. In this example, it will start off
at full size (100 percent) and, when it reaches the vanishing point, it will be just 1 percent.
So, in frame 1, we have the following code:

car_x = 275;
car_y = 390;
car_z = 0;
start_size = 100;
end_size = 1;
car_size = start_size;

This next section works out the speed of the animation. The variable animationframes
shows the number of steps it will take the car to move from it’s starting position to the van-
ishing point. A larger number will slow down the animation and a smaller number will
speed it up. The variable travel_distance is how far the car will move up the screen dur-
ing the animation (or the length of the road). The variables size_factor and end_factor
are calculated from the animation length and determine how much the car is moved and
resized in each loop of the animation.

animationframes = 60;
travel_distance = getProperty(“/road”, _height);
size_factor = (start_size-end_size)/animationframes;
move_factor = travel_distance/animationframes;

Now for the actions for frame 2: With all the variables set up, we simply need to move and
resize the car by subtracting the move_factor and size_factor variables, which we’ve
just calculated. In addition, because the car has moved one step nearer the horizon, we
increase the z coordinate by 1, as follows:

car_y = car_y-move_factor;
car_z = Number(car_z)+1;
car_size = car_size-size_factor;

Now that we’ve calculated the new size and position of the car, we simply move the Movie
Clip and resize it.

setProperty (“/car”, _y, car_y);
setProperty (“/car”, _xscale, car_size);
setProperty (“/car”, _yscale, car_size);

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 680

681Chapter 23 ✦ Understanding Movie Clips as Complex Objects

The last frame of this animation is frame 3, in which we insert the following actions: If the z
coordinate is less than the number of animationframes, then the car has not reached the
vanishing point on the horizon, so we simply gotoAndPlay frame 2 and repeat the anima-
tion. Otherwise, we gotoAndPlay frame 1 and restart the animation.

if (Number(car_z)<Number(animationframes)) {
gotoAndPlay (2);

} else {
gotoAndPlay (1);

}

See cardemo1.fla for the full source-code to the previous section. It’s in the ch23 folder on
the accompanying CD-ROM.

Collisions
Now that we have the basics in place, and our car is moving on the screen toward the hori-
zon, we look at collisions. To have a collision, we need to add another animation that can
collide with our original car. So, we’ll add another car animation, which will move horizon-
tally across the screen at a random distance and speed.

Much like the previous animation, we need to set up our initial variables for the position and
size of this new car. The variable sidecar_x is the x coordinate of the car (it will start out of
sight on the right side of our movie). sidecar_z is the z coordinate of the car (or the dis-
tance it has traveled toward the horizon). Although the formula may look slightly confusing,
all we are doing is choosing a random number somewhere between 20 and the value of the
variable animationframes (which was set to 60 in our original example). sidecar_y is our
y coordinate and it is calculated from the z coordinate of the car (remember that as the z
coordinate increases, the car moves up the screen). Additionally, sidemove_factor deter-
mines how quickly the car moves across the screen — again, this is randomized to make the
movie more interesting. Finally, sidecar_size is the scale of the car. All of this code will go
into the first frame of our movie, right after the code for the first car:

sidecar_x = 750;
sidecar_z = Number(random(animationframes-20))+20;
sidecar_y = car_y-(sidecar_z*move_factor);
sidemove_factor = 870/(random(animationframes*2)+40);
sidecar_size = 100-(size_factor*sidecar_z);

Now that we’ve defined all the variables, we can draw the car on screen at the correct size
and position, by adding this code to frame 1:

setProperty (“/carside”, _y, sidecar_y);
setProperty (“/carside”, _xscale, sidecar_size);
setProperty (“/carside”, _yscale, sidecar_size);

Continued

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 681

682 Part V ✦ Programming Flash Movies with ActionScript

Continued

Next, in frame 2 of the movie, we need to modify the x coordinate of the second car and
move it to its new position:

sidecar_x = sidecar_x-sidemove_factor;
setProperty (“/carside”, _x, sidecar_x);

That’s all we need. Our new car should be zooming across the screen at a random distance
and speed. For the final ingredient, all we need to do is calculate when the two cars collide.
Luckily for us, Flash 5 has built-in collision detection so it’s not too difficult. In fact, we can
tell whether the two cars collide by using the following command:

collision = _root.car.hitTest(_root.carside);

This checks whether the Movie Clip instance called car has hit the Movie Clip instance
called carside. If the variable collision is true then the two cars have collided.
However, remember that Flash 5 can only detect collisions in a two-dimensional scene and
our scene is three-dimensional. What we need to do is check the z coordinates of each car
to see if they are equal — if they are equal and the variable collision is true, then the
cars have definitely collided. So, in order to determine whether we’ve had a collision on the
z-axis, we need to add the following command to frame 2:

if (collision == true and car_z == sidecar_z) {
result=”CRASH!!!”

}

See cardemo2.fla for the full source-code to the previous section, it’s in the ch23 folder on
the accompanying CD-ROM.

Using depth in Flash
If you try the movie that we created in the previous section, you’ll notice one small prob-
lem — the car moving horizontally always appears on top of the other car, which is not
always right. To fix this, we need to use the depth facility in Flash. (Using depth is fully
explained in this chapter; refer to the depth section to enhance your learning in this tutorial.)

By giving depth to a Movie Clip, you can determine which car appears on top when the two
cars cross each other. To calculate the depth, we simply compare the z coordinates for each
car. If the horizontal car has a larger z coordinate than the vertical car (that is, if it is nearer
the horizon and, therefore, further away) then it should appear beneath the vertical car.

See cardemo3.fla for the full source-code to the previous section. It, too, is in the ch23
folder on the accompanying CD-ROM.

Using this technique
After you’ve mastered the basics of this technique, you can develop it further by having
multiple objects and by doing collision detections on everything in the scene. The best
method for this level of complexity is to use arrays to store the coordinates of each object
and then use a loop to check for collisions.

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 682

683Chapter 23 ✦ Understanding Movie Clips as Complex Objects

Author’s Note: You can read more about arrays in Chapter 22, “Creating Subroutines and
Manipulating Data.” For more information on loop actions, please refer to Chapter 21,
“Planning Code Structures.”

This guy came of age in Crowborough, East Sussex, England, when Madonna was singing “Vogue.” His inter-
ests are, “Apart from the obvious, err . . . too many to mention. But I’ll say, exploring the world — trips like the
Galapagos, Amazon, or Machu Pichu come to mind. James was introduced to Flash by a demo version on
the front of a magazine. Subsequently, according to Bill Turner, he’s become “one of the sharpest Flash pro-
grammers around.” This particular technique is only an indication of his “game.” You can see this technique
used in several productions such as Walter’s Been Framed by Edesign and Turnertoons.

Reusing and Repurposing Code with
Smart Clips

A new addition to the Library symbol types is the Smart Clip. A Smart Clip is a
Movie Clip symbol that has been given a set of parameters that are easily accessed
by the Clip Parameters Panel.

When would you want to use a Smart Clip? If you have any Movie Clip symbol that
you use multiple times but would like to add unique settings (or properties) to,
then a Smart Clip could be just what you need. For example, if you had a Button
instance in a menu item Movie Clip and you want to reuse that same menu item
symbol to point to different areas of your Flash movie, you have these options:

✦ Make duplicate menu items symbols in the Library, for each use of the symbol.
Each Button instance will have a unique hard-coded Go To action, such as:

on(release){
_root.gotoStop(“products”);

}

✦ Make a menu item symbol that uses an expression within the Button instance
actions. Other ActionScripts will supply the values for this expression. (See
our arrayMenu.fla example in the last chapter.) The actions on the Button
instance would appear as:

on(release){
_root.gotoAndStop(frameLabel);

}

where frameLabel was set on the Movie Clip timeline by some other
ActionScript code.

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 683

684 Part V ✦ Programming Flash Movies with ActionScript

✦ Create a Smart Clip menu item symbol that uses values from the Clip
Parameters Panel to establish the values of expressions used within the
Button instance code. The actions on the Button instance inside of a Smart
Clip would appear as:

on(release){
_root.gotoAndStop(frameLabel);

}

where frameLabel is defined by the Clip Parameters Panel for this specific
instance. This method is by far the easiest for Flash designers who prefer not
to get involved with complex ActionScripting. We demonstrate using a Smart
Clip for a typical menu item symbol in the next section.

Usually, Smart Clips are most useful in a team production environment, in which the
programmers on the staff design the ActionScripts, and Flash graphic artists create the
movie elements and layout. The programmers would create the Clip Parameters for
each symbol (and perhaps even a custom interface for the Clip Parameters Panel), and
the designers would select and enter the values for each parameter in the Flash movie.

Adding parameters to a Movie Clip symbol
In this section, we create a Smart Clip symbol and then add a parameter to it. This
symbol will be used for a menu system in a Flash movie.

As a starting point, you can use the smartClip_starter.fla located in the ch23 folder
of the Flash 5 Bible CD-ROM.

1.Create a new Flash movie, and set its background color to white and its frame
rate to 20 fps, in the Modify Movie dialog (Ctrl+M or Command+M). Use what-
ever frame size you prefer.

2. Save the Flash movie as smartClip.fla.

3. Create a Main Timeline that has four sections, with the frame labels main,
products, services, and contact (as shown in Figure 23-2). Add some place-
holder artwork to keyframes for each section, and insert a stop() action at
the keyframe of the first section.

3. Make a new symbol by pressing Ctrl+F8 (PC) or Command+F8 (Mac). In the
Symbol Properties dialog, type the name menuItem and keep the default Movie
Clip behavior. Click OK. Flash automatically switches to Symbol Editing Mode.

4. On the menuItem timeline, rename Layer 1 to button. In frame 1 of this layer,
create a rectangular Button symbol, using any of the drawing tools. Or, you
can use a Button symbol from the Buttons Library (Window ➪ Common
Libraries ➪ Buttons).

5. Create new layer on the menuItem timeline, and rename this layer textField.
In frame 1 of this layer, create a Dynamic Text field whose length matches the
Button instance that you created in Step 3. With this field selected, type name
in the Variable field of the Text Options Panel, as shown in Figure 23-3.

On the
CD-ROM

3515-3 ch23.f.qc 1/18/01 5:02 PM Page 684

685Chapter 23 ✦ Understanding Movie Clips as Complex Objects

Figure 23-2: The Main Timeline should demonstrate the
layout of the Flash movie sections.

Figure 23-3: The name text field will be filled by a Clip Parameter.

6. Select the Button instance from Step 4, and open the Actions Panel. With the
panel in Expert Mode, type the following actions into the Actions list:

on(release){
_root.gotoAndStop(frameLabel);

}

3515-3 ch23.f.qc 1/18/01 5:03 PM Page 685

686 Part V ✦ Programming Flash Movies with ActionScript

In this code, we specify an expression for the label that the gotoAndStop
action will use. The expression is a variable named frameLabel. This variable
will be added to the menuItem symbol as a Smart Clip parameter.

7. Return to the Main Timeline of the Flash movie. Rename Layer 1 to menuItems.

8. Open the Library window, and select the menuItem symbol. In the Options
menu of the Library window, choose Define Clip Parameters. The Define Clip
Parameters dialog opens.

9. Press the plus (+) button at the top-left corner of the dialog. This will add a
default varName parameter to the menuItem symbol (which is now a Smart
Clip). Double-click the varName text, and replace varName with name. In the
Value column, replace defaultValue with [type button text here]. Leave the
Type column value set to Default. The Default value leaves this option as an
editable text field in the Clip Parameters Panel, so that we can directly type
the text for our menu item.

As shown in Figure 23-4, each parameter has three values: the name of the
parameter (which is interpreted as an actual variable name in ActionScript),
the value for that variable, and the type value which indicates how the value
should be typed (string (default), array, object, or user-defined list).

Figure 23-4: The Define Clip Parameters
dialog enables you to enter name/value
pairs for the Smart Clip.

3515-3 ch23.f.qc 1/18/01 5:03 PM Page 686

687Chapter 23 ✦ Understanding Movie Clips as Complex Objects

10. Press the plus (+) button again, and rename the new varName entry to
frameLabel. Then, double-click the Type column value for the frameLabel
entry, and choose List from the drop-down menu.

11. Double-click the Value column value for the frameLabel entry. A Values dialog
opens (see Figure 23-5). Click the plus (+) button to add each of the frame
labels used on the Main Timeline. Surround each value with quotes — other-
wise, Flash will look for variable names that have these names. Click OK to
close the Values dialog when you are finished.

Figure 23-5: You can define a static list of values to choose from the Clip
Parameters Panel for each instance of the menuItem.

12. You have now defined two parameters for the menuItem Smart Clip. These
will be accessible by each instance of the menuItem symbol. Click OK on the
Define Clip Parameters dialog.

You can continue to add more parameters to Smart Clip symbols, by going back to
the Define Clip Parameters dialog and clicking the plug (“+”) button. Use caution,
though — if you place instances of a Smart Clip on the Stage and add more parame-
ters later, then the old instances will not have those parameters available. You may
need to delete the old instances and replace them with new instances to see the
new parameters.

In the next section, you’ll learn how to give unique parameter values to each Smart
Clip instance in the Flash movie.

3515-3 ch23.f.qc 1/18/01 5:03 PM Page 687

688 Part V ✦ Programming Flash Movies with ActionScript

Assigning values to Smart Clip instances on the Stage
After you have created parameters for a Smart Clip symbol in the Library, you can
start to use the Smart Clip in your Flash movie. The steps below will show you how
to use the Smart Clip symbol we created in the last section.

1. On the Main Timeline, drag an instance of the menuItem Smart Clip to the
menuItems layer. With the instance selected, open the Clip Parameters Panel
(Window ➪ Panels ➪ Clip Parameters). In the Value column of the name parame-
ter, type the text that you want to appear on the menu item button for the main
section. For our example in Figure 23-6, we inserted the text Home. In the Value
column of the frameLabel parameter, select main from the drop-down menu.

Figure 23-6: The Clip Parameters Panel enables you to set unique values for the
parameters that you defined for the Smart Clip.

2. Repeat Step 1 for each section of the Flash movie. For our example, we will
have four menuItem Smart Clips, one for each section.

3. Save your Flash movie, and test it (Ctrl+Enter or Command+Enter). Each but-
ton should show the proper text and take you to the appropriate section of
the Flash movie.

The completed Flash movie, smartClip_finished.fla, is found on the Flash 5 Bible
CD-ROM, in the ch23 folder. For more information on Smart Clips and custom inter-
faces for Smart Clips, you can read pages 119-224 of Macromedia’s ActionScript
Reference Guide.

3515-3 ch23.f.qc 1/18/01 5:03 PM Page 688

689Chapter 23 ✦ Understanding Movie Clips as Complex Objects

Summary
✦ Collisions occur when two or more elements in a Flash movie touch each

other. Whenever the space by one Movie Clip instance occupies the space of
another, a collision, or “hit,” has occurred.

✦ You can detect simple user-initiated collisions by using the startDrag()
method and _dropTarget property of the Movie Clip object.

✦ Using the hitTest method of the Movie Clip object, you can detect the inter-
section of X and Y coordinates with a specified Movie Clip instance. You can
also use hitTest in a similar fashion to _dropTarget, where the overlap of
two specific Movie Clip instances is detected.

✦ Smart Clips are Movie Clip symbols that have been given user-defined param-
eters. These parameters can make some scripting routines a matter of select-
ing them from the Clip Parameter Panel.

✦ ✦ ✦

3515-3 ch23.f.qc 1/18/01 5:03 PM Page 689

3515-3 ch23.f.qc 1/18/01 5:03 PM Page 690

Sending Data In
and Out of Flash

Apowerful feature of Flash 5 is the extraordinary control
of data acquisition and management it provides within

a Flash movie. You can load external text data into Flash
movies, making it possible to include fresh dynamic content
every time a Flash movie is viewed over the Web.

Using Text Fields to Store and
Display Data

Before we can discuss sending and receiving data with Flash
movies, you need to know the basic mechanisms of input and
output. Most of the time, unless you are using Macromedia
Generator templates, your data in Flash will be text based,
which means that you will gather information from the user
and display new and updated information with text. In Flash 5,
Input Text fields gather data from the user, while Dynamic Text
fields can be used to display live and updated text to the user.

Input Text fields
Input Text fields are created with the Text Tool. In the Text
Options Panel, the top drop-down menu must be set to Input
Text for the selected text field. If you recall from Chapter 21,
“Planning Code Structures,” an Input Text field has a variable
name because it is a variable. The text that is typed inside of
an Input Text field is the value of that variable. For example, if
you create an Input Text field and assign it the variable name
visitorInput, anything that is typed into that text field dur-
ing runtime will become the value of visitorInput. To test
this, let’s create a simple Input Text field.

2424C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using data in text
fields

Managing data
acquisition in Flash

Making a Flash form

Loading XML data
into Flash movies

✦ ✦ ✦ ✦

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 691

692 Part V ✦ Programming Flash Movies with ActionScript

1. By using the Text Tool, create a text field on the Main Timeline of a Flash
movie. Make the box long enough to hold 20 characters. You can type a tem-
porary word or phrase into the text field, but delete these characters before
proceeding to the next step.

2. In the Text Options Panel, select Input Text in the top drop-down menu. In the
Variable field, enter the text visitorInput. Check the Border/Bg option.

3. Save your Flash movie as inputText.fla, and test the movie (Ctrl+Enter or
Command+Enter). In the .SWF movie, click the text field and type your first
name into the field.

4. Choose Debug ➪ List Variables, and the visitorInput variable should dis-
play the value you typed in Step 3. In our example, we entered the name
“Charlie.” Therefore, the Output window displays:

Level #0:
Variable _level0.$version = “MAC 5,0,30,0”
Variable _level0.visitorInput = “Charlie”

The List Variables command always shows the $version variable and value, indi-
cating the Flash Player version currently playing the movie.

5. If you change the text in the visitorInput text field, then the value will auto-
matically update for the visitorInput variable. You need to choose List
Variables from the Debug menu to see the updated value.

Input Text fields not only accept input from the user, but they can also be set
to an initial value or updated with a new value with ActionScript code. You
can test this with the previous Flash movie example.

6. If you are viewing the inputText.swf from Step 5, then close the .SWF movie
to return to the Flash authoring environment. Create a new layer, and rename
it Actions. Double-click the first frame of the Actions layer to open the Actions
Panel. Add the following code to the Actions list:

visitorInput = “enter your name here”;

7. Save your Flash movie, and test it. You should see the text “enter your name
here” in the visitorInput text field.

As you can see, Input Text fields can accept text input from the user, just like an
HTML form. Later in this chapter, we use Input Text fields to create a fully func-
tional Flash form that can send and receive information for a CGI (Common
Gateway Interface) script.

Dynamic Text fields
If you want to display text information to people viewing Flash movies, you have
two options: (a) create Static Text blocks whose contents can not be updated with
ActionScript, or (b) create Dynamic Text fields that can be filled with internal Flash
data or external text data.

Note

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 692

693Chapter 24 ✦ Sending Data In and Out of Flash

Do not use Input or Dynamic Text fields unless you need to accept or display live
data to the user. Static Text is perfectly fine for text used for graphic purposes,
where the text does not need to be changed during the presentation.

Dynamic Text fields are also variables, just as Input Text fields. The only difference
between Input and Dynamic Text fields is that you can type into Dynamic Text fields.
Dynamic Text fields are most useful for display of text information that doesn’t need
to be changed or updated by the user. Using Dynamic Text fields, you can display
news articles that change on a daily (or hourly) basis, a player’s score during a Flash
game, and the system time and date, just to name a few.

Both Input and Dynamic Text fields use HTML text formatting tags to change the
display of text. We discuss HTML use within text fields in Chapter 25, “Under-
standing HTML and Text Field Functions in Flash.”

In the following steps, we create a Dynamic Text field that is updated with a Flash
variable action. You can also load external variables for use in Dynamic Text fields,
which we discuss in the next section. To insert text into a Dynamic Text field:

1. By using the Text Tool, create a text field on the Main Timeline of a Flash
movie. Make a block large enough to accommodate multiple lines of text.

2. In the Text Options Panel, select Dynamic Text in the top drop-down menu.
Select Multiline from the second drop-down menu. In the Variable field, enter
the text textOutput. Check the Border/Bg and Word wrap options.

3. Add a new layer, and name it Actions. Double-click the first keyframe of the
Actions layer, and, in the Actions Panel, enter the following action (note that
the ¬ indicates a continuation of the same line of code; do not insert this char-
acter in your actual code):

textOutput = “WANTED: Flash Input & Output” + newline ¬
+ newline + “A start-up Dot com company is looking ¬
for a qualified Web technology that will present text ¬
input and output to Web visitors in a more compelling ¬
animated and visually stunning environment than that ¬
possible with HTML. Please call:” + newline + newline ¬
+ “1-800-555-CODE”;

In this code, we specify string values (denoted with quotes) for the actual text
we want to insert into the textOutput Dynamic Text field variable. To insert a
carriage return in the text, the newline constant is inserted between string
values.

4. Save the Flash movie as dynamicText_internal.fla.

5. Test the movie (Ctrl+Enter or Command+Enter). The textOutput Dynamic
Text field updates with the value assigned to the textOutput variable in
ActionScript.

You can also load text data into Input and Dynamic Text fields. This data can be
returned from a simple text file (.TXT file) or from an application that resides on
your Web server.

New
Feature

Caution

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 693

694 Part V ✦ Programming Flash Movies with ActionScript

Defining a Data Process with States
When you manipulate text fields with internal Flash variables, then the data for the
text fields is available for use immediately. Meaning, if you declare a variable and a
value for that variable, that any text field can be given that value as well. When you
want to load external data into a Flash movie, you need to create the appropriate
steps, or “states,” in your movie to make sure that the data is available for use in the
Flash movie. For example, say you want to retrieve a news article from a Web server,
and the text for that article is contained within a variable named article_1. You
can’t use or assign the value of article_1 to any other Flash element unless the
article has fully downloaded to the Flash movie.

So, how do you know when data is available in a Flash movie? Any Flash movie that
relies on data exchange between the Flash movie and the Web server should con-
tain four separate steps, which are called states:

✦ An input state to gather the information from the user or the movie

✦ A send state in which a Flash action sends the data out of the movie

✦ A wait state during which the data downloads to the movie

✦ The output state in which the data can be used by the Flash movie in text
fields and other ActionScript code

Input state
The first step for data exchange requires that you have something to send out of
the Flash movie. The input can be a Flash form into which a user types text. The
data could be environment variables, such as the time of the day or the Flash
Player version. There could be various substeps in the input state, such as multiple
forms or the completion of a quiz to calculate a test score that will be sent to the
Web server.

Send state
Once the input data has been set in the Flash movie, you’re ready to send the data
to another host, such as an application or script on your Web server. The following
actions can be used to send data out of the Flash movie:

✦ getURL

✦ loadVariables

✦ loadMovie

Of these actions, getURL is restricted to a one-way data path; that is, you can only
send data out with getURL— you cannot receive external data with getURL.
getURL must target the sought URL to the current browser (or frame) or a new

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 694

695Chapter 24 ✦ Sending Data In and Out of Flash

browser window. In many situations, you may only need to send data out of the
Flash movie without needing to receive any further data. To send information with
the user’s e-mail client, you can use a simple mailto URL in a getURL action on a
Button instance:

on(release){
email = “admin@server.com”;
subject = escape(“Visitor Feedback”);
body = escape(“Please let us know how you feel.”);
getURL(“mailto:” + email + “?subject=” + subject + ¬
“&body=” + body);

}

In the preceding code block, the variables email, subject, and body are inserted
into the getURL action. Note that you can automatically set subject and body text
for the e-mail message as well! To add specific variables to a URL string, you should
use the escape() function in ActionScript, which converts illegal URL characters
such as spaces and ? into URL form-encoded text (for example, a space is converted
into %20).

Wait state
If you are sending data from the Flash movie with loadVariables or loadMovie,
then you need to know when the requested data is received. The most common
way to detect the download state of data into the Flash movie is to use a terminal
tag — a name/value pair in the downloaded data that indicates the end of the data
string. For example, if the textOutput variable that we used in the last section was
converted to a name/value pair in a .TXT file (as URL form-encoded text), it would
appear as the following (URL-converted characters are shown in bold, and the ter-
minal tag is underlined):

textOutput=WANTED%3A%20Flash%20Input%20%26%20Output%0AA%20start
%2Dup%20Dot%20com%20company%20is%20looking%20for%20a%20qualifie
d%20web%20technology%20that%20will%20present%20text%20input%20a
nd%20output%20to%20web%20visitors%20in%20a%20more%20compelling%
20animated%20and%20visually%20stunning%20environment%20than%20t
hat%20possible%20with%20HTML%2E%20Please%20call%3A%0A%0A1%2D800
%2D555%2DCODE&success=1

At the end of this line of text (or at the very end of a long line of variables), we have
inserted a terminal tag success=1. With this variable in place, we can set up a frame
loop within our Flash movie to detect the existence (loading) of the terminal tag
variable. After the terminal tag is loaded, the Flash movie will be directed to the
appropriate output state.

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 695

696 Part V ✦ Programming Flash Movies with ActionScript

You can use GET or POST to send Flash variables to the URL for the .SWF file.

All wait states should have a timeout condition: If the data fails to load within a certain
time frame, then we will assume the Web server (or script) is not functioning correctly.
If the timeout condition proves true, then the Flash movie will go to the appropriate
output state. We create a wait state for our Flash form in the next section.

You can now avoid the use of terminal tags with the new Movie Clip data event,
which is specified with the onClipEvent() action. We present this new alterna-
tive in the “Creating a Flash Form” section.

Output state
The final step in a data exchange is the actual display of any received data in the
Flash movie. However, as indicated in the last state, there are two separate output
states: a success display or an error display. If the data was properly received dur-
ing the wait state, then the Flash movie will display the success output state. If the
server failed to return any data to the Flash movie, then the movie will display an
error output state, indicating that there was a problem with the server.

Creating a Flash Form
In this section, we create a Flash form that submits user-entered information to a
server-side CGI script, which e-mails the data to an e-mail address that we specify
with a Flash variable. By accessing a remote Perl CGI script, you make a Flash movie
with five data exchange states: input, send, wait, output, and error. You learn how to
submit name/value pairs from Flash to remote URLs, and learn how to check the
receipt of variables from the CGI script using a multiple frame loop. We also use the
new onClipEvent(data) action to detect the loading of the external variable data.

You can find the Perl script (sendmail.cgi) and supporting Flash files for this section
in the ch24 folder of the Flash 5 Bible CD-ROM. Note that you need to have Perl 5
installed on your Web server in order to configure and use the sendmail.cgi script.

Flash forms are user data entry forms (just like HTML forms) that are created in
Flash using Input Text fields. When a user types information in these text fields, the
information is stored as variables. The values of these variables are then sent to a
specified Web server using standard GET or POST communication. These same
variables are available to the Web server and can be processed there by a CGI pro-
gram or script. CGI programs can be written to e-mail this information, manipulate
it, store it in a database, or perform many other applications. The same CGI script
can also return values to Flash — these can then be displayed or used by the origi-
nating Flash movie.

In this exercise, our Flash form solicits feedback from visitors, giving them an oppor-
tunity to submit comments, report bugs, or make suggestions for improvement.

On the
CD-ROM

New
Feature

Note

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 696

697Chapter 24 ✦ Sending Data In and Out of Flash

As each form is submitted, it’s e-mailed directly to the e-mail address you specify in
the Flash movie.

1. Open a new Flash movie document (Ctrl+N or Command+N).

2. Rename layer 1 to labels. Create keyframes (F6) on frames 5, 15, 25, and 35.
Give these keyframes the labels input, wait, output, and error, respectively.
(Do not give frame 1 a label.) Select frame 45 and press F5 to insert more
empty frames at the end of the layer.

3. Create a new layer, and name it actions. On frame 5 of the actions layer, insert
a keyframe (F6) and double-click it. In the Actions Panel, add a stop() action.
In the Frame Panel, add a comment of //stop in the Label field.

4. Create a new layer, and name it text fields. Insert keyframes on frames 5, 15,
25, and 35.

5. On frame 5 of the text fields layer, insert three separate Input Text fields. From
top to bottom, assign the following variable names to the Input Text fields (in
the Text Options Panel): name, from, and comments. The name and e-mail text
fields should accommodate one line of text, while the comment field should be
set to Multiline and Word wrap in order to hold multiple lines of text. All of the
Input Text fields should have the Border/Bg option selected, unless you plan to
create your own background graphics. Make each text field long enough to
accommodate about 45 characters of text. The comments field should be able
to show between five and ten lines of text. (See Figure 24-1.)

Figure 24-1: These text fields accept input from your site visitors.

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 697

698 Part V ✦ Programming Flash Movies with ActionScript

6. Create a new layer, and name it static text. Insert keyframes on frames 5, 15,
25, and 35. On frame 5, add Static Text blocks to the left of the text fields, indi-
cating the purpose of each field.

7. On frame 15 of the static text layer (underneath the wait label), insert a Static
Text block indicating that the information is being sent to the server and that
we’re waiting for confirmation. In our example, we used the text “Checking the
server. . . .”

8. On frame 25 of the static text layer (underneath the output label), insert a
Static Text block containing a successful receipt of the visitor’s information. In
our example, we used the text “Thank you. Your feedback was received at:”.

9. You can see that we are setting up the output state to display the time that the
server received the data (Figure 24-2). The CGI script returns the time and
date of the receipt to the Flash movie Main Timeline. On frame 25 of the text
fields layer, create a Dynamic Text field named serverTime, and place it
underneath the Static Text you just made.

Figure 24-2: The serverTime field displays the time that the server received the
Flash form data.

10. On frame 35 of the static text layer (underneath the error label), insert Static
Text that indicates the data was not successfully received. In our example, we
used the text “Sorry, the server is down.”

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 698

699Chapter 24 ✦ Sending Data In and Out of Flash

11. Save your Flash movie as sendReceive.fla.

Now, we have all our states defined with placeholder artwork. You can go
back later and refine the text and graphics to suit your particular needs. Next
we need to add the interactive components to the Flash movie:

• A Flash action to define the e-mail address of the site administrator (or
your own e-mail address)

• A Flash action to send the data in the Input Text fields (and the e-mail
variables)

• A Flash action to wait for the server’s response

These actions need to put on the appropriate Flash event handlers. We start
by defining our e-mail address variable, and then adding a Button instance to
the input state. This Button instance uses a loadVariables action to send
the data from the Flash movie to the receiving script on our Web server. Then
our wait state uses an if. . .else action to determine whether the server
has received the data.

12. Create a new layer and name it buttons. Insert keyframes on frames 5 and 15.
On frame 5, create a simple Button symbol or use one from the Buttons Library
(Window ➪ Common Libraries ➪ Buttons). In our example, we used the Pill but-
ton from the Buttons Library. Place an instance of the Button symbol below
your text fields. Then insert some Static Text on the Button instance, such as
“Submit” or “Send.”

13. Select the Button instance from Step 11, and open the Actions Panel. In the
actions list, type the following code (note that the ¬ indicates a continuation
of the same line of code; do not insert this character into your actual code):

on (release){
to = “your@e-mail.com”;
subject = “Flash 5 Bible Form”;
loadVariables(“http://www.themakers.com/cgi-bin/¬
books/sendmail.cgi”, _root, “POST”);

sendTime = getTimer();
gotoAndPlay (“wait”);

}

This code establishes the recipient’s e-mail address (your e-mail address) and
the subject line of the e-mail, and issues a loadVariables action that sends
the mailto, name, email, and comments variables to the sendmail.cgi script
on our Web server. _root indicates that any output from the sendmail.cgi
script should be directed to the Main Timeline of our movie. Depending on
the browsers of your target audience, you may want to use the GET method
for loadVariables, as Internet Explorer 4.5 (or earlier) on the Mac does not
support the POST method from plug-ins.

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 699

700 Part V ✦ Programming Flash Movies with ActionScript

After the loadVariables action is executed, a new variable called sendTime
marks the time that the loadVariables action occurred. The getTimer()
function is a built-in Flash function that returns the current time, in millisec-
onds, of Flash movie playback. Thus, if the user clicked the Button instance
after spending 2 minutes to fill in the form, the getTimer() will return a value
of around 60,000 (milliseconds). Finally, the gotoAndPlay action will direct
the Main Timeline playback to the wait label.

14. On frame 16 of the actions layer, insert an empty keyframe. In the Frame
Panel, type a frame label (comment) of //loop. This keyframe contains the
actions necessary to check the server’s response to our loadVariables
action. Open the Actions Panel, and type the following code:

if (success == “1”) {
gotoAndStop (“output”);

} else {
if(getTimer() > sendTime+25000) {

gotoAndStop (“error”);
} else {

gotoAndPlay (“wait”);
}

}

This code first tests whether a variable called success has been received by
the Flash movie (from the CGI script). If success exists and it’s equal to the
string “1”*, then the Main Timeline will go to the output label. If success has
not been received, then a secondary if. . .else statement is evaluated.
If the current time of the Flash movie is greater than 25 seconds from the
sendTime value, then it sends the playhead to the error label. Otherwise,
the playhead will loop back to the previous frame with the wait label.

All variables received from an external source with loadVariables are typed as
string data. Therefore, we need the quotes around our number 1. For more
information on data types, see Chapter 22, “Creating Subroutines and Manipulat-
ing Data.”

15. Finally, add a keyframe to frame 25 of the actions layer. With this keyframe
selected, open the Actions Panel, and add the following action:

serverTime = timeDate;

This action takes the server’s returned variable, timeDate, and use its value
for the serverTime variable, which also updates the serverTime text field
we created at this state.

16. Save your Flash movie again, and test it (Ctrl+Enter or Command+Enter). Type
some information into the text fields, and click the Submit button. If the
server script is available, you should see the output state display the
time/date stamp from the server.

Flash 5 now supports loadVariable actions to external data sources, right in the
Test Movie environment!

New
Feature

Note

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 700

701Chapter 24 ✦ Sending Data In and Out of Flash

You can modify this movie to work with as many text fields as you want. The server
script supports either GET or POST methods. Remember, every data exchange with
a Flash movie should use input, wait, output, and error states. Even if you are load-
ing variables from a small .TXT file, you should confirm the download by checking
for the presence (and value) of a terminal tag.

Only use the sendmail.cgi script on www.theMakers.com for development
and/or testing purposes. Do not try to use the script for demanding, high-volume
Web sites. The same Perl script is available on the Flash 5 Bible CD-ROM, in the
ch24 folder.

On the
CD-ROM

Using onClipEvent(data) to Load Server Data

You can also detect the receipt of external data using the new Flash 5 onClipEvent han-
dler for Movie Clip instances. To modify our sendReceive.fla example to work with this new
action, do the following:

1. Add a new layer, and rename it data.

2. Create a new symbol (Ctrl+F8 or Command+F8). Name this symbol dataDetect,
and keep the default Movie Clip behavior. Once you click OK, Flash automatically
changes to the Symbol Editing Mode. Leave the symbol’s timeline, and go back to
the Main Timeline.

3. Drag an instance of the data Movie Clip to the data layer. In the Instance Panel,
name the instance data.

4. With the instance selected, open the Actions Panel. Add the following code:

onClipEvent(data){
_root.gotoAndStop(“output”);
}

When the last variable from the server CGI script is loaded, any actions within the
onClipEvent(data) curly braces are executed.

5. Now we need to change the Button instance code for the input state. Select the
Button instance, and open the Actions Panel. Change the code to the following
(note that the ¬ indicates a continuation of the same line of code; do not insert
this character into your actual code):

on (release){
to = “your@e-mail.com”;
subject = “Flash 5 Bible Form”;
loadVariables(“http://www.themakers.com/cgi-bin/ ¬

books/sendmail.cgi”, _root.data, “POST”);

Continued

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 701

702 Part V ✦ Programming Flash Movies with ActionScript

Using XML Data in Flash Movies
Flash 5 movies can now load (and send) external XML data. This is a very powerful
feature, as XML has quickly become a standard data structure for e-commerce pur-
poses and for news services, as well as for easier control over HTML formatting
(and style sheets) in the Web browser. You can organize external data with simple
XML formatting, and use the XML data for text fields and ActionScript code in your
Flash movies.

Continued

sendTime = getTimer();
gotoAndPlay (“wait”);

}

In this new code, we switch the target of the loadVariables action to
_root.data, instead of the Main Timeline (_root). The data instance was
created and given ActionScript code in Steps 2–4.

6. Next, we need to change the ActionScript on the //loop keyframe, which is frame 16
of the actions layer. Select this keyframe, and open the Actions Panel. Change the
code to:

if(getTimer() > sendTime+25000) {
gotoAndStop (“error”);

} else {
gotoAndPlay (“wait”);

}

In this code, we omit the initial if. . .else action because the variables are being
loaded into the data instance. We only need to check the time that has elapsed
since the loadVariables action occurred.

7. Finally, change the action on frame 25 of the actions layer to indicate the new path
to the server’s time/date stamp variable, returnTime:

serverTime = _root.data.timeDate;

After you have saved your Flash movie (with a new file name), test your .SWF file. When you
click the Submit button, the Flash data is sent to the email.cgi script. The Flash movie directs
the email.cgi output to the data instance, and the onClipEvent(data) event executes
when the data is finished loading.

Note that this new method only works with the Flash 5 Player. To retain compatibility with
Flash 4 Player, use the original method.

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 702

703Chapter 24 ✦ Sending Data In and Out of Flash

It is beyond the scope of this book to give a thorough explanation of XML. We
examine the basic structure of XML, and show you how to use XML data in a Flash
movie. We recommend that you read the XML Bible by Elliotte Rusty Harold (IDG
Books Worldwide, Inc., 1999; now Hungry Minds, Inc.) for more information on
XML.

Understanding XML
XML is an acronym for eXtensible Markup Language. “Extensible,” in this case, means
that you can create your own markup tag names and attributes. While there are a few
additional rules with XML, its structure very much resembles traditional HTML:

<tag name opener>Information here</tag name closer>

For basic XML-Flash usage, your XML document needs one “container” tag in which
all other subordinate tags will be nested. Each opener and closer tag set is called a
node. In the following XML example, the <section> tag is the primary container
tag and the <article> tags are nodes of the <section> tag:

<section>
<article>First article node</article>
<article>Second article node</article>

</section>

You can create as many child nodes as you need. In the preceding example, the
<section> tag has two child nodes: the first occurrence of <article></article>
and the second occurrence of <article></article>. In the following example, the
first <article> node has two child nodes:

<section>
<article>

<title>WANTED: New Computer</title>
<description>Insert description here
</description>

</article>
<article>Second article node</article>

</section>

<title> is the first child node of the first <article> node. The value of <title>
is also considered a child of <title>. In the previous example, “WANTED: New
Computer” is the child of <title>.

The Flash 5 Player does not ignore white space in XML documents. For this reason,
you should not format your XML documents with indented tags or carriage returns
between tags.

Caution

Note

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 703

704 Part V ✦ Programming Flash Movies with ActionScript

Loading an XML document into a Flash movie
Once you have an XML document structured to use in a Flash movie, you can use
the XML document tree in the Flash movie. When an XML document is loaded into
a Flash movie, the structure and relationship of all nodes are retained within the
Flash Player.

The XML Object
Before you can load an XML document into Flash, you need to make an object that
will hold the XML data. To do this, use the XML() constructor function, as in:

myXML = new XML();

Just as we created new objects for the Color and Sound Objects in ActionScript,
you can create as many new instances of the XML Object as you need for your
movie. You can also use an XML Object to store Flash-created XML structures, and
send them to a server for further processing.

The load method of the XML Object
After you have established an object, like the myXML variable in the previous head-
ing, you can invoke built-in methods of the XML Object. The load method enables
you to specify an external source (as a URL or file name) that holds the XML data. If
you had an XML document called articles.xml in the same directory as your .SWF
file, then you could load it by writing the following code:

myXML = new XML(“articles.xml”);

or

myXML = new XML();
myXML.load(“articles.xml”);

The onLoad() method of the XML Object
After the document is loaded into the Flash movie, you can specify another function (or
action) to occur, using the onLoad method of the XML Object. The onLoad method sim-
ply defines a function to be executed when the XML document is finished loading—
it does not actually execute the function (or actions) when the onLoad is first pro-
cessed. In the following example, a function named loadArticles is executed when
the XML document, articles.xml, is finished loading:

myXML = new XML();
myXML.load(“articles.xml”);
myXML.onLoad = loadArticles;

function loadArticles(success){

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 704

705Chapter 24 ✦ Sending Data In and Out of Flash

if(success){
//perform more XML methods upon the XML data

} else {
// indicate that the XML document (or data)

// did not load.
}

}

In this code example, the loadArticles function has one argument, success. The
onLoad method returns a Boolean value of true or false. Therefore, our function
loadArticles receives that value, too. If the previous load method successfully
loaded the articles.xml document, then the onLoad method will be executed and
will return a true value. This true value is passed to the loadArticles function,
and inserted into the if condition. If success is equal to true, then the nested if
actions will be executed. Otherwise, the else actions will be executed.

Check out the XML document load examples on the Flash 5 Bible CD-ROM, in the
ch24 folder. These examples demonstrate how XML node values can be manipu-
lated with Flash arrays. You may want to review Chapter 22’s coverage of the Array
Object before looking at these examples.

On the
CD-ROM

Expert Tutorial: Introduction to XML and Flash,
by Christian Honselaar

The source .FLA for Christian’s tutorial, and related assets, can be found in the ch24 folder
of the Flash 5 Bible CD-ROM.

XML is rapidly being added to a wide range of development and client/server applications —
and for good reasons. The ability to read and write any XML document in Flash means that
you now have a robust and scalable way of exchanging data between Flash and the world.
By expanding these methods, Flash can be used as a template with XML as the data-source,
delivering basic client-side Generator functionality.

The new support for XML may be one of the best things that has happened to Flash 5.
That’s because this feature is more or less the missing link between Flash and the rest of
the Internet. For those unfamiliar with XML, www.xml.com is a fine place to get started (and
to stay up to date, for that matter).

Even if this is your first experience with XML, don’t sweat it. This tutorial demonstrates the
power of XML in a simple application. You learn how to use Flash to make a template for a
little poem book that is linked to an XML file that fills in the actual details.

Continued

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 705

706 Part V ✦ Programming Flash Movies with ActionScript

Continued

Starting with Flash 5, use the Text Tool to create two text fields to hold the poem title and
the poem itself. With the first text field selected, open the Text Options Panel (Window ➪

Panel ➪ Text Options) for this first text field. From the ensuing drop-down menu, select
Dynamic Text. Then, in the Variable field, enter titletext. Do the same for the second text
field, but in the Variable field, enter poemtext. Also, for the second text field, select
Multiline from the second drop-down menu of the Text Options Panel, and also check the
Word wrap option.

Author’s Note: For more information about working with text and text fields, refer to
Chapter 7, “Working with Text,” and Chapter 25, “Understanding HTML and Text Field
Functions in Flash.”

To keep things simple, we create an interface with one button that will skip to the next
poem. For this example, I used the Oval-Play button located in the Common Library, which
is accessible from Window ➪ Common Libraries ➪ Buttons. Create a new layer in the Main
Timeline, label it Button, and position your button anywhere that makes sense to you. Now,
right-click/Ctrl+click the Button instance and select Actions from the contextual pop-up.
Enter this code in the ensuing Object Actions Panel:

on (release) {
displayNextPoem();

}

Next, to spark your imagination about exotic ways to use XML, we’ll add a Movie Clip that
will play behind the poem, controlled by XML! To accomplish this, create another new layer,
name it Movie Clip, and then, in order to ensure that the Movie Clips play below the text,
move this Movie Clip layer to the bottom of the layer stack.

Now, to create an empty Movie Clip, proceed from the main menu, choose Insert ➪ New
Symbol ➪ Movie Clip, and in the ensuing Symbol Properties dialog, give the Movie Clip a
meaningful name, such as Background Placeholder, accept the default Movie Clip behav-
ior, and click OK. This procedure lands you in Symbol Editing Mode, but because this is sup-
posed to be an empty Movie Clip, simply exit Symbol Editing Mode via Edit ➪ Edit Movie.

Next, create an instance of Background Placeholder in the top-left corner of the Stage by
dragging this symbol from the library (Window ➪ Library). Use the Instance Panel
(Window ➪ Panels ➪ Instance) to name the instance placeholder.

Great! Our PUI (Poem User Interface) is complete. Now let’s have a look at the XML docu-
ment that drives the content to fill the text fields and placeholder. (As noted previously, this
XML document and related assets for this tutorial are located in the ch24 folder of the
CD-ROM.) You can edit it with a plain text editor, such as notepad (for Windows users) or
any other text editor that saves to the .TXT format. You may also choose to produce an
entirely new XML document. But first, I explain the basic XML layout. Here’s the text (the
white space between tags was omitted because Flash handles white space in a nonstan-
dard way):

<poems>
<poem title=”Kahlil Gibran” clip=”poemclip2.swf”>

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 706

707Chapter 24 ✦ Sending Data In and Out of Flash

Work is love made visible.
And if you cannot work with love but only with distaste, it is
better that you should leave your work and sit at the gate of the
temple and take alms of those who work with joy.
</poem>
<poem title=”unix haiku” clip=”poemclip1.swf”>
wind catches lily
scatt’ring petals to the wind
segmentation fault
</poem>
</poems>

Even if you’ve never used XML, the terms “tag” and “attribute” may be familiar from the
HTML world, where they serve equivalent functions. There are two tags here:
<poems></poems> is our root tag. Every XML document should have one pair of tags in
which all other tags are nested. Contained within the root are the tags, <poem></poem>,
and you can have as many of these as you want. The <poem> tags are nodes within the
greater root tags.

Author’s Note: For more information on XML tag structures, refer to our XML coverage
prior to this tutorial.

The <poem> tags have two attributes:

1. title=”Kahlil Gibran” indicates that the first poem is called “Kahlil Gibran.”

2. clip=”poemclip2.swf” means that this poem should be displayed with the Movie
Clip poemclip2.swf— thus, this Movie Clip appears in the empty Movie Clip, whose
instance was named, placeholder.

Note that the actual poem text is contained within the <poem> opening tag and </poem>
closing tag.

Now this is how we instruct the Flash movie to load the title, poem text, and Movie Clip
from each <poem> tag: Return to the movie, add another layer at the top of the layer stack,
label it actions, and then double-click the first frame to bring up the Frame Actions Panel.
Insert the following script in the right pane:

poems = new XML();
poems.onload = poemsLoaded;
poems.load(“poems.xml”);

function poemsLoaded () {
currentPoem = poems.firstChild.firstChild;

}

function displayNextPoem () {
titleText = currentPoem.attributes.title;
loadMovie (currentPoem.attributes.clip, placeholder);

Continued

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 707

708 Part V ✦ Programming Flash Movies with ActionScript

Continued

poemText = currentPoem.firstChild.toString();
currentPoem = currentPoem.nextSibling;

}

The first three lines of this script tell Flash to find, load, and parse the XML document. It also
assigns it to the variable poems.

The next two lines tell Flash to call the function poemsLoaded. In turn, poemsLoaded ini-
tializes the variable currentPoem, which is a pointer to the part of the XML document cur-
rently showing.

Then the purpose of the next function, which begins with function displayNextPoem, is
to extract the title, text, and associated clip of the current poem and to advance to the next
poem.

Flash interprets this XML document by using a DOM, or Document Object Model. This
means that the XML is represented as an object, with every tag a subobject, or child, which
may also contain subobjects extending to any depth. Attributes are represented as proper-
ties of tag objects.

To cycle through all poems, the variable currentPoem is created. Initially, it points to the
first child (the initial poem) of the first child (the poem’s root) of the document. A simple
logic of inheritance follows. Finally, toString() and nextSibling deliver the next object
in a child list and all the XML text within that child, respectively. The script may be tiny, but
it covers a lot of material. If it doesn’t make much sense to you (particularly toward the
end), read the topic of object-oriented scripting in the ActionScript manual and then have
another look at the script and the XML code.

Final Note
To complete this tutorial, you need access to the .SWF files to which the .XML file refers.
These files need to be located within the same folder as the .FLA and the .XML files.
Although you can produce your own, just be sure to give them the same names as those
listed in the .XML file, or edit the file names in the XML code. For testing purposes, you can
use the .SWF files provided with the tutorial, located in the ch24 folder of the Flash 5 Bible
CD-ROM.

A native of the City of Groningen, the Netherlands, Christian Honselaar claims to “like danger.” His favorite
activities include reading pulp SciFi, and mountain trekking in Asia. Perhaps this explains why the most
memorable movie correlated with the year he graduated from the Gymnasium “would be Jurassic Park.”
Chris found Flash, he says, “while experimenting with digital video overlay. I tried it in Flash/QuickTime and
immediately found bugs. Love at first sight. Thus, through no end of complaining to Macromedia, I began my
relationship with Flash.” During the daytime, he’s an academic educational programmer, developing multi-
media apps in C++ and for the Web platform. But by night, he works on his favorite project: htmwell.com, a
company that develops informative software and Web sites. You can see their work at www.htmwell.com
and www.liemo.nl.

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 708

709Chapter 24 ✦ Sending Data In and Out of Flash

Using the Flash Exchange
Within a few months of the Flash 5 release, Macromedia introduced the Flash
Exchange. Like the Dreamweaver Exchange, the Flash Exchange enables you to
download custom objects and libraries (ActionScripts, Smart Clips, user interface
(UI) elements, and so on) for use in the Flash 5 authoring environment.

To use the Flash Exchange, you need to visit www.macromedia.com/exchange and
have a Macromedia membership user ID and password. Click the Membership but-
ton on the Exchange home page to sign up for your free Macromedia membership.
After you have established a membership, you can go back to the Exchange home
page and enter the Flash Exchange portion. There, you need to download and
install the Macromedia Extension Manager (approximately 2MB).

The Extension Manager is a universal application for all of Macromedia’s
Exchange-compatible products, including Dreamweaver and Flash.

After you have installed the Extension Manager, you can download extensions for
Flash 5 from the Flash Exchange. For the next tutorial by Branden Hall, you need to
download and install the WDDX Serializer/Deserializer. To download this extension:

1. On the Flash Exchange page, select App Servers from the Find more exten-
sions drop-down menu.

2. On the newly loaded page, click the WDDX Serializer/Deserializer link.

3. On the Extension Detail Page, click the Mac or PC download icon (depending
on your OS), located on the right side of the page. Note the location on your
hard drive to which the file is downloaded.

4. After the extension (.MXP file) has finished downloading, open Flash 5.
Choose Help ➪ Manage Exchange Items. This launches the Exchange Manager
application.

5. In the Exchange Manager, choose File ➪ Install Extension (Ctrl+O or
Command+O). Browse to the location where you downloaded the .MXP
file for the WDDX Serializer/Deserializer. After you have selected the file
and clicked Open or OK, you are presented with a disclaimer dialog. Click
Accept, and the extension installs into your Flash Common Libraries folder.

6. To use most Exchange extensions, open the extension’s Library from the
Window ➪ Common Libraries folder. For the WDDX Serializer/Deserializer
extension, an .AS file (ActionScript-coded text file) that defines functions and
methods for the Serializer/Deserializer is copied into a new ActionScript
folder located inside the Flash 5 application folder.

In the following tutorial, Branden Hall discusses the use of his WDDX Serializer/
Deserializer extension.

Note

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 709

710 Part V ✦ Programming Flash Movies with ActionScript

Expert Tutorial: WDDX and Flash, by Branden J. Hall

This tutorial introduces the WDDX Serializer/Deserialzer for XML Objects in Flash 5 movies.
If you have not installed the Extensions Manager and the WDDX Serializer/Deserializer,
then please read the preceding section describing the Flash Exchange.

WDDX stands for Web Distributed Data eXchange. Allaire Corporation created this subset of
XML in 1998 to describe various types of data structures. Along with the specification for
WDDX, Allaire also created a set of tools for using WDDX in Allaire’s server-side programming
language, Cold Fusion. These tools include a function that takes a data structure from Cold
Fusion and turn it into a WDDX packet; this is known as serialization. There is also a function
that does the reverse, turning a WDDX packet into a native Cold Fusion data structure; this is
known as de-serialization. By themselves, these tools aren’t particularly useful. However,
Allaire also created a similar set of tools for JavaScript. This enables developers to create appli-
cations in which whole data structures are sent between the server and client with just XML.

Since that time, other languages have been WDDX-enabled, including Java, PHP, and Perl.
Along with Dave Gallerizzo, vice president of consulting at Fig Leaf Software, I created a
WDDX Serializer/Deserializer for Flash 5. Now, rather than having to send simple
name/value pairs between Flash and server-side languages, you can send whole data struc-
tures. This includes arrays, structures, date/times, and recordsets in addition to basic data
types such as strings and integers.

The Serializer/Deserializer is fully encapsulated, and using it inside of your own Flash appli-
cations is very simple. The actual toolset is inside of a single file, wddx.as. This file needs to
be included in your movie either by importing it using the Import option in the Actions
Panel or by using the include action (#include “wddx.as”).

Author’s Note: If you intend to use the #include action as shown in the following code,
then you need to make a copy of the wddx.as file (located in the ActionScript folder of the
Flash 5 application folder). If you wish to import the wddx.as file, then click the menu arrow
located at the upper-right corner of the Actions Panel, and choose Import From File (Ctrl+I
or Command+I, when the Action Panel is focused).

Let’s take a simple array, serialize it, and then print out the results. The code looks like this:

// Include the WDDX class
#include “wddx.as”

// Create an instance of the WDDX class
myWDDX = new WDDX();

// Create an XML object to hold the serialized data
myXML = new XML();

// Create the array
students = new Array();
students[0] = “Bob”;
students[1] = “Mary”;
students[2] = “John”;

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 710

711Chapter 24 ✦ Sending Data In and Out of Flash

students[3] = “Sue”;

// Serialize the array and trace the resulting XML
myXML = myWDDX.serialize(students);
trace(myXML.toString());

When you run this code it prints the following XML to the output window:

<wddxPacket version=”1.0”>
<header />
<data>
<array length=”4”>
<string>bob</string>
<string>mary</string>
<string>john</string>
<string>sue</string>
</array>
</data>
</wddxPacket>

Now that our array is in this form, we can send it to any other program that understands
WDDX, and that program can turn it into its native array type. We don’t have to worry about the
name/value pairs where the variables are numerically ordered (for example, foo1, foo2, foo3,
and so on) as we would have had to if we had wanted to do the same thing without WDDX.

Now, lets say that we have a packet of WDDX-formatted XML and that we want to turn it
back into an actual data structure. The following code takes some XML and give us back our
array. We can then trace out an element of the array.

// Deserialize the XML and turn it into an array called bar
bar = myWDDX.deserialize(myXML);

// Trace out the 3rd element in the array
trace(bar[2]);

In almost every case, the object that is created when you deserialize a WDDX packet is a
built-in object in Flash 5, whether that is an array, string, structure, number, or something
else. However, the recordset type of data structure that WDDX supports has no direct equiv-
alent in Flash 5. Recordsets are used to hold the results of a database query, and are very
important if you want to talk to a server-side program that is working with databases. So,
included with wddx.as is an additional class, WDDXrecordset. It enables you to manipulate
rows, columns, and fields of a recordset with a simple set of methods. The WDDXrecordset
class and all of its methods are documented inside of the wddx.as file.

Raised in Hyattsville, Maryland, Branden Hall is a member of the extreme ActionScript Flasheratti. He is a
senior interactive designer/instructor at Fig Leaf Software in Washington, DC. Branden tells us that Chrissy
Rey, a friend and associate of his at Fig Leaf, introduced Flash to him. Besides figleaf.com, Branden lists
randinteractive.com as a Flash site that he has worked on. When Branden graduated from high school,
he recalls listening to “Before these Crowded Streets” by the Dave Matthews Band. Now, Branden’s single
most favorite thing to do is “laze around in bed with [his] fiancée.”

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 711

712 Part V ✦ Programming Flash Movies with ActionScript

Expert Tutorial: Using XMLSockets with a Flash 5
Movie, by Shane Elliott

In this tutorial, you learn to employ XMLSockets in a Flash movie. You will find all of the asso-
ciated files on the Flash 5 Bible CD-ROM. Be aware that this example utilizes a Java server,
which requires the Java SDK in order to run and work with the Flash movie interactions.

A new and long-awaited feature in Flash 5 is the capability to open a socket that connects
to a back-end database or server and to keep an open line of communication between the
Flash movie and the server. Previously, if we wanted to send data back and forth between
a server and Flash, we would use the loadVariables action and connect to a back-end
program such as a Perl script, JavaServlet, or some other middleware solution. With this
older system, name/value pairs would be sent to and from the Flash movies to get a
dynamic data flow, allowing data to be served on the fly. Feedback could be initiated by the
user or by some system event (such as a timer or upon completion of a set of tasks). With
XMLSockets in Flash 5, not only can we open a direct flow of data between our movie and
the server, but we can receive the data as nicely formatted XML. This information structure
is easier to handle and much more organized. Even though called XMLSockets in Flash, you
don’t have to send your data as XML to the server, nor do you have to receive it as such.
Even though the XMLSocket object and methods are set up to handle XML elements, you
have the option of sending String data as well, providing greater flexibility for database con-
nectivity.

Now, you may ask, “When do I need to use these sockets, and, more importantly, how do I
use them?” Even though you can still use loadVariables in Flash 5, you must make a
request from within the Flash movie to be able to receive data from the server. With
XMLSockets, you have a constant open connection. You can tell Flash to do a certain set of
actions any time it detects data across this open socket. It’s very useful for low-latency
client-server applications, such as a chat room, where you want your messages to be sent
immediately, or, in the case I describe next, for a Flash login movie. Now, instead of requir-
ing a user to log in to my site or online resource using a standard form and CGI script, I can
give the user a much better looking, and possibly more consistent, uninterrupted experi-
ence by allowing the user to log in using my Flash movie.

Before starting, you need certain graphic elements to be present on your Stage. I created a
very simple login page that is focused completely on functionality — an aesthetically pleas-
ing interface would follow this example in a real-world production environment. You need
two Input Text fields: one for the username and one for the password. Name these input
fields userid and password in the Variable field of the Text Options Panel. Include some
Static Text to label these fields for the user. You also need a Dynamic Text field named
fromServer to display the server response. Again, add some Static Text to identify the
Dynamic Text field on the Stage. Last, but not least, you need a login button. I just grabbed
one out of the Common Libraries (Window ➪ Common Libraries ➪ Buttons), but you can
create one of your own if you prefer. You can put all of these graphic elements on one layer,
or separate the graphics across multiple layers. When you’re finished adding the graphic
elements to the Stage, create a new layer for your actions. In our example, the actions layer
is named action script.

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 712

713Chapter 24 ✦ Sending Data In and Out of Flash

At this point, there should be only one frame in the Main Timeline (for example, Scene 1).
Now, go to the first frame of your actions layer, select that frame, and open the Actions
Panel (Window ➪ Actions). On this frame, we define our socket and tell Flash how to han-
dle the events regarding it.

The code that goes here is:

function myOnConnect(success) {
if (success)

fromServer += newline + “Connected...”;
else

fromServer += newline + “Unable to Connect...”;
}
function myOnXML(doc) {

trace(“Im here”);
var e = doc.firstChild;
if(e!=null && e.nodeName == “MESSAGE”) {

fromServer += newline + e.attributes.response;
// Code here to take you into the protected area

}
else {

fromServer += newline + e.attributes.response;
// Code here to take you to an exit screen etc...

}
}

myXML = new XML();
loginTag = myXML.createElement(“login”);
loginSocket = new XMLSocket();
loginSocket.onConnect = myOnConnect;
loginSocket.onXML = myOnXML;
loginSocket.connect(“localhost”,8080);

Now let’s take a look at each line and go over what it’s doing. Let’s skip the function defini-
tions for now and jump down to the following lines:

myXML = new XML();
loginTag = myXML.createElement(“login”);

The first line in the preceding code creates a new XML element on the Main Timeline. We
will be sending the login information (username and password) in XML format to the Java
server. The second line creates a new XML element named login, which is the equivalent
to XML that looks like the following:

<login />

Continued

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 713

714 Part V ✦ Programming Flash Movies with ActionScript

Continued

Now, we need to create a socket for communication with the server. That’s where the fol-
lowing line of code comes in:

loginSocket = new XMLSocket();

When you create a new XMLSocket object, the constructor doesn’t accept arguments.
They’re not needed at this point anyway. We don’t define any of its options until we actually
connect to the server. At this point, we have our XMLSocket object created and we’re ready
to move on to the next step. We need to define some of the callback functions that are built
into the Flash ActionScript language.

Flash ActionScript recognizes three event handler methods for the XMLSocket Object. The
Flash movie calls these functions at an internally known time or after a certain event
whether you define them or not, but without indicating the event occurrence to you. If we
don’t define a set of actions to occur for these events, then these functions don’t do any-
thing in our Flash movie. They’re simply there so that you can define (and, in a sense, over-
ride) them. Here are the three methods:

Method Description

onConnect(success) Executed when a connection request initiated through the
XMLSocket.connect method either succeeds or fails
(the success variable indicates true or false to tell you
whether the connection was a success or not).

onXML(object) Called when the specified XML object containing an XML
document arrives over your XMLSocket connection. The
object is an instance of the XML object containing the XML
document received from the server.

onClose() Initiated when an open connection is closed by the server.

Author’s Note: Just as we use on(release) as an event handler for mouse events on
Button instances, other objects have predefined event handlers and events. With data
objects and methods, these events tend to occur when data is sent or received by the Flash
movie.

The only two we use in this example are onConnect and onXML. Although Flash knows
when to call these methods, there’s nothing innately performed by them. Therefore, we
must define our own methods to give them customized functionality.

loginSocket.onConnect = myOnConnect;
loginSocket.onXML = myOnXML;

These two lines simply assign these event handler methods to our customized versions of
these methods. The myOnConnect and myOnXML functions tell our movie exactly what to do
when a connection either succeeds or fails (onConnect), and what to do when data is
received from the server through our socket (onXML), respectively.

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 714

715Chapter 24 ✦ Sending Data In and Out of Flash

Now let’s go back to the two function definitions in the Flash movie. In frame 1 of the Main
Timeline, we defined myOnConnect to execute some commands based on the status of the
attempted connection. Flash sends the myOnConnect function a success argument, as a
Boolean value (true or false) so that it knows whether a connection has been estab-
lished. Then, we add an if. . .else statement to handle either case. The function sends
a notification to the user by setting the fromServer variable (which we defined at the
beginning of the movie) to give the user updates on the status of his/her login. You could
add more lines of code here if you wanted to jump to another Movie Clip or perform some
other action specifically designed for your application.

The myOnXML function is a bit more complex. This function is basically looking for data from
the server in XML format and, when it detects that data (which has been sent to the Flash
socket), it assigns it to doc or whatever argument you put into your custom version of
onXML. In this example, I used doc for document. Whatever you choose, just know that it
will be used as an XML object that’s received from the server. Therefore, it must be treated
as one throughout your function. You can convert it to a String object, or parse it like I did
in the myOnXML function. Once e is set to be the doc.firstChild, I can access that node’s
elements and name, as you learned when using XML objects earlier in this chapter.

It’s important at this stage of your development that you know the formatting of the XML
data the server application will be sending you. If you’re not writing the server application
yourself, then make sure you stay in close contact with the XML developer.

The reason I know that I’m looking for the nodeName of MESSAGE is that I wrote my own
Java server application to interact with my Flash movie. Again, I have an if statement that
performs actions based on the server response. You could add more here as well.

Now, let’s look at the last line of code, which is the most important line so far because it
actually attempts to make the connection (open the socket) between our Flash movie and
our server.

loginSocket.connect(“localhost”,8080);

To do that, I use the connect(host, port) method. The connect method takes two argu-
ments: the host and the port. The host argument refers to one of the following:

✦ A fully qualified DNS name such as http://www.flash5bible.com

✦ An IP address such as 205.94.288.213

✦ A computer’s name on a LAN, such as Zeus or Atlas

✦ null, which means to connect to the host server on which the movie resides

I use localhost for the host argument because that (like null) also refers to the machine
that my Flash movie is running on, which happens to also be where my Java server is resid-
ing. Whatever you choose here, just remember the host must be the location of the server
with which you’ll be communicating.

Continued

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 715

716 Part V ✦ Programming Flash Movies with ActionScript

Continued

The next argument is the port, which refers to the TCP port number on the host used to
establish the connection. For security reasons, this number cannot be below 1024. I chose
8080 because I know my computer isn’t using that port for anything significant. Some
examples of commonly used ports for TCP connections are:

FTP Transfers = 21

HTTP = 80

Telnet = 23

POP3 = 110

Whatever you choose, remember the previous rules, and try to make sure nothing else on
your computer is using that port number. Now, that last line of code automatically con-
nects the Flash movie to my server when playback begins. Now that we have everything set
up graphically and our code is ready to react to our socket events, we need to give some
functionality to the login button so that our users can log in to the server. That code looks
like this:

on (release, keyPress “<Enter>”) {
loginTag.attributes.username = userid;
loginTag.attributes.password = password;
myXML.appendChild(loginTag);
loginSocket.send(myXML);

}

With the preceding code, we are detecting when the user clicks the button or presses the
Enter key on the keyboard. When either event is detected, the username and password are
sent to the server for verification. With those events detected, let’s look at the nested code
in the on handler.

Remember the loginTag XML element we made earlier? Here, we are giving that node
some attributes and assigning those attributes to be the userid and password that the
user has entered into our Input Text fields. Then, loginTag is appended as a child to the
myXML object. The entire XML object is sent through the XMLSocket object named
loginSocket.

When we use the send method, we don’t necessarily have to have an XML object as its
argument. In this case, we do (myXML), but we could just as easily put a string value in its
place. As long as the server knows what to expect, we can use any data type or structure. If
it’s looking for an XML-formatted string and we send it something similar to “hello”, then
the server might become confused. Either way, the send method is taking whatever it has
as its argument, converting it to a string, and then sending it. So, let’s say I, as a user, enter
shane as my username and flash as my password and submit that information as my
login. My server receives the following string value from the Flash movie:

<login password=”flash” username=”shane” />

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 716

717Chapter 24 ✦ Sending Data In and Out of Flash

If you are a hardcore programmer in other object-oriented programming languages,
you may be interested in using the new XMLSocket Object of Flash 5 with other
server technologies. The next tutorial by Shane Elliott demonstrates the use of a
Java server that can communicate with a Flash movie.

Summary
✦ Input Text fields can accept text data from anyone viewing the Flash movie

(.SWF file) with the Flash 4 or 5 Player. Input Text fields are treated as
ActionScript variables.

✦ Dynamic Text fields can display the string values of any variable in the Flash
movie.

✦ Any data exchange between Flash and a remote application or server-side
script should use four steps or states: input, send, wait, and output.

I can choose to parse that string and compare the values in my server code, but now that
it’s left Flash I’m no longer responsible for what happens to it until the server sends back a
response. When the server does send back a response, we have our myOnXML function set
up to handle it and tell our user whether he/she got in or not.

You can see the final .FLA file of my Flash work on the Flash 5 Bible CD-ROM, in a file called
XMLSignIn.fla, located in the ch24 folder. You need to run the Java program name
loginServer.jar and then run the Flash movie that you created in order to try the login exam-
ple. There is also a text file named data.txt on the CD-ROM that contains the usernames
and passwords that the server recognizes as valid. If you’d like to modify this file so that you
can try your own login info, feel free to do so. Just remember to put a semicolon at the end
of every name/value pair.

Final Notes for Experts
When the Flash send method is used, it sends a u\0000 termination character at the end of
its string value to let you know when the data is completely sent. You must send this char-
acter back to Flash in order to get the onXML() function to recognize that it has received
data. Without this termination character, you’ll find yourself facing a few problems!

Shane Elliott was the senior technical director in the creative department of Rampt.com. There, he created
the ActionScript architecture for later versions of the Rampt search interface. Shane has also created Flash
and HTML designs for benellis.com, apcadillac.com, and timberfish.com. Currently, Shane devel-
ops integrated XML, Flash, and Java solutions in Los Angeles. His single most favorite thing to do is to write
screenplays and novels. Shane pursues work as an actor, and enjoys painting, programming, and traveling.
We should note as well that Shane was one of the technical editors of the Flash 5 Bible.

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 717

718 Part V ✦ Programming Flash Movies with ActionScript

✦ A Flash form can be used to gather feedback from your site’s visitors. The
form’s data can be sent to a properly configured CGI script for further data
processing, such as sending the data in an e-mail to the site administrator.

✦ The getTimer() function returns the current time of the Flash movie. The
Flash timer starts as soon as the movie is loaded into the Flash Player — it is
not based on frames played or frame rate. You can use getTimer() to set
variable values, and compare two different getTimer() variables for time
tracking purposes.

✦ XML data structures are quickly becoming an interbusiness standard for data
exchange over the Web. Now Flash can use XML data structures to send and
receive data from your Web server.

✦ ✦ ✦

3515-3 ch24.f.qc 1/18/01 5:03 PM Page 718

Understanding
HTML and Text
Field Functions
in Flash

This chapter shows you how to control text-field format-
ting and focus, using internal HTML tags and Action

Script. Flash 5 has greatly enhanced the amount of control
you have with text field formatting and selections within
text fields.

Exploring HTML Usage in
Text Fields

In the past few chapters, you may have noticed the HTML
check box in the Text Options Panel. With Flash 5, you can
now use HTML formatting tags within Input and Dynamic Text
fields! In Flash 4 movies, you could not specify more than one
set of formatting specifications for any text field. For example,
if you created a text field that used black-colored Verdana text
at 18 points in faux bold, then you could not insert any other
typeface, color or size in that text field. With Flash 5, you can
use tags to specify multiple typefaces, colors, styles,
and sizes within one text field. You can also use <A HREF> tags
to link to internal Flash functions or external URLs!

HTML support in Flash 5 text fields takes Flash movies one
step closer to taking over traditional Macromedia Generator
Server functionality. By using Generator templates, you can
place environment variables in any text field or block (even
Static Text!) in order to personalize Web experiences. Flash
5’s HTML integration isn’t as seamless as dynamic text and
text formatting in Generator templates.

New
Feature

2525C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using HTML tags
in text fields

Creating URL links
within Flash text

Accessing functions
with HTML tags

Selecting text in
text fields with
ActionScript

✦ ✦ ✦ ✦

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 719

720 Part V ✦ Programming Flash Movies with ActionScript

Supported HTML tags
You can use the following HTML tags to format your Flash text fields. You can insert
these tags into ActionScript variable values, or you can apply them (without know-
ing or writing the syntax) using the Character and Text Options Panels.

Font and paragraph styles
The basic and physical “faux” styles for text (bold, italic, and underline) can
be applied to Flash text.

✦ : Placing tags around Flash text in string values for text field vari-
ables applies bold formatting to the enclosed text.

✦ <I>: Placing <I></I> tags around Flash string values italicizes the enclosed text.

✦ <U>: The <U></U> tags underlines the enclosed text.

✦ <P>: The <P> tag inserts paragraph break between lines of text. You can use
the ALIGN attribute to specify LEFT, RIGHT, CENTER, or JUSTIFY, to apply the
respective justifications to the Flash text.

✦
: The
 tag inserts a carriage return at the point of insertion. This is
equivalent to the newline operator in ActionScript.

✦ : The tag with the COLOR attribute can
change the color of your Flash text. This color is specified in hexadecimal val-
ues, just like regular HTML. For example, “This is
red text.” uses full red for the text color.

✦ : The tag with the FACE attribute enables you to specify a
specific typeface to the enclosed text. You can specify Flash device fonts for the
FACE value, such as to use the Sans Serif device font.

✦ : The SIZE attribute of the tag enables you to specify
the point size of Flash text. You can use absolute values (in pt sizes), such as
, or relative values, such as , to change
the size of text.

URL and ActionScript Linking
You can use the <A> tag with the HREF attribute to apply URL links within Flash text.
For example, you can insert the following HTML into a string value for a text field
variable, to link the text the Makers Web site to the appropriate URL:

the Makers Web site

You can also specify a TARGET attribute for the <A> tag. The TARGET attribute deter-
mines which browser window or frame will display the URL link in the HREF attribute.
As with regular HTML, You can use the default _top, _parent, _self, or _blank val-
ues, as described for the getURL action. Later in this section we see how you can also
execute internal Flash functions from <A HEF> tags.

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 720

721Chapter 25 ✦ Understanding HTML and Text Field Functions in Flash

You cannot type HTML tags directly into any text block or field — the actual tags will
show up in the text during .SWF playback. The formatting tags are specified in
ActionScript code, or are “hidden” in Static Text (the Character Panel applies the
formatting).

Formatting text with the Character and Text
Options Panel
You don’t necessarily need to write out HTML tags to apply them to your Flash
text. You can use the Character Panel to assign HTML formatting to all Text types
(for example, Static, Input, and Dynamic). For Input and Dynamic Text fields, you
will need to use the Text Options Panel to enable HTML formatting, by checking the
HTML option. In this section, we demonstrate the use of HTML formatting within
Static and Dynamic Text fields.

1. Open a new Flash movie (Ctrl+N or Command+N). Set the background color
to white in the Movie Properties dialog (Ctrl+M or Command+M). Save your
Flash movie as htmlText.fla.

2. Select the Text Tool, and open the Text Options Panel. Make sure the top drop-
down menu is set to Static Text. Click once on the Stage, and type the following
text (with carriage returns) in the text block, using Verdana at 18 points:

Flash 5 Bible
by Robert Reinhardt & Jon Warren Lentz

3. With the text block still active, select the Flash 5 Bible text, and, in the Character
Panel, change the point size to 24 and click the B (for bold) option, as shown in
Figure 25-1. Enter the following URL in the URL field of the Character Panel:

http://www.amazon.com/exec/obidos/ASIN/0764535153

4. With the text block still active, select the Robert Reinhardt text, and, in the
Character Panel, enter the following text for the URL option:

mailto:robert@theMakers.com

5. Now, select the Jon Warren Lentz text, and enter the following text in the URL
option of the Character Panel:

mailto:jon@theflashbible.com

See Figure 25-2 for an example of how the URL-linked text will appear.

6. Save the Flash movie, and test the Flash .SWF file in your Web browser by
choosing File ➪ Publish Preview ➪ HTML. When you click the Flash 5 Bible
text, the browser loads the Amazon.com page for the Flash 5 Bible. When
you click either author’s name, your e-mail client opens a new message
window.

Caution

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 721

722 Part V ✦ Programming Flash Movies with ActionScript

Figure 25-1: You can selectively change text within one text block or field.

Figure 25-2: URL-linked text appears with dashed underlines. You will not see
this dashed underline in the actual .SWF file.

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 722

723Chapter 25 ✦ Understanding HTML and Text Field Functions in Flash

Inserting HTML tags into Text Fields with ActionScript
In this section, we continue with the previous example that you created in the last
section. We convert the Static Text block into a Dynamic Text field, and manipulate
the formatting with ActionScript.

1. Resave your Flash movie from the last section as htmlText_dynamic.fla. We
will convert this Static Text into a Dynamic Text field, so you’ll want to keep
your original Static Text example for future reference.

2. Select the text block, and open the Text Options Panel. Change the text type
to Dynamic Text, and make sure the HTML option is checked. In the Variable
field, type the variable name book. Now, this text field can be updated with
ActionScript directed at the variable book. You can also uncheck the Border/
Bg option if you don’t want to see a bounding box around your text.

3. Save the Flash movie, and test it (Ctrl+Enter or Command+Enter). While
the .SWF is playing back within the Flash 5 authoring environment, choose
Debug ➪ List Variables. You should see the HTML formatting tags displayed
in the Output window (note that in the Output window, the book variable
and the value will be shown on one continuous line):

Level #0:
Variable _level0.$version = “MAC 5,0,30,0”
Variable _level0.book = “<P ALIGN=\”LEFT\”><FONT

FACE=\”verdana\” SIZE=\”24\” COLOR=\”#000000\”>Flash 5 Bible</P><P ALIGN=\”LEFT\”>by Robert Reinhardt
& Jon Warren
Lentz</P>”

You can observe the proper ActionScript syntax for HTML formatting in the
Output window. Note that any quotes around values of tag attributes are pre-
ceded by a backslash, as in . Because the value of
book is already a string data type surrounded by quotes, any internal quotes
need to be declared with a backslash character.

4. Close the .SWF movie window, and go back to the Main Timeline of your Flash
movie. Create a new Dynamic Text field, and in the Text Options Panel, check
the HTML and Word wrap options. Make sure the text field is set to Multiline.
In the Variable field, type the name book2. The text field should be the same
size as the previous text field.

5. Add a new layer, and name it actions. Double-click the first frame of the actions
layer, and, in the Actions Panel, specify a HTML-formatted string value for the
book2 variable, such as the following code:

book2 = “<FONT FACE=\”Verdana\” SIZE=\”24\” COLOR=\
”#0000FF\”><A HREF=\”http://www.amazon.com/exec/
obidos/ASIN/0764533568\”>Flash 4 Bible

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 723

724 Part V ✦ Programming Flash Movies with ActionScript

<P>by <A HREF=\
”mailto:robert@theMakers.com\”>Robert Reinhardt
& Jon Warren
Lentz”;

This code should appear as one line of code in the Actions list of the Actions Panel.

6. Save the Flash movie and test it. The book2 text field will display the HTML-
formatted value that you specified in the actions layer.

You can also use variables as values for HTML-formatted text fields, such as the follow-
ing (note that the bookURL variable and value should appear on one line of code):

bookURL = “http://www.amazon.com/exec/obidos/ASIN/0764533568”;
bookName = “Flash 4 Bible”;
book2 = “” + bookName + “”;

By using other ActionScript variables and methods, you can apply specific text for-
matting to external data sources that have been loaded into the Flash movie, such
as database records or lists. In the next section, you learn how to execute Flash
functions from HTML-formatted text fields.

Using asfunction in <A HREF> tags
Not only can you use HTML formatting in Flash text, but you can also execute
Flash actions from your text fields, using the <A> tag and a HREF attribute value
of asfunction:function,argument. For example, if you wanted to link text to
a function that loads a new Flash .SWF into a Movie Clip target, you can create a
custom function that uses the loadMovie action and reference that action from
your <A HREF> tag for a text field. See the following code (note that the ¬ indicates
a continuation of the same line of code; do not insert this character into your
actual code):

function myMovie(name){
loadMovie(name, _root.mcHolder);

}
myText = “ ¬
Click to load movie”;

In this code example, the text within the <A> tags will execute the myMovie
function, passing the string movie.swf as the name argument.

The asfunction can only pass one string value. You do not need to enclose the
argument in quotes. If you need to pass another ActionScript variable for the value,
then use the + operator to add it to the HTML text string.

If you need to pass more than one argument, then you will need to use send all the
values as one string separated by a comma (or preferred character). Then, you would

Tip

Note

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 724

725Chapter 25 ✦ Understanding HTML and Text Field Functions in Flash

use the split method as follows (note that the ¬ indicates a continuation of the same
line of code; do not insert this character into your actual code):

function myMovie(name){
var tempArgs = name.split(“,”);
var mcTarget = tempArgs[0];
var swfUrl = tempArgs[1];
loadMovie(swfUrl, mcTarget);

}
myArgs = “_root.mcHolder,movie.swf”;
myText = “ ¬
Click to load movie”;

In this example, the myMovie function takes the name argument and creates an
array with the split method. This array’s name is tempArgs. The elements of
the tempArgs array are the two string values separated by a comma in the myArgs
variable.

You can see examples of HTML-formatted Flash text and the asfunction in the
ch25 folder of the Flash 5 Bible CD-ROM.

Controlling Text Field Properties
Input and Dynamic Text fields have two properties that are accessible with Action
Script: .scroll and .maxscroll. Using these properties, you can control the view-
able area of a text field that has more lines of text than the text field can show.

✦ .scroll: This property can retrieve the current line number (from the top of
the field), and it can also move to a new line number in a text field.

✦ .maxscroll: This property returns the maximum value of the scroll property
for a given text field. You can only retrieve this value — you cannot set it.

To understand how these properties work, you need to see how lines are enumerated
in a text field. Suppose you had ten lines of text, as a string value for a variable called
myText. If you want to use this text in a Dynamic Text field named article, which
only has a viewable area of five lines, then the remaining five lines of the myText vari-
able will not be seen in the text field. To make the text field “scroll” to the next line of
text by showing lines 2 to 6 (instead of lines 1 to 5), you can create a Button instance,
such as a down arrow button, with ActionScript to advance the lines:

on(release){
article.scroll = article.scroll + 1;

}

or

on(release){
article.scroll += 1;

}

On the
CD-ROM

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 725

726 Part V ✦ Programming Flash Movies with ActionScript

The .maxscroll property will return the maximum value for the top line number in
a text field. In our previous ten-line text value example, the .maxscroll property
would equal 6. If you had 20 lines worth of text in the article text field, then the
.maxscroll property would return a value of 16.

In the ch25 folder of the Flash 5 Bible CD-ROM, you will find a Flash movie named
scrollProp_simple.fla. This movie demonstrates the use of the .scroll property
to view the entire Gettysburg Address within a text field. A more advanced
scrolling mechanism can be found in the scrollProp_advanced.fla, which features a
draggable scroll bar.

Manipulating Text with the Selection Object
The last text feature that we discuss in this chapter is the new Flash 5 Selection
Object. The Selection Object is similar to the Mouse Object — you don’t create
instances of the Selection Object, as there can only be one active text field at
any given time. In Flash 4 movies, we had no way of checking which text field
was active. You could turn off a focus rectangle for Flash 4 text fields and Button
instances, but you couldn’t control tab order or automatically set a text field active.

Either Input or Dynamic Text fields can use the Selection Object. The Selection Object
uses a string reference to the text field’s variable name to perform its methods. We
discuss the methods of the Selection Object in the following sections.

getBeginIndex
This method detects and returns the starting position of a highlighted selection in
a text field. The method returns –1 if there is no active text field and/or there is no
selection inside the text field. As with the Array Object, selection indexes start posi-
tion values at 0. You do not need to specify a target path for this method — only one
text field can have a selection at any given point. Therefore, as a variable startIndex,
the getBeginIndex() method would look like:

onClipEvent(mouseMove){
startIndex = Selection.getBeginIndex();
trace(“startIndex = “ + startIndex);
}

In the Output window, the trace action would reveal startIndex = -1 until you
made a selection within a text field in the movie, as shown in Figure 25-3.

In the ch25 folder of the Flash 5 Bible CD-ROM, review the getBeginIndex.fla to
see how the getBeginIndex() method returns values for a text field. Each of
the following sections also has a .FLA file to demonstrate its respective method.

Figure 25-3: A text field with a starting selection index of 3

On the
CD-ROM

On the
CD-ROM

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 726

727Chapter 25 ✦ Understanding HTML and Text Field Functions in Flash

getEndIndex
Similar to the getBeginIndex() method, this method returns a number indicating
the index position at the end of a highlighted selection in a text field, as shown in
Figure 25-4. If there is no active selection, then a value of –1 will be returned.

Figure 25-4: A text field with a starting selection index of 5
and an ending index of 9

getCaretIndex
This method of the Selection Object returns the current cursor position (as an index
value) within an active text field, as shown in Figure 25-5. As with the two previous
methods, if you use the getCaretIndex() method when there is no active cursor in
a text field, it will return a –1.

Figure 25-5: A text field with a caret index of 5

getFocus
This method returns the current active text field’s name, as an absolute path; that is, if
you have selected or inserted the cursor position inside a text field named myOutput
on the Main Timeline, then Selection.getFocus()returns _level0.myOutput. If
there is no active text field, then this method returns null.

setFocus
Perhaps the best enhancement to controlled text field activity is the setFocus()
method. This method enables you to make a text field active automatically — the
user doesn’t need to click the mouse cursor inside the text field to start typing. To
use this method, simply indicate the setFocus() method of the Selection Object,
and the absolute path to the text field as its argument:

onClipEvent(load){
Selection.setFocus(“_root.testInput”);

}

This code, when used on an empty Movie Clip instance, sets the current focus to
the testOutput text field. If any text exists in the text field, it will be highlighted as
a selection. You can only use string data types as the setFocus() argument. If you
try the following:

myTextField = _root.testInput;
Selection.setFocus(myTextField);

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 727

728 Part V ✦ Programming Flash Movies with ActionScript

the setFocus() method will not work. Why? The first line of code sets myTextField
equal to the value of _root.testOutput, not to the text field’s name itself. To remedy
the situation, simply refer to the text field’s name in quotes:

myTextField = “_root.testInput”;
Selection.setFocus(myTextField);

setSelection
The last method available for the Selection Object is setSelection(). This method
enables you make a specific selection within an active text field. The method takes
two arguments: a start index and an end index. Using the same index numbering as
getBeginIndex() and getEndIndex(). Note that this method will not work unless
a text field is already active. The following code creates a selection span from index
5 to 9 of the testInput text field:

onClipEvent(load){
Selection.setFocus(“_root.testInput”);
Selection.setSelection(5,9);

}

Daniel Szecket of Magritte’s Cow (www.magrittescow.com) has provided sev-
eral examples of the Selection methods. You can find these examples in the ch25
folder of the Flash 5 Bible CD-ROM. Daniel contributed an expert tutorial in
Chapter 35, “Working with RealPlayer.”

Summary
✦ You can use HTML text formatting within Flash text. Only basic HTML text

formatting is allowed.

✦ You can insert HTML tags into the values of ActionScript variables that refer
to Input or Dynamic Text fields. Any quotes used with HTML attributes should
be preceded by a backward slash, \.

✦ The asfunction parameter for the HREF attribute of the <A> tag enables you
to execute ActionScript functions from text fields. You can pass one argument
to the specified function.

✦ The .scroll property of Input and Dynamic Text fields enables you to con-
trol the portion of a text field value that is displayed within the text field.
.maxscroll returns the highest top line number for a given set of text in a
text field.

✦ The Selection Object in Flash 5 ActionScript enables you to control the focus
and highlighted selection spans of text fields in a Flash movie.

✦ ✦ ✦

On the
CD-ROM

3515-3 ch25.f.qc 1/18/01 5:03 PM Page 728

Advanced Movie
Clip Architecture
and Beyond

We decided to end Part V with a chapter dedicated to
three expert tutorials that introduced topics outside of

the other scripting chapters. You learn a different ActionScript
workflow with each tutorial.

Advanced Tutorials for Flash
Interactivity

This chapter is comprised of three Expert Tutorials, all of
which introduce advanced uses of ActionScript objects and
functions. The following table summarizes the topics covered
in each tutorial.

Tutorial ActionScript Topics

Animation on Bézier Curves onClipEvent(load)

onClipEvent(mouseDown)

onClipEvent(enterFrame)

_xmouse

_ymouse

Math.sqrt()

Math.atan2()

Math.pi

Math.random()

getTimer()

Continued

2626C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Moving objects along
scripted curves

Using innovative
scripted interfaces

Tracking time with the
new Date Object

✦ ✦ ✦ ✦

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 729

730 Part V ✦ Programming Flash Movies with ActionScript

Tutorial ActionScript Topics

Scripting for Interfaces updateAfterEvent()

String.length()

Movie Clip.attachMovie()

substring()

onClipEvent(load)

A function with multiple
arguments

Using getTimer() to make a Flash Clock getTimer()

Date.getSeconds()

Date.getMinutes()

Date.getHour()

Expert Tutorial: Animation on Bézier Curves,
by Darrel Plant

While it’s simple enough to create ActionScript routines that move objects along straight
paths, wouldn’t it be nice to know how to move paths along arcs or curves? Darrel’s tutorial
shows you how to do the math behind Bézier curves, and how to implement the proper
equations into your ActionScript code.

In real life, most things don’t move in straight lines. Even if they did, something that moves
in a straight line wouldn’t be nearly as interesting as another object that moves along a
curved path. The curved path injects a bit of mystery and anticipation into a movement.

You probably already know that you can animate something on a motion guide in Flash,
but motion guide animation paths are predefined. What if you want to have an object move
randomly? What if you want it to move wherever the user clicks? What if you want it to look
smooth and curvy instead of straight and dull?

One solution is to create an animation algorithmically — that is, by using a mathematical
equation. The possibilities for which equations to use are infinite, but we should put a few
requirements in place:

✦ The animation must happen along a curve.

✦ The animation must end exactly where we want it.

✦ The animation must take place over a definable period of time.

✦ The curve must be variable — it shouldn’t travel the same path between two points
unless we want it to.

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 730

731Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

One type of highly controllable mathematical curve that fits all of these requirements is
the Bézier curve. You’re probably already familiar with this type of curve from working
with other programs (and now Flash 5). The Bézier curve has been used in graphics pro-
grams since Adobe introduced PostScript in the mid-1980s. You’re probably already
familiar with the types of shapes that it can draw — everything from a straight line to a
loop that crosses over itself. What you might not be aware of are the simple mathemati-
cal equations behind it.

A Bézier curve is made up of four points: two end points and two control points, typically
labeled p0, p1, p2, and p3. The end points of the curve are p0 and p3. The control points are
p1 and p2. Most graphics programs draw lines between p0 and p1, and between p3 and p2.
The curve described by the equations starts at p0, moves toward p1, and then moves toward
p2, ending up at p3. It always intersects p0 and p3, but may not even come close to p1 or p2.
A polygon drawn between the points in order encloses the curve completely. Each endpoint
and control point has two components xn and yn.

Two equations are used to describe a Bézier curve:

x(t) = axt
3 + bxt

2 + cxt + x0
y(t) = ayt

3 + byt
2 + cyt + y0

The t in each equation is a floating-point number ranging from 0 to 1. When t is 0, the
results of the equations equal x0 and y0, which is p0, the origin point of the curve. When t
is 1, the result is (x3, y3), or p3, the destination point of the curve.

With this information as your basis, you need to know how to get values for the coefficients
ax, ay and so on. These values are derived from the points used to describe the curve:

cx = 3(x1 - x0)
bx = 3(x2 - x1) - cx
ax = x3 - x0 - cx - bx
cy = 3(y1 - y0)
by = 3(y2 - y1) - cy
ay = y3 - y0 - cy - by

Because the values for the b and a coefficients are dependent on the c coefficient, the c
coefficient should always be the first one that is derived.

In drawing programs, short segments of straight lines are drawn on the screen by evaluat-
ing t in increments that may range in value from 0 to 1. For instance, using steps of 0.05
(0.00, 0.05, 0.10, . . .) yields 21 points along the curve. Drawing lines between those points
approximates the curve. The smaller the increment values of t are, the more steps you get,
the shorter the line segments are, and the smoother a cure you get.

Instead of drawing, this same logic can be applied to an animation, thereby moving an
object along the curve in a predefined number of steps. However, the third item on our list
of requirements is that the animation has to take place over a defined period of time, so
this project also requires that we use a timer to move our object.

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 731

732 Part V ✦ Programming Flash Movies with ActionScript

Continued

The first project I ever used this for was a Ouija board done in Director, in which the
planchette moves across the board in a spooky fashion, responding to clicks and keypress
events. You can see that and other examples at my Bézier curve site (www.moshplant.
com/direct-or/bezier/). In this shorter example, we make the planchette move to the
position on the board where the user clicks. All of the movement code in the example
movie is contained in a script attached to the Movie Clip named planchette. (You’ll find the
finished .FLA on the CD-ROM in the ch26 folder.)

Now that we’ve discussed the concept and you’ve (hopefully) viewed a few of my samples,
it’s time to develop the scripts to adapt this effect in Flash 5. First, we need to define some
variables when the planchette first appears, in an onClipEvent (load) handler:

onClipEvent (load) {
// initialize the activity flag
active = false;

// define period of movement
period = 2500;

}

The active variable is used to determine whether the planchette is in the middle of a
movement. The period of 2500 is in milliseconds, so this is defining a movement period of
2.5 seconds. At this point, the planchette would just sit there.

The next handler is where most of the work is done. Here, an onClipEvent (mouseDown)
is used to find where the mouse has been clicked, define that point as the destination of
the Bézier curve, and then derive the coefficient values needed for the animation (in the
following code, the ¬ character indicates a continuation of the same line of code; do not
insert this character in your actual code):

onClipEvent (mouseDown) {

// set the activity flag
active = true;

// define the destination point
x3 = _root._xmouse;
y3 = _root._ymouse;

// define the origin point
x0 = _x;
y0 = _y;

// derive the vector between the origin and destination
vectorX = x3-x0;
vectorY = y3-y0;

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 732

733Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

// find a point 1/3 of the way from origin to destination
// for control 1
x1 = x0 + vectorX / 3;
y1 = y0 + vectorY / 3;

// find a point 2/3 of the way from origin to destination
// for control 2
x2 = x0 + 2 * vectorX / 3;
y2 = y0 + 2 * vectorY / 3;

// variability is determined by the distance from origin
// to destination
variability = Math.sqrt(vectorX * vectorX + vectorY * ¬
vectorY)/ 1.5;

// perturb the control points by a random value
// ranging between - (destination / 2) and
// (destination / 2)
x1 = x1 + Math.random()*(variability+1) - variability/2;
y1 = y1 + Math.random()*(variability+1) - variability/2;
x2 = x2 + Math.random()*(variability+1) - variability/2;
y2 = y2 + Math.random()*(variability+1) - variability/2;

// derive the coefficients of the Bezier equations
cx = 3 * (x1 - x0);
cy = 3 * (y1 - y0);
bx = 3 * (x2 - x1) - cx;
by = 3 * (y2 - y1) - cy;
ax = x3 - x0 - cx - bx;
ay = y3 - y0 - cy - by;

// set the timer
originTime = getTimer();

}

Most of the preceding code is a straightforward interpretation of the original equations into
ActionScript. The derivation of the control points, however, might need some explaining.
Here’s how those control points are derived.

We start with control point p1 placed one-third of the way from p0 to p3, and p2 is two-
thirds of the distance. (This is actually how you can draw a straight line with a Bézier curve,
and one of the only times the curve will pass through all four points.)

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 733

734 Part V ✦ Programming Flash Movies with ActionScript

Continued

Next, to get a variable curve (requirement 4) we change the coordinates of the two control
points by a random number. In this case, the distance from p0 to p3 determines the range
of the random number. The total range (represented by the variable variability) is
about two-thirds of the total distance. That value (ranging between 0 and 2⁄3) is shifted (by
subtracting half of the variability: 1⁄3) to a range of –1⁄3 to +1⁄3, and added to the original posi-
tion of the coordinates in the four lines that perturb the control points. As an example, if the
distance between p0 and p3 is 350 units, the variability factor will be 233.333. In the pertur-
bation lines, the original coordinate will have a random value that may range anywhere
between 0 and 233.333 added to it, and have 116.666 subtracted from it. If the original
coordinate value is 200, the result could be anywhere from 83.333 to 316.666. By increas-
ing or reducing variability, the curve can be more or less controlled. For example, if
variability is 0, the curve will become a straight line.

Then, once the points have been determined, the coefficients of the equations are a cinch
to derive. The last thing to do is set the timer.

Nevertheless, the planchette won’t yet move. One more handler, an onClipEvent
(enterFrame) takes care of that:

onClipEvent (enterFrame) {

// check activity flag
if (active) {
var t;
var dX;
var dY;
var modangle;

// derive value of t from ratio of elapsed time to period
t = (getTimer()-originTime) / period;

// check to see if timeout has occurred
if (t >= 1) {

// timeout; set object to final position
_x = x3;
_y = y3;

// turn off activity flag
active = false;

} else {

// object is still moving; plug t into equations
newX = ax * t * t * t + bx * t * t + cx * t + x0;
newY = ay * t * t * t + by * t * t + cy * t + y0;

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 734

735Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

// set object position
_x = newX;
_y = newY;

}

// rotate to point at the pointto movie clip
// derive vector from planchette to pointto
dX = _x -_root.pointto._x;
dY = _y -_root.pointto._y;

// use the atan2 function to get a rotation angle
// from the vector
modangle = 270 + (Math.atan2 (dY, dX) * 360 / 2 / Math.PI);
// rotate the body and shadow of planchette
body._rotation = modangle;
shadow._rotation = modangle;
}

}

To set the timer, first check whether the planchette is active. If it’s not active, nothing
happens.

If the planchette is active, set the timer as follows: The value we plug into the equations is
the number of milliseconds that have elapsed since the mouse press, divided by the total
movement period. That will be a positive floating-point number ranging from 0 up. When
the t value is 1 or greater, then the elapsed time is greater than the period. At that point,
the object is placed in its final position, and the activity flag is turned off.

If t is less than 1, then we simply plug it into the equations. It’s almost too simple — it’s just
multiplication and addition. You’ll notice that for the cube and square values of t I just mul-
tiply rather than use the Math.exp function. It’s just simpler. Then the position properties of
the Movie Clip are changed. You’re done!

One additional goodie that I’ve added as a final embellishment doesn’t have anything to do
with the movement on Bézier curves. That’s the mechanism to point the planchette at a
specific point on the Stage. The last part of the handler uses an invisible clip called pointto
(near the top of the Stage) as its target, figures out the angle between the planchette and
the target, and then rotates the planchette body and shadow so that it looks as if some
supernatural force is running the show.

The entire animation is event driven; if you click while the planchette is moving, it automat-
ically recalculates a new curve based on the click and its own current position. It’s also inde-
pendent of the movie frame rate. This version always takes 2.5 seconds to move from origin
to destination no matter whether the frame rate is 5 or 100. Slower frame rates will only
mean that the animation isn’t as smooth; while speeding up the movie won’t make the ani-
mation too fast, just smoother. (Note that, by changing the value of the period, which was
set in the third line of the onClipEvent (load), the apparent swiftness of the planchette’s
movement can be either quickened or retarded.)

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 735

736 Part V ✦ Programming Flash Movies with ActionScript

Continued

You can do many more things with Bézier curves and animation. My original Director ver-
sion let you type in a key and moved the planchette to the appropriate position on the
screen to cover the typed letter (by using an array of points on the Stage associated with
keys). Change the period at the same time as you define the curve by varying it with the dis-
tance between p0 and p3. Animations that move continuously are easy to do by defining a
new destination and curve instead of turning off the activity flag. If you put the curve defini-
tion statements into a function instead of the onClipEvent handler, then you can send
messages from anywhere in the movie, passing parameters for the destination instead of
just using the mouse click location.

A resident of Portland, Oregon, Darrel says, “I’ve lived all my life in Oregon, rarely going beyond the confines
of even the city I live in.” In the year that he graduated from high school, he saw Alien six times in the theater.
Darrel’s credits as an author include Shockwave: Breathe New Life into Your Web Pages (n.p.: Ventana, 1996),
and Flash! Creative Web Animation (Berkeley: Peachpit Press, 1997). Daniel was also lead author of The Lingo
Programmer’s Reference (n.p.: Ventana, 1997) and Special Edition Using Macromedia Flash 5 (New York:
Macmillan, Que, 2001). Yet his favorite thing to do is “Read. Not computer books. Oh, and Battlebots.”
Regarding his entry to Flash, he relates, “I’ve been a vector guy for over a decade, and doing multimedia
programming since the early ’90s, so when Flash was folded into the Macromedia family, it was a natural
progression.”

Expert Tutorial: Scripting for Interfaces,
by Nik Schramm

Since Flash 4 (which introduced the impressive scripting capacity which has been so pow-
erfully enhanced with the release of Flash 5) it’s become increasingly common for devel-
opers to build Flash movies that consist of very few keyframes on the Main Timeline.
Instead, they move all the scripting and animation action to the timelines of the Flash
movie’s Movie Clip components. In the realm of interface design, where screen action is
normally dependent on some form of user interaction, there is hardly any other way to
operate. Because this is my main area of interest, you can imagine my delight with the
improvements to the Flash 5 scripting engine. In this tutorial, I show you some of the new
possibilites of Flash 5.

It is now very easy to create reusable Movie Clips for navigational systems, complete with
built-in generic actions. This can be done by using the new Functions and Object Actions,
with which a given Movie Clip can initialize its own independent set of onLoad variables
and perform a series of actions onEnterFrame. The key to making this work is to write
reusable functions at the root level and access them from each independent clip that wants
to perform the actions contained therein; this is similar to the call action in Flash 4, but far
more flexible. To illustrate how to employ some of these new techniques, I dissect the main
navigational menu of www.industriality.com, a site I recently designed with Flash 5.

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 736

737Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

The interface shown in the following figure was designed in Illustrator 9, exported as a
.SWF, and imported into Flash. Following import, I optimized by removing unnecessary
duplicate elements and reusing symbols in as many places as possible, which reduced the
file size of all graphics in this interface to 19KB, leaving plenty of space for some heavy-
weight scripting. To fully exploit the new ObjectActions in Flash 5, I also converted all the
graphic symbols to Movie Clips.

Objective
The Main Timeline has only one keyframe, in which all root-level scripting, such as global
variables and functions, is initialized. The main navigation consists of a lens that follows the
mouse when it is over a menu comprised of ten identical buttons, which is an effect similar
to a slide rule. On rollOver, a button begins a short animation to display the index num-
ber of the selected topic inside the lens.

Additionally, the large display at the top scrolls from its rest position, displaying the
Industriality logo, to the number representing the selected menu item, thus echoing and
magnifying the smaller number inside the lens. To top off the effect, a descriptive text line is
dynamically generated, animated using random calculations, and placed on the stage
between the main menu and the large display. The (rollOut) event must return every-
thing to its original positions; thus, all functions must be designed to accommodate this. So,
let’s have a closer look at the component elements that make up this navigation and how
they work, starting with the animated effects and concluding with the actual buttons.

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 737

738 Part V ✦ Programming Flash Movies with ActionScript

Continued

The Lens
The lens is contained by itself in a Movie Clip called _root.menuLens. As you will recall, it
is set to follow the mouse when it is over the main menu. Rather than using dragMovie to
achieve this effect, I opted to write a short function at root level that matches the x posi-
tions of mouse and lens, which frees me to use dragMovie in other ways, proof of the fact
that Flash 5 often has many options available to achieve the same result. The function is
very simple:

function lensMenu() {
// set variables for the current x and y positions of the mouse
mouseX = _root._xmouse;
mouseY = _root._ymouse;

// restrict the active area to the main menu
if(mouseY>421 && mouseY<489 && mouseX>43 && mouseX<655) {
// set the x position of menuLens MC to that of the mouse
_root.menuLens._x = mouseX
}

// stop lens on button 1 if mouse is too far left
if(mouseY>421 && mouseY<489 && mouseX>9 && mouseX<44) {
_root.menuLens._x = 43

}

// stop lens on button 10 if mouse is too far right
if(mouseY>421 && mouseY<489 && mouseX>654 && mouseX<688) {
_root.menuLens._x = 655

}
}

Of course, a function by itself does nothing, so the menuLens Movie Clip needs to call this
function to update its position every time the mouse is moved. This is achieved with ease in
Flash 5 by assigning the following Object Action to the menuLens Movie Clip on the Main
Timeline:

onClipEvent (mouseMove) {
_root.lensMenu();
updateAfterEvent();

}

In the final line, updateAfterEvent updates the screen independent of the actual movie
frame rate, so it is useful to reduce the inevitable lag involved in dragging anything in Flash.

The Rollover Text
Every bit of text in this interface is dynamically generated at runtime, using only one neat
root-level function. This function is sent a series of variables by each calling event handler to

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 738

739Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

describe in detail what, where, and how it is to generate and display. All of the button labels
were created in this manner, as well as the descriptive text line for the Rollover effect.

To be able to do this, I made a Movie Clip for each of the fonts I wanted to use. Inside this
Movie Clip, there is an empty text field set to the appropriate font, color, and size, which is
addressed by the variable letter. These text Movie Clips will be generated by the function
_root.createText, using the new attachMovie action, so that there are no instances of
these Movie Clips physically present on the Stage at design time. Therefore, the export link-
age properties of these Movie Clips have to be set in the Library to ensure that they will be
exported along with the .SWF. Thankfully, that is as easy as right-clicking the Movie Clips and
choosing Linkage, giving them each a unique identifier, and then selecting Export this sym-
bol in the Linkage options.

Author’s Note: Linkage properties are discussed in Chapter 19, “Controlling Movie Clips,”
and Chapter 20, “Sharing and Loading Assets.”

Okay, now lets build the function on frame 1 of the Main Timeline that generates this text.
The function is sent the following variables by the event handler that calls it, in our case the
buttons: The text string to display, a base Movie Clip to which the text Movie Clips will be
attached, the screen area it is to be centered in, an x position, a y position, basic kerning
info, and — of course — the linkage name of the font. The idea here is to split the text string
into separate Movie Clips, one for each character, and position them as specified by the
variables. In this particular case, the separate characters will begin a random growth ani-
mation, built into the actual font Movie Clips but undocumented here, once they appear on
the Stage (in the following code, the ¬ character indicates a continuation of the same line
of code; do not insert this character in your actual code):

function createText(text,base,area,xpos,ypos,kern,font) {
// initialize local variables
this.text = text;
this.base = base;
this.area = area;
this.xpos = xpos;
this.ypos = ypos;
this.kern = kern;
this.font = font;
var textString = this.text;

// compute the required amount of characters
letterCount = textString.length;

// make a new array out of the input text string
arrayNumbering = letterCount - 1;
textArray = new Array(arrayNumbering);

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 739

740 Part V ✦ Programming Flash Movies with ActionScript

Continued

// assign one text character to each position
// within the array
for (i = 0; i < letterCount; i ++) {
textArray[i] = substring (textString, i+1, 1);

}
// use attachMovie to create one Movie Clip per character
// in the array
for (i = 0; i < letterCount; i++) {
eval(this.base).attachMovie(this.font,”clip”+i ,i+1);

// do basic 20 pixel kerning on the x axis and
// set y position
eval(this.base)[“clip” + i]._x += this.xpos +(i * 20);
eval(this.base)[“clip” + i]._y = this.ypos;

// set the variable “letter” in each clip to display the
// desired character
eval(this.base)[“clip” + i].letter = ¬
substring (textString, i+1, 1);

}

// center all the clips in the target screen area
// and kern as specified
for (i = 0; i < letterCount; i++) {
x = ((this.area -(letterCount * this.kern))/2)+50;
pos = ((x)+(i*this.kern));
eval(this.base)[“clip” + i]._x = pos;

}
}

Now we just need a short function to remove these clips for the rollOut event:

function removeText() {
// we can reuse our variables from createText() !!
for (i = arrayNumbering; i >= 0; i--) {
removeMovieClip (eval(this.base+”.clip”+i));

}
}

Author’s Note: Using array access operators, you can rewrite the removeMovieClip
method shown above as:

removeMovieClip(this.base[“clip”+i]);.

That’s it, short and sweet. Later, we see how the menu buttons call these functions to
achieve the desired RollOver/RollOut effects.

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 740

741Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

The Display
Actually, the display is 11 times as wide as the visible display area and functions like a side-
ways slot machine, if you will. It consists of the numbers 0 to 9 as well as the Industriality
logo side-by-side and is set to scroll to the relevant number after the corresponding button
in the main menu receives an on(rollOver) event. It then returns to the logo view
on(rollOut). This is achieved by dynamically setting the x position of this Movie Clip,
which is called _root.mask.container.content.

Okay, so how does it know where to scroll to? Each of the buttons in the menu controls a
global variable called _root.windowTarget, which is equal to the desired target number,
0 being the logo. All we have to do is use the value of this variable in the scrolling script.
Here’s the code for the instance _root.mask on the Main Timeline:

onClipEvent (enterFrame) {
// make display show logo (position 0) by default
// by subtracting half the total # of poss.targets
// and adjusting _root.windowTarget accordingly
interim = _root.windowTarget - 5.5;
final = 5.5 - interim;

// final is now the adjusted target number
// find the new x position by multiplying final
// with the visible width (315.4)
// subtract half the total width of all 11 targets (1892.4)
xTarget = (final * 315.4) - 1892.4;

// find out where the display is at the monent
xIs = this.container.content._x;

// if the new position is further to the right
if (xTarget > xIs) {
// make speed dynamic for realistic slow-down/speed-up effect
// set basic scroll factor to 3.5
speed = (xTarget - xIs) / 3.5

// gradually increase x position by speed
this.container.content._x += speed

}

// the same as before if new position is further left
if (xTarget < xIs) {
speed = (xIs - xTarget) / 3.5

// gradually decrease x position by speed
this.container.content._x -= speed

}
}

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 741

742 Part V ✦ Programming Flash Movies with ActionScript

Continued

Now, we’re ready to program our buttons to set off this chain of events.

The Buttons
The buttons in the main menu are actually Movie Clips that contain an invisible button and
a 15-frame rollOver/rollOut animation. The advantage of this technique is that all elements
inside the Movie Clip remain fully scriptable. To compensate for this, our button scripts will
have to include code to control the actual button Movie Clip as well as the other elements
we have discussed.

By now, we have set up a variety of functions and events just waiting for the word GO from
any of these buttons, each button achieving a slightly different result within itself, in the
descriptive text, and in the display window on rollOver. However, that does not mean that
we have to use ten different buttons with ten times the amount of code and file size here,
because we can use ten instances of the very same button instead.

How does that work? Each Movie Clip instance can have its own object Actions in
onClipEvent handlers. If we initialize variables using onClipEvent(load) for each
instance, we end up with ten different sets of variables, one for each button, and we can
design the button Movie Clips so that the variables are unique and distinguish one button
from another. In contrast, the actual actions, which are common to all of the button Movie
Clips, can be hard coded into the actual Movie Clip — that is, they will appear within each
instance. Combine these two strategies and you get hard-coded actions that contain local
instance variables to achieve multiple rollOver effects from the very same button!

So what are the actions we need to assign to the instance of our invisible button inside the
button Movie Clip so that the various targets behave as planned? The lens is fine by itself,
but the display is using a variable called _root.windowTarget to compute its scrolling
movement, so our buttons need to set this variable to their respective index number for the
display to begin scrolling toward it. Therefore, we could set a variable indexNumber using
an onClipEvent(load) event handler for each button Movie Clip instance and use that to
set _root.windowTarget accordingly. That would work . . . but why not use the built-in
properties of our button Movie Clip object instead?

This is crucuial: Each Movie Clip in Flash 5 is an object and each object has certain inherent
properties available at all times, such as _x, _y, or _name. Because we have cleverly placed
our invisible buttons inside Movie Clips, we can assign instance names to these Movie
Clips and — if these instance names happen to be equal to their respective index numbers
(for example, _root.1, _root.2, and so on) — then these would be available at any time
without any unnecessary variable setting. In the same way, we can load additional .SWFs
into higher levels once the button is pressed, we just have to name them accordingly
(content1.swf, content2.swf, and so on). Of course, that is what was done.

Next, for the text animation, we need to call the function _root.createText and send it
the specified variables text, base, area, xpos, ypos, kern, and font. The positioning data
will involve a mixture of trial, error, and math, so for now let’s just say that area = 600, xpos
= 10, ypos = 405, and kern = 12. The base I want to use is _root. Thus, all positioning data

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 742

743Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

will be relative to the entire Stage and the targeting address of these clips will be
_root.clip0, _root.clip1, and so forth.

The linkage name of the font that I want to use is twLetterClip. All these variables will be
the exact same for all ten buttons, so we don’t have to set button-specific variables for
them. The text string and the content to be loaded, however, will differ from button to but-
ton, so we do need to define what they will be. Each button Movie Clip instance sets the
text string and content variables in an onClipEvent (load) handler. I also want to use the
index number of the menu item in <> brackets to precede each button’s descriptive text, so
I need to account for this, too:

onClipEvent (load) {
// assemble the text string
header = “<”;

// add the index number
header += this._name;

// close the bracket and add the text string
// which will of course differ from button to button
header += “> industriality presents topic no. “;

// add the index number again
header += this._name;

// for button # 8 this.header will now read “<8> industriality
// presents topic no.8”

// set a variable to define which content swf is loaded
// onRelease
content = “content”;
content += this._name;
content += “.swf”;

}

Now we have two variables for each button Movie Clip instance, each of which defines the
text string and the content that we want to load with this button later on. Thus, the final
code for the invisible button should read as follows (in the following code, the ¬ character
indicates a continuation of the same line of code; do not insert this character in your actual
code):

on (rollOver) {
// begin rollover animation inside the button
play ();

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 743

744 Part V ✦ Programming Flash Movies with ActionScript

Continued

// make the buttons grow in size
this._xscale = 160;
this._yscale = 140;

// make the display window scroll to this index number
_root.windowTarget = this._name;

// call the function to generate the descriptive text
_root.createText(this.header, “_root”, 600, 10, 405, 12, ¬
“twLetterClip”);

}
on (releaseOutside, rollOut, dragOver, dragOut) {
// make the display scroll back to the logo
_root.windowTarget = 0;

// call the function to remove the descriptive text clips
_root.removeText();

// begin rollout animation inside the button and reset its size
gotoAndPlay (“out”);
this._xscale = 100;
this._yscale = 100;

}
on (release) {
// load a SWF based on the variable “this.content”
// into the level that is equal to the instance name of
// this MC (1-10)
loadMovieNum (this.content, this._name);

// reset the button to the off position
gotoAndPlay (“off”);

}

Final Notes
The technique used to set up the scripting for the buttons is very similar to the concept of
Smart Clips, which lend themselves to hard-coded content coupled with user-definable
instance variables. If the buttons had become any more complicated than they are now, I
would definitely have employed that technique here. As it is, normal clips did the job just fine.

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 744

745Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

It pays to plan ahead in Flash. Designing movies to reuse code wherever possible is and will
remain an absolute must until the entire globe has broadband connections (that is, never),
and it has just become easier than ever with the new Flash 5 scripting engine. Functions,
Object Actions, Smart Clips, and Shared Libraries all help to keep the file size down and the
entertainment factor up where it belongs, so use them.

A native of Hamburg, Germany, Nik Schramm’s, Flash career “began with an OEM copy of CorelDraw 4,
unlimited enthusiasm, MS FrontPage, and major frustration at not being able to translate my designs from
the one to the other. I was designing a site to promote music and needed vivid graphics, animation, tight
typographic control, and support for sound integration. So I ditched those other apps and went with Flash,
which was the obvious and most suitable solution.” Since then he’s established an indelible reputation with
his sites www.industriality.com and www.nae.de. We’ve media-dated Nik with this bit; in the year that
he graduated from high school, “the world was a-boppin to “Let’s Go Crazy” by TATVMSKAP (The artist then
and very much still known as Prince).” His single most favorite thing is, “Spending time with my two sons
Noah (3) and Ruben (1).” Apparently, he didn’t take Prince’s advice.

Expert Tutorial: Using getTimer to make a Flash Clock,
by Jake Smith

My first reaction to Flash 5 ActionScripting was fear. But soon I found myself pondering sce-
narios of “what ifs . . .” and “wonder if that would work . . .?” — when nowhere near a com-
puter! This Flash clock is one such “what if . . .” with a bit of simple math thrown in to make
it work. Honestly, after having the initial idea on the way to work, it took about two minutes
to get a second hand moving. The rest followed quite easily, as you’ll see.

Objective: To create an authentic, real-time analog clock.

First, I created a clock face piece of art in Freehand 9. Nothing fancy, but it basically had to
have all 12 points of a clock face. This was a simple job in Freehand. It involved drawing a
line across the diameter of the clock circle, and then cloning and rotating it by 30 degrees,
successively. This process was repeated 5 times, to create a starburst with 12 points. Next, a
smaller circle was dropped on top, in the center, to mask out all the line intersections near
the middle of the clock face. (The rotating by 30 degrees is because we have 12 hours in a
clock face and 360 degrees in a circle. Basic math tells us that the hour indicators are each
separated by 30 degrees from the center of the clock.)

Importing the Clock Artwork into Flash
Use Flash 5’s facility to import Freehand 9 files (File ➪ Import) to bring your clock artwork
into Flash. Next, center the clock on the stage, because we need a definite reference point
in order to add the clock hands. At this point, you can either lock the layer with your art on
it or make a Movie Clip out of the clock face and then lock the layer. It’s up to you — but the
Movie Clip route is the most efficient method.

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 745

746 Part V ✦ Programming Flash Movies with ActionScript

Continued

Second Hand
Now, create a new layer and draw a thin, tall rectangle using the Rectangle Tool. The second
hand should be just a little longer than the radius of the clock face, from center to the edge.
Select the rectangle that you’ve drawn and make a Movie Clip out of it. Name it Second
hand. If the hand isn’t dead center on the Stage, use the Align function to align the hand
with the middle of the Stage.

Click once on the hand and press Ctrl/Command+E to edit the Movie Clip. The hand should
be in the center of the screen, with the crosshairs in the middle of the rectangle. These
crosshairs are the point around which everything is rotated by Flash. If we leave the rectan-
gle as it is, the second hand will look like a propeller. What we need to do is select the rect-
angle and move it upwards, until the crosshairs are close to the bottom of the rectangle.
How close to the bottom they are is up to you — but with a small amount of the rectangle
below the crosshairs, the clock will look more authentic. (Note that you won’t need to
move the rectangle to the left or right, just up. It was centered when we made it into a
Movie Clip.)

Press Ctrl/Command+E to exit editing the Movie Clip and return to the Main Stage. The
hand should look like it’s pointing to 12 o’clock. Finally, we need to give the instance a
name. With the hand selected, locate the Instance Panel and give this instance a name of
second_hand.

Make the Seconds Pass
On the Main Timeline of your clock movie, create three frames on all the existing layers
(and if you haven’t already, start labeling the layers so that you know what they are later).
Now, create a new layer and label it Actions. This will only contain the actions that control
this movie. It helps to keep actions on a separate layer so that you can find them easily if
your project starts to get huge.

Now, in the Actions layer, create a keyframe on frames 1, 2, and 3. Then open the Frame
Actions Panel because it’s time to get technical! One of Flash 5’s new features is the capa-
bility to return values for the day, date, time, and year. By creating a new Date Object, the
.SWF can find out what time it is on the computer. It will return this information by hours,
minutes, and seconds, which is just what we want.

In the Frame Actions Panel, type the following:

mySecs = new Date();
secs = mySecs.getSeconds();

This code creates a new Date Object, called mySecs, and sets the value of secs equal to the
seconds count on the host computer. This is all we need in frame 1 for the time being; on
to frame 2.

The trick to keeping this clock running is another Flash 5 command called getTimer. This
command returns the amount of time that the Flash movie has been running since the

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 746

747Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

command was executed, measured in 1/1000 of a second. Using this call, we have a
means of continuously incrementing the seconds count, and thus the minutes and hours
as well.

Now, we want to create a new variable and set it equal to the integer value of getTimer. To
do this, the first line in the second frame of the Actions layer should be:

mytime = getTimer();

Because the value returned is measured in thousandths of a second, we’ll perform a quick
sum to derive the exact seconds; thus, the next line should read:

seconds = mytime / 1000;

The new variable seconds contains, well, the seconds! Not in thousandths but as a digital
watch would display seconds. This value is good, but it’s only the amount of time that the
movie has been running, it isn’t the correct time (in seconds) when the computer started
the Flash movie. So, to obtain the time, we take our secs value from the first frame, which
grabbed the time according to the computer, and add it to the seconds value derived from
the getTimer:

clocksecs = seconds + secs;

Here’s what we’ve accomplished so far: If the movie were played now, the position where
the second hand would start would be just as the computer’s clock dictates. If the com-
puter says that its time says 30 seconds, then the Flash movie will think the initial seconds
value is 30 and continue to count time from there.

Well, the movie knows what time it is, but we need it to move the second hand corre-
spondingly so that we can see it. I talked about rotation points earlier because that’s the
command we’re going to use to move the hand in time, to the match the current time. This
is easily achieved in Flash with a single line of ActionScript:

setProperty (“second_hand”, _rotation, ((clocksecs/60)*360));

Although this may look complex, it’s easily divided into components. The setProperty
alters the physical characteristics of the second_hand Movie Clip instance; the property
that’s being set (or changed) is _rotation; and, finally, we need to assign a new value to
the _rotation property. For the clock to work correctly, we use some basic statements to
deduce where the second hand should be. Next, we’ll explore the reasoning behind the
equation (clocksecs/60)*360.

A circle has 360 degrees, and a second hand has to travel through 60 seconds to complete
a full rotation of the clock face. Therefore, the rotation value of the second hand is attained
by dividing the time — or clocksecs— at any instance, x, by 60 (because seconds can only
be anywhere from 1 to 60 before being reset to 1). Multiplying that value by 360 (which is
the number of degrees in a circle) tells us exactly how far the second hand is to be rotated,
denoted as

((clocksecs/60)*360)

Continued

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 747

748 Part V ✦ Programming Flash Movies with ActionScript

Continued

Lastly, to obtain a continuously rotating second hand, we add one final action to the third
frame on the Actions layer:

gotoandPlay (2);

You can now preview your movie to see a second hand sweeping round the clock.

Adding Minutes
You’ll be pleased to know that the process for the minute hand follows a very similar
method, and only requires changing a few variables along the way. First, create a new layer
below the seconds layer and name it minutes. Draw a black minute hand on the Stage, tall
and thin, although not quite as long as the second hand. Convert it to a Movie Clip, and
center this new clip on the Stage.

Now, press Ctrl/Command+E to edit the minute hand. Then select all and move the hand
up (as was done with the second hand) so that the crosshairs are near the bottom of the
rectangle. Then return to the Main Timeline. The minute hand should point straight up
toward 12 o’clock. Finally give the minute instance a name, such as minute_hand.

In the first frame of the Actions layer, add this code:

myMins = new Date();
mins = myMins.getMinutes();

This creates a new Date Object specifically to retrieve the minutes value held in the com-
puter’s clock.

Then, move to frame 2 of the Actions layer and enter the following code directly after the
code seconds = mytime / 1000;

minutes = (secs + seconds) / 60;

This line keeps the minute count going by adding the known values (seconds at the begin-
ning of the movie) + (the amount of seconds the movie has been running).

The next code, to be added after clocksecs = seconds + secs, is:

clockmins = minutes + mins;

That code sets the starting minutes value for our Flash movie.

Then, finally, to move the minute hand according to clockmins, the last line of code on
frame 2 of the Actions layer, is:

setProperty (“minute_hand”, _rotation, ((clockmins/60)*360));

Here, the rotation of the minute hand is set using the same principle as the second hand,
because minutes also pass through 60 minutes on a 360-degree clock face.

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 748

749Chapter 26 ✦ Advanced Movie Clip Architecture and Beyond

Adding Hours
Now, create a new layer under the minutes layer, and name it hours. Then draw a short,
thin, black rectangle on the Stage. This will be the hour hand. Turn it into a Movie Clip and
center the hour hand on the Stage. As before (for the seconds and minute hands) edit the
hour hand so that the crosshairs are near the bottom of the rectangle. Then return to the
Main Stage and, in the Instance Panel, name the instance hour_hand.

Following the same method as used for minutes and seconds to set the hours from the
computer, we create a third Date Object in the ActionScript of frame 1 of the Actions layer:

myHrs = new Date();
hrs = myHrs.getHours();

At frame 2 of the Actions layer, after the line minutes = (secs + seconds) / 60;, we add
this line of code:

hours = (minutes + mins) / 60;

Then, after the minutes version clockmins = minutes + mins, we add this line of code:

clockhours = hours + hrs;

The very last line to add at the bottom of the ActionScript for frame 2 is:

setProperty (“hour_hand”, _rotation, ((clockhours/12)*360));

You may notice that this is different from the two previous setProperty commands
because it divides by 12 instead of 60. That’s because the hour hand can only go to12
before being reset to 1.

The movie is now finished and ready for export.

Authors’ Note: The finished .FLA for this clock, as well as Jake’s example of a digital display
(which includes the day), are in the ch26 folder on the CD-ROM.

Jake Smith is a member of the esteemed Subnet and has worked on an impressive roster of clients, includ-
ing www.kelloggs.co.uk, www.foxkids.co.uk, www.wotsits.co.uk, and www.capri-sun.co.uk.
A son of Liverpool, he reports that, in the year he graduated from high school, the most memorable movie
was, “err, umm, Wayne’s World, I think.” Jake boasts a huge collection of video arcade machines, as his
favorite thing to do is “play video games.” In addition, he loves “music, kung-fu films, designing, and Bacardi,
too. . . .” Regarding his introduction to Flash, Jake recalls, “Many years back we first saw FutureSplash used
on the Fox site for The Simpsons. Really basic, just rollovers and very simple animation, but I was blown
away by moving vectors and the small file sizes.”

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 749

750 Part V ✦ Programming Flash Movies with ActionScript

Summary
✦ Natural movement doesn’t usually occur along a straight line. Variation in a

motion path can yield more life-like animation.

✦ You can script movement algorithmically and define parameters for the algo-
rithm: the shape, end point, and duration can be randomly assigned.

✦ Many experienced Flash developers use Movie Clip timelines to separate
ActionScript code and animation action from the Main Timeline.

✦ By using onClipEvent() handlers, a given Movie Clip instance can initialize
its own independent set of variables and perform a series of actions.

✦ By learning to create reusable menu interfaces, you can recreate aesthetically
different interfaces in less time.

✦ By using the Date Object, you can initialize a Flash clock’s time. Then you
can use getTimer() to update the time displayed by the clock, at regular
intervals.

✦ ✦ ✦

3515-3 ch26.f.qc 1/18/01 5:03 PM Page 750

What Is
Generator?

Despite the new capabilities that ActionScript has
brought to Flash 4 and 5, the Flash Player plug-in still

can’t directly import “raw” dynamic media — at least not with-
out a little help. That’s where Macromedia Generator 2 comes
to the rescue. For example, if you want to dynamically insert
or update bitmap graphics in Flash movies, then you need
Generator. Generator can do a whole lot more, so without
further ado, let’s get started.

Many thanks to Mike Jones, who supplied the Generator infor-
mation for the Flash 4 Bible. Mike Jones is one of the original
team members of Spooky and the Bandit, which is a Flash
design and development team (www.spookyandthebandit.
com). We have updated and revised his material to reflect the
new enhancements of Generator 2.

An Overview of Generator 2
Macromedia Generator 2 is both a tool and a server applica-
tion used to develop and deploy automated and/or personal-
ized Web-based graphics. The Web graphics can be .SWFs,
.GIFs, .JPEGs, .PNGs, image maps, QuickTime Flash movies, or
animated .GIFs. All of these can be produced by Generator to
deliver personalized content for individual users. They can
also be produced by Generator for inclusion within sched-
uled, updated interactive Web applications such as banner
ads, stock market tickers, scrolling lists, 3D pie charts, maps,
calendars, and headliners. Generator 2 release 2 adds support
for Flash 5 movies and three new Generator Objects:
Multipage List, Radio Button, and Insert MP3.

2727C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Defining authoring
extensions

Demystifying the
Generator Server

Looking at Generator
Objects

Creating a Generator
Template

✦ ✦ ✦ ✦

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 753

754 Part VI ✦ Using Flash with Generator and Other Server Technologies

This entire chapter is based on Generator 2 release 2. Generator release 1 is not
compatible with Flash 5 movies. Generator 1.0 is not compatible with Flash 4 and
5 movies. Do not try to reinstall Generator 1.0 to use with Flash 4 and 5.

Macromedia’s concept behind Generator was to separate the design-based ele-
ments from the actual content, which gives the developers greater flexibility and
control when updating or altering graphics on the Web. Generator takes a given
set of data elements and applies them to a given list of variables. For example,
Generator can convert a template that has a placeholder for a dynamic weather
map .GIF image and serve a .SWF with an always-up-to-date weather map. This
saves developers time and money in the management of content, and leaves the
designers to do what they do best — design!

To do this they created a “hybridized” application. To create Generator content
you need the free Generator authoring extensions. These extensions are auto-
matically installed with Flash 5. The installer files can also be downloaded from
Macromedia’s Web site. To dynamically serve these Generator “templates” from
your site, you also need to own and install the Generator Server application on
your Web server. The Generator Server is available for Windows, Solaris, and Linux
operating systems.

Developing Generator-driven Web sites is a two-part process. First, the Generator
authoring extensions in Flash 5 are used to design and incorporate graphical Web
templates. Then, when implemented, the Generator Server takes these templates
and combines them with data provided from an external source to create “live” Web
graphics (.SWF, .GIF, .GIF89, .JPEG, .PNG, or .MOV).

Before we discuss the Generator authoring extensions, let’s take a brief look at the
Generator Server application.

Generator Server
As mentioned previously, if you want to serve Generator content you have to pur-
chase and install the Generator Server application for your Web server. This is truly
the Generator: It sits on your Web server, takes the templates (.SWT files) that you
designed with the authoring extensions and published in Flash 5, applies the speci-
fied data sources that are used in the template, and then delivers a .SWF file (or
another image format) to the user. See Figure 27-1 for a diagram of this process.

Generator is not only capable of producing interactive content solely based in Flash;
the Generator Server application can also convert this Flash content (or any .SWT)
into a .GIF, .JPEG, or .PNG image, or even a QuickTime Flash movie. Generator can
also remove all textual elements from a .SWT file and its data source and save these
elements to a standard text document. (Note, however, that Generator doesn’t for-
mat the text.) Generator can create image maps — both client and server side. All of
these items can be produced in either a “per-user” (online), or a scheduled (offline),
capacity.

Caution

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 754

755Chapter 27 ✦ What Is Generator?

Figure 27-1: When a request is made for a .SWT file on a Generator-enabled Web
server, Generator 2 will create a custom .SWF file (from the .SWT file and data
sources) and deliver it to the end user.

Generator editions
Just before Flash 5 was released to the public, Macromedia announced that the
Generator product would be split into two editions: the Enterprise Edition and the
Developer Edition. As the names imply, Generator’s two flavors are geared to high-
end production use (Enterprise) or low-demand production and development
(Developer). On a price level, Enterprise is much more expensive and slated for cor-
porate budgets (starting price is $30,000). The Developer Edition can be purchased
for $999, or lower if you purchase it as part of a combo software upgrade.

For the most part, both editions perform the same primary task: convert .SWT files
and data sources into customized .SWF files. The biggest difference between the
two editions is the potential speed with which the Generator Server can create the
.SWF files. Although the Developer Edition can only utilize one processor on a
server, the Enterprise Edition can scale across multiple processors and handle
many more simultaneous requests for .SWT files than can the Developer Edition.
The Enterprise Edition can also utilize a server cache that stores frequently
accessed content. When this content is requested, Generator will serve the faster
cache content. The Enterprise Edition also has more robust administration and
logging features that the Developer Edition does not have.

End user's computer

Remote Web server

Enterprise Edition only

Remote content
or data server

Generator Cache

SWF

SWT
Data

Source

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 755

756 Part VI ✦ Using Flash with Generator and Other Server Technologies

If you want to plan, develop, and test Generator content, then you won’t need the
Enterprise Edition. You can even use the Developer Edition to serve live Generator
content on your Web site — just don’t expect it to dynamically generate 50 or more
.SWF files per second. On average, the Developer Edition can serve three to five
.SWF files per second, depending on network conditions.

To use Generator Server software, you need access to your own personal Web
server. Most virtual Web servers that offer Web hosting will not provide Generator
services. At the time of this writing, some Internet Presence Providers offered
Generator-enabled hosting. If you have a high-speed Internet connection (such as
a cable or DSL modem) for your LAN (Local Area Network), you can install the
Developer Edition on a local machine and access it remotely over the Web to test
your Generator Templates.

Online/Offline?
So, what exactly are online/offline, and how do they differ? Basically the online
functions of Generator are employed when you need to update dynamic content
on a per-user basis. Examples of this might be stock market tickers, weather maps,
booking information, and that sort of thing. An online process is evoked every time
a user calls a .SWT from the server, or when a script is run that returns updated
information that is constantly changing minute by minute.

Online deployment of content for navigation links, nondated textual information,
and any files that are not changed frequently are a waste of the Generator
resource. Because serving Generator-driven content can be demanding, you
should not unnecessarily strain your Web server. Infrequent content updates
should be handled by offline functions.

Offline functionality schedules Generator to create files locally and place them
wherever required, such as a remote Web server. When Generator operates in
offline mode, it builds a static .SWF file that is loaded by every user of your Web
site. In this method of production, you don’t make requests for .SWT files — you
won’t put calls for .SWT files in your Flash movies or HTML documents. Offline
mode would be equivalent to you manually going into a Flash movie (a .FLA file),
updating the images or text, publishing the file, and uploading the new .SWF file to
your Web server. However, offline Generator can do all of this for you, so that you
are free to do other things (such as design new Web sites!). You can set up com-
mand lines for offline Generator using standard DOS commands, switches, and
arguments that evoke the Generator executable file, directing it to the .SWT files
you wish to use. You can schedule these commands to be run only when necessary
or once a week. These command lines can be placed directly on the Web server.

Only the Generator Server software can provide online functionality. Because this
server software is only available for Solaris, Linux, and Windows operating systems
(primary NT Server with IIS 3.0 or 4.0 or Windows 95/98 Personal Web Server),
Macintosh Flash developers can only design — not serve — dynamic content with
the Flash 5 authoring extensions.

Caution

Note

Note

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 756

757Chapter 27 ✦ What Is Generator?

Pseudo-offline functionality
You can fake offline Generator functionality by using Generator objects with static
URLs (local or remote) or file paths. What does this mean? As you’ll see in the next
section, you can add Generator Objects to your Flash movies with the free Generator
authoring extensions. Even if you don’t purchase the Generator Server software, you
can place image or chart objects that use local (or remote) data sources (such as a
.JPEG file) and publish a .SWF file that contains the data-source information as it
applies to the placed object.

For example, if you have an image file called test.jpg at:

http://www.theMakers.com/books/f5bible/test.jpg

Then you can place a JPEG Object into your Flash movie, specify the preceding
URL, and, when you publish the .SWF file from Flash, it will retrieve the image and
embed it in your .SWF file! This type of pseudo-Generator functionality is useful for
quickly creating pie chart graphics or updating a few graphics in a static Flash
movie. You’ll see how to use the Generator Objects and data sources in the remain-
der of this chapter.

Generator authoring extensions
Now that you’ve been introduced to the concepts of serving Generator Templates,
all you need to know is how to make them. The Generator authoring extensions, in
conjunction with Flash 5, are used to make Generator Templates. These extensions
can be used to create content for Generator 2, and will work with Flash 3, 4, and 5.
Although some content can be created for Flash 2, it will have limited functionality.

The new Generator Objects that ship with Flash 5, Multi-page List, Radio Button,
and Insert MP3, will not work with the original Generator 2 release. Also, Flash 5-
specific ActionScript may not be translated appropriately by earlier releases of
Generator 2. You will need to download and install the release 2 updater, from the
Macromedia site in order to use these objects and the Flash 5 .SWF format.

Unlike other products that Macromedia develops, Generator doesn’t have its own
front-end application or GUI (graphical user interface). You can access Generator ele-
ments from a variety of places within the Flash 5 authoring environment. The main
Generator element appears as an additional file type in the Formats tab of the File ➪
Publish Settings dialog (see Figure 27-2). When you enable the Generator Template
(.SWT) check box in the Formats tab, you’ll be able to access another Publish
Settings tab called Generator. This is shown in Figure 27-3. If you do not have the
Generator authoring extensions installed, then the Generator Template file format
is disabled in the Formats tab.

The settings in the Generator tab of the Publish Settings dialog are discussed in
the next chapter.

Cross-
Reference

Caution

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 757

758 Part VI ✦ Using Flash with Generator and Other Server Technologies

Figure 27-2: The Publish Settings dialog, with the Generator
format enabled

Figure 27-3: The Generator tab appears within the Publish
Settings

There’s also a Generator Panel in Flash that is accessed with Windows ➪ Panels ➪
Generator. Unless you have the authoring extensions installed, the Generator Panel
will display an advertisement, shown in Figure 27-4.

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 758

759Chapter 27 ✦ What Is Generator?

Figure 27-4: If the Generator extensions are not installed,
you see an advertisement that promotes Generator

(left image). If you have the extensions, the Panel is
blank until a Generator Object is selected on the Stage.

We’re ready to start using Flash to create Generator Templates, which are referred
to as .SWT files. But before looking at an example of how Generator content is cre-
ated, let’s look at the Generator Objects that are available after the extensions are
installed. You can access a tool window for Generator Objects (see Figure 27- 5) by
using the Windows ➪ Generator Objects command.

Figure 27-5: The Generator Objects tool window

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 759

760 Part VI ✦ Using Flash with Generator and Other Server Technologies

The Generator Objects tool window is used to place dynamic content placeholders
into Flash movies. You can drag objects from the window to the Stage. The follow-
ing objects are available with Generator 2 release 2:

✦ Basic Charts: This template facilitates the creation of charts, which come in
various “flavors”: Bar, Stacked Bar, Line, Stacked Line, Area, Stacked Area,
Scatter, and Scatter Line.

✦ Insert Flash Movie: This option enables the insertion of a Flash movie from
another source directly into the .SWT. In the output, Generator merges the
two files into one. The source files can be external to the .SWT, either locally
or remotely.

✦ Insert GIF: As mentioned previously, .GIF files can also be acquired from their
native format and inserted directly into the .SWT.

✦ Insert JPEG: Same as Insert GIF.

✦ Insert MP3 File: Just as you can import custom compressed MP3 files into
Flash 5 movies, you can now dynamically pull MP3 files from your server and
embed them in your Generator-created .SWF files.

✦ Insert PNG: Same as Insert GIF.

✦ Insert Sound: This option enables sounds to be merged into a .SWT.

✦ Insert Symbol: This option enables a symbol to be taken from the .SWT’s
Library and inserted directly into the .SWT file. Symbols don’t have to be
taken from the same .SWT; they can be held in separate .SWTs.

✦ List: Enables the display of information in either a vertical or horizontal orien-
tation.

✦ Multi-page List: This new Generator Object will make a set of pages from large
lists of information. Navigation buttons (Next, Previous, and Home) are auto-
matically added to the list.

✦ Pie Chart: Enables data to be fed into a pie chart format, which can even be
3D (and exploded) to show breakdown of data.

✦ Plot: Plot enables the placement of an element from the Library onto the can-
vas at specified coordinates. Scaling and rotation can also be applied via this
template.

✦ Radio Button: This new Generator Object will make a series of radio buttons
that reference existing Flash symbols (that you have created in the Library)
for on and off states, as well as text characteristics.

✦ Scrolling List: A scrolling version of the List template. This is like the List tem-
plate except that it uses one symbol to replicate information, which can be
displayed either as a vertical or horizontal scrolling template.

✦ Stock Chart: This option facilitates the display of data pertaining to stock
market quotes. This template is able to display figures in various data sets as
either: High-Low-Close, Open-High-Low, or Candlesticks.

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 760

761Chapter 27 ✦ What Is Generator?

✦ Table: The Table template enables the display of textual information such as
calendars and scheduling information

✦ Ticker: Based on the Scrolling List, this template is especially useful for a
banner header or quote ticker. The data can be displayed either vertically
or horizontally.

Your First Generator Template
So, you have the authoring extensions and you’re ready to make a template. First
you need to decide on your data source. This can be either a humble text file, or a
middleware solution — such as output from Perl/CGI scripts, ColdFusion, Active

ActionScript or Generator?

A common question among Flash developers is: “When should I use Generator for dynamic
content?” The simple answer is: “Whenever you need dynamic graphic content where non-
textual data (for example, image files) is changed frequently.” Basically, if you only need to
change text information in a Flash movie, then you may be better off using loadMovie and
loadVariables actions within your Flash movies to update content.

Since Flash 4, we have the ability to load dynamic text content into Flash movies (.SWF
files) without the use of Generator. A major problem, however, is that a Flash 4 text field
had to have a uniform font style, size, and color. With Generator, you could dynamically
inserted blue text with black text, all in the same text block. Now, with Flash 5, you can
accomplish the same effect with HTML tags in Dynamic Text fields, without the use of
Generator. However, Generator templates still makes this task much simpler.

You can even simulate dynamic content by creating multiple .SWF files for content areas on
your site. If you have a lot of JPEG images that you want to use in your site, you don’t nec-
essarily need Generator to put them into .SWF files for you. You can create archives of .SWF
files that simply contain the JPEG image file(s). While this may be a bit labor intensive, if
you have a slow growing (or static) number of images (or sounds, or other assets) in your
site, then you will only have to create this files once and be done with it. With a little work,
you can create a data layout and naming convention for all your assets, and load them into
Flash movies with loadMovie actions.

However, if you need to pull content or data from remote servers, or continually update
graphics within your Flash movies, then you’ll want to use Generator 2. You won’t be able
to create a dynamic weather map for each person across the country if you’re using static
.SWF files on your Web server. Generator, however, can take the user’s regional information
(in the form of Flash and/or Generator variables) and produce a custom weather map for
each person who visits the site.

Again, if you primarily need to update text in your Flash movies, you may not need
Generator. If you need to update or create custom graphics in your Flash movies, then you’ll
need Generator.

3515-3 ch27.f.qc 1/18/01 5:04 PM Page 761

762 Part VI ✦ Using Flash with Generator and Other Server Technologies

Server Pages (ASP), or a direct link to a database. For this simple example we use a
text document.

You can specify Generator variables as your data source. These variables can be
declared and set by other Flash movies that use loadMovie (with Send Variables)
to fetch .SWT files from the Generator-enabled Web site.

1. Create a directory on your local machine. The exact location is up to you. Call
it GenDev and in this folder make three more folders: one called data, another
called swt, and a third named fla.

2. Create an empty text file in an ASCII editor, either Notepad (PC) or SimpleText
(Mac). Save the text file in the data folder as info.txt.

3. At the top of the text document, type the following words — make sure you
observe the syntax carefully:

name, value

4. Save the text file and close it.

5. Open Flash 5, and save a new empty Flash movie (.FLA file) as lesson1.fla in
the fla directory.

Now’s a good time to explain the logic behind the folder structure that we’ve just cre-
ated. Using relative paths for your data source makes it very easy to migrate the final
files to your Web server for final deployment. Also, the current folder configuration
affords the extra advantage that the final .SWT files can easily find other source files.
The exported .SWF files that are created with Flash’s Test Movie and Scene com-
mands are also saved to the .FLA source folder, where the final .SWTs can find them.

To set your data source, look to the top-right corner of the Flash Timeline window,
where — as shown in Figure 27-6 — you see the Generator logo. Its presence on the
Timeline window indicates that the Generator extensions are installed. It also opens
the Generator Set Environment dialog. To insert Environment parameters, click this
button and a dialog opens.

Figure 27-6: The Generator
Environment button (to the left
of the Scenes pop-up menu)

Click to insert a Generator
 environment variable

Tip

3515-3 ch27.f.qc 1/18/01 5:05 PM Page 762

763Chapter 27 ✦ What Is Generator?

In Generator 1, the environment parameters were set in the timeline. Other
changes in Generator 2 are that specific selections for Set Environment and
Set SQL Environment no longer exist. Both of these have been combined in the
new Set Environment dialog. Once you have made your settings in this box you
can check them at any point by clicking the Generator Environment button.

As shown in Figure 27-7, two icons appear at the top-right corner of the Set
Environment dialog: Column Name/Value Data Layout and Name/Value Data Layout.
Basically, these variable containers enable you to input names and values in the
same manner as we are going to in our text file. You can browse to a data source via
the small folder icon in the top left. Remember to keep the paths relative.

Figure 27-7: The Generator Set Environment dialog

Let’s enter the data source we have just saved as a text file. If you aren’t there
already, switch back to Flash and click the Generator logo. When the dialog opens,
type this directly into the text field:

../data/info.txt

Click OK and save the Flash file. That’s the path to the data source set in the text
file, named info.txt. Remember that if you used the browser icon you need to crop
off the front part of the absolute path and enter a relative one instead. The follow-
ing path would need to be cropped to match the preceding relative path example:

C:\gendev\data\info.txt

Now you’re ready to make your mark on the Flash Stage. Select the Text Tool and
change the font to Arial (PC) or Helvetica (Mac). Select a black fill color in the Toolbar,
and select a 20-point text size in the Character Panel. Then, click the stage to create a
Static Text block, and type the following: {btext}{ntext}. Unlike Flash 5 ActionScript
variables, all Generator variables are written between curly braces ({}). Refer to
Figure 27-8 for more information on the position and size of the text.

Column Name/
Valve data layout

Click to browse to a file Name/Valve data layout

Note

3515-3 ch27.f.qc 1/18/01 5:05 PM Page 763

764 Part VI ✦ Using Flash with Generator and Other Server Technologies

Figure 27-8: Making Generator Text in Flash

Note that {btext} is bold in the editor. If you want particular formatting for ele-
ments of text, you’ll need to add these to the variable, as they can’t be added via
the data source.

As you can see, the text layout properties are still active. If we just left it like this,
our data source information would have a very small text block — letters may wrap
to the next line upon generation. That’s because there’s only space for seven char-
acters. To resolve this, set the size of the text box by “grabbing” the circle icon at
the top-right corner of the text block and drag while the mouse button is still
pressed, as shown in Figure 27-9.

Figure 27-9: Resetting the size of the text box

Now save the file — make sure that it’s saved in the fla folder of the GenDev folder.
As we continue adding more and more information to this file, you’ll need to keep
backing it up. Therefore, it’s recommended that you make an incremental save to
the file before you make any major changes to it. If these new changes are success-
ful, then you should save the file as the next file in order, as follows: gen_01.fla,
gen_02.fla, and so on.

Tip

3515-3 ch27.f.qc 1/18/01 5:05 PM Page 764

765Chapter 27 ✦ What Is Generator?

Switch to your text editor and open the text file called info.txt. This file should only con-
tain the two words that we entered at the very beginning. To recap, these should be:

name, value

Under this entry, we’ll insert a carriage return and — on the next line down — we’ll
add our first variable, {btext}, and then on the next line we’ll add our second vari-
able, {ntext}:

name, value
btext,
ntext,

Note that a comma follows each of the variables and that the curly braces (that
surrounded the equivalent variable in the Flash movie) have been removed. The
comma is what is known as the delimiter — that means that Generator treats any-
thing appearing after the comma as a variable value.

Knowing this, you might imagine that problems arise when you need to include a
whole sentence or a string of characters that may or may not be separated by a
comma. We solve this by putting the value of the variable in double quotes. The
downside of this solution is that you can’t put double quotes inside a value —
because it would have the same effect as placing a comma outside double quotes,
which would cause the text to end abruptly. You can, however, use single quotes
inside double quotes with no adverse effects. Then, if you need to use double
quotes, use a \ as a delimiter. Therefore, to double quote within a set of quotes,
write the sentence thus:

This section of \”text\” is in quotes.

If only part of the text is being generated from your template, Generator is not at
fault. It is more likely to be a syntax error is in your text source than an error in the
generation process itself. If no text is generated, check all elements before looking
at Generator as the source of the problem. Remember a lot of user elements can
cause a template to fail — especially the old “forgot to set my file as a Generator
Template” one. That’s not saying Generator is foolproof though!

Now let’s add values for both variables. The first variable, btext, has the value:

Generator

Our second variable, ntext, has the variable:

Welcome to Personalization

Our final text document should look something like this:

Name, value
btext, Generator
ntext, Welcome to Personalization

Tip

3515-3 ch27.f.qc 1/18/01 5:05 PM Page 765

766 Part VI ✦ Using Flash with Generator and Other Server Technologies

Finally, save the file and close your text editor. That’s all the text manipulation we
need to do. Now, if you closed Flash while working on the text you’ll need to open it
again. So let’s go back into Flash for our last time.

Now, we test our file to see if it works. Open lesson1.fla and double-check your Set
Environment dialog box one more time to make sure that it’s pointing to your text
document. Select Publish Settings in the File menu and make sure that Generator is
checked in the Formats tab. This box is the equivalent to the Settings dialog box
that you encountered in Generator. Ignore the rest of the Generator settings for this
exercise. Click OK. Now, save the file! Choose File ➪ Publish Preview (F12) or use
the Control ➪ Test Movie command. Behold . . . it worked.

Why does this work if you don’t have the Generator Server on your local machine?
As mentioned earlier in this chapter, when Flash publishes a .SWF file from a .FLA file
with Generator Objects and variables, it will locate the data sources at the time of
publishing and fill in the template where necessary. Therefore, you’ll see the data
source information in the actual .SWF file. Don’t be fooled though. This isn’t dynamic
generation. If you change the info.txt to indicate new text, it will not show up in the
.SWF file until you publish a new one from Flash 5.

To dynamically repopulate the text block with updated information, you’ll need
to upload the .SWT and info.txt files (with the same directory structure) to your
Generator-enabled server. You’ve taken your first step on the dynamic road of
Generator. In the next chapter, we explore some creative uses of Flash and
Generator content.

Summary
✦ Creating Generator content is a two-part process: creating the template with

the Generator authoring extensions in Flash 5, and serving the template with
data-source information from your Generator-enabled Web server.

✦ Generator can dynamically update images, sounds, charts, and lists within
single Flash movie. Generator can also render Flash content as a static .JPEG,
.GIF, or .PNG image, as a .GIF imagemap or animation, or as a QuickTime Flash
movie.

✦ There are two editions of Generator: Enterprise and Developer. The Enterprise
Edition is designed (and priced) for large corporate Web sites that deliver per-
sonalized content to millions of visitors. The Developer Edition can deliver
the same dynamic content that the Enterprise Edition can — just not as fast.

3515-3 ch27.f.qc 1/18/01 5:05 PM Page 766

767Chapter 27 ✦ What Is Generator?

✦ Generator has two modes: online and offline. In online mode, Generator dynami-
cally creates a custom .SWF file from a .SWT file and a data source each time the
template is requested. In offline mode, Generator creates updated .SWF content
on a scheduled basis, and uploads the files to the Web server, which delivers
the .SWF content normally (not dynamically).

✦ You can set up a simple text file as the data source for a static Flash text
block. Generator variables are enclosed in curly braces ({}) in Flash text
fields, Generator Panels, and Flash ActionScript.

✦ ✦ ✦

3515-3 ch27.f.qc 1/18/01 5:05 PM Page 767

3515-3 ch27.f.qc 1/18/01 5:05 PM Page 768

Revving Up
Generator

In the last chapter, you learned what Generator is and
when to use it. Now we explore how to use some Generator

Objects to create more Generator Templates (.SWT files) to
use with Generator Server. This chapter teaches you how to
deploy several kinds of Generator Objects, including Charts,
Lists, Scrolling Lists, Tickers, Tables, Multipage Lists, and MP3
sounds. We assume you are already read the previous chapter,
and are able to deploy a simple text replacement object that
calls data from a text file.

We would like to thank Christian Buchholz for the awesome
insight he provided to us for this chapter. Christian also created
an Expert Tutorial on Multipage List Objects.

An Overview of Data Representation
In our text replacement example from the last chapter, you
learned that data can be represented in a text document (or
as output from a server script or application) as name, value.
With Generator variables and values, there are two methods
of feeding data into Templates: Name/Value layout, and
Column Name/Value layout.

Name/Value data
Specifying the variable’s name and its value on the same line
of the text file or output represents this type of data. Similar
to Flash 5’s URL-encoded variables (see Chapter 24, “Sending
Data In and Out of Flash,” for more information), the variable’s
name and value are declared side by side. The following URL
form-encoded variables:

firstName=Derrick&lastName=Fullerton

2828C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using Charts with
Generator

Creating dynamic
lists and tickers

Publishing Generator
Templates

Loading Templates
into other Flash
movies

Generating Webcam
images

✦ ✦ ✦ ✦

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 769

770 Part VI ✦ Using Flash with Generator and Other Server Technologies

or the Flash 5 ActionScript equivalent:

firstName = “Derrick”;
lastName = “Fullerton”;

would appear as:

name, value
firstName, Derrick
lastName, Fullerton

in a Generator data source.

This method of data representation is useful when you have nonrepeating variable
names. If you had several firstName variables and lastName variables, then you
would need to either number each variable (for example, firstName_1,
firstName_2, and so on) or use a Column Name/Value data layout.

Column Name/Value data
The other type of data representation is Column Name/Value, in which the first
text line describes the variable names, and each line of text thereafter becomes
a unique instance with values. The line position and count determines the order
and frequency of the data (respectively). You may have already guessed that this
description sounds a lot like an Array Object in Flash 5.

The following Flash 5 Array Objects:

firstName = new Array(“Derrick”,”Cathy”,”Alonzo”,”Sean”);
lastName = new Array(“Fullerton”,”Jones”,”Silver”,”Nicks”);

could be represented in Column Name/Value form as:

firstName, lastName
Derrick, Fullerton
Cathy, Jones
Alonzo, Silver
Sean, Nicks

As you can see, Column Names enable you to quickly specify new values for the
same data element. In the preceding example, we can very easily add new names
to the Column Name/Value layout.

Generator can use both types of data representation. Some objects, such as the
Chart Object, require the use of Column Name/Value layout. However, Generator
text variables can use Name/Value layouts to dynamically insert data into Flash
Text blocks and fields (as demonstrated in the last chapter).

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 770

771Chapter 28 ✦ Revving Up Generator

The Chart Object
Generator offers several types of commonly used charts. Using the Chart Object,
you can make an impression by displaying your data in a high-impact visual presen-
tation — and you can do it quickly and easily.

Four different types of Chart Objects are included, each with two variations:

✦ Bar

✦ Line

✦ Area

✦ Scattered (not covered in this book)

Basic Charts, like most Generator Objects, need their own data source. However,
charts have somewhat more complex Generator Panel settings than other types of
objects. See Figure 28-1 for the options of the Basic Charts Object.

Figure 28-1: All Generator Objects are modified in the
Generator Panel. The options in this panel will change
according to the object type.

Before you decide which type of Basic Chart (Bar, Line, or Area) that you would
like to create, you should analyze your data source and determine the outcome
that you would like to achieve.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 771

772 Part VI ✦ Using Flash with Generator and Other Server Technologies

✦ Bar Charts are ideal for change in one data value over time. For example, you
can use a Bar Chart to compare the number of products sold in each month
over the course of a year. Because there is a discrete number of products sold
and a definitive evaluation period (for example, the end of each month), we
can make comparisons of monthly sales rather quickly with a Bar Chart. As
a Generator Object, Bar Charts require a Value column in the data source.
The value column specifies the relative height of the bar. In a Column Name/
Value layout (specified in a simple text file), our Bar Chart variable names
would be described as:

value, color, url

where value would indicate the bar’s relative value, color would indicate
that bar’s color, and url would be the URL that the bar jumps to when it is
clicked.

✦ Line and Area Charts can display growth data over extended periods of time,
visually depicting minor fluctuations (or incremental changes). For example,
you can plot the values of a stock’s price over a week, month, or year with
a Line or Area Chart, seeing general trends of increased stock activity. The
properties of Line and Area Charts are similar to those of a Bar Chart but
only require a Value Column to define the heights of the Line Chart. You can
create multiple lines in a Line Chart by specifying more than one data source;
separate each data source with a semicolon character (;), as in chart_1.txt;
chart_2.txt;chart_3.txt, which will create three lines using these text files as
data sources.

✦ Stacked Bar, Stacked Lines, and Stacked Area require a Color column as
well as a series of Values columns (value1, value2, and so on). These types
of charts can similar to multidimensional arrays, in that you can plot multiple
values and multiple items within one data source. You can use a Stacked Bar
Chart to compare your product sales to the sales of a competitor (for a given
amount of time), or to compare the sales of one product line to those of
another product.

The properties for Basic Charts can be found on pages 41–44 of the Using Generator
manual that ships with the software. If you are using a trial version of Generator
Server, then you can download the complete manual in PDF format from the
Generator support area of the Macromedia site at www.macromedia.com/
support/generator.

Some notable properties of Basic Chart Objects are:

✦ Data Source: All charts require a Column Name/Value data source, which
specifies the value of each node (such as a bar or a point in a line) of the
chart.

✦ Plot Symbol: Even before you could use attachMovie methods in Flash,
Generator enabled you to specify a symbol in the Flash file’s Library to use
as the graphic for plotting points in a Scatter Chart.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 772

773Chapter 28 ✦ Revving Up Generator

✦ Depth: You can create 3D charts by specifying a depth amount. One unit of
depth is equal to 1/20 of a pixel (20 depth units = 1 pixel). The depth property
works on all charts except Scatter Charts.

✦ External Symbol File: Generator Chart Objects can use another external
Generator Template, which contains the symbols to use for chart labels
and values.

✦ Instance Name: You can give a Chart Object (and most Generator Objects)
an instance name so that it can be targeted like a Movie Clip instance with
ActionScript.

Unlike Lists, Tables, or Tickers, Bar Charts don’t require any additional Movie Clips
to define their layout. Bar Charts are generated completely from the values that
you set inside the Generator Panel and the data source.

Creating a Bar Chart
With these properties in mind, let’s create your first Bar Chart Template. In this
lesson, you create a Bar Chart that graphs the populations of several major world
cities. The data will be pulled from a simple text file.

1. Create a new directory on your local hard drive and name it barchart.

2. Inside this directory, create a second directory and call it data. When working
with Generator, it is a good idea to keep all of your data files in one folder.

3. Open a text editor, such as Notepad in Windows or SimpleText on the Mac,
and create a new plain text file.

4. Enter the following in the first line, noting the syntax:

value, color, hlabel

5. Save this text file as barchart.txt inside your data directory.

6. Open Flash 5 and create a new file.

7. Select File ➪ Publish Settings, and check the Generator Template option in the
Format tab.

Basic Charts can be exported as static image files, but they will lack the interactive
capabilities of the .SWF format.

8. Open your Generator Objects tool window (Window ➪ Generator Objects) and
drag a Basic Chart Object onto the Stage.

9. With the Chart Object selected, use the Arrow Tool with the Scale modifier to
resize the Object to fill about two-thirds of the Stage. Chart Objects can be
sized as needed.

Note

Note

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 773

774 Part VI ✦ Using Flash with Generator and Other Server Technologies

If you would prefer to have your Bar Chart aligned horizontally instead of vertically,
simply rotate the object 90 degrees clockwise and change the Horizontal Label
Orientation in the Generator Panel to Vertical.

10. Double-click the Chart Object to open the Generator Panel. Set the properties
to those listed in Figure 28-2. Make sure you correctly set the data source as
data/barchart.txt.

Figure 28-2: You can control the look and feel
of your Bar Chart Object in the Generator Panel.

11. Save the .FLA file in the barchart directory.

12. Open your text file and fill in the following data. Be sure to type in the
syntax exactly:

COLOR, HLABEL, VALUE
#ffcc33, “Sydney”, 3.71
#33ff00, “New York”, 7.33
#00c9ff, “London”, 6.96
#ff6633, “Berlin”, 3.47
#ff3399, “Tokyo”, 8.12

You can designate color values with hexadecimal code or by name (Red,
Green, and so on). Values must be numeric; any other values will be ignored
and result in an error.

Tip

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 774

775Chapter 28 ✦ Revving Up Generator

13. Save barchart.txt in the data folder.

14. Return to Flash and test the movie (Control ➪ Test Movie). Your results should
resemble the Chart shown in Figure 28-3.

Figure 28-3: The completed Bar Chart Object as it
appears in a generated .SWF file.

You can experiment with other color values and use the Depth control in the
Generator Panel to customize the look of your Chart.

Lists and Tickers
Since Flash 4, developers have been able to create dynamic scrolling lists via the
loadVariables() action, which loads variables from text files. Why, then, should
anyone use Generator to create Lists, Scrolling Lists, or Tickers?

First, Generator creates lists and tickers from databases or text files on the server
side, rather than on the client side, which the loadVariables() action does. More
importantly, Generator provides superior designing and formatting of lists and tick-
ers, as it enables you to create dynamic links and insert images.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 775

776 Part VI ✦ Using Flash with Generator and Other Server Technologies

Now that we’ve got your attention, let’s have a look how List and Ticker Objects are
built. Generator can create four different list types:

✦ List (a basic list)

✦ Scrolling List (a scrollable list)

✦ Multipage List (a manageable series of pages for large list data)

✦ Ticker (a scrolling list that continuously loops)

For the most part, all four List types share the same property settings in the
Generator Panel. The only difference is that there is an additional field in the
Scrolling List, shown in Figure 28-4, and the Ticker called Step Size.

How do List and Ticker Objects work? Generator preconfigures a custom Movie Clip
instance that builds itself from the data in the data source. You don’t have to worry
about spending time developing buttons and ActionScript to control movement of
list content!

Using Generator Variables as Property Values

You can set your absolute values for Chart Objects (as well as other Objects) in as
Generator variables and call them in a separate global text data source. For example, in our
previous Bar Chart example, you could set the Max Y-Pos Type to Absolute instead of
Relative Percent. Then, for the Max Y-Pos property, you could use the value:

{max_ypos}

which specifies a Generator variable named max_ypos for the maximum Y position in the
Bar Chart Object. In a separate text file, you can then set the maximum Y position value in
a Name/Value layout. Be sure to add an appropriate buffer to the maximum data value for
the Bar Chart Object so that the data can be framed nicely. This buffer value will vary
depending on the data. For our Bar Chart example, our largest value is 8.31. Our maximum
Y position value should be something higher, such as 10. So, the global text data source file
would read:

Name,value
max_ypos, 10

You can use this technique for any value in the Bar Chart properties listed in the Generator
Panel. In general, it is a good way to set data dynamically within any Generator Object.
Don’t forget to refer to this data source in the Set Environment dialog, which is accessed by
clicking the Generator icon at the top-right corner of your Timeline window.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 776

777Chapter 28 ✦ Revving Up Generator

Figure 28-4: Properties for the Scrolling List Object

Basic Lists
In this tutorial, you create a Generator List Object. Unlike a Flash 5 ActionScript-
driven list that would need to use loadVariables() to bring in dynamic content,
we see how Generator can build the list from a predefined data source and serve
it to the user without waiting for a loadVariables() action to finish. We start by
creating a data source, and then building the List Object in our Generator Template.

1. Create a new directory (folder) on your local hard drive and name it list.

2. Inside this directory, create another directory and name it data.

3. Next, let’s create a data source for your list. Open a text editor, create a new
text file, and save this text file as basicList.txt inside the data folder.

4. The only defined value you need inside this text file is the variable name clip.
The clip variable defines the symbol name that you want to use for a given item
in the list. This symbol can contain graphics and text that you want to appear for
each item in the list. Give all of the other variables meaningful names to help
yourself remember them. For now, let’s use the following structure:

clip, header, textvalue, url

.SWF versus .SWT Files

For each of these examples (and our previous ones), you will publish both .SWF and .SWT
files. You only need to upload the .SWT to your Generator-enabled server for live production
use. Flash “generates” a .SWF at the time of publishing so that you can preview the data
source as it will be formatted from the .SWT file. As we stated earlier, though, you can use
this static .SWF file for use on your Web server, even if Generator is not installed there.
However, changes to your data source will not be reflected in the static .SWF file — only the
Generator Server will build customized .SWF files on the fly from a data source.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 777

778 Part VI ✦ Using Flash with Generator and Other Server Technologies

Besides the required clip variable, we’ll also use three more variables, all of
which will need to be reflected inside your Movie Clip symbol (defined by the
clip variable).

5. Save the text file in the data folder, and create a new Flash movie file in
Flash 5. Save the .FLA file in the list folder.

6. As always, be sure to enable the Generator Template format in the Publish
Settings dialog. Usually, this format is automatically checked as soon as you
add a Generator Object to a Flash movie, but it’s always a good idea to check
the Publish Settings.

7. Drag the List Object from the Generator Object tool window to the Stage.
Select the Object, and use the Arrow Tool with the Scale modifier to resize the
List Object so that it is nearly as tall as the Stage and about 210 pixels wide.

If you decide to change the List type later in the project, you can retain the original
shape and location of the initial List Object by simply changing the List Object type
in the drop-down menu at the top of the Generator Panel. You will need to assign
a new data source (and possibly other properties).

8. Next, we prepare the format of the list, as it will be displayed in the Flash
movie. We need to create a Movie Clip to use within the List Object. Choose
Insert ➪ New Symbol, name it clip_1 and leave the Symbol behavior at the
default Movie Clip. Generally, you can give your clips any name you like, but
you should use meaningful names, so that you can remember to refer back
to them in your data source text file.

9. With the clip_1 Movie Clip open in Symbol Editing Mode, type the following
in two separate text fields, making sure that the first variable, header, is bold:

{header}
{textvalue}

Set the text location below and to the right of the center point. This way,
when you align your symbol, you don’t need to change the default value in
the Generator Panel. Notice also that the more space you leave between the
center point and the first line of text, the more space that you have between
your first list item and the top. It is also a good habit to set the width of the
text field to the width of your list (see Figure 28-5), so that Generator does
not wrap the text to the next line.

Notice that you are essentially doing the same task here that you did in the text-
replacement exercise from the previous chapter, except that you are placing the
variables in a Movie Clip symbol, rather than on the Main Timeline.

Two of the three variables in our text file data source have been added to the
clip_1 Movie Clip symbol. The last one, url, will be used in the actions of a
Button instance described in the next section.

Tip

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 778

779Chapter 28 ✦ Revving Up Generator

Figure 28-5: In Flash 5, you can drag a guide to
the X axis at 210 pixels, because this is the width
of our List Object on the Main Timeline. Make
sure each text field area extends to this guide.

Now we add another level of sophistication, so that you can really see what
Generator can do. We are going to add an invisible Button instance to our
Movie Clip. This button will contain ActionScript that will reference the url
Generator variable. Technically, this can be done with ActionScript and the
loadVariables() action — however, unlike loadVariables(), we won’t
have to make sure the data has loaded before we can use it. Because Generator
delivers the Flash .SWF file with everything already in it, we won’t have to wait
for any additional data to be delivered.

Strictly speaking, invisible Buttons are not needed for List Objects in Generator.
Also, if you want to create buttons for the text, complete with rollover states,
you could do that as well. For this example, we use the invisible Button to link
to a new URL.

10. Create a new Button symbol (Ctrl+F8 or Command+F8) and name it
invisibleButton.

11. Insert a keyframe in the Hit frame.

12. Draw a rectangle shape approximately 200 pixels wide and 50 pixels high on
the Stage. Use the Info Panel to size up the shape.

13. Open the clip_1 Movie Clip in Symbol Editing Mode.

14. Create a new layer, and move it to the bottom of the stack. Name this layer
button.

15. Drag an instance of the invisibleButton symbol onto the Stage and place it
directly on top of the {header} variable text block. Scale the button so that
it is the same height as the {header} variable text block (see Figure 28-6).

16. Select the Button instance and open the Actions Panel.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 779

780 Part VI ✦ Using Flash with Generator and Other Server Technologies

Figure 28-6: Cover the entire {header} text
block with the invisibleButton instance, scaling
as necessary to make it fit.

17. To create a dynamic URL link, you need to set a Generator variable inside
your ActionScript. This is where we will use the url variable from our data
source text file. Add the following ActionScript to the Button instance:

on(release){
getURL (“{url}”, “_blank”);

}

You must always use quotation marks for Generator variables in ActionScript, even
if you use an expression; otherwise, Generator will not be able to recognize these
values as Generator Variables and the ActionScript editor will report an error.

You can also use window and method as Generator variables in the same way
that you use the url variable. You only need to add these Name/Values to
your text file, such as:

clip, header, textvalue, url, window, method

and the ActionScript would appear as:

on(release){
getURL (“{url}”,”{window}”,”{method}”);

}

Now we are ready to move beyond what loadVariables() lists are capable
of producing.

18. Select the clip_1 Movie Clip symbol in the Library, and choose Duplicate from
the Options menu, located at the top right corner of the Library window.
Name this new duplicate symbol clip_2.

19. Delete the {header} text block and the invisibleButton instance, but keep the
{textvalue} text block.

20. Return to the Main Timeline (Scene 1), select the List Object, and open the
Generator Panel.

21. In the Data Source field, define your data by either browsing to the local folder
where your text file is located, or by typing the relative path:

data/basicList.txt

22. In the Orientation field, define the direction of your List by selecting Vertical
(top to the bottom).

Caution

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 780

781Chapter 28 ✦ Revving Up Generator

23. The Mask to Box option lets you define whether your List should be masked.
Usually you leave it set to true, unless you want your list to expand beyond
the defined space. For this example, leave it set to true.

24. Spacing can be either Fixed or Automatic. When Fixed, each clip takes the
amount of space in pixels you define in the Item space field. If spacing is set
to Automatic, it will take as much space as the clip needs from your data
source. For this exercise, set this option to Fixed.

25. Item Space specifies the amount in pixels between clips. Enter 40.

26. The Horizontal and Vertical Alignment options define how the clip should
be aligned inside the list area. Items are always aligned on the center point of
the Movie Clip. Leave the options at the default Left and Top, respectively.

27. Instance Name identifies the object so it can be used with Actions such as
with() and print(). Name this instance basicList.

Always use instance names so that you are able to identify your Generator Objects
in ActionScript.

After setting all the values for your Basic List, you should have object properties
identical to Figure 28-7.

Figure 28-7: These List values will properly
format our Basic List Object.

28. The .FLA file is ready, but we don’t yet have any values in the data source!
Open your data source text file and enter the following values:

clip, header, textvalue, url
clip_1, “Your Header1”, “Insert text1”, “http://url1.com”
clip_2, “Your Header2”, “Insert text2”, “http://url2.com”
clip_1, “Your Header3”, “Insert text3”, “http://url3.com”

You might be curious as to why we are reusing clip_1. One advantage of Generator
Lists is that you can reuse clips inside your Template as many times you like and fill
it with different information. If you test your Flash movie, you will see that the first
line in your list has the same look and feel like the as the third one.

Tip

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 781

782 Part VI ✦ Using Flash with Generator and Other Server Technologies

You can create and reuse an entire library of clips with different appearances,
Buttons or other symbols, and you can use every one of them or just a specific clip,
depending how you want your List to appear in your .SWF. This is especially advan-
tageous if you have a long scrolling list (such as a list of player statistics for a sports
team) and you want to customize certain sections. If your text is larger than the
given text field, it will wrap itself to the next line. Generator will move the follow-
ing clip appropriately to make room.

If you have a clip that does not contain one of the variables (in our case header or
url), your data source would look like this:

clip, header, textvalue, url
clip_1, “Your Header1”,”Your text1”,”http://url1.com”
clip_2,” “,”Your text2”,” “
clip_1,”Your Header3”,”Your text3”,”http://url3.com”

You still need to account for the general data source, but you can leave these fields
empty and they will be ignored.

As you will see, the value of using Basic Lists in Generator over Scrolling Lists that
use loadVariables() in normal Flash movies is that you can build custom graph-
ics and formatting for each item in the list. In this way, you can make items belong
to category types, and assign the appropriate category formatting to each item in
the list.

It is entirely possible to use the new Flash movie attachMovie method, com-
bined with loadVariables(), to dynamically build custom item types in a list.
However, this method is very time intensive. Furthermore, you can’t dynamically
insert .JPEG images (or other bitmap formats) into regular Flash movies. With
Generator, you could insert a .JPEG Object into a Movie Clip symbol that is used
for the list item.

Scrolling Lists
Now that you know how Column Name/Value layouts work with Basic Lists, let’s
move on to Scrolling Lists. Of course, the primary difference between a Basic List
and a Scrolling List is that a Basic List has a finite length (the size of the List Object
on the Stage), whereas a Scrolling List can continue indefinitely past the frame of
the List Object. By using scroll buttons, we can navigate the items in the list.

To make a Scrolling List, the steps are similar to the Basic List procedure, with a
few exceptions:

✦ Choose Scrolling List, rather than Basic List from the Generator Object Panel.

✦ The Scrolling List has an additional parameter, Step Size, that you need to set
in the Generator Panel.

✦ Scrolling Lists require an additional Button symbol instance that controls the
scrolling of the list items.

Note

Tip

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 782

783Chapter 28 ✦ Revving Up Generator

To add scrolling functionality to a Scrolling List Object:

1. Drag a Scrolling List Object from the Generator Objects tool window to the
Stage. Set up a data source text file in the same manner as the Basic List data
source. Set the other object properties in the Generator Panel so that they
resemble those of the Basic List from the previous section. Create Movie Clip
instances that contain the formatting (and interactive functionality) for each
list item.

2. Create a new Button symbol containing artwork of an arrow pointing down,
and place two instances of it on the Stage. Rotate one of the instances so that
it points up. These Buttons will target the Scrolling List Object, thus enabling
the scrolling function.

3. Position the Button instances next to the Scrolling List Object on the Stage.

4. In the Generator Panel, name the Scrolling List instance scroll_down.

5. To create a simple Scrolling List, highlight the Button instance with the arrow
pointing down, and open your Actions Panel. Add the following script:

For Flash 5 compatibility:

on (release) {
with (scroll_down) {

nextFrame();
}

}

For Flash 4 compatibility:

on(release){
tellTarget(“scroll_down”){

nextFrame();
}
}

You now have a down button for your Scrolling List.

The with() action is only understood by Flash 5 player and higher! If you develop
for Flash 4, use tellTarget() instead.

6. Select the Button instance with the arrow pointing up, and, in the Actions
Panel, modify the ActionScript so that it reads as follows:

For Flash 5:

on (release) {
with(scroll_down) {

prevFrame ();
}

}

Caution

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 783

784 Part VI ✦ Using Flash with Generator and Other Server Technologies

For Flash 4:

on(release){
tellTarget(“scroll_down”){

prevFrame();
}
}

You now have up and down Buttons for your Scrolling List.

You can create any scrolling functionality depending on your level of expertise in
ActionScript, but you must always refer to the Scrolling List’s instance name.

Tickers
Ticker Objects work the same as Scrolling Lists, with these differences:

✦ Tickers play as a continuous loop. Therefore, they do not need buttons.

✦ Select the Ticker Object from the Generator Objects tool window, rather than
from the Scrolling List Object.

Otherwise, you can use the same settings for the Ticker and the Scrolling List. The
formatting for their data sources is identical as well.

Tip

Expert Tutorial: Using the Multipage List Object,
by Christian Buchholz

Christian supplied much of the information for this chapter. In this tutorial, you learn to use
the new Multipage List Object that was introduced with Flash 5 and Generator Server 2
release 2.

The Multipage List Object has been introduced along with the Radio Button Object with the
latest version of Generator. To use these objects in a Template or to serve them from your
Web server, you need the Developer’s Edition or Enterprise Edition installed on your server.

How does a Multipage List differ from other Lists? A Multipage List Object creates a series of
pages in order to display a large list of data that you can browse with forward, backward,
and home buttons. An example could be the player statistics of a soccer team, where each
player is displayed in a separate window. To avoid creating each player one at a time, you
use the Multipage Object.

In this tutorial, we create a Multipage List Object in a Flash movie.

1. Create a new folder named multipage on your local hard drive, and make another
folder called data inside of the multipage folder. Again, the data folder will store all
of your data source files and .SWT Template files.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 784

785Chapter 28 ✦ Revving Up Generator

2. Like the Basic, Scrolling, and Ticker Objects described in previous sections, the
Multipage Object needs its own data source to function properly. However, the
structure of this data source is more expansive. Create a new text file called
multiList.txt and type the following Column Names:

text, symbol, channel, show, times, description, image

Instead of a clip column used in the other lists, the Multipage List needs a text
column. You can also add url, window, and symbol as column name variables. The
url variable would define the URL to be loaded when you click an item in the
Multipage List, just like in our example in the Basic List. The window variable targets
an HTML window name (_target, _blank, _self) into which the URL will load.

3. Save your text file as multiList.txt inside the data folder.

4. Open Flash and create a new Flash movie. Be sure that your Publish Settings have
the Generator Template format enabled, and save the .FLA file in the multilist folder.

5. Open the Generator Object tool window (Window ➪ Generator Objects) and drag
the Multipage List Object to the Stage. It is not necessary to change the size of the
Multipage Object — if you change the size you will get strange layout results, so for
now, just leave the size of the Generator Object at its default.

The next steps create the several items that you want to see inside your Multipage
List.

6. Create a new Movie Clip symbol and name it info.

7. In Symbol Editing Mode, create two Generator text variables in Flash text blocks,
placing the text blocks just below and to the right of the symbol’s registration point.
As you may recall, these variables are referenced in your data source text file:

{times)
{description}

8. Create a second Movie Clip symbol and name it header.

9. On the header timeline, add the following variables, positioned just below and to
the right of the center point:

{channel}
{show}

10. Drag an Insert JPEG File Object into the header timeline, and position it below the
two variables.

11. Double-click the .JPEG Object, and the Generator Panel opens. Set the .JPEG
Object’s data source value to:

{image}

Continued

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 785

786 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

12. For this example, you should place several small .JPEG files (around 200 ×200 pixels)
into your data folder. The data source text file (multiList.txt) should have values for
the image column that indicate the path to the image file(s):

data/image1.jpg

Author’s Note: You can specify images that reside on your Web server, or on any
other remote server. This is a very powerful feature of Generator Image Objects. If
you need to use material from a separate server (one that doesn’t hold the .SWT
files), you can have Generator fetch the image file and place it in the Template.

You should now have two symbols in your Flash Library: info and header. Just like
the List Objects, we don’t need to physically place any instances of these symbols
on the Main Timeline of our Flash movie. The Multipage List Object will grab these
symbols from the Library automatically (because we’ll specify them in the data
source), just like attachMovie can grab Movie Clips from the Library. Unlike the
use of attachMovie, Generator does not use or refer to the Linkage identifier
name. Generator uses the name of the symbol in the Library.

13. Return to the Main Timeline, and select the Multipage List Object. In the Generator
Panel, set the Data Source, Items Per Page, Text Symbol, and Instance Name values
to match those of the following figure. Use the default values for the remaining
properties. For a description of all Multi-List Object properties, please refer to the
Using Generator manual, pages 36–38.

The default color for the prebuilt Home, Next, and Previous buttons is black. If you
use a black background color for your Flash movie, you should build your own cus-
tom buttons, and specify the symbol names as the values of the Home symbol, Next
symbol, and Previous symbol properties in the Generator Panel. You can even store
these symbols in another .SWT file. If you do this, then specify that .SWT’s path and
filename as the value of the External Symbol File property.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 786

787Chapter 28 ✦ Revving Up Generator

Using Generator Templates in Production
So far, you have learned how to create Generator Templates and preview their
look and feel by viewing the static .SWF file that Flash 5 creates for you. We have
not discussed how to actually implement .SWT files into a live production environ-
ment. In this section, you learn to use Generator Templates in HTML and in other
Flash movies.

The Home, Next, and Previous buttons for the Multipage List object will always display
at the top-left corner of your list. You cannot change the location of these buttons.

14. Now, we need to specify some information in our data source text file. Open
multiList.txt and enter the following information (Note: The ¬ indicates a continua-
tion of the same line of text. Do not insert this character into your actual text.):

text, symbol, channel, show, times, description, image
, header, CH 1, Movie_1, 4:15 PM, A movie about ¬
Nothing, data/image1.jpg
, header, CH 2, Movie_2, 6:15 PM, A movie about ¬
Something, data/image2.jpg
, header, CH 3, Movie_3, 8:15 PM, A movie about ¬
Everything, data/image3.jpg

You might be wondering about the comma that starts each item entry in the text
file. This comma, shown before the header symbol, is a placeholder for the text col-
umn variable. Because we specified the info symbol as the value of our Text
Symbol property in the Generator Panel, we do not need to specify one here.
However, you could define a different Text Symbol for each item entry in the data
source.

15. Save your text file and your Flash movie (.FLA file). Then, test the movie. The .SWF
file that you see will have a list with multiple pages.

At this point, you may want to go back and adjust the formatting within the info and
header Movie Clip symbols. You can also adjust the .JPEG Image Object formatting to suit
your needs, or even add more .JPEG (or other format) Image Objects.

Christian Buchholz was born in Moscow, Russia, and then grew up in East Germany. After the wall came down,
he moved to Munich, where he studied ballet for nine years and then spent three years in photography and
advertising. Christian came of age when Basic Instinct was the top film. He says, “Flash is my tool of choice to
create highly interactive, elegant Web sites.” A few of these sites are www.elle.com.au, www.toyota.com.au,
www.news.com.au, and www.bromide73.com. Christian now lives in Sydney, Australia. His favorite pastime
is cooking.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 787

788 Part VI ✦ Using Flash with Generator and Other Server Technologies

Publishing Generator Templates (.SWT files)
If you add a Generator Object or set a Generator environment variable, then a
Generator Template (.SWT file) will automatically be created whenever you publish
your Flash movie. If you are using dynamic graphics or data sources, then you will
need to publish a .SWT file and upload it to your Generator Server. You can select
a Generator Template file in the Publish Settings dialog (File ➪ Publish Settings),
and define its settings in the Generator tab. Most of these settings mirror those
found in the Flash format tab of the Publish Settings dialog and the Movie
Properties (Modify ➪ Movie) dialog.

Figure 28-8: The Generator Template format settings in the Publish Settings dialog.

Dimensions
You can specify the width and height (in pixels) of the Flash movie that will be
created from the Generator Template. If Match Movie is checked (the default), then
the width and height will reflect the current settings in the Movie Properties dialog
(Modify ➪ Movie).

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 788

789Chapter 28 ✦ Revving Up Generator

Background
This option enables you to enter a hexadecimal value for color, or select a color
from the pop-up color chip menu. Note that you can also type Web-safe color
names into this field, such as blue, black, or white.

Frame Rate
In this field, you can enter a frame rate that differs from the setting in the Movie
Properties dialog. The frame rate controls how fast the Flash movie is played. The
higher the frame rate, the faster the movie plays.

Load Order
This option controls how the layers in a Flash movie load into the Flash Player.
The default setting, Bottom up, loads the lowest layer first and progressively loads
higher layers. You can also choose Top down, which loads the highest layer first
and then progressively loads lower layers.

Data Encoding
From this drop-down menu, you can select the data encoding method used for
your Generator data sources. The Default option uses the data encoding for the
operating system with which you are using the Flash authoring application. Most
data sources use ASCII encoding (the standard encoding for Windows and UNIX
text). If you’re using the Mac version of Flash, the Default option is the same as
selecting MacRoman encoding. UTF8 is version of Unicode encoding, and is used
by many applications. SJIS (a Japanese character encoding) and EUC_JP (Extended
UNIX Code for Japanese) are available for data sources that use Japanese text.

Create External Font
This check box creates .FFT files with your published Generator Template (.SWT
file). Each typeface (font) that you use in Static, Dynamic, or Input Text will be
saved in a separate file. These font files should be in the same directory as the
.SWT file on the Generator-enabled Web server. If you use Generator variables in
Flash text, then you should always create external font files.

External Media
With this setting, you can choose one or more .SWT files, whose symbols can be
referenced by the current Flash movie you are authoring. By linking to external
media in other .SWT files, you can create custom symbols in Flash template
“libraries” and use those symbols in multiple Generator Templates.

Parameters
You can test Generator environment variables by adding them in the Parameters
area of the Generator tab. Type the variable’s name and value into the provided text
fields, and click the Add button. When you publish the .SWT file, the accompanying

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 789

790 Part VI ✦ Using Flash with Generator and Other Server Technologies

.SWF file will show the Generator variable in use, as if a live Generator Server
served it. Note that you should only use these area of the Generator tab to test
Generator environment variables — use standard data sources for live Web delivery.

Using Generator Templates in HTML
Quite simply, you refer to Generator Templates in HTML <EMBED> and <OBJECT>
tags just as you would any other .SWF file. We discuss integration of Flash movies
and HTML in Chapter 41, “Integrating Flash Content with HTML.”. You can also use
the HTML templates in Flash 5 to automatically publish the HTML required to use
a Generator Template.

Flash 5 has added four HTML templates specifically for Generator Templates:
Generator Ad Any Banner (for dynamic ad serving), Generator Image Output (for
static .JPEG, .GIF, or .PNG images), Generator Only (Default) (for straight template
use), and Generator QuickTime (to serve QuickTime Flash movie versions of your
Generator Template). We discuss this template in Chapter 40, “Publishing Flash
Movies.”

To create an HTML document that uses the Generator Template (.SWT file), follow
these steps:

1. Open the Publish Settings dialog, and check HTML in the Format tab.

2. In the HTML tab, choose Generator Only (Default) in the Template drop-down
menu. Also, if you want the returned Flash .SWF to scale to fill the Web browser
window, then select Percent in the Dimensions drop-down menu. The width
and height values automatically change to 100 percent.

3. Click the Publish button in the Publish Settings dialog. Flash publishes three
files: the .SWF file, the .SWT file, and the HTML file. You only need to upload
the .SWT and HTML files to your Generator-enabled Web server.

If you open the HTML document that Flash 5 publishes for you, you’ll notice that it
refers to the .SWT file instead of the .SWF file (the formatting of the following code
has been modified to fit this page; the ¬ character denotes a continuation of the
same line of text):

<OBJECT
classid=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
codebase=”http://download.macromedia.com/pub/¬

shockwave/cabs/flash/swflash.cab#version=5,0,0,0”
WIDTH=100% HEIGHT=100%>
<PARAM NAME=movie VALUE=”basicList.swt?type=swf”>
<PARAM NAME=quality VALUE=high>

<EMBED src=”basicList.swt?type=swf”
quality=high
WIDTH=100% HEIGHT=100%
TYPE=”application/x-shockwave-flash”
PLUGINSPAGE=”http://www.macromedia.com/¬

New
Feature

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 790

791Chapter 28 ✦ Revving Up Generator

shockwave/download/index.cgi?¬
P1_Prod_Version=ShockwaveFlash”>

</EMBED>
</OBJECT>

You’ll see that Flash also inserts a query string (a question mark followed by URL
form-encoded text) after the .SWT file name, as in:

basicList.swt?type=swf

The ?type=swf is the query string appended to the Generator Template name.
When the Generator Server receives the request for the basicList.swt Template
file, it will see the type=swf string. It then returns a .SWF format file to the Web
browser. The types are:

✦ type=swf, which returns a .SWF file.

✦ type=jpg, which returns a .JPEG image. Use an HTML tag instead of an
<OBJECT> or <EMBED> tag, with the Generator Template listed as the value of
the SRC attribute. If you choose the Generator Image Output Template in the
HTML tab of Publish Settings, then Flash will automatically create the appro-
priate HTML formatting.

✦ type=gif, which returns a .GIF image. See the preceding .JPEG description.

✦ type=png, which returns a .PNG image. See the preceding .JPEG description.

✦ type=mov, which delivers a QuickTime Flash movie to the Web browser. If
you use this query string manually, then make sure that you use the <EMBED>
tag to call the .SWT template file. The Generator QuickTime HTML Template
automatically creates the appropriate formatting for you.

Because Generator uses the type variable for content creation, do not use type as
variable in your Generator Templates unless you want to show the content type in
a text block.

Using Generator Templates in other Flash movies
You can also load Generator Templates into other Flash .SWF files. You don’t actu-
ally even download the .SWT file itself (as mentioned earlier) — Generator creates a
.SWF file from the .SWT request, and delivers that new .SWF file to the Web browser
or the Flash movie that requested it.

As you learned in Part V of the Flash 5 Bible, you can use the loadMovie() action
to incorporate other .SWF files into a “master” .SWF file. Likewise, you can load
Generator content into any Flash movie, such as:

loadMovie(“basicList.swt”, “movieHolder”);

which loads the .SWF output from the basicList.swt file into the Movie Clip instance
named movieHolder.

Caution

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 791

792 Part VI ✦ Using Flash with Generator and Other Server Technologies

And just as you can pass variables with HTML to Generator Templates, you can
send establish data sources directly in Flash movies with the loadMovie() action:

firstName = “Robert”;
loadMovie(“welcome.swt”, “movieHolder”, “GET”);

This sends the following query string to our Generator Server:

welcome.swt?firstName=Robert

You may recall from our earlier discussions in Chapter 24, “Sending Data In and
Out of Flash,” that the GET method appends Name/Value pairs to the end of the
requested URL. You could also send a Generator data source as:

firstName = “Robert”;
loadMovie(“welcome.swt?firstName=” + firstName, “movieHolder”);

which omits the GET option from the loadMovie() action. Because the variable is
declared in the actual URL option, we do need to have Flash add the query string
for us. This method is useful if you only want to send specific variables on the
current Flash timeline. The previous loadMovie() method would send any and
all Flash variables declared on the current timeline.

You can try this loadMovie() method with a Generator Template that uses an MP3
Object. In the Generator Template file, select the MP3 Object and, in the Generator
Panel, set its Data Source to {soundURL}. Save the Flash file (.FLA file) and publish
a .SWT file (for example, mp3.swt). Then, in a separate Flash movie (a .FLA file) —
one in which you want to load the Generator Template — add the following actions
on a keyframe or Button instance:

soundURL = “/data/sound_1.mp3”;
loadMovie(“mp3.swt?soundURL=” + soundURL, “movieHolder”);

Make sure that you have a Movie Clip instance named movieHolder on the current
timeline. When these actions are executed in the Flash movie, a request will be
made for the Generator Template called mp3.swt. Generator will see the soundURL
string, and fill in the Data Source for the MP3 Object in the mp3.swt file. It will
retrieve the MP3 file named sound_1.mp3 in the data folder on the server, and
return a custom .SWF to the movieHolder instance in the original .SWF file.

The next expert tutorial by premiere Generator expert Mike Jones shows you
another way to use loadMovie actions in a Flash movie, so that you can load
images from your Webcam.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 792

793Chapter 28 ✦ Revving Up Generator

Expert Tutorial: Flash, Generator, and Webcams,
by Mike Jones

In this tutorial, we look at extending Flash into the real world by connecting Flash via
Generator to a Webcam. Participation in this tutorial assumes that you have access to
a Generator Web server as well as having the Generator authoring extensions installed in
Flash. Before we get started, there are two questions to answer. First, what type of
Webcam? Second, what type of server?

The Webcam used in this tutorial is a Logitech Quickcam Pro (USB version). You can run
this on Windows 95, Windows 98, and Windows 2000. (To run this Webcam in Windows
2000, you need to download the latest drivers from the Logitech site.) Unfortunately, this
Webcam does not run on Macs. Of course, you don’t have to use this particular Webcam —
this is just the model used here. Your Webcam only needs to be capable of uploading an
image to a Web server without incrementing the image file name.

The Web server needs to have FTP access — as this is how this particular Webcam uploads
the images, even if they are on one and the same machine. Sadly, this rules out Windows
95 and 98, because these only come with a cut down “Personal Web Server — PWS,” which
has no FTP capabilities. This means that you need access to an NT or 2000 Web Server on
Windows or an Apache Server on Linux. Finally, your Webcam server doesn’t have to be the
same server as your Generator Server — although that will make the job easier because of
upload/download times.

Enter the Webcam
OK, with the preliminaries covered, let’s get down to the nitty-gritty. First we discuss setting
up the Webcam to broadcast to the Web server. We won’t discuss installing and setting up
the Webcam on your machine, because the manufacturer’s manual should cover this! If
you’re using the Logitech Quickcam Pro (USB version), then you can follow this directly;
otherwise, you have to ad lib, although the process will be similar.

1. Start up the Webcam software.

2. Select Create a Webcam from the icons on the menu bar. You should now have two
windows in the main window area:

3. The left-hand pane is the Webcam’s live view. The right-hand pane displays status
information for the Webcam, or what the Webcam is currently doing.

4. Starting with the left pane, we need to set how we want the images captured. To do
this, locate the Settings button, which you’ll find at the bottom right, next to the
large Start button. Press the Settings button.

5. A dialog opens with four tabs across the top: Web Page, Image, Schedule, and
General. Ignore the General tab, because we only deal with the first three.

Continued

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 793

794 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

6. First, click the Web Page tab and then deselect Create and Upload a Web page. . . .
Next, click the Image tab to access optional settings to drop the image quality in
order to up the compression — the choice is yours. However, I do recommend that
you leave the Image filename as Image.jpg.

7. Now we need to set how long the Webcam waits between each image it snaps. To
do this, click the Schedule tab. Again, this is somewhat optional — although for this
tutorial we set it to five seconds.

8. Click OK at the bottom of the Settings dialog to apply these settings.

So, now we’ve nearly finished adjusting the capture settings. All we have left is to set
the resolution of the image that will be captured. To do this, find the little camera icon on
the left hand, Webcam Live View, pane — it’s located just above the Settings button. On this
particular Webcam we have the choice of three sizes:

✦ Small: 160 ×120

✦ Medium: 320 ×240

✦ Large: 640 ×480

I recommend either small or medium for optimal upload/download speeds. The rest of the
information on this panel can be ignored.

Webcam to Web server
Now we set the server details for the Webcam and then we can begin in Flash. Still in the
Webcam’s main window, we click another button named Settings — note, however, that this
one is located in the status bar area of the Webcam’s main window. The first setting to sort
out is the connection from this machine to the Web. Select Internet Connection from the
drop-down, which has two connection options: Modem and LAN.

Choose the one relevant to your connection and click OK. Now, the final task is to set the
Web server information. In the Status pane, under the Web account drop-down, is an
option for Internet Connection. Once this dialog opens, you have three text fields to fill in:
FTP, HTTP, and Optional directory folder.

✦ FTP: This is where you enter the FTP settings of the Web server where you want to
upload the captured image files (for example, ftp.myserver.com). So, enter the rele-
vant details here. You will be prompted for a username and password to access this.

✦ HTTP: This is the URL, plus directory extension, that the FTP settings are mapped to
(for example, http://www.myserver.com/mydirectory).

✦ Optional directory/folder: Use this if you have a specific directory in which you want
to place your images. We’ll leave it blank.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 794

795Chapter 28 ✦ Revving Up Generator

Finally, before we click OK, we need to test the connection to check that it works. So, press
the Test button — if you are using a dialup connection, make sure that you are connected
first. If all goes according to plan, the Webcam will connect via the FTP settings and within
moments you should see both a smiley and the successful message. With that success, we
are done with the Webcam for the moment. (If it fails to connect, review the preceding
steps to ascertain at which point the failure occurred; the error dialog should assist you
here.)

Loading it into Flash
Open Flash because it’s time to start making the files that we will place on our Generator
Web server. We will create two files for our Flash element:

✦ The holding file — this is the Flash interface and will be used to load in the gener-
ated .SWF’s

✦ The image loader — this is the Generator Template into which the captured images
will be placed

The holding movie
Open a new Flash file, and create four layers and name them, in order, from top to bottom:
Graphics, Variables, Actions, and Labels. After you have created and named the four lay-
ers, save the file! As a working procedure, I cannot over emphasize the importance of this:
Every time you alter your file, save it incrementally. That way, if we ever have a problem, or
if Flash crashes, you won’t lose anything more than the latest update. So, save it now and
call it flashcam_01.fla — and increment the file with each subsequent save. Why incre-
ment? Because sometimes a version will corrupt; if you have a prior increment, you only
lose a small amount of work, rather than all of your work. Next from Modify ➪ Movie, in the
Movie Properties dialog, set your initial movie settings to:

✦ Frame rate — 12 fps

✦ Stage Size — 800 ×600

Now with your file set up, we can get started.

1. There should only be one frame in timeline.

2. Unlock the Label layer and lock the rest. Then put a label in the first frame called
default.

3. Lock the other layer and unlock the Variables layer, set a variable and call it
image_num. Give it the value of 1.

4. Follow the same process for the Actions layer and place a Stop() action in its first
frame.

5. Lock all layers but the Graphics layer. On this layer, draw a rectangle with the dimen-
sions: Width 320 ×Height 240, use the Info Panel to get the dimensions exact.

Continued

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 795

796 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

6. With the rectangle selected, use the Info Panel to place the rectangle at these coor-
dinates: x = 400, y = 300.

7. This rectangle will form the basis of our window interface, so we need to turn it into
a symbol. Do that now, just remember to name it something meaningful — I suggest
Cam Interface.

8. Set this symbol’s behavior to Movie Clip and then, if isn’t still selected, select it on
the stage again.

9. With this instance of the Cam Interface Movie Clip selected, open the Actions Panel
and add the following actions:

onClipEvent (load) {
loadMovie (“image_” + _root.image_num + “.swt”, 1);

}

This will act as our initial loadMovie call to load the first Movie Clip — we needn’t
create the string via concatenation, as we could have just typed in loadmovie
n.swf, but by doing it this way, we are immediately using our image_num variable.

10. Save the file. Now the loader is done, so we are well on the way to getting this
working!

11. Export the .SWF to a file called flashcam.swf and place it in a folder ready to upload
to your Web server/Generator Server once you have finished creating the .SWT’s.

The Image Loader
For the Image Loader, we need to follow the same initial setup as for the Holding Movie. So,
create four layers and name them, in order, from top to bottom: Graphics, Variables,
Actions, and Labels. After you have created and named the four layers, save the file as
webimage_01.fla. Again, in the Movie Properties dialog, set your initial movie settings to:

✦ Frame rate — 12 fps

✦ Stage Size — 800 ×600

Now with your file set up, we can add the content.

1. This time you need 91 frames in the timeline.

2. Unlock the Label layer and lock the rest. Then, put a label called default in the
first frame.

3. Follow the same procedure for the Actions layer and place a Stop() action in its
last frame.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 796

797Chapter 28 ✦ Revving Up Generator

4. Lock the other layers, unlock the Variables layer, and then set a variable in frame 1;
call it image_num, giving it the value of level0.image_num. (All we are doing here
is passing the Global variable to the local clip.) Then, on frame 49 of the Variables
layer insert this block of code:

if (image_num == 1) {
loadMovie (“image_” + image_num + “.swt”, 2);
_level0.image_num = “2”;

} else {
loadMovie (“image_” + image_num + “.swt”, 1);
_level0.image_num = “1”;

}

This block of code checks whether the current value of image_num is equal to 1, if it
is, it loads the movie clip image_1.swt into itself and then sets the holding movie’s
value to 2. Otherwise, it loads in the movie clip image_2.swt and sets the holding
movie’s value to 1.

5. Now, lock all of the layers except the Graphics layer and open the Generator Objects
Panel.

6. Finally, save the file.

Generator Objects
We are going into Generator territory now, so we should make a slight introduction before
we press on. What are Generator Templates? These Templates are prebuilt objects that
enable the linkage of a data source with Flash graphics to create flexible, but reusable com-
ponents with the minimum of fuss and time. (Plus they help you develop wacky ideas or
just get things done if you’re crazy, like me.) So, which Template(s) are we going to use?
Well just one this time round — the Insert JPEG Template.

1. Just click and drag the Insert JPEG Template icon from the panel and onto the stage
area. Select the Info Panel again and, with the Insert JPEG Template still selected,
alter the Template’s dimensions and coordinates to match those of the rectangle
that we initially created for our Holding Movie.

2. Then, double-click the Template to open the Generator Properties dialog. The
options in the dialog are:

• File Name: The name or dynamic location of the file to be used within this
Template. Set this to point to the designated directory to which you are
uploading your captured images (for example, www.myserver.com/
webcam/myimages/image.jpg).

• Cache: Check this item if want to cache this item to alleviate strain on your
Generator Server; otherwise, you can ignore it.

Continued

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 797

798 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

• Scale to Fit: Set this to true; it does what it says — it scales the image to the
size of the Template.

• Export as: Set this to JPEG.

• JPEG Quality: The higher you make this the larger the file, but the better the
quality — your call.

• Instance name: We’re not going to need this but it’s worth noting that you
can treat the image as a target in an ActionScript.

3. After we’ve set the options, we need to turn our Template into a symbol. Give it a
meaningful name so that the files will make sense when your grandchildren want a
demo. I recommend naming it Generator Image Template. Assign it the behavior
of Graphic.

4. Now that it has been assigned the properties of a graphic, we can tween it. So first,
make sure that there is nothing else in the Graphics layer timeline, and that our
Template symbol is in frame 1. Then, tween this instance of Generator Image
Template from an Alpha of 0 percent to an Alpha of 100 percent — extending from
frame 1 to frame 31. (You’ll find the Alpha controls on the Effects Panel.)

5. Now repeat the same process but in reverse from frame 61 to frame 91.

6. What we should have now is an Alpha Tween from invisible to solid (frames 1
to 31), followed by an Alpha Tween from solid back to invisible (frames 61 to 91).
Thus, there should be point between frames 31 and 61 where the Template is
visible.

7. Save the file — we’re done!

All that’s left for you to do now is export the .SWT for this file twice — call the exported files
image_1.swt and image_2.swt, and upload them to your Generator Server along with the
flashcam.swf that we exported earlier. With that done, fire up your Webcam and start cap-
turing and uploading. Then open your Web browser, point it to the site location of your
uploaded Flash files, and let the good times roll.

A final note:You may need to manipulate the quality settings on the template/capture setup,
as well as the length of the tweens that were set to load in each file. This usually depends
upon several factors, such as whether you are uploading from one machine to another, or
whether you are on a slow dialup or a fast pipe such as ADSL. But you can’t anticipate these
finer tunings; you need to deal with them creatively and intelligently at the end.

After you’ve got your Webcam running, enjoy the Webcam experience and think about
these extensions to your setup:

✦ Create multiple Webcams and have them load into the interface via a drag-and-drop
style flash icon — enabling users to switch cameras graphically and dynamically.

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 798

799Chapter 28 ✦ Revving Up Generator

Summary
✦ Generator data sources can represent information in two ways: Name/Value

layout or Column Name/Value layout. Name/Value layouts specify a Generator
variable and its value in each line of the data source. Column Name/Value
layouts are similar to arrays: The position of each value in any given line
indicates which variable the value is assigned to.

✦ You can create several types of Chart Objects with Flash 5 and the Generator
authoring extensions. Charts can visually plot multiple values in bars, line, or
scatter graphics.

✦ List Objects display dynamic text and graphics in a sequential item list.
You can specify Scrolling Lists or Tickers as List Objects.

✦ When you publish or test a Flash movie that contains Generator Objects
or variables, the .SWF file will show the current data source information as
applied to the Generator Template (.SWT file). You only need to upload the
.SWT (and your data sources) to your Generator Server for dynamic content
publishing.

✦ Generator Templates are referenced in HTML and loadMovie() actions
as if they were regular .SWF files. You can send variables to the Generator
Template with HTML query strings or Flash actions with query strings.

✦ ✦ ✦

✦ Load the .SWT’s into movie clips, which will give you greater control over their place-
ment and interaction within the Flash environment — dragging, setProperty(), and
so on.

✦ Consider using the getTimer() property to load the files in through a user-defined
control, slider, knob, or other device, instead of loading automatically.

Mike Jones, creator of FlashGen.Com, www.flashgen.com, has been using Flash since it first appeared
as the little known FutureWave Splash Animator. A founding member of Spooky and the Bandit, www.
spookyandthebandit.com, Mike says he, “Took to Generator like a fish to batter, spending far too many
nights messing with Flash and Generator when he should have been spraying walls or hanging around
alleys!” Perhaps that explains why this derelict Londoner recalls little more of school matriculation other
than, “Max Headroom was the film of the year . . . trés cool!” In addition to Generator, Mike’s other passion
is drinking beer down tha pub, with Spooky cohorts — Chris Glaubitz, www.testbild.com, and Dave
Williamson, www.oldskoolflash.com— arguing weirdly elaborate ideas for Flash creations. Now Mike
and Dave work at Quidnunc, www.quidnunc.com, leaving Chris as the only Spooky member. Both Mike
and Dave are threatening to emigrate from the U.K. to the U.S. to live and Flash in San Francisco. Right
that’s the bio done, now off to the pub. . . .

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 799

3515-3 ch28.f.qc 1/18/01 5:05 PM Page 800

Working with
Third-party,
Server-side
Applications

This chapter explores other server-side applications that
use Flash movies. You learn how to add ASP (Active

Server Pages) functionality to your Flash movies. We take a
quick look at other Generator-like applications that can create
dynamic Flash content.

Using ASP with Flash Movies
ASP is a technology from Microsoft (see Note) that enables
Web developers to produce dynamic content within the con-
venience of a markup environment. ASP is one of several tech-
nologies that combine the power of server-side processing
with the ease of HTML-like syntax. The structure of ASP is that
of HTML with VBScript or JScript (Microsoft’s version of
JavaScript) placed within special tags. When an ASP page is
requested on a Web server that supports ASP, it is first inter-
preted by the ISAPI (Internet Server Application Programming
Interface) filter, then the interpreted output is sent back to the
requesting client. This model is different from that of client-
side scripting such as JavaScript, which cannot take advan-
tage of the power of the server. It is also different from CGI
(Common Gateway Interface) programs in that ASP enables
the developer to provide a server-side solution just as CGI
programs do, but often with much greater ease.

ASP technology works with Microsoft’s IIS (Internet
Information Server). IIS is the most common way to deploy
ASP, but that there are other interpreters for other plat-
forms, such as Chilisoft (www.chilisoft.com).

Note

2929C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using ASP and Flash

Exploring other Flash
“Generators”

Converting CGI
scripts

✦ ✦ ✦ ✦

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 801

802 Part VI ✦ Using Flash with Generator and Other Server Technologies

The following tutorial by James Baker shows you how to create a login system with
ASP and Flash movies.

Expert Tutorial: Creating a Simple Login with ASP,
by James Baker

The Flash 4 and 5 .SWF format gives developers the ability to develop Flash past simple
motion graphics into the realm of systems and GUI development. Flash now has the capa-
bility to be anything from a slick navigation system to the front-end for an e-commerce sys-
tem. While Flash itself does not have database connectivity without the use of Generator, by
combining your Flash movie with a server-side programming language such as ASP, you can
harness power of server applications and Flash’s graphical abilities.

Flash and ASP
Using external programming, we can take advantage of all the strengths of whatever lan-
guage you wish to use. ASP provides an easy-to-learn and easy-to-implement language on
the NT platform. While we may use ASP in this tutorial, interfacing any back-end language
with Flash works on the same principles.

The basic way in which you interface your server-side scripts with your Flash movie is through
the loadVariables() command. This command enables you to execute a page on the
server and to return its output either into a level in Flash or into a Movie Clip. It also enables
you to send variables to the server-side script either through a POST or GET method. (If you do
not need to send variables, you have the option not to.) You can also send variables manually
by using a URL, as we do in this example. After the server-side page executes, Flash is capa-
ble of accessing the variables that it returns. Flash requires that you return name-value pairs
for Flash to properly use them. If you want to return a user number variable called UserNum
to Flash, you will want your ASP page to return a result such as UserNum=2.

Building the Flash login
We are building a simple login page for a Flash 5 site. You might build a login into your site
for any number of reasons, including:

✦ Retrieve preferences

✦ Participate in chat

✦ Participate in BBS

✦ Ordering goods

In the FlashChallenge site (www.flashchallenge.com), we use a simple login page to
make sure that users are unable to vote for their site repeatedly, and thus cheat. If people
want to vote on a site or to comment on someone else’s site, we require them to log in.
That way we can stop people from anonymously voting hundreds of times for themselves
or anonymously flaming other sites.

Creating the Flash file
The Flash file is set up with 4 layers and 20 frames. The top layer is called Actions and is
where all the frame labels and frame actions will reside. We do this for ease of readability and

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 802

803Chapter 29 ✦ Working with Third-party, Server-side Applications

because Flash executes each frame from the bottom up. If the actions are on the top frame,
we can be sure that Flash has loaded all the elements on the layers below it. Sometimes I set
up the scene to have multiple action layers, but I always put them at the top of the layer order.

There are 20 frames divided into 4 sections. This Movie Clip could be just four frames long,
but because Flash does not add any file size for frames that aren’t doing anything, I like to
spread the frames out for better legibility of the frame labels.

The four sections, as shown in the figure that follows, are:

✦ Frames 1 to 4: Ready

✦ Frames 5 to 9: Logging

✦ Frames 10 to 14: Error

✦ Frames 15 to 19: Success

The flow of logic for the login system

Continued

Any Errors?

Any Errors?

Ready

Logging Page Error Page

Success

YES

YES

NO

NO

NO

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 803

804 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

Frame 1: Ready
This is the first frame of this Movie Clip. This frame is where we have users input their user-
name and password so that they can log in. We have a simple script on the actions layer
that sets sError equal to nothing and stops the timeline.

sError = “”;
stop ();

We have two Input Text fields, one for the username and one for the password —
sUserName and sPassword, respectively. The following figure shows the sUserName prop-
erties on the left and the sPassword properties on the right.

For input text fields, we generally include every character on a standard U.S. keyboard. To
do this, we click the second, third, fourth, and fifth buttons on the bottom row of the text
options palette. We also put the following characters into the field on the bottom row:

~`!@#$%^&*()_+-={|[]\:”;’<>?,./

Why don’t we just click the first button to add all fonts? If you do that, many unnecessary
characters from the chosen font will be included with the .SWF file — increasing its file size.
Many fonts sets include hundreds of special characters for foreign keyboards, so including
them will bloat your file size.

We also have a Submit button for submitting the fields and a Clear button for clearing the
text fields, as shown in the following figure.

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 804

805Chapter 29 ✦ Working with Third-party, Server-side Applications

This is what the user will click to submit sUserName and sPassword to the back-end ASP
Page. The ASP page will check whether it is a valid username/password combination, but in
order to take some strain off the servers, we will do a couple of quick validations in Flash
first. We will check for glaring errors such as leaving blanks for your username or password.

You should have the following actions on the Submit Button instance:

(Note: The ¬ indicates a continuation of the same line of code. Do not insert this character
into your actual code.)

on (release, keyPress “<Enter>”) {
sError = “”;
// validate the UserName
sUserName = _root.Trim(sUserName);
if (sUserName eq “”) {
sError = sError + “Please enter your UserName.” ¬
+ newline;

}
// Validate the password
if ((substring(sPassword, 1, 1) eq “ “) or ¬
(substring(sPassword, length(sPassword), 1) eq “ “)){
sError = sError + “Your Password does not begin or end ¬
with a space” + newline;

}
if (sPassword eq “”) {
sError = sError+”Please enter your Password.” + newline;

}
// load variables or display error
if (sError == “”) {
gotoAndStop (“Logging”);
loadVariables (“Login.asp?UserName=” + sUserName + ¬
“&Password=” + sPassword, “VariablesMC”);

} else {
gotoAndStop (“Error”);

}
}

Author’s Note: The Trim() function is a custom function designed by James to check for
extra white space around the text entered for the sUserName. You can see this function on
the first keyframe of the Login.fla included on the Flash 5 Bible CD-ROM.

If there is an error, we jump to Frame 10 Error and where the value of sError will be dis-
played. If there is no error, we construct the proper ASP page name. In this case, we are
attaching sUserName and sPassword onto the URL. I like to do this when there are only a
couple of variables that need to be sent to the ASP page. Because the Flash Player on
Internet Explorer Mac tends to have problems passing data through the POST variables, I
find that it is more reliable to send short variables through the URL.

Continued

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 805

806 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

We could be using GET here, but we don’t need to be sending all the variables from this
Movie Clip to the ASP page — the ASP page only needs sUserName and sPassword.

We are loading the output of the ASP page Login.asp into a target Movie Clip. In this case, it
is called VariablesMC. Then we jump to the Logging frame. What we are doing here is
waiting for the data that our ASP page will return to arrive.

In this case, there is some specific logic that we need to perform after the ASP page gives
us the results. Flash calls to ASP pages through loadVariables() in an asynchronous
fashion, which means that it will not wait for the variables to be returned before going to
the next line of ActionScript. In Flash 4, we would attach a flag to the end of the returned
variables string and wait until that flag had been changed, indicating that the variables had
been returned.

In Flash 5, we have the onClipEvent() action, which we will use to check whether our
variables have been returned from our ASP page. We use the onClipEvent(data) com-
mand on the variablesMC Movie Clip to specify that we want to do some special process-
ing after the ASP page has returned its data. OnClipEvent(data) will fire after the ASP
page that we are loading fully executes and returns its data.

variablesMC Movie Clip
This is the blank movie clip that we are loading our variables into. It contains no graphics
and is only used to check whether our ASP page has returned its data and then to execute
its script.

This ActionScript is executed immediately after the data from our loadVariables() script
is returned. This ActionScript then checks whether the ASP page returns anything for the
sError variable. If the ASP page encounters an error, such as not finding the username or
finding the username, but not having the appropriate password, the ASP page will return
something for the sError variable. If not, because we set sError equal to nothing on the
first frame of this timeline, the ActionScript sends us to the Success frame:

onClipEvent (data) {
if (sError != “”) {

_parent.gotoAndPlay (“Error”);
_parent.sError = sError;

} else {
_parent.gotoAndPlay (“Success”);

}
}

Frame 5: Logging
This is just a simple frame, shown in the following figure, to tell the user that we are cur-
rently accessing our servers and attempting to log in. This helps the user because it indi-
cates that something is going on behind the scenes. The only ActionScript here is a simple
stop() command. It is hoped that the variables will load quickly and that the user won’t
have to sit at this frame for very long.

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 806

807Chapter 29 ✦ Working with Third-party, Server-side Applications

Frame 10: Error
This frame is another simple frame in which we tell the user what is going on. In this case,
we are telling the user that there has been an error. We have one text field, sError which,
when sError is populated, will display its value. You can see the properties of the sError
text field in the following figure.

There is a “Retry” button, shown in the following figure, which resets sError back to noth-
ing and sends the user back to the first frame.

Retry Button Actions:

on (release) {
sError = “”;
gotoAndStop (“Ready”);

}

Continued

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 807

808 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

Frame 15: Success
This is another simple frame, shown in the following figure, which tells the user that they
have successfully logged in. We reach this frame only if the ASP page has processed cor-
rectly and has not returned an error.

In this example, we don’t need to do anything with the data that was returned by our ASP
page, but if there were some additional processing that might need to be done, this frame
would be a good place to do it. On the FlashChallenge site, at this point, we set a global flag
that the user has successfully logged in, and we tell the menu to go to the advanced menu.

Overview of the ASP
This ASP page is a simple login script. On an advanced site, I wouldn’t recommend using
a text file to store your usernames and passwords, but ASP really isn’t the focus of this
book, so we’re just using a simple script that you don’t need to set up any database con-
nections to use. For the FlashChallenge, we use an SQL Server to store all our data from
the site, which provides much better reliability, more security, and greater speed than
using a text file.

This ASP page takes the username and password sent to the ASP pages and checks for
them in a simple text file (users.txt). If it finds a matching username and password combi-
nation, it sends the usernum back to the Flash Movie. If it does not find any match, or
encounters any other errors, it returns sError.

Because Flash sends variables through the loadVariables() ActionScript via POST or GET,
we can code our ASP as is the variables were coming through a normal HTML form. So,
there is nothing special that we need to do to capture variables passed from Flash to ASP.
However to return variables back to Flash we need to properly format our variables. To do
that we must return name-value pairs delimited by ampersands. Also, the only thing that
Flash needs to have returned to it is those variables, so there is no need to add any HTML
formatting to the data returned. All we need is the data itself.

Variables must be formatted in name-value pairs for Flash to be capable of using them. An
example of proper formatting is this:

Variable=something&variable2=something

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 808

809Chapter 29 ✦ Working with Third-party, Server-side Applications

Now we typically add ampersands to the front and back of this to avoid accidentally send-
ing Flash a carriage return or extra space.

&Variable=something&variable2=something&

As you see, each pair is separated by an ampersand and each variable name is unique. You
do not want variables with the same name because Flash will only recognize the last one
returned. Also, if you have any & in the strings that you are returning to Flash, your returned
string will break. Make sure to convert any & not used to separate name-value pairs into the
proper hex code ‘%26’.

So if the value of a variable called names that you need to return to Flash was

“Leonard & Nathan”

You would want to return:

&Names=Leonard %26 Nathan&

The Login.asp page
This ASP page takes the username and password sent to the ASP pages and checks for
them in a simple text file (users.txt). If it finds a matching username and password combi-
nation, it sends the usernum back to the Flash movie. If it does not find any match, or
encounters any other errors, it returns sError.

Author’s Note: You can examine this code more closely (and easily) by copying the
Login.asp file from the ch29 folder of the Flash 5 Bible CD-ROM.

‘ ***
‘ Process the data and log in
‘ ***

If (Request.Querystring.Count > 0) Then

Dim strUsername ‘User’s username
Dim strPassword ‘User’s password
Dim strFile ‘The text file path and filename
Dim strTextLine ‘One line of the text file
Dim strError ‘Stores the error message if there is one
Dim bolUsernameMatch ‘Flag to determine if the username matches
Dim bolPasswordMatch ‘Flag to determine if the password matches
Dim objFSO ‘File System Object
Dim objUserFile ‘File containing all the username and passwords
Dim nUserNum ‘UserNum to be returned to flash on success

‘ Populate variables
strFile = Server.MapPath(“users.txt”)
strUsername = Request.Querystring(“Username”)
strPassword = Request.Querystring(“Password”)

Continued

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 809

810 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

bolUsernameMatch = false
bolPasswordMatch = false
nUserNum = “”

‘ Create an instance of the file system object
Set objFSO = CreateObject(“Scripting.FileSystemObject”)

If (fxValidateForm) Then
‘ Create an instance of the user text file
Set objUserFile = objFSO.OpenTextFile(strFile)

Do While Not (objUserFile.AtEndOfStream Or (bolUsernameMatch
And bolPasswordMatch))

‘ increment a line
strTextLine = objUserFile.ReadLine
If (strTextLine <> “***”) Then
‘ Compare the usernames with no case sensitivity
If (StrComp(strUsername, strTextLine, 1) = 0) Then
bolUsernameMatch = true

End If
‘ increment a line
strTextLine = objUserFile.ReadLine

‘ Compare the passwords with case sensitivity
If (StrComp(strPassword, strTextLine, 0) = 0) Then
bolPasswordMatch = true

End If
‘ increment a line
strTextLine = objUserFile.ReadLine
if bolUsernameMatch And bolPasswordMatch Then
nUserNum = strTextLine

end if
else

‘ reset both flags on moving to a new login set
bolUsernameMatch = false
bolPasswordMatch = false

End If
Loop

‘ Set the object to nothing
If IsObject(objFSO) Then
Set objFSO = Nothing

End If
If IsObject(objUserFile) Then
Set objUserFile = Nothing

End If

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 810

811Chapter 29 ✦ Working with Third-party, Server-side Applications

‘ Set the sError variables.
If Not (bolUsernameMatch And bolPasswordMatch) Then
strError = “ The username and password combination is

invalid.”
End If

End If

Else

‘ for some reason no password or username were entered
‘ this shouldn’t happen, so it is a critical error
strError = “An error has occurred, please contact system

administrator.”

End If

Now after we have processed the inputted username and password and checked it against
the list of users in the users.txt file, we need to return the results back to Flash.

‘ ***
‘ Return data to Flash
‘ ***

%>&sError=<%=FlashFormat(strError)%>&nUserNum=<%=nUserNum%>&<%

Finally there are a couple of functions that we use. The FlashFormat () function removes
ampersands from the text and replaces them with the appropriate hex code. The second
function, fxValidateForm() is used to validate the username and password that were
sent to the ASP page.

‘ ***
‘ Functions
‘ ***

Function FlashFormat(sTextString)
sNewString = “”
if sTextString <> “” Then

‘ this is for getting & into the flash movie....
sNewString = trim(replace(sNewString,”&”,”%26”))

end if
FlashFormat = sNewString

end Function
Continued

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 811

812 Part VI ✦ Using Flash with Generator and Other Server Technologies

Continued

Function fxValidateForm()
If not objFSO.FileExists(strFile) Then

‘ if we cannot find the users.txt file we say that the site
is shut down

strError = strError & “The login system is temporarily
unavailable.”
End If

If (strUsername = “”) Then
strError = strError & “The Username field must be filled in.”

End If

If (strPassword = “”) Then
strError = strError & “The Password field must be filled in.”

End If
‘ return true or false
If (strError <> “”) Then
fxValidateForm = false

Else
fxValidateForm = true

End If
End Function

Here is the format of the users.txt file. The first line is the username, the next line is the
password, and the third line is the usernum. The *** is used to separate the entries. Again,
this is very simple, and I suggest using some database to hold and manage your data.
Microsoft Access is easy to learn and will suit most simple sites just fine.

<usename>
<password>
<usernum>

james
brown

Conclusion
There you have it! After you have a database set up with the proper formatting for user
entries, you can use the Login.asp page to accept data from the Flash movie and to validate
login entries more securely.

Originally from Palm Beach, Florida, James Baker loves to “make people wonder what the hell [he is] think-
ing.” James is the Creative Director at the WDDG (wddg.com), a multimedia company in Manhattan, where
he has created Flash experiences for the photographer John Mark Sorum (www.johnmarksorum.com),
Cinnamon Altoids (www.toohot.com), and Campari (www.campariusa.com), among other award-winning
presentations. In his free time, James makes sure FlashChallenge (www.flashchallenge.com) is on top of
the best Flash sites in the world. During his final year of high school, James remembers watching Pulp Fiction.

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 812

813Chapter 29 ✦ Working with Third-party, Server-side Applications

Flash Generation Utilities
While Macromedia Generator 2 is by far the most powerful tool for dynamic Flash
movies (and dynamic .GIF, .JPEG, .PNG, and QuickTime Flash movies), there are
other options for creating .SWF movies on the fly. Most third-party Flash server
tools use proprietary scripting languages or syntax to enhance content generation
and management. Just as you can use Column Name/Values to specify environment
variables for .SWTs served by Generator, each generation tool has its own way to
pass information to the .SWT (or .SWF) files for processing.

This section provides an overview of the more popular third-party Flash utilities
on the market. The primary benefit of these utilities is cost — they’re significantly
cheaper than Macromedia Generator. However, you won’t find comprehensive tech-
nical support for most of these third-party utilities.

Swift Tools’ Swift Generator
Perhaps the best known “competition” to Macromedia Generator 2, Swift Generator
(www.swift-tools.com) can produce .SWF movies from .SWT template files.
Unlike Macromedia Generator, Swift Generator cannot create alternative output
from .SWT files (for example, .GIF, .JPEG, .PNG, .QuickTime Flash, and so on). As of
this writing, Swift Generator is fully compliant with Flash 5 ActionScript and is avail-
able for these server platforms: Linux, Windows, FreeBSD, Solaris, BSDi, and Mac
OS X Server.

SwiffPEG by SwiffTOOLS
SwiffPEG (www.swifftools.com) is a utility that converts MP3 audio files into
Flash .SWF files. You can batch-process several MP3 files, saving yourself the time
of importing MP3 sounds into Flash and publishing them as .SWF files. While this
isn’t a real server application, you could potentially operate the program with
scripts. At the time of this writing, SwiffTOOLS had a SwiffPEG Server in beta devel-
opment.

Blue Pacific’s Flash Turbine
Flash Turbine (www.blue-pac.com) dynamically generates .SWF files from .SWT
files. Unlike Swift Generator or Macromedia Generator, Flash Turbine uses a script-
ing language called Draw Script that enables you to dynamically draw shapes or
text and place images and Movie Clips. There are several versions of Flash Turbine,
most notably ASP Flash Turbine, which, as the name implies, works with ASP pages.

Form2Flash
Jeroen Kessels, Internet engineer, created this CGI utility that serves as a Flash text-
replacement utility. Form2Flash (www.kessels.com/Form2Flash) cannot generate

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 813

814 Part VI ✦ Using Flash with Generator and Other Server Technologies

dynamic images like Macromedia Generator, Swift Generator, or Flash Turbine.
This application uses <macro name> variable formatting instead of Macromedia
Generator’s {environment variable} formatting. The name of the macro is
declared with form input, as in:

<FORM ACTION=”/cgi-bin/form2flash.exe”>
<INPUT TYPE=”HIDDEN” NAME=”myText” VALUE=”Hello Flash.”>
<INPUT TYPE=”SUBMIT” VALUE=”Submit”>
</FORM>

When the form is submitted to the form2flash application, it will look for the
macro <macro myText> in your Flash text and ActionScript, and replace it with the
value “Hello Flash.” This application is available for Windows and UNIX servers.

You can use internal Flash 4 or 5 ActionScript to do the same thing, as outlined at
www.kessels.com/Form2Flash/Flash4/.

OpenSWF.org
You can create your own Flash generation utilities if you have the will and the know-
how. The best site to find information about the open standards with the .SWF file
format is openswf.org. You can also find official Macromedia information about the
.SWF file format at www.macromedia.com/software/flash/open/licensing/.

Note

A Note about CGI Scripts

There is a whole world behind server-side technology that can apply to Flash movie man-
agement and control. As we demonstrated in Chapter 24, “Sending Data In and Out of
Flash,” you can create e-mail applications that gather information from a Flash movie and
send it as an e-mail to an address specified in ActionScript (or as a CGI script parameter).
You can modify many Perl, ASP, or PHP scripts to work with Flash movie data. CGI scripts
are useful for:

✦ Redirection of loadVariables, loadMovie, or XML load requests from a Flash
movie. The loadVariables or XML load action can only load data from the same
remote URL where the Flash .SWF resides. With a CGI script, you can send requests
through the script and redirect the query to another remote server.

✦ Returning database information to the Flash movie. A CGI script can process a query
from a Flash movie to search a database and return record sets to the Flash movie.

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 814

815Chapter 29 ✦ Working with Third-party, Server-side Applications

Summary
✦ Flash movies can tap into ASP scripts and linked server-side resources

(for example, databases) to send and receive dynamic information.

✦ Several third-party applications can create .SWF files on the fly. These utilities
are more affordable to purchase (some are free) but lack the advanced techni-
cal support services that are available for Macromedia Generator.

✦ You can modify CGI scripts to send and receive output to Flash movies.

✦ ✦ ✦

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 815

3515-3 ch29.f.qc 1/18/01 5:05 PM Page 816

Working with
Raster Graphics

Flash 5 is an amazingly versatile application that can
import and export just about any raster (a.k.a. bitmap)

image format. This chapter shows you how to create bitmaps
for Flash in image applications such as Fireworks and Photo-
shop. You also learn how to create alpha-masking channels,
simulated 360-degree object movies, and natural art with
Painter.

Optimizing Images in Fireworks 4
Although Flash can hold its own for vector art creation, you
need another application to acquire, finesse, and export bitmap
images for use in Flash. The newest release of Macromedia
Fireworks has upped the ante on what you can expect from a
Web-imaging application. Many of the new features of Fireworks
4 enable you to do more of your Web-image production from
start to finish without ever going to another application. Here’s
a quick overview of some of those features:

✦ Macromedia common user interface (UI): Just like
Flash 5, all the tools and options are laid out in panels
that are distinguished by unique icons and names. Also,
the document window provides a Launcher Bar in the
lower-right corner.

✦ Batch Processing improvements: It’s easier to run the
same processes with a group of images, thanks to the
new user interface for Batch Processing. Scott Brown’s
tutorial in the next section shows you how to use this
incredible feature. You can also run scripts during a
batch process.

✦ Selective JPEG compression: Fireworks 4 enables you
to add a JPEG Mask to an area of your image. This mask
can have a different JPEG compression setting than the
rest of the image.

3030C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Optimizing bitmap
images in Fireworks

Creating alpha
channels in
Photoshop

Making a 360-degree
turnaround in Flash

Adding effects with
Painter

✦ ✦ ✦ ✦

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 819

820 Part VII ✦ Using Flash with Other Programs

✦ Better Dreamweaver integration: You can more easily edit .PNG image files
while authoring HTML documents in Dreamweaver 4. When a .PNG image is
opened in Fireworks from another application, Fireworks will let you know
that you’re in “Launch and Edit” mode.

✦ Director export: Fireworks can now export its files in a format suitable for
Director use. This export requires an additional plug-in for Director.

✦ FreeHand reader: You can import FreeHand files from versions 7, 8, and 9
into Fireworks 4.

There’s plenty more to Fireworks 4, and we get you on your way by introducing
some solutions for Fireworks and Flash integration.

Expert Tutorial: Fireworks and Flash, by Scott Brown

Scott’s tutorial provides you with a solid foundation for using Fireworks to produce better
quality images for use in Flash. Also, you learn where and when to use Fireworks for your
Web production needs.

How Fireworks fits into the Web design process
Fireworks is an essential production tool for Flash projects in which bitmaps are involved.
Furthermore, if you’re trying to get any kind of graphic out onto the Web, whether via Flash
movies or .GIFs and .JPEGs for HTML Web pages, Fireworks is the optimal Web graphic pro-
cessing center. With Fireworks, designers have the freedom to import work that they have
created in Photoshop, Illustrator, FreeHand, Flash, Poser, After Effects, LiveMotion, or even
3D Studio Max — yet still be able to edit the files. Or, a designer can work from start to fin-
ish all within Fireworks! Unlike other Web graphic design programs, Fireworks combines
the ease of vector-based editing with the breadth of bitmap editing. Along with its
advanced, yet familiar tools, Fireworks also sports a superior optimization engine for
exporting files, and for the automation of custom command batch processing, and even
includes the capability to implement a find and replace for elements within a graphic pro-
ject. Moreover, the files remain editable.

How does Fireworks work with Flash? For designers working in Flash, one of Fireworks’
most powerful features is its capability to prepare (and optimally compress) huge quanti-
ties of bitmap files for import. Going the other way, Fireworks is equally capable of receiv-
ing files from Flash and optimizing them for inclusion on HTML sites.

In this tutorial, I guide you through two workflows between Flash and Fireworks. One is the
preparation and implementation of bitmapped animations for Flash. The second is teaming
the strengths of both programs — Flash for animation and Fireworks for graphics compres-
sion — to make some amazing .GIF banner ads.

Optimizing a bitmap sequence for Flash
Consider a Flash project — a catalog or a portfolio, for example — that requires many
bitmaps and bitmap animations. How do we get all those nicely rendered images into
Flash? Suppose you have an animation created in a bitmap program such as Adobe After

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 820

821Chapter 30 ✦ Working with Raster Graphics

Effects, 3D StudioMax, QuickTime Pro, or Poser; all of these programs have an option to
export the animation as a sequence of files, usually as a sequence of .PICT, .PNG, or .BMP
images. Often, this will be a sequence of filename_01, filename_02, filename_03, and so
on. The obvious challenge of working with such file sequences is that they have the poten-
tial to add up to hundreds of individual files, all needing to be prepared and optimized for
Flash import. Often, in dealing with such a sequence, the files are the wrong dimension, or
need to have other changes made! It’s daunting to consider the laborious tedium of mas-
saging so many files! Luckily, there is Fireworks. Fireworks, with its batch-processing capa-
bilities coupled with its capability to run custom commands during such batch processes,
easily save the day (and your wrists).

You’ll find all of the required assets for this project in the ch30 folder of the CD-ROM. To
work through this example, copy the provided QuickTime movie and the exported .PICT
sequence to a separate folder on your hard drive.

Setting up Fireworks to batch process
To batch process efficiently, we first need to consider the several changes that might be
required to prep the file sequence for Flash:

1. All of the files are the wrong dimensions. For the animation to fit nicely into our
Flash project, we need to change the dimensions from 500 ×300 to 300 ×200.

2. We also want to change the hue and saturation of those files to match the color
scheme of the Flash project.

3. The art director decided to shake things up; he actually wants you to flip the anima-
tion horizontally.

4. Finally, we need to convert all those files from the PICT format to JPEG format, so
that they will perform most efficiently in Flash.

Let’s get started. Open the first file of the sequence and make a copy. Then, working on just
this one file, make all of the changes that need to be done, per your list (as explained pre-
viously). This will be your test file.

If you’re familiar with the Actions Palette and the batch file feature in Photoshop, you might
be thinking that you could do all those functions in Photoshop. Well, you would be right,
but the truth is that Fireworks has the inside track for working with Flash. When a .JPEG
from Fireworks is imported into Flash, Flash recognizes the compression that was set in
Fireworks and knows not to recompress it. However, when a .JPEG that was made in
Photoshop is imported into Flash, Flash doesn’t recognize the JPEG settings. Unless care is
taken with the Flash JPEG compression settings — in both the Library and the Publish
Settings — Flash will attempt to apply its own JPEG compression to the previously com-
pressed file. And we all know that JPEGing a JPEG is bad practice: Hello, blocky graphic! So
that’s another reason for doing this batch processing in Fireworks.

Creating a Fireworks command
Let’s assume that you found the perfect settings and are completely pleased with the
results on your test file. If not, undo and repeat the process until it comes out just right.

Continued

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 821

822 Part VII ✦ Using Flash with Other Programs

Continued

Then, the next step is to use the History Panel to create a Fireworks command. To make this
custom command we need to make the necessary changes to the file, with optimal results:

1. Resize the image to 300 pixels wide.

2. Change the hue/saturation to a cool color.

3. Flip the image horizontally.

In case you didn’t notice, the History Panel has kept track of every action or event that’s
been done to the file. This is how Fireworks commands are created. However, here’s a word
of caution about the History Panel: Not every step in Fireworks can be used in a command.
When you select steps that cannot be translated into a command, Fireworks will notify you
with a dialog. Fireworks also gives you two visual clues for steps that cannot be applied as
commands: One is the step icon with a red X over it, and the other is not so obvious — it’s a
horizontal line break in between steps. But there are work-arounds. To get around these
glitches, we’ll just make two commands for the batch process.

To create the first command:

✦ In the History Panel, select the first two steps (by Shift-clicking) and repeat.

✦ Click the save icon at the bottom of History Panel

✦ Save the new command as Resize & Colorize, and click OK

You’ve just made a custom command in Fireworks. The custom command can then be
accessed in the Command menu for future use.

For the second command, while still in the History Panel, select the last step, flip horizontal,
and save it as Flip.

With these two custom commands saved, the next step is to customize the compression
settings for the .PICT sequence.

Creating custom export settings
Fireworks ships with two default preset settings for exporting .JPEGs: better quality (80 per-
cent), and smaller file (60 percent). However, we need more compression than 60 percent.
So, we simply create our own custom export setting:

1. Select the Preview View tab on the document window and experiment with the
.JPEG compression settings in the Optimize Panel, until you finally conclude that 50
percent is ideal for this project

2. Set the .JPEG quality to 50 percent

3. Select the Save icon at the bottom of the Optimize Panel

4. Save this new setting as JPEG 50%

Launching the batch process
Now that we have two custom commands and a custom compression setting, we’re ready
to initiate the Fireworks batch process. Here’s how:

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 822

823Chapter 30 ✦ Working with Raster Graphics

1. Go to File ➪ Batch process and navigate to the folder that contains the files to be
processed.

2. Select the files to batch by opening the folder where all the images reside, clicking
Add All, and then clicking Next.

3. This invokes the Batch Options dialog. Here, we can choose what commands to
apply to the selected files. A word of caution though: To get the desired effect, the
commands need to be arranged in chronological order. The order of the commands
should be (a) Resize &Colorize, (b) Flip, and (c) Export. Select a command and click
the Add button. Note that more options become available in the bottom half of the
window if you select the command on the right side. Although the two custom com-
mands don’t have any extra options, the Export command does. With the Export
command selected, click the drop-down menu for Export Settings, and then select
the JPEG 50% setting that we created earlier. Click Next.

4. This last step of the batch process asks where to place the new files and what to
do with the originals. We also have the option to save these batch process settings,
which is useful if there’s even a remote possibility that there may be more than
one set of files to batch. For now, just click the Go button. While batch processing,
Fireworks opens a feedback window indicating how many files are completed and
how many files have yet to be processed.

Now that we’ve size, flipped, and optimized all of our files, we’re ready to import them
into Flash.

Importing a file sequence into Flash
1. In Flash, create a new Movie Clip symbol and select the first frame of that symbol’s

timeline.

2. From File ➪ Import, navigate to the folder containing the optimized files. Double-
click the first file of the sequence, which adds it to the import list.

3. Click OK. Flash automatically detects that this file is the first file in a sequence and will
ask if you’d like to import the rest of the sequence. The correct response is yes. (Notice
how the sequence of files extends along the timeline of the Movie Clip.) The bitmap
sequence now resides in Flash, within a Movie Clip, and is a Web-ready animation.

In the Library, check the imported settings for an image of this sequence. Note how
Flash acknowledges the Fireworks .JPEG settings, as the Use imported JPEG data
option is available and checked. This means that when the Flash movie is exported,
Flash will not apply any further compression to the files.

Fine-tuning
After experimenting with the new Movie Clip, you may find it necessary to redo the batch
compression in order to get smaller file sizes. Or, maybe the animation looks too chunky
because the compression is too extreme. Either way, it’s easy enough to go back to
Fireworks to experiment with the compression settings and then rebatch and reimport the
file sequence.

Continued

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 823

824 Part VII ✦ Using Flash with Other Programs

Continued

In the near future, as the Flash plug-in nears 95 percent ubiquity, we’ll start to see Flash
banner ads gain in popularity. Meanwhile, we’ll be in a transitional period between ani-
mated .GIF banners and rich-media banners. So, we will still need to turn Flash ad banners
into animated .GIFs.

Creating Flash/.GIF ad banners
Not only does Fireworks excel at preparing file sequences for Flash, but also it’s equally
capable of importing Flash animations. It really is a two-way street with these programs. So,
if you’re already comfortable creating animations in Flash, why waste time learning how to
animate in any other program, when Fireworks can import anything you’ve done in Flash!

Before we make a cool animated banner with Flash, we need to know the basic restrictions
on banners. Here are some simple guidelines for animated banners: Target file size ranges
from 12KB on the high end, to an acceptable 5KB, and on down to the ideal of a mere 3KB.
Typical dimensions are 468 ×60, 392 ×72, and 125 ×125.

Now we need to create an exciting animated banner ad that will work on all browsers.
(That means it has to be an animated .GIF.) The dimensions of the movie are 468 ×60 and
the file size limitation is that it can be no more than 12KB.

With these limitations in mind, we can begin designing our banner in Flash:

1. In the Movie Properties dialog, which is accessed from Modify ➪ Movie, set the
movie size to the specified dimensions.

2. Also in the Movie Properties, set the frame rate to no more than 10 fps. That’s
because we know we have to make this animation into an animated .GIF and, to
stay within our file size limit, the lower the frame rate, the better our chances.

3. While creating the animation, watch out for file size: Try to design a simple anima-
tion with few colors and few frames. Fewer colors with fewer frames make it more
likely to land within our target file size.

Which format is best for export?
Once the animation works to your liking, the next step is to decide how to export it. If the
animation has a lot of colors or images, then the best option is usually to export the ani-
mation as a .PNG sequence with File ➪ Export Movie. But if the animation has very few col-
ors, it’s often best to export it as an animated .GIF, either from the Publish Settings or with
Export Movie.

Colorful animation export
Because the hypothetical animation is very colorful, we choose to export a .PNG sequence.
.PNG is ideal for this, due to the amount of information that the format can hold, which is
24-bit color plus an alpha channel.

1. Still in Flash, choose File ➪ Export Movie.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 824

825Chapter 30 ✦ Working with Raster Graphics

2. In the Export Movie dialog, choose .PNG sequence from the File Format drop-down
menu. Then, name the animation, choose a location for the exported file sequence,
and click OK.

3. Now, to import the sequence into Fireworks as one file, choose File ➪ Open, and
then navigate to the folder containing the .PNG sequence. The next step is important.

4. If, at this point, we were to shift-click all the files that we want to open and then open
them, Fireworks would open each file individually, which would make it more difficult
to create our animated .GIF. So, we need to make sure to check the Open as Anima-
tion Option, before we click OK. With this option, Fireworks places each selected file in
its own frame within a single Fireworks file, in numerical order. Now click OK.

5. This new Fireworks file has the file sequence set for export as an animated .GIF. But
we’re not done yet. To reduce the file size, we still have to go to work with the color
palette.

6. Select the Preview tab to see how our animation will look when exported. In pre-
view mode, Fireworks indicates the file size that will result with the current com-
pression settings. Now it’s necessary to focus on the Optimize Panel, which is where
the file type is chosen.

7. Select animated .GIF in the Optimize Panel. Once a file type is selected, various opti-
mization options appear. For an animated .GIF, we begin by editing the number of
colors, either (a) choosing from a range of default color settings, with 128, 64, 32, 16,
8, 4, or 2 colors in the color palette, or (b) entering a specific number of colors. Note
that, with every change to the color range or adjustment to the Optimize Panel, the
preview window updates with the file size. To ease comparison, Fireworks gives the
option to view compression schemes with the 2-up and 4-up preview modes, view-
ing either two or four settings side by side.

The trick to compression is finding a balance between appearance and file size. Too
much compression, and the graphic looks like dirt, although the file size is ideal; too
little compression and, while the graphic looks beautiful, the file size threatens to
choke the fastest connections. So what can you do after trying to find that balance
between image quality and file size, without success? What to do when the image
quality can’t go any lower, but the file size is still way too large? As mentioned ear-
lier, there is a second factor to the file size of animated .GIFs: the number of frames.
When image optimization fails, change your focus from the Optimize Panel to the
Frames Panel.

The Fireworks Frames Panel is used to control several animation playback settings. These are:

✦ The number of frames in the animation.

✦ The frame delay for each frame — should this frame hold for a second or two or just
breeze right through as quickly as possible.

✦ The loop settings for the animation. Will the animation loop ten times, five times,
never, or forever?

Continued

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 825

826 Part VII ✦ Using Flash with Other Programs

Continued

To further reduce the file size of an animated .GIF, remove some frames. To remove a frame,
simply select the frame in Fireworks’ Frames Panel, and then click the trash can icon at the
bottom of the panel.

Keep deleting frames, judiciously, and continuously preview the animation, until you’ve
brought the animation down to the required file size. Throughout this process, the preview
mode will update its display of the file size every time a change is made. Unfortunately, you
will find that, as you delete frames from the animation, the animation will not play back as
smoothly as originally designed and intended. But that’s just a limitation of animated .GIFs
and a compelling reason to start creating Flash banner ads!

When the file’s been brought down to an acceptable size, the next step is to edit the timing
of each frame. Each frame in the Frames Panel has a name on the left and a number on the
right. The number signifies the delay length for each frame, measured in 100ths of a sec-
ond. The default setting is 20 — or 20/100 of a second. So, to pause a frame for 3 seconds,
set the frame delay to 300.

The last adjustment to set is the looping of the animation. At the bottom left of the Frames
Panel is a loop icon. Select it and choose a loop setting. Finally, it’s time to export this file as
an animated .GIF and send it off to the Web. Use File ➪ Export Preview. In the Export
Preview window, select “Animated GIF” from the format pull-down menu. Now press the
Export button to name the file and place it within the desired location. Click Save and you
will be ready to go.

Alternative workflow
If an animation is created in Flash with few colors, there’s no need to export it as a .PNG
sequence. Instead, export the animation as an animated .GIF, either from the File Menu
with File ➪ Export, and choose GIF; or from the Publish Settings, by first choosing the .GIF
check box, and then from the .GIF tab, choose Animated. In either case, use the largest pos-
sible color palette in order to defer color crunching to Fireworks, where the controls over
the color palette are both more accurate and robust.

The exportedanimated .GIF is easily imported into Fireworks by choosing File ➪ Open, and
then selecting the single animated .GIF file. Fireworks imports each frame with the frame
delay settings intact. From here, the animation may be optimized per the previous instruc-
tions, proceeding from color palette, to the number of frames and loop settings.

In the year that Scott Brown graduated from high school, the most memorable song was, “Losing My
Religion” by REM. Prior to that, he’d lived “all over the place: Santa Maria, Boston, Phoenix, Austin, then
Switzerland, and finally Los Angeles. A few years later, he graduated from Art Center College of Design
with a degree in product design. Immediately after graduation, he began working at www.guess.com as
their new media designer. It was there that he discovered Flash, while “trying to learn Director so that I
could make a simple game for the Guess e-commerce site.” Scott recently began working on the redesign
of the Rampt.com site while also teaching an evening class in Web design at Art Center College of Design.
His single most favorite thing to do is, “waste time on the Playstation when not trying to keep on top of all
these new software developments.”

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 826

827Chapter 30 ✦ Working with Raster Graphics

Preparing Images for Flash with Photoshop 6
Adobe Photoshop 6 is an exciting upgrade to this premiere image-editing program.
When you’re preparing bitmaps for use in Flash, Photoshop 6 adds some extremely
useful and powerful Web features that make saving high-quality .JPEGs and .PNGs a
snap. The PNG-24 format is a great format to use with Flash, because this file format
supports lossless compression and can use an alpha channel (a.k.a. transparency
mask). In this section, we show you how to export a Photoshop image (.PSD file) as
a PNG-24 image to use in Flash, and how to create a 3D-object simulation with image
sequences from Photoshop.

Creating alpha channels for .PNG files
Photoshop has excellent selection and masking tools for the most complex images.
Although some third party plug-ins can make the task a lot simpler, a little know-
how with Photoshop tools can also go a long way toward simplifying your task. In
the following tutorial, we take an image of some houses along the beach and mask
the background sky. This lesson assumes that you have a working knowledge of
Photoshop layers and layer masks.

Use the sample image beachhouses.psd in the ch30 folder of the Flash 5 Bible
CD-ROM for this section. The completed .PSD and .PNG versions of the masked
image titled beachhouses_masked.psd and beachhouses_masked.png are also
on the CD-ROM.

1. Open the beachhouses.psd file from the CD-ROM. If you receive a message
about a color profile mismatch, choose Don’t Convert. For more information
about color profiles and Flash, see the “Color Management in Photoshop 6”
sidebar in this section.

2. To more easily separate the color tones of the sky from the foreground, add a
Levels adjustment layer to Layer 0 (the layer with the actual image). Do not
use the regular Levels command, which permanently applies its effect to the
image. We only need a temporary Levels effect to increase the contrast. See
Figure 30-1.

You can achieve the correct level values in the Levels dialog by loading the sepa-
ration.alv file into the dialog, using the Load button. This file is in the ch30 folder
of the Flash 5 Bible CD-ROM.

3. Select the Magic Wand tool in the Photoshop Tools palette. In the Magic Wand
settings of the Option bar, enter 15 in the Tolerance field, and make sure Anti-
Aliased and Contiguous are checked. Click the uppermost area of the now-
darkened sky to select it. Shift+click additional areas with the Magic Wand
tool until the entire sky is selected. If you grab anything in the foreground,
either undo or start over (Select ➪ None). See Figure 30-2.

On the
CD-ROM

On the
CD-ROM

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 827

828 Part VII ✦ Using Flash with Other Programs

Figure 30-1: The image with a Levels adjustment layer

Figure 30-2: When you’re creating your selection, pay
particular attention to the edges of the rooftops.

4. With Layer 0 highlighted in the Layers window, Option+click (Mac) or
Alt+click (PC) the Add a mask icon at the bottom of the Layers window. This
uses the selection of the sky as a mask (see Figure 30-3). If the Add a mask
icon was clicked without holding Alt or Option, then the foreground elements
would have been masked instead.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 828

829Chapter 30 ✦ Working with Raster Graphics

Figure 30-3: Option+ or Alt+clicking the Add a mask icon
uses the active selection as the black area of a layer mask.

5. Now that we have masked out the sky, we don’t need the Levels effect any-
more. Turn off the Levels adjustment layer, or delete it.

6. Before we save this image as a PNG-24 file, we should crop all unnecessary
information from the image. In this example, the masked sky should be nearly
eliminated. See Figure 30-4.

Figure 30-4: It’s always a good idea to crop unnecessary
information (especially if it’s hidden by a mask) from the
image before importing it into Flash.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 829

830 Part VII ✦ Using Flash with Other Programs

7. In Chapter 12, “Using Bitmaps and Other Media with Flash,” the effects of
larger-than-necessary bitmaps were discussed. Because the image width is
currently larger than the default Flash movie width, we also use the Image ➪
Image Size command to change the width from 755 to 550. Be careful when
using the Image Size command. For this example, the Constrain Proportions
and Resample Image: Bicubic options should be checked.

Make sure you double-check the layer mask by viewing it separately in the
Channels window. If any faint gray lines appear along the top edges of the mask,
paint over them with a black brush. If any gray appears in the black area of the
mask, it shows up in the Flash movie.

8. We’re ready to save the image as a PNG-24 file, using the Photoshop 6 Save
for Web command (Option+Shift+Command+S or Ctrl+Shift+Alt+S), located
in the File menu. After you have chosen this command, the image appears in
Live Preview mode within the Save for Web dialog (see Figure 30-5). Click
the 2-Up tab to view the original image with the optimized version. In the
Settings section, choose the PNG-24 preset. Make sure the Transparency
option is checked — this exports the layer mask as an alpha channel in the
.PNG file. Do not use the Interlaced or Matte options for Flash import. Click
OK and Photoshop asks you to specify a location and filename for the PNG-24
image. Note that the .PNG image format is already selected in the Save as Type
drop-down menu. It is not necessary to check the Save HTML File option for
Flash use.

The Save for Web dialog has many other cool features. While the 4-Up effect is not
necessary for PNG-24 files (there are no compression options to worry about), you
can preview your original with three different .JPEG or .GIF versions, each at a dif-
ferent compression setting. You can use the Preview Menu to see the effect of
8-bit browser dither (by checking the Browser Dither option), and you can use
color profiles using Photoshop Compensation or Uncompensated Color. For PNG-
24 files, always use the Uncompensated Color preview, because it is the most
accurate for Flash use. See the sidebar titled Color Management in Photoshop 6
for more information on color compensation. Note that you can also resize the
optimized image in the Image Size tab, instead of performing this action in Step 7.

9. We’re ready to import the .PNG file into Flash, which recognizes the alpha
channel in the PNG-24 version of our image. Open a movie in Flash (or create a
new one), and choose File ➪ Import (Command+R or Ctrl+R). Select the .PNG
image and Flash places the image on the current frame of the active layer.
Remember that all bitmaps are stored in the Flash Library. If you delete the
instance of the bitmap on the Stage, you can always replace it with the bitmap
in the Library. That’s it! You’ve successfully imported an image with an alpha
channel into Flash (see Figure 30-6).

Check out the sample Flash movie, alphabitmap.fla, in the ch30 folder of the
Flash 5 Bible CD-ROM.

On the
CD-ROM

Tip

Caution

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 830

831Chapter 30 ✦ Working with Raster Graphics

Figure 30-5: The Save for Web command enables fast Web image previews in
Photoshop 6. You may need to resize this dialog in order to display horizontal
images on top of each other, as shown in this figure.

Figure 30-6: Using a bitmap with an alpha channel enables
you to seamlessly place other elements behind the bitmap
in a Flash movie.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 831

832 Part VII ✦ Using Flash with Other Programs

Color management in Photoshop 6
Many strategies exist for color calibration on desktop computer systems. Macin-
tosh computers have had a leg up in this area of graphics creation and output ever
since the development of ColorSync. Apple’s ColorSync software provides one of
the most complete system-level color management solutions for desktop publish-
ing. Unfortunately, while Windows 98 and Windows ME do include ICC profile sup-
port, it’s not as comprehensive as Apple’s ColorSync system. Since Photoshop’s 5.0
release, ICC color profiles can be specified and attached to most image file formats.
In a nutshell, ICC profiles describe the color capabilities of a given input or output
device, such as a computer monitor, printer, or scanner. When an ICC profile is
attached to an image, the profile tells the application that is using the image how
the colors in the image should be interpreted. If every program in your workflow
supports ICC profiles, then, theoretically, this provides a consistent display and
output of all graphics.

However, while Photoshop and most page-layout programs recognize ICC profiles,
the majority of applications do not. Some Web browsers do not support embedded
image profiles, although Apple has proposed many ICC tags to make color manage-
ment a reality for the Web (see www.apple.com/colorsync/benefits/web). More
importantly, Flash 5 does not support ICC profiles. Neither does the current imple-
mentation of the PNG-24 format. The .JPEG file format is the only current Web image
format that supports embedded profiles. Moreover, ICC profiles typically add about
500 to 800 bytes to an image’s file size.

Herein lies the problem for serious graphic designers who routinely work under
tight color management. If you specify an RGB space in the Color Settings prefer-
ences (Edit ➪ Color Settings in Photoshop 6, or File ➪ Color Settings ➪ RGB Setup
in Photoshop 5.5) other than sRGB IEC61966-2.1 (Photoshop 6), or Monitor RGB or
sRGB (Photoshop 5.5), and have Display Using Monitor Compensation checked
(Photoshop 5.5 only), then what you see in Photoshop is not what you see in Flash
when you import the image. This is why Photoshop 6’s Save for Web feature and its
Preview Menu are so invaluable. They enable you to see how the .JPEG, .GIF, or
.PNG looks without Photoshop Compensation.

If you work primarily with Web or screen graphics, then you should use Photoshop
6’s new Color Settings presets to quickly switch color spaces. For Web work, always
use Web Graphics Default. For ColorSync management on the Mac, choose ColorSync
Workflow. On the PC, choose a setting that best matches your printing needs (Color-
Sync is an Apple-only management system).

In Photoshop 5.5, change your RGB working space to sRGB, or turn off Display
Using Monitor Compensation if you continue to use other RGB spaces. Either
method enables you to work with your images so that the Photoshop Compen-
sation and Uncompensated Color settings render the image exactly the same
within the Save for Web preview panes. Also, disable ICC profile embedding
in the Profile Setup preferences (File ➪ Color Settings ➪ Profile Setup) by
unchecking all the boxes under the Embed Profiles heading.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 832

833Chapter 30 ✦ Working with Raster Graphics

Expert Tutorial: Simulating 360-degree Turnarounds,
by Jay Vanian

In this tutorial, you learn a useful technique for representing products on a clients’ site — a
believable simulation of a 360-degree turnaround. This tutorial is intended to help familiar-
ize you with the new Flash 5 panel layouts, while teaching an effective way to emulate
video through the use of keyframe animation with bitmaps. (You’ll find the source .FLA file,
procedural screen grabs, and related assets for this tutorial in the ch30 folder on the accom-
panying Flash 5 Bible CD-ROM.)

1. If you don’t already have a lazy susan, or utility turntable (commonly used in a
kitchen pantry or on the kitchen table), you’ll need to buy or borrow one. Measure
the diameter, and then set 25 to 35 numbered markers evenly spaced around the
circumference of the turntable. If you have any more or less markers, your Flash
movie will be too slow or too fast. If you’re borrowing the turntable, it might be a
good idea to use labels or erasable ink.

2. Set up your turntable next to a wall of the same color, or tape up a sheet of colored
paper to match your turntable. This will simplify your work with the images in
Photoshop. Center the object that you want to turnaround on the turntable.

3. Set the turntable to the first numbered marker and, using a tripod, take a picture of the
object. Carefully move the turntable to the next number and snap another shot. This
can’t be done without a tripod—and the tripod must remain stationary throughout the
process. Continue rotating and shooting until you’ve returned to the original marker.

4. If you’ve used a digital camera, you’re ready to move your images onto your hard
drive. Otherwise, you’ll need to have the film developed and get scans before you
can open them with Photoshop.

5. Use the Lasso, or other Photoshop tools, to cut the images out from their back-
ground, and then copy and paste each of these cut-out images into successive num-
bered layers of a single .PSD image — take care to maintain the proper order. The
background should be transparent for all layers. If necessary, crop and then save
your image as a layered .PSD file (this helps if you later have to resize your images).

6. Save each individual layer as a numbered .PNG (for example, 01.png, 02.png,
03.png, and so on)

7. Open Flash 5 and insert a new Movie Clip symbol (Ctrl+F8 or Command+F8). Give
it a meaningful name, such as mov_360. Stay in Symbol Editing Mode.

8. Use File ➪ Import to select the first .PNG in your image sequence, and Flash automati-
cally detects that you’ve selected a numbered file. Flash then asks whether you want
to import the remaining numbered files. Choose Yes and Flash displays your .PNG files
frame-by-frame on the Movie Clip’s timeline. If necessary, center your images on the
Stage using the Align Panel (Window ➪ Panels ➪ Align, or Ctrl+K/Command+K). It
helps to use a guide to ensure that your images don’t jump around too much.Choose
View ➪ Rulers, and then pull a guide down from the top ruler in the Stage window.

Continued

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 833

834 Part VII ✦ Using Flash with Other Programs

Continued

9. While still in Symbol Editing Mode, hold down the Ctrl key (or Command key on the
Mac), select all of the keyframes in the timeline, and drag them to start at frame 20.
Note that there should be one keyframe for each image in the sequence. This allows
you a comfortable working space in the timeline of the movie clip.

10. Now add two layers — one for your actions, one for your labels. Label the layers with
meaningful names.

11. On the labels layer, add keyframes at frames 20, 34, and 51. Use the Frame Panel
(Window ➪ Panels ➪ Frame, or Ctrl+F/Command+F), to label these, respectively,
next, start, and previous. Save the .FLA file.

12. Now, add a keyframe to frame 20 on the actions layer. Add a stop action here by
double-clicking the keyframe, and then choosing Stop from the Basic Actions menu.
Copy this stop action to frames 21 to 51 by holding down the Alt key and dragging
the keyframe over to each frame, up to frame 51.

13. Still working with the actions layer, add a keyframe at frame 19. Give this frame a
gotoAndStop(“previous”); action by (a) double-clicking the keyframe, (b)
choosing Go To under Basic Actions, (c) selecting Frame Label in the Type options
menu, and (d) typing previous in the Frame field.

14. Repeat this procedure with frame 52 of the actions layer, substituting next for previ-
ous. Save the .FLA file.

15. Now, on the bitmap layer, drag the keyframe at 20 back to 19, so that the first frame
of the bitmap sequence will appear for two frames: 19 and 20.

16. For the finishing touch on the Movie Clip, go to the first frame of the actions layer
and add a gotoAndStop(“start”); action. Then exit the Movie Clip. (If you still
haven’t saved the .FLA file, you are courting disaster.)

17. Now, back at the Main Timeline, drag the 360 Movie Clip from the Library onto the
Stage and access the Instance Panel, using either Window ➪ Panels ➪ Instance or
Ctrl+I/Command+I, and name this instance 360.

18. Insert a new Movie Clip symbol (Ctrl+F8 or Command+F8) and name the new
Movie Clip mov_buttons. Now add four layers (for a total of five layers) to the new
Movie Clip timeline, and from the top down, name these layers: A (for Actions),
Left2, Left1, Right2, and Right1.

19. On frames 1 and 3 of the Left1 layer, insert or create a button with the following
action:

on (release, dragOver) {
tellTarget (“/360”) {
prevFrame ();

}
}

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 834

835Chapter 30 ✦ Working with Raster Graphics

Remember to highlight each frame before proceeding to the Actions Panel. After you
have selected the frame, open (or draw focus to) the Actions Panel (Ctrl+Alt+A or
Option+Command+A), and then add actions from the Actions booklets or menus.

20. Repeat Step 19 for frames 2 and 4 of the Left2 layer.

21. Repeat Step 19 again for frames 1 and 3 of the Right1 layer, and also for frames 2
and 4 of the Right2 layer — except, this time, substitute the action nextFrame(); for
prevFrame();.

22. Then, on the actions layer, add keyframes to the first three frames and give each one
a stop(); action.

23. At the fourth frame of the actions layer, add another keyframe with the action
gotoAndPlay(1);. Exit the Symbol Editing Mode (Edit ➪ Edit Movie).

24. Then, back at the Main Timeline, add and name two additional layers — one for
actions (with the name A), one for the buttons Movie Clip instance.

25. Now, on the buttons layer, drag an instance of your buttons Movie Clip onto the
Stage and position it below the mov_360 instance.

26. Then, on the actions layer, add a stop(); action to frame 1. (This isn’t really neces-
sary, because Movie Clips play, once loaded, without relation to the Main Timeline
and we only have one frame in our Main Timeline anyway; but for the sake of con-
sistency, I always maintain an actions layer.)

27. Finally, publish your movie. The finished project is shown in the following figure.

The animals can be viewed in a 360-degree turnaround.

Continued

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 835

836 Part VII ✦ Using Flash with Other Programs

Creating Image Effects with Corel Painter
Corel Painter (formerly owned by MetaCreations) is a unique image-creation tool.
Unlike other image-editing tools, Painter has a wide selection of tools that are more
familiar to the traditional artist. Not only are the tools more identifiable, but the
look and feel of the output from the tools resembles that of real-life art materials.
While Painter may not be the tool to use for every job (what application is?), you
can produce some amazing effects that aren’t possible with other applications.

Continued

Experiment with the .JPEG export settings to bring down your file size. For more information
about .JPEG settings refer to Chapter 9, “Checking Out the Library: Symbols and Instances,”
and Chapter 12, “Using Bitmaps and Other Media with Flash.”

Jay Vanian was inspired to learn Flash because he “saw two sites that really stood out — Balthaser’s, and
Shiny Entertainment’s.” He’s worked on a number of sites, including: 11th Hour (www.hourtogo.com),
THQ/Evil Dead (www.evildeadgame.com), Rhythmcraft (www.rhythmcraft.com), Crave Entertainment
(www.cravegames.com), 2thebiz (www.2thebiz.com), Irvine Barclay Theatre (www.thebarclay.org),
Ghosts (www.vanian.com/ghosts), and Alien Dog (www.alien-dog.com). Jay is billed as a Multimedia
Artist with Pixelpushers, Inc. Jay’s single most favorite thing to do is actually three things, foremost of which
is “taking pictures of buildings.” He’s also prone to “plan world strategies,” and also enjoys Krav Maga, which
includes frequent visits to the emergency room. Perhaps these interests explain why he has no memories of
popular culture from the year (1992) that he graduated high school in Newport Beach.

Expert Tutorial: Using Painter with Flash, by Arena Reed

Arena is a natural at Painter (and the Wacom tablet) and has used Flash extensively for
artistic effects. As a member of the Painter development team, she has firsthand knowl-
edge of what this tool can do to produce artwork for Flash.

The evolution of Painter
In this tutorial, we explore ways of using Corel Painter to add the look and feel of Natural
Media to Flash. The initial idea behind Painter was Mark Zimmer’s attempt to emulate a
pencil sketch, which led to the paper texture model and the dye-concentration models,
which simulate how different colors interact with each other. From there, Painter grew into
a program that emulates a wide range of traditional mediums. Painter then branched into
supernatural media that opened new outlets of expression to artists. As increased comput-
ing power and advances in input devices continue to erase technical boundaries, Painter
will become even more realistic/surrealistic in the hands of Corel, Mark Zimmer, Tom
Hedges, and John Derry.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 836

837Chapter 30 ✦ Working with Raster Graphics

Fun and exciting ways to use Painter with Flash include:

✦ Creating large collages that blend together with a look that you can only get by
using Painter

✦ Creation of patterns

✦ Using Painter’s scripting capabilities to record the creation of an image

✦ Cloning video to create a myriad of beautiful effects

✦ Collages, paintings, and image editing with Painter

Painter is an excellent tool for image creation! The most obvious thing to do with Painter is
paint, to use the huge selection of brushes and art materials to create an image that has the
look and feel of a traditional medium. Oil paint, pencil, watercolor, chalk, airbrushes, spray
paint, ink, crayon, and markers are some of the standard mediums Painter emulates.
However, Painter’s capabilities go beyond this to offer a set of tools that are unlike anything
in the traditional art-supply world. To name a few:

✦ The famous Distorto brush that smears everything all over the place in psychedelic
streaks

✦ F/X brushes that create fire and fairy dust

✦ Image Hose that allows you to paint with photographic elements such as flowers
and leaves, Liquid-Metal, Water, and Shattered Glass

✦ Pattern Pen that scales and rotates a continuous pattern

✦ Impasto brushes that create the illusion of raised thick paint strokes

Aside from creating images with Painter’s Natural Media tools, the Cloning Brushes are fan-
tastic for creating collages or photo manipulations, because they allow you to scale, rotate,
and systematically distort on the fly.

Creating patterns with Painter
Painter is the best tool that I know of for creating seamless patterns because of the vast
array of painting tools at your fingertips and the ease of wraparound painting. Here’s how
to create a seamless pattern with Painter:

1. Open Painter and then open a new file.

2. Define it as a pattern by opening the Art Materials Palette, selecting the Patterns
Palette, and then, from pop-up menu, choose Define Pattern. Although you may
also offset the pattern with the slider on the Patterns Palette, neither HTML nor
Flash supports offset patterns. See the following figure for an example of the Art
Materials Palette and its options.

Continued

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 837

838 Part VII ✦ Using Flash with Other Programs

Continued

Select Define Pattern from the Pattern Palette of the Art Materials Palette to
define an image as a pattern.

3. You’ll notice that, after defining the image as a pattern, a brushstroke that goes off
the page will wrap around onto the other side of the page, as shown in the follow-
ing figure.

Wrap-around painting enables the creation of seamless patterns.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 838

839Chapter 30 ✦ Working with Raster Graphics

4. Shift the pattern by holding down the spacebar+Shift and dragging.

5. When you’ve completed your pattern, save the pattern as a .JPEG and use it as a
background.

Scripting the painting of an image
As you paint an image it’s possible to record your process and then play back the process
as an animation. Scripting in Painter is the process of recording a series of brushstrokes,
menu commands, and choices of art materials (color, paper texture, pattern, and so on).
Follow the steps outlined below with a quick, little image first to make sure that you are fol-
lowing the steps properly. This is a somewhat advanced use of Painter, so the steps should
be followed carefully in order to achieve the proper results. Here are the steps to record the
creation of an image with Painter:

1. Open a new file. Pay attention to the dimensions of your file, which will translate
into file size. Unless you’re using a supercomputer with lots of hard-drive space, you
should keep the size of this file reasonably small, because this will be the size of
each frame of your final animation. Write down the dimensions of this file, because
you will need to know it later.

2. Open the Scripting Panel of the Objects Palette. Select Window ➪ Show Objects ➪

Scripting to expand this part of the Objects Palette.

3. Adjust the Script Options. Select Scripting Menu ➪ Script Options and select Record
Initial State. This assures that your painting will look the same every time you play it
back, if you want it to look different every time because you have a different brush
or color selected you can deselect this option. See the following figure for the Script
Options dialog.

4. Press the Record button, which is the red circle button on the Scripting Panel.

5. Begin painting, this is the fun part! (Note: Do not save during the recording process,
as it will cause the file to be saved again and again and again — each time the script
is played back.)

6. When you’re finished press the Stop button, which is the black square button.

7. Painter will ask you to name your Script; give it a name and click OK. It’s a good idea
to include the size of your image in the name of the script, in case you want to play
it back as an animation later.

Continued

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 839

840 Part VII ✦ Using Flash with Other Programs

Continued

8. The script will now appear as an item in the drop-down list of scripts and also as an
icon in the expanded view of the Scripting Panel.

9. After a script has been created it can be played back to a special kind of Painter file
known as a Frame Stack file. Frame Stacks are saved upon opening and are continu-
ally saved to disk as you work with them. Therefore there is no reversion, but this
usually doesn’t matter in the case of playing back a prerecorded script. However, if
you are working with frame stacks to create a frame-by-frame animation, you’ll be
wise to occasionally close the file and duplicate it for back-up purposes.

Here are the steps for playing back a script and then bringing a sequence of numbered files
into Flash:

1. Adjust the Script Options. Select Scripting Menu ➪ Script Options (see the following
figure), and check Record Frames on Playback.

2. Open a new file with the same dimensions as the image that you recorded the
script from. Select the script that you just recorded and click Play.

3. Now Painter will ask you to:

a. Name the Frame Stack file

b. Choose the number of onion skin layers to display

c. Choose a bit depth (use 24-bit with 8-bit mask)

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 840

841Chapter 30 ✦ Working with Raster Graphics

Exporting Raster Images from Flash
If you’ve been wondering how to use your artwork in Flash with other raster-based
applications, then this section is for you. Many people prefer to use Flash as their pri-
mary drawing and illustration tool, thanks to Flash’s uniquely intuitive set of vector
drawing tools in combination with the (new) more traditional Pen Tool.Combined
with a pressure-sensitive graphics tablet, Flash can indeed be a powerful illustration
program.

This file can have a tendency to get very large depending on the frame-rate of play
back, the size per frame and the bit-depth chosen. Save it to a location that has
plenty of free space.

4. Watch it play back frame-by-frame, each time adding to the image.

5. When this Play process is done, choose File ➪ Save As. Then Choose the Numbered
Files option from the Save As dialog.

6. Give these files a name that ends with the beginning of a numbered sequence such
as, myFile0001, and choose a format that is compatible with Flash, such as .JPEG.

7. Finally, to import these frames into Flash, open a Flash file and choose File ➪ Import.
Choose the first file in the sequence of numbered files. Flash will alert you with the
message: This file appears to be part of a sequence of images. Do you want to
import all of the images in the sequence? Choose Yes. Now, all of the images will
appear as keyframes in a layer of the timeline.

Cloning video to create beautiful effects with Painter
The process of cloning video involves importing video into Painter, then creating a blank
Frame Stack file of the same size and length, and then referencing the imported video to set
the color or size of the brush you are using. This technique can be utilized to create video
that has the texture of a pencil sketch, oil painting, silk screen, or any of a vast variety of
mediums Painter emulates. The Painter manual has detailed instructions on cloning video.
To get a cloned video sequence into Flash, follow the previous steps to save the frames as
numbered files, and then import them into Flash.

Above all, when working with Painter, it is important to enjoy yourself — so have fun!

Originally from San Francisco, Arena Reed left high school when she was 16 and went to college. She recalls
that, “The song I remember from that year is ‘Cold Hearted,’ by Paula Abdul— I remember dancing to it while
wearing hot-pink high-tops.” After studying art and biology at the University of California at Santa Cruz, she
became a member of the Painter development team, contributing content to Painter 4, 5, and 6. She claims to
have “found Flash one day when I was digging in the dirt with my HTML shovel.” Projects that Arena has worked
on include: www.beema.com, www.visualarena.com, www.living-arch.com, www.missioncreek.org,
www.lorikay.com, http://mckenna.sccoe.net, and content for Painter and Expression. Her current inter-
ests include teaching art and science to children, watercolor painting, bicycling, gardening, learning Chinese, and
Flashing.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 841

842 Part VII ✦ Using Flash with Other Programs

Why would you want to export raster-based images from a vector-based applica-
tion? The answer is quite simple: Some applications work better with raster (or
bitmap) images than they do with vector images. As you see in Chapter 36, “Creating
Full-Motion Video with Flash,” video-editing applications usually prefer to work with
bitmaps instead of vectors. If the application in which you want to use Flash artwork
supports vector file formats such as .EPS or .AI, then you most likely want to use
those instead of bitmap-based formats such as .BMP or .PCT.

We discuss using external vector applications in Chapter 31, “Working with Vector
Graphics.” If you want the best quality artwork exported from Flash, jump to that
chapter.

If you are unsure of the format to use in your graphics program, refer to Table 30-1.
Afterward, we show you how to export a frame’s artwork as a static raster image.

Table 30-1
Raster Image Formats for Flash Export

Flash Export Format File Extension Comments

BMP (PC only), .BMP Can be used with all PC and some Mac
Windows Bitmap applications. Variable bit depths and com

pression settings with support of alpha
channels. Supports lossless compression.
Ideal for high-quality graphics work.

CompuServe GIF, .GIF Limited to a 256-color (or less) palette.
Graphics Interchange Not recommended as a high-quality Flash
File export format, even for Web use.

JPEG, Joint Photo- .JPG Supports 24-bit RGB color. No alpha
graphic Experts Group channel support. Recommended for most

high-quality graphics work. Note that this
format does throw out color information
due to its lossy compression method.

PICT (Mac only), .PCT Can be used with many PC and all Mac
Picture applications. Variable bit depths and com-

pression settings with support of alpha
channels. Supports lossless compression.
Can contain vector and raster graphics.
Ideal for high quality graphics work.

PNG, Portable .PNG Supports variable bit depth (PNG-8 and
Network Graphic PNG-24) and compression settings with

alpha channels. Lossless compression
schemes make it an ideal candidate for
any high-quality graphics work.

Cross-
Reference

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 842

843Chapter 30 ✦ Working with Raster Graphics

To export a raster image format from Flash 5:

1. Move the Playhead in the Flash timeline to the frame that contains the art-
work that you wish to export.

2. Choose File ➪ Export Image.

3. Select a destination folder and enter a file name. Select your preferred raster
image format in the Save as Type drop-down menu.

4. Depending on the file format you selected, you are presented with an export
dialog with options specific to that file format. We look at the general options
and at some file-specific settings next.

General export options in raster formats
Every raster image format in Flash’s Export dialog box has the same initial options.
All of these options (as seen in Figure 30-7) pertain to the image size, resolution, and
bit depth. You can also trim any unused stage area from the final exported image.

Figure 30-7: The general options of the
Export dialog for raster image formats

A. Dimensions. The Width and Height options control the image’s width and
height, respectively, in pixels. Note that the aspect ratio of these values is
always locked. You cannot control the Width value independently of the
Height value.

A

B

C

D

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 843

844 Part VII ✦ Using Flash with Other Programs

B. Resolution. Measured in dpi (dots per inch), this setting controls the quality of
the image, in terms of how much information is present in the image. By default,
this setting is 72 dpi. If you want to use Flash artwork in print or high-resolution
graphics work, enter a higher value, such as 300 or 600. If you change this set-
ting accidentally, pressing the Match Screen button reverts the value to 72 dpi,
the resolution of most computer monitors. Note that changing the value for this
setting also changes the Width and Height values in the Dimensions setting.

C. Include. This drop-down menu determines what Flash content is included in
the exported image.

• Minimum Image Area. When this option is selected, the image size
(a.k.a. dimensions) is reduced to the boundary of Flash artwork currently
on the Stage. This means that, if you only have a circle in the middle of
the Stage, then the dimensions of the exported image match those of the
circle — the rest of the Flash Stage or background is be included.

• Full Document Size. When this option is selected, the exported image
looks exactly like the Flash stage. The entire frame dimensions and con-
tents are exported.

D. Color Depth (or Colors). This drop-down setting controls the color range of the
raster image. The higher the bit depth, the wider the color range. Depending
on the file format, not all options are identical. We define the most frequently
occurring options here. This option is not available for the .JPEG format, as
that format must always be 24-bit.

• 8-bit grayscale. This option limits the image to 256 levels, or values, of
gray. It is equivalent to a typical scan of a black and white photograph.

• 8-bit color. This option reduces the image to 256 colors. You may notice
unsightly dithering in the image as a result. See Chapter 40, “Publishing
Flash Movies,” for more information regarding dither.

• 24-bit color. This option enables the image to use any of the 16.7 million
colors available in true RGB color space. Use this option for the best
color quality.

• 32-bit color w/ alpha. This image enables the same range of colors as
24-bit color, but also adds an alpha channel using the Flash movie’s
background color as a guide. If your raster image program can read
alpha channels, then the Flash background color is transparent.

Other raster file format options
Each file format may have additional export options. In this section, we look at the
additional options available for .BMP (PC only), .PCT or .PICT (Mac only), and .GIF.
These options have not changed from the previous release of Flash. In fact, you
may have more control with export file formats using the Export Image command
instead of the Publish Settings/Publish commands.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 844

845Chapter 30 ✦ Working with Raster Graphics

The .JPEG, .GIF, and .PNG format options are discussed in Chapter 40, “Publishing
Flash Movies.” Because a problem exists with publishing adaptive .GIFs in the
Macintosh version of Flash, however, we explore the .GIF export options here.

.BMP (PC only) options
The Windows Bitmap (.BMP) file format has numerous options. In addition to the
general export settings, the .BMP Export dialog has an Options setting containing a
check box for Smooth. When this option is checked, Flash antialiases all Flash art-
work, making the edges nice and smooth. If this option is unchecked, then Flash
artwork is rendered in an aliased fashion, in which edges appear jagged and rough.

In most external graphics applications, the 32-bit w/ alpha option in the Colors
drop-down menu is not supported. You should use the 24-bit option if you expe-
rience difficulties using 32-bit .BMP files. If you need to export an image with
alpha channel support, use the .PNG format in the Windows version of Flash.

.PICT (Mac only) options
The .PICT (short for Picture) format is a standard Macintosh graphic file format.
Any Macintosh application that uses graphics can use it, and, with QuickTime, you
can use .PICT (or .PCT) files on Windows computers. .PICT files can contain both
vector and raster (bitmap) information. Usually, only raster-based .PICT files are
truly cross-platform. See Figure 30-8.

Figure 30-8: The .PICT format has a
unique Objects option (in the Color
Depth drop-down menu) in addition
to traditional raster-based options.

✦ Color Depth. This drop-down menu is the same as the Colors setting for other
raster-image file formats. It has a few peculiarities that are defined next.

• Objects. Due to the transgender nature of .PICT files, you can specify
Objects to export Flash artwork as vector-based images. Note that select-
ing this option enables you to select Use PostScript in the Options setting.
Use PostScript that contains .PICT output with caution, as it can produce
undesirable results. If you need PostScript output, it is better to use Illus-
trator or .EPS as the format.

• Bitmap 1-bit B/W. This option converts all colors to either black or white,
with no between values of gray. It is equivalent to the Bitmap image mode
in Photoshop, and gives a fax document look to your Flash artwork.

Caution

Cross-
Reference

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 845

846 Part VII ✦ Using Flash with Other Programs

• Bitmap 8-bit Gray. This option converts your Flash artwork colors to
256 values of gray.

• Bitmap 8-bit Color. This option creates an adaptive palette of 256 colors
for the exported image.

• Bitmap 24-bit Color. This option produces the highest-quality raster-
based .PICT files, enabling any color in the RGB color space to be repre-
sented. By default, you should use this option for graphics work in other
applications.

• Bitmap 32-bit Color (alpha channel). This option has the same color
depth as 24-bit color, with the addition of an alpha channel (or transpar-
ent mask). An unoccupied area of the Flash Stage is used to determine
the transparent areas of the alpha channel.

✦ Options. The .PICT Export dialog displays one option. The option displayed
varies depending on the Color Depth setting.

• Smooth bitmap. If you chose any of the Bitmap color options in Color
Depth, then you have the option of antialiasing (or smoothing) Flash art-
work. Smoothing produces cleaner edges on Flash vector-based artwork.

• Include PostScript. If you choose Objects from the Color Depth menu,
then you can enable the Include PostScript option. This option optimizes
the file’s settings for output to a PostScript-compatible printer.

.GIF options
The majority of the options listed in the Colors section of the .GIF Export dialog are
discussed in Chapter 40’s section “Using the GIF settings.” The Colors drop-down
menu is slightly different, however. Also, as mentioned in a previous note, the
Publish settings in the Macintosh version of Flash 5 do not create adaptive .GIF
images (even if you have selected the option to do so). You can, however, create
suitable .GIF images in both Windows and Macintosh versions of Flash 5 using the
Export Image command. See Figure 30-9.

Figure 30-9: Options that are
specific to the .GIF format.

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 846

847Chapter 30 ✦ Working with Raster Graphics

You can see the effect of each of these color options by looking at a series of .GIF
images created from a test Flash movie, gifcolors.fla, located in the ch30 folder of
the Flash 5 Bible CD-ROM. Each .GIF color depth setting was applied to this movie,
and saved as a separate .GIF image.

✦ Colors. As stated in the discussion regarding general options, this setting con-
trols the range of colors contained in the exported image. .GIF images can use
a variety of bit depths with the overall 8-bit color depth setting. The fewer col-
ors, the smaller the resulting .GIF file.

• Black & White. This option is equivalent to a 2-bit color depth, and con-
verts all Flash colors to one of three colors (Web hex in parentheses):
black (#000000), middle gray (#808080), or white (#FFFFFF).

• 4, 8, 16, 32, 64, 128, or 256 colors. These options create the respective
color ranges within the .GIF format. Flash determines which colors are
used for each setting, similar to the adaptive palette type in Photoshop.

• Standard Colors. This option creates .GIF images that use the 216 Web-
Safe Palette.

Summary
✦ Flash 5 is a vector artwork tool, and cannot create bitmap images from

scratch. You need to use an image-editing application such as Macromedia
Fireworks to create, modify, and optimize bitmap images for Flash.

✦ Macromedia Fireworks 4 has batch processing features that optimize your
Web production workflow. Fireworks and Flash share a common UI, making
it simpler to learn the tools in Fireworks.

✦ Adobe Photoshop 6 can be used to create a PNG-24 image with an alpha chan-
nel. Flash renders the black area of an alpha channel transparent (or semi-
transparent) on the Flash Stage, so that other elements in a Flash movie can
show through the foreground bitmap.

✦ You can mimic QuickTime VR objects using a lazy susan turntable and a cam-
era. Using an image-editing application, you can isolate each object view and
place the images in a Flash Movie Clip as an image sequence.

✦ Corel Painter can create fluid bitmap effects that you can use in Flash. Painter
also offers unique video-cloning tools that can be imported as frame
sequences into Flash.

✦ Flash 5 can export a variety of raster image file formats, so that you can trans-
fer your Flash artwork to other graphics programs. You can specify the
exported image’s quality in the Export Image dialog.

✦ ✦ ✦

On the
CD-ROM

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 847

3515-3 ch30.f.qc 1/18/01 5:08 PM Page 848

Working with
Vector Graphics

A lthough Flash 5 has effective drawing tools, don’t be
mislead: It is not a replacement for a full-featured illus-

tration program such as Macromedia FreeHand. Creating
complex artwork can be accomplished much more easily in
drawing and illustration programs — and integrating the final
artwork with Flash is a cinch.

Preparing Vector Graphics for
Flash Movies

Earlier in this book, we discussed the use of external media in
Flash movies. However, not all vector graphics are created the
same. Some vector graphics may be simple objects and fills,
while others may include complex blending or paths that add
significant weight to a Flash movie. Even though most vector
graphics are by nature much smaller than raster graphic equiv-
alents, don’t assume that they’re optimized for Flash use.

Please read Chapter 12, “Using Bitmaps and Other Media
with Flash,” for details on importing all types of external
media, including vector artwork, into Flash movies.

Guidelines for using external vector
graphics in Flash
Because Flash is primarily a vector-based application, using
vector graphics from other applications is rather straightfor-
ward. However, because most vector graphics applications
are geared for print production (for example, publishing

Cross-
Reference

3131C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Optimizing vector
graphics for Flash

Using FreeHand to
create artwork for
Flash movies

Conceptualizing
Flash movies with
FreeHand

Tracing bitmaps
for Flash

Using Expression 2
for enhanced vector
artwork

Exporting vector files
from Flash

✦ ✦ ✦ ✦

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 849

850 Part VII ✦ Using Flash with Other Programs

documents intended for press), you need to keep some principles in mind when
creating graphics for Flash in external graphics applications:

✦ Limit or reduce the number of points describing complex paths. This chapter
looks at using FreeHand’s Simplify command and Illustrator’s Pathfinder win-
dow to accomplish this task.

✦ Limit the number of embedded typefaces (or fonts). Multiple fonts add to the
final .SWF movie’s file size. This chapter shows you how to convert fonts to
outlines in both FreeHand and Illustrator.

✦ To insure color consistency between applications, use only RGB colors (and
color pickers) for artwork. Flash can only use RGB color values, and converts
any CMYK colors to RGB colors. Color conversions usually produce unwanted
color shifts. This chapter shows you how to set up FreeHand and Illustrator to
avoid this.

✦ Gradients created in other drawing applications are not converted to
Flash gradients when the file is imported. Unless you’re using Macromedia
FreeHand, you may need to replace externally created gradients with Flash
gradients, or to accept the file size addition to the Flash movie. This chapter
teaches you how to redraw gradients in Flash.

✦ Some vector formats can use layers, and Flash recognizes these layers if the
graphic file format is correctly specified. Layers keep graphic elements sepa-
rate from one another.

Reducing path complexity
All vector graphics are made up of paths in one shape or another. A path can be as
simple as a straight-line with 2 points, a curved line with 2 points, or 500 or more
points along an irregular shape or fill. This is why vector graphics are well suited
for noncontinuous tone images such as logos, architectural drawings, clip art, and
so forth. Fonts are also made up of paths. As we’ve seen with Flash-drawn graphics,
you can scale them to any size without any loss of resolution. You learned in the
last chapter that raster (bitmap) artwork cannot scale larger than its original size
without loss of resolution.

Vector graphics are eventually rasterized, so to speak. The vector formatting for
drawn shapes and text is more of a simplified storage structure that contains a
mathematical description (that is, smaller than a bit-for-bit description) of an
object or set of objects. When the vector graphic is displayed, especially with
antialiasing, the video card needs to render the edges in pixels. Likewise, the
PostScript RIP (Raster Image Processor) of a laser printer needs to convert the vec-
tor information, or an EPS (Encapsulated PostScript) file, into printer “dots.”

Note

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 850

851Chapter 31 ✦ Working with Vector Graphics

When you use imported vector graphics in Flash movies, you should minimize the
number of points describing curved lines or intricate outlined graphics (for example,
“traced” raster images). A big problem with creating cool graphics in vector-based
applications such as Illustrator, FreeHand, and 3D Studio Max is the number of points
used to describe lines. When these graphics are imported into Flash, animations are
slower and harder to redraw (or refresh) on the computer screen. In addition, the file
size of the Flash movie grows considerably.

Simplify paths in FreeHand
Complex artwork can be “simplified” in FreeHand. Simplifying reduces the number
of points to describe a path (or a set of paths). To simplify any artwork, select the
paths that describe the object and choose Modify ➪ Alter Path ➪ Simplify (see
Figure 31-1).

Figure 31-1: The Simplify dialog in FreeHand 8
can reduce the complexity of vector artwork.

The slider and/or text field of the Simplify dialog controls how much information is
discarded from the original artwork. Although it might seem tempting to use the
highest setting (10), you may end up drastically changing the look of the original
artwork. See Figure 31-2 for an example.

Figure 31-2: Compare the effects of the Simplify command at different settings.

Although the visual difference between the Simplify settings may not be readily
apparent, the resulting .SWF file sizes are noticeably different. The original art-
work’s .SWF file (when copied, pasted, and exported from Flash 5) was 48.4K.

a) Original artwork b) Simplify "5" c) Simplify "8"

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 851

852 Part VII ✦ Using Flash with Other Programs

The simplified “5” version of the original produced a 31K .SWF file, and the simpli-
fied “8” version resulted in a 29.8K .SWF file.

To see the differences for yourself, check out seashell_normal.swf, seashell_
simplify_5.swf, and seashell_simplify_8.swf in the ch31 folder of the Flash 5 Bible
CD-ROM.

Granted, those are still large .SWF movies, but it does illustrate the file-size savings
that the Simplify command can accomplish.

Optimize curves command in Flash
You can also reduce the complexity of paths within Flash 5, by using the Modify ➪
Curves ➪ Optimize command. This has the same effect as the Simplify command in
FreeHand, with a couple of extra options. Be sure to use the Modify ➪ Break Apart
command before you use the Optimize command — you can’t optimize groups or
symbols. Figure 31-3 shows the effect of maximum smoothing on the seashell_
simplify_5 graphic from the previous section.

Figure 31-3: Flash 5’s Optimize Curves dialog enables you to specify multiple
passes, which means that Flash will optimize the graphic at a given setting as
much as it possibly can.

You can test the Optimize Curves effect on the seashell_simplify_5.fla file, located
in the ch31 folder of the Flash 5 Bible CD-ROM.

Using the Pathfinder window in Illustrator 9
You can use the Pathfinder window in Illustrator 9 to join overlapping paths. Not
only does this reduce the complexity of the path, but it makes the graphic easier
to handle as a group.

On the
CD-ROM

On the
CD-ROM

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 852

853Chapter 31 ✦ Working with Vector Graphics

Select the overlapping paths by Shift+clicking each object. In the Pathfinder win-
dow, select an operation that is suitable for the overlapping elements. In Figure
31-4, the Unite command is used to combine the individual components of the
crosshair into one unified path.

Figure 31-4: Combine paths into single path by using the Pathfinder window.

Tracing complex vector artwork in Flash
Many graphics programs, such as Discreet 3D Studio Max and Adobe Dimensions,
can create some astonishing vector-based graphics. However, when you import
EPS versions of those graphics into Flash, they either fall apart (display horribly) or
add unrealistic byte chunks to your Flash movie. Does this mean that you can’t use
these intricate graphics in Flash movies?

You can try several different procedures with intricate vector artwork, including
using the methods described previously, to make intricate graphics more Flash-
friendly. Depending on the needs of the artwork, you may be able to output small
raster equivalents that won’t consume nearly as much space as highly detailed vec-
tor graphics. Or you can try redrawing the artwork in Flash. Sound crazy and time-
consuming? Well, it’s a bit of both, but many Flash designers spend hour after hour
getting incredibly small file sizes from “hand-tracing” vector designs in Flash.

For example, if you made a highly detailed technical drawing of a light bulb, and
wanted to bring into Flash, you could import the original EPS version of the draw-
ing into Flash, place it on a locked layer, and use Flash drawing tools to recreate
the object (see Figure 31-5).

Many new Flash .SWF tools have been released since Flash 4. Electric Rain’s Swift
3D can simplify 3D models and output .SWF files. We take a closer look at Swift 3D
in Chapter 33, “Working with 3D Graphics.”

Note

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 853

854 Part VII ✦ Using Flash with Other Programs

Figure 31-5: Compare the original artwork of the light bulb (A) to the simplified
version drawn in Flash (B).

Converting text to outlines
Another aspect of vector graphics that you need to keep in mind — especially when
working with other designers — is font linking and embedding. With most vector file
formats such as Illustrator, FreeHand, or EPS, you can link to fonts that are located
on your system. However, if you give those files to someone else who doesn’t have
those fonts installed, then he/she won’t be able to see or use those fonts. Some
formats enable you to embed fonts into the document file, which circumvents this
problem. However, whether the fonts are linked or embedded, you may be unneces-
sarily bloating the size of the vector graphic.

You can convert any text into outlines (a.k.a. paths) in any drawing or illustration
program (see Figure 31-6). In FreeHand 9, select the text as a text block (with the
Arrow Tool, not the Text Tool) and choose Text ➪ Convert to Paths. In Illustrator 9,
select the text as an object and choose Type ➪ Create Outlines.

A) B)

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 854

855Chapter 31 ✦ Working with Vector Graphics

Figure 31-6: Make sure that you have finished editing your text
before converting the text to outlines. The text at the top can be edited,
whereas the text at the bottom (the same text converted to outlines)
cannot be edited.

If you have a lot of body text in the graphic, you may want to copy the text directly
into a Flash text box and use a _sans, _serif, or _typewriter device font. These fonts
do not require any additional file information (unlike embedded fonts) when used
in a Flash movie.

Controlling color output
Flash 5 can only use an RGB color space, meaning that it renders colors in an addi-
tive fashion — full red, green, and blue light added together produce white light.
Whenever possible, use RGB color pickers in your preferred drawing application.
If you use CMYK (subtraction colors), then you will notice color shifts when the
artwork is imported into Flash 5. If you’re using FreeHand 9 or Illustrator 9, be
sure that you specify colors with the RGB color picker; doing so ensures that both
copied-and-pasted objects and exported files will appear as you see them in the
Illustrator workspace. If you’re using Macromedia FreeHand 9, then you have a
wider range of clipboard options.

Setting up preferences in FreeHand
Macromedia FreeHand 9 has controllable clipboard options, accessible via
File ➪ Preferences. In the PC version of FreeHand, click the Import/Export tab of
the Preferences dialog. In the Mac version of FreeHand, click the Export category
of the Preferences dialog. There, you find a Convert Colors To drop-down menu. If
you are using a mix of CMYK and RGB color in a FreeHand document, then choose
CMYK and RGB. However, this may render CMYK artwork differently in Flash 5. To
have WYSIWYG (What You See Is What You Get) color between FreeHand and Flash,
opt to use the solitary RGB option. This option converts all artwork to RGB color
space, regardless of the original color picker used to fill the object(s).

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 855

856 Part VII ✦ Using Flash with Other Programs

Saving in the proper file format
Some vector file formats cannot save artwork color values in RGB space. If you are
using Adobe Illustrator 8 or 9, make sure you specify Illustrator 7 in the Illustrator
document options when saving. If you choose the Illustrator 6 or lower format, then
RGB values will not be saved and color shifts will result. If you are exporting EPS files
from FreeHand 8, use the Setup (PC) or Options (Mac) button in the Export Document
dialog to access the same color options available in the FreeHand Preferences, dis-
cussed previously. Because FreeHand 9 supports direct export to .SWF files, you
should use this route (instead of EPS files) to insure complete color compatibility
with Flash 5. We see more discussion of color space in the next section.

Using FreeHand 9 with Flash
Macromedia’s print and design application, FreeHand 9, adds many features that
make coexistence with Flash 5 much simpler. Actually, as we’ll see, Flash 5 does
most of the work by natively supporting FreeHand files as an import file type. If
you’re not familiar with FreeHand 9, then take a look at its capabilities:

✦ Blending effects that automatically produce intermediate steps between two
pieces of artwork

✦ A Perspective Grid that believably distorts the scale of artwork

✦ Native .SWF export

✦ Preview with Flash antialiased display mode

✦ Transferable symbols that work in Flash 5

This section explores these features in two expert tutorials from leading Web spe-
cialists, Bentley Wolfe and Todd Purgason.

Expert Tutorial: Marrying Flash and Freehand,
by Bentley Wolfe

Bentley was highly recommended to us by Macromedia FreeHand product manager Brian
Schmidt. This tutorial provides an excellent overview of FreeHand and Flash developments,
and teaches you how to use FreeHand’s unique features to integrate FreeHand artwork
into Flash 5 movies.

Why Get Married?
A long time ago, there was FreeHand, which you used to draw vector illustrations. Then,
there was Flash for vector animations. Vectors are vectors are vectors, right? Something like
a line with a point at each end, right?

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 856

857Chapter 31 ✦ Working with Vector Graphics

Well, not exactly. The vectors inside previous versions of FreeHand were built on an engine
dating back to the medieval times of desktop publishing. Although that engine was good
for drawing in FreeHand, it didn’t always play well with others. Because FreeHand’s vectors
were largely designed for PostScript printing, there weren’t usually problems going to print-
design applications such as Illustrator or CorelDraw.

However, when the destination was a newer application such as Flash, it wasn’t always
easy to make the two formats line up correctly. Flash’s drawing engine, an infant in Internet
years, was significantly different than the venerable FreeHand code base. It would have
been natural to assume that two Macromedia vector-based products could swap informa-
tion with one another.

Because of the disparity in the rendering engines, it wasn’t as easy as that. Flash and
FreeHand were in the seventh grade: The boys get along with the boys and the girls get
along with the girls. Both are curious about the other, but nobody knows where to start. So
they stumbled around, copying and pasting vectors into Flash with mixed results, losing our
arrowheads, always having trouble with the dashed lines, trying the EPS and Illustrator
exports — just as awkward as the first seventh-grade dance.

Along comes FreeHand 7, and it’s time to move to high school. FreeHand 7.02 adds the
capability to export .SWF files directly from FreeHand, a step in the right direction. The orig-
inal goal of this development was to enable FreeHand users to use Flash technology, even
if they didn’t own the Flash authoring tool. While .SWF export from FreeHand was an
improvement, there still wasn’t a way to retain FreeHand-based data in Flash. Importing
.SWF into Flash didn’t maintain layering. Groups didn’t map to a single symbol, which
would seem logical. Rather they broke into a zillion small symbols and had to be recom-
bined. Dashed lines disappeared. Some fill types just plain weren’t compatible. Like every
couple, Flash and FreeHand had their share of problems.

The lack of a true interchange format between Flash and FreeHand was the root of the
problem. Flash was designed to export .SWF files, not to import them. The .SWF format was
designed to be as compact as possible for fast streaming playback and quick downloads.
Because .SWF files are the end product of a process, they’re not the ideal format for import
back into Flash (or anything else for that matter). So, odd things happened. However, it was
usually better than the junior high days of copy and paste.

Sooner or later, every application grows up. Along comes FreeHand 9, ready to go off to col-
lege. It still likes Flash, and it’s gotten a bit more sophisticated about exporting .SWF files,
but FreeHand doesn’t open any more doors for Flash.

Don’t lose hope, though, because Flash wants to grow up, too. Flash has decided that it likes
FreeHand best, and those old flames Mr. Clipboard and Mr. EPS file can fade into the back-
ground. Flash wants to get married, and FreeHand is Mr. Right. Flash 5 adds the capability to
directly import the FreeHand file format. This is a huge event! Because we have a major
event worth celebrating, you’d better get some rice so that you have something to throw.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 857

858 Part VII ✦ Using Flash with Other Programs

Continued

The pre-basics
Before we discuss the basic need-to-knows of getting FreeHand to work with Flash after the
wedding, let’s look at something important. Think of this as the wedding night talk. I’m the
bride’s father, you’re the groom. You do want to pay close attention.

If I could telepathically implant one lesson into every user’s head, it would be this: Always,
always, always get the latest patch or updater! It doesn’t matter what the product is, or
what company made it. No software is perfect, and if it’s been a month or two after the
product hit the streets, then it’s likely that some bugs have been found. Luckily, this usually
means a patch exists to fix some of those bugs.

In this case, I’m specifically talking about the FreeHand 9.02 updater for Windows (or the
9.01 updater for Macintosh) available at www.macromedia.com/support/freehand. Why
is this update important? Well, there’s usually a Readme file. That’s where the secrets lie.

“. . . Macromedia Flash SWF export now more accurately autotraces dashes when the Trace
Dashed Strokes option is chosen in the Export Options dialog box.”

“. . . FreeHand page links are now supported when exporting as Flash (SWF).”

See? Some of this won’t affect all of your FreeHand-Flash projects, but if you hadn’t down-
loaded the updater and read the Readme file how would you know?

The real basics
Which FreeHand versions can we import into Flash 5? Well, there is a broad range. We can
directly import FreeHand versions 7, 8, and 9. So, if you’ve got any version of FreeHand
made in the last 4 years or so you should be in good shape. What exactly can we import?
All kinds of good stuff, some of which we had no way of importing into Flash before:

✦ Symbols

✦ FreeHand layers

✦ FreeHand Lens fills (with exceptions)

✦ Gradient fills

✦ Imported TIFF, GIF, JPG, and PNG bitmaps

✦ Blended and composite paths

✦ FreeHand clipping paths

✦ Text blocks as editable Flash text

✦ Arrowheads

✦ Dashed lines (using a little trick)

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 858

859Chapter 31 ✦ Working with Vector Graphics

We can import all kinds of things into Flash from a FreeHand file. However, there are a few
caveats — and it’s important to know what we can’t import:

✦ Fills. FreeHand illustrations can contain many fills that are designed for PostScript
printing and that are built with the PostScript drawing engine. These fills require a
PostScript interpreter to display correctly; Flash doesn’t use PostScript. Consequently,
the following fills won’t import into Flash: Tiled, Custom, PostScript, Pattern,
Textured, and Lens fills (other than simple transparency).

✦ Dashed strokes, Pattern strokes, PostScript strokes

✦ Certain types of fonts, including bitmapped and locked outline fonts

✦ Text effects that don’t preview or export as .SWF

✦ EPS files, which do not preview or export as .SWF

✦ Multiple-layered objects with Lens fills. Lens fills only affect underlying artwork that
exists on the same layer.

Setting the page size in FreeHand
You can simplify your life by setting up the FreeHand page to match your Flash movie. This
makes it significantly easier to position elements when imported into Flash. The easiest way
to do this is to set FreeHand’s ruler measurement to either points or pixels (which are basi-
cally the same for multimedia sizing purposes), and then choose a custom page size that
matches your Flash movie frame size. It’s usually helpful to set the page orientation to land-
scape as well, because most Flash movies are wider then they are tall.

If you choose not to resize the page, then draw in the upper-leftmost corner of the paste-
board, or resize the FreeHand page to match the size of the object after drawing it. Because
Flash uses the upper-left corner of its Stage to position all imported objects, your FreeHand
artwork will map appropriately.

Strokes, fills, and blends
Some of you may be thinking, “Why bother using FreeHand in the first place? I can draw
perfectly well in Flash.” OK, maybe you can — many talented Flash illustrators and animators
manage fine without FreeHand. However, FreeHand can bring a few tricks to the process
that you just can’t do in Flash. Have you ever tried to draw an acute-angle eight-pointed star
in Flash? What about a Mollusk shell? No? Although Flash has a very good natural drawing
engine, some of its drawing tools aren’t particularly sophisticated, which is where FreeHand
comes in. FreeHand has had the benefit of a long development history, and has enhanced
drawing tools for complex illustrations.

FreeHand brings three qualities to the process: (a) the capability to create sophisticated
artwork such as multisided polygons, stars and starbursts, and quick and dirty triangles; (b)
the world’s coolest spirals in any possible shape; and (c) the capability to apply strokes and
fills to that artwork. Sure, you can draw basic shapes with fills and strokes in Flash, but, if
you throw FreeHand into the mix, then you can put vectors into overdrive.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 859

860 Part VII ✦ Using Flash with Other Programs

Continued

After you’re comfortable with FreeHand’s “release to layers” feature, you can even build ani-
mations of these complex images for use in Flash. Let’s walk you through an example:

1. In FreeHand, use the spiral tool to draw a basic spiral (see the following figure). If
you’re new to FreeHand, double-click the spiral tool to set spiral options before
drawing the path. For this particular example, I’ve closed the spiral using the Object
Inspector and given it a gradient fill between two RGB colors (see “Color Conversion”
later in this sidebar for more information).

2. In the preceding figure, we have a basic spiral. Now, clone the spiral so that you have
two of the same (Edit ➪ Clone). Select only the new copy. Double-click FreeHand’s
Rotation Tool. This opens the Transform dialog. Enter 180 degrees in the Rotation
field and click the “Rotate” button. This gives you something unsightly that is similar
to the following figure.

3. Now for the fun part. Select both images by clicking one and Shift+clicking the
other. Choose Xtras ➪ Create ➪ Blend. This creates a blend between the two spirals.
If you’ve never created blends and want to know more about them, you can read
about them in the FreeHand manual.

4. With that blend still selected, choose Xtras ➪ Animate ➪ Release to Layers. Release to
Layers is well documented in the FreeHand manual and online help, so I won’t go
into detail about it here. Basically, Release to Layers puts each step of the blend on
its own layer.

5. Save the FreeHand file, and switch to Flash 5.

Generally, if you’re going through the trouble to animate something in FreeHand,
then you’re going to be using it in a symbol. You could be using FreeHand to create
static vector artwork for Flash, but what fun is that?

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 860

861Chapter 31 ✦ Working with Vector Graphics

6. In Flash 5, choose Insert ➪ New Symbol (Ctrl+F8 or Command+F8). When we import
the FreeHand file, the artwork will go directly into the new symbol. In most cases,
this symbol will be a Movie Clip, but it could be a Graphic or Button symbol, too.

7. While in the Symbol Editing Mode, the first keyframe is ready for some artwork.
Import the FreeHand file (Ctrl+R or Command+R). You should see a dialog similar
to this:

Despite the myriad options available, just look at the Layers section. Remember that
we released all those steps to layers in FreeHand. Therefore, we don’t want every-
thing on one keyframe on separate layers in Flash, at least not for this type of ani-
mation. We want the images to import as a series of keyframes so that we can
animate the blend in our Flash movie.

8. For this example, choose to have each separate FreeHand layer import to a new
keyframe in Flash. All of the keyframes will be on the same Flash layer that was
active or selected before you initiated the import.

That’s it. Once you’ve completed the import, exit the symbol’s timeline (Edit ➪ Edit Movie)
and use this new symbol in your movie. What you should see is an interesting morph
between the original spiral and the final spiral. Of course, you could do a Shape Tween in
Flash that might be similar, but it would be significantly more difficult to build a composite
spiral shape with Flash drawing tools. Through experimentation, you can develop some
interesting effects with FreeHand’s drawing tools.

Color conversion: Be careful
All colors in Flash are described in RGB color space. Flash’s primary presentation mode is
onscreen display. Although the Flash Player now has the capability to print (since later
releases of the Flash 4 Player), Flash movies aren’t designed to see a printing press. On the
other hand, FreeHand was designed for print purposes. It’s likely that you’ll be designing
comps in FreeHand that may be used for both print and Web spaces. Therefore, you’ll ini-
tially be working in CMYK color space.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 861

862 Part VII ✦ Using Flash with Other Programs

Continued

When Flash imports a FreeHand file, all CMYK color items convert to RGB, including any
grayscale bitmaps that you may have in the file. The problem is that this conversion process
isn’t always perfect, and the colors that you see in Flash may not exactly match the colors
with which you started in FreeHand. Usually the Flash colors appear more muted than the
FreeHand colors.

The safest course of action is to convert the colors to RGB in the FreeHand artwork before
you import it into Flash. If you need to keep the CMYK version of the FreeHand file for print
purposes, then do a Save As to preserve the original file. Convert the colors to RGB, save the
new file, and import it into Flash. Voilà, matching RBG colors.

Symbols
Finally, you can create symbols in FreeHand! Symbols in FreeHand are fundamentally the
same symbols that you use in Flash: Create a master symbol and use it as many times as
you like in the document. Each child instance maintains the attributes of the parent symbol.
Making changes to the shape, stroke, or fill of the object(s) within the parent symbol affects
all the symbol instances of the parent. Therefore, multiple-use elements in your FreeHand
document (and Flash movie) can be updated painlessly and in a straightforward manner.

Creating symbols is simple in FreeHand. Unlike Flash, FreeHand has only one symbol type.
Before you create a symbol in FreeHand, you need to draw something: multiple objects,
groups, blends, and so on.

1. Let’s make a symbol that contains a basic black triangle. Turn on the page rulers and
set the zero point (see the following figure). You’ll be using the zero point as the
axis of rotation. In this example, I’ve added two blue guides to help you see where
the zero point is.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 862

863Chapter 31 ✦ Working with Vector Graphics

2. Now, select the black triangle. Open Window ➪ Panels ➪ Symbols and drag the trian-
gle into the Symbol Panel. This creates a parent symbol of the triangle. You may now
delete the original triangle from the Stage.

3. To use instance of the symbol in FreeHand, drag the symbol from the Symbol Panel
and drop it on the Stage. Place the instance of the triangle in roughly the same posi-
tion as it appears in the preceding illustration.

4. Select the black triangle and clone it (Edit ➪ Clone).

5. Double-click the Rotation Tool to open the Transform Panel. We want eight total
triangles in this step. Therefore, we need each triangle to be 45 degrees from the
previous triangle (8 triangles ×45 degrees = 360 degrees). Enter 45 degrees for the
rotation angle. Make sure to set both the x and y center numbers to zero. These
numbers inform FreeHand to use that point (0,0) as the axis of rotation. You’ll see
what I mean in the next few steps.

6. Click Apply in the Transform Panel. This creates the second triangle 45 degrees to
the left of the first.

This is a great time to show you another helpful FreeHand feature, Power Duplicate.
Some of you may know this as Step and Repeat in other programs. In any case, it’s
a feature that Flash doesn’t have. Power Duplicate is best for making repetitive geo-
metric shapes, which can be awkward in Flash.

7. To Power Duplicate, press Ctrl+D (PC) or Command+D (Mac) repeatedly. Each time
you press these keys, another clone is made with the same offset. When you’ve
done that seven times, you should have something similar to the following figure.
Remember that each of these items is an instance of the original parent symbol.

8. Save this file in FreeHand 9 format. Open Flash 5 and import the file. In this case,
you want to choose Flatten for the Layers option.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 863

864 Part VII ✦ Using Flash with Other Programs

Continued

Look at the Flash Library. Notice how the FreeHand symbol came into Flash as a Flash symbol,
and how each triangle imported as an instance of that symbol? As with any other Flash sym-
bol, you can now make changes to the symbol that will affect all the instances. Additionally,
Flash 5 mapped the FreeHand guides into Flash guides. Excellent!

When I published this Flash movie (with just this one symbol), the file size was a miserly
2K. Sure, you could do this in Flash with instances, moving the instances around and rotat-
ing them. However, it could take up to five times longer. Who has time? With a little creativ-
ity using this technique, you can make Flash and FreeHand sing. You’ll be more productive,
you’ll bill more hours, and you’ll be better looking!

Well, OK. Maybe you won’t be better looking, but you’ll definitely be a Flash and FreeHand
guru. Which is better than just a Flash guru, right? After you become comfortable with this
technique, you can very quickly create symmetrical shapes that would have taken much
longer in Flash. When I envision this technique, I think about clock faces and watch dials.
I leave more examples up to your imagination.

You can use power duplicate to create instances, as you saw in this example. However, you
can’t use instances to build a blend. The steps of a blend in a FreeHand file will import into
Flash as separate objects. The final .SWF file will be larger than our previous example.

Layers
The FreeHand Import dialog in Flash 5 has an option for handling FreeHand layers. Direct
importation of .SWF files never allowed us to keep our layer formatting. Now, Flash 5 can
map FreeHand layers into Flash layers. While this may not seem very important, it is
extremely useful. Consistent organization and proper resource management will save you a
lot of time that you might otherwise have invested in converting copied-and-pasted vectors
into symbols and organizing them on your Flash layers.

Lens fills
Lens fills are cool. There’s no other way to say it. Macromedia has pulled off a neat trick
with Lens fills. If you want to apply alpha-channel transparency to a Flash element, what do
you have to do? You have to convert the artwork into a symbol and apply the alpha trans-
parency to the symbol.

As an alternative, try this in Freehand: Make a transparent Lens fill on a closed object. It
doesn’t matter what’s underneath it — just make sure that you don’t use any imported EPS
graphics with this trick. Embedded EPS graphics won’t import into Flash. If you want to use
external graphics, try using a JPEG image. This effect can achieve some amazing results with
a JPEG image. Also, don’t make the combined Lens fill and graphic into a symbol. Save the
FreeHand file and import it in Flash. What happens? Even though we didn’t make the object
a symbol, the Flash import maintains transparency! The transparency remains, just as it
appeared inside FreeHand.

If you try the same effect with the Lens-filled object, a symbol in FreeHand, then you get
another interesting effect. You lose the transparency, but you get a clipping path of the
bitmap that was underneath the object.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 864

865Chapter 31 ✦ Working with Vector Graphics

If you import this FreeHand file into Flash and edit the symbol, you’ll see that the Lens-filled
object has automatically become a mask of the bitmap. Although this might adversely affect
file size, it can be useful to have access to the separated mask.

With the exception of monochrome fills, all of the Lens fill types are supported. Monochrome
fills will not import into Flash 5. However, the Transparency and Magnify Lens fills both work
very well, and provide effects that would more difficult to get in Flash. As with all work
involving complex visual information, watch those file sizes!

Gradient fills
You need to know two tips about FreeHand Gradient fills and Flash: (a) You can use them
interchangeably, and (b) you should use them sparingly. Flash 5 can only handle a gradient
with no more than eight colors. If you use more than eight colors in a FreeHand gradient,
Flash will break up the fill into separate shapes with clipping paths. You’ll get the same
basic effect, but the file size will be much bigger.

Here’s another cool tip. What if you made the world’s coolest gradient in FreeHand, and you
wanted to use it again with other Flash artwork? Import the FreeHand file, and then double-
click the item with the Gradient fill. Open the Color Mixer in Flash. The gradient should be
displayed in the fill pop-up menu. If it’s not showing, then you’ve selected the wrong gradi-
ent or piece of artwork. Access the Color Mixer Panel’s options menu in the upper right and
choose Add Swatch. Now you can reapply that gradient to any other fill in the Flash movie.

Clipping paths
Clipping paths, created using the Paste Inside feature in FreeHand, are directly imported
into Flash. The clipping path comes into Flash as a Graphic symbol containing the clipping
object on a Mask layer and the clipped artwork on a nested layer. If there’s a stroke on the
clipping path, then the stroke will have its own Flash layer above the other two. Remember
that, when working with clipping paths, Flash imports all of the information outside the
clipping path, too! If your Flash movie file size is extraordinarily large after you’ve imported
clipping paths from FreeHand, then clipping paths are probably the culprit. Make sure that
you trim all the areas that won’t be seen in the clipping area before importing the FreeHand
file into Flash.

Although you can create masks in Flash using the new Pen Tool (and Bézier curves),
FreeHand has much better control over what’s inside the path. After you have a workflow in
place, FreeHand can save you time and effort.

Text blocks and preferences
Flash 5 only has one preference option that affects FreeHand import. In the Clipboard tab
of the Flash Preferences dialog is an option for FreeHand Text, a check box named Maintain
Text as Blocks. This option has no effect on FreeHand files imported into Flash. Rather, it
controls what happens when a block of text from FreeHand is pasted into Flash 5. If this
preference is checked, then the text block will paste into Flash as editable text. If it’s
unchecked, the outlines of the letters will be pasted and you won’t be able to edit the text
in Flash.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 865

866 Part VII ✦ Using Flash with Other Programs

Continued

A similar check box in the FreeHand Import dialog performs the exact same function. If you
want to preserve editable text boxes when importing a FreeHand file, check this box.

Those crazy dashed lines
In the past, we could never manage to get dashed lines from FreeHand into Flash. Flash has
dashed lines and FreeHand has dashed lines. So, why couldn’t we import them? Flash 5
fixed the problem. Flash 5 automatically converts dashed lines in a FreeHand file into a
group of outlined paths. Even though it doesn’t become a Flash dashed line, it does look
like one.

Achieving the impossible with the Perspective Grid
Now here’s a trick that FreeHand can do that Flash cannot do: FreeHand can build vector
artwork with true perspective. This is a new feature in FreeHand 9 and is thoroughly cov-
ered in the FreeHand documentation. This type of artwork isn’t particularly useful for ani-
mation because there is no way to automate the process, and blends on a Perspective Grid
cannot be released to layer. However, you can create some amazing singular images for use
in Flash, which doesn’t have a Perspective Grid. See the following figure for some examples.

“Flash found me. I was on the tech support teams for FreeHand and Director when Macromedia bought
Futuresplash. After years of phone support, I was offered the opportunity to become a unique online sup-
port evangelist, focusing only on Flash . . . it’s been pretty interesting. Just for the record, my work would
be nearly impossible without Colin Moock’s moock.org, flashkit.com, Amanda’s virtual-fx.net,
Chrissy Rey’s flashlite.net, and were-here.com.” Which explains why Bentley can’t enumerate the
sites he’s worked on. By helping Flash users online, he’s “made contributions to thousands of Flash sites.”
When Bentley was finishing high school, the Star Wars series was still a major force and, in “the coal mine
regions of northeastern Pennsylvania — Hazleton, to be exact,” he recalls “listening to John Cougar’s
American Fool a lot. (Of course, it’s embarrassing now to admit I listened to that more than the Clash.
What was I thinking?)” Now an established family man in Richardson, Texas, Bentley Wolfe’s single most
favorite thing is to, “Ride anything with two wheels. I’m a full-time single father of three girls 7, 9, and 10.
They all ride motorcycles, too. Remember: Parenting is a tough job, but it’s an easy job to get.”

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 866

867Chapter 31 ✦ Working with Vector Graphics

FreeHand 9 can do more than just create vector artwork more quickly than Flash 5.
With FreeHand, you can create mockups and presentation boards for Web clients
and have Flash-ready artwork ready for interactive development. The next tutorial
by Todd Purgason explains this concept more thoroughly.

Expert Tutorial: Streamlined Workflow: FreeHand 9
and Flash 5 by Todd Purgason

Todd contributed to the last edition of the Flash Bible. Because he is a leading FreeHand-
Flash authority with award-winning Flash design work, we invited him to add his workflow
wisdom to this edition.

Flash 5 is a powerful tool for developing intelligent, sophisticated Web sites and interactive
environments. But as most of us in the digital design arena know, no single tool does it all.
We’ve all mastered many applications that enable us to design and produce the images and
interfaces that are imagined in our mind’s eye. The old cliché, “the right tool for the job,”
holds just as true in the digital arena as it does in your grandpappy’s garage. By adding
FreeHand to your Flash toolbox, you go from having four drawers of specialized tools to
having eight drawers of specialized tools. FreeHand is an extremely powerful illustration
and typography tool that brings more than 10 years of research, design and refinement to
all your Flash projects. By tapping the strengths of FreeHand, your Flash 5 applications can
be that much more effective.

What advantages can FreeHand give to Flash 5 projects?
For starters, familiarity: Flash 5 is a new tool with a new paradigm for creating vector-
graphic artwork. It works with vectors but often feels like a raster-based authoring applica-
tion. Many of us are very used to objects with lines, curves, points, and fills that are the
foundations of applications such as FreeHand and Illustrator. We’ve become quite proficient
in this working model, and setting these skills aside would be a terrible waste. FreeHand
brings much more than familiarity to the table. It has very powerful tools for illustration
and — my personal favorite — typography.

A huge benefit of using FreeHand in the Flash design process is conceptualizing a design.
Using FreeHand’s multipage format, you can lay out moments in time or keyframes to visu-
alize and study the interface and motion graphics that you will be executing in Flash. This is
a big advantage of using FreeHand, instead of Illustrator, for your conceptualizing needs:
Illustrator is limited to one-page documents. In addition, Macromedia has spent a great
deal of time and effort on features such as the Animate to Layer Tool and .SWF export in
FreeHand, which enable FreeHand to live symbiotically in the same design space as Flash.

I think that the greatest asset that FreeHand brings to the Flash table is print. Ooooo . . . that
nasty word: the old medium of print. Don’t we live in the paperless society yet? Not quite.
While developing your design in FreeHand, you’re actually doing production and composi-
tion at the same time.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 867

868 Part VII ✦ Using Flash with Other Programs

Continued

After you have visualized an animation over several pages in FreeHand, it is a very simple
task to bring those pages together onto a large format presentation board that you can out-
put to a printer. These presentations blow the clients away! After you get approval, it’s on to
Flash, where you breathe life into the design that you’ve been carefully planning in
FreeHand. If your clients are like mine, they’ll come back and want you to do print promo-
tions, ads, and even identity materials based on the Web site. You already have all the print
assets developed in your page compositions. What a bonus! I just hate getting more billable
work, don’t you?

Developing a process model
Because the complexity of this process would require several chapters, I walk you through
the key steps, using visuals from one of my recent projects, an in-house marketing project
titled “The Process.” It’s a reflection of our creative philosophy at Juxt Interactive. Visit this
project at www.juxinteractive.com/theprocess.

Design
Many Flash projects are orchestrated over one or more layouts that are called scenes. The
term scene is appropriate because oftentimes they are just that — scenes in a Flash movie.
After I’ve developed a concept in my head and scribbled sketches on paper, I go to
FreeHand and start sketching out scenes. The following figure is an example of such scenes.

The Process scene, as seen in a Web browser by using the Flash
Player plug-in.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 868

869Chapter 31 ✦ Working with Vector Graphics

Next, I start building moments in time, or keyframes, that bring elements (characters) into
the scene to be laid out and experimented with. I typically start by developing a moment in
time that is very heavy visually — often the end of the first major scene. Once I am happy
with the scene and the way the elements or characters are working together, I duplicate the
page in FreeHand. Then, working with the duplicated page(s), I experiment with the rela-
tionships of all the characters. During this step, I’m mindful of the motions that will get me
to and from each moment in time. I continue to develop a number of keyframes that form
the framework of what I intend to do. The renowned film title designer, Kyle Cooper, of
Imaginary Forces, has been a great inspiration to me. He once said, “I think that, in the end,
I should be able to pull any frame out of my title sequences and it should be able to stand
on its own as an effective illustration.” By studying my design as snapshots in time in
FreeHand I hope to ensure that the motion won’t destroy the concept, but rather, that it will
enhance its effectiveness.

Realness of presentation
Now, I have many pages that help me understand just how to pull this project off. I take
those keyframe pages and lay them out onto a large format sheet that will be printed on
our large format HP Design Jet at roughly 30" ×40". Many people ask me why I continue to
print in this day and age. I will tell you why: communication. Half of the job of design is sell-
ing the design you create, especially if you are asking the client to take risks pushing the
envelope that they are accustomed to. A digital presentation has many advantages, but so
does a good old tangible printed piece.

We have developed a presentation process at Juxt that I affectionately call the 2 ×4
approach. It is based on the old aphorism, “How do you get the attention of a donkey? Hit
him over the head with a 2 ×4.” Don’t get me wrong — I’m not insulting any clients, but the
point is to make an impact. When we go into a presentation, we intend to exceed the
client’s expectations and to make the client very happy. With a presentation board, I can
show many keyframes or screens simultaneously as I walk the client through the anima-
tion, explaining the process of the motion or the interaction of the interface without, at this
early stage, committing the resources to create an actual working prototype.

However, as a communication tool, the advantages are far greater than saving time. Here’s
why: The digital medium is abstract, whereas print is tangible and real. With a presentation
board, the clients can absorb the design when it is all laid out for them. They can see how
their brand is working across the piece. Because the print piece is so very tangible, they can
grasp the wholeness of it — which means that they can take ownership of it emotionally.
But most importantly, it communicates to the client that you are good at what you do.
Consequently, they’ll have more faith in the decisions that you’ll make for them during the
process of creating the project. Refer to the following figure.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 869

870 Part VII ✦ Using Flash with Other Programs

Continued

Here’s an example of the presentation board, which is used as a
printed presentation for clients.

Instant changeability
So you’ve finished presenting the project, your client is sold on your design, but then his
partner walks in and says, “Eww . . . I just hate that green.” You try to explain its purpose and
the importance of that color to the design, but he won’t budge. If you’d completed a proto-
type in Flash, you would have to go back and spend many hours tediously changing that
green to tan. But because you laid it out in FreeHand, you can change that green to tan
across the entire piece — in about 5 seconds. You simply select the new tan color in
FreeHand’s Web-Safe Color Palette, drag and drop it on top of the banished green in the
color list, and voilà, every instance of the green is now tan. No matter where there were
green lines, files, patterns, text, or colored bitmaps, all are now tan.

Before you have time to gloat, the client’s graphics guru tells you that you were given the
old corporate design standards manual. Instead of Franklin Gothic (the font you used on 75
percent of the typography), you are supposed to be using Meta Plus. Well, because you still
have all your pages in FreeHand, you can simply use the graphic search-and-replace feature
to instantly change every bit of Franklin Gothic to Meta Plus. After a few minutes of double-
checking kerning effects, you are back to where you started. Now go ahead and feel proud
of yourself. Your client will love that these changes won’t cost the company a dime.

Moving artwork from FreeHand to Flash
You have four ways to get your artwork from FreeHand to Flash: the .SWF export feature from
FreeHand, copy-and-paste, drag and drop, and now — in Flash 5 — you can open FreeHand 9
files directly in Flash.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 870

871Chapter 31 ✦ Working with Vector Graphics

Using the .SWF export for static Flash movies
Opening Freehand files directly into Flash 5 is very convenient because it retains a good deal
of structure. However, the .SWF Export feature is still a very good method for outputting
FreeHand files as Flash movies, because it not only creates the most optimized result, it also
does much of the tedious work for you. For instance, if you have a tinted black-and-white
TIFF image pasted inside a circle shape in a FreeHand drawing, you can export an optimized
.SWF movie. When you import that .SWF file into Flash, your image will open as a Flash
bitmap image with a mask of the circle shape.

You can access the .SWF Export feature by choosing File ➪ Export (Shift+Command+R or
Shift+Ctrl+R), and selecting Flash (.SWF) (PC) or Flash .SWF (Mac) in the Save as Type (PC)
or Format (Mac) drop-down menu. Click the Options button (Mac) or the Setup button (PC)
to access the conversion properties used for the Flash .SWF file (see the following figure).

The Export Document dialog gives you access to the .SWF file settings by clicking the
Options button (Mac) or Setup button (PC). Note that you can only choose Flash 3 as the
.SWF version format, which is perfectly fine for Flash 5 artwork. The Flash 5 .SWF format has
not changed any artwork specifications that were used in Flash 3 or 4.

In this section, we output a set of FreeHand objects as the basis of a Flash scene. Before you
export a FreeHand document as a Flash file, you need to prepare the FreeHand artwork for
optimal export. In the FreeHand file, select all the objects on a “moment in time” page that
has the scene completely built and some of the elements or characters on the stage. Copy
that page and paste it into a new FreeHand document, aligning the upper left-hand extents
of objects with the upper left-hand extents of the page. If you have some complex typogra-
phy elements with special kerning as well as body text, you will want to select the illustra-
tion text elements and convert them to paths using the Text ➪ Convert to Paths command.

You will lose kerning of text if you export with the Maintain blocks option enabled. Always con-
vert type elements that use special kerning or FreeHand-specific text effects. If you do not have
body text, I recommend setting the text option of the .SWF Export dialog to Convert to Paths.
This converts the characters to paths and creates symbols of each character in the process.

Now access the Flash file properties in the Export Document dialog. Because you are
exporting a particular moment in time, turn off the Animate Pages and Animate Layers
options in the Animation setting. Because this export is a transition from FreeHand to Flash
and not a final file, you will want to eliminate any file degradation by setting the Path
Compression and Image Compression drop-down menus to None. Export the file import it
into Flash 5.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 871

872 Part VII ✦ Using Flash with Other Programs

Continued

Once in Flash, you will want to go through a process of organizing your file and optimizing
the imported artwork. The objects exported from FreeHand come into Flash as a group —
often, objects are in nested groups. You need to move key elements to separate Flash lay-
ers. As you do this, ungroup the objects and create logically named Flash symbols out of
them. After the scene is organized with the objects regrouped as symbols and arranged on
their own layers, you are ready to animate.

Using the .SWF export for animating Flash movies
Another avenue for small simple animations is to use FreeHand’s Release to Layers process
to build a frame-by-frame animation in Flash. Try this process for yourself by following these
steps:

1. Create a circle and a square in FreeHand. Keep some distance between the two
objects.

2. Select both objects and blend them together using the Modify ➪ Combine ➪ Blend
command (Shift+Command+B or Shift+Ctrl+B), or Xtras ➪ Create ➪ Blend. Open the
Object Inspector window. With the blend selected, change the Number of Steps
value to 30 steps.

3. Select Xtras ➪ Animate ➪ Release to Layers. This releases each blend step to a
unique layer.

4. Choose File ➪ Export, and access the Flash .SWF options. Check the Animate Layers
option, and set the Frame Rate to 15 fps. Click OK and export the .SWF file.

5. Open Flash and import the .SWF file. You will see 30 keyframes in the Flash time-
line, each containing a step in the blend (see the following figure). Although this is a
cool trick, this is a frame-by-frame animation, which results in larger file size than if
this same animation were developed within Flash 5.

This FreeHand document shows the outlines of the two individual
shapes, as well as the outlines of the 30-step blend between them.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 872

873Chapter 31 ✦ Working with Vector Graphics

Author’s Note: Although the Release to Layers function can be a quick way to produce
shape-morphing animations, it’s not necessarily the best method. Prior to Flash 3, this fea-
ture was extremely useful, because shape morphing with hints was not supported within
the Flash authoring environment — but now, this kind of work is best handled within Flash,
using shape morphing and hints. That’s because of the file size consequences of frame-by-
frame animation.

General guidelines when using the .SWF export from FreeHand
After you become familiar with the process of exporting artwork to Flash, you’ll discover
that it’s relatively simple. However, you want to keep in mind some guidelines:

✦ If you are using Flash, you must set the Import/Export tab (or the Export category
in the Mac version) of the FreeHand Preferences dialog to use RGB color conversion
(in the Convert Colors To drop-down menu). If you fail to do so, unexpected color
shifts appear in your FreeHand and Flash artwork.

✦ When exporting .SWF files from FreeHand, do not include large amounts of body
text. Recreate the body text (for example, copy and paste the text into a text box)
in Flash.

✦ Remember that elements from FreeHand will be put into groups, often stacked or
nested within other groups. If you can’t edit an element, ungroup it or break it apart.

✦ Organize your FreeHand artwork into logical Flash layers. Develop a consistent sys-
tem that you and others on your team can recognize and implement.

✦ You must be using FreeHand 8.01 or greater to export Flash .SWF files.

Opening FreeHand files directly into Flash 5
Macromedia has invested a lot of development time to its quest to create a seamless work-
flow between FreeHand 9 and Flash 5 — and it shows! The result is that it’s much easier and
more efficient to use these applications together. The best example of this workflow is the
ease of copy and paste and drag and drop between FreeHand 9 and Flash 5. (These pro-
cesses, which in the past only worked in the most optimal environment, now work in any
environment.)

Caution: If you plan to open your FreeHand files directly in Flash, be aware of the following
issues while working in FreeHand: Use symbols in FreeHand to start the optimization pro-
cess. Only use Type 1 PostScript fonts. You may have problems with True Type Fonts. Only
use image formats supported by Flash — JPG, PICT, BMP, and PNG.

With the recent release of FreeHand 9, followed by the introduction of Flash 5, the starting
point for Flash development and concept design is more firmly grounded in FreeHand. For
example, FreeHand 9 introduced symbols, which function much like symbols in Flash.
Consequently, symbols that are created in Freehand 9 will be maintained — along with their
layers and guides — when the FreeHand file is opened in Flash 5. Let’s take a look at just
how this works, as it really is very simple.

1. Open a new Flash file and set the movie size to match the page size of the
FreeHand file that you will be importing.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 873

874 Part VII ✦ Using Flash with Other Programs

Continued

2. Use File Í Import to select your Freehand 9 File.

3. A dialog appears (see the following figure) with a number of options to control how
you want your file translated. Select the desired options and click OK.

The new Flash 5 Freehand Import dialog

4. Now that you have your FreeHand artwork in Flash (intact and organized just as it
was in the Freehand), you are ready to develop your Flash project.

In summary
Starting your Flash project by using FreeHand gives you huge advantages that won’t detract
from Flash as a tool. Instead, FreeHand can enhance your understanding of animation and
interactive concepts. With FreeHand, you’ll have a fast, powerful tool to study your design
and develop it, without investing countless hours in work that may or may not make the
final cut. Furthermore, you will have fantastic print deliverables to sell your design
approach. For me, this is the icing on the cake — I have print-ready materials if the client
needs anything from the FreeHand concepts. That means I don’t have to create my artwork
or designs twice — which means that I have more time to dedicate to design.

A native Southern Californian, Todd Purgason is the principal of the highly regarded, award-winning
Juxt Interactive. Juxt Interactive’s portfolio includes these Web sites: www.billabong-usa.com, www.
omniskywireless.com, http://shorn.com, and http://lundstromarch.com. Other Web sites
are listed at www.juxtinteractive.com.

Todd recalls the album, Queen is Dead, by the Smiths, as a notable relic from his final year of high school.
His single most-favorite thing to do is to “hug my two little girls.” He also enjoys spending time with his wife,
designing, playing volleyball in the sand, and reading. Todd first saw Futuresplash in 1996; but when
Macromedia bought it, he said he “knew what would happen, so I dove in head first.”

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 874

875Chapter 31 ✦ Working with Vector Graphics

Exporting Artwork from Illustrator
You can also repurpose Adobe Illustrator artwork to use in Flash 5. If you use Adobe
Illustrator 9, you can export your artwork for Flash as:

1. EPS format (.EPS file)

2. Adobe Illustrator format (.AI file)

3. Flash format (.SWF file)

If you use Illustrator 8, then you can still export artwork as .SWF files if you down-
load and install Macromedia’s free Flash Writer plug-in, which is available at www.
macromedia.com/support/flash/download. Depending on the nature of your
artwork, you may choose to use any of the three file formats listed previously.
You’ll see examples of using layered FreeHand and Illustrator files later in this
chapter. For most purposes, you will want to export directly to the .SWF format
from Illustrator.

Using the Macromedia Flash Writer plug-in
Shortly after Flash 4 was released, Macromedia wrote a Flash Writer plug-in for
Illustrator 8 that enabled the direct export of .SWF files. This free download from
the Macromedia Web site bypasses many problems with using .EPS and .AI files in
Flash 4 and 5. Notably, the Flash Writer plug-in can convert EPS blends into Flash
gradients. After you download the plug-in from Macromedia, you’ll receive an e-mail
with a serial number so that you can run the installation on your system. To export
.SWF files in Illustrator 8, follow these steps:

1. Run the Illustrator application and open your artwork file.

2. Access the Export command in the File menu, and select Flash Player .SWF in
the Format drop-down menu of the Export dialog. Select a folder or directory
to store your .SWF file, and type a name for the file. Make sure you specify
.SWF at the end of the filename. Click Save.

3. In the Flash Writer dialog (shown in Figure 31-7), select the options for your
.SWF file. The dialog contains these options:

• Image Settings: These options control the compression of any placed
bitmaps in your Illustrator file. We recommend setting the compression
type to JPEG (lossy) at Medium or Medium-High quality, and the dpi set-
ting at 72 to reduce file size.

• File and Objects: Use these options to set the Flash version (2, 3, or 4),
and to control how the artwork structures are mapped to Flash gradients
and frames. If you’re not planning to bring the .SWF back into Flash for
further editing, you’ll want to enable the Export File as Protected option.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 875

876 Part VII ✦ Using Flash with Other Programs

You can also choose to export each layer of your Illustrator document as
a unique .SWF file, using the Export Layers as Separate Files option. The
remaining options determine how Illustrator artwork translates into Flash.
If you are using Gradient Meshes, Patterns and Brushes, Text Objects or
Chart Items, then enable them as needed.

• Movie Size: Usually, you’ll want to export the .SWF to match the size
of the artwork on the page. By default, the Match to Content option is
selected. To output the .SWF with the dimensions of the page layout,
select Preserve Artboard Bounds. If you want a border to appear around
the edge of the Flash movie frame, then select Add Border to Content.

Figure 31-7: The Flash Writer export settings

4. Click OK, and you now have a new .SWF file. You can import the .SWF file into
an existing Flash movie, or publish it on your Web site.

Again, the Flash Writer plug-in is available only for Illustrator 8. If you want to
export .SWF files from Illustrator 9, proceed to the next section.

Be sure to read the help files that install with the Flash Writer plug-in. You
can access these HTML files by clicking the Help button within the Flash Writer
dialog. Among other guidelines, the Help documents indicate that some text
settings, such as leading, kerning, and tracking, will not export properly with
the Flash Writer plug-in. You should convert your text to outlines before using the
Flash Writer plug-in if you alter any of these text settings.

Tip

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 876

877Chapter 31 ✦ Working with Vector Graphics

Using .SWF Export from Illustrator 9
A new feature of Adobe Illustrator 9 is the capability to export .SWF files without
the use of an additional plug-in. The options for the Flash Format are nearly identi-
cal to the Macromedia Flash Writer plug-in, with some important additions. To
export a .SWF file from Illustrator 9, follow these steps:

1. In Illustrator 9, open your Illustrator or EPS file.

2. Select Export from the File menu, and choose Flash (.SWF) from the Format
drop-down menu. Type a name for your new .SWF file, and choose a folder to
store the file.

3. In the Flash (.SWF) Format Options dialog (shown in Figure 31-8), you can
choose how you want your artwork to export. With the exception of choosing
Baseline (Standard) or Baseline Optimized for JPEG compression, the Image
Options are nearly identical to those of the Image Settings in the Flash Writer
plug-in (see previous section). The Export options have these settings:

Figure 31-8: Flash Format Options in Illustrator 9

• Export As: The main addition to Illustrator 9’s .SWF export is the Export
As drop-down menu options. If AI File to .SWF File is selected, all of your
artwork will appear on one keyframe and one layer in the Flash movie.
AI Layers to .SWF Frames will export each layer as separate sequential
keyframes on the Flash movie timeline. If this option is selected, then
you can enter a Frame Rate as well. AI Layers to .SWF Files exports a
separate .SWF file for each Illustrator layer.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 877

878 Part VII ✦ Using Flash with Other Programs

• Frame Rate: As mentioned in the Export As section, you can specify a
frame rate for your .SWF animation if you chose the AI Layers to .SWF
Frames option. By default, this option is 12 fps. For faster animations,
enter a higher frame rate.

• Auto-create Symbols: This setting converts each piece (or group) of
Illustrator artwork into a Flash symbol that can be accessed from the
Flash Library. Use this setting if you want to import the .SWF file into
Flash for further editing and for reuse in other Flash movies. This feature
will add a duplicate keyframe for each symbol when imported into Flash.
As odd as this may seem, it’s necessary for Flash to recognize the sym-
bols on import. Make sure that you remove the second keyframe before
you publish your final .SWF from Flash 5.

• Read Only: To prevent your .SWF file from being imported into the Flash
authoring environment, enable this check box.

• Clip to Artboard Size: This option forces the .SWF’s movie dimensions
to match the page size of your Illustrator document, even if your artwork
doesn’t occupy the whole page.

• Curve Quality: This setting enables you to specify the accuracy of
paths exported from Illustrator. Higher settings (up to 10) result in better
accuracy but larger file sizes. Lower settings produce smaller file sizes,
at the expense of line quality. We recommend that you use the default
setting of 7.

4. Click OK, and Illustrator exports a new .SWF file. You can use the new file in
another Flash movie or publish it to the Web.

Replacing Blends with Flash Gradients
If you’re using a drawing application that doesn’t support .SWF export, then you
can still work around EPS blends in Flash 5. Replacing externally rendered “blends”
with Flash gradients, an old trick among 3D Flash designers, drastically cuts down
on Flash movie (.SWF) file sizes. Unless you’re using a program that supports Flash
gradients in .SWF export, gradients or blends created in drawing, illustration, or 3D
programs will not be converted to Flash gradients when the graphic(s) are
imported into Flash.

Use the 3Dgraphic.eps file, located in the ch31 folder of the Flash 5 Bible
CD-ROM, if you need a sample image for the following steps.

Because the vast majority of applications do not render Flash-style gradients, it’s
up to you to decide to accept the file size “weight gains” of shaded blends or to
recreate the blends with Flash gradients after the artwork has been imported into

On the
CD-ROM

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 878

879Chapter 31 ✦ Working with Vector Graphics

the Flash authoring environment. Here’s the general process for replacing exter-
nally created blends in Flash:

1. After the artwork has been rendered as an EPS or AI file, open Flash 5. Create
a new graphic symbol and open this symbol in the Symbol Editing stage.
Import the EPS graphic into the first frame of the symbol.

2. Break apart (Command+B or Ctrl+B) or ungroup the imported vector artwork
to the point where you isolate the blend separately from the rest of the graphic.
If you break apart the imported vector graphic, then it should be reduced to
“symbol” parts and groups in one step as seen in Figure 31-9. Note that Flash
will convert EPS blends to symbols (accessible from the Flash Library). These
symbols will contain a mask layer and a blend layer.

Figure 31-9: When the Break Apart command
is applied to the imported graphic, you can
access the individual groups within the graphic.

3. Access the timeline of each symbol that contains a blend, and erase the
“blend” graphics. Keep the original Mask Layer intact, but replace the Blend
Layer contents with a Flash gradient. You may need to make a three- or four-
color gradient, and use the Transform Fill modifier of the Paint Bucket Tool
to modify the direction and size of the gradient.

Refer to Figures 31-10 and 31-11 for more details.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 879

880 Part VII ✦ Using Flash with Other Programs

Figure 31-10: Double-click a selected symbol to enter Symbol
Editing Mode. Replace the blend in the lower layer of the
symbol with a Flash gradient.

Figure 31-11: The Flash version of the blended EPS graphic

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 880

881Chapter 31 ✦ Working with Vector Graphics

When you are done replacing each blend’s symbol with a Flash gradient, you’ll have
a better looking (and slightly smaller) Flash movie. If you are working with multiple
imported vector graphics that have blends, you’ll end up with much smaller
Shockwave Flash movies — which means Web visitors will spend less time waiting
to see your movies.

Remember that gradients created in Macromedia FreeHand 8.0.1 can be directly
exported to .SWF files as Flash gradients. FreeHand’s transparent colors will also
convert to Flash alpha colors.

Using Layered FreeHand, EPS, or
Illustrator Files

A handy feature of many popular illustration programs is support for layers. Just
like layers in a Flash movie (.FLA file), layers in illustration programs enable you to
keep individual groups of graphics separate from one another. A simple technique
with animating vector graphic files is to animate or tween each layer separately in
the Flash authoring environment.

A quick example of an easily converted illustration movie is a business card. If you
have laid out any promotion materials in FreeHand or Illustrator and have kept the
elements separated by layers, then you can create an interactive business card.

You can use the sample business card, businesscard.fh9 or businesscard.eps, in
the ch31 folder of the Flash 5 Bible CD-ROM for this exercise.

1. Create a layered graphic in FreeHand or Illustrator. Before a new element is
created, make a new layer for it.

2. If you used extensive text controls (such as kerning, leading, tracking, and
so on), then convert the text to outlines (or paths).

3. Save the layout as a FreeHand file, an EPS file, or an Illustrator file. If you have
used RGB colors in an Illustrator document and want the colors to appear the
same in Flash 5, make sure you save it as an Illustrator 7 file; artwork saved as
an Illustrator 8 or 9 file may not import correctly into Flash. Because Flash 5
supports direct import of FreeHand documents, we recommend that you save
artwork as a FreeHand 9 document (.FH9 file).

CMYK colors shift when imported into the RGB color space of Flash. Moreover,
some masking and cropping information (for bleeds) may not be interpreted by
Flash.

4. Import the FreeHand, .EPS, or .AI file into Flash 5. You may want to create a
new scene or symbol to contain the imported graphic(s). Otherwise, the lay-
ers from the imported file will be stacked on top of or below your current lay-
ers. See Figure 31-12 for reference.

Caution

On the
CD-ROM

Tip

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 881

882 Part VII ✦ Using Flash with Other Programs

Figure 31-12: When a layered .EPS or .AI file is
imported into the Flash, the layers are converted
to Flash layers.

5. Even though Flash recognizes the layers in the .EPS or .AI file, it will not group
elements on each layer. So, select any one layer and lock the others. Select
everything on the active unlocked layer (Command+A or Ctrl+A) and group it
(Command+G or Ctrl+G). Alternatively, you can convert the selection into a
symbol for easier manipulation later. You need to make button symbols for
any element that you want to use interactively (such as clicking the name to
e-mail the person, and so on). Repeat this step for every layer.

6. Now add any Flash tweens or actions to the groups or symbols in each layer.
At this point, continue creating a full Flash movie with other components, or
export a Flash movie (.SWF file).

As you can see, in just six straightforward steps, you can create an interactive busi-
ness card that can be put on a floppy disk or in an e-mail. Whenever you’re develop-
ing complicated layered work in an illustration application such as FreeHand or
Illustrator, you can take advantage of those layers in Flash.

Check out the completed interactive business card, businesscard.fla or businesscard.
swf, located in the ch31 folder of the Flash 5 Bible CD-ROM.

On the
CD-ROM

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 882

883Chapter 31 ✦ Working with Vector Graphics

Going Wild with Expression
Creature House owns the vector-image creation application called Expression,
which was formerly owned by MetaCreations. Expression is similar to Painter, with
the exception that it works with vectors, not bitmaps. At the time of this writing,
Expression 2 was near the end of its beta phase. Arena Reed, an expert whose
Painter tutorial is featured in the previous chapter, shows you how this amazing
program can work with Flash .SWF files.

Expert Tutorial: Vector Painting: Using Expression 2
with Flash, by Arena Reed

Arena is quite fond of her Wacom Intuos tablet. Most illustrators and animators prefer to
work with tablets for computer-generated artwork. Many applications, including Flash 5,
provide support for pressure-sensitive input devices such as pen tablets.

What is Expression?
Expression is a sophisticated and unique vector-based painting tool that can enhance a
Flash project with imagery that has an artistic look that differs from other vector-based art-
work out there. That’s because Expression is a painting application that utilizes Skeletal
Stroke technology, which gives an artist the ability to paint a single, pressure-sensitive
stroke that’s based on a more complex image such as a beautiful brush stroke, a flame, a
biological structure, or other intricate forms (see the following figure). Skeletal Strokes may
contain multiple views that will export as an animation to the Flash (.SWF) format.
Expression features a suite of interesting shape-creation tools that are much more fun than
the usual pen tool (which it also has). Expression also enables you to automatically assign
motion and color behaviors to objects that can be controlled by mouseover states when
exported to the Flash format.

The theme I’ve chosen for this tutorial is plankton. Often, the art we create for the Internet
is like plankton, because the Internet is such a vast and ever-changing sea of information.
(In fact, our word, plankton, derives from the Greek plankthos, which means adrift. It was a
common epithet for a wanderer, such as Odysseus. — jwl)

Author’s Note: You can find assets and examples for this tutorial in the ch31 folder. In the file,
planktonAnimation.xpr, there are examples of objects that have Flash motion settings applied
to them, and the result of these behaviors are visible in the file, planktonAnimation.SWF.

Creating images with Expression
Painting with Skeletal Strokes is the heart and soul of Expression. To paint with skeletal
strokes, select the brush tool and begin painting with different strokes from the Stroke
Warehouse. Make sure to explore all of the different categories within the Stroke Warehouse.
Skeletal Strokes can either emulate the kind of brush strokes created by a paintbrush, or they
can contain a graphical image such as a fish or a pattern (see the following figure).

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 883

884 Part VII ✦ Using Flash with Other Programs

Continued

In the planktonAnimation.xpr example, all of the planktonic creatures were created either
with a single brush stroke or a couple of primitive shapes.

An image that was created by drawing two circles with a skeletal stroke.

Each image was created with a single brushstroke that references a more complex
image.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 884

885Chapter 31 ✦ Working with Vector Graphics

Expression also features unique drawing tools for creating vector elements (see the follow-
ing figure). Using the B-Spline Tool is like drawing with a piece of elastic string that curves
between the points you set. It’s a great tool for quickly and easily creating smooth, organic
shapes. The PolyLine Tool is great for creating sharp, clean shapes with curved accents.
Expression also has the standard vector-drawing tools, such as the Pen Tool, which draws
with the familiar Bézier curve.

Expression has unique drawing tools, such as the B-Spline and PolyLine tools.

Creating your own Skeletal Strokes is easy. All that’s involved is creating the image that you
want to paint with so that it is on its side (sideways), selecting it, and defining it as a stroke.
In this manner, you can turn just about anything into a skeletal stroke. Skeletal strokes can
be composed of bitmap images or vector images, including text. In the planktonAnimation
example, the text Creating Plankton with Expression was turned into a Skeletal Stroke to
give it the effect of varied width and rotation along a path. Follow these steps to create a
Skeletal Stroke:

1. Draw an object from which you want to create a stroke.

2. Select the object and proceed from the menu bar, Stroke ➪ New Stroke Definition.

3. Make sure that the object fits neatly within the boundaries of the red box and that it
is oriented to be in line with the red arrow in the center of the box.

4. Press the Define Stroke button at the lower-left hand corner of the Stroke Definition
Window (it looks like a little dashed arrow).

5. Name your stoke and categorize it.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 885

886 Part VII ✦ Using Flash with Other Programs

Continued

6. Finally, use your new stroke by selecting the Paintbrush and painting with it. If it
appears too thin, use the Node Tool to increase it’s width by dragging the width
handle at the head of the stroke.

The following figures provide an example of a stroke definition and a brushstroke that uses
that definition.

Here’s an example of a Stroke Definition.

This is the resulting brushstroke.

A special case of a skeletal stroke is a multiview stroke. Multiview strokes add variety to an
illustration, or they become an animation when exported to the Flash .SWF format.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 886

887Chapter 31 ✦ Working with Vector Graphics

To add views to a stroke, simply open an existing stroke, add a view to the top bar of the
stroke definition window by pressing the + button, and then alter the image to create the
additional view. The amoebalike creature at the bottom right-hand corner of the plankton
Animation was created by using a multiview stroke. Here’s how to add additional views to
a Skeletal Stroke:

1. Open an existing stroke.

2. Press the Add View button (the + symbol at the top of the Stroke Definition
Window).

3. Alter the image in the new view.

4. Add as many views as you like.

5. Define the stroke and give it a new name.

Assigning Flash behaviors to elements of your composition
The Object List Palette contains a list of every object or group of objects that’s included in
an image (see the following figure). Any one of these objects can be given Flash behaviors
by double-clicking the object and then clicking the Flash Settings button.

The Object List palette contains a list of every object and group of object in an
Expression file. Double-click an object to get to the Flash Settings dialog.

Using the Flash Settings is the fun part — where you get to animate something without set-
ting a single key frame. Rather, you just choose a behavior and your exported .SWF file will
contain moving elements, that move according to whichever effect you’ve chosen. You may
also specify a URL to link to in the Flash Settings dialog (shown in the following figure),
which is an easy way to create a vector-based image map with automatic rollover effects.
The different behaviors are Animated (this only appears if the selected stoke is a multiview
stroke), Pulsate, Horizontal-Vertical Pulsate, Rock, X/Y Vibrate, Rotate, Enlarge, Shrink, Fade,
Blink, Brighten, and Darken.

Continued

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 887

888 Part VII ✦ Using Flash with Other Programs

Continued

The Flash Settings dialog enables the
assignment of various motion behaviors
based on mouseover states.

Exporting a Flash (.SWF) file from Expression
Exporting a Flash movie from Expression is easy. Simply choose File ➪ Export ➪ Flash File.
However, consider these settings:

✦ Frame rate

✦ The area of the animation (object bounding box or paper size)

✦ Whether or not you want to emulate caps and joints that are not supported by Flash
(emulation increases your file size)

✦ Protection from editing

Because Flash does not support the same level of sophistication as Expression, there are
some limitations to what you can export. For example, you cannot export blending meth-
ods, embossed/soft-edged fill, paper textures, fully colored bitmapped strokes, or graphics
that use the non-zero winding rule. However, if you stay with purely vector-based strokes
and transparency effects, you should have good results.

See the files planktonAnimation.xpr and planktonAnimation.swf in the ch31 folder on the
CD-ROM for examples of an exported Expression image.

What to do with an exported Flash (.SWF) file
Your resulting .SWF file can be used as a stand-alone graphic embedded in an HTML docu-
ment. The advantages of using graphics in the .SWF format are their compact size, their scal-
ability, and their motion capabilities.

3515-3 ch31.f.qc 1/18/01 5:09 PM Page 888

889Chapter 31 ✦ Working with Vector Graphics

Converting Rasters to Vectors
Have you ever wanted to take a scan of a “real” pen-and-ink drawing that you made
and turn it into a vector graphic? It’s not incredibly hard to do, and the results are
usually pretty close to the original (see Figure 31-13). You can also turn continuous
tone or photographic images into vector art, but the converted version will not
likely bear much resemblance to the original. However, this can be useful for
aesthetic effects.

Figure 31-13: Compare the raster version (on the left) of the sketch to its traced
vector version (on the right).

Some good applications of Expression for stand-alone graphics are banners with waving
text, scientific illustrations that have moving elements, and anything quick, expressive, and
whimsical that has motion. But your Expression .SWF’s can also be imported into the Flash
Editor or accessed by Flash as an external .SWF file with loadMovie.

You may also choose to use the exported .SWF as a loaded movie in a larger Flash project.
See Chapter 20 for more information about using the loadMovie command

To get your loaded movie to interact with the rest of your project, you should use instances
of an invisible button that have ActionScript attached to them. See Chapter 18’s piano keys
exercise for more information on attaching code to invisible buttons.

Arena Reed also submitted the Expert Tutorial “Using Painter with Flash,” located in Chapter 30, “Working
with Raster Graphics.” Refer to that tutorial for her biographical information.

3515-3 ch31.f.qc 1/18/01 5:10 PM Page 889

890 Part VII ✦ Using Flash with Other Programs

A handful of applications, including Flash 5, let you trace raster artwork. In the fol-
lowing sections, we compare the tracing capabilities of Flash, FreeHand, and Adobe
Streamline. With all of these tracing applications, keep in mind these points:

✦ Higher resolution images always yield better “traced” vector artwork. With
more pixels to define edges, the application can better detect shapes.

✦ Sharper images (such as clearly focused images) and higher contrast images
produce better-traced artwork. Oftentimes, applying Photoshop art filters to
an image can reduce the complexity of a photographic image, making it easier
to trace.

✦ One-color images or scans, like those of hand-drawn sketches with pencil or
ink, produce the best-traced artwork.

Ironically, the results of some traced raster images can produce even larger vector
images. Remember that vectors were designed for solid colors, blends, lines, and
points. Every file format has its purpose, and sometimes raster images are smaller
than their traced counterparts. With a little practice, you’ll be able to judge what
kind of images will produce small “traced” versions.

Flash’s Trace Bitmap command
After you have imported a bitmap into Flash, you can use the Modify ➪ Trace Bitmap
command to convert the image into Flash lines and fills. This method is by far the
simplest and quickest method of tracing artwork to use in Flash movies. The bene-
fits are that you can perform it directly in Flash 5 without the aid of external applica-
tions, you have moderate control of the conversion settings, and, most importantly,
the artwork is converted directly into Flash lines and fills (see Figure 31-14 for an
example).

If the results of the Trace Bitmap command are less than desirable, then use as
many undo steps as necessary to get back to your original bitmap image.

See Chapter 12, “Using Bitmaps and Other Media with Flash,” for more informa-
tion on the Trace Bitmap settings.

FreeHand’s Trace Tool
Macromedia FreeHand 9 also has tracing capabilities, and arguably, they are more
expansive than Flash’s Trace Bitmap command. The Trace Tool now works like a
magic wand, and you can selectively trace areas of a bitmap. You can access the
Trace Tool in the FreeHand toolbox (see Figure 31-15). By double-clicking it, you
can adjust the sensitivity of the Trace Tool for imported bitmapped artwork.

Cross-
Reference

Caution

3515-3 ch31.f.qc 1/18/01 5:10 PM Page 890

891Chapter 31 ✦ Working with Vector Graphics

Figure 31-14: The Trace Bitmap command can be used to convert
bitmap images into vector Flash artwork. Higher Minimum Area and
Color Threshold values reduce the complexity of the resulting Flash
artwork, which means smaller Flash movies.

Figure 31-15: FreeHand’s Trace Tool has
an array of options for precise tracing.

3515-3 ch31.f.qc 1/18/01 5:10 PM Page 891

892 Part VII ✦ Using Flash with Other Programs

When you’re ready to trace the bitmap, you can do the trace in one of two ways: (a)
selectively trace bitmap image areas, or (b) trace the entire bitmap. To use the first
method, click the desired area with the Trace Tool. Once a selection is made, click
inside the selection. FreeHand shows you the Wand options dialog, and you can
choose whether you want to trace everything inside the selection (Trace Selection)
or just the edge of the selection (Convert Selection Edge). Click OK after you have
chosen an option, and FreeHand traces that area. To use the second method of trac-
ing, simply click-drag a marquee selection with the Trace Tool, and FreeHand traces
everything in the selection area.

Use the magic wand method if you want to extract a traced image from an image
that contains multiple elements. For example, if you have a picture of many peo-
ple, and you want to trace just one of them, the magic wand can help you isolate
that one person. If you want to trace all the people and the background matter,
trace the entire image using the second method described previously.

Because the nature of bitmapped artwork varies by subject matter, we recommend
that you use a “trial and error” method for using the FreeHand Trace Tool. If the
results are not satisfactory, then simply undo the trace. Or refer to Deke McClelland’s
coverage of the Trace Tool in the FreeHand 8 Bible (from IDG Books Worldwide, now
Hungry Minds).

FreeHand retains the original bitmapped artwork behind the traced vector art-
work. If you no longer need the bitmapped version, delete the bitmap image after
you have moved the traced objects to a new location. Group the traced objects for
greater ease in moving them.

Tracing with Adobe Streamline
Although you can trace images in Adobe Illustrator, Adobe has a stand-alone prod-
uct that is designed for tracing raster artwork — Streamline 4.0. With Streamline,
you have the most conversion options, and, more importantly, you can optimize the
results with smoothing commands. See Figure 31-16 for an example of Streamline 4.0.

After you have converted a bitmap image to vector artwork, you have the option of
“smoothing” the results. Smoothing means eliminating redundant or excess points
to create simpler shapes and curves. By reducing the complexity of points in vector
artwork, you can reduce the overall file size dramatically.

In the Edit menu, you can access two types of smoothing: Smooth Paths and Smooth
Direction Points. Smooth Paths eliminates anchor points within selected paths, and
Smooth Direction Points changes hard-edged corners into rounded edges. Each com-
mand has a Minimum, Normal, and Maximum setting. For more information on the
exactness of these settings, refer to the online Streamline help.

Note

Tip

3515-3 ch31.f.qc 1/18/01 5:10 PM Page 892

893Chapter 31 ✦ Working with Vector Graphics

Figure 31-16: Streamline 4.0 hosts a wide range
of presets in the Settings dialog.

Be extremely careful of “over smoothing.” While we all would like smaller file sizes,
don’t lose sight of the effect of smoothing on image quality.

Exporting Vector Graphics from Flash
In the previous chapter, you learned to export raster image formats from Flash. If
you’ve created artwork in Flash that you want to share with other drawing applica-
tions, then you can export any frame (or series of frames) from Flash — in any of
the popular vector file formats.

Why would you want to export vector-based images from Flash? If you’re a design
or graphics professional, then you probably need to reuse your artwork in a num-
ber of different media for print, multimedia, or broadcast delivery. As such, you
don’t like wasting valuable time recreating the same artwork twice. Most Flash art-
work exports flawlessly to the file formats listed in Table 31-1.

If you want to export a series of vector images from a Flash movie to use with
video or other multiframe applications, check out Chapter 36, “Creating Full-
Motion Video in Flash.”

If you are unsure of the format to use in your graphics program, then refer to Table
31-1. Afterward, we show you how to export a Flash frame’s artwork as a static vec-
tor image.

Cross-
Reference

Caution

3515-3 ch31.f.qc 1/18/01 5:10 PM Page 893

894 Part VII ✦ Using Flash with Other Programs

Table 31-1
Vector Image Formats for Flash Export

Flash Export Format File Extension Comments

EPS 3.0 (Encapsulated PostScript) .EPS Universal vector format
recognized by most
applications. However, any
gradients created in Flash
will not export well with
this format.

Illustrator (Adobe Illustrator) .AI Proprietary file format mainly
used by Adobe applications.
However, any gradients
created in Flash will not export
well with this format.

DXF (Drawing eXchange Format) .DXF AutoCAD 2D/3D file format.

PICT — Mac only (Picture) .PCT Strange as it may seem, the
Macintosh PICT format can
contain vector and raster
information.

WMF/EMF — PC only (Windows .WMF, .EMF Only some Windows
Meta File/Extended Meta File) applications support these

formats. These formats are not
widely used on either Mac or
PC systems.

To export artwork as a vector file format from Flash 5, follow these steps:

1. Move the Current Frame Indicator in the Flash timeline to the frame that
contains the artwork you wish to export.

2. Choose the File ➪ Export Image command.

3. Select a destination folder and enter a file name. Select your preferred raster
image format in the Save as Type drop-down menu.

4. Click Save, and use the new vector file in your drawing or illustration
program.

Unlike exported raster image formats from Flash, the exported vector file formats
do not have any additional settings for image quality, contents, or size. This is due
primarily to these settings not being necessary for vector file formats. By their
nature, vector graphics can be scaled at any size.

Note

3515-3 ch31.f.qc 1/18/01 5:10 PM Page 894

895Chapter 31 ✦ Working with Vector Graphics

A word of caution: Using vector formats from Flash
Generally, the quality of exported vector files from Flash is less than desirable.
Although it would seem that Flash’s vector exports would be better than its raster
exports, this simply isn’t the case. Because RGB color space (as the “end” product)
is relatively new to the world of print-based production, most vector file formats
need to encode color information as CMYK. This presents a couple of problems,
as you’ll see in the following sections.

Color consistency
Flash works within an RGB color model, which means that all color is defined by
three numbers, one assigned to each color channel of the image (for example, red,
green, and blue). Most standard vector file formats do not encode the color infor-
mation in this manner. Rather, they use CMYK (cyan, magenta, yellow, and black)
colors that have a much more restricted color gamut (range) than RGB.

As such, most, if not all, of your Flash artwork will display quite differently when
exported as a vector file format such as .EPS or .AI. Is this yet another reason to
start projects intended for multiple media in Macromedia FreeHand? Yes and no.
While starting projects in FreeHand lends itself to greater flexibility for the reuse or
repurposing of artwork, you have an alternative to exporting vector files from Flash:
good old copy and paste. If you select Flash artwork, choose Edit ➪ Copy, switch to
your illustration program and choose Edit ➪ Paste; the newly pasted artwork
should match your original Flash artwork.

Why is this so? Most likely because Flash’s export file formats (or the versions of
these formats) don’t seem to support RGB colors. However, the clipboard can sup-
port a multitude of data types, and Adobe Illustrator and FreeHand can recognize
RGB colors. Therefore, the copied-and-pasted colors show up as RGB colors in
these programs.

Interestingly, if you choose Adobe Illustrator (.AI) as the export file format from
Flash, you can only choose up to and including Illustrator 6 formats. RGB color sup-
port was first introduced to Adobe Illustrator in version 7. It is also likely that the
EPS 3.0 format is an older version of the format that does not support RGB colors.

Flash gradients
Another troublesome spot for exported vector files from Flash is the re-rendering
of Flash gradients as CMYK “blends.” Depending on the vibrancy of the original
gradient in Flash, the exported vector equivalents might end up very muddy or
brownish — especially in the middle range of the gradient. Again, you can avoid this
color shifting by copying and pasting the Flash gradients directly between applica-
tions. Note that this still converts Flash gradients to blends, but it will retain the
RGB color values of the original Flash gradient.

Note

3515-3 ch31.f.qc 1/18/01 5:10 PM Page 895

896 Part VII ✦ Using Flash with Other Programs

If you need perfect exported material from Flash, you might consider exporting
high-resolution bitmap (a.k.a. raster) files instead.

Summary
✦ You can use other programs such as Macromedia FreeHand to create vector

artwork for use in Flash.

✦ Before you import vector artwork into Flash, make sure you have optimized it
in the parent application.

✦ Always use RGB colors for your vector artwork. Flash 5 uses the RGB color
space, not CMYK as printing presses do.

✦ FreeHand 9 can work closely with the Flash for streamlined Web production.
Among other things, FreeHand documents can now be imported directly into
Flash 5.

✦ You can export .SWF files from Illustrator 8 with the Macromedia Flash Writer
plug-in. .SWF file export is native to Illustrator 9.

✦ Layer names and formatting in .EPS or .AI files will be retained when imported
into Flash 5.

✦ Many applications are adding support for the .SWF file format. Expression 2
can export amazing artwork as a .SWF file.

✦ You can convert bitmap artwork into vector artwork with Flash 5’s Trace
Bitmap command. FreeHand has superior tracing capabilities when compared
to Flash 5.

✦ Flash 5 can export many vector formats for use in print and video applications.

✦ ✦ ✦

Tip

3515-3 ch31.f.qc 1/18/01 5:10 PM Page 896

Working
with Audio
Applications

Although Flash has rudimentary sound-editing controls,
those who are serious about integrating sound and

music in their projects should consider purchasing other
audio applications. Using professional-quality sound editors
such as Peak (for Macintosh) or Sound Forge (for PC) can
facilitate the manipulation and optimization of high-quality
audio in your Flash projects.

In this chapter, you learn how to prepare your multimedia
sounds for use in Flash. Because of the limited number of
options for editing audio in Flash, we recommend that you
optimize and experiment with your sound clips in an external
application before importing them into the Library. When creat-
ing or editing audio for use in Flash, we cannot stress enough
the importance of starting out with the highest sample and
bit conversion rates possible. Remember that sound quality in
general is simple to degrade, but can be difficult or impossible
to restore, so it’s not a good idea to skimp from the beginning.
Ideally, your original files are 16-bit 44.1 kHz. From this point on,
we assume that your audio clips are of reasonable quality and
were captured or created from a good 16-bit source, such as an
audio CD or a sound effects application such as Propellerhead’s
Rebirth (discussed later in this chapter).

Sound-editing and Creation
Software

Just about every multimedia or video software package
includes a sound-editing application. For the most part,
you’ll find limited edition (a.k.a. LE) versions of popular
sound applications bundled with Macromedia Director
or video application suites such as Digital Origin’s EditDV.

3232C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Getting an overview
of audio programs

Looking at the basics
of structured audio

Normalizing audio
tracks

Creating sound
effects in Rebirth

Making sound loops
for Flash

Building a home
sound studio

Using Beatnik and
Mixman with Flash

✦ ✦ ✦ ✦

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 897

898 Part VII ✦ Using Flash with Other Programs

For a price, you can upgrade these LE versions to full versions, or purchase them
separately if you don’t need or want a multimedia production software package.
While very few of the following applications are available on both Macintosh and
Windows platforms, their functionality is virtually identical.

Several software companies produce excellent sound-editing software. Many of these
companies offer a software suite of their flagship products bundled with several sup-
porting products that specialize in different areas of audio editing and creation. The
following is a list of some of the most popular software developers that offer audio
editing and creation applications.

You can perform the same basic functions described in this chapter in either the
LE or fully featured versions of the sound-editing application. LE versions usually
have less effects-oriented controls such as sound filters and enhanced noise
reduction.

Sonic Foundry’s suite (PC only)
Sonic Foundry (www.sonicfoundry.com) provides the best-known sound-editing
solutions for the Windows operating system. From simple editing to powerful loop-
ing effects, Sonic Foundry has a tool to work with any sound project.

Sound Forge
Sound Forge is a powerful, yet easy-to-use waveform sound editor for the PC envi-
ronment. A great feature of Sound Forge is nondestructive editing. Sound Forge can
also be integrated with Sonic Foundry’s ACID software.

Sound Forge supports all three of the Flash-compatible audio import formats, .AIFF,
.WAV, and .MP3. In addition, it has the capability to save in the RealAudio G2 stream-
ing format. You can open an existing sound file, edit it, and save it as .WAV, .MP3, or
.AIFF at several different sampling and bit rates.

Vegas
Another application in the Sonic Foundry’s suite is the multitrack recording and
editing software, Vegas. The strength of Vegas lies in its capability to perform multi-
track editing and recording. A great added feature is that Vegas can synchronize
your audio composition with a video clip within the program. This is a very handy
feature when trying to match sound with your animation. Furthermore, Vegas also
supports an unlimited number of tracks and a vast array of effects and plug-ins for
some funky sounds.

ACID Pro
ACID is a powerful, loop-based sound-editing program that is ideal for use with Flash
(see Figure 32-1). With ACID, you can very easily take loops created in other programs
and arrange them on multiple tracks. One of ACID’s great features is its capability to
change the speed of the loop without changing the key. ACID Pro also comes with over
100 ready-to-use loops, so you can arrange an audio track in a pinch.

Note

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 898

899Chapter 32 ✦ Working with Audio Applications

Figure 32-1: In ACID, you can very easily preview an audio clip, add it as a track,
and move it around a timeline.

Bias suite (Mac only)
Bias (www.bias-inc.com) creates sound-editing applications for the Macintosh
operating system. When Macromedia stopped developing SoundEdit 16 and Deck,
Bias picked up the products and started to fine-tune them for new Web technologies.

Peak
Peak specializes in getting down and dirty with editing stereo tracks while supporting
a large number of file formats. Some of the other features of Peak are its capability to
execute batch file processing, burn CDs directly from a play list, export in RealAudio
G2 streaming format, and nondestructive editing. Peak is rapidly becoming one of the
most widely used audio-editing applications for multimedia on the Macintosh. It is
available in both full and LE versions.

Deck
Deck is a powerful multitrack editor, also with nondestructive editing, for the
Macintosh platform. In addition to being capable of playing back up to 64 tracks
simultaneously, Deck can also function as a multitrack recorder, enabling you to
create your own music or sound effects. It is less expensive than other similar
software packages, and can be closely integrated with Bias Peak.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 899

900 Part VII ✦ Using Flash with Other Programs

SFX
SFX is an amazing little tool that enables you to create your own sound effects. This
program will keep you entertained for nights on end, especially with its randomizer
mode that creates a new sound with every click. Of course, SFX ties in very neatly
with the other Bias programs, Peak and Deck.

Cakewalk Pro suite (PC only)
Cakewalk (www.cakewalk.com) manufactures top-of-the-line audio software for the
sound professional. Their software is designed for serious users who need to master
audio for broadcast and CD applications.

Pro Audio is comparable to the multitrack editors/recorders from Bias’s Deck and
Sonic Foundry’s Vegas. With Pro Audio, you can record and mix up to 256 tracks of
MIDI and digital audio. It supports 24-bit audio hardware (that’s above CD quality),
and it enables you to export your audio in the standard .WAV and .AIFF formats
along with .MP3, RealAudio G2, and Windows Media Player. Of course, Pro Audio
doesn’t come alone in the Pro Suite. Cakewalk packs the suite with a long list of
programs such as Nemesys GigaSampler, GigaPiano, Audio FX 1, Audio FX 2, Audio
FX 3, and Musicians Toolbox. If you would like more information on the programs
packaged in the suite just hop on over to Cakewalk’s Web site.

Studio Vision Pro (Mac only)
Studio Vision Pro (www.opcode.com) is probably the best deal out there for anyone
on a tight budget but who needs all the advanced features from the more expensive
programs. Studio Vision Pro is a multitrack editor/recorder with the capability to
work with MIDI information and digital audio.

Cubase (Mac/PC)
Cubase (www.us.steinberg.net) is one of the very few programs available on
both platforms. Cubase is a top-of-the-line multitrack editor/recorder. Cubase has
the capability to edit and print musical scores and to handle both MIDI and digital
audio. It is capable of 16- to 24-bit audio and has a built-in virtual synthesizer.

Macromedia SoundEdit 16 (Mac only)
SoundEdit has had a relatively long history with Macintosh users as a sound-editing
workhorse, especially for use with multimedia. Although still widely used, SoundEdit
16 is no longer being produced by Macromedia, and Mac users are slowly migrating
to the more robust, full featured Peak.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 900

901Chapter 32 ✦ Working with Audio Applications

Digidesign’s Pro Tools (Mac/PC)
Last, but not least, is Pro Tools (www.protools.com), the industry standard. If we
were to walk into just about any major recording studio, we would see Pro Tools
displayed on their massive monitors. Naturally, the professionals will have more
than just Pro Tools on their system. In fact, the audio engineers will usually have
several of the programs mentioned earlier because they might require a feature or
two that only another program supports. In comparison, Flash can’t do everything
we want, so we use other programs to help get that desired effect. But in the end,
the reality is that the Pro Tools system is their primary tool for audio editing and
mixing.

Not only do the makers of Pro Tools make software products, but they also make
a bit of the hardware for sound studios, including computer peripherals. Once you
bring hardware into the equation for setting up a system, the cost can go sky-high.
Thankfully, Digidesign is aware of this fact and has developed two home studio kits
for all those people who love to make music but just don’t have a major studio bud-
get or a degree in audio engineering.

Starring in both of Digidesign’s home studio package’s is Pro Tools LE. This LE ver-
sion is far from skimpy though. This multitrack editor/recorder is capable of playing
back 24 tracks of 16- or 24-bit audio and 128 tracks of MIDI. It also supports Real Time
Audio Suite (RTAS) effect processing and sample-accurate editing of audio and MIDI
simultaneously, along with being capable of exporting .MP3 and RealAudio G2 files.
The full version of Pro Tools is capable of 64 tracks of simultaneous recording and
playing back plus a lot more. The full version is beyond the scope of this chapter.

Expert Tutorial: Building a Home Sound Studio,
by Scott Brown

While you can do a lot with a standard sound card and sound-editing software, you might
want to expand your multimedia skills and your computer’s capabilities with additional
audio equipment. Scott’s tutorial tells you what you need to get started.

The day may come when you would like to import your own guitar track or a keyboard
melody into your Flash project. How would you do it? It used to be that the process of turn-
ing the analog signal (tape recording) into a digital signal (CD/DAT) required the help of the
local audio engineer — you know, the guy with a sound studio that had the look and feel of
a starship control center. Well those days of turning your tape in to a studio to be converted
to a digital format are — as you guessed it — gone. With a mixture of some hardware and
software, and a lot less money than previously needed, you can record and mix music
tracks in your home before you know it.

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 901

902 Part VII ✦ Using Flash with Other Programs

Continued

With both of these intro studio systems, there are some computer hardware requirements.
For both of these packages to work smoothly, your computer must be either a Power Mac
or a Pentium III system, contain either an IDE or SCSI hard drive, and have at least 128MB
of RAM.

The first system is called the Digidesign Toolbox, developed by Digidesign. This package
comes with a sound card called the Audiomedia III and Pro Tools LE as the software. The
Audiomedia III sound card is placed into a PCI card slot in your computer and contains two
pairs of analog I/O (input/output) ports that enable you to connect the computer to a small
mixing board. Along with the analog ports, the sound card also contains a pair of S/PIDIF
I/O ports. These S/PIDIF’s are digital ports for your computer to hook up with either a DAT
player/recorder or a CD player (not a CD burner) with optical output. Please consult your
computer’s user manual before installing any type of hardware.

As I mentioned earlier, the analog I/O ports connect the computer to a mixer, but what
does the mixer do? Well, think of the mixer as a hub for all your analog equipment: a guitar,
keyboard, microphones, speakers, headphones, synthesizer, and so forth. The mixer han-
dles all the signals coming from these devices and preps them for input into your computer.

So far, we have two pieces of hardware that we need for your home system, the sound card
and the mixer. These two pieces are essential for getting the sound from its source to the
computer, for recording the audio signal, and for editing the track. However, we are still
missing two elements that are more important for our studio. We need something that will
create the sound, an input device (keyboard, guitar, microphone), and something that
will enable us to hear the sound that we have created, an output device (speakers, head-
phones). With these hardware elements (sound card, mixer, input, and output) coupled
with audio editing/recording software, you will possess the basic equipment needed for
your first home audio studio.

Continuing with our first system, one day you might find that all the music you have been
creating is taking up a lot of space on your hard drive. Now would be the time for a dedi-
cated hard drive to store all those audio files. It’s not impossible to run a studio system
without a dedicated hard drive, but it will make your recording life easier in the long haul.
To set up this dedicated audio drive, we need some additional hardware. First, you need to
install a SCSI Ultra Wide, Ultra2 Wide, or Ultra160 accelerator card. This card is placed in
another PCI slot, just like the sound card before it. After the SCSI card is installed, the next
level of business is to hook up an External SCSI A/V hard drive to the SCSI accelerator card
in your computer. (A/V stands for Audio/Video drive, which is fine-tuned to handle the per-
formance demands of large data transfers to and from the hard drive. Make sure you
choose a hard drive with high RPMs [7,200, 10,000, or higher] for the best playback of your
music.)

Eventually, if you just happen to catch the music bug, you might want to be able to give
your friends some of your creations or create high-quality multimedia presentations for dis-
tribution. What’s the best medium for high-quality music and presentations? Yep, you
guessed it — the good ol’ CD. And the only tool missing in your studio, right now, is a device

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 902

903Chapter 32 ✦ Working with Audio Applications

Setting In and Out points
One of the first things you will want to do with your audio file before you bring it
into the Flash environment is set its In and Out points. These points, respectively,
control where the sound will start and end. By precisely placing In and Out points,
you can minimize the sound’s file size (see Figure 32-2), making it less cumbersome
to move around, and reducing the amount of time that you’ll have to spend using
Flash’s less-than-full-featured interface. You can set In and Out points in most, if not
all, audio applications.

In Sound Forge, Peak, and SoundEdit 16, follow these steps to set the In and Out
points of a sound:

1. Highlight the area you want to keep.

2. Test your selection by pressing the Play Loop or Play Normal button (Sound
Forge).

to create your own CDs, otherwise known as a CD burner. Because you already have a SCSI
accelerator card in your computer (and perhaps a FireWire connection), you can easily plug
in a CD burner to your system, thereby satisfying all your current musical needs. But what if
you want more expandability in your studio?

The next level in the home studio set up gives you just that — the ability to expand the
amount of devices to be plugged into the computer. This second system is based on
Digidesign’s 001 (pronounced double O one) home system. This system differs slightly
from Digidesign’s Toolbox package. Instead of using a mixing board as the hub (the mixer
is not included in the Toolbox package) for all your connecting devices, Digidesign provides
its own hub called the 001. The 001 hub is also called a I/O (input/output) box. Included in
the 001 I/O box are inputs for two microphones complete with adjustable gain and phan-
tom power.

Also included in the 001 package is the 001 sound card that contains 18 I/Os, compared to
the Audiomedia III card that has 6 I/Os. The 001 sound card has a port for a light pipe. What
is a light pipe? Light pipe is a fiber-optic cable that provides the cleanest way to transfer dig-
ital data. Because the Digidesign 001 system is a Digidesign product, Digidesign also
includes Pro Tools LE to complete the package. And finally, this system, just like the previ-
ous system, wouldn’t be complete until the addition of a dedicated external hard drive for
all your audio, a CD burner, some type of input device (multiple devices for the 001 sys-
tem), and last, but not least, some speakers. With all this power at your fingertips, the only
limitation is your imagination.

Scott Brown wrote the Fireworks tutorial for Chapter 30, “Working with Raster Graphics.” You can find his bio-
graphical information there, along with his advice on using Fireworks 4 in a Flash 5 Web production workflow.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 903

904 Part VII ✦ Using Flash with Other Programs

Figure 32-2: You can greatly reduce the file size of a Flash movie by limiting an
audio track to its essential portion.

To create a new audio file with your selection:

1. Select File ➪ Copy (Command+C or Ctrl+C).

2. Select File ➪ New (Command+N or Ctrl+N).

3. A new window opens. Select Edit ➪ Paste (Command+V or Ctrl+V).

4. Your selection will now be a new audio file.

Normalizing audio levels
You can use the Normalize function to optimize your sound levels and to prevent your
audio file from “clipping.” (Digital clipping occurs when an audio clip is recorded at
too high a level. The clipping sound is distorted, resulting in an undesirable crackling
or buzzing sound.) Normalize can also be used to boost levels when your audio file
was recorded too low. Normalize is an option available in most audio applications.

If you are gathering sound samples from a number of different audio sources
(such as audio CD, direct recordings with a computer microphone, DAT recordings,
DV camcorder audio, and so on), it’s best to normalize all of them to a consistent
audio level.

To normalize in Sound Forge:

1. Select part or all of the clip to be normalized.

2. Choose Process ➪ Normalize

3. The Normalize Window appears (see Figure 32-3). You can click Preview to
see what the default settings do.

Tip

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 904

905Chapter 32 ✦ Working with Audio Applications

Figure 32-3: Sound Forge’s Normalize window enables
you to preview the settings before you apply them to
the audio clip.

Watch the Play Meter on the right side of the screen. If the levels seem high
(constantly in the red), lower the levels with the slider bar on the left side of
the Normalize Window. If your levels are too low, gradually raise the slider bar.
Click OK, and your file is now Normalized. Note that many other options exist
in the Normalize Window. If you like, you can experiment with these settings to
get the result you are looking for.

To normalize in Peak and SoundEdit:

1. Select part or all of the clip to be normalized.

2. In Peak, choose DSP ➪ Normalize; in SoundEdit, choose Effects ➪ Normalize.

In Peak’s Normalize dialog, you can move the slider bar back and forth to choose the
normalization percentage. The number you choose will normalize to a percentage of
the maximum level. After you click OK, you can listen to the normalized selection by
pressing Option+spacebar. Watch the levels for any clipping.

If you are recording your own sounds with a microphone attached to your com-
puter’s sound card, make sure that you have adjusted the microphone’s volume
level (or gain) in the sound-recording application. If the levels are too high during
recording, you won’t be able to normalize the sound — the resulting sound will be
very distorted and “clip” on playback.

Caution

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 905

906 Part VII ✦ Using Flash with Other Programs

Expert Tutorial: Optimizing Sound for Flash in
Sound Forge, by William Moschella

While we already explained how to perform basic normalization on sound files, Bill
explains how and why to optimize sound levels and sampling within Sound Forge. Most of
the sound-editing applications we mentioned earlier can perform similar operations as
well. Refer to your sound-editing software manual for the specific menu commands that
are necessary for normalization and sampling rate.

In a perfect Web world, we would be using stereo files at their highest sample rate. As the cre-
ator, you must decide which is more important: download time or sound quality. The settings
I discuss in this tutorial are tools that can be used to decrease file size while maintaining
decent sound quality. However, if your original sample sounds bad, these settings will make
it sound worse. A little bit of sound advice: Bad in = Bad out!

Although it is true that .MP3 offers the best sound compression, for ideal results it helps to
know a few tricks that will enable you to reduce your file size before you import your
sounds into Flash — which will result in even smaller sound files with better sound quality.
Another bit of sound advice: Smart sound = Better, smaller sound.

Although a number of excellent programs may be used for sound editing, I use Sonic
Foundry’s Sound Forge to explain these procedures. The two main categories of focus are
normalizing and resampling.

Normalizing a sound file
Normalizing is used to increase the volume of a sound file without fear of clipping. You can
also set specific parameters so that certain areas can be ignored or intensified. Start by
opening your sound file in Sound Forge. If you like, you can drag and drop the file right into
the workspace. Then choose Normalize from the drop-down menu, Process ➪ Normalize.
Make sure that your file is completely deselected. This allows the normalization process to
be applied to the whole file. Don’t be intimidated by all the settings. Here is a walk-through
of each control in the Normalize dialog.

✦ Normalize using: Peak level or Average RMS? Choose Average RMS. This will
enable you to save a setting so that if you have more than one sound file, you can
maintain and compare volume between audio files.

✦ Normalize to: This sets the level of your normalized sound. I recommend a value of
16 to 20 percent. These settings mean that you are reducing the sound volume by a
factor of 16 to 20 percent. Remember that when the final .SWF is played, the Flash
player will boost your gain by several decibels.

✦ Scan settings: The best feature of this is the Ignore below slider. This enables you
to choose a level at which the normalization will bypass. Simply put, you might have
sections of silence in your file. If you boost the gain in these sections, you might
bring out unwanted frequencies (noise) that you could not hear previously. After
you have scanned your selection you can use the RMS calculations to gauge what
level to set the slider at.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 906

907Chapter 32 ✦ Working with Audio Applications

In most cases, anything under 5 percent is a good starting point. Be careful though!
If your file is already at a low decibel, these settings could bypass the whole normal-
ization process. If you are confused, leave the slider at 0 percent. You can leave the
default settings for attack and release time at 200 and leave the use equal contour
box checked.

✦ If clipping occurs: Select Apply dynamic compression. This is your safety net. Although
you may have a situation in which the normalization settings are exactly where you
need them to be, some sections may still peak. Applying dynamic compression pre-
vents any peaks from exceeding the threshold.

After you’ve set the parameters, you can audition (preview) your selection. If you’re using
multiple audio files in your Flash project and want to maintain a consistent volume
throughout, you can use the Save as button to save a preset for future use.

Resampling
Most of the audio files you work with are probably set to stereo 44.1 kHz. This may be fine
for CD-ROM applications, but the Web is a different area. You may disagree with this, but
my philosophy is this: Whenever possible, before importing to Flash, optimize your sound
as mono 22.05 kHz. When you import to Flash, you can then continue to decrease your file
size with MP3 compression. A third-party sound editor, such as Sound Forge, gives you the
advantage of higher-quality filters and high-end processing. Although Flash can resample
PCM files, it will not process them with the same level of quality that a program such as
Sound Forge offers. Furthermore, Flash prevents you from resampling in .MP3 format. Your
ideal situation is to resample while introducing as little audible change as possible. Again,
your ear will be the best judge.

Author’s Note: PCM stands for Pulse Code Modulation. It is a standard sound-sampling
mechanism for audio — it is a digital representation of sound.

To begin Resampling, with your sound open in Sound Forge, select Resample from the drop-
down menu, Process ➪ Resample. Then make your choices from the settings that follow:

✦ New Sample Rate: Select a new sample rate from the New Sample Rate drop-down
or else type the rate into the field yourself. The next two items are the most important.
These filters maintain your sound quality.

✦ Interpolation accuracy: This determines the range of number crunching, or the com-
plexity of the calculations that will be used to resample the sound. A higher number
results in a more accurate resample calculation. A setting of 4 takes longer to process
than a setting of 1, but will come closer to your original sample. This setting will not
change your file size; it only affects the quality of the resample.

✦ Antialias filter: When you are resampling you might notice distortion or a loss in
the high end. Applying an antitialias filter helps prevent these high frequencies from
distorting. Preview your sound and resample accordingly.

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 907

908 Part VII ✦ Using Flash with Other Programs

Fade in and fade out
As discussed in Chapter 15, “Importing and Editing Sounds in Flash,” fading in means
increasing the volume of a sound over time and fading out means decreasing it. Most
audio-editing applications have more sophisticated fading effects than Flash.

To fade audio in Sound Forge:

1. Select the part of the audio that you wish to fade in or out.

2. Choose Process ➪ Fade ➪ Graphic.

3. The Graphic Fade Window appears (see Figure 32-4).

Figure 32-4: Sound Forge enables you to save custom
fade effects to apply to other sounds.

Continued

Final notes
You should always normalize your sound file before you resample because this order pre-
serves the best sound quality. I highly recommend that you keep the Create Undo box
checked at all times, because this type of editing drastically alters your file, and it can be
very nice to have that Undo available. Similarly, it can be advantageous to use the Save as
command (and save to a new name) after you have made your changes. This procedure
preserves the original file so that you can go back to it later.

Bill Moschella has contributed a number of Expert Tutorials on sound-related topics. His biographical infor-
mation can be found (together with his sound advice) in Chapter 16, “Optimizing Flash Sound for Export.”

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 908

909Chapter 32 ✦ Working with Audio Applications

You should now see your selected sound as a waveform (that is, a graphic represen-
tation of sound waves). The interface for customizing your fade is vaguely similar
to the one used in Flash. You create envelope handles by clicking points on the
envelope line at the top of the waveform. Drag these handles around to create your
desired volume/fading effects. The lines themselves show the volume level of the
sound. Thus, when you drag an envelope handle down, the line slopes down, indi-
cating a decrease in the volume level. Click Preview to hear your custom fade. Click
OK when you are satisfied.

Using Peak to fade audio:

1. Select the section of audio that you want to fade in or out.

2. Choose Preferences ➪ Fade In Envelope or Fade Out Envelope. The Fade In
Envelope or Fade Out Envelope Window appears.

3. You can use the default fade shape, or create your own by using a similar
technique to the one described previously in the Sound Forge instructions.

4. Choose DSP ➪ Fade Out. Peak will apply the fade to your selection.

5. To hear your Fade, press Option+spacebar.

Fading with SoundEdit:

1. Select the section of audio that you want to fade in or out.

2. Choose Effects ➪ Fade In or Effects ➪ Fade Out.

3. Create your fade using a similar technique to the one described in the Sound
Forge instructions. SoundEdit also has Slow, Medium, or Fast fade presets.
Click OK when finished.

Creating a reverb effect
Adding reverb to a sound file can create an interesting effect. Reverb creates the
auditory illusion of acoustic space. For example, you could simulate the sound of
water dripping in a cave.

To add a reverb to an audio sample in Sound Forge:

1. Select the section of sound that you want to add reverb to.

2. Choose Effects ➪ Reverb.

3. The Reverb Window appears.

4. Select a Reverberation Mode from the drop-down menu. To create the dripping-
water sound, choose Cavernous Space.

5. Press the Preview Button to hear how it sounds. Play with some of the sliders
and other options until you achieve the desired effect. When done, click OK.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 909

910 Part VII ✦ Using Flash with Other Programs

Peak does not come with a reverb effect. However, a variety of third-party effects
plug-ins are available on the market that are compatible with Peak.

SoundEdit 16 has a similar effect to reverb called Echo. To add Echo to a selection,
choose Effects ➪ Echo.

Other effects
Many other effects and processes are available in these audio-editing applications,
and to list them all would be beyond the scope of this book. A great feature of many
of these software packages is nondestructive editing. You can make as many changes
to your audio clips as you like without destroying the original source files. Set aside
some time to experiment and let your creativity take over.

If you don’t have any source sound material for adding effects, you can create your
own super-synth techno music with Propellerhead’s Rebirth. The next tutorial by
Justin Jamieson shows you how to create a soundtrack with Rebirth.

Expert Tutorial: Using Propellerhead’s Rebirth to Create
Loops for Flash, by Justin Jamieson

If you don’t want to invest time and money in audio hardware, you can use Rebirth to create
electronic music. Justin’s tutorial walks you through the basic process of mixing samples and
beats in Rebirth.

Rebirth is an innovative sound-creation tool that accurately replicates vintage analog syn-
thesizers and drum machines. Simply put, it enables you to easily create electronic music
without investing tons of money in hardware.

With Rebirth, you can create looping music for Stream or Event sounds in Flash. You can
also create some weird effects by tweaking the various knobs and adding distortion.
Prepare yourself to spend long hours and sleepless nights experimenting with this program.
That’s not to say that it’s extremely difficult — it’s not. Rebirth is actually quite easy to get the
hang of, but you’ll soon be keeping the neighbors awake at night with heavy bass and
spacey frequencies.

Rebirth emulates two synthesizers, Roland 303s, and two drum machines, a Roland 808
and a Roland 909. Countless Mods (modifications) are available on the Internet, with dif-
ferent graphics and sample sets. Some of these sample sets specialize in certain types of
electronic music, such as drum and bass, dub, industrial, and so on. For the purposes of this
tutorial, however, we use the default Mod, which has controls that are easy to use (and that
provide that sought-after 1980s Electro sound.)

Getting started with Rebirth
First, familiarize yourself with some of Rebirth’s controls. See the following figure for the
main Rebirth window. A fair number of them exist, and the Rebirth manual describes them
very well. You should have a basic knowledge of Rebirth for the purposes of this tutorial.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 910

911Chapter 32 ✦ Working with Audio Applications

The main Rebirth Window

Although you can use the demo version of this software for the purposes of this tutorial, it
lacks the capability to save any final audio files and shuts down after 15 minutes.

Creating your first simple beat in Rebirth
In Pattern Mode, press Play and look at the 909 at the bottom of the screen. You’ll notice
red lights moving from left to right over the 16 step buttons. This represents one musical
measure. To modify the beat that is playing, you can clear some or all of the buttons and
add your own. You can also select premade beats by pressing the pattern buttons on the
left side of the screen.

Author’s Note: To clear an entire pattern, move the red Focus Bar down to the bottom of
the screen using the down arrow key and then choose Edit ➪ Clear.

To begin creating your own beat, or to modify an existing one, you will want to “solo” the
909, so the other sections don’t get in the way. To do this, click the Mix buttons to turn off
the green lights in all but the 909 section. You should now only hear the 909. You can also
select the number of beats per minute by altering the number on the BPM selector at the
top left of the screen.

More advanced musicians may want to change the time signature by altering the number in
the value display on the left side of the 909 (see the following figure). When you change
the number, you are altering the total of sixteenth notes within a bar. Thus, if you change it
to 14, there will be 14 sixteenth notes between the beginning and end of a bar.

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 911

912 Part VII ✦ Using Flash with Other Programs

Continued

The 909 is “soloed” in the main Rebirth window.

To select different drum sounds to play, you can either use the rotary dial on the right side,
or you can click the sound names above the 16 step buttons. Each step button also has two
instance levels. The first time that you click a step button, a faint red light appears, indicat-
ing a lighter drum hit. The second time that you click the same step button, the heavier red
light appears, indicating a heavier hit. The third time that you click the same button, you
clear it. No sound is produced.

The 909 also has a Flam feature that simulates the sound of a percussionist hitting a drum
with both sticks at slightly different intervals (see the following figure). To use this feature,
click the Flam button on the 909, and choose the step button that you want to hear the
Flam on. The dial above the Flam button adjusts the “width” of the Flam — the actual time
interval between the two simulated “stick hits.”

This figure shows the various instance levels of the 909. The faint light indicates a
“light hit.” The heavier one indicates a “heavy hit.” The green light indicates a “Flam,”
which is similar to the sound of a drummer hitting a drum with both sticks at slightly
different intervals.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 912

913Chapter 32 ✦ Working with Audio Applications

The process of creating your own beat involves clearing all or some of an existing drum pat-
tern by manually clicking the step buttons for the various drum sounds, and clicking in new
ones. After you have found a suitable bar of beats, at a suitable speed, you are now ready
to add some 303 synthesizer.

Adding sound from the 303
The two top sections are digital replications of the vintage Roland TB 303 analog synthesizer.
These are a little bit more difficult to program than are the 808s, and those new to Rebirth
may find it a little frustrating. A good way to begin is to customize an existing pattern.

Use the up arrow keys to move the focus bar to the 303 that you want to use. Solo it the
same way that you soloed the 808 previously. Press play, and begin the process of choosing
a pattern.

You can choose the pattern either by using the Pattern Selector on the left side of the 303
(see the following figure), or by pressing Ctrl+R to randomly “surf” the patterns. After you
find a suitable pattern, you can begin to modify it using the synthesizer sound controls.

The various synthesizer sound controls on the 303. Experiment with these knobs and
buttons to achieve interesting results.

The synthesizer sound controls can create interesting results. For a detailed description of
what each control does, consult the Rebirth manual. Keep in mind that experimentation is
key. Set aside some time to create the perfect synthesizer lick by playing with these controls.

Using the 808
The 808 drum section, above the 909, is similar to the 909, but with several differences. For
one, the drum sounds are different. Also, the controls aren’t quite the same. When you are
creating or editing beats in the 808, you only have one instance level on the key buttons.
The 808 instead uses the Accent (AC) feature to create heavier beats. The Accent feature is
located over the first key button, and when chosen you can add accents just like you would
add a sound or beat. When you add an accent to a key button, all other sounds that occur
on the same key button are emphasized.

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 913

914 Part VII ✦ Using Flash with Other Programs

Continued

Other controls in Rebirth
Other effects and controls in Rebirth can help you find the sound you are looking for. Here
are some of the basic ones:

✦ Distortion (Dist): Distortion is an effect similar to cranking up a guitar amplifier to
full volume. It creates a harsher, louder sound. Clicking the Dist button on the right
side of any of the four sections uses Distortion. Although distortion can be applied
to any or all of the sections at the same time, only one master control exists for all
sections. It is located on the right side of the Rebirth window.

✦ Pattern Controlled Filter (PCF): The PCF is a versatile filter that can be applied to
one section at a time. It has a master control on the right side of the Rebirth window.
The PCF radically modifies the sound, essentially by reshaping it. To experiment with
the PCF controls, move the four slider bars up and down.

✦ Compressor (Comp): The Compressor evens up the audio signal, making it sound
tighter. You can use the Compressor for either one individual section or for the
Master Output.

✦ Delay: The Delay creates an echo effect for a given sound. You’ll find delay knobs
on the right side of each section and one master control on the right side of the
Rebirth window.

✦ Level Controls: You can control the sound Levels that are going out to mix by using
the mix slides to the right of each section. Remember that as discussed in earlier sound
chapters, Levels are important to consider before you import your final sound or music
loop into Flash. A Master Output slide also exists that controls the Levels going out.
Make sure that the meter isn’t spending too much time in the red or clipping will occur.

Preparation, mixing, and exporting Rebirth loops
At this point you should have a loop created that you want to export to .AIFF or .WAV for-
mat. Before you do, you should take a few steps to ensure good quality output.

✦ Final Mixing: Make sure that all the sections you want to mix are no longer soloed.
To do this, make sure that all of your sections are set to go to the mix (green light
on.) Set the Levels on your sections individually to your liking by adjusting the Level
Controls, as described previously. Bring them down if they are too “hot” (too much
in the red), and set the Master Output Levels in a similar way.

✦ Switch to Song Mode: To export your Rebirth loop to .AIFF or .WAV, you need to
switch to Song Mode. To do this, click Song Mode at the top of the screen. In Song
Mode, choose Edit ➪ Initialize Song from Pattern Mode. Press Play to test your loop.

✦ Exporting: To export your loop, choose File ➪ Export Loop as Audio File. You will be
given the option to save your loop as a .WAV or .AIFF file. The quality is automatically
set to 44.1 kHz, 16-bit.

You should now have a one bar loop in .AIFF or .WAV format. You can test it in another
audio application, such as Peak or Sound Forge, and make any necessary changes, or add
additional effects, or import it directly into Flash.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 914

915Chapter 32 ✦ Working with Audio Applications

Advanced methods to create multiple bar loops in Rebirth
Once you get the basics down, you will no doubt want to work on more complex sounds.
Creating a one-bar loop in Rebirth is just the beginning — you can use Rebirth’s recording
and loop features to make complex songs. Rebirth can also be integrated with other audio
applications, such as Cubase VST. For more information on how to create a more complex
sound in Rebirth, see the very comprehensive Rebirth manual.

With the greatly improved MP3 compression available with Flash 5, an incentive now exists
to create complex, high-quality electronic music by using an application such as Rebirth
without having to worry as much about file size. And the rewards for creating your own
samples, loops, and songs are tremendous.

Rebirth is available for Macintosh and Windows platforms. You can download a demo ver-
sion of Rebirth from the Propellerhead Web site at www.propellerheads.se/demo. You
can also find information about Rebirth at www.steinberg.net.

Justin Jamieson started using his first computer when he was eight years old. Years later, after studying design
and cinematography, he combined his training with his computing knowledge to cofound mediumLarge
(www.mediumLarge.com), a new media design firm in Toronto. Justin remembers listening to “A
Rollerskating Jam Named Saturdays” by De La Soul when he graduated from high school. In 1997, while
developing a Web site for a local Toronto rap group, Justin began his research into the use of sound on the
Internet and there’s been no turning back. Justin’s dream is “to create an old-school MP3 ghetto blaster.”

Expert Tutorial: ACID Loops to and from Flash,
by William Moschella

As in any creative field, there are certain basic guidelines. At the same time, any truly cre-
ative person knows that creative ideas often come out of breaking these guidelines. This
tutorial only presents some basic ideas to follow if you’re looking for a starting point in
using Sonic Foundry’s ACID to make sound loops for use in Flash. The following tutorial also
assumes that you have at least beginner-level experience with ACID — you’ll need to know
how to use the basic ACID tools and must be familiar with the faders, tempo, and pitch
functions.

About the library disks
Sonic Foundry ACID software comes with a disk titled Essential Sounds vol. 1. This disk con-
tains enough loops to keep you busy for quite some time. You can purchase additional
disks from Sonic Foundry. (For more information, check Sonic Foundry’s Web site:
www.sonicfoundry.com/acid.html.)

Choosing the loops
Choosing the files for your loops is something everyone does differently. Although there is
no right or wrong way to arrange a song, there are a few things to keep in mind.

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 915

916 Part VII ✦ Using Flash with Other Programs

Continued

Not everyone has a subwoofer! If you decide to crank some serious bass and drums be
aware that it might sound awful coming through a tiny set of built-in speakers. You can also
lose many high frequencies because of poor speakers

Tempo and key changes
The tempo of a loop is up to the creator. However, some loops might seem to drag or speed
up when played with other loops. Loops are usually best when placed within a limited range
of beats per minute (BPM) above and below their original tempo. If the loop is pushed outside
this range, it can lead to bad sound. Although there is no set rule for this threshold, it helps to
know the original tempo when you are pushing a sound in this manner. The original tempo of
a loop can be found in the Properties dialog. Just right-click/Ctrl+click over the file and choose
Properties from the contextual menu. Speeding up and slowing down a loop will bring out
human errors that aren’t easily noticed at the original tempo. Don’t assume that all Sonic
Foundry loops are cut precisely either! Again, your ear is the best judge. As for key change, just
be sure that you change all the tracks if you change one track. Otherwise, this might result in
some disharmonious music. Yet, if that’s your thing, by all means experiment.

Mixing
The key to mixing in ACID, or any environment, is consistency. Because each loop was proba-
bly recorded in a different environment, you will want to mix all the tracks smoothly to make
it sound as if they were all playing together. Also, a combination of like instruments (such as
four tracks of drums, or two bass tracks) can lead to an overload in one particular frequency
or a muddy mix. When mixing, test at least three different levels. If you only mix with your
speakers cranked all the way up to 10, you will be inconsistent with the same mix at a lower
level. Try to find a mix that sounds equal at a low, medium, and loud volume. This ensures
that the listener has a pleasant experience with whatever speaker they are using.

Exporting
When you’ve finished mixing your loop you can export it in a number of different formats.
Make sure that your loop region is marked at the beginning and end of the selection you
will want to export. (To be safe, you may choose to erase all existing audio outside of the
loop region.) From the File menu choose Save as and check the option Save only the audio
within the current loop region. The drop-down menu to the right of your new filename will
give you a number of combinations for sample rates in both .WAV and .AIFF formats. Save
your file to a new name and then import it into the Flash Library.

Bill Moschella is a principal of STEP2Production, which is an audio, web, and multimedia design firm. Bill has
been involved in music since age 4— in fact, playing and recording music is his single most favorite thing to
do. Since he’s not “into newer music,” the most memorable song from the year that he exited High School in
Prospect Connecticut was “Because,” from the Beatles’ Abbey Road. After aquiring a degree in the 20th century
mucis theory and composition he opened a recording studio, where he applied his engineering techniques to
the computerand web. After college, he started scoring music for radio and television advertising. However,
after discovering Flash (while browsing the web), he was able to apply his expertise to websites and interactive
CD–ROMS. Bill has worked on websites for: www.functionfirst.com, www.deluxesounds.com, www.
timeritemedia.com, www.vdmlaw.com, and www.step2production.com

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 916

917Chapter 32 ✦ Working with Audio Applications

Expert Tutorial: Why Use Beatnik Audio? An Introduction
to Structured Audio, by Doug Loftus

Coverage of Beatnik, Mixman, and Flash is an exciting addition to our sound coverage in
the Flash 5 Bible. Doug Loftus and Andreas Wagner provide the in-depth coverage. In this
first tutorial, Doug explains why and how to use Beatnik Audio files with your Flash movies.
Then, Andreas goes under the hood, showing you how to enable Beatnik with JavaScript in
HTML and FSCommand actions in Flash.

As a Flash developer, you may be aware that Beatnik audio can be used as an alternative to
native Flash audio. However, it may not be clear why, or under what circumstances, it
makes sense to pair Flash with Beatnik. In this tutorial, we look at what Beatnik audio has
to offer when used with Flash to create media-rich presentations.

Although the term “vector audio” would be a misnomer, the Beatnik Player handles audio
in a manner similar to Flash’s handling of graphics; as such, Beatnik might be considered
Flash’s “sonic cousin.” Just as a Flash .SWF combines instructions for displaying vector
graphics and permits inclusion of bitmapped graphics, a Beatnik Rich Music Format (.RMF)
file contains instructions for playing sounds and can include digital audio data. This latter
feature adds greatly to the versatility and quality of the audio experience offered to end-
users. Before elaborating further on why Beatnik might be considered Flash’s “sonic
cousin,” we briefly examine the key features of Beatnik’s audio technology.

MIDI and RMF
.RMF is a MIDI (Musical Instrument Digital Interface)-based file format, albeit with a power-
ful twist: .RMF files can contain custom audio samples. When embedded in a Web page,
.RMF files are played back by the Beatnik Player, which exists either as an ActiveX Control
(for Internet Explorer/Windows) or as a browser plug-in (for Netscape Navigator under
Windows or Mac OS). .RMF is not a streaming format; these files are downloaded and
cached by a browser.

For the uninitiated, here’s a quick rundown on MIDI. A standard MIDI file (with the extension
.MID) doesn’t contain audio information. Instead, a .MID file holds music performance data,
specifying to a playback device what instruments to play, together with the pitch, duration,
and loudness of the notes to be played on the musical timeline. In the simplest case, up to 16
independent channels of such performance instructions can be simultaneously played back
on a MIDI device. Audio playback devices that conform to the General MIDI (GM) standard
contain a minimum of 128 instruments and sound effects, each assigned to a given program
or patch number. For instance, on a GM device, patch number 1 is always a piano sound,
patch number 40 is always a violin, and so on. A separate bank of drum and percussion
sounds is also part of the GM standard.

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 917

918 Part VII ✦ Using Flash with Other Programs

Continued

Because MIDI files only contain performance instructions, their size is typically quite small.
And because most of the sound cards found on today’s computers are GM-compatible play-
back devices, the MIDI format might seem like an ideal audio delivery solution for the Web.
However, MIDI hasn’t exactly taken the Internet by storm for three good reasons. First, a GM
soundbank, consisting largely of (often ersatz) acoustic/orchestral instrument sounds, con-
stricts composers to a rather limited sonic palette that isn’t well suited to creating music in
contemporary styles. Second, sample quality can vary widely among the plethora of sound
cards found on PCs. Thus, a painstakingly crafted sax solo that may sound passable, perhaps
even soulful on one sound card, can sound like a wounded goose on another. Third, the lack
of a cross-browser, cross-platform approach to programmatically controlling playback of MIDI
audio limits its ability to integrate well with Web pages to such an extent that sophisticated
scoring and interactivity is not practically possible. The Beatnik Music System alleviates these
problems by providing the following:

✦ The Beatnik Editor, an application that links to MIDI sequencing software and permits
incorporation of custom samples into MIDI-based compositions. The Editor exports
both MIDI and digital audio (uncompressed or MP3 compressed) data together in a
single, encrypted .RMF file.

✦ An independent GM soundset plus additional sounds and effects that permanently
reside with the Beatnik Player (after a one-time download and install). When com-
posing for the Beatnik Player, regardless of whether you’re using the Player’s built-in
sounds, custom sounds, or both in combination, what you hear is what the end-user
hears.

✦ A JavaScript-based API — the Music Object — that provides cross-browser, cross-plat-
form control over numerous .RMF file playback parameters. This enables developers
to readily integrate interactive music and sound with other Web page elements such
as text, images, and Flash movies.

Of course, a full examination of the features and techniques available when authoring
.RMF audio is beyond the scope of this tutorial. The intent here is to expose some of the key
concepts underlying structured audio, as RMF is sometimes referred to, versus linear
audio — digital audio that is fixed with respect to the majority of its playback parameters,
and whose constituent sounds are not accessible as individual elements (as, for example,
audio as customarily used in Flash).

Structured and linear audio
Typically, Flash developers use audio in a few discrete ways. Short sounds are sometimes
given to navigation elements or triggered by frame events to synchronize with a changing
visual element. Background music often consists of a two- or four-bar audio loop — percus-
sion or other rhythmically well-defined loops lend themselves well to this task — that
repeats for the duration of a scene or even for an entire presentation.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 918

919Chapter 32 ✦ Working with Audio Applications

Of course, your intentions may be adequately served by using a few short sounds and an
audio loop (or two) in linear format. In that case, you honestly don’t have much to gain by
using an alternative approach; snagging a few sound effects and hip-hop loops off the
Internet is easy (as long as they’re royalty-free), and the skill and time required to incorpo-
rate these sounds into a Flash movie is minimal. However, if your audio ambitions are more
complex, then structured audio may be the right solution.

The better Flash developers (and content developers in general) tend to be rather obsessive
about both file size and about making economical use of graphic assets. Even when band-
width isn’t an overriding concern, if one adheres to the notion that the Web is an ecosystem
of sorts, then it’s never good form to use more resources than necessary. Structured audio
enables a developer to make economical use of audio assets while attaining high quality
results.

Example: A structured versus linear approach to an audio problem
As a knowledgeable Flash artist, if you want an animated circle to grow in diameter over
several seconds, you’d never import a sequence of bitmap images for this purpose — you’d
use a symbol and let Flash do the work by tweening. As an audio equivalent, consider the
case in which you’d like to use a high, whistle-like tone that smoothly ascends in pitch by
one octave over ten seconds. A linear audio approach would involve either finding or con-
structing an audio sample of the ascending tone. An acceptable result (with a minimum of
audible artifacts) can be obtained starting with a 22.05 kHz mono sample and MP3 com-
pressing with a bit rate of 56Kbps, with the resulting file size of about 68KB.

A structured audio approach, using the Beatnik Music System, would be to link the Beatnik
Editor to your MIDI sequencing software and to choose a suitable sound and pitch as a start-
ing point (the Editor makes the Beatnik Player’s soundbanks available in the composition
environment). By applying a one-octave pitch bend to a note that sustains for ten seconds,
the desired effect is achieved. This latter operation is akin to an audio tween. The size of the
resulting .RMF: 600 bytes, which is a 100-fold reduction compared to the linear equivalent.

Synchronization
It’s often desirable to have visual and audio elements relate to each other. Because Flash
can support a two-way dialog with JavaScript, it can also communicate with the Beatnik
Player. MIDI (and .RMF) files can incorporate special nonperformance data — known as
metaevents — that can be placed along the Music timeline in the composition environment.
The Beatnik Player can read these cue points, and the ensuing JavaScript call can be used
to trigger events and set properties in Flash. Conversely, ActionScript can make a JavaScript
call from any frame or button, making it possible to trigger changes in a playing .RMF file.

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 919

920 Part VII ✦ Using Flash with Other Programs

Continued

Conclusion
The benefits of authoring with Beatnik audio go well beyond those described here, especially
when sophisticated interactivity is desired. When your Flash projects call for audio, consider
whether structured audio might be a better solution for your needs than that provided by lin-
ear audio. Further documentation and tutorials are available at www.beatnik.com. Also note
that Beatnik maintains a discussion forum for developers who use Beatnik audio and Flash
together, at http://discussion.beatnik.com.

Currently living in San Francisco, Doug Loftus recalls the Devo remake of “Satisfaction” as a prominent feature of
his final year of compulsory education. Not surprisingly, in response to our question, “what is your single most
favorite thing to do?,” Doug responded, “creating grooves for my own amusement and hypnosis.” He also told us
that he “gravitated to Flash because it’s an ideal medium for creating sophisticated, great-looking interfaces.”
Among his finer accomplishments, Doug’s credited for much of the work on both www.mubu.com and
www.mixman.com.

Expert Tutorial: Mixman in a Web page,
by Andreas Wagner

Now that you know what Beatnik audio is all about, Andreas shows you how to enable the
Beatnik plug-in in your HTML documents and how to control Beatnik audio from your Flash
movies.

The Mixman Studio Pro software is a very powerful music creation, remixing, and perfor-
mance system that lets you create professional-sounding music on your PC or Mac. For
those not familiar with Mixman Studio, the interface consists of a 2-turntable metaphor,
with 8 buttons on each record symbolizing the 16 tracks of digital audio that can be loaded
and triggered live. Additionally, it has a ton of features too numerous to list here.

For more information visit www.mixman.com.

The recent release, Mixman Studio Pro 4, features an option for exporting your Mixman cre-
ation to the Beatnik sound file format .RMF, making it possible to publish your music on a
Web page through the use of the Beatnik plug-in. For more in-depth information on the
.RMF format, see Doug Loftus’ entry “Why Use Beatnik Audio?”

Mixman in a Web page was made, in Flash 4, for the mymixzone community, where users
can promote themselves, uploading their music for others to remix online (www.mixman.
com/mymixzone). Needless to say, the Flash interpretation of Mixman Studio is miles away
from the original software. Still, Mixman in a Web page is a little revolutionary. Sixteen
tracks can be triggered, tempo changes can be made (without changing the pitch!), and 11
different reverb types can be set — all in real-time.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 920

921Chapter 32 ✦ Working with Audio Applications

When you are done with this tutorial, you will be capable of creating a Flash 5/Beatnik Web
page with the ground elements of Mixman in a Web page, which are the 16 buttons that can
trigger the audio channels of a .RMF file. You will furthermore be equipped and prepared to
experiment with the power of the Beatnik plug-in. I recommend that you download the
Beatnik Web Authoring Documentation available at www.beatnik.com.

The following are the JavaScript library files necessary for Beatnik communication. They are
found in the ch32 folder on the Flash 5 Bible CD-ROM.

/java/

music-object.js
music-object-x-flash.js

A demo .RMF file exported from the Mixman Studio Pro 4 software:

/rmf/

mixman.rmf

Tutorial Flash 5 movie and source:

/tutorial_movie/

index.html
tutorial.swf
tutorial.fla

Mixman in a Web page “Lite” version source code.

/mixman_lite/

index.html
lite.swf
lite.fla

Preparing the HTML
Beatnik has created JavaScript library files (.js) to make life easier for Beatnik authors. They
contain the comprehensive JavaScript code needed to make our connections to the Beatnik
plug-in. It is not necessary to fully understand the code in these .js files, but it is a good idea
to whip out the text editor and take a look at what is in the code.

To build the foundation for a Flash/Beatnik Web page, source these two JavaScript’s in the
HTML body.

<SCRIPT SRC=”../java/music-object.js”></SCRIPT>
<SCRIPT SRC=”../java/music-object-x-flash.js”></SCRIPT>

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 921

922 Part VII ✦ Using Flash with Other Programs

Continued

Briefly, the music-object.js (Music Object) is the stairway to the Beatnik plug-in. Without this
code, controlling and communicating with the Beatnik plug-in would be really challenging.
The Music Object handles requests such as play, volume, and stop between Flash and the
Beatnik plug-in. The Music Object should be seen as a layer between the Beatnik plug-in
(handles the audio output) and the Flash Movie (the graphical front end).

The Music Object can be expanded with extensions such as music-object-x-flash.js. This
extension connects the wires between the Beatnik player and Flash, which enables messages
to be transmitted to the Music Object from Flash, using the Flash ActionScript fscommand()
action.

Create a new Music Object instance and name it MMplayer. This name is passed on to the
Music Object’s constructor method (new Music();).

<SCRIPT LANGUAGE = JavaScript>
<!-- //
MMplayer = new Music();
MMplayer.magicEmbed (‘SRC=”../rmf/mixman.rmf” HIDDEN ¬

VOLUME=0 AUTOSTART=true’);
MMplayer.onPlay(‘getSampleNames();getSongInfo(); ¬

startFlash()’);
Music.embedFlashMovie (‘SRC=”lite.swf” NAME=”mixman” ¬

WIDTH=550 HEIGHT=400’);
// -->
</SCRIPT>

The magicEmbed is our standard way to embed a Beatnik Player instance in a cross-
browser HTML page. We assign it the following properties:

✦ The correct path to the .RMF file

✦ The player interface is HIDDEN

✦ VOLUME is set to zero (later, the volume is turned up in Flash with a fscommand)

✦ The AUTOSTART Boolean is set to true.

The reason that AUTOSTART is true is that we have a chance to execute JavaScript functions
each time the Music Object instance enters playing state, using Beatniks onPlay callback
method. (Other callbacks are available, such as onLoad, onReady, onStop, onMetaEvent,
and so on.) These callback methods can take JavaScriptSTR or a JavaScript function as their
parameters. Our three functions getSampleNames(), getSongInfo(), and startFlash()
are executed when the player hits the playing state.

Finally, the Flash movie is embedded with these properties: Path, Name, and the movie’s
Width and Height.

If Music Object is made visible (HIDDEN=false WIDTH=144 HEIGHT=44), the standard
Beatnik player interface appears. Essentially, what we are doing here is building a remote
control for this player.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 922

923Chapter 32 ✦ Working with Audio Applications

This concludes the embedding. Now, its time to build three functions that will be executed
when the player instance is in the playing state. In order for it to work properly, these
should be placed above all the embedded code.

When running, the Beatnik Player receives and holds significant information about the
loaded .RMF (see “An Introduction to Structured Audio”) file, which is distributed in fields
called composer, song name, copyright, and so on.

function getSampleNames(){
var trackData = new String(MMplayer.getInfo(‘notes’));
var tracks = trackData.split(“,”);
for (var i = 0; i <= 15; i++){

window.document.mixman.SetVariable(“sample” ¬
+ (i + 1), “” + tracks[i]);

}
}

This is useful because the MMplayer.getInfo() Beatnik method returns these fields as a
string value, giving us information about our .RMF file according to the specific parameter
that we have assigned.

When exporting as .RMF from Mixman Studio Pro 4, all sounds assigned to the separate
channels are in the field “notes.” So, for example, to retrieve the instrument names assigned
for each channel, we use the parameter notes. The received information is split (between
the commas) and made equal to the variables generated in the for loop (sample1 up to
sample16).

However, we want this information to be passed on to our Flash movie, which is named
“mixman.” To do this, we use window.document.mixman.SetVariable, which is the way
to address objects and their functions or variables, embedded in Web pages. In a more
elaborate way, it could be described, in more natural language, as: “In the window, find the
document object. In the document object, find the mixman object. In the mixman object,
use the function SetVariable.”

So with that clear, let’s get our hands on both the song title and on the name of the artist, too.

function getSongInfo(){
window.document.mixman.SetVariable(“songTitle”, “” ¬

+ MMplayer.getInfo(‘title’));
window.document.mixman.SetVariable(“artist”, “” ¬

+ MMplayer.getInfo(‘composer’));
}

Again, to accomplish this, we use getInfo. The variable songTitle should be equal to the
string returned when we set the getinfo() parameter to title. The artist variable
should be equal to getInfo together with the parameter composer.

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 923

924 Part VII ✦ Using Flash with Other Programs

Continued

Finally, we need the Flash movie to react when the instance is playing.

function startFlash(){
window.document.mixman.GotoFrame(4);

}

In this case, the Flash movie should progress to frame 4.

The Flash 5 ActionScript
Frame number 5 is the base for our Flash 5 ActionScript functions. Let us look at the essential
fscommand() action in Flash, and how to control volume for each of our 16 channels.

function tellBeatnik(channel,controller,volume){
fscommand(“MMplayer.setController,” + channel + “,” ¬

+ controller + “,” + volume + “”);
}

The fscommand action has two parameters: command and arguments. We are sending the
command setController with the arguments MidiChannel0 to 16, ControllerNumber0
to 127, and ControllerValue0 to 127 to our player instance (MMplayer). The ActionScript
function tellBeatnik() has been built to send parameters and change the arguments of
the fscommand action more simply:

✦ The channel parameter enables a MIDI channel number (1–16).

✦ The controller parameter specifies a MIDI controller for the channel. (We use the
controller for volume, which is number 7.)

✦ Finally, the volume parameter lets us set the value of the MIDI controller. (0–127).
For example, we want channel 9 to use the MIDI controller number 7 and give it
the value 127:

tellBeatnik(9,7,127);

Author’s Note: Beatnik supports MIDI controllers such as Modulation (number 1), volume
(number 7), Pan (number 10), Reverb Type (number 90), Reverb Level (number 91) and
others (listed in the Beatnik Web Authoring Documentation).

Our tellBeatnik() ActionScript function is used in our next initialization function that is
designed to turn down the volume for our 16 channels.

function initMixman(){
var i = 1;
while (i <= 16) {

tellBeatnik(i,7,0);.
i++;
}

if(i == 17){

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 924

925Chapter 32 ✦ Working with Audio Applications

play();
}

}

The loop executes tellBeatnik() with the channel parameter i, controller 7 and value 0.
Now, when all the channels are silent, we should the movie start with the play() method.
Before we leave frame 5, remember that the initMixman() function is called here:

stop();
initMixman();

We let the movie play to frame 10, and turn up the overall volume (range 0–100) of the
MMplayer. (Initially, we embedded the player with the volume set to zero.)

fscommand (“MMplayer.setVolume(100)”);
stop();

This does not affect the value of the MIDI Controller 7; it will remain as it is. Although this
might seem weird, it removes a short, loud noise that sometimes occurs when the loop is
not quick enough to turn down all the 16 channels.

In frame 10, we build a function that can change the color of a Movie Clip instance when
required:

function colorChange (myChannel,myColor){
cleverLight = new Color (eval(“_root.ch”+myChannel));
cleverLight.setRGB(myColor);

}

We use the constructor new Color() to create a new Color Object. We call this Color Object
cleverLight and make it possible to set the RGB value (in hexadecimal) with the
myColor parameter. Calling colorChange with parameter (3, 0x666666) will make a
new Color Object with Movie Clip ch3 as target, and set the RGB value to 0x666666 (gray).

We need two more functions in frame 10; these will handle the channel volume change
(unMute and mute), put the responding sample names in a dynamic text field, and change the
color a Movie Clip.

function unMute(myChannel) {
tellBeatnik(mychannel,7,127);
sampleName = eval(“_root.sample”+mychannel);
colorChange (myChannel,0x33FF00);

}
function mute(myChannel) {

tellBeatnik(mychannel,7,0);
sampleName = eval(“_root.sample”+myChannel);
colorChange (myChannel,0x666666);

}

Continued

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 925

926 Part VII ✦ Using Flash with Other Programs

Continued

In function unMute(), the channel number we use as its parameter is passed on to the
tellBeatnik() function. The string in the text field, sampleName, is equal to the content
of the variable sample + myChannel number. This gives us the name of the sample,
retrieved by the JavaScript function getSampleNames() on the HTML page. Finally, our
colorChange() function is called with the parameters myChannel and color hex code
0x666666. This will change the color of the Smart Clip, which we create in the next section,
to green.

Before making the Smart Clip to trigger the mute and unMute functions, we should create
our three dynamic text fields and name them sampleName, songTitle and artist.

The Smart Clip
In the Flash 4 version of Mixman in a Web page, 16 individual Movie Clips had to be created,
making it very time-consuming if the boss wanted a feature added or changed. The improve-
ment of ActionScript in Flash 5 simply prevents too many ulcers in these situations. We only
need to make one Movie Clip, define a clip parameter, drag it to the Stage, and change its
parameter. Even though we have to do that 16 times, we still only have one Movie Clip, mak-
ing it leisurely if we want to add a new look to the clip or change some code.

Let’s create a Movie Clip symbol, and name it superClip. Open the Library, select the new
Movie Clip, and choose Define Clip Parameters in the Library Options menu. Here, you
should create a new parameter and change the varName to myChannel. Create a list of
values that range from 1 to 16.

In the first frame of the new Smart Clip timeline, add these frame actions:

this._name = “ch” + myChannel;
muted=true;
stop();

Here we set the name of the Smart Clip semiautomatically using the _name property and
the value “ch” + myChannel. This will help our colorChange() function to locate its Color
Object (for example, ch1..ch16). We also initialize our muted Boolean to true. This Boolean
is used by our button to check which state the Smart Clip is in.

Draw a gray (hex 666666) masterpiece of a button in the first frame of the Smart Clip and
convert it to a Button instance. Highlight it and give it these actions in the Actions Panel:

on (press) {
if (muted){

_root.unMute(MyChannel);
muted=false;

}
else if (muted == false){

_root.mute(MyChannel);
muted=true;

}
}

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 926

927Chapter 32 ✦ Working with Audio Applications

When we mouse “press” the button, the actions will be executed in the following manner: If
the Boolean muted is true, call the unMute() function in the root of the main movie. Call
unMute() with a parameter that corresponds to this Smart Clip’s MyChannel variable (which
is set in the Clip Parameters Panel). Now, this channel is playing. So, we set the muted
Boolean to false. On the second mouse “press,” the else if action executes. This nest calls
the mute() action and resets the muted Boolean. Now we can toggle our channels, as soon
as the Smart Clip is on the Stage.

Go to the root of the movie in frame 10. In the Library, highlight the Smart Clip and drag it
onto the stage. With the Smart Clip selected, go to Window ➪ Panels ➪ Clip Parameter. In
the Clip Parameters Panel, choose a value for the myChannel clip parameter. Repeat this 16
times, giving each Smart Clip a myChannel parameter value ranging 1 to 16.

Now, all of the ground elements for Mixman in a Web page will be functioning. Save your
Flash movie and test it in your HTML page in a Web browser.

Final Notes
If you want to go a step further, you can either look at the source for the mixman_lite.fla on
the CD-ROM (it explains the keycodes and solostate macros), or download the Beatnik
Web Authoring Documentation available at www.beatnik.com.

I would like to thank Jason “Mouse” Bard, Steve Markovich, Sal Orlando, and everyone at
Mixman/Beatnik, the Flash 5 Bible team, and Morten Wagner.

In the year that Andreas Wagner graduated from High School, “Asleep At The Wheel,” by Suicidal Tendencies,
was the most memorable song. A native of Copenhagen, Denmark, currently residing on the Spanish Isle of
Mallorca, Andreas is true pioneer of distant employment — he works on contract for Mixman of San Francisco.
Oddly enough, his most favorite thing to do is, “Compressing Gifs” and he claims to have discovered Flash at
the “Space Invaders” School of Multimedia Design. Sites that Andreas has worked on include: www.mixman.
com/mymixzone, www.koalition.net, and his own www.invaders.dk/andreas.

Summary
✦ There are a number of sound-editing applications that you can use on your

Windows or Macintosh computer. Some software bundles use proprietary
audio hardware and computer peripherals.

✦ Every sound-editing application can perform basic edit functions for sound
files. Among other things, you can change In and Out points, normalize, and
resample sound files.

✦ Sonic Foundry’s ACID can be used to create seamless loops for Flash sound-
tracks.

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 927

928 Part VII ✦ Using Flash with Other Programs

✦ The Beatnik plug-in enables you to use both sound samples and MIDI audio
with Flash movies.

✦ Mixman Studio can export sound mixes as .RMF files, which can be explicitly
controlled with FSCommands from Flash movies.

✦ ✦ ✦

3515-3 ch32.f.qc 1/18/01 5:10 PM Page 928

Working with
3D Graphics

A lthough Flash has no true 3D art tools, with a little time
and effort, you can effectively simulate depth. If you

have other 3D applications, you’ll learn how to export opti-
mized EPS or bitmap sequences to use as Movie Clips in a
Flash movie. Because interest in 3D Flash artwork is growing,
developers are including direct .SWF output capabilities with
their applications.

Introduction to 3D Modeling
Computer monitors have only two dimensions, width and
height, which makes working with three-dimensional objects
a bit unnerving for someone who is a novice to 3D-computer
modeling. That’s because 3D artwork occurs in what is
called 3D space, which is a simulation of real space. Three-
dimensional space has three axes: X (width), Y (height), and
Z (depth). While conceptualizing three dimensions may not
be difficult, controlling views of objects and cameras, or
rotating objects with a mouse and keyboard can prove to
be an arduous task. Likewise, most 3D graphics are displayed
on flat computer screens. So, what makes a graphic appear
to have depth in a two-dimensional space? See Figure 33-1
for an example.

Art history teaches us that several factors can give the illusion
of depth on a flat surface. All of these factors are central to the
arrangement of subject matter within a frame, also known as
the composition. Most artwork achieves the appearance of

3333C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Understanding
3D terminology

Creating 3D effects
with Flash artwork

Exporting 3D
animations from
other applications

✦ ✦ ✦ ✦

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 929

930 Part VII ✦ Using Flash with Other Programs

depth through the use of perspective, wherein the proportion of the composition’s
foreground and background spaces lend a perceived depth. With linear perspective,
parallel lines are drawn as converging lines, usually to a single vanishing point on a
horizon line (see Figure 33-2). The diminution of scale is integral to the concept
of linear perspective. Objects closer to the viewer appear larger, while objects far-
ther from the viewer appear smaller. Similarly, atmospheric perspective adds to a
composition’s sense of depth by reducing the visibility of objects as they approach
the horizon.

Figure 33-1: The left diagram is a two-dimensional representation of space,
whereas the right diagram depicts three-dimensional space.

In most 3D computer applications, you can also choose a viewpoint known as
orthographic perspective, in which objects and scenes are shown from a strict
mathematical viewpoint — without any sense of depth (see Figure 33-3). Technically,
because orthographic views do not use perspective, this viewpoint should be
referred to as orthographic projection. That’s because an orthographic view
renders an object or scene with mathematical accuracy instead of perspective
accuracy. Some applications may also have an isometric view. As far as 3D computer-
drawing programs are concerned, isometric and orthographic views are the same.

X

Y

A B

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 930

931Chapter 33 ✦ Working with 3D Graphics

Figure 33-2: The line drawing illustrates the concept of linear perspective.
The image created in MetaCreations Bryce 3D shows linear and atmospheric
perspective.

vanishing points.�

horizon line

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 931

932 Part VII ✦ Using Flash with Other Programs

Figure 33-3: Linear perspective of a cube on the left; orthographic projection of a
cube on the right

With the advent of photography, depth-of-field effects have also become factors that
can be used to contribute to a sense of perceived depth within a two-dimensional
plane. Depth of field refers to the range of clear focus in either the foreground or
the background of a composition. A low depth of field means that objects appear
in focus only within a short distance range from the viewer (see Figure 33-4). For
example, if a camera lens is focused on a person with mountains in the distance,
then the person is in focus, while the mountains are not. A high depth of field means
that objects can be farther apart from one another while maintaining the same focus
clarity. Using the same previous example, a high depth of field enables both the near
person and the distant mountains to appear in focus.

Most 3D-creation programs not only strive to render scenes with accurate perspec-
tive, but also strive for a sense of near-photographic realism. Given the nature of
Flash’s vector-based framework, most highly textured 3D artwork won’t mesh well
with small vector file sizes. Nevertheless, simpler 3D objects and animations can be
imported into Flash while maintaining reasonable file sizes (less than 60KB). The 3D
programs use the following processes or enhancements to add realism and depth
to artwork:

✦ Extruding. This is the process of importing a two-dimensional vector graphics
file (such as Illustrator EPS) into a 3D modeling program and giving depth to
an otherwise flat object — usually by extending vertices or edges along the Z
axis (see Figure 33-5).

✦ Lighting. The most important factor in creating the illusion of spatial depth is
adding and positioning light sources. A well-lit 3D model emphasizes planar
depth; poorly lit 3D objects look flat (see Figure 33-6).

a) b)

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 932

933Chapter 33 ✦ Working with 3D Graphics

Figure 33-4: Low depth of field on the left; high depth of field on the right

Figure 33-5: A flat 2D graphic on the left; an extruded 2D graphic on the right

Figure 33-6: A well-lit 3D object on the left; a poorly lit object on the right

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 933

934 Part VII ✦ Using Flash with Other Programs

✦ Texture Mapping. Textures (images of patterns or surface materials) can be
stretched across an object’s surface(s) or faces (see Figure 33-7). Through the
use of color contrast, pattern, and opacity, texture mapping gives an object
unique, realistic attributes.

✦ Wireframe. A wireframe is the most basic model structure of a 3D object.
It renders objects using lines to represent the edges of polygons and faces
(see Figure 33-8).

Figure 33-7: A texture-mapped object

Figure 33-8: A PostScript view
of an extruded letter R in Adobe
Dimensions; a wireframe view of
the same model

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 934

935Chapter 33 ✦ Working with 3D Graphics

✦ Inverse Kinematics. Kinematics is the study of the motion of objects or of a
system of objects. Inverse kinematics (IK) refers to how motion in one area
of the system effects the movement of other parts in the system. For example,
in respect to the human body, movement of the hip necessarily involves
repositioning the legs to accommodate that motion. Early 3D programs didn’t
incorporate IK very well. Most high-end 3D applications such as 3D Studio
MAX have advanced control of IK effects, while most prosumer 3D applications,
such as Curious Labs Poser, have some level of IK support. Although IK support
doesn’t necessarily affect the three-dimensional feel of an object, it adds
automated realism to animated figures and complex objects.

Several cross-platform 3D file formats exist: .3DS (3D Studio), .DXF, and .VRML.
However, Flash 5 only recognizes two-dimensional .DXF files, such as those created
by CAD programs. Consequently, for most 3D artwork imported into Flash, we
recommend that you export either .EPS/.AI files (on the vector side) or .PICT/
.BMP files (on the raster side) from the parent 3D application.

At the time of this writing, only two plug-ins for Kinetix 3D Studio Max provide for
direct export of 3D objects or animations to the Flash .SWF format — Digimation’s
Illustrate! 4 and Vecta3D by Ideaworks. Because Macromedia has opened the
Flash .SWF source code to the public, we expect to see more applications that can
either save as or export to the .SWF file format.

A variety of 3D applications are on the market, and they vary greatly in price
and quality. Although a program such as Kinetix 3D Studio Max offers the broadest
range of advanced controls, you might not need (or want) to take the time to learn
it. Simpler programs, such as Adobe Dimensions or Curious Labs Poser, sacrifice the
finer controls but offer the ease of use that Web designers expect from other graph-
ics applications. Without further introduction, let’s get started with some simple yet
effective 3D work created in Flash with the help of FreeHand or Illustrator.

Simulating 3D with Flash
In this section, Manuel Clement, foremost master of Flash 3D graphics, shows you
how to create a 3D vortex.

If you’d like to see the fully constructed Flash (.FLA) file for this tutorial, see
vortex.fla in the ch33 folder on the Flash 5 Bible CD-ROM.

On the
CD-ROM

Tip

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 935

936 Part VII ✦ Using Flash with Other Programs

Expert Tutorial: Vortex: The Illusion of 3D with Flash,
by Manuel Clement

It’s not necessary to own expensive 3D applications to create interesting 3D animations. In
Mano’s tutorial, you learn to create the 3D-like artwork entirely with the drawing tools of
Flash.

Illusion: The Vortex
A common drawback to 3D animation delivered over the Web is that the results can vary
widely due to variables of systems and connections. Yet this animation has been tested
over many connections on systems ranging from 200 MHz to 450 MHz and is drawn
smoothly even on slower systems.

The vortex is a 3D effect created without an external modeler, using only the Flash drawing
tools, timeline, and layers. After this tutorial, you’ll be able to create similar effects using the
same technique, which is to simulate 3D with one object of the library, a semivisible ring,
by decreasing the size of the symbol on successive layers. As you’ll see, the possibilities are
endless.

To begin, create a new movie and modify it using Modify ➪ Movie ➪ Background so that it
has a black background. (Save this new movie, and don’t forget to save your work using
Ctrl+S [Command+S] each time you complete a step.) Next, select the Oval Tool and set Fill
Color to neutral, Line Color to white, and Line Thickness to H (thinnest setting). Now, draw
a large circle at the default keyframe 1, as shown in the following figure.

Select the circle. Copy it using Ctrl+C (Command+C) and then Paste it using Ctrl+V
(Command+V) into the same (first) keyframe, as seen in the following figure.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 936

937Chapter 33 ✦ Working with 3D Graphics

With the circle still selected, use the Arrow Tool with the Scale Modifier to first reduce the
size of the new circle, and then to drag it to the middle of the original circle as seen in the
following figure.

Be careful when you are drawing more than one shape on the same layer — if you acciden-
tally deselect a shape that is over another shape, then the two shapes will be joined.

Choose the Paint Bucket Tool and create a new color with a 30-percent Alpha. For this
example, a blue with a 30-percent Alpha was used. The Alpha setting is important for the
optical illusion that we are creating. (Be sure to press the New button to add your new
color to the Current Colors pop-up menu.) Now fill the space between the two circles.

Continued

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 937

938 Part VII ✦ Using Flash with Other Programs

Continued

We now have a filled shape with two outline circles. Delete these outline circles by select-
ing each circle with the Arrow Tool and then pressing the Delete key. You should now have
a transparent ring that looks like this figure:

Select the ring and convert it to a movie clip (Insert ➪ Convert to Symbol). In the ensuing
Symbol Properties dialog, type the Name of the symbol, and select Movie Clip as the
Behavior.

Now, with the Arrow Tool and the Scale Modifier, select the ring and reduce its size — we’re
going to need a lot of space to create the vortex (see the following figure). If you haven’t
saved your project yet, do so now.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 938

939Chapter 33 ✦ Working with 3D Graphics

Select the keyframe and copy it by right-clicking the keyframe and selecting Copy Frames
from the ensuing pop-up menu. Create a new layer with Insert ➪ Layer (or by clicking the
Add Layer button on the timeline). Now Select the first keyframe of the new layer and paste
the previously copied keyframe with a right-click into the keyframe followed by selecting
Paste Frames from the ensuing pop up menu. At this point, there should be two layers with
identical keyframes, as shown. Lock the previous layer to prevent future mistakes.

In order to see exactly what you are doing, go to the Zoom control and select Show All
(alternately, use View ➪ Show All). With the original layer locked and the new layer active,
use the Scale Modifier of the Arrow Tool to select the ring and enlarge it slightly. This
becomes the basic procedure: Each time we create a new layer with its new ring, we make
that layer larger than the previous one. In the figure that follows, you can see that the ring
in the second layer is larger than the circle in the lower layer.

Continued

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 939

940 Part VII ✦ Using Flash with Other Programs

Continued

Mimic the previous procedures to copy the latest keyframe, create a new layer, and then
paste the frame on the newest layer’s first keyframe. Again, lock the previous layer to pre-
vent future mistakes. Finally, enlarge the newest ring and save.

Repeat the previous steps a few more times, until you have about 21 rings (on 21 layers).
Note that, although the process remains the same, the effect varies depending on the num-
ber of rings: The more rings you add, the bigger the vortex. The following figure shows the
completed set of rings.

Now we’re going to animate the vortex. Select frame 20 of all the layers: To do this, start at
the bottom of the timeline, click frame 20, and hold the Shift key while selecting all remain-
ing layers. Now, with all the frames that you’ve selected still selected, make frame 20 of
each layer into a keyframe by pressing F6.

As shown in the following figure, all of the rings should still be selected and you should be
at keyframe 33. If not, Shift+click to select keyframe 33 of all layers and select all of the
rings simultaneously with Edit ➪ Select All.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 940

941Chapter 33 ✦ Working with 3D Graphics

Now, use the Scale Modifier of the Arrow Tool to reduce the width of the rings on the X-axis,
as shown in the following figure. Then, lock the top layer.

If they are not selected, reselect all of the rings again and then press the right arrow key 10
times. This moves all the selected rings (except for those rings on layers that are locked)
toward the right along their X-axes. Finally, lock the topmost layer of the unlocked layers, as
shown in the following figure.

Continued

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 941

942 Part VII ✦ Using Flash with Other Programs

Continued

Again, reselect all of the rings (if they are not selected) and press the right arrow key ten times.
This moves the selected rings (on all unlocked layers) farther to the right along the X-axis. (You
can see the shape of the vortex starting to appear.) Lock the topmost, unlocked layer.

Repeat the previous procedure until all layers are locked, and the vortex is drawn. Your
vortex should look just like the one shown here.

Now select the first keyframe of all layers by starting at the bottom layer and shift-clicking
the first keyframe of each layer until you’ve selected the first keyframe of each layer. With all
first keyframes still selected, open the Frame Panel (Ctrl+F or Command+F). Select Motion
in the Tweening menu.

An arrow appears between keyframes, passing through the frames of each layer to indicate
a Motion Tweening transition between frame 1 and frame 20. Save, and then press Enter to
see the vortex animate! The following figure shows the vortex as it appears halfway through
the tween.

The file size of this seemingly complex animation is only 6KB. That’s because it’s built from
a single, simple ring symbol. With more rings or keyframes, your file size might be a little
larger, but not much. Although this vortex animation is only a transition between two
keyframes, once you understand the principle, you can create your own varied effects. You
may get some interesting results by editing the ring Movie Clip in the gallery and changing
its shape or color, or maybe even by animating the clip itself. The vortex differs with each
change made to the ring symbol.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 942

943Chapter 33 ✦ Working with 3D Graphics

Using Adobe Dimensions to Create 3D Objects
Many Flashers create 3D designs and animations for Flash movies with Adobe
Dimensions 3.0. That’s because Dimensions offers an intuitive interface for elemen-
tary 3D design. If you’ve never used a 3D program before, then Adobe Dimensions
is a great place to start. The interface has familiar tools found in other 2D drawing
programs. These include Pen, Text, and Object Tools. Although Dimensions’ support
of animation isn’t as advanced as that of other applications (such as 3D Studio MAX
or even Macromedia Extreme 3D Version 2) you can use it to create great-looking 3D
animations to use in Flash — while maintaining small file sizes! This section shows
you how to turn an existing 2D design into a simple — yet effective — 3D sequence
that can be imported into Flash. (If you aren’t acquainted with the basic interface
of Dimensions, please read Chapter 1 of the Adobe Dimensions 3.0 User Guide,
which comes with the software, before proceeding with this section.)

Manuel Clement, affectionately known as “Mano” to friends and colleagues, is the designer behind
mano1.com. With seven years of classical piano and music theory training, he also runs onlinedj.com,
an emerging site for the music industry. Winner of two Macromedia Shocked Site of the Day awards in
1999, Manual is passionate about design, technology, and has spoken at conferences in San Francisco,
New York and London. Manuel says this of his recent work; “I am influenced by the artist Victor Vasarely,
who is distinguished in contemporary art for the exceptional results that he brought [to] geometrical abstract
painting, under the name of kinetism.” (Vasarely’s work can be viewed online at www.netprovence.com/
fondationvasarely/) “This vortex,” Manuel continues, “reminds me of his paintings.”

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 943

944 Part VII ✦ Using Flash with Other Programs

How to extrude vector artwork
In Dimensions 3.0, you can create 3D artwork from scratch using the various
drawing tools in the toolbox. You can also use Dimensions to generate dimensional
artwork from any vector file, such as .EPS or .AI files. In this section, we describe
how to extrude an imported Illustrator file.

✦ Make sure that you have installed Dimensions 3.0 on your Windows or
Macintosh computer. Open the application.

✦ In the Render Mode drop-down menu of the Untitled-1 document window,
choose PostScript.

✦ Open the Extrude window by choosing Operations ➪ Extrude or Command ➪
Ctrl+E. This command or shortcut can hide the Extrude window as well.

✦ In the lower-left corner of the Extrude window, click the New Base button.

✦ With the Extrude base window active, import an .EPS file that you want to
turn into animated 3D artwork for Flash. To do this, choose File ➪ Import
(Command+Option+I or Ctrl+Alt+I), and select a vector file. (You can use
the crossHairs.eps file in the ch31 folder on the Flash 5 Bible CD-ROM.)

You can export an .EPS or Illustrator file from Flash to use in Dimensions. For more
information on exporting vector file formats from Flash, see Chapter 31, “Working
with Vector Graphics.”

In the Extrude window, enter a value in the Depth text field. By default, all values
in Dimensions are in points. After you enter a value, click the Apply button in the
lower right-hand corner of the Extrude window (see Figure 33-9). A value of 75
points was used for the crosshairs sample file.

Figure 33-9: Using the Extrude window, you can convert a
two-dimensional vector file to a three-dimensional object.

With the object selected in the document window, open the Camera window
(Window ➪ Show Camera), which controls the view angle of the 3D window. Enter
75 for the Lens value, and 0 for Lon, Lat, and Roll.

Open the Move window (Operations ➪ Transform ➪ Move). Choose Absolute for the
Coordinates property, and enter 0 for X, Y, and Z values. Click Apply. If you’re using
the crosshair sample file, your object should resemble Figure 33-10.

Tip

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 944

945Chapter 33 ✦ Working with 3D Graphics

Figure 33-10: After applying a new Camera view
and object coordinates, the crosshairs object has a
much more dynamic look.

The next step is to generate a series of still images from Dimensions to use in Flash.
(The process is similar to using the Auto-Distort command in the Paint window
of Macromedia Director.) To do this, we use Dimensions to record the position and
scale of the object as it is rotated and moved in the 3D window. A start point and
an end point are specified. Then Dimensions creates the in-between keyframes
for the sequence.

With the 3D object selected and in a starting position, choose Operations ➪
Generate Sequence. The alert box shown in Figure 33-11 appears.

Figure 33-11: After you select the Generate Sequence
command, move, scale, or rotate the 3D object to a new
position or size. The Operations menu item remains high-
lighted to remind you that you are generating a sequence.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 945

946 Part VII ✦ Using Flash with Other Programs

Now, move and rotate the object to the final position of the animation. Note that
you won’t be able to preview the animated sequence. So, if you want to be precise,
use any of the Operations ➪ Transform windows to specify the end position. To
create a rotating crosshair, open the Rotate window (Operations ➪ Transform ➪
Rotate) and enter 180 for the Y axis. Click Apply.

Choose Operations ➪ End Sequence to stop the recording process. The Sequence
dialog (see Figure 33-12) automatically opens, and you can specify the number of
frames (in the sequence), the file type, and the filename prefix.

Figure 33-12: Specify the image output
settings in the Sequence dialog.

To keep the final Flash file size as small as possible (for optimal transmission over
the Web), try to limit the number of frames to as few as possible. Depending on the
range of motion and scaling, you may be able to use as few as five or six frames. For
the 180-degree crosshair rotation, a series of 12 frames was generated by Dimen-
sions in the Adobe Illustrator (.AI) format, which Flash can import.

You may want to experiment with .PICT or .BMP file types and use the Trace
Bitmap command in Flash to reduce the complexity of the imported bitmaps. It
may seem counterintuitive, but small bitmaps in a series are often smaller than
their vector equivalents.

Most 3D applications have a filename prefix property that enables you to specify
the name that precedes the numbers in the sequence. For example, if you use
crosshair as the filename prefix, then the first frame’s filename is crosshair0000.
You can insert spaces or underscores (for example, “crosshair “ or “crosshair_”)
to separate the number from the prefix.

The Sequence dialog box has two additional options, Leave Object in Original
Position and Output Frames to a Single File. The first option, if checked, keeps the
object in the center of each frame generated. If it is not checked, then the object’s
center varies depending on the starting and ending positions. Because you can
tween the imported sequence as a Movie Clip in Flash, you may find this first
option very useful, because broad and general movements can be created with a
Movie Clip symbol by applying a motion tween to it.

Click the Generate button, and Dimensions starts processing each frame in the
sequence. When it is finished rendering all the frames, you are ready to bring
the sequence into Flash.

Tip

Note

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 946

947Chapter 33 ✦ Working with 3D Graphics

Bringing a sequence into Flash
With a Flash movie (.FLA) open, create a new layer and import the Dimensions
sequence. Refer to the “Importing Poser Sequences into Flash” section in this chap-
ter to see how to contain an imported sequence as a movie clip.

Some 3D animations make excellent rollovers for Flash buttons. Refer to the
crossButton.swf file in the ch33 folder on the Flash 5 Bible CD-ROM for a rollover
button example. You can see how this .SWF was made from the accompanying
file, crossButton.fla.

Animating Figures with MetaCreations Poser
MetaCreations Poser 4.0 is a 3D figure-generation and animation application. With
Poser, you can create lifelike human and animal characters to use in illustrations or
animations. Poser 4.0 sports a sophisticated user interface with dozens of options
for every tool and component. In this section, we walk you through the process of
making a running mannequin figure that is then imported into Flash. While you
need not be an advanced user of Poser to understand this example, you will benefit
from reading the Tutorial section of the Poser 4.0 User Guide (which ships with the
Poser software package) before starting this example. However, if you don’t want to
concern yourself with advanced functionality, it’s possible to simply read and fol-
low the guidelines in the following paragraphs.

Creating a walking figure in Poser
Here’s how to create walking motion in Poser:

1. If you open Poser with its default factory settings, a clothed male figure
should appear in the center of a 350 ×350 view window. Using the
Translate/Pull tool, position the figure to the upper portion of the 350 ×350
window. The figure’s shadow needs some room to fully display during the
walk cycle.

2. Next, open the Poser figure and object libraries through the Window ➪
Libraries command (Shift+Command+B or Shift+Ctrl+B).

3. In this window, select Figures, then Additional Figures, and then Mannequin.

4. Access the Mannequin figure for the Additional Figures library.

5. Click OK to the following dialog. This alert box appears whenever you change
the current figure. Do not check the Keep Current Proportions option.

6. Your Poser screen should now resemble Figure 33-13.

On the
CD-ROM

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 947

948 Part VII ✦ Using Flash with Other Programs

Figure 33-13: The new mannequin
figure on the stage

7. Open Window ➪ Walk Designer (Shift+Command+S or Shift+Ctrl+S). In the Walk
Designer window, set the Blend Styles Run slider to 52 percent. Click the Walk
button to preview the current settings, and then select different angles (3⁄4, side,
front, top) to see the walk from varying viewpoints. Click Apply. You’ll then be
presented with frame settings for the animation. Make sure the End Frame is set
to frame 10 and that the Walk in Place option is checked. See Figure 33-14. Click
OK, and Poser generates a complete walk cycle with ten frames.

8. To preview your figure’s new walk, open the Animation Controls window
(Shift+Command+ P or Shift+Ctrl+P) and drag the playback head (see Figure
33-15) through each frame. If you press Enter or Return, Poser plays back the
entire frame sequence. To stop playback, press Enter or Return.

9. Before outputting the animation frames, make a new folder on a local drive to
store the files. Do this now, because Poser won’t give you the option to create
a new folder during the save process.

10. Next, to output the animation, go to the Animation menu, and select Make
Movie (Command+J or Ctrl+J). Set an end time of eight frames. Because Poser
counts time zero as a frame, we’ll have nine frames. Furthermore, because
frame 10 is exactly the same as frame 1, we won’t need it in Flash. For this
example, use Display Settings. This means the exported frames look the same
as the figure appears in the workspace of Poser. (You can add more detailed
texture and bump maps to figures in Poser, but that’s beyond the scope of this
tutorial.) Also, if you want smoother-looking edges in the bitmap sequence,
make sure the Antialias option is checked. If you’re using the Mac version of
Poser, you’ll want to use PICT files as the Sequence Type instead of QuickTime.
On the PC version, you’ll want to use BMP or TIF files. Use the TIF format if you
need to use an alpha channel. Refer to Figure 33-16 for the correct settings.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 948

949Chapter 33 ✦ Working with 3D Graphics

Figure 33-14: The Walk Designer in Poser 4.0
can create full-motion walks for any Poser figure.

Figure 33-15: Animation controls

Playback Head

Current Frame

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 949

950 Part VII ✦ Using Flash with Other Programs

Figure 33-16: Export settings for Poser image sequences

11. Click OK to proceed to the Save dialog, which prompts you to select a folder
and filename for the sequence. Because Poser automatically adds the number
extension to your filenames, just type the base filename. For example, typing
mannequin generates successive filenames beginning with mannequin.0001
on the Mac or mannequin_0001.tif on the PC. Click Save, and Poser renders
this little nine-frame animation. Save your Poser project and exit Poser.

Preparing Poser sequences for Flash
It would be nice if we could just directly import our .PICT or .TIF sequence into
Flash, but first a number of small nuisances must be addressed.

To begin with, on the Mac, Flash doesn’t seem to like the way Poser creates .PICTs —
if you’re using a PC, see the following note. This means that if you import a .PICT from
Poser directly into Flash, Flash displays the file as a collection of horizontal and verti-
cal lines. Furthermore, Poser creates inverted alpha channels, while Flash expects
straight alpha channels, with black indicating hidden areas and white indicating
shown areas. (See Chapter 17, “Understanding Actions and Event Handlers,” for more
discussion on alpha channels in Flash.) So, in order to make the Poser files read cor-
rectly in Flash, the alpha channels of the Poser .PICT files must be inverted and the
file format saved correctly. To facilitate this transition, we’ve created a Photoshop
action (located on the CD-ROM) that properly converts a sequence of Poser files into
images that Flash understands.

PC Users: The alpha channels of exported .TIF sequences are correctly formatted
for Flash use. However, while Flash 5 can now import .TIF files, Flash 5 on the PC
will not recognize alpha channels in .TIF files. Therefore, you need to convert the
.TIF files to the .PNG format in Photoshop or another graphics application. The
.PNG format is the only alpha-channel-enabled raster-image format that Flash on
the PC can use. .PNG images saved from Photoshop 5 or earlier may appear much
darker when imported into Flash. If you have Photoshop 5.5 or later, use the new
Save for Web feature to export .PNG images with more accurate color.

Caution

Using lower resolutions for Flash movies on the Web

Specify an end frame of 8

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 950

951Chapter 33 ✦ Working with 3D Graphics

To load this Photoshop action, first pop the Flash 5 Bible CD-ROM into your com-
puter. Then launch Adobe Photoshop (you need version 4 or greater) and open the
Actions palette (Window ➪ Show Actions). Make sure that the Actions Palette is not
set to Button Mode. Then, on the palette’s pop-up menu, choose Load Actions.
Browse to the Photoshop folder in the ch18 folder on the Flash 5 Bible CD-ROM,
and choose Flash 5 Actions.atn.

Now choose File ➪ Automate ➪ Batch. In the Set property, choose Flash 5 Actions,
and select Poser Alpha Inversion for the Action property. For the Source, choose
the folder that you specified for your Poser sequence files. For the Destination,
choose Save and Close. Now click OK, and Photoshop fixes the .PCT or .BMP alpha
channels so that Flash recognizes them properly. There’s also a Poser Alpha +
Image Inversion action that can be used to invert the RGB channels as well as
the alpha channels — this is useful for converting Poser’s white silhouettes into
black ones.

Depending on your Photoshop color profile setup, you may encounter a dialog that
interrupts the automate process. If you are presented with a Missing Profile dialog
(as shown in Figure 33-17), choose Don’t Convert. Photoshop continues with the
automated processing of your image sequence. Note, however, that, if you receive
this message for the first file, you’ll keep getting it for every file in the sequence.
Just stay with it and repeatedly press Return (on the Mac) or click Don’t Convert
when the Missing Profile dialog box pops up.

Figure 33-17: Depending on
your specific color settings in
Photoshop 5 or 6, you may
receive a Missing Profile alert
when an image without an ICC
profile is opened.

If you’re using the PC versions of Poser, Flash, and Photoshop, then you can skip
to the next section. The Macintosh version of Flash won’t recognize the 0001, 0002,
or 0003 extension as an image sequence. You need to add a .PCT extension to the end
of each of your .PICT files. This can be a time-consuming task for large sequences,
so let the FileMunger shareware application (which can be downloaded from www.
download.com) do all the work for you. FileMunger is a great little tool that is used
to batch process file-creator types, filename extensions, and file date names. After
you’ve installed the application, run FileMunger, and click the Filename Extensions
button on the left (see Figure 33-18). This changes its operating mode to exclusively
work with filename extensions.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 951

952 Part VII ✦ Using Flash with Other Programs

Figure 33-18: Use the Filename
Extensions mode of FileMunger
to automatically add extension
suffixes to a group of files.

Close the FileMunger application, and rename the actual FileMunger application
file to FileMunger.pct. This causes FileMunger to work in what is called Filename
Extensions mode, meaning that it adds the .PCT extension to any file (or group
of files) that is dropped on the FileMunger application icon. Now open the folder
with the mannequin sequence, select all the files in the window by pressing
Command+A, and drag them to the FileMunger application icon (Figure 33-19);
FileMunger adds a .PCT extension to all your files. Thus, mannequin.0001 is now
mannequin.0001.pct. Now the Mac version of Flash recognizes the Poser images
as a sequence.

Figure 33-19: FileMunger can perform timesaving operations such as adding
extensions to multiple files.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 952

953Chapter 33 ✦ Working with 3D Graphics

Importing Poser sequences into Flash
Okay, now we can get back to Flash. Open an existing Flash (.FLA) file or create
a new one. Make a new symbol (Insert ➪ New Symbol; Command+F8 or Ctrl+F8),
and set it to the Movie Clip type. Give it the name mannequin or something similar.
Automatically, Flash changes the stage to Symbol Editing Mode. Choose File ➪ Import
(Command+R or Ctrl+R), browse to the folder containing the Poser sequence, and
double-click the first filename in the sequence (such as mannequin.0001.pct or man-
nequin_0001.bmp). Now click Import. You should receive an alert from Flash 5 that
asks if you want to import all of the images in the sequence. Click Yes to this dialog,
and Flash imports all the images associated with this sequence. When the import
is completed, as indicated by the progress bar, the mannequin symbol has nine
frames — and each of these frames is a keyframe.

Next, because Flash auto-aligned the top-left corner of the imported bitmaps to
the center of the symbol, we need to change the symbol center to match the
center of the bitmaps. Click the Edit Multiple Frames button on the timeline, and
drag the End Onion Skin marker to frame 9. Select all the bitmaps in the symbol by
pressing Command+A or Ctrl+A, or by using the Edit ➪ Select All command. Press
Command+K or Ctrl+K to bring up the Align dialog; set both vertical and horizontal
align properties to center, check the Align to Page option, and click OK.

Your Movie Clip should resemble Figure 33-20.

Figure 33-20: The Mannequin Movie Clip

Onion Skin Markers

Edit Multiple Frames

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 953

954 Part VII ✦ Using Flash with Other Programs

Don’t neglect to turn off Edit Multiple Frames so that you don’t accidentally
displace all of these element(s).

Now you need to make a critical decision. Is it better to trace the bitmap files
imported from Poser? Or are there advantages to leaving them as is? If you want
to preserve the detail currently displayed by the imported sequence, then tracing
the bitmap makes the Flash .SWF larger. If you want to minimize detail and can
accept a loss of detail in your imported sequence, then use the Modify ➪ Trace
Bitmap command on each frame of the mannequin Movie Clip symbol at whatever
quality settings you desire. But before you leap to tracing those bitmap files, here’s
a surprising comparison: The mannequin example was exported from Flash as is
(with default .SWF settings) with a file size of 54.5KB. But the traced bitmap man-
nequin (using 10 for the Color Threshold, 8 for the Minimum Area and Normal
for both Curve Fit and Corners) exported with a file size of 83.6KB!

Note that the traced bitmap version doesn’t even look as good as the regular
bitmapped version. Granted, we could have used many other procedures in Poser,
Photoshop, FreeHand, or Streamline to optimize the quality of the bitmap or its
converted vector counterpart. The point here, however, is that vector equivalents
aren’t always better than the original bit-for-bit raster graphics. (Here’s a related
example of a situation in which the vector equivalents would have been better: a
silhouette figure generated in Poser with one solid color fill. Tracing those bitmaps
would have yielded better results because the figure has only one color and a rela-
tively simple outline. Remember, for the most part, vector graphics are ideal for
illustrations with solid color fields and lines. Raster or bitmap graphics are ideal
for continuous tone or photo-quality images.)

Macromedia FreeHand and Adobe Streamline are discussed in Chapter 31, “Working
with Vector Graphics.” We discuss Adobe Photoshop in Chapter 30, “Working with
Raster Graphics.”

Now you have a running mannequin Movie Clip that can be referenced from your
Flash Library and placed anywhere in your Flash movies. Once placed in a scene,
this Movie Clip can be scaled, rotated, or tweened to any position or size.

Exporting Animations from Kinetix
3D Studio Max

Discreet 3D Studio Max (3DS MAX) is one of the most popular, powerful, and profes-
sional 3D modeling and animation programs. The R3.1 release does not support
direct export to Flash .SWF files. It can, however, export to the .EPS vector format.
This file format can be imported into Flash, but the file sizes and vector information
are usually too weighty for easy Internet transmission. Digimation’s Illustrate! 4 and
Ideaworks3D’s Vecta3D-MAX plug-ins are available for 3D Studio MAX, enabling the
program to export straight to Flash files. The following expert tutorial shows you

Cross-
Reference

Caution

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 954

955Chapter 33 ✦ Working with 3D Graphics

Expert Tutorial: From 3D Studio MAX to Vectors in Flash,
by Daniel Cluff

Although you can create 3D artwork with many tools, 3D Studio MAX is a leading 3D soft-
ware application for high-end professional artwork. In this tutorial, Daniel shows you how
to integrate a MAX model into a Flash movie with the help of the Electric Rain’s Swift 3D.

Overview
Creation of any project takes planning. You need to have a clear idea of the desired out-
come and be aware of the steps that will be taken to achieve that desired outcome. You
must know the tools you will need to proceed with those steps and how much time it will
take. If you are following along with this tutorial on your own project and are not too famil-
iar with all of the applications used, you will not finish in one day. Don’t try to rush it, just
take your time and make sure everything looks the way you want it to.

This tutorial covers a few effective ways to deliver “3D” graphics via Flash. The tools used in
this tutorial are 3D Studio MAX Release 3.1, Swift 3D Version 1.0, and Flash 5. There were
no available trial versions of either 3D Studio MAX or Swift3D at the time this tutorial was
written. This is considered an expert tutorial; it presumes an understanding of all the appli-
cations involved.

3D Studio MAX is a 3D modeling and animation program with a unique plug-in structure,
making it an extremely versatile tool. This plug-in structure, in combination with its complex
but immensely effective and meticulously thorough user interface, provides for an enor-
mously powerful 3D modeling and animation solution that can be the backbone of any
number of various projects. It is for these reasons that 3D Studio MAX was chosen as the
modeling tool for this tutorial.

Swift 3D is a standalone software application that has the capability to create and convert 3D
models and animations to vector-based graphics and animations. Swift 3D will import 3D
Studio (.3DS) models, respecting materials (sans maps), camera views, lighting schemes, and
animations. It will also accept Encapsulated PostScript (.EPS) files and Adobe Illustrator files
(.AI). The user interface is relatively simple and easy to use. A key feature of this program is
the accurate way it handles geometry and lighting/shading.

Continued

how use Swift 3D, a standalone program with similar functions, enabling you to
export optimized Flash files from 3D models.

Swift 3D does not convert texture maps into Flash gradients or bitmap fills. For this
reason, 3D Studio MAX material textures are collapsed to the most predominant
color of the material when imported into Swift 3D.

This tutorial requires both 3D Studio MAX and Swift 3D version 1.00. There were
no demo versions available for either application at the time this book was writ-
ten. You’ll find the source folder for this tutorial in the ch33 folder on the Flash 5
Bible CD-ROM.

On the
CD-ROM

Note

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 955

956 Part VII ✦ Using Flash with Other Programs

Continued

This tutorial has three parts. The first part covers procedures and tips for preparing your 3D
Studio MAX model/animation to be brought into Flash. The second part discusses two
effective ways (pic sequence and Swift 3D) to export and optimize your 3D project for inte-
gration into the Flash movie, and compares and contrasts the two methods. The third part
focuses on the actual integration into the Flash movie and covers any further necessary
optimization.

The Beginning Step
Open the file mace_anim.max found on the CD-ROM. Play the animation. The mace will
rotate 60 degrees over a span of 20 frames. As the animation continues to play, it appears as
if the mace is rotating a complete 360 degrees. Because the mace is symmetrical 6 ways at
60-degree increments, it needs only to rotate 60 degrees. Stop the animation and return the
time slider to zero. Open the Time Configuration dialog by clicking the Time Configuration
button at the bottom right of the MAX window. Notice that under Frame Rate, the Custom
option is selected and that the Frame Rate is set to 20 fps (see the following figure). I typi-
cally work in Flash at this frame rate. It is important to keep the frame rate constant through-
out this process so that the animation plays the same speed in all three programs. I wanted
the mace to rotate slowly, so over the course of 6 seconds, or 120 frames, the mace will
appear to have rotated one complete revolution. Close the Time Configuration dialog.

If you plan to export to Swift 3D, it isn’t necessary animate in MAX. Swift 3D has many sim-
ple, ready-to-use animations that can be applied after the scene has been imported. For the
pic sequence export, however, animation in Max is necessary.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 956

957Chapter 33 ✦ Working with 3D Graphics

The geometry in this animation has a rather high polygon count (more than 800 polygons) for
a project of this type. Depending on the type of export you use, this will determine how the
finished product will look. If you plan to export to Swift 3D, I recommend a much lower poly-
gon count (between 400 and 500) so that “mesh shading” can be applied effectively without
creating a 200KB animation. If you go the pic sequence route, you can use more complex
geometry, but as a rule of thumb, do your best to never exceed 1000 polygons per object.

There are three lights applied to this animation. One white light that hits the mace in front, a
medium blue light that hits the mace from the lower left, and a third red light that hits the
mace from above and slightly to the right. This lighting scheme looks fantastic in a rendered pic
sequence, and the lights translate perfectly into Swift 3D. The geometry may be far too com-
plex to use lit shading in Swift 3D. This topic is discussed in the next section of the tutorial.

The materials assigned to the mace mesh are all basic MAX materials and can be found in
the Material Library in Max’s Material/Map Browser. To locate these materials, open the
Material Editor (shown in the figure that follows) by pressing the M key.

Continued

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 957

958 Part VII ✦ Using Flash with Other Programs

Continued

Click the Get material button. When the Material/Map Browser opens (shown in the fol-
lowing figure), make sure Mtl Library is selected in the Browse From section. You can drag
and drop the materials that you want into the material editor. The head and spikes have a
highly reflective chrome material applied to them. This will create a polished metal surface
appearance when rendered. The shaft of the mace has a wood material applied to it, show-
ing wood grain for added realism. The ring on the shaft, the hilt, and the pommel, all have
a gold material, similar to the chrome material used on the head, but darkened slightly to
look more like brass. The handle has a gray, low “gloss” metallic material assigned to it. For
details on creation of this mace, please refer to mace.pdf found on the CD-ROM.

The Middle Step
Buckle your seat belts and prepare to export. The following procedure should be used if
exporting a sequence of image files. On the main toolbar in MAX, click the Render Scene
button. This will bring up the Render Scene dialog (shown in the figure that follows).

From here, you have options to control which frames are rendered, the pixel size of the ani-
mation, and whether or not you want to save the animation as a file or files. Under the time
Output rollout, select the Active Time Segment option. This renders all of the frames in the
scene. In the Every Nth Frame box, enter the value of 2.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 958

959Chapter 33 ✦ Working with 3D Graphics

This will render every other frame. The reason this is done is to avoid rendering frames that
must later be taken out because of file size. In the Output Size section click the 320 ×240
button. This is a decent size that will look good, while being relatively flexible in file size. In
the Render Output section, click the Files button, set the location where you want the files
to be saved, and give them a name. The best file type to use is Portable Network Graphics
(.PNG). It’s the only file format that you can import into Flash using alpha transparency.
MAX will automatically attach frame numbers to the end of each file name in sequence.
Once this is done, make sure that the desired view port is selected at the bottom of the dia-
logue window and then click Render. It shouldn’t take more that one minute to render the
animation.

Now on to the Swift 3D Export. When the Animation has finished rendering, close the
Render Scene dialog and go to File ➪ Export. The Select File to Export dialog appears. Set
the location and filename and make sure that the file type being exported is .3DS (3D
Studio) format. Save the file. Boom! You have finished the MAX portion of this project.

Continued

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 959

960 Part VII ✦ Using Flash with Other Programs

Continued

Remember that .PNG sequence we rendered? Time to optimize. Macromedia Fireworks is
the best application to use for this operation. For optimization techniques, please refer to
Fireworks and Flash tutorial by Scott Brown found in Chapter 30, “Working with Raster
Graphics,” of this book. I have had the most success optimizing the sequence from a series
of .PNG graphics to .GIF format, with a 128 Web Snap Adaptive color palette, and alpha
transparency. This should reduce file size from approximately 74KB per frame to about 6KB
per frame, a much more manageable number. You can get an even lower file size by con-
verting to .JPEG files instead of to .GIF files, but you sacrifice background transparency. File
optimization, essentially, is finding a comfortable balance between file size and appear-
ance. That balance varies widely per project.

Let’s turn our focus back to the 3D Studio file that was exported just a moment ago. Open
the Swift 3D application. At the very top-left of the program window, click the New button.
The New File Wizard should now be visible. You have two choices at this point: to create a
new and empty Swift 3D document or to create a new Swift 3D document by importing
a 3D Studio file. Select the latter and the Wizard will change pages. There will now be a
browse button in the center of the Wizard. Click this button and locate your 3D Studio file
that you previously exported. Once this is done you can click Finish. The scene will open
just as you last saw it in MAX. The animation and lighting was already completed, so all that
needs to be done is export to .SWF format.

First things first. Set the frame rate (right below the timeline on the left side) to the same
rate that you used in MAX. Next let’s take care of that horrid, white background. At the top
left of the program window and underneath the buttons, there is a box containing the
words Layout and Environment (see the following figure).

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 960

961Chapter 33 ✦ Working with 3D Graphics

Underneath that window are the settings for the currently highlighted selection. Layout
should currently be highlighted. Select Environment in the Settings selection window and
then double-click the Background color box (see the figure that follows). Choose black in
the color picker, and click OK. Then, click Apply to set the changes. Now select Layout in the
Settings selection window. Below, change the pixel size to 320 ×240 and then click Apply.
This changes the output size of the .SWF file. Play with the Camera Lens Length setting until
the mace roughly reaches the edges of the active view. Click Apply again to set the changes.

Now let’s export the animation. Under the File menu, select Export. The Export Vector File
dialog will appear. Give your vector file a name and location. In the Export Options section,
there are settings that affect the way your 3D model is “traced” (stroked) and filled. You can
choose to include edges with either outlines or entire mesh. Outlines will create a line
around the outermost edge of each element of the mesh. Entire Mesh will trace every edge
in the mesh. With the Fill Objects box checked, several options are presented. Flat Shading
is the first option. It fills each area of the mesh with a flat color. In this case, the head of the
mace will be filled with a flat gray, the hilt, ring, and pommel with a flat gold color, and so
on. Area shading will take each area and mimic the lighting with gradient fills. This option
works excellently for some models, but the combination of the polygon count, the three
lights, and the animation in this scene make this a bad choice. Go ahead and export using
this setting to see what happens. The final option is the Mesh Shading Setting, which will fill
every polygon with it’s own gradient, mimicking the lighting in a much more accurate way.
Export the file with this setting and view the results. It looks great but the file size is huge.
This setting works best on low-polygon animated models or on higher polygon stills. The
settings I chose to use were Outlines and Flat Filled. This set the file size of the animation at
about 60KB, pretty close to the size of the pic sequence.

Continued

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 961

962 Part VII ✦ Using Flash with Other Programs

Continued

On the left side of this Export Vector File window (shown in the following figure) are settings
that enable you to render only certain frames. This is handy when you have animation but
would like to render a still. You can also select a range of frames to render if you don’t want
to render the entire animation. To the right of the window, near the bottom, you have the
ability to change the file version of the exported .SWF file. Swift 3D Version 1.00 is only able
to make .SWF files in Flash 3 and 4 formats. Version 4 will work fine and is the best choice.
Experiment with different combinations of settings and use what works best for you.

The Final Step
This section discusses importing the animation into Flash 5, so it is relatively short.
Generally before I import an animation, I create a symbol and import the file (or files)
directly into the symbol. This practice generally saves time over importing files, arranging
them, and then converting to symbols or moving frames into the symbol.

On that note, open Flash 5. Press Ctrl+M (or Command+M on the Mac) to bring up the
Movie Properties dialog. Set the Frame Rate to the rate that you used in MAX and Swift 3D.
Change the Height and Width to accommodate your artwork. Make sure the background
color is the same color as the background of the .SWF file and the pic sequence if you did
not use transparency. Click OK to close the dialog and then press Ctrl+F8 (or Command+F8
on the Mac) to create a new symbol. Give it a name and make it a Movie Clip symbol.

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 962

963Chapter 33 ✦ Working with 3D Graphics

Clicking OK places you in Symbol Editing Mode for the symbol you just created. Press
Ctrl+R (or Command+R) to import a file. Find the pic sequence you rendered and select
the first file (MAX should have put a 0000 after the name you typed). When you click OK,
you should get a dialog that says, “This file appears to be part of a sequence of images. Do
you want to import the entire sequence?” Click Yes and Flash will import each image and
place them one after another (as separate keyframes) on the timeline. If you press the
Enter key, you can watch the animation play through one time. You may notice that the ani-
mation plays faster than it did in MAX. This is because you rendered every other frame. To
fix this, add a frame after every keyframe to extend the animation to the correct length. At
this point, you can leave the sequence as it is, or create Graphic symbols with the first and
last pics to create entrance and exit animations. It’s only necessary to convert the pics that
you need to control alpha, tint, brightness, and so on to Graphic symbols.

If you export this animation by itself, the .SWF file should be between 60KB and 75KB. If you
have gone overboard, retrace your steps and see where you might have done something that
would increase file size. Don’t forget that you can apply further JPEG compression inside Flash.

Now lets shift gears back to the .SWF animation that was exported from Swift 3D. Check the
file size. If you used the Outline and Flat Shading settings, it should be around 60KB. If the
file size is near 250KB, you probably used the Mesh Shading setting. Again, try different
export settings until you find the perfect balance between file size and visual clarity.

There are two ways to put this animation into your Flash movie. You can create a Movie Clip
in the main movie and use the loadMovie action to load it into the clip. Another way is to
import the .SWF file into the current Flash movie using the File ➪ Import command. This
way will give you the ability to manipulate the animation on a frame-by-frame level if you
want to avoid using the entire animation. After the frames are in Flash, you can do what you
want to them. They are vectors after all! Try spicing them up a bit. Throw in a gradient here
or there. See what you can do. You are limited only by your imagination. Of course, there is
download time, too.

Conclusion
I hope that this tutorial was useful. If you want to send me comments on this tutorial or
have problems with its execution, feel free to e-mail me at dcluff@mailcity.com. All the
necessary files to this tutorial are located on the CD-ROM. There is a MAX file of the com-
plete scene, light, materials, and animation. A 3D Studio (.3DS) file, a pic sequence (opti-
mized), and a Swift 3D Scene (.t3D) are included as well. I also built two Flash movies, one
with the Swift export and one with a pic sequence, so that you can view and compare the
end products. Both .FLA files are included. If you are unsure of anything, check out the files
first. I’ve always found that finding my own answers provided the most gratifying results.
Enjoy and Flash hard.

Born in Salt Lake City, Utah, and raised in Torrance, California, Daniel Cluff found Flash “by accident.” A true
computer gamer at heart, Daniel likes to spend most of his time modeling in 3D Studio MAX and playing
various video games. Daniel created 3D artwork for the Rampt.com interface, and, in his free time, he
maintains his site, www.houseofsinboy.com. Daniel doesn’t remember any movies from high school — he
claims his memory is too clouded. He does, however, remember the anticipation of leaving high school and
the near-simultaneous release of Pantera’s “Far Beyond Driven” and Slayer’s “Divine Intervention.”

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 963

964 Part VII ✦ Using Flash with Other Programs

Summary
✦ All 3D effects are achieved by creating the illusion of spatial depth. In art

history, there are several methods that have been developed to illustrate
three dimensions within a two-dimensional space.

✦ You can create spatial effects within Flash with the use of scaling artwork,
as demonstrated by Mano Clement’s tutorial.

✦ Basic 3D artwork and animations can be created with Adobe Dimensions.
While this application doesn’t have the powerful feature sets of more profes-
sional 3D applications, you can quickly render 3D text and shapes, extrude
two-dimensional line drawings, and export frame-by-frame animations.

✦ Curious Labs’ Poser is a 3D figure-modeler and animation tool. Poser has
many figures in its libraries to create walk cycles, combat moves, and facial
expressions (including phonemes).

✦ Discreet 3D Studio MAX is a powerhouse 3D modeling and animation tool. Used
by serious professional 3D artists, 3D Studio MAX has advanced lighting and
camera functionality, as well as an extensible plug-in architecture. Combined
with Electric Rain’s Swift 3D, you can convert MAX models into .SWF files.

✦ ✦ ✦

3515-3 ch33.f.qc 1/18/01 5:11 PM Page 964

Working with
QuickTime

This chapter explains how to use QuickTime (QT) media
with Flash. Flash expands the definition of desktop video

by adding a new track type to QuickTime 4. We explore the
integration of QuickTime movies with Flash interactivity, as
well as distinguishing the different types of QuickTime movies
(Flash, video, and VR).

QuickTime 4 introduced a new media track to QuickTime
movies: the Flash track. A Flash track is just one of the many
multimedia tracks available for use in QuickTime. Flash has
the capability to import QuickTime movies, add Flash content
on layers above or below the QuickTime (QT) movies, and to
reexport the whole product as a QuickTime Flash movie.
QuickTime Flash movies are basically the same file type
(.MOV file) as other QuickTime movies — QT Flash movies
simply have a stored or referenced Flash movie (.SWF file).

QuickTime versus Video for
Windows

Because QuickTime has the powerful capability to store a com-
bination of multimedia tracks, Flash supports the QuickTime
format with its Export and Publish commands. Although PC
Flashers can also export Video for Windows files, these files
don’t support a Flash track. The differences between these two
formats are intricate. But before we talk about the intricacies,
how do you recognize one from the other? The QuickTime file
extension is .MOV (from the Macintosh File Type MooV), while
the Video for Windows’ file extension is .AVI (Audio-Video
Interleaved format).

Video content is usually delivered in wrapper formats for distri-
bution. Two primary system-level container formats or wrappers
exist for video content on computer systems today: QuickTime
and Video for Windows. Although both can be considered archi-
tectures for multimedia content, QuickTime has the most

3434C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Defining QuickTime?

Supporting
QuickTime 4
with Flash 5

Making QuickTime
Flash movies

Creating QuickTime
video movies

✦ ✦ ✦ ✦

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 965

966 Part VII ✦ Using Flash with Other Programs

advanced architecture of the two. (Technically, RealSystems’ RealPlayer is also a con-
tainer format for multimedia, but it’s only used for delivery — it cannot be used for
editing and reediting material.) Before Windows 95, multimedia developers relied on
the QuickTime architecture on the Macintosh to make their multimedia components
work together harmoniously. That’s because QuickTime for Windows lacked many of
the Mac’s QuickTime features until its 3.0 release, which finally delivered to Windows
the same multitrack interactivity that Mac users had enjoyed from the start. With
QuickTime 4, both Windows and Mac versions can play Flash 3 content — Flash 4 and
5 features are not supported by QuickTime 4. Flash 3 content can be embedded as an
interface to control another QuickTime video or audio track, or even as an enhance-
ment to Sprite animation.

Unfortunately, Video for Windows (VfW) wasn’t developed along the same lines as
QuickTime. Video for Windows is just that — video that’s designed to play on
Windows machines. It can’t contain other media tracks (such as Flash tracks) like
QuickTime can. Luckily, newer versions of the Windows Media Player can play
QuickTime content, and QuickTime 3.0 (or higher) can play Video for Windows
movies, provided that the necessary codecs are installed. Both QuickTime and
Video for Windows can read most of the software-based codecs, such as Cinepak
or Indeo. When you get stuck, usually it’s not difficult to translate a QuickTime file
to a Video for Windows file using a video-editing application such as the PC ver-
sion of Adobe Premiere, or vice versa with the Mac version.

The only difference between QuickTime files on the Mac and the PC is that movies
made on the Macintosh can internally reference media content from either a resource
or data fork, whereas movies made on the PC cannot. Because the two operating sys-
tems have different file and directory structures, this referencing system can’t be
carried over to the PC. Consequently, most Mac movies need to be flattened in order
to work properly on the PC — flattening means that all material referenced in the
resource fork of the Mac QuickTime is compiled into one data fork, which is then
accessible by all operating systems. Usually, when you are rendering video content
on the Mac, you are given an option to flatten (or not flatten) the final movie. A movie
can also be flattened with QuickTime Player by selecting Make Movie Self-Contained
when you save (or resave) the movie.

Since version 4 of QuickTime, Apple has renamed the MoviePlayer application to
QuickTime Player. You need the professional version of QuickTime Player to edit or
recompress QuickTime movies. Luckily, you only need to purchase an unlock key
code from Apple to transform the regular player into the pro player, as well as
download a few extra components using the QuickTime Updater. Use the
QuickTime control panel to enter your unlock key. The application name, however,
remains QuickTime Player. Even though we refer to QuickTime Player Pro, you
won’t see the Pro suffix in the application name.

The major limitation of Video for Windows is that it only supports two tracks of mul-
timedia content: video and audio. QuickTime, however, supports multiple media
tracks: video, audio, Flash, text, Sprite, and time code tracks. Furthermore, using
QuickTime Player, you can set up many options for each movie’s track, such as
preloading into memory and enabling high quality. QuickTime 4, which is the latest

Note

Caution

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 966

967Chapter 34 ✦ Working with QuickTime

version, also enables you to create reference movies specifically designed for the
varying speeds of Internet connections. Using the free Apple utility, MakeRefMovie,
you can create different versions of the same movie with a range of file sizes.
Depending on the visitor’s QuickTime plug-in settings, the proper movie downloads
to the computer. For example, if the connection speed setting of the plug-in is set to
ISDN, the visitor receives the ISDN-version of the movie, which is of better quality
and — as you’ve learned in this introduction — also bigger in file size. (MakeRef
Movie is available at http://developer.apple.com/quicktime/quicktimeintro/
tools/ along with many other QuickTime tools and utilities.)

Terran Interactive’s Media Cleaner Pro can take the guesswork out of video com-
pression. It has optimized presets for CD-ROM and Web delivery. Find it at www.
terran-int.com.

QuickTime Support in Flash
Flash 5 provides the amazing capability to import QuickTime movie files into the
Library. If you want to synch your Flash movie with a preexisting QT movie, you can
bring the QT movie into a Flash scene and play both movies simultaneously in the
authoring environment of Flash. When you’re finished, you can export the Flash movie
as a QuickTime Flash movie, using either the Export or Publish commands. The result
is a QT movie with video, audio, and Flash tracks. At the time of this writing, you need
QuickTime 4 to pull off this stunt — with the unfortunate limitation that you can’t use
any Flash 4 or higher actions yet. QuickTime 4 can only interpret Flash 3.0 or earlier
actions. This means that any ActionScripting (as described in Parts V and VI of this
book) is not recognized. Furthermore, you can’t export a Flash movie (.SWF file) from
Flash 5 with both Flash content and imported QuickTime movies. To play QuickTime
movies with Flash content, you need to use the QuickTime format (.MOV).

When you import a QuickTime file into Flash, you need to keep your original
QuickTime movie file independent of the Flash (.FLA) file. Flash does not make
a copy of the QuickTime file inside the movie. Rather, it links to the external
QuickTime movie file for playback and rendering purposes.

QuickTime 4 Supported Actions in Flash Movies:

FSCommand getURL

gotoAndPlay gotoAndStop

ifFrameLoaded loadMovie

nextFrame nextScene

on play

prevFrame prevScene

stop stopAllSounds

tellTarget toggleHighQuality

unloadMovie

Tip

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 967

968 Part VII ✦ Using Flash with Other Programs

You should have the latest version of QuickTime 4 installed (4.1.2). If you already
installed the original 4.0 release of QuickTime, run the QuickTime Updater applica-
tion that is installed with QuickTime 4 to check and update your current version.

At the time of this writing, QuickTime 5 was available as a Public Preview release.
QuickTime 5 will support Flash 4-compatible actions. It is our understanding,
though, that the loadVariables action will not be able to load data into a
QuickTime Flash track.

Importing QuickTime into Flash
To bring a QT movie into Flash, use the File ➪ Import command (Command+R or
Ctrl+R) and select a QuickTime movie from the file dialog. QuickTime movies usu-
ally have a QuickTime logo icon and end with the MOV extension, although they
sometimes end with QT. Prior to import, make sure you’ve selected the layer in
which you wish to import the QT. It’s often a good idea to create a new layer to hold
the imported QT. After you’ve imported the QT movie, the first frame of the QT
movie displays in the current frame of the Flash movie. You also see a new symbol
type in the Library window — this is a Video (see Figure 34-1), not to be confused
with a Movie Clip.

Figure 34-1: Imported QuickTime movies have a movie
camera icon. This file, Sleepy Stella.mov, can be found on
in the ch34 folder of the CD-ROM.

The timeline in Flash displays the QT’s movie length relative to the duration (in time,
not frames) of the Flash movie. Note that one second of the Flash movie equals one
second of the QT movie: This means that one frame of QT video is not equivalent to
one frame of a Flash movie — unless your Flash frame rate matches the QuickTime
video frame rate. You can see this for yourself. After you have imported a QT, use
the F5 key to add more frames to the layer of the QT movie. Then, scrub the timeline
to preview the QT movie. Stop on any discernable frame, and change the frame rate
of the Flash movie via the Modify ➪ Movie command (Command/Ctrl+M). After you
click OK, you notice that the QT movie frame has changed even though the Flash
frame marker is still on the same frame. How do you deal with this variability?
Usually, if you intend to export the Flash movie as a QuickTime movie with a Flash
track, you want to set the frame rate of your Flash movie to match the frame rate of
your QT movie. If you have a Flash movie frame rate that’s different from the video

Note

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 968

969Chapter 34 ✦ Working with QuickTime

track of the QuickTime, you may run into slow or jerky playback. QuickTime Flash
movies can theoretically have any number of Flash scenes. If you have more than
one scene, the QuickTime Player may continue to briefly play any running QT movie
from the previous scene. For this reason, you may want to add a few blank buffer
frames at the beginning of any transition point (for example, going from one scene to
the next). This seems to depend on how large the imported QuickTime movies are —
the QuickTime Player needs to unload one movie before it proceeds with the next.

With regards to movie length, no built-in limitations exist. You can make the scene
as long as you wish in order to accommodate any range of interactivity or anima-
tion. If you plan to have continuously running Flash and video layers (for example,
a Flash animation moving on top of the video track), add enough frames to view the
entire length of the QT movie within the Flash timeline. Please see Figures 34-2 and
34-3 for examples.

Figure 34-2: This timeline does not have enough frames to
show the entire QT movie — only 15 frames have been
assigned to the layer. The Flash movie has a frame rate
of 1 fps, and the QT movie is 28 seconds long.

The problem to avoid is this: If you don’t add enough frames to accommodate the
entire QuickTime movie, then the duration of the Flash movie determines the dura-
tion of the video track. This means that your imported QT movie may be arbitrarily
cropped or trimmed to the length prescribed in the Flash editor document (.FLA file).

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 969

970 Part VII ✦ Using Flash with Other Programs

Figure 34-3: This timeline has 28 frames — enough frames to
accommodate the entire QT movie.

Combining Flash and QuickTime Movies
After you’ve created a Flash movie synched to an imported QT movie, you can export
a fully self-contained QuickTime movie that stores both the Flash and imported QT
movie. However, you don’t need to use Flash to put Flash content into QuickTime
movies. If you want to layer Flash movies into preexisting QuickTime movies, you can
import .SWF files directly into the QuickTime Player. But you need the latest Player
that installs with QuickTime 4 to import Flash material. Prior versions of the
QuickTime Player cannot do this.

Creating QuickTime Flash movies
After you’ve created a Flash movie with an imported QT movie, you can export
or publish the entire Flash scene as a self-contained QT Flash movie that can be
played with the latest QuickTime Player.

To create a quick and simple QuickTime movie from Flash, choose File ➪ Export
Movie (Command+Option+Shift+S or Ctrl+Alt+Shift+S). Browse to a folder where
you want to save the QuickTime, type a filename, and click Save (see Figure 34-4).
You are then presented with the Export QuickTime dialog.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 970

971Chapter 34 ✦ Working with QuickTime

Figure 34-4: For a quick look at a QuickTime Flash
version of your Flash document, accept the defaults
in the Export QuickTime dialog.

To check out the quality of the QuickTime movie, open the new QuickTime movie
with QuickTime Player.

Be careful with the controller type setting. If you select None, you won’t even be
able to stop the movie by using the space bar once it’s started.

While you can use the Export Movie command to produce independent QuickTime
movies, the Publish Settings command enables you to create QuickTime movies as
well as other linked file formats. Go to the File menu, and choose Publish Settings
(Command+Shift+F12 or Ctrl+Shift+F12).

In the Format tab, make sure that you have a checkmark next to the QuickTime
option, and deselect the others. Each time you check or uncheck an option in the
Publish Settings dialog, the corresponding Settings tab appears or disappears,
respectively.

For the purpose of exporting QuickTime, you should only have the Format, Flash, and
QuickTime tabs showing (see Figures 34-5 and 34-6). If Use Default Names is checked,
the resulting QuickTime movie has the same name as the .FLA file that is currently
open in Flash. Otherwise, you can uncheck this option and specify a different name in
the text fields next to the corresponding format types. Unfortunately, you can’t control
the location of the new files that are generated via the Publish command — all files
produced via Publish are saved to the same location as the .FLA file.

Caution

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 971

972 Part VII ✦ Using Flash with Other Programs

Figure 34-5: The Publish Settings dialog for QuickTime-only publishing.
Click the QuickTime tab to access the movie’s properties. The Flash tab
is available to set the version to Flash 3, which is the highest version
currently supported by QuickTime.

Figure 34-6: Use the Publish Settings’ QuickTime tab to control
QT movie settings.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 972

973Chapter 34 ✦ Working with QuickTime

Use the Export Movie instead of Publish to save QuickTime movies to specific fold-
ers or locations.

The following sections describe all of the QuickTime settings and how each setting
is used.

Dimensions
The Dimensions setting controls the size of the QuickTime Flash movie frame.
Although you’ve probably already set the correct movie size in the Modify ➪ Movie
dialog to conform to your specific output needs, it’s good to note here that you can
resize your QuickTime movie with the Dimensions properties to export a movie at
alternate dimensions.

Alpha
For the Alpha property, you can decide whether you want the Flash track’s back-
ground to be transparent or opaque. If want your Flash material to display together
with underlying QuickTime video content, choose Alpha-Transparent. If you don’t
want the underlying QuickTime video to show through the Flash track, choose
Copy. The Auto setting makes the Flash background transparent if Flash artwork
exists on top of other content. If a QuickTime movie is stacked above the Flash art-
work, then Auto makes the Flash background opaque. If you export a QuickTime
Flash movie with only Flash artwork, Auto uses an opaque background.

Layer
For the Layer property, you can decide whether you want the Flash track to be lay-
ered on top of or below the QuickTime content. If you want the Flash content to
play on top of the QuickTime movie, choose Top. If you designed an interface or
animation to appear underneath the QT movie, choose Bottom. The Auto setting
for the Layer property places the Flash track in front of QuickTime material if Flash
artwork appears on top of the QuickTime anywhere in the Flash editor document. If
you placed QuickTime movies on top of Flash artwork layers, then Auto places the
Flash track behind the video track.

Streaming Sound
If you want Flash-enabled sounds to be converted to an additional QuickTime sound
track, check the Use QuickTime Compression option for the Streaming Sound prop-
erty. Any and all sounds that are used in the scenes are recompressed into a sepa-
rate sound track. This sound track is separate from any other sound tracks that may
be present in imported QuickTime movies. The Settings button enables you to define
the parameters of the audio compression. You may want to match the audio charac-
teristics of the imported QuickTime movie used in the Flash movie if you choose to
use this option. Because this property converts Flash audio into QuickTime audio,
you can use any sound compressor that is available to QuickTime. For more sound

Tip

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 973

974 Part VII ✦ Using Flash with Other Programs

advice on Flash 5’s audio compression settings, refer to Chapter 14, “Understanding
Sound for Flash,” Chapter 15, “Importing and Editing Sounds in Flash,” and Chapter
16, “Optimizing Flash Sound for Export.”

Controller
The Controller property determines whether a controller (control panel for playback)
is shown with the movie in the QuickTime Player application, and if one is shown,
what kind of a controller. None disables the display of a control panel, and, subse-
quently, it is the default setting for the Export Movie command. If you have created
your own Flash buttons to play and stop the timeline, you may want to disable the dis-
play of the regular QuickTime controller. The Standard option presents the QuickTime
movie with the standard QuickTime Player 4 interface, enabling play, pause, frame
forward and backward, and volume level, among other controls. The QuickTime VR
option displays the specialized control panel for QuickTime panorama or object
movies. We discuss QTVR later in the “A Word about QuickTime VR Movies” section
of this chapter. To compare the different controllers, see Figures 34-7 through 34-9.

Figure 34-7: A QuickTime movie with no
controller: This was made with the Controller
property set to None.

Figure 34-8: A QuickTime movie with the
standard controller

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 974

975Chapter 34 ✦ Working with QuickTime

Figure 34-9: The QuickTime VR controller used
with a Flash-enabled QTVR panorama

Playback
The Playback property controls how the movie plays when it’s first opened in the
QuickTime Player. Check the Loop option if you want to the QuickTime to automati-
cally replay the movie when it’s reached the end. Check the Paused at Start option
if you don’t want the QuickTime movie to automatically start playing as soon as it
opens in the QuickTime Player. Note that if any controller (other than None) is
specified, the movie is always paused when it loads in the QuickTime Player. The
Play Every Frame option, when checked, overrides the frame rate setting to play-
back every frame contained in the video. Usually, this is not recommended because
the QuickTime audio track is silenced.

File
The File property has only one option, Flatten (Make self-contained). Checking this
option forces Flash to write one QuickTime movie that contains any and all refer-
enced material. If you imported a 10MB QuickTime movie into Flash and created
a few layers of Flash content to work with the QT movie, flattening creates one
QuickTime movie that copies the imported QT movie and Flash material to video,
audio, and Flash tracks, respectively. If you do not check Flatten, Flash creates a ref-
erence QuickTime movie that looks for (and require the presence of) the Flash .SWF
file and other QuickTime file(s) on playback. While this reference movie has a very
small file size, you need to make sure all the referenced material is readily available
for playback. This means that the Format tab of the Publish Settings dialog should
have a checkmark next to Flash (.SWF) as well as QuickTime (.MOV). Furthermore,
you may run into linking problems over the Internet due to connection latency or if
the referenced files aren’t together in one location. For this reason, you may prefer
to package everything into one flattened QuickTime movie.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 975

976 Part VII ✦ Using Flash with Other Programs

Click OK to accept your current Publish Settings and return to the Flash scene.
Make any final adjustments to your movie. When you’re ready to test drive your
new QuickTime movie, you can preview the QuickTime movie by using the Publish
Preview menu, and selecting QuickTime. QuickTime Player Pro should automati-
cally start and load the movie. If you like the results, run the File ➪ Publish com-
mand (Shift+F12). Flash saves a QuickTime movie to the same directory where your
.FLA file has been saved. You can also publish the movie by using the Publish but-
ton directly in the Publish Settings dialog.

For those who want to maximize the built-in functions of QuickTime Player Pro,
QuickTime video filters and graphics modes can be applied to Flash tracks.

So far, you’ve seen how to combine existing QT movies with your Flash content.
You don’t need to import other QuickTime content into Flash in order to export
QuickTime material from Flash. With QuickTime 4, you can create QuickTime
movies that are essentially repackaged .SWF files. Using Flash 4 or 5, .FLA movies
can be exported to QuickTime formats. At the time of this writing, QuickTime
Player recognizes only Flash 3 actions. To export QuickTime Flash movies from
Flash 4 or 5, follow the same steps described previously without importing any
external QuickTime movie files.

Creating QuickTime video with Flash
If you own the Macintosh version of Flash 4 or 5, then you can also export QuickTime
Video via the Export Movie command. QuickTime Video is raster- or bitmap-based
animated movement. Remember, QuickTime Flash movies contain a new Flash media
track, which is exactly the same file format as a Flash movie (.SWF file). As such, the
Flash track uses antialiased vector graphics to store and display information. Quick
Time Video, however, uses only raster information — each frame in the movie is

Note

Export Movie or Publish?

Although the Export QuickTime dialog is identical to the QuickTime tab of the Publish
Settings dialog, one important difference exists. The File property, which controls linking to
external files, creates different results with each command.

If Flatten (Make self-contained) is unchecked in the Export QuickTime dialog, then only the
imported QT movie is referenced externally — it is not stored in the new QuickTime Flash
movie.

If you check both the Flash (.SWF) and QuickTime (.MOV) options in the Formats tab of the
Publish Settings dialog and uncheck the Flatten (Make self-contained) option in the
QuickTime tab, then the Publish command creates a QuickTime Flash movie (.MOV file)
that links to the .SWF file as well as the original imported QuickTime movie (.MOV). Neither
the Flash content or the imported QT movie is stored in the new QuickTime Flash movie —
the QuickTime Flash movie, .SWF file, and original QuickTime(s) need to be in the same
location in order to play.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 976

977Chapter 34 ✦ Working with QuickTime

described as collection of pixels. This method of storage is much more byte inten-
sive. For this reason, QuickTime Video files are usually several megabytes large, and
time-consuming to download over slower Internet connections.

Why would you want to use QuickTime Video if it creates larger file sizes than
QuickTime Flash? Unfortunately, QuickTime Flash movies can only be played with
QuickTime 4.0 or greater. If you want to be sure that your QuickTimes can be
played with older versions of QuickTime, then the movies need to be QuickTime
Video.

In the Mac version of Flash 4 or 5, you have the option of creating either QuickTime
Video or QuickTime Flash movies. If you want to use your Flash animations in home
videos or videotaped presentations, then you should export Flash movies as Quick
Time Video movies. These movies can then be edited with your other digitally cap-
tured video.

To save a Flash movie as a QuickTime Video movie, choose File ➪ Export Movie and
select QuickTime Video as the Format type. After you specify a filename and a loca-
tion to save the movie, click Save. Next, you see the Export QuickTime dialog
(Figure 34-10), where you can specify how Flash should rasterize the Flash movie.

Figure 34-10: By using the Export QuickTime (Video) dialog, you can specify
Dimensions, Format, Compressor, Quality, and Sound Format.

Tip

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 977

978 Part VII ✦ Using Flash with Other Programs

Dimensions
This property performs exactly the same way as the Dimensions property
of QuickTime Flash movie exports. See our coverage of Publish Settings and
QuickTime Flash earlier in this chapter. Because Flash vector can maintain high
quality at any size, you can scale the dimensions of the QuickTime Video file to
match the requirements of your video project. For example, if you want to use this
QuickTime Video with DV format video, then scale the movie dimensions to
720 ×534.

See Chapter 36, “Creating Full-Motion Video in Flash,” for more detailed informa-
tion on frame dimensions.

Format
Use the Format property to control the bit-depth of the QuickTime Video movie. For
most high-quality video work, use 24-bit or 32-bit color formats. For Web distribu-
tion of QuickTime Video movies, lower color formats yield smaller file sizes. Refer
to Table 34-1 for a quick breakdown of each color format. If the Smooth option of
the Format property is checked, Flash artwork is converted to antialiased bitmap
information. Otherwise, curved lines may exhibit the “jaggies” — jagged or stair-
cased steps on curves or gradients.

Table 34-1
QuickTime Video color formats

Format Number of Colors Description/Use

Black and white 2 Fax-like image quality

4-bit color 16 Similar to the 16 system colors used by
Windows in Safe mode

8-bit color 256 Indexed Color mode, like GIF

16-bit color 65,536 High Color in Windows 95/98 or Thousands
of Colors on the Mac

24-bit color 16.7 million True Color in Windows 95/98 or Millions of
Colors on the Mac

32-bit color 16.7 million + 8-bit Same as 24-bit color; supports 256 levels of
alpha channel transparency

Compressor
This menu determines which video codec (compressor-decompressor) is used for
the bitmap frames in the QuickTime Video movie. Because QuickTime Video is
more bandwidth-intensive, bitmap information needs to be condensed in some
manner. Compressors, or codecs, reduce the amount of information that needs

Cross-
Reference

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 978

979Chapter 34 ✦ Working with QuickTime

to be stored for each frame. For general distribution, you may want to use Cinepak
or Intel Indeo Video codecs. For high-quality video output for editing or broadcast
purposes, use the hardware codec used by your specific video capture card.
Chapter 36, “Creating Full-Motion Video in Flash,” explores codecs more deeply.

Quality
This unmarked slider (which apparently has no units) controls how the compressor
selected in the previous menu works. As you drag the slider to the right, less com-
pression is applied to the QuickTime Video, which results in higher-quality video.
As you drag the slider to the left, more information is discarded from each frame of
video (more compression, lower quality).

Sound format
If your Flash movie contains any audio, then you can choose to convert those audio
samples to a QuickTime-compatible audio track. QuickTime can use any major sam-
pling rate (such as 22 kHz), bit-depth (such as 8 or 16), or channel (such as mono
or stereo). Usually, you won’t want to use anything lower than 22 kHz 16-bit stereo
for quality audio. If you don’t need to use Flash audio in the QuickTime Video file,
then choose Disable.

See Chapter 14, “Understanding Sound for Flash,” and Chapter 16, “Optimizing
Flash Sound for Export,” for more information on sampling rates and file formats.

A word about QuickTime VR movies
If you are familiar with QuickTime VR’s amazing panorama and object movies, then
you should be happy to know that Flash supports QuickTime VR (QTVR) movies as
well. Because QTVR movies aren’t strict linear playback video movies, you need to
keep a few points in mind when you use QTVR movies in Flash. Note that you can-
not create QTVR movies from scratch in Flash. You first need to create a QTVR
movie with VR equipment and software, like Apple’s QuickTime VR Authoring
Studio. Flash can then import these movies and add Flash artwork and actions
to them.

The QTVR folder of the ch34 folder on the Flash 5 Bible CD-ROM contains sample
Flash editor documents (.FLA files) and QuickTime VR movies (.MOV files) to use
with this section. Paul Nykamp, a QTVR specialist in Toronto, Canada, provided the
QTVR movies. He can be reached at pnykamp@focusvr.com.

Panoramic movies
QuickTime panoramic movies enable you to view a physical or virtual space by
stitching a series of images into a 360-degree view. You navigate the space by click-
ing and dragging the mouse inside the movie frame. When you import a QTVR
panoramic movie (a.k.a. pano) into Flash, it only displays the first frame of the
QTVR movie on the stage, regardless of the frame marker’s position. It’s very impor-
tant to make sure that your Flash timeline’s frame span doesn’t extend beyond the

On the
CD-ROM

Cross-
Reference

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 979

980 Part VII ✦ Using Flash with Other Programs

length of the QTVR movie. Playback beyond the length of the QTVR causes the
QTVR to disappear until the Flash frame playback loops back to the starting frame.
The best solution, whenever possible, is to limit your timeline to just a few frames
(one frame would be ideal), and use movie clips with Tell Target commands to pro-
vide longer frame length animations.

QuickTime VR panos are particularly sensitive to Flash movie frame rates. The
default setting of 12 fps may result in incomplete panoramas with missing sec-
tions. If a problem occurs, try changing the Flash movie frame rate to 1 fps and
reexporting the QuickTime VR movie.

Due to limitations of the QTVR controller, there’s no way to rewind a movie or
return to frame 1 of the Flash track. Technically, because each media track has its
own timeline of frames, if the Flash track plays beyond the QTVR track, you lose the
QTVR movie. You can prevent this from happening by ensuring that you can always
view the QTVR’s first frame within the Flash authoring environment. Another clue is
this: If you go beyond the length of the QTVR movie, the extended area is repre-
sented by a struck-through rectangular box, as seen in Figure 34-11.

Figure 34-11: If your Flash movie plays beyond the
length of an imported QTVR panorama or object
movie, it disappears from the stage and is replaced
with a struck-through box.

To export or publish QTVR pano movies, specify the QuickTime VR Controller type
in the Export QuickTime dialog or in the Publish Settings’ QuickTime tab.

Caution

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 980

981Chapter 34 ✦ Working with QuickTime

Object movies
You can also make QTVR object movies in Flash 5. QTVR object movies let you
rotate or spin an object — photographed or 3D modeled — by dragging the mouse
inside the movie frame (see Figure 34-12). With Flash, you can expand the multime-
dia capabilities of object movies. Adding Flash buttons, audio, and artwork to an
object movie can provide a different navigational interface for the object, and pro-
vide call-out information to the object movie.

Figure 34-12: QTVR object movies with
Flash tracks can have more impact than
regular QTVR movies.

Unlike QuickTime pano movies, object movies can be fully viewed within the Flash
authoring environment. Each frame of the object movie shows a different viewing
angle of the object. Again, like regular QuickTime movies, make sure you add
enough frames to view the entire object movie. Keep adding frames until the stage
displays the object movie with a struck-through box. Then, subtract any frames
that show the movie as a struck-through box.

Our tests with object movies have also shown that the frame rate of the Flash movie
is a critical setting. Most of our test exports with QTVR object movies played back
very poorly — the object’s rotation movement was not very smooth. However, when
we specified a controller type of None and added a Flash button to provide a play
action, the object movie played back very smoothly.

For Flash-controlled playback of QTVR object movies, you need to add a Go to and
Play action to the last frame of the scene, which loops back to the first frame of the
scene. However, the QuickTime Player does not recognize a Flash Stop action on
the first frame. To start a QTVR Flash movie in a paused state, select the Paused at
Start option in the Playback section of the Export QuickTime dialog or in the
QuickTime tab of Publish Settings.

Tip

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 981

982 Part VII ✦ Using Flash with Other Programs

Using Digital Video in Flash Movies
Because the strength of Flash lies in its vector animation capabilities, it makes sense
that Flash prefers vector-based material. Most Web-site visitors prefer quicker down-
load speeds, and vector animations are much easier to store as small files than are
raster graphics. As a result, Flash handles raster-based material with JPEG or lossless
(a.k.a. PNG) compression schemes. In the past, Flash didn’t let you import digital
video files into a Flash movie because they added too much to the file size, which pre-
vented efficient compression and delivery on the Web. So, what do you do if you want
to showcase your next blockbuster feature in your Flash movie? You compromise. If
you want visitors to get a taste of some raster-based animation, it’s best to select a
short section of the overall movie and extract frames from that selection. In contrast
to the next chapter, which discusses the process of exporting sequences from Flash
movies, this section describes how to create still image sequences in other applica-
tions and bring them into Flash. If you want to accommodate visitors who are willing
to wait for larger full-length movies, then you can then link the preview in Flash to
load the entire QuickTime movie (or QuickTime movie reference), via HTML and the
QuickTime plug-in, into its own window or frame. Generally, though, this method of
digital video integration into Flash is used for visual effects or just really cool raster
content you snagged on video, such as water ripples or textures.

We explained earlier in this chapter the process of creating new QuickTime Flash
movies. This is a new alternative to adding Flash content to existing QuickTime
movies, and, therefore, distributing Flash and QuickTime content simultaneously
on the Web. In this section, we discuss the process of embedding raster material
derived from video into a Flash (.SWF) file, not into a QuickTime Flash (.MOV) file.

This section covers a basic method of converting digital video content into a Flash-
friendly sequence of frames. If you want to recreate the movement of original video
via the converted vector-based art in Flash, we recommend that you read this sec-
tion first and then check out WebMonkey’s tutorial on Converting Animations to
Flash at www.hotwired.com/webmonkey/98/42/index3a.html.

Even though Flash 4 or 5 enables you to place QT movies in a Flash movie, they do
not export or link with a .SWF file. If you want to embed frames from a QuickTime
movie in your Flash movie for playback on the Web, read the rest of the section. If
you want to synchronize your Flash animations and interactivity with a QuickTime
movie to use in a final QuickTime 4 movie, then refer to “Importing QuickTime into
Flash,” earlier in this chapter.

Extracting frames from digital video clips
The premise of frame extraction is simple: Instead of downloading large video files
with Flash content, reduce the video in frame size, rate, and length to something
that Flash (and slow Internet connections) can handle.

Note

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 982

983Chapter 34 ✦ Working with QuickTime

Although QuickTime video cannot be imported into Flash as one video file (because
Flash does not store video files in the current implementation of the .SWF format),
Flash does support image sequences in bitmap formats. So, we can convert any
video clip into a short sequence of still images that can play as an animation or
movie clip in Flash.

The following tutorials/workshops assume that you have some working knowledge
of the applications described herein. Also, you must have some existing digital
video material; we do not create or edit any video in these tutorials.

We recommend that you have QuickTime 4 or higher installed on your computer, as
well as any updates to your video-editing application(s). At the time this book went
to press, QuickTime 4.1.2 was available for both Windows and the Macintosh.

QT Player Pro
You don’t need an expensive video-editing application to extract frames from video
clips. In fact, you can do it for less than $30! Apple’s QuickTime Player Pro (see
Figure 34-13) can export any QuickTime movie as a series of individual still frames,
which can then be imported to Flash. You need the latest version of the QuickTime
software (currently 4.0) to export image sequences.

If you want to use a sample QuickTime movie, choose a QuickTime movie from
the ch34 folder on the Flash 5 Bible CD-ROM.

After you have some QuickTime movie footage that you want to use in a Flash .SWF
file, you can begin the process of selecting a range of frames and exporting them as a
bitmap sequence. This sequence will then be imported into our Flash movie .FLA file.

1. Making a Selection: First, decide how much of the QuickTime movie you want
to import into Flash. Do this sparingly. Remember that raster animation is
heavy on file sizes, and people generally like faster-loading content on Web
pages. Restrict your selections to movie clips of very short duration, less than
five seconds if possible. If you want the visitor to see more than that, consider
linking to the entire QuickTime from the smaller clip that you import into the
Flash SWF file.

2. Define Your Selection: Use the In and Out markers to define your selection.
Unfortunately, QT Player Pro does not show frame numbers in the time code
display. As a result, you need to eyeball your selection. You can also use the
additional video controls to move through the video clip frame by frame. The
selection is indicated by a gray bar between the In and Out points. Using
Movie ➪ Get Info and selecting Time from the pop-up you can view the time
code of where your selection starts and its duration. In Figure 34-14, a two-
second selection is made from a QuickTime video clip.

On the
CD-ROM

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 983

984 Part VII ✦ Using Flash with Other Programs

Figure 34-13: The QuickTime 4 Player interface

Figure 34-14: Keep your selections as short
as possible. Longer selections add substantial
weight to the file size of the Flash .SWF file.

Out point

In point

Time Display

Fast Forward

Fast Rewind

Step Back

Step Forward

Go to Start

Go to End

Play
Pause

Show/Hide Additional
Video and Audio
Controls

Volume

Playback Head

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 984

985Chapter 34 ✦ Working with QuickTime

3. Trimming the Movie: After you’ve defined a selection, you need to delete the
rest of the video track. If we don’t delete it, QT Player Pro exports the entire
movie as an image sequence. Again, we only need the short selection for use in
Flash. Hold down the Ctrl and Alt keys (PC) or Command and Option keys (Mac),
and click Edit on the QT Player Pro menu bar. Now click Trim. This command
discards everything but your selection from the movie clip. (Don’t worry about
losing this content. As long as you don’t resave your QuickTime movie at this
point, your video clip file won’t be altered in any way, because we simply want to
export this selection as an image sequence and then close the QuickTime movie
without saving.) After you execute the Trim command, the In and Out markers
automatically reset to encompass the entire remaining video, and the QuickTime
movie only contains the selection that you defined previously.

4. Exporting an Image Sequence: Now you’re ready to export the QuickTime
as an image sequence. Choose File ➪ Export (Command+E or Ctrl+E), and
you see the Save Exported File As dialog (see Figure 34-15). Select a folder
(or create a new one) to store your image sequence, specify a filename, and
choose Movie to Image Sequence in the Export drop-down menu. Next, click
the Options button to define the format settings to be used for the image
sequence. You see the Export Image Sequence Settings dialog. If you are using
the PC version of Flash, choose .BMP (Windows Bitmap) for the Format prop-
erty. If you’re using the Mac version of Flash, choose the .PICT format. For the
Frames Per Second property, choose a value from the drop-down menu (or
type one) that’s appropriate to the length of the clip. For a two-second clip,
a value of 4 or 5 is adequate, rendering a total of 8 or 10 frames. Click the
Options button to select a bit-depth for the .BMP or .PICT sequence.

Figure 34-15: In the Save Exported File As dialog, choose Movie to Image Sequence
as the Export type.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 985

986 Part VII ✦ Using Flash with Other Programs

In the Export Image Sequence Settings, you can access the file type-specific set-
tings, such as color depth or compression. Choose Millions of Colors if you don’t
want to prematurely limit the color palette used for the image sequence.

The Options dialog displays the settings applicable for the file format chosen.
Some file formats, such as .JPEG, enable you to define compression levels in addi-
tion to bit-depth.

Click OK to the BMP or PCT Options dialog, and then click OK again on the Export
Image Sequence Settings dialog. Finally, click Save on the original Export Image
Sequence to render your image sequence. QT Player Pro adds consecutive numbers
to the end of each filename generated in the sequence. Flash can recognize file
sequences with this kind of numbering.

Now you have a collection of still images that can be imported into Flash. See
“Importing a Sequence into Flash” later in this chapter for instructions.

Adobe Premiere 5.1
Adobe Premiere is a cross-platform video-editing application used by serious hob-
byists and professional videographers. Unlike proprietary video systems such as
Avid, Premiere uses the QuickTime and/or the Video for Windows architecture for
processing video. Premiere’s functionality extends from creating Web-based video
to CD-ROM video to professional broadcast-quality video. You can also use
Premiere to generate image sequences from existing projects or movies.

Use the dogs_small.mov QuickTime file on the Flash 5 Bible CD-ROM if you need
some material for this section.

1. Open Premiere 5.1, and start a new project. If you’ve left the preferences for
Premiere at their defaults, you are automatically presented with a New Project
Settings dialog as soon as Premiere finishes loading.

2. Specify the settings for the new project. See Figure 34-16 for reference. The fol-
lowing list delineates the various settings.

• General Settings, Timebase: For NTSC video, use a timebase of 29.97
fps; use 25 for PAL/SECAM video.

• General Settings, Time Display: For most consumer video material,
including mini-DV, use Drop-Frame Time Code. You may want to use Non
Drop-Frame Time Code for DVCAM or other professional video types, if
that’s how the source footage was recorded.

• Video Settings, Compressor: Even though you may have used other
video compressors (or codecs) for your video footage, the None type
configures our export settings correctly for image sequences.

• Video Settings, Depth: If you have video that includes an alpha channel
or matte, use Millions+ for the Depth setting.

On the
CD-ROM

Note

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 986

987Chapter 34 ✦ Working with QuickTime

Figure 34-16: Use these Project Settings for DV format
video that you want to export as an image sequence.

• Video Settings, Frame Size: All DV-captured material is 720 ×480. Some
MJPEG video capture cards, including the Iomega Buz, capture at
720 ×480 as well. You need to uncheck the 4:3 Aspect box for this frame
size. Most MJPEG video capture cards use a 640 ×480 frame size.

• Video Settings, Frame Rate: Use 29.97 for NTSC video; if you are using
PAL/SECAM, use 25. For a thorough explanation of frame rates and time-
bases, see page 336 of the Premiere 5 User Guide.

• Keyframe & Rendering Options, Field Settings: Lower field first (for
most DV-captured material. Check your video capture card’s user man-
ual to confirm your card’s field dominance).

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 987

988 Part VII ✦ Using Flash with Other Programs

3. In the Project window, import an existing QuickTime (.MOV) or Video for
Windows (.AVI) file. To maintain true cross-platform compatibility, you should
use QuickTime movies. To import a movie, double-click in the Project window,
and select a file in the following Import dialog.

4. Next, you need to determine the length of the clip. Double-click the imported
movie in the Project window. Premiere loads the clip into the Monitor window
(see Figure 34-17). Using the Mark In and Mark Out buttons, set the In and Out
points of the clip to reflect the selection you want to bring into Flash. You
want to keep the duration of the clip fairly short, around a few seconds. The
longer you make the selection, the larger your Flash file.

Figure 34-17: Use the Monitor window to set the In and Out points of the
Movie Clip.

Source View Program View

Current clip location

Set Location

Clip duration

Stop

Play

Mark In

Mark Out

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 988

989Chapter 34 ✦ Working with QuickTime

5. Put the clip into the timeline. Open the timeline window with the Window ➪
Timeline menu item (see Figure 34-18). Set the Time Units pop-up menu to two
seconds. Click and drag the movie from the Project window onto any Video
track in the timeline window. Make sure you place it at the very beginning of
the timeline, at frame marker 00:00:00:00. If you can’t see the clip in the time-
line, you might have to select a smaller time unit, such as two, four, or eight
frames. If you are not sure that your clip is at the zero point, click and drag
the clip in the video track as far left as possible To check this, click the time
ruler and drag the edit line to the zero point. Whenever you drag the edit line
along the video in the timeline, the Monitor window automatically pops up
and plays the video as you drag.

Figure 34-18: Build your video project in the timeline window. For an image
sequence, put your Movie Clip on any video track at time 00:00:00:00, which
is at the very beginning (far left) of the time scale.

Do not drag the clip into the timeline more than once. If you dragged a clip into
the timeline but don’t see it, chances are it’s in there somewhere. You can always
check how many times a given clip is used in the timeline by checking the Video
Usage and Audio Usage columns in the Project window. So far, you should only
have one video and one audio use of your clip in the timeline.

6. Now you’re ready to export this selection as a sequence of individual images,
which we can animate in Flash. With either the Monitor or Project window
highlighted, select File ➪ Export ➪ Movie (Command+M or Ctrl+M). In the
Export Movie dialog, click the Settings button in the lower-right corner.

Note

Time Marker Time Scale

Time Units Source Clip

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 989

990 Part VII ✦ Using Flash with Other Programs

7. Specify the export settings. See Figure 34-19 for reference. A summary of key
settings follows.

Figure 34-19: Use these settings to export an image
sequence that Flash can import.

• General Settings, File Type: On the PC, choose Windows BMP Sequence.
On Mac, use PICT Sequence. You can also try Animated GIF if you don’t
mind having the color palette of the sequence limited to 256 colors.

• Video Settings, Depth: If you have an alpha channel that you wish to
also export with each image in the sequence, select Millions+.

• Video Settings, Frame Size: If you want a smaller Flash movie file size
and are willing to sacrifice some image quality, shrink the frame size to
320 ×240 for both DV and MJPEG captured material. Sequences are ren-
dered in square pixel formats. Because DV uses nonsquare pixels, you
need to resize the actual frame to achieve the correct aspect ratio. That
is, if you have 720 ×480 captured clips, you need to export 640 ×480 (or
some 4:3 variation) for proper still images.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 990

991Chapter 34 ✦ Working with QuickTime

• Video Settings, Frame Rate: The frame rate depends on the length of
your clip. If you have a 2-second clip, then a setting of 6 fps results in a
12-frame sequence, which is imported into Flash. Higher frame rates
equal more individual frames that Flash needs to animate. Basically, you
want to obtain a balance between a minimum number of frames and a
smooth, believable sense of movement — without the sequence becom-
ing too jerky or jumpy.

• Special Processing: Because the Special Processing dialog gives you a
live preview of each effect, you may want to experiment with different
settings. Noise reduction can smooth pixilated edges, while the de-inter-
lace option averages the lower and upper fields for each frame render-
ing. Otherwise, the field you specified in the New Project settings is used
as when rendering the frame. De-interlacing is not recommended if you
are scaling down any DV-format video that you want to convert to an
image sequence. Meaning, if you’re outputting an image sequence at
720 ×480 (normal DV frame size), then you should turn de-interlace on. If
you are outputting at any size smaller than the original interlaced video,
then leave the de-interlace option off.

8. After you specify the settings for the export, you should create a new folder or
choose an existing folder to store the image sequence. When you name the
export, don’t worry about adding a number to the file name. Premiere does
this automatically. For example, typing apple_ for the filename directs
Premiere to call each frame of the sequence as follow: apple_01, apple_02,
apple_03, and so on. In Windows, the appropriate file extension is added as
well, such as apple_01.pct.

9. Click OK and Premiere generates a still image sequence from the clip. You’re
now ready to import the still images into Flash. See “Importing a Sequence
into Flash,” later in this chapter, for more details.

Adobe After Effects 4.1
Adobe After Effects is an extremely powerful video-compositing tool. You can think
of After Effects as Photoshop for video. You can add custom filters and motion con-
trol to any graphic or video with After Effects. After Effects comes in two versions:
regular (Standard) and professional (Production Bundle). The Production Bundle
version of After Effects uses the exact same interface as the regular version, but it
has superior filters for compositing video. While it’s easier to use Premiere or QT
Player Pro to extract frames from a video clip, you can also use After Effects to do
it. If you’ve already constructed a project in After Effects, it’s much easier to use it
to extract a few frames from a larger project. Otherwise, you need to render the
entire project and then go to another application, such as Premiere, to extract
those frames from an already rendered (and possible very large) movie file.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 991

992 Part VII ✦ Using Flash with Other Programs

Before we begin the steps to extract frames in After Effects, we briefly discuss the
workflow in After Effects. Like Premiere, After Effects uses a Project window that
links all your graphics, sounds, and video clips to compositions, or comps. A com-
position can be thought of as the real project container, but you can have more
than one composition for a project. In fact, for some killer effects and presenta-
tions, comps are often nested within another comp. If you’ve used After Effects pri-
marily for full-motion video effects, then this section shows you how to repurpose
your video content for Flash.

1. Open an existing After Effects project file (.AEP), or create a new project. If
you have an existing After Effects project, then open the Time Layout window
of the comp you wish to render and skip to Step 5.

2. Import the video clip that you want to use in Flash, via the File ➪ Import ➪
Footage File command (Ctrl/Command+I). Note the duration and frame size
of the clip you have imported.

3. Create a new composition (Command+N or Ctrl+N), and conform the settings
of the comp to those of the imported Movie Clip. For example, if the clip’s
frame size is 320 ×240 at 15 fps, then make the comp’s setting 320 ×240 at
15 fps.

4. Drag the video clip from the Project window to the new composition’s Time
Layout window. If it’s not showing, then double-click the composition’s name
in the Project window. By default, the comp’s name is Comp 1. Once you drag
the video clip into the Time Layout window, it shows up as a layer in the com-
position.

Now, you have to define the work area in After Effects. All extracted frames
are drawn from this area. You should keep the length of the work area quite
short (a few seconds or less) as each extracted frame adds a lot of weight to
the Flash movie.

5. Move the Time Marker in the Time Layout window to the desired In point of
the composition. The In point is where we start extracting frames. Make sure
your Composition window is also open, so you have a visual reference for the
Time Marker. If it’s not showing, double-clicking the comp’s name in the
Project window reopens it.

6. In the Time Layout window, click and drag the Work Area Start tab while hold-
ing down the Shift key. Drag the tab to the Time Marker’s position, and the tab
snaps to it.

7. Move the Time Marker to the Out point of the composition, and shift-drag the
Work Area End tab to this position (see Figure 34-20).

You’ve now defined the work area in After Effects, and we’re ready to render a
series of frames from the comp.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 992

993Chapter 34 ✦ Working with QuickTime

Figure 34-20: Use the Work Area tabs in the Time Layout window to set the
In and Out points of the image sequence.

8. Choose Composition ➪ Make Movie (Command+M or Ctrl+M). In the Save
Movie dialog, browse to the folder where you want to store your frames, enter
a prefix filename for the frame sequence, such as comp, and click Save. After
Effects automatically numbers the sequence by adding _0000, _0001, _0002,
and so on to the filename on the PC version, or .0000, .0001, .0002, and so on
to the filename on the Mac version. If you’re using the PC version of After
Effects, you get an automatic .AVI extension to the filename. Even though
we’re rendering frames as individual files, don’t worry about the .AVI exten-
sion. You then see the Render Queue window.

9. Click the underlined Current Settings text field next to Render Settings, and
adjust the frame size and rate to match the size you want for your Flash movie
(see Figure 34-21). In the following example, a DV format clip at 720 ×480 is
halved in size by choosing Half in the Resolution setting. Choose Work Area
Only for the Time Span setting, and note the length of the duration informa-
tion listed directly beneath this setting. Hopefully, your comp’s work area isn’t
longer than five seconds. For the Frame Rate setting, click the Use this Frame
Rate option and type a value that won’t overgenerate frames. For a 3-second
comp, 4 frames per second will yield 12 frames that can be imported into
Flash. Then, click OK to proceed to the next setting dialog.

Figure 34-21: Use the Render Settings options to
control resolution, time span, and frame rate for
image sequences.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 993

994 Part VII ✦ Using Flash with Other Programs

10. Click the underlined Lossless text field (or whatever your default may be)
next to Output Module. In the Output Module Settings dialog (see Figure
34-22), choose BMP Sequence (if you’re using a PC) or PICT Sequence (if
you’re using a Mac) from the Output Module, Format setting. Don’t change the
default settings in the Video section. If you are using nonsquare pixel video
such as DV, you may want to resize the frame for each still image extracted.
For a 360 ×240 (half-resolution DV) frame size, check the Stretch option and
choose Medium, 320 ×240 in the drop-down menu. Select High for the Stretch
Quality. Click OK to proceed to the next step.

Figure 34-22: The Output Module Settings
control the file format, video, stretch, and
audio characteristics for a queued composition.

11. Click the underlined filename field next to the Output To setting of the Render
Queue window. Make any changes to the filename structure to meet your pre-
ferred formatting. On the Mac version of After Effects, you need to add a .PCT
extension to the filename. By default, the Mac version outputs a series begin-
ning with Comp 1 Movie.[#####], but Flash won’t recognize this as the begin-
ning of a sequence without a .PCT extension. So, you should change the
format of the filename to Comp 1 Movie.[#####].pct. Click Save to proceed.

12. When you’re ready to render a sequence of frames from After Effects, click the
Render button in the Render Queue window. After Effects then generates a
series of frames ready to bring into Flash.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 994

995Chapter 34 ✦ Working with QuickTime

Importing a sequence into Flash
After you have created an image sequence from another application, you can
import the sequence into Flash as a series of keyframes with bitmaps. Flash can
autoimport an entire sequence of numbered stills and place them frame by frame
on the timeline.

Movie Clip storage
Rather than import an image sequence directly into a layer within a scene, you can
import the sequence into a Movie Clip symbol. This makes it easier to duplicate an
image-sequence animation through the Flash movie in any number of scenes.

1. Create a new Flash (.FLA) file or open an existing one.

2. Create a new symbol of the Movie Clip type (Insert ➪ New Symbol), and give it
a descriptive name.

3. Choose File ➪ Import and browse to the folder containing your image
sequence. Select the first image of the image sequence, and click OK.

You are presented with the message shown in Figure 34-23.

Figure 34-23: Whenever you import a file whose names
contains a number, Flash asks you whether you want to
import the entire numbered sequence of files.

Using Audio from Digital Video Movies

If you want to bring the audio portion of this shortened video clip into Flash, then you can
choose QuickTime as the Output Module format. Turn off the Video section, and turn on the
Audio section with the sampling rate and bit-depth at the settings you want. Then render
the audio-only QT movie, open it in QT Player Pro, and export it as a .WAV or .AIF file. You
can then import the .WAV or .AIF into Flash and synchronize it with the bitmap sequence.
You need to use the Stream audio setting in order for the audio to synch with the bitmap
sequence. If audio and video synch is a critical issue, you may want to forego the replication
of bitmap sequences within .SWF movies. Because QuickTime 4 now supports Flash tracks,
you can output QuickTime Flash movies that use regular QuickTime movies, complete with
video, sound, and Flash tracks.

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 995

996 Part VII ✦ Using Flash with Other Programs

4. Click Yes in the dialog shown in Figure 34-23 and Flash automatically imports
every image in the numeric sequence.

5. Go back to the Stage and drag the Movie Clip into a scene.

6. Use tellTarget actions (for Flash 3 or 4 compatibility) or Movie Clip meth-
ods (in Flash 5 Dots notation) to control the Movie Clip if necessary. For more
information on intramovie interactivity, see Part IV, “Adding Basic Interactivity
to Flash Movies.”

Optimizing bitmaps
Like any imported bitmap, you can trace each bitmap in the image sequence.
Tracing effectively converts raster information into vector information. Depending
on the complexity of the bitmap image, though, the efficiency of tracing can vary
wildly. Refer to Chapter 17, “Understanding Actions and Event Handlers,” for more
information on optimizing bitmap images.

If you plan to trace bitmaps in an imported image sequence, you may want to con-
sider applying an art filter (for example, Extract, Posterize, or Solarize) to the origi-
nal footage in Adobe Premiere or After Effects. Some art filters create more solid
areas of color in the image, making the traced bitmaps in Flash less complex with
smaller file sizes.

Summary
✦ QuickTime 4 has added a new media layer, the Flash track. With this new fea-

ture, Flash can export QuickTime movies with Flash tracks that control play-
back of QuickTime movies.

✦ Flash movies can be exported as Flash-only QuickTime movies. As of this writ-
ing, the QuickTime Player can currently play Flash 3 content only.

✦ Digital video needs many megabytes of disk storage. For this reason, there
are some limitations and precautions involved when using digital video with
Flash.

✦ By extracting frames at low frame rates from digital video files such as
QuickTime or AVI, small video clips can be imported into Flash movies and
played back from .SWF files. The results can be of astonishingly high quality
with relatively fast transmission.

✦ ✦ ✦

Tip

3515-3 ch34.f.qc 1/18/01 5:12 PM Page 996

Working with
RealPlayer

One of Flash’s most powerful capabilities is exporting to
other media formats. In this chapter, we look at using

Flash content with RealPlayer. Earlier versions of Flash and
RealPlayer required extensive production to export Flash files
to translated RealMedia formats. Flash 5 is now capable of
publishing streaming audio and Flash files directly to the
RealMedia formats.

Flash to RealPlayer
RealPlayer is the multimedia player and plug-in created by
RealSystems, Inc. RealPlayer can play all Real formats, such as
RealAudio (for streaming music and radio broadcasts) and
RealVideo (for streaming video). RealPlayer can also play
Flash .SWF files, provided that they are properly formatted for
true streaming playback. RealPlayer version 8 is capable of
reading Flash 3 and 4.SWF files — it will understand Flash
actions in a Flash 3- or 4-published .SWF file. Versions 6 and 7
of RealPlayer can only read Flash 2 files.

While RealPlayer can display the visual portion of a Flash
.SWF file, it will not play the audio portions of a .SWF file. The
Real playback system looks for a separate RealAudio file to
synchronize with the graphics and animation of a Flash .SWF
file. Prior to Flash 5, the process to create separated Flash and
RealAudio files required the use of production utilities from
RealSystems. Now, we can create RealAudio and Flash .SWF
files directly from the Flash application. Using the Publish
Settings dialog, you can export the files necessary for Flash
movie playback in RealPlayer:

✦ .SWF file (without audio), a special one created by the
RealMedia exporter, which creates a “tuned” file by strip-
ping the audio and resampling the Flash movie timeline for
streaming playback. The degree of resampling depends on
the bit rate selected in the Publish Settings dialog.

3535C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

What is RealPlayer?

Preparing Flash
content for RealPlayer

Determining bit rates
for Media Files

Synchronizing image
sequences and
audio

✦ ✦ ✦ ✦

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 997

998 Part VII ✦ Using Flash with Other Programs

✦ .RM (RealAudio) file containing an streamed version of the stripped Stream
audio from the .SWF file.

✦ .SMIL file that controls the synchronization between the tuned .SWF and .RM files.

This chapter provides an overview of combining Flash animation with Real con-
tent. For more documentation on content creation for RealPlayer 8 or earlier, see
http://service.real.com/help/library/encoders.html.

Flash Versions and Content Considerations
You can only use Flash 4 or earlier version .SWF files with RealServer 8 and Real-
Player 8. If your Web server uses RealServer 6 or 7, then you can only use Flash 2
.SWF files with RealPlayer 8 or earlier. As you see later in this chapter, you can
change the Flash .SWF version in the Flash tab of the Publish Settings dialog.

RealPlayer G2 and RealPlayer 7 will prompt users to update to RealPlayer 8 when
Flash 3 or 4 .SWF content is encountered. Before playing Flash 3 or 4 .SWF content,
RealPlayer 8 downloads a Flash plug-in that is not part of the standard RealPlayer
installation.

RealPlayer 8 and RealServer 8 do not support Flash 5 .SWF files. If you are devel-
oping with new Flash 5 ActionScript, then some interactive functionality will be
lost when the movie is exported as a Flash 4 or earlier .SWF file.

Realistically, we advise you to only use appropriate Flash content for use in Real
Player productions. RealPlayer is best suited for the following types of linear Flash
content:

✦ Animated shorts or trailers

✦ Instructional media

✦ Simple interactive demonstrations

✦ Flash forms that gather information from the user and send it to your server

✦ Enhanced presentation or user interfaces for streaming music

As you can see, RealPlayer likes Flash movies that use basic navigation controls,
like play and stop. Do not use convert complex games and entire site files made in
Flash for use in RealPlayer — the Flash Player plug-in was developed to handle
highly interactive and animated content on the Web.

Caution

Note

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 998

999Chapter 35 ✦ Working with RealPlayer

We strongly recommend that you develop most, if not all, of your linear Flash
movie content on the Main Timeline. The playback timeline displayed within the
RealPlayer interface only shows the length of the Main Timeline of your Flash
movie. While Movie Clip timelines will play in the RealPlayer, you will not be able
to control their playback with the RealPlayer controller. You will need to add your
own Flash buttons or frame actions that control Movie Clip timelines. Also, Movie
Clips can continue to play even if the RealPlayer timeline has finished playing.

Finally, Flash background transparency is not supported in any RealPlayer version.
If you want to superimpose Flash animation with any other content, you need to do
it within Flash. You cannot overlay a Flash track with RealVideo.

We recommend that you convert appropriate Flash movies to Real-compatible for-
mats for use on Web sites that already require the RealPlayer plug-in for other con-
tent (for example, streaming radio broadcasts, streaming music videos) on the site.

Controlling RealPlayer Playback
If you use ActionScript in a Flash movie to control playback of the movie’s timeline
(for example, gotoAndPlay() and stop()), then you’ll lose synchronization with
your RealAudio track. Although RealPlayer will recognize Flash actions that are
compatible with .SWF version 4 or earlier, it will not apply those actions to other
tracks that are running simultaneously. To control the RealPlayer, you need to use
a special getURL action on a Flash event handler (for example, a keyframe or a
Button instance).

To send playback commands to RealPlayer from your Flash movies, do the following:

1. In Flash 5, open a Flash movie that you want to convert to a tuned Flash .SWF.

2. Select (or add) a Button instance that will control both the Flash movie time-
line and any other tracks that will play along with your Flash content in
RealPlayer. Or, you can select a keyframe on your Flash timeline.

3. Open the Actions Panel (in Normal Mode). If you used a Button instance in
Step 2, then add an onMouseEvent action and choose your desired mouse
event (for example, press, release, and so on). If you selected a keyframe in
Step 2, then you don’t need this action.

4. Add a getURL action, and for the URL option, use one of the following
RealPlayer commands:

• command: pause(): This halts playback of all content playing in
RealPlayer. All timelines in the Flash movie, including those of Movie
Clips, stop on the current frame.

Caution

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 999

1000 Part VII ✦ Using Flash with Other Programs

• command: play(): This command tells RealPlayer to resume playback of
all content.

• command: stop(): This command stops playback and rewinds all con-
tent tracks to their respective starting points.

• command: seek(time): The seek command sends all content tracks to
the specified time and resumes playback. Time is denoted in the format
dd:hh:mm:ss.xyz, where dd is the day, hh is the hour, mm is the minute,
ss is the second, and xyz are the fraction of the second. If you omit the
decimal point, then RealPlayer reads the last two digits as the seconds.
For example, command:seek(1:00) sends all playing tracks to the point
where 1 minute has elapsed. command:seek(1:00:00) sends all playing
tracks to the point where 1 hour has elapsed.

If you add the following getURL action to a Flash keyframe or Button instance, the
RealPlayer will go to the timeline position at 45 seconds on the Flash and RealAudio
tracks:

getURL(“command:seek(45)”);

However, if you add a gotoAndPlay() or gotoAndStop() action to a keyframe or
Button instance*, then only the Flash track will proceed to the new time position.
All other Real tracks will continue to play from their current positions.

We discuss how to publish the Flash movie with the RealAudio and .SMIL files later
in this chapter.

Evaluating Media Quality for
RealFlash Movies

When you decide that you want to convert a Flash movie into a RealPlayer-compati-
ble format, you will need to consider the audio quality and bandwidth that your tar-
get audience’s connection speed will require. This next section will explain how to
properly set up the RealPlayer files for use on the Web.

Audio requirements
The most important RealPlayer authoring consideration within Flash movies is the
use of audio. RealPlayer only supports Flash audio that uses Stream Sync mode.
Event Synch audio cannot play in RealPlayer. Flash Stream audio needs to be set for
raw compression that uses a sample rate of 11 kHz, 22 kHz, or 44 kHz.

*If you are exporting Flash 2 .SWF files, then Flash playback actions will control RealPlayer playback
of other tracks as well.

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1000

1001Chapter 35 ✦ Working with RealPlayer

Because the Real Encoder will be compressing the Flash sounds, we recommend
that you begin your Real Flash movie production with uncompressed audio files. If
you have imported .MP3 sound files into your Flash movies, the Real Encoder will
recompress them for use in RealPlayer. Recompressed audio usually sounds worse
than the original compressed audio.

Avoid using sounds on Flash Button symbols. Even if you nest a Movie Clip symbol
instance that uses Stream sound on the Over keyframe of a Button instance,
RealPlayer will not play the sound.

To set the output format of Flash Stream audio:

1. Open the Publish Settings dialog (File ➪ Publish Settings).

2. Select the Flash tab.

3. Click the Set button next to the Audio Stream option.

4. In the Sound Settings dialog (shown in Figure 35-1), choose the Raw option in
the Compression drop-down menu, and pick a Sample Rate that is appropriate
for your Flash audio. (See Chapters 14 through 16 for more information on dig-
ital audio and Flash sound use.) If you are using Stereo Stream sounds, then
do not check the Convert Stereo to Mono option — let the Real Encoder merge
the sound channels on export. Click OK.

Figure 35-1: The Sound Settings dialog enables
you to change the default compression used for
Stream and Event Audio in Flash movies.

5. If you still have Event Sync audio in the Flash movie, you should prevent its
export by clicking the Set button next to the Audio Event option and selecting
Disable in its Compression drop-down menu.

6. Finally, just in case you have given unique compression settings to Stream
sounds in the Library, check the Override sound settings option in the Flash tab.

RealAudio cannot encode 5.5 kHz audio. If you have imported source audio files
that use a sample rate at or below 5.5 kHz, make sure you use the Update or
Import button in the Sound Properties dialog (for each sound in the Library) to
select a higher sample rate file.

Note

Caution

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1001

1002 Part VII ✦ Using Flash with Other Programs

Bandwidth considerations
Because RealPlayer can stream two or more media tracks simultaneously, you need
to watch the file sizes of all the tracks that will play in the RealPlayer. You need to
decide how much bandwidth each media track (the Flash or the RealAudio track)
will consume. In the RealPlayer tab for the Publish Settings dialog, you can select a
bit rate for the tuned Flash .SWF file and choose an audio format for the RealAudio
file. You must balance bandwidth usage between the tuned Flash file and RealAudio
file based on the target audience settings.

SureStream and Single Rate RealMedia files
Before you can decide how to divide the bandwidth between Flash and RealAudio
files, you need to know the difference between Singe Rate and SureStream as it
applies to RealMedia. When you produce Real content, you need to know what kind
of RealServer your Web provider (or server) has installed.

If you have access to RealServer G2 or RealServer 8, then you’ll be able to use
SureStream files on your site. A SureStream file can be streamed at various bit rates,
depending on the connection preferences of the user’s RealPlayer and the current
network conditions. All SureStream files need to use RTSP (Real Time Streaming
Protocol) instead of HTTP (Hypertext Transfer Protocol), the standard protocol for
the Web. If you try to stream a SureStream file over HTTP, the lowest bit rate ver-
sion that you selected for publish will stream to your users.

If you use an earlier RealServer and/or use HTTP to serve your Real files, then you
can use Single Rate Real files that are published for specific connection speeds.
With this method of distribution, you would create a separate Single Rate file for
each connection speed that you want to support. Then, you would specify the
source file for each connection speed in the SMIL document. For more information
on the use of SMIL for RealPlayer files, see

http://service.real.com/help/library/guides/production8/htmfiles/
smil.htm

Determining bit rate
To select the proper bit rate for the tuned Flash file, subtract the bit rate of the
RealAudio file from the total bit rate available for your target audience’s Internet
connection speed. The formula to find the bit rate for the tuned Flash .SWF file is:

Connection speed – RealAudio bit rate = Flash .SWF bit rate

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1002

1003Chapter 35 ✦ Working with RealPlayer

The average bit rate available for 56KB modem users is about 37 Kbps (in practical
testing). A RealAudio file using the Music codec set for Single Rate streaming over
a 56KB modem connection requires 20 Kbps. Therefore, the bit rate for the tuned
Flash .SWF file should be around 17 Kbps:

37 Kbps – 20 Kbps = 17 Kbps

The typical bandwidth available for target audiences is generally lower than the
connection rate. Table 35-1 lists the practical limits for each target audience.

Table 35-1
Average Connect Speed of Standard Modem Rates

Connection Type Practical Throughput Recommendations

Real Systems Apple* Macromedia** Average

28 Kbps Modem 20 Kbps 16 Kbps 18.4 Kbps 18 Kbps

56 Kbps Modem 34 Kbps 32 Kbps 37.6 Kbps 34.5 Kbps

64 Kbps Single ISDN 45 Kbps 40 Kbps N/A 42.5 Kbps

112 Kbps Dual ISDN 80 Kbps 80 Kbps N/A 80 Kbps

Corporate LAN 150 Kbps 280 Kbps N/A 215 Kbps

256 Kbps DSL/Cable 225 Kbps N/A N/A 225 Kbps

384 Kbps DSL/Cable 350 Kbps 240 Kbps N/A 295 Kbps

512 Kbps DSL/Cable 450 Kbps N/A N/A 450 Kbps

*As quoted from Apple’s book, QuickTime for the Web, by Steven Gulie.
**As calculated by the default connection speeds listed in the Flash 5 Bandwidth Profiler.

If you choose to use SureStream RealAudio and multiple target audiences, we rec-
ommend that you use the bit rate of the lowest target audience (see Table 35-2) to
calculate the bit rate for the tuned Flash file. This ensures that all targeted connec-
tion speeds will be capable of playing the presentation with greater success.

Alternatively, you can create several individual combinations of tuned .SWF files
and Single Rate RealAudio streams, using SMIL to deliver the appropriate files to
each target audience. This method enables you to create larger (and higher quality)
tuned .SWF files for faster connection speeds.

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1003

1004 Part VII ✦ Using Flash with Other Programs

Table 35-2
RealAudio Codecs and Bit Rates

Internet Connection Speed Format Choices in Flash 5 (in Kbps)

Voice with
Voice Background Stereo
Only Music Music Music

28 Kbps (18 Kbps) 8.5 8.5 8 N/A

56 Kbps (34.5 Kbps) 16 16 20* 20

Single ISDN (42.5 Kbps) 16 32 32* 32

Dual ISDN (80 Kbps) 32 32 32* 32

Corporate LAN (215 Kbps) 32 32 32* 32

256K DSL/Cable (225 Kbps) 32 32 64 64

384K DSL/Cable (295 Kbps) 32 32 64 96

512K DSL/Cable (450 Kbps) 32 32 64 96

*Indicates High Response, with 44.1 kHz sampling rates. 64 Kbps and 96 Kbps Stereo Music codecs also use
44.1 kHz sampling rates; 32 Kbps Stereo Music codecs sample audio at 22 kHz; and 20 Kbps Stereo Music uses
11 kHz.

For more information on RealAudio codecs and sampling rates of each codec, see
http://service.real.com/help/library/guides/production8/htmfiles/
audio.htm.

Bit rates are selected automatically based on your Format and Target Audience
choices; you cannot set (or choose) a bit rate for a RealAudio codec.

Publishing RealPlayer Presentations
Now that you know how to tailor your content to RealPlayer, and how to calculate
the available bandwidth for tuned Flash files, we show you how to publish
RealPlayer content directly from Flash 5. We walk-through the format settings
within the Publish Settings dialog.

1. In Flash, create or open the movie that you want to publish. Make sure you
have removed or disabled all Event Sync audio.

2. Choose File ➪ Publish Settings.

3. In the Format tab, check Flash and RealPlayer. You cannot publish RealPlayer
files without having the Flash .SWF format checked.

Note

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1004

1005Chapter 35 ✦ Working with RealPlayer

4. Click the Flash tab. In the Version drop-down menu, select Flash 4 or Flash 3 if
your Web server has RealServer 8 installed. If you have an earlier version of
RealServer, then you will need to select Flash 2. Change the Audio Stream set-
tings to export Raw audio with a sample rate of 11, 22, or 44 kHz

5. Click the RealPlayer tab of the Publish Settings dialog, shown in Figure 35-2. In
the Flash Bandwidth Tuning area, check Export Tuned Flash. The tuned .SWF
file will automatically be given a “t” suffix at the end of the filename, before
the .SWF extension. Then select (or type) a bit rate for the tuned Flash file.
This can be any value between 1 and 100. Finally, if you want to be able to res-
elect (or reenter) a bit rate at the time of publishing, check the Adjust Bit Rate
on Publish option. If this is checked, then Flash will prompt you to select a bit
rate each time you publish your Flash movie. Otherwise, it will use the setting
here for the tuned Flash file.

One reason to use the Adjust Bit Rate on Publish option is to see the amount of
time required to buffer (or preroll) the Flash movie with RealPlayer. The Publish
Settings dialog will not show you this information.

Figure 35-2: The RealPlayer tab of the Publish Settings dialog

Tip

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1005

1006 Part VII ✦ Using Flash with Other Programs

6. In the RealAudio section of the RealPlayer tab, select Export Audio. Depending
on your distribution method, choose a RealAudio streaming file type:

• Single Rate streams sound for one target audience only. You can only
check one connection speed with this file type.

• SureStream streams sound for multiple target audiences. SureStream
automatically switches to a lower bit rate during poor network condi-
tions and/or for slower connection speeds.

7. In the Format menu, select a codec to use for the streaming sound compression:

• Voice Only applies compression suitable for voiceover soundtracks. If
you choose a target audience option of 28.8KB, then the audio track will
be sampled at 8 kHz. If you choose target audience option of 56KB or
Single ISDN, then the audio will be sampled at 16 kHz. All higher connec-
tion speeds will sample the audio track at 22 kHz.

• Voice With Background Music uses the same codec as Voice Only. The
only difference from Voice Only is that the Single ISDN target audience
option will also produce 22 kHz audio.

• Music should be used for mono music soundtracks. The Music codec
requires more bandwidth bit rate than the Voice codecs at all speeds
except 28.8KB. If you select 28.8KB as the target audience, then this
codec will sample audio at 8 kHz. At all other speeds, the audio will
sample at 44 kHz with a frequency response of 20 kHz.

• Stereo Music lets you encode the left and right channels of the audio
track separately. At 56KB modem speeds, Stereo Music will sample the
audio track at 11 kHz with a low frequency response of 5 kHz. At Single
ISDN through Corporate LAN speeds, this codec will sample audio at
22 kHz with a slightly higher frequency response of 8 kHz. A 256KB
DSL/cable modem speed will sample the audio at 44 kHz with a fre-
quency response of 16 kHz, and all higher speeds will sample at 44 kHz
with a 20 kHz frequency response.

8. Depending on the Format and available bandwidth, choose a target audience
option (the connection speed that audiences will connect at). If you selected
SureStream you may select more than one target audience. RealServer G2 or 8
can compress SureStream files on the fly to maximize the available bandwidth.

9. Select Export SMIL to export a .SMIL file with the published movie. The SMIL
file synchronizes playback of the tuned Flash file and the RealAudio stream in
the RealPlayer. If you exported RealAudio, you will need to export a .SMIL file.
The .SMIL file is an XML (extensible markup language)-based file that the
RealPlayer reads to layout the RealMedia tracks. This text file can be further
edited in Dreamweaver or in a text editor such as BB Edit. Click the Project
Properties button to add information about the project with the published
movie. In the Project Properties dialog, enter information in the specified text
fields to identify the movie by title, author, copyright data, keywords, and
description, and click OK.

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1006

1007Chapter 35 ✦ Working with RealPlayer

10. At this point, you can publish the files immediately by clicking the Publish
button, or you can click OK and return to the Flash authoring environment to
further edit your Flash movie. When you’re ready to publish, choose File ➪
Publish (Shift+F12).

If you place all files associated with the RealPlayer movie (the .SWF, .RM, and .SMIL
files) in the same directory on your RealServer-enabled Web site, then the SMIL
generated by Flash 5 contains all the code needed to stream the movie. However,
if you place the .SMIL file on the HTTP server and the .RM and .SWF files on the
RealServer, you need to modify the links in the .SMIL file to reference the content
files on the RealServer.

For more information, see the RealSystem 8 Production Guide at: http://service.
real.com/help/library/guides/production8/realpgd.htm

For information on Flash production and bandwidth considerations, see the section
titled “Producing Animation” at: http://service.real.com/help/library/guides/
production8/htmfiles/animate.htm

Expert Tutorial: Rotoscoping Video Frames with Flash,
by Daniel Szecket

The files for Daniel’s tutorial can be found in the ch35 folder of the Flash 5 Bible CD-ROM.
You may want to review the previous chapter on QuickTime, as well as the chapters on
drawing and animation in the front end of the Flash 5 Bible before proceeding with this
tutorial. We thank Dr. Octo (a.k.a. Steve Barber) in Toronto, Canada, for supplying the cool
audio track used in this tutorial.

Overview
In this tutorial, we show you how to create a presentation that uses Flash animation on top
of a sequence of .JPEG images, synchronized to a RealAudio track. We are going to convert
the provided QuickTime movie on the CD-ROM to a series of image files. This image
sequence will be imported into Flash and used as a background for our Flash animation
and artwork. We will rotoscope on top of the image sequence. Rotoscoping is the process
of drawing on film or video frames, to add special effects, funky text, or anything else that
you couldn’t have photographed. After we finish the rotoscoping, we add some synchro-
nized sound and export all of our work to RealPlayer.

Image sequence considerations
The Flash 5 Bible explains how to export frames from video files in Chapter 34, “Working
with QuickTime.” For purposes of integrating video frames into a tuned Flash file, we should
keep a few points in mind.

Continued

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1007

1008 Part VII ✦ Using Flash with Other Programs

Continued

When you’re choosing a file format for the image sequence, you’ll have a variety of formats
to choose among in Flash 5. .PNG images can be small in file size and can contain an alpha
channel, which can be useful for vector conversion or to overlay your video content with
other content. .PNG images also don’t throw away color information — it uses lossless com-
pression to minimize file size.

.JPEG images usually compress much more than .PNG images compress. However, this
compression only applies to the saved file size. When a .JPEG is viewed on the computer
screen, the image is uncompressed in RAM. For example, if your entire sequence of .JPEG
images takes up 4.5MB of hard disk space, the RAM it will occupy could be as much as
60MB. However, this 60MB of RAM will not be allocated all at once — as each frame plays,
it will occupy its uncompressed size in RAM.

If your presentation is built for people with low-end computers, it might be better to export
an animated .GIF file from your video file. When you import the animated .GIF into Flash,
make sure you keep the Library settings in each image to GIF/PNG/uncompressed. This is
the default compression setting when you import a .GIF file.

The last consideration for converting the video file to an image sequence is the frame rate.
When you view the QuickTime file, you may notice that it was already reduced to 15 fps
from the original 29.97 fps that broadcast video uses. Because we would like to view the
whole clip in Flash, and it is approximately 25 seconds long, it would be difficult to manage
all 375 frames. Because of this, we converted the video to an image sequence at 6 fps,
which gives us approximately 150 frames. Luckily, because our footage depicts a slow-
moving snail, we won’t notice extreme jerkiness during playback.

Creating the Graphic symbol for the image sequence
After we have exported the frames from the QuickTime movie, we need to import them
into our Flash movie. If you don’t want to worry about converting the video file to an image
sequence, you’ll find the image sequence on the Flash 5 Bible CD-ROM. Also, our Flash
movie has a frame rate of 24 fps and a frame size that matches the video frame, 320 ×240.

1. In your Flash movie, create a Graphic symbol (Ctrl+F8 or Command+F8). Give it the
name snail and click OK. You’ll already be on that symbol’s timeline in Symbol
Editing Mode.

2. Now, import either your converted image sequence or the JPEG snail images pro-
vided on the Flash 5 Bible CD-ROM.

If you import the sequence of snail JPEG images and play the timeline, you will
notice that they play faster than the original .MOV file. Because our Flash movie has a
frame rate of 24 fps, our snail sequence is playing at 24 fps, too. To get the real 6 fps
of the image sequence, we need to add three frames of space between each image
in the sequence. You can space out the frames one by one to the desired timing.

3. For the purposes of this tutorial, put a frame between each image in the sequence —
effectively doubling the fps of the sequence to 12 fps. You should have 303 frames
filled when you are done.

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1008

1009Chapter 35 ✦ Working with RealPlayer

If you converted the images to an animated .GIF, you will notice that the image
sequence imports perfectly, spaced to the original timing.

4. After all the images are in the graphic, go back to the Main Timeline of your Flash
movie. Place an instance of the snail Graphic symbol in the first frame of your
timeline.

5. Extend the timeline to frame 303, which is the length of our Graphic symbol, by
pressing F5 at frame 303.

6. Now we import our audio track. You can use the octo.wav file on the Flash 5 Bible
CD-ROM or use one of your own sound files. Using the File ➪ Import command,
import the sound file into your Flash movie.

7. Create another layer at the top of your layer list. Name this layer sound. In the
Sound Panel, select octo.wav as the sound, as shown in the following figure.
Because this sound will be used for a RealPlayer presentation, set its Sync mode
to Stream.

8. Let’s edit the sound clip length, and add a fade at the end of the clip. Click the Edit
button in the Sound Panel. Select the Frames button (last one in the lower right of
the dialog, to the right of the Help button) to display the time units in frames. Scroll
to the end of the waveform display and drag the Out point (shown as a small gray
bar between the two waveform displays; see the following figure) to frame 153.
Then, create a new volume node at frame 303 and at frame 220. Lower the volume
of the frame 303 node to 0, on both channels. Click OK.

9. Now it’s time to add some rotoscoping effects to the movie. Create a few layers in
the Main Timeline, and start drawing some vector artwork and animation. If you
want to make frame-by-frame vector animation, you might want to select a range of
frames and create empty frames (Modify ➪ Frames ➪ Convert to Blank Key Frames).
You will notice that, as you scrub the playhead through the scene, you can both hear
the music and see the frames animate. For more information on drawing and ani-
mation in Flash, see the chapters in Part II of the Flash 5 Bible.

Continued

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1009

1010 Part VII ✦ Using Flash with Other Programs

Continued

10. When you’re finished with your artwork, save the Flash movie.

Preparing the RealMedia files
After you have created the Flash movie presentation, you’re ready to set up the RealPlayer
options in the Publish Settings dialog of Flash 5.

1. Open the Publish Settings dialog (File ➪ Publish Settings).

2. In the Format tab, check both Flash and RealPlayer.

3. In the Flash tab, select a Player version between 2 and 4, depending on the
RealServer version installed on your Web server.

4. Click the Set button next to Audio Stream, and select either 11, 22, or 44 kHz for the
Sample Rate. (Refer to the sections preceding this tutorial for more information on
RealAudio codecs and sample rates. You should choose a sample rate that doesn’t
exceed your original source material.) Make sure Compression is set to Raw. Click OK.

5. Click the Set button next to Audio Event. Choose Disable in the Compression menu
of the Sound Settings dialog, and then click OK.

6. Select Override sound settings in the Flash tab. This option will force all audio in the
Flash movie to honor the Audio settings in this Flash tab.

7. Select the RealPlayer tab of the Publish Settings dialog.

8. Set the bit rate of the tuned Flash file to the result of the following formula, which
was explained earlier in this chapter:

Tuned Flash Bit Rate = Average Bit Rate – Audio Bit Rate

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1010

1011Chapter 35 ✦ Working with RealPlayer

Summary
✦ Publishing your Flash movies in the Real format is a fast and effective way to

expand the reach of your Flash content to other media players on the Web.

✦ .SMIL controls the synchronization between the tuned Flash file and the
RealAudio file.

✦ Only RealPlayer 8 and RealServer 8 support Flash 3 and 4 files. All other
versions of RealPlayer and RealServer use Flash 2 files.

✦ Transparency in Flash files is not supported by any RealPlayer version.

9. Deselect the Adjust Bit Rate on Publish option.

10. If you have RealServer G2 or higher installed, select SureStream in the RealAudio
section and check the target audiences you want to reach. If you have an earlier
RealServer installed, select Single Rate, and select at least one target audience
option.

11. Make sure Export SMIL is checked. If you want to add information about the presen-
tation to the SMIL document, then click Project Properties and fill in the appropriate
information. Note that the files used in this tutorial are copyrighted. Please do not
distribute these files.

12. Click the Publish button on the right hand side of the Publish Settings dialog. Flash
will publish all four files (the normal .SWF file, the tuned .SWF file, the RealAudio
file, and the .SMIL file) to the same location as your saved .FLA file.

After the files have been published, you’ll need to upload the files to your RealServer. You
only need to upload the tuned .SWF file to your Web site or RealServer. The tuned file will
have a “t” at the end of its name. If you change any of the filenames, you’ll need to update
the SMIL document to reflect the changes. After they’re on the server, try accessing the
.SMIL directly from the RealPlayer window by typing: rtsp://www.yourdomain.com/
realfiles/realfile.smil

This will make all the files stream over RTSP instead of HTTP.

If your RealServer is behaving properly, you should see your Flash and audio files streaming
over the Web!

Daniel Szecket is quite the Renaissance man. He has traveled and lived more than six countries, and speaks
five languages fluently (Spanish, English, Hebrew, French, and Portuguese — and is learning Italian). Born in
Argentina, Daniel now resides in Los Angeles with his wife. With Ronen Lasry, they run Magritte’s Cow
(www.magrittescow.com), a company specializing in innovative new media content. Even though he’s at
his computer most of the time, Daniel’s single most favorite thing to do is “hang out with my wife, dogs,
and friends.”

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1011

1012 Part VII ✦ Using Flash with Other Programs

✦ If you want to control all tracks of a RealPlayer presentation from a Flash 3 or 4
.SWF file, you’ll need to use a getURL action that specifies a RealPlayer com-
mand for the URL, such as command:stop(), command:play(), command:pause(),
or command:seek(time). Regular navigation Flash actions such as gotoAnd
Stop() and gotoAndPlay()only control the Flash track, not the RealAudio track.

✦ Before you publish a tuned Flash file for RealPlayer playback, you need to
determine its bit rate by subtracting the RealAudio bit rate from the practical
throughput bit rate of your target audience(s).

✦ ✦ ✦

3515-3 ch35.f.qc 1/18/01 5:12 PM Page 1012

Creating Full-
Motion Video
with Flash

Flash isn’t just a vector graphics tool for the Web — using
Flash, you can create amazing video effects for your home

videos or professional productions. This chapter explains how
to use digital video with Flash. It also shows you how to export
high-quality material from Flash to use in your video-editing
applications.

High-Quality Video
Output from Flash

While Flash is primarily used to create interactive animations
and presentations on the Web, you can also generate high-
quality output for other media uses. Macromedia began as a
company called MacroMind, specializing in frame-by-frame
video animation tools for desktop computers. Their flagship
product, VideoWorks, eventually became Director, which was
the first widely used Macromedia authoring product. Like
Director, Flash also has some “hidden” video animation capa-
bilities. You can use Flash to create spinning logos for your
own corporate, creative, or home videos. Or, you could export
those shape morphs — so difficult to create elsewhere — to
layer over other video content. As we have seen in the previ-
ous chapter, Flash can output in QuickTime multimedia files.
Flash can also generate numbered still sequences for use in
other video-editing applications.

In previous Mac versions of Flash, 100 percent video-based
(a.k.a. raster-based) QuickTime (QT) files could be directly
rendered via the Export Movie command. Macromedia has

3636C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

In the beginning:
A history of digital
video

Preparing Flash
movies for video
output

Using Flash image
sequences in video
applications

✦ ✦ ✦ ✦

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1013

1014 Part VII ✦ Using Flash with Other Programs

added a more robust solution — based on QuickTime 4 — that exports Flash mate-
rial directly to a Flash track for use in conjunction with video and audio tracks from
other sources. This is wonderful if you want to create QTs for QuickTime 4-enabled
applications. At the time of this writing, most Mac and PC applications that use the
QuickTime architecture — such as Adobe Premiere and Adobe After Effects — will
import QuickTime Flash movies. Some DV-only NLE (nonlinear editing) software,
such as Digital Origin EditDV, will not allow you to import QuickTime Flash movies.
For the best video results, you will want to export still image sequences from Flash
instead of using QuickTime Flash files, or export traditional QuickTime Video files
(available only on the Macintosh version of Flash) or .AVI files (available only on
the PC version of Flash).

Because the export process for sequences uses generic vector or raster formats,
you lose all interactivity that you have created in Flash. But that’s perfectly fine
because we’re transferring our Flash movie to a linear viewing environment like
video — we’re simply making something to watch on a television or on a computer
monitor without any involvement from the audience.

In the near future, it’s possible that animated material intended for higher band-
width media such as television or film can be created and generated from Flash.
Flash artwork is completely scalable and flexible for just about any media use.
Combined with the QuickTime architecture, Flash artwork can be output to DV
tape or motion picture film. If you think your project looks good in Flash, you
should be able to repurpose that hard work into another format very easily.

A Quick Video Primer
If you’re a neophyte to digital video, then you need to know some basic terms and
procedures involved with digital video. The following section will be useful if you’ve
never used digital video or used it without really knowing what you were doing.

A brief history of digital video
In the past, digital video on the desktop computer was almost impossible. It required
expensive hardware such as superfast processors, huge hard drives, video-capture
boards, and professional-quality video decks and cameras. Beginning at $15,000, such
systems were out of reach for most users. But like most technology after it has been
around for a while, digital video equipment has become much more affordable for the
average user. Although digital video still requires fast and efficient computers to work
well, it isn’t nearly as expensive anymore. You can get 30GB hard drives for under
$500! Since the advent of the DV (Digital Video) format (a.k.a. DVCAM or miniDV),
consumer-level video cameras and decks are almost as good as their professional-
level counterparts.

Note

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1014

1015Chapter 36 ✦ Creating Full-Motion Video with Flash

The need for space
Why does digital video require so many resources? To begin with, digital video is
entirely raster-based. This means that, unlike Flash and other vector file formats,
each frame of digital video requires that almost every pixel on the screen is remem-
bered and stored. Vector formats, on the other hand, use mathematical descrip-
tions of objects on the screen and compute their movement very efficiently. The
resolution of an average television set is roughly equivalent to a 640 ×480 resolution
at 24-bit color depth on your computer monitor. Mathematically speaking, one
frame of digital video at this resolution is nearly 1MB!

640 × 480 × 3* = 921,600 bytes = 900KB = 0.88MB

If that isn’t bad enough, consider that 1 second of video contains 30 frames. That’s
26MB for just 1 second of video! Only the fastest systems and hard drives on the
market could deliver such performance. One solution to this performance bottle-
neck was to compress the data. Thus, most digital video now employs some form
of compression (for storage) and decompression (for playback). The short form of
this expression is codec (compression and decompression). You may have already
heard of many codecs in use today, but what you probably don’t know is that there
are three kinds of codecs: software, hardware, and hybrid.

Cinepak, Indeo, RealVideo, and Sorenson are all software-based codecs, meaning
that the computer processor has to decompress each frame of compressed video.
These differ from hardware-based codecs, such as MJPEG (Motion JPEG, based on
the Joint Photographic Experts Group compression scheme), which need video-
capture cards to compress and decompress each frame of video.

The latest breed of codecs today are hybrids, both software and hardware based,
such as the MPEG (Moving Picture Experts Group) and DV codecs. MPEG currently
has two versions, MPEG-1 and MPEG-2. Originally, MPEG-1 and MPEG-2 video
needed special hardware to playback, but as computer processors got faster, soft-
ware-based players could handle the decompression tasks. Today, MPEG-2 is stan-
dard for DVD.

DVD, or digital versatile/video disc, is a new storage medium that can handle fea-
ture-length movies in a snap. DVD should not be confused with DV. DV refers to true
Digital Video, in which the source video originates as binary (zeros and ones) data.
Furthermore, the general term digital video should not be confused with DV. Digital
video usually refers to the any video that has been stored as binary data, although
it most likely originated from an analog source such as a regular VHS or BetaCam
video camera. DV refers to video that originated from a digital (a.k.a. binary) source
and that remains digital through any number of edits on a digital system.

*Each byte has 8 bits. Therefore, 24 bits is equivalent to 3 bytes.

Note

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1015

1016 Part VII ✦ Using Flash with Other Programs

With the current implementation of DV, using IEEE-1394 (a.k.a. FireWire or iLink)
technology, video is transferred from digital tape to your computer hard drive with
virtually no loss of quality. The DV footage is not recompressed unless the image in
the footage is changed during editing by adding effects or transitions. But like any
digital video, DV still requires a lot of hard drive space — about 2GB for every
9 minutes.

Most operating systems have a maximum file size limit of 2GB. This means that
you cannot have more than nine minutes of DV-compressed footage in one
QuickTime or .AVI file. However, you can string many movies together during play-
back for continuous recording. New versions of the Mac OS (version 9.0.4 or
higher) and of the Windows OS support files that are larger than 2GB. Even so,
some applications may not be capable of using these larger files unless they’ve
been updated to do so.

Codec, frame size, and frame rate: The keys to manageable video
Before you begin any digital video project you should have a clear understanding of
codecs. Most software-based codecs are intended for computer playback and distri-
bution, while hardware-based codecs are intended for capturing and editing origi-
nal footage to be used for television broadcast or feature films. You can repurpose
hardware-based codec video by compressing it with a software-based codec. Most
video developers take high-quality video and shrink it, in both frame and file size, to
fit onto multimedia CD-ROMs or the Web.

Three variables can be applied to digital video to make it more manageable for most
consumer computer systems: frame size, frame rate, and compression. Developers
often use all three variables to shrink huge 9GB video projects down to 3 to 5MB,
which may lead to undesirable results.

First, let’s talk about frame size. Although most professional video uses a 640 ×480 or
greater frame size, you may have noticed that most video on multimedia CD-ROMs
only takes up a quarter or less of your entire computer monitor. Most video on the
Web or CD-ROMs is rendered at 320 ×240 resolution, half the resolution of broadcast
video. Actually, this is only slightly less than the horizontal-line resolution of your
VHS recordings.

What about frame rate? You may have also noticed that video on multimedia
CD-ROMs often looks a little jerky or choppy. Although this may be due to a slow
processor, it’s more likely that — in order to cut the file size — the frame rate of
the video was reduced. It’s not uncommon to find CD-ROM frame rates as low as
12 or 15 fps (frames per second) — about half of the original frame rate of broad-
cast video. This slower frame rate is also the default frame rate of a new Flash
movie, to ensure consistent playback on slower machines. Despite the drop in
video quality, the lower frame rates result in much smaller file sizes with fewer
frames for the processor to play within each second, which delivers better
CD-ROM performance.

Note

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1016

1017Chapter 36 ✦ Creating Full-Motion Video with Flash

Finally, how does compression affect video? You’ve probably noticed that Web and
multimedia CD-ROM video is often blocky looking. This is due to the software-based
compression that has been used on the video. Codecs look for areas of the frame
that stay consistent over many frames, and then log those areas and drop them
from subsequent frames. The result is that no unnecessary repetition of data exists
that needs to be continually decompressed. But, depending on the level of com-
pression used, the properties of the codec itself, and the settings used in running
that codec, the video varies in quality.

Keeping with the trend of better and faster, digital video continues to improve dra-
matically. This is well illustrated by the fact that many popular Web sites, such as
Apple’s QuickTime Web site (www.apple.com/quicktime), now enables visitors to
download larger, higher-quality videos (upwards of 15MB) for playback on newer,
faster systems.

Playback bottlenecks
Digital video needs to be kept small for two reasons: storage and playback. So far,
we have largely discussed storage issues. But playback (or transfer rate) further
complicates the creation of digital video. Despite the relatively large capacity of
CD-ROMs (650MB), most CD-ROM readers have limited transfer rates of about
600KB/second. It’s important to note that each second of video cannot exceed the
transfer rate, otherwise the video will drop frames to keep up with the audio. So if
the video is distributed via CD-ROM, this factor results in serious limitations.

Let’s look at some of the math involved under ideal (choppy) playback conditions:
If you use 15 fps for compressed video, you are limited to a maximum of roughly
40KB per frame. (Remember, though, that the playback stream usually includes an
audio track as well, which means that less than 40KB is available for the video com-
ponent of each individual frame.)

For more information on audio formatting and compression, see Chapter 14,
“Understanding Sound for Flash,” and Chapter 16, “Optimizing Flash Sound for
Export.”

Unfortunately, the Web still affords less than ideal playback conditions for video.
On the Web, transfer rates can be as slow as 500 bytes/second. On average, a 56KB
modem downloads around 4KB/second. The ideal Web video streams to the user
while loading the page. If you intend to stream video quickly, you have to keep this
very small transfer rate in mind. Large videos simply will not stream! This is why
most Web sites offer larger videos as a download file. But you do have an alternative.
Later in this section, you can learn how to extract a minimal number of frames in
order to simulate digital video motion with Flash, yet keep your Flash files streaming
quickly. As modem technologies get faster, though, we’ll most likely see bigger and
better video delivered across the Web. The ADSL (Asymmetrical Digital Subscriber
Line) modem was developed with the MPEG-1 and -2 standards in mind.

Cross-
Reference

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1017

1018 Part VII ✦ Using Flash with Other Programs

Adjusting Flash Movies for Video Output
By default, Flash uses a frame rate of 12 fps for all new movies. Unless you have
changed this setting with the Modify ➪ Movie command (Command+M or Ctrl+M),
this is the setting for any Flash movie you have created so far. As mentioned earlier
in this chapter, broadcast (NTSC) video needs 30 fps (29.97 fps to be exact) for
motion to be smooth and fluid. It may be necessary for you to add more blank
frames between each of your tweened keyframes to accommodate a faster frame
rate. Your 5-second intro to your Web site may have been possible with 70 or fewer
frames, but now you need 300 frames for the same amount of time in full-motion
video. Flash doesn’t support interlacing (or field-ordering) with any export method
(see the “What Is Interlacing?” sidebar for an explanation of interlacing). As a result,
you need twice the number of frames (double the frame rate) used for every second
of NTSC video — 59.94 fps to be exact — to properly render full-motion video from
Flash. It’s easier to use 60 fps in Flash and then conform the rendered sequence to
59.94 fps in the video-editing application.

If you are using the PAL or SECAM video systems, which are video systems used
outside of North America, then you need to use different frame sizes and frame
rates to accurately render Flash content. Use the same methods described here,
but adjust any values to fit within PAL or SECAM specifications.

If possible, restrict your Flash movie to one scene for video-editing purposes. Flash
exports all scenes within a Flash movie into a sequence or QT/AVI movie, which
may complicate the editing process later. It’s easier to make more Flash movies and
render them independent of each other.

Frames stored in Movie Clips do not export with sequences. Make sure that you
have either removed any Movie Clip symbols or that you have replaced them with
the actual frames contained within the Movie Clip.

To replace a Movie Clip symbol with the actual frames contained within it:

1. Open the Movie Clip in the library, select the frames in the timeline.

2. Copy the frames with the Copy Frames command (Command+Option+C or
Ctrl+Alt+C) in the Edit menu.

3. Go back to the Scene and paste the frames with the Paste Frames command
(Command+Option+V or Ctrl+Alt+V). Paste the frames on their own layer, so
that they won’t conflict with any tweens or settings in other layers.

Remember that, unlike regular Flash movies, the exported sequence will not have
any interactivity. The sequence is simply a collection of still images that will be
compiled later in your video-editing application. (So don’t mistakenly overwrite or
delete your original Flash movie!)

Caution

Caution

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1018

1019Chapter 36 ✦ Creating Full-Motion Video with Flash

You may also need to adjust your Flash movie’s pixel width and height. Depending
on the type of video-editing software you are using, this setting needs to be 640 ×480,
720 ×534, or something else. Again, use the Modify ➪ Movie command to adjust the
size of your Flash movie. You can notice that adjusting pixel sizes of the Flash movie
doesn’t have the same effect as changing pixel heights or widths of raster-based
images. Usually, adjusting pixel sizes will distort or change the shape of elements.
With Flash, the movie’s pixel size is independent of the pixel sizes of any elements
it may contain. You’re simply adding or subtracting space to the movie area. If you
intend to bring the sequence into another video-editing application such as Premiere
and you are outputting with the DV format, a movie size of 720 ×534 should be used.
Why? The DV format uses nonsquare pixels delivering the same 4:3 aspect ratio
with 720 ×480 as other video formats do with only 640 ×480 square pixels. By using
720 ×534 movie sizes, the frame can be stretched to fit a 720 ×480 DV workspace with-
out losing any resolution quality. It’s better to adjust the size before you export any
material intended for broadcast video delivery (or for transfer to any NTSC recording
media), especially with raster formats. Not only does this ensure optimal quality, it
could easily lessen the time during video rendering in other applications.

The movie sizes just listed should work equally well for MJPEG video hardware
and DV hardware. If you use these baseline settings, you can then accommodate
either MJPEG or DV specifications in your video-editing application.

Not only do you need to have the proper frame size for high-quality video output,
but you also need to be aware of overscanning. TV sets overscan video images,
which means that information near the edges of the frame may be cropped and not
visible. Because the amount of overscan is inconsistent from TV to TV, some gen-
eral guidelines have been developed to make sure vital information in the frame is
not lost. The crux of the guidelines is simple: Don’t put anything important (such
as text) near the edges of the frame. Video has two safe zones: title-safe and action-
safe. To see these zones on a sample movie in Flash, refer to Figure 36-1.

The action-safe zone is approximately 90 percent of the 720 ×534 (or 640 ×480)
frame size we’re using in Flash, which calculates into 648 ×480 (or 576 ×432). All of
your Flash artwork should be contained with the limits of the action-safe zone. The
title-safe zone is about 80 percent of the total frame size. For a 720 ×534 frame size,
any text on the Flash stage should fall within the borders of a 576 ×427 centered
frame. With a 640 ×480 frame size, this centered frame size would be 512 ×384.

Note

What Is Interlacing?

Most computer monitors are non-interlaced, which means that each “frame” of video is fully
displayed with each screen refresh. Most TV sets, though, are interlaced displays, which
means that each frame of video consists of two fields, one upper and one lower, and each
screen refresh shows one field then the other. Therefore, each second of video contains 60
fields, or 30 frames. Because Flash doesn’t export field-ordered sequences, you have to com-
pensate the lack of individual fields by using two Flash frames for every regular frame of video.

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1019

1020 Part VII ✦ Using Flash with Other Programs

Figure 36-1: While designing for broadcast content in Flash, you
should always be aware of the safe-zone boundaries for NTSC
video playback.

Finally, you may need to adjust the colors and artwork you used in your Flash
movie. NTSC video, while technically 24-bit, doesn’t display some colors very
well. In general, bright and saturated RGB colors tend to bleed on regular TV
sets. Here are some guidelines for using broadcast (and WebTV)-safe color:

✦ Avoid one-pixel-wide horizontal lines. Because NTSC is interlaced, this line
flickers constantly. If you need to use thin lines, try blurring a one-pixel
line or simply never use anything less than a two-pixel stroke width.

✦ Do not use very fine textures as they may flicker and bleed at the edges.
Because most NTSC monitors have low-quality resolutions, the fine details
are lost anyway.

✦ Avoid using any color that uses any color channel’s maximum intensity. Use a
NTSC color filter on any bitmap art, such as the NTSC Colors filter in Adobe
Photoshop. Full red (R: 255, G: 000, B: 000) displays horribly on TV sets.
Replace a full red with R: 181, G: 000, B: 000. Pure white backgrounds should
also be avoided and replaced with R: 235, G: 235, B: 235. Like red, pure white
can cause annoying screen flicker, especially if high contrast objects are placed
against the white. As a rule of thumb, keep your RGB values within the 16 to
235 range, instead of 0 to 255. Although Photoshop’s NTSC Colors filter actu-
ally allows certain 255 values to be used, you should only use these values if
they do not occupy large solid areas in the Flash movie.

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1020

1021Chapter 36 ✦ Creating Full-Motion Video with Flash

✦ Use the NTSC & Web Safe color set (ntsc_web_179.act file) on the Flash 5 Bible
CD-ROM (see Chapter 6, “Applying Color,” for more information on importing or
switching color sets). Of the 216 Web-safe color palettes, only 179 of them are
NTSC/WebTV safe. NTSC TV sets are capable of displaying more colors than
that, but if you’re used to working with Web color palettes, then you may find
this optimized palette handy. There’s another color set file, ntsc_213_colors.act
on the CD-ROM that you can use if you’re just taking Flash content to video,
which has 213 NTSC-safe colors, converted from the 216 Web-safe colors.
Because 35 colors of this set are outside of the Web-safe colors, you should
not use this palette for Web and broadcast work.

✦ If you are using video-editing software that allows both color and levels cor-
rections on imported clips, then you might avoid time-consuming adjustments
to your Flash movie. After you have generated a Flash sequence and imported
the sequence into your video-editing application, restrict the gamut of the
sequence clip using the values in the preceding tips.

In After Effects, use the Broadcast Colors filter to perform NTSC color adjustments
on imported sequences or movies. This filter can adjust either luminance or satu-
ration values to bring out-of-gamut colors into the NTSC color gamut. Use caution,
however, as reducing the luminance may cause artifacts from MJPEG or DV com-
pression to become more obvious. Reducing saturation is preferred method for
using the Broadcast Colors.

Refer to Table 36-1 to see how Photoshop’s NTSC Colors filter remaps the saturated
values of the Web-safe color palette.

Table 36-1
NTSC Color Conversion Chart

Original Web Original RGB Converted RGB
HEX Value Web Value NTSC Value

R G B R G B

FF0033 255 000 051 227 000 045

CC6699 204 051 153 204 102 153

FF00FF 255 000 255 210 000 210

FF00CC 255 000 204 219 000 175

FF0099 255 000 153 226 000 136

FF0066 255 000 102 230 000 092

CC00FF 204 000 255 199 000 248

00CCCC 000 204 204 000 170 170

00FFFF 000 255 255 000 170 170

Continued

Tip

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1021

1022 Part VII ✦ Using Flash with Other Programs

Table 36-1 (continued)

Original Web Original RGB Converted RGB
HEX Value Web Value NTSC Value

R G B R G B

33FFFF 051 255 255 045 225 225

66FFFF 102 255 255 101 253 253

00CCFF 000 204 255 000 160 201

0099FF 000 153 255 000 147 245

00FFCC 000 255 204 000 178 143

33FFCC 051 255 204 047 237 190

00FF99 000 255 153 000 188 113

33FF99 051 255 153 050 249 150

00CC66 000 204 102 000 193 096

00FF00 000 255 000 000 210 000

00FF33 000 255 051 000 210 042

00FF66 000 255 102 000 198 079

33FF00 051 255 000 047 234 000

66FF00 102 255 000 088 220 000

99FF00 153 255 000 122 203 000

99CC00 153 204 000 142 190 000

FFFF66 255 255 102 252 252 101

CCCC00 204 204 000 170 170 000

CCFF00 204 255 000 148 185 000

FFCC00 255 204 000 191 153 000

CC9900 204 153 000 197 148 000

FF9900 255 153 000 216 130 000

FF6600 255 102 000 248 099 000

FF0000 255 000 000 181 000 000

CC0000 204 000 000 181 000 000

You can find Flash movies (.FLA files) containing grid layers for the safe-zones of
NTSC video on the Flash 5 Bible CD-ROM.

On the
CD-ROM

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1022

1023Chapter 36 ✦ Creating Full-Motion Video with Flash

Creating Sequences from Flash Movies
A sequence is a series of still images that simulate full-motion video when played
back continuously. Think of a sequence as a regular QuickTime or AVI broken down
into individual frames. Another analogy would be that of a flipbook made of individ-
ual sketches that animate when you thumb through the pages quickly. Flash can
export a scene or movie as a series of still images as well, with quite a bit of flexibility.

Because Flash is vector-based, it supports all the major vector formats to use in
other applications: EPS 3.0, Illustrator, and .DXF formats. On the PC version of
Flash, you can also export metafile sequences in the .WMF and .EMF formats. Most
likely, all of these vector formats will retain the scalable quality that Flash offers for
the Web; that is, you can shrink or expand the size of vector formats, displaying
equal richness and quality at all sizes. Most vector formats can embed raster con-
tent, and any raster content will always have a finite resolution capacity. You will
notice degradation on any raster elements if you scale the entire vector graphic
beyond its original fixed pixel size.

You can also export a still sequence in raster-based formats such as .PICT (Mac
only), .BMP (PC only), .GIF, .JPEG, or .PNG. We can look at the benefits of each for-
mat and the particular uses each can have, but first, we should look at how to the
process of exporting individual frames works in Flash.

Export process in Flash
After you have opened your Flash movie, make sure that your movie falls within the
guidelines described in the last section. All of these settings are critical for flawless
video playback: 60 frames per second, 640 ×480 (or greater) movie dimensions, lim-
itations of scenes and Movie Clips, and color gamut considerations. When you’re all
ready to go, the actual export process is quite simple.

1. Select File ➪ Export Movie (see Figure 36-2).

2. Choose or create the folder in which you wish to store the sequence.

3. Choose the type of file you want Flash to create.

4. Specify a filename and click Save.

For the highest quality video rendering, use a vector file format for export. The next
section details each file type and its particular uses.

Uses of each sequence format
Flash can export in a variety of file formats, and each one has a particular purpose.
While vector formats allow the most scalability, some Flash artwork does not dis-
play properly in them. Raster formats usually maintain the highest fidelity to Flash
artwork, but their file sizes can be rather large.

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1023

1024 Part VII ✦ Using Flash with Other Programs

Figure 36-2: When you export a Flash movie as a sequence, Flash generates a still
image (that is, one file) for each frame in the Flash movie.

Vector sequence formats
Use a vector format type for your sequences when you want the highest quality re-
rendering in applications such as Adobe After Effects or Premiere (see Table 36-2 for
a list of formats supported in Flash). Flash exports vector sequences very quickly,
although the sequence files themselves may take longer to re-render in your video-
editing application than raster formats. Once you see the smooth edges of vector-
rendered sequences, though, you can see that it is worth the wait. Vector formats
automatically matte out the Flash background color and make superimposing Flash
material supereasy.

Mask layers (and the artwork that they mask) will not export properly in EPS
sequences. The artwork in the mask layer will show up in the exported EPS file(s).
If you use mask layers in your Flash movie, export raster image sequences instead.

Table 36-2
Flash-Supported Vector Sequence Formats

Flash Export File Application
Format Extension Support Comments

EPS 3.0; .EPS AE, PR Universal vector format recognized
Encapsulated by most applications. However, any
PostScript gradients created in Flash will not

export well with this format.

Illustrator; .AI AE, PR Proprietary file format mainly used
Adobe by Adobe applications. However, any
Illustrator gradients created in Flash will not

export well with this format.

Caution

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1024

1025Chapter 36 ✦ Creating Full-Motion Video with Flash

Flash Export File Application
Format Extension Support Comments

DXF; Drawing .DXF 3S AutoCAD 2D/3D file format.
eXchange
Format

WMF/EMF; .WMF, .EMF PR (WMF only) There’s no reason to use these formats
Windows over the other vector formats. While
Meta File/ some non-Microsoft applications
Extended support them, they aren’t widely used
Meta File on either Mac or PC systems.

AE = Adobe After Effects; PR = Adobe Premiere; 3S = Kinetix 3D Studio MAX

Raster formats
All raster formats can export at variable pixel widths, heights, and resolutions. As
long as your Flash movie is in the proper aspect ratio for video (usually 4:3), you
can size up your Flash movie on export (see Table 36-3 for a list of formats supported
in Flash). This will save time during the re-rendering process in the video-editing
application. Not all file formats support alpha channels, which are necessary if you
intend to superimpose exported Flash material on top of other video material. Refer
to Chapter 17, “Understanding Actions and Event Handlers,” for more detailed infor-
mation on the options associated with each raster file format.

Table 36-3
Flash-Supported Raster Sequence Formats

Flash Export File Application
Format Extension Support Comments

PICT (Mac only); .PCT AE, PR, QT, 3S Can be used with many PC and
Picture all Mac applications. Variable bit-

depths and compression settings
with support of alpha channels.
Supports lossless compression.

BMP (PC only); .BMP AE, PR, QT, 3S Can be used with all PC and
Windows Bitmap some Mac applications. Variable

bit-depths and compression
settings with support of alpha
channels. Supports lossless
compression.

Continued

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1025

1026 Part VII ✦ Using Flash with Other Programs

Table 36-3

Flash Export File Application
Format Extension Support Comments

GIF; Graphics .GIF AE, PR, QT, 3S Limited to a 256-color palette.
Interchange File Not recommended for full-

motion NTSC video.

JPEG; Joint .JPG AE, PR, QT, 3S Only supports 24-bit RGB color.
Photo-graphic No alpha channel support.
Experts Group Recommended for full-motion

NTSC video, but this format does
throw out color information due
to its lossy compression method.

PNG; Portable .PNG AE, QT Supports variable bit-depth and
Network Graphic compression settings with alpha

channels. Lossless compression
schemes make it an ideal
candidate for NTSC video.

AE = Adobe After Effects; PR = Adobe Premiere; QT = Apple QuickTime Player Pro; 3S = Kinetix 3D Studio Max

Creating .AVI Files on the PC
If you want a quick-and-dirty 100-percent raster-based video version of your Flash
movie, and you use the PC version of Flash, then you can export your Flash movie
as a Video for Windows (.AVI) file. If you want the best video quality for output to
videotape, you should not use this method for rendering video. Flash doesn’t sup-
port interlaced video and won’t create the smoothest possible video content
directly. This export file format is used primarily for digital video intended for
computer playback, not NTSC playback.

You can render a Flash movie at twice the frame rate of NTSC video (29.97 ×2 =
59.94 fps) using the necessary codec for your video hardware. If you want to play
the .AVI through your IEEE-1394 (a.k.a. FireWire, iLink) hardware, you need to
resize the 720 ×534 AVI movie to 720 ×480 in a video-editing application or by
using the Dimensions property of the Export AVI Settings dialog. Do not change
the Flash movie properties via Modify ➪ Movie! DV uses nonsquare pixels, and
shapes will be stretched if you use a 720 ×480 movie size in Flash.

Choose Export Movie from the File menu. Select a folder (or create one) to store the
.AVI file, type the filename, and click Save. You will then see the Export Windows AVI
dialog box with the following options (see Figure 36-3).

Note

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1026

1027Chapter 36 ✦ Creating Full-Motion Video with Flash

Figure 36-3: Adjust the values of the
Windows AVI settings to accommodate
your playback needs.

Dimensions
This property enables you to scale your .AVI movie. If you wish to scale the movie’s
width separate from the height, uncheck the Maintain Aspect Ratio box for this
property. This may be necessary if you need to accommodate nonsquare pixel for-
mats such as DV or D1.

Video format
The drop-down menu associated with this property enables you to choose a bit-
depth for the .AVI movie. For serious video work, you’ll want to choose 24-bit color
or greater.

✦ 8-bit color: Limits the rendered movie to 256 colors that are determined on
the fly by Flash.

✦ 16-bit color: Limits the movie to 65,536 colors; also known as High Color in
Windows or Thousands of Colors on the Mac.

✦ 24-bit color: Enables the movie to use full RGB color (16.7 million colors); also
known as True Color on the PC or Millions of Colors on the Mac.

✦ 32-bit color w/ alpha: Enables the movie to use full RGB color and store an
alpha channel for compositing effects. Not all video codecs can store alpha
channel information.

✦ Compress video: If this option is checked, you are given the option to select a
video compressor (codec) after you click OK on the Export Windows AVI dia-
log. If you do not check this box, Flash generates uncompressed video frames,
which can take over 1MB of file space per frame. In general, you do not want
to use uncompressed video, as it takes very long to re-render uncompressed
video into the hardware codec used by your video setup.

✦ Smooth: Using the smooth option antialiases the Flash graphics. This adds
more time to the export process, but your .AVI file looks much better. If you
just want a rough .AVI movie, then uncheck Smooth for faster exporting.

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1027

1028 Part VII ✦ Using Flash with Other Programs

Sound format
This drop-down list enables you to specify the audio sampling settings. If you didn’t
use any audio in your Flash movie, then choose Disable. For a description of each
of the sampling rates and bit-depths, please see Chapter 10, “Drawing in Flash,” and
Chapter 12, “Using Bitmaps and Other Media with Flash.”

Video compression
When you’ve chosen the options you need, click OK. If you specified Compress
Video, you’ll see the dialog shown in Figure 36-4:

Figure 36-4: Choose the proper video codec for
your video output hardware, or select a software-
based codec for computer playback and distribution.

In the Video Compression dialog, you can select a software- or hardware-based
codec to use for the .AVI movie. By default, Flash chooses Full Frames (Uncom-
pressed). This option is the same as deselecting Compress Video, which forces Flash
to render full-frame video. Because you probably want manageable file sizes, choose
the codec you need to use for your video hardware. If you want to simply review
your Flash work as an .AVI movie, use Cinepak or Indeo codecs. Adjust the codec
settings as necessary for your needs. Smaller files and lower quality will result from
using compression qualities less than 100 percent, the use of keyframes, and data-
rate limiting. For high-quality rendering using hardware-based codecs, make sure
that the hardware codec (such as MJPEG or DV) is set to 100 percent compression
quality with no keyframes or data-rate limiting. Click OK.

Flash then exports an .AVI movie file to the folder you specified earlier. Depending
on the length of your Flash movie and the video codec used, the export process
could take less than a minute or many hours. Unfortunately, Flash doesn’t give you
an estimated time for completion like Adobe Premiere or After Effects does. When
Flash has finished exporting the file, you can view the video with Windows Media
Player or with the software that your video hardware uses.

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1028

1029Chapter 36 ✦ Creating Full-Motion Video with Flash

Importing Sequences into Video Applications
Now that you’ve created a sequence or QuickTime movie with Flash’s Export or Pub-
lish command, you can bring the newly generated material into most video-editing
applications. Not all video-editing applications will accept still image sequences and
automatically treat them as one movie clip like Adobe Premiere or After Effects do.
Just about any video application will accept QuickTime movies. In this section, you
see how to prepare either a raster QuickTime movie or an image sequence for video
output.

Adobe Premiere 5.1
Adobe Premiere is one of the most popular video-editing applications available for
desktop computers. Just about every major video-capture card comes with Adobe
Premiere (or Premiere LE), and it offers a very intuitive interface for editing video.
While not as advanced as Adobe After Effects for visual effects or compositing, it
can be used for a variety of tasks, from CD-ROM video to animated GIFs to DV-ready
output.

This section assumes that you have a working knowledge of Premiere 5.1 and that
you know how to set up a project with optimized settings for your video hardware.
If you haven’t used Premiere, refer to the Premiere section of “Extracting frames
from digital video clips” in Chapter 34.

To import a numbered sequence of still images generated from Flash, double-click in
the Project window or choose File ➪ Import ➪ File (Ctrl+I/Command+I). Browse to the
folder that contains the image sequence and select the first image in the sequence.
Check the box for Numbered Stills underneath the filename field. This option tells
Premiere to automatically look for consecutively numbered filenames and treat the
group of them as one Movie Clip.

Click OK, and Premiere adds the image sequence to the Project window as a Movie
Clip. As shown in Figure 36-5, it displays the first frame of the clip as an icon, and
includes the duration of the clip and its pixel size.

Figure 36-5: The Project window
displays useful information about the
clip, such as duration and frame size.

Note

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1029

1030 Part VII ✦ Using Flash with Other Programs

If you followed the guidelines in the “Adjusting Flash Movies for Video Output “ sec-
tion, then you’ve already anticipated a 59.94 fps playback speed. Because NTSC
video uses 29.97, we need to adjust the speed of the imported sequence. Select the
clip in the Project window, and choose Clip ➪ Speed (Command+Shift+R or Ctrl+
Shift+R). Enter 200 percent for the New Rate setting, as shown in Figure 36-6.

Figure 36-6: Use the New Rate setting to adjust the
speed at which Premiere plays the clip. Because Flash
does not create interlaced frames, you need to mimic
the effect of interlacing by doubling the number of
frames in the Flash movie.

If you are using the DV format, you should have made the image sequence from a
720 ×534-sized Flash movie. Premiere automatically stretches the imported
sequence (now a clip) to fill the 720 ×480 frame size of DV. Because the DV for-
mat uses nonsquare pixels, elements in the clip may appear distorted along the
horizontal axis. Circles will look like ovals, and squares will look like rectangles.
This appearance is normal on computer monitors, which use square pixels. When
you play your movie back to tape through the FireWire, i.Link, or IEEE-1394 con-
nection, this distortion will no longer be noticeable.

Drag the imported sequence from the Project window to the timeline window.
Place the clip at the desired insertion point. If you intend to superimpose the
image sequence over another video track, place the image sequence clip on
the Video 2 track.

Adobe After Effects 4.1
As mentioned in the previous chapter, After Effects is the Photoshop equivalent to
video production. After Effects works with moving images in the same way that
Photoshop works with still images. Although After Effects is a complex program
with innumerable settings, you can use it for simple tasks as well.

Using After Effects, you can achieve the highest quality video from your Flash-
generated image sequence. That’s because After Effects offers subtle controls
for video clip and composition settings that deliver crisp, interlaced, frame-
accurate video.

After Effects can continuously rasterize any vector content — meaning that After
Effects can re-render each vector frame into a raster frame. Most video applica-
tions, such as Premiere, rasterize the first frame of a vector image and continue
to reuse that first rasterized version for the entire render process.

Note

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1030

1031Chapter 36 ✦ Creating Full-Motion Video with Flash

What does that mean? Simply put, if you have a small vector circle in the first frame
of a project that grows larger in subsequent frames, then the circle appears very
jagged at the larger sizes. Although both Premiere and After Effects render a Flash-
generated image sequence at the same quality, please note that if you want to do
special effects with just one frame (or still) from a Flash movie (not an entire image
sequence), then After Effects does a much better job. Also note that this can be
confusing because there are two potential uses of material imported from Flash into
either After Effects or Premiere. These are either single frame imports or multi-
frame imports. The big point is this: After Effects does a consistent high-quality job
with both types, whereas Premiere only handles the latter type (multiframe) well.

While .EPS and .AI image sequences offer the most scalability for digital video pro-
duction, Flash poorly translates their gradients into common PostScript-defined col-
ors. As a result, gradients appear as solid color fills in After Effects. If you are using
gradients in your Flash artwork, then export the movie as a raster sequence. After
Effects can import a .PNG sequence, which has superior compression to .JPEG.

Please refer to the earlier discussion of After Effects in this chapter, if you are not
familiar with its interface and controls.

To import a sequence into After Effects:

1. Open an existing After Effects project file (.AEP) or create a new project
(Command+Option+N or Ctrl+Alt+N).

2. Double-click in the Project window to import the image sequence. In the
Open dialog, browse to the folder containing the image sequence. Select
the first file of the sequence (for example, ball_0001.png) and check the
Sequence option (such as PNG Sequence, JPEG Sequence, EPS Sequence,
and so forth). Click Open.

3. If After Effects detects an alpha channel in the imported file(s), then an
Interpret Footage dialog opens, as shown in Figure 36-7. You must tell After
Effects how to treat the alpha channel. For any image or image sequence
with an alpha channel imported from Flash, use the Treat As Straight
(Unmatted) setting.

Figure 36-7: After Effects automatically detects
the presence of an alpha channel in imported file(s).
For alpha channels that Flash creates, use the Treat
As Straight (Unmatted) setting.

Caution

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1031

1032 Part VII ✦ Using Flash with Other Programs

4. Select the imported sequence (now shown as one footage item) in the Project
window and choose File ➪ Interpret Footage ➪ Main. This time, the Interpret
Footage dialog (see Figure 36-8) displays the complete settings for the selec-
ted footage file. In the Frame Rate section, enter the correct frame rate in the
“Assume this frame rate” field. If you followed the guidelines given earlier in this
chapter, then you used a 59.94 fps for your Flash movie. Enter that value here.
Also, make sure Square Pixels is selected in the Pixel Aspect Ratio section.

Figure 36-8: In the complete Interpret Footage
dialog, you can set the frame rate and pixel aspect
ratio for the Flash image sequence.

5. Create a new composition via the Composition ➪ New Composition command
(Command+N or Ctrl+N). Depending on your video hardware, the settings for
a new composition will vary. For the Duration section, enter a value greater
than or equal to the length of the imported Flash sequence. See Figure 36-9 for
a DV-specific composition.

6. Drag the Flash sequence footage file from the Project window to the Time
Layout window.

You now have a Flash sequence ready to integrate with other video in After Effects.
See the After Effects section in “Extracting frames from digital video clips” in
Chapter 34 for more information on exporting image sequences from After Effects.
Use Render Settings and Output Module settings specific for your video hardware.

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1032

1033Chapter 36 ✦ Creating Full-Motion Video with Flash

Figure 36-9: Composition settings for DV-
format (for example, mini-DV, DVCAM) video

Summary
✦ Desktop digital video systems have become more affordable with the advent of

the DV format, used by miniDV and DVCAM camcorders and decks. Because
DV material is binary from start to finish, there is virtually no loss of video
quality during the editing process.

✦ Because Flash is designed for optimal playback on the Web, Flash movie prop-
erties (frame size, frame rate, and the number of total frames) need to be
adjusted to work with high-quality digital video.

✦ Flash can export high-quality raster-based .AVI and QuickTime movies. It
should be noted, however, that these movie files will not contain any Flash
interactivity or Flash tracks.

✦ NTSC television sets and WebTVs have color signal limitations. Avoid using
highly saturated colors and thin lines in Flash movies intended for interlaced
video delivery.

✦ Flash can create high-quality animations as an image sequence. An image
sequence is a series of numbered still images. Certain video-editing applica-
tions, such as Adobe Premiere and After Effects, can import raster and vector
sequences. These sequences can be composited with other video tracks and
output to videotape — which opens up a whole new realm of motion tech-
niques, all generated in Flash!

✦ ✦ ✦

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1033

3515-3 ch36.f.qc 1/18/01 5:13 PM Page 1034

Creating Cartoon
Animation with
Flash

Flash is a powerful tool capable of creating high-quality
cartoons much like those you might see on Nickelodeon,

Cartoon Network, and so on. This is due to Flash’s unique
drawing tools, file format, and scalability. By scalability, we
mean that a Flash cartoon can be scaled up to the size and
quality of the finest video or even film resolution cartoons.
Because the subject of creating broadcast cartoons can be
extremely complex (and could even fill a book of it’s own)
we focus on some fundamental techniques and tricks that
will start you on the way to becoming the next Tex Avery.

Working with Large File Sizes
Because Flash output is usually intended for the Web, Flash
file size is often a dominant concern. But when creating car-
toons for broadcast output, this concern is thrown to the
wind. In cartoon land, you create for digital video output via
QuickTime or .AVI and these file sizes can be huge. It’s com-
mon for such projects to expand into the gigabytes, so it’s
important to have the equipment to handle this kind of work.
This means large, fast hard drives and plenty of RAM. The
extensive use of bitmaps and full-fidelity 16-bit 44 kHz stereo
audio tracks means that Flash itself will require a great deal of
RAM. Your machine should have at least 128MB of RAM with
at least 90 MB available to Flash. Even with this configuration,
however, you may — like some nefarious cartoon character —
paint yourself into a corner and find that you need more RAM
in order to render (export raster video) your scene. In addi-
tion, the time required to perform a render can often exceed
45 minutes. This may cause you to think that the machine has

3737C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

An introduction to
cartoon animation

The importance
of the storyboard

Cartoon sound

Cartoon backgrounds
and scenery

Expressing motion
and emotion

Anticipation, weight,
and overlapping
actions

Walk cycles and
coloring tricks

Using Flash tweening
for cartoons

Lip-synching

Synching with music
and sound effects

Character animation

Drafts and
final output

✦ ✦ ✦ ✦

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1035

1036 Part VII ✦ Using Flash with Other Programs

crashed. . . . Sometimes it has, sometimes it has not. Sometimes, very annoying
results can happen. When rendering complex scenes that take a long, long time, it
may seem that all is proceeding just fine, but then Flash may hiccup and report that
there isn’t enough memory to finish. That’s when patience is required. Remember
that, although some amazing cartoon animations can be created in Flash, it was
engineered to create small, compact files for the Web; our cartoon use is pushing it
far beyond its calling. Keeping this in mind may save a brick from going through
your monitor.

You’ll spend many hours working on your animation, so back it up as much and as
often as you can! The project file is precious. Make a habit of keeping incremental
backups on various disks so that you won’t lose everything when disaster strikes
(it will). A good plan is to make a new copy on a different disk after each major
change, rotating through two or three different disks. This way if Flash eats your
project file, you can always go back to the version you saved an hour ago (which
should be on a different disk) without loosing much time.

The Storyboard
Let’s assume that you already have characters and a story (why else would you
want to create a cartoon show?) and that you want to build a cartoon based on
that small beginning. In this section, we touch on some of the tips that you need
to think about in the storyboard phase. Although it’s OK to play around, never start
a serious cartoon project without a storyboard. The storyboard is your roadmap,
your plan, your menu of things needed, your best friend when your project gets
complicated — without it, you are lost.

You’ll find a storyboard template on the CD-ROM, in the ch37 folder. It’s an EPS
(storyboardMAC.eps or storybPC.eps) template form that includes all the essen-
tials of a basic storyboard. Print it out as is, or import it into FreeHand, Illustrator,
or Flash, and modify it to suit your needs.

First, break up the story into workable cartoon scenes. In creating a broadcast car-
toon, we use the terminology a bit differently. Long before Flash, cartoonists used
the terminology of a scene to describe something quite different than a Flash Scene.
By scenes, we mean a cartoon scene, which is much like a movie or TV scene — not
a Flash Scene. Remember that cartoons are fast-paced adventures. Most cartoon
scenes last less than 30 seconds. A cartoon scene is usually a section of dialog or
action that tells a part of the story. Generally, a cartoon scene can stand-alone, but
it needs other scenes to complete the story. Because of the length of time required
for most cartoon scenes, it would become unruly if we were to rely solely upon

On the
CD-ROM

Caution

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1036

1037Chapter 37 ✦ Creating Cartoon Animation with Flash

Flash’s Scene function. You’d scroll through the timeline forever, just trying to
cover a 45-second scene. But as you’ll learn in this section, there’s still use for
the Flash Scene function.

After your cartoon scenes are established, break each of these scenes into shots.
A shot is a break in the camera focus. For example, a soap opera (they are famous
for this) will have a scene of dialog, but the camera will cut back and forth to who-
ever is talking at the time — which means that one scene may have many shots.
Although the art of cinematography is beyond the scope of this book, that is
what’s involved when deciding shots in a cartoon scene.

Never create an entire cartoon in one Flash project file! Even trying to load the huge
files created can create problems for Flash. Instead, use Flash’s Scene function for
shots. (This may seem confusing at first, but the utility of this method will become
clear as you work on your masterpiece.) Make a separate Flash file for each story-
board scene of your cartoon; then, within each of these Flash files, assign a Flash
Scene for each of the shots within a storyboard scene. Think of it this way; the Flash
project file is the Storyboard Scene, nested within that project file is the Flash Scene,
or shot. Although this may seem contrary to the way in which you usually work with
Flash, we are trying to reconcile the traditional terminology of cartoon animation
with the recent terminology of the Flash program. Besides, the creation of broadcast
cartoons isn’t an advertised use of Flash.

The Weber cartoon (QuickTime version included on the CD-ROM, in the ch37
folder) runs for 6 minutes and contains about 32 shots spread over 13 scenes. The
project files (scenes) alone are over 170MB. Loading one 170MB file into Flash is
flirting with disaster.

The single most important work you’ll do in your cartoon is not the drawing but the
voices of your characters; the voices are what make the character. Obtaining a voice
can be as simple as your speaking into a microphone or as complex as a highly paid
professional acting into a microphone. The key here is not the voice, but the emotion
put into it. The right mix of unique voice and emotion can be taken into a sound pro-
gram, such as Peak or Premiere, and tweaked with the proper plug-ins to render the
cartoon sound that you’re looking for. Voice effects can always be added digitally,
human emotion cannot. Some online voice resources are:

✦ www.voicecasting.com

✦ www.voice-choice.com

✦ www.voicetraxwest.com

Another important part of the cartoon is the use of sound effects. Try to imagine Tom
and Jerry or Road Runner without them. There’s nothing like a good CLANK, followed

On the
CD-ROM

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1037

1038 Part VII ✦ Using Flash with Other Programs

by the tweeting of birds, when the old anvil hits Wile E. Coyote’s head. Many good
sound effects collections are available on CD-ROM and online. These collections,
used primarily by radio stations, come on CD-ROM and can easily be imported into
the digital realm. One resource for such collections is www.radio-mall.com, which
has a range of effects at a broad range of prices; furthermore, most of their collec-
tions have Real Audio links, which means that you can audition them online.

Sometimes, though, you just can’t buy the sound you need. So, when you need that
special CLANK, it’s time to set up the microphone and start tossing anvils at unsus-
pecting heads. Really, though, it’s not difficult to setup your own little foley stage or
sound effects recording area. A good shotgun microphone (highly directional for
aiming at sound) and DAT recorder are ideal, although you can get by with less.

If you have to scrimp, don’t pinch pennies on the microphone. A good microphone
can make an average capture device sound better.

The capture device (audio tape, DAT, miniDV, MD, and so on) should be portable not
only in order to get it away from the whirring sound of hard drives and fans but also
to enable you to take it on location when needed. Another advantage of a battery-
powered portable device is that static from power line voltage won’t be a problem.
After you get started and begin playing around, you’ll be surprised at the sounds
that you can create with ordinary household objects. Be creative — innovate! Sound
effects are an art form unto itself. Although your dinner guests may think you’ve
gone mad as they regard your meditative squeezing of the dish soap bottle, don’t
worry about it. You know you are right! When amplified, it will make a nice whoosh.
Great for fast limb movement of that character doing a karate chop.

Backgrounds and Scenery
In Flash, you work in an area that is called the Stage (or Movie) area. For broadcast (or
any other kind for that matter) animation it is better to think of it as the viewfinder of
a camera. The main difference between this camera and the traditional kind, or even
those used in 3D animation, is this: You can’t move it. So, to give the illusion of camera
movement, everything within the view must move. This is not as hard as it might
seem with Flash’s capability to use animated graphic symbols. A good example is in
the Weber cartoon, in the scene where there’s a malfunction in the control room and
everything is shaking. Here’s how this effect was created (as shown in Figure 37-1):

1. A graphic symbol of the entire scene of animation that was larger than the
camera’s view was made (so that white space wouldn’t show at the edges),

2. The symbol was placed in the Main Timeline.

Tip

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1038

1039Chapter 37 ✦ Creating Cartoon Animation with Flash

3. Every frame was keyframed and moved in a jarring fashion to give the jerking
look needed to convey that everything had run amok.

Figure 37-1: Here are a few shots from the control room scene of the Weber cartoon.

Bitmaps
As mentioned previously, when designing with Flash for the Web, the use of raster
(bitmap) images should be kept to an absolute minimum. But for broadcast output
there’s no limit. Not only can you use as many images as you’d like (within system
constraints), but doing so will make a richer, far more attractive finished product.
And, unlike the .SWF format, when output as raster video, animations built with
such bitmap image intensity will always play at the proper frame rate. So move,
animate, scale, and rotate them — even play sequences of them. The sky and RAM
are the only limits.

QuickTime limitations
With Flash 4, Flash expanded its import capabilities to include raster video —
QuickTime and .AVI. When using video output for broadcast you can export to
these formats too, but video that’s been imported into Flash will not show up when
output to the .SWF format. Unfortunately, Flash does not recognize alpha channels
embedded in the QuickTime 32-bit animation codec (which supports traveling mat-
tes, or alphas). However, you can use Mask layers on the video in Flash. Remember
that Flash doesn’t save the video file within the project file (thank goodness) — it
makes a pointer to it instead. This addition brought tremendous functionality to
Flash because animations can be keyed (composited) over (or behind) live video
without having to recomposite in After Effects. To take advantage of this, keep your
live video at the same frame rate as the Flash project. Note, however, that Flash will
only export the video — audio from the video clip will need to be reapplied in a
video-editing application. An alternate solution is to bring the video and audio
tracks into Flash separately and to synchronize them there.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1039

1040 Part VII ✦ Using Flash with Other Programs

Building layered backgrounds in Flash with
Photoshop
By using layers in Photoshop, multiplane shots are easily accomplished in Flash.
Using layers is very important to the organization of the animation. Some shots in
Weber employ more than 20 layers to keep things where they need to be. When
designing backgrounds (or scenery, to be more precise) remember that, at some
point, background elements may need to be foreground elements. For instance,
in the introduction to Weber, the sky will always be in the background so it is on
a layer furthest down in the stack. Unlike the sky, however, the pier, which is also
a background object, may sometimes need to be in the foreground to facilitate
movement of the character either in front or behind it. Thus, the pier gets a
layer (actually a group of layers) of it’s own, placed further up in the layer stack,
above the sky. When creating such backgrounds, use of Photoshop and alpha
channels delivers the most versatility. When using Photoshop for scenery elements,
it’s mandatory to work in layers and to save a master file with all layers intact.
Elements can then be exported to individual files (with alpha channels) as needed.
(Retaining the master layered Photoshop file gives you maximum options later, if
edits or changes occur. It can also be used as a resource for subsequent anima-
tions, so don’t flatten or discard your master layered Photoshop file. Instead,
number and archive it!) Why the alpha channels? When translating the Photoshop
elements into Flash vector scenery they automatically mask themselves — so a
little preplanning in Photoshop can save lots of time later.

Flash Mask layers
Whoops! You got to a point where you didn’t use layers and now you need a mask.
Some situations may be either too complicated or else unforeseeable in the original
design. Flash Mask layers can come to the rescue. Here’s the good news: You can
mask (and animate the mask) interactively with the other elements while in Flash.
The bad news is that you can’t feather (soften the edges) the mask. In the Weber
cartoon, an example where masks are used to good effect is the ending, where
black circles in as the scene closes.

Long pans
Long pans are a standard device of animated cartoons, as when Fred Flintstone
runs through the house and furniture keeps zipping past (that must be one
looooong living room, it just keeps rockin’). This can be done in a couple of ways
in Flash. For landscape backgrounds, it’s usually best to first create a very wide
bitmap of the landscape and then to Motion Tween it horizontally, with keyframes
for stopping and starting as needed within the tween. If something is either falling
or ascending, use a tall bitmap and Motion Tween vertically. Another solid tech-
nique is to create art of the objects that will pan (such as clouds) and then loop

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1040

1041Chapter 37 ✦ Creating Cartoon Animation with Flash

them as the background layer, across the view. A good example of this is the chase
scene from the Weber cartoon, which is shown in Figure 37-2. To get smooth results
when using looping, don’t use easing in or out with the tween setup. Also, to main-
tain constant speed, maintain the exact number of frames between the keyframes.
Then, copy the tween by Alt (Option) dragging the selected tween frames to the
desired area in the timeline. Repeat copying until you’ve covered the time needed.

Figure 37-2: The chase scene from the Weber cartoon

Multiplane pans
To provide 3D-motion depth during the pan, keep this rule in mind: An object that is
further away appears to move slower (than a nearer object) as it moves across the
view. This takes some experimenting to get it right, but once mastered, this will add
a professional touch to your animations. For example, in a 100-frame pan:

✦ The sky moves very slowly, 100 pixels total

✦ The water moves more quickly, 125 pixels total

✦ The character on the beach moves more quickly than the water, 150 pixels total

✦ A parked car in the immediate foreground moves most rapidly, 250 pixels total

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1041

1042 Part VII ✦ Using Flash with Other Programs

Blurring to simulate depth
The multiplane camera was used in early Disney films to give a feeling of depth in the
animation of flat artwork. There was physical space between the individual cels when
photographed. By using a short depth of field lens, the artwork that was further away
from the lens lost focus slightly. (You may have noticed this in still photography your-
self.) If you set up your scenery using bitmaps, you can recreate this effect. A good
example of this is the pier scene from the Weber cartoon, which is shown in Figure
37-3. In Photoshop, it’s a simple case of using incrementally higher doses of Gaussian
blur on the layers of your scenery that are further way. The further the object is, the
more blur that is applied — just be sure that the blur is applied to the alpha channel
that Flash will use in compositing. Use this technique as a photographer brings atten-
tion to the element in the shot that is in focus. Using it in animation tends to generate
the illusion of depth. However, using it in the foreground can also portray various
elements such as fog.

Figure 37-3: The opening pier scene from the Weber cartoon

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1042

1043Chapter 37 ✦ Creating Cartoon Animation with Flash

Some Cartoon Animation Basics
In the world of film, movies are shot at 24 fps (frames per second), while in video and
3D animation 30 fps is the norm. But for cartoons 12 to 15 fps is all that’s needed. The
cartoon language of motion that we’ve all learned since childhood has taught our
minds to expect this slightly jumpy quality of motion in a cartoon. As an animator,
this is good for you, because 15 fps means half the amount of hand drawing work that
30 fps requires. It also means that you can get your cartoon done within your lifetime
and maybe take a day off here and there. Actually, there are a lot of scenes in which
as few as three drawings per second will suffice — depending on how well you can
express motion with your art or drawing. The rule of motion here is that things that
move quickly require fewer frames (drawings), while things that move slowly require
more frames. This is the main reason you’ll hardly ever see slow-motion sequences
in cartoons. Broadcast cartoons have lots of fast-paced motion. Fewer drawings are
produced more quickly and are less costly. These are very significant factors when
battling budgets and deadlines.

Expressing motion and emotion
The hardest part of animation is expressing motion and emotion. Learn to do this
well and it will save you time and make your work stand out above the rest. One of
the best exercises you can do in this respect is to simply watch the world around
you as though your eyes were a camera, clicking off frames. Videotaping cartoons
and advancing through them at single-frame speed is also a revealing practice. (If
you have digitizing capabilities, there’s nothing better than capturing a cartoon to
your hard drive and then analyzing the results, as you get a more stable frame this
way.) If you employ Flash’s capability to import raster video, you can use actual
video as your guide and even practice drawing on top of it. While this is good for
getting the mechanics of motion down, it’s really just a start.

Exaggerate everything! After all, this is what makes it a cartoon. Tex Avery, whom we
mentioned earlier, created cartoons that revolutionized animation with overblown
and hilarious motion. You can read about him at www.brightlightsfilm.com/
22/texavery.html.

Anticipation
Anticipation is a technique that is used when characters are about to do something,
like take off running. Before lunging into the sprint, characters slowly back up, load-
ing all their motion into their feet until their motion reverses and sends them blasting
off in the other direction. In a more subtle form, this is shown in Figure 37-4, when
Weber takes flight from his perch on the pier.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1043

1044 Part VII ✦ Using Flash with Other Programs

Figure 37-4: Anticipation is used to accentuate Weber’s take off

Weight
Keep the weight of objects in mind. This helps to make your cartoon believable. A
feather falls more slowly than the anvil. The feather also eases out (slows down)
before landing gently on the ground, while the anvil slams the ground with such force
as to make a gashing dent in it. Humor can play a role here by giving extreme weight
to things that do not have it (or vice versa) thereby causing a surprise in the viewer’s
preconceived notion of what should happen — and this is the seed of humor.

Overlapping actions
Visualize a jogging Santa Claus, belly bouncing up and down with each step.
Because of its weight, the belly is still on a downward motion when the rest of
the body is being pushed upward by the thrust of the push-off leg. This opposing
motion is known as overlapping actions. Another good example of overlapping
actions is the scene in which the muscle-man bully catches Weber and wrings his
neck. A good example of this is shown in Figure 37-5. Note that, as the bully thrusts
forward, Weber’s body reacts in the opposite direction . . . only to catch up just in
time for the thrust to reverse and go the other way.

Figure 37-5: Overlapping actions are often used to accentuate movement.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1044

1045Chapter 37 ✦ Creating Cartoon Animation with Flash

Blurring to simulate motion
Blurring is a technique or device that animators use to signify a motion that’s mov-
ing faster than the frame rate can physically show. In film, this manifests itself as
a blurred out of focus subject (due to the subject moving faster than the camera’s
shutter can capture). You may have already employed this effect in Photoshop, with
the motion blur filter. In cartoon animation, blurring is often (and easily) described
with blur lines. Blur lines are an approximation of the moving subject utilizing line
or brush strokes that trail off in the direction that the subject is coming from. When
used properly, this great device can save hours of tedious drawing. A good example
of animated motion blur can be seen in Figure 37-6, which shows the opening
sequence in which the word Weber turns into Weber the pelican.

Figure 37-6: Blur lines simulate the effect of motion.

Animator’s Keys and Inbetweening
Earlier in this book you learned about two Flash animation methods: frame-by-
frame and tweening. This section focuses on traditional cartoonist frame-by-frame
techniques together with traditional cartoonist’s keys and inbetween methods to
accomplish frame-by-frame animation. Despite the similarity of terminology, this
topic heading does not refer to a menu item in Flash. Instead, it should be noted that
animation programs such as Flash have derived some of their terminology (and meth-
ods) from the vintage world of hand-drawn cel animation. Vintage animators used the
methods of keys and inbetweening to determine what action a character will take in
a given shot. It’s akin to sketching, but with motion in mind. In this sense, keys are

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1045

1046 Part VII ✦ Using Flash with Other Programs

the high points, or ultimate positions, in a given sequence of motion. Thus, in
vintage animation:

✦ Keys are the pivotal drawings or highlights that determine how the motion
will play out.

✦ Inbetweens are the fill-in drawings that smooth out the motion.

In Flash, the usual workflow is to set keyframes for a symbol and then to tween
the intervening frames, which harnesses the power of the computer to fill the inbe-
tweens. Although this is fine for many things, it is inadequate for many others. For
example, a walk sequence is too subtle and complex to be tweened by a computer.
So, let’s take a look at the traditional use of keys and inbetweens for generating a
simple walk sequence that starts and ends according to a natural pace, yet will
also generate a walk loop.

Walk cycles (or walk loops)
Earlier in the book, you learned about using Poser to create a walk loop using a 3D
model. 3D animation is a wonderful practice that is coming of age in films such as
Jurassic Park, A Bug’s Life, and Toy Story. But perhaps you’ve noticed that a focus on
humans is missing from such films. That’s because humans are incredibly difficult
to animate convincingly in 3D. Why? Because computers are too perfect — too stiff.
Human movement is delightfully sloppy — and we are keenly aware of this quality of
human movement, both on a conscious and a subconscious level. (Another term for
this is body language.) This factor drives the 3D animators nuts when they try to
create human characters. Interestingly, these same factors lead to a plus for the 2D
hand-drawn animator: Because our hands are also sloppy when drawing, we find
that there’s emotion in the imprecision of a hand-drawn stroke — which brings us
back to keys. Keys should be loosely sketched and then refined and inbetweened.
Refer to the following diagrams, which express this concept in visual terms.

Notice that these keys are quickly drawn ovals approximating a woman at the high
points in a walk cycle. This was drawn on a layer in Flash with a light gray pencil.
Next, we’ll lock that layer and create a new layer on top of it. Then, using the pencil
in Ink Mode with black as our color to ink it in, we’ll refine this character to a more
finished look, as shown in Figure 37-7. Once we’re satisfied with the look, the Fast
Sketch layer can be discarded.

Now the keys for the finished walk cycle are set. However, upon playback (although
she walks!) it’s an extremely jerky and unnatural gait. So, where do we start if we
want to “fix” the walk? Do you remember the rule discussed earlier, that the slower
the movement the more frames (or drawings) would be needed? A good starting
point for a normal walk cycle is about 1.5 seconds or 24 frames at 15 fps. This is
timed from when the left foot pushes off the ground until just before it returns to its
original position. Why not go back to its original position? Because this would cause

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1046

1047Chapter 37 ✦ Creating Cartoon Animation with Flash

two frames to be almost the same and — in a loop — would introduce a stutter to the
walk. (Of course, that might be OK if you’re animating a stumbling drunk, but here
we want smooth.) So, depending on the speed that you want the subject to walk, you
can determine the amount of inbetweens you need to draw.

Figure 37-7: Here are some rough finished keys from a walk cycle prior to playback.

Repeaters
You may notice there are some blank, nonkeyed frames (repeaters) in the timeline.
These were used to economize drawing time and to slow the walk of the character
in the previous figure even more. If a speedier walk were called for, we would simply
delete these repeater frames. A good basic rule about repeaters is to add no more
than one repeater frame between keys; adding more causes the smoothness of
motion to fall apart. If the motion must proceed more slowly, then you have to
draw more inbetweens. Fortunately, with Flash onion skinning (the capability
to see before and after the current time in a dimmed graphic), which is discussed
in Chapter 8, “Exploring the Timeline,” the addition of a few more inbetweens is
not an enormous task. In fact, onion skinning is indispensable for doing inbetweens,
and even for setting keys. One pitfall of onion skinning is the tendency to trace
what you’re seeing. It takes practice to ignore the onion lines and use them only as
a guide. You need to remember that the object is to draw frames that have slight,
but meaningful differences between them. Although it can mean a lot more drawing,
it’s well worth it. Because you’ll use your walk (and running) cycles over and over
during the course of your cartoon, do them well.

One real time-saver in creating a walk cycle is to isolate the head and animate it
separately via layers or grouping. This trick helps to prevent undesirable quivering
facial movements that often result from imperfectly traced copies. Similarly, an
accessory like a hat or brief case can be isolated on a separate layer. Finally, if the
character will be talking while walking, make a copy of the symbol and eliminate
the mouth. Later, the mouth will be added back as a separate animation. We cover
this later in the section on lip-synching.

Tip

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1047

1048 Part VII ✦ Using Flash with Other Programs

Types of walks
So far, we’ve covered the mechanics of a walk cycle. But for animators, the great
thing about walking — in all its forms — is what it can communicate about the
character. We read this body language constantly every day without really thinking
about it. We often make judgments about people’s mood, mission, and character
based on the way that they carry themselves. Picture the young man, head held
high, confidently striding briskly with direction and purpose: He is in control of
the situation and will accomplish the task set before him. But if we throw in a little
wristwatch checking and awkward arm movements, then that same walk becomes
a stressful “I’m late.” This late gait suggests a very different story of the person who
didn’t plan ahead. Or, witness the poor shlub — back hunched, arms dangling at his
sides. He moves along, dragging his feet as if they each weigh a thousand pounds.
That tells the sad story of a person who’s a basket case. Finally, what about a ran-
dom pace, feet slipping from side to side, sometimes crisscrossing, other times
colliding, while the body moves in a stop-and-start fashion as if it were just going
along for the ride? Is that someone who couldn’t figure out when to leave the bar?
Of course, these are extreme examples. Walks are actually very subtle and there
are limitless variations on the basic forms. But if you begin to observe and analyze
these details as they occur in everyday life, then you’ll be able to instill a higher
order in your animations. Simply take time to look. It’s all there waiting for you to
use in your next animation. Then remember that because it’s a cartoon, exaggerate!

Coloring the art
Now, to color in the character between the inked lines. In traditional animation,
this was the most tedious and time-consuming job of all: endless thousands of cels
to be hand painted and dried. Most often, armies of low-paid workers in far away
lands did it. But with Flash it’s a snap! That’s because of Flash’s wonderful (and
sometimes mysterious) gap-jumping fill tool, the Paint Bucket. With Flash, you
never run out of paint, and it dries instantly — a real time-saver to be sure!

The model sheet
Here’s a coloring time-saver that you can use for yourself within Flash: Use a fully
colored model of your character at the start of a cycle or scene. This will serve
as a color model and will be discarded when the cycle or shot is finished. It’s very
important to keep a model sheet, which is an archive of color models — finished,
fully colored characters — to maintain consistent color across the span of the
project. (It’s also quite useful at the start of future projects.) “Why,” you may ask,
“is this necessary now that Flash has color sets?”

Even though Flash has the ability to save color sets, it’s still difficult to remember
which yellow was used on a certain area of the character, especially when there are
ten different yellows in the palette. Such a color mistake — even a slight shade off —
will cause unsightly flicker on playback. The Dropper makes no mistakes. So, to

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1048

1049Chapter 37 ✦ Creating Cartoon Animation with Flash

develop good animation habits, start a model sheet. When you begin a scene, copy
the appropriate color model and paste it into the cycle, setting it off to the side of the
active art in the first frame (if needed, ungroup it). Acquire the color that you need
with the Dropper Tool and then set about the business of filling.

When filling, we’ve found that the most efficient method is to go through the entire
cycle with one color, filling all objects of that color. Then go back to the beginning
and sweep through again, doing the next color. This method saves you the tedium
of constantly having to change the Paint Bucket’s color, and also minimizes the pos-
sibility of mistakes. If some places fill while others don’t, you’ll probably need to
adjust the Paint Bucket Gap Size Modifier.

Gap problems
There are, however, times when you can’t find the gaps and the Paint Bucket
just won’t work. In this case, keep looking because the gaps are there. But if it just
doesn’t work, no matter how much you zoom in and click with the Paint Bucket,
then you may need to zoom in and use the Arrow Tool to close the gap by adjusting
a stroke. In a situation in which it’s not aesthetically pleasing to do that, use the
Brush Tool (set to the same fill color and to paint fills only) to fill the gaps manu-
ally. Perhaps this would be the case on a head and neck that you don’t want con-
nected to the body (remember earlier about the advantages of animating the head
separately). You would paint a stroke of fill connecting the inked lines and then fill.
This is a great tool, it’s a huge time-saver, but a little mysterious at times.

Speed coloring
A good way to speed up the coloring process is to allocate one of the mouse buttons
(if you have a programmable mouse) to perform the keyboard shortcut for step for-
ward advancing (which is the > key). If you have a pressure-sensitive graphics tablet,
then you can allocate a button on the pen to do the same. With a setup like this, you
can leave the cursor in pretty much the same place and click-fill, click-advance; click-
fill, click-advance . . . and so on.

Temporary backgrounds
Another problem that’s easily solved is the process of filling areas with white. If
you’re like most people, you’ve accepted the default background color of white —
which makes it impossible to distinguish when filling white areas. In this case, it’s
monstrously helpful to create a very light color that you don’t plan to use in the
final art, something like a light grayish puke-pink. While coloring, temporarily
change the background color in the Movie Properties dialog (Modify ➪ Movie) to
this “color” for the background of the entire movie. This makes it much easier to
see what you’re doing when using white as a fill color for objects such as eyeballs,
teeth, and clouds. Then, when you’re done coloring, you can set the background
color back to white.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1049

1050 Part VII ✦ Using Flash with Other Programs

Flash Tweening
You can use Flash tweening to help your cartooning. Now that you’ve created
some symbols, such as the walk cycle, here’s where you can save a great deal of
time making them slink and prance across the view without drawing every tedious
frame. The hard hand drawing work is done, now you’ll choreograph the character.
Because once you’ve built a library of various walks, runs, turnarounds, and stand
stills (a piece of walk cycle that ends with the character just standing still), you can
use computer power to help you tell a story. Remember that you can always create
more symbols of the character as needed — in fact, you can steal from other
symbols to create new ones.

Panning
Use the panning techniques discussed earlier in this chapter to get your walking
symbol looping, stationary in the middle of the view. Then move the background
elements to give the illusion of the camera following alongside the walking character,
a sort of dolly. It usually requires a little experimentation to get the motion of the
background to match the stride of the step. If the timing isn’t correct, you’ll notice
that the feet will seem to skate across the ground. To fix this, adjust the speed of the
background by either increasing or decreasing the number of frames in the tween of
the background. Another trick is to set the walking symbol to start at one end of the
view and proceed to the other by tweening the symbol itself. What’s really cool is to
use a mixture of both. Again, to get it just right, experiment.

Instance swapping
There comes a time when the star of your show must stop walking (or running, or
whatever he’s doing) and reach into his pocket to pull out a hotrod car and make his
getaway. This is where instance swapping comes in. At the end of the tween, create a
keyframe on the next frame (the frame immediately following the last keyframe in the
tween), and then turn off motion tweening for that keyframe in the Frame panel. This
causes the symbol to stop at whichever frame the cycle ended on in the timeline. To
swap the symbol, follow these steps:

1. Click the symbol to select it.

2. Open the Instance Panel (click the Instance tab on the Frame Panel that you
have open).

3. Click the Swap Symbol button.

4. In the Swap Symbol dialog, select the symbol that you want to replace it with
(in this case, the one where he reaches into his pocket).

5. Click OK.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1050

1051Chapter 37 ✦ Creating Cartoon Animation with Flash

If you loop the play of the symbol, you can also choose the frame on which the
symbol’s cycle will start. Other choices are limiting the symbol to play once and
playing just a single frame (still). You must be sure that Synchronize is unchecked
in the Frame Panel — otherwise your newly chosen instance will not show up; the
old one will remain there instead.

This procedure may have been more easily accomplished in Flash 4. The new work
flow is impacted by these considerations: (a) In the Frame Panel, under the options
for Motion Tweens, the Synchronize option now replaces the former Synchronize
Symbols option — but it does function the same. By Right-clicking/Ctrl+clicking a
frame to invoke the contextual pop-up menu, and then selecting Create Motion
Tween, you’ll find that Synchronize and Snap checked by default in the Frame
Panel. (b) However, if you select the frame and then navigate to the Frame Panel
and create a motion tween there, then Synchronize and Snap are not checked
by default. The second procedure is the preferred method for accomplishing the
swap symbols technique described previously. To repeat, when you change a
symbol instance on a motion tween, if the Synchronize box is checked, the old
symbol instance will not be replaced with the new one — which is Swap Symbol
failure. (c) Furthermore, double-clicking an instance will no longer bring up the
desired instance controls. You must now fish those controls out of the Instance
Panel. The Swap Symbol button is the little button at the far left with an icon of
little arrows, a square, and a circle.

Finally, unless you’ve drawn all your symbols to perfect scale with each other, this
new symbol may not fit exactly. No problem! To fix this, simply enable onion skinning
from the Main Timeline, and set it to show the previous frame (the frame the tween
ended on). Now you can align and scale the new symbol to match the ghosted image.
We can’t begin to tell you how much you’ll use this simple instance swapping func-
tion when you create your cartoon. This is one of the unique functions that sets Flash
apart from all other cel-type animation programs. After you have a modest library of
predrawn actions, the possibilities for combining them are endless.

Motion guides
Although not terribly useful for tweening a walking character, the Flash motion
guide function is tops for moving inanimate objects. If your character needs to
throw a brick, a straight tween between points and some blur lines will do fine.
If he needs to lob that brick over a fence to clang a pesky neighbor, then the use
of motion guides is the ticket. Here’s how:

1. Turn the brick into a graphic symbol if you haven’t already. This makes it
easier to make changes to the brick later.

2. Create a Motion Guide layer.

3. Draw an arch from start to destination. This is best done by drawing a line
with the Line Tool and then retouching it with the Arrow Tool until you have
bent it into the desired arch. This method keeps the motion smooth. (To use
the Pencil Tool to draw the motion guide would create too many points and
can cause stuttering in the motion.)

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1051

1052 Part VII ✦ Using Flash with Other Programs

Although your brick is flying smoothly, something’s wrong. Again, the computer made
things too darned smooth. You could insert a few keyframes in the tween and rotate
slightly here and there to give it some wobble. But that’s still not convincing. You
want this brick to mean business! Here’s what to do: Because the brick is already a
symbol, go back to the brick symbol and edit it, adding a few more frames. Don’t add
more than three or four frames, otherwise this will slow it down. At each of these new
frames, mess up the brick a little here and there; differ the perspectives a little from
one frame to another. Then, when you go back to your Main Timeline, the brick
should be twitching with vengeance as it sails towards its target.

Lip-synching
Now, here’s the part we’ve all been waiting for . . . a word from our character. If
done properly, lip-synching is where a character can really spring to life. This is
accomplished by drawing the various mouth positions that are formed for individ-
ual phonemes, which are the basic units of sound that make up a spoken word.
Then these phonemes are melded together into morphemes, which are distinct
units of a word, like a syllable. Morphemes are then strung together over the
course of a sentence to present the illusion of a talking, animated character. Huh?
Phonemes? Morphemes? What the devil are we talking about? Well, it’s really not as
complicated as all that but it’s important to know how a spoken word is made. Most
languages, although populated with thousands of words, are really made up from
around 30 to 60 distinct sounds, or phonemes. For cartooning, these phonemes can
be reduced to about 10 basic mouth positions. Some of these positions can be
repeated for more than one sound because many sounds share roughly the same
mouth positions. Although there are more subtleties in the real world, for cartoons,
reliance upon transitions between mouth positions is convincing enough.

Earlier, we suggested that the face in an action (walk) cycle should be drawn without
a mouth. That’s because this method facilitates the use of layers (in the timeline) for
the addition of the lip-sync. To do this, create a layer above the character so that you
can freely draw in the mouth positions needed to add lip-sync. It’s also very helpful to
put the voice track on another separate layer directly beneath the Mouth layer. This
makes it easy to see the waveform of the sound while you draw — which gives impor-
tant clues to where and when the sound occurs visually.

Since Flash 4, Flash has had the capability to scrub the timeline, which means that
you can drag the Playhead, or current frame indicator, and hear the sound as you
drag. This functionality is limited to streaming sounds, which means that the sounds
have their Sync option in the Sound panel set to Streaming. The capability to hear the
sound and see the animation in real time is an important tool for lip-synching. This
real-time feedback is critical for getting the timing just right. There’s nothing worse
than being plagued with O.G.M.S. (the Old Godzilla Movie Syndrome), in which the
mouth doesn’t match the sounds coming from it. To scrub most effectively, here’s a
hint: If you’ve been following this chapter’s advice, then you’ve probably loaded a ton
of moving bitmaps into your scene, which can be a serious hindrance to playback

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1052

1053Chapter 37 ✦ Creating Cartoon Animation with Flash

within the Flash authoring environment. To overcome this drag and to get real-time
playback at the full-frame rate, simply hide all layers except the mouth layers and
turn off antialiasing.

Shape morphing is not for lip-sync
You may be asking, “What about using shape morphing to save time in lip-synching?”
Well, shape morphing is a wonderful tool but, for lip-sync, it’s more hassle than it’s
worth. Your mouth drawings will become very complicated because they consist of
lips, tongue, teeth, and facial features. Furthermore, because shape morphing only
seems to work predictably on the simplest of shapes out of the box, shape hinting
is required. Thus, by the time you’ve set all hinting (and even hinting heavily still
leaves you with a mess at times), you might have had an easier time and obtained
a better result (with greater control) if you had drawn it by hand.

Expression and lip-sync
As regards control and expression, it’s important to remember to use the full range
of expression when drawing the talking mouths. Happy, sad, or confused — these
give life to your character. Furthermore, always emphasize mouth movements on
those syllables that correspond with spikes of emotion in the voice track. These
sections usually have a spike in the waveform that’s easily recognized in the voice
track. This device helps to convince the viewer that proper sync is happening.

Lip-sync tricks
There are a few more tricks to help ease the load. When characters talk, they do
not always have to be looking you square in the face. Try lip-synching the first few
words to establish that the character is speaking, and then obscure the character’s
mouth in some natural way. The relay man, shown in Figure 37-8, in Weber’s intes-
tine is a good example of this. The head and body bobs with the words being said,
but the microphone obscures his mouth in a natural way. This saved a bunch of
time but did not detract from his purpose in the story line. Here, a bit of design
savvy saved a lot of work.

Figure 37-8: Lip-synching tricks include economy of effort, such as having the character
begin to speak and then turn away naturally.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1053

1054 Part VII ✦ Using Flash with Other Programs

Many animators use a mirror placed nearby and mouth (act out) the words they are
trying to draw. This is extremely helpful when learning to do lip-sync. It is also of
great help in mastering facial expressions. Just try not to get too wrapped up in
drawing every nuance you see. Sometimes less is more. After you get over feeling a
bit foolish about talking to yourself in the mirror you’ll be on your way to animating
good expressive lip-synced sequences. Another trick that you can use to ease the
load is to reuse lip-sync. Do this by copying frames from previous stretches of
mouth movements to new locations where the words are the same, and then tweak
the copied parts to fit the new dialog. Still, there is no magic lip-sync button. Even
with all these tricks, effective lip-syncing is hard work. It’s also one of the more
tedious tasks in animation, as it demands a great deal of practice to get it right.

Synching with music and sound effects
In the introduction, Weber dances to the theme song, shuffling through a Michael
Jackson moonwalk, and then spinning to the scratch of the synthesizer. This really
helps to gel things because the action on screen syncs to the sound (music or effect)
and helps to draw in the viewer. If you’ve already succeeded with lip-synching work,
then this type of synching is easy. All that’s going on here is a bit of instance swap-
ping set to the beat of the music. Study your music waveform for visual clues then
scrub it for the sound and you’re sure to find the exact section where the change in
action (instance swap) needs to go. You don’t have to make your sync tight to every
note. To keep the shot engaging, sync to the highlights, or hard beats.

Adding sound effects is really the fun part. It’s easy and highly effective. Either
working from your storyboard, or as you’re animating, you’ll know where you
want to insert a sound effect. For example, when the anvil hits the head, a CLANK
is needed there. If the effect you need is on hand, great! Just make sure it has
the necessary duration, and then plug it in at the frame where it should start.
For broadcast animation you’ll set the sound sync pop-up of the Sound panel to
Streaming for the soundtrack exclusively. In addition to the use of separate layers
for each voice track, it’s wise to confine your sound effects to a layer or two. This
leads to less confusion; yet using two layers enables more than one sound effect
to occur at a time.

For the following Expert Tutorial, we’ve supplied a short track for your use,
lip_track.wav or lip_track.aif, which you’ll find in the ch32 folder of the CD-ROM.
These tracks include the major sounds used in the English language.

On the
CD-ROM

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1054

1055Chapter 37 ✦ Creating Cartoon Animation with Flash

Expert Tutorial: Lip-synching Cartoons, by Bill Turner

These days, there’s an abundance of Flash-authored cartoons on the Internet, so it’s hard
not to get caught up in the spirit and try one yourself — after all, cartooning is easy . . . just
scribble some lines, color it, and there-you-go! Whoops — not so fast. “Houston, we have a
problem.” Too much of this animation looks like junk! Like a foreign film that’s been
dubbed, except worse, because all the actors’ lips were numbed with Novocain.

For animated characters to really come alive, you need to know how to do lip-sync. To get
quality lip-sync effects, you either need to draw them yourself or hire someone else to do it
for you. Although this tutorial can’t possibly cover every circumstance known to human
communication, it can get you started on the road to lip service. There are some prequalifi-
cations: (a) you must be able to draw in Flash, which usually means drawing with a tablet,
preferably a pressure-sensitive graphics tablet (such as a Wacom tablet), and (b) you need
to have a recorded voice track on its own layer in Flash.

Because lip-sync can’t be described in a simple a, b, c routine tutorial, you’ll be required to
improvise — in your style of drawing. I can’t tell you how to do that. Style comes from years
of practice and experimentation. But if you do know how to draw and you do have a style,
then the intention here is to provide a context in which you might discover the basic trick of
lip-sync.

The major sounds, known as phonemes, are less numerous than you might think. It’s how
these sounds meld together to become words and sentences that add an aura of complex-
ity. Although one might surmise, from the alphabet, that there are 26 sounds, there aren’t
nearly that many. That’s because many letters have the same basic mouth shape, move-
ment, and pronunciation. And because we’re now in the land of cartoons, we can simplify
even further — the really great cartoons are often the simple ones built of tireless simple
reinterpretation.

In this tutorial, to keep it simple, we’ll deal with the two dominant views of talking heads
(not David Byrne’s): profile and face forward. A face forward talking head is probably the
easiest to animate in Flash because the mouth can be animated on a layer that’s situated in
the layer stack above a drawing of a mouthless head. A talking head in profile is more diffi-
cult because of the need to redraw the portion of the face that extends down from the
nose, to and including the chin, for every frame. Of course, including nose-to-chin move-
ments can also enhance the animation of a face forward talker, and doing so would make
for a more expressive animation. But we want to move quickly here.

In the figure, you see a mouthless head (provided on the CD-ROM for both demonstration
and practice) in both of the basic orientations: face forward and profile. Note the playback
head is at frame #12, at the beginning of the word, Meyers.

Continued

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1055

1056 Part VII ✦ Using Flash with Other Programs

Continued

A mouthless head in both of the basic orientations: face forward and profile

To help get you started, I’ve supplied a fully functional .FLA file for you to work on, with the
base character already drawn. The spoken test line reads, “Zinkle Meyers is very talented on
the bongo drums. Flip Flap beats his hands on the smooooth skins. Dig the rhythm.
Excellent!” Creating lip-sync for this line requires a number of mouth positions. To demon-
strate the concepts, the first sentence of this test line is supplied, already drawn to lip-sync.
It is your task to draw the mouth positions for the remainder of the spoken test.

The Sync Option
If you were setting this file up from scratch, you’d want to start by placing the voice sound
track on its own layer on the timeline. You’d rename this layer with a meaningful name,
such as voice, and then, in the Sound Panel, you’d set the Sync option to Stream.

Never use Event as the Sync option for any sound that must sync to the Flash timeline.
Otherwise, the timing of the voice will not be locked to the frame rate, meaning that the
mouth drawings may not appear simultaneously with their appropriate sounds, thus losing
sync. (For a full explanation of the streaming versus event sound settings, refer to Chapter 15,
“Importing and Editing Sounds in Flash.”)

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1056

1057Chapter 37 ✦ Creating Cartoon Animation with Flash

Getting into Sync
The best way to understand lip-sync is to have the sample file open. Note that there is a vis-
ible waveform (the little squiggly stuff) that shows where the peaks and valleys of the sound
occur across the timeline. Note, too, that the voice is brought in as a separate asset. It’s on
it’s own layer, separate from background sounds or music. Otherwise, it would be impossi-
ble to see the voice within the waveform if it were premixed with other sounds before bring-
ing it into Flash. If you’re producing a cartoon show, it’s best to have each character recorded
separately, particularly in cases in which they may talk over each other simultaneously. This
separation gives you more control when animating. In fact, the entire animation is broken
into layers for ease of editing. There’s at least one layer for each major element. You might
also note that the bongo sound track is set to event. This is useful while authoring because
it mutes the track when scrubbing the timeline to listen for timings in the voice track. If both
were set to streaming it would be more difficult to concentrate on the voice alone. (You
must remember to reset this option to Stream when synching is completed, or you could
just delete that layer until after you are done animating the mouth.)

The Phonemes
Now for the phonemes. There are several standard mouth positions for most of the major
sounds. Although this is not a rigid rule, it does provide a good basis from which to expand
into greater mastery of lip-sync. First, you’ll note that the word Meyers begins on frame 12
of the animation. The mmmm sound is best represented with the bottom lip tucked slightly
under the top lip. Try saying mmmm to see for yourself. In the word Meyers, this mmmm
sound lasts two frames and is then followed by the long i sound. Notice that we didn’t sync
the word as it is spelled, e-y-e, because that’s more complicated than it needs to be. The
word Meyers is usually pronounced M-I-ER-Z, with the ER being just an ease-out (mouth
holds shape but gets slightly smaller as phoneme trails off) of the long i sound. The word
ends with the Z phoneme, which is simply drawn with the mouth slightly open, and the
tongue at the top of the mouth.

In the next section of speech, the “very talented” part is a fast-moving set of syllables, so
every available frame is needed to represent it. Here, you’ll notice that most of the move-
ment occurs when the tongue engages the roof of the mouth for both the T and L
phoneme. Now, because the T and L are nearly the same mouth position, you can use the
luxury of duplicating frames. Similarly, the V sound requires the same basic mouth forma-
tion as the M sound, so you could copy this one as well from the Meyers word. Although
the B sound, in bongos, uses nearly the same mouth as M and V, we don’t copy that one.
Here, we draw a new mouth to add a bit of chaos because we don’t want the mouth to
look like a machine. The logic behind deciding which part to copy and which part to make
new drawings for is a large part of the art of lip-sync. In short, it’s all about balancing how
much new artwork you really want to do, while avoiding obvious repetition.

Continued

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1057

1058 Part VII ✦ Using Flash with Other Programs

Continued

A few basic phonemes combine to create lip-synched speech.

Now that I’ve given you an insight into how this is done, I’ve left the rest of the phrase for
you to complete. To accomplish this, you’ll probably want to reuse many of the supplied
mouth positions to sync the remaining voice. Remember that timing is the most crucial
part. You can determine where a new mouth position is needed, or where the mouth
needs work, by slowly scrubbing the timeline. Then, if you need new mouths, simply draw
them in. We highly recommend doing this drawing yourself, because this practice will start
you on your way to becoming a master of lip-sync.

Originally from Baltimore, Maryland, Bill remembers the Van Halen cover of “You Really Got Me” as the
most memorable song of the year that he graduated high school. As the father of the Weber cartoon and
the primary force behind the new cartoon series, The Murky’s — both produced by Turnertoons Productions,
of Melbourne, Florida — Bill’s single most favorite thing to do is “to make people laugh and reflect at the
same time.” He was introduced to Flash by responding to an ad in MacWeek soliciting beta testers for a
new program, which was then called Futuresplash. Bill was the contributing author for this chapter.

Finishing Up
When you have a shot done it’s often helpful to see it play at full speed. Unfortu-
nately, Flash is unable keep up with all of the sounds, bitmaps, and complicated
vectors that go into broadcast-quality animation. Plus it’s impossible — even with

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1058

1059Chapter 37 ✦ Creating Cartoon Animation with Flash

the most macho of processors — to play the shot at full speed, without hiding a
bunch of elements. But, hey, you’re the director of this masterpiece, it’s time for
dailies, and you need to see it all.

The best way to do this and to cut down on file size is to export a raster video at
320 ×240 pixels, using the standard QuickTime Video codec (Mac) or the Microsoft
Video 1 codec. These codecs are for draft purposes only, so it may have banding
and artifacts from compression, but the point is to generate something that even
a machine that’s ill-equipped for high-end video output can display easily at full
frame-rate speed. This method will be of great help in revealing those areas of the
animation that still need further tweaking and work before going out to the final
published version. The general movement and pace of the shot will make itself
known. Look for errors such as unintended jumpiness in frames, and color shifts
or inconsistencies between views. Furthermore, your lip-synching efforts will either
be a glory to behold or a disaster in need of medical attention. Other things, such
as sound clipping (pops in high volume sound) also become apparent here. To put
it bluntly, if the preview makes you cringe, then it needs work — if not, you’re ready
for final output.

Final output
Now, after checking endlessly you’re ready for the final video file of the shot to be ren-
dered. Back it up one more time. Then, when you’ve safely archived your final project
file, it’s time to choose the codec that your playback equipment can use and render
one out for the tube. Then, when you have rendered all your shots at full screen, you
can take them into Premiere or After Effects for more detailed editing and tweaking,
utilizing all the power that these applications offer. For example, you might want
music to play gently in the background across all of your scenes. Although this
would be impossible to piece together with separate Flash project files, it’s a snap
in Premiere. Again, the possibilities are endless.

Expert Tutorial: 2D Character Animation,
by Richard Bazley

Until recently, the process of creating animation has been labor intensive and extremely
expensive. I’ve worked on many successful animated films that cost millions of dollars, and
have required several years and hundreds of artists to complete. Similarly, an animated
short would have also involved numerous artists and high costs. Yet, with advancements in
technology and the speed and efficiency of computers, much of this has changed. Now,
with Flash 5, one artist can be the producer, director, animator, effects artist, layout artist,
scene planner, color stylist, and editor.

Continued

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1059

1060 Part VII ✦ Using Flash with Other Programs

Continued

A few years ago, I storyboarded a short film. I had British cartoonist Ronald Searle’s partic-
ular illustrative style in mind, which involves having the characters drawn with a very fluid
line with a lively thick and thin quality to it. To create this look with the tools of traditional
animation and to animate those lines would be a nightmare. Although it has been done for
the occasional commercial, the animator’s original rough drawings would have to be
painstakingly copied by specialist inkers. As well as being very time-consuming, the look of
the line would also boil or shimmer, because it is practically impossible for a human to
repeatedly copy this type of line without there being a difference.

However, I found that I could create this look almost effortlessly in Flash by drawing directly
on the Wacom tablet. It was very spontaneous, as my own personal drawings are often in this
style. I found that once you’ve drawn a line like this with Flash, you can create a motion tween
and then scale, or roll, or do almost anything with the line—effortlessly. You can also copy
and paste an image in seconds, whereas if you had to draw it again, it would take some time.
When I found Flash, I immediately knew that I’d found a way to make my film the way I
wanted to and that it would be groundbreaking in many ways. Once I’d found Flash, I began
work on my animated short, The Journal of Edwin Carp, almost without delay.

There are two main approaches to creating 2D character animation: Full Animation and
Limited Animation. Full Animation, also known as Classical Animation, is the type of anima-
tion found in all the Disney films. There, the movements are very fluid and the animator is
more interested in the dynamics of motion as well as strong character acting. It often requires
complete drawings for every frame of film, at the rate of 24 frames per second. (It is possible
to do 12 drawings per second, but any fast movements require 24.) This is the most expen-
sive form of animation. Limited Animation is just that—you limit the number of drawings that
you do to save both time and money. Hannah and Barbara refined it, and their best example
is The Flintstones. There you can see that parts of the body are separated and animated sep-
arately, so that other parts can be held for many frames at a time. The Japanese employ a
slightly different technique where they might animate on “eights” which creates a kind of
jerky movement so often found in anime. There are times when both techniques can be
employed for artistic reasons, such as in Peter Pan. When Captain Hook is playing the piano,
his body is held, his arms are on “twos,” and his fingers are on “ones.” The animator decided
that the arms were fine on “two’s” and that there would be no benefit in drawing them on
“ones,” so he employed a time-saving device. In creating my short film, I often employed this
technique because it is so easy in Flash and yet it’s still possible to maintain high artistic qual-
ity. Flash has so many strengths, especially in the interactive area, but those were not what
interested me. I chose Flash because of its animation tools and its capability to manipulate
shapes. Because I’m not designing for the Web, I don’t worry about file size. I simply use Flash
as an animator’s tool to get what I want.

(Richard was kind enough to permit us to include the .SWF’s of several scenes from his
groundbreaking animated short, The Journal of Edwin Carp. You’ll find them on the
CD-ROM, in the Bazley folder, which is nested within the ch37 folder — if you refer to them
as you read this tutorial, many of the principles that Richard describes will become much
more clear.)

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1060

1061Chapter 37 ✦ Creating Cartoon Animation with Flash

Reuse
One feature of Flash that is most useful for animation is the Library. For instance, I drew a
moose head once from a front view and once from the side. I was then able to repeatedly
drag this from the library to use in scene after scene without having to redraw it. With one
side view drawn, I can use the Transform Tool to flip it vertically and then use it in another
scene in which he faces the other way. When used intelligently, it’s unlikely that the audi-
ence will notice, and for those classical animation purists, this does not affect the quality.
(Just look at Jungle Book. You’ll see plenty of reuse there.) I even created one scene in my
movie for which I drew no new drawings; instead, I drew them all from my Library.

“Cheating” a Head Turn
I did this scene using three drawings! First, I drew the body on one layer, which is held. The
background is simply a color on another level. I did one profile drawing and, using
Transform, flipped it to face the other way. Then I drew one inbetween drawing. Instead of
being a halfway drawing, although, this is a drawing of multiples in which it appears that
the character has many eyes. (If you stop-frame Who Framed Roger Rabbit or any of the old
Tex Avery shorts, you will see a lot of this technique.) Because this multiple drawing only
shows for one frame, you won’t actually see it, but you will feel it. Then to soften the move-
ment into the next key, I copied the profile drawing and placed it two frames after the key,
and then used the Scale Tool to narrow the face a little so that it appears to inbetween on
the way out of the multiple. Then I did the same process before the next key. This is a little
bit of a “cheat,” because a little volume is lost in the scaling, and because the volume is
something that you should try to maintain. But this is a quick scene and it delivers the
desired effect. Rules can be broken, but it is best to know them first so that you know when
and if you are creating a “cheat.”

This drawing of multiples appears for only one frame, yet
it contributes powerfully to the feeling of this scene.

Continued

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1061

1062 Part VII ✦ Using Flash with Other Programs

Continued

Beauty in Simplicity
Sometimes less really is more. In the scene in which Edwin’s mother runs down the stairs,
I worked economically but to great effect by creating her run from six basic keys. First, I cre-
ated the camera pan as it moves down the stairs. Then I drew one drawing of her facing
right. Then, I created a Motion Tween and set her next keyframe out of shot on the right.
This way I don’t have to show her turn, but it also enhances the action to have her move in
and out of camera. Then I used the Transform Tool to flip her the other way for the next
keyframe. I repeated this going the other way down the next flight of steps, and then I
repeated it once more. All this motion was created with only two drawings! I managed to
get away with this because I used other elements to add interest, such as her shawl and
dress blowing behind her. These were animated on single keyframes, but this sort of sec-
ondary action doesn’t take long. I only economize on scenes like this if I think the result will
work well. There are other occasions when it might be necessary to do a full run, but this is
up to the discretion of the artist and filmmaker. Choose your shots and where you want to
invest your energy. It can save you time and money.

Layers
One of the useful ways of creating apparently quite complex scenes in Flash is to use mul-
tiple background layers. By separating the components of your background, you can create
a variety of camera moves, such as the pan discussed in the scene in which Edwin’s mother
runs downstairs. In another scene, I created the effect of a multiplane Truck-in, which is
where the camera appears to zoom in. In the days of Pinocchio and Fantasia this effect was
achieved with a complex multiplane camera that separated the different background levels
onto different planes located at different distances from the camera. These background
planes would be moved toward the camera at different speeds to create the illusion of
depth. The problem with this process was that if any kind of mistake were made, it would
all have to be shot again — often at the expense of several days work. This effect can be cre-
ated in Flash in only a few minutes and, if you change your mind, you can go right back and
change it. For this scene, I drew one line drawing of the attic, while separate drawings for
the foreground elements, such as the bottles and other knick-knacks, were arranged on two
subsequent levels. I returned to the first frame of the first attic level and created a motion
tween. Then, on the last frame, I scaled the drawing up to where I wanted it. I then did this
individually for each of the other elements, but made the nearer objects move more
quickly, thus giving the illusion of movement through depth.

Animation Approach
For many reasons, I decided to use the Motion Tween as much as possible in my film. One, it
is a very fast and economical way to animate. Two, it maintains the line quality, which was
important to me. Three, the computer tweens with such ease! I occasionally use the Shape
Tweens, but I found that, for my purposes, I have to keep the shapes as simple as possible;
otherwise, Flash generates unacceptable inbetweens.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1062

1063Chapter 37 ✦ Creating Cartoon Animation with Flash

Although shape hints may help to a certain degree, if the shape becomes complex the result
is very hit and miss. It is a shame because you can get a better squash and stretch look using
the Shape Tween—but only on a simple shape. Because the characters in my film are fairly
complex, I chose to use the Motion Tween. For any squash, stretch, or shape change, I simply
drew it myself, in single frames.

This shot is from a Truck-in, where the illusion of complex
depth was achieved by moving different objects on separate
layers at varied rates. As the camera pulls into the scene, the
objects feel as though they are coming toward the camera.

There’s one scene in Edwin Carp in which Edwin climbs up into the attic and then stumbles
backward onto a tailor’s dummy. This is a very complex movement and requires what anima-
tors call straight-ahead animation. This means that instead of making one key drawing, and
then making another key eight frames later, and then going back to inbetween those two
keys, you simply draw one drawing after another to create a very free-flowing animation. This
is normally best for things such as a walk or run, where a motion is continuous with no pause.
So, for this scene, the straight-ahead technique worked best. I first created a rough layer with
enough frames to contain the stumble. This was a series of crude and sketchy drawings
wherein I could rough out the action. Once I was happy with the motion I then drew on
another layer over the top of the rough and cleaned up the action, drawing the character
properly over the form of the working motion. When you try this, remember that on the rough
level, draw with a light color and keep it rough, because your only concern is movement.

If a Motion Tween had been used here, the character might appear as if he were cut out of
paper and moved around. This can be done on other scenes in which the action is simpler,
by separating enough elements of the body and then touching up the effect with clothing
moving fluidly on “ones” so that the viewer won’t notice the more rigid parts. This was the
technique used for the scene of Edwin’s mother running out of the house.

Continued

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1063

1064 Part VII ✦ Using Flash with Other Programs

Continued

Another combination of techniques was used for the spider scene. Here, I created the usual
motion path for one drawing of the body of the spider and Flash did the work for me. That
was easy. Now for the legs! I created six drawings of legs. Then all I had to do was copy
each individually on each successive frame and rotate them up on one frame and down on
the next frame, making sure that each leg was different from the one next to it. I also had
to throw in some randomness by holding some legs up and other legs down for maybe two
frames. The result is a scurrying spider! As a final touch, I threw the shadow on the same
motion path as the body.

Edwin’s backward stumble in the attic was drawn as what
animators refer to as a straight-ahead animation sequence.
To accomplish this, Flash’s layers were indispensable.

Using a Stagger
A stagger is an effect whereby a character shakes, shivers, or makes some other jerky move-
ment giving the character the appearance of being cold, frightened, stretching, or even
applying force to something. For example, Tramp in Lady and the Tramp stretches out his
leg and it appears to quiver. Similarly, when Sir Kaye draws back his bow in The Sword and
the Stone, there’s a tension introduced to the pull by the use of a stagger. This can be
achieved by randomly offsetting the drawing so that there’s a slight shimmer to the line.
After you’ve created a drawing, simply copy and paste it into the next frame and then shift
it just a little. This is what was done to various parts of the body in the scene in which
Edwin’s mother walks down the hall rattling a tea tray. Her arms are on a separate layer
apart from the body so that a stagger could be applied to them while her body moves
slowly forward. I also applied a stagger to the tray, teapot, and teacups, which were all ani-
mated on separate layers. They all vary a little, which adds texture to the scene.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1064

1065Chapter 37 ✦ Creating Cartoon Animation with Flash

This scene, in which Edwin’s mother rattles down the hallway
with her tea tray, is a perfect example of the use of Flash layers,
as well as cut and paste, to accomplish an effect that is much
more difficult to achieve with traditional drawn animation.

Performance and Acting
Here’s something you’ll learn over time: Observe everyday life. Use your own experiences
and put them into your characters. It’s the little things and seemingly inconsequential
actions that a character does that makes her believable. That’s why the old Disney classics
have so much depth. Those animators often studied live actors for nuances that they could
use to bring their characters to life. This doesn’t mean rotoscope, which is where the ani-
mator traces a live-action film and leaves it at that. But even that can be a starting point if
you retime and reanimate the scene using the rotoscope as just a point of departure. If you
choose to use this technique, you can do it in a series of passes, or generations. With the
first pass over a rotoscoped scene, you might retime a little. Then you might pull out a few
drawings and make them more extreme. Then you might add some new drawings. Each
time you run back through the sequence, it enhances the look and complexity of the ani-
mation, which might have been hard to initiate without the live-action, although — in the
end — it will not look traced. (This is how the character animation was achieved for the
magnificent Captain Hook character in Peter Pan.) Remember that to animate doesn’t just
mean to move something around; it must come to life, so that the audience can relate to
the character.

Continued

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1065

1066 Part VII ✦ Using Flash with Other Programs

Continued

Timing, Phrasing, and Texture
With some practice, you’ll begin to get a feel for good timing. In animation, timing is every-
thing. It’s like telling a good joke— if it is not delivered properly and the timing is off, it doesn’t
work. The veteran Disney animators all studied the great comics, such as Buster Keaton,
Charlie Chaplin, and Laurel and Hardy, because their impeccable sense of timing was so
visual. There are occasions where a motion is continuous, but usually there are pauses, stops,
and starts, and then a flurry of activity.
This is what adds interest to a scene. If everything moves at the same time and is very even,
it appears mushy, as if it’s occurring underwater. So, vary your timing and use Flash’s easing
in and easing out wherever you can. Flash also has the advantage of easily splitting things
off onto layers, with varied timing on different parts. Another nice feature of Flash is that
you can add layer upon layer without causing problems. Years ago when animation was
copied onto clear cels and painted, additional layers meant that the lower layers would
appear lighter: therefore, the cel painter had to paint compensating colors on the upper lev-
els so that they would all match. (Do you need to know this? Yes! So that you’ll use Flash
layers to best advantage.)

Dialog Diagram
This technique should be used as a guide to help you get your dialog timing. Write a line of
spoken dialogue on a piece of paper. Then, listen to the sound track very carefully and
decide where the major emphasis is; for example the line, “It’s a sunny day,” could have an
emphasis in any of these variations: “IT’S a sunny day,” “It’s A sunny day,” or “It’s a SUNNY
day.” Next, above the sentence draw a line, almost like you are drawing a tent, with the
highest point above the word that’s pronounced with the strongest emphasis. Then, as
you’re animating, refer back to this diagram, and when you get to the key word or words,
exaggerate the action. More often than not, the character’s head will rise on this word, or
other factors will be brought into play to augment the dialog.

Animation Business
To create the most interesting character animation, avoid static talking heads. What the vet-
eran animators called business is nearly a lost art. Think of Baloo, the bear, in Jungle Book,
when he pulls out a tree and starts to scratch his back with it, while he’s delivering his song.
Think how much less engaging this would have been if he’d just stood there singing. Or,
consider Medusa, in The Rescuers, in the scene in which she talks to Penny while she’s
plucking her eyebrows. This action informs us about her character and makes her much
more engaging to watch. Look for these opportunities; it will transform your moving
graphic image into a real character.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1066

1067Chapter 37 ✦ Creating Cartoon Animation with Flash

Summary
✦ Flash can be a powerful tool for the creation of broadcast-quality cartoons. In

such cases, many of the usual file-size concerns related to Flash development
are set aside because work in this genre leads to big files.

✦ There are many ways to create effective backgrounds and scenery. These
techniques include the use of bitmaps, layers, multiplane pans, blurring to
simulate depth, and innumerable combinations of these basic techniques.

✦ The task of a cartoon animator is to express motion and emotion. Anticipation
and overlapping actions are basic tools used by cartoon animators to express
motion and emotion.

✦ Coloring the art is critical to the final quality of the cartoon — the model
sheet, speed coloring, and the use of temporary backgrounds ease the task
and lead to greater consistency.

✦ Flash tweening, including instance swapping and motion guides, is one of the
most useful aspects of Flash as a cartoonist’s tool.

Artists Animate, Computers Don’t
Flash is a great tool, but that’s all it is—a tool. It will not animate for you. As they say at Pixar,
“artists animate, not computers.” With only a little artistic experience it is possible to do mini-
mal graphics and simple animation, but for complex character animation there’s no escaping
the fact that you’ll need to do a lot of other studying. This doesn’t mean that it has to be a
hard grind, because it can be a lot of fun. Effective study ranges from sketching at the zoo to
videoing various things that might be used for later reference. Sketching is good because you
build a visual memory bank that you can recall at any time. You will be surprised at what your
subconscious stores away. I once designed a character for a movie that looked very much like
my dad, but I had no idea until someone pointed it out. You may have observed something
from many years ago that may appear in a scene you are currently animating.

Artists draw from their experiences and much this shows in their work. It’s a little like hand-
writing: We are all taught the forms of each letter, yet everyone has distinctly different
handwriting. In the hands of an accomplished animator, it’s the same with the Flash ani-
mation tools. Although there are set rules and guidelines, within those constraints we can
create something unique and individual.

Richard Bazley has no memory of popular songs from the year in which he graduated from Exeter High School
in his native Devon, England (it was 1979). We surmise that’s because he was so focused upon becoming an
animator. A short list of Richard’s early credits includes work on Who Framed Roger Rabbit and Pocahontas.
More recently, he was a lead animator on Hercules, The Iron Giant, and Osmosis Jones. Richard discovered
Flash by visiting www.shockwave.com. His favorite thing is to drink a pint of Boddingtons at the Double Locks
Hotel and Pub, located by the Exeter Canal in the Devonshire countryside. Jon learned of Richard, and his
groundbreaking Flash animation The Journal of Edwin Carp, through a fortuitous e-mail correspondence.

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1067

1068 Part VII ✦ Using Flash with Other Programs

✦ Lip-synching, which is critical to fine cartoon animation, is not a push-button
task — even with Flash, an animator must understand the relationship
between expression and lip-synch, and have a working knowledge phonemes,
and synching with music and sound effects.

✦ After a cartoon is created in Flash, final output may include a trip to either
Premiere or After Effects for the final polish.

✦ Veteran animator Richard Bazley has compiled a number of insightful tricks
from his use of Flash to create his animated short, The Journal of Edwin Carp.
These include the judicious reuse of drawings, knowing when and where to
“cheat,” the advantages of simplicity, the power of layers, and the process
of making a stagger. He also shared some thoughts about the relevance
of performance and acting to animation, timing, diagramming dialog, and
animation business.

✦ The key point of this entire chapter is this: Artists animate, computers don’t.

✦ ✦ ✦

3515-3 ch37.f.qc 1/18/01 5:13 PM Page 1068

Planning Flash
Production with
Flowcharting
Software

One of the most important steps — if not the most impor-
tant step — to producing great Flash content is knowing

what steps you’ll have to take to move from the concept or
idea of the Flash movie to the finished product. This chapter
explores the basics of Flash production, and shows you how
to use Inspiration to build flowcharts. Whether you are a free-
lance Web consultant (or designer) or a member of a large
.com creative department, knowing how to manage the Flash
content production will save you plenty of headaches, time,
and money.

Workflow Basics
No matter what the size or scope, every project in which you
choose to participate should follow some type of workflow.
Whether it’s for print, film, video, or Web delivery (or all
four!), you should establish a process to guide the production
of your presentation.

Before we can explore the way in which Flash fits into a Web
production workflow, we need to define a holistic approach to
Web production in general. Figure 38-1 shows a typical Web
production with an Internet production company.

3838C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Knowing your
workflow

Exploring
Inspiration 6

Creating a
functional spec

Establishing naming
conventions

MD Dundon’s Flash
Workflow

✦ ✦ ✦ ✦

3515-3 ch38.f.qc 1/18/01 5:13 PM Page 1069

1070 Part VII ✦ Using Flash with Other Programs

Figure 38-1: There are two basic phases to Web production: preproduction
(shown here as Phase I) and production (Phase II).

Phase I: Establishing the concept and goals
As a Web developer or member of a creative team, you will be approached by com-
panies (or representatives for other departments) to help solve a problem with a
project. The problem may or may not be well defined by the parties coming to you.
Phase I’s goal is to thoroughly define the problem, offer solutions for the problem,
and approve one (or more) solutions for final production.

Defining the problem
Before you can help someone solve a problem, you need to determine what the
problem is, and whether there is more than one problem. When we say “problem,”
we don’t mean something that’s necessarily troublesome or irritating. Think of it
more as a math problem, where you know what you want — you’re just not sure
how to get there. When you’re attempting to define a client’s problem, you should
keep in mind the following:

✦ What’s the message they want to deliver? Is it a product that they want to
feature on an existing Web site?

✦ Who’s their current audience?

✦ Who’s their ideal audience? (Don’t let them say, “Everyone!”)

✦ What branding materials (logos, colors, and identity) do they already have
in place?

✦ Who are their competitors? What do they know about their competitors?

Business
Development

Initiatives

Creative
Development
and Solutions

Concept
Approval

Delivery
Quality

Assurance
(QA)

Production

Begin
Phase I

End
Phase II

End
Phase I

Begin
Phase II

3515-3 ch38.f.qc 1/18/01 5:13 PM Page 1070

1071Chapter 38 ✦ Planning Flash Production with Flowcharting Software

The last question points to a bigger picture, one in which the client may already have
several emotive keywords that define their brand. Try to define the emotional heart
and feeling of their message — get them to be descriptive. Don’t leave the meeting
with the words “edgy” or “sexy” as the only descriptive terms for the message.

Never go into a meeting or a planning session without a white board, or a big pad
of paper. It’s always a good idea to document everyone’s ideas and let the group
see the discussion in a visual format.

You can also start to ask technical questions at this point:

✦ What type of browser support do you want to have?

✦ Do you have an idea of a Web technology (Shockwave, Flash, DHTML, SVG)
that you want to use?

✦ Does the message need to be delivered in a Web browser? Can it be in a
downloadable application such as a standalone player? A CD-ROM? DVD?

✦ What type of computer processing speed should be supported? What other
types of hardware concerns might exist (for example, hi-fi audio)?

Of course, many clients and company reps will look to you for the technical answers.
If this is the case, then the most important questions are:

✦ Who’s your audience?

✦ Who do you want to be your audience?

Your audience will determine, in many ways, what type of technology to choose
for the presentation. If they say that ma and pa from a country farm should be able
to view the Web site with no hassle, then you may need to consider a non-Flash

Tip

Information Architects

You may have already been bombarded by the idea of information architecture. Informa-
tion architecture is the method by which sought data is represented and structured. Good
information architecture is usually equivalent to intuitive user interface design — visitors to a
well-organized Web site won’t spend much time to find what they came for.

We mention information architecture because the steps in Phase I are similar to the steps
that traditional architects take to build a comprehensive design and production strategy
before they start building any structure. While this may seem obvious enough, the sad fact
remains that most Internet sites (or projects) are planned as they’re constructed. Indeed,
we are told that production must move at Internet speed — directives can be given without
thorough research into other solutions to the problem.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1071

1072 Part VII ✦ Using Flash with Other Programs

presentation (such as HTML 3.0 or earlier), unless it’s packaged as a stand-alone
player that’s installed with a CD-ROM (provided by the client to ma and pa).
However, if they say that their ideal audience is someone who has a 56KB modem
and likes to watch mature cartoons, then you’re getting closer to a Flash-based pre-
sentation. If the client has any demographic information for its user base, then ask
for it up front. It’s difficult to put on a show for a crowd if you don’t know who’s in
the crowd.

Stand-alone players are discussed in Chapter 42, “Using Players, Projectors, and
Screensaver Utilities.”

Determine the project’s goals
The client or company rep came to you for a reason — they want to walk away with a
completed project. As you initially discuss the message and audience for the presen-
tation, you also need to get a clear picture of what the client expects to get from you.

✦ Will you be producing just one piece of a larger production?

✦ Do they need you to host the Web site? Or do they already have a Web server
and a staff to support it?

✦ Do they expect you to market the presentation? If not, what resources are in
place to advertise the message?

✦ When does the client expect you to deliver proposals, concepts, and the
finished piece?

✦ Will they expect to receive copies of all the files you produce, including your
source .FLA files?

✦ What are the costs associated with developing a proposal? Will you do work
on speculation of a potential project? Or will you be paid for your time to
develop a concept pitch? (You should determine this before you walk into
your initial meeting with the client.) Of course, if you’re working with a pro-
duction team in a company, you’re already being paid a salary to provide a
role within the company.

At this point, you’ll want to plan the next meeting with your client or company
rep. Give them a realistic time frame for coming back to them with your ideas. This
amount of time will vary from project to project, and will depend on your level of
expertise with the materials involved with the presentation.

Creative exploration: Producing a solution
After you leave the meeting, you’ll go back to your design studio and start cranking
out materials, right? Yes and no. Give yourself plenty of time to work with the client’s
materials (what you gathered from the initial meeting). If your client sells shoes,
read up on the shoe business. See what the client’s competitor is doing to promote

Cross-
Reference

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1072

1073Chapter 38 ✦ Planning Flash Production with Flowcharting Software

their message — visit their Web site, go to a store and compare the products, and
read any consumer reports that you can find about your client’s products or ser-
vices. You should have clear understanding of your client’s market, and a clear pic-
ture of who your client is.

After you (and other members of your creative team) have completed a round of
research, sit down and discuss the findings. Start defining the project in terms of
mood, response, and time. Is this a serious message? Do we want the viewer to laugh?
How quickly should this presentation happen? Sketch out any ideas you and any
other member of the team may have. Create a chart that lists the emotional keywords
for your presentation.

At a certain point, you need to start developing some visual material that articu-
lates the message to the audience. Of course, your initial audience will be the client.
You are preparing materials for them, not the consumer audience. We assume that
you are creating a Flash-based Web site for your client. For any interactive presen-
tation, you need to prepare the following:

1. An organizational flowchart for the site

2. A process flowchart for the experience

3. A functional specification for the interface

4. A prototype or a series of comps

To see how Inspiration can be used to make flowcharts, skip to the “Using
Inspiration to Create Flowcharts” section later in this chapter.

An organizational flowchart is a simple document that describes the scope of a site or
presentation. Other names for this type of chart are site chart, navigation flowchart,
and layout flowchart. It will include the major sections of the presentation. For exam-
ple, if you are creating a Flash movie for an animation site, you might have a main
menu and four content areas: parody, slapstick, anime, and mature. In an organiza-
tional flowchart, this would look like Figure 38-2.

Figure 38-2: A sample organizational chart for an animation site.

Main Menu

Parody Slapstick Anime Mature

Cross-
Reference

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1073

1074 Part VII ✦ Using Flash with Other Programs

A process flowchart constructs the interactive experience of the presentation, and
shows the decision-making process involved for each area of the site. There are few
types of process charts. A basic process flowchart will display the decision-making of
the end-user (for example, what type of options does a user have on any given page
of the site?). Another type of flowchart will show the programming logic involved for
the end-user process chart. For example, will certain conditions need to exist before
a user can enter a certain area of the site? Does he/she have to pass a test, finish a
section of a game, or enter a username and password? Refer to Figure 38-3 for a pre-
liminary flowchart for the believeGOSSIP.com Shockwave Web site. We discuss the
actual symbols of the flowchart later in this chapter.

Figure 38-3: In this process chart, you can see that
the user watches a teaser animation, which is
followed by three linear animations of the characters
for the site. After all the animations have finished
playing, the user can decide which room to explore.

A functional specification (see Figure 38-4) is a document that breaks down the ele-
ments for each step in the organizational and/or process flowchart. This is by far
the most important piece of documentation that you can create for yourself and
your team. Each page of a functional specification (or functional spec) will list all
the assets used on a page (or Flash scene, keyframe, Movie Clip) and indicate the
following information for each asset:

Who knows
the truth?

Travis Room Jones Room Derrick Room

1intro teaser
animation
with audio

Travis
"profile"

Jones
"profile"

Derrick
"profile"

Note: should these run simutaneously?
All three on the screen at one time?

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1074

1075Chapter 38 ✦ Planning Flash Production with Flowcharting Software

✦ Item ID: This is part of the naming convention for your files and assets. It
should be part of the filename, or Flash symbol and instance name. It should
also be used in organizational and process flowcharts.

✦ Type: This part of the spec defines the name you are assigning to the asset, in
more natural language, such as Home Button.

✦ Purpose: You should be able to clearly explain why this element is part of the
presentation. If you can’t, then you should consider omitting it from the project.

✦ Format: This column will indicate what technology (or what component of the
technology) will be utilized to accomplish the needs of the asset. In an all-
Flash presentation, list the symbol type or timeline component (frames,
scene, nested Movie Clips) necessary to accomplish the goals of the asset.

Figure 38-4: This functional spec displays the six components of a Flash-based
navigation bar, which will appear on the main menu of our animation content site.

Finally, once you have plan for your project, you’ll want to start creating some
graphics to provide an atmosphere for the client presentation. Gather place-
ment graphics (company logos, typefaces, photographs) or appropriate “tempo-
rary” resources for purposes of illustration. Construct one composition (or comp)

No. Type Purpose Content Format

1.A Navigation Bar To provide easier access
to site content

A menu bar that is
fixed at the top edge of
the browser window

PROJECT:
Flash Interface v2.0

SECTION:
1 of 5 (Main Menu)

1.A.1 Directory Access To provide a means of
accessing any of the
animation sections

Names of each content
area (for example slap-
stick, parody, an so on)

Flash Horizontal menu
list or drop-down menu

1.A.2 Home Button Allow user to always get
back to the opening page

The text "Home" Flash Text button

1.A.3 Search Field To provide a means of
entering a specific search
word or phrase

A white text field with
the word "search" next
to it.

Flash Dynamic Text
field

1.A.4 Login/Reg To capture user's e-mail
address

Text field(s) to enter
name and e-mail address

Flash pop-up menu (or
box) OR HTML/Java-
Script pop-up window

1.A.5 Back Button Allow the user to see the
last page viewed without
using menu items

The text "Back" Flash Text button

1.A.6 Conpany Logo/ID Provide means of
company branding

Company name in
Officina Sans Bold, with
tag line

Flash graphics

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1075

1076 Part VII ✦ Using Flash with Other Programs

that represents each major section or theme of the site. In our animation content
site example, you might create a comp for the main page and a comp for one of the
animation sections. Don’t create a comp for each animation section. You simply
want to establish the feel for the content you will create for the client. We recom-
mend that you use the tool(s) with which you feel most comfortable creating con-
tent. If you’re better at using FreeHand or Photoshop to create layouts, then use
them. If you’re comfortable with Flash for assembling content, then use it.

Do not use copyrighted material for final production use, unless you have secured
the appropriate rights to use the material. However, while you’re exploring creative
concepts, use whatever materials you feel best illustrate your ideas. When you get
approval for your concept, improve upon the materials that inspired you.

Then, you’ll want to determine the time and human resources required for the entire
project or concept. What role will you play in the production? Will you need to hire
outside contractors to work on the presentation (for example, character animators,
programmers, and so on)? Make sure you provide ample time to produce and thor-
oughly test the presentation. When you’ve determined the time and resources nec-
essary, you’ll determine the costs involved. If this is an internal project for your
company, then you won’t be concerned about cost so much as the time involved —
your company reps will want to know what it will cost the company to produce the
piece. For large client projects, your client will probably expect a project rate — not
an hourly or weekly rate. Outline a time schedule with milestone dates, at which
point you’ll present the client with updates on the progress of the project.

It’s beyond the scope of this book to explore the workflow process any further.
However, there are many excellent resources for project planning. One of the best
books available for learning the process of planning interactive presentations is
Nicholas Iuppa’s Designing Interactive Digital Media. We strongly recommend that
you consult the Graphic Artists Guild Handbook of Pricing and Ethical Guidelines and
the AIGA Professional Practices in Graphic Design, edited by Tad Crawford, for infor-
mation on professional rates for design services.

You can search for recommended design, computer, and art books at the Makers’
Web site, www.theMakers.com/resources.

Approving a final concept and budget
After you have prepared your design documents for the client, it’s time to have
another meeting with the client (or company rep). Display your visual materials
(color laser prints, inkjet mockups, and so on), and walk through the charts you
have produced. In some situations, you may want to prepare more than one design
concept. Always reinforce how the presentation addresses the client’s message and
audience.

See Todd Purgason’s Expert Tutorial on Flash and FreeHand, in Chapter 31. He
offers excellent suggestions for creating presentation boards in FreeHand.

Cross-
Reference

Note

Caution

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1076

1077Chapter 38 ✦ Planning Flash Production with Flowcharting Software

When all is said and done, discuss with the client the options that you presented.
Gather feedback. Hopefully, the client prefers one concept (and its budget) and
gives you the approval to proceed. It’s important that you leave this meeting know-
ing that:

1. The client has signed off on the entire project or presentation.

2. The client wants to see more exploration before committing to a final piece.

In either case, you shouldn’t walk away not knowing how you’ll proceed. If the
client wants more time or more material before a commitment, negotiate the terms
of your fees that are associated with further conceptual development.

Expert Tutorial: Designing for Usability, by Scott Brown

As mentioned earlier in this chapter, the first step in developing a Flash site, or any other
type of site, is to define the information architecture. In this tutorial, you learn how to define
the goals and mission of the site.

Define the goals and mission of the site
Defining the mission and goals is to lay the foundation upon which to build your project. To
create a solid project foundation we must begin by questioning everything, especially the
company’s business model. Start with these questions:

1. What is the mission or purpose of the organization?

2. Why does this organization want a Web site?

3. Will the Web site support the mission of the organization?

4. What are the short- and long-term goals of the Web site?

5. Who are the intended audiences?

6. Why will people come to the site?

7. Are we trying to sell a product?

8. What is the product or products?

9. Do we have a unique service?

10. What makes the service different?

11. Why will people come to the site for the first time?

12. Will they ever come back?

13. Why would they come back?

Continued

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1077

1078 Part VII ✦ Using Flash with Other Programs

Continued

The list of questions can go on forever. After we have gathered a list of questions we need
to get the answers. Ask around the organization, ask your friends, ask strangers, just ask
people. After the answers have been collected it is time to filter through them to create a
list of goals that are based on the responses. From this list of goals, we must define further
the answer to the question, “Who is the audience?”

Define the Audience
The audience can be defined as the potential users of the site and by their intentions or
tasks that they might have when they come to your site. Are they kids or adults? Are they
generation x, y, or z? Are they into rave music or country music? So, who is your audience?
It’s not an easy question, because there are so many possibilities. Start with a list of all the
possible audiences that the organization would like to reach, and then rearrange the list in
a ranking order, of most important audience to least important audience. From the audi-
ence ranking list, create a list of possible goals and needs of each audience.

Create Character Scenarios
With the list of possible goals take the process one step further by creating scenarios of the
users. Think of it as writing a screenplay for your Web site. Create multiple characters that
represent the majority of visitors with hobbies, likes, dislikes, and, most importantly, a task
to complete on the site. The object of the scenario game is to get into the characters’ heads
to learn why and how they would use your site. From their view point you will have an eas-
ier time creating a list of needs and wants for the character, a wish list if you will.

After the scenarios are written, the next step in the process is to gather the team together
and analyze the Web sites of the competition.

Analyze the Competition
Studying the competition gives us the chance to generate a list of what kind of features they
are offering and to determine whether our feature list, the one that we created from the
scenarios, is missing anything. If our wish list is lacking anything in comparison to our com-
petition, now is a good time to expand the user’s functionality requirements, and to return
to the scenarios to determine whether the competition’s functionality matches your charac-
ter’s needs. If it does you should try to elaborate on their functions and create new func-
tions of your own — the classic case of outdoing your competition.

Reach a Consensus on What Good Design Is
At this time in the process, have the team come together to develop a definition of what is
“good site design.” This step is most beneficial for any contract designer trying to gain an
understanding of your client’s design viewpoint. To create this “good design” definition, the
team should observe a good number of sites and document everybody’s likes and dislikes
for each site. From the documentation of this exercise, everyone on the team will have a
better understanding of what to strive for and what to try to avoid.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1078

1079Chapter 38 ✦ Planning Flash Production with Flowcharting Software

Structure the Content
Now you should have several documents to refer to — the project mission statement, the
user functionality needs (wish list), and the organization’s definition of good design. With
these three documents in hand, the next step is to blend them into one master menu of
content inventory. Think of each item on this list as a building block. We now have all the
blocks needed to construct the site. The only problem is that these blocks are in a big pile
with no organization (structure). Naturally, the next step is to begin creating layouts of the
site, therefore providing structure. But before we can begin the page layout process, we
need to educate ourselves on some Web site usability issues.

Factors of Usability
Designing for usability is just that, designing a site that is usable by a user. A usable site
aims to be a natural extension of a user’s expectations and needs. A user-friendly site will
try to mirror its structure to that of the user’s experience and goals. Just to make the task at
hand a little more complex, keep in mind that user expectations learned in other areas of
life affect how the user will think your site works. So, how can we design a site to meet our
user’s expectations? Well, if you did your homework on your audience and wrote the char-
acter scenarios, you should have a pretty good idea of the targeted audience’s expectations.
By knowing the general background of a user, you could include metaphors into the struc-
ture of the site. Using metaphors is a great way to help users draw upon knowledge they
already have, thereby making the site easier to use. By matching the site structure to the
user’s experience, the amount of time it takes for the user to learn how to operate or navi-
gate the site is minimized. The shorter the learning curve for the site, the better. If you come
to a site when you have a specific goal in mind and it takes you ten minutes to figure out
how to achieve your goal, would you call that a positive experience? Most likely not!

The goal of the designer is to create an attractive site without distracting the users from
their goals. Forcing the user to spend a noticeable amount of time trying to learn how to
achieve their goal is very taxing on their patience, and is a good path to creating a negative
experience. If you are trying to sell something, chances are you want customers to be happy
not annoyed. One way to make your customers experience more enjoyable is to make their
experience as easy as possible. So, how do you create a positive experience? Let’s start with
the most basic of a user needs, the ability to navigate.

Users need to know at all times where they are in the site, where they have been, and
where they can go. When developing a navigation system, be sure to keep the navigation
visually consistent. Inconsistency in the navigation can cause the user to be confused and
frustrated. A great concept for a navigational aid is the use of a breadcrumb trail. The bread-
crumb system is a visual way to show the user the path they took to get to their current
position in the site. Beyond displaying the path of the user, the system gives the user the
ability to back track to any page displayed in the path. However, remember that navigation
is not the goal of the user, only an aid. The user is there to find or buy something; the user
is there for the content. So, make the content the first read on all your pages. Navigational
elements are there to support the content, not eclipse it.

Continued

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1079

1080 Part VII ✦ Using Flash with Other Programs

Continued

Of course, navigation is not the only factor to considerwhen designing for usability. Other
variables such as the length of text on a page can affect the usability of a site tremendously.
It doesn’t take a usability expert to know that people prefer to read long sections of text on
paper instead of the screen. When users come across large articles, they usually print the
page or pages and then read the printout. It’s a fact that reading text on a monitor is far
more taxing on the eyes than reading text on paper. Therefore, people are less inclined to
read large amounts of text on the Web. As designers, we must accommodate these changes
in reading patterns. Keep these simple guidelines in mind when writing text for the Web. Try
to make the text scannable, because readers skim Web content. Bold the important ideas
or bullet list the information. But most of all, keep the text short.

In addition to the treatment of text, there are several other tips to help improve the usabil-
ity of a site. The concept of redundant links is an excellent method to support users with dif-
ferent backgrounds and goals. With redundant links a user has more than one way to get to
the desired content. The user might have the option to click a text link, a graphic link, or
even a text link that is worded differently. Each redundant link should be designed to
accommodate a wide range of users. So, where on the page should all these usability ele-
ments go?

I can’t tell you where you should place your navigation system or your redundant links.
However, I can provide you with some information on eye-tracking studies that will help
you make an educated decision. Yes, it is true that usability researchers are able to actually
monitor and record what you are looking at when viewing a Web site. Based on the
research they have found that when a Web page loads, our eyes are looking at the center of
the page then move over to the left and then sometimes to the right. Of course, these find-
ings are dependent on the user’s cultural background. Nevertheless, the scary finding is that
the users rarely look to the right! This is most likely because most sites use the right side of
the page as a place to add sidebar elements, items of lesser importance. This is also a good
example of how user’s past experience can affect their future experiences. So, how does
Flash fit into Web site usability factors?

Flash is a great design tool to create amazing interfaces. Flash gives the designer the free-
dom to create almost anything they desire. But the flexibility given to the designer is also
Flash’s greatest weakness from a usability perspective. Flash is a great tool for creating ani-
mation but when used by an inexperienced Web designer the amount of animation can
easily go overboard. Just because you can animate an object doesn’t mean that you should.
The eye is very sensitive to the smallest amount of animation or movement in its peripheral
view, pulling the eyes’ attention away from the site’s main content. On the plus side, ani-
mation used as a transitional element is very beneficial for the user. Animated transitions
enable the user to follow the navigation process, therefore gaining a better understanding
of how the site might work.

Along with the problems of animation abuse, Flash enables the designers to create their
own graphical user interface (GUI) elements. This is great for the designers, but the users
are often left out in the cold with all this newfound freedom.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1080

1081Chapter 38 ✦ Planning Flash Production with Flowcharting Software

This design freedom is forcing the user to learn, almost from scratch, how to operate a scroll
bar or a navigation bar. If you recall, earlier I mentioned the importance of a short learning
curve for the users. These extreme creative versions of standardized GUI elements might
rank high on the “cool” scale but they really throw a monkey wrench into the users goal and
expectations. GUI standards are developed to help create a consistent experience across all
platforms in an effort to eliminate any unpleasant surprises. Again these usability problems
can be avoided in Flash by educating the designers about the issues at hand and finding
solutions based on the set standards.

Other usability issues with Flash concern the actual plug-in nature of Flash. Unfortunately,
because Flash requires a plug-in to work in the browsers the Flash movies are unable to
take advantage of some of the browsers built-in capabilities such as the browser’s Back
button and the capability to display history for the links by changing the color of the links
that have been clicked. The history feature can actually be simulated in Flash by capturing a
history variable in the ActionScript to display a history state for the button (refer to Chapter
21, “Planning Code Structures,” for more information on ActionScripting). As for the
browser’s Back button, the problem is that when the button is pressed, the browser will
take the user back to the previous HTML page, not to the previous state in the Flash movie.
It’s a nice little surprise to unsuspecting users. One solution to this problem is to pop up the
Flash movie in a new browser window (via JavaScript) with all the browser’s navigation ele-
ments removed (in other words, no toolbar, no location bar, no menus, and so on). No
Back button on the browser, no problem right?

Build Mockups of the Site
We are now ready to begin mocking up the site structure using index cards, sticky notes,
and other common office supplies. Creating these paper mockups will save the develop-
ment team a large amount of time. The beauty of the paper mockups is that you can quickly
create a navigational system and find the major flaws without spending long hours devel-
oping a beautiful rendering of a structure that might be flawed. There is nothing worse than
spending months developing a product with a faulty structure only to discover the mistake
just before launch! Which brings me to the final topic, test your site.

Test the Site on Real Users
Testing the site is the most important step in creating a usable site. The key to testing the
site is to not test it on people of the organization, but to test it on people in the target audi-
ence that was defined in the second step of this tutorial. Test the site on the real users. It’s
usually easier to test the site by using people who are familiar with the project. The prob-
lem with that practice is that the people are familiar with the project. You want to test fresh
eyes and minds in order to get optimum feedback. For testing purposes, create a list of sev-
eral tasks to complete on the site. The tasks should be pulled from the list of possible users’
goals defined in the early steps of the project. After the test subject has completed a task, or
tried, give them a post-task questionnaire with questions such as:

“How would you rate the quality of the content on this site?”

unacceptable –3 –2 –1 0 1 2 3 excellent

Continued

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1081

1082 Part VII ✦ Using Flash with Other Programs

Phase II: Producing, testing, and staging the
presentation
Once your client or company executives have signed off on a presentation concept,
it’s time to rock and roll! You’re ready to gather your materials, assemble the crew,
and meet an insane production schedule. This section provides a brief overview of the
steps you need to take to produce material that is ready to go “live” on your Web site.

Assembling assets
The first step is to gather (or start production of) the individual assets required for
the Flash presentation. Depending on the resources you included in your functional
spec and budget, you may need to hire a photographer, illustrator, animator, music
composer (or all four!) to start work on the production. Or, if you perform any of
these roles, then you’ll start creating rough drafts for the elements within the pro-
duction. At this stage, you’ll also gather high-quality images from the client for their
logos, proprietary material, and so on.

Making the Flash architecture
Of course, we’re assuming that you’re creating a Flash-based production. All the
resources that you have gathered (or are working to create) in Step 1 will be assem-
bled into the Flash movie(s) for the production. For large presentations or sites,
you’ll likely make one master Flash movie that provides a skeleton architecture for
the presentation, and use loadMovie() to bring in material for the appropriate sec-
tions of the site.

Before you begin Flash movie production, you should determine two important fac-
tors: frame size and frame rate. You don’t want to change either of these settings
midway through your project. Any reductions in frame size will crop elements that

Continued

Also, leave some room for the test subject to elaborate on the questions. After the testing is
finished, review your findings and determine what needs to be fixed. After the problems are
fixed, test the site again, but on new users. Repeat the process until you have a product that
meets the defined goals of the organization and the users. Keep asking yourself this ques-
tion, “Is the interface helping the users accomplish their goals?” When all else fails you can
always depend on the greatest guideline of the century, Keep It Simple. Oh, so true.

Scott Brown contributed a Fireworks tutorial in Chapter 30, “Working with Raster Graphics.” You can find his
biographical information there.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1082

1083Chapter 38 ✦ Planning Flash Production with Flowcharting Software

weren’t located near the top-left portion of the Stage — you will need to recompose
most of the elements on the Stage if you used the entire Stage. Any changes in your
frame rate will change the timing of any linear animation and/or sound synchroniza-
tion that you have already produced.

Staging a local test environment
As soon as you start to author the Flash movies, you will create a local version of
the presentation (or entire site) on your computer, or a networked drive that every-
one on your team can access. The file and folder structure (including the naming
conventions) will be consistent with the structure of the files and folders on the
Web server. As you build each component of the site, you should begin to test the
presentation with the target browsers (and Flash Player plug-in versions) for your
audience.

HTML page production
Even if you’re creating an all-Flash Web site, you need a few basic HTML docu-
ments, including:

✦ HTML frameset document (if you’re creating a scalable Flash movie). The frame-
set has two frames: One displays the Flash movie at 100 percent of the browser
window size, and the other one is hidden. Colin Moock explains this browser
window technique in Chapter 41, “Integrating Flash Content with HTML.”

✦ A plug-in detection page, that directs visitors without the Flash Player plug-in
to the Macromedia site to download the plug-in.

✦ HTML page(s) to display any non-Flash material in the site within the browser.

You will want to construct your basic HTML documents holding the main Flash
movie as you develop the Flash architecture of the site.

Staging a server test environment
Before you can make your Flash content public, you will need to set up a Web
server that is publicly accessible (with login and password protection) so that you
can test the site functionality over a non-LAN connection. This also enables your
client to preview the site remotely. Once quality assurance (QA) testing has fin-
ished (the next step that follows), then you will move the files from the staging
server to the live Web server.

We have noticed problems with larger .SWF files that weren’t detected until we
tested them from a staging server. Why? When you test your files locally, they’re
loaded instantly into the browser. When you test your files from a server (even
over a fast DSL or cable modem connection), you can test your .SWF files over

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1083

1084 Part VII ✦ Using Flash with Other Programs

slower network conditions. Especially with preloaders or loading sequences,
timing glitches may be revealed during tests on the staging server.

Quality assurance testing
In larger corporate environments, you’ll find a team of individuals whose sole
responsibility is to thoroughly test the quality of a nearly finished production (or
product). If you are responsible for QA, then you should have an intimate knowl-
edge of the process chart for the site. That way, you know how the site should func-
tion. If a feature or function fails in the production, QA will report it to the creative
production team. QA teams will test the production with the same hardware and
conditions of the target audiences, accounting for variations in:

✦ Computer type (PC versus Mac)

✦ Computer speed (top-of-the-line processing speed versus minimal supported
speeds, as determined by the target audiences)

✦ Internet connection speeds (as determined by target audiences)

✦ Flash Player plug-in versions (and any other plug-ins required by the
production)

✦ Browser application and version (as determined by target audiences)

If you are a freelance designer or operate a small company, then you should realize
that there is no such thing as a useless computer — recycle your older computers
as test platforms for target audiences.

After QA has finished rugged testing of the production, then, pending approval by
the client (or company executives), the material is ready to go live on the site.

Maintenance and updates
After you’ve celebrated the finished production, your job’s not over yet. If you
were contracted to build the site or presentation for a third party, then you may be
expected to maintain and address usability issues provided by follow-ups with the
client and any support staff they might have. Be sure to account for periodic main-
tenance and updates for the presentation in your initial budget proposal. If you
don’t want to be responsible for updates, make sure you advise your clients ahead
of time to avoid any potential conflicts after the production has finished.

You should have a thorough staging and testing environment for any updates you
make to an all-Flash site, especially if you’re changing major assets or master archi-
tecture files. Repeat the same process of staging and testing with the QA team that
you employed during original production.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1084

1085Chapter 38 ✦ Planning Flash Production with Flowcharting Software

Using Inspiration to Create Flowcharts
Inspiration 6 is a flowcharting application for Windows and Macintosh. By using
Inspiration, you can create the flowcharts with a variety of artwork symbols, includ-
ing ANSI chart graphics that work with the Gantt system of flowcharting.

For the purposes of this chapter, we show you how to create an organizational
chart (a.k.a. orgchart) and a process chart.

You can find trial versions of Inspiration 6 at www.inspiration.com .

Building an organizational chart
To create an organizational chart (site chart) for your Flash or Web concepts, you
need to have a list of all the sections within the concept. For this example, we make
an organizational chart for an animation site that has:

✦ A main menu screen

✦ Dedicated sections for parody, slapstick, anime, and mature animations

✦ A submission form for new animations

✦ The featured animation for each section

✦ Subsection categories for each section that contain top ten, visitors’ choice,
and archived animations

With that, let’s build an organizational chart.

1. Open Inspiration 6. By default, the Tip of the Day dialog will appear. Click
Close to dismiss the window.

2. A new untitled document window will already be open, with the basic library
of symbols available in the Symbol Palette. Each library has a specific set of
predefined symbols. You can change the library set by clicking either the left
or right arrow located at the top of the Symbol Palette. The down arrow will
display the entire list of libraries available in Inspiration.

3. In the File ➪ Page Setup dialog (Mac) or the File ➪ Print Setup dialog (PC),
change the document’s orientation to Landscape.

4. Select the Main Idea symbol, which is already within the document window.
Click the Rectangle symbol, located in the first row of symbols in the Symbol
Palette. This will change the shape of the existing Main Idea symbol in the
document. Then, click the New Look button in the document toolbar. This
will change the default new symbol type to the Rectangle symbol.

On the
CD-ROM

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1085

1086 Part VII ✦ Using Flash with Other Programs

5. Click once inside the Main Idea symbol to change or add the text. The text
cursor will automatically become active inside the Rectangle symbol. Type
the text Main Menu.

6. With the Rectangle symbol still selected, click the RapidFire button, located in
the toolbar at the top of the document. The RapidFire feature enables you to
quickly create new symbols by typing text into a parent symbol and pressing
the Return key to move the new text into a child symbol. Once the RapidFire
button is depressed, a lightning bolt icon will appear next to your Main Menu
text. Type the text Parody, and press the Return key. A new lightning bolt icon
will appear after the Parody text, and, after a few seconds, a new symbol with
the Parody text will show up below the Main Menu symbol. By default, the
new symbol will be an Oval shape. We’ll change this shape in a later step.

7. With the RapidFire button still depressed, type Slapstick in the Main Menu
symbol, and press the Return key. Then, type Anime and press the Return
key. Use this same process to create Mature and Submission Form symbols
from the Main Menu symbol. At this point, turn off the RapidFire feature by
clicking its button in the toolbar.

8. Now, we’ll reposition the symbols so that they’re organized in a more readable
layout. Press Ctrl+A or Command+A to select all of the symbol, and click the
Arrange button on the document toolbar. Make sure that the Diagram Type is
set to Top Down Tree, and that the Links menu is set to Auto-90. Click OK, and
Inspiration will place all of the child symbols below the Main Menu symbol.

9. Now we will remove the arrowheads from the connecting lines — orgcharts
should not display flow directions like a process chart does. Select the con-
necting line between the Main Menu and Parody symbols. Then Shift+click the
other connecting lines between the Main Menu and remaining symbols. Then
choose Link ➪ Arrow Head Ending Point ➪ None. When you’re finished, your
chart should resemble Figure 38-5.

10. Save your Inspiration document as orgchart.ins.

11. Next, we will create child documents for each of the site sections. Select the
Parody symbol, and choose File ➪ Family ➪ Open Child (F6). Inspiration will
create a new diagram for the document. This diagram is contained with the
orgChart.ins file, but it will be printed on a separate page.

12. In the new diagram, select the Parody symbol, and click the RapidFire button
in the document toolbar. Again, create four Rectangle symbols below the
Parody Menu: Featured Animation, Top Ten Animations, Visitors’ Choice, and
Archived Animations (as shown in Figure 38-6). Then turn off the RapidFire
feature.

13. Save your Inspiration document.

14. Because our example has the same format for each section of the movie, it’s
not necessary to repeat Steps 11 and 12 for the other categories. However, if
each section had a different format, then you would want to define the con-
tent within each section at this point.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1086

1087Chapter 38 ✦ Planning Flash Production with Flowcharting Software

Figure 38-5: Your organizational chart should now show five separate
sections of your Flash movie.

Figure 38-6: Each section has four subsections.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1087

1088 Part VII ✦ Using Flash with Other Programs

That’s all there is to building an organizational chart. When you print the docu-
ment, the top-level drawing (the main document) will print first, followed by each
drawing in the document.

You can view the completed orgchart file named orgChart.ins, located in ch38
folder of the Flash 5 Bible CD-ROM.

Creating a process chart
In this section, we create a process chart for our animation content site, which is an
all-Flash site. The process chart demonstrates the experience and decision-making
steps with the presentation. Our process chart will show:

✦ An intro animation with a “skip intro” button

✦ The Main Menu screen with a showcase animation window

✦ Navigation links to other content areas in the site

✦ The steps to submit an animation to the site

For this example, we will not continue with the orgchart file we created in the last
section. Close that file before you start the steps in this section.

1. Open Inspiration 6, or, if it’s already open, create a new document. Open the
Process ➪ Flowchart1 symbol library, from the drop-down menu accessible
from the down arrow at the top of the Symbol Palette. Also, make sure
Utility ➪ Grid Snap is turned on.

2. Select the Main Idea symbol in the document, and click the Rounded Rectangle
symbol in the first row of symbols in the Symbol Palette.We will use this sym-
bol to indicate an animated sequence in our process chart. Type intro anima-
tion in the Main Idea symbol.

3. Because we will give the user the option to skip this animation, we will insert
a decision point into the process chart. Click the right arrow of the Create but-
ton in the document toolbar. This will add a new Rounded Rectangle symbol
to the right of the intro animation symbol. Select the Decision symbol (the dia-
mond-shaped one located in the left column of the Symbol Palette), and click
once to the right of the intro animation symbol. Type skip intro in the
Decision symbol.

4. Click the right diagonal of the Create button in the document toolbar, and
select the Rectangle symbol. Type Home Screen in this new symbol.

5. Click the down arrow of the Create button, and select the Rounded Rectangle
symbol. Type Showcase Animation in the new symbol.

On the
CD-ROM

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1088

1089Chapter 38 ✦ Planning Flash Production with Flowcharting Software

6. Reselect the Home Screen symbol, and click the diagonal left-down arrow of
the Create button. Select the Decision symbol. Type Main Menu in the new
symbol.

7. Click the right-down arrow of the Create button in the document toolbar. Type
Parody in the new symbol. Now, we’ll change the active library for the Symbol
Palette, in order to select a new symbol type for the Parody symbol. Click the
right arrow at the top of the Symbol Palette to advance to the next library,
Flowchart2. Select the Document symbol, which is located in the leftmost
symbol in the first row of Flowchart2 symbols.

The Document symbol is used to indicate a continuation of the process chart on
another page. There will not be enough room to show the processes of the Parody
section within this drawing.

8. Reselect the Main Menu symbol, and repeat the first part of Step 7 for the
Slapstick, Anime, and Mature sections of the site.

9. Select the Main Menu symbol with the Arrow Tool, and click the left arrow of
the Create button. Type Submission Form in this new symbol. Then click the
Rectangle symbol in the Symbol Palette to change its shape.

10. Click the down arrow of the Create button and type Request info in the sym-
bol. Click the left arrow of the Symbol Palette to access the symbols from the
Flowchart1 symbol library and select the Decision symbol to change the
shape of the Request info symbol.

11. Click the right-down arrow of the Create button, and, in the new symbol, type
Visitor Name. Change its symbol shape to the short, rounded rectangle, found
in the lower left of the Symbol Palette (third row from the bottom).

12. Reselect the Request info symbol, and repeat Step 11 for two more short
rounded rectangle symbols, Animation Title and Animation URL.

13. Now, our flowchart symbols are complete. At this point, Shift+click all of the
diagonal connecting lines for your chart. Choose Link ➪ Auto-90. Then, using
the Arrow Tool, click and drag the arrowhead end points of each line to con-
nect to the appropriate side of each symbol. Use Figure 38-7 as a reference for
the direction and flow of the connecting lines. You may need to reposition the
symbol shapes to prevent the symbols from overlapping.

14. Save your Inspiration file as processChart.ins.

After you have a process flowchart, you are ready to start building the functional
specification for your Flash movie. Refer to the earlier sections of this chapter for
more information.

You will find the completed process chart file, processChart.ins, in the ch38 folder
of the Flash 5 Bible CD-ROM.

On the
CD-ROM

Note

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1089

1090 Part VII ✦ Using Flash with Other Programs

Figure 38-7: This process flowchart maps the user’s experience
of the animation site.

Expert Tutorial: Storyboarding and Planning
Interactivity, by MD Dundon

MD Dundon is a filmmaker and experience designer who found Flash when it was still
known, “as FutureSplash, while I was working in Director doing interface design and
CD-ROM work.” She’s credited with having taught the first Flash classes in the world, at San
Francisco State University. She’s the founder of Paradox Productions (film) and a design
consulting business, Flash411.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1090

1091Chapter 38 ✦ Planning Flash Production with Flowcharting Software

Planning your interactivity. Sounds boring, huh? In reality, it’s one of the most exciting parts
of the process. How else do you save yourself sleepless nights, accomplish enormous pro-
jects with minimal stress, and keep your clients stunned and happy with both your progress
and your bug-free development?

I’ve always been amazed at how few people in our business make the time for a prepro-
duction phase in their workflow. I’ve heard some great excuses: “My client doesn’t want to
pay for me to do that extra stuff.” “They just want me to build it.” “They don’t want to answer
all those questions.” “I’m not a designer, I can’t draw. I’m best if I just jump in and do it and
create as I go.” All these are perfectly valid excuses, but completely beside the point.

A preproduction process is absolutely necessary — not because your client or director wants
it, but because it speeds and calms your own process of development. If you don’t know
how to draw or design, then you need to figure out creative ways around that while still get-
ting your planning finished. Or, if you really do work better by just jumping in, then reverse
the order in which you do the processes: Try functionality tests and prototyping first, and
then go back through to make your interaction storyboards.

Most of the storyboards and examples discussed in this tutorial are located in the tutorial
folder in the ch38 folder of the Flash 5 Bible CD-ROM. Although we’ve included a few
examples within the text, we think that you’ll find them much more usable as files that you
can open on you own machine. Anticipating potential font problems, we’ve also exported
these as .SWFs.

Preproduction Process
Know your project — because, if you don’t, who will? That may seem like an obvious state-
ment, but several years ago I realized that I kept expecting everyone else to know what was
going on, when the reality was that I still had to figure it out for myself. I realized that if I
wanted to be really good at developing multimedia projects, and if I also wanted to deliver
them on time, on budget, and with my sanity intact, then I’d better be able to answer all of
my own and my client’s questions about every aspect of the project. I’ve discovered the
easiest way to do this is with a really solid preproduction process. In the following
flowchart, you can see an overview of the process, which I’ll break out into each step in the
balance of this tutorial.

This is a basic preproduction flowchart, which is useful to a Flash developer because the
flowcharting process ensures that you will know what’s going on.

Continued

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1091

1092 Part VII ✦ Using Flash with Other Programs

Continued

Ramping Up the Project
Even if you do no other planning, I still suggest that you write down all of the functionality,
deliverables, and milestones that you and your client or project managers have decided on.
If you don’t have enough information to write this document, then you’ll be hard pressed to
bid on the project or to plan realistically how long the project might take.

RAMP UP
QUESTIONS

DELIVERABLE MILESTONE
DOCUMENT

LAYOUT STORYBOARD
(3 POSSIBLE DIRECTIONS) SIGN OFFSIGN OFF

LAYOUT STORYBOARD
(ALL SECTIONS) SIGN OFFFLASH PRESENTATION

INTERACTION WRITTEN SIGN OFFINTERACTION STORYBOARD

PROTOTYPE ALPHA

FUNCTIONALITY TESTS

DELIVERABLE/MILESTONE DOCUMENT

SIGN OFF

RAMP UP QUESTIONS

LAYOUT STORYBOARD (3 POSSIBLE DIRECTIONS)

SIGN OFF

SIGN OFF

PROTOTYPE

SIGN OFF

FLASH PRESENTATION

SIGN OFF

LAYOUT STORYBOARD (ALL DIRECTIONS)

FUNTIONALITY TESTS

INTERACTION STORYBOARD

INTERACTION WRITTEN

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1092

1093Chapter 38 ✦ Planning Flash Production with Flowcharting Software

So, ask a lot of questions and get as many specifics as possible before you agree to the pro-
ject. At the very least, you should be able to answer these prep questions:

✦ Where is the project going to be displayed? (Web, local drive, kiosk, video, or multi-
ple media)

✦ What is the target audience? Who’s using this? (Age, usability skills, browsers, pro-
cessor speed, user goals, other user information or experience)

✦ Are there other projects like theirs that they admire? Why? (Look, feel, information
design, experience, stability) Get URLS, printouts, screenshots, or pictures of such
examples.

✦ If this is a Web project, do they want to build dual sites (Flash and HTML) or do they
want to use a plug-in detection strategy? (This determines the number of pages in
the site and whether you’ll need to program or hire someone to program your
detection.)

✦ For presentations and animation projects, are they going to provide the source illus-
trations or do you need to produce these yourself? Is this a character animation pro-
ject? (Developing character animations always costs more time and money to the
developer.)

✦ What information must be included? Is this divided into sections? List them.

✦ Does the client want the source files at the completion of the project? (Usually
increases the bid and/or the hourly rate.)

If you’ve done your research and you can answer all of these questions, then you should be
able to produce a pretty accurate deliverable bid or project milestone document for them,
by listing this information and citing your prices based on:

a. Per page

b. Section quotes

c. Length of presentation (usually bid in seconds)

Its important to your planning that your bid include a list of deliverables so that it’s very
clear what work you are bidding on. Even within companies, most production managers
and directors of projects are aided by developing this documentation so everyone on the
team is clear about the goals — from the start.

Storyboarding
Now you’re ready for the next step, which is to figure out the look of the project. Storyboard-
ing is the most common way to approach this part of the process. However, many developers
don’t realize that there are several types of storyboards to choose from, and that each one is
tuned for handling a specific set, or type of information. These types include Layout Story-
boards, Animation Storyboards, Interaction Storyboards, Visual Interaction Storyboards, and
Flowchart Storyboards for Complex ActionScript.

Continued

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1093

1094 Part VII ✦ Using Flash with Other Programs

Continued

Layout Storyboards
When starting a project, the first presentation that I make is usually with printed or dis-
played concepts that I’ve either mocked up in a program such as FreeHand or Flash, or that
I’ve hand sketched. Layout Storyboards are a simple way to present the first set of visual
concepts for the client to decide a direction. They are also specific to projects that involve an
interface system of some sort (Web page or interactive project). Graphic designers almost
always use this type of storyboard for developing their printed work. For our purposes, we
use the storyboard to show the client or art director two or three choices of style, color and
the arrangement of interactive and display elements. To review, here are the purposes of
Layout Storyboards:

✦ Use for interface system projects (Web or interactive)

✦ Create in FreeHand, Illustrator, Flash, or sketch in a sketchbook

✦ Use as your first point for the client to sign off on your progress

To see an example of a Layout Storyboard, find the tutorial folder in the ch38 folder on the
CD-ROM and open the layout_storyboard.pdf document.

A Layout Storyboard needs to show the position and look of button elements, title ele-
ments, and informational spaces. You also need to specify the color palette. I usually do this
with a small set of color squares on the page. After you get the top-level page general lay-
out, you’ll need to layout any interactive elements such as open menus, avatars, logos, or
transitions that occur before the hypothetical user goes on to another section.

Depending on his or her skill sets, each designer will have a different approach to this. I
have a friend who cuts pictures out of magazines and pastes them into interesting layouts
on large sketchpads. Then she creates a color copy and presents them to her client. Others
use colored pencils and a sketchpad, while others might take screenshots and then cut
them up and arrange them in Fireworks.

I tend to approach the layout storyboard by beginning with a pencil sketch on a sketchpad,
often first working with the client, so that my client can give me a general direction. Then I
proceed by jumping into FreeHand to develop the top-level page. I like FreeHand because I
can create several pages in the same document and because I can export a .SWF movie, as
well as create symbols that can then be imported directly into Flash.

After I’ve mocked up two or three conceptual directions for the general look and feel, I’ll
have another meeting to present these ideas and have the client or project director sign off
(again) on the direction we’re going to take. The next step is to complete a detailed layout
for each section, which should carefully note changes of color, submenu structure, and
informational areas for each section.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1094

1095Chapter 38 ✦ Planning Flash Production with Flowcharting Software

Flash Concept Presentation
When you’re done storyboarding a detailed layout for each section of the project, you are
ready for your second presentation. This can be a breeze if you’ve followed my advice and
generated most of your concepts in an illustration program. Simply export your document as
a .SWF movie and import it into Flash. You can do this from both FreeHand and Illustrator 8
(by getting the FlashWriter addition from www.macromedia.com).

However, FreeHand 9 has this added advantage: It also enables you to create symbols and
export directly to a .SWF movie. Once in Flash, add frame labels, stop actions, and buttons to
take you forward and backward through each storyboard. Your client (or boss) will think this
is stunning and credit you for having spent a number of hours preparing your presentation.

Author’s Note: Flash 5 can import FreeHand files, and Illustrator 9 now offers direct export
of Flash .SWF files.

Animation Storyboarding
The primary purposes of creating a storyboard for Flash animation projects are as follows:

✦ Use for logo or character animations within a project

✦ Create by using a printed or illustrated template in FreeHand or Illustrator

✦ Draw or illustrate specifics

Animation storyboarding is the most common type. Anyone who wants to produce any-
thing — from a splash logo animation to a full character animation — will usually need to
develop this type of storyboard. To do this, you only need to be able to draw stick figures; if
you lack even that skill, you can draw circles, squares, and triangles. As you become more
advanced you’ll be able to specify camera angles, cuts in the action, and transitions. An ani-
mation storyboard template is a page with three rectangles, representing frames, and with
space to the side for writing down the description of the action, other notes, and the sound
cue — if you are using sound.

However, let’s figure out the basics first. Begin by writing out a series of very short, simple
sentences that tell the action that you want to storyboard. For example:

Woman appears under a streetlight from left.

Woman walks right to a green door.

Sign on door says “Pet Shop.”

Woman opens the door by the knob.

A frog jumps out.

The frog knocks the woman over.

Continued

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1095

1096 Part VII ✦ Using Flash with Other Programs

Continued

It’s usually best to limit each sentence to a description of one character and one action.
With these descriptions, all you need to do is print out the template, and assign one sen-
tence to the description area of each frame of the storyboard template. Then simply draw
the scene that you are describing in the sentence.

To see an example of an Animation Storyboard, find the tutorial folder in the ch38 folder on
the CD-ROM and open the animation_storyboard.ai document.

This procedure helps you to make many, many decisions. “Woman appears under a street-
light from left” suggests that we are able to see the woman and the street, which means we
have a wide view. We call this an establishing shot or a wide shot. You set the mood of your
scene here. In the rectangle to the left, draw the scene out, making sure to show exactly what
will be in the frame when the woman appears. Depending on your illustration ability and
time constraints, you could develop your character and scene’s look. Otherwise, just hammer
it out. Use a triangle to mark your person, a circle for the light and rectangle for the door. The
value of this work is that you will already know where you are going when you finally start
building the animation in Flash—which translates into an incredible savings of time!

At this point, many students (and even developers) ask, “So, what if I’m just making a little
splash logo animation?” Well, simply change your mindset (or the storyboard concept) to
transition. Then, work out each transition the logo will take with a short description.

1. Logo fades up.

2. Logo spins three times.

3. Logo pulses.

4. Logo sends out a shock wave.

5. Wave fills screen to white.

6. Interface fades up.

Then, storyboard those descriptions before you start animation!

Interaction Storyboards
Are you a visual person who is attempting to communicate to your programmer or project
engineer what you want to have happen in a project? Are you attempting to make broad
functionality changes across an entire project? Are you designing a project all by yourself and
needing to turn it around in 24 hours? Well, interaction storyboards may be your salvation.

✦ Use for any interactive project, including complex ActionScripting.

✦ Create using an outline version of your layout storyboard or by using the interaction
storyboard template provided on the CD-ROM.

To see an example of an interaction storyboard, locate the tutorial in the ch38 folder of the
CD-ROM, and then open the interaction_storyboard.pdf document.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1096

1097Chapter 38 ✦ Planning Flash Production with Flowcharting Software

Interaction storyboarding is most important to the Flash development process. I began cre-
ating this type of storyboard back when I developed Director CD-ROMS and I’ve carried it
over to my user interface and prototype design work in Flash. There are several styles of
interaction storyboard, which are suitable for different situations. You could choose one
style or even combine them for use in different situations.

Written Interaction Description
All interaction storyboards start in the same manner as layout and animation storyboards:
You must be able to write down in short sentences what you want to have happen. This can
be easier if you reverse the equation by asking yourself, at each point of interactivity, “what
do I want the user’s experience to be?” The answers to these questions will provide the
backbone of your interactive storyboard. In programming, this style of describing actions in
sentences and then later turning it into actual code is called PDL, Programming Description
Language. Advanced programmers may not find this very useful but for those who are either
learning scripting or else handing our design to someone else (in hopes that they will script
it for us), it’s a great skill to have. Here’s an example of a simple interaction description:

✦ Play an opening logo animation while preloading content.

✦ Have a menu that shows choices on click.

✦ (The menu will be present at all times.)

✦ Rolling over causes the icon and word to highlight.

✦ The icons and words are ____.

✦ Clicking any section of the menu shows submenu choices or loads subsection.

✦ As you get more familiar with Flash and its structures and actions you can give more
detailed information:

✦ LOGO ANIMATION Plays while a Preloader downloads our BASE INTERFACE, MENUS
and SOUND.

✦ On Rollover of LOGO, Target to Play a logo animation.

✦ On Click of LOGO, Go To base interface and Unload all submovies

✦ When Over BUTTON of each MENU CHOICE, highlight the icon.

✦ On Click of each MENU CHOICE, open a set of submenu choices.

Here is the logic to the way the information is presented: I CAPITALIZE the names of the
objects I’m acting on or need to create. I capitalize the first letter of each action I need to cre-
ate. “On Rollover” indicates that the action occurs by using an ActionScript command and
Target tells me I’m going to Tell Target (Flash 4) or use a with command (Flash 5) to talk to a
Movie Clip. In the next line, “When over,” indicates that the highlight occurs in the OVER
frame of a button timeline. Load means I’m going to load a .SWF movie or text document
into a level above my base movie, movie clip or a text field. I hope that you get the idea!

Continued

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1097

1098 Part VII ✦ Using Flash with Other Programs

Continued

Here’s an ideal workflow for complex ActionScript interfaces:

✦ Create a detailed description of what you want to happen.

✦ Create an interaction storyboard, which breaks out:

• Where you will to store your objects and methods

• What the variable names will be

• Whether you want to access the script from several places

• Any variables that you will use

✦ Create a list of naming conventions

Most of my scripting takes place on paper so that either I, or my production person, can
quickly set up all of the elements, the Main Timeline, layers, Movie Clips, and buttons that
will be needed. Naming conventions should be established early so that your production
people always know whether you’re talking about a frame label (error_test), variable
name (maxWidth), Movie Clip instance name (controller) or a symbol library name
(mc_controller). You might also consider color-coding your document as you write it.
Little snippets of code could be blue, variable names red, and so on. This is a very quick way
to simplify the task of actually writing your own code or to facilitate having a programmer
code it for you.

Visual Interaction Storyboard
Now I give you a visual way to storyboard this interaction. After you’ve figured out what you
want, and why, then you can get really specific with a Visual Interaction Storyboard. For sim-
ple projects, I usually open my Layout Storyboard, which I’ve created in either FreeHand or
Flash, turn the display to outlines, and then I take a screenshot and print it. This page will
display all of my elements without cluttering the storyboard with colors or solid elements.
But for really complex storyboarding, I go to a large sketchpad and distill my elements to
their basics. At the top of the sketch, I draw a set of lines for my Main Timeline; below I
draw my interactivity using signs; for example, rectangles = buttons, squares = Movie Clips,
and so forth.

Here’s the key to my shorthand for interactive storyboards. It’s always a good idea to print a
key like this along with your storyboards so that if someone else is trying to decipher them,
they’ll know what you are communicating.

INTERACTION KEY

click rollover/off targeting movie clipUnload/Load MovieGo To
label

get url
url

JS pop-up window
level:swf name

mc instance
mc instance

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1098

1099Chapter 38 ✦ Planning Flash Production with Flowcharting Software

I have identified five main types of interaction design in Flash. These are:

1. Go To structures

2. Get URL structures

3. Load Movie structures

4. Tell Target (in Flash 5 called “with” structures because of the change in Movie Clip
behaviors) structures

5. Complex ActionScript structures

I need to be able to indicate what happens when I rollover an element, when I click it, or
when I enter a frame on the timeline. In Flash 5, I can also interact with Movie Clips, which
may also have actions attached to them. In Flash 4, only buttons could have actions
attached.

To see an example that maps one type of interface, locate the tutorial folder within the
ch38 folder of the CD-ROM, and then open the interaction_key_+_storyboard.ai document.

Flowchart Storyboarding for Complex ActionScript
The most difficult interactivity to storyboard visually is a complex ActionScript interface. Yet
e-commerce sites and database-driven or interactive-driven projects can be particularly
important to hammer out in written and visual form. I find it easiest to use a very old form
of engineering flowcharting to map these complex interactions. Get URL structures are also
easily mapped with this type of storyboard. Most other forms of interactivity can be mapped
out with a modified flowchart.

Authors’ Note: The written description from Dorian Nisinson’s Expert Tutorial, “Using
hitTest for a Multiple Targets,” located in Chapter 23, is a perfect example of the kind of doc-
umentation that is needed in order to create a visual storyboard to map out complex
ActionScript interactivity.

Were you able to figure out what was supposed to happen throughout each phase of the
interactivity? If I have done this much preplanning on a project, and then followed that
planning with a couple of storyboards, it rarely takes me more than three or four hours to
set up the first prototype of the alpha version.

Before you jump right into development you might consider taking one more step. This
involves taking small pieces of your interaction storyboard and trying them out. For
instance, if you have a specific type of menu in your interaction storyboard, you might want
to try out an example of that menu so your client can see what the functionality will be. It’s
much easier to change a small piece now rather than having to go through and change the
entire interface later. Other than menus, I always test transition animations, game-play ele-
ments, and small ActionScript subroutines.

Continued

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1099

1100 Part VII ✦ Using Flash with Other Programs

Summary
✦ You are responsible for making sure that you understand the production pro-

cess involved with Flash content creation. We introduced you to a two-phase
production model that involves six milestones: Business Initiative, Creative
Solutions, Approval, Production, QA, and Delivery.

✦ During the production period, keep six concepts in mind: asset assembly,
a master Flash architecture, a local test environment, HTML page layout, a
server staging environment, and proper QA testing. After production is fin-
ished, you need to develop a systematic maintenance routine.

Continued

Prototyping
At this point, you are ready to create a full prototype of the project. You can quickly build-
out your Main Timeline, Movie Clip, animation, and button structures using your interactive
storyboard. To add your scripting you can use your written description. Make sure that you
continuously save different versions of your prototype, recording in a version document
what changes you made since the first save (for example, nav03a.fla: changed base font to
mini; added images to button over states; tested with .JPEG or .PNG images; used .PNG).
While prototyping, you’ll also want to keep your interaction storyboard and interaction
description current with changes that need to be applied to the whole project, especially if
you are working with a large group of people. If you need to move really quickly, then at
least keep a sketchpad to jot notes about what you are doing so that you can come back
through the project after you’ve finished and create updated versions of the documents.
This may seem stupid, but when you have to come back — six days, weeks, or months
later — to make changes, I promise that you’ll be very happy that you did this.

If you set up a preproduction process like this for yourself, it will be a rare project that you
can’t prototype in a single day of production. In addition, you have a great paper trail that
other people can follow, that you can use to manage clients and production cycles, and that
you can return to months later to make changes easily. See? It wasn’t that difficult and
you’ve made yourself a very happy Flash camper.

Curiously, while MD Dundon claims to be from “earth,” she lists “live” as her singular favorite thing to do.
“Red Corvette,” by Prince, and the Star Wars theme were the big hits when she graduated high school.
She’s consulted for and worked on many noteworthy sites, including: www.stonecircledesign.com,
www.casioresearch.com, and www.indiansunset.com.

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1100

1101Chapter 38 ✦ Planning Flash Production with Flowcharting Software

✦ Inspiration can be used to create organizational and process flowcharts. After
you have developed these flowcharts, you can more easily create the func-
tional specification for your Flash site.

✦ No one workflow is absolute. As MD Dundon’s tutorial demonstrates, you
should work within the parameters of each project, and answer key questions
with the client before you commence intense Flash production.

✦ ✦ ✦

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1101

3515-3 ch38.f.qc 1/18/01 5:14 PM Page 1102

Working with
Authoring
Applications

Dreamweaver and Director are Macromedia’s most popu-
lar authoring solutions for Web and CD-ROM presenta-

tions. As the last chapter to Part VII, this chapter teaches you
how to integrate advanced Flash movies, created from lessons
in other sections of this book, into final production with these
two applications.

Flash movies (as .SWF files) have the amazing capability to
be embedded in other applications. The best — and the best
known — example of this is the Flash Player plug-in for Web
browsers. To take more control over the usage of Flash movies
in Web browsers, you can use Macromedia Dreamweaver to
customize plug-in settings. However, the fun doesn’t stop there.
You can import Flash .SWF files into Macromedia Director.
Director is the premiere multimedia authoring application on
the market. With Director’s scripting language Lingo, interac-
tive commands can be passed between the Flash movie and the
Director movie. In some cases, you can do more with Flash
movies in Director than you can with even the most advanced
ActionScripts in Flash 5 alone.

You need to know how to export your Flash editor docu-
ments (.FLA files) as Flash movies (.SWF files). You may
want to read Chapter 40, “Publishing Flash Movies,” and
Chapter 41, “Integrating Flash Content with HTML,” before
proceeding with this chapter.

Caution

3939C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Integrating Flash
elements into
Dreamweaver

Using the JavaScript
Integration Kit for
Flash 5 in
Dreamweaver

Adding Flash vector
capabilities to
Director

Letting Lingo control
Flash Sprites

✦ ✦ ✦ ✦

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1103

1104 Part VII ✦ Using Flash with Other Programs

Integrating .SWF Files into Dreamweaver
Although Flash 5’s Publish feature takes a lot of the guesswork out of placing Flash
movies into HTML pages, you might want to add HTML graphics and text to the
page, too. Macromedia Dreamweaver has been a huge hit with Web designers — its
roundtrip HTML feature keeps your HTML code just the way you like it. Roundtrip
HTML refers to Dreamweaver’s capability to transfer HTML code back and forth
between applications, keeping your preferred formatting intact — Dreamweaver
will not write over your own code. New features of Dreamweaver 4 include:

✦ A fully integrated text editor complete with syntax coloring capabilities

✦ The Layout view, which allows you to draw HTML tables and cells directly on
the page with the Table tool and the Cell tool

✦ Custom Flash Buttons and Flash Text creation tools

✦ Roundtrip image editing with Fireworks

In this section, we look at the fundamentals of using Flash movies with
Dreamweaver and HTML.

For more information on using the Publish feature of Flash 5, see Chapter 40,
“Publishing Flash Movies.”

Working with your Flash movie
After you have created an interactive animation and have exported the file into the
.SWF format, it’s time to put the file into your HTML document. (For more informa-
tion on exporting a Flash animation to the .SWF format, refer to Chapter 40,
“Publishing Flash Movies.”)

Let’s get started. First, create a new document in Dreamweaver, using File ➪ New
(Command+N or Ctrl+N). Next, insert the Flash file by selecting Insert ➪ Media ➪
Flash, or by using the Objects Panel, and clicking the Flash icon, as shown in the fol-
lowing figure. If you prefer to use keyboard shortcuts, try Option+Command+F (or
Ctrl+Alt+F on the PC). The Select File dialog appears. Now, browse your folders until
you find a .SWF file to import.

Select a Flash .SWF file and click Select. You should see a gray rectangle with a
small Flash symbol in your Dreamweaver document, indicating that this is a Flash
movie (see Figure 39-1).

Cross-
Reference

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1104

1105Chapter 39 ✦ Working with Authoring Applications

Figure 39-1: Click the Flash
object icon on the Objects
Panel to insert a Flash movie.

You should also notice that your Flash file now appears in the Dreamweaver
Properties Inspector, as shown in Figure 39-2, which displays the properties most
commonly used in Dreamweaver (see Table 39-1 for a description of those proper-
ties). If the Properties Inspector is not visible, access it with Window ➪ Properties
(Command+F3 or Ctrl+F3). If all of the properties are not displayed, click the
expand arrow in the lower-right corner or double-click the inactive areas of the
inspector. The inspector hosts many options and controls:

Figure 39-2: The Properties Inspector in Dreamweaver 4

ID

Autoplay

LoopQualityScale

V space and H space

Parameters

Play/Stop

Reset size

BG color

Align

FileWidth and HeightName

Insert Flash movie
Insert Flash text
Insert Flash button

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1105

1106 Part VII ✦ Using Flash with Other Programs

Table 39-1
Flash Properties in the Property Inspector

Property Description

Name The first field is used to identify the movie for scripting
purposes. As always, it is a good habit to name all your
elements in Dreamweaver.

W and H Represents the movies dimension in default pixels. The
dimensions can also be set to pc (picas), pt (points), in
(inches), mm (millimeters), cm (centimeters), or %. This
information is automatically set to the movies original
dimensions.

File The file’s path/location. This information should already
appear in this field.

Reset Size Returns the selected movie to its original size.

Align Determines how the movie is aligned on the page (left,
middle, right). The default is align left.

Bg Color Specifies a background color for the movie area. This color
also appears while the movie is not playing (while loading
and after playing). This setting can also be set within Flash 5
in the Movie Properties dialog (Modify ➪ Movie).

ID Defines the optional ActiveX ID parameter. This parameter
is most often used to pass information between ActiveX
controls.

V Space and H Space Specifies the number of pixels for white space around the
movie. V Space pertains to the white space above, and below,
while H space defines the space on the left and right sides of
the movie.

Quality Sets the quality parameter for the object and embed tags that
run the movie. The settings to choose from are Low, Auto Low,
Auto High, and High.

Scale Sets the scale parameter for the OBJECT and EMBED tags that
place the movie. Scale defines how the movie is placed within
the browser window when the width and height values are
percentages.

Loop This option makes the Flash movie automatically loop if no
Stop actions occur on the Main Timeline.

Autoplay Plays the movie’s Main Timeline automatically when the page
loads.

Parameters Opens a dialog for entering additional parameters to pass to
the movie. The movie must be created in Flash to receive
these parameters.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1106

1107Chapter 39 ✦ Working with Authoring Applications

Positioning your movie
The easiest way to center your Flash movie within the browser window is to surround
the <EMBED> and/or <OBJECT> tags with the <CENTER></CENTER> tags. This method
will not cause the movie to stretch or expand, thereby revealing the workspace of
the Flash movie. There is, of course, another way to center the Flash movie in the
browser — all you need to do is set the width and height dimensions to 100 percent.

This method also might cause some unwanted effects to your movie by revealing
the work area of the Flash movie. For example, if you had objects in the Flash envi-
ronment that bleed off the stage area and into the work area, those parts of the
objects that bleed off the stage would regularly be “cropped” by the dimensions
of the movie. By importing the Flash movie into Dreamweaver, Dreamweaver
adheres to the original dimensions, giving you the clean edge appearance. But
when the width and height are set to 100 percent, the movie will show everything
that was meant to be cropped, giving you a possible “sloppy” edge to the movie.

Although most Web sites are viewed in full-screen capacity, some users scale their
browser to their own desired size, which may adversely impact the aspect ratio
(the height and width ratio) of your movie. The scale option enables you to select
three options to achieve the desired perspective. These options are:

✦ showall: Makes the entire movie visible in the specified area. The aspect ratio
of the movie is maintained, and no distortion occurs. Borders may appear on
two sides of the movie.

✦ noborder: Forces the movie to fill the specified area. The aspect ratio of the
movie is maintained, and no distortion occurs — but portions of the movie
may be cropped.

✦ exactfit: Forces the entire movie to fill the specified area. The aspect ratio of
the movie is not maintained, and distortion may occur. For this example, we
used the exactfit option to enable users to resize their windows and still see
the entire movie.

Inserting a Flash Button
New to Dreamweaver 4 is the capability to create Flash Button objects based on
predetermined button styles. These styles look much like the Button Library that
ships with Flash 5. Dreamweaver actually lets you edit the text labels and links of
these buttons. Dreamweaver will also create a .SWF file that is placed in the same
directory as the current HTML document.

You must save your document first before inserting a Flash button or text object. If
you have not saved your document, Dreamweaver will prompt you to do so at that
time. Dreamweaver needs to know where the HTML file resides before it can cre-
ate the .SWF file.

Note

Note

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1107

1108 Part VII ✦ Using Flash with Other Programs

Select the Flash Button icon within the Objects Panel, or select Insert ➪ Interactive
Media ➪ Flash Button. Alternatively, you can drag the Flash Button icon from the
Objects Panel and into the document window. Using either method will enable you
to access the Insert Flash Button dialog, shown in Figure 39-3.

Figure 39-3: Scroll through the library of available
button styles

Now select a Button style from the list provided. Dreamweaver provides you with a
preview of the Button style. You can also click and rollover the Button style to pre-
view how the Button will behave. However, you will not be able to preview any
changes to the text or Bg color in this window.

Next, in the Button text field, type the text that you would like to see. This field
doesn’t work for every button style. If the button preview has the words Button
Text on the button, then you will be able to type in your own text. Also, the amount
of text is limited to the width of the Button.

For the Font field (optional), select a font for the text and the font size from their
respective drop-down menus.

For the Link field (optional), type a file name (or URL) or click the Browse button to
locate the file to link to. The link can be either a document-relative or absolute link
for the button. If you try to type in a site-relative link, Dreamweaver will prompt you
with a error message. This error occurs due to the manner in which that Flash files
have to be saved in relation to the HTML document files.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1108

1109Chapter 39 ✦ Working with Authoring Applications

The Target field (optional) enables you to choose a target frame or target window
from the drop-down menu.

The Bg field (optional) enables you to choose a background color for your Flash
button within a rectangular area. You can either type in a hexadecimal color value
(for example, #0066FF) or use the color well to select a background color.

For the Save As field, type in a name to save your new .SWF file as, or accept the
default button name. You could also choose a different location for the SWF to be
saved by clicking the Browse button and then finding the folder to place your Flash
button (for example, flash_assets/green_arrow.swf).

If you can’t find a Button style that suits you, click Get More Styles to connect to
the Macromedia Exchange site to download even more button styles.

Finally, click Apply or OK to insert the Flash button into the document window. If
you clicked Apply, you will not leave the Button dialog; instead, you will be able to
preview your new Button on the page.

Editing a Flash Button
There are two ways to open the Edit dialog for Flash Buttons: (a) you can double-
click the Flash button, or (b) you can select the Flash button and click the Edit but-
ton in the Property Inspector.

More options are available within the Properties inspector. Bg color and File source
are the only two options that are repeated from the Edit dialog.

Inserting a Flash Text Object
The Flash Text Object enables you to insert a body of Flash Text with a simple rollover
effect. Inserting the Flash Text Object is very similar to inserting the Flash Button.
Simply select the Flash Text icon in the Objects Panel, or choose Insert ➪ Interactive
Media ➪ Flash Text. This brings up the Insert Flash Text dialog, shown in Figure 39-4.

Then follow these steps to format and insert your text:

1. Select a font face from the Font drop-down menu.

2. Enter a font size (in points) in the Size field.

3. Select style attributes by clicking the Bold, Italic, and Text Alignment buttons.

4. Choose a text color by entering a hexadecimal color (for example, #0066FF) or
by choosing a specific color from the color pop-up menu.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1109

1110 Part VII ✦ Using Flash with Other Programs

Figure 39-4: Dreamweaver 4 enables you to place
antialiased Flash Text within an HTML document.
Dreamweaver will create the necessary .SWF file
for the HTML document.

5. Type in your desired text in the Text field.

6. Enter a document-relative or absolute HTML link.

7. Choose an HTML target window or target frame (optional).

8. Choose a background color (optional).

9. Type in a file name for the Save as field or accept the default name (for exam-
ple, text1.swf).

10. To preview all of your settings, click Apply to insert the Flash Text without
leaving the dialog.

11. To insert the Flash Text and exit the dialog, click OK.

Editing a Flash Text Object
There are two ways of opening the Edit dialog for Flash Text: (a) you can double-
click the Flash Text Object, or (b) select the Flash Text object and click Edit in the
Property inspector.

Directing the browser to the Flash plug-in
Perhaps one of the greatest timesaving features of Dreamweaver 4 is to its automatic
inclusion of plug-in download locations for both Netscape and Internet Explorer
(ActiveX). The following example of code will appear in your HTML document (note
that the ¬ indicates continuation of the same line of code) — it simultaneously places

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1110

1111Chapter 39 ✦ Working with Authoring Applications

the Flash movie in your document and also directs the browser to the download
location of the Flash Player plug-in if it is not installed:

<object classid=”clsid:D27CDB6E-AE6D-11cf-96B8 ¬
-444553540000”
codebase=”http://download.macromedia.com/pub/shockwave/¬
cabs/flash/swflash.cab#version=4,0,2,0”
width=”100%” height=”100%”>
<param name=”SRC” value=”flashmovie.swf”>
<param name=”SCALE” value=”exactfit”>

<embed
src=”flashmovie.swf”
pluginspage=”http://www.macromedia.com/shockwave/¬

download/”
type=”application/x-shockwave-flash”
width=”100%” height=”100%”
scale=”exactfit”>

</embed>
</object>

Dreamweaver still uses the Flash 4.0 ActiveX download location. Change the 4 in
the CODEBASE attribute of the <OBJECT> tag to 5,0,41,0 to ensure that the latest
Flash 5.0 ActiveX control is downloaded.

Caution

Expert Tutorial: Exploring the JavaScript Integration Kit
for Flash 5, by Joseph Lowery

When it comes to Dreamweaver expertise, we didn’t need to think twice about asking fel-
low Bible author Joseph Lowery to contribute his techniques for using Dreamweaver’s new
JavaScript Integration Kit for Flash 5. You’ll find a version of the JavaScript Integration Kit
for Flash 5 on the Flash 5 Bible CD-ROM in the ch39 folder.

With an eye toward smoothing the integration between Flash and Dreamweaver,
Macromedia released the JavaScript Integration Kit for Flash 5 (JIK). The JIK is a suite of
commands and behaviors installable in Dreamweaver — versions 3 and above — via the
Extension Manager. You can download the current version from the Macromedia Exchange;
choose Help ➪ Flash Exchange to go directly online.

The JavaScript Integration Kit for Flash 5 has four main components:

✦ Macromedia Flash Player Controls: Enables the designer to include interactive
control over Flash movies in a Web page. New Dreamweaver behaviors assign play,
stop, rewind, fast-forward, pan, and zoom actions to any graphic element. In addi-
tion, an HTML drop-down menu can be turned into Flash movie selector.

Continued

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1111

1112 Part VII ✦ Using Flash with Other Programs

Continued

✦ Advanced Form Validations: Ensures that your visitors are entering in the proper
type of information in your Flash form. You can apply any of 18 client-side form vali-
dations — everything from a required, nonblank to an International Phone Validation.

✦ Browser Scripts for Flash: Embeds up to ten different JavaScript functions in the
Dreamweaver page, which functions are callable from any Flash 5 movie. With these
functions, your Flash movie can control form elements such as text fields and select
lists, open remote browser windows, set cookies, and swap images on the Web
page.

✦ Flash Dispatcher Behavior: Detects the visitor’s Flash Player version and redirects
to a suitable Web page.

The beauty of the JIK is that it’s various components can be mixed and matched to achieve
a wide range of effects and control. The resulting Web page offers a greater degree of inter-
activity for the visitor as well as for the Flash designer.

Macromedia Flash Player Controls
One method of engaging your Web page visitors is to give them more control over their
viewing experience; rather than just displaying a movie from beginning to end, allow the
viewer to pause, rewind, and play the animation at will. Flash’s vector-based nature even
enables them to zoom in and out, without loss of image clarity.

While all of this functionality is available through Flash ActionScripting, not all designs
require the controls to be maintained within a Flash movie. The Flash Player Controls
enable all of the common VCR-like functionality — and then some — to be assigned to HTML
elements such as images or hotspots.

When the JavaScript Integration Kit is installed, ten different behaviors are grouped under
the MM Flash Player Controls:

Fast Forward Flash Go To Flash Frame

Go To Flash Frame Based on Cookie Load Flash Movie

Pan Flash Play Flash

Rewind Flash Set Flash by List

Stop Flash Zoom Flash

As with any other Dreamweaver behavior, the player controls must be assigned to a target:
a text link, an image map hotspot, or a graphic with a link attached. Typically, such a graphic
button would use a false link, such as # or javascript:; so that it may act as a trigger but
not actually open a URL.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1112

1113Chapter 39 ✦ Working with Authoring Applications

You must have at least one Flash movie in the page before the Flash Player Controls
become available as shown in the following figure. Once activated, the user interfaces for
the Flash Player Controls vary according to their function as detailed later. With the Play,
Stop, and Rewind Flash behaviors, you just pick the Flash movie that you want to control
from the drop-down list. All the other behaviors include this option as well, so you can
affect any movie on the page.

The Flash Player Controls become active once a Flash movie is present in the current
Dreamweaver document.

To use the Flash Player Controls, follow these steps:

Step 1: Insert at least one Flash movie by choosing an animation from the Assets panel or
applying the Insert Flash object.

Step 2: Enter a unique name in the ID field of the Flash Property Inspector for each movie.
A distinct ID avoids browser compatibility problems; if one is not initially supplied,
Dreamweaver offers to make one for you when any of the behaviors are applied.

Step 3: Select the text link, hotspot, or image to trigger the behavior. If you’d like to apply
the Set Flash by List behavior, select a form list object.

Continued

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1113

1114 Part VII ✦ Using Flash with Other Programs

Continued

Step 4: Choose Window ➪ Behaviors to open the Behaviors Panel, if necessary. Alterna-
tively, you can select the Behavior icon from the Launcher or use the keyboard shortcut F8.

Step 5: Choose the Add button from the Behaviors Panel and select the desired behavior
under the MM Flash Player Controls heading. The chosen behavior’s dialog appears, similar
to the one shown in the following figure.

With the Pan Flash behavior, your viewer can move
around a Flash movie in any direction. As shown,
this behavior would pan in a diagonal direction,
down and to the right, every time it was triggered.

Step 6: Select the parameters for your behavior.

✦ For the Play Flash, Rewind Flash, and Stop Flash behaviors, select the desired anima-
tion to affect from the Movie drop-down list.

✦ For the Fast Forward Flash behavior:

1. Select the desired animation to affect from the Movie drop-down list.

2. In the first blank field, enter the desired value you want the movie to
advance by.

3. Select either Frames or Percent from the drop-down list.

For example, to advance the movie by 5 percent each time the behavior is
called, enter 5 in the first field and choose Percent from the list.

Author’s Note: You can use a negative number to rewind one or more frames at
a time.

✦ For the Go To Flash Frame behavior:

1. Select the desired animation to affect from the Movie drop-down list.

2. Enter the frame number to move to in the Go To Frame field.

✦ For the Go To Flash Frame Based on Cookie behavior:

1. Select the desired animation to affect from the Movie drop-down list.

2. Enter the name of the cookie to read in the Cookie Name field.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1114

1115Chapter 39 ✦ Working with Authoring Applications

3. Enter the value to look for in the Cookie Value field.

4. Enter the frame number to advance to when the cookie name and value are
read in the Go To Frame field.

✦ For the Load Flash Movie behavior (As Dreamweaver warns you, this behavior is not
supported for Netscape browsers):

1. Select the desired animation to you want to replace from the Replace Movie
drop-down list.

2. Enter the filename for the movie to load in the With Movie field or locate the
movie by selecting the Browse button.

3. Input the level to load the movie into in the Level field. To replace an existing
movie with the loaded movie, enter a level number that is currently occupied
by another movie. To replace the original movie and unload every level,
choose 0 for the Level.

4. To begin playing the movie immediately, set the Play option to Yes; otherwise,
set Play to No.

✦ For the Pan Flash behavior:

1. Select the desired animation to affect from the Movie drop-down list.

2. Choose the Horizontal and/or Vertical direction — up, down, right, or left — to
pan to from the drop-down lists.

3. Select the degree of the pan by entering a value in the fields below each
direction.

You can pan diagonally by entering nonzero values for both the Horizontal and
Vertical direction.

4. Choose whether you’d like the pan values to operate in either Pixel or Percent
Mode.

✦ For the Set Flash by List behavior (As Dreamweaver warns you, this behavior is not
supported for Netscape browsers.):

1. Select the desired animation to affect from the Movie drop-down list.

2. Choose the list object from the Select Box drop-down list.

3. Input the level to load the movie into in the Level field. To replace an existing
movie with the loaded movie, enter a level number that is currently occupied
by another movie. To replace the original movie and unload every level,
choose 0 for the Level.

4. To begin playing the movie immediately, set the Play option to Yes; otherwise,
set Play to No.

Continued

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1115

1116 Part VII ✦ Using Flash with Other Programs

Continued

5. For the Set Flash by List behavior to work properly, you’ll also need to set the
values of each of the list items to a relative or absolute file URL pointing to a
.SWF file. Click the Parameters button on the List/Menu Property Inspector to
enter new labels and their corresponding values.

✦ For the Zoom Flash behavior:

1. Select the desired animation to affect from the Movie drop-down list.

2. Enter the value desired in the Zoom field.

To zoom in, enter a number greater than 100; to zoom out, enter a number
below 100. To reset the movie to the original zoom level, enter 0.

Step 7: After you’ve chosen all the desired parameters from the dialog, select OK to close
it. The Behaviors Panel displays the event and action for the behavior just applied.

Step 8: By default, onClick is the selected event. To change the triggering event to
onMouseOver or onMouseOut, select the down arrow between the event and the action
and choose the desired event from the list.

Advanced Form Validations
HTML forms can be tricky: The more use you put forms to gathering information from your
visitors, the greater the possibility for user error. In a sense, forms are a classic double-
edged sword and a few people taking advantage of Flash’s increased interactivity are get-
ting nicked by them. If, for example, your online form includes two fields for a telephone
number, one for the United States, and one for international visitors, you’ll want to be sure
that the proper data is entered in the correct field. To ensure that a user enters the type of
information you’re expecting in your Flash form, that information needs to be validated. The
JavaScript Integration Kit includes methods for validating 18 different types of data.

For the Advanced Form Validations to work, you’ll need to work both with your Flash movie
and with the Dreamweaver page the movies is embedded in. Here’s an overview of the
process:

On the Dreamweaver side:

✦ Create a form with hidden fields — one for each of the Flash fields you want to
validate.

✦ Attach the Advance Validate Form behavior to the form itself.

✦ Add one of the Browser Scripts for Flash functions, FDK_setFormText, to the page.

✦ Attach the desired validation behavior to the <body> tag of the current document.

On the Flash side:

✦ Make sure every form field has a unique variable name assign to it.

✦ Add a getURL action to the on (press) event of the submit button, calling the
FDK_setFormText function inserted into the Dreamweaver page.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1116

1117Chapter 39 ✦ Working with Authoring Applications

✦ Add another getURL action to the on (release) event of the submit button which
invokes the FDK_Validate function — which was put on the Dreamweaver docu-
ment by the Advance Validate Form behavior.

You’ll need to keep track of the names of the Hidden field inputs inserted in Dreamweaver,
as well as the name of the form itself; they both are referenced when the functions are
added in Flash.

Now that you’ve got an overview, let’s go through the process with a little more detail.
Again, we start with the Dreamweaver page:

1. Choose Insert ➪ Form to add a form to your document.

In Dreamweaver 4, the form is automatically named, but you’ll need to add a name
in the Property Inspector if you’re using Dreamweaver 3.

2. Within the form, add a Hidden form field (Insert ➪ Form Objects ➪ Hidden Field) for
every Flash field that you’d like to validate. Give each Hidden field a unique name
and leave the Value blank.

3. Select the <form> tag in the Tag Selector and, from the Behaviors panel, choose the
Advance Validate Form behavior.

The Advance Validate Form dialog appears, as shown in the figure that follows.

The Advance Validate Form behavior controls how
validations overall are applied.

4. In the Advance Validate Form dialog:

• Select the form containing the Hidden elements you want to use from the
Validate drop-down list.

• To stop validating when an incorrect entry is encountered, check the Stop on
First Error option.

• Enter any desired message in the Error Header text area. The Error Header is
displayed in addition to any validation-specific error messages.

Continued

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1117

1118 Part VII ✦ Using Flash with Other Programs

Continued

• If your behavior is assigned to an onSubmit event (the default) choose the
Stop Submission If Errors Occur option; otherwise, select the Automatically
Submit If No Errors Occur option.

• Select OK to close the dialog when you’re done.

5. Choose Commands ➪ Browser Scripts for Flash.

The Browser Scripts for Flash commands, discussed in more detail later in this sec-
tion, embeds functions in the Dreamweaver page for communicating with Flash.

6. When the Browser Scripts for Flash dialog opens, select the FDK_setFormText option;
close the dialog when you’re done.

Our final preparation in Dreamweaver is to add the individual validation behaviors
required

7. Select the <body> tag from the Tag Selector and choose the Add button in the
Behaviors panel. From the drop-down list, select a validation behavior from the
Advanced Form Validations category.

Most of the Advanced Form Validation behaviors have similar dialogs in which you
can choose the particular form element (the Hidden field relating to the Flash form
field) affected, make the field required, and set the error message. The differences
between the various behaviors are detailed in the table that follows.

8. Repeat Step 7 for each validation that you’d like to apply in the form.

Behavior Description

Alphanumeric Validation Displays an error if nonalphanumeric characters are
entered.

Credit Card Validation Removes any spaces or hyphens and then displays an
error message if the card number is not valid. This
behavior does not authorize credit card purchases.

Date Validation Optionally enables dates in the future, in the past, or in
a particular range and specific format.

E-mail Validation Makes sure that the entry contains an @ and a period.

Entry Length Validation Accepts a defined number range of characters; for
example, from 5 to 10.

Floating Point Validation Displays a error if a non-number is entered; floating
point numbers can contain decimals.

Integer Validation Displays the message if a non-number or a number
with decimals is entered. You can also set an
acceptable number range.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1118

1119Chapter 39 ✦ Working with Authoring Applications

Behavior Description

International Phone Validation Removes parentheses, spaces, and hyphens, and then
makes sure at least six digits are entered.

Like Entry Validation Checks one form field entry against another; typically
used for password verification.

Mask Validation Enables the designer to require a specific pattern of
text, and numbers to be entered. Use A to indicate a
letter, # for numbers, and ? if the entry could be either
a letter or a number. For example, the mask A###??
would require a letter followed by three numbers,
followed by two other alphanumeric characters.

Nonblank Validation Displays a message if the field is left empty.

Radio Button Validation Ensures that at least one option in a specified radio
button group is selected. Note: This behavior is only
used with HTML form elements.

Selection Made in List Validation Displays an error if the user does not make a selection
from a specific drop-down list. Note: This behavior is
only used with HTML form elements.

Social Security Validation Removes any hyphens, checks for a proper length and
then reformats the number into a 3-2-4 configuration,
as in 123-45-6789.

Time Validation Displays an error if a valid time with minutes within a
certain range is not entered. Military time and most
variations of a.m. and p.m. are accepted.

URL Validation Looks for valid URL protocols and displays an error
message if one is not found at the start of the entry.
Accepted URLs include: ftp://, http://, javascript:, file://,
gopher://, https://, mailto:, rlogin://, shttp://, snews://,
telnet://, tn3270://, swais://

US Phone Validation Verifies that the entered information is either seven or
ten digits after removing any parentheses and hyphens.

Zip Code Validation Requires the entry to be either five or nine digits.

Now that the Dreamweaver page is prepped, we’re ready to prepare the Flash movie:

1. In Flash, add the required form fields as text input fields.

2. In the Text Options Panel, enter a unique name in the Variable field.

3. Make sure your form has a graphic that acts as a submit button.

Continued

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1119

1120 Part VII ✦ Using Flash with Other Programs

Continued

4. Select the Submit button graphic and open the Action Panel.

5. Add an on (press) event and attach a getURL function to the event.

6. In the getURL function, call the FDK_setFormText function that was embedded
into the Dreamweaver page. The FDK_setFormText function takes three argu-
ments: the name of the form, the name of the field to be validated, and variable
name assigned to the corresponding field in Flash.

For example, let’s say the form is named theForm, that you’ve created a field for
gathering an e-mail address, and that you have given it a name in Dreamweaver
such as emailHidden. In Flash, the variable assigned to the corresponding text field
might be called emailField. In this case, the getURL function would read:

getURL(“javascript:FDK_setFormText(‘theForm’,’emailHidden’,’” ¬
emailField add “‘);”);

Note the addition of the word add on either side of the variable name as shown in
the code and in the following figure. This syntax is required for the parameters to be
passed correctly.

Enter an FDK_setFormText function for every Flash field that you need
to qualify.

7. Continue adding as many FDK_setFormText functions as you have fields to vali-
date to the same getURL action. Separate each function with a semicolon.

After you’ve entered all the required FDK_setFormText functions, you’ll need to
add one last event and function.

8. In the Action Panel for the Submit button graphic, add an on (release) event and
attach a getURL action to it.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1120

1121Chapter 39 ✦ Working with Authoring Applications

9. In the getURL action, insert the FDK_Validate function. This function takes four
arguments that correspond to the options available in Dreamweaver’s Advanced
Validate Form dialog: FormName, stopOnFailure, AutoSubmit, and ErrorHeader. Both
stopOnFailure and AutoSubmit are Booleans and accept either true or false.

For example, suppose the form is again called theForm, that you’d like the form to
stop processing when an error is encountered as well as automatically be submit-
ted, and that your general error message reads, “Attention!! I found an error on the
form!” Here, the getURL function would look like this (note that the ¬ indicates con-
tinuation of the same line of code):

getURL(“javascript:FDK_Validate(‘theForm’,true,true,¬
‘Attention!! I found an error on the form!\\n\\n’);”);

The \n\n after the function call acts as a hard return in the alert box to separate the
generic message header and the specific validation error.

The final step is to cross the bridge again from Flash to Dreamweaver, bringing your
exported Flash movie into the Dreamweaver page. Be sure to give it both a name and ID
(which can be the same) in the Property Inspector.

Browser Scripts for Flash
With the JavaScript Integration Kit, integration is a two-way street: Not only is it easier to
control Flash movies, but also the Flash movies can also affect the HTML page. The JIK
includes one overall command called Browser Scripts for Flash which offers five different
types of control:

✦ Setting a form element’s value

✦ Setting a cookie

✦ Opening a remote browser window

✦ Swapping image for rollovers

✦ Setting list menu items

Implementing these functions in Dreamweaver is simplicity itself: Just choose
Commands ➪ Browser Scripts for Flash and check off the desired options you see in the fig-
ure that follows. The various functions are grouped into five different categories. If you open
a page with these functions already in place, you’ll find the option already selected; dese-
lecting the checkbox removes the function from the page when the dialog is closed.

Continued

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1121

1122 Part VII ✦ Using Flash with Other Programs

Continued

The Browser Scripts for Flash lets you easily insert or remove functions
that you can call from Flash.

Like the form validations, using the Browser Scripts is a two-program process. After you’ve
installed them in Dreamweaver, you need call the function in a Flash action. Each of the
functions takes it’s own series of parameters and, typically, each is invoked using an action
such as getURL. The functions and their arguments are explained in the following table.

Function Arguments Description

FDK_setFormText form, name, text Sets the value of a form element.

FDK_newWindowable URL, name, width, Opens a remote browser window. The width
height, status, and height values are entered in pixels; for
directories, all other parameters (except URL and
location, windowName) enter a 0 to disallow the
toolbar, menubar, element and a 1 to include it.
scrollbars,
resize

FDK_setCookie namevalue, Sets a cookie from within a Flash movie and
expires, path, can be used in conjunction with the Go To
domain, secure Flash Frame Based on Cookie behavior.

FDK_swapImage imageName, Performs a image swap in the HTML
[blank], document. The second parameter is
replacementPath, intentionally left blank.
1

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1122

1123Chapter 39 ✦ Working with Authoring Applications

Function Arguments Description

FDK_swapImgRestore n/a Restores an previously executed
image swap. For complex pages
using multiple image swaps, it’s best
to explicitly swap the image from
it’s replacement to it’s original
source rather than use the
FDK_SwapImRestore behavior.

FDK_findObj n/a Used in conjunction with the
FDK_SwapImage behavior.

FDK_AddValueToList ListObj, Inserts a new value into a form list
TextString, element.
ValString,
Position

FDK_SetSelectionByValue ListObj, Determines the selection of a list
ListVal item with a given value.

FDK_SetSelectionByPosition ListObj, Determines the selection of a list
ListPos item in a particular list position.

FDK_SetSelectionByText ListObj, Determines the selection of a list
ListText item with a given label.

Flash Dispatcher Behavior
The final component of the JavaScript Integration Kit, the Flash Dispatcher Behavior, is
designed to smooth visitor access to your Web-based Flash content. The Flash Dispatcher
checks whether the visitor to your site already has the Flash player and, if the visitor does
have a player, what version the player is. If the proper version — or no player at all — is found,
this behavior allows you several options. The visitor’s browser can be redirected to a Flash-
less page or to a site for downloading an appropriate version, if an automatically down-
loaded version is not possible.

To apply this behavior, select the <body> tag from the Tag Selector and, from the Behaviors
panel, choose Macromedia Flash Dispatcher Behavior. In the dialog, you have the following
options:

✦ Macromedia Flash Content URL: Enter or locate the path to the page containing
the Flash movie.

✦ Alternate URL: Enter or locate the path to a Web page the visitor should go to if
the proper Flash player was not found.

✦ Macromedia Flash Version: Choose the lowest permissible version from 2.0, 3.0,
4.0, or 5.0

Continued

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1123

1124 Part VII ✦ Using Flash with Other Programs

Continued

✦ Require Latest Plugin: Select this option to require the latest version of the Flash
Player.

✦ No Player Options: Any visitors who do not have the Flash Player installed will be
sent to a selectable download page or use the Alternate URL.

✦ Improper Version Options: Any visitors who do not have the required version of
the Flash Player installed will be sent to a selectable upgrade page or use the
Alternate URL.

The Flash Content URL can be the same page that the behavior is applied to or, in the case
of what is referred to as a gateway script, another page.

Publishing the HTML document
When you’re ready to see your HTML document in a Web browser, save your
Dreamweaver HTML document by selecting File ➪ Save (Command+S or Ctrl+S).
To preview the page in a browser, use File ➪ Preview In Browser ➪ IE or Netscape, or
press F12 to preview the page in your primary browser (as set in Dreamweaver’s
preferences). Although Flash 5 is able to publish supporting HTML documents for
.SWF files, Dreamweaver is best used to achieve more advanced integration of Flash
in HTML and JavaScript, as you see in the Expert Tutorial by Joseph Lowery, author
of the Dreamweaver Bible.

Animation techniques using layers
The window mode parameter for Flash movies currently only works with the
Windows 95/98/NT versions of Internet Explorer 4.0 or higher. The window mode
parameter, wmode, lets the background of a Flash movie drop out, so that HTML or
DHTML content can appear in place of the Flash movie background. Because sup-
port for this option is not broadly supported, you are unlikely to find very many
Web pages that use it. However, if you want to try it out, it’s pretty simple.

First, make sure that your Flash movie is on its own DHTML layer — if you want to
animate other material behind or in front of the Flash movie. In the Dreamweaver
Properties Inspector for Flash movies, click the Parameters button. In the Param-
eters dialog, click the + button above the Parameter column. Enter wmode in the
left column. Click under the Value column, and enter one of the three options:

✦ Window: This is the “standard” player interface, in which the Flash movie
plays as it would normally, in its own rectangular window on a Web page.

✦ Opaque: Use this option if you want the Flash movie to have an opaque back-
ground and have DHTML or HTML elements behind the Flash movie.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1124

1125Chapter 39 ✦ Working with Authoring Applications

✦ Transparent: This option “knocks out” the Flash background color so that
other HTML elements behind the Flash movie shows through. Note that the
Flash movie’s frame rate and performance may suffer on slower machines
when this mode is used, because the Flash movie needs to composite itself
over other non-Flash material.

The wmode parameter is only recognized by 32-bit Windows versions of Internet
Explorer 4 or higher. If you are using browser detection on your Web pages, you can
divert visitors using these browsers to specialized Flash and DHTML Web pages.

Using .SWF Files in Macromedia Director
Macromedia Director 8.5 is the multimedia authoring application used to create daz-
zling multimedia-rich DVD-ROMs, CD-ROMs, and Shockwave-enhanced Web experi-
ences. The most exciting news for the 8.5 release is the under-the-hood Intel 3D
technology that enables Shockwave to use high-impact, textured, 3D graphics and
models. Since version 6.5, you can import Flash movies (as .SWF files) via the Flash
Asset Xtra. With version 8.5, you can take even more control of your .SWF movies
in Director. Moreover, the latest versions of the Shockwave plug-in automatically
install the Flash Asset Xtra on Web browsers. That means that you can count on
Shockwave-enabled visitors being able to view your Flash-Director Shockwave con-
tent. But why would you want to use Director in combination with Flash in the first
place? We answer that question next.

If you want to use Flash 5 .SWF files, you need to have Director 8.5. Director 7.02
and 8.0 can use Flash 4 or earlier. You can find more product update information
by going to the Director Web site at www.macromedia.com/support/director/
downloads.html.

Benefits and limitations of Flash movies in Director
Flash 5 has been another monumental leap forward for Flash interactivity. With the
additional advanced ActionScripting that Flash can now employ, many of the previ-
ous Flash-Director scenarios or workarounds are no longer needed. However, if
you’re already familiar with Director and Lingo (Director’s scripting language), then
you may find integrating .SWF files into Director projects easier than learning
advanced scripting with ActionScript in Flash 5. The following list reviews some
of the benefits and drawbacks of using Flash movies in Director projects.

✦ Vector control: Even though Director has vector shape-drawing tools, it
doesn’t use the same intuitive drawing mechanism that Flash does. Use Flash
for any complex vector drawing and animation, and then bring it into your
Director project.

Caution

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1125

1126 Part VII ✦ Using Flash with Other Programs

✦ Implement existing projects: With the ability to use Flash movies in Director,
you need not duplicate efforts if material already exists in one format or the
other. Thus, if you’ve already developed some cool animations in Flash for
your company’s Web site, you can reuse the same Flash .SWF files in your
Director projects.

✦ Use media types that are not available in Flash: Director’s architecture can
be expanded with the use of Macromedia’s (or a third party’s) Xtras. Even
though Flash 4 and 5 can import QuickTime movie files, it can only export
QuickTime Flash movies — it can’t export .SWF files that contain QuickTime
movies. However, you can import QuickTime movies, as well as many other
media types, such as 3D Studio MAX models, into Director and that can be
viewed and controlled in Shockwave Director movies. (Check out http://www.
believeGOSSIP.com for an example of Director and Flash integration.) Some
audio file formats, such as AU and MIDI, are not supported by Flash 5.
Director 8.5 natively supports AU import. With the proper Xtras, you can
use MIDI music with your Flash movies in Director.

✦ Audio support: In versions of Director before 7.02, Flash audio could not play
simultaneously with Director sound channels. Now, you can control the global
property soundMixMedia to mix Flash sounds with Director score sound
channels.

✦ Flash frame rate control: Ironically, you have more control over a Flash
movie’s frame rate in Director than you do natively within Flash 5. In Flash,
the movie’s frame rate is fixed throughout the entire movie — once it is set in
the Modify ➪ Movie dialog, it cannot be updated or changed during playback.
Flash movies also seem to play more smoothly at higher frame rates when
played within a Director projector.

✦ Similar scripting environments: Both Flash and Director use a form of Dots
notation for their scripting languages. Flash ActionScript resembles JavaScript
much more closely than Director Lingo does. Director Lingo uses a different
model of command and event control than Flash 5 does.

Flash and Director intermovie activity is a two-way street: You can send events from
Flash to Director (via Lingo), or you can control Flash movie playback from Director
(via Lingo). Just as Flash Movie Clips can be self-contained interactive modules
within one overall .SWF file, Flash .SWF files can be components of a much larger and
media rich Director movie. To get you started with Director-Flash interactivity, the
next section shows you how to send events from Flash movies to Director movies.

The following sections are intended for readers who already know the basics of
Director movie production. If you need more information on the Director author-
ing environment, please refer to the Director 8 Bible.

Creating Director-specific actions in Flash
You can use Flash .SWF files in any number of ways with Director. If you simply
want to use a Flash animation for graphic content within a Director presentation,

Note

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1126

1127Chapter 39 ✦ Working with Authoring Applications

you can simply use the same .SWF you generated for the Web. Use the Flash Asset
Xtra import box (see the more in-depth discussion later in this section) to set the
parameters of playback without needing any Lingo. However, if you want Flash
actions (in frames or on buttons) to do something in your Director movies, then
you need to know how to get Lingo’s attention. The drawback to this type of “dual”
interactivity is that you need to plan ahead with both your Flash and Director
movies. As with any project, you should outline a storyboard before embarking
on a task such as this.

Use a project planner such as Microsoft Organization Chart (included with Micro-
soft Office) or Inspiration (included on the Flash 5 Bible CD-ROM) to plan an inter-
active project. By creating interactive hierarchies and flow-charts (for example,
determining which scenes will link to other scenes), you can manage projects with
greater ease. We discussed the importance of interactive project planning in
Chapter 38, “Planning Flash Production with Flowcharting Software.”

You have three methods to use within the Flash authoring environment, all involv-
ing the getURL action. You can assign any of these methods the same way you
would with any other Flash interactivity — attach these actions to buttons, frames,
or ActionScript conditions.

If you experience crashes in Director using any of the getURL commands listed in
this section, please see the sidebar “Quirks with Flash Sprites and Lingo go
Commands” later in this chapter.

Standard GetURL command
On a Flash Button or frame, open the Actions Panel and assign a getURL action.
This is the preferred method of sending information to Director movies because
you can deal with the result of the action in Director — you do not need to specify
what Director does with the string from Flash. When a Button instance is selected
and the Actions Panel is in Normal Mode, Flash 5 automatically creates a default on
(release) action to contain the getURL action. In the URL setting, create a string
to be passed to an event handler in Lingo. In Figure 39-5, a getURL action is
assigned to a frame in Flash. The string ProjectOne is entered in the URL text
field. This string, in turn, is received by Lingo.

In Director, you need to attach a behavior script to the Flash Sprite so that the
getURL action and string can be received by Lingo. We discuss the actual imple-
mentation of this example later in the “Controlling .SWF files in Director” section.
In Figure 39-5, the string ProjectOne was assigned to getURL. In Director, we
could tell Lingo to go to the frame marker called ProjectOne:

on getURL me, FlashString
go to frame FlashString

end

Caution

Cross-
Reference

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1127

1128 Part VII ✦ Using Flash with Other Programs

Figure 39-5: You can enter any word or
series of characters (that is, a string) in
the URL field. This string is then passed
to Lingo.

When the Flash Sprite plays in Director and the getURL action is executed, the
ProjectOne value of getURL is passed as the FlashString argument of the Lingo
event handler, on getURL. Lingo will direct the playback of the Director movie to
the frame marker ProjectOne.

Event: command
You can also specify an event: handler in the URL field of the getURL action. This
method is useful if you would like to describe an event that is repeatedly used in
Flash, but needs customized settings with each use. For example, if you want to add
a mouse click to go to a different Director frame depending on which button was
clicked, you could use the following URL in the getURL action:

event: FClick “ProjectOne”

In Director, you then write a behavior that would receive the FClick event:

on FClick me FlashString
go to frame FlashString

end

How is this different from the last example? If you want to have several events in
one script that perform different Lingo commands, you need to label each one with
a separate event, such as:

on FClickButton01 me FlashString
go to frame FlashString

end

on FClickButton02 me FlashString
quit

end

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1128

1129Chapter 39 ✦ Working with Authoring Applications

In the preceding example, we have two defined Flash events, FClickButton01 and
FclickButton02, which do different things. If we had used the standard getURL
action, we could only pass the string to one Lingo command.

With a bit more programming in Lingo, you could pass one argument string to
multiple Lingo commands by testing the string with if...else statements.

Lingo: command
The last getURL method of sending events to Lingo is the most direct method of
communicating with Director movies. In the URL field, a lingo: handler is used to
specify a Lingo statement. This is the most inflexible method of sending events to
Director — insofar as you cannot do anything in Director to modify or direct the
event. For example, if you added the following code to an on (release), getURL
button event in Flash:

lingo: quit

then the Director movie quits (or the Director projector closes) when that button
was clicked.

With lingo: statements in getURL actions, you do not need to specify any further
Lingo in the Director movie, unless you are setting the value of prescripted variable
or executing a event described in the Director movie script.

Controlling .SWF files in Director
You can import and use Flash movies (.SWF files) into Director just as you would
any other cast member. Director controls Flash movies with the Flash Asset Xtra.

Tip

Quirks with Flash Sprites and Lingo go Commands

In Director 6.5, you may experience crashes if you send Flash events to Lingo that make a
Director movie go to a frame where the Flash Sprite is no longer on the Stage. For example,
if you start a Director movie with a Flash animation, and you have a frame action on the last
frame of the Flash animation that directs playback to a new section of the Director score,
the Flash Sprite duration needs to be extended all the way to the frame that the Director
movie is jumping to. Use a Lingo command such as:

set the visible of sprite X to false

(where X designates the Flash Sprite number) to make the Flash Sprite invisible on that
frame if necessary. If you don’t want to extend the Sprite to that frame and/or you are
jumping to a new movie, see the advanced workarounds at www.macromedia.com/
support/director/ts/documents/flash_asset_xtra_go_issue.htm.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1129

1130 Part VII ✦ Using Flash with Other Programs

This section shows you how to import Flash movies and use them in the Director
Score window. You should already be familiar with the Director authoring environ-
ment and basic Behavior use.

The Flash Asset Xtra: Importing Flash movies
Since Director 6.5, the Flash Asset Xtra has enabled Flash movies to play within a
Director movie. Again, make sure you have Director 8.5 in order to use Flash 5
movies. If you have Director 8.0 or 7.0.2, you’ll need to export your Flash 4 .SWF
files from Flash 5. Director 7.0.1 supports Flash 3 or earlier movies. If you have
Director 6.5, you need to export your Flash movies as Flash 2 movies.

If you are using a version of Director earlier than 7.0.2, then be extremely careful
with the use of Flash audio. In older versions of Director that support Flash movies,
Flash audio cannot play simultaneously with Director score sounds. Macromedia’s
tech notes advise turning sound off when using earlier versions of the Flash Asset
Xtra.

To import a Flash movie (.SWF file), do the following:

1. Start a new Director movie (.DIR file) or open an existing movie.

2. Use the File ➪ Import command (Command+R or Ctrl+R) to select a Flash
movie (.SWF file). Double-click the file name in the upper portion of the
Import dialog (see Figure 39-6), or select the file name and choose Add. You
can select several files of different types and import them all at once. When
you are done adding files, click Import to bring the Flash movie(s) into the
Internal Cast.

Figure 39-6: You can import several files at once
with the Import command. (The Mac version is
shown here.)

Caution

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1130

1131Chapter 39 ✦ Working with Authoring Applications

You can use any of the .SWF files on the Flash 5 Bible CD-ROM for this example.
For this section, we use the file crossButton.swf, which is located in the ch33
folder on the Flash 5 Bible CD-ROM.

3. Open the Cast window (Command+3 or Ctrl+3). Double-click the Flash movie
that was imported. This brings up the Flash Asset Properties dialog (see
Figure 39-7). The top section of the dialog is used to link to external or remote
Flash movies (see following tip and sidebar), while the lower section sets the
playback attributes:

Figure 39-7: The Flash Asset Properties dialog enables you to specify
how the Flash movie functions in the Director movie.

• Media: This setting has two options, Linked and Preload. If you don’t
want to store a Flash movie within the Director movie, check Link and
specify the path to the Flash movie. Unless you want to link to a Flash
movie on the Internet, you should store the Flash movie in the Director
movie — Flash movies are usually very small due to their vector struc-
ture. If Link is checked, then you can also enable Preload. Preloading will
force Director to load (or download) the entire .SWF file before it starts
playing the Flash movie. Otherwise, Director will start playing the Flash
movie as soon as it starts to stream the Flash cast member. See the side-
bar at the end of this section for more information on linked Internet files.

• Playback: This setting has five options that control how Director dis-
plays the Flash movie.

The Image option, checked by default, determines whether Director
shows the graphic content of a Flash movie.

The Sound option determines whether Director plays the audio content
of a Flash movie.

On the
CD-ROM

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1131

1132 Part VII ✦ Using Flash with Other Programs

The Direct to Stage option tells Director to give priority to the Flash
movie Sprite over all other Sprites currently on the Stage. Although this
option may enable Flash movies to playback more smoothly, Director
ignores any ink effects applied to the Sprite (see the “Flash Movies as
Sprites” section for more information on ink effects), and the Flash
movie always displays on top of other Sprites.

The Paused option is akin to adding a stop() Flash action to the first
frame of the Flash movie — you can force Director to display the movie
in a paused state.

The Loop option enables continuous playback of the Flash movie. If this
option is checked, the Flash movie repeats as soon as it reaches the last
frame unless the last frame has a stop() Flash action. It continues to
repeat while the Flash Sprite is present in the Director Score, or until it
is paused by a Lingo command.

• Quality: This setting has a drop-down menu with the exact same settings
as the Quality setting in the Flash 5 Publish Settings. By default, this set-
ting is High. For more information on the Quality property of a Flash
movie, see Chapter 40, “Publishing Flash Movies.”

• Scale Mode: By default, this setting uses Auto-Size, which enables
Director to automatically resize the Flash movie’s width and height
according to the Sprite’s bounding box on the Director stage. Meaning,
if you resize the Sprite, then the Flash movie should fit the size of the
Sprite box. Auto-Size automatically sets the Scale setting to 100 percent.
Conversely, No Scale keeps the Flash movie at the size specified by the
Scale setting (covered in a moment) and any subsequent resizing of the
Sprite bounding box may crop the Flash movie. The remaining options,
Show All, No Border, and Exact Fit operate the same as the Publish
Settings options in Flash 5 (see Chapter 40, “Publishing Flash Movies”).

• Rate: Perhaps one of the most powerful settings in the Flash Asset
Properties dialog, Rate controls how fast or slow the Flash movie plays
in a Director Scores — irrespective of the Tempo setting used in the
Score. The Flash Asset Properties’ Rate setting has two options: a drop-
down menu and an fps text field. If Normal or Lock-Step is selected, then
the fps text field is disabled. Normal plays the Flash movie at its native
frame rate, as set in the Flash application via the Modify ➪ Movie dialog.

Lock-Step plays one Flash movie frame for every Director frame that its
Sprite occupies (for example, if the Flash movie occupies four frames of
the Director score, then only the first four frames of the animation plays
back in Director). Therefore, Lock-Step inherits the frame rate of the
Director movie as established in the Tempo setting in the Score.

Fixed Rate enables you to specify a new frame rate for the Flash movie,
independent of the original frame rate specified in Flash 5 (via Modify ➪
Movie) or the Director Tempo setting in the Score.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1132

1133Chapter 39 ✦ Working with Authoring Applications

• Scale: This setting works hand-in-hand with the Scale Mode setting. If
anything other than Auto-Size is selected in Scale Mode, you can specify
what percentage of the original Flash movie is used for the Flash Sprite.
If 50 percent is used for the Scale of a 550 ×400 Flash movie and Exact Fit
is chosen in Scale Mode, then the movie displays at 225 ×200 in the origi-
nal placed Flash Sprite on the Stage. If you resize the Sprite box, then it
continues to maintain a 50 percent portion of the Sprite box area.

You can also use the Insert ➪ Media Element ➪ Flash Movie command to import
Flash movies via the Flash Asset Properties dialog. Simply click the Browse button
and select a Flash movie (.SWF file). Both the File ➪ Import and Flash Asset
Property dialogs enable you to enter Internet URLs for the filename path.

After specifying the settings you wish to use for your Flash movie, you can then
place the Flash cast member as a Sprite on to the Director Stage.

Tip

Using Lingo to Preload Flash Movies

Like other Director Cast Members, you can control how a Flash movie Cast Member is
loaded into a Shockwave movie or standalone Director projector. While you author a
Director movie with a Flash movie Cast Member, it’s useful to have a linked .SWF file
included in the Internal Cast. However, when you launch a Shockwave movie on the Web,
you may want to make changes to the .SWF file only and leave the Director .DCR file
unchanged. Moreover, the path of a locally linked file is different from a file linked remotely
over the Internet. This problem is easy to fix with a little Director Lingo.

For any Director movie that uses .SWF files that you intend to update on a regular basis, you
should dynamically set the filename property of the Flash Cast Member with Lingo. The
following steps show you how to detect where the Director movie is being played (for
example, from a standalone projector or from the Shockwave Player), and how to change
the source of a linked Flash Cast Member.

1. Create or add the following Lingo to the Movie Script for your Director movie (note
that the ¬ indicates continuation of the same line of code):

on prepareMovie
global URLRootPath
global shockPlayer
if (the runMode contains “Projector”) OR (the ¬
runMode contains “Author”) then

shockPlayer = false
else

Continued

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1133

1134 Part VII ✦ Using Flash with Other Programs

Continued

shockPlayer = true
URLRootPath = “http://www.theMakers.com/flash5/”

end if
end prepareMovie

on initLoad me
global URLRootPath
global myNetID
global flashPath
flashPath = URLRootPath & “sliders.swf”
set myNetID = preloadNetThing(flashPath)

end initLoad

For the variable URLRootPath, change the value to the path to your Flash files on
your Web server. Don’t forget the ending forward slash character, as a filename is
appended to this path in the initLoad handler. In the initLoad handler, change
the flashPath variable to specify the filename of the .SWF movie that you want to
load into the Director movie.

2. In the Director Score window, reserve a section of ten frames at the very beginning
of the Score. Create a frame marker named initPreload on frame 1, and on frame
5, create a marker named loadLoop. Also, make sure that you have a marker on the
frame where your Director movie’s first interactivity takes place (for example, wher-
ever the movie starts beyond these first ten frames for the preload sequence). In
this example, we use the name intro.

3. On frame 1, add the following Frame Script:

on enterFrame
global shockPlayer
if shockPlayer = true then

initLoad
else

go to “intro”
end if

end

Here, we check whether the prepareMovie handler returned a true or false
value for the shockPlayer variable. If the movie is being played in a Web browser,
then shockPlayer will equal true. If that’s the case, then execute the initLoad
handler (in the Movie Script). Incidentally, handlers in Lingo work much like func-
tions in ActionScript and JavaScript.

If the movie is being played in the authoring environment or a projector, then
shockPlayer will equal false. Therefore, the else condition will execute, moving
the Director playhead to the intro marker.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1134

1135Chapter 39 ✦ Working with Authoring Applications

4. On frame 10, add the following Frame Script:

on exitFrame
global myNetID, flashPath
if netDone(myNetID) = true then

member(“sliders”).fileName = flashPath
go to “intro”

else
go to “loadLoop”

end if
end

Here, we check whether the preloadNetThing command that was executed in the
initLoad handler has finished loading the Flash .SWF file. If it has, then the path of
the linked (or stored) Cast Member sliders is changed to the Internet path
described in flashPath. Then, the Director playhead moves to the intro frame
marker to start the movie. If the .SWF file isn’t finished loading, then the Director
playhead moves back to the loadLoop frame marker. The playhead will continue
looping the frames between loadLoop and frame 10 until the .SWF file loads.

You will want to change the name of the Cast Member sliders to the name of your
Flash movie Cast Number that was used in your Director movie.

These are the basic steps to preloading and changing the source file for Flash Cast
Members. We didn’t include error handling in the frame 10 script. As you may well know,
Web servers can crash, Internet connections may falter, or a file has been deleted or moved
to another location. Refer to the Lingo Dictionary included with Director 8.5 to see the vari-
ous netDone and netError return values.

Using Director’s Property Inspector
Director 8.0 introduced a new look-and-feel to the authoring environment. In addi-
tion to a resizable Stage window, you can change the Cast window to view by list or
thumbnail, and you can quickly modify Sprite, Cast Member, and Movie attributes
(among others) with the Property Inspector.

The Property Inspector (shown in Figure 39-8) enables you to quickly change all
of the Flash Asset Properties for any Flash Cast Member. You can click the More
Options button on the Property Inspector to access the traditional Flash Asset
Properties dialog, which enables you to change Import (for example, path to
remotely or locally linked .SWF files) and Media (Linked and Preload) properties.
You cannot preview Flash movies in the Property Inspector.

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1135

1136 Part VII ✦ Using Flash with Other Programs

Figure 39-8: Director’s new Property Inspector

You may have noticed that the Flash Asset Properties dialog takes a few seconds
to load, as it requires the entire Flash Asset Options Xtra to load into memory.
Why? In order to use the Play button in the Flash Asset Properties dialog, the Flash
Player contained within the Flash Asset Options Xtra must be loaded. Because the
Property Inspector doesn’t include a preview/play option, you can change Flash
movie settings much more quickly in the Inspector.

Flash Movies as Sprites
In Director, any item that is used in a movie becomes part of a Cast, and is referred
to as a Cast Member. When a Cast Member is placed on the Stage, it becomes a
Sprite. A Sprite is an instance of the Cast Member used in the Score. The relation-
ship between a Flash Symbol and a Symbol instance is similar to the relationship
between a Director Cast Member and its Sprite(s).

To place a Flash Cast Member on the Director Stage, simply click and drag its Cast
Member icon (or thumbnail) from the Internal Cast window to the Stage or the
Score. If you drag a Cast Member to the Stage (see Figure 39-9), it automatically
becomes a Sprite on the first Sprite channel. If you drag a Sprite to the Score (see
Figure 39-9), it is automatically centered on the Stage.

Tip

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1136

1137Chapter 39 ✦ Working with Authoring Applications

Figure 39-9: (A) A Flash Sprite on the Director stage. (B) A Flash Sprite in the
Director score.

Although Flash Sprites perform almost the same as other Director Sprites, you
should be aware of certain Sprite properties before proceeding with Lingo Behaviors
and Flash Sprites. For more information on basic animation features of Director,
please consult the Using Director 8 manual that comes with the Director software.

✦ Sprite Duration: Every Sprite has a duration in the Score. By default, every
Sprite dragged to the Score or Stage has a duration of 28 frames. Like digital
video and sound Sprites, Flash Sprites only play for as long as their frame
duration allows them. For example, if a Flash movie that is 30 Flash frames
long (and has a Lock-Step rate) is inserted as a 15-frame Flash Sprite in
Director, then Director only shows the first half of the Flash movie.

✦ Sprite Inks: Of all the inks available to Sprites, only Copy, Transparent, and
Background Transparent have any noticeable effect on Flash Sprites. Copy
makes the Flash movie background opaque, in the same color that you specified
in the Flash authoring environment. Transparent or Background Transparent
(see Figure 39-10) hide the background of a Flash movie, so that the Director
movie background (and other Director Sprites) show through.

A B

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1137

1138 Part VII ✦ Using Flash with Other Programs

Figure 39-10: With an ink effect of Background Transparent, the white
background of the crosshairsButton Flash Sprite drops out.

Controlling .SWF files with Lingo
Not only can you send events from Flash movies to Director movies, but you can
also control Flash movies from Director with Lingo. More than 70 Lingo commands
exist that are specific for Flash movie assets in a Director movie. Unfortunately, it is
beyond the scope of this book to explore so many different commands. This section
provides an overview of the new Lingo commands for Flash movie, and shows you
how to alter the size and rotation of Flash Sprites.

Lingo and ActionScript
For a complete listing of Flash-specific Lingo commands that can be used with Flash
Cast Members and Sprites, access the Help ➪ Lingo Dictionary in Director 8.5 and
search for Flash. Some of the more powerful Lingo commands are getVariable
and setVariable, which give you access to any variables inside a Flash 4 or 5
movie. Make sure that you specify the variable name as a string in Director Lingo
(unless it’s also the name of a Lingo variable), as in:

on beginSprite me
sprite(me.spriteNum).setVariable(“/globals:currentURL”,¬

“http://www.theMakers.com”)
end

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1138

1139Chapter 39 ✦ Working with Authoring Applications

This Lingo code will give the variable currentURL in the globals Movie Clip of the
current Sprite (me.spriteNum) the value of http://www.theMakers.com. Therefore,
you can use Slashes notation to access nested variables in Movie Clip instances.

Notice the similarities of Director’s Dots notation to Flash 5’s new ActionScript syn-
tax. Both Director and Flash can use Object references followed by methods or
properties.

Similarly, the getFlashProperty and setFlashProperty Lingo commands can
use Slashes notation to access Movie Clip or Main Timeline properties:

on enterFrame me
global dog_ScaleX
dog_ScaleX = sprite(1).getFlashProperty(“/dog_1”,¬

#scaleX)
end

This Lingo code will retrieve the current X scale of the _root.dog_1 Movie Clip
instance and make it the value of a global Director variable named dog_ScaleX.
Table 39-2 details the Flash Movie Clip and Main Timeline properties that can be
retrieved and set by Lingo.

Table 39-2
Lingo and ActionScript Property Conversion Chart

Lingo ActionScript Definition

#posX _x The current X coordinate of the
specified Flash target.

#posY _y The current Y coordinate of the
specified Flash target.

#scaleX _xscale The current percent value of the
target’s X scale.

#scaleY _yscale The current percent value of the
target’s Y scale.

#visible _visible Determines whether the target is
shown or hidden.

#rotate _rotation The current degree value of the
target’s rotation.

#alpha _alpha The current percent value of the
target’s opacity.

Continued

Note

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1139

1140 Part VII ✦ Using Flash with Other Programs

Table 39-2 (continued)

Lingo ActionScript Definition

#name _name The name given to the Movie Clip
instance in the Instance Panel or
with a duplicateMovieClip (or
attachMovie) Flash action.

#width _width The current width (in pixels) of the
specified Flash target.

#height _height The current height (in pixels) of the
specified Flash target.

#target _target The full Flash path (in Slashes
notation) to the specified Flash
target. The path starts from the root
(Main Timeline) and ends with the
Instance name.

#dropTarget _dropTarget The full Flash path (in Slashes
notation) of a dragged-over Flash
target. See Chapter 19 for more
information on _dropTarget.

#url _url The full location path of the Flash
target, in HTTP syntax (for example,
http://www.theMakers.com/
flash5/sliders.swf or file://
Macintosh%20HD/Internet/
Shared/load.swf).

#totalFrames _totalFrames The total number of Flash frames in
the specified Flash instance.

#currentFrame _currentFrame The current position (frame number)
of the playhead in the Flash
instance’s timeline.

#lastframeLoaded _framesLoaded The number of the last frame (of the
specified target) to have fully loaded
into the Director movie.

#focusRect _focusRect This global property controls the
visibility of focus rectangles for Flash
Button instances. The target should
be specified as an empty string (“”).

#spriteSoundBufferTime _soundbuftime This global property controls how
much audio should stream from a
Flash movie before playback begins.
The target should be specified as an
empty string (“”).

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1140

1141Chapter 39 ✦ Working with Authoring Applications

Macromedia has expanded the Lingo hitTest command (which can be used to
detect whether an arbitrary point in the Flash movie is the transparent background
area, a normal “fill” area, or a Flash button) to include an #editTest return value to
detect Flash 4 and 5 editable text fields. The Lingo hitTest method works much
like the hitTest ActionScript method. For more information on Director’s hitTest
method, refer to the Help ➪ Lingo Dictionary. Refer to Chapter 23, “Understanding
Movie Clips as Complex Objects,” for more information on Flash’s hitTest method.

Finally, Director 8.5 adds five new Lingo commands to work with Flash movies:

✦ call: This command works just like the call(frame) action in Flash 5. It exe-
cutes the actions on the specified Flash timeline keyframe.

✦ print and printAsBitmap: These commands print the contents of a target
Flash timeline. See Chapter 19, “Controlling Movie Clips,” for more information
on the print actions.

✦ sendXML: This is a new event handler in Director 8.5 that catches any sendXML
events from a Flash 5 movie. You can define an on sendXML handler on a Flash
Sprite that will execute whenever a sendXML action is executed in the Flash
movie. For more information on the XML Object in Flash 5, see Chapter 24,
“Sending Data In and Out of Flash.”

✦ tellTarget and endTellTarget: These commands work like the Flash 4
equivalent actions. However, in Lingo, you nest the actions in a slightly differ-
ent manner. Also, you can only use the following actions within a tellTarget
Lingo group: stop, play, gotoFrame, call(frame), find(label), getFlash
Property, and setFlashProperty. You use a tellTarget Lingo action in the
following way:

on exitFrame me
sprite(1).tellTarget(“/nestedMovie”)
sprite(1).setFlashProperty(“”,#ScaleX,200)
sprite(1).setFlashProperty(“”, #ScaleY, 200)
sprite(1).goToFrame(2)
sprite(1).endtellTarget()
go to frame 5

end

This Lingo code targets the nestedMovie Movie Clip instance located on the
Main Timeline and sets its scale to 200 percent and moves its playhead to
frame 2. Then, Director’s Score moves to frame 5.

Changing the size and rotation of Flash Sprites
The previous section listed the properties of internal Flash Movie Clips that can be
manipulated with Lingo. You can also control the Flash Sprite properties with Lingo,
which will affect everything in the Flash movie. With the crossButton.swf example
used earlier, we can rotate and zoom the Flash movie in Director. Because the

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1141

crossButton Sprite is a Flash button that already plays a 3D rotation sequence, we
disable the Flash button by using a Lingo script in the first frame of the score:

on enterFrame
sprite(1).buttonsEnabled = false

end
On exitFrame
go the frame

end

The sprite(1) line of code refers to the Sprite occupying the first Sprite channel,
which in our example is the crosshairs_button Flash Sprite. Adding the
.buttonsEnabled property lets Director know what property we want to change
with the Sprite — in this case, Flash button activity. Setting this property to false
means it is being turned off.

Next, add the following behavior script to the Flash Sprite:

on mouseEnter me
repeat while sprite(1).rotation < 720
sprite(1).rotation = sprite(1).rotation + 10
updateStage

end repeat
end

on mouseLeave me
sprite(1).rotation = 0

end

This Behavior causes the Flash Sprite to rotate a full 720 degrees — two
revolutions — when the mouse enters the Flash Sprite. Here, the .rotation prop-
erty is called and manipulated. Notice that when the mouse leaves the Sprite, the
rotation is reset to 0.

To change this to a zooming behavior, simply change the script to the following:

on mouseEnter me
repeat while sprite(1).scale < 800
sprite(1).scale = sprite(1).scale + 10
updateStage

end repeat
end

on mouseLeave me
sprite(1).scale = 100

end

1142 Part VII ✦ Using Flash with Other Programs

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1142

1143Chapter 39 ✦ Working with Authoring Applications

For a cool effect, reenable the Flash button by removing the on enterFrame sec-
tion, containing the sprite(1).buttonsEnabled line, from the frame 1 script.
Now, as the Flash movie zooms, the button continues to rotate on a 3D axis.

To view the current Flash Sprite properties in Director’s Message window, you can
add the following line of Lingo to the Frame Script:

on exitFrame
sprite(1).showProps()
go to frame 2

end

Then, on frame 2, create the following Frame Script:

on exitFrame
go the frame

end

The showProps() command shows you the current properties of the Flash Sprite
and Cast Member, as shown in Figure 39-11.

Figure 39-11: Director’s Message window, displaying
the current Flash Sprite properties

Open the crossHairs.dir file in the ch39 folder of the Flash 5 Bible CD-ROM to
see the rotation and scaling Lingo actions.

On the
CD-ROM

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1143

1144 Part VII ✦ Using Flash with Other Programs

Expert Tutorial: Flash Avatars for Multiuser Apps in
Director, by Robert Walch

You’ll find the source .FLA, Director files, screen shots, and other assets related to this tuto-
rial in the Avatar folder of the ch39 folder of the Flash 5 Bible CD-ROM.

There are many great uses for Flash content in Director. If you like using Flash to make inter-
faces, you could surely make some great ones for those Director presentations. However, if
you like using Flash to make cartoons, or if, like me, you want to make games with Flash or
Director, why not make all your characters in Flash?

On the other hand, when developing content for the Web, one of the factors that would
make me choose Director over Flash is Director’s MultiUser Xtra. Here’s why: I found a great
site one day that had a multiuser chat. It’s located at http://poppy.macromedia.com/
~sallen/multiuser. The Shockwave movie allowed you to import your own avatar into the
chat, and allowed you to update your avatar’s mood on everyone else’s machine by telling
it to go to a specific frame label. So let’s take a look at how to set up your Flash animations,
and how to get Director to make a list of all those labels in your Flash file.

In Flash 5, create a series of Flash mood animations along one timeline. At the beginning of
each animation (or mood) place a label, naming it according to what you avatar is doing in
this part of the animation. You can include actions to loop certain parts or sequences of the
animation.

When you’re done animating, make sure to export your avatar as a Flash 4 format .SWF file
if you’re using Director 8 or 7.0.2. Flash 5 .SWF’s are only supported in Director 8.5. For the
purposes of this tutorial, name it avatar.swf.

Open Director and import your avatar.swf file. Make a new text member and title it
MoodList. Place your avatar in the score, so that it’s starting in frame 1 of Sprite channel 1.
Then, place the text member MoodList in the Score under your avatar Sprite. In a new
Movie Script, use the following code to call the labels in your Flash file:

--//The following is code from the source file

on startmovie
member(“MoodList”).text = GetFlashLabels(1)

end

on GetFlashLabels FlashSpriteNum
theLabelList = “Mood List:”
FlashSprite = sprite(FlashSpriteNum)
if FlashSprite.member.type = #flash then
frameCount = FlashSprite.member.frameCount

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1144

1145Chapter 39 ✦ Working with Authoring Applications

repeat with frameNum = 1 to frameCount
theLabel = FlashSprite.getFrameLabel(frameNum)
if theLabel <> “” then
theLabelList = theLabelList & Return & theLabel

end if
end repeat

end if
return theLabelList

end

Now, attach a behavior with the following code to the moodlist Sprite:

property spritenum

on mouseup me
clickline = sprite(spritenum).pointToLine(the mouseloc)
if clickline > 1 then
theMood = sprite(spritenum).member.text.line[clickline]
if theMood <> “” then
theFrame = sprite(1).findLabel(theMood)
if theFrame then
sprite(1).goToFrame(theFrame)

end if
end if

end if
end

Play the file in Director. (Make sure playback is looping in the control panel.) Now you can
click an item in the list to go to that frame!

As a final note, you can also experiment with setting variables in the Flash avatar, and the
avatar could then respond with ActionScript that internally changes its look-and-feel and/or
sends information back to the Director movie. Try using your avatars in Flash movies as well.
And have fun!

Based upon this answer, “All I listened to in high school was Jimi Hendrix,” we know that Robert Walch may
be a genius. “I remember going to see Pulp Fiction as a freshman in college,” tells us that he was diggin’
long after Jimi had moved on to a harp. This young New Yorker’s favorite thing is developing and playing
multiuser games because “It’s so much fun to be in a world were you can act however you want, and talk,
play or compete with others. I want to see content like this developed with Director and Flash.” Robert says
about starting with Flash: “When Macromedia released Flash 4, and Web sites started displaying the poten-
tial for animated Web sites and online cartoons, I got hooked.”

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1145

1146 Part VII ✦ Using Flash with Other Programs

Summary
✦ Dreamweaver 4 now has the capability to insert three types of Flash objects: a

standard Flash movie created with the Flash authoring tool (any version), and
two new Dreamweaver-native objects, Flash Buttons and Flash Text. When
Flash Button and Text Objects are inserted into the HTML, Dreamweaver actu-
ally generates a .SWF file with custom text and links.

✦ The JavaScript Integration Kit (JIK) extends the power of Flash by giving
Dreamweaver the capability to use JavaScript to control advanced features.
JIK provides more Flash Player controls, advanced form validation for Flash
forms (for example, checking whether you typed in enough numbers for a
phone number), and more browser scripts for Flash to open browser win-
dows, set cookies, and swap images. Finally, the Flash Dispatch behavior
detects a visitor’s Flash Player version and then redirects them to the appro-
priate page.

✦ Macromedia Director 8.5 and Flash 5 make a powerful scripting combination.
Director 8.5 supports new Flash 5 methods, enabling you to pass more infor-
mation between Flash assets and the Director movie.

✦ Director 8.5 can integrate most multimedia file formats, and play them within
a Shockwave movie over the Web.

✦ Director 8.5 can harness the power of the Shockwave MultiUser Server, which
enables real-time connections between Internet visitors to your Web sites.
Combined with lightweight Flash .SWF assets and the new 3D imaging technol-
ogy of Shockwave, you can create amazing Web experiences.

✦ ✦ ✦

3515-3 ch39.f.qc 1/18/01 5:14 PM Page 1146

Publishing Flash
Movies

If you have read the entire book to this point, then you’re
probably more than ready to get your Flash movies uploaded

to your Web server to share with your visitors. This chapter
shows you how to create .SWF files from Flash 5 so that your
Flash movies can be played with the Flash Player plug-in for
Web browsers.

Optimizing Flash Movies
Before you create a .SWF file from your Flash movie (.FLA file),
you should read through this section to determine whether
you can optimize your Flash movie. Optimizing can mean find-
ing anything redundant in the final movie — extra points in a
line, repeated artwork, and so on — to breaking apart your
large .FLA file into several smaller .FLA files that will be loaded
into a primary Flash movie. As you should see, symbols are
the key to eliminating unnecessary repetition with Flash art-
work. Optimizing can also entail the restricted use of band-
width-heavy items, such as bitmapped artwork or lengthy
sound tracks.

Simplify artwork
Although Flash can do some pretty amazing things with vector
shapes and animation, you don’t want to overdo it — at least
not if you want 28.8 Kbps modem users to see your work with-
out too much waiting. Keep the following tips in mind while
creating your Flash artwork or reviewing your final production:

✦ Use tweens for animations wherever possible. If you
need complicated paths for objects to follow, use
a motion guide layer instead of using a series of
keyframes — the fewer keyframes, the better.

4040C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Making your Flash
movies more efficient

Testing modem
speeds with Flash
movies

Using the publish
features to create
instant Flash Web
pages

✦ ✦ ✦ ✦

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1149

1150 Part VIII ✦ Distributing Flash Movies

✦ Custom line types (such as dashed, dotted, ragged, and so on) take up more
file space than regular solid lines. Strokes created with the Brush Tool also
use more memory than lines created with the Pencil Tool. Artwork created
with the Brush Tool is actually a fill — not a stroke. The boundary of a fill is
more complex than a simple line or stroke.

✦ Reduce the number of points and/or lines used to create a shape. In Flash, you
can use the Modify ➪ Optimize command, which joins line segments in a line
or shape. Note that you need to ungroup any grouped lines to use this com-
mand. The Use Multiple Passes option optimizes the selection to the fullest
extent possible.

For tips on optimizing vector artwork created outside of Flash, see Chapter 31,
“Working with Vector Graphics.”

✦ Gradients are more complex than a solid fill for a computer processor to han-
dle. Try to minimize the number of simultaneous gradients shown in any
given frame, and avoid any complex animation with gradient shapes or sym-
bols. Gradients add more bytes to a .SWF’s file size than does a solid color.
See Table 40-1 for a study of gradient color and .SWF file sizes.

✦ Don’t use many different fonts (typefaces) or font styles (such as Oblique,
Bold, Condensed, and so on) in your Flash movies. Most elegant designs use
complementary typefaces that occur in the same typeface family, or use a bal-
anced and restricted number of sans serif or serif fonts. Font characters can
require a lot of file space, from 81 bytes to over 191 bytes per character.
Generally, more elaborate serif fonts (such as Garamond) take up more room
per character than sans serif fonts (such as Arial). For text fields, make sure
that you embed only what is necessary from a font for the given field. For
example, if a text field needs to use only lowercase characters of a font for a
login or name field, then specify this in the Text Options Panel for that text
field. Ultimately, use device fonts (_sans, _serif, and _typewriter) whenever
possible, as they do not need their outlines stored in the .SWF file.

You cannot use device fonts underneath a Mask layer. Any font that is in a Mask
layer nesting needs to be embedded in the .SWF file.

✦ Keep bitmap or raster images to a minimum. Flash’s strength is its vector-
based technology. Animated bitmap sequences inflate your Flash file sizes.
Unless the content you are creating needs to be photorealistic (as in a photog-
rapher’s portfolio), don’t use 24-bit color bitmaps.

If you want to mimic full-motion video effects in Flash with as little file overhead as
possible, see Chapter 36, “Creating Full-Motion Video in Flash.” If you want to opti-
mize bitmaps before you bring them into Flash, see the “Fireworks and Flash”
tutorial by Scott Brown in Chapter 30.

Cross-
Reference

Caution

Cross-
Reference

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1150

1151Chapter 40 ✦ Publishing Flash Movies

✦ Use alpha effects on symbol instances sparingly with Motion Tweens. Alpha
options can be found in the Effect Panel. In a sample three-keyframe Motion
Tween, adding an alpha effect to a symbol instance on the start keyframe
added 85 bytes to the .SWF file size. Adding another alpha effect to a symbol
instance on the end keyframe added 175 bytes to the original alpha-free
Motion Tween. Alpha effects can also slow frame rates during complex ani-
mated sequences. If you need to fade in or out a symbol, try using the Tint
option in the Effect Panel first.

Table 40-1
Effects of Gradient Colors on .SWF File Size

Artwork Type Colors .SWF Size Percent Increase

Circle Shape 1 115 bytes n/a

Circle Shape 2 130 bytes 13%

Circle Shape 3 134 bytes 16.5%

Circle Shape 4 140 bytes 21.7%

Graphic Symbol 4 140 bytes 21.7%

Graphic Symbols* 4 152 bytes 32.7%

Movie Clip Symbol 4 162 bytes 40.9%

Circle Shapes* 4 225 bytes 95.6%

Graphic Symbols** 4 248 bytes 115.7%

Movie Clip Symbols** 4 272 bytes 136.5%

Circle Shapes** 4 923 bytes 702.6%
*Two instances or shapes with the same gradient fill.
**Ten instances or shapes with the same gradient fill.

Although some of these optimization tips may not seem to have a drastic effect on
file size, realize that most Flash movies on the Web don’t just use one or two ele-
ments, or one or two Motion Tweens. When you start to compound the file size
reductions over several Movie Clips or .SWF files, you’ll find that you can cut many
kilobytes from your Flash .SWF files.

Use symbols
Anything in Flash can be turned into a symbol. When the Flash movie is exported as
a .SWF file, the symbol’s contents are stored on the first frame that uses that sym-
bol. Symbol instances are similar to <A HREF> tags in HTML: They link data to a
given frame, rather than copying or storing it there. After a symbol’s contents are

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1151

1152 Part VIII ✦ Distributing Flash Movies

downloaded to the Flash player, it is easily available for any subsequent reuse in
the Flash movie. After you’ve completed a Flash movie, you want to review your
Flash production and perform the following optimizations:

✦ If any element is used in more than one keyframe or scene, consider making
a symbol out of it. Just about every professional Flash designer uses nested
symbols: An element is drawn, converted to a symbol, and then used in
another symbol such as a Button or Movie Clip. Symbol instances reduce the
resource overhead in .SWF files. Unlike grouped shapes, symbols need only
refer to the original resource in the .SWF file rather than storing a new
resource for every occurrence of it. You can, however, make a grouped
shape into a symbol.

✦ If you want to use the same shape in a variety of colors, then make that shape
a symbol. For each instance of the symbol, use the Effect Panel to change the
color.

✦ The contents of a symbol are downloaded when the Flash Player encounters
the first frame that uses the symbol. Given this, put any heavy symbol (for
example, a symbol with bitmaps or sounds) in its own Flash movie, and start
preloading the .SWF file near the beginning of the main Flash movie.

✦ Avoid using linked symbols from large Shared Library .SWF files (as discussed
in Chapter 20, “Sharing and Loading Assets”). Any Flash movie that links to a
Shared Library .SWF file will not start to play until the entire Shared Library
.SWF has downloaded.

✦ Avoid setting large symbols or assets to be exported as Linked Symbols (to
use with attachSound or attachMovie methods) in the movie’s native
Library. All Linked Symbols must be downloaded before playback of the
.SWF can begin.

✦ If you are streaming your Flash movies (and not preloading them), then
streaming playback can be interrupted when the playhead reaches a frame
with a large symbol. Flash will not play a frame until the entire contents of any
symbol on that frame are fully downloaded.

You can preload movies into a browser by using either the ifFrameLoaded,
_framesLoaded/_totalFrames or the getBytesLoaded()/getTotalBytes()
method. See Chapter 20, “Sharing and Loading Assets,” for more information.

Manage assets in the Flash Library
Bitmaps and sound files that have been imported into Flash automatically become
items stored in the Flash Library. As later sections of this chapter show you, you
can specify the sound quality of audio events and streams in the Export Movie or
Publish Settings dialog. However, these settings control the audio quality for the
entire movie unless a specific encoding scheme is specified for individual sound
clips in the Flash Library. Use the Library to assign specific compression methods

Cross-
Reference

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1152

1153Chapter 40 ✦ Publishing Flash Movies

to any given media element. For audio, Flash’s MP3 encoding provides the best
compression-to-quality ratio available. Specify MP3 compression on as many
sounds in the Flash Library as possible.

Check out Chapter 12, “Using Bitmaps and Other Media with Flash,” and Chapter
16, “Optimizing Flash Sound for Export,” for detailed information regarding com-
pression of Flash media in the Library.

Testing Flash Movies
You have three ways to test your Flash movies: in the authoring environment of
Flash 5 using the Test Movie and Scene commands, in a browser using the Publish
Preview command, or in the standalone Flash Player using Flash files (.SWF) made
with the Export Movie command. There are several reasons why you should test
your Flash movie before you transfer Flash movies to your Web server (or to the
intended delivery medium):

✦ Flash .FLA files have much larger file sizes than their .SWF file counterparts.
To accurately foretell the network bandwidth that a Flash movie requires, you
need to know how large the final Flash movie will be. If the download demand
is too overwhelming for your desired Internet connection speed (for example,
a 28.8 Kbps modem), then you can go back and optimize your Flash movie.

✦ The Control ➪ Play command in the Flash authoring environment does not
provide any streaming information. When you use the Test Movie or Scene
command, you can view the byte size of each frame, and how long it will take
to download the .SWF from the Web server.

✦ Movie Clip animations and actions targeting Movie Clip instances cannot be
previewed using the standard Control ➪ Play command (or the Play button on
the Controller) in the Flash authoring environment.

You can temporarily preview Movie Clip symbol instances within the Flash author-
ing environment (for example, the Timeline window) by changing the Symbol
instance behavior to Graphic instead of Movie Clip. Do this by selecting the
instance, opening the Instance Panel and choosing Graphic in the Behavior drop-
down menu. However, when you switch the behavior back to Movie Clip, you will
have lost the original instance name of the Movie Clip.

✦ Most scripting done with Flash 5 actions, such as loadMovie,
loadVariables, and startDrag, cannot be previewed with the Play com-
mand. Enabling Frame Actions or Buttons in the Control menu has no effect
with new scripting actions. You need to use Test Movie to try out most inter-
active functions in a Flash movie.

Tip

Cross-
Reference

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1153

1154 Part VIII ✦ Distributing Flash Movies

Any actions that require the use of remote CGI (Common Gateway Interface)
scripts to load variables, movies, or XML data, will now work in the Test Movie
environment. You do not need to view your .SWF files in a browser to test these
actions.

✦ Accurate frame rates cannot be previewed with the Play command (Control ➪
Play) in the authoring environment. Most complex animations appear jerky,
pausing or skipping frames when the Play command is used.

Using the Test Scene or Movie command
You can test your Flash movies directly within the Flash 5 interface by using the
Control ➪ Test Movie or Test Scene command. When you choose one of these com-
mands, Flash opens your Flash movie in a new window as a Flash .SWF movie. Even
though you are only “testing” a Flash movie, a new .SWF file is actually created and
stored in the same location as the Flash .FLA file. For this reason, it is a good idea to
always save your Flash file before you begin testing it.

If your movie is currently titled Untitled1, Untitled2, and so on in the application
title bar, then it has not yet been saved. Make sure you give your Flash movie a dis-
tinct name before testing it.

Before you use the Test Scene or Movie command, you need to specify the settings
of the resulting Flash .SWF movie. The Test Scene or Movie command uses the
specifications outlined in the Publish Settings dialog to generate .SWF files. The
Publish Settings dialog is discussed later in this chapter. For the time being, we can
use the Flash 5 default settings to explore the Test Scene and Movie commands.

Test Movie
When you choose Control ➪ Test Movie (Command+Enter or Ctrl+Enter), Flash 5
generates a .SWF file of the entire Flash .FLA file that is currently open. If you have
more than one Flash movie open, Flash creates a .SWF file for the one that is cur-
rently in the foreground and that has “focus.”

Test Scene
If you are working on a lengthy Flash movie with multiple scenes, you want to test
your scenes individually. You can do this by using Control ➪ Test Scene (Option+
Command+Enter or Ctrl+Alt+Enter). The process of exporting entire movies via Test
Movie may require many minutes to complete, whereas exporting one scene will
require a significantly smaller amount of time. As is shown in the next section, you
can analyze each tested scene (or movie) with the Bandwidth Profiler.

Caution

New
Feature

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1154

1155Chapter 40 ✦ Publishing Flash Movies

You can use the Test Scene command while you are in Symbol Editing Mode to
export a .SWF file that contains the current symbol timeline. The .SWF will not con-
tain anything else from your Flash movie. Note that the symbol’s center point will
become the top-left corner of the playback stage.

How to use the Bandwidth Profiler
Do you want to know how long it will take for a 28.8 Kbps modem to download your
Flash movie or scene? How about a 36.6 Kbps modem? Or a 56 Kbps modem? Or a
cable modem? The Bandwidth Profiler enables you to simulate any download speed.

In the ch40 folder of the Flash 5 Bible CD-ROM is a .FLA file called bandwidth.fla.
We use that Flash movie for this section.

To use the Bandwidth Profiler, you first need to create a test movie or scene. When
you create a .SWF file with the Control ➪ Test Movie or Scene commands, Flash
opens the .SWF file in its own Player window.

On the
CD-ROM

Tip

One Reason to Use Imported .MP3 Files

If you have imported raw audio files (.WAV or .AIFF files) into your Flash movie, you may
notice lengthy wait times to use the Test Movie or Publish commands in Flash 5. Why? The
MP3 encoding process consumes much of the computer processor’s power and time.

Flash has three MP3 compression qualities: Fast, Medium, or Best. Fast is the default MP3
quality setting — this is by far the fastest method of encoding MP3 sound. Because MP3
uses perceptual encoding, it compares a range of samples to determine how best to com-
press the sound. Fast compares over a smaller range of samples than either Medium or
Best. As you increase quality, the sampling range increases.

This process is similar to building 256-color palettes for video files; it’s best to look at all the
frames of the video (instead of just the first frame) when you’re trying to build a palette
that’s representative of all the colors used in the video. While MP3 doesn’t quite work in
this fashion, the analogy is appropriate. So, at Best quality, the MP3 encoding scans more of
the waveform to look for similarities and differences. However, it’s also more time intensive.

If you want to avoid the wait for Flash to publish .SWF files that use MP3 compression, we
recommend that you compress your source audio files to the MP3 format (including the
newly supported VBR — Variable Bit Rate — compression in Flash 5) and import those .MP3
files into Flash 5. Unless the .MP3 sound file is used for Stream Synch audio, Flash 5 will
export the audio in its original MP3 compressed format.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1155

1156 Part VIII ✦ Distributing Flash Movies

View menu
The Test Movie or Scene viewing environment changes the View and Control
menus. The first four commands in the View menu are the same as those of the
Flash Player plug-in viewing controls:

✦ Zoom In: Selecting this option enlarges the Flash movie.

✦ Zoom Out: Selecting this option shrinks the Flash movie.

✦ Magnification: This submenu enables you to change the zoom factor of the
movie. The .SWF movie is displayed at the original pixel size specified in the
Modify ➪ Movie dialog when 100 percent (Ctrl+1 or Command+1) is the set-
ting. For example, if the movie size is 500 ×300 pixels, it takes up 500 ×300 pix-
els on your monitor. If you change the size of the viewing window, the movie
may be cropped. The lower section of this submenu enables you to change
the viewable area of the Flash movie. Show Frame (Ctrl+2 or Command+2) will
show only the frame boundary area in the Player window. Show All (Ctrl+3 or
Command+3) shrinks or enlarges the Flash movie so that you can view all the
artwork in the Flash movie, including elements off stage.

✦ Bandwidth Profiler: To view the Bandwidth Profiler in this new window, use
View ➪ Bandwidth Profiler (Ctrl+B or Command+B). The .SWF movie shrinks
to accommodate the Bandwidth Profiler.

• The left side of the profiler displays three sections: Movie, Settings, and
State. Movie indicates the dimensions, frame rate, size (in KB and bytes),
duration and preload (in number of frames and seconds). Settings dis-
plays the current selected connection speed (which is set in the Debug
menu). State shows you the current frame playing and its byte require-
ments, as well as the loaded percent of the movie.

• The larger right section of the profiler shows the timeline header and
graph. The lower red line beneath the timeline header indicates whether
a given frame streams in real-time with the current modem speed speci-
fied in the Control menu. For a 28.8 Kbps modem, any frame above 200
bytes may cause delays in streaming for a 12 fps movie. Note that the
byte limit for each frame is dependent on frame rate. For example, a 24
fps movie has a limit of 120 bytes per frame (for a 28.8 Kbps modem con-
nection).

• When the Bandwidth Profiler is enabled, two other commands are avail-
able in the View menu: Streaming Graph (Ctrl+G or Command+G) and
Frame-By-Frame Graph (Ctrl+F or Command+F).

✦ Show Streaming: When Show Streaming is enabled, the Bandwidth Profiler
emulates the chosen modem speed (in the Control menu) when playing the
Flash movie. The Bandwidth Profiler counts the bytes downloaded (displayed
in the Loaded subsection of the State heading), and shows the download/play
progress via a green bar in the timeline header.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1156

1157Chapter 40 ✦ Publishing Flash Movies

✦ Streaming Graph: By default, Flash opens the Bandwidth Profiler in Streaming
Graph mode. This mode indicates how the Flash movie streams into a
browser (see Figure 40-1). Alternating light and dark gray blocks represent
each frame. The size of each block indicates its relative byte size. For our
bandwidth.swf example, all the frames will have loaded by the time our play-
head reaches frame 22.

Figure 40-1: The Streaming Graph indicates how a
movie will download over a given modem connection.
Shown here is our bandwidth.swf as it would
download over a 56 Kbps modem.

✦ Frame-By-Frame Graph: This second mode available to the Bandwidth
Profiler lays each frame side by side under the timeline header (see Figure
40-2). Although the Streaming Graph enables you to see the real-time perfor-
mance of a .SWF movie, the Frame-By-Frame Graph enables you to more easily
detect which frames are contributing to streaming delays. If any frame block
goes beyond the red line of the graph (for a given connection speed), then the
Flash Player halts playback until the entire frame downloads. In the band-
width.swf example, frame 1 is the only frame that may cause a very slight
delay in streaming. The remaining frames are right around 200 bytes each —
below our threshold of 240 bytes per frame for a 56 Kbps modem connection
playing a 20 fps Flash movie.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1157

1158 Part VIII ✦ Distributing Flash Movies

Figure 40-2: The Frame-By-Frame Graph shows you
the byte demand of each frame in the Flash movie.

Control menu
Use the Control menu to play (Return) or rewind (Option+Command+R or
Ctrl+Alt+R) the test movie. Rewinding pauses the bandwidth.swf movie on the first
frame. Use the Step Forward (>) and Step Backward (<) commands to view the
Flash movie frame by frame. If a Flash movie doesn’t have a stop() action on the
last frame, the Loop command forces the player to infinitely repeat the Flash movie.

Debug menu
The Debug menu also features commands that work in tandem with the Streaming
and Frame-By-Frame Graphs:

✦ 14.4, 28.8, 56K: These settings determine what speed the Bandwidth Profiler
uses to calculate estimated download times and frame byte limitations. Notice
that these settings use more practical expectations of these modem speeds.
For example, a 28.8 modem can theoretically download 3.5 kilobytes per sec-
ond (KB/sec), but a more realistic download rate for this modem speed is
2.3KB/sec.

✦ User Settings 4, 5, and 6: These are user-definable speed settings. By default,
they are all 2.3KB/sec.

✦ Customize: To change the settings for any of the modem speeds listed previ-
ously, use the Customize command to input the new value(s).

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1158

1159Chapter 40 ✦ Publishing Flash Movies

The Control menu also contains List Objects and List Variables commands. List
Objects can be used to show the names of Movie Clip instances or ActionScript
Objects in the Output window, while the List Variables command displays the
names and values of any currently loaded variables, ActionScript Objects, and XML
Data.

Using the size report
Flash also lets you view a text-file summary of movie elements, frames, and fonts
called a size report. In addition to viewing Frame-By-Frame Graphs of a Flash movie
with the Bandwidth Profiler, you can inspect this size report for other “hidden” byte
additions such as font character outlines. This report can only be generated when
using the Export Movie or Publish commands.

A sample size report, called bandwidth_report.txt, is included in the ch40 folder
of the Flash 5 Bible CD-ROM.

Publishing Your Flash Movies
After you’ve made a dazzling Flash movie complete with Motion Tweens, 3D simula-
tions and ActionScripted interactivity, you need to make the Flash movie usable for
the intended delivery medium — the Web, a CD-ROM (or floppy disk), a template for
Macromedia Generator, a QuickTime Flash movie or a RealPlayer presentation, to
name a few. As we mentioned in the introduction to this book, you need the Flash 5
application to open .FLA files. Because the majority of your intended audience
won’t have the full Flash 5 application, you need to export or publish your .FLA
movie in a format that your audience can use.

You can convert your Flash movie (.FLA) files to .SWF files by using either the File ➪
Export Movie or File ➪ Publish/Publish Settings commands. The latter command is
Flash’s Publish feature. You can specify just about all file format properties in one
step using the File ➪ Publish Settings command. After you’ve entered the settings,
the File ➪ Publish command exports any and all file formats with your specified
parameters in one step — all from the Flash 5 application.

On the
CD-ROM

Note

A Word about the Export Movie Command

Even though Flash 5 has incredibly streamlined the process of creating .SWF movies with
the Publish commands (discussed in the next section), it is worth mentioning that the
File ➪ Export Movie command provides another route to creating a simple .SWF file.
Although the Publish command is the quickest way to create HTML-ready Flash movies, the
Export Movie command can be used to create updated .SWF files that have already been
placed in HTML documents, or Flash movies that you intend to import into Macromedia
Director movies (see Chapter 39, “Working with Authoring Applications”).

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1159

1160 Part VIII ✦ Distributing Flash Movies

The Export Movie command is discussed throughout the book. For more informa-
tion on exporting still images in raster/bitmap formats, see Chapter 30, “Working
with Raster Graphics.” To export vector formats, see Chapter 31, “Working with
Vector Graphics.” To export QuickTime or .AVI files, see Chapter 34, “Working with
QuickTime,” and Chapter 36, “Creating Full-Motion Video in Flash.”

Three commands are available with the Publish feature: Publish Settings, Publish
Preview, and Publish. Each of these commands is discussed in the following sections.

Publish Settings
The Publish Settings command (File ➪ Publish Settings) is used to determine which
file formats are exported when the File ➪ Publish command is invoked. By default,
Flash 5 ships with Publish Settings that will export a Flash (.SWF) file and an HTML
file with the proper markup tags to utilize the Flash plug-in or ActiveX control. If
you want to customize the settings of the exported file types, you should familiarize
yourself with the Publish Settings before you attempt to use the Publish command.

Selecting formats
Select File ➪ Publish Settings to access the Publish Settings dialog, which is nearly
identical for both PC and Mac. The dialog opens to the Formats tab, which has
checkboxes to select the formats in which your Flash movie will be published (see
Figure 40-3). For each Type that is checked, a tab appears in the Publish Settings
dialog. Click each type’s tab to specify settings to control the particulars of the
movie or file that will be generated in that format.

The Use default names checkbox either enables or disables default names (disabled
means that the Filename entry boxes are unavailable or grayed out). For example, if
your movie is named intro.fla, then, if Use default names is selected, this is the base
from which the names are generated in publishing. Thus, intro.swf, intro.html,
intro.gif, and so on would result.

By unchecking Use default names, you can enter non-version–specific filenames
for .FLA files that you incrementally save as you work. For example, if you have a
.FLA file named main_100.fla, uncheck Use default names and set the Flash .SWF
filename to main.swf, then every new .FLA version you save (for example,
main_101.fla, main_102.fla, and so on) will still produce a main.swf file. This way,
you can consistently refer to one .SWF file in your HTML code and incrementally
save your Flash movies.

Tip

Cross-
Reference

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1160

1161Chapter 40 ✦ Publishing Flash Movies

Figure 40-3: The Formats tab of the Publish Settings dialog
enables you to select the published file formats and to
use default or custom names for these published files.

Using the Flash settings
The primary and default publishing format of Flash 5 movies is the Flash (.SWF) for-
mat. Only .SWF movies retain full support for Flash actions and animations.

Here are your options in the Flash tab:

✦ Load Order: This option determines how Flash will draw the first frame of the
Flash movie as it is downloaded to the plug-in or player. When Bottom up (the
default) is chosen, the layers load in ascending order: The lowest layer dis-
plays first, then the second lowest, and so on, until all of the layers for the
first frame have been displayed. When Top down is selected, the layers load
in descending order: the top-most layer displays first, then the layer under-
neath it, and so on. Again, this option only affects the display of the first frame
of a Flash movie. If the content of the first frame is downloaded or streamed
quickly, you probably won’t notice the Load Order’s effect.

✦ Generate size report: As discussed earlier in this chapter, the size report for
a Flash movie can be very useful in pinpointing problematic bandwidth-inten-
sive elements, such as font characters. When this option is checked, the
Publish command exports a SimpleText (Mac) or TXT file (PC) to view sepa-
rately in a text-editor application.

✦ Omit Trace Actions: When this option is selected, the Flash player ignores
any trace actions used in Flash ActionScripting. Trace actions will open the
Flash Output window for debugging purposes. In general, if you used Trace
actions, you will want to omit them from the final .SWF file — they can’t be
viewed in the Flash Player anyway.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1161

1162 Part VIII ✦ Distributing Flash Movies

✦ Protect from import: This option safeguards your Flash .SWF files on the
Internet. When enabled, the .SWF file cannot be imported back into the Flash 5
authoring environment, or altered in any way.

The Protect from import option will not prevent a Web browser from caching your
.SWF files. Also, Macromedia Director can import and use protected .SWF files.
Hacking utilities called swiffers, can break into any .SWF file and extract artwork,
sounds, and ActionScripted code. Even Notepad can open .SWF files and see vari-
able names and values. For this reason, you should always use CGI scripts to verify
password entries in Flash movies, rather than internal ActionScripted password
checking with if . . . else conditions. Don’t store sensitive information such
as passwords in your source files!

✦ Debugging Permitted: If this option is checked, then you can access the
Debugger Panel from in the Debug Movie environment, or from a Web browser
that is using the Flash Debug Player plug-in or ActiveX control.

To install the Flash Debug Player plug-in or ActiveX control, go to the Players folder
in your Macromedia Flash 5 application folder. There, you will find a Debug folder.
Run the Flash 5 Player Installer file (Netscape for Mac and/or Internet Explorer for
Mac), the flash32.exe file (Netscape for Windows), or the InstallAXFlash.exe
(Internet Explorer for Windows) file located there.

✦ Password: If you checked the Debugging Permitted option, you can enter a
password to access the Debugger Panel. Because you can now debug movies
over a live Internet connection, you should always enter a password here if
you intend to debug a remote Flash .SWF file. If you leave this field empty and
check the Debugging Permitted option, Flash will still ask you for a password
when you attempt to access the Debugger Panel remotely. Simply press the
Enter key if you left this field blank.

✦ JPEG Quality: This slider and text-field option specifies the level of JPEG com-
pression applied to bitmapped artwork in the Flash movie. The value can be
any value between (and including) 0 to 100. Higher values apply less compres-
sion and preserve more information of the original bitmap, whereas lower val-
ues apply more compression and keep less information. The value entered
here applies to all bitmaps that enable the Use document default quality
option, found in the Bitmap Properties dialog for each bitmap in the Flash
Library. Unlike the audio settings discussed in a moment, no “override” option
exists to disregard settings in the Flash Library.

✦ Audio Stream: This option displays the current audio compression scheme for
Stream audio. By clicking the Set button (see Figure 40-4), you can control the
compression applied to any sounds that use the Stream Sync setting in the
Sound tab of the Frame Properties dialog. Like the JPEG Quality option dis-
cussed previously, this compression value is applied to any Stream sounds
that use the Default compression in the Export Settings section of each audio
file’s Sound Properties dialog in the Flash Library. See Chapters 14 through 16
for more information on using Stream sounds and audio compression schemes.

Note

Caution

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1162

1163Chapter 40 ✦ Publishing Flash Movies

Figure 40-4: The Flash tab of the Publish Settings dialog
controls the settings for a movie published in the Flash
format.

✦ Audio Event: This setting behaves exactly the same as the Audio Stream
option, except that this compression setting applies to Default compression-
enabled Event sounds. See Chapter 15, “Importing and Editing Sounds in
Flash,” for more information on Event sounds.

Flash 5 now supports imported MP3 audio that uses VBR (Variable Bit Rate) com-
pression. However, Flash 5 cannot compress native sounds in VBR. If you use any
imported MP3 audio for Stream Sync audio, Flash will recompress the MP3 audio
on export.

✦ Override sound settings: If you want the settings for Audio Stream and Audio
Event to apply to all Stream and Event sounds, respectively, and to disregard
any unique compression schemes specified in the Flash Library, then check
this option. This is useful for creating multiple .SWF versions of the Flash
movie (hi-fi, lo-fi, and so on) and enabling the Web visitor to decide which one
to download. See Figure 40-5.

✦ Version: This drop-down menu provides the option to publish movies in any
of the Flash .SWF formats. To ensure complete compatibility with all of the
new Flash 5 features, select Flash 5. If you haven’t used any new Flash 5
ActionScript commands or Dots notation, then you can use Flash 4. Flash 1
and 2 support only basic animation and interactive functions. Flash 3 will sup-
port just about all animation and artwork created in Flash 5, but it doesn’t rec-
ognize any of the ActionScripts introduced with either Flash 4 or 5, editable
text fields (such as form elements), or MP3 audio. If in doubt, you should test
your choice of version in that version’s Flash Player.

New
Feature

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1163

1164 Part VIII ✦ Distributing Flash Movies

Figure 40-5: Click the Set button for Audio Stream or Audio Event, and the Sound
Settings dialog appears.

You can download older versions of the Flash Player from the Macromedia site at:
www.macromedia.com/support/flash/ts/documents/oldplayers.htm

When you are finished entering the settings for the .SWF movie, you can proceed to
other file-type settings in the Publish Settings dialog. Or, you can click OK to return
to the authoring environment of Flash 5 so that you can use the newly entered set-
tings in the Test Movie or Scene environment. You can also export a .SWF file (and
other file formats currently selected in Publish Settings) by clicking the Publish but-
ton in the Publish Settings dialog.

Using the HTML settings
HTML is the language in which the layout of most Web pages is written. The HTML
tab of the Publish Settings dialog (see Figure 40-6) has a number of settings that
control the way in which Flash will publish a movie into a complete Web page with
the HTML format.

Tip

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1164

1165Chapter 40 ✦ Publishing Flash Movies

Figure 40-6: The HTML settings tab controls flexible Flash
movie options — you can change this options without
permanently affecting the Flash .SWF movie.

The settings available in the HTML tab include:

✦ Template: Perhaps the most important (and versatile) feature of all Publish
Settings, the Template setting enables you to select a predefined set of HTML
tags to display your Flash movies. To view the description of each template,
click the Info button to the right of the drop-down list (shown in Figure 40-6).
All templates use the same options listed in the HTML dialog — the template
simply places the values of those settings into HTML tags scripted in the tem-
plate. You can also create your own custom templates for your own unique
implementation of Flash movies. Figure 40-7 shows the description for the
Flash Only (Default) template.

Figure 40-7: Clicking the Info button
shown in Figure 40-6 summons a brief
description of the HTML template that
has been specified in the Template
drop-down list.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1165

1166 Part VIII ✦ Distributing Flash Movies

You can view the “source” of each template in the HTML folder of the Flash 5
application folder. Although these template files have.html extensions, use
Notepad (PC) or SimpleText (Mac) to view the files. All of the preinstalled tem-
plates include HTML tags to create an entire Web page, complete with <HEAD>,
<TITLE>, and <BODY> tags.

• Ad 3 Banner: With this template, Flash creates an HTML document that
checks for the Flash 3 Player plug-in. If JavaScript or VBScript detects
the plug-in, then the Flash .SWF file will be served. If there is no Flash
Player, then a GIF or JPEG will be loaded into the page. You must choose
either the GIF or JPEG option in the Format tab of the Publish Settings
dialog. As the name of the template implies, this template is useful for
serving Flash ad banners. You can, however, use any of the Ad templates
for any Flash movie version checking. Make sure that you have selected
Flash 3 as the .SWF version in the Flash tab.

• Ad 4 Banner: Same as the Ad 3 Banner, except that the JavaScript and
VBScript check for the Flash 4 Player plug-in. You need to change the
.SWF Version option to Flash 4 in the Flash tab of the Publish Settings.
Use this template only if you are using Flash 4-specific ActionScripts,
such as variable declarations or loadVariable actions.

• Ad 5 Banner: Same as the Ad 3 Banner, except that the JavaScript and
VBScript check for the Flash 5 Player plug-in. Change the .SWF version
option to Flash 5 in the Flash tab of the Publish Settings dialog. If you are
serving Flash ad banners, you may not want to serve the Flash 5 format.
Unless your Flash 5 movies use Flash 5-specific ActionScripts (Dots nota-
tion, XML data, and so on), choose one of the previous Banner templates.

• Ad Any Banner: This template checks whether the Flash 3, 4, or 5 Player
plug-in is installed. If any of these players is installed, then the published
.SWF file will load into the HTML document. Otherwise, the published
JPEG or GIF will be served. Use this option only if you are publishing
Flash 3-compatible .SWF files, and want to serve a .SWF file to everyone
who has a Flash 3, 4, or 5 Player plug-in.

• Flash Only (Default): This template simply inserts the <OBJECT> and
<EMBED> tags for a Flash 5 movie. It does not perform any browser or
plug-in detection.

• Flash with FSCommand: Use this template if you are using the
FSCommand action in your Flash movies to communicate with JavaScript
in the HTML page. The FSCommand is discussed in the next chapter. The
necessary <OBJECT> and <EMBED> tags from the Flash Only (Default)
template are also included.

Tip

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1166

1167Chapter 40 ✦ Publishing Flash Movies

• Generator Ad Any Banner: This template is similar to the Ad Any Banner
template. If you have used Generator Objects or Generator Environment
variables to your Flash movie, then this template will create an HTML that
checks for the Flash 3, 4, or 5 Player plug-in. If any of those versions are
installed, then a request will be made for a dynamic .SWF file (?type=swf)
from the Generator template (.SWT file). Otherwise, a JPEG, GIF, or PNG
image will be made from the Generator template. You need to specify an
image format (JPEG, GIF, or PNG) in the Formats tab for this template.
However, you will not need to upload the published image file — the
Generator Server is responsible for creating the static image on the fly.

• Generator Image Output: This template creates a simple tag with a
SRC attribute that contains the template’s filename and the desired image
format, as in , which will tell
the Generator Server to create a GIF image from the templateFile.swt file.
You need to check the desired image format in the Formats tab of the
Publish Settings dialog. As with the Generator Ad Any Banner template,
you will not need to upload the published image file.

• Generator Only (Default): This template makes an HTML document that
is similar to the Flash Only (Default) template. It will include <OBJECT>
and <EMBED> tags that refer to the Generator template file (.SWT file)
and a Flash output format (?type=swf).

• Generator QuickTime: The HTML document published with this tem-
plate will create an <EMBED> tag that references the Generator template
file (.SWT file) and a QuickTime Flash output format, as in <EMBEDSRC=
”template.swt?type=mov”. . .>. Note that this output format will
require the QuickTime 4 (or higher) Player plug-in.

For more information on Generator output, refer to Chapter 28, “Revving Up
Generator.”

• Image Map: This template does not use or display any .SWF movie.
Instead, it uses a GIF, JPEG, or PNG image (as specified in the Publish
Settings’ Format tab) as a client-side image map, via an tag with a
USEMAP attribute. Use a frame label of #map in the Flash editor document
(.FLA file) to designate which frame is used as the map image. See “Using
the GIF settings” later in this chapter for more details.

• Java Player: Instead of using the Flash Player or an image map, this tem-
plate creates the necessary <APPLET> tags to use the Flash Java Player.
To use this player, you must select the Publish Settings’ Flash tab and
specify a version 2 .SWF format. The Flash Java Player needs to access
Java class files (found in the Players folder of the Flash 4 application
folder). Make sure that you have uploaded the class files to your Web
server. You may need to add a CODEBASE=[URL of class files] to the
<APPLET> tag created by this template.

Cross-
Reference

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1167

1168 Part VIII ✦ Distributing Flash Movies

• QuickTime: This template creates an <EMBED> tag to display QuickTime
Flash movies. You need to enable the QuickTime file type in the Publish
Settings’ Format tab. A QuickTime Flash movie is a special type of
QuickTime movie, playable with QuickTime 4 or higher. QuickTime 4
can only recognize Flash 3 features. You must choose Flash 3 as the
Version option in the Flash tab. Depending on the options selected in the
QuickTime tab of Publish Settings, the Flash movie may or may not be
stored within the QuickTime movie file. See Chapter 34, “Working with
QuickTime,” for more information.

At the time of this writing, the QuickTime 5 Public Preview had been released. This
version of QuickTime supports Flash 4 ActionScripts.

• User Choice: Often the scripter’s testing tool, this template creates an
HTML document with Flash 5 plug-in detection and a JavaScript cookie
that enables you to choose three loading options for the Flash .SWF file:
automatic plug-in detection, standard plug-in usage (via direct non-
JavaScript–written <OBJECT> or <EMBED> tags), or substitute image
(for example, GIF, JPEG, or PNG).

✦ Dimensions: This setting controls the WIDTH and HEIGHT values of the
<OBJECT> and <EMBED> tags. The dimension settings here do not change the
original .SWF movie, they simply create the viewport through which your
Flash movie is viewed on the Web page. The way that the Flash movie “fits”
into this viewport is determined with the Scale option (discussed later). Three
input areas exist: a drop-down menu and two text fields for width andheight.

• Match Movie: If you want to keep the same width and height that you
specified in the Modify ➪ Movie dialog, then use this option in the drop-
down menu.

• Pixels: You can change the viewing size (in pixel units) of the Flash
movie window by selecting this option and entering new values in the
Width and Height text fields.

• Percent: By far one of the most popular options with Flash movies,
Percent scales the movie to the size of the browser window — or a por-
tion of it. Using a value of 100 on both Width and Height expands the
Flash movie to fit the entire browser window. If Percent is used with the
proper Scale setting (see the description of the Scale setting later in this
chapter), then the aspect ratio of your Flash movie will not be distorted.

• Width and Height: Enter the values for the Flash movie width and height
here. If Match Movie is selected, you shouldn’t be able to enter any val-
ues. The unit of measurement is determined by selecting either Pixels or
Percent from the drop-down menu.

✦ Playback: These options control how the Flash movie plays when it is down-
loaded to the browser. Each of these options has an <OBJECT> and <EMBED>
attribute if you want to control them outside of Publish Settings. Note that
these attributes are not viewable within the Publish Settings dialog — you need
to load the published HTML document into a text editor to see the attributes.

Note

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1168

1169Chapter 40 ✦ Publishing Flash Movies

• Paused at Start: This is equivalent to adding a Stop action on the first
frame of the first scene in the Flash movie. By default, this option is off —
movies play as soon as they stream into the player. A button with a Play
action can start the movie, or the Play command can be executed from
the Flash Player shortcut menu (by right-clicking or Control+clicking the
movie). Attribute: PLAY=true or false. If PLAY=true, the movie will
play as soon as it is loaded.

• Loop: This option causes the Flash movie to repeat an infinite number of
times. By default, this option is on. If it is not checked, the Flash movie
stops on the last frame unless some other ActionScripted event is initi-
ated on the last frame. Attribute: LOOP=true or false.

• Display Menu: This option controls whether the person viewing the
Flash movie in the Flash Player environment can access the shortcut
menu via a right-click (PC) or Ctrl+click (Mac) anywhere within the
movie area. If this option is checked, then the visitor can select Zoom
In/Out, 100 percent, Show All, High Quality, Play, Loop, Rewind, Forward,
and Back from the menu. If this option is not checked, then the visitor
can only select About Flash Player from the menu. Attribute: MENU=true
or false.

• Device Font: This option only applies to Flash movie played in the
Windows version of the Flash Player. When enabled, this option replaces
fonts that are not installed on the Player’s system with antialiased sys-
tem fonts. Attribute: DEVICEFONT=true or false.

✦ Quality: This menu determines how the Flash artwork in a movie will render.
While it would be ideal to play all Flash movies at high quality, slower proces-
sors may not be able to redraw antialiased artwork and keep up with the
frame rate.

• Low: This setting forces the Flash Player to turn off antialiasing (smooth
edges) completely. On slower processors, this may improve playback
performance. Attribute: QUALITY=LOW.

• Auto Low: This setting starts in Low quality mode (no antialiasing), but
will switch to High quality if the computer’s processor can handle the
playback speed. Attribute: QUALITY=AUTOLOW.

• Auto High: This setting is the opposite of Auto Low. The Flash Player
starts playing the movie in High quality mode, but, if the processor can-
not handle the playback demands, then it switches to Low quality mode.
For most Web sites, this is the optimal setting to use because it favors
higher quality first. Attribute: QUALITY=AUTOHIGH.

• Medium: This quality produces antialiased vector graphics on a 2 ×2
grid (in other words, it will smooth edges over a 4-pixel square area),
but does not smooth bitmap images. Artwork will appear slightly better
than the Low quality, but not as smooth as the High setting. Attribute:
QUALITY=MEDIUM.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1169

1170 Part VIII ✦ Distributing Flash Movies

The Medium quality option is new to Flash 5. You can now specify this intermedi-
ate quality in order to achieve smoother playback and smoother graphics quality.

• High: When this setting is used, the Flash Player dedicates more of
the computer’s processor to rendering graphics (instead of playback).
All vector artwork is antialiased on a 4 ×4 grid (16-pixel square area).
Bitmaps are smoothed unless they are contained within an animation
sequence such as a Motion Tween. By default, this setting is selected in
the HTML tab of the Publish Settings dialog. Attribute: QUALITY=HIGH.

• Best: This mode does everything that High quality does, with the addi-
tion of smoothing all bitmaps — regardless of whether they are in
Motion Tweens. This mode is the most processor-intensive. Attribute:
QUALITY=BEST.

✦ Window Mode: As discussed in the “Animation techniques using layers”
section of Chapter 39, the Window Mode setting only works with the Flash
ActiveX control. Therefore, it only applies to 32-bit Windows versions of
Internet Explorer. If you intend to deliver to this browser, then you can ani-
mate Flash content on top of DHTML content. Refer to Chapter 24, “Sending
Data In and Out of Flash,” for more information. Attribute: WMODE=WINDOW, or
OPAQUE, or TRANSPARENT.

✦ HTML Alignment: This setting works much like the ALIGN attribute of
tags in HTML documents, but it’s used with the ALIGN attribute of the <OBJECT>
and <EMBED> tags for the Flash movie. Note that these settings may not have any
effect when used within a table cell (<TD> tag) or a DHTML layer (<DIV> or
<LAYER> tag).

• Default: This option horizontally or vertically centers the Flash movie
in the browser window. If the browser window is smaller than a Flash
movie that uses a Pixel or Match Movie dimensions setting (see
Dimensions setting earlier in this section), then the Flash movie will
be cropped.

• Left, Right, Top, and Bottom: These options align the Flash movie along
the left, right, top, or bottom edge of the browser window, respectively.

✦ Scale: This setting works in tandem with the Dimensions setting discussed
earlier in this section, and determines how the Flash movie displays on the
HTML page. Just as big screen movies must be cropped to fit the aspect ratio
of a TV screen, Flash movies may need to be modified to fit the area pre-
scribed by the Dimensions setting.

• Default (Show all): This option fits the entire Flash movie into the area
defined by the Dimensions setting without distorting the original aspect
ratio of the Flash movie. However, borders may appear on two sides of
the Flash movie. For example, if a 300 ×300-pixel window is specified in
Dimensions and the Flash movie has an aspect ratio of 1.33:1 (for exam-
ple, 400 ×300 pixels), then a border fills the remaining areas on top of
and below the Flash movie. This is similar to the “letterbox” effect on
widescreen video rentals. Attribute: SCALE=SHOWALL.

New
Feature

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1170

1171Chapter 40 ✦ Publishing Flash Movies

• No border: This option forces the Flash movie to fill the area defined
by the Dimensions setting without leaving borders. The Flash movie’s
aspect ratio is not distorted or stretched. However, this may crop two
sides of the Flash movie. Using the same example from Show All, the left
and right sides of the Flash movie are cropped when No Border is
selected. Attribute: SCALE=NOBORDER.

• Exact fit: This option stretches a Flash movie to fill the entire area
defined by the Dimensions setting. Using the same example from Show
All, the 400 ×300 Flash movie is scrunched to fit a 300 ×300 window. If
the original movie showed a perfect circle, it now appears as an oval.
Attribute: SCALE=EXACTFIT.

✦ Flash Alignment: This setting adjusts the SALIGN attribute of the <OBJECT>
and <EMBED> tags for the Flash movie. In contrast to the HTML Alignment set-
ting, Flash Alignment works in conjunction with the Scale and Dimensions set-
tings, and determines how a Flash movie is aligned within the Player window.

• Horizontal: These options — Left, Center, and Right — determine
whether the Flash movie is horizontally aligned to the left, center, or
right of the Dimensions area, respectively. Using the same example from
the Scale setting, a 400 ×300-pixel Flash movie (fit into a 300 ×300
Dimension window with SCALE=NOBORDER) with a Flash Horizontal
Alignment setting of Left crops only the right side of the Flash movie.

• Vertical: These options — Top, Center, and Bottom — determine whether
the Flash movie is vertically aligned to the top, center, or bottom of the
Dimensions area, respectively. If the previous example used a Show All
Scale setting and had a Flash Vertical Alignment setting of Top, then the
border only occurs below the bottom edge of the Flash movie.

✦ Show Warning Messages: This useful feature alerts you to errors during the
actual Publish process. For example, if you selected the Image Map template
and didn’t specify a static GIF, JPEG, or PNG file in the Formats tab, then Flash
returns an error. By default, this option is enabled. If it is disabled, then Flash
suppresses any warnings during the Publish process.

Using the GIF settings
The GIF (Graphics Interchange File) format, developed by CompuServe, defined the
first generation of Web graphics, and is still quite popular today, despite its 256-
color limitation. In the context of the Flash Publish Settings, the GIF format is used
to export a static or animated image that can be used in place of the Flash movie if
the Flash Player or plug-in is not installed. Although the Flash and HTML tabs are
specific to Flash movie display and playback, the settings of the GIF tab (see Figure
40-8) control the characteristics of a GIF animation (or still image) that Flash will
publish.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1171

1172 Part VIII ✦ Distributing Flash Movies

Figure 40-8: Every subtle aspect of a GIF animation or still
image can be finessed with these settings of the GIF tab
of the Publish Settings dialog.

The settings in the GIF tab include the following:

✦ Dimensions: This setting has three options: Width, Height, and Match Movie.
As you might surmise, Width and Height control the dimensions of the GIF
image. These fields are enabled only when the Match Movie checkbox is
unchecked. With Match Movie checked, the dimensions of the GIF match
those of the Flash Movie that is being published.

✦ Playback: These radio buttons control what type of GIF image is created and
how it plays (if Animated is chosen).

• Static: If this button is selected, then Flash exports the first frame of the
Flash movie as a single still image in the GIF format. If you want to use a
different frame other than the first frame, use a frame label of #Static
on the desired frame. Alternatively, you could use the File ➪ Export
Image command to export a GIF image from whatever frame the Current
Frame Indicator is positioned over.

• Animated: If this button is selected, then Flash exports the entire Flash
movie as an animated GIF file (in the GIF89a format). If you don’t want to
export the entire movie as an animated GIF (indeed, a GIF file for a Flash
movie with over 100 frames would be most likely too large to download
easily over the Web), you can designate a range of frames to export. Use a
frame label of #First on the beginning frame of a given range of frames.
Next, add a frame label of #Last to the ending frame of the desired
sequence of frames. Flash actually does a pretty good at optimizing ani-
mated GIFs by only saving areas that change over time in each frame —
instead of the entire frame.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1172

1173Chapter 40 ✦ Publishing Flash Movies

Scott Brown discusses optimized animated GIFs in his “Fireworks and Flash”
Expert Tutorial in Chapter 30.

• Loop Continuously: When the Animated radio button is selected, you
can specify that the animated GIF repeats an infinite number of times by
selecting the Loop Continuously radio button.

• Repeat __ times: This option can be used to set up an animated GIF that
repeats a given number of times. If you don’t want the animated GIF to
repeat continuously, then enter the number of repetitions here.

✦ Options: The options in the Options settings control the creation of the GIF’s
color table and how the browser displays the GIF.

• Optimize Colors: When you are using any palette type other than
Adaptive, this option removes any colors preexisting in the Web 216 or
custom palettes that are not used by the GIF image. Enabling this option
can only save you precious bytes used in file overhead — it has no effect
on the actual quality of the image. Most images do not use all 216 colors
of the Web palette. For example, a black and white picture can only use
between 3 and 10 colors from the 216-color palette.

• Interlace: This option makes the GIF image download in incrementing
resolutions. As the image downloads, the image becomes sharper with
each successive “scan.” Use of this option is usually personal preference.
Some people like to use it for image maps that can provide basic naviga-
tion information before the entire image downloads.

• Smooth: This option antialiases the Flash artwork as it exports to the GIF
image. Text may look better when it is antialiased, but may want to test
this option for your particular use. If you need to make a transparent GIF,
then smoothing may produce unsightly edges.

• Dither Solids: This option determines if solid areas of color (such as
fills) are dithered. In this context, this type of dithering would create a
two-color pattern to mimic a solid color that doesn’t occur in the GIF’s
color palette. See the discussion of dithering later in this section.

• Remove Gradients: Flash gradients do not translate or display very well
in 256 or less colors. Use this option to convert all Flash gradients to
solid colors. The solid color is determined by the first color prescribed
in the gradient. Unless you developed your gradients with this effect in
mind, this option may produce undesirable results.

✦ Transparent: This setting controls the appearance of the Flash movie back-
ground, as well as any Flash artwork that uses alpha settings. Because GIF
images only support one level of transparency (that is, the transparent area
cannot be antialiased), you need to exercise caution when using this setting.
The Threshold option is only available if Alpha is selected.

Cross-
Reference

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1173

1174 Part VIII ✦ Distributing Flash Movies

• Opaque: This option produces a GIF image with a solid background. The
image has a rectangular shape.

• Transparent: This option makes the Flash movie background appear
transparent. If the Smooth option in the Options setting is enabled, then
Flash artwork may display halos over the background HTML color.

• Alpha and Threshold: When the Alpha option is selected in the drop-
down menu, you can control at what alpha level Flash artwork becomes
transparent by entering a value in the Threshold text field. For example, if
you enter 128, then all alphas at 50 percent become completely transpar-
ent. If you are considering an animated GIF that has Flash artwork fading
in or out, then you probably want to use the Opaque transparent option.
If Alpha and Threshold were used, then the fade effect would be lost.

✦ Dither: Dithering is the process of emulating a color by juxtaposing two col-
ors in a pattern arrangement. Because GIF images are limited to 256 colors (or
less), dithering can often produce better-looking images for continuous tone
artwork such as gradients. However, Flash’s dithering seems to work best with
the Web 216 palette. Dithering can increase the file size of a GIF image.

• None: This option does not apply any dithering to the GIF image.

• Ordered: This option applies an intermediate level of dithering with min-
imal file size overhead.

• Diffusion: This option applies the best level of dithering to the GIF
image, but with larger file size overhead. Diffusion dithering only has a
noticeable effect when the Web 216 palette is chosen in Palette Type.

✦ Palette Type: As mentioned earlier in this section, GIF images are limited to
256 or less colors. However, this grouping of 256 is arbitrary: Any set of 256
(or less) colors can be used for a given GIF image. This setting enables you
to select predefined sets of colors to use on the GIF image. See Chapter 2,
“Exploring the Interface: Panels, Settings, and More,” for more information on
the Web color palette.

• Web 216: When this option is selected, the GIF image only uses colors
from the limited 216 Web-color palette. For most Flash artwork, this
should produce acceptable results. However, it may not render Flash
gradients or photographic bitmaps very well.

• Adaptive: With this option selected, Flash creates a unique set of 256 colors
(or fewer, if specified in the Max Colors setting) for the GIF image. However,
these adapted colors fall outside of the Web-Safe Color Palette. File sizes for
adaptive GIFs are larger than Web 216 GIFs, unless few colors are chosen in
the Max Colors setting. Adaptive GIFs look much better than Web 216 GIFs,
but may not display very well with 8-bit video cards and monitors.

• Web Snap Adaptive: This option tries to give the GIF image the best of
both worlds. Flash converts any colors close to the 216 Web palette to
Web-safe colors and uses adaptive colors for the rest. This palette pro-
duces better results than the Adaptive palette for older display systems
that used 8-bit video cards.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1174

1175Chapter 40 ✦ Publishing Flash Movies

• Custom: When this option is selected, you can specify a palette that uses
the .ACT file format to be used as the GIF image’s palette. Macromedia
Fireworks and Adobe Photoshop can export color palettes (or color
look-up tables) as .ACT files.

✦ Max Colors: With this setting, you can specify exactly how many colors are in
the GIF’s color table. This numeric entry field is only enabled when Adaptive
or Web Snap Adaptive is selected in the Palette Type drop-down menu.

✦ Palette: This text field and the “. . .” browse button are only enabled when
Custom is selected in the Palette Type drop-down menu. When enabled, this
dialog is used to locate and load a palette file from the hard drive.

Using the JPEG settings
The JPEG (Joint Photographic Experts Group) format is just as popular as the GIF
format on the Web. Unlike GIF images, though, JPEG images can use much more
than 256 colors. In fact, JPEG files must be 24-bit color (or full-color RGB) images.
Although GIF files use lossless compression (within the actual file itself), JPEG
images use lossy compression, which means that color information is discarded in
order to save file space. However, JPEG compression is very good. Even at its low-
est quality settings, JPEG images can preserve quite a bit of detail in photographic
images.

Another significant difference between GIF and JPEG is that GIF images do not
require nearly as much memory (for equivalent image dimensions) as JPEG images
do. You need to remember that JPEG images “uncompress” when they are down-
loaded to your computer. While the file sizes may be small initially, they still open
as full-color images in the computer’s memory. For example, even though you may
get the file size of a 400×300-pixel JPEG image down to 10KB, it still requires nearly
352KB in memory when it is opened or displayed.

Flash publishes the first frame of the Flash movie as the JPEG image, unless a
#Static frame label is given to another frame in the Flash movie. The limited set-
tings of the JPEG tab of the Publish Settings dialog (see Figure 40-9) control the few
variables of this still photoquality image format:

✦ Dimensions: This setting behaves the same as the GIF Dimensions setting.
Width and Height control the dimensions of the movie. But these fields are
enabled only when the Match Movie checkbox is unchecked. With Match
Movie checked, the dimensions of the JPEG match those of the Flash Movie.

✦ Quality: This slider and text field work exactly the same way as the JPEG
Quality setting in the Flash tab of Publish Settings. Higher values apply less
compression and result in better quality, but create images with larger file sizes.

✦ Progressive: This option is similar to the Interlaced option for GIF images.
When enabled, the JPEG image loads in successive scans, becoming sharper
with each pass.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1175

1176 Part VIII ✦ Distributing Flash Movies

Figure 40-9: The settings of the JPEG tab are limited
because JPEGs are still images with relatively few
variables to be addressed.

Using the PNG settings
The PNG (Portable Network Graphic) format is another still-image format. It was
developed quite recently and is an improvement over both the GIF and JPEG for-
mats in several ways. Much like JPEG, it is excellent for transmission of photo-
graphic quality images. The primary advantages of PNG are variable bit-depths
(images can be 256 colors or millions of colors), multilevel transparency, and loss-
less compression. However, most browsers do not offer full support for all PNG
options without some kind of additional plug-in. When in doubt, test your PNG
images in your preferred browser.

The settings of the PNG tab (see Figure 40-10) control the characteristics of the PNG
image that Flash will publish.

The PNG tab options are:

✦ Dimensions: This setting works just like the GIF and JPEG equivalents. When
Match Movie is checked, you cannot alter the Width and Height of the PNG
image.

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1176

1177Chapter 40 ✦ Publishing Flash Movies

Figure 40-10: The settings found on the PNG tab closely
resemble those on the GIF tab. The PNG was engineered
to have many of the advantages of both the GIF and
JPEG formats.

✦ Bit Depth: This setting controls how many colors are created in the PNG image:

• 8-bit: In this mode, the PNG image has a maximum color palette of 256
colors, similar to the palette function of GIF images. When this option is
selected, the Options, Dither, Palette Type, Max Colors, and Palette set-
tings can be altered.

• 24-bit: When this option is selected, the PNG image can display any of
the 16.7 million RGB colors. This option produces larger files than 8-bit
PNG images, but renders the Flash artwork most faithfully.

• 24-bit with Alpha: This option adds another 8-bit channel to the 24-bit PNG
image for multilevel transparency support. This means that Flash will treat
the Flash movie background as a transparent area, so that information
behind the PNG image (such as HTML background colors) shows through.
Note that, with proper browser support, PNG can render antialiased edges
on top of other elements, such as HTML background images!

Flash’s PNG export or publish settings do not reflect the full range of PNG options
available. PNG can support transparency in both 8-bit and 24-bit flavors, but Flash
only enables transparency in 24-bit with Alpha images.

Caution

3515-3 ch40.f.qc 1/18/01 5:16 PM Page 1177

1178 Part VIII ✦ Distributing Flash Movies

✦ Options: These options behave the same as the equivalent GIF Publish
Settings.

✦ Dither, Palette Type, Max Colors, and Palette: These settings work the same
as the equivalent GIF Publish Settings. Because PNG images can be either 8- or
24-bit, these options are only apply to 8-bit PNG images. If anything other than
8-bit is selected in the Bit Depth setting, then these options are disabled.
Please refer to the previous section for more information.

✦ Filter Options: This drop-down menu controls what type of compression sam-
pling or algorithm the PNG image uses. Note that this does not apply an art or
graphic “filter effect” like the filters in Adobe Photoshop do, nor does it throw
away any image information — all filters are lossless. It simply enables you to
be the judge of what kind of compression to use on the image. You need to
experiment with each of these filters on your Flash movie image to find the
best filter-to-file size combination. Technically, the filters do not actually look
at the pixel data. Rather, they look at the byte data of each pixel. Results vary
depending on the image content, but here are some guidelines to keep in mind:

• None: When this option is selected, no filtering is applied to the image.
When no filter is applied, you usually have unnecessarily large file sizes.

• Sub: This filter works best on images that have repeated information
along the horizontal axis. For example, the stripes of a horizontal
American flag filter nicely with the sub filter.

• Up: The opposite of the sub filter, this filter works by looking for
repeated information along the vertical axis. The stripes of a vertical
American flag filter well with the up filter.

• Average: Use this option when a mixture of vertical and horizontal infor-
mation exists. When in doubt, try this filter first.

• Paeth: This filter works like an advanced average filter. When in doubt,
try this filter after you have experimented with the average filter.

Creating Windows and Macintosh projectors
To export a Mac standalone projector, check the Macintosh Projector option in the
Formats tab. To publish a PC standalone projector, check the Windows Projector
option in the Formats tab.

The process of creating and using Flash standalone projectors is described in
Chapter 42, “Using Players, Projectors, and Screensaver Utilities.”

Using the QuickTime settings
Now that QuickTime 4 (and the forthcoming QuickTime 5) includes built-in support
for Flash tracks and .SWF files, you may want to publish QuickTime 4 movies (.MOV
files) in addition to your Flash movies (.SWF files). The QuickTime publish settings

Cross-
Reference

3515-3 ch40.f.qc 1/18/01 5:17 PM Page 1178

1179Chapter 40 ✦ Publishing Flash Movies

are discussed at length in Chapter 34, “Working with QuickTime.” If you want to
enable QuickTime movie output via the Publish command, make sure that it is
selected in the Formats tab of the Publish Settings dialog.

Producing RealPlayer presentations
Flash 5 can now automatically create tuned .SWF files and RealAudio files from your
Stream Sync audio used in your Flash movie file. To create the tuned .SWF,
RealAudio, and .SMIL files necessary for playback in RealPlayer, check the
RealPlayer option in the Formats tab of the Publish Settings dialog.

To learn the ins and outs of RealPlayer Flash presentations, please read Chapter
35, “Working with RealPlayer.”

Publish Preview and Publish Commands
After you have entered the file format types and specifications for each in the
Publish Settings dialog, you can proceed to preview and publish the file types you
selected.

Using Publish Preview
The Publish Preview submenu (accessible from File ➪ Publish Preview) lists all of the
file types currently enabled in the Publish Settings dialog*. By default, HTML is the
first file type available for preview. In general, the first item enabled in the Formats
tab of Publish Settings is the first item in the submenu, and can be executed by
pressing F12. Selecting a file type in the Publish Preview menu launches your pre-
ferred browser and inserts the selected file type(s) into the browser window.

When you use Publish Preview, Flash 5 actually creates real files in the same loca-
tion as the saved Flash movie. In a sense, previewing is the same as running the
Publish command, except that Publish Preview will save you the steps of opening
the browser and loading the files manually.

Using Publish
When you want Flash to export the file type(s) selected in the Publish Settings, choose
File ➪ Publish (Shift+F12). Flash creates the new files wherever the Flash movie was
last saved. If you have selected an HTML template in the HTML tab of Publish Settings,
then you may receive a warning or error message if any other necessary files were not
specified. That’s it! After you’ve tested the files for the delivery browser and/or plat-
forms of your choice, you can upload the files to your Web server.

*RealPlayer files can not be previewed from this menu.

Note

Cross-
Reference

3515-3 ch40.f.qc 1/18/01 5:17 PM Page 1179

1180 Part VIII ✦ Distributing Flash Movies

Summary
✦ To achieve the smallest possible file size for quick download over the

Internet, make sure that you have optimized your Flash movie. Reducing the
use of bitmapped artwork and the number of points in a line or shape, and
using nested symbols, can help reduce wasted space in a Flash movie.

✦ For audio, we recommend that you use Flash’s MP3 encoding. MP3 provides the
best sound quality with the smallest byte requirements. However, you will want
to experiment with different audio codecs, depending on your source audio.

✦ Test your Flash movies and scenes within the Flash authoring environment.
The Bandwidth Profiler can provide vital information about frame byte require-
ments, and can help you find problematic streaming areas of the Flash movie.

✦ The size report that can be generated from the Export Movie or Publish com-
mands for .SWF movies lists detailed information regarding any and all Flash
elements, such as audio, fonts and frame byte size.

✦ The Publish Settings dialog box enables you to pick any number of file formats
to export at one time. You can control just about every setting imaginable for
each file type, and use HTML templates to automate the insertion of Flash
movies into your Web pages.

✦ Publish Preview will automatically launch your preferred browser and load
the selected publish file(s) into the browser window.

✦ ✦ ✦

3515-3 ch40.f.qc 1/18/01 5:17 PM Page 1180

Integrating
Flash Content
with HTML

I f you’re not one for automated HTML production using
templates, then this chapter is for you. This chapter

teaches you the ins and outs of the <OBJECT> and <EMBED>
tags, as well as some secrets to using <FRAMESET> tags to
display Flash movies. At the end of this chapter, we examine
how Flash movies can interact with JavaScript and DHTML
by using FSCommand actions from Flash.

Writing Markup for Flash Movies
In Chapter 40, you learned how to use the new Publish fea-
ture, which included automated HTML templates. These tem-
plates created the necessary HTML tags to display Flash
movies on Web pages. This section discusses the use of Flash
movies in your handwritten HTML documents. You can also
use this knowledge to alter HTML documents created by the
Publish feature.

In the following code examples, we use an asterisk (*)
when displaying optional parameters that are not in the
default setting of the Flash Only (Default) HTML template.

Two tags can be used to place Flash movies on a Web page
(such as an HTML document): <OBJECT> and <EMBED>. You
need to include both of these plug-in tags in HTML docu-
ments, as each tag is specific to a browser: <OBJECT> for
Internet Explorer on Windows, and <EMBED> for Netscape on
Windows and Mac (and Internet Explorer on Mac). Each tag
works similarly to the other, with some slight differences in
attribute names and organization. Remember that if both sets

Note

4141C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Adding Flash movies
with raw HTML

Filling the entire
browser window with
a Flash movie

Detecting the Flash
Player plug-in

Using JavaScript with
Flash movies

✦ ✦ ✦ ✦

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1181

1182 Part VIII ✦ Distributing Flash Movies

of tags are included with the HTML, only one set of tags is actually read by the
browser, depending on which browser is used to view the Web page. Without these
tags, Flash movies cannot be displayed with other HTML elements such as images
and text.

You can, however, directly link to .SWF files as an alternative method for displaying
Flash content. That method, however, precludes the use of parameters to control
the look and playback of the Flash movie — it would be the same as loading the
.SWF movie straight into the standalone Flash Player. See Colin Moock’s tutorial
later in this chapter for more information on direct linking.

Using the <OBJECT> tag
Microsoft Internet Explorer for Windows uses this tag exclusively to enable the
Flash ActiveX control. When the Flash Only (Default) HTML template is used in
Publish Settings, the HTML document that is published uses the <OBJECT> tag
in the following way:

A. <OBJECT
B. classid=”clsid:D27CDB6E-AE6D-11cf-96B8-

444553540000”
C. codebase=”http://download.macromedia.com/pub/

shockwave/cabs/flash/swflash.cab#version=5,0,0,0”
D. ID=home
E. WIDTH=550 HEIGHT=400>
F. <PARAM NAME=movie VALUE=”home.swf”>
G. <PARAM NAME=quality VALUE=high>
H. <PARAM NAME=bgcolor VALUE=#FFFFFF>
I.* <PARAM NAME=scale VALUE=noborder>
J.* <PARAM NAME=play VALUE=false>
K. </OBJECT>

A. <OBJECT: This is the opening tag containing the ID code and locations of the
ActiveX control for Flash. Note that this opening tag includes the attributes
lettered B through E.

B. classid: This lengthy string is the unique ActiveX identification code. If you
are inserting the <OBJECT> tag by hand in a text editor, make sure that you
copy this ID string exactly.

C. codebase: Like the codebase attribute of Java <APPLET> tags, this attribute
of the <OBJECT> tag specifies the location of the ActiveX control installer
as a URL. Notice that the #version=5,0,0,0 portion of the URL indicates
that the Flash Player version 5 should be used. You can also specify specific
minor releases, such as #version=5,0,29,0, which would install the Flash 5.0
r29 ActiveX control. If the visitor doesn’t have the ActiveX control already
installed, then Internet Explorer automatically downloads the control from
this URL.

Tip

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1182

1183Chapter 41 ✦ Integrating Flash Content with HTML

D. ID: This attribute of the <OBJECT> tag assigns a JavaScript/VBScript identifier
to the Flash movie, so that it can be controlled by HTML JavaScript/VBScript
functions. By default, this attribute’s value is the name of the actual of .SWF
file, without the .SWF extension. Each element on an HTML page should have a
unique ID or NAME attribute. The NAME attribute is discussed in the next section.

E. WIDTH and HEIGHT>: These attributes control the actual width and height of
the Flash movie, as it appears on the Web page. If no unit of measurement is
specified, then these values are in pixels. If the % character is added to the end
of each value, then the attribute adjusts the Flash movie to the corresponding
percent of the browser window. For example, if 100 percent was the value for
both WIDTH and HEIGHT, then the Flash movie fills the entire browser, except
for the browser gutter. See Colin Moock’s tutorial later in this chapter to learn
how to minimize this gutter thickness.

F. <PARAM NAME=movie VALUE=”home.swf”>: This is the first set of <PARAM>
subtags within the <OBJECT></OBJECT> tags. Each parameter tag has a
unique NAME= setting, not to be confused with JavaScript NAME’s or ID’s. This
parameter’s NAME setting movie specifies the filename of the Flash movie as
the VALUE attribute.

G. <PARAM NAME=quality VALUE=high>: This parameter has a NAME attribute-
setting quality that controls how the Flash movie’s artwork renders within the
browser window. The VALUE can be low, autolow, autohigh, high, or best.
Most Flash movies on the Web use the autohigh value, as this forces the
Flash Player to try rendering the movie elements antialiased. If the processor
of the machine can’t keep up with the Flash movie using antialiased elements,
then it turns off antialiasing by switching to a low quality. For a full descrip-
tion of each of the quality settings, please refer to the section “Using the
HTML settings” in Chapter 40.

H. <PARAM NAME=bgcolor VALUE=#FFFFFF>: This last parameter name, bgcolor,
controls the background color of the Flash movie. If you published an HTML
document via the Publish command, then the VALUE is automatically set to
the background color specified by the Modify ➪ Movie command in Flash.
However, you can override the Movie setting by entering a different value in
this parameter tag. Note that this parameter, like all HTML tags and attributes
concerning color, uses hexadecimal code to describe the color. For more
information on color, see Chapter 6, “Applying Color.”

I. <PARAM NAME=scale VALUE=noborder>: This optional parameter controls
how the Flash movie scales in the window defined by the WIDTH and HEIGHT
attributes of the opening <OBJECT> tag. Its value can be showall, noborder, or
exactfit. If this entire subtag is omitted, then the Flash Player treats the movie
as if the showall default setting was specified. The showall setting fits the
Flash movie within the boundaries of the WIDTH and HEIGHT dimensions with-
out any distortion to the original aspect ratio of the Flash movie. Again, refer to
“Using the HTML Settings” section of Chapter 40 for a complete description of
the scale settings and how they work within the dimensions of a Flash movie.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1183

1184 Part VIII ✦ Distributing Flash Movies

J. <PARAM NAME=play VALUE=false>: This optional parameter tells the Flash
Player whether or not it should start playing the Flash movie as it downloads.
If the VALUE equals false, the Flash movie loads in a “paused” state, just as if
a “stop” action was placed on the first frame. If the VALUE equals true, Flash
starts playing the movie as soon as it starts to stream into the browser.

K. </OBJECT>: This is the closing tag for the starting <OBJECT> tag. As is shown
later in this chapter, you can put other HTML tags between the last <PARAM>
tag and the closing </OBJECT> tag for non-ActiveX–enabled browsers, such as
Netscape. Because Internet Explorer is the only browser that currently recog-
nizes <OBJECT> tags, other browsers simply skip the <OBJECT> tag (as well
as its <PARAM> tags) and only read the tags between the last <PARAM> and
</OBJECT> tags.

The <OBJECT> tag can use other parameter tag names such as WMODE. This
parameter only works on 32-bit versions of Windows 95/98/NT Internet Explorer.
See the end of the Dreamweaver section in Chapter 39, “Working with Authoring
Applications,” for more information regarding its use.

Using the <EMBED> tag
Netscape Communicator (or Navigator) uses the <EMBED> tag to display non-
browser native file formats that require a plug-in, such as Macromedia Flash and
Shockwave Director or Apple QuickTime.

A. <EMBED
B. src=”home.swf”
C. quality=high
D.* scale=noborder
E.* play=false
F. bgcolor=#FFFFFF
G. WIDTH=550 HEIGHT=400
H.* swLiveConnect=false
I. TYPE=”application/x-shockwave-flash”
J. PLUGINSPAGE=”http://www.macromedia.com/shockwave/

download/index.cgi?P1_Prod_Version=ShockwaveFlash”>
K. </EMBED>

A. <EMBED: This is the opening <EMBED> tag. Note that lines B through H are
attributes of the opening <EMBED> tag, which is why you won’t see the >
character at the end of line A.

B. src: This stands for “source,” and indicates the filename of the Shockwave
Flash movie. This attribute of <EMBED> works exactly like the <PARAM NAME=
movie VALUE=”home.swf”> subtag of the <OBJECT> tag.

C. quality: This attribute controls how the Flash movie’s artwork will display in
the browser window. Like the equivalent <PARAM NAME=quality> subtag of
the <OBJECT> tag, its value can be low, autolow, autohigh, high, or best.

Tip

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1184

1185Chapter 41 ✦ Integrating Flash Content with HTML

D. scale: This attribute of <EMBED> controls how the Flash movie fits within the
browser window and/or the dimensions specified by WIDTH and HEIGHT (F).
Its value can be showall (default if attribute is omitted), noborder, or
exactfit.

E. play: This attribute controls the playback of the Flash movie. If set to false,
the Flash movie does not automatically play until a Flash action tells the
movie to play (such as a Flash button or frame action). If set to true, then
the Flash movie plays as soon as it starts to stream into the browser.

F. bgcolor: This setting controls the Flash movie’s background color. Again, this
attribute behaves identically to the equivalent <PARAM> subtag of the <OBJECT>
tag. See that tag’s description in the previous section.

G. WIDTH and HEIGHT: These attributes control the dimensions of the Flash
movie as it appears on the Web page. Refer to the WIDTH and HEIGHT descrip-
tions of the <OBJECT> tag for more information.

H. swLiveConnect: This is one attribute that you can’t find in the <OBJECT> tag.
This unique tag enables Netscape’s LiveConnect feature, which enables plug-
ins and Java applets to communicate with JavaScript. By default, this attribute
is set to false. If it is enabled (for example, the attribute is set to true), the
Web page may experience a short delay during loading. The latest versions of
Netscape don’t start the Java engine during a browsing session until a Web
page containing a Java applet (or a Java-enabled plug-in such as Flash) is
loaded. Unless you use FSCommands in your Flash movies, it’s best to leave
these attribute set to false.

I. TYPE=”application/x-shockwave-flash”: This attribute tells Netscape
what MIME (Multipurpose Internet Mail Extension) content-type the embedded
file is. Each file type (.TIF, .JPG, .GIF, .DOC, .TXT, and so on) has a unique MIME
content-type header, describing what its content is. For Flash movies, the con-
tent-type is application/x-shockwave-flash. Any program (or operating
system) that uses files over the Internet handles MIME content-types accord-
ing to a reference chart that links each MIME content-type to its appropriate
parent application or plug-in. Without this attribute, Netscape may not under-
stand what type of file the Flash movie is. As a result, it may display the broken
plug-in icon when the Flash movie downloads to the browser.

J. PLUGINSPAGE: Literally “plug-in’s page,” this attribute tells Netscape where to
go to find the appropriate plug-in installer if it doesn’t have the Flash plug-in
already installed. This is not equivalent to a JavaScript-enabled autoinstaller.
It simply redirects the browser to the URL of the Web page where the appro-
priate software can be downloaded.

K. </EMBED>: This is the closing tag for the original <EMBED> tag in line A. Some
older or text-based browsers such as Lynx are incapable of displaying <EMBED>
tags. You can insert alternate HTML (such as a static or animated .GIF with the
 tag) between the <EMBED> </EMBED> tags for these browsers.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1185

1186 Part VIII ✦ Distributing Flash Movies

You may be surprised to learn that all versions of Internet Explorer (IE) for the
Macintosh cannot read <OBJECT> tags. Rather, IE for Mac uses a Netscape plug-in
emulator to read <EMBED> tags. However, this emulator does not interpret all
<EMBED> tags with the same level of support as Netscape. As a result, the
swLiveConnect attribute does not function on IE for Mac browsers. This means
that FSCommands are not supported on these browsers.

Caution

Expert Tutorial: Filling the Browser Window by Using
the <FRAMESET> Tag, by Colin Moock

Colin’s biographical information can be found in his expert tutorial, Making GWEN!’s Eyes
Shut When She Yawns, located in Chapter 18, “Navigating Flash Timelines.” Perhaps one of
Colin’s most famous (and often read) tutorials is this <FRAMESET> technique that forces the
Flash movie to fill nearly all of the browser window.

Filling the Gap
Many Flash designers have experienced the problem that Flash movies don’t default to fill
the entire viewing space of a browser window. This results in wasted screen space, or,
what’s worse, an unsightly gutter, or gap, between the edge of the Flash movie and the
edges of the browser.

In the following figure, the browser on the left sports an unsightly white gutter around a
Flash Movie. On the right, the same movie is displayed with a minimal gutter around
a framed Flash Movie. For designers who prefer the effect shown on the right, two options
work with most browsers. One solution depends on the use of frames, and is therefore lim-
ited to frames-capable browsers. The other solution requires that the Flash Player plug-in
be detected before serving pages built with this method — so it’s not appropriate for a
splash page.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1186

1187Chapter 41 ✦ Integrating Flash Content with HTML

Single-frame frameset
With the attributes a frameset set correctly, framed Flash content can stretch to within one
or two pixels (depending on the browser) of the edge of the browser window. To do this,
first make the page (yourmovie.html) in which your movie is embedded. Then when
embedding the movie, set the width, height, and scale for the desired effect. The SCALE
parameter has three options:

✦ HEIGHT=”100%” WIDTH=”100%” SCALE=”EXACTFIT”: This combination forces
every edge of your movie to the edge of the browser, and distorts your movie to fit
the aspect ratio (proportion of height to width) of the browser.

✦ HEIGHT=”100%” WIDTH=”100%” SCALE=”SHOWALL”: This combination fits
the width or height of your movie to the smaller of either the width or height of the
browser. Your movie is not cropped or skewed to fit the browser window, but there
are borders on either the top and bottom or right and left of your movie.

✦ HEIGHT=”100%” WIDTH=”100%” SCALE=”NOBORDER”: This combination
adjusts either the height or width of your movie to the larger of either the width
or height of the browser. When the dimensions of your movie do not match the
dimensions of the browser, your movie is matted with additional background space
on either the vertical or horizontal axis.

Your embedded movie code will look something like this. (The ¬ symbol indicates a con-
tinuation of the same line of code. Do not insert this character in your actual code.)

<OBJECT
CLASSID=”clsid:D27CDB6E-AE6D-11cf-96B8-444553540000”
CODEBASE=”http://download.macromedia.com/pub/ ¬
shockwave/cabs/flash/swflash.cab#version=5,0,0,0”

WIDTH=”100%”
HEIGHT=”100%”>
<PARAM NAME=”MOVIE” VALUE=”moviename.swf”>
<PARAM NAME=”PLAY” VALUE=”true”>
<PARAM NAME=”LOOP” VALUE=”true”>
<PARAM NAME=”QUALITY” VALUE=”high”>
<PARAM NAME=”SCALE” VALUE=”SHOWALL”>

<EMBED SRC=”yourmovie.swf”
WIDTH=”100%”
HEIGHT=”100%”
PLAY=”true”
LOOP=”true”
QUALITY=”high”
SCALE=”SHOWALL”
PLUGINSPAGE=”http://www.macromedia.com/shockwave/¬
download/index.cgi?P1_Prod_Version=ShockwaveFlash”>

</EMBED>
</OBJECT>

Continued

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1187

1188 Part VIII ✦ Distributing Flash Movies

Continued

Now you’re ready to make the single-frame frameset. Actually, it’s a two-frame frameset, but
you only use one of the frames for displaying your page. The first frame is allotted 100 percent
of the browser area, and the second frame is allotted “*” (meaning whatever is left, which is
nothing). The SRC of the first frame of the frameset will be the page (yourmovie.html) with
your Flash Movie, while the SRC of the second frame will be an empty HTML page with a
matching BGCOLOR. Then real trick is to specify the attributes of the frameset and frames so
that the Flash movie will extend to the edges of the browser. Here’s an example of code with
the correct settings:

<HTML><HEAD><TITLE>Your Flash Movie Title</TITLE></HEAD>

<FRAMESET ROWS=”100%,*”
FRAMESPACING=”0”
FRAMEBORDER=”NO”
BORDER=”0”>

<FRAME NAME=”top”
SRC=”yourmovie.html”
FRAMEBORDER=”0”
BORDER=”0”
MARGINWIDTH=”0”
MARGINHEIGHT=”0”
SCROLLING=”NO”>

<FRAME NAME=”hidden”
SRC=”empty.html”
FRAMEBORDER=”0”
BORDER=”0”
MARGINWIDTH=”0”
MARGINHEIGHT=”0”
SCROLLING=”NO”>

</FRAMESET>
</HTML>

Now let’s look at some of the code in detail:

✦ As an attribute of <FRAMESET>, FRAMEBORDER is either true or false, but as an
attribute of <FRAME>, FRAMEBORDER is a pixel value for setting the width of the
space between the browser edge and the page content.

✦ On <FRAMESET>, BORDER refers to the number of pixels between frames, while on
<FRAME>, BORDER is simply a now-obsolete version of FRAMEBORDER.

✦ The SCROLLING attribute must be set to NO, otherwise, if the content is not larger
than the browser window, a gap will appear on the right and bottom of the frame
where the scroll bars would normally appear.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1188

1189Chapter 41 ✦ Integrating Flash Content with HTML

Detecting the Flash Player
What good is an awesome Flash experience if no one can see your Flash movies?
Because most Flash content is viewed with a Web browser, it’s extremely important
to make sure that your HTML pages check for the existence of the Flash Player
plug-in before you start pushing Flash content to the browser. There are a variety
of ways to check for the Flash Player, and this section provides an overview of the
available methods.

Plug-in versus ActiveX: Forcing content
without a check
The Flash Player is available for Web browsers in two forms: the Flash Player plug-
in (as a Netscape-compatible plug-in) and the Flash Player ActiveX Control (for use
only with Microsoft Internet Explorer on Windows 95/98/NT/2000).

As a final option, to reduce the gutter as much as possible in Internet Explorer 4 (or higher)
and Netscape Communicator 4 (or higher), you can set the margin values on the movie
page (yourmovie.html). To accomplish this, Netscape 4 or higher uses MARGINHEIGHT
and MARGINWIDTH, while Internet Explorer 4 or higher uses TOPMARGIN, BOTTOMMARGIN,
LEFTMARGIN, and RIGHTMARGIN. So, to accommodate both browsers, use these values:

<BODY MARGINWIDTH=”0” MARGINHEIGHT=”0” LEFTMARGIN=”0”
RIGHTMARGIN=”0” TOPMARGIN=”0” BOTTOMMARGIN=”0”>

Directly Linking to the Flash Movie (.SWF File)
An alternate method to the single-frame frameset described previously is to link directly to
the Flash movie and let the browser display it inline. So, if your movie mymovie.swf is nor-
mally embedded in mymovie.html, then:

View my movie

would be changed to:

View my movie

This method is easier to implement than the frames method, but should only be used after
Flash has been successfully detected, because the browser won’t have access to any of the
HTML instructions that would normally tell it where to get the plug-in if the plug-in is not
present. Thus, this method should not be used for a splash page.

If you use the Direct Link method, it’s also important to remember to set the QUALITY of
your movie to “high” from inside your movie using the Toggle High Quality action (Flash 3+
only). To do this, select your first keyframe, open the Actions Panel (in Normal Mode), and
then add a toggleHighQuality action.

If you’d like to learn more about Colin Moock, please see his bio in Chapter 18, “Navigating Flash Timelines.”

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1189

1190 Part VIII ✦ Distributing Flash Movies

If you directly insert a Flash movie into a Web page with the <EMBED> tag (for
Netscape browsers), then one of two scenarios will happen:

1. The browser has the Flash Player plug-in and will load the Flash movie.

2. The browser does not have the Flash Player plug-in, and displays a broken
plug-in icon.

If scenario 2 occurs and the PLUGINSPAGE attribute of the <EMBED> tag is defined,
the user can click the broken plug-in icon and go to the Macromedia site to down-
load the Flash Player plug-in. If no PLUGINSPAGE attribute is specified, then clicking
the broken plug-in icon will take you to a generic Netscape plug-in page.

If you insert a Flash movie into a HTML document with the <OBJECT> tag (for
Internet Explorer on Windows only), then one of two scenarios will happen:

1. The browser has the Flash Player ActiveX Control and will load the Flash
movie.

2. The browser does not have the Flash Player ActiveX Control, and will
autodownload and install the ActiveX Control file from the Macromedia site.

The ActiveX Control will only autodownload and install if the classid and
codebase attributes of the Flash movie’s <OBJECT> tag are correctly specified.
Depending on the user’s security settings, the user needs to grant permission to a
Security Warning dialog (shown in Figure 41-1) in order to commence the download
and install process.

Figure 41-1: The Flash 5 Player
ActiveX Control will automatically
download if Microsoft Internet
Explorer for Windows encounters
an HTML page with Flash content.

Although using the <OBJECT> and <EMBED> tags by themselves is by far the sim-
plest method for integrating Flash content into a Web page, it’s not the most user-
friendly method of ensuring that the majority of your Web visitors can view the
Flash content. The most common way to detect Flash movies is by using JavaScript
and VBScript, as we see in the next section.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1190

1191Chapter 41 ✦ Integrating Flash Content with HTML

JavaScript and VBScript player detection
The use of scripts written into an HTML document is very popular for Flash Player
detection. If you’re getting familiar with Flash 5’s new ActionScript syntax, then
you’ll find that JavaScript detection code isn’t all that complex. JavaScript is a uni-
versal scripting language that most 3.0 or higher Web browsers can employ to some
capacity. Microsoft’s implementation of JavaScript, called JScript, isn’t exactly the
same as Netscape’s JavaScript. For this reason, you can translate some JavaScript
functionality into Microsoft’s proprietary Web-scripting language, VBScript.

You’ll find the HTML, .FLA, .SWF, and .GIF files for this section in the ch41 folder of
the Flash 5 Bible CD-ROM.

In this section, we look at how to create an HTML document that checks for the
presence of the Flash Player plug-in with JavaScript, and the Flash ActiveX Control
with VBScript. We use two images of a traffic light — one .SWF image with a green
light on, and one .GIF image with a red light on — to display the results of our plug-
in and ActiveX detection. Many Web sites employ a similar mechanism: Before an
HTML page with Flash content can be accessed, the visitor will be presented with a
screen telling them if they have the Flash Player installed. If they don’t have it, then
they can click a link to get the plug-in or ActiveX Control.

The Flash Player can be detected with most JavaScript-enabled Web browsers, by
using the JavaScript array navigator.mimeTypes. The value for this array is
always empty for Internet Explorer browsers, including IE 4.5 on Macintosh. IE 5.0
for Macintosh now supports this array. While we can use VBScript to detect for IE
on Windows, there is no script plug-in detection available for IE 4.5 on Macintosh.
You can however, use the Flash Sniffer method, discussed in the next heading, to
detect Flash on IE 4.5 on Macintosh.

Detecting the plug-in with JavaScript
By rearranging the JavaScript code that is created by the Ad 5 Banner template in
the Publish Settings, we can set up a testing mechanism that delivers one of two
graphics to the visitor’s Web browser. Copy the scriptDetection.html document
located in the ch41 folder of the Flash 5 Bible CD-ROM, and open it in your pre-
ferred text editor (SimpleText, Notepad, BBEdit, and so on). Look at lines 10 to 15
(The ¬ indicates a continuation of the same line of code. It should not be written in
the actual JavaScript code in the HTML document.):

10. var plugin = 0;
11. var activeX = 0;
12. var plugin = (navigator.mimeTypes && ¬

navigator.mimeTypes[“application/x-shockwave-flash”]) ¬
? navigator.mimeTypes[“application/x-shockwave- ¬
flash”].enabledPlugin : 0;

13. if (plugin) {
14. plugin = parseInt(plugin.description.substring ¬

(plugin.description.indexOf(“.”)-1)) >= 5;
15. }

Caution

On the
CD-ROM

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1191

1192 Part VIII ✦ Distributing Flash Movies

Line 10 initializes a variable plugin to indicate the presence of the Flash 5 Player
plug-in on Netscape (or IE 5.0 Mac). Line 11 initializes a variable called activeX to
indicate the presence of the Flash 5 Player ActiveX Control. At this point, we create
them with a value of 0, meaning that the plug-in and ActiveX Control are not
installed.

Line 12 is borrowed from the Ad 5 Banner HTML template output. It uses the
mimeTypes array of the navigator JavaScript Object to determine whether the Flash
Player (in any version) is installed. If the Flash Player plug-in is installed, then the
variable plugin is now equal to the value [object Plugin]. If this is true, then
lines 13 and 14 will execute. Using the description property of the Plugin Object,
we can determine whether the Flash Player is the correct version. In this example,
we check whether it’s greater than or equal to 5. Notice that we can use a compari-
son as the value of the plugin variable. If the Flash 5 Player (or higher) is installed,
then plugin will equal true (or 1); if a lower version is installed, then plugin will
equal false (or 0).

Creating a test object in VBScript
At this point, if the visitor is using Netscape (on any operating system) or Internet
Explorer on the Macintosh, then the variable plugin will have a value of either 0
or 1. However, we still need to check for the ActiveX Control, if the visitor is using
Internet Explorer for Windows. Line 11 already initialized a variable called activeX.
Lines 16-21 check to see if VBScript can create a Flash Object in the document (The
¬ indicates a continuation of the same line of code. It should not be written in the
actual JavaScript code in the HTML document.):

16. else if (navigator.userAgent && ¬
navigator.userAgent.indexOf(“MSIE”)>=0 && ¬
(navigator.userAgent.indexOf(“Windows 95”)>=0 || ¬
navigator.userAgent.indexOf(“Windows 98”)>=0 || ¬
navigator.userAgent.indexOf(“Windows NT”)>=0)) {

17. document.write(‘<SCRIPT LANGUAGE=VBScript\> \n’);
18. document.write(‘on error resume next \n’);
19. document.write(‘activeX = (IsObject(CreateObject ¬

(“ShockwaveFlash.ShockwaveFlash.5”)))\n’);
20. document.write(‘<’ + ‘/SCRIPT>’);
21. }

Line 16 determines whether the visitor is using Internet Explorer on Windows 95,
98, or NT. If that’s the browser they’re using, then lines 17 to 21 will execute. These
lines of code create the VBScript that is necessary to check for the existence of the
Flash 5 Player ActiveX Control. Using the IsObject and CreateObject methods,
VBScript can determine whether the ActiveX Control is installed. If it is installed,
then the variable activeX will equal true (or 1). Note that this variable is available
to both JavaScript and VBScript. This section of code is also borrowed from the Ad
5 Banner HTML template.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1192

1193Chapter 41 ✦ Integrating Flash Content with HTML

Inserting the graphics
After the variables plugin and activeX have been set appropriately, we can use
these variables to either display a Flash .SWF graphic or a .GIF image graphic. In the
body of the HTML document, we can reuse the plugin and activeX variables to
insert either the Flash or .GIF graphics. Lines 31 to 36 of the HTML document will
write the tags to display the .SWF or .GIF image for Netscape (on any platform) or IE
on the Mac (The ¬ indicates a continuation of the same line of code. It should not
be written in the actual JavaScript code in the HTML document.):

31. if (plugin) {
32. document.write(‘<EMBED SRC=”trafficLightGreen.swf” ¬

WIDTH=”105” HEIGHT=”185” SWLIVECONNECT=”FALSE” ¬
QUALITY=”HIGH”></EMBED>
<FONT ¬
FACE=”Verdana,Arial,Geneva” SIZE=2>Flash 5 ¬
Player
Plug-in detected.’);

33. } else if (!(navigator.appName && ¬
navigator.appName.indexOf(“Netscape”)>=0 && ¬
navigator.appVersion.indexOf(“2.”)>=0)){

34. document.write(‘<A HREF=”http://www.macromedia.com ¬
/shockwave/download/index.cgi ¬
P1_Prod_Version=ShockwaveFlash”>’);

35. document.write(‘<IMG SRC=”trafficLightRed.gif” ¬
WIDTH=”105” HEIGHT=”185” BORDER=”0”>
 ¬
Flash ¬
5 Player
Plug-in not installed.’);

36. }

If the plugin variable is not equal to false (line 31), then line 32 will execute. Line
32 uses the <EMBED> tag to insert a Flash .SWF file, depicting a green light that ani-
mates to a full green color, and the HTML text “Flash 5 Player Plug-in detected.” If
the plugin variable is equal to false and the browser is Netscape 2.0 or higher
(line 33), then lines 34 and 35 will create <A HREF> and tags, depicting a
static .GIF image of a red traffic light that links to the Macromedia download area.
Then, JavaScript will create the HTML text “Flash 5 Player Plug-in not installed.”

Lines 43 to 52 perform the same functionality for Internet Explorer for Windows. If
the activeX variable is true, then an <OBJECT> tag is written and a green traffic
light will animate on. If it’s not installed, then a static .GIF image of a red traffic light
will be displayed.

Finally, we should do two more things:

1. Tell IE 4.5 (or earlier) Mac users that we can’t detect the Flash 5 Player plug-in.

2. Tell other users that they can either (a) proceed to the main Flash site, or (b)
click the appropriate traffic light to download the plug-in or ActiveX Control.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1193

1194 Part VIII ✦ Distributing Flash Movies

Lines 59 to 62 tell IE 4.5 (or earlier) Mac users that we can’t detect their plug-in set-
tings. We can either leave it to them to decide whether they should download the
plug-in, or we could direct them to a sniffer movie (discussed in the next section)
to determine if the plug-in is installed.

Lines 63 to 65 check whether either the plug-in or the ActiveX Control is installed. If
it is, then we tell the visitor to proceed to the main Flash site. Note that you would
want to insert more JavaScript code here that includes a link to your Flash content.

Lines 66 to 74 check whether the plug-in and the ActiveX Control are both absent.
If neither is installed, then we tell them which traffic light (lines 67 to 74) to click.

Although you’ll most likely want to spruce up the look and feel of this page to suit
your particular site, you can use this scripting layout to inform your visitors about
their plug-in or ActiveX Control settings.

Using a Flash Swiffer movie
If you would prefer to avoid JavaScript and VBScript, then you can also use small
Flash movies known as swiffers to detect the Flash Player. Swiffers are virtually hid-
den from the visitor, and direct the HTML page to a new location (using a getURL
action) where the real Flash content (or site) exists. If the Player is not installed,
then the movie won’t be able to play and direct the HTML page to a new location. If
this happens, then a special <META> tag in the <HEAD> of the HTML document will
direct the browser location to a screen that informs the visitor to download the
plug-in or ActiveX Control.

Making the Swiffer movie
The Swiffer movie is a small Flash movie that has the same background color as the
HTML document. We do not need any artwork or symbols in this movie.

1. Open Flash 5, and in a new Flash movie document (.FLA file), rename Layer 1
to actions.

2. Add a keyframe on frame 2 of the actions layer. Double-click this new
keyframe to open the Actions Panel.

3. In the Actions Panel, we create some ActionScript that checks for Flash 3 (or
earlier), 4, and 5 Player versions. We can direct each version of the Player to
a unique URL. The basic principle of this ActionScript is to use Flash version-
specific actions to determine which Player is displaying the movie:

// create a Flash variable, whose value is equal to the
// $version environment variable in Flash 4 or 5. This
// action line will not be read by Flash 3 (or earlier)
// Players.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1194

1195Chapter 41 ✦ Integrating Flash Content with HTML

player = eval(“$version”);

/* The $version value will be in the format:

abc 1,2,3,4

where abc is the operating system (e.g. WIN, MAC)
and 1 and 2 are the major version designations
(e.g. 4.0, 5.0, etc.) and 3 and 4 are the minor
version designations (e.g. r20, r27, etc.)

By default, Flash 5 ships with a Player version equal
to WIN 5,0,30,0 or MAC 5,0,30,0

We just need the major version designation, at
placeholder 1. Using substring(), we can extract this
number. The major version starts at the 5th character
of the version value. The Flash 3 Player will
disregard this line.

*/

player = substring(player, 5, 1);

// player will be equal to either 4 or 5 in Flash 4 or 5
Player, respectively.

if (player eq “”){

// Flash 3 Player will execute this code
// automatically, because it will need interpret the
// if action.

getURL(“flash3.html”);

} else if (player eq “4”){

// Flash 4 Player will execute this code.

getURL(“flash4.html”);

} else if (player eq “5”){

// Flash 5 Player will execute this code.

getURL(“flash5.html”);
}

// We will prevent the movie from accidentally looping.

stop();

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1195

1196 Part VIII ✦ Distributing Flash Movies

4. Change the size of the movie frame to 18 px×18 px, in the Modify ➪ Movie dia-
log. This is the smallest size a Flash movie can have. Change the background
color of the movie to match the background color of the HTML document.
Click OK.

5. Save the Flash movie as swiffer.fla.

6. Open the Publish Settings dialog (File ➪ Publish Settings). Check the Flash and
HTML options in the Formats tab. Uncheck the Use default names option, and
rename the HTML file to swiffer_start.html.

7. In the Flash tab, select Flash 4 in the Version drop-down menu.

We are using the Flash 4 format because the Flash 3 Player will ignore all Flash 4
or higher actions, and the Flash 4 Player will recognize the formatting of the vari-
able and ActionScript structures. Flash 5 .SWF files restructure variables and
ActionScript (even Flash 4-compatible code) in a manner that doesn’t work con-
sistently in the Flash 4 Player.

8. In the HTML tab, select the Flash Only (Default) template. Click the Publish
button located on the right side of the Publish Settings dialog.

9. When the files have been published, click OK to close the Publish Settings
dialog. Save your movie again.

You now have swiffer.html and swiffer.swf files in the same folder as your swiffer.fla
file. In the next section, we add some additional HTML tags to the swiffer.html
document.

Integrating the Swiffer movie into an HTML document
After you have made the swiffer.swf and the swiffer.html files, you can modify the
HTML document to guide the browser to a unique URL where plug-in information
and download screen will be shown. Remember that the ¬ indicates a continuation
of the same line of code. Do not insert this character into your HTML document.

1. Open the swiffer.html file in your preferred HTML document editor. Macro-
media Dreamweaver, Notepad (PC), SimpleText (Mac), or BBEdit will do
just fine.

2. Somewhere between the <HEAD> </HEAD> tags, insert the following HTML
<META> tag:

<META http-equiv=”Refresh” content=”5; ¬
URL=download.html”>

This <META> tag has two attributes, http-equiv and content. The
http-equiv attribute instructs the hosting Web server to add the value
of http-equiv as a discrete name in the MIME header of the HTML

Note

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1196

1197Chapter 41 ✦ Integrating Flash Content with HTML

document. The value of the content attribute becomes the value of the MIME
entry. Here, the Web browser will interpret the META tag as:

Refresh: 5; URL=download.html

in the MIME header. This name/value pair tells the browser to reload the
browser window in five seconds, with the file download.html. After testing,
you may decide to increase the time the browser waits before reloading a new
URL. On slower connections (or during peak Internet hours), you may find
that five seconds is not long enough for the Flash movie to initiate its getURL
actions.

Some older browsers may require an absolute URL in the content attribute. This
means that you may need to insert a full path to your HTML document, such as
http://www.yourserver.com/download.html, as the URL in the content
attribute.

3. Save the HTML file. At this point, you need to create a download.html file. As
a temporary measure, you can use the scriptDetection.html file from the pre-
vious detection method. You also need to create flash3.html, flash4.html, and
flash5.html files for the getURL actions in the swiffer.swf movie.

We have included sample flash3.html, flash4.html, and flash5.html files on the
Flash 5 Bible CD-ROM. These are simple placeholder documents that do not con-
tain any Flash movie URLs.

When you have your HTML documents ready, you can load the swiffer.html docu-
ment into a browser. If the Flash Player is not installed, then the META tag should
transport the browser location to the download.html URL. If the Flash Player is
installed, then the Flash ActionScript will direct the browser to the appropriate page.

On the
CD-ROM

Caution

Expert Tutorial: Flash Player Detection
(a.k.a. the moock fpi), by Colin Moock

While there are several ways to check for the existence of the Flash Player plug-in, no one
has developed as comprehensive a strategy as Colin’s strategy. We are pleased to present
an introduction to his moock fpi.

Producers of Flash content live with an undeniable, often frustrating truth: Flash content is
not always immediately viewable by the audience for which it is intended. Because Flash is
normally viewed as a secondary application to a Web browser, a user attempting to view a
Flash site may not have the Flash player installed in his or her browser, or may have an
older version of the Flash player that won’t allow the user to view the site.

Continued

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1197

1198 Part VIII ✦ Distributing Flash Movies

Continued

The first time I dealt directly with the accessibility (or inaccessibility) of Flash content was in
1997, when I embarked on my first large-scale production in Flash — the Levi’s Canada Web
site. Throughout the project, the issue of accessibility was a matter of great concern for both
the client, Levi’s, and the agency producing the site, ICE (where I work). How should the
site handle visitors without Flash installed in their browser? Should it simply tell everyone to
get Flash? Should it only tell visitors without Flash to get Flash? What if a visitor had never
heard of Flash?

After various discussions, it was decided that the best approach was to use JavaScript to auto-
matically detect the presence of Flash in the user’s browser. If the user had Flash, we sent the
user to the Flash content. If not, we sent the user to equivalent non-Flash content. If detection
failed, we sent the user to a page describing Flash, and offering installation instructions.

Since the Levi’s project, I have yet to encounter a project that did not revisit the issue of
Flash accessibility, deployment, and detection in some way. The factors have changed
somewhat over the years, but the issue is always there. After countless hours of testing,
thinking, and meeting, I have come to a single conclusion: No matter what the script or
publication model, a site must never, ever cause its audience to feel lost.

Thus, with that single philosophy in mind, I decided to build a standard system for detect-
ing and publishing Flash content: the moock fLASH pLAYER iNSPECTOR (a.k.a. the moock
fpi). The moock fpi is a scripted system for detecting Flash. The use of a scripted detection
system offers users with Flash-enabled browsers seamless access to our content, and users
with non-Flash browsers a controlled and customized experience.

The behavior of the moock fpi is simple: Supply the user with Flash content if appropriate,
and with alternate content if not. This premise translates to the following scripted behavior:

✦ If we can undeniably detect that a user has the correct version of Flash installed, we
deploy Flash content.

✦ If we can undeniably detect that the user has an old version of Flash installed, we
either ask the user to upgrade, or simply deploy non-Flash content.

✦ If we can undeniably detect that a user does not have Flash, or if our attempt to
detect Flash fails, we deploy non-Flash content.

By following these three rules, the moock fpi should, in theory, never strand a user, and will
always provide a user with the smoothest path to a site’s content. Luckily, with the help of
heavy testing by the Internet community, the theory seems to be working so far.

The moock fpi is posted for public use at: www.moock.org/webdesign/flash/detection/
moockfpi/.

My research notes and thoughts on detection and publishing Flash content are posted at:
www.moock.org/webdesign/lectures/ff2knyc/

If you’d like to learn more about Colin Moock, please see his bio in Chapter 18, “Navigating Flash Timelines.”

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1198

1199Chapter 41 ✦ Integrating Flash Content with HTML

Using Flash Movies with JavaScript and
DHTML

The new ActionScripting features in Flash 5 have greatly increased the range of inter-
active and dynamic possibilities for Flash movies on the Web. In previous releases of
Flash, Flash movies could only interact with external HTML or scripts through the
FSCommand action. This meant mapping commands and variables to JavaScript,
which, in turn, passed information to the document object model of DHTML, Java
applets, or CGI (Common Gateway Interface) scripts. Now that Flash movies can
directly send and receive data to server-side CGI scripts, just about anything can
be done within the Flash movie. However, if you want to directly communicate with
the Web browser or the HTML document, you need to use FSCommands or getURL
actions with javascript: statements. Because all JavaScript-capable browsers do
not support these methods, we’re limiting our discussion to FSCommands and
JavaScript-controllable Flash movie properties.

A word of caution to Web developers
This section covers FSCommands, which, when used in Flash movies on Web pages,
are only supported by a handful of browsers. Currently, not one version of Internet
Explorer for Macintosh (up to version 5.0) can interpret FSCommands (see the
Caution note in “The <EMBED> Tag” section earlier in this chapter). Only Netscape
3.0 (or higher) offers cross-platform support for FSCommands. Internet Explorer 3
and higher for Windows 95/98/NT also support FSCommands. Our coverage of the
FSCommand assumes that you have basic knowledge of JavaScript and Flash
ActionScript. If you don’t know how to add Actions to frames or buttons, please
read Chapter 17, “Understanding Actions and Event Handlers.” If you don’t know
JavaScript, you can still follow the steps to the tutorials and create a fully functional
Flash-JavaScript movie. However, because this isn’t a book on JavaScript, we don’t
explain how JavaScript syntax or functions work.

How Flash movies work with JavaScript
As mentioned earlier, Flash has an action called fscommand. FSCommands are used
to send a command (and an optional argument string) from a Flash movie to its
hosting environment (such as a Web browser or standalone Flash Player). What
does this mean for interactivity? The FSCommand offers the capability to have any
Flash event (Button instance, onClipEvent, or frame actions) initiate an event in
JavaScript. Although this may not sound too exciting, you can use FSCommands to
trigger anything that you would have used JavaScript alone to do in the past, such
as updating HTML-form text fields, changing the visibility of HTML elements, or
switching HTML background colors on the fly. Most Flash-to-JavaScript interactivity
works best with dynamic HTML (DHTML) browsers such as Netscape 4 or higher
and Internet Explorer 4 or higher. We look at these effects in the next section.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1199

1200 Part VIII ✦ Distributing Flash Movies

Flash movie communication with JavaScript is not a one-way street. You can also
monitor and control Flash movies with JavaScript. Just as JavaScript treats an HTML
document as an object and its elements as properties of that object, JavaScript treats
Flash movies as it would any other element on a Web page. Therefore, you can use
JavaScript functions and HTML hyperlinks (<A HREF> tags) to control Flash movie
playback. At the end of this chapter, we show you how to make an HTML form menu
that can jump to various scenes of a Flash movie.

In order for JavaScript to receive Flash FSCommands, you need to make sure that
the attribute swLiveConnect for the <EMBED> tag is set to true. By default,
most Flash HTML templates have this settings set to false.

Changing HTML attributes
In this section, we show you how to dynamically change the BGCOLOR attribute of
the <BODY> tag with an FSCommand from a Flash movie while it is playing in the
browser window. In fact, we change the background color a few times. Then, once
that has been accomplished, we show you how to update the text field of a <FORM>
tag to display what percent of the Flash movie has been loaded.

Open the Flash movie countdown.fla located in the ch41 folder of the Flash 5
Bible CD-ROM. This is quite a large .FLA file (over 14MB) as it uses many imported
bitmap images and sounds to demonstrate slow-loading movie. If you are using
the Mac version of Flash 5, you may want to increase the memory allocation for
the Flash 5 application file to 64MB or higher.

Adding FSCommands to a Flash movie
Open a copy of the countdown.fla Flash movie from the Flash 5 Bible CD-ROM, and
use Control ➪ Test Movie to play the Flash .SWF version. You should notice that the
filmstrip countdown fades to white, and then to near-black, and then back to its
original gray color. This countdown contains to loop until the entire first scene has
loaded into the Flash Player. When the first scene has loaded, playback will skip to
a Movie Clip of two dogs (in “negative”) and a title sequence. There’s more to the
Flash movie, but for now, that’s all we need to deal with.

Our goal for this section of the tutorial is to add FSCommand frame actions to spe-
cific keyframes in the countdown.fla Flash demonstration movie. When the Flash
Player plays the frame with the FSCommand action, the Player sends a command
and argument string to JavaScript. JavaScript then calls a function that changes the
background color to the value specified in the argument string of the FSCommand
(see Figure 41-2). To be more exact, you add an FSCommand to the frames where
the color fades to white, black, and gray. When the Flash movie changes to these
colors, so will the HTML background colors.

On the
CD-ROM

Note

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1200

1201Chapter 41 ✦ Integrating Flash Content with HTML

Figure 41-2: Frame 16:
FSCommand of changeBgColor
with an argument of #FFFFFF
(the hexadecimal code for the
color white)

Here’s the process:

1. On frame 16 of the Introduction scene, add a keyframe on the actions layer.
With the keyframe selected, open the Actions Panel. Make sure the Panel is in
Normal Mode. Add an FSCommand action from the + pop-up menu (located in
the top-left corner of the panel). In the Command field, type changeBgColor.
In the Arguments field, type #FFFFFF. The command changeBgColor is
mapped to a JavaScript function called changeBgColor later in this tutorial.
The argument string #FFFFFF is passed to that function, changing the HTML
background color to white.

2. On frame 20, add another FSCommand action to the corresponding keyframe
on the actions layer. Again, insert changeBgColor in the Command text box.
In the Arguments text box, type #333333. This argument changes the HTML
background color to a dark gray.

3. On frame 21 of the actions layer, follow the same instructions for Step 2,
except use #9E9E9E for the argument string. This changes the HTML back-
ground color to the same color as the Flash movie countdown graphic.

4. On frame 66 of the actions layer, add another changeBgColor FSCommand
action to the empty keyframe. This time, use an argument string of #000000,
which changes the HTML background color to black.

5. Now that we’ve added several FSCommands, let’s try them out in the browser.
Save the countdown.fla Flash movie to a folder on your hard drive, and open
the Publish Settings dialog (for more information on Publish Settings, refer to
Chapter 40, “Publishing Flash Movies”). In the HTML tab, select the template
Flash with FSCommand. Click OK to close the Publish Settings dialog. Select the
File ➪ Publish command to export the Flash .SWF movie and HTML document.

Next, we look at the automated JavaScript code that the HTML template created.
While the basic code structure has been set up, we need to make some alterations
and additions to the JavaScript in order for our FSCommands to work.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1201

1202 Part VIII ✦ Distributing Flash Movies

You may have noticed that some FSCommands have already been entered on
other keyframes of the countdown.fla movie. These have been placed to ensure
that the background color stays consistent with other settings, regardless of where
playback occurs.

Enabling JavaScript for Flash movies
Although the Flash with FSCommand template does a lot of the JavaScripting for
you, it doesn’t automatically map out the commands and arguments (args) to
JavaScript-defined functions. In this section, we add the necessary JavaScript to
make the FSCommands work in the browser. What follows is the JavaScript code
that Flash 5 generates.

Any numbered line of code marked with an asterisk (*) is custom JavaScript code
that Flash 4 does not create. Also, remember that the ¬ indicates a continuation of
the same line of code. Do not insert this character into your HTML document.

1. <SCRIPT LANGUAGE=JavaScript>
2. <!--
3. var InternetExplorer = ¬

navigator.appName.indexOf(“Microsoft”) != -1;
4.* var stringFlash = “”;
5. // Handle all the FSCommand messages in a Flash movie
6. function countdown_DoFSCommand(command,args){
7. var countdownObj = InternetExplorer ¬

? countdown : document.countdown;
8.* stringFlash = stringFlash + args;
9.* if(command==”changeBgColor”){

changeBgColor();
}

}
10.* function changeBgColor(){
11.* document.bgColor = stringFlash;
12.* stringFlash = “”;

}
13. // Hook for Internet Explorer

if (navigator.appName && ¬
navigator.appName.indexOf(“Microsoft”) != -1 ¬
&& navigator.userAgent.indexOf(“Windows”) != -1 ¬
&& navigator.userAgent.indexOf(“Windows 3.1”) ¬
== -1){
document.write(‘<SCRIPT LANGUAGE=VBScript\> \n’);
document.write(‘on error resume next \n’);
document.write(‘Sub countdown_FSCommand(ByVal ¬
command, ByVal args)\n’);

document.write(‘ call ¬
countdown_DoFSCommand(command,args)\n’);

document.write(‘end sub\n’);
document.write(‘</SCRIPT\> \n’);

Note

Note

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1202

1203Chapter 41 ✦ Integrating Flash Content with HTML

}
//-->

14. </SCRIPT>

The following is a line-by-line explanation of the code:

1. This HTML tag initializes the JavaScript code.

2. This string of characters is standard HTML comment code. By adding this
after the opening <SCRIPT> tag, non-JavaScript browsers ignore the code. If
this string wasn’t included, text-based browsers such as Lynx might display
JavaScript code as HTML text.

3. This variable simply condenses the JavaScript code that detects Internet
Explorer into a single term, InternetExplorer.

4. We added this line of code to declare a variable called stringFlash. Its value
is set to nothing by putting two straight quote characters together. This vari-
able is necessary for FSCommand arguments to pass cleanly into JavaScript
functions on both Netscape and Internet Explorer.

5. This is comment code added by the Macromedia team to let us know that the
following JavaScript code is designed to catch the FSCommands from a Flash
movie.

6. This is the initial JavaScript function that works exclusively with Flash
FSCommands. The function’s name is the value of the NAME attribute of the
<EMBED> tag (or the value of the ID attribute of the <OBJECT> tag) followed by
a underscore and DoFSCommand(command,args){. In this sample, the Flash
movie NAME is countdown. Notice that the command and arguments that were
specified in Flash are passed to this function as (command,args), respectively.

7. This is a handy optional variable that the Flash with FSCommand template
created. Strangely, it is not necessary unless you need to refer to the differing
document object models between Internet Explorer and Netscape. Instead of
testing for either browser, you can insert the countdownObj variable in your
own JavaScript code. For this example, though, it is not needed.

8. This code makes the stringFlash variable called in line 4 equal to the argu-
ment string (args) from the Flash FSCommand. Because stringFlash was equal
to nothing (“”), stringFlash is now the same as the original argument string.
This isn’t necessary for Internet Explorer, but Netscape doesn’t recognize argu-
ments straight from Flash without it.

9. This compares the passed command string from the Flash FSCommand to the
string changeBgColor. If they’re the same, then JavaScript executes the code
contained within the if statement. Because we only made one unique com-
mand in Flash for this sample, we only have to map the Flash FSCommand
changeBgColor to the JavaScript function changeBgColor().

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1203

1204 Part VIII ✦ Distributing Flash Movies

10. This is where the function changeBgColor() is defined. Remember that line 9
maps the Flash FSCommand changeBgColor to this JavaScript function.

11. This line of code passes the variable stringFlash to the document.bgColor
property, which controls the HTML background color. When the Flash
FSCommand sends the command changeBgColor, the JavaScript change
Bgcolor() function is invoked, which passes the argument string from the
Flash FSCommand to document.bgColor.

12. This resets the variable stringFlash back to nothing (“”), so that future
invocations of the FSCommand don’t use the same argument from the previ-
ous execution.

13. This section of code detects the presence of Internet Explorer for Windows
and maps the JavaScript functions to VBScript (which is used exclusively by
Windows-only versions of Internet Explorer).

14. The closing </SCRIPT> tag ends this portion of JavaScript code.

For some reason, the Flash with FSCommand template omits the NAME attribute for
the <EMBED> tag. Make sure that you add this attribute to the <EMBED> tag. Set its
value equal to the name of the Flash .SWF movie, without the .SWF file extension.
For example, in the sample used for this section, the <EMBED> tag should have a
NAME attribute equal to countdown.

That’s it! Once you’ve manually added the custom lines of JavaScript code, you
can load the HTML document into either Internet Explorer or Netscape (see the
caveats mentioned at the beginning of this section). When the Flash Player comes
to the frames with FSCommands, the HTML background should change along with
the Flash movie. Next, we add a <FORM> element that displays the percentage of the
Flash movie that has loaded into the browser window.

You can find the completed version of the countdown.fla movie on the Flash 5
Bible CD-ROM. It is called countdown_complete.fla and is located in the ch41
folder. You will also find countdown_complete.swf and a fully JavaScripted HTML
document called countdown_complete.html. The JavaScript and HTML reflect the
usage of the countdown_complete filename.

Using the PercentLoaded() method
JavaScript can control several Flash movie properties. It’s beyond the scope of this
book to describe each JavaScript method for Flash movies. If you want to see a
complete list of Flash JavaScript methods, see the Macromedia Flash tech support
page (The ¬ indicates a continuation in the URL. Do not type this character into the
browser location field.):

http://www.macromedia.com/support/flash/ts/documents/¬
tn4160.html

On the
CD-ROM

Caution

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1204

1205Chapter 41 ✦ Integrating Flash Content with HTML

In this section, we use the PercentLoaded() method to display the Flash movie’s
loading progress update as a text field of a <FORM> element. First, we add the neces-
sary FSCommand to the Flash movie. HTML <FORM> elements, and then we add the
appropriate JavaScript.

1. Open the countdown.fla movie that you used in the previous section. There
should already be an empty keyframe present on frame 1 of the percentLoaded
actions layer. Add an FSCommand action to this keyframe. Insert PercentLoaded
in the Command field. This command has no arguments. Add the same
FSCommand to the keyframes on frames 10, 20, 30, 40, 50, 60, and 67 of the
percentLoaded actions layer. Export a Flash .SWF movie called countdown.swf
with the File ➪ Export Movie command. Make sure you place the new .SWF file
in the same folder as the HTML document that we were using in the previous
section.

2. In a text editor such as Notepad or SimpleText, open the HTML document
showing the countdown.swf Flash movie.

3. Add the following HTML after the <OBJECT> and <EMBED> tags:

<FORM METHOD=”post” ACTION=”” NAME=”flashPercent”
STYLE=”display:show”>
<INPUT TYPE=”text” NAME=”textfield” SIZE=”5” STYLE =

“display:show”>
</FORM>

The code in Step 3 uses two NAME attributes so that JavaScript can recognize
them. Also, the DHTML STYLE attribute assigns a display:show value to the
both the <FORM> and <INPUT> tags.

Netscape 4’s implementation of the document object model (DOM) doesn’t allow
styles to be updated on the fly unless the page is reformatted (for example, the
user resizes the window). It could be possible to write more JavaScript code that
would insert JavaScript styles for the <FORM> elements, but that’s beyond the
scope of this section.

4. Now we need to map the PercentLoaded FSCommand to a JavaScript func-
tion. Add the following JavaScript to the if statement(s) in the function
countdown_DoFSCommand of the HTML document:

if(command==”percentLoaded”){
moviePercentLoaded();

}

5. Add the following JavaScript after the function changeBgColor() section.
This function tells the browser to update the <FORM> text field with the per-
cent of the Flash movie currently loaded. When the value is greater than or
equal to 99, then the text field reads 100 percent and disappears after 2 sec-
onds. As mentioned earlier, Netscape is unable to change the style of the

Caution

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1205

1206 Part VIII ✦ Distributing Flash Movies

<FORM> elements on the fly. (The ¬ indicates a continuation in the URL. Do not
type this character into the browser location field.)

function moviePercentLoaded(){
var m = InternetExplorer ? countdown_complete : ¬
document.countdown_complete;

var Percent = m.PercentLoaded();
var temp = 0;
if(Percent >= 99){
document.flashPercent.textfield.value=”100 %”;
if (navigator.appName.indexOf(“Microsoft”) != -1){
setTimeout(“document.flashPercent.¬
textfield.style.display = ‘none’”,2000);

setTimeout(“document.flashPercent.style.¬
display = ‘none’”,2000);
}

}
else {

temp = Percent;
document.flashPercent.textfield.value = temp ¬
+ “ %” ;

}
}

6. Save the HTML document and load it into a browser. If you run into errors,
check your JavaScript syntax carefully. A misplaced ; or } can set off the
entire script. If you continue to run into errors, compare your document to
the countdown_complete.html document on the Flash 5 Bible CD-ROM.

Okay, that wasn’t the easiest task in the world, and, admittedly, the effects might
not have been as spectacular as you may have thought. However, now that you
know the basics of Flash and JavaScript interactivity, you can take your Flash movie
interactivity one step further.

Expert Tutorial: Java Script and FSCommands,
by Christian Honselaar

Flash has changed the way we see and experience the Web; and with the increased power
and functionality of Flash 5, this trend will only continue. Yet one underutilized capability is
Flash’s capability to talk with HTML to coordinate an interface. That is, Flash is capable of
sending data and instructions to HTML by means of FSCommands. Similarly, JavaScript in
the HTML document can be used both to get and to set Flash variables as well as perform
operations in Flash. To facilitate this, Macromedia developed JavaScript methods for Flash
objects. In this tutorial, you learn how to use both communication paths in one Web page.

The .FLA source file for this Flash project is on the CD-ROM in the ch41 folder. So, before we
get started, please locate and open this example file, bothways.FLA.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1206

1207Chapter 41 ✦ Integrating Flash Content with HTML

Looking at the Main Timeline, you’ll see two keyframes with ActionScripts in each one. Plus,
there’s a third ActionScript that is hidden from view.

The first ActionScript is located in frame 1:

var goalNumber=0, i=0;
fscommand(“flashloaded”,”true”);

The first line of code initializes the variables, goalNumber and i, and sets their value at
zero. The second line issues a fscommand “flashloaded” to the JavaScript and VBScript
of the HTML page.

The second script, located in the last frame looks like this:

if ((i==1)&&(goalNumber==0)) fscommand (“ballGone”, “dfgf”);

if (i<=goalNumber){
surface.attachMovie(“cBall”, “Ball_”+i, i);
setProperty (“surface.Ball_”+i, _yscale, i*10);
setProperty (“surface.Ball_”+i, _xscale, i*10);
i++;} else goalNumber=0;

gotoAndPlay (2);

This script uses an if statement to check whether a limit defined by the variable
goalNumber hasn’t yet been reached. If goalNumber hasn’t been reached, then the script
copies a Movie Clip instance (the ball symbol) to the Stage. You should notice that
goalNumber is not assigned a proper value anywhere in this script. That’s because
goalNumber will be set externally, by the Web page! Also note that the other variable i
tracks the current number of balls. Both of these variables were initialized in the first frame
script.

There’s just one more script to discuss:

This.removeMovieClip();
_root.i--;
if (_root.i==0) fscommand (“ballGone”);

This script is in the last frame of the Movie Clip, ballAnim. The first line of this script deletes
the ballAnim Movie Clip instance. With the next two lines, the script checks whether any
balls are left. If not, the fscommand is evoked, sending a message to the Web browser that
hosts the Flash Player.

Here’s how an fscommand is constructed: The first parameter of the fscommand is the com-
mand name itself, while the second parameter can contain any arguments. Both are strings
that you can pick arbitrarily. The fscommand sends a message to the Web browser, which,
in turn, passes it to JavaScript or VBScript in the document. A special event handler in the
script then processes the fscommand. Let’s see how to do it for our example.

Continued

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1207

1208 Part VIII ✦ Distributing Flash Movies

Continued

Open the finished HTML document that is located in the ch41 folder of the Flash 5 Bible
CD-ROM. The JavaScript/VBScript is broken into four sections:

Section 1: Internet Explorer automatically links any fscommand from the Flash movie to a
VBScript procedure with a specific name, which must look like this: the name (ID) you gave
it in the <OBJECT> tag, with _FSCommand appended to it. The parameters are equal to
those in the Flash movie fscommand. Not that we do anything with them. Our sole purpose
here is to reveal the <DIV> or <LAYER> element containing our message. We create these
tags in the next section.

This setup works fine on Internet Explorer 3.0 and up, on PC and MAC platforms. To make
it work with Netscape 3.0+, you create a JavaScript function to receive the FSCommand. Its
name is a little different: replace _FSCommand with _DoFSCommand. In addition, you need to
add two attributes to the <EMBED> tag, found after the <BODY> tag:

NAME=flash and SWLIVECONNECT=true

That’s right, Flash is controlling the HTML!

Section 2: Because each browser has its own way of using DHTML layers, we write code
that will create the appropriate HTML tag for each browser. Internet Explorer will use a
<DIV> tag, and Netscape will use a <LAYER> tag. This element will display the text “Flash to
control center: no balls!”

Section 3: A function called hideMessage will be executed when the user clicks the Form
button. This function will change the visibility of the <DIV> and <LAYER> tags to false.

Section 4: The showMessage function will execute when the Flash movie sends an fscom-
mand to the HTML document. This will occur when the last remaining ballAnim symbol is
removed from the Flash movie.

HTML can control the Flash movie by invoking JavaScript methods of the Flash object. We
added a text box where the user can input the desired number of balls, and a button that
will send this input to the Flash Movie. Here’s the text box:

number of balls:<input id=”nBalls” name=”nBalls” value=20
type=”text”></input>

nBalls now contains the desired number. By making use of the Flash method
SetVariable, we set the variable goalNumber in the Flash movie to this value. But first we
hide the “no balls” message. The following <INPUT> tag will execute the hideMessage
function (in Section 3), which will use the nBalls value for the goalNumber value:

<input type=”button” value=”Allright Flash, do a ball trick!”
onmouseup=”hideMessage(); “></input>

The following figure shows the form fields, as they appear beneath the Flash movie.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1208

1209Chapter 41 ✦ Integrating Flash Content with HTML

Now, when the button is pressed, the nBalls value is sent to Flash, updating the variable
goalNumber, which Flash checks to see if it should create any more balls! This was just a
simple example of Flash methods. In real-world situations, you’ll probably find Flash meth-
ods/FSCommands most useful for synchronization purposes, such as updating navigation
bars. In fact, there are many more Flash methods, and you can find documentation on them
at: www.macromedia.com/support/flash/publishexport/scriptingwithflash

Christian’s biography can be found in his expert tutorial, “Introduction to XML and Flash,” located in
Chapter 24.

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1209

1210 Part VIII ✦ Distributing Flash Movies

Summary
✦ You can customize many Flash movie attributes by adjusting the attributes of

the <OBJECT> and <EMBED> tags in an HTML document. Scaling, size, quality,
and background color are just a few of the Flash movie properties that can be
changed within HTML without altering the original .SWF file.

✦ Even though you can set the WIDTH and HEIGHT attributes of a Flash movie to
100 percent, the browser window will still show a small border around the
Flash movie. To minimize this border effect, place the Flash movie in a single
frame within the <FRAMESET> tag.

✦ You can detect the Flash Player plug-in or ActiveX Control in a variety of
ways: by using the <OBJECT> and <EMBED> tags alone, by using JavaScript
and VBScript to check for the presence of the plug-in or the ActiveX Control,
or by inserting a Flash swiffer movie into an HTML document with a special
<META> tag.

✦ Flash movies can interact with JavaScript and DHTML elements on a Web
page. This type of interactivity, however, is limited to the 3.0 or higher ver-
sions of Internet Explorer (on 32-bit Windows versions) and Netscape (on
Windows and Macintosh).

✦ Flash movies can send commands to JavaScript with the Flash action,
fscommand. An FSCommand consists of a user-defined command and argu-
ment string.

✦ Although the Flash with FSCommand HTML template will set up the initial
JavaScript to enable FSCommand support, it won’t find the FSCommands you
specified in the Flash and map them to JavaScript functions. You have to do
this manually.

✦ FSCommands can be used to change HTML document attributes or styles.

✦ The Flash Player plug-in has JavaScript-specific methods that can be used
to send or receive information to a Flash movie. For example, JavaScript can
query a Flash movie to determine how much of it has downloaded to the
browser.

✦ ✦ ✦

3515-3 ch41.f.qc 1/18/01 5:17 PM Page 1210

Using Players,
Projectors, and
Screensaver
Utilities

This last chapter explores alternative means of distribut-
ing your Flash movies, as self-contained executable appli-

cations for CD-ROMs or floppy disks. Also, we look at the
broad support available for the Flash Player plug-in for Web
browsers.

The Flash Stand-alone
Player and Projector

The Flash Stand-alone Player and Projector let you take your
Flash right off the Web and onto the desktop without having
to worry whether users have the plug-in. In fact, you don’t
even need to worry about them having browsers! Stand-alone
Players and Projectors have similar properties and limita-
tions, although they’re slightly different.

✦ Stand-alone Player: This is an executable player that
comes with Flash. You can open any .SWF file in this
player. The Stand-alone Player can be found in the
Macromedia/Flash 5/Players folder (Windows) or
the Macromedia Flash 5:Players folder (Mac) where
you installed Flash 5.

4242C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Using the stand-alone
player or projector

Controlling a
projector with
FSCommands

Understanding the
Flash Player plug-in

Creating
screensavers from
Flash movies

✦ ✦ ✦ ✦

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1211

1212 Part VIII ✦ Distributing Flash Movies

✦ Projector: A Projector is an executable copy of your movie that doesn’t need
an additional player or plug-in to be viewed. It’s essentially a movie contained
within the Stand-alone Player. The Projector is ideal for distribution of Flash
applications on floppy disks or CD-ROMs. Figure 42-1 shows a Flash movie
played as a Projector.

Figure 42-1: This movie is being played as a Projector.

For the sake of simplicity, we refer to both Projectors and movies played in the
Stand-alone Player as stand-alones in this discussion. Because both the Projector
and Stand-alone Player have the same properties and limitations, you can apply
everything discussed here to either one you choose to use.

Creating a projector
When you have finished producing a Flash movie, it’s fairly simple to turn it into a
projector. You have two ways to create a self-contained projector. Turning your
Flash movies into self-contained projectors typically adds 368KB (Windows projec-
tors) or 500KB (Mac projectors) to the final file size.

As each new version of Flash is released, the projector size will likely increase.
Flash 4 projectors added 280KB to a .SWF’s file size (Windows projector), or
316KB to the file size (Mac projector). Because Flash 5 has an extended scripting
language, the projector sizes need to store more code to playback .SWF files.

Note

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1212

1213Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

Method 1: Using the Publish command
The simplest way to make a Flash projector file is to use the Publish feature of
Flash. In three short steps, you can have a stand-alone Flash movie presentation.

1. Select File ➪ Publish Settings from the main menu.

2. When the Publish Settings dialog opens, select the Formats tab and then
check the projector formats. Publish both Windows and Macintosh projec-
tors using this method. Figure 42-2 shows the Publish Settings dialog with
the appropriate formats selected.

Figure 42-2: Select the projector formats in the Publish
Settings dialog.

3. Press the Publish button in the Publish Settings dialog, and your Flash movie
will be published in all of the formats (for example, .SWF, .GIF, .JPG, and pro-
jector formats) specified with Publish Settings.

Method 2: Using the Stand-alone Flash Player
You can also create a Flash projector file using the Flash Player executable file that
ships with Flash. You can find the Stand-alone Flash Player in the Players folder of
the Flash application folder.

1. Export your Flash movie as a .SWF file using File ➪ Export Movie from the main
menu. Alternatively, you can use the Publish feature to create the .SWF file.

2. Open the exported Flash movie (.SWF file) in the Stand-alone Player.

3. Choose File ➪ Create Projector from the Stand-alone Player menu, as shown in
Figure 42-3.

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1213

1214 Part VIII ✦ Distributing Flash Movies

Figure 42-3: Choose File ➪ Create Projector
from the Stand-alone Player menu.

4. When the Save As dialog opens, name the Projector and save it.

If your movie is set to play at full screen (see FSCommands later in this chapter),
press the Esc key to make the Stand-alone Player menu bar appear. If the .SWF
movie is set to play without the menu, you should use the Publish method to cre-
ate a projector.

Distribution and licensing
Distribution of stand-alone projectors or the Flash Player is free; you don’t have
to buy a license to distribute either the Stand-alone Player or Projector. However,
according to Macromedia, you need to follow the “Made with Macromedia” guide-
lines for distributed Flash Players and projectors. Among other requirements, you
need to include the “Made with Macromedia” logo on your product’s packaging
and credits screen. The runtime license agreement and Macromedia logos can be
downloaded from the Macromedia Web site. For more information, check out
www.macromedia.com/support/programs/mwm.

Distribution on CD-ROM or floppy disk
Flash has become increasingly popular for use on multimedia CD-ROMs, especially
as embedded .SWF files in larger Macromedia Director projectors. Stand-alones can
be used as front-ends for installations, splash screens for other programs, or even
as complete applications. When you combine the good looks of a Flash interface
with a few FSCommands (see “FSCommands” in the next section), some simple
scripting (BAT and AppleScript), and put them together on a CD-ROM that’s pro-
grammed to start automatically on insertion, you have a first-class product.

Because Flash movies can be very small (even when packaged as a projector), you
can fit interactive multimedia presentations on 3.5-inch 1.44MB floppy disks! This is
truly revolutionary, as floppy disks can be copied very easily on any system with a
floppy drive — you don’t need a CD recorder to distribute your Flash movies in pro-
motional mailers to clients.

Read William Moschella’s tutorial on creating autorun CD-ROMs for Flash presen-
tations at the end of this section. Also, check out Chrissy Rey’s excellent “Flash for
CDs” resource at www.flashlite.net/help/cd.

Cross-
Reference

Tip

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1214

1215Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

FSCommands
FSCommands can be used to provide greater functionality to your stand-alones.
These actions can turn a simple Flash movie into something spectacular! When
combined with additional scripting and executables, you can make fully functional
applications. Table 42-1 lists FSCommands for stand-alones.

Table 42-1
FSCommands for Stand-alones

FSCommand Arguments Function

fullscreen true/false True sets the stand-alone to full-screen mode,
without a menu. False sets it to the size speci-
fied by the Movie Properties.

allowscale true/false Allows for scaling of the movie. False sets the
movie to the size specified by the Movie
Properties. This doesn’t actually keep the stand-
alone from being resized, it only the keeps the
movie inside of it from being scaled.

showmenu true/false Toggles the menu bar and the right-
click/control-click menu. True enables them;
false turns them both off.

trapallkeys true/false Captures all key presses, including those that
would normally control the player. If you have
turned off the menu with the showmenu
command, then you will need to manually
create a quit command to exit the player or
projector.

exec Path to executable Opens an executable from within the stand-
(BAT, COM, EXE, alone player. The application opens in front of
and so on) the projector.

quit Closes the stand-alone.

When an FSCommand action is added in the Actions Panel, you can access stand-
alone– specific commands from a drop-down menu (see Figure 42-4). Refer to
Chapter 17, “Understanding Actions and Event Handlers,” for more information
on adding actions to Flash frames or buttons.

The FSCommand in Flash 5 has a new player/projector command, trapallkeys.
This command is useful for creating kiosk presentations where you don’t want to
allow access to the system beyond the Flash projector or player.

New
Feature

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1215

1216 Part VIII ✦ Distributing Flash Movies

Figure 42-4: Flash 5 adds a
convenient drop-down menu
for FSCommands specific to
the stand-alone Flash Player
or projector.

Make sure you list FSCommands and their arguments as strings, not as expressions
(unless you purposely want to refer to an ActionScript variable). If you do not encap-
sulate the FSCommand in quotes, as in fscommand(“allowscale”,”true”);,
then it will not be interpreted by the stand-alone.

Caution

Expert Tutorial: Opening Web Pages from Stand-alones,
by Chrissy Rey

The source file for this tutorial, which is located in the ch42 folder of the Flash 5 Bible
CD-ROM, contains three examples that use the Get URL action in a stand-alone projector.

One of the great improvements delivered with Flash 4 was the ease with which an external
URL can be opened from the Stand-alone Projector. The functionality is still the same in
Flash 5, except that we now have the easily accessible Actions Panel to add our
FSCommands. You’d surely appreciate this, too, if you labored endlessly with Flash 3, trying
to find a way to open Web pages from the Stand-alone Projector . . . only to learn that there
was no easy solution. (Furthermore, if you threw cross-platform compatibility needs into
the mix, you had to spend considerable time writing BAT files and AppleScripts to get every-
thing to work.) Happily, Flash 4 solved this problem, and it’s as simple as adding a Get URL
action to your movie — in fact that’s exactly what we’re going to do here.

Step 1: Create your movie as you normally would.

Step 2: When you get to the button or keyframe where you want to open a Web page, sim-
ply use the getURL action, with the URL value set to the local HTML file or Web site that
you’d like to open. In the Frame Actions Panel (shown in the following figure), you can add
a getURL action that opens a Web page in the default browser.

You can also use the getURL action to create an e-mail link from the stand-alone. Just type
the e-mail address preceded by mailto: in the URL box (for example, mailto:userID@
domain.com). You don’t need to worry about the Window settings when using the getURL

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1216

1217Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

action in the stand-alone. Each time the action is called, it will open the URL in the user’s
default browser. The Variables setting is only important if your stand-alone will be commu-
nicating with a back-end script.

Step 3: Export the movie and open it in the stand-alone or publish the movie as a projec-
tor. Test your actions to see how nicely they work.

Unfortunately, this method doesn’t let you open anything locally but HTML files. In order to
open other file types, you still need to use the FSCommand Exec in conjunction with a BAT
file, AppleScript, or another trick to open these files. Refer to the section on FSCommands,
earlier in this chapter, for more information on stand-alone specific commands.

Originally from College Park, Maryland, Chrissy Rey was among the first with in-depth Flash tutorial sites on
the Web —www.flashlite.net. She found Flash when she was working at the Department of Justice; she
was given a copy of Flash 3 and told to make a CD-ROM presentation with it. She did as she was told: “It
worked, and there was much rejoicing.” Like many overworked Flash experts, Chrissy’s single most favorite
thing to do is sleep — something the authors of this book certainly miss as well.

Expert Tutorial: CD-ROMS and Projectors,
by William Moschella

Bill Moschella has contributed a number of Expert Tutorials on sound-related topics. His
biographical information can be found (together with his sound advice) in Chapter 32,
“Optimizing Flash Sound for Export.”

The Flash 5 Publish Settings includes a tab for both Windows and Macintosh Projectors,
which publish self-inclusive Stand-alone Players. When published as such, these are actually
applications/programs. These players enable viewers to see your Flash movies without wor-
rying about downloading the latest version of the Flash Player. While the default Flash .SWF
format is cross-platform, these projectors have either a Macintosh or a Windows version.

Continued

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1217

1218 Part VIII ✦ Distributing Flash Movies

Continued

The following tutorial shows you how to use this feature of the Publish Settings to make an
autostart cross-platform CD-ROM.

Some Guidelines
Before we get started, you should be familiar with the limitations of playing Flash content
from an auto start CD-ROM. You should follow these guidelines:

✦ The projector will strain the processor if you ask it to read a large file. Try to break up
your presentation using the load/unload movie command. I’ve made CD-ROMs that
contain a combined totals of up to 50MB of .SWF’s and projectors. However, the
largest .SWF that the projector can play smoothly — one at a time — is approximately
1MB.

✦ For smooth presentations, avoid situations that require the projector to process mul-
tiple actions at once. If you decide that your whole presentation needs to be divided
into multiple .SWF files, you must be careful where and when you command these
actions.

✦ If you’re streaming animation with audio and attempt to simultaneously execute
commands to load other .SWF’s, the player will hiccup, meaning that you will see
blips in the animation.

✦ If you are loading other .SWF’s into your projector, be sure that they have the same
Movie Properties as your projector. To maintain functionality and consistency, all
.SWF’s need the same background color and window sizes.

✦ If you want to load a new .SWF with different background colors, first stop your orig-
inal — or root — movie at a final keyframe. The content of this keyframe should be a
square that fills the workspace window with the same color as the background of
movie you’re about to load in. This will smooth the transition.

✦ If your movie has different settings than the projector, don’t fret. Simply create
another projector and use the FSCommand exec to load the new projector in front
of your existing one. Your script will look like this:

fscommand(“exec”, “yourmovie.exe”);

Using CD Recording Software
After you’ve published your projectors and .SWFs, and have tested their performance from
your hard drive, you will be ready to burn them to a CD-ROM. Although .SWF’s can be
shared on multiple platforms, it is a good idea to create a set of .SWF’s for your Macintosh
projector and a separate set for your Windows projector. Because we want to create a
cross-platform CD-ROM, it’s important to check the specs of the CD burner; some burners
can’t burn a cross-platform disk. (Sony’s Discribe and Adaptec’s Toast are great for cross-
platform compatibility.) By using a MAC/ISO HYBRID format, your Mac files will remain hid-
den from Windows users and your Windows files will be unreadable on the Mac.

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1218

1219Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

Stand-alone Limitations and Solutions
When you distribute your Flash movies as stand-alones, you may think that you
won’t have to worry about streaming and download. As a consequence, stand-
alones are often made considerably larger than a typical Flash movie — which can
be a mistake! Very large movies (1MB or more) may not play on slower computers.

First, create an HFS volume for your Mac files. This is a separate disk/drive where all your
files are stored. If you don’t have a secondary drive on your Mac, you’ll need to trick the
computer. Open your hard drive and find your Utilities folder. Launch your Disk Copy appli-
cation. Choose Image from the pull-down menu and select Create New Image. This will cre-
ate a new partition on your Mac Desktop, which will act as a separate hard drive. Now,
choose a size for your new disk copy — but be careful about the size you choose, because
this drive takes it’s space from your initial hard drive. Now, place your Mac projector files
and related .SWF’s on the new disk image.

(These next steps assume that you are working with Adaptec’s Toast, which is a CD record-
ing application. If you do not have Toast, you will need to find similar controls in your CD
recording application.) Next, launch your CD recording application and choose Mac/ISO
Hybrid from the menu. It will ask you to choose a drive for the HFS volume. Choose your
newly created disk copy. On the check-off list, choose Don’t Copy Free Space. This setting
ensures that you will only burn the files from the disk, rather than the entire disk, including
free space. Open the ISO window by double-clicking your CD title in Discribe or by choos-
ing the ISO tab in Toast. Now place your ISO (Windows) files into the data window — you
can drag and drop them. You have the option to make your files invisible so that the user
cannot access them, so double-click the files and check off invisible. When you are finished
making these modifications, you can burn your files to disk.

Autostart
You’ll probably want to have a specific projector autostart upon insertion of the disk. To
accomplish this, you must include an autorun.inf file in your ISO portion. Open your
word processor and type the following code:

[autorun]
open=yourfile.exe

Save this file as autorun.inf and burn it to the ISO partition of the CD-ROM. This file will
cause the named projector, open=yourfile.exe, to autostart.

Unfortunately, there is no file that we can include to make this happen on a MAC platform.
To my knowledge, Adaptec’s Toast is the only method for including this option. When
choosing the HFS volume, there is a check box for Auto-start. With this option checked,
Toast will ask you to choose a file to autostart from your HFS volume in your new disk
image. Select the file that you want to autostart and continue with the steps as explained
previously. This will act the same as your autorun.inf file in Windows. These two techniques,
combined, will create a cross-platform autostart CD-ROM.

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1219

1220 Part VIII ✦ Distributing Flash Movies

Remember that Flash requires the computer processor to compute all of those vec-
tor calculations. When you try to give a slower computer 1MB worth of Flash at
once, it may not be able to handle it.

One way to get around this limitation is to break your movies into several smaller
movies. You can use the loadMovie/unloadMovie actions to open and close
other movies within the original movie. You should use these actions in your
stand-alones.

You should also test your movies on a variety of computers, especially if you plan
to put a lot of money into distributing them on CD-ROM. Some processors handle
the movies better than others, and you often have to decide which processor you
want to target as the lowest common denominator.

Tip

Expert Tutorial: Distributing PR on the Flash Player,
by Cam Christiansen

You can download the files for Cam Christiansen’s tutorial from the Flash 5 Bible Web site
at www.flash5bible.com/ch42.

This tutorial describes two methods of using Flash for promotional purposes. One uses the
Flash stand-alone projector and the other is a HTML page with a JavaScript full-screen func-
tion. At Anlanda, we’ve used Flash as an effective method for promoting our company, stay-
ing in touch with our clients, and showcasing our creativity. We have found it a
cost-effective method of spreading the message of our business to existing clients as well
as prospective ones. To date we have used the Flash projector as our main method of deliv-
ery for our promos. Some of the reasons why we chose this method are:

✦ It scales full-screen (no ugly browser to contend with). This helps to define the
promo as something more than just another Web site.

✦ It performs very well because it’s already downloaded onto the users computer
when they play it.

✦ The user values the presentation more than if they’d simply received a URL via
e-mail, because they feel like they’ve received something tangible that they can,
in turn, pass on to others.

But there’s also a downside to the Flash projector: Because of the monotonous regularity of
executable virus scares, some people are understandably reluctant to open these exe-
cutable (.EXE) e-mail attachments, and many larger companies set up filters that thwart
them all together. Another, minor, downside is that the projector adds to the overall file
size, making an original file that may have been quite tiny, much larger.

So most recently, in an effort to work around these downsides while maintaining the full-
screen aspect, we’re now using an HTML page and attaining the full-screen aspect by using
a JavaScript that I discovered at www.flashgen.com. The benefits of this approach are that

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1220

1221Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

the user does not have to wait for the e-mail to download — it comes up like any Web site
and there are no worries about e-mail attachments. Plus, it can link seamlessly to other
HTML files. However, the downside of this approach is that it only works on the PC, using
the Explorer 4 and up.

For the purposes of this tutorial, I thought I would give you a taste of what we have done in
the past and demonstrate the steps with our promotion, Wasabi lunch, which was devel-
oped from four earlier promotions that had been originally distributed as Stand-Alone
Projectors (SAP). There are two versions of this movie: One is an SAP and the other is an
HTML page deployed using JavaScript.

Version One: The Stand-Alone Player
Now, we show you how to create a projector that plays full-screen and offers an option to
exit (or quit) the movie. In the first three steps that follow, we add the appropriate
FSCommand to enable full-screen functionality. Later, a Quit button will be added to the
movie.

1. Begin by adding an action to the first frame of your movie.

2. As shown in the following figure, click the + sign in the Frame Actions Panel, navi-
gate to Basic Actions, and then click FSCommands.

3. There’s a drop-down menu at the bottom of this panel labeled Commands for stan-
dalone player. Click the arrow button to open the drop-down menu, and then select
fullscreen [true/false]. This command will launch your movie full-screen
when the user clicks the projector icon.

Continued

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1221

1222 Part VIII ✦ Distributing Flash Movies

Continued

About a few of the other FSCommands in the drop-down menu:

✦ quit — Quit is used to close the projector (we will get to this in one second).

✦ allowscale — When used along with the false argument, this doesn’t let the movie
scale and is shown at the movie dimensions. With the true argument, it sets the pro-
jector back to its default mode, show all, which is not full-screen.

✦ showmenu — The true argument enables the user to see a full list of menu items by
right-clicking (PC), whereas false removes the menu option.

✦ exec — Exec enables you to execute another application from within a projector.

After you’ve created the full-screen frame action, you need to make a Quit button. This is
very important because once you’re viewing a full-screen Flash movie, the only way to get
out of it is to press the Esc key, which isn’t user friendly because it gives the impression that
you have thoughtlessly created a movie that has taken over the prospective client’s com-
puter.

Here’s how to create a button and assign an FSCommand called quit:

1. Create a button with the text Quit on it. In the Frame Actions Panel, click the + sign
and navigate to Basic Actions, and then click FSCommands.

2. At the bottom return to the menu called Commands for standalone player, click the
arrow button to open the drop-down menu, and then select quit. Your Actions list
for the Button instance should contain the code shown in the figure that follows.

3. As long as your button remains visible on the timeline, the user can click Quit to
stop the playing of the movie at full-screen.

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1222

1223Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

Finally, we’re at the last step to create the projector:

1. Go to Publish Settings, File ➪ Publish settings.

2. Then click the Formats tab. Next, to create SAPs for both the Mac and the PC, check
both Windows Projector [.EXE] and Macintosh Projector.

3. Click the Publish button and you are done! You’ve created a self-contained movie,
which can be viewed on any Mac or PC, regardless whether or not they have the
Flash Player installed on their computer.

Version Two: The JavaScript/HTML approach
As I said earlier, there’s another way to achieve an effect similar to that of the full-screen
projector. This second way uses JavaScript in an HTML document and is limited to PCs using
Explorer 4 and up. (This script is distributed free from www.flashgen.com. They indicate
that they are happy to let others use the script as long as you leave credits for them in the
HTML). Although I’m not a JavaScript wizard (yet), I can reiterate the explanation I received
from flashgen.com. If you want a more detailed explanation, please visit their site. You will
need three HTML pages to create a full-screen Flash promotion.

1. A quick-switch screen that launches the full-screen HTML page.

2. An HTML file that has the final Flash file, with a Quit button, that you wish to present
full-screen.

3. An HTML file that will be viewed by those unable to see the full-screen (Mac and PC
users with Internet Explorer below version 4).

Stage 1: The First HTML Page
1. Create an HTML file that will be your quick-switch page. This can have any content

that you want, but remember, it will only be shown for a split second.

2. Next, open the quick-switch HTML file in an editor such as Dreamweaver.

3. Copy the script (supplied at the end of this section) into the document after the
<head> tag

4. Replace the line nonfullscreen.html with the title of the HTML file that you wish
to be viewed by users who are unable to view the full-screen promotion.

5. Replace the line yesfullscreen.html with the title of the HTML file that will be
seen by users who are able to view the full-screen promotion.

This is used to determine what platform the viewer is using. It sends the Mac users to
a non-full–screen HTML page that you have defined in the line location.href=
nonfullscreen.html. Then as the script continues, it sifts out Netscape and all other
browsers except Internet Explorer 4+. Finally, it takes those using Internet Explorer 4+ to
the page defined as yesfullscreen.html. (In the following code, the ¬ indicates a con-
tinuation of the same line of code.)

Continued

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1223

1224 Part VIII ✦ Distributing Flash Movies

Continued

<script LANGUAGE=”Javascript”>
<!-- //
function intro()
{

if ((navigator.appVersion.indexOf(“Mac”)!=-1) && ¬
(navigator.userAgent.indexOf(“MSIE”)!=-1) && ¬
(parseInt(navigator.appVersion)==4))

{
skip()
}
else
{
popup()
}

}
function skip()
{

location.href=”nonfullscreen.html”;
}
function popup()
{

version = parseFloat(navigator.appVersion.substring ¬
(navigator.appVersion.indexOf(‘.’)-1,navigator. ¬
appVersion.length));

if (version >= 4)
version = parseFloat(navigator.appVersion.substring¬
(navigator.appVersion.indexOf(‘.’)-1,navigator. ¬
appVersion.length));

if (version >= 4)
{
if (navigator.appName==”Netscape”)

{
location.href=” nonfullscreen.html”;

}
if (navigator.appName==”Microsoft Internet ¬
Explorer”)

{
window.open(“yesfullscreen.html”,”screen”, ¬
“fullscreen=yes”);

}
}
else

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1224

1225Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

{
location.href=” nonfullscreen.html”;

}
}
// -->
</script>

<body LINK=”#000000” BGCOLOR=”#000000” onLoad=”intro()”>
</body>
</html>
<!-- Copyright 1999 FlashGen.Com If you wanna submit work to
FlashGen.Com, send your emails to: info@flashgen.com -->

Stage 2: The Second HTML Page
The next step is to create an HTML file to contain your Flash movie with a Quit button. This
will be the Flash file that you want to be viewed full-screen. For the purpose of this tutorial,
we have called it yesfullscreen.html. The purpose of the Quit button within the Flash movie
is to enable viewers to close the window and quit the movie. As was stated earlier in the
context of Stand-alone Projectors, it’s very important to do this so that the user feels in con-
trol of what they are viewing. Let’s get started.

1. Open your movie and create a button labeled Quit. Add the button to the movie
interface.

2. Select the button and, in the Frame Actions Panel, click the + button. Then, from the
Basic Actions, choose get URL. The following code will appear in the right pane of
the Frame Actions Panel: getURL (“”);.

3. Then, at the bottom of the dialog, type Javascript:closer() in the URL field. Your
action list should look like the following figure.

Continued

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1225

1226 Part VIII ✦ Distributing Flash Movies

Continued

4. Next, use File ➪ Publish to publish this Flash movie (which has the Quit button in it)
and generate the HTML page named yesfullscreen.html. To do this, be sure that the
HTML [.html] option is checked on the Formats tab.

5. Then, open the HTML file yesfullscreen.html in an editor such as Dreamweaver and
insert the following script between the <HEAD> tags:

<script LANGUAGE=”Javascript”>
<!--//
function closer()
{
parent.close();
}
// -->
</script>

Author’s Note: Internet Explorer 4.5 (or earlier) on the Macintosh will not support the use
of direct javascript: calls in getURL actions.

Now if the user clicks the Quit button in the Flash presentation, the button will call the func-
tion from the Flash Player and close the window.

Stage 3: The Third HTML Page
Publish a Flash movie to an HTML format (or create a regular HTML file) and name it non-
fullscreen.html. This page can be anything — the only purpose of this HTML file is to offer
those using Macs, Netscape, and versions of Internet Explorer below 4 an alternative path
to view your presentation.

That’s it! You’re done. Now, when a visitor arrives at the first quick-switch HTML page, the
script will check the system and send your visitor to the appropriate page. If the visitor has
Internet Explorer 4+, they get the full-screen! Others are served the alternative. After they’re
finished viewing the full-screen movie, all they have to do is click Quit and full-screen
mode quits.

“I am not sure what year it was from, but my favorate late ‘80s album was Soul Mining, by The The. I was
definitely listening to it during my last year of school; it’s still awsome,” says Cam, who is a native of Calgary,
Alberta, Canada, where he is one of two partners in the Anlanda design firm. Of his introduction to Flash,
Cam relates, “I was introduced to it by a classmate at university.” Now, he uses Flash to craft amazing sites
and to develop distributable PR. Some of his work can be seen at www.anlanda.com, www.jawzinc.com,
and www.madison-page.com. What’s his single most favorite thing to do? “Travel with my wife, Mo, to
Italy; where we eat expensive porcini mushrooms, drink lots of red wine, and plot ways to become honorary
Italian citizens.”

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1226

1227Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

Using the Flash Player Plug-in for
Web Browsers

Flash movies can only be played in Web browsers that have the Flash Player plug-in
or ActiveX control installed. Macromedia has made huge strides in making the plug-in
prepackaged with newer Web browsers and operating system installation programs,
eliminating the need for users to manually download and install the plug-in them-
selves. Unfortunately, the Flash 5 version of the plug-in will only be included in future
releases of Web browsers and operating systems. Remember that the Flash 3 and 4
Player plug-ins can try to play Flash 5 movies — however, new features in Flash 5
movies will not be available (such as new ActionScript syntax and features).

For up-to-date information on the Flash Player plug-in, see Macromedia’s down-
load page at www.macromedia.com/shockwave/download/alternates.

Supported operating systems
Since Flash 3, Macromedia has greatly expanded its platform support for the
Flash Player plug-in. At the time of this writing, you can download Flash 5 Players
for Windows 95/98/ME/NT/2000 and for Mac Power PCs. By the time this book is
published, version 5 players should be available for Sun Solaris and Linux x86. At
the FlashForward2000 March conference, the Flash Player was demonstrated on
Windows CE! While this was an “unofficial” player that is not publicly available (it
was a “proof of concept” demo), Macromedia has proven that Flash graphics can
be ported to a variety of GUIs (graphical user interfaces) and operating systems.
We’ve also heard reports of Flash 3 graphics showing up in add-on applications
for the Sega Dreamcast.

Supported browsers
The Flash Player plug-in works best with Netscape and Internet Explorer browsers.
Any browser that is compliant with Netscape Navigator 2.0’s plug-in specification
or Internet Explorer’s ActiveX technology can support the Flash Player plug-in or
ActiveX control. Note that Mac versions of Internet Explorer use a Netscape plug-in
emulator to use the Flash Player plug-in rather than an ActiveX control.

For AOL subscribers, any version of AOL’s 3.0, 4.0, 5.0, or 6.0 browsers (except for
the earliest 3.0 release that used a non-Microsoft Internet Explorer shell) will sup-
port Macromedia plug-ins.

Note

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1227

1228 Part VIII ✦ Distributing Flash Movies

The Flash action FSCommand, which can be used to communicate with JavaScript,
will only work with certain browser versions. Currently, all versions of Internet
Explorer on the Macintosh (up to version 5.0) do not support the FSCommand action.
Netscape 3.01 or greater (on both Macintosh and Windows) or Internet Explorer 3.0
or greater for Windows 95/98/NT is necessary for FSCommand implementation.

For a comprehensive list of supported browsers (and Flash compatibility), please
see the Macromedia tech note at www.macromedia.com/support/flash/ts/
documents/browser_support_matrix.htm

Plug-in and Flash movie distribution on the Web
Anyone can download the Flash Player plug-in for free from the Macromedia
Web site. You can direct visitors at your Web sites to Macromedia’s Flash Player
download page, www.macromedia.com/shockwave/download/index.cgi?P1_
Prod_Version=ShockwaveFlash. In fact, according to Macromedia’s licensing
agreement, if you’re publishing Flash movies on your Web site, you need to display
the “Get Shockwave Player” logo or “Get Flash Player” logo on your Web site. This
logo should link to Macromedia’s download page, just listed. However, you need to
license the right to distribute any Shockwave plug-in installer from Macromedia.
For more details on licensing, see www.macromedia.com/shockwave.

You can find the official Macromedia button graphics at www.macromedia.com/
support/programs/mwm/swb.html

Plug-in installation
In Chapter 40, “Publishing Flash Movies,” we discuss the Publish feature of Flash
and the use of preformatted HTML templates to deliver your Flash movies to your
Web site. The template and/or handwritten HTML that you use for your Flash-
enabled Web pages determines the degree of difficulty your visitors will have
upon loading a Flash movie.

We added an entire section on plug-in detection to the Flash 5 Bible. See Chap-
ter 41, “Integrating Flash Content with HTML,” for more information.

Because Web browsers vary dramatically between operating systems (for example,
Internet Explorer for the Mac behaves very differently from Internet Explorer for
Windows), you should make the plug-in process as invisible as possible. The follow-
ing are the possible outcomes of each HTML template that Flash 5 uses:

✦ Flash Only (Default): This template doesn’t use any JavaScript detection
for the Flash Player plug-in. It simply places the <OBJECT> and <EMBED>
tags for the Flash movie into an HTML document. The CODEBASE attribute
of <OBJECT> will direct Internet Explorer for Windows to the download loca-
tion of the Flash ActiveX control. This process should be relatively straight-
forward for Windows users. For visitors using Netscape 3.0 or greater (on any
platform), the PLUGINSPAGE attribute of <EMBED> provides the browser with
the plug-in location, and prompts the visitor to go there.

Cross-
Reference

Caution

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1228

1229Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

✦ Ad 5 Banner: This template inserts an <OBJECT> tag for Internet Explorer
(just as the Flash Only template will) and JavaScript detection code for the
presence of the Netscape plug-in. When a Netscape browser loads the HTML
page, JavaScript checks for version 5 of the Flash Player plug-in. If the plug-in
is installed, then JavaScript writes the proper <EMBED> tag and attributes for
the Flash movie. If the plug-in is not installed, then JavaScript writes HTML
code for a static .GIF image.

✦ Ad 4 Banner: This template works in the same way as the Ad 5 Banner tem-
plate, except that it checks for the Flash 4 Player plug-in or ActiveX control.
Note that the Flash 4 format should be selected in the Flash tab of the Publish
Settings.

✦ Ad 3 Banner: This template uses the same HTML code as the Flash 4 with
Image template, except that it checks for version 3 of the Flash Player plug-in.
Note that the Flash 3 format should be selected in the Flash tab of the Publish
Settings.

✦ Flash with FSCommand: This template does not employ any JavaScript plug-
in detection. The JavaScript inserted by this template is solely for the Flash
action, FSCommand.

✦ Java Player: This HTML template will use an <APPLET> tag with <PARAM>
subtags to employ the Flash Player Java edition. It does not use <OBJECT>
or <EMBED> tags. See the next section for more information.

✦ QuickTime: This template will create an HTML document containing the
<EMBED> tag information to display a QuickTime Flash movie — a .MOV file,
not a .SWF file. The QuickTime Player is discussed in the next section.

For information on other templates, including those that support Generator tem-
plate files, please refer to Chapter 40, “Publishing Flash Movies.”

Unfortunately, you can never predict with any certainty how visitors will encounter a
Flash plug-in installation. Most of the automated HTML coding from earlier versions
of Flash (3.0 and earlier) and/or Aftershock may make an “upgrade” installation very
difficult for Web visitors. For example, if an HTML document uses JavaScript to detect
the Flash Player version 3 plug-in and the visitor’s browser is using the version 4 or 5
plug-in, the browser may return a false value for the plug-in and direct the visitor to a
non-Flash page. The older JavaScript code doesn’t know that the Flash 4 or 5 Player
plug-in is perfectly capable of playing older Flash movies. If you have created Web
pages and Flash movies with Flash 3.0 or earlier, see Macromedia’s tech note at
www.macromedia.com/support/flash/ts/documents/flash4_detection.htm for
more information on updating JavaScript code to detect Flash Player version 4 or 5.

Alternative Flash-Content Players
While Flash 5 movies play back best with Macromedia’s Flash Player plug-in (or
Stand-alone Player), Macromedia has developed Java class files (available in the
Flash application folder) so that Java-enabled Web browsers can play Flash movies.

Cross-
Reference

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1229

1230 Part VIII ✦ Distributing Flash Movies

Macromedia has also teamed up with RealSystems and Apple to enable Flash con-
tent in RealPlayer and the QuickTime Player, respectively. By enabling Flash content
in other players, Macromedia is promoting the acceptance of Flash as the de facto
vector standard for Web graphics. Moreover, with so many alternatives for Flash
playback, it is more likely that your Web visitors can see your Flash content.

Flash Player Java edition
You can use the Java Player HTML template to enable the Flash Player Java edition
in Web browsers. This player will work on any Java-compatible Web browser. How-
ever, you need to do a bit of work to make sure that the Flash class files are avail-
able on your Web server. The Java Player HTML template inserts the following
<APPLET> and <PARAM> tags into a Web document:

<APPLET CODE=Flash.class ARCHIVE=Flash.jar WIDTH=550
HEIGHT=400>
<PARAM NAME=cabbase VALUE=”Flash.cab”>
<PARAM NAME=movie VALUE=”home.swf”>
<PARAM NAME=quality VALUE=high>
<PARAM NAME=bgcolor VALUE=#FFFFFF>
</APPLET>

You may need to adjust the CODE and ARCHIVE paths to indicate where the class
files are located relative to the HTML document. You can find the Java class files
(as well as Netscape .JAR and Internet Explorer .CAB files) in the Flash Player Java
Edition folder, located inside the Players folder of the Flash 5 application folder.
Upload the .CLASS, .JAR and .CAB files to a folder located on your Web server.

You may have noticed another folder called FlashSmall inside the Flash Player Java
Edition folder. The class files inside of the FlashSmall can be used instead of the
regular .CLASS, .JAR, and .CAB files if your Flash movie does not contain any
bitmaps or sounds. The FlashSmall class files are smaller and easier for visitors to
download. You’ll need to change any reference to Flash.xxx files in the <APPLET>
and <PARAM> tags to FlashSmall.xxx. For example, Flash.class should be changed
to FlashSmall.class.

You can only use Flash 2-format .SWF files with the Java Player. To export Flash 2
movies, select Flash 2 in the Version drop-down menu of the Publish Settings’ Flash
tab. Flash 2 movies cannot use many of the features available to Flash 3, 4, and 5
movies, such as:

✦ Alpha channel effects (transparent colors)

✦ Shape tweening

✦ Mask layers

Tip

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1230

1231Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

✦ Movie Clip symbols

✦ Many Flash actions such as tellTarget, if, loadMovie, and loadVariables

RealPlayer 8.0 with Flash playback
With a little effort, you can repackage your Flash .SWF movies as RealFlash presen-
tations over the Web. Web visitors can use the RealPlayer G2 or RealPlayer 8 to play
Flash, RealAudio, or RealVideo (among a long list of RealMedia types) content. Real-
Player movies stream from a RealServer (special server software running concur-
rently with Web server software) into the RealPlayer plug-in (Netscape) or ActiveX
control (Internet Explorer).

We added a new chapter to the Flash 5 Bible, Chapter 35, “Working with RealPlayer.”
Please read this chapter for more information on the creation of RealPlayer Flash
movies.

QuickTime Player
Apple introduced playback support for Flash movies with QuickTime 4. Better
yet, Macromedia included QuickTime Flash export options with Flash 4. A Quick-
Time Flash movie (.MOV file) is essentially a Flash .SWF file packaged as a
QuickTime media type.

The QuickTime architecture and QuickTime Flash format are discussed at length in
Chapter 34, “Working with QuickTime.” The QuickTime HTML template is dis-
cussed in Chapter 40, “Publishing Flash Movies.”

You can use the QuickTime HTML template in Publish Settings to create an instant
Web page that uses the QuickTime Player plug-in. It uses the <EMBED> tag to pre-
scribe the name, width, height, and plug-in download location:

<EMBED
SRC=”flashmovie.mov”
WIDTH=550 HEIGHT=400
BGCOLOR=”#FFFFFF” BORDER=”0”

PLUGINSPAGE=”http://www.apple.com/quicktime/download/”>
</EMBED>

QuickTime 4 can only support Flash 3 graphics and actions. Remember that Flash 4
only added new interactive components such as ActionScript to the Flash milieu —
all Flash graphics, including Mask layers and Movie Clips, are supported by the
QuickTime Player. Flash movies can act as a timeline navigator for other QuickTime
media, such as video or audio.

At the time of this writing, QuickTime 5 Public Preview had just been released.
QuickTime 5 will support Flash 4–compatible actions.

Note

Cross-
Reference

Cross-
Reference

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1231

1232 Part VIII ✦ Distributing Flash Movies

For interactive Flash content, you should limit yourself to the following Flash 3-
compatible actions:

play();
stop();
gotoAndStop();
gotoAndPlay();
toggleHighQuality();
stopAllSounds();
getURL(url, window);
loadMovie(url, level);
unloadMovie(level);
tellTarget(instance){}
ifFrameLoaded(frameLabel){}
on(mouseEvent){}

Check out Apple’s QuickTime Sprites overview page at www.apple.com/
quicktime/overview/sprites.html for a demo of QuickTime Flash.

Shockwave Player
Since Director 6.5, you can include Flash movies (as .SWF files) in your Director
movies, either as stand-alone Director projectors or as part of Shockwave movies
(.DCR files) on the Web. The Flash Asset Xtra is automatically installed as part of the
default Shockwave plug-in installation process. Among other benefits, Shockwave
movies enable you to integrate Flash movies with QuickTime video and use Flash
assets with Macromedia’s Multiuser Server (which is part of the Director Internet
Studio software package).

For more information on Director and Flash interactivity, please read the latter half
of Chapter 39, “Working with Authoring Applications.”

Screensaver utilities
You can also reformat Flash movies as screensavers for both Windows and
Macintosh. A few software companies create applications specifically designed
to modify Flash movies:

✦ FlashJester.com

✦ LivingScreen.com

We are pleased to have Christian Kocholl from Living Screen present the following
tutorial on Flash screensavers.

Cross-
Reference

Tip

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1232

1233Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

Expert Tutorial: Living Screen’s Screensavertool,
by Christian Kocholl

Christian’s tutorial discusses the creation of screensavers with the Mac version of the Living
Screen Screensavertool. This utility is also available for Windows.

The value of imaginative, animated, and interactive screensavers as a public relations tool is
beyond argument. Screensavers carry brands and images to those users that normally
would not be reached by other distribution channels. The Living Screen Screensavertool
was developed for every Flash designer who wants to painlessly create screensavers —
within minutes — that contain Flash animations. This is guaranteed by the structured set up
of our Screensavertool, which can utilize a Wizard mode.

The tool supports every feature of Macromedia Flash, and therefore offers an ideal basis for
almost limitless interactions and exciting concepts. A Living Screen screensaver is the platform
for interactive experiences. Animated games, superior applications, and active description fields
are easily integrated with our Screensavertool. The tool also supports Flash Layer technology.
This is the premise for translating the most demanding movies into individual screensavers.

Now I’ll show you how easy it is to create a screensaver from an existing Flash animation
using the Living Screen Screensavertool.

Step 1: After starting the Living Screen Screensavertool, a welcome screen appears. By
clicking the Continue button, you will see the Personal Data page. Here, you insert general
information such as your company name, an e-mail address, or your URL. You can also add
a picture in .PICT format, with 320 ×240 dimensions. This information will be displayed in
the About screen, accessible by the clicking the About button in the LS Control Panel (Mac).
Click the Continue button.

Continued

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1233

1234 Part VIII ✦ Distributing Flash Movies

Continued

Step 2: On the next page of the wizard (shown in the following figure), you can choose
between a Full version or a Demo version for your screensaver application. If you choose
Demo version, then indicate the length of the trial period (in days). Click the Continue but-
ton. Note: If you are using the Trial version of Screensavertool, then you will only be able to
select Demo version.

Step 3: On the next page of the wizard (shown in the following figure), you must select the
.SWF file to be used as a screensaver. You should also enter a name for your screensaver in
the field provided. If you using the loadMovie or loadVariables action as a method to
load more .SWF files (or text information), then you will need to select the option Embed
additional SWF or text files. You can optionally define whether the screensaver can be deac-
tivated with the keyboard and/or a mouse click. Click the Continue button.

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1234

1235Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

Step 4: If you selected the option Embed additional SWF or text files in the previous step, you
will now be able to choose those files from the interface shown in the following figure. These
files need to be in the same directory as the starter .SWF file of the screensaver or in a subdi-
rectory. Make sure that your Flash actions use relative paths to these files. Click Continue.

Continued

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1235

1236 Part VIII ✦ Distributing Flash Movies

Continued

Step 5: On the last page of Living Screen wizard, you can review the screensaver options. If
you need to change anything, simply click the Back button. When you’re ready to create the
screensaver, click the Complete button. Your screensaver will automatically be compressed
and BinHex-coded (as an .HQX file) so that it can delivered over the Internet.

To install the screensaver, decompress the .HQX file with StuffIt Expander. Double-click the
installation file named LS Screensaver Installer. On the Mac, a new control panel called LS
Screensaver will be installed in the Apple system folder. This control panel can manage sev-
eral screensavers created with the Living Screen Screensavertool. Each screensaver is
referred to as a Module in the control panel. Remember that you will need to restart your
computer after installation.

The LS Screensaver control panel (shown in the following figure) enables the user to regulate
the time after which the screensaver should be started. The control panel offers the option of
a password safety feature. If a password is specified, the screensaver will only shut down after
the correct password is entered. You can also choose a sleepcorner, which will force the acti-
vation of the screensaver when the user clicks that corner of the desktop screen. The
Information area of the control panel enables the user to delete Modules, read the About
information (which you supplied in Step 1 of this tutorial), or test the selected Module.

Through the About dialog (see an example in the following figure), the user can go directly
to your Web site or send an e-mail to your e-mail address. This is a wonderful way to drive
traffic to your site and other products (or services).

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1236

1237Chapter 42 ✦ Using Players, Projectors, and Screensaver Utilities

Future players, future features
Who can predict where Flash content will show up next? While the Flash Player
plug-in has made its way into the browser installations all over the world, there are
still other possible avenues for Flash content. Currently, there is no .SVG output
from the Flash authoring environment — nor are there any conversion utilities to
translate .SWF files into .SVG files (at the time of this writing). Or, maybe you would
like to see Flash content supported in some other authoring application, as an addi-
tional asset. If you have feature requests or general comments regarding the Flash
authoring application or the Flash .SWF format, you can send feedback to
Macromedia at wish-flash@macromedia.com.

The user-friendly license regulation of this tool is an added bonus. With only one license,
you are able to distribute as many screensavers as you like! Because the Screensavertool is
also available for Windows, you can create screensavers for most of your Internet users.

Born and raised in Heidelberg, Germany, Christian Kocholl works as a technical production manager for I-D
Media AG in Stuttgart, Germany. He discovered Flash 2 when he started working for the company. Besides
the Living Screen home page (www.livingscreen.com), Christian has worked on the Sony Europe Digital
Camcorder site (www.sony-europe.com/com/camcorders) and the home page of the Amateur Radio
Club (www.darc.de/distrikte/a/19/). When Christian graduated from high school, he recalls listening
to the Red Hot Chili Peppers’ Blood Sugar Sex Magik album. In his spare time, he enjoys kiting.

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1237

1238 Part VIII ✦ Distributing Flash Movies

Summary
✦ Flash movies can be viewed in Web pages with the Flash Player plug-in or

ActiveX control. You can also play .SWF files with the Flash Player Stand-
alone Player included with the Flash 5 application, or publish a Macintosh or
Windows projector that packages the Stand-alone Player and .SWF file into
one executable file.

✦ You can freely distribute a Flash movie projector or Stand-alone Player as long
as you adhere to the “Made with Macromedia” guidelines outlined at Macro-
media’s Web site.

✦ Flash movies can be distributed with other multimedia presentations such as
Macromedia Director projectors. Your Flash movies may be small enough to
distribute on a 1.44MB floppy disk.

✦ The Actions Panel of Flash 5 has a stand-alone–specific submenu to the
FScommand action. FSCommands can control playback and execute external
applications from a stand-alone.

✦ Flash movies can be viewed best with Macromedia’s Flash Player plug-in or
ActiveX control. However, you can also view Flash movies with third-party
products, such as Java, RealPlayer, or QuickTime Player.

✦ You can enhance your Flash movies with third-party tools such as Living
Screen’s Screensavertool for Flash.

✦ ✦ ✦

3515-3 ch42.f.qc 1/18/01 5:17 PM Page 1238

Using the
CD-ROM

The CD-ROM included with this book aids you with many
examples and tutorials by providing many useful files,

including the following:

✦ Trial versions of Macromedia Flash 5, Dreamweaver 4,
Fireworks 4, FreeHand 9, and Director 8.

✦ Evaluation versions of many .SWF-compatible applica-
tions and utilities, including Swift3D, SWiSH, Swift-
Inspector, and Swift-Generator.

✦ Demo versions of Sonic Foundry’s audio applications,
Sound Forge 4.5, and ACID Pro 2.

✦ Limited-edition version of Joey Lott’s sendmail.cgi Perl
script, to be used in conjunction with the Flash form
lesson in Chapter 24.

✦ Just about every .FLA and .SWF file that is discussed in
the book, including those used in Expert Tutorials.

✦ QuickTime movies and QTVR panorama and object
movies. Many thanks to Paul Nykamp from Focus VR
for the QTVR samples.

Installing and Using Plug-Ins and
Applications

In the software folder of the CD-ROM, you’ll find the trial ver-
sions of the many applications discussed in this book, particu-
larly those from Part VII.

On a Macintosh, go to the specific application’s folder and
double-click the installation file. Then follow the installer’s
instructions to proceed.

On a PC, go to the specific application’s folder and either unzip
the installation .ZIP file or double-click the installation .EXE file.

AAA P P E N D I X

✦ ✦ ✦ ✦

3515-3 appA.f.qc 1/18/01 5:18 PM Page 1239

1240 Appendixes

Installing and Using sendmail.cgi
To use Joey Lott’s sendmail.cgi Perl script (the .cgi file), you need to have Perl 5
installed on your Web server. You may need the assistance and permission of the
system administrator of your Internet service provider (ISP) or Internet presence
provider (IPP) to install (or use) Perl 5. Once it is installed, upload the script file,
sendmail.cgi, to a directory or folder that is accessible by Perl. This folder may
need to have proper permissions in order for Web users to execute the script file.

In a text editor such as Notepad, SimpleText, or BBEdit, you may need to edit the
first line of the script to indicate the path to the Perl files on your server. On line 19,
you can remove the comment code (#) and specify a default e-mail to which output
from the script will be sent. Meaning, if you wish to omit a variable in the Flash
movie ActionScript, then you can specify an e-mail address on line 19. If you are
receiving errors from the script during trials, you may need to adjust the location
parameter of the Web server’s sendmail program (not the script file, but the actual
program the server uses to send e-mail), specified in line 24.

Once you have the script installed, you should be able to follow the “Creating a
Flash Form” section in Chapter 24 to create a fully functional form in your Flash
movies. You can modify the loadVariables action to refer to your script’s URL
instead of theMakers.com’s script URL.

✦ ✦ ✦

3515-3 appA.f.qc 1/18/01 5:18 PM Page 1240

Contact
Information for
Contributors
and Expert
Tutorialists

Contributors
Bardzell, Jeffrey
Bloomington, Indiana, USA
jb@uncom.com
www.eHandsOn.com

Expert Tutorialists
Baker, James
WDDG
New York, New York, USA
james@wddg.com
www.wddg.com

Bazley, Richard
Bazley Films
Hollywood, California, USA
richard@bazleyfilms.com
www.bazleyfilms.com

BBA P P E N D I X

✦ ✦ ✦ ✦

3515-3 appB.f.qc 1/18/01 5:18 PM Page 1241

1242 Appendixes

Brown, Scott
Los Angeles, California, USA
sbrown@artcenter.edu
www.spicybrown.com

Buchholz, Christian
Bromide73
Sydney, Australia
christian@bromide73.com
www.bromide73.com

Burrs, Mark
CyBurrs Solutions, Inc.
White Bear Lake, Minnesota, USA
mburrs@cyburrs.com
www.cyburrs.com
www.swfStudio.com

Christiansen, Cam
anlanda inc.
Calgary, Alberta, Canada
cam@anlanda.com
www.anlanda.com

Cluff, Daniel
sinderblok
Hollywood, California, USA
dcluff@mailcity.com
www.sinderblok.com

Debreuil, Robin and Sandy
Debreuil Digital Works
Miami, Manitoba, Canada
admin@debreuil.com
www.debreuil.com

Dundon, MD
Flash411
Oakland, California, USA
info@flash411.com
http://www.flash411.com

Elliott, Shane
Timberfish
Studio City, California, USA
greyson4@pacbell.net

Fierlinger, Philip
Turntable
Emeryville, California, USA
philip@turntable.com
www.turntable.com

Finkelstein, Ellen
Author of Flash 5 for Dummies
ellenfinkl@bigfoot.com
www.ellenfinkelstein.com

Franklin, Derek
Coauthor, Flash 5 Creative Web Animation
Bloomington, Indiana, USA
derek@derekfranklin.com
www.derekfranklin.com

Hall, Branden
Fig Leaf Software
Washington, D.C., USA
bhall@figleaf.com
www.figleaf.com

Holzschlag, Molly E.
Author, Instructor, Designer
Tucson, Arizona, USA
molly@molly.com
www.molly.com

Honselaar, Chris
HTMwell Holistic Multimedia
Groningen, the Netherlands
flash@htmwell.com
www.htmwell.com

Jones, Mike
FlashGen.Com
London, England
San Francisco, California, USA
flashgen2000@yahoo.com
www.flashgen.com

Jordan, Eric
Design Insites
Laguna Beach, California, USA
ejordan@2advanced.com
www.designinsites.com
www.2advanced.com

3515-3 appB.f.qc 1/18/01 5:18 PM Page 1242

1243Appendix B ✦ Contact Information for Contributors and Expert Tutorialists

Kocholl, Christian
Technical Production Manager
I-D Media AG — Living Screen
Stuttgart, Germany
christian.kocholl@
livingscreen.com
www.livingscreen.com

Kunst, Merien Q.
BSUR Concepting & Communications
Amsterdam, The Netherlands
quintus@quintus.org
www.quintus.org

Larry D. Larsen
the Alien Containment Facility
St. Petersburg, Florida, USA
777@greenjem.com
www.greenjem.com
www.ehandson.com

Loftus, Doug
Beatnik, Inc.
San Francisco, California, USA
dloftus@beatnik.com
www.mixman.com

Lott, Joey
North Hollywood, California, USA
joey@cleardigital.com

Lowery, Joseph
Author, Dreamweaver 3 Bible and
Fireworks 3 Bible
New York, New York, USA
jlowery@idest.com

Moock, Colin
ICE Integrated Communications &
Entertainment
Toronto, Canada
colin_moock@iceinc.com
www.moock.org

Moschella, William
Timerite Media Services
Cheshire, Conneticut, USA
trm01@earthlink.net
www.deluxesounds.com

Nisinson, Dorian
Dorian Nisinson Design
New York, New York, USA
dorian@nisinson.com
www.nisinson.com
www.flashcentral.com

Parameswaran, Viswanath
Media Arts
Singapore
vish@media-arts.net
www.media-arts.net

Plant, Darrel
Moshofsky/Plant
Portland, Oregon, USA
dplant@moshplant.com
www.moshplant.com

Purgason, Todd
Juxt Interactive
Newport Beach, California, USA
toddhead@juxtinteractive.com
http://juxtinteractive.com

Pursehouse, Gareth
Carlsbad, California, USA
gareth@infinovation.com
www.infinovation.com

Reed, Arena
Santa Cruz, California, USA
arena@visualarena.com
www.visualarena.com

Rey, Chrissy
FlashLite
College Park, Maryland, USA
webmistress@flashlite.net
www.flashlite.net

3515-3 appB.f.qc 1/18/01 5:18 PM Page 1243

1244 Appendixes

Richards, Mike
Macromedia
San Francisco, California, USA
miker@macromedia.com
www.macromedia.com

Robertson, James
EDesign.uk.com Ltd
Crowborough, England
james@edesign.uk.com
www.edesign.uk.com

Schramm, Nik
nae interactive
Hamburg, Germany
nik@nae.de
www.nae.de
www.industriality.com

Smith, Jake
Subnet
Nelson, Lancashire, England
jake@subnet.co.uk
www.subnet.co.uk
www.systemerror.co.uk

Szecket, Daniel
Magritte’s Cow
Los Angeles, California, USA
daniel@magrittescow.com
www.magrittescow.com

Turner, Bill
Turnertoons Productions, Inc.
Melbourne, Florida, USA
bill@turnertoons.com
www.turnertoons.com

Vanian, Jay
Pixelpushers, Inc.
Newport Beach, California, USA
jvanian@pixelpushers.com
www.vanian.com
www.pixelpushers.com

Andreas Wagner
Mixman Technologies Inc.
San Francisco, California, USA
andreas@mixman.com
wagner@koalition.net
www.mixman.com
www.koalition.net

Walch, Robert
entermation
New York, New York, USA
rwalch@entermation.com
www.entermation.com

Wolfe, Bentley
Macromedia
Richardson, Texas, USA
bwolfe@macromedia.com
www.macromedia.com/support

✦ ✦ ✦

3515-3 appB.f.qc 1/18/01 5:18 PM Page 1244

Symbols & Numbers
&& operator, 607, 609

* operator, 606

+= operator, 669

+ operator, 511, 606, 607

() operator, 607

<= operator, 607

< operator, 607

== operator, 606, 607, 608, 668

= operator, 511, 606

!= operator, 606, 607

>= operator, 607

> operator, 607

- operator, 606

/ operator, 606

“” operator, 607

! operator, 607, 609

character, 743

|| operator, 607, 609

2D character animation. See also cartoon animation

approach, 1062–1064

artists and, 1067

business, 1066

creating, 1059–1067

creation approaches, 1060

dialog diagram, 1066

Full Animation, 1060

head turn “cheating,” 1061

layers, 1062

Limited Animation, 1060

Motion Tweens, 1062

performance and acting, 1065

phrasing, 1066

reuse, 1061

Shape Tweens, 1063

simplicity, 1062

stagger, 1064–1065

texture, 1066

timing, 1066

.3DS format, 935, 955, 959

3D bevel

creating, 288–289

illustrated, 287

3D graphics

with Adobe Dimensions, 943–947

display, 929

drawback, 936

illustration of, 936–943

with Kinetix 3D Studio Max, 954–963

with MetaCreations Poser, 947–954

simulating, 935–943

vortex, 936–943

working with, 929–964

3D modeling

depth of field, 932, 933

extruding, 932, 933

file formats, 935

introduction to, 929–935

inverse kinematics, 935

lighting, 932, 933

orthographic view, 930, 932

texture mapping, 934

wireframe view, 934

3D scenes

displaying, 679–681

with vanishing point perspective, 679

3D space, 929

3D Studio MAX. See also 3D graphics

.3DS files, 935, 955, 959

defined, 935, 954, 955

exporting animations from, 954–963

exporting to Swift 3D, 956–957, 959–960

Material Editor, 957

Material Library, 957

Material/Map browser, 958

Render Scene dialog, 958–959

Time Configuration dialog, 956

using, 954–963

8-bit color, 157, 158, 844, 1027

16-bit color, 157, 158, 1027

24-bit color, 157, 158, 844, 1027

32-bit color, 844, 1027

360-degree turnaround simulation, 833–836

A
absolute paths. See also relative paths

defined, 460–461

Dots notation, 461

Slashes notation, 461

using, 460–461

ACID Pro. See also Sonic Foundry suite

defined, 898

exporting from, 916

illustrated, 899

library disks, 915

loops, 915–916

mixing in, 916

tempo/key changes, 916

Index

3515-3 Index.f 1/20/01 1:54 PM Page 1245

1246 Index ✦ A

actions

accessing, 436

adding, 30, 31–34, 437, 536

attaching, 30

break, 612–613

call, 630, 736

combining event handlers with, 448–450

conflicting, 440

continue, 613

defined, 3, 435

deleting, 31, 437

enabling, 83

evaluate, 665

frame, 30, 31–33, 210

fscommand, 1199, 1205, 1207, 1208

function, 629

function, 631

getURL, 445–447, 694–695, 999–1000, 1117, 1127–1128

Go To, 33, 307, 440–443

gotoAndPlay, 441, 488, 700

gotoAndStop, 440, 488

highlighted, 440

ifFrameLoaded, 439, 558

#include, 598–599

keyframe, 454

layers, 486, 487, 524

loadMovie, 45, 525, 557, 570

loadVariables, 603–604, 699

loop, 613

object, 30, 33–34

older, 439

On Mouse Event, 448

placement, 451

Play, 443–444

print, 552–553

printAsBitmap, 553–554

remote CGI scripts, 1154

send state, 694–695

startDrag, 528, 532

Stop, 32, 386, 444

Stop All Sounds, 411, 445

stopDrag, 534

support, 439

tellTarget, 439, 469–473, 996

Toggle High Quality, 444–445

trace, 619

unloadMovie, 557, 577

user-definable parameters, 436

var, 603

for variable definition, 603

Actions Panel

Actions List, 31, 358, 372, 374, 437, 450

Actions List organization, 598

Add a Statement (+) button, 30, 532, 559, 597

Basic Actions list, 32, 33, 358, 372, 438, 471

Constrain to Rectangle setting, 533

defined, 87

Delete a Statement (-) button, 30

Expert Mode, 437, 487, 510, 523, 597

Frame drop-down, 372

Frame Label option, 372

Go to and Play option, 34, 372

illustrated, 31, 437

keyboard shortcut, 448

left pane, hiding, 436

Level option, 573

Load Movie option, 573

name on, 436

Normal Mode, 437, 572, 597

Object, 33–34

opening, 87, 436

Parameters Pane, 31, 33, 372, 471

Scene drop-down menu, 33

setting up, 436–440

Toolbox List, 30

Type drop-down menu, 34, 372, 470

URL text field, 573

using, 30–31

ActionScript. See also specific ActionScript elements

commands, accessing, 597

defined, 28, 436

diagram, 663

dictionary, 91

dot syntax notation, 459–460

ECMA-262 specification, 459

enabling sound with, 519–531

frame comments and, 358

with a game focus, 632–643

Generator use versus, 761

Lingo and, 1138–1141

power of, 36

printing with, 551–555

property conversion chart, 1139–1140

reference, 91

sound library creation with, 522–525

targeting sounds with, 486–490

variables, 599–605

ActionScript Reference Guide, 591

active layer

Layer Bar, 204

toggle, 204

unlocking, 213

Active Server Pages (ASP)

defined, 801

Flash and, 802

Login.asp page, 809–812

login system creation with, 802–812

page, output, 806

page overview, 808–809

structure, 801

technology, 801

using, with Flash movies, 801–812

Ad 3 Banner template, 1166, 1229

Ad 4 Banner template, 1166, 1229

3515-3 Index.f 1/20/01 1:54 PM Page 1246

1247Index ✦ A

Ad 5 Banner template, 1166, 1229

Ad Any Banner template, 1166

ad banners, 824

ADPCM format

defined, 399

options, 420

Advance Validate Form dialog (Dreamweaver), 1117–1118

Advanced Form Validations. See also JavaScript Integration Kit

behaviors, 1118–1119

defined, 1112

on Dreamweaver side, 1116, 1117–1118

on Flash side, 1116, 1119–1121

options, 1121

After Effects 4.1

advantages, 1031

Broadcast Color filter, 1021

cartoon editing in, 1059

Composition Settings dialog, 1032–1033

defined, 991, 1030

features, 1030

for frame extraction, 991–994

importing sequences into, 1030–1033

interface, 991

Interpret Footage dialog, 1031, 1032

Output Module Settings dialog, 994

Project window, 992, 1031

Render Queue window, 993, 994

Render Settings dialog, 993

Save Movie dialog, 993

Time Layout window, 992–993

using, 992–994

versions, 991

workflow, 992

<A HREF> tag. See also HTML tags

asfunction in, 724–725

defined, 719

.AI format, 894, 895, 1024

.AIFF/.AIF files, 398

air hockey game

case study, 632–637

component actions, 636–637

component properties, 634–636

computer player AI, 638–640

demo mode, 640

functional specification, 633

illustrated, 633

major components, 634

paddle activity translation, 638

paddle/puck collision detection, 640–642

puck animation, 637–638

ricochet sound, 642–643

Align Panel

Align control, 281

Align Horizontal Center button, 25

Align Vertical Center button, 23, 25

defined, 85

Distribute control, 281

illustrated, 24, 281

Match Size control, 281

opening, 24, 85

Space control, 281

To Stage button, 25, 281, 465

uses, 280

using, 23–24, 280–281

alignment

with Align Panel, 281

Bar Chart, 774

grid, 6–7, 15

text, 81, 191, 192–193

alpha effects

in Motion Tweens, 312

tweened, 310

use of, 1151

anchor points

deleting, 119

displaying, 118

hollow, 67

reducing number of, 1150

shifting, 120

solid, 67

animated masks. See also masks

final notes, 322

illustrated, 318

line progression, 321–322

Mask layer, 320

moon phases, 320–321

source files, 318

text, 318–320

uses, 317

animation sequencer, 41–42

animations

adding, to buttons, 246–247

on Bézier curves, 730–736

cartoon, 1035–1068

creating, 5, 299–323

Dreamweaver techniques with layers, 1124–1125

as form of programming, 299

frame-by-frame, 42, 209, 299, 300–303

introduction, 378–379

Motion Tween, 8, 10–12

Movie Clip creation with, 239

with negative alpha, 313

previewing, 216

reversing, 222

storyboarding, 1095–1096

synchronizing audio to, 409–411

tweened, 209, 303–313

antialiasing

defined, 73, 104

option setting, 69

text, 73

turning off, 73

anticipation, 1043–1044

Area Charts, 772

3515-3 Index.f 1/20/01 1:54 PM Page 1247

1248 Index ✦ A

Arrange submenu. See also Modify Menu

accessing, 79

Bring Forward command, 79

Bring to Front command, 79

Lock command, 80

Send Backward command, 79

Send to Back command, 80

Unlock command, 80

Array Object

push method, 645

using, 644–645

arrays

access operators, 644

creating, 644

for dynamic code-built menus, 646–651

elements, changing, 647

emulating, in Flash 4 movies, 645

frameLabel, 654

itemTarget, 654

length property, 647

position index, 650

setting/getting values within, 644

snd, 655, 656

arrow keys, 117

Arrow states

defined, 111

illustrated, 112

Move Selected Element, 111

Reshape Curve or Line, 111

Reshape Endpoint or Corner, 111

Arrow Tool

Alt/Option key with, 265

defined, 101

duplicating items with, 113

illustrated, 105

keyboard shortcut, 51

Magnet option, 106–107

moving grouped/ungrouped elements with, 113

repositioning with, 111–112, 319

reshaping with, 111–112

Rotate option, 109–110

Scale option, 110, 773, 937, 938, 939

for selecting items, 105–106

shape recognition, 107

Smooth option, 108, 132

Straighten option, 108–109, 132

toggling to, 104

uses, 104

using, 25, 104–113

artificial intelligence (AI), 639

ASP. See Active Server Pages (ASP)

assets

assembling, 1082

dragging, 585

linking, to other movies, 585–586

managing, 1152–1153

native, 586

QuickTime, importing, 238

Shared Library identifiers, 583

Asymmetrical Digital Subscriber Line (ADSL) modem, 1017

Asymmetrical Resize cursor, 151–152

attachMovie method

createMenu function, 653

defined, 502

with loadVariables(), 782

using, on Movie Clip symbols, 550

attachSound method, 520, 523, 524

audience

defining, 1078

questions about, 1071

audio applications

ACID Pro, 898–899

Bias Suite, 899–900

Cakewalk Pro suite, 900

Cubase, 900

Deck, 899

Digidesign’s Pro Tools, 901, 902

fading in, 908–909

Mixman, 920–927

normalizing audio levels in, 904–905

Peak, 899

Rebirth, 910–915

reverb effect creation in, 909–910

setting In/Out points in, 903–904

SFX, 900

Sonic Foundry’s suite, 898–899

Sound Forge, 898

SoundEdit 16, 900

sound-editing/creation software, 897–901

Studio Vision Pro, 900

Vegas, 898

working with, 897–927

audio clips. See also sound(s)

choosing, 406

looping, 396

playback control, 569

production tips, 396–397

audio control buttons, 569–570

authoring

process approach to, 35

program, 41

tips, 34–36

authoring applications

Director, 1125–1145

Dreamweaver, 1104–1125

working with, 1103–1146

.AVI files

creating, 1026–1028

movie dimensions, 1027

sound format, 1028

video compression, 1028

video format, 1027

3515-3 Index.f 1/20/01 1:54 PM Page 1248

1249Index ✦ B

B
background color. See also colors

painting with, 136

setting, 721, 789

specifying, in Dreamweaver, 1106

Stage, 572

backgrounds

building, with Photoshop, 1040

cartoon animation, 1038–1042

temporary, 1049

transparency, 999

Backspace key, 152

Bandwidth Profiler

checking effects with, 310

defined, 1155

emulating choosen modem speed, 1156

Frame-By-Frame Graph mode, 1157–1158

Streaming Graph mode, 1157

using, 1155–1159

View menu commands, 1156

viewing, 1156

Bar Charts. See also Chart Objects

aligning, 774

color values, 774

creating, 773–775

data, 773, 774

defined, 772

illustrated, 775

properties, 774

Stacked, 772

Value column, 772

variable names, 772

baseline shift, 190

Basic Charts template, 760

Basic Lists. See also List Objects

creating, 777–781

Data Source option, 780

formatting, 781

Horizontal/Vertical Alignment options, 781

Instance Name option, 781

Item Space option, 781

Mask to Box option, 781

Orientation option, 780

Scrolling Lists versus, 782

Spacing option, 781

use value of, 782

Batch Options dialog (Fireworks), 823

Beatnik

Music Object, 922–923

Player, 917, 919, 923

Rich Music Format (.RMF), 917

structured and linear audio, 918–919

synchronization, 919

using, 917–920

Web page, 921–922

behaviors

Advanced Form Validations, 1118–1119

default Movie Clip, 510

defined, 435

drag, 532

instances, changing, 255

Macromedia Flash Player Controls, 1112, 1114

Bèzier curves

animation on, 730–736

defined, 731

drawing straight line with, 733

equations, 731

onClipEvent (enterFrame) handler, 734–735

onClipEvent (mouseDown) handler, 732–733

points, 731

quadratic curves versus, 120

use of, 731

Web site, 732

Bias suite. See also audio applications

Deck, 899

defined, 899

Peak, 899

SFX, 900

bit depth. See also bitmaps

comparisons, 352

defined, 336

file sizes and, 394

optimal, 336

.PNG files, 1177

bit resolution. See also sound(s)

8-bit, 394

16-bit, 393, 394

defined, 393

quality and, 394

waveforms and, 395

bitmap fills. See also fills

acquiring, 342

acquiring with Dropper Tool, 161, 164

applying, 342

asymmetrical resizing of, 151–152

designs, 342

hybrid, 161, 162, 163

skewing, with Reshape Arrow cursor, 150

skewing/scaling of, 149

swapping, 163

symmetrical resizing of, 150–151

using, 341–344

Bitmap image format, 328

Bitmap Properties dialog

Allow Smoothing check box, 341

Compression Type drop-down, 341

highest image quality and, 351

illustrated, 340

Image Path, Date, Dimensions, 340

Import button, 337, 340

Name field, 340

opening, 339–340

Preview Window, 340

Test button, 340

Update button, 340

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1249

1250 Index ✦ B

Bitmap Properties dialog (continued)

Use imported .JPEG data check box, 341

using, 339–341

bitmap sequences

fine-tuning, 823–824

importing, into Flash, 823

optimizing for Flash, 820–821

bitmap shift, 346

bitmaps

bit depth, 336

bitmap shift, 346

breaking apart, 343

broken, restoring, 103

cartoon animation, 1039

cautionary notes, 346

compression, setting, 341

converting, to vectors, 79, 889–893

copying/pasting, 339

cross-browser consistency and, 346

defined, 40, 326

dimensions, 335–336

dithering, 341

dragging, 343

exporting, 841–847

file compression, testing, 340

file size, 326

Flash and, 326

formats for Flash export, 842

to hypothetical dimensions, 334

importing, 237–238, 337–339

information, 340

Library location, 162

limiting use of, 334

low-resolution, 337

masking, 336

minimizing use of, 1150

optimizing, 996

optimizing with Fireworks 4, 819–826

placing, in Shared Library, 583

preparing, for Flash, 333–337

properties, setting, 339–341

quality comparison, 347–353

quality, preservation tips, 334–335

reimporting, 340

renaming, 340

resolution, 69, 335

rotating, 352–353

scaling and, 326

size limit, 69

slow connections and, 334

swapping, 162

tracing, 344–345

usage, spreading out, 334

vector graphic illustrated comparison, 326, 327, 889

when to use, 326

blends

replacing, with gradients, 878–881

“weight gains,” 878

Block Text

defined, 186

illustrated, 187

Label Text converted to, 187

blurring, 1045

.BMP Export dialog, 845

.BMP format, 985, 1023, 1025

bold text, 189

bookmarking, 379

Boolean values, 627

BoxTop ProJPEG interface, 348

breadcrumb system, 1079

break action

defined, 612

using, 612–613

breaking apart

bitmaps, 343

defined, 80

brightness, 254, 312

Browser Scripts for Flash. See also JavaScript Integration Kit

controls, 1121

defined, 1112

functions, 1122–1123

inserting/removing functions, 1122

Brush Tool

Brush Lock Fill option, 140

Brush Mode option drop-down, 135, 136–138

Brush Pressure option, 140–141

Brush Shape option, 139

Brush Size option, 138–139

defined, 135

illustrated, 135

options, 135–136

Paint Behind Mode, 137

Paint Fills Mode, 137

Paint Inside Mode, 138

Paint Normal Mode, 136

Paint Selection Mode, 137–138

Pencil tool versus, 141–142

using, 135–142

brushes

color, 136

pressure, 140–141

shapes, 139

size on screen, 98

sizes, 138–139

stroke modes, 136–138

Bryce 3D, 931

B-Spline Tool (Expression), 885

build out, 368–369

built-in functions. See functions

button labels

adding, 24–25

defined, 24

Button Symbol Editing window, 246

Button symbols. See also symbols

defined, 236

Down state, 245, 248

3515-3 Index.f 1/20/01 1:54 PM Page 1250

1251Index ✦ B–C

Hit state, 245

instances, adding, 386

instances, duplicating, 512

loading movies and, 573

Over state, 245, 247, 248

testing, 249

timeline, 245

Up state, 245

uses, 240

buttons

actions/event handlers and, 448–450

adding animation to, 246–247

adding sounds to, 27, 247–249

audio control, 569–570

converting rectangles to, 20

creating, 19–20, 246

defined, 18

Down frame, 18, 22

editing, in Dreamweaver, 1109

enabling, 83

in Flash 5, 18–19

frames, 18–19

gray square, 377–378

hit area, 376

Hit frame, 19, 23

inserting, in Dreamweaver, 1107–1109

interface design example, 742–745

keyframes and, 20

menu, 370–373

modifying, 20–23

Movie clips versus, 18

navigation, 373–374

Over frame, 18, 22

Pause, 569

pill-shaped, 270–275

Play, 569

positioning, 23–24

pushing, 24

Rewind, 569

testing, 406

timelines, 18

Up frame, 18, 21–22

Buttons Library, 373

C
Cakewalk Pro Suite, 900

call action, 630, 736

cartoon animations. See also Weber cartoon

2D character, 1059–1067

animators and, 1067

anticipation, 1043–1044

backgrounds and scenery, 1038–1042

basics, 1043–1045

bitmaps, 1039

blurring, 1045

coloring, 1048–1049

creating, 1035–1068

depth simulation, 1042

editing, 1059

emotion, 1043

file sizes, 1035–1036

Flash capabilities for, 1035

Flash Mask layers, 1040

Full Animation, 1060

gap problems, 1049

humor, 1044

Limited Animation, 1060

lip-synching, 1052–1058

long pans, 1040–1041

model sheet, 1048–1049

motion, 1043

motion simulation, 1045

multiplane pans, 1041

overlapping actions, 1044

QuickTime limitations, 1039

repeaters, 1047

requirements for creating, 1035

scalability, 1035

scenes, 1036–1037, 1037

sound effects, 1038

speed coloring, 1049

storyboard, 1036–1038

temporary backgrounds, 1049

voice resources, 1037

walk cycles, 1046–1047

weight, 1044

CD burners, 1218–1219

CD-ROMs

auto start, 1218

projectors and, 1217–1219

stand-alone distribution, 1214

Character Panel

Baseline Shift option, 190

Bold button, 189

defined, 86

Font Name drop-down, 17, 188–189

Font Size option, 17, 189

illustrated, 188

Italic button, 189

Kern check box, 189

keyboard shortcut, 188

opening, 17, 82, 86, 188

Text Color button, 189

Tracking option, 189–190

URL field, 190, 376

uses, 190

using, 188–191

character scenarios, 1078

Chart Objects. See also Generator Objects

Area, 772

Bar, 772

Basic, 771–773

data source, 772

defined, 771

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1251

1252 Index ✦ C

Chart Objects (continued)

depth, 773

exporting, 773

external file symbol, 773

instance name, 773

Line, 772

modifying, 771

plot symbol, 772

properties, 772–773

resizing, 773

Stacked Area, 772

Stacked Bar, 772

Stacked Lines, 772

types of, 771

using, 771–775

Cinepak

codecs, 979

defined, 1015

circles

drawing, 5, 319

editing, 5–6

shape-cutter, 265–266

clip parameters, 234

Clip Parameters Panel

defined, 86

illustrated, 688

opening, 86, 688

parameter access with, 683

Value column, 688

Clip Speed dialog (Premiere), 1030

Clipboard preferences. See also Preferences dialog

Bitmaps, 69

Freehand Text, 70

Gradients, 70

Maintain Text as Blocks option, 865

using, 69–70

clipping paths, 865

clipping sound, 424–425

clock tutorial

defined, 745

hours, 749

importing artwork for, 745

minutes, 748

second hand, 746

seconds passing, 746–748

CMYK color space, 861–862, 881

code

adding, 598

design and reuse, 745

modification, 598

removing lines of, 30

reusing/repurposing, 683–688

code structure

interactive process and, 589–590

object-oriented design, 593–596

planning, 589–622

problem definition and, 590

solution clarification and, 590–591

solution translation and, 591–592

codecs. See also digital video

Cinepak, 979

hardware-based, 1016

Indeo Video, 979

RealAudio, 1004

software-based, 1016

collision detection

with advanced scripting, 660–662

air hockey game, 640–642

with _dropTarget property, 659–660

with hitTest method, 640–641, 660–662

maze game, 671–677

methods, 640–642

Movie Clip, 659–678

multiple, on every scene, 682

Pythagorean Theorem and, 641

on the Z axis, 679–683

collisions

time-based, 659

types of, 659

user-drag, 659

color effects

defined, 254

modifying, with symbols, 254–255

Color Harmony plug-in, 180

Color Object

benefits, 513

creating, 515–516

defined, 508

getRGB method, 514, 516, 519

getTransform method, 514, 519

methods, 514

setRGB method, 514, 516, 519

setTransform method, 514, 517, 519

Color Pointers

adding, 271

changing, 271

controlling, 6

Color Scheme palette. See also LiveMotion (LM)

color combinations, 178

defined, 177

Honeycomb view, 178

illustrated, 178

opening, 179

color sets

adding, 168

replacing, 169

saving, 169

size, 170

Color Tray (Toolbox), 165, 166

coloring

cartoon animation art, 1048–1049

speed, 1049

ColorMix

defined, 159

using, 160

3515-3 Index.f 1/20/01 1:54 PM Page 1252

1253Index ✦ C

colors

8-bit, 157, 158, 844

16-bit, 157, 158

24-bit, 157, 158, 844

32-bit, 844

acquiring, with Dropper Tool, 144

adding, 168, 170

applying, 157–181

background, 136, 572

basics of, 157–165

brush, 136

choosing, 123–124

clearing, 169

default, loading, 169

Flash, working with, 165–181

gradient, 172–177

hexadecimal values, 158–159

highlight, 66–67

indexed, 158

instance, 254

interface design, 364–365

layer, 67, 205

layer outline, 214

levels of working with, 165

management in Photoshop 6, 832

from Mixer Panel, 170–172

psychological response to, 179

replacing, 169

RGB, 157

saving, 169

sorting by, 169

stroke, 125, 129–130, 166–167

from Stroke/Fill Panels, 167–168

from Swatches Panel, 168–170

text, 189

with Toolbox color controls, 165–167

tweened effects, 180

tweening, 304

using, effectively, 164–165

Web-safe, 158, 159

ColorSafe

defined, 159

illustrated, 160

using, 160

ColorSync system, 832

colorTransformObject

changing color attributes with, 546–547

creating, 516–519

data, 517

defined, 516

properties, 516–517

property assignment, 517, 518

comments. See frame comments

Common Gateway Interface (CGI)

ASP versus, 801

programs, 696

scripts, 692, 696, 698, 814, 1199

Common Libraries

Buttons, 373, 448, 515, 617

defined, 89, 230

illustrated, 231

names, 230

comparison images. See also bitmaps

basic image-type, 351

bit depth and color, 352

BoxTop interface, 348

compression results, 350

Fireworks interface, 349

generation of, 347–350

high-quality Fireworks JPEG scaling, 352

high-quality JPEG rotation, 352–353

high-quality JPEG smoothing, 351

low-quality Fireworks JPEG scaling, 352

medium-quality double-JPEG corruption, 352

medium-quality Fireworks JPEG scaling, 352

observations, 351–353

Photoshop interface, 349–350

competition analysis, 1078

composition, 929

Composition Settings dialog (After Effects), 1032–1033

compound assignment operator, 669, 670

comprehensives. See also interface design

creating, 367–368

defined, 364

final, 364

illustrated, 367

compression

bitmap, 340, 341

digital video, 1015, 1017

sound, 419, 420, 423

concept presentation, 1095

conditional expressions, 601

connect method, 715

content

creating, for each area, 359–363

Flash, in Director, 1144–1145

Flash, integrating with HTML, 1181–1210

interface design and, 359–363

keyframe, editing, 222

layers, 3

Library, 222

Main Timeline, printing, 552–553

preloading, 559

structuring, 1079

symbol, downloading, 1152

contextual menus, 56–57

continuation () character, 743

Control Menu

Debug Movie command, 83

Enable Frame Actions command, 83

Enable Simple Buttons command, 24, 83

Loop Playback command, 83

Mute Sounds command, 83

Play All Scenes command, 83

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1253

1254 Index ✦ C–D

Control Menu (continued)

Play command, 82

Rewind command, 82

Step Backward command, 82

Step Forward command, 82

Test Movie command, 83, 1154

Test Scene command, 83, 1154–1155

using, 82–83

Controller

defined, 84

display toggle, 84, 85

docking, 54

Macs, 53

PCs, 54

copying

bitmaps, 399

frames, 65

keyframes, 20

text, 260

corner points

adjusting, 117

converting, to curve points, 118

creating, 116

cursor, 119

moving, with arrow keys, 117

corners, square, 284

createLib function

arguments, 655

end argument, 656

for loop, 655

invoking, 524

start argument, 656

using, 655

createMenu() function

attachMovie method, 653

defined, 652

labels argument, 652

names argument, 652

targets argument, 652

using, 652–654

cross-platform consistency, 53–56

Cubase, 900

cursors

Asymmetrical Resize, 151–152

click accuracy, 68

Corner Point, 119

Dropper Tool, 143, 144

Pen Tool, 114, 115

Reshape Arrow, 147–152

Rotate, 148–149

Skew Arrow, 150

Symmetrical Resize, 150–151

curve points

adjusting, 117

converting corner points to, 118

moving, with arrow keys, 117

curved segments

adjusting, 117

drawing, 114, 117

straightening, 79

cutouts. See also shapes

creating, 264–266

defined, 264

D
Dashed stroke style, 127

data

encoding, 789

feeding, into Generator templates, 769

process definition with states, 694–696

raw, 240

sending in/out of Flash, 691–718

server, loading, 701–702

storing/displaying, with text fields, 691–693

XML, 702–708

data event

defined, 507

specification, 696

data types

Boolean, 627

checking, with typeof operator, 629

defined, 493, 623

example, 623–625

function, 628

movieclip, 628

number, 626–627

object, 628

string, 625–626

types of, 493

undefined, 629

Date Objects, 581, 748

Debug Player, 621

Debugger Panel

defined, 89

Display List, 620

display of, 622

illustrated, 620

opening, 89, 619

Properties tab, 621

Status Bar, 620

using, 620–621

Variables tab, 621

Watch tab, 621

debugging

custom, interfaces, 619

with Debugger Panel, 619, 620–621

disabling, 622

methods, 619

with Output window, 619

process, 619–622

in Publish Settings, 621

remote, 619, 621–622

3515-3 Index.f 1/20/01 1:54 PM Page 1254

1255Index ✦ D

Deck, 899

Defined Clip Parameters dialog

+ button, 686, 687

illustrated, 686, 687

Type column, 686, 687

Delete key, 152

demo mode, 640

depth

cartoon animation simulation, 1042

defined, 682

of field, 932, 933

designing

audience definition, 1078

character scenarios, 1078

competition analysis and, 1078

content structure, 1079

design consensus and, 1078

goals/mission definition, 1077–1078

process, 1077–1082

site mockups, 1081

site testing and, 1081–1082

usability factors, 1079–1081

detecting Flash Player. See also Flash Player

with Flash Swiffers, 1194–1197

with JavaScript and VBScript, 1191–1194

with <OBJECT>/<EMBED> tags, 1189–1190

tutorial, 1197–1198

_device fonts, 183–184

dialog diagram, 1066

Digidesign Tools, 902

Digital Origin EditDV, 1014

digital video

audio, 995

codecs, 1016

compression, 1015, 1017

decompression, 1015

defined, 1015

DV format, 1014, 1015

Flash movie adjustments for, 1018–1022

frame extraction from, 982–995

frame rate, 1016

frame size, 1016

frame size/rate/length, reducing, 982

high-quality output from Flash, 10–13

history, 1014–1017

image sequence, exporting, 985

improvement, 1017

playback, 1017

primer, 1014–1017

space requirement, 1015–1016

trimming, 985

using, in Flash movies, 982–996

Web and, 1017

Dimensions. See also 3D graphics

3D object creation with, 943–947

Camera window, 944

defined, 935

Extrude window, 944

functions of, 944

in-between keyframe creation, 945

interface, 943

Move window, 944

Render Mode drop-down menu, 944

Sequence dialog, 946

sequence, exporting, 947

using, 943–947

Director. See also Lingo

audio support, 1126

Cast window, 1131

defined, 1103

existing project implementation, 1126

Flash Asset Properties dialog, 1131–1133

Flash Cast Members, 1136

Flash content use in, 1144–1145

Flash frame rate control, 1126

Flash movie display options, 1131–1132

Flash movie play rate, 1132

Flash movie quality setting, 1132

Flash movies benefits/limitations, 1125–1126

Flash Sprites, 1129, 1136–1138

getURL action and, 1127–1128

importing Flash movies into, 1130–1133

media types, 1126

Message window, 1143

Property Inspector, 1135–1136

scripting environments, 1126

Sprite duration, 1137

Sprite inks, 1137

Sprite size/rotation, changing, 1141–1143

.SWF files in, 1125–1145

Using Director 8 manual, 1137

vector control, 1125

Display List (Movie Explorer), 258

distributing

with Flash Player, 1220–1226

items, 281

with JavaScript/HTML approach, 1220–1221, 1223–1226

stand-alones, 1214

dithering

bitmaps, 341

GIF, 1174

turning off, 73

do while loop, 610

Document symbol, 1089

dot syntax notation, 459–460

Dots notation, 461, 462

Dotted stroke style, 127

Down state. See also states

adding sound to, 405

defined, 245

sound associated with, 248

using, 22

Drag Out event, 452

Drag Over event, 452

3515-3 Index.f 1/20/01 1:54 PM Page 1255

1256 Index ✦ D–E

draggable Movie Clips. See also Movie Clips

button-free, 540

buttons not contained in, 533

creating, 531–550

drag action, 532

instances, 533

as sliders, 535–550

Sound Objects with, 526

dragging, 451

drag’n’drop feature

basics, 532–533

drop position detection, 534–535

support, 531

use methods, 531

drawing

circles, 5, 319

in Flash, 263–298

polygons, 269–270

triangles, 267–269

Dreamweaver

Advance Validate Form dialog, 1117–1118

animation techniques with layers, 1124–1125

defined, 1103

document creation, 1104

editing Flash Button objects, 1109

features, 1104

Fireworks integration, 820

Flash Text Objects, editing, 1110

Flash Text Objects, inserting, 1109–1110

HTML document publishing, 1124

Insert Flash Button dialog, 1108

Insert Flash Text dialog, 1109–1110

inserting Flash Button objects in, 1107–1109

integrating .SWF files into, 1104–1125

movie positioning, 1107

Objects Panel, 1105, 1108

Parameters dialog, 1124–1125

plug-in locations, 1110–1111

Properties Inspector, 1105

working with Flash movies in, 1104–1106

Dreamweaver Bible, 1124

drop shadows, 296

Dropper Tool

acquire and swap function, 145–146

for acquiring colors, 144

cursors, 143, 144

defined, 142

illustrated, 142

Shift+clicking with, 143

Shift key with, 143

swapping for Ink Bottle Tool, 143

swapping for Paint Bucket Tool, 143

using, 126, 142–143

_droptarget property

collision detection with, 659–660

defined, 497

detecting drop position with, 534–535

using, 545–546

duplicateMovieClip method, 502, 535, 538, 546

duplicating

with Arrow Tool, 113

Button symbol instances, 512

items, 65, 113, 233

Movie Clips, with new colors, 546–548

scenes, 218

swatches, 168

DV

defined, 1015

footage, 1016

implementation, 1016

.DXF format, 328, 894, 935, 1025

dynamic objects, 593–594

dynamic reusable menus

creating, 646–651

element creation, 647

for loop, 650

illustrated, 651

menuItem instance, 648

menuItemBase template, 650

dynamic sliders, 537

Dynamic Text fields. See also text fields; Text Options Panel

creating, 693, 723

defined, 195

HTML text formatting tags, 693

Input Text fields versus, 693

permissible HTML tags, 197

updating, 693

uses, 195, 196, 692–693

using, 377

as variables, 693

E
Easing

defined, 11

reversing, 12

setting, 11

Edit Envelope

Control Bars, 412

edits, 413

Envelope Handles, 412, 413

illustrated, 414

Loop control and, 415–416

opening, 412

Play button, 413

Seconds/Frames option, 415

Time In control, 412, 413

Time Out control, 412, 413

Zoom In/Out option, 415

Edit in Place Mode, 252

Edit Menu

Clear command, 64

Copy command, 64

Copy Frames command, 65

Cut command, 64

Cut Frames command, 65

3515-3 Index.f 1/20/01 1:54 PM Page 1256

1257Index ✦ E

Deselect All command, 65

Duplicate command, 65

Edit All command, 65

Edit Selected command, 65

Edit Symbols command, 65

illustrated, 63

Keyboard Shortcuts command, 70–72

Paste command, 64

Paste Frames command, 65

Paste in Place command, 64

Paste Special command, 64

Preferences command, 52, 65

Redo command, 64

Select All command, 65

Undo command, 59, 63

using, 63–72

Editable Text

defined, 187

fields, 194–195

illustrated, 187

editing

cartoon animations, 1059

circles, 5–6

developing and, 251–252

groups, 220

Guides, 75

instances and, 21

keyframe contents, 222

Movie Clips, 746

multiple frames, 206

sounds, 412–416

on timeline, 220–222

Editing preferences. See also Preferences dialog

Drawing Settings, 68

Pen Tool, 67–68

editing symbols. See also symbols

in new window, 252

in place, 252

returning to movie after, 253

in Symbol Editing Mode, 250–251

from the Library, 253

Effect Panel

Advanced option, 254–255, 313, 517

Alpha option, 254, 312

Behavior drop-down, 312

Brightness option, 312

chromatic options, 311

defined, 86

Effect drop-down, 21, 254, 311, 517

illustrated, 254, 312

None option, 254, 312

opening, 21, 86, 254

Tint option, 22, 254, 312

else statements, 608

<EMBED> tag. See also HTML tags

closing, 1185

Generator Template reference with, 790

inserting Flash movie with, 1190

NAME attribute, 1204

opening, 1184

parameters, 1184–1185

PLUGINSAGE attribute, 1190

surrounding with <CENTER> tags, 1107

using, 1184–1186

Encapsulated PostScript (EPS) files

blends, replacing with gradients, 878–881

defined, 894

Flash versions of, 880

importing, 879

layered, using, 881–882

as vector sequence format, 1024

Enhanced Metafile format, 328

enterFrame event

Bézier curves and, 734–735

contents, 667

defined, 505

execution of, 543

handler, 667

in interface design example, 741

speed, 543

Eraser Tool

alternatives, 152

double-clicking, 154

Erase Fill Mode, 154

Erase Inside Mode, 154

Erase Lines Mode, 154

Erase Mode option, 154

Erase Normal Mode, 154

Erase Selected Fills Mode, 154

Eraser Shape option, 153

Faucet option, 154

illustrated, 153

options, 152

uses, 152

using, 152–154

erasing

fills only, 154

lines only, 154

painting with background color and, 136

escape() function, 695

eval() function, 601, 602, 624, 625

evaluate action, 665

event handlers

button manipulation, 451–454

combining actions with, 448–450

defined, 29, 435, 447–448

Drag Out, 452

Drag Over, 452

enterFrame, 667

Key Press, 451, 452–453

keyframes, 451, 453–454

onClipEvent, 499, 505–507, 662

placement, 451

Press, 451, 532

Release, 449, 451, 532

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1257

1258 Index ✦ E

event handlers (continued)

Release Outside, 452

Roll Out, 452

Roll Over, 452

using, 447–454

event sounds. See also sound(s)

default behavior, 411

defined, 410

dynamic, 519

export quality, 419

events. See also event handlers

data, 507

defined, 29, 435

Drag Out, 452

Drag Over, 452

enterFrame, 505, 543

keyDown, 506

keyUp, 507

load, 505, 545

mouseDown, 506, 540

mouseMove, 505, 549

mouseUp, 506

Press, 451

Release, 449, 451

Release Outside, 452

Roll Out, 452

Roll Over, 452

unload, 505

Expert Mode. See also Actions Panel

code modification in, 598

defined, 437, 597

Normal Mode versus, 437–438

shortcuts in, 597

turning on, 510

using, 487, 510, 523

Expert Tutorials

2D Character Animation, 1059–1067

ACID Loops to and from Flash, 915–916

Animation on Bézier Curves, 730–736

Building a Home Sound Studio, 901–903

CD-ROMs and Projectors, 1217–1219

Complex Hit Detection on the Z Axis, 679–683

Creating a Simple Login with ASP, 802–812

Creating Color Schemes, 177–180

Creating Printable Paper Airplanes, 552–555

Designing for Usability, 1077–1082

Distributing PR on the Flash Player, 1220–1226

Exploring the JavaScript Integration Kit for Flash 5, 1111–1124

Filling the Browser Window by Using the <FRAMESET> Tag,

1186–1189

Fireworks and Flash, 820–826

Flash Avatars for Multiuser Apps in Director, 1144–1145

Flash, Generator, and Webcams, 793–799

Flash Player Detection, 1197–1198

From 3D Studio MAX to Vectors in Flash, 955–963

Graphic Symbols versus Movie Clips, 240–245

Interface Design, 363–369

Interface Usability, 375–382

Introduction to XML and Flash, 705–708

JavaScript and FSCommands, 1206–1209

Keeping Content Fresh and Dynamic Using the Load/Unload

Movie Action, 579–582

Lip-synching Cartoons, 1055–1058

Living Screen’s Screensavertool, 1233–1237

Making GWEN!’s Eyes Shut When She Yawns, 463–472

Marrying Flash and FreeHand, 856–867

Mixman in a Web Page, 920–927

Object-Oriented Design in Flash: The Fundamental Concepts,

593–596

Opening Web Pages from Stand-alones, 1216–1217

Optimizing Sound for Flash in Sound Forge, 906–908

Pill Technique, 270–275

Preloading Audio .SWF Files, 565–570

Rotoscoping Video Frames with Flash, 1007–1111

Scripting for Interfaces, 736–745

Simulating 360-degree Turnarounds, 833–836

Sound Clipping on the Flash Player, 424–425

Sound Control, 526–530

Storyboarding and Planning Interactivity, 1090–1100

Streamlined Workflow: FreeHand 9 and Flash 5, 867–874

Using ActionScript with a Games Focus, 632–643

Using getTimer to Make a Flash Clock, 745–749

Using hitTest for Multiple Targets, 662–678

Using Hybrid Color Swatches in Flash, 160

Using Modify ➪ Curves, 284–289

Using Painter with Flash, 836–841

Using Propellerhead’s Rebirth to Create Loops for Flash,

910–915

Using the Multipage List Object, 784–787

Using XMLSockets with a Flash 5 Movie, 712–717

Vector Painting: Using Expression 2 with Flash, 883–889

Vortex: The Illusion of 3D with Flash, 936–943

WDDX and Flash, 710

Why Use Beatnik Audio? An Introduction to Structured Audio,

917–920

Export Bitmap dialog

Color Depth option, 844

Dimensions option, 843

illustrated, 843

Include option, 844

opening, 843

Resolution option, 844

Export Document dialog (FreeHand), 871

Export Movie Settings dialog (Premiere)

General Settings, 990

illustrated, 990

opening, 989

Special Processing, 991

using, 989–991

Video Settings, 990–991

Export QuickTime dialog

color formats, 978

Compressor property, 978–979

Dimensions property, 978

3515-3 Index.f 1/20/01 1:54 PM Page 1258

1259Index ✦ E–F

Format property, 978

illustrated, 971, 977

opening, 971, 977

Quality property, 979

QuickTime tab versus, 976

Sound Format option, 979

Export Vector File dialog (Swift 3D), 961–962

Export Windows AVI dialog

Dimensions options, 1027

illustrated, 1027

opening, 1026

Sound Format drop-down, 1028

Video Format options, 1027

Export Windows WAV dialog, 431

exporting

from ACID Pro, 916

Basic Charts, 773

Dimensions sequences, 947

from Expression, 888

format selection, 824

from Illustrator, 875–878

image sequence, 985–986

multiple bar loops creation, 915

in .PNG format, 824–826

Poser sequences, 953–954

QuickTime Flash movies, 967

raster images, 841–847

from Rebirth, 914–915

sound formats, 399–400

to Swift 3D, 956–957

.SWT files, 798

vector graphics, from Flash, 893–896

Expression

B-Spline Tool, 885

creating images with, 883–887

defined, 883

drawing tools, 885

exporting .SWF files from, 888

Flash Settings dialog, 887–888

multiview stroke, 886

Object List Palette, 887

PolyLine Tool, 885

Skeletal Strokes, 883, 885

stroke definition, 886

stroke views, adding, 887

using, with Flash, 883–889

expressions

built-in functions, 614

conditional, 601

creating, 605–615

defined, 601

if/else statements, 607

indirectly referring to variables, 601

loops, 609–614

numeric, 601

operators, 605–607

properties, 614

string, 601

strings inside of, 601

subroutines, 614–615

Extension Manager, 709

extruding, 932, 933

Eyedropper Tool, 185

F
fading. See also sound(s)

custom, 415

defined, 908

in/out, 414, 908–909

left to right, 413

in Peak, 909

right to left, 413

in Sound Forge, 908

in SoundEdit, 909

faux 3D, 286–287

.FFT files, 789

file formats. See also .FLA files; .SWF files

.3DS, 935, 955, 959

.AI, 894, 895, 1024

.AIFF/.AIF, 398

.AVI, 1026–1028

.BMP, 985, 1023, 1025

.DXF, 894, 935, 1025

.EPS, 878–881, 881–882

export image, 61

export movie, 60–61

.GIF, 327, 824, 846–847, 1171–1175

import, 59–60

open, 59

.PICT, 330, 845–846, 894, 1025

.PNG, 339, 824–826, 827–831, 1008, 1176–1178

.RMF, 917–919

.SMIL, 998, 1006

.SSK, 59

.SWT, 788–792

.TIF, 331, 337, 338

.WAV, 397

.WMF, 894, 1025

File Menu

Close command, 59

Exit/Quit command, 63

Export Image command, 61

Export Movie command, 60, 970

Frames command, 62

illustrated, 58

Import command, 59–60

Layout command, 62

New command, 58

Open as Library command, 59

Open as Shared Library command, 59

Open command, 59

Print command, 62

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1259

1260 Index ✦ F

File Menu (continued)

Print Margins command, 62

Print Preview command, 62

Publish command, 61, 1179

Publish Preview command, 61, 1179

Publish Settings command, 61

Revert command, 59

Save As command, 59

Save command, 59

Send command, 63

using, 58–63

FileMunger application, 952

files. See also file formats

Flash-compatible, 59

FreeHand, opening directly in Flash, 873–874

holding, 795

moving, 249

planning, 35

reducing size of, 79

structuring, 3

Fill Panel

applying color from, 167–168

Bitmap menu, 163

Bitmap Swatches drop-down, 341–342

Color Pointer control, 6

defined, 85

Fill Color button, 129, 173

Fill Style drop-down, 5, 129

Gradient Editor, 174

illustrated, 129

Linear Gradient drop-down, 288

opening, 5, 85

Pointer Color button, 173

Radial Gradient drop-down, 176, 282

resizing, 173

fills

applying, 128–129

bitmap, 341–344

center point, adjusting, 148

changing, 128–129

creation tools, 167

erasing, 154

Lens (FreeHand), 864–865

locking, 147

rotating, with Reshape Arrow cursor, 148–149

scaling, with Reshape Arrow cursor, 150–152

selecting, 19

skewing, with Reshape Arrow cursor, 150

Filtering Buttons, 258

Fireworks

Batch Options dialog, 823

batch process launch, 822–823

batch process setup, 821

batch processing improvements, 819

command creation, 821–822

custom export settings, 822

defined, 582

Director export, 820

Dreamweaver integration, 820

Export Preview interface, 349

Frames Panel, 825–826

Freehand reader, 820

importing in, 824–826

Macromedia common user interface, 819

Optimize Panel, 825

optimizing images with, 819–826

selective JPEG compression, 819

in Web design process, 820

.FLA files. See also movies

defined, 45

editor, 404, 430–431

extracting sound from, 430–431

file size, 1153

as Flash editor documents, 48

high-quality JPEG scaling comparisons, 352

information during export, 47

information types, 302–303

low-quality JPEG scaling comparisons, 352

medium-quality JPEG scaling comparisons, 352

recommended layer scheme for, 35

Flash 5

3D simulation with, 935–943

as animation sequencer, 41–42

as authoring program, 41

authoring tips, 34–36

as bitmap handler, 40

bitmap preparation for, 333–337

capabilities, 36, 39–40

database front end, 42–43

Director-specific action creation in, 1126–1129

environment elements, 46

frame drawing, 212

FreeHand 9 with, 856–874

generation utilities, 813–814

as hybrid, 39–40

importing bitmap sequences into, 823

inherent nature, 34

limitations, 36

possibilities, 44

programming capabilities, 42

responsible use of, 375–376

as tool, not platform, 376

as vector animator, 41

as vector program, 40

Flash (.SWF) Format Options dialog

Auto-create Symbols option, 878

Clip to Artboard Size option, 878

Curve Quality option, 878

defined, 877

Export As option, 877

Frame Rate option, 878

illustrated, 877

opening, 877

Read Only option, 878

3515-3 Index.f 1/20/01 1:54 PM Page 1260

1261Index ✦ F

Flash Asset Properties dialog (Director)

illustrated, 113

importing Flash movies via, 1133

Media option, 1131

opening, 1131

Playback option, 1131–1132

Quality option, 1132

Rate option, 1132

Scale Mode option, 1132

Scale option, 1133

using, 1131–1133

Flash Asset Xtra

defined, 1130

importing Flash movies with, 1125

using, 1130–1133

Flash Dispatcher Behavior. See also JavaScript Integration Kit

applying, 1123

defined, 1112

function of, 1123

options, 1123–1124

Flash editor documents. See .FLA files

Flash Exchange

defined, 709

Extension Manager, 709

using, 709

Flash Only (Default) template, 1166, 1196, 1228

Flash Page Setup dialog, 62

Flash Player. See also Flash Player plug-in; stand-alones

ActiveX control, 1189–1190

clipping sound and, 424–425

defined, 43, 1211

detecting, 1189–1199

distributing PR on, 1220–1226

driven by quadratic curves, 120

forms, 1189

Java edition, 1230–1231

print capability, 861

for projector creation, 1213–1214

Flash Player plug-in

defined, 1189–1190

distribution on Web, 1228

installation, 1228–1229

supported browsers, 1227–1228

supported operating systems, 1227

using for Web browsers, 1227–1229

Flash Publish Settings dialog. See also Publish Settings dialog

Audio Event option, 419, 1163

Audio Stream option, 418, 1162

Debugging Permitted option, 1162

Generate size report option, 1161

illustrated, 1163

JPEG Quality option, 1162

Load Order option, 1161

Omit Trace Actions option, 1161

Override sound settings option, 419, 431, 1010, 1163

Password option, 1162

Protect from import option, 1162

Set button, 419, 1010, 1164

Version option, 1163, 1196

Flash Settings dialog (Expression), 887–888

Flash Sprites. See also Director

adding behavior script to, 1142

duration, 1137

inks, 1137

properties, viewing, 1143

size/rotation, changing, 1141–1143

Flash Support Center, 92

Flash Turbine, 813

Flash with FSCommand template, 1166, 1229

Flash Writer

availability, 876

defined, 875

File and Objects settings, 875–876

help files, 876

illustrated, 876

Image Settings, 875

Movie Size settings, 876

opening, 875

Flash-Director. See also Director

intermovie activity, 1126

scenarios, 1125

Shockwave content, 1125

flattening

defined, 966

QuickTime Flash movie, 975

flipping, 279

flowchart storyboards, 1099

flowcharts

creating, 1085–1090

organizational, 1073

preproduction, 1091–1092

process, 1074

using, 1069–1101

folders

creating, 232, 249

expanding/collapsing, 234

in Library organization, 249

moving, 249

Font Symbol Properties dialog

illustrated, 584

Name field, 584

opening, 232

Style options, 584

Font symbols, 233

fonts. See also text

bitmap, 183

choosing, 25, 188–189

cross-platform/codevelopment issues, 184–185

_device, 183–184

display problems, 183–185

embedding, 196, 198, 850

external, creating, 789

Mac problems, 184

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1261

1262 Index ✦ F

fonts (continued)

PC problems, 184

placing, in Shared Library, 584

PostScript, 183

resources, 185

as Shared Library item, 198

simplifying use of, 1150

size, 189, 376–377

TrueType, 183

type, 376–377

for . . . in loop. See also loops

defined, 611

typeof operator in, 629

using, 611

variableIternat, 611

for loop. See also loops

createLib function, 655

defined, 610

inserting, 650

parameters, 611

uses, 610, 611

using, 523

Form2Flash, 813–814

Format Publish Settings dialog

illustrated, 1161

Macintosh Projector option, 1178

opening, 1160

Use default names checkbox, 1160

Windows Projector option, 1178

forms

comments field, 697

creating, 696–701

e-mail field, 697

good examples of, 381

name field, 697

problems with, 381

text fields, 697

frame actions. See also actions

adding, 31–33

defined, 30

frame comments

ActionScript and, 358

defined, 3, 16, 210

inserting, 16

“play sound,” 488

using, 15

frame extraction. See also digital video

with Adobe After Effects 4.1, 991–994

with Adobe Premiere 5.1, 986–991

with QT Player Pro, 983–986

frame labels

defined, 3, 15, 210

for differentiating site sections, 357

in Go To actions, 466

inserting, 16

layer, 489

length, 15

as target, 442

using, 15, 35

Frame Panel

+ button, 1225

Blend Type option, 306

configurations, 304

defined, 87

Easing option, 11, 305, 309

illustrated, 304

Label text field, 32, 358

Motion option, 309, 319

opening, 77, 87

Orient to path option, 310

Rotate option, 310

Shape option, 305

Snap option, 310, 1051

Synchronize option, 310, 1051

Tweening drop-down, 10, 305, 319

uses, 304

Frame Properties dialog

Snap to Guide option, 316

Tweening tab, 309

frame rate

determining, 1082

digital video, 1016

fast, 356

maximum, 207

measurement, 206

previewing, 1154

sound and, 409

specifying, 1, 78, 206, 646, 789, 962

timeline indicator, 206

frame spans

defined, 204

extending duration of, 221

selecting, 220

single frames within, 220

frame-by-frame animation. See also animations

achieving, 299

creating, 301

defined, 209, 300

keyframes, adding, 301

uses, 300

Frame-By-Frame Graph mode, 1157–1158

frames

Button, 18–19

centering, 206

converting, to keyframes, 77, 80

copying, 221

current, 206

defined, 9, 42

deleting, 14, 77, 222

drawing, Flash 5 versus Flash 4, 212

extracting, from digital video clips, 982–995

height, 215

inserting, 28, 76, 221

keyframes, 42

3515-3 Index.f 1/20/01 1:54 PM Page 1262

1263Index ✦ F

moving, 221

multiple, editing, 206

next, 443

numbers, 442

pasting, 65, 221

previewing, 216

previous, 443

printing, 62

repeater, 1047

replacing Movie Clip symbols with, 1018

rotoscoping, 1007–1111

selecting, 220

size, determining, 1082

static, 42

stop, 42

tinted, 215–216

width, 215

Frames Panel (Fireworks), 825–826

<FRAMESET> tag

BORDER attribute, 1188

FRAMEBORDER attribute, 1188

SCROLLING attribute, 1188

using, 1186–1189

_framesloaded property

defined, 498, 558

preloading with, 560–563

FreeHand 8 Bible, 892

FreeHand

9.02 update for Windows, 858

animation building in, 860–861

artwork, moving to Flash, 870–873

capabilities, 856

clipping paths, 865

color conversion, 861–862

color preferences, 855

dashed lines, 866

defined, 582

design conceptualization, 867

elements imported into Flash, 858–859

Export Document dialog, 871

files, opening directly into Flash 5, 873–874

Fireworks reader, 820

Flash 5 project advantages, 867–868

Flash with, 856–874

format, 329

gradients, 865, 881

graphic search-and-replace feature, 870

imported vectors, 332

layered files, using, 881–882

layers, 864

Lens fills, 864–865

page size, setting, 859

path simplification in, 851–852

Perspective Grid, 866

print output, 867–868

Release to Layers process, 860, 872–873

Rotation Tool, 860, 863

Simplify dialog, 851

.SWF Export feature, 871–872

.SWF file export capability, 857

symbol creation, 862–864

text blocks and, 865–866

text conversion to outlines, 854–855

text option setting, 70

Trace Tool, 890–892

Transform Panel, 863

vectors, 857

versions imported into Flash 5, 858

FreeHand Import dialog, 333, 864, 873–874

fscommand action, 1199, 1205, 1207, 1208

FSCommands

adding, to Flash movie, 1200–1202

allowscale, 1215, 1222

changeBgColor, 1201, 1205

exec, 1215, 1222

fullscreen, 1215

JavaScript and, 1206–1209

JavaScript reception of, 1200

listing, 1216

PercentLoaded, 1205–1206

quit, 1215, 1222

showmenu, 1215, 1222

support of, 1199

trapallkeys, 1215

full-motion video. See digital video

function action, 614, 628, 629

functional specification

asset information, 1075

defined, 1074

illustrated, 1075

functions

actions, 631

adding, 630

arguments, 631

Browser Scripts for Flash, 1122–1123

built-in, 614

as constructors for objects, 654–656

createLib, 655

createMenu(), 652–654

declarations, 632

defined, 614, 629

defining, 630–631

escape(), 695

eval(), 601, 602, 624, 625

executing, 631–632

getTimer(), 700

gts(), 631

hitTest, 671

as methods of objects, 651–654

with Movie Clip target, 509

myOnXML, 715

naming, 630, 631

print(), 509

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1263

1264 Index ✦ F–G

functions (continued)

printAsBitmap(), 509

printNum(), 509

randomOffset(), 547, 548

randomPercent(), 547, 548

resetMenu, 654

return keyword and, 642

targetPath(), 509

tellBeatnik(), 924–925, 926

tellTarget(), 509

when to create, 630

with(), 509, 512

XML(), 704

G
general and numeric operators, 605

General Preferences. See also Preferences dialog

Actions Panel, 67

Disable Timeline Docking option, 210–211

Flash 4 Frame Drawing option, 211

Flash 4 Selection Style option, 211

Highlight Color, 66–67, 105, 212

Printing Options, 65

Selection Options, 66

Show Tooltips checkbox, 52

Timeline Options, 66, 210–211

Undo Levels, 65

generation utilities

creating, 814

defined, 813

Flash Turbine, 813

Form2Flash, 813–814

SwiffPEG, 803

Swift Generator, 813

Generator

ActionScript use versus, 761

authoring extensions, 757–761

Column Name/Value data representation, 770

data representation, 769–771

defined, 89, 753

Developer Edition, 755–756

editions, 755–756

Enterprise Edition, 755–756

extension verification, 762

Flash 5 movie support, 753

Generator 2, 753–761

image map creation, 754

logo, 762, 763

Name/Value data representation, 769–770

Objects, 753

offline functionality, 756

online functionality, 756

opening, 89

overview, 753–761

pseudo-offline functionality, 757

text and, 764–765

using, 769–799

Webcams and, 793–799

when to use, 761

Generator Ad Any Banner template, 1167

Generator Image Output template, 1167

Generator Objects

Chart, 771–775

defined, 759

List, 775–782

Multipage List, 784–787

Scrolling List, 782–784

Ticker, 776, 784

types of, 769

in Webcam tutorial, 797–799

Generator Objects tool window

Basic Charts, 760, 773

illustrated, 759

Insert Flash Movie, 760

Insert GIF, 760

Insert JPEG, 760, 797

Insert MP3 File, 760

Insert PNG, 760

Insert Sound, 760

Insert Symbol, 760

List, 760, 778

Multi-page List, 760, 785

opening, 759

Pie Chart, 760

Plot, 760

Radio Button, 760

Scrolling List, 760, 782

Stock Chart, 760

Table, 761

Ticker, 761, 784

Generator Only (Default) template, 1167

Generator Panel

Data Source field, 780, 786

defined, 87

Horizontal Alignment option, 781

illustrated, 759

Instance Name option, 781

Item Space option, 781

Mask to Box option, 781

modifying Generator Objects in, 771

opening, 87, 758

Orientation field, 780

Spacing option, 781

Step Size option, 782

Vertical Alignment option, 781

Generator Properties dialog

Cache option, 798

Export as option, 798

File Name option, 797

Instance name option, 798

JPEG Quality option, 798

opening, 797

Scale to Fit option, 798

3515-3 Index.f 1/20/01 1:54 PM Page 1264

1265Index ✦ G

Generator Publish Settings dialog. See also Publish Settings dialog

Background option, 789

Create External Font option, 789

Data Encoding option, 789

Dimensions option, 788

External Media option, 789

Frame Rate option, 789

Generator Template check box, 757, 766, 773

illustrated, 788

Load Order option, 789

Parameters option, 789–790

Generator QuickTime template, 1167

Generator Server

defined, 754

installing, 754

online functionality, 756

use requirements, 756

Generator Set Environment dialog

Column Name/Value Data Layout button, 763

illustrated, 763

Name/Value Data Layout button, 763

opening, 762

using, 762–763

Generator Templates

authoring, 757–761

automatic creation of, 788

Background option, 789

Create External Font option, 789

creating, 761–766

Data Encoding option, 789

defined, 797

Dimensions option, 788

External Media option, 789

failure, 765

file format, 757

format settings, 788–790

Frame Rate option, 789

Load Order option, 789

loading, in .SWF files, 791

Parameters option, 789–790

publishing, 788–790

using, in production, 787–792

Generator variables

creating, 785

as property values, 776

quotation marks for, 780

setting inside ActionScript, 780

specifying, 762

testing, 789–790

GET method, 699, 701

getBeginIndex method, 726

getBounds method, 673

getBytesLoaded method

defined, 504, 558

examples, 565

on loaded .SWF movies, 564

using, 564, 567–568

getBytesTotal method

defined, 504, 558

examples, 565

on loaded .SWF movies, 564

using, 564

getCaretIndex method, 727

getEndIndex method, 727

getFocus method, 727

getPan method, 521, 530

getRGB method, 514, 516, 519

getTimer command

defined, 746–747

using, 700, 746–747, 799

value, 747

getTransform method, 514, 519, 521

getURL action. See also actions

ActionScript notation, 447

assigning, 1127

defined, 445

Director and, 1127–1128

lingo: statements in, 1129

restriction, 694

sending data with, 694–695

in Test Movie environment, 447

URL parameter, 445–446

uses, 445

using, 445–447, 604, 999, 1000, 1117, 1120

Variables parameter, 446–447

Window parameter, 446

getVolume method, 521

.GIF Export dialog, 846–847

.GIF files

8-bt raster image, 327

ad banners, 824

colors, 847

defined, 329, 1171

dimensions, 1172

dithering, 1174

export option, 846–847

exporting, 332

in Fireworks, 332

.JPEG files versus, 1175

options, 1171–1175

playback, 1172–1173

as sequence format, 1026

transparency, 1173–1174

GIF Publish Settings dialog

Dimensions option, 1172

Dither option, 1174

illustrated, 1172

Max Colors option, 1175

Options settings, 1173

Palette option, 1175

Palette Type option, 1174–1175

Playback options, 1172–1173

Transparent options, 1173–1174

glowing text, 297

3515-3 Index.f 1/20/01 1:54 PM Page 1265

1266 Index ✦ G

Go To action. See also actions

ActionScript notation, 447

defined, 440

executing, 559

with expression, 443

with frame number, 442

frame specification, 441–443

with label, 442

with next frame, 443

with previous frame, 443

setting, 441

targets, 441

time units, 441

using, 440–443

variations, 440–441

goals

determining, 1072

list, 590

site, defining, 1077–1078

usability, 1079

gotoAndPlay action. See also actions

ActionScript notation, 447

defined, 441

using, 488, 700

gotoAndPlay method, 501, 569

gotoAndStop action. See also actions

ActionScript notation, 447

defined, 440

gotoAndStop method, 502, 569

Gradient Editor

adding new pointer to, 174, 175

illustrated, 173

radial gradients and, 176

using, 174–175

gradients. See also fills

adding new color to, 174

angle, adjusting, 147

applying, to objects, 175

blends replacement with, 878–881

center point, adjusting, 147, 148

creating, 172–177

customizing points of, 173, 174

drawing application, 850

effects on .SWF file size, 1151

FreeHand, 865, 881

linear, 172

locking, 147

minimizing, 1150

quality of, 70

radial, 172

rotating, with Reshape Arrow cursor, 148–149

saving, 172

size, adjusting, 147

in text, 297

types of, 172

vector-based, 850, 895

Graphic symbols. See also symbols

animated, 240, 242

creating, 238

defined, 236

empty, creating, 238

for image sequences, 1008–1010

looping actions and, 242

Movie Clips versus, 240–245

naming, 239

static, 240

use tips, 241–242

uses, 238

Grid

Alignment, 6–7

default size, 74

hiding/showing, 74

snapping to, 74

Grid dialog, 74

grouping

benefits of, 219

defined, 80

file size and, 267

shapes, 266–267

groups

attributes, acquiring with Dropper Tool, 144

creating, 219

defined, 41, 240

editing, 220

masking with, 291

moving, with Arrow Tool, 113

vectors behind, 267

gts() function, 631

Guide layers

adding, 206, 314–315

defined, 206, 213, 313

exporting and, 313–314, 315

file size and, 313–314

inserting, 316

for layout, 313–315

Motion, 76, 209, 213, 310, 315–317

for organizational purposes, 317

purposes, 213, 317

Transforming current layer to, 213

using, 313–317

Guides

dragging, to X axis, 779

editing, 75

locking, 75

showing/hiding, 75

snapping to, 75

Guides dialog, 75

GWEN!

blinking eyes, 468

defined, 462, 463

Episode Two of, 469

eyes close with yawn, 472

face graphic symbol, 463

face, placing eyes/mouth on, 468

3515-3 Index.f 1/20/01 1:54 PM Page 1266

1267Index ✦ G–H

gwen’s eyes, 464

gwen’s mouth, 467

yawning mouth, 468

H
Hairline stroke style, 127

Hand Tool, 95

Hatched stroke style, 128

Help Menu

ActionScript Dictionary command, 91

ActionScript Reference command, 91

defined, 90

Flash Support Center command, 92

illustrated, 90

Lessons command, 91

Macromedia Dashboard command, 91–92

Register Flash command, 92

Samples command, 91

using, 90–92

Using Flash command, 91

What’s New in Flash 5 command, 91

hexadecimal

color numbers, 159

notation, 158

hide() method, 548

highlight color, 66–67, 212

highlight effect, 282–283

Hit state. See also states

“active” area, 372

adding, 371

adding sounds to, 406

Button symbol, 245

defined, 245

use of, 23

hitTest method

for bounds specification, 671

for collision detection, 640–641, 660–662

defined, 500

flag attribute, 661

formats, 660

functioning of, 671

for multiple targets, 662–678

syntax, 640

target path specification, 661

true/false condition testing, 662

using, 541, 546, 671

holding files, 795

HTML

attributes, changing, 1200–1204

defined, 1164

documents, integrating swiffers into, 1196–1197

documents, publishing, 1124

establishing variables with, 605

formatting, enabling, 721

forms, 1116

frameset document, 1083

Generator Templates in, 790–791

integrating Flash content with, 1181–1210

page production, 1083

templates, 422

usage in text fields, 719–725

HTML Publish Settings dialog. See also Publish Settings dialog

defined, 1164

Dimensions option, 336, 1168

Flash Alignment option, 1171

HTML Alignment option, 1170

illustrated, 1165

Playback option, 1168–1169

Quality option, 1169–1170

Scale option, 1170–1171

Show Warning Messages option, 1171

Template option, 1165–1168

Window Mode option, 1170

HTML tags

<A>, 720

<A HREF>, 719, 724–725

, 720

<body>, 1116

, 720

<CENTER>, 1107

<DIV>, 1208

<EMBED>, 790, 1107, 1168, 1184–1186

, 719, 720

, 720, 723

, 720

<form>, 1117

<FRAMESET>, 1186–1189

<HEAD>, 1194, 1196, 1223

<I>, 720

, 1170

<INPUT>, 1208

<LAYER>, 1208

<META>, 1194, 1196

<OBJECT>, 790, 1107, 1168, 1182–1184

<P>, 720

<U>, 720

applying, 721

inserting, into text fields, 723–724

supported, 720–721

typing, 721

HTML templates

Ad 3 Banner, 1166, 1229

Ad 4 Banner, 1166, 1229

Ad 5 Banner, 1166, 1229

Ad Any Banner, 1166

defined, 1165

Flash Only (Default), 1166, 1196, 1228

Flash with FSCommand, 1166, 1229

Generator Ad Any Banner, 1167

Generator Image Output, 1167

Generator Only (Default), 1167

Generator QuickTime, 1167

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1267

1268 Index ✦ H–I

HTML templates (continued)

Image Map, 1167

Java Player, 1167, 1229

QuickTime, 1168, 1229

User Choice, 1168

HTTP

requests, 577

for serving Real files, 1002

Hue, Saturation, Brightness (HSB), 170

I
ICC profiles, 832

if statements

curly brackets, 668

defined, 608

if/else, 607, 1129

mazeGrid, 675–677

in Normal Mode, 608

true value test, 662

using, 591

ifFramesLoaded action

building preloader with, 558–560

defined, 558

looping, 560

as one-time check, 560

Illustrator

.AI format, 894, 895

defined, 582

export file formats, 875

exporting artwork from, 875–878

Flash Format Options dialog, 877–878

Flash Writer plug-in, 875–876

image formats, 328

layered files, using, 881–882

Pathfinder window, 852–853

saving file format, 856

text conversion to outlines, 854–855

image loader, 795, 796–797

Image Map template, 1167

image sequences

exporting, 985

Graphic symbol creation for, 1008–1010

importing, into Flash, 995–996

rotoscoping and, 1007–1008

Import dialog

All Sound Formats option, 404

Files of Type drop-down, 404

illustrated, 333

launching, 59, 333

imported sounds, 475

importing

bitmaps, 237–238, 337–339

Dimensions sequences, 947

EPS files, 879

external media, 327–332

in Fireworks, 824–826

Flash movies into Director, 1130–1133

formats, 60

FreeHand elements, 858–859

image formats, 328–331

layered .EPS/.AI files, 882

Poser sequences, 953–954

QuickTime assets, 238

QuickTime Flash movies, 1014

QuickTime into Flash, 968–970

QuickTime movies, 965

via QuickTime, 337

sequences into video applications, 1029–1033

sound files, 397–398

sounds, 26, 237, 403–405

.TIF images, 337, 338

vector graphics, 332–333

vectors, 238

inbetweens. See tweening

#include action

benefits, 599

execution, 599

as special tag, 598

using, 598

indentation, text, 192

Indeo Video

codecs, 979

defined, 1015

indexed color, 158

indexOf() method, 626

Info Panel

Alignment Grid, 6, 15, 276

defined, 85

Height field, 6, 276

illustrated, 276

opening, 5, 85

RGBA values, 277

uses, 275

using, 275–277

Width field, 6, 276

+X/+Y sector, 277

X control, 6, 7, 277, 539

Y control, 6, 7, 277, 539

information architects, 1071

information types, 240–241

Ink Bottle Tool

for applying custom line styles, 145

defined, 144

illustrated, 145

using, 126, 144–145

In/Out points. See also audio applications; sound files

defined, 903

setting, 903–904

input state, 694

Input Text fields. See also text fields; Text Options Panel

Border/Bg option, 697

creating, 691–692

defined, 197

3515-3 Index.f 1/20/01 1:54 PM Page 1268

1269Index ✦ I

Dynamic Text fields versus, 693

forms, 697

HTML text formatting tags, 693

initial value, 692

input data, 692

login system, 804

permissible HTML tags, 197

typing in, 691

user input acceptance, 692

uses, 197

Insert Flash Button dialog (Dreamweaver)

Bg field, 1109

Button text field, 1108

Font field, 1108

illustrated, 1108

Link field, 1108

Target field, 1109

Insert Flash Movie template, 760

Insert Flash Text dialog (Dreamweaver), 1109–1110

Insert GIF template, 760

Insert JPEG template, 760, 797

Insert Menu

Blank Keyframe command, 77

Clear Keyframe command, 77

Convert to Symbol command, 9, 76

Create Motion Tween command, 77

Frame command, 76

illustrated, 76

Keyframe command, 77

Layer command, 76

Motion Guide command, 76

New Symbol command, 76

Remove Frame command, 77

Remove Scene command, 77

Scene command, 77

using, 75–77

Insert MP3 File template, 760

Insert PNG template, 760

Insert Sound template, 760

Insert Symbol template, 760

Instance Effects

defined, 21

Tint Effect, 21–22

Instance Panel

Behavior menu, 448

changing instance behavior from, 255

defined, 86

illustrated, 255

keyboard shortcut, 448

Name text field, 469

opening, 77, 86, 255, 448, 468

Swap Symbol button, 256

instance properties

defined, 253

modifying, 253–256

Movie Clip, 252

instance swapping, 1050–1052

instances

adding, 386

adding object actions to, 30

behavior, changing, 255

brightness, 254, 312

centering, 485, 649

colors, 254

creating, 8

draggable Movie Clip, 533

dragging, 319

duplicating, 512

editing and, 21

Movie Clip, 494

moving, 374

naming, 484, 485, 543

selecting, 260

Smart Clip, 688

sound, 411

tint, 312

transparency, 254, 312

interaction storyboards. See also storyboards

example, 1096

importance, 1097

interaction description, 1097–1098

interactive business card, 881–883

interactive process, 589–590

interactive product, 590

interface design

aesthetic considerations, 364–365

build out, 368–369

color, 364–365

comprehensive, 364, 367–368

conceptualization and implementation, 364

content creation and, 359–363

factors, 369

final comprehensive, 364

Flash movie properties and, 356

mapping site areas to keyframes and, 357–359

optical effects, 365

organizational chart, 356

plan creation, 355–356

process, beginning, 365–366

reflection, 369

roughs, 364

scene structure, 359

symbolism, 365

technical components, 365

tutorial, 363–370

usability and, 375–382

interface design example

buttons, 742–745

display, 741–742

illustrated, 737

lens, 738

objective, 737

on (rollOver), 743–744

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1269

1270 Index ✦ I–K

interface design example (continued)

onClipEvent (enterFrame) handler, 741

onClipEvent (load) handler, 743

rollover text, 738–740

interface elements

adding, to timeline, 368

layers for designing, 368

navigation, 370–382

text scrolling, 383–387

interface usability

browser navigation, 379

button hit area, 376

Flash experience, 381–382

font size/type, 376–377

forms, 381

gray square buttons, 377–378

menu look/feel, 377

menu pointers, 378

online reference, 382

print option, 380–381

progress indicators, 381

SKIP intro button, 378–379

sound, 380

tips and examples, 382

user experience, 375–376, 382

interfaces

Movie Clips with, 472–473

scripting, 736–745

Tell Target action with, 472–473

interlacing, 1019

Internet Server Application Programming Interface (ISAPI), 801

Interpret Footage dialog (After Effects), 1031, 1032

introduction animations, 378–379

Inverse Kinematics (IK), 935

italic text, 189

items

aligning, 281

center, changing, 280

deleting, 233

distributing, 281

duplicating, 65, 113, 233

flipping, 279

motion tweened, 307–308

opening relevant panels for, 260

orienting, to paths, 310

renaming, 232, 260

repositioning, 277

rotating, 278, 279, 310

scaling, 277, 279

spacing, 281

J
Java Player template, 1167, 1229

JavaScript

code, 1202–1204

enabling, for Flash movies, 1202–1204

Flash movies with, 1199–1200

FSCommands and, 1206–1209

in HTML documents, 1206

PercentLoaded() method, 1204–1206

plug-in detection with, 1191–1192

JavaScript Integration Kit

Advanced Form Validations, 1112, 1116–1121

Browser Scripts for Flash, 1112, 1121–1123

Flash Dispatcher Behavior, 1112, 1123–1124

Macromedia Flash Player Controls, 1111, 1112–1116

JavaScript/HTML approach. See also distributing

defined, 1220–1221

first HTML page, 1223–1225

HTML pages, 1223

second HTML page, 1225–1226

third HTML page, 1226

using, 1223–1226

.JPEG files

compression, 1008

defined, 329

dimensions, 1175

.GIF files versus, 1175

high-quality Fireworks scaling comparisons, 352

high-quality rotation comparisons, 352–353

high-quality smoothing comparisons, 351

importing, 346

low-quality Fireworks scaling comparisons, 352

medium-quality corruption comparisons, 352

medium-quality Fireworks scaling comparisons, 352

quality, 1175

recompressing, 346

selective, compression, 819

as sequence format, 1026

JPEG Objects, 757, 785

JPEG Publish Settings dialog. See also Publish Settings dialog

Dimensions option, 1175

illustrated, 1176

Progressive option, 1175

Quality option, 1175

K
kerning, 189

Key Press event handler. See also event handlers

adding, 452

button container for, 452

case sensitivity, 453

“gotchas,” 453

for On Mouse action, 452

potential issues, 453

keyboard shortcuts

creating, 71–72

deleting, 72

Toolbox, 51

Keyboard Shortcuts dialog

advantages, 70

Command list, 72

3515-3 Index.f 1/20/01 1:54 PM Page 1270

1271Index ✦ K–L

defined, 70

illustrated, 71

keyDown event, 506

keyframe event handler. See also event handlers

in multimedia applications, 453

presumption, 453–454

use of, 453

keyframe spans

defined, 208

empty, 209

final frame of, 208

intermediate frames of, 209

keyframes

action, 454

adding, 301

adding FSCommands to, 1201

blank, converting to, 80

Buttons and, 20

clearing, 77, 222

converting to, 77, 80

copying, 20

defined, 9, 42, 208

double-clicking, 487

dragging, 27

editing contents of, 222

empty, 209, 221

entering/exiting, 453

final, 208

with function declarations, 632

function of, 9

inserting, 12, 221, 246

mapping site areas to, 357

Movie Clips, 239

moving, 27

Stop, 479

keys

defined, 1046

repeater frames between, 1047

walk cycle, 1046

keyUp event, 507

L
Label Text

converted to Block Text, 187

defined, 186

illustrated, 187

labels. See button labels; frame labels

Lasso Tool

defined, 101

Freeform Mode, 103

illustrated, 102

Magic Wand option, 103

Magic Wand properties, 103–104

options, 101–102

Polygon option, 102–103

uses, 101

using, 101–104

Launcher Bar

Character Panel button, 193

Instance Button, 16

location, 88

Mixer Panel button, 86

Show Actions icon, 411

Show Info icon, 5

using, 88

Layer Properties dialog

Guide option, 314

illustrated, 214

Layer Height option, 214, 408

Lock option, 213

Name option, 213

opening, 77, 212

Outline Color option, 205, 214

Show option, 213

Type options, 213–214, 314

using, 212–214

View layer as outlines option, 214

layers

in 2D character animation, 1062

actions, 486, 487, 524

active, 204

adding, 206, 469

bottom level, 41

color, 67, 205

content, 3

contextual menu, 213

creating, 76, 646

defined, 2

deleting, 206, 213

Dreamweaver animation techniques with, 1124–1125

in FreeHand, 864

Guide, 206, 313–317

height, 214

inserting, 3, 24, 213, 939

label, 489

load order, 789

locking, 4, 204, 213

Mask, 210, 290

Masked, 290, 292

Motion Guide, 76, 209, 315–317, 1051–1052

naming, 3, 207, 484, 485

Outline, 295

outline color, 214

overlay level, 41

renaming, 24, 357, 684

scheme recommendation, 35

showing all, 213

showing/hiding, 204

sound, 408–409

stacking order, 41, 207, 218–219

support for, 881

using, 36

vector graphics and, 850

visibility, setting, 2

working with, 207

3515-3 Index.f 1/20/01 1:54 PM Page 1271

1272 Index ✦ L

layout

content creation and, 359–363

diagram, 663

Flash movie properties and, 356

mapping site areas and, 357–359

organizational chart, 356

plan creation, 355–356

process, 355–363

scene structure, 359

storyboards, 1094

Lens fills (FreeHand), 864–865

Lessons, 91

levels. See also loading movies

bottom, 572

defined, 571

different, multiple movies on, 576–577

Level 0, 573, 574

Level 1, 572, 574

name construction, 576–577

Libraries folder, 89, 230

Library. See also Common Libraries

adding content from, 222

asset management in, 1152–1153

audio settings in, 422–424

Define Clip Parameters option, 234

defined, 89, 230

Delete option, 233

Duplicate option, 233

Edit option, 233

Edit With option, 233

editing symbols in, 253

Expand All Folders/Collapse All Folders option, 234

Expand Folder/Collapse Folder option, 234

exporting and, 36

file quality, 45

illustrated, 231, 232

Keep Use Counts Updated option, 234

Linkage option, 233

Move to New Folder option, 232

Movie Clip icon, 32

New Folder button, 232

New Font option, 232

New Symbol option, 232

opening, 89, 229

Options menu, 231, 233, 425

organizing, 249

Play button, 234, 404

Preview Window, 231, 404

Properties option, 233

Rename option, 232

Select Unused Items option, 234

Shared Library Properties option, 234, 585

sharing, 45

Sort Window, 231, 404

stereo sound in, 404

symbols, right-clicking, 481, 482

Update option, 234

Update Use Counts Now option, 234

working with, 231–235

lighting, in 3D modeling, 932, 933

Line Charts, 772

line processing

defined, 131

understanding, 131–132

Line Style dialog, 128, 132

Line Tool

drawing polygons with, 270

drawing triangles with, 268–269

illustrated, 132

Shift key with, 133

using, 132–133

lines

Brush Tool versus Pencil Tool, 141

color, 125, 129–130

converting to fills, 79

creation tools, 166

curved, 131

custom types, 1150

dashed, 866

erasing, 154

recognition, 68

scalable, 285

spacing, 192

straight, 131

straightening, 79

styled, converting, 285–286

styles, 286

thickness, 126

vertical/horizontal recognition, 68

Lingo. See also Director

ActionScript and, 1138–1141

call command, 1141

command/event control model, 1126

endTellTarget command, 1141

getFlashProperty command, 1139

getVariable command, 1138

initLoad handler, 1134

for preloading Flash movies, 1133–1135

preloadNetThing command, 1135

prepareMovie handler, 1134

print command, 1141

printAsBitmap command, 1141

property conversion chart, 1139–1140

sendXML command, 1141

setFlashProperty command, 1139

setVariable command, 1138

showProps command, 1143

.SWF file control with, 1138–1143

tellTarget command, 1141

lip-synching

in cartoon animations, 1052–1058

expression and, 1053

head orientations, 1056

morphemes, 1052

3515-3 Index.f 1/20/01 1:54 PM Page 1272

1273Index ✦ L

mouth positions, 1057

with music and sound effects, 1054

phonemes, 1052, 1055, 1057–1058

shape morphing and, 1053

tricks, 1053–1054

tutorial, 1055–1058

List Objects

advantages, 781

Basic, 777–782

clip reuse, 781–782

dragging, 778

functioning of, 776

Multipage, 784–787

Scrolling, 782–784

types of, 776

List template, 760

LiveMotion (LM)

Color Scheme palette, 177–178

defined, 582

downloading, 179

load checker Movie Clip symbol

defined, 565

display bar, 566

if statement, 566

instances, 566

results display, 566

reusing, 566

load event

defined, 505, 549

in interface design example, 743

triggering, 545

variable initialization with, 742

loaded movies

adding functionality to, 576

defined, 241

of differing sizes, 574

network path and filename, 575

onClipEvent handlers, 575

properties, 574

timeline, 574

loading movies. See also movies

above other movies, 573

external .SWF file into, 572–573

external files through proxy servers, 577–578

levels and, 571, 572, 573

preloading and, 558–559, 560–563

unloading and, 577

loadMovie action

as Convert Loaded Movie-to-Movie Clip action, 574

for creative projects, 579–582

defined, 570

for dynamic movies, 580

executing, 572

functioning of, 580

GET option, 792

HTTP request with, 577

initiating, 567

for loading Generator content, 791

loadMovieNum versus, 576

location, 573

for Movie Clip targets, 578–579

options and settings, 572

as “pseudo-Generator” action, 579

randomNum variable, 581

.SWF file format with, 582

URL, 573

uses, 580

using, 45, 525, 570

loadMovie method

defined, 503

with Generator Templates, 792

loadMovieNum method, 503

loadVariables() method

attachMovie method with, 782

defined, 504

lists, 780

using, 808

loadVariables action

defined, 603

to external data sources, 700

lists, 780

Location option, 604

options, 603

response to, 700

URL option, 604

using, 603–604, 699

Variables option, 604

loadVariablesNum method, 504

local variables, 603

localToGlobal method, 500

location variable, 673

locking

fills, 147

Guides, 75

layers, 4, 204, 213

Logical Movie Clips, 491

logical operators, 606

Login.asp page, 809–812

login system

ASP overview, 808–809

building, 802

Clear button, 804

creating, with ASP, 802–812

error frame, 807

Flash file creation, 802–803

frame 1, 804–806

frame 5, 806–807

frame 10, 807

frame 15, 808

Input Text fields, 804

logging frame, 806–807

logic flow, 803

Login.asp page, 809–812

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1273

1274 Index ✦ L–M

login system (continued)

Submit button, 804

success frame, 808

Trim() function, 805

variables, 806

long pans, 1040–1041

loop action, 613

loops

ACID, 915–916

adding, to Actions List, 613–614

background processes and, 613

break action, 612–613

continue action, 613

defined, 609

do while, 610

elements of, 609

enabling, 83

for, 610–611

for...in, 611–612

ifFramesLoaded action, 560

sounds, 407, 411, 415–416

while, 610

LS Screensaver control panel, 1236

M
Mac

Drawing Toolbox on, 50

Flash illustration (panels closed), 53

Flash illustration (panels open), 55

font problems, 184

QuickTime files on, 966

MacPaint format, 329

Macromedia Dashboard, 91–92

Macromedia Flash Player Controls. See also JavaScript Integration

Kit

active, 113

behavior parameters, 1114

behaviors, 1112

defined, 1111

Go To Flash Frame Based on Cookie behavior, 1114–1115

Go To Flash Frame behavior, 1114

Load Flash Movie behavior, 1115

Pan Flash behavior, 1115

Set Flash by List behavior, 1115–1116

using, 1113–1116

Zoom Flash behavior, 1116

Magic Wand

dialog illustration, 344

illustrated, 103

Smoothing setting, 104, 344

Threshold setting, 104, 343

uses, 343

using, 103

magnification

commands, 96–98, 1156

levels, 72

Magnifier Tool

defined, 93

illustrated, 94

keyboard shortcut, 93

toggling, 94

using, 93–95

Zoom In option, 93, 94–95

Zoom Out option, 93, 94–95

Main Idea symbol, 1085–1086, 1088

Main Menu symbol, 1089

Main Timeline

adding navigational elements to, 370–382

content, printing, 552–553

illustrated, 357

Movie Clips and, 456

movie section layout, 685

scene structure vs., 359

as site layout, 355–369

Main Toolbar

defined, 84

Macs, 53

opening/closing, 84

PCs, 54

maintenance, 1084

MakeRefMovie utility, 967

margins, 192

Mask layer, 290

animated mask text, 320

in cartoon animations, 1040

defined, 210

illustrated, 292

masked moon phases, 320

repositioning, 291

Transforming current layer to, 213

using, 214

Masked layer

aperture, 290

creating, 290

defined, 290

illustrated, 292

masked line progression

animated mask for, 321–322

defined, 321

illustrated, 322

masked moon phases

with animated mask, 320

Mask layer, 320

setup, 321

masking

animations, 317–322

bitmaps, 336

with graphics, 290–291

with groups, 291

reactivating, 291

with symbols, 291–292

text, 292–294

3515-3 Index.f 1/20/01 1:54 PM Page 1274

1275Index ✦ M

masks

animated, 289

static, 289–294

.maxscroll property, 725, 726

maze game

ball Movie Clip, 667–670

button actions, 665

collision code, 671

collision detection, 671–677

collision detection code, 672

direction variables, 664

goals, defining, 664

graphic assets, 664

location variable, 673

maze creation, 671

mazeGrid if statements, 675–677

mazeGrid Movie Clip, 671

mazeGrid variables, 674–675

now variable, 675

nowBx variable, 675

nowBy variable, 675

structuring, 662–663

user controller game piece, 664–665

user controls setup, 666–670

winMC, 677–678

“You Win!” message, 677–678

Media Cleaner Pro, 967

menu

buttons, 370–373

interface usability, 377

problems, 378

Menu Bar

Control Menu, 82–83

Edit Menu, 63–72

File Menu, 58–63

Help Menu, 90–92

Insert Menu, 75–77

Modify Menu, 77–80

Text Menu, 80–82

using, 57–92

View Menu, 72–75

Window Menu, 83–90

MetaCreations. See Bryce 3D; Painter

methods

attachMovie, 502, 550, 653

attachSound, 520, 523, 524

Color Object, 514

connect, 715

createLib, 525

createMenu, 653–654

defined, 460, 499, 651

duplicateMovieClip, 502, 535, 538, 546

getBeginIndex, 726

getBounds, 500, 673

getBytesLoaded, 504, 554, 558, 564, 565

getBytesTotal, 504, 554, 558, 564, 565

getCaretIndex, 727

getEndIndex, 727

getFocus, 727

getPan, 521, 530

getRGB, 514, 516, 519

getTransform, 514, 519, 521

getVolume, 521

globalToLocal, 500

gotoAndPlay, 501, 569

gotoAndStop, 502, 569

hide(), 548

hitTest, 500, 541, 546, 640

indexOf(), 626

loadMovie(), 503, 792

loadMovieNum, 503

loadVariables, 504

loadVariablesNum, 504

localToGlobal, 500

Mouse Object, 548

Movie Clip, 499

nextFrame, 502

onClose(), 714

onConnect(), 714

onLoad(), 704–705

onXML(), 714

play, 501

prevFrame, 502

removeMovieClip, 502, 535, 545, 740

send, 716, 717

setPan, 521, 526, 530

setRGB, 514, 516, 519

setTransform, 514, 517, 519, 521

setVolume, 520, 525, 656

show(), 548

Sound Object, 520–521

start, 520

startDrag, 501

stop, 501, 520

stopDrag, 501

swapDepths, 503

toUpperCase, 626

unloadMovie, 503

unloadMovieNum, 503

Mixer Panel

Add Swatch option, 170, 171

adding color with, 170

Alpha value, 170, 172, 176

Color values, 170, 171

defined, 86, 170

HSB option, 171

illustrated, 170

opening, 86

Options pop-up, 170, 171

working with, 170–172

Mixman in a Web page, 920–927

Mixman Studio Pro

defined, 920

exporting to .RMF format, 920, 923

using, 920–927

mockups, site, 1081

3515-3 Index.f 1/20/01 1:54 PM Page 1275

1276 Index ✦ M

model sheet, 1048–1049

modem connection speeds, 1003

Modify Menu

Arrange command, 79–80

Break Apart command, 80, 161

Frame command, 77

Frames command, 80

Group command, 80

illustrated, 78

Instance command, 77

Layer command, 77

Movie command, 74, 78

Optimize command, 79

Scene command, 77

Shape command, 79

Smooth command, 79, 108

Straighten command, 79, 108

Trace Bitmap command, 79, 890

Transform command, 79

Ungroup command, 80

using, 77–80

monitor, calibration, 158

morphemes, 1052

motion. See also cartoon animations

expressing, 1043

guides, 1051–1052

simulation, 1045

smooth, 1051

Motion Guide layers

adding, 76, 213

defined, 209, 315

snapping to, 310

use illustration, 316

using, 315–317, 1051–1052

motion tweening

automatic keyframes between endpoints of, 310

chromatic options with, 311

defined, 307

effects, 310–313

items, 307–308

uses, 307

using, 307–310

Motion Tweens

in 2D character animation, 1062

along paths, 316–317

alpha effects in, 312

creating, 10–12, 308–310, 384

defined, 8

illustrated, 308

inserting, 10, 12

pacing control, 308

previewing, 10

in timeline, 10

Mouse Object

defined, 508

hide() method, 548

show() method, 548

using, 548–550

mouseDown event

Bézier curves and, 732–733

defined, 506

detecting, 540, 541

receiving, 540, 541

mouseMove event

in checking for hit occurrence, 660

defined, 505

using, 549

mouseUp event

defined, 506

detecting, 542

receiving, 540

Movie Clip Object

defined, 493

object using, 408

overview, 494

Movie Clip Object methods

attachMovie, 502, 550, 653

defined, 499

duplicateMovieClip, 502, 535, 538, 546

getBounds, 500

getBytesLoaded, 504, 554, 558

getBytesTotal, 504, 554, 558

globalToLocal, 500

gotoAndPlay, 501

gotoAndStop, 502

hitTest, 500, 541, 546, 640

loadMovie, 503

loadMovieNum, 503

loadVariables, 504

loadVariablesNum, 504

localToGlobal, 500

nextFrame, 502

play, 501

prevFrame, 502

removeMovieClip, 502, 535, 545

startDrag, 501

stop, 501

stopDrag, 501

swapDepths, 503

unloadMovie, 503

unloadMovieNum, 503

Movie Clip Object properties

_alpha, 497

Color(), 479

_currentframe, 498

defined, 494

_droptarget, 497, 534, 545–546

_focusrect, 498

_framesloaded, 498, 558

_height, 497

_highquality, 498

illustrated, 495

listing, 496–498

_name, 497, 926

3515-3 Index.f 1/20/01 1:54 PM Page 1276

1277Index ✦ M

notation, 495

_quality, 498

_rotation, 496, 512–513

_soundbuftime, 498

_target, 497

_totalframes, 498, 558

_url, 497

values, changing, 529

_visible, 497, 591

_width, 496

working with, 510–513

_xscale, 496, 561

_x, 496, 510–511, 669, 670

_xmouse, 496

_yscale, 496, 670

_y, 496, 511

_ymouse, 496

Movie Clip paths

absolute, 460–461

relative, 461–462

understanding, 460–462

Movie Clips

actions layer, 362

ActionScript and, 241

adding movie logic, 490–491

animated, 241

benefits, 13

Buttons versus, 18

center, 14

collision detection, 659–662

as complex objects, 659–689

controlling, 493–556

converting timeline-based animations to, 13–14

creating, 361, 456, 476, 575

creating, with existing animation, 239

defined, 236, 239

depth, 682

draggable, 526, 531–550

duplicating, with new colors, 546–548

editing, 746

efficiency, 244

empty, moving playhead of, 490–491

frame actions, 456

Graphic symbols versus, 240–245

icons, 479–480

instance properties, 242

instances, 494

interaction with movie, 455–457

intersection, testing, 660

keyframe, 239

Logical, 491

Main Timeline and, 456

manipulation of, 456

mannequin, 953–954

naming, 481, 995

naming convention, 475

nested, 461

organizing, 457

at playback, 456

positioning, 14–15, 510–511

previewing, 1153

principles, 456–457

properties, 494–498

removing, 545–546

replacing with actual frames, 1018

rotating, 512–513

scaling, 511–512

sound, 475–484

Sound Library, 474–490

static, 240

storage, 995–996

symbols, creating, 13

timelines, 239, 457, 460

use tips, 241–242

using, with interfaces, 472–473

working with, 13, 455–458

Movie Explorer

Clear option, 261

Collapse Branch option, 261

Collapse Others option, 261

contextual menu, 258, 259

Copy option, 260

Copy Text to Clipboard option, 260

Cut option, 260

defined, 88, 256

Display List, 258

Edit in New Window option, 260

Edit in Place option, 260

Expand Branch option, 261

Filtering Buttons, 258

Find in Library option, 260

Goto Location option, 260

Goto Symbol Definition option, 260

illustrated, 257

opening, 88, 256

Options menu, 260–261

Panels option, 260

Paste option, 260

Print option, 261

Rename option, 260

Select Symbol Instances option, 260

Show All Scenes option, 260

Show Movie Elements option, 260

Show Symbol Definitions option, 260

uses, 256–257

using, 256–261

movie files

.FLA, 45–48

.SWF, 47–48

types, 45–48

Movie Properties dialog

Background Color option, 78, 356

Dimensions option, 2, 78, 962

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1277

1278 Index ✦ M–N

Movie Properties dialog (continued)

Frame Rate option, 1, 78, 206, 356, 646, 962

illustrated, 356

Match option, 78

opening, 1, 78

Ruler Units option, 79

movieclip data type, 628

MoviePlayer application. See QuickTime Player

movies. See also QuickTime movies

adding FSCommands to, 1200–1202

adding symbols to, 250

closing, 59

debugging, 83

diagramming, 457

digital video in, 982–996

dimensions, 2, 78

in Director, benefits/limitations, 1125–1126

download/display management, 557–570

elapsed time, 207

finding applications for, 43–48

Flash 4 versus Flash 5, 44

frame rate, 1, 78, 206

Generator Template use in, 791–792

holding, 795–796

with JavaScript, 1199–1200

layout diagram, 663

linking assets to, 585–586

loaded, 241, 574–576

loading, 570–582

multiple, 571–572

opening, 58–59, 721

optimizing, 1149–1153

parent, 45

playback, 43

playing, 82

positioning, in Dreamweaver, 1107

preloading, with Lingo, 1133–1135

properties, 496–498

publishing, 1149–1180

QuickTime 4 supported actions in, 967

QuickTime Flash, 967

QuickTime movies combined with, 970–981

returning to, after editing symbols, 253

rewinding, 82

saving, 59, 537

saving, as QuickTime Video, 977

scenes, 41

as screensaver utilities, 1232

sequence creation from, 1023–1026

Shockwave, 47

single-frame, 222

smooth transition between, 577

splitting up, 379–380

stepping forward/backward, 82

structuring, 662–663

swiffer, 1194–1197

testing, 34, 83, 1153–1159

unloading, 577

vector graphic preparation for, 849–856

for video output, 1018–1022

writing HTML markup for, 1181–1189

MP3 files

bit rate, 420

compression qualities, 1155

compression-to-quality ratio, 1153

defined, 397, 399

demystified, 398

as export format, 399

as import format, 397

imported, use of, 1155

options, 420–421

quality, 421

support, 422

VBR, 428–430

Multipage List Object. See also List Objects

characteristics, 784

creating, 784–787

defined, 760

properties, 786

multiplane pans, 1041

multiple movies. See also movies

on different levels, communication, 576–577

storage location, 571–572

Music Object, 922–923

Musical Instrument Digital Interface (MIDI), 917–918

myOnXML function, 715

N
_name property, 497, 926

naming conventions, 475

navigation buttons, 373–374

nested symbols, 252

nesting, 594

new constructor, 654

New File Wizard (Swift 3D), 960

New Folder dialog, 232

New Project Settings dialog (Premiere)

General Settings, 986

illustrated, 987

Keyframe & Rendering Options, 987

opening, 986

using, 986–987

Video Settings, 986–987

nextFrame method, 502

Normal Mode. See also Actions Panel

adding code in, 598

defined, 437, 597

Expert Mode versus, 437–438

if statements in, 608

shortcuts in, 597

using, 572

3515-3 Index.f 1/20/01 1:54 PM Page 1278

1279Index ✦ N–O

Normalize dialog (Sound Forge)

If clipping occurs option, 907

Normalize to setting, 906

Normalize using settings, 906

opening, 906

Scan settings, 906–907

normalizing audio levels. See also audio applications

defined, 904

in Peak, 905

in Sound Forge, 904–905, 906–907

in SoundEdit, 905

NTSC video

color conversion chart, 1021–1022

color display, 1020

frame rate, 1026

interlaced, 1020

safe-zone playback boundaries, 1020

smooth motion, 1018

Web Safe color set, 1021

number data type, 626–627

numeric expressions, 601

O
<OBJECT> tag

classid attribute, 1190

closing, 1184

codebase attribute, 1190

Generator Template reference with, 790

inserting Flash movie with, 1190

opening, 1182

parameters, 1182–1184

surrounding with <CENTER> tags, 1107

using, 1182–1184

object actions. See also actions

adding, 33–34

adding to instances, 30

defined, 30

object data type, 628

object movies, 981

object-oriented design

concept, 593

dynamic objects, 593–594

Flash site architecture, 595

nesting, 594

parent-child relationships, 594

object-oriented programming (OOP), 595

object-oriented scripting (OOS), 595–596

objects

adding/subtracting, 593

Array, 644–645

Chart, 771–775

Color, 508, 513–519

creation and assignment, 655–656

Date, 581

defined, 493, 593

dynamic, 593–594

functions as constructors for, 654–656

functions as methods of, 651–654

Generator, 759–761, 771–787

JPEG, 757, 785

List, 776–782

Mouse, 508, 548–550

Movie Clip, 493–513

Multipage List, 784–787

predefined, 493

properties, 460

Scrolling List, 782–784

Selection, 726–728

Sound, 508, 519–531

symbols as, 230

Ticker, 776, 784

user-defined, 493

XML, 508, 704–705

Objects Panel (Dreamweaver)

Flash Button icon, 1108

illustrated, 1105

offline resources, 91

On Mouse Event action, 449

onClipEvent handler

data event, 507, 701–702

defined, 499

drag’n’drop feature with, 531

enterFrame event, 505, 543, 734–735

events, 505–507, 666–667

keyDown event, 506

keyUp event, 507

load event, 505, 545

loaded movie, 575

for loading server data, 701–702

mouseDown event, 506, 540, 732–733

mouseMove event, 505, 549

mouseUp event, 506

nested actions, 541

syntax, 666

unload event, 505

onClose() method, 714

onConnect() method, 714

Onion Skin Markers

anchoring, 225

defined, 223

display, changing, 225

dragging, 225

End, 224

Start, 224

onion skinning

controlling, 206

defined, 206

illustrated, 223

implementation examples, 224

outlines, 206, 224, 225

setting up, 224

using, 223–226

online resources, 91

3515-3 Index.f 1/20/01 1:54 PM Page 1279

1280 Index ✦ O–P

onLoad() method

defined, 704

using, 704–705

onXML() method, 714

Open as Library dialog, 59

Open as Shared Library, 59

Open dialog box, 59

openswf.org, 814

operators. See also specific operators

compound assignment, 669, 670

defined, 605

general and numeric, 605

list, 606–607

logical, 606–607

string, 606

Optimize Curve dialog, 852

Optimize Panel (Fireworks), 825

optimizing

artwork simplification and, 1149–1151

asset management and, 1152–1153

bitmap sequences for Flash, 820–821

bitmaps, 996

curves, 852

images (Fireworks 4), 819–826

movies, 1149–1153

sound, 417–432

sound (Sound Forge), 906–908

symbol use and, 1151–1152

Options tray (Drawing Toolbox), 50, 123

organizational flowcharts. See also flowcharts

creating, 1085

defined, 1073

elements, 1085

illustrated, 356, 1073

Inspiration document, 1086

printing, 1088

sections, 1087

subsections, 1087

organizational guides, 317

orthographic projection, 930, 932

outlines

displaying as, 73

text conversion to, 854–855

text with, 294–295

Output Module Settings dialog (After Effects), 994

output state, 694, 696

Output window

defined, 89

opening, 89, 619

updating, 619

Oval Tool

activating, 5

illustrated, 133

Shift key with, 265

using, 133, 265, 319

Over state. See also states

adding, 372

adding sounds to, 405, 406

defined, 245

sound association with, 247

using, 22

overlapping actions, 1044

P
Paint Behind Mode (Brush Tool), 137

Paint Bucket Tool

activating, 6

center point adjustment with, 148

clicking with, 147

defined, 145

with Dropper Tool, 145–146

Fill Color option, 146

Gap Size option, 146, 147

illustrated, 146

Lock Fill option, 147

options, 146

Transform Fill option, 147–152, 286

using, 145–152

Paint Fills Mode (Brush Tool), 137

Paint Inside Mode (Brush Tool), 138

Paint Normal Mode (Brush Tool), 136

Paint Selection Mode (Brush Tool), 137–138

Painter

cloning video effects, 841

defined, 836

evolution, 836–837

Flash uses, 837

image effects creation with, 836–841

paint scripting, 839–841

pattern creation with, 837–838

Pattern Palette, 837–838

Script Options dialog, 840

Scripting Panel, 839–840

tools, 837

Painting Retrospective, 472–473

PAL video, 1018

panels. See also specific panels

closing all, 87, 88

fields, typing in, 88

hiding, 75

layout, saving, 87

Macs, 55

mega-panel grouping, 57

PCs, 56

rearranging, 88

title bar, double-clicking, 88

working with, 88

Panels submenu. See also Window Menu

Align command, 85

Character command, 86

Clip Parameters command, 86

Effect command, 86

Fill command, 85

Frame command, 87

Generator command, 87

3515-3 Index.f 1/20/01 1:54 PM Page 1280

1281Index ✦ P

Info command, 85

Instance command, 86

Mixer command, 86

Paragraph command, 86

Scene command, 87

Sound command, 87

Stroke command, 85

Swatches command, 86

Text Options command, 86

Transform command, 85

panoramic movies, 979–980

pans

long, 1040–1041

multiplane, 1041

using, 1050

Paragraph Panel

Alignment options, 191

defined, 86, 191

illustrated, 191

Indentation option, 192

keyboard shortcut, 191

Left Margins option, 192

Line Spacing option, 192

opening, 82, 86

Right Margins option, 192

uses, 192

using, 191–193

parameters

adding to Movie Clip symbol, 684–687

default, 686

defining, 686–687

values, 686

Parameters dialog (Dreamweaver), 1124–1125

parent-child relationships, 594

Paste Special dialog, 64

pasting

bitmaps, 339

frames, 65, 221

option, 64

in place, 64

text, 260

paths

clipping, 865

complexity, reducing, 850–854

defined, 40

modifying, with Subselect Tool, 118

Motion Tweens along, 316–317

Pattern Palette (Painter), 837–838

Pause button, 569

PCs

.AVI file creation on, 1026–1028

Controller, 64

Drawing Toolbox on, 51, 54

Flash illustration (panels closed), 54

Flash illustration (panels open), 56

font problems, 184

monitor resolution, 347

Page Setup dialog, 62

QuickTime files on, 966

Peak. See also audio applications

defined, 899

fading in, 909

normalizing in, 905

setting In/Out points with, 903–904

Pen Tool

black backgrounds and, 115

Ctrl/Command key with, 116

cursors, 68, 114, 115

curved segments with, 114

defined, 101

draw and adjust straight-line segment with, 116–117

illustrated, 114

options, 67–68, 114

Pen states, 115, 116

preview, 67

Shift key with, 117

straight-line segments with, 114

uses, 114

using, 113–117

Pencil Tool

Brush Tool versus, 141–142

illustrated, 130

Ink Mode, 108, 131, 132

Pencil Mode pop-up options, 131

shape recognition, 107

Smooth mode, 131

smoothing, 68

Straighten mode, 131

Swatches pop-up, 124

using, 130–132

PercentLoaded() method, 1204–1206

Perspective Grid (FreeHand), 866

phonemes. See also lip-synching

defined, 1052, 1055

illustrated, 1058

using, 1057–1058

Photoshop

backgrounds, building in, 1040

color management, 832

color profile setup, 951

Color Settings presets, 832

format, 330

ICC profiles and, 832

image cropping before exporting, 829

image preparation with, 827–832

images saved as PNG-24 files, 830

intended image area in, 334

interface, 349–350

.JPEG dialog, 350

Magic Wand tool, 827

.PNG file alpha channels, 827–831

Save for Web dialog, 830, 831

phrasing, 1066

3515-3 Index.f 1/20/01 1:54 PM Page 1281

1282 Index ✦ P

pianoKeys Movie Clip. See also sound Movie Clips

instance, 475

layers, 475

overview, 474–475

timeline, 474, 490

.PICT Export dialog, 845–846

.PICT format

color depth, 845–846

defined, 330, 894

as export format, 894

options, 845–846

.PCT extension, 951

as sequence format, 1025

sequences in, 1023

Pie Chart template, 760

pill-shaped buttons. See also buttons

bisecting, 273–275

centering, on Stage, 272–273

creating, 270–275

illustrated, 275

radial gradient, 270–271

uses, 270

Play action. See also actions

ActionScript notation, 447

defined, 443

executed inside Movie Clips, 444

frame rate, 443

initiating, 448

using, 443–444

Play button, 569

play method, 501

playback

all scenes, 83

.GIF file, 1172–1173

looping, 83

movie, 43

progress indicator, 568

QuickTime Flash movie, 975

rate, 393

RealPlayer, 999–1000

sounds, 393

Playhead

defined, 206

empty Movie Clips, moving, 490–491

illustrated, 205

Movie Clip timeline, 32

Plot template, 760

.PNG format

alpha channel creation in, 827–831

bit depth, 1177

compression, 1008

defined, 330

dimensions, 1176

exporting in, 824–826

filter options, 1178

images with masked transparent area, 339

importing, into Flash, 830

as sequence format, 1026

settings, 1176–1178

support across browsers, 346

types of, 339

PNG Publish Settings dialog. See also Publish Settings dialog

bit Depth option, 1177

Dimensions option, 1176

Dither option, 1178

Filter Options drop-down, 1178

illustrated, 1177

Max Colors option, 1178

Options setting, 1178

Palette option, 1178

Palette Type option, 1178

Poem User Interface (PUI), 706

Polygon Lasso

illustrated, 102

using, 102–103

polygons

defined, 269

drawing, 269–270

illustrated, 269

with Line Tool, 270

PolyLine Tool (Expression), 885

Poser. See also 3D graphics

animating figures with, 947–954

animation controls, 949

bitmap files imported from, 954

defined, 935, 947

export settings, 950

mannequin figure, 947–948

Missing Profile alert, 951

opening, 947

.PICT files, 950

previewing in, 948

sequence preparation for Flash, 950–952

sequences, importing into Flash, 953–954

Translate/Pull tool, 947

using, 947–954

Walk Designer, 949

walking figure creation in, 947–950

POST method, 699, 701

Preferences dialog

Clipboard tab, 69–70

Editing tab, 67–68

General tab, 52, 65–67

preloaders

building, with ifFrameLoaded action, 558–560

defined, 558

graphical, 563

text-based, 563

preloading

content, adding, 559

defined, 558

with _framesLoaded and _totalFrames, 560–563

sequence, 558

3515-3 Index.f 1/20/01 1:54 PM Page 1282

1283Index ✦ P

Premiere 5.1

cartoon editing in, 1059

Clip Speed dialog, 1030

defined, 986, 1029

Export Movie Settings dialog, 989–991

frame extraction with, 986–991

functionality, 986

importing sequences into, 1029–1030

interface, 1029

Monitor window, 988, 989

New Project Settings dialog, 986–987

Project window, 988, 989, 1029, 1030

timeline window, 989, 1030

prep questions, 1093

preproduction. See also production

budget approval, 1077

concept approval, 1076–1077

concept presentation, 1095

design tutorial, 1077–1082

findings, discussing, 1073

flowchart, 1091–1092

functional specification, 1074–1075

goal determination, 1072

graphics, gathering, 1075–1076

illustrated, 1070

meetings, 1071

organizational flowchart, 1073

phase, 1070–1077

prep questions, 1093

problem definition, 1070–1072

process, 1091

process flowchart, 1074

prototyping, 1100

resource requirements, 1076

solutions, producing, 1072–1076

storyboards, 1093–1099

presentation board, 869–870

Press event, 451

pressure-sensitive tablets, 140–141

prevFrame method, 502

previews

accurate frame rate, 1154

Movie Clip symbol instances, 1153

publishing, 1179

print action

adding, 552, 553

defined, 509

Movie Clip content as, 553

for printing Main Timeline content, 552–553

using, 551

printAsBitmap action

with content in Movie Clip, 553–554

defined, 509

using, 551

printers, 551

printing

with ActionScript, 551–555

capabilities, 551

Flash, 381

frames, 62

layouts, 62

loaded .SWF files, 554–555

margins, 62

options, 65

organizational flowcharts, 1088

preview, 62

printNum() function, 509

Pro Tools, 901

problems. See also preproduction

audience questions, 1071

defining, 1070–1072

technical questions, 1071

process flowcharts. See also flowcharts

creating, 1088–1090

defined, 1074

Document symbol, 1089

elements, 1088

illustrated, 1074, 1090

Main Idea symbol, 1088

Main Menu symbol, 1089

production

asset assembly, 1082

Flash architecture, 1082–1083

HTML page, 1083

local test environment, 1083

maintenance and updates, 1084

phase, 1082–1084

phases illustration, 1070

planning, 1069–1101

preproduction, 1070–1077

quality assurance testing, 1084

server test environment, 1083–1084

programming

animations as form of, 299

basic context, 597–599

Flash 5 capabilities, 42

object-oriented (OOP), 595

progress indicators

building, 566

loading, 567–568

playback, 568

use of, 381

projectors. See also stand-alones

auto start, 1219

burning, 1218–1219

CD-ROMs and, 1217–1219

creating, 1178, 1212–1214

defined, 1212, 1217

distribution and licensing, 1214

distribution on CD-ROM/floppy disk, 1214

file size additions, 1212

with Flash Player, 1213–1214

FSCommands for, 1215

movie played as, 1212

opening Web pages for, 1216–1217

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1283

1284 Index ✦ P–Q

projectors (continued)

with Publish command, 1213

smooth presentations, 1218

.SWF file loading into, 1218

uses, 1212

projects

FreeHand advantages for, 867–868

goals, determining, 1072

planning, 45

ramping up, 1092–1093

starting, 1–4

structuring, 662–663

updating/revising, 579

properties. See also Movie Clip Object properties

Bar Chart, 774

Basic Chart Object, 772–773

bitmap, 339–341

Chart Objects, 772–773

defined, 614

expression, 614

Flash Sprite, 1143

loaded movie, 574

movie, 496–498

Multipage List Object, 786

Scrolling List, 777

text field, 615, 725–726

viewing, 621

volume, 528

Properties Inspector (Dreamweaver)

Flash properties, 1106

illustrated, 1105

opening, 1105

Parameters button, 1124

Property Inspector (Director), 1135–1136

prototyping, 1100

proxy servers, 577–578

Publish Settings dialog

Flash tab, 418–419, 431, 1005, 1010, 1161–1164

Formats tab, 426, 788, 972, 1004, 1010, 1160–1161

Generator tab, 758, 788–790

GIF tab, 1171–1175

HTML tab, 336, 1164–1171

JPEG tab, 1175–1176

opening, 418, 971, 1004, 1160

PNG tab, 1176–1178

Publish button, 1011

QuickTime tab, 427, 972, 1178–1179

RealPlayer tab, 1005–1006, 1010–1011, 1179

publishing

movies, 1159–1160

previewing, 1179

Shared Library .SWF files, 585

Pulse Code Modulation (PCM), 907

Pythagorean Theorem, 641

Q
quality assurance testing, 1084

QuickTime

architecture, 966

Audio files, 398

cartoon animation limitations, 1039

control panel, 966

controller, 974–975

files on Mac versus PC, 966

image format, 330

import support requirement, 338

importing, into Flash, 337, 968–970

.MOV file extension, 965

reading software-based codecs, 966

support in Flash, 967–968

Updater, 966

versions, 966–967

Video for Windows (VfW) versus, 965–967

working with, 965–996

QuickTime Flash layer vector format, 43

QuickTime Flash movies

controller, 974–975

creating, 970–976

flattening, 975

importing, 1014

layers, 973

playback, 975

quality, 971

saving, 976

size, 973

streaming sound, 973–974

QuickTime movies

exporting into Flash, 968–970

Flash movies combined with, 970–981

format, 331

frame rate, 968

importing, 965

length, 968

logo icon, 968

media track, 965

number of Flash scenes, 969

object, 981

panoramic, 979–980

timeline frames, 969–970

VR, 979–981

QuickTime Player

elements supported by, 1231

file flattening with, 966

interface, 984

movie playback controls, 975

movie trimming and, 985

name of, 966

Pro, 430, 966, 983–986

selection definition, 983

using, 966, 1231–1232

Web page using, 1231

3515-3 Index.f 1/20/01 1:54 PM Page 1284

1285Index ✦ Q–R

QuickTime Publish Settings dialog. See also Publish Settings dialog

Alpha option, 973

Controller option, 974

Dimensions option, 973

File option, 975

Layer option, 973

Playback options, 975

Streaming Sound option, 426, 973–974

QuickTime sound

compressors, 427

format, 398

Publish Settings for, 426–428

QuickTime template, 1168, 1229, 1231

QuickTime Video

bandwidth-intensive, 978

creating with Flash, 976–979

defined, 976

file sizes, 977

files, 977

raster information, 976–977

saving as, 977

Web distribution, 978

QuickTime VR (QTVR)

controller, 975, 980

first frame, viewing, 980

movies, 979–981

object movies, 981

panoramic movies, 979–980

R
radial gradients. See also gradients

adjusting, 151

application illustration, 177

creating, 176

Gradient Editor and, 176

in pill-shaped buttons, 270–271

in sphere creation, 282–283

Radio Button template, 760

Ragged stroke style, 127

random soundtracks, 581

randomOffset() function, 547, 548

randomPercent() function, 547, 548

Raster Image Processor (RIP), 850

raster images. See also bitmaps

.BMP format, 845

color depth, 844

converting, to vector graphics, 889–893

dimensions, 843

export options for, 843–844

exporting, 841–847

formats for Flash export, 842

resolution, 844

raster sequence formats, 1025–1026

raw data, 240

RAW format

defined, 399

options, 421

Real Time Streaming Protocol (RSTP), 1002

RealAudio files

codecs and bit rates, 1004

creating, 997

requirement, 997

.RM extension, 998

Single Rate, 1002, 1003, 1006

SureStream, 1002, 1003, 1006

RealFlash movies

audio requirements, 1000–1001

bandwidth considerations, 1002–1004

bit rate determination, 1002–1003

media quality evaluation for, 1000–1004

RealMedia

bandwidth considerations, 1002–1004

file preparation, 1010–1011

Single Rate, 1002

SureStream, 1002

RealPlayer

commands, 999–1000

defined, 997

exporting files to, 997–998

Flash content and, 998

with Flash playback, 1231

Flash to, 997–998

formats, 997

G2, 998

movie files, 1007

playback, controlling, 999–1000

playback timeline, 999

presentations, publishing, 1004–1007

Version 7, 998

Version 8, 998

working with, 997–1012

RealPlayer Publish Settings dialog. See also Publish Settings dialog

Adjust Bit Rate on Publish option, 1011

Export Audio options, 1006

Export SMIL check box, 1006, 1011

Flash Bandwidth Tuning options, 1005

Format menu, 1006

illustrated, 1005

Single Rate option, 1006

SureStream option, 1006

RealServer

Single Rate files and, 1002

SureStream files and, 1002

uploading files to, 1011

versions, 1002

RealVideo

defined, 1015

files, 997

3515-3 Index.f 1/20/01 1:54 PM Page 1285

1286 Index ✦ R

Rebirth

beat creation in, 911–913

Comp control, 914

controls, 914

defined, 910

Delay control, 914

Dist control, 914

emulation, 910

exporting from, 914–915

final mixing, 914

getting started with, 910–911

Level controls, 914

main window illustration, 911

Pattern Mode, 911

PCF control, 914

Roland 303, 913

Roland 808, 913

Roland 909, 911–912

Song Mode, 914

Rectangle Settings dialog

Corner Radius setting, 19, 134

illustrated, 134

opening, 19, 134

Rectangle Tool

drawing triangles with, 267–268

drawing with, 133, 371

illustrated, 134

Rounded Rectangle Radius option, 134

Shift key with, 133

using, 19, 133–134

rectangles

converting to buttons, 20

drawing, 19

filling, 371

squares, 133

width, setting, 19

redoing, 64

redundant links, 1080

registration, 92

relative paths. See also absolute paths

defined, 461

Dots notation, 462

Slashes notation, 462

using, 461–462

Release event, 449, 451

Release Outside event, 452

remote debugging. See also debugging

defined, 619

enabling, 621–622

removeMovieClip method, 502, 535, 545, 740

Render Scene dialog (3D Studio MAX), 958–959

Render Settings dialog (After Effects), 993

repeaters, 1047

resampling (Sound Forge), 907

resetMenu function, 654

Reshape Arrow cursor

anomalies, 149

center point adjustment with, 148

counterintuitive effect, 152

defined, 147

rotating fills with, 148–149

scaling fills asymmetrically with, 151–152

scaling fills symmetrically with, 150–151

skewing fills with, 150

using, 147–152

reshaping

with Arrow states, 111–112

illustrated, 112

techniques, 112

text characters, 198–199

resolution

bit, 393–395

bitmaps, 69, 335

export bitmap, 844

PC monitors, 347

resources

interface usability, 382

need determination, 1076

offline, 91

online, 91–92

typography, 185

voice, 1037

reuse

in 2D character animation, 1061

clip, 781–782

code, 683–688, 746

variable, 599

reverb effect

defined, 909

in Sound Forge, 909

in SoundEdit, 910

Rewind button, 569

RGB color, 157, 855, 861–862

Rich Music Format (.RMF)

defined, 917

metaevents, 919

MIDI and, 917–918

Mixman export to, 920

nonperformance data, 919

Roll Out event, 452

Roll Over event, 452

rolling, 451

_root, 573, 668

Rotate cursor, 148–149

rotating

with Arrow Tool Rotate option, 109–110

bitmaps, 352–353

externally loaded .SWF files, 574–576

Flash Sprites, changing, 1141–1143

gradient fills, 148–149

3515-3 Index.f 1/20/01 1:54 PM Page 1286

1287Index ✦ R–S

Movie Clips, 512–513

with Transform Panel, 278

with Transform submenu, 279

Rotation Tool (FreeHand), 860, 863

rotoscoping

adding, 1009

Graphic symbol creation, 1008–1010

image sequence considerations, 1007–1008

RealMedia file preparation, 1010–1011

video frames with Flash, 1007–1011

roughs. See also interface design

as conceptual interfaces, 366

creating, 366–367

defined, 364

design, beginning, 366

Rounded Rectangle Radius Tool, 134

Rulers, 74

S
sample rate. See also sound(s)

ADPCM, 420

defined, 392

measurement, 392

playback rate and, 393

quality and, 392–393

Raw, 421

Samples, 91

Save Exported File As dialog, 985

Save for Web dialog (Photoshop), 830, 831

Save Movie dialog (After Effects), 993

Save Panel Layout dialog, 87

saving

colors, 169

gradients, 172

movies, 59, 537

QuickTime Flash movies, 976

QuickTime Video, 977

scalability, 1035

scalable lines, 285

Scale and Rotate dialog, 110

Scale Tool, 6

scaling

with Arrow Tool Scale option, 110

bitmap fills, 149

bitmaps and, 326

externally loaded .SWF files, 574–576

items, 277, 279

Movie Clips, 511–512

numerically, 277

with Reshape Arrow cursor, 150–152

with Transform Panel, 278

with Transform submenu, 279

Scene and Symbol Bar, 217

Scene Panel

Add button, 218

defined, 87

Delete button, 218

Duplicate button, 218

illustrated, 218

opening, 87, 217

using, 217–218

Scene Properties dialog, 77

scenes

3D, 679–681

adding, 218

cartoon, 1036–1037

deleting, 77, 218

duplicating, 218

inserting, 77

layers, 41

navigating between, 217

play order, 41, 218

playback all, 83

rearranging, 218

renaming, 218

showing all, 260

structure, 359

testing, 83

use limitation, 218

uses, 217

screensavers

control panel, 1236

creating, 1233–1237

installing, 1236

naming, 1234

utilities, 1232–1237

Screensavertool

defined, 1233

Embed additional SWF or text files option, 1235

Full/Demo version options, 1234

license regulation, 1237

option review, 1236

Personal Data page, 1233

support, 1233

using, 1233–1237

Script Options dialog (Painter), 840

scripting

interfaces, 736–745

in Painter, 839–841

root-level, 737

Scripting Panel (Painter), 839–840

.scroll property, 725

scrolling functionality, 783, 784

Scrolling Lists. See also List Objects

Basic Lists versus, 782

Button symbol instance, 782

creating, 782–784

defined, 760

length, 782

properties, 777

scrolling functionality, 783

Step Size parameter, 782

using, 782–784

3515-3 Index.f 1/20/01 1:54 PM Page 1287

1288 Index ✦ S

SECAM video, 1018

Select External Editor dialog, 425

selecting

with Arrow tool, 105–113

fills, 19

frames, 220

instances, 260

strokes, 19

symbol instances, 260

Selection Object

defined, 726

getBeginIndex method, 726

getCaretIndex method, 727

getEndIndex method, 727

getFocus method, 727

instances and, 726

manipulating text with, 726–728

methods, 726–728

setFocus method, 727–728

setSelection method, 728

string reference, 726

selections

highlights, hiding, 75

Shift key option with, 66

style, 66

send method, 716, 717

send state. See also states

actions, 694–695

defined, 694

using, 694–695

Sequence dialog (Dimensions), 946

sequences

creating, from Flash movies, 1023–1026

defined, 9, 1023

export formats, 1023

export process, 1023

format uses, 1023–1026

importing, into video applications, 1029–1033

raster formats, 1025–1026

vector formats, 1024–1025

servers

data, loading, 701–702

proxy, 577–578

scripts, 701

test environment, 1083–1084

setFocus method, 727–728

setPan method, 521, 526, 630

setProperty command, 749

setRGB method, 514, 516, 519

setSelection method, 728

Settings dialog (Streamline), 893

setTransform method, 514, 517, 519, 521

setVolume method, 520, 525, 656

SFX, 900

shape flags, 661

shape hints

adding, 307

benefits, 306

defined, 306

moving, 307

showing/hiding, 75

using, 306–307

shape morphing, 1053

shape recognition

for Arrow Tool, 107

for Pencil Tool, 107

preferences, 68

understanding, 107

Shape submenu. See also Modify Menu

Convert Lines to Fills command, 284, 285

Soften Fill Edges command, 287, 288

shape tweening. See also tweening

colors, 304

illustrated, 305

uses, 304

Shape Tweens

2D character animation, 1063

creation steps, 304–306

shape hints, 306–307

starting frame, 306

in unconventional use, 307

shapes

combinations, 263–264

creating, 263–275

cutouts, 264–266

grouping, 266–267

triangles, 267–269

Shared Libraries

asset identifiers, 583

content changes, 583

defined, 261, 583

element size in, 583

feature inconsistency, 583

loading, 583

location specification, 585

opening files as, 585

placing artwork in, 583

placing bitmaps in, 583

placing fonts in, 584

setting up, 583–584

sounds loaded from, 405

.SWF file, publishing, 585

use caution, 261

Shared Library Properties dialog, 585

Shared Properties dialog, 234

Shockwave Flash movies. See .SWF files

Shockwave Player, 1232

show() method, 548

Silicon Graphics Image format, 331

Simplify dialog (FreeHand), 851

Single Rate RealAudio, 1002, 1003, 1006

site architecture

illustrated, 571

object-oriented, 595

3515-3 Index.f 1/20/01 1:54 PM Page 1288

1289Index ✦ S

overview, 570–571

types, 570, 571

visitor experience of, 571

sites

maintenance and updates, 1084

mockups, 1081

testing, on real users, 1081–1082

Skew Arrow cursor, 150

skewing

bitmap fills, 149

fills with Reshape Arrow cursor, 150

with Transform Panel, 278

Slashes notation, 461, 462

sliderRule Graphic

artwork, 538

creating, 538

starting point, 539

sliders. See also draggable Movie Clips

alphaSlider position instance, 544

building, 537–552

creating, 535–550

double-clicking, 545

dynamic, 537

parts, assembling, 535–537

positions, checking, 542–545

scaleSlider, 545

slider bar position, 537

sliderBar Movie Clip, 539

sliderRule Graphic, 538–539

value scale, 537

Small Web Format (.SWF) files, 47–48

Smart Clips

creating, 234, 684–687

defined, 683

instances, assigning values to, 688

menu item symbols, 684

in team production environment, 684

timeline, 926

uses, 683–684

using, 683–688

.SMIL files, 998, 1006

snapping

to Grid, 74

to Guides, 75

to Motion Guide, 310

to objects, 75

sockets, 712

Soften Edges dialog

Distance setting, 288, 289

Expand radio button, 288, 289, 297

Inset radio button, 288

Number of steps setting, 288

Solid stroke style, 127

solutions. See also code structure

clarifying, 590–591

translating, into interactive language, 591–592

Sonic Foundry suite. See also audio applications

ACID Pro, 898–899

defined, 898

Sound Forge, 898

Vegas, 898

sound(s). See also audio applications

adding, to buttons, 27, 247–249

adding, to Down state, 405

adding, to Over state, 405, 406

adding, to timeline, 407–409

assigning, to buttons, 405–406

background, 396

benefits of, 391

bit resolution, 393–395

clipping, 424–425

combined control methods, 424

defined, 391–392

deploying, 26

from digital video movies, 995

editing, 412–416

effects for cartoons, 1038

event, 26, 410

excess, trimming, 396

export preparation, 417–432

extracting, from .FLA editor file, 430–431

fading, 413–414

for Flash, 26, 392–397

frame rate and, 409

importing, 26, 237, 403–405

In point, 412, 413

instances, 411

interface usability and, 380

libraries, creating with ActionScript, 522–525

in Library, 404

lip-synching and, 1054

loading, from Library, 431

looping, 396, 407, 411, 415–416

muting, 83

naming, 408

nesting, 484–486

optimizing, 417–432

organizing, 408–409

Out point, 412, 413

playback rate, 393

playing, determining, 431

power, 526

production tips, 396–397

quality, 392–393

sample rate, 392–393

settings, fine-tuning in Library, 422–425

starting/stopping, 26

stopping, 411–412

stream, 26, 410

streaming, 973–974

targeting, 486–490

testing, 423

understanding, 391–401

volume, 526

3515-3 Index.f 1/20/01 1:54 PM Page 1289

1290 Index ✦ S

sound channels

defined, 395–396

fading left to right, 413

fading right to left, 413

left only, 413

mixing (mono), 420, 421

right only, 413

sound files

adding, to timeline, 407–409

ADPCM, 399

.AIFF/.AIF, 398

cross-platform environment and, 398

export formats, 399–400

import formats, 397–398

In/Out points, setting, 903–904

MP3, 397, 398, 399

name, 408

QuickTime, 398, 426–428

RAW, 399

size, 396

size, reducing, 393–395

updates, 423

VBR MP3, 428–430

viewing modes, 415

.WAV, 397

Sound Forge. See also Sonic Foundry suite

defined, 898

fading in, 908–909

Normalize dialog, 906–907

normalizing in, 904–905, 906–907

optimizing sound in, 906–908

resampling in, 907

reverb effect in, 909

setting In/Out points with, 903–904

support, 898

sound layers

dragging, 409

enhancing viewing of, 408–409

increasing height of, 408

number of, 408

organizing, with masks, 409

Sound Library Movie Clips. See also Movie Clips

creating, 474–490

nesting sounds into, 484–486

uses, 474

sound Movie Clips

accessing, 486

creating, 475–484

name, incrementing, 484

nesting, 484–486

soundIcon, 479–481

structure, 476

timeline, 481–482

Sound Objects

attachSound method, 520, 523, 524

benefits, 519

defined, 508

with draggable Movie Clips, 526

getPan method, 521, 530

getTransform method, 521

getVolume method, 521

with interactive projects, 525–530

method execution, 656

methods, 520–521

setPan method, 521, 526, 530

setTransform method, 521

setVolume method, 520, 525, 656

start method, 520

stop method, 520

targeting, 525

timelines and, 656

treatment, 519

using, 519–531, 642

Sound Panel

Custom option, 414

defined, 87

Edit button, 412, 415, 1009

Effect pop-up menu, 413–416

Event pop-up, 407

Event Sync option, 410

Fade In/Fade Out option, 414

Fade Left to Right/Fade Right to Left option, 413

illustrated, 406

Left Channel/Right Channel option, 413

Loop control, 415–416

None option, 413

opening, 87, 406

Sound drop-down, 248, 406, 407, 477

Start Sync option, 410

Stop Sync option, 410, 477

Stream Sync option, 410

Synch pop-up, 248, 406, 407, 409–411, 477, 1056

Sound Properties dialog

Compression drop-down, 423, 430

Estimated Results, 423, 424

Help button, 424

illustrated, 423

Import button, 423

lower half, 423

opening, 422

Stop button, 424

Test button, 423

top half, 423

Update button, 423

use benefits, 424

Sound Settings dialog

ADPCM Bits option, 420

ADPCM option, 420

Bit Rate option, 420

Compression setting, 419, 420

Convert Stereo to Mono option, 420, 421

Disable option, 420

illustrated, 419

MP3 option, 420–421

opening, 419

Quality setting, 420, 421

3515-3 Index.f 1/20/01 1:54 PM Page 1290

1291Index ✦ S

Raw option, 421

Sample Rate option, 420, 421

sound studio design, 901–903

sound synchronization

to animations, 409–411

defined, 409

Event, 410

Start, 410

Stream, 410

to timeline, 408

types of, 409–411

SoundEdit 16. See also audio applications

defined, 900

fading in, 909

normalizing in, 905

reverb effect in, 910

setting In/Out points with, 903–904

sound-editing tools

ACID Pro, 898–899

Bias suite, 899–900

Cakewalk Pro suite, 900

Cubase, 900

Deck, 899

Digidesign’s Pro Tools, 901

Edit Envelope, 414

high-end, 396–397

Macromedia SoundEdit 16, 900

Peak, 899

SFX, 900

Sonic Foundry’s suite, 898–899

Sound Forge, 898

Studio Vision Pro, 900

types of, 897–901

Vegas, 898

soundTransformObject, 531

source files

deciphering, 301–303

masking animation, 318

preliminary steps, 302

types of information, 302–303

.SPA files, 59

spacing

items, 281

lines, 192

spheres

creating, 282–283

realistic, 282–283

square corners, 284

.SSK files, 59

Stacked Area Chart, 772

Stacked Bar Chart, 772

Stacked Line Chart, 772

stacking order

arrangement, 41

changing, 207, 219

defined, 41

rules, 218–219

Stage

background color, 572

clearing item(s) from, 64

defined, 2

Smart Clip value assignment on, 688

timeline relationship, 218–220

staggers, 1064

stand-alones

CD-ROM/floppy disk distribution, 1214

defined, 1211

distribution, 1214

distribution tutorial with, 1220–1223

FSCommands, 1215–1216

licensing, 1214

limitations and solutions, 1219–1220

opening Web pages for, 1216–1217

size, 1219–1220

testing, 1220

types of, 1211–1212

start method, 520

startDrag action

adding, 534

Constrain to Rectangle setting, 533

dragging with, 532

initiation, 662

limiting, 541

Lock Mouse to Center setting, 533

targeting with, 532

startDrag method, 501

states

Arrow, 111–112

Down, 22, 245, 248, 405

Hit, 23, 245, 371–372, 406

input, 694

output, 694, 696

Over, 22, 245, 247–248, 372, 405–406

send, 694–695

Up, 21–22, 245

wait, 694, 695–696

static frames, 42

static masks. See also masks

graphic, 290–291

group, 291

illustrated, 290

symbol, 291–292

text, 292–294

types of, 289

using, 289–294

Static Text Behavior, 193–194

Static Text blocks

converting, into Dynamic Text, 723

illustrated, 385

inserting, 698, 699

selecting, 384

using, 698

Status Toolbar, 84

Stippled stroke style, 127

Stock Chart template, 760

3515-3 Index.f 1/20/01 1:54 PM Page 1291

1292 Index ✦ S

Stop action. See also actions

ActionScript notation, 447

adding, 478, 560

defined, 44

uses, 478, 479

using, 32, 386, 444, 450, 478

Stop All Sounds action, 411, 445, 447

stop frame, 42

stop method, 501, 520

stopDrag action, 534

stopDrag method, 501

stopping sounds

all, 411–412

single instance, 411

storyboards

animation, 1095–1096

cartoon animation, 1036–1038

defined, 1093

flowchart, 1099

interaction, 1096–1098

layout, 1094

template, 1036

types of, 1093

using, 35, 1060, 1093–1099

visual interaction, 1098–1099

straight segments

adjusting, 117

drawing, 114, 116–117

stream sounds

defined, 410

export quality, 418

QuickTime Flash movies, 973–974

scrubbed, 410

Streaming Graph mode, 1157

Streamline

Settings dialog, 893

tracing with, 892–893

string

data type, 625–626

expressions, 601

literals, 600

operators, 606

stroke effects, 283

Stroke Panel

applying color from, 167

defined, 85

illustrated, 125

opening, 5, 85

Stroke Color option, 5, 125

Stroke Height option, 5, 126

Stroke Style drop-down, 5, 125, 126–128

Swatches pop-up, 125

Stroke Style dialog, 145

stroke styles

applying, 126

custom, 126–128

Dashed, 127

Dotted, 127

Hairline, 127

Hatched, 128

previewing, 126

Ragged, 127

Solid, 127

Stippled, 127

strokes

color, 125, 129–130, 166–167

selecting, 19

thickness, 126, 129

weight, 145

structural axes, 302–303

Studio Vision Pro, 900

subroutines. See also functions

defined, 614, 629

in Flash 4, 615

support, 614

uses, 629

Subselect Tool

defined, 101, 104

illustrated, 114

uses, 118

using, 118–119

SureStream RealAudio, 1002, 1003, 1006

Swap Symbol dialog, 256

swapDepths method, 503

swatches

bitmap, 341–342

clearing, 169

deleting, 168

duplicating, 168

hybrid, using, 160–164

positioning, 160

Swatches Panel

Add Colors option, 168

Clear Colors option, 169

defined, 86

Delete Swatch option, 168

Duplicate Swatch option, 168

illustrated, 168

Load Default Colors option, 169

opening, 86

Options pop-up, 168–170

Replace Colors option, 169

Save as Default option, 169

Save Colors option, 169

Sort by Color option, 169

uses, 168

using, 168–170

Web 216 option, 158, 169

.SWF files

benefits, 888–889

browser independence, 346

comparison images, 347

creating, with Publish commands, 1159, 1160–1179

custom, 754–755

defined, 48, 329

in Director, 1125–1145

3515-3 Index.f 1/20/01 1:54 PM Page 1292

1293Index ✦ S–T

exported, 762

external, loading into movie, 572–573

externally loaded, 574–576

FreeHand export capability, 857

functions, 242

integrating, into Dreamweaver, 1104–1125

Lingo control of, 1138–1143

loading Generator Templates into, 791

loading into projectors, 1218

with loadMovie action, 582

location, 620

movies, 47

printing, 554–555

RealMedia exporter, 997

rotating, 574–576

scaling, 574–576

Shared Library, publishing, 585

.SWT files versus, 777

swiffers

creating, 1194–1196

defined, 1194

integrating, into HTML document, 1196–1197

using, 1194–1197

SwiffPEG, 803

Swift 3D

defined, 582, 955

document creation, 960

Export Vector File dialog, 961–962

frame rate, 960

New File Wizard, 960

Settings selection window, 961

using, 955

Swift Generator, 813

SWiSH, 582

.SWT files. See also Generator Templates

automatic creation of, 788

exporting, 798

in Flash movies, 791–792

in HTML, 790–791

implementing, 787–792

loading, into Movie Clips, 799

publishing, 788–790

.SWF files versus, 777

Symbol Editing Mode

automatic switch to, 361

defined, 13

exiting, 835

opening, 250–251, 487, 880

using, 250–251

symbol instances, 41

Symbol Linkage Properties dialog

illustrated, 584, 586

Linkage options, 526, 584, 586

Symbol Properties dialog

Behavior options, 464

Edit button, 250–251

illustrated, 235

launching, 76, 234

Movie Clip option, 464

Name field, 464, 684, 706

naming in, 9

symbols

accessing, 229

adding, to movies, 250

benefits, 229

Button, 18–25, 236, 245–249

centering, 465, 467, 468

content download, 1152

converting to, 8, 76

creating, 76, 232, 484

creating, in FreeHand, 862–864

defined, 229

definition, 260

Document, 1089

editing, 233, 250–253

file sizes and, 20

Font, 233

in FreeHand, 862–864

Graphic, 236, 238–239, 240–245

imported, 237

inside symbols, 243

linked, 1152

Main Idea, 1085–1086, 1088

Main Menu, 1089

masking with, 291–292

modifying color effects with, 254–255

Movie Clips, 13–15, 236, 239–245

naming, 466

native, 236–237

nested, 252

as objects, 230

optimization and, 1151–1152

power, using, 36

Shared Fonts, 237

Smart Clips, 237, 683–688

switching, 256

synchronizing, 80

tweening, to change color, 180

types of, 236–238

use counts, 234

using, 229, 1151–1152

Symmetrical Resize cursor, 150–151

T
Table template, 761

targetPath() function, 509

targets

frame labels as, 442

Get URL action, 446

Go To action, 441

Movie Clip, 473–491, 578–579

Movie Clip Object, 508–509

multiple, hitTest method for, 662–678

sound, 486–490

Sound Object, 525

3515-3 Index.f 1/20/01 1:54 PM Page 1293

1294 Index ✦ T

tellBeatnik() function, 924–925, 926

tellTarget() function, 509

tellTarget action

with Roll Over event handler, 472–473

support, 459

using, 469, 470, 471

using, with interfaces, 472–473

templates. See Generator Templates; HTML templates

terminology, 49

test environments

local, 1083

server, 1083–1084

testing

buttons, 406

Generator environment variables, 789–790

intersection of Movie Clips, 660

movies, 34, 83, 1153–1159

quality assurance, 1084

scenes, 83

sites, on real users, 1081–1082

sounds, 423

stand-alones, 1220

with Test Movie command, 1154

with Test Scene command, 1154–1155

text

acquiring, 185

aligning, 81, 191, 192–193

animated mask, 318–320

antialiasing, 73

baseline shift, 190

bold, 189

buttons, 370–373

characters, reshaping/manipulating, 198–199

clearing, 261

color, 189

converting, to outlines, 854–855

copying, 260

copying, to Clipboard, 260

cutting, 260

with drop shadows, 296

effects, 294–297

fonts, 81

formatting, 721–722

Generator and, 764

glowing, 297

gradient fills in, 297

handling, as group, 185

indentation, 192

italic, 189

kerning, 189

line spacing, 192

manipulating, 198–199

manipulating, with Selection Object, 726–728

margins, 192

with an outline, 294–295

pasting, 260

size, 81

style, 81, 190–191

tracking, 81, 189–190

URL-linked, 722

usability, 1080

word wrap, 196, 198

working with, 16–18, 183–199

text blocks

Block Text, 186, 187

Editable Text, 187

extending, 17

FreeHand and, 865–866

handles, 17

Label Text, 186, 187

resizing, 17

selectively changing text in, 722

Static Text, 384

text fields

<A HREF> tag for, 724

creating, 615, 692

Dynamic, 195–197, 692–693

forms, 697

HTML usage in, 719–725

Input, 197, 691–692

inserting HTML tags into, 723–724

properties, accessing, 615

properties, controlling, 725–726

for storing/displaying data, 691–693

variables as, 602

XML data for, 702

text masks

defined, 292

illustrated, 293

uses, 294

using, 292–294

Text Menu

Align command, 81, 192–193

Character command, 82

Font command, 81

illustrated, 81

Options command, 82

Paragraph command, 82

Size command, 81

Style command, 81, 190–191

Tracking command, 81, 189–190

using, 80–82

Text Options Panel

Border/Background option, 196, 198

defined, 86

Dynamic Text fields, 195–197

Editable Text fields, 194–195

Embed Fonts option, 196, 198

HTML check box, 196, 198, 719

illustrated, 193, 196, 197

Input Text fields, 197–198, 692

Line Display drop-down, 196, 198

Maximum Input Characters option, 198

opening, 82, 86, 193

Password option, 616

Static Text Behavior option, 193–194, 721

3515-3 Index.f 1/20/01 1:54 PM Page 1294

1295Index ✦ T

Text Behavior drop-down, 193

Use Device Fonts option, 193, 194, 195

using, 193–198

Variable option, 196, 198

Word Wrap option, 196

text scrolling

basic, 383–387

buttons, 385

lower limit, setting, 385

masking text for, 383

with Motion Tween and Button actions, 383

timeline, 387

Text Tool

illustrated, 186

Input Text field creation with, 691–692

uses, 185

using, 17, 24–25, 185–188, 360, 763

texture mapping, 934

TGA format, 331

this keyword, 668–669, 673, 674, 675

Ticker Objects. See also Generator Objects

defined, 761

functioning of, 776

using, 784

.TIF format, 331, 337, 338

Time Configuration dialog (3D Studio MAX), 956

time-based collisions, 659

timeline(s)

Active Layer Toggle, 204

Add Guide Layer button, 206, 316

Add Layer button, 206

adding interface elements to, 368

adding sounds to, 407–409

Button, 18

Button symbol, 245

Center Frame button, 206

Current Frame option, 206

defined, 2, 203

Delete Layer button, 206

depth dimension, 203

diagramming, 457

docking, disabling, 66

Edit Multiple Frames button, 206

editing on, 220–222

Elapsed Time option, 207

as floating palette, 211

Frame Rate Indicator, 206–207

Frame View options button, 206

Frame View options pop-up, 215–216

illustrated, 53, 54, 205

imported sounds and, 475

Layer Bar, 204

Layer Color Toggle, 205

Lock/Unlock Layer Toggle, 204

manipulating, 207–218

Modify Onion Markers pop-up, 206, 223, 225, 226

Motion Tweens in, 10

moving, 207

Onion Skin button, 206, 224

Onion Skin Markers, 223, 224

Onion Skin Outlines option, 206, 224, 371

options, 66

pianoKeys, 474, 490

Playhead, 2, 206

resizing, 207

scrolling text, 387

scrubbing, 10–11, 1052

Show/Hide Layer Toggle, 204

showing/hiding, 74

specifics, 208–210

Stage relationship, 218–220

tabs above, 14

time dimension, 203

Timeline Header, 206

Title Bar, 204

undocking, 210–211

viewing, 203–207

working with, 203–227

timing, 1066

Tint Effect, 21–22

tinted frames, 215–216

Toast, 1219

Toggle High Quality action. See also actions

ActionScript notation, 447

defined, 444

illustrated use, 445

uses, 444

using, 444–445

Toolbox. See also tools

color controls, 123–124, 165–167

Color Tray, 165, 166

Default Colors button, 124

default location, 50

displaying, 85

docking, on PC, 51

Fill Color button, 165, 167, 342

illustrated, 51

keyboard shortcuts, 51

on Mac, 50

None button, 124, 166

Options tray, 50, 123

sections, 50

showing, 50

Stroke Color button, 125, 165, 166–167

Swap button, 124, 166

Swatches pop-up, 165, 166, 167

tools, 50

tooltips, 52

tools

Arrow Tool, 25, 52, 104–113

Brush Tool, 135–142

Dropper Tool, 126, 142–144

Eraser Tool, 152–154

Hand Tool, 95

Ink Bottle Tool, 126, 144–145

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1295

1296 Index ✦ T–U

tools (continued)

Lasso Tool, 101–104

Line Tool, 132–133

Magnifier Tool, 93–95

Oval Tool, 5, 133

Paint Bucket Tool, 6, 145–152

Pen Tool, 67–68, 113–117

Pencil Tool, 68, 130–132

Rectangle Tool, 19, 133–134

Scale, 6

Subselect Tool, 118–119

Text Tool, 17, 24–25, 185–188

tooltips, 52

_totalframes property

defined, 498, 558

preloading with, 560–563

toUpperCase() method, 626

trace action, 619

Trace Bitmap dialog box

Color Threshold option, 344

Corner Threshold option, 345

Curve Fit option, 345

Minimum Area option, 345

opening, 344

Trace Tool (FreeHand)

accessing, 890

functioning, 890

options, 891

using, 892

tracing

bitmaps, 344–345

with FreeHand Trace Tool, 890–892

with Streamline, 892–893

with Trace Bitmap command, 890

tracking

defined, 81, 189

options, 189–190

Transform Panel

Copy button, 278

defined, 85

illustrated, 277

opening, 85, 277

Reset button, 278

Rotate field, 278, 539

Scale field, 278

Skew option, 278

using, 277–280

Transform Panel (FreeHand), 863

Transform submenu. See also Modify Menu

accessing, 79

Edit Center command, 280

Flip Horizontal command, 279

Flip Vertical command, 279

illustrated, 279

Remove Transform command, 280

Rotate 90 CCW command, 279

Rotate 90 CW command, 279

Rotate command, 109, 279

Scale and Rotate command, 110, 279

Scale command, 110, 279

using, 278–280

transparency

background, 999

GIF, 1173–1174

instance, 254, 312

triangles

drawing, 267–269

with Line Tool, 268–269

with Rectangle Tool, 267–268

Tricks of the Windows Game Programming Gurus, 639

tutorials. See Expert Tutorials

tweened animation

achieving, 299

benefits, 303

creating, 77

defined, 209

Tweened Zooms, 310

tweening

benefits, 303

defined, 42

instance swapping, 1050–1052

motion, 307–310

panning, 1050

process, 303–313

shape, 304–307

using, 1050–1052

typeof operator, 629

U
undefined data type, 629

undoing

levels, 65

process, 63

ungrouping. See also grouping; groups

defined, 80

file size and, 267

process, 219

unload event, 505

unloading movies, 577

unloadMovie action

defined, 557

for Movie Clip targets, 578–579

option, 577

using, 577

unloadMovie method, 503

unloadMovieNum method, 503

Up state. See also states

defined, 245

using, 21–22

Update Media dialog, 235

URLs

sending variables to, 604–605

static, 757

text, 722

variable source, 604

3515-3 Index.f 1/20/01 1:54 PM Page 1296

1297Index ✦ U–V

usability

breadcrumb system and, 1079

designing for, 1079

eye-tracking and, 1080

factors, 1079–1081

goals, 1079

interface, 375–382

issues, 1080–1081

navigation, 1079–1080

redundant links and, 1080

text, 1080

User Choice template, 1168

user-drag collisions, 659

V
vanishing point perspective

defined, 679

end_factor variable, 680

end_size variable, 680

move_factor variable, 680

size_factor variable, 680

start_size variable, 680

using, 679–681

var action, 603

Variable Bit Rate (VBR) MP3. See also MP3; sound files

defined, 428

importing, 428

quality settings, 429–430

variables. See also ActionScript

actions to define, 603

case sensitivity and, 600

as declarations, 602

declaring, 603–605

defined, 599

establishing, with HTML, 605

Generator, 762, 763

as HTML-formatted text field values, 724

indirect reference to, 601

listing, 692

loading, from predefined source, 603–604

local, 603

login sequence creation with, 615–618

monitoring, 621

reusing, 599

rules for, 600

sending, to URLs, 604–605

for storing property values, 614

as text fields, 602

timeline attachment, 600

“typed,” 600

values, 600

viewing, 621

VBScript

defined, 1191

test object creation in, 1192

vector animator, 41

vector graphics

bitmap illustrated comparison, 326, 327, 889

characteristics, 325

color consistency, 850, 895

color output, 855–856

complex, tracing, 853–854

defined, 325

embedded fonts, 850

export formats, 894

exporting, from Flash, 893–896

external, use guidelines, 849–850

file size, 326

Flash, use caution, 895–896

gradients, 850, 895

importing, 332–333

layers and, 850

path complexity, reducing, 850–854

preparing, for Flash movies, 849–856

text conversion to outlines, 854–855

when to use, 326

working with, 849–896

vector sequence formats, 1024–1025

vector-based drawing program, 40, 325

Vegas, 898

video. See digital video

Video Compression dialog, 1028

Video for Windows (VfW)

defined, 966

file creation, 1026–1028

limitation, 966

movie dimensions, 1027

QuickTime versus, 965–967

reading software-based codecs, 966

sound format, 1028

video compression, 1028

video format, 1027

View Menu

Antialias command, 73

Antialias Text command, 73

Bandwidth Profiler command, 1156

Fast command, 73

Frame-By-Frame Graph command, 1157

Goto command, 72

Grid command, 74

Guides command, 75

Hide Edges command, 75

Hide Panels command, 75

illustrated, 73

Magnification command, 72, 1156

Outlines command, 73

Rulers command, 74

Show Shape Hints command, 75

Show Streaming command, 1156

Snap to Objects command, 75

Streaming Graph command, 1157

Timeline command, 74

Continued

3515-3 Index.f 1/20/01 1:54 PM Page 1297

1298 Index ✦ V–W

View Menu (continued)

using, 72–75

Work Area command, 74

Zoom In/Out commands, 72, 1156

visual interaction storyboards, 1098–1099

_visible property

defined, 497

determining, 591

setting, 592

volume. See also sound(s)

adjusting, 526

properties, getting/storing, 528

vortex

animating, 940–942

animation file size, 942

defined, 936

illusion, 936–943

ring symbol change, 942–943

.VRML format, 935

W
wait state

defined, 694

if...else action, 699

timeout condition, 696

using, 695–696

walk cycles. See also cartoon animations

creating, 1046–1048

illustrated, 1047

keys, 1046

need for, 1046

time-saver, 1047

walk types, 1048

Watch list, 621

.WAV files, 397

waveforms. See also sound(s)

defined, 210

zooming, 415

WDDX Serializer/Deserializer

background, 710

defined, 710

downloading, 709

packet deserialization, 711

using, 710–711

Web 216 Palette, 169

Web browsers

Flash Player plug-in use for, 1227–1229

navigation, 379

.PNG support, 346

.SWF file independence, 346

Webcams

Generator and, 793–799

Generator Objects, 797–799

holding movie, 795–796

image loader, 795, 796–797

live view, 793

loading into Flash, 795

multiple, creating, 798

setting up, 793–794

status information, 793

tutorial, 793–799

to Web server, 794–795

Weber cartoon. See also cartoon animations

anticipation use in, 1044

chase scene, 1041

control room scene, 1039

lip-synching tricks, 1053

motion simulation, 1045

opening pier scene, 1042

overlapping actions, 1044

runtime, 1037

scenes, 1037

Web-safe Color

consistency, 160

custom-mixed, 159

misperception, 164

understanding, 158

Web-Safe Palette, 158, 159, 165

while loop, 609–610

Window Menu

Actions command, 87

Cascade command, 90

Close All Panels command, 87

Common Libraries command, 89

Controller command, 84, 85

Debugger command, 89

Generator Objects command, 89

illustrated, 84

Library command, 89

Movie Explorer command, 88–89

New Window command, 83

Output command, 89

Panel Sets command, 87

Panels command, 85–87

Save Panel Layout command, 87

Tile command, 90

Toolbars command, 84

Tools command, 50, 85

using, 83–90

windows

cascading, 90

as Get URL action target, 446

new, editing symbols in, 252

new, opening, 83

opaque, 322

tiling, 90

Windows Metafile format, 331

wireframe, 934

with() function

defined, 509

support, 783

using, 512

3515-3 Index.f 1/20/01 1:54 PM Page 1298

1299Index ✦ W–Z

.WMF/EMF format, 894, 1025

work area, showing/hiding, 74, 98

workflow. See also preproduction; production

ActionScript interfaces, 1098

process, 1069–1084

X
XML() function, 704

XML

child nodes, 703

“container” tag, 703

data, 702–705

defined, 703

document interpretation, 708

documents, loading, 704–705

formatting, 702

introduction to, 705–708

in PUI example, 706–708

support, 705

tags, 707

understanding, 703

WDDX-formatted, 711

white space, 703

XML Object

defined, 508, 704

load method, 704

onLoad() method, 704–705

using, 704

XMLSockets

defined, 712

methods, 712, 714

objects, 712, 714

open connection, 712

using, 712–717

_xscale property

defined, 496

using, 561

_x property, 496, 510–511, 669, 670

Y
_yscale property, 496, 670

_y property, 496, 511

Z
Zoom Control, 95, 96

zooming

consistent, 98

counterintuitive effect, 98

effective tool size and, 98

levels, 96

with Magnification commands, 96–98

with Magnifier Tool, 93–95

tool size and, 98

with View menu, 72

waveform, 415

with Zoom Control, 95–96

3515-3 Index.f 1/20/01 1:54 PM Page 1299

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening
the software packet(s) included with this book (“Book”). This is a license agree-
ment (“Agreement”) between you and Hungry Minds, Inc. (“HMIN”). By opening the
accompanying software packet(s), you acknowledge that you have read and accept
the following terms and conditions. If you do not agree and do not want to be
bound by such terms and conditions, promptly return the Book and the unopened
software packet(s) to the place you obtained them for a full refund.

1. License Grant. HMIN grants to you (either an individual or entity) a nonexclu-
sive license to use one copy of the enclosed software program(s) (collectively,
the “Software”) solely for your own personal or business purposes on a single
computer (whether a standard computer or a workstation component of a
multiuser network). The Software is in use on a computer when it is loaded
into temporary memory (RAM) or installed into permanent memory (hard
disk, CD-ROM, or other storage device). HMIN reserves all rights not expressly
granted herein.

2. Ownership. HMIN is the owner of all right, title, and interest, including copy-
right, in and to the compilation of the Software recorded on the disk(s) or
CD-ROM (“Software Media”). Copyright to the individual programs recorded
on the Software Media is owned by the author or other authorized copyright
owner of each program. Ownership of the Software and all proprietary rights
relating thereto remain with HMIN and its licensers.

3. Restrictions On Use and Transfer.

(a) You may only (i) make one copy of the Software for backup or archival
purposes, or (ii) transfer the Software to a single hard disk, provided
that you keep the original for backup or archival purposes. You may not
(i) rent or lease the Software, (ii) copy or reproduce the Software
through a LAN or other network system or through any computer sub-
scriber system or bulletin-board system, or (iii) modify, adapt, or create
derivative works based on the Software.

(b) You may not reverse engineer, decompile, or disassemble the Software.
You may transfer the Software and user documentation on a permanent
basis, provided that the transferee agrees to accept the terms and condi-
tions of this Agreement and you retain no copies. If the Software is an
update or has been updated, any transfer must include the most recent
update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in
Appendix A of this Book. These limitations are also contained in the individual

3515-3 L.f.qc 1/18/01 5:19 PM Page 1300

license agreements recorded on the Software Media. These limitations may
include a requirement that after using the program for a specified period of
time, the user must pay a registration fee or discontinue use. By opening the
Software packet(s), you will be agreeing to abide by the licenses and restric-
tions for these individual programs that are detailed in Appendix A and on the
Software Media. None of the material on this Software Media or listed in this
Book may ever be redistributed, in original or modified form, for commercial
purposes.

5. Limited Warranty.

(a) HMIN warrants that the Software and Software Media are free from
defects in materials and workmanship under normal use for a period of
sixty (60) days from the date of purchase of this Book. If HMIN receives
notification within the warranty period of defects in materials or work-
manship, HMIN will replace the defective Software Media.

(b) HMIN AND THE AUTHORS OF THE BOOK DISCLAIM ALL OTHER WAR-
RANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE, WITH RESPECT TO THE SOFTWARE, THE
PROGRAMS, THE SOURCE CODE CONTAINED THEREIN, AND/OR THE
TECHNIQUES DESCRIBED IN THIS BOOK. HMIN DOES NOT WARRANT
THAT THE FUNCTIONS CONTAINED IN THE SOFTWARE WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE SOFT-
WARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have
other rights that vary from jurisdiction to jurisdiction.

6. Remedies.

(a) HMIN’s entire liability and your exclusive remedy for defects in materials
and workmanship shall be limited to replacement of the Software Media,
which may be returned to HMIN with a copy of your receipt at the follow-
ing address: Software Media Fulfillment Department, Attn.: Flash 5 Bible,
Hungry Minds, Inc., 7260 Shadeland Station, Ste. 100, Indianapolis, IN
46256, or call 1-800-762-2974. Please allow three to four weeks for deliv-
ery. This Limited Warranty is void if failure of the Software Media has
resulted from accident, abuse, or misapplication. Any replacement
Software Media will be warranted for the remainder of the original war-
ranty period or thirty (30) days, whichever is longer.

(b) In no event shall HMIN or the authors be liable for any damages whatso-
ever (including without limitation damages for loss of business profits,
business interruption, loss of business information, or any other pecuniary
loss) arising from the use of or inability to use the Book or the Software,
even if HMIN has been advised of the possibility of such damages.

3515-3 L.f.qc 1/18/01 5:19 PM Page 1301

(c) Because some jurisdictions do not allow the exclusion or limitation of
liability for consequential or incidental damages, the above limitation or
exclusion may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software by the U.S. Government is subject to restrictions stated in paragraph
(c)(1)(ii) of the Rights in Technical Data and Computer Software clause of
DFARS 252.227-7013, and in subparagraphs (a) through (d) of the Commercial
Computer — Restricted Rights clause at FAR 52.227-19, and in similar clauses
in the NASA FAR supplement, when applicable.

8. General. This Agreement constitutes the entire understanding of the parties
and revokes and supersedes all prior agreements, oral or written, between
them and may not be modified or amended except in a writing signed by both
parties hereto that specifically refers to this Agreement. This Agreement shall
take precedence over any other documents that may be in conflict herewith. If
any one or more provisions contained in this Agreement are held by any court
or tribunal to be invalid, illegal, or otherwise unenforceable, each and every
other provision shall remain in full force and effect.

3515-3 L.f.qc 1/18/01 5:19 PM Page 1302

	Flash ™ 5 Bible
	Front of Book
	About the Authors
	Technical Editors
	Credits
	Foreword
	Preface
	Acknowledgments
	Contents at a Glance
	Contents

	Flash in a Flash
	The Tutorial
	Starting Flash projects
	The width of a circle
	Your first animation
	Movie Clip Symbols
	Frame labels and comments
	Working with text
	The Button symbol
	The sound and the fury
	Figuring items over time
	An ActionScript primer
	Adding actions
	Testing movies

	Tips for Effective Flash Development
	A process approach to Flash authoring
	Know Flash 5’s capabilities and limitations

	Ch01: Understanding the Flash Framework
	Introducing the Flash 5 Framework
	Bitmap handler
	Vector program
	Vector animator
	Authoring program
	Animation sequencer
	Programming interface and database front end
	Viewing Flash movies

	Finding Applications for Flash 5 Movies
	Planning interactive Flash projects
	Looking at Flash movie file types

	Summary

	Ch02: Exploring the Interface: Panels, Settings, and More
	Learning Flash Tool Basics
	The Toolbox
	Using tooltips
	Color and Flash tools

	Getting to Know the Fundamental Flash Interface
	Cross-platform consistency
	Contextual menus

	Using the Menu Bar
	The File Menu
	Publishing
	Printing
	The Edit Menu
	The View Menu
	The Insert Menu
	The Modify Menu
	The Text Menu
	The Control Menu
	The Window Menu
	The Help Menu
	Offline learning resources
	Online learning resources

	Summary

	Ch03: Using Tools for Navigation and Viewing
	The Magnifier Tool
	Zoom In/Zoom Out

	The Hand Tool
	Zoom Control and View Commands
	The Zoom Control
	The Magnification commands

	Summary

	Ch04: Working with Selections and the Pen Tool
	The Lasso Tool
	Using the Polygon option with the Lasso Tool
	Using the Magic Wand option with the Lasso Tool
	Using Magic Wand properties

	The Arrow Tool
	Using the Arrow Tool to select items
	Using the Magnet option of the Arrow Tool
	Understanding shape recognition
	Using the Smooth option with the Arrow Tool
	Using the Straighten option with the Arrow Tool
	Using the Rotate option with the Arrow Tool
	Using the Scale option with the Arrow Tool
	Using the Scale and Rotate dialog
	Using arrow states to reshape and reposition drawings

	Introducing the Pen Tool
	Using the Pen Tool
	Using the Subselect (Arrow) Tool
	Stroke and color

	Summary

	Ch05: Working with the Drawing and Painting Tools
	Choosing Colors
	The Stroke and Fill Panels
	Stroke Color
	Stroke Height
	Stroke Style
	Applying and changing fills with the Fill Panel

	Adjusting Stroke and Color
	The Pencil Tool
	Using the Pencil Mode pop-up options
	Understanding line processing

	The Line Tool
	The Oval Tool
	The Rectangle Tool
	Using the (Paint) Brush Tool
	Using the Brush Mode option
	Using the Brush Size option
	Using the Brush Shape option
	Using the Brush Lock Fill option
	Using the Brush Pressure option
	The difference between the Brush Tool and the Pencil Tool

	The Dropper Tool
	The Ink Bottle Tool
	The Paint Bucket Tool
	Using the Paint Bucket Gap Size option
	Using the Paint Bucket Lock Fill option
	Using the Paint Bucket Transform Fill option (a. k. a. the Reshape Arrow cursor)

	The Eraser Tool
	Using the Eraser Shape option
	Using the Eraser’s Faucet option
	Using the Erase Mode option

	Summary

	Ch06: Applying Color
	Introducing Color Basics
	Discussing Web-Safe Color issues
	Using hexadecimal values
	Applying ColorSafe and other solutions
	Using color effectively

	Working with Flash Color
	Using Toolbox Color
	Applying color from the Stroke and Fill Panels
	Working with the Swatches Panel
	Working with the Mixer Panel
	Creating gradient colors

	Summary

	Ch07: Working with Text
	Understanding Font Display Problems
	Problems with fonts on the Mac
	Problems with fonts on the PC
	Cross-platform issues and codevelopment problems

	The Text Tool
	Working with Flash text boxes
	Using the Character Panel
	Using the Paragraph Panel
	Using the Text Options Panel

	Reshaping and Manipulating Text Characters
	Summary

	Ch08: Exploring the Timeline
	Viewing the Timeline
	Manipulating the Timeline
	Layer specifics
	Timeline specifics
	General preferences
	Layer Properties
	Frame View options
	Scene and Symbol Bar

	The Timeline/Stage Relationship
	Stacking order
	Grouping
	Editing groups

	Editing on the Timeline
	Onion Skinning
	Summary

	Ch09: Checking Out the Library: Symbols and Instances
	The Library and Its Features
	Working with the Library

	Symbol Types
	Importing sounds, bitmaps, vectors, and QuickTime

	Graphic Symbols
	Movie Clips
	Creating a Movie Clip using existing animation

	Button Symbols
	Creating a button
	Adding animation to a button
	Adding sound to a button

	Organizing Your Library
	Adding Symbols to Movies
	Editing Symbols
	Editing a symbol in Symbol Editing Mode
	Editing a symbol in a new window
	Editing a symbol in place
	Editing symbols from the Library
	Returning to the movie after editing a symbol

	Modifying Instance Properties
	Modifying color effects with symbols
	Changing the behavior of an instance
	Switching symbols

	The Movie Explorer
	Shared Library and Shared Fonts
	Summary

	Ch10: Drawing in Flash
	Simple Shapes and Items
	Creating shapes

	The Drawing Panels
	The Info Panel
	The Transform Panel
	The Align Panel

	Fill and Stroke Effects
	Spheres
	Stroke effects

	Static Masks
	Masking with a graphic
	Masking with a group
	Masking with a symbol
	Masking text

	Creating Type and Text Effects
	Text with an outline
	Text with drop shadows
	More text effects

	Summary

	Ch11: Animating in Flash
	Frame-by-Frame Animation
	Adding keyframes
	Creating frame-by-frame animation

	Tweening
	The Frames Panel
	Shape tweening
	Motion tweening
	Motion Tweened effects

	Guide Layers
	Using Guide layers for layout
	Motion Guides
	Organizational Guides

	Masking Animations
	Animated mask text
	Masked moon phases
	Masked line progression
	Final notes about animated masks

	Summary

	Ch12: Using Bitmaps and Other Media with Flash
	Understanding Vector versus Bitmap Images
	Importing External Media
	Importing Vector Graphics
	Preparing Bitmaps for Flash
	More about preparing bitmaps

	Importing Bitmap Images
	Importing a bitmap file into Flash
	Copying and pasting a bitmap into Flash

	Setting Bitmap Properties
	Using Bitmaps as Fills
	Breaking a bitmap apart
	The Threshold setting of the Magic Wand
	The Smoothing setting of the Magic Wand option

	Tracing Bitmaps
	Cautionary Notes
	Bitmap shift
	Cross-browser consistency

	Color Insert: Bitmap Comparisons
	Generation of comparison images
	Observations and notes about the results of the settings

	Summary

	Ch13: Designing Interfaces and Interface Elements
	The Main Timeline as the Site Layout
	Creating a plan
	Determining Flash movie properties
	Mapping site areas to keyframes
	Creating content for each area

	Adding Navigation Elements to the Main Timeline
	Creating text buttons for a menu
	Browsing the product catalog

	Basic Text Scrolling
	Summary

	Ch14: Understanding Sound for Flash
	Basics of Sampling and Quality
	What is sound?
	What you should know about sound for Flash

	Sound File Import Formats
	Sound Export Formats Used by Flash
	Summary

	Ch15: Importing and Editing Sounds in Flash
	Importing Sounds into Flash
	Assigning a Sound to a Button
	Adding Sound to the Timeline
	Organizing sounds on the timeline

	Synchronizing Audio to Animations
	Types of sound synchronization in Flash

	Stopping Sounds
	Stopping a single instance of a Stream sound
	Stopping all sounds

	Editing Audio in Flash
	Sound editing controls in Flash
	Applying effects from the Effect pop-up of the Sound Panel

	Summary

	Ch16: Optimizing Flash Sound for Export
	Sound Optimization Overview
	Publish Settings for Audio
	The Set options

	Fine-tuning Sound Settings in the Library
	Settings for audio in the Library

	Publish Settings for QuickTime Sound
	Final Sound Advice and Pointers
	VBR (Variable Bit Rate) MP3
	Extracting a sound from a .FLA editor file

	Summary

	Ch17: Understanding Actions and Event Handlers
	Actions and Event Handlers
	What is ActionScript?
	Setting up the Actions Panel

	Your First Six Actions
	Go To
	Play
	Stop
	Toggle High Quality
	Stop All Sounds
	Get URL

	Making Actions Happen with Event Handlers
	Combining an action with an event handler to make a functioning button
	The Flash event handlers

	Summary

	Ch18: Navigating Flash Timelines
	Movie Clips: The Key to Self- Contained Playback
	How Movie Clips interact within a Flash movie
	One movie, several timelines

	Flash 4 into Flash 5: Targets and Paths Explained
	Paths: Absolute and relative modes
	Using Tell Target and Movie Clips with interfaces

	Targeting Movie Clips in Flash 5
	Using Movie Clips to create Sound Libraries
	How Movie Clips can add logic to a movie

	Summary

	Ch19: Controlling Movie Clips
	Movie Clips: The Object Overview
	Movie Clip properties
	Movie Clip methods
	onClipEvent: The Movie Clip Object handler
	Other objects that can use the Movie Clip Object
	Related functions that target the Movie Clip Object

	Working with Movie Clip Properties
	Positioning Movie Clips
	Scaling Movie Clips
	Rotating Movie Clips

	Manipulating Color Attributes
	Creating a Color Object
	Creating a Transform Object

	Enabling Sound with ActionScript
	Creating sound libraries with ActionScript
	Creating a soundTransformObject

	Creating Draggable Movie Clips
	Drag’n’drop basics
	Detecting the drop position: Using _dropTarget
	Making alpha and scale sliders

	Printing with ActionScript
	Summary

	Ch20: Sharing and Loading Assets
	Managing Smooth Movie Download and Display
	Building a basic preloader with ifFrameLoaded
	Preloading with _framesLoaded and _totalFrames
	Using getBytesLoaded() and getBytesTotal() in Flash 5

	Loading Flash Movies
	Basic overview of Flash site architecture
	Where are the multiple movies stored?
	Loading an external .SWF file into a movie
	How Flash handles loaded movies of differing sizes
	Placing, scaling, and rotating externally loaded . SWF files
	Communicating between multiple movies on different levels
	Unloading movies
	loadMovie as a method or action for Movie Clip targets

	Accessing Items in Shared Libraries
	Setting up a Shared Library file
	Assigning names to assets
	Specifying the Shared Library’s location
	Publishing the Shared Library .SWF file
	Linking to assets from other movies

	Summary

	Ch21: Planning Code Structures
	Breaking Down the Interactive Process
	Define your problems
	Clarify the solution
	Translate the solution into the interactive language

	The Basic Context for Programming in Flash
	Normal Mode
	Expert Mode
	Accessing ActionScript commands
	Actions list organization in the Actions Panel

	One Part of the Sum: ActionScript Variables
	String literals
	Expressions
	Variables as declarations
	Variables as text fields

	Declaring Variables in Flash
	Using actions to define variables
	Loading variables from a predefined source
	Sending variables to URLs
	Establishing variables with HTML

	Creating Expressions in ActionScript
	Operators
	Checking conditions: If...Else actions
	Loops
	Properties
	Built-in functions
	Creating and calling subroutines

	Make a Login Sequence with Variables
	Debugging Your Code
	Using the Debugger Panel
	Enabling remote debugging

	Summary

	Ch22: Creating Subroutines and Manipulating Data
	What Are Data Types?
	string
	number
	boolean
	movieclip
	object
	function
	undefined
	Checking data types with typeof

	Overview of Functions as Subroutines
	What functions do
	When to create a function
	How to define a function
	How to execute a function

	Managing Related Data: The Array Object
	Creating a Dynamic Reusable Flash Menu
	Functions as Methods of Objects
	Functions as Constructors for Objects
	Function definition
	Object creation and assignment
	Sound Object method execution

	Summary

	Ch23: Understanding Movie Clips as Complex Objects
	Movie Clip Collision Detection
	Using _dropTarget
	Collision detection with advanced scripting

	Reusing and Repurposing Code with Smart Clips
	Adding parameters to a Movie Clip symbol
	Assigning values to Smart Clip instances on the Stage

	Summary

	Ch24: Sending Data In and Out of Flash
	Using Text Fields to Store and Display Data
	Input Text fields
	Dynamic Text fields

	Defining a Data Process with States
	Input state
	Send state
	Wait state
	Output state

	Creating a Flash Form
	Using XML Data in Flash Movies
	Understanding XML
	Loading an XML document into a Flash movie

	Using the Flash Exchange
	Summary

	Ch25: Understanding HTML and Text Field Functions in Flash
	Exploring HTML Usage in Text Fields
	Supported HTML tags
	Formatting text with the Character and Text Options Panel
	Inserting HTML tags into Text Fields with ActionScript
	Using asfunction in <A HREF> tags

	Controlling Text Field Properties
	Manipulating Text with the Selection Object
	Summary

	Ch26: Advanced Movie Clip Architecture and Beyond
	Advanced Tutorials for Flash Interactivity
	Summary

	Ch27: What Is Generator?
	An Overview of Generator 2
	Generator Server
	Generator editions
	Online/Offline?
	Generator authoring extensions

	Your First Generator Template
	Summary

	Ch28: Revving Up Generator
	An Overview of Data Representation
	Name/Value data
	Column Name/Value data

	The Chart Object
	Creating a Bar Chart

	Lists and Tickers
	Basic Lists
	Scrolling Lists
	Tickers

	Using Generator Templates in Production
	Publishing Generator Templates (.SWT files)
	Using Generator Templates in HTML
	Using Generator Templates in other Flash movies

	Summary

	Ch29: Working with Third- party, Server- side Applications
	Using ASP with Flash Movies
	Flash Generation Utilities
	Swift Tools’ Swift Generator
	SwiffPEG by SwiffTOOLS
	Blue Pacific’s Flash Turbine
	Form2Flash
	OpenSWF.org

	Summary

	Ch30: Working with Raster Graphics
	Optimizing Images in Fireworks 4
	Preparing Images for Flash with Photoshop 6
	Creating alpha channels for .PNG files
	Color management in Photoshop 6

	Creating Image Effects with Corel Painter
	Exporting Raster Images from Flash
	General export options in raster formats
	Other raster file format options

	Summary

	Ch31: Working with Vector Graphics
	Preparing Vector Graphics for Flash Movies
	Guidelines for using external vector graphics in Flash
	Reducing path complexity
	Converting text to outlines
	Controlling color output

	Using FreeHand 9 with Flash
	Exporting Artwork from Illustrator
	Using the Macromedia Flash Writer plug-in
	Using .SWF Export from Illustrator 9

	Replacing Blends with Flash Gradients
	Using Layered FreeHand, EPS, or Illustrator Files
	Going Wild with Expression
	Converting Rasters to Vectors
	Flash’s Trace Bitmap command
	FreeHand’s Trace Tool
	Tracing with Adobe Streamline

	Exporting Vector Graphics from Flash
	A word of caution: Using vector formats from Flash

	Summary

	Ch32: Working with Audio Applications
	Sound-editing and Creation Software
	Sonic Foundry’s suite (PC only)
	Bias suite (Mac only)
	Cakewalk Pro suite (PC only)
	Studio Vision Pro (Mac only)
	Cubase (Mac/PC)
	Macromedia SoundEdit 16 (Mac only)
	Digidesign’s Pro Tools (Mac/PC)
	Setting In and Out points
	Normalizing audio levels
	Fade in and fade out
	Creating a reverb effect
	Other effects

	Summary

	Ch33: Working with 3D Graphics
	Introduction to 3D Modeling
	Simulating 3D with Flash
	Using Adobe Dimensions to Create 3D Objects
	How to extrude vector artwork
	Bringing a sequence into Flash

	Animating Figures with MetaCreations Poser
	Creating a walking figure in Poser
	Preparing Poser sequences for Flash
	Importing Poser sequences into Flash

	Exporting Animations from Kinetix 3D Studio Max
	Summary

	Ch34: Working with QuickTime
	QuickTime versus Video for Windows
	QuickTime Support in Flash
	Importing QuickTime into Flash
	Combining Flash and QuickTime Movies
	Creating QuickTime Flash movies
	Creating QuickTime video with Flash
	A word about QuickTime VR movies

	Using Digital Video in Flash Movies
	Extracting frames from digital video clips
	Importing a sequence into Flash

	Summary

	Ch35: Working with RealPlayer
	Flash to RealPlayer
	Flash Versions and Content Considerations
	Controlling RealPlayer Playback
	Evaluating Media Quality for RealFlash Movies
	Audio requirements
	Bandwidth considerations

	Publishing RealPlayer Presentations
	Summary

	Ch36: Creating Full- Motion Video with Flash
	High-Quality Video Output from Flash
	A Quick Video Primer
	A brief history of digital video

	Adjusting Flash Movies for Video Output
	Creating Sequences from Flash Movies
	Export process in Flash
	Uses of each sequence format

	Creating .AVI Files on the PC
	Dimensions
	Video format
	Sound format
	Video compression

	Importing Sequences into Video Applications
	Adobe Premiere 5.1
	Adobe After Effects 4.1

	Summary

	Ch37: Creating Cartoon Animation with Flash
	Working with Large File Sizes
	The Storyboard
	Backgrounds and Scenery
	Bitmaps
	QuickTime limitations
	Building layered backgrounds in Flash with Photoshop
	Flash Mask layers
	Long pans
	Multiplane pans
	Blurring to simulate depth

	Some Cartoon Animation Basics
	Expressing motion and emotion
	Anticipation
	Weight
	Overlapping actions
	Blurring to simulate motion

	Animator’s Keys and Inbetweening
	Walk cycles (or walk loops)
	Repeaters
	Types of walks
	Coloring the art

	Flash Tweening
	Panning
	Instance swapping

	Lip-synching
	Shape morphing is not for lip-sync
	Expression and lip-sync
	Lip-sync tricks
	Synching with music and sound effects

	Finishing Up
	Final output

	Summary

	Ch38: Planning Flash Production with Flowcharting Software
	Workflow Basics
	Phase I: Establishing the concept and goals
	Phase II: Producing, testing, and staging the presentation

	Using Inspiration to Create Flowcharts
	Building an organizational chart
	Creating a process chart

	Summary

	Ch39: Working with Authoring Applications
	Integrating .SWF Files into Dreamweaver
	Working with your Flash movie
	Positioning your movie
	Inserting a Flash Button
	Editing a Flash Button
	Inserting a Flash Text Object
	Editing a Flash Text Object
	Directing the browser to the Flash plug-in
	Publishing the HTML document
	Animation techniques using layers

	Using .SWF Files in Macromedia Director
	Benefits and limitations of Flash movies in Director
	Creating Director-specific actions in Flash
	Controlling .SWF files in Director
	Controlling .SWF files with Lingo

	Summary

	Ch40: Publishing Flash Movies
	Optimizing Flash Movies
	Simplify artwork
	Use symbols
	Manage assets in the Flash Library

	Testing Flash Movies
	Using the Test Scene or Movie command
	How to use the Bandwidth Profiler
	Using the size report

	Publishing Your Flash Movies
	Publish Settings
	Selecting formats
	Using the Flash settings
	Using the HTML settings
	Using the GIF settings
	Using the JPEG settings
	Using the PNG settings
	Creating Windows and Macintosh projectors
	Using the QuickTime settings
	Producing RealPlayer presentations

	Publish Preview and Publish Commands
	Using Publish Preview
	Using Publish

	Summary

	Ch41: Integrating Flash Content with HTML
	Writing Markup for Flash Movies
	Using the <OBJECT> tag
	Using the <EMBED> tag

	Detecting the Flash Player
	Plug-in versus ActiveX: Forcing content without a check
	JavaScript and VBScript player detection
	Using a Flash Swiffer movie

	Using Flash Movies with JavaScript and DHTML
	A word of caution to Web developers
	How Flash movies work with JavaScript
	Changing HTML attributes
	Using the PercentLoaded() method

	Summary

	Ch42: Using Players, Projectors, and Screensaver Utilities
	The Flash Stand-alone Player and Projector
	Creating a projector
	Distribution and licensing
	Distribution on CD-ROM or floppy disk
	FSCommands

	Stand-alone Limitations and Solutions
	Using the Flash Player Plug-in for Web Browsers
	Supported operating systems
	Supported browsers
	Plug-in and Flash movie distribution on the Web
	Plug-in installation

	Alternative Flash-Content Players
	Flash Player Java edition
	RealPlayer 8.0 with Flash playback
	QuickTime Player
	Shockwave Player
	Screensaver utilities
	Future players, future features

	Summary

	AppA: Using the CD- ROM
	Installing and Using Plug-Ins and Applications
	Installing and Using sendmail.cgi

	AppB: Contact Information for Contributors and Expert Tutorialists
	Contributors
	Expert Tutorialists
	Hungry Minds, Inc. End- User License Agreement

