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The bestselling guide to assembly language--now updated and expanded to include coverage of Linux.

This new edition of the bestselling guide to assembly programming now covers DOS and Linux! The Second
Edition begins with a highly accessible overview of the internal operations of the Intel-based PC and
systematically covers all the steps involved in writing, testing, and debugging assembly programs.

Expert author Jeff Duntemann then presents working example programs for both the DOS and Linux operating
systems using the popular free assembler NASM. He also inlcudes valuable infomation on how to use
procedures and macros, plus rare explanations of assembly-level coding for Linux, all of which combine to
offer a comprehensive look at the complexitites of assembly programming for Intel processors.

Providing you with the foundation to create executable assembly language programs, this book:

Explains how to use NASM-IDE, a simple program editor and assembly-oriented development
environment
Details the most used elements of the 86-family instruction set
Teaches about DEBUG, the single most useful tool you have as an assembly language programmer
Examines the operations that machine instructions force the CPU to perform
Discusses the process of memory addressing
Covers coding for Linux

About the Author

Jeff Duntemann is the Editor-in-Chief of Visual Developer magazine, former editor of Turbo Technix and PC
Techniques, the "Structured Programming" columnist for Dr. Dobb’s Journal, and has written and edited more
than twenty programming books.
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Foreword

Time passes. It was exactly 10 years ago this summer, back in July 1989, when I turned in the
manuscript of a book called Assembly Language from Square One. The book was well received, but its
publisher went belly-up only a few months after its introduction. That may have been a blessing,
because the book was too short, had a few more errors in it than it should have had, and was printed
on horrible cheap paper that ripped with almost no provocation and is now turning sickly yellow.

So, I leapt on the chance to do the book over and publish it with a real publisher, the most venerable
John Wiley & Sons, who (as their T-shirts say) has been totally awesome since 1809. It was thoroughly
rewritten and became a new book with a new title, and went on the shelves in September of 1992. Time
passes, but in a world where the life of a computer book may well be eight months or less, Wiley kept
the first edition of Assembly Language Step-by-Step in print for eight years, from 1992 to 2000.

In that time it has probably sold more copies than any other single assembly language book, and I've
received hundreds of letters of advice, corrections, suggestions, and simple, "Hey, this is cool!"
compliments. Thanks to you all for taking the time to write. It means a lot to me. It's unclear how long
this second edition will remain in print, but as long as people keep buying it (and telling me it's been
useful to them), I suspect that either this edition or one to follow will remain available.

Time passes. And before we get into the book proper, there's something else I wanted to relate. On
July 8, 1999, my sister Gretchen Duntemann Roper found that Kathleen Duntemann had died
peacefully in her sleep in Chicago, almost 10 years to the day since I had completed Assembly
Language from Square One, which was also dedicated to her. She kept both books on her coffee table
and would show them to anyone who came to visit, even though she never had a computer and
probably never understood what assembly language was. She was my aunt and godmother, my father's
sole sibling, who sang my ABCs to me and demanded that I be admitted to Adler Planetarium in
Chicago when I was six, even though the rules at that time demanded that children be seven to attend
the sky show. "Name the planets for the nice man," she told me, and I did, and when I had gone
through all the planets I started in on the constellations. I got in, because she believed in me. And she
was there through every other major milestone in my life: First Communion, Confirmation, wedding, my
father's illness and death, years and years of Christmases and Thanksgivings and birthdays, always
with treats for the dog and stories to tell, with a quick Irish wit and a generous heart-and truly I cannot
and will not ever forget her.

I say this only because so many of you are considerably younger than I, and may forget in the fever of
young life: Time passes, and so do the people who believe in us, and urge us through the walls as we
hit them so that we may arrive at midlife with something to show for it. Fathers and mothers,
grandparents, aunts and uncles can add immeasurably to our lives, and often do, even when we're too
busy to notice. Cherish them while you have them, because cherishing them after they're gone is a
lonely business indeed.

In the meantime, having been talking about assembly language in one book or another for 10 years,
I've decided to make it 20. As long as there will be PCs, there will be assembly language. Stay tuned.
The year 2009 will be here before you know it.



Introduction: "Why Would You Want to Do That?"

It was 1985, and I was in a chartered bus in New York City, heading for a press reception with a bunch
of other restless media egomaniacs. I was only beginning my media career (as technical editor for PC
Tech Journal) and my first book was still months in the future. I happened to be sitting next to an
established programming writer/guru, with whom I was impressed and to whom I was babbling about
one thing or another. I won't name him, as he's done a lot for the field, and will do a lot more before
he's through if he doesn't kill himself smoking first.

But I happened to let slip that I was a Turbo Pascal fanatic, and what I really wanted to do was learn
how to write Turbo Pascal programs that made use of the brand new Microsoft Windows user interface.
He wrinkled his nose and grimaced wryly, before speaking the Infamous Question:

"Why would you want to do that?"

I had never heard the question before (though I would hear it many times thereafter), and it took me
aback. Why? Because, well, because…I wanted to know how it worked.

"Heh. That's what C's for."

Further discussion got me nowhere in a Pascal direction. But some probing led me to understand that
you couldn't write Windows apps in Turbo Pascal. It was impossible. Or...the programming writer/guru
didn't know how. Maybe both. I never learned the truth. But I did learn the meaning of the Infamous
Question.

Note well: When somebody asks you, "Why would you want to do that?" what it really means is this:
"You've asked me how to do something that is either impossible using tools that I favor or completely
outside my experience, but I don't want to lose face by admitting it. So,...how 'bout those Blackhawks?"

I heard it again and again over the years:

Q: How can I set up a C string so that I can read its length without scanning it?

A: Why would you want to do that?

Q: How can I write an assembly language subroutine callable from Turbo Pascal?

A: Why would you want to do that?

Q: How can I write Windows apps in assembly language?

A: Why would you want to do that?

You get the idea. The answer to the Infamous Question is always the same, and if the weasels ever
ask it of you, snap back as quickly as possible: Because I want to know how it works.

That is a completely sufficient answer. It's the answer I've used every single time, except for one
occasion a considerable number of years ago, when I put forth that I wanted to write a book that taught
people how to program in assembly language as their first experience in programming.

Q: Good grief, why would you want to do that?

A: Because it's the best way there is to build the skills required to understand how all the rest of the
programming universe works.

Being a programmer is one thing above all else: It is understanding how things work. Learning to be a
programmer, furthermore, is almost entirely a process of learning how things work. This can be done at
various levels, depending on the tools you're working with. If you're programming in Visual Basic, you
have to understand how certain things work, but those things are by and large confined to Visual Basic
itself. A great deal of machinery is hidden by the layer that Visual Basic places between the
programmer and the computer. (The same is true of Delphi, Java, Perl, and many other very high-level
programming environments.) If you're using a C compiler, you're a lot closer to the machine, and you
see a lot more of that machinery-and must, therefore, understand how it works to be able to use it.
However, quite a bit remains hidden, even from the hardened C programmer. (Many C programmers



fool themselves into thinking they know way more than they actually do-and have the bad karma to be
pretty damned arrogant about it.)

If, on the other hand, you're working in assembly language, you're as close to the machine as you can
get. Assembly language hides nothing, and withholds no power. The flip side, of course, is that no
magical layer between you and the machine will absolve any ignorance and take care of things for you.
If you don't understand how something works, you're dead in the water-unless you know enough to be
able to figure it out on your own.

That's a key point: My goal in creating this book is not entirely to teach you assembly language per se.
If this book has a prime directive at all, it is to impart a certain disciplined curiosity about the machine,
along with some basic context from which you can begin to explore the machine at its lowest levels.
That, and the confidence to give it your best shot. This is difficult stuff, but it's nothing you can't master
given some concentration, patience, and the time it requires-which, I caution, may be considerable.

In truth, what I'm really teaching you is how to learn.

The Master Plan

You need an Intel-based computer. For a lot of what I'll be explaining, literally any Intel-based machine
will do-right back to the primordial 8088-based IBM PC from 1981. However, to be able to try all the
examples, you'll need at least a 386. Most of the book relates to 16-bit DOS, which comes with
Windows 95 and 98, and (in a slightly limited form) is emulated by Windows NT. Toward the end of the
book, I explain how to work with assembly under Linux, and for that you will definitely need a 386 or
more-advanced Intel machine.

Although most people think of mastering assembly language as the process of learning a collection of
machine instructions, that's actually the easy part. The real challenge in assembly is learning the
machine's memory models-so that's actually what I'll be emphasizing.

There are three general memory models for the Intel processor family: 16-bit flat model (sometimes
called the Tiny model, or just the "COM file model"), 16-bit segmented model, and 32-bit flat model. I'm
spending a fair amount of time on 16-bit flat model, because it's very much like the 32-bit flat model in
miniature. The segmented model ruled for a good many years (including the time when I wrote the first
edition of this book), but it's actually a compromise that lived far longer than it deserved to. Whatever
future Intel computing may have, it will happen in a flat memory model. You need to know about
segments-but I hope you'll never actually have to use them.

The CD-ROM for this book contains an assembler: NASM, the Net-Wide Assembler. It's free, it's easy
to learn, and full source code is available, free of charge, from the Internet. That's the assembler I'll be
teaching. If you can understand NASM, you can pick up Microsoft's MASM without trouble. NASM can
generate programs for both 16-bit DOS and 32-bit Linux, so it's the ideal assembler for me to teach in
this book. Although NASM is included on the CD-ROM, you might check the NASM Web site to see if a
newer version is available. (The first edition of this book remained in print for eight years. You could be
reading these words in the year 2005 or later-by which time most of the software I speak of will be in a
much more highly evolved state.) The Web locations of all the software mentioned or used in this book
are given in Appendix C.

In the first edition of this book I presented a simple editor/environment called JED. JED is history, gone
with some Borland code libraries that were pulled from the market. In its place I present NASM-IDE, a
conceptually similar utility created for NASM by Robert Anderton of the United Kingdom. NASM-IDE
operates only under DOS. It won't help you with Linux. But in Linux there are a multitude of editors
available, and in the process of learning Linux you certainly learned one of them. Whatever it is, use it.
(I use, and will recommend, EMACS.) If I've learned nothing else about Linux, it's that people get very
attached to their text editors. I won't ask you to learn another one.

The way to get the most from this book is to start at the beginning and read it through, one chapter at a
time, in order. Even if you roll your eyes and say you already know what hexadecimal is, read it anyway.
It's a good review-and you won't miss any of my jokes and funny stories. Load and run all the example
programs. Try your best to understand what every single line in every program does.

That is, ultimately, what I'm after: to show you the way to understand what every however-distant corner



of your machine is doing, and how all its many pieces work together. This doesn't mean I'll explain
every corner of it myself-no one will live long enough to do that; computing isn't simple anymore-but if
you develop the discipline of patient research and experimentation, you can probably work it out for
yourself. Ultimately, that's the only way to learn it: by yourself. The guidance you find-in friends, on the
Net, in books like this-is only guidance, and grease on the axles. You have to decide who's to be the
master, you or the machine, and make it so. Assembly programmers are the only programmers who
can truly claim to be the masters, and that's a truth worth meditating on.

If it means anything at all (optimist and thoroughgoing Pelagian that I am), I believe in you. Go for it.

-Jeff Duntemann
Scottsdale, Arizona

May 2000



Chapter 1: Another Pleasant Valley Saturday

Understanding What Computers Really Do

It's All in the Plan

"Quick, get the kids up, it's past 7. Nicky's got Little League at 9 and Dione's got ballet at 10. Mike, give
Max his heartworm pill! (We're out of them, Ma, remember?) Your father picked a great weekend to go
fishing…Here, let me give you 10 bucks and go get more pills at the vet's…My God, that's right, Hank
needed gas money and left me broke. There's a teller machine over by Kmart, and if I go there I can
take that stupid toilet seat back and get the right one.

"I guess I'd better make a list …"

It's another Pleasant Valley Saturday, and thirty-odd million suburban homemakers sit down with a
pencil and pad at the kitchen table to try and make sense of a morning that would kill and pickle any
lesser being. In her mind she thinks of the dependencies and traces the route:

Drop Nicky at Rand Park, go back to Dempster and it's about 10 minutes to Golf Mill Mall. Do I have
gas? I'd better check first-if not, stop at Del's Shell or I won't make it to Milwaukee Avenue. Milk the
teller machine at Golf Mill, then cross the parking lot to Kmart to return the toilet seat that Hank bought
last weekend without checking what shape it was. Gotta remember to throw the toilet seat in back of
the van-write that at the top of the list.

By then it'll be half past, maybe later. Ballet is all the way down Greenwood in Park Ridge. No left turn
from Milwaukee-but there's the sneak path around behind the Mall. I have to remember not to turn right
onto Milwaukee like I always do-jot that down. While I'm in Park Ridge I can check and see if Hank's
new glasses are in-should call but they won't even be open until 9:30. Oh, and groceries-can do that
while Dione dances. On the way back I can cut over to Oakton and get the dog's pills.

In about 90 seconds flat the list is complete:

Throw toilet seat in van.

Check gas-if empty, stop at Del's Shell.

Drop Nicky at Rand Park.

Stop at Golf Mill teller machine.

Return toilet seat at Kmart.

Drop Dione at ballet (remember back path to Greenwood).

See if Hank's glasses are at Pearle Vision-if they are, make double sure they remembered the
extra scratch coating.

Get groceries at Jewel.

Pick up Dione.

Stop at vet's for heartworm pills.

Drop off groceries at home.

If it's time, pick up Nicky. If not, collapse for a few minutes, then pick up Nicky.

Collapse!

In what we often call a "laundry list" (whether it involves laundry or not) is the perfect metaphor for a
computer program. Without realizing it, our intrepid homemaker has written herself a computer program
and then set out (acting as the computer) to execute it and be done before noon.

Computer programming is nothing more than this: You the programmer write a list of steps and tests.



The computer then performs each step and test in sequence. When the list of steps has been
executed, the computer stops.

A computer program is a list of steps and tests, nothing more.

Steps and Tests

Think for a moment about what I call a "test" in the preceding laundry list. A test is the sort of either/or
decision we make dozens or hundreds of times on even the most placid of days, sometimes nearly
without thinking about it.

Our homemaker performed a test when she jumped into the van to get started on her adventure. She
looked at the gas gauge. The gas gauge would tell her one of two things: (1) She has enough gas, or
(2) no, she doesn't. If she has enough gas, she takes a right and heads for Rand Park. If she doesn't
have enough gas, she takes a left down to the corner and fills the tank at Del's Shell. (Del takes credit
cards.) Then, with a full tank, she continues the program by taking a U-turn and heading for Rand Park.

In the abstract, a test consists of those two parts:

First, you take a look at something that can go one of two ways.

Then you do one of two things, depending on what you saw when you took a look.

Toward the end of the program, our homemaker got home, took the groceries out of the van, and took
a look at the clock. If it isn't time to get Nicky back from Little League, she has a moment to collapse on
the couch in a nearly empty house. If it is time to get Nicky, there's no rest for the ragged: She sprints
for the van and heads back to Rand Park.

(Any guesses as to whether she really gets to collapse when the program is complete?)

More than Two Ways?

You might object, saying that many or most tests involve more than two alternatives. Ha-hah, sorry,
you're dead wrong-in every case. Furthermore, you're wrong whether you think you are or not.

Except for totally impulsive or psychotic behavior, every human decision comes down to the choice
between two alternatives.

What you have to do is look a little more closely at what goes through your mind when you make
decisions. The next time you buzz down to Moo Foo Goo for fast Chinese, observe yourself while
you're poring over the menu. The choice might seem, at first, to be of one item out of 26 Cantonese
main courses. Not so-the choice, in fact, is between choosing one item and not choosing that one item.
Your eyes rest on Chicken with Cashews. Naw, too bland. That was a test. You slide down to the next
item. Chicken with Black Mushrooms. Hmmm, no, had that last week. That was another test. Next item:
Kung Pao Chicken. Yeah, that's it! That was a third test.

The choice was not among chicken with cashews, chicken with black mushrooms, or chicken with kung
pao. Each dish had its moment, poised before the critical eye of your mind, and you turned thumbs up
or thumbs down on it, individually. Eventually, one dish won, but it won in that same game of "to eat or
not to eat."

Let me give you another example. Many of life's most complicated decisions come about due to the fact
that 99.99867 percent of us are not nudists. You've been there: You're standing in the clothes closet in
your underwear, flipping through your rack of pants. The tests come thick and fast. This one? No. This
one? No. This one? No. This one? Yeah. You pick a pair of blue pants, say. (It's a Monday, after all,
and blue would seem an appropriate color.) Then you stumble over to your sock drawer and take a
look. Whoops, no blue socks. That was a test. So you stumble back to the clothes closet, hang your
blue pants back on the pants rack, and start over. This one? No. This one? No. This one? Yeah. This
time it's brown pants, and you toss them over your arm and head back to the sock drawer to take
another look. Nertz, out of brown socks, too. So it's back to the clothes closet …

What you might consider a single decision, or perhaps two decisions inextricably tangled (like picking
pants and socks of the same color, given stock on hand), is actually a series of small decisions, always



binary in nature: Pick 'em or don't pick 'em. Find 'em or don't find 'em. The Monday morning episode in
the clothes closet is a good analogy of a programming structure called a loop: You keep doing a series
of things until you get it right, and then you stop. (Assuming you're not the kind of nerd who wears blue
socks with brown pants.) But whether you get everything right always comes down to a sequence of
simple either/or decisions.

Computers Think Like Us

I can almost hear what you're thinking: "Sure, it's a computer book, and he's trying to get me to think
like a computer." Not at all. Computers think like us. We designed them; how else could they think? No,
what I'm trying to do is get you to take a long, hard look at how you think. We run on automatic for so
much of our lives that we literally do most of our thinking without really thinking about it.

The very best model for the logic of a computer program is the very same logic we use to plan and
manage our daily affairs. No matter what we do, it comes down to a matter of confronting two
alternatives and picking one. What we might think of as a single large and complicated decision is
nothing more than a messy tangle of many smaller decisions. The skill of looking at a complex decision
and seeing all the little decisions in its tummy will serve you well in learning how to program. Observe
yourself the next time you have to decide something. Count up the little decisions that make up the big
one. You'll be surprised.

And, surprise! You'll be a programmer.



Had This Been the Real Thing…

Do not be alarmed. What you have just experienced was a metaphor. It was not the real thing. (The
real thing comes later.)

I use metaphors a lot in this book. A metaphor is a loose comparison drawn between something familiar
(such as a Saturday morning laundry list) and something unfamiliar (such as a computer program). The
idea is to anchor the unfamiliar in the terms of the familiar, so that when I begin tossing facts at you,
you'll have someplace comfortable to lay them down.

The most important thing for you to do right now is keep an open mind. If you know a little bit about
computers or programming, don't pick nits. Yes, there are important differences between a homemaker
following a scribbled laundry list and a computer executing a program. I'll mention those differences all
in good time.

For now, it's still Chapter 1. Take these initial metaphors on their own terms. Later on, they'll help a lot.



Do Not Pass GO

"There's a reason bored and board are homonyms," said my best friend Art one evening, as we sat (two
super-sophisticated twelve-year-olds) playing some game in his basement. (He may have been
unhappy because he was losing.) Was it Mille Bornes? Or Stratego? Or Monopoly? Or something else
entirely? I confess, I don't remember. I simply recall hopping some little piece of plastic shaped like a
pregnant bowling pin up and down a series of colored squares that told me to do dumb things like go
back two spaces or put $100 in the pot or nuke Outer Mongolia.

Outer Mongolia notwithstanding, there are strong parallels to be drawn between that peculiar American
obsession, the board game, and assembly-language programming. First of all, everything we said
before still holds: Board games, by and large, consist of a progression of steps and tests. In some
games, such as Trivial Pursuit, every step on the board is a test: to see if you can answer, or not
answer, a question on a card. In other board games, each little square on the board contains some sort
of instruction: Lose One Turn; Go Back Two Squares; Take a Card from Community Chest; and, of
course, Go to Jail.

Certain board games made for some lively arguments between Art and myself (it was that or be bored,
as it were) concerning what it meant to Go Forward or Backward Five Steps. It seemed to me that you
should count the square you were already on, and Art, traditionalist always, thought you should start
counting with the first step in the direction you had to go. This made a difference in the game, of
course. (I conveniently forgot to press my point when doing so would land me on something like Park
Place with 15 of Art's hotels on it …)

The Game of Big Bux

To avoid getting in serious trouble, I have invented my own board game to continue down the road with
this particular metaphor. In the sense that art mirrors life, the Game of Big Bux mirrors life in Silicon
Valley, where money seems to be spontaneously created (generally in somebody else's pocket) and
the three big Money Black Holes are fast cars, California real estate, and messy divorces.

A portion of the Big Bux Game Board is shown in Figure 1.1. The line of rectangles on the left side of
the page continues all the way around the board. In the middle of the board are cubbyholes to store
your play money and game pieces; stacks of cards to be read occasionally; and short detours with such
names as Messy Divorce and Start a Business, which are brief sequences of the same sort of action
rectangles as those forming the path around the edge of the board.



Figure 1.1: The Game of Big Bux.

Unlike many board games, you don't throw dice to determine how many steps around the board you
take. Big Bux requires that you move one step forward on each turn, unless the square you land on
instructs you to move forward or backward or go somewhere else, such as through a detour. This
makes for a considerably less random game. In fact, Big Bux is a pretty deterministic game, meaning
that whether you win or lose is far less important than just going through the ringer and coming out the
other side. (Again, this mirrors Silicon Valley, where you come out either bankrupt or ready to flee to
Peoria and open a hardware store. That other kind of hardware.)

There is some math involved. You start out with one house, a cheap car, and $50,000 in cash. You can
buy CDs at a given interest rate, payable each time you make it once around the board. You can invest
in stocks and other securities whose value is determined by a changeable index in economic indicators,
which fluctuates based on cards chosen from the stack called the Fickle Finger of Fate. You can sell
cars on a secondary market, buy and sell houses, and wheel and deal with the other players. Each time
you make it once around the board you have to recalculate your net worth. All of this involves some
addition, subtraction, multiplication, and division, but there's no math more complex than compound
interest. Most of Big Bux involves nothing more than taking a step and following the instructions at each
step.

Is this starting to sound familiar?

Playing Big Bux

At one corner of the Big Bux board is the legend Move In, since that's how people start life in
California-no one is actually born there. Once moved in, you begin working your way around the board,
square by square, following the instructions in the squares. Some of the squares simply tell you to do
something, such as Buy condo in Palo Alto for 15% down. Many of the squares involve a test of
some kind. For example, one square reads: Is your job boring? (Prosperity Index 0.3 but less than
4.0) If not, jump ahead 3 squares. The test is actually to see if the Prosperity Index has a value
between 0.3 and 4.0. Any value outside those bounds (that is, runaway prosperity or Four Horsemen-



class recession) is defined as Interesting Times, and causes a jump ahead by three squares.

You always move one step forward at each turn, unless the square you land on directs you to do
something else, such as jump forward three squares or jump back five squares.

The notion of taking a detour is an interesting one. Two detours are shown in the portion of the board
I've provided. Taking a detour means leaving the main run around the edge of the game board and
stepping through a series of squares elsewhere on the board. The detours involve some specific
process, that is, starting a business or getting divorced.

You can work through a detour, step by step, until you hit the bottom. At that point you simply pick up
your journey around the board right where you left it. You may also find that one of the squares in the
detour instructs you to go back to where you came from. Depending on the logic of the game (and your
luck and finances), you may completely run through a detour or get thrown out somewhere in the
middle.

Also note that you can take a detour from within a detour. If you detour through Start a Business and
your business goes bankrupt, you leave Start a Business temporarily and detour through Messy
Divorce. Once you leave Messy Divorce, you return to where you left Start a Business. Ultimately, you
also leave Start a Business and return to wherever it was you were when you took the detour.

The same detour (for example, Start a Business) can be taken from any of several different places
along the game board.

Assembly Language Programming as a Board Game

Now that you're thinking in terms of board games, take a look at Figure 1.2. What I've drawn is actually
a fair approximation of assembly language as it was used on some of our simpler microprocessors
about 15

Figure 1.2: The Game of Assembly Language.



or 20 years ago. The column marked "PROGRAM INSTRUCTIONS" is the main path around the edge
of the board, of which only a portion can be shown here. This is the assembly language computer
program, the actual series of steps and tests that, when executed, causes the computer to do
something useful. Setting up this series of program instructions is what programming in assembly
language actually is.

Everything else is odds and ends in the middle of the board that serve the game in progress. You're
probably noticing (perhaps with sagging spirits) that there are a lot of numbers involved. (They're weird
numbers, too-what, for example, does "004B" mean? I deal with that issue in Chapter 2, Alien Bases.)
I'm sorry, but that's simply the way the game is played. Assembly language, at the innermost level, is
nothing but numbers, and if you hate numbers the way most people hate anchovies, you're going to
have a rough time of it. (I like anchovies, which is part of my legend. Learn to like numbers. They're not
as salty.)

I should caution you that the Game of Assembly Language represents no real computer processor like
the Pentium. Also, I've made the names of instructions more clearly understandable than the names of
the instructions in Intel assembly language. In the real world, instruction names are typically things like
STOSB, DAA, INC, SBB, and other crypticisms that cannot be understood without considerable
explanation. We're easing into this stuff sidewise, and in this chapter I have to sugarcoat certain things
a little to draw the metaphors clearly.

Code and Data

Like most board games (including the Game of Big Bux), the assembly language board game consists
of two broad categories of elements: game steps and places to store things. The "game steps" are the
steps and tests I've been speaking of all along. The places to store things are just that: cubbyholes into
which you can place numbers, with the confidence that those numbers will remain where you put them
until you take them out or change them somehow.

In programming terms, the game steps are called code, and the numbers in their cubbyholes (as
distinct from the cubbyholes themselves) are called data. The cubbyholes themselves are usually
called storage. (The difference between the places you store information and the information you store
in them is crucial. Don't confuse them.)

The Game of Big Bux works the same way. Look back to Figure 1.1 and note that in the Start a
Business detour, there is an instruction reading Add $850,000 to checking account. The checking
account is one of several different kinds of storage in the Game of Big Bux, and money values are a
type of data. It's no different conceptually from an instruction in the Game of Assembly Language
reading ADD 5 to Register A. An ADD instruction in the code alters a data value stored in a cubbyhole
named Register A.

Code and data are two very different kinds of critters, but they interact in ways that make the game
interesting. The code includes steps that place data into storage (MOVE instructions) and steps that
alter data that is already in storage (INCREMENT and DECREMENT instructions). Most of the time
you'll think of code as being the master of data, in that the code writes data values into storage. Data
does influence code as well, however. Among the tests that the code makes are tests that examine
data in storage, the COMPARE instructions. If a given data value exists in storage, the code may do
one thing; if that value does not exist in storage, the code will do something else, as in the JUMP
BACK and JUMP AHEAD instructions.

The short block of instructions marked PROCEDURE is a detour off the main stream of instructions. At
any point in the program you can duck out into the procedure, perform its steps and tests, and then
return to the very place from which you left. This allows a sequence of steps and tests that is generally
useful and used frequently to exist in only one place rather than exist as a separate copy everywhere it
is needed.

Addresses

Another critical concept lies in the funny numbers at the left side of the program step locations and data
locations. Each number is unique, in that a location tagged with that number appears only once inside
the computer. This location is called an address. Data is stored and retrieved by specifying the data's



address in the machine. Procedures are called by specifying the address at which they begin.

The little box (which is also a storage location) marked PROGRAM COUNTER keeps the address of
the next instruction to be performed. The number inside the program counter is increased by one (we
say, "incremented") each time an instruction is performed unless the instructions tells the program
counter to do something else. For example: Notice the JUMP BACK 7 instruction at address 0049.
When this instruction is performed, the program counter will "back up" by seven counts. This is
analogous to the "go back three spaces" concept in most board games.

Metaphor Check!

That's about as much explanation of the Game of Assembly Language as I'm going to offer for now.
This is still Chapter 1, and we're still in metaphor territory. People who have had some exposure to
computers will recognize and understand more of what Figure 1.2 is doing. (There's a real, traceable
program going on in there-I dare you to figure out what it does-and how!) People with no exposure to
computer innards at all shouldn't feel left behind for being utterly lost. I created the Game of Assembly
Language solely to put across the following points:

The individual steps are very simple. One single instruction rarely does more than move a single
byte from one storage cubbyhole to another, or compare the value contained in one storage
cubbyhole to a value contained in another. This is good news, because it allows you to concentrate
on the simple task accomplished by a single instruction without being overwhelmed by complexity.
The bad news, however, is the following.

It takes a lot of steps to do anything useful. You can often write a useful program in such
languages as Pascal or BASIC in five or six lines. You can actually create useful programs in
Visual Basic and Delphi without writing any code at all. (The code is still there…but the code is
"canned" and all you're really doing is choosing which chunks of canned code in a collection of
many such chunks will run.) A useful assembly language program cannot be implemented in fewer
than about 50 lines, and anything challenging takes hundreds or thousands of lines. The skill of
assembly language programming lies in structuring these hundreds or thousands of instructions so
that the program can be read and understood.

The key to assembly language is understanding memory addresses. In such languages as Pascal
and BASIC, the compiler takes care of where something is located-you simply have to give that
something a name, and call it by that name whenever you want to look at it or change it. In
assembly language, you must always be cognizant of where things are in your computer's memory.
So, in working through this book, pay special attention to the concept of addressing, which is
nothing more than the art of specifying where something is. The Game of Assembly Language is
peppered with addresses and instructions that work with addresses (such as MOVE data at B to
C, which means move the data stored at the address specified by register B to the address
specified by register C). Addressing is by far the trickiest part of assembly language, but master it
and you've got the whole thing in your hip pocket.

Everything I've said so far has been orientation. I've tried to give you a taste of the big picture of
assembly language and how its fundamental principles relate to the life you've been living all along. Life
is a sequence of steps and tests, and so are board games-and so is assembly language. Keep those
metaphors in mind as we proceed to get real by confronting the nature of computer numbers.



Chapter 2: Alien Bases Getting Your Arms around

Binary and Hexadecimal

The Return of the New Math Monster

The year 1966. Perhaps you were there. New Math burst upon the grade school curricula of the nation,
and homework became a turmoil of number lines, sets, and alternate bases. Middle-class parents
scratched their heads with their children over questions like, "What is 17 in Base Five?" and "Which
sets does the Null Set belong to?" In very short order (I recall a period of about two months), the whole
thing was tossed in the trash as quickly as it had been concocted by addle-brained educrats with too
little to do.

This was a pity, actually. What nobody seemed to realize at the time was that, granted, we were
learning New Math—except that Old Math had never been taught at the grade school level either. We
kept wondering of what possible use it was to know what the intersection of the set of squirrels and the
set of mammals was. The truth, of course, was that it was no use at all. Mathematics in America has
always been taught as applied mathematics—arithmetic—heavy on the word problems. If it won't help
you balance your checkbook or proportion a recipe, it ain't real math, man. Little or nothing of the logic
of mathematics has ever made it into the elementary classroom, in part because elementary school in
America has historically been a sort of trade school for everyday life. Getting the little beasts
fundamentally literate is difficult enough. Trying to get them to appreciate the beauty of alternate
number systems simply went over the line for practical middle-class America.

I was one of the few who enjoyed fussing with math in the New-Age style back in 1966, but I gladly laid
it aside when the whole thing blew over. I didn't have to pick it up again until 1976, when, after working
like a maniac with a wire-wrap gun for several weeks, I fed power to my COSMAC ELF computer and
was greeted by an LED display of a pair of numbers in base 16!

Mon dieu, New Math redux…

This chapter exists because at the assembly language level, your computer does not understand
numbers in our familiar base 10. Computers, in a slightly schizoid fashion, work in base 2 and base
16—all at the same time. If you're willing to confine yourself to higher-level languages such as Basic or
Pascal, you can ignore these alien bases altogether, or perhaps treat them as an advanced topic once
you get the rest of the language down pat. Not here. Everything in assembly language depends on your
thorough understanding of these two number bases. So before we do anything else, we're going to
learn how to count all over again—in Martian.



Counting in Martian

There is intelligent life on Mars.

That is, the Martians are intelligent enough to know from watching our TV programs these past 50
years that a thriving tourist industry would not be to their advantage. So they've remained in hiding,
emerging only briefly to carve big rocks into the shape of Elvis's face to help the National Enquirer
ensure that no one will ever take Mars seriously again. The Martians do occasionally communicate with
science fiction writers like me, knowing full well that nobody has ever taken us seriously. Hence the
information in this section, which involves the way Martians count.

Martians have three fingers on one hand, and only one finger on the other. Male Martians have their
three fingers on the left hand, while females have their three fingers on the right hand. This makes
waltzing and certain other things easier.

Like human beings and any other intelligent race, Martians started counting by using their fingers. Just
as we used our 10 fingers to set things off in groups and powers of 10, the Martians used their four
fingers to set things off in groups and powers of four. Over time, our civilization standardized on a set of
10 digits to serve our number system. The Martians, similarly, standardized on a set of four digits for
their number system. The four digits follow, along with the names of the digits as the Martians

pronounce them: T (xip),  (foo), n (bar), = (bas).

Like our zero, xip is a placeholder representing no items, and while Martians sometimes count from xip,
they usually start with foo, representing a single item. So they start counting: Foo, bar, bas…

Now what? What comes after bas? Table 2.1 demonstrates how the Martians count to what we would
call 25.

Table 2.1: Counting in Martian, Base Fooby

MARTIAN NUMERALS MARTIAN PRONUNCIATION EARTH EQUIVALENT

T Xip 0

Foo 1

n Bar 2

= Bas 3

T Fooby 4

Fooby-foo 5

n Fooby-bar 6

= Fooby-bas 7

nT Barby 8

n Barby-foo 9

nn Barby-bar 10

n= Barby-bas 11

=T Basby 12

= Basby-foo 13

=n Basby-bar 14

== Basby-bas 15

TT Foobity 16

T Foobity-foo 17



Tn Foobity-bar 18

T= Foobity-bas 19

T Foobity-fooby 20

Foobity-fooby-foo 21

n Foobity-fooby-bar 22

= Foobity-fooby-bas 23

nT Foobity-barby 24

n Foobity-barby-foo 25

With only four digits (including the one representing zero) the Martians can only count to bas without
running out of digits. The number after bas has a new name, fooby. Fooby is the base of the Martian
number system, and probably the most important number on Mars. Fooby is the number of fingers a
Martian has. We would call it four.

The most significant thing about fooby is the way the Martians write it out in numerals: T. Instead of a
single column, fooby is expressed in two columns. Just as with our decimal system, each column has a
value that is a power of fooby. This means only that as you move from the rightmost column toward the
left, each column represents a value fooby times the column to its right.

The rightmost column represents units, in counts of foo. The next column over represents fooby times
foo, or (given that arithmetic works the same way on Mars as here, New Math notwithstanding) simply
fooby. The next column to the left of fooby represents fooby times fooby, or foobity, and so on. This
relationship should become clearer through Table 2.2.

Table 2.2: Powers of Fooby

Foo x Fooby= T (Fooby)

T Fooby x Fooby= TT (Foobity)

TT Foobity x Fooby= TTT (Foobidity)

TTT Foobidity x Fooby= TTTT (Foobididity)

TTTT Foobididity x Fooby= TTTTT (Foobidididity)

TTTTT Foobidididity x Fooby= TTTTTT and so on…

Dissecting a Martian Number

Any given column may contain a digit from xip to bas, indicating how many instances of that column's
value are contained in the number as a whole. Let's work through an example. Look at Figure 2.1,

which is a dissection of the Martian number n= T=, pronounced "Barbididity-basbidity-foobity-bas." (A
visiting and heavily disguised Martian precipitated the doo-wop craze while standing at a Philadelphia
bus stop in 1954, counting his change.)



Figure 2.1: The anatomy of n= T=.

The rightmost column tells how many units are contained in the number. The digit there is bas,
indicating that the number contains bas units. The second column from the right carries a value of
fooby times foo (fooby times one) or fooby. A xip in the fooby column indicates that there are no foobies

in the number. The xip digit in  T is a placeholder,  just as zero is in our numbering system. Notice also
that in the columnar sum shown to the right of the digit matrix, the foobies line is represented by a
double xip. Not only is there a xip to tell us that there are no foobies, but also a xip holding the foos
place as well. This pattern continues in the columnar sum as we move toward the more significant
columns to the left.

Fooby times fooby is foobity, and the  digit tells us that there is foo foobity (a single foobity) in the
number. The next column, in keeping with the pattern, is foobity times fooby, or foobidity. In the

columnar notation, foobidity is written as TTT. The = digit tells us that there are bas foobidities in the
number. Bas foobidities is a number with its own name, basbidity, which may be written as =TTT. Note
the presence of basbidity in the columnar sum.

The next column to the left has a value of fooby times foobidity, or foobididity. The n digit tells us that
there are bar foobididities in the number. Bar foobididities (written nTTTT) is also a number with its
own name, barbididity. Note also the presence of barbididity in the columnar sum, and the four xip
digits that hold places for the empty columns.

The columnar sum expresses the sense of the way a number is assembled: The number contains

barbididity, basbidity, foobity, and bas. Roll all that together by simple addition and you get n= T=.
The name is pronounced simply by hyphenating the component values: barbididity-basbidity-foobity-
bas. Note that there is no part in the name representing the empty fooby column. In our own familiar
base 10 we don't, for example, pronounce the number 401 as "four hundred, zero tens, one." We
simply say, "four hundred one." In the same manner, rather than say "xip foobies," the Martians just
leave it out.

As an exercise, given what I've told you so far about Martian numbers, figure out the Earthly value

equivalent to n = T =.

The Essence of a Number Base

Since tourist trips to Mars are unlikely to begin any time soon, of what Earthly use is knowing the
Martian numbering system? Just this: It's an excellent way to see the sense in a number base without
getting distracted by familiar digits and our universal base 10.

In a columnar system of numeric notation like both ours and the Martians', the base of the number
system is the magnitude by which each column of a number exceeds the magnitude of the column to its
right. In our base 10 system, each column represents a value 10 times the column to its right. In a base
fooby system like the one used on Mars, each column represents a value fooby times that of the



column to its right. (In case you haven't already caught on, the Martians are actually using base 4-but I
wanted you to see it from the Martians' own perspective.) Each has a set of digit symbols, the number
of which is equal to the base. In our base 10, we have 10 symbols, from 0 to 9. In base 4, there are four
digits from 0 to 3. In any given number base, the base itself can never be expressed in a single digit!



Octal: How the Grinch Stole Eight and Nine

Farewell to Mars. Aside from lots of iron oxide and some terrific a capella groups, they haven't much to
offer us 10-fingered folk. There are some similarly odd number bases in use here, and I'd like to take a
quick detour through one that occupies a separate world right here on Earth: the world of Digital
Equipment Corporation, better known as DEC.

Back in the sixties, DEC invented the minicomputer as a challenger to the massive and expensive
mainframes pioneered by IBM. (The age of minicomputers is long past, and what's left of DEC is now
owned by Compaq, a microcomputer company.) To ensure that no software could possibly be moved
from an IBM mainframe to a DEC minicomputer, DEC designed its machines to understand only
numbers expressed in base 8.

Let's think about that for a moment, given our experience with the Martians. In base 8, there must be
eight digits. DEC was considerate enough not to invent its own digits, so what it used were the
traditional digits from 0 to 7. There is no digit 8 in base 8! That always takes a little getting used to, but
it's part of the definition of a number base. DEC gave a name to its base 8 system: octal.

A columnar number in octal follows the rule we encountered in thinking about the Martian system: Each
column has a value eight times that of the column to its right.

Who Stole Eight and Nine?

Counting in octal starts out in a very familiar fashion: one, two, three, four, five, six, seven…10.

This is where the trouble starts. In octal, 10 comes after seven. What happened to eight and nine? Did
the Grinch steal them? (Or the Martians?) Hardly. They're still there—but they have different names. In
octal, when you say "10" you mean "eight." Worse, when you say "11" you mean "nine."

Unfortunately, what DEC did not do was invent clever names for the column values. The first column is,
of course, the units column. The next column to the left of the units column is the tens column, just as it
is in our own decimal system. But there's the rub, and the reason I dragged Mars into this: Octal's
"tens" column actually has a value of 8.

A counting table will help. Table 2.3 counts up to 30 octal, which has a value of 24 decimal. I dislike the
use of the terms eleven, twelve, and so on in bases other than 10, but the convention in octal has
always been to

Table 2.3: Counting in Octal, Base 8

OCTAL NUMERALS OCTAL PRONUNCIATION DECIMAL EQUIVALENT

0 Zero 0

1 One 1

2 Two 2

3 Three 3

4 Four 4

5 Five 5

6 Six 6

7 Seven 7

10 Ten 8

11 Eleven 9

12 Twelve 10

13 Thirteen 11

14 Fourteen 12

15 Fifteen 13



16 Sixteen 14

17 Seventeen 15

20 Twenty 16

21 Twenty-one 17

22 Twenty-two 18

23 Twenty-three 19

24 Twenty-four 20

25 Twenty-five 21

26 Twenty-six 22

27 Twenty-seven 23

30 Thirty 24

pronounce the numbers as we would in decimal, only with the word octal after them. Don't forget to say
octal—otherwise, people get really confused!

Remember, each column in a given number base has a value base times the column to its right, so the
tens column in octal is actually the eights column. (They call it the tens column because it is written 10,
and pronounced "ten.") Similarly, the column to the left of the tens column is the hundreds column
(because it is written 100 and pronounced "hundreds"), but the hundreds column actually has a value of
8 times 8, or 64. The next column to the left has a value of 64 times 8, or 512, and the column left of
that has a value of 512 times 8, or 4,096.

This is why if someone talks about a value of "ten octal," they mean 8; "one hundred octal," they mean
64; and so on. Table 2.4 summarizes the octal column values and their decimal equivalents.

Table 2.4: Octal Columns as Powers of Eight

OCTAL POWER OF 8   DECIMAL OCTAL

1 = 80 = 1 × 8 = 10

10 = 81 = 8 × 8 = 100

100 = 82 = 64 × 8 = 1000

1000 = 83 = 512 × 8 = 10000

10000 = 84 = 4096 × 8 = 100000

100000 = 85 = 32768 × 8 = 1000000

1000000 = 86 = 262144 × 8 = 10000000

A digit in the first column (the units, or ones column) tells how many units are contained in the octal
number. A digit in the next column to the left, the tens column, tells how many eights are contained in
the octal number. A digit in the third column, the hundreds column, tells how many 64s are in the
number, and so on. For example, 400 octal means that the number contains four 64s; that is 256 in
decimal.

Yes, it's confusing, in spades. The best way to make it all gel is to dissect a middling octal number, just
as we did with a middling Martian number. This is what's happening in Figure 2.2: The octal number
76225 is pulled apart into columns and added up again.



Figure 2.2: The anatomy of 76225 octal.

It works here the same way it does in Martian, or in decimal, or in any other number base you could
devise. In general: Each column has a value consisting of the number base raised to the power
represented by the ordinal position of the column minus one. For example, the value of the first column
is the number base raised to the 1 minus 1, or zero, power. Since any number raised to the zero power
is one, the first column in any number base always has the value of one and is called the units column.
The second column has the value of the number base raised to the 2 minus 1, or first power, which is
the value of the number base itself. In octal this is 8; in decimal, 10; in Martian base fooby, fooby. The
third column has a value consisting of the number base raised to the 3 minus 1, or second power, and
so on.

Within each column, the digit holding that column tells how many instances of that column's value is
contained in the number as a whole. Here, the 6 in 76225 octal tells us that there are six instances of
its column's value in the total value 76225 octal. The six occupies the fourth column, which has a value
of 84 - 1 , which is 83, or 512. This tells us that there are six 512s in the number as a whole.

You can convert the value of a number in any base to decimal (our base 10) by determining the value
of each column in the alien base, then multiplying the value of each column by the digit contained in
that column (to create the decimal equivalent of each digit), and then finally taking the sum of the
decimal equivalent of each column. This is done in Figure 2.2, and the octal number and its decimal
equivalent are shown side by side. Something to notice in Figure 2.2 is the small subscript numerals on
the right-hand side of the columnar sums. These subscripts are used in many technical publications to
indicate a number base. The subscript in the value 762258, for example, indicates that the value 76225
is here denoting a quantity in octal, which is base 8. Unlike the obvious difference between Martian and
decimal, there's really nothing about an octal number itself that sets it off as octal. (We encounter
something of this same problem a little later on when we confront hexadecimal.) The value 3189310, by
contrast, is shown by its subscript to be a base 10, or decimal, quantity. This is mostly done in scientific
and research writing. In most computer publications (including this one) other indications are used, on
which more later.

Now that we've looked at columnar notation from both a Martian and an octal perspective, make sure
you understand how columnar notation works in any arbitrary base before we go on.

Living Fossils

Octal as a number base is very nearly extinct. The DEC PDP8 machines that were octal's home turf are
now dishwasher-sized museum pieces with about the same computing power as a Furby toy. There is,
however, one small domain where octal numbers still (literally) roam the Earth. People who have used



the CompuServe online system for some time may be known by their numeric IDs. (Newer
CompuServe accounts use alphabetic IDs, just as all Internet systems use.) Back when I had a
CompuServe account, it was 76711,470. Note that nowhere in that numeric ID is any digit larger than 7.
In fact, nowhere in any old-style CompuServe ID number will you find either the digit 8 or the digit 9.
CompuServe was created a good many years ago on a (large) bank of old DEC computers, and their
login IDs are all in octal. But as with most living fossils, look quick. CompuServe's old octal IDs are
getting rarer and rarer all the time.



Hexadecimal: Solving the Digit Shortage

Octal is unlikely to be of use to you unless you do what a friend of mine did and restore an ancient DEC
PDP8 computer that he had purchased as surplus from his university, by the pound. (He said it was
considerably cheaper than potatoes, if not quite as easy to fry. Not quite.) As I mentioned earlier, the
real numbering system to reckon with in the microcomputer world is base 16, which we call
hexadecimal, or (more affectionately) simply "hex."

Hexadecimal shares the essential characteristics of any number base, including both Martian and octal:
It is a columnar notation, in which each column has a value 16 times the value of the column to its right.
It has 16 digits, running from 0 to…what?

We have a shortage of digits here. From zero through nine we're in fine shape. However, 10, 11, 12,
13, 14, and 15 need to be expressed in single digits. Without any additional numeric digits, the people
who developed hexadecimal notation in the early 1950s borrowed the first six letters of the alphabet to
act as the needed digits.

Counting in hexadecimal, then, goes like this: 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 1A, 1B, 1C, and so on. Table 2.5 restates this in a more organized fashion, with
the decimal equivalents up to 32.

Table 2.5: Counting in Hexadecimal, Base 16

HEXADECIMAL
NUMERALS

PRONUNCIATION (FOLLOW WITH
"HEX")

DECIMAL
EQUIVALENT

0 Zero 0

1 One 1

2 Two 2

3 Three 3

4 Four 4

5 Five 5

6 Six 6

7 Seven 7

8 Eight 8

9 Nine 9

A A 10

B B 11

C C 12

D D 13

E E 14

F F 15

10 Ten (or, One-oh) 16

11 One-one 17

12 One-two 18

13 One-three 19

14 One-four 20

15 One-five 21

16 One-six 22

17 One-seven 23



18 One-eight 24

19 One-nine 25

1A One-A 26

1B One-B 27

1C One-C 28

1D One-D 29

1E One-E 30

1F One-F 31

20 Twenty (or, Two-oh) 32

One of the conventions in hexadecimal which I favor is the dropping of words such as eleven and
twelve that are a little too tightly bound to our decimal system and only promote gross confusion.
Confronted by the number 11 in hexadecimal (usually written 11H to let us know what base we're
speaking), we would say, "one-one hex." Don't forget to say "hex" after a hexadecimal number, again to
avoid gross confusion. This is unnecessary with the digits 0 through 9, which represent the exact same
values in both decimal and hexadecimal.

Some people still say things like "twelve hex," which is valid, and means 18 decimal. But I don't care for
it, and advise against it. This business of alien bases is confusing enough without giving the aliens
Charlie Chaplin masks. Each column in the hexadecimal system has a value 16 times that of the
column to its right. (The rightmost column, as in any number base, is the units column and has a value
of 1.) As you might imagine, the values of the individual columns go up frighteningly fast as you move
from right to left. Table 2.6 shows the values of the first seven columns in hexadecimal. For
comparison's sake, note that the seventh column in decimal notation has a value of 1 million, while the
seventh column in hexadecimal has a value of 16,777,216.

Table 2.6: Hexadecimal Columns as Powers of 16

HEXADECIMAL POWER OF 16 DECIMAL

1H = 160 = 1 × 16 = 10H

10H = 161 = 16 × 16 = 100H

100H = 162 = 256 × 16 = 1000H

1000H = 163 = 4096 × 16 = 10000H

10000H = 164 = 65536 × 16 = 100000H

100000H = 165 = 1048576 × 16 = 1000000H

1000000H = 166 = 16777216 etc…

To help you understand how hexadecimal numbers are constructed, I've dissected a middling hex
number in Figure 2.3, in the same fashion that I dissected numbers earlier in both Martian base fooby,
and in octal, base 8. Just as in octal, zero holds a place in a column without adding any value to the
number as a whole. Note in Figure 2.3 that there are 0, that is, no, 256s present in the number
3C0A9H.



Figure 2.3: The anatomy of 3C0A9H.

As in Figure 2.2, the decimal values of each column are shown beneath the column, and the sum of all
columns is shown in both decimal and hex. (Note the subscripts!)



From Hex to Decimal and from Decimal to Hex

Most of the manipulation of hex numbers you'll be performing will be simple conversions between hex
and decimal, in both directions. The easiest way to perform such conversions is by way of a hex
calculator, either a "real" calculator like the venerable TI Programmer (which I still have, wretched
battery-eater that it is) or a software calculator with hexadecimal capabilities. (The old Sidekick TSR
calculator for DOS was my constant companion in years past, because it did hexadecimal arithmetic so
well.) Using a calculator demands nothing of your gray matter, of course, and won't help you
understand the hexadecimal number system any better. So while you're a relatively green student, lay
off anything that understands hex, be it hardware, software, or human associates.

In fact, the best tool is a simple four-function memory calculator. The conversion methods I describe
here all make use of such a calculator since what I'm trying to teach you is number base conversion,
not decimal addition or long division.

From Hex to Decimal

As you'll come to understand, converting hex numbers to decimal is a good deal easier than going the
other way. The general method is to do what we've been doing all along in the number-dissection
Figures 2.1, 2.2, and 2.3: Derive the value represented by each individual column in the hex number,
and then add up the total of all the column values in decimal.

Let's try an easy one. The hex number is 7A2. Start at the right column. This is the units column in any
number system. You have 2 units, so enter 2 into your calculator. Now store that 2 into memory. (Or
press the SUM button, if you have a SUM button.)

So much for units. Keep in mind that what you're really doing is keeping a running tally of the values of
the columns in the hex number. Move to the next column to the left. Remember that each column
represents a value 16 times the value of the column to its right. So, the second column from the right is
the 16s column. (Refer to Table 2.6 if you lose track of the column values.) The 16s column has an A in
it. A in hex is decimal 10. The total value of that column, therefore, is 16 x 10, or 160. Perform that
multiplication on your calculator, and add the product to the 2 that you stored in memory. (Again, the
SUM button is a handy way to do this if your calculator has one.)

Remember what you're doing: evaluating each column in decimal and keeping a running total. Now,
move to the third column from the right. This one contains a 7. The value of the third column is 16 × 16,
or 256. Multiply 256 × 7 on your calculator, and add the product to your running total.

You're done. Retrieve the running total from your calculator memory. The total should be 1954, which is
the decimal equivalent of 7A2H.

Okay—let's try it again, more quickly, with a little less natter and a much larger number: C6F0DBH.

First, evaluate the units column. B × 1 = 11 × 1 = 11. Start your running total with 11.1.

Evaluate the 16s column. D × 16 = 13 × 16 = 208. Add 208 to your running total.2.

Evaluate the 256s column. 0 × 256 = 0. Move on.3.

Evaluate the 4,096s column. F × 4,096 = 15 × 4,096 = 61,440. Add it to your running total.4.

Evaluate the 65,536s column. 6 × 65,536 = 393,216. Add it to the running total.5.

Evaluate the 1,048,576s column. C × 1,048,576 = 12 × 1,048,576 = 12,582,912. Add it to your
total.

6.

The running total should be 13,037,787.

Finally, do it yourself without any help for the following number: 1A55BEH.

From Decimal to Hex

The lights should be coming on about now. This is good, because going in the other direction, from our



familiar decimal base 10 to hex, is much harder and involves more math. What we have to do is find
the hex column values within a decimal number—and that involves some considerable use of that fifth-
grade bogeyman, long division.

But let's get to it, again, starting with a fairly easy number: 449. The calculator will be handy with a
vengeance. Tap in the number 449 and store it in the calculator's memory.

What we need to do first is find the largest hex column value that is contained in 449 at least once.
Remember grade-school "gazintas"? (12 gazinta 855 how many times?) Division is often introduced to
students as a way of finding out how many times some number is present in—"goes into"—another. It's
something like that. Looking back at Table 2.6, we can see that 256 is the largest power of 16, and
hence the largest hex column value, that is present in 449 at least once. (The next largest power of
16—512—is obviously too large to be present in 449.)

So, we start with 256, and determine how many times 256 "gazinta" 449: 449 / 256 = 1.7539. At least
once, but not quite twice. So, 449 contains only one 256. Write down a 1 on paper. Don't enter it into
your calculator. We're not keeping a running total here; if anything, we could say we're keeping a
running remainder. The "1" is the leftmost hex digit of the hex value that is equivalent to decimal 449.

We know that there is only one 256 contained in 449. What we must do now is remove that 256 from
the original number, now that we've "counted" it by writing a 1 down on paper. Subtract 256 from 449.
Store the difference, 193, into memory.

The 256 column has been removed from the number we're converting. Now we move to the next
column to the right, the 16s. How many 16s are contained in 193? 193 / 16 = 12.0625. This means the
16s column in the hex equivalent of 449 contains a…12? Hmmmm…remember the digit shortage, and
the fact that in hex, the value we call 12 is represented by the letter C. From a hex perspective, we
have found that the original number contains C in the 16s column. Write a C down to the right of your 1:
1C. So far, so good.

We've got the 16s column, so just as with the 256s, we have to remove the 16s from what's left of the
original number. The total value of the 16s column is C × 16 = 12 × 16 = 192. Bring the 193 value out of
your calculator's memory, and subtract 192 from it. A lonely little 1 is all that's left.

So we're down to the units column. There is one unit in one, obviously. Write that 1 down to the right of
the C in our hexadecimal number: 1C1. Decimal 449 is equivalent to hex 1C1.

Now perhaps you'll begin to understand why programmers like hexadecimal calculators so much.

Let's glance back at the big picture of the decimal-to-hex conversion. We're looking for the hexadecimal
columns hidden in the decimal value. We find the largest column contained in the decimal number, find
that column's value, and subtract that value from the decimal number. Then we look for the next
smallest hex column, and the next smallest, and so on, removing the value of each column from the
decimal number as we go. In a sense, we're dividing the number by consecutively smaller powers of 16
and keeping a running remainder by removing each column as we tally it.

Let's try it again. The secret number is 988,664.

Find the largest column contained in 988,664 from Table 2.6: 65,536. 988,664 / 65,536 = 15 and
change. Ignore the change. 15 = F in hex. Write down the F.

1.

Remove F × 65,536 from 988,664. Store the remainder: 5,6242.

Move to the next smallest column. 5,624 / 4,096 = 1 and change. Write down the 1.3.

Remove 1 × 4,096 from the remainder: 5,624 - 4096 = 1528. Store the new remainder: 1,528.4.

Move to the next smallest column. 1,528 / 256 = 5 and change. Write down the 5.5.

Remove 5 × 256 from the stored remainder, 1,528. Store 248 as the new remainder.6.

Move to the next smallest column. 248 / 16 = 15 and change. 15 = F in hex. Write down the F.7.

Remove F × 16 from stored remainder, 248. The remainder, 8, is the number of units in the final
column. Write down the 8.

8.



8.

There you have it: 988,664 decimal = F15F8H.

Note the presence of the H at the end of the hex number. From now on, every hex number in the text of
this book will have that H affixed to its hindparts. It's important, because not every hex number contains
letter digits. There is a 157H as surely as a 157 decimal, and the two are not the same number. (Quick,
now: By how much are they different?) Don't forget that H in writing your assembler programs, as I'll be
reminding you later on.

Practice. Practice! PRACTICE!

The best (actually, the only) way to get a gut feel for hex notation is to use it lots. Convert each of the
following hex numbers to decimal. Lay each number out on the dissection table and identify how many
1s, how many 16s, how many 256s, how many 4,096s, and so on, are present in the number, and then
add them up in decimal.

  CCH
  157H
  D8H
  BB29H
  7AH
  8177H
  A011H
  99H
  2B36H
  FACEH
  8DB3H
  9H

That done, now turn it inside out, and convert each of the following decimal numbers to hex. Remember
the general method: From Table 2.6, choose the largest power of 16 that is less than the decimal
number to be converted. Find out how many times that power of 16 is present in the decimal number,
and write it down as the leftmost hex digit of the converted number. Then subtract the total value
represented by that hex digit from the decimal number. Then repeat the process, using the next
smallest power of 16 until you've subtracted the decimal number down to nothing.

  39
  413
  22
  67,349
  6,992
  41
  1,117
  44,919
  12,331
  124,217
  91,198
  307
  112,374,777

(Extra credit for that last one…) If you need more practice, choose some decimal numbers and convert
them to hex, and then convert them back.



Arithmetic in Hex

As you become more and more skilled in assembly language, you'll be doing more and more arithmetic
in base 16. You may even (good grief) come to do it in your head. Still, it takes some practice.

Addition and subtraction are nothing more than what we know in decimal, with a few extra digits tossed
in for flavor. The trick is nothing more than knowing your addition tables to 0FH. This is best done not
by thinking to yourself, "Now, if C is 12 and F is 15, then C + F is 12 + 15, which is 27 decimal but
1BH." Instead, you should simply say inside your head, "C + F is 1BH."

Yes, that's asking a lot. But I ask you now, as I will ask you again on this journey, Do you wanna hack
assembly…or do you just wanna fool around? It takes practice to learn the piano, and it takes practice
to get really greased up on the foundation concepts of assembly language programming.

So let me sound like an old schoolmarm and tell you to memorize the following. Make flash cards if you
must:





If nothing else, this exercise should make you glad computers don't work in base 64.

Columns and Carries

With all of the single-column additions committed (more or less) to memory, you can tackle multicolumn
addition. It works pretty much the same way it does with decimal. Add each column starting from the
right, and carry into the next column anytime a single column's sum exceeds 0FH.

For example:

    1       1
    2 F 3 1 A DH
  + 9 6 B A 0 7H
    C 5 E B B 4H

Carefully work this one through, column by column. The sum of the first column (that is, the rightmost)
is 14H, which cannot fit in a single column, so we must carry the one into the next column to the left.
Even with the additional 1, however, the sum of the second column is 0BH, which fits in a single column
and no carry is required.

Keep on adding toward the left. The second-to-last column will again overflow, and you will need to
carry the one into the last column. As long as you have your single-digit sums memorized, it's a snap.

Well, more or less.

Now, here's something you should take note of:

The most you can ever carry out of a single-column addition of two numbers is 1.



It doesn't matter what base: 16, 10, fooby, or 2. You will either carry a 1 (in Martian, foo) out of a
column, or carry nothing at all. This fact surprises people for some reason, so ask yourself: What two
single digits in old familiar base 10 can you add that will force you to carry a 2? The largest digit is 9,
and 9 + 9 = 18. Put down the 8 and carry the 1. Even if you have to add in a carry from a previous
column, that will bring you up (at most) to 19. Again, you carry a 1 and no more. This is important when
you add numbers on paper, or within the silicon of your CPU, as we'll learn a few chapters on.

Subtraction and Borrows

If you have your single-column sums memorized, you can usually grind your way through subtraction
with a shift into a sort of mental reverse: "If E + 6 equals 14H, then 14H - E must equal 6." The
alternative is memorizing an even larger number of tables, and since I haven't memorized them, I won't
ask you to.

But over time, that's what tends to happen. In hex subtraction, you should be able to dope out any
given single-column subtraction by turning a familiar hexadecimal sum inside-out. And just as with base
10, multicolumn subtractions are done column by column, one column at a time:

  F76CH
 - A05BH
  5711H

During your inspection of each column, you should be asking yourself: "What number added to the
bottom number yields the top number?" Here, you should know from your tables that B + 1 = C, so the
difference between B and C is 1. The leftmost column is actually more challenging: What number
added to A gives you F? Chin up; even I have to think about it on an off-day.

The problems show up, of course, when the top number in a column is smaller than its corresponding
bottom number. Then (like the federal government on a bomber binge) you have no recourse but to
borrow.

Borrowing is one of those grade-school rote-learned processes that very few people really understand.
(To understand it is tacit admittance that something of New Math actually stuck, horrors.) From a
height, what happens in a borrow is that one count is taken from a column and applied to the column
on its right. I say applied rather than added to because in moving from one column to the column on its
right, that single count is multiplied by 10, where 10 represents the number base. (Remember that 10 in
octal has a value of 8, while 10 in hexadecimal has a value of 16.)

It sounds worse than it is. Let's look at a borrow in action, and you'll get the idea.

   9 2H
  - 4 FH

Here, the subtraction in the rightmost column can't happen as-is, because F is larger than 2. So, we
borrow from the next column to the left.

Nearly 30 years out of the past, I can still hear old Sister Marie Bernard toughing it out on the
blackboard, albeit in base 10: "Cross out the 9; make it an 8. Make the 2 a 12. And 12 minus F is what,
class?" It's 3, Sister. And that's how a borrow works. (I hope the poor dear will forgive me for putting
hex bytes in her mouth…)

Think about what happened there, functionally. We subtracted 1 from the 9 and added 10H to the 2.
One obvious mistake is to subtract 1 from the 9 and add 1 to the 2, which (need I say it?) won't work.
Think of it this way: We're moving part of one column's surplus value over to its right, where some extra
value is needed. The overall value of the upper number doesn't change (which is why we call it a
borrow and not a steal), but the recipient of the loan is increased by 10, not 1.

After the borrow, what we have looks something like this:

   812H
 -  4 FH



(On Sister Marie Bernard's blackboard, we crossed out the 9 and made it an 8. I just made it an 8.
Silicon has advantages over chalk-except that the 8's earlier life as a 9 is not so obvious.)

And of course, once we're here, the columnar subtractions all work out, and we discover that the
difference is 43H.

People sometimes ask if you ever have to borrow more than 1. The answer, plainly, is no. If you borrow
2, for example, you would add 20 to the recipient column, and 20 minus any single digit remains a two-
digit number. That is, the difference won't fit into a single column. Subtraction contains an important
symmetry with addition:

The most you ever need to borrow in any single-column subtraction of two numbers is 1.

Borrows across Multiple Columns

Understanding that much about borrows gets you most of the way there. But, as life is wont, you will
frequently come across a subtraction similar to this:

   F 0 0 0H
  -  3 B 6 CH

Column 1 needs to borrow, but neither column 2 nor column 3 have anything at all to lend. Back in
grade school, Sister Marie Bernard would have rattled out with machine-gun efficiency: "Cross out the
F, make it an E. Make the 0 a 10. Then cross it out, make it an F. Make the next 0 a 10; cross it out,
make it an F. Then make the last 0 a 10." Got that? (I got it. In Catholic school, the consequences of
not getting it are too terrible to consider.)

What happens is that the middle two 0s act as loan brokers between the F and the rightmost 0, keeping
their commission in the form of enough value to allow their own columns' subtractions to take place.
Each column to the right of the last column borrows 10 from its neighbor to the left, and loans 1 to the
neighbor on its right. After all the borrows trickle through the upper number, what we have looks like
this (minus all of Sister's cross-outs):

   E F F10H
 -  3 B 6 CH

At this point, each columnar subtraction can take place, and the difference is B494H.

In remembering your grade-school machinations, don't fall into the old decimal rut of thinking, "cross
out the 10, make it a 9." In the world of hexadecimal, 10H - 1 = F. Cross out the 10, make it an F.

What's the Point?

… if you have a hex calculator, or a hex-capable screen calculator? The point is practice. Hexadecimal
is the lingua franca of assemblers, to multiply-mangle a metaphor. The more you burn a gut-level
understanding of hex into your reflexes, the easier assembly language will be. Furthermore,
understanding the internal structure of the machine itself will be much easier if you have that intuitive
grasp of hex values. We're laying important groundwork here. Take it seriously now and you'll lose less
hair later on.



Binary

Hexadecimal is excellent practice for taking on the strangest number base of all: binary. Binary is base
2. Given what we've learned about number bases so far, what can we surmise about base 2?

Each column has a value two times the column to its right.

There are only two digits (0 and 1) in the base.

Counting is a little strange in binary, as you might imagine. It goes like this: 0, 1, 10, 11, 100, 101, 110,
111, 1,000 … Because it sounds absurd to say, "Zero, one, 10, 11, 100,…" it makes more sense to
simply enunciate the individual digits, followed by the word binary. For example, most people say "one
zero one one one zero one binary" instead of "one million, eleven thousand, one hundred one binary"
when pronouncing the number 1011101—which sounds enormous until you consider that its value in
decimal is only 93.

Odd as it may seem, binary follows all of the same rules we've discussed in this chapter regarding
number bases. Converting between binary and decimal is done using the same methods described for
hexadecimal in an earlier section of this chapter.

Because counting in binary is as much a matter of counting columns as counting digits (since there are
only two digits) it makes sense to take a long, close look at Table 2.7, which shows the values of the
binary number columns out to 32 places.

Table 2.7: Binary Columns as Powers of 2

BINARY POWER OF 2 DECIMAL

1 =20= 1

10 =21= 2

100 =22= 4

1000 =23= 8

10000 =24= 16

100000 =25= 32

1000000 =26= 64

10000000 =27= 128

100000000 =28= 256

1000000000 =29= 512

10000000000 =210= 1024

100000000000 =211= 2048

1000000000000 =212= 4096

10000000000000 =213= 8192

100000000000000 =214= 16384

1000000000000000 =215= 32768

10000000000000000 =216= 65536

100000000000000000 =217= 131072

1000000000000000000 =218= 262144

10000000000000000000 =219= 524288

100000000000000000000 =220= 1048576

1000000000000000000000 =221= 2097152

10000000000000000000000 =222= 4194304



100000000000000000000000 =223= 8388608

1000000000000000000000000 =224= 16777216

10000000000000000000000000 =225= 33554432

100000000000000000000000000 =226= 67108864

1000000000000000000000000000 =227= 134217728

10000000000000000000000000000 =228= 268435456

100000000000000000000000000000 =229= 536870912

1000000000000000000000000000000 =230= 1073741824

10000000000000000000000000000000 =231= 2147483648

100000000000000000000000000000000 =232= 4294967296

One look at that imposing pyramid of zeroes implies that it's hopeless to think of pronouncing the larger
columns as strings of digits: "One zero zero zero zero zero zero zero…" and so on. There's a crying
need for a shorthand notation here, so I'll provide you with one in a little while—and its identity will
surprise you.

You might object that such large numbers as the bottommost in the table aren't likely to be encountered
in ordinary programming. Sorry, but a 32-bit microprocessor such as the Pentium (and even its
antiquated forbears like the 386 and 496) can swallow numbers like that in one electrical gulp, and eat
billions of them for lunch.You must become accustomed to thinking in terms of such numbers as 232,
which, after all, is only a trifling 4 billion in decimal. Think for a moment of the capacity of the hard drive
on your own desktop computer. New PCs in the spring of 2000 are routinely shipped with 10 gigabytes
or more of hard disk storage. A gigabyte is a billion bytes…so that monster 32-bit number can't even
count all the bytes on your hard drive! This little problem has actually bitten some vendors of old (no,
sorry, the word is legacy) software. Ten or 12 years ago, a 6-gigabyte hard drive seemed like a distant
fantasy for most of us. Now CompUSA sells that fantasy for $129.95. And I have a file utility that throws
up its hands in despair any time it has to confront a disk drive with more than 2 gigabytes of free
space…

Now, just as with octal and hexadecimal, there can be identity problems when using binary. The
number 101 in binary is not the same as 101 in hex, or 101 in decimal. For this reason, always append
the suffix "B" to your binary values to make sure people reading your programs (including you, six
weeks after the fact) know what base you're working from.

Values in Binary

Converting a value in binary to one in decimal is done the same way it's done in hex—more simply, in
fact, for the simple reason that you no longer have to count how many times a column's value is
present in any given column. In hex, you have to see how many 16s are present in the 16s column, and
so on. In binary, a column's value is either present (1 time) or not present (0 times).

Running through a simple example should make this clear. The binary number 11011010B is a
relatively typical binary value in small-time computer work. (On the small side, actually—many common
binary numbers are twice its size or more.) Converting 11011010B to decimal comes down to scanning
it from right to left with the help of Table 2.7, and tallying any column's value where that column
contains a 1, while ignoring any column containing a 0.

Clear your calculator and let's get started:

Column 0 contains a 0; skip it.1.

Column 1 contains a 1. That means its value, 2, is present in the value of the number. So we
punch 2 into the calculator.

2.

Column 2 is 0. Skip it.3.

Column 3 contains a 1. The column's value is 23, or 8; add 8 to our tally.4.

5.

6.



3.

4.

Column 4 also contains a 1; 24 is 16, which we add to our tally.5.

Column 5 is 0. Skip it.6.

Column 6 contains a 1; 26 is 64, so add 64 to the tally.7.

Column 7 also contains a 1. Column 7's value is 27, or 128. Add 128 to the tally, and what do we
have? 218. That's the decimal value of 11011010B. It's as easy as that.

8.

Converting from decimal to binary, while more difficult, is done exactly the same way as converting
from decimal to hex. Go back and read that section again, searching for the general method used. In
other words, see what was done and separate the essential principles from any references to a specific
base like hex.

I'll bet by now you can figure it out without much trouble.

As a brief aside, perhaps you noticed that I started counting columns from 0 rather than 1. A peculiarity
of the computer field is that we always begin counting things from 0. Actually, to call it a peculiarity is
unfair; the computer's method is the reasonable one, because 0 is a perfectly good number and should
not be discriminated against. The rift occurred because in our real, physical world, counting things tells
us how many things are there, while in the computer world counting things is more generally done to
name them. That is, we need to deal with bit number 0, and then bit number 1, and so on, far more than
we need to know how many bits there are.

This is not a quibble, by the way. The issue will come up again and again in connection with memory
addresses, which as I have said and will say again are the key to understanding assembly language.

In programming circles, always begin counting from 0!

A practical example of the conflicts this principle can cause grows out of the following question: What
year begins the new millennium? Most people would intuitively say the year 2000, but technically, the
twentieth century will continue until January 1, 2001. Why? Because there was no year 0. When
historians count the years moving from B.C. to A.D., they go 1B.C. to 1A.D. Therefore, the first century
began with year 1 and ended with year 100. The second century began with year 101 and ended with
year 200. By extending the sequence you can see that the twentieth century began in 1901 and will end
in 2000. On the other hand, if we had had the sense to begin counting years in the current era
computer style, from year 0, the twentieth century would end at the end of 1999. My suggestion? Call
this the Short Century (which it certainly seems to those of us who have been around for any
considerable chunk of it) and begin the Computer Millennium on January 1, 2000.

This is a good point to get some practice in converting numbers from binary to decimal and back.
Sharpen your teeth on these:

  110
  10001
  11111
  11
  101
  1100010111010010
  11000
  1011

When that's done, convert these decimal values to binary:

  77
  42
  106
  255
  18
  6309
  121
  58



  18,446

Why Binary?

If it takes eight whole digits (11011010) to represent an ordinary three-digit number such as 218, binary
as a number base would seem to be a bad intellectual investment. Certainly for us it would be a waste
of mental bandwidth, and even aliens with only two fingers would probably have come up with a better
system.

The problem is, lights are either on or they're off.

This is just another way of saying (as I discuss in detail in Chapter 3) that at the bottom of it, computers
are electrical devices. In an electrical device, voltage is either present or it isn't; current either flows or it
doesn't. Very early in the game, computer scientists decided that the presence of a voltage in a
computer circuit would indicate a 1 digit, while lack of a voltage at that same point in the circuit would
indicate a 0 digit. This isn't many digits, but it's enough for the binary number system. This is the only
reason we use binary, but it's a pretty compelling one, and we're stuck with it. However, you will not
necessarily drown in ones and zeroes, because I've already taught you a form of shorthand.



Hexadecimal as Shorthand for Binary

The number 218 expressed in binary is 11011010B. Expressed in hex, however, the same value is
quite compact: DAH. The two hex digits comprising DAH merit a closer look. AH (or 0AH as your
assembler will require it for reasons I explain later) represents 10 decimal. Converting any number to
binary simply involves detecting the powers of two within it. The largest power of 2 within 10 decimal is
8. Jot down a 1 digit and subtract 8 from 10. What's left is 2. Now, 4 is a power of 2, but there is no 4
hiding within 2, so we put a 0 to the right of the 1. The next smallest power of 2 is 2, and there is a 2 in
2. Jot down another 1 to the right of the 0. Two from 2 is 0, so there are no 1s left in the number. Jot
down a final 0 to the right of the rest to represent the 1s column. What you have is this:

  1 0 1 0

Look back at the binary equivalent of 218: 11011010. The last four digits are 1010—the binary
equivalent of 0AH.

The same will work for the upper half of DAH. If you work out the binary equivalence for 0DH as we just
did (and it would be good mental exercise), it is 1101. Look at the binary equivalent of 218 this way:

    218      decimal
  1101 1010  binary
   D  A      hex

It should be dawning on you that you can convert long strings of binary 1s and 0s into more compact
hex format by converting every four binary digits (starting from the right, not from the left!) into a single
hex digit.

As an example, here is a 32-bit binary number that is not the least bit remarkable:

  11110000000000001111101001101110

This is a pretty obnoxious collection of bits to remember or manipulate, so let's split it up into groups of
four from the right:

  1111 0000 0000 0000 1111 1010 0110 1110

Each of these groups of four binary digits can be represented by a single hexadecimal digit. Do the
conversion now. What you should get is the following:

  1111 0000 0000 0000 1111 1010 0110 1110
   F     0    0    0    F    A    6    E

In other words, the hex equivalent of that mouthful is

  F000FA6E

In use, of course, you would append the H on the end, and also put a 0 at the beginning, so in any kind
of assembly language work the number would actually be written 0F000FA6EH.

This is still a good-sized number, but unless you're doing things like counting hard drive space or other
high-value things, such 32-bit numbers are the largest quantities you would typically encounter in
journeyman-level assembly language programming.

Suddenly, this business starts looking a little more graspable.

Hexadecimal is the programmer's shorthand for the computer's binary numbers.

This is why I said earlier that computers use base 2 (binary) and base 16 (hexadecimal) both at the
same time in a rather schizoid fashion. What I didn't say is that the computer isn't really the schizoid



one; you are. At their very hearts (as I explain in Chapter 3) computers use only binary. Hex is a means
by which you and I make dealing with the computer easier. Fortunately, every four binary digits may be
represented by a hex digit, so the correspondence is clean and comprehensible.

Prepare to Compute

Everything up to this point has been necessary groundwork. I've explained conceptually what
computers do and have given you the tools to understand the slightly alien numbers they use. But I've
said nothing so far about what computers actually are, and it's well past time. We return to hexadecimal
numbers again and again in this book; I've said nothing thus far about hex multiplication or bit-banging.
The reason is plain: Before you can bang a bit, you must know where the bits live. So, let's lift the hood
and see if we can catch a few in action.



Chapter 3: Lifting the Hood Discovering What

Computers Actually Are

RAXie, We Hardly Knew Ye...

In January 1970 I was on the downwind leg of my senior year in high school, and the Chicago Public
Schools had installed a computer somewhere. A truckful of these fancy typewriter gimcracks was
delivered to Lane Tech, and a bewildered math teacher was drafted into teaching computer science
(they had the nerve to call it) to a high school full of rowdy males.

I figured it out fairly quickly. You pounded out a deck of these goofy computer cards on the card punch
machine, dropped them into the hopper of one of the typewriter gimcracks, and watched in awe as the
typewriter danced its little golfball over the greenbar paper, printing out your inevitable list of error
messages. It was fun. I got straight A's. I even kept the first program I ever wrote that did something
useful: a little deck of cards that generated a table of parabolic correction factors for hand-figuring
telescope mirrors, astronomy being my passion at the time. (The card deck is still in its place of honor
on the narrow shelf here in my second-floor office, next to my 8-inch reel-to-reel tape deck and my
father's venerable slide rule.)

The question that kept gnawing at me was exactly what sort of beast RAX (the computer's wonderfully
appropriate name) actually was. What we had were ram-charged typewriters that RAX controlled over
phone lines-that much I understood. But what was RAX itself?

I asked the instructor. In brief, the conversation went something like this:

ME: "Umm, sir, what exactly is RAX?"

HE: "Eh? Um, a computer. An electronic computer."

ME: "That's what it says on the course notes. But I want to know what RAX is made of and how it
works."

HE: "Well, I'm sure RAX is all solid-state."

ME: "You mean, there's no levers and gears inside."

HE: "Oh, there may be a few. But no vacuum tubes."

ME: "I wasn't worried about tubes. I suppose it has a calculator in it somewhere. But what makes it
remember that A comes before B? How does it know what FORMAT means? How does it tell time?
What does it have to do to answer the phone?"

HE: "Now, come on, that's why computers are so great! They put it all together so that we don't
have to worry about that sort of thing! Who cares what RAX is? RAX knows FORTRAN and will
execute any correct FORTRAN program. That's what matters, isn't it?"

He was starting to sweat. So was I. End of conversation.

That June I graduated with three inches of debugged and working FORTRAN punch cards in my
bookbag, and still had absolutely no clue as to what RAX was.

It has bothered me to this day.

Gus to the Rescue

I was thinking about RAX six years later, while on the Devon Avenue bus heading for work, with the
latest copy of Popular Electronics in my lap. The lead story involved a little thing called the COSMAC
ELF, which consisted of a piece of perfboard full of integrated circuit chips, all wired together, plus
some toggle switches and a pair of LED numeric displays.

It was a computer. (Said so right on the label, heh.) The article told us how to put it together, and that
was about all. What did those chips do? What did the whole thing do? It was driving me nuts.



As usual, my friend Gus Flassig got on the bus at Ashland Avenue and sat down beside me. I asked
him what the damned thing did. He was the first human being to make the concept hang together for
me:

"These are memory chips. You load numbers into the memory chips by flipping these switches in
different code patterns. Each number means something to the CPU chip. One number makes it add;
another number makes it subtract; another makes it write different numbers into memory, and lots of
other things. A program consists of a bunch of these instruction-numbers in a row in memory. The
computer reads the first number, does what the number tells it to do, and then reads the second one,
does what that number says to do, and so on until it runs out of numbers."

If you don't find that utterly clear; don't worry. I had had the advantage of being an electronics hobbyist
(so I knew what some of the chips did) and had already written some programs in RAX's FORTRAN.
But for me, my God, everything suddenly hit critical mass and exploded in my head until the steam
started pouring out of my ears.

No matter what RAX was, I knew that it had to be something like the COSMAC ELF on a larger scale. I
built an ELF. It was quite an education, and allowed me to understand the nature of computers at a
very deep level. I don't recommend that anybody but total crazies wirewrap their own machines out of
loose chips anymore, although it was a common enough thing to do in the mid-late seventies.

As a sidenote, someone has written a Windows-based simulation of the COSMAC ELF that looks just
like the one I built, and will actually accept and execute COSMAC programs. It's a lot of fun and might
give you some perspective on what passed for computing in early 1976. The URL is as follows:

www.incolor.inetnebr.com/bill_r/computer_simulators.htm

The site's author, Bill Richman, has also reprinted the Popular Electronics article that I built the device
from. All fascinating reading-and a very good education in the deepest silicon concepts underlying
computing as it was then and remains to this day.

In this chapter I try and provide you with some of the insights that I obtained while assembling my own
machine the hard way. (You wonder where the "hard" in "hardware" comes from? Not from the sound it
makes when you bang it on the table, promise...)



Switches, Transistors, and Memory

Switches remember.

Think about it. You flip the switch by the door, and the light in the middle of the ceiling comes on. It
stays on. When you leave the room, you flip the switch down again, and the light goes out. It stays out.
Poltergeists notwithstanding, the switch will remain in the position you last left it until you or someone
else comes back and flips it to its other position.

In a sense, it remembers what its last command was until you change it, and "overwrite" that command
with a new one. In this sense, a light switch represents a sort of rudimentary memory element.

Light switches are more mechanical than electrical. This does not prevent them from acting as memory;
in fact, the very first computer (Babbage's nineteenth-century Difference Engine) was entirely
mechanical. In fact, the far larger version he designed but never finished was to have been steam-
powered. Babbage's machine had lots of little cams that could be flipped by other cams from one
position to another. Numbers were encoded and remembered as patterns of cam positions.

One if by Land...

Whether a switch is mechanical, or electrical, or hydraulic, or something else is irrelevant. What counts
is that a switch contains a pattern: on or off; up or down; flow or no flow. To that pattern can be
assigned a meaning. Paul Revere told his buddy to set up a code in the Old North Church: "One if by
land, two if by sea." Once lit, the lamps in the steeple remained lit (and thus remembered that very
important code) long enough for Paul to call out the militia and whup the British.

In general then, what we call memory is an aggregate of switches that will retain a pattern long enough
for that pattern to be read and understood by a person or a mechanism. For our purposes, those
switches will be electrical, but keep in mind that both mechanical and hydraulic computers have been
proposed and built with varying degrees of success.

Memory consists of containers for alterable patterns that retain an entered pattern until someone or
something alters the pattern.

Transistor Switches

One problem with building a computer memory system of light switches is that light switches are pretty
specialized: They require fingers to set them, and their output is a current path for electricity. Ideally, a
computer memory switch should be operated by the same force it controls. This allows the patterns in
memory locations to be passed on to other memory locations. In the gross electromechanical world,
such a switch is called a relay.

A relay is a mechanical switch that is operated by electricity, for the purpose of controlling electricity.
You "flip" a relay by feeding it a pulse of electricity, which powers a little hammer that whaps a lever to
one side or another. This lever then opens or closes a set of electrical contacts, just as your garden-
variety light switch does. Computers have been made out of relays, although as you might imagine
(with a typical relay being about the size of an ice cube), they weren't especially powerful computers.

Fully electronic computers are made out of transistor switches. Transistors are tiny crystals of silicon
that use the peculiar electrical properties of silicon to act as switches. I won't try to explain what those
peculiar properties are, since that would take an entire book unto itself. Let's consider a transistor
switch a sort of electrical black box and describe it in terms of inputs and outputs.

Figure 3.1 shows a transistor switch. (It is a field-effect transistor, which in truth is only one type of
transistor, but the type that our current computers are made of.) When an electrical voltage is applied
to pin 1, current flows between pins 2 and 3. When the voltage is removed from pin 1, current ceases
to flow between pins 2 and 3.



Figure 3.1: Transistor switches and memory cells.

In real life, a tiny handful of other components (typically diodes and capacitors) are necessary to make
things work smoothly in a computer memory context. These are not necessarily little gizmos connected
by wires to the outside of the transistor (although in early transistorized computers they were) but are
now cut from the same silicon crystal the transistor itself is cut from, and occupy almost no space at all.
Taken together, the transistor switch and its support components are called a memory cell. I've hidden
the electrical complexity of the memory cell within an appropriate black-box symbol in Figure 3.1.

A memory cell keeps current flow through it to a minimum, because electrical current flow produces
heat, and heat is the enemy of electrical components. The memory cell's circuit is arranged so that if
you put a tiny voltage on its input pin and a similar voltage on its select pin, a voltage will appear and
remain on its output pin. That output voltage will remain in its set state until you take away the voltage
from the cell as a whole, or else remove the voltage from the input pin while putting a voltage on the
select pin.

The "on" voltage being applied to all of these pins is kept at a consistent level. (Except, of course, when
it is removed entirely.) In other words, you don't put 12 volts on the input pin and then change that to 6
volts or 17 volts. The computer designers pick a voltage and stick with it. The pattern is binary in
nature: You either put a voltage on the input pin, or you take the voltage away entirely. The output pin
echoes that: It either holds a fixed voltage or no voltage at all.

We apply a code to that state of affairs: The presence of voltage indicates a binary 1, and the lack of
voltage indicates a binary 0. This code is arbitrary. We could as well have said that the lack of voltage
indicates a binary 1 and vice versa (and computers have been built this way for obscure reasons) but
the choice is up to us. Having the presence of something indicate a binary 1 is more natural, and that is
the way things have evolved in the computing mainstream.

A single computer memory cell, such as the transistor-based one we're speaking of here, holds one
binary digit, either a 1 or a 0. This is called a bit. A bit is the indivisible atom of information. There is no
half-a-bit, and no bit-and-a-half. (This has been tried. It works badly. But that didn't stop it from being



tried.)

A bit is a single binary digit, either 1 or 0.

The Incredible Shrinking Bit

One bit doesn't tell us much. To be useful, we need to bring a lot of memory cells together. Transistors
started out small (the originals from the 1950s looked a lot like stovepipe hats for tin soldiers) and went
down from there. The first transistors were created from little chips of germanium or silicon crystal
about an eighth of an inch square. The size of the crystal chip hasn't changed outrageously since then,
but the transistors themselves have shrunk almost incredibly.

Where, in the beginning, one chip held one transistor, in time semiconductor designers crisscrossed
the chip into four equal areas and made each area an independent transistor. From there it was an
easy jump to adding the other minuscule components needed to turn a transistor into a computer
memory cell.

The chip of silicon was a tiny and fragile thing, and was encased in an oblong molded-plastic housing,
like a stick of Dentyne gum with metal legs for the electrical connections.

What we had now was a sort of electrical egg carton: four little cubbyholes, each of which could contain
a single binary bit. Then the shrinking process began. First 8 bits, then 16, then multiples of 8 and 16,
all on the same tiny silicon chip. By the late 1960s, 256 memory cells could be made on one chip of
silicon, usually in an array of 8 cells by 32. In 1976, my COSMAC ELF computer contained two memory
chips. On each chip was an array of memory cells 4 wide and 256 long. (Picture a real long egg
carton.) Each chip could thus hold 1,024 bits.

This was a pretty typical memory chip capacity at that time. We called them "1K RAM chips," because
they held roughly 1,000 bits of random-access memory (RAM). The K comes from kilobit, that is, one
thousand bits. We'll get back to the notion of what random access means shortly.

Toward the mid-1970s, the great memory-shrinking act was kicking into high gear. One kilobyte chips
were crisscross divided into 4K chips containing 4,096 bits of memory. The 4K chips were almost
immediately divided into 16K chips (16,384 bits of memory). These 16K chips were the standard when
the IBM PC appeared in 1981. By 1982, the chips had been divided once again, and 16K became 64K,
with 65,536 bits inside that same little gumstick. Keep in mind that we're talking more than 65,000
transistors (plus other odd components) formed on a square of silicon about a quarter-inch on a side.

Come 1985 and the 64K chip had been pushed aside by its drawn-and-quartered child, the 256K chip
(262,144 bits). Chips always increase in capacity by a factor of 4 simply because the current-generation
chip is divided into 4 equal areas, onto each of which is then placed the same number of transistors
that the previous generation of chip had held over the whole silicon chip.

By 1990, the 256K chip was history, and the 1 megabit chip was state of the art. (Mega is Greek for
million.) By 1992, the 4 megabit chip had taken over. The critter had a grand total of 4,194,304 bits in
its tummy, still no larger than that stick of cinnamon gum. About that time, the chips themselves grew
small and fragile enough so that eight of them were soldered to tiny printed circuit boards so that they
would survive handling by clumsy human beings.

The game has continued, and today, in the early months of 2000, you can purchase these little circuit
board memory sticks (called SIMMs, for Single Inline Memory Module) with as much as 128 megabytes
in them-which is just a hair over a billion bits.

Will it stop here? Unlikely. More is better, and we're bringing some staggeringly powerful technology to
bear on the creation of ever-denser memory systems. Some physicists warn that the laws of physics
may soon call a time-out in the game, since the transistors are now so small that it gets hard pushing
more than one electron at a time through them. At that point some truly ugly limitations of life called
quantum mechanics begin to get in the way. We'll find a way around these limitations (we always do),
but in the process the whole nature of computer memory may change.

For now, what we have are billion-bit memory sticks. My computer here has two of them, for a total of
256 megabytes of electronic memory.



That should hold me until next week, heh-heh.

Random Access

These chips are called RAM chips, since what they contain is random-access memory. Newcomers
sometimes find this a perplexing and disturbing word, since random often connotes chaos or
unpredictability. What the word really means is "at random," indicating that you can reach into a
random-access memory chip and pick out any of the bits it contains without disturbing any of the
others, just as you might select one book at random from your public library's many shelves of
thousands of books without sifting through them in order.

Memory didn't always work this way. Before memory was placed on silicon chips, it was stored on
magnetic gadgets of some kind, usually rotating drums or disks distantly related to the hard drives we
use today. Rotating memory sends a circular collection of bits beneath a magnetic sensor. The bits
pass beneath the sensor one at a time, and if you miss the one you want, like a Chicago bus in
January, you simply have to wait for it to come by again. These are serial-access devices. They present
their bits to you, in a fixed order, one at a time, and you have to wait for the one you want to come up in
its order.

No need to remember that; we've long since abandoned serial-access devices for main computer
memory. We still use such systems for mass storage, as I describe a few pages down the road. (Your
hard drive is a serial-access device.)

Random access works like this: Inside the chip, each bit is stored in its own memory cell, identical to
the memory cell diagrammed in Figure 3.1. Each of the however-many memory cells has a unique
number. This number is a cell's (and hence a bit's) address. It's like the addresses on a street: The bit
on the corner is number 0 Silicon Alley, and the bit next door is number 1, and so on. You don't have to
knock on the door of bit 0 and ask which bit it is, then go to the next door and ask there too, until you
find the bit you want. If you have the address, you can zip right down the street and park square in front
of the bit you intend to visit.

Each chip has a number of pins coming out of it. (This is the computer room's equivalent of the Killer
Rake: Don't step on one in the dark!) The bulk of these pins are called address pins. One pin is called a
data pin. (See Figure 3.2.) The address pins are electrical leads that carry a binary address code. Your
address is a binary number, expressed in 1s and 0s only. You apply this address to the address pins by
encoding a binary 1 as (say) 5 volts, and a binary 0 as 0 volts. Special circuits inside the RAM chip
decode this address to one of the select inputs of the numerous memory cells inside the chip. For any
given address applied to the address pins, only one select input will be raised to five volts, thereby
selecting that cell.



Figure 3.2: A RAM chip.

Depending on whether you intend to read a bit or write a bit, the data pin is switched between the
memory cells' inputs or outputs, as shown in Figure 3.2.

But that's all done internally to the chip. As far as you on the outside are concerned, once you've
applied the address to the address pins, voila! The data pin will contain a voltage representing the
value of the bit you requested. If that bit contained a binary 1, the data pin will contain a 5-volt signal;
otherwise, the binary 0 bit will be represented by 0 volts.

Memory Access Time

Chips are graded by how long it takes for the data to appear on the data pin after you've applied the
address to the address pins. Obviously, the faster the better, but some chips (for electrical reasons that
again are difficult to explain) are faster than others.

The times seem so small as to seem almost insignificant: 70 nanoseconds is a typical memory chip
access time. A nanosecond is a billionth of a second, so 70 nanoseconds is significantly less than one
10-millionth of a second. Great stuff-but to accomplish anything useful, a computer needs to access
memory hundreds of thousands or millions of times. Those nanoseconds add up. If you become an
expert assembly language programmer, you will jump through hoops to shave the number of memory
accesses your program needs to perform, because memory access is the ultimate limiting factor in a
computer's performance. Michael Abrash, in fact, has published a whole book on doing exactly that, in
the realm of high-speed graphics programming, which can be (badly) summarized in just these few
words: Stay out of memory whenever you can! (You'll discover just how difficult this is soon enough...)
The book is Michael Abrash's Graphics Programming Black Book (Coriolis Group Books, 1997). It's one
of the few genuinely useful advanced assembly language texts available, and I strongly recommend it.



Bytes, Words, Double Words, and Quad Words

The days are long gone when a serious computer can exist on only one memory chip. My poor 1976
COSMAC ELF needed at least two. Today's computers need many, regardless of the fact that today's
memory chips can hold as much as 100 megabits or more rather than the ELF's paltry 2,048 bits.
Understanding how a computer gathers its memory chips together into a coherent memory system is
critical when you wish to write efficient assembly language programs. Whereas there is an infinity of
ways to hook memory chips together, the system I describe here is that of the Intel-based PC type of
computer, which has ruled the world of desktop computing since 1982.

Our memory system must store our information. How we organize a memory system out of a hatful of
memory chips will be dictated largely by how we organize our information.

The answer begins with this thing called a byte. The fact that the granddaddy of all computer
magazines took this word for its title indicates its importance in the computer scheme of things. (Alas,
Byte Magazine ceased publishing late in 1998.) From a functional perspective, memory is measured in
bytes. A byte is eight bits. Two bytes side by side are called a word, and two words side by side are
called a double word. A quad word, as you might imagine, consists of two double words, for four words
or eight bytes in all. Going in the other direction, some people refer to a group of four bits as a nybble-a
nybble being somewhat smaller than a byte.

Here's the quick tour:

A bit is a single binary digit, 0 or 1.

A byte is 8 bits side by side.

A word is 2 bytes side by side.

A double word is 2 words side by side.

A quad word is 2 double words side by side.

Computers were designed to store and manipulate human information. The basic elements of human
discourse are built from a set of symbols consisting of letters of the alphabet (two of each for upper and
lower case), numbers, and symbols including commas, colons, periods, exclamation marks. Add to
these the various international variations on letters such as ä and ò plus the more arcane mathematical
symbols, and you'll find that human information requires a symbol set of well over 200 symbols. (The
symbol set used in all PC-style computers is given in Appendix D.)

Bytes are central to the scheme because one symbol out of that symbol set can be neatly expressed in
one byte. A byte is 8 bits, and 28 is 256. This means that a binary number 8 bits in size can be one of
256 different values, numbered from 0 to 255. Because we use these symbols so much, most of what
we do in computer programs is done in byte-sized chunks. In fact, except for the very odd and
specialized kind of computers we are now building into intelligent food processors, no computer
processes information in chunks smaller than 1 byte. Most computers today, in fact, process
information either a word or (more and more commonly) a double word at a time.

Pretty Chips All in a Row

One of the more perplexing things for beginners to understand is that a standard 64-megabit RAM chip
does not even contain 1 byte...just 64 million bits. Remember that the RAM chips we use today have
only one data pin. To store a byte you would have to store eight bits in sequence at eight consecutive
addresses, and to retrieve that byte you would have to retrieve eight bits in sequence. Since it takes 70
nanoseconds at the very least to store a bit in one of those chips, storing a byte would take at least 560
nanoseconds, and in practical terms, close to a microsecond, which (believe it!) is far, far too slow to be
useful.

What is actually done is to distribute a single stored byte across eight separate RAM chips, with one bit
from the stored byte in each chip, at the same address across all chips. This way, when a single
address is applied to the address pins of all eight chips, all eight bits appear simultaneously on the
eight output pins, and we can retrieve a full byte in 70 nanoseconds instead of 560 nanoseconds. See
Figure 3.3.



Figure 3.3: A 1-megabyte memory bank.

We call this row of eight chips a bank of memory, and how much memory is contained in a bank
depends on the type of chips incorporated in the bank. A row of eight 1-megabit chips like that shown in
Figure 3.3 contains one megabyte. (That megabyte taken as a whole contains 8 × 1 or 8 million bits,
however. Remember, computers deal with information a minimum of 8 bits at a time.) A row of eight
256K bit chips contains 256K bytes, and so on. The memory SIMMs in current use today typically
contain a row of eight chips, each of which contains 32 or 64 megabits. Some high-end SIMMs are
formed of eight 128-megabit chips and contain 128 megabytes.

Actual computers combine various combinations of memory banks in various ways to produce different
amounts of memory. I'll take up the subject again when we begin talking specifically about the PC in
Chapter 6.



The Shop Foreman and the Assembly Line

The gist of the previous section was only this: Electrically, your computer's memory consists of one or
more rows of memory chips, each chip containing a large number of memory cells consisting of
transistors and other minuscule electrical components. Most of the time, it's just as useful to forget
about the transistors and even the rows of chips to avoid confusion. (My high school computer science
teacher was not entirely wrong...but he was right for the wrong reasons.)

Over the years, memory systems have been accessed in different ways. Eight-bit computers (now
ancient and mostly extinct) accessed memory eight bits (one byte) at a time. Sixteen-bit computers
access memory 16 bits (one word) at a time. And today's 32-bit computers (everything in the PC realm
since the 386) access memory 32 bits (one double word) at a time. This can be confusing, so it's better
in most cases to envision a very long row of byte-sized containers, each with its own address. Don't
assume that in computers which process information a word at a time that only words have addresses;
it is a convention with the PC architecture that every byte has its own address regardless of how many
bytes are pulled from memory at one time.

Every byte of memory in the computer has its own unique address, even in computers that process two
bytes or even four bytes of information at a time.

If this seems counterintuitive, yet another metaphor will help: When you go to the library to take out the
three volumes of Tolkien's massive fantasy The Lord of the Rings, you'll find that each of the three
volumes has its own card catalog number (essentially that volume's address in the library) but that you
take all three down at once and process them as a single entity. If you really want to, you can take only
one of the books out at a time, but to do so will require yet another trip to the library to get the next
volume, which is wasteful of your time and effort.

So it is with 16-bit or 32-bit computers. Every byte has its own address, but when a 16-bit computer
accesses a byte, it actually reads two bytes starting at the address of the requested byte. You can use
the second byte or ignore it if you don't need it-but if you later decide you do need the second byte,
you'll have to access memory again to get it. Best to save time and get it all at one swoop.

The Honcho Chip

All of this talk about reading things from memory and writing things to memory has thus far carefully
skirted the question of who is doing the read and writing. The who is almost always a single chip, and a
remarkable chip it is, too: the central processing unit, or CPU. If you are the president and CEO of your
personal computer, the CPU is your shop foreman, who sees that your orders are carried out down in
the chips where the work gets done.

Some would say that the CPU is what actually does the work, but that's an oversimplification. Plenty of
real work is done in the memory system, and especially in what are called peripherals, such as video
display boards, serial and parallel ports, and modems. So, while the CPU does do a good deal of the
work, it parcels out quite a bit to other components within the computer. I think its role of foreman
outweighs its role as assembly-line grunt.

Most of the CPU chips used in the machines we lump together as a group and call PCs come from a
company called Intel, which pretty much invented the single-chip CPU back in the early 1970s. Intel's
first bang-up success was the 8080, which helped trigger the personal computer revolution by being
chosen for the seminal MITS Altair 8800 computer introduced in Popular Electronics in December
1974. The 8080 was an 8-bit computer because it accessed memory 8 bits (1 byte) at a time. The 8080
is long extinct, but it gave birth to a pair of next-generation CPU chips called the 8086 and the 8088.
These two chips are nearly identical except that the 8088 is an 8-bit CPU, while the 8086 is a 16-bit
CPU, and accesses memory a word (2 bytes) at a time. IBM chose the 8088 for its original 1981 IBM
PC and later the PC XT, but the 8086 never made it into a true IBM computer until the forgettable (and
now largely forgotten) PS/2 models 25 and 30 appeared in 1987.

Intel produced yet another generation of CPU chip in 1983, and by 1984 the 80286 became the beating
heart of the enormously successful PC/AT. The 80286 is a more powerful 16-bit CPU, capable of
everything the 8086 can do, plus numerous additional things that were mostly never used in real
computers. Early 1986 brought Intel's 80386 CPU chip to market. The 80386 upped the ante by being a



32-bit machine. It reads and writes memory a double word (32 bits-4 bytes) at a time. The 80386 was
enormously more powerful than the 80286, and a great deal faster. From there to the 80486, to the
Pentium, the Pentium II, the Pentium Pro, the Pentium MMX, and most recently the Pentium III, was a
straight-line march along the 32-bit pathway toward more speed, power, and capacity. Irrespective of its
500-MHz speed, the Pentium III remains a 32-bit machine because it fetches information from memory
4 bytes at a time.

We thought for a long time that 32 bits is an ideal "fetch size" for CPU memory access, and that
increasing memory access beyond 32 bits at a time would begin to slow things down. Well, that was
then...and some time in the next few months as I write this, Intel will begin shipping samples of its first
64-bit CPU, code-named Merced. Merced fetches memory 8 bytes (a quad word) at a time and will run
at speeds of 1 GHz (gigahertz: a billion clock cycles per second) or more. It has plenty of new internal
machinery to make sure that expanding its silicon jaws to swallow 64 bits at a time will not slow
anything down.

Is 64 bits an optimal size? No bets taken here. I've been in this business long enough to see the
foolishness of making sweeping statements like that.

Talking to Memory

All the assorted Intel CPUs operate at varying speeds with various features, but at the bottom of things
they are conceptually identical, and this discussion will apply to all of them.

The CPU chip's most important job is to communicate with the computer's memory system. Like a
memory chip, a CPU chip is a small square of silicon onto which a great many transistors have been
placed. The fragile silicon chip is encased in a plastic or ceramic housing with a large number of pins
protruding from it. Like the pins of memory chips, the CPU's pins transfer information encoded as
voltage levels, typically 3 to 5 volts. Five volts indicate a binary 1, and zero volts indicate a binary 0.

Like the memory chips, the CPU chip has a number of pins devoted to memory addresses, and these
pins are connected directly to the computer's banks of memory chips. When the CPU desires to read a
byte (or a word, or double word) from memory, it places the memory address of the byte to be read on
its address pins, encoded as a binary number. Seventy nanoseconds or so later, the byte appears (also
as a binary number) on the data pins of the memory chips. The CPU chip also has data pins, and it
slurps up the byte presented by the memory chips through its own data pins. See Figure 3.4.

Figure 3.4: The CPU and memory.

The process, of course, also works in reverse: To write a byte into memory, the CPU first places the
memory address where it wants to write onto its address pins. Some number of nanoseconds later
(which varies from system to system depending on how memory is arranged) the CPU places the byte
it wishes to write into memory on its data pins. The memory chips obediently store the byte inside
themselves at the requested address.



Riding the Bus

This give-and-take between the CPU and the memory system represents the bulk of what happens
inside your computer. Information flows from memory into the CPU and back again. Information flows in
other paths as well. Your computer contains additional devices called peripherals that are either
sources or destinations (or both) for information.

Video display boards, disk drives, printer ports, and modems are the most common peripherals in PC-
type computers. Like the CPU and memory, they are all ultimately electrical devices. Most modern
peripherals consist of one or two large chips and several smaller chips that support the larger chips.
Like both the CPU and memory chips, these peripheral devices have both address pins and data pins.
Some peripherals, video boards in particular, have their own memory chips.

Peripherals "talk" to the CPU (that is, they pass the CPU data or take data from the CPU) and
sometimes to one another. These conversations take place across the electrical connections linking the
address pins and data pins that all devices in the computer have in common. These electrical lines are
called a data bus and form a sort of party line linking the CPU with all other parts of the computer.
There is an elaborate system of electrical arbitration that determines when and in what order the
different devices can use this party line to talk with one another. But it happens the same way: An
address is placed on the bus, followed by a byte (or word or double word) of data. Special signals go
out on the bus with the address to indicate whether the address is of a location in memory, or of one of
the peripherals attached to the data bus. The address of a peripheral is called an I/O address to
differentiate between it and a memory address such as those we've been discussing all along.

The data bus is the major element in the expansion slots present in most PC-type computers, and most
peripherals are boards that plug into these slots. The peripherals talk to the CPU and to memory
through the data bus connections brought out as electrical pins in the expansion slots.

The Foreman's Pockets

Every CPU contains a very few data storage cubbyholes called registers. These registers are at once
the foreman's pockets and the foreman's workbench. When the CPU needs a place to tuck something
away for a while, an empty register is just the place. The CPU could always store the data out in
memory, but that takes considerably more time than tucking it in a register. Because the registers are
actually inside the CPU, placing data in a register or reading it back again from a register is fast.

But more important, registers are the foreman's workbench. When the CPU needs to add two numbers,
the easiest and fastest way is to place the numbers in two registers and add the two registers together.
The sum (in usual CPU practice) replaces one of the two original numbers that were added, but after
that the sum could then be placed in yet another register, or added to still another number in another
register, or stored out in memory, or any of a multitude of other operations.

The CPU's immediate work-in-progress is held in temporary storage containers called registers.

Work involving registers is always fast, because the registers are within the CPU and very little
movement of data is necessary-and what data does move doesn't have to move very far.

Like memory cells and, indeed, like the entire CPU, registers are made out of transistors. But rather
than having numeric addresses, registers have names such as AX or DI. To make matters even more
complicated, while all CPU registers have certain common properties, some registers have unique
special powers not shared by other registers. Understanding the ways and the limitations of CPU
registers is something like following the Kosovo peace process: There are partnerships, alliances, and
always a bewildering array of secret agendas that each register follows. I devote most of a chapter to
registers later in this book.

Most peripherals also have registers, and peripheral registers are even more limited in scope than CPU
registers. Their agendas are quite explicit and in no wise secret. This does not prevent them from being
confusing, as anyone who has tried programming the VGA video board at the register level will attest.

The Assembly Line



If the CPU is the shopforeman, then the peripherals are the assembly-line workers, and the data bus is
the assembly line itself. (Unlike most assembly lines, however, the foreman works the line as hard or
harder than the rest of his crew!)

As an example: Information enters the computer through a modem peripheral, which assembles bits
received from the telephone line into bytes of data representing characters and numbers. The modem
then places the assembled byte onto the bus, from which the CPU picks it up, tallies it, and then places
it back on the data bus. The video board then retrieves the byte from the bus and writes it into video
memory so that you can see it on your screen.

Obviously, lots is going on inside the box. Continuous furious communication along the data bus
between CPU, memory, and peripherals is what accomplishes the work that the computer does. The
question then arises: Who tells the foreman and crew what to do? You do. How do you do that? You
write a program. Where is the program? It's in memory, along with all the rest of the data stored in
memory. In fact, the program is data, and that is the heart of the whole idea of programming as we
know it.



The Box That Follows a Plan

Finally, we come to the essence of computing: the nature of programs and how they direct the CPU to
control the computer.

We've seen how memory can be used to store bytes of information. These bytes are all binary codes,
patterns of 1s and 0s stored as minute electrical voltage levels and making up binary numbers. We've
also spoken of symbols, and how certain binary codes may be interpreted as meaning something to us
human beings, things like letters, digits, punctuation, and so on.

Just as the table in Appendix D contains a set of codes and symbols that mean something to us, there
is a set of codes that mean something to the CPU. These codes are called machine instructions, and
their name is evocative of what they actually are: instructions to the CPU.

Let's take an example or two that is common to all modern CPU chips from Intel. The 8-bit binary code
01000000 (40H) means something to the CPU. It is an order: Add 1 to register AX. That's about as
simple as they get. Most machine instructions occupy more than a single byte. The binary codes
11010110 01110011 (0B6H 73H) comprise another order: Load the value 73H into register DH. On the
other end of the spectrum, the binary codes 11110011 10100100 (0F3H 0A4H) direct the CPU to do
the following (take a deep breath): Begin moving the number of bytes specified in register CX from the
32-bit address stored in registers DS and SI to the 32-bit address stored in registers ES and DI,
updating the address in both SI and DI after moving each byte, and also decreasing CX by one each
time, and finally stopping when CX becomes zero.

The rest of the several hundred instructions understood by the Intel CPUs falls somewhere in between
these extremes in terms of complication and power. There are instructions that perform arithmetic
operations (addition, subtraction, multiplication, and division) and logical operations (AND, OR, etc; see
Chapter 4), and instructions that move information around memory or exchange information with
peripherals.

Fetch and Execute

A computer program is nothing more than a table of these machine instructions stored in memory.
There's nothing special about the table nor where it is positioned in memory; it could be anywhere, and
the bytes in the table are nothing more than binary numbers.

The binary numbers comprising a computer program are special only in the way that the CPU treats
them. When the CPU is started running, it fetches a double word (for modern CPUs) from an agreed-
upon address in memory. This double word, consisting of four bytes in a row, is read from memory and
loaded into the CPU. The CPU examines the pattern of binary bits contained in the double word, and
then begins performing the task that the fetched machine instruction directs it to do.

Ancient 8088-based machines such as the original IBM PC only fetched one byte at a time, rather than
the four bytes that modern Pentium-class machines fetch. Because most machine instructions are
more than a single byte in size, the 8088 CPU had to return to memory to fetch a second (or a third or a
fourth) byte to complete the machine instruction before it could actually begin to obey the instruction
and begin performing the task that the instruction specified.

As soon as it finishes executing an instruction, the CPU goes out to memory and fetches the next
machine instruction in sequence. Inside the CPU is a register called the instruction pointer that quite
literally contains the address of the next instruction to be fetched and executed. Each time an
instruction is completed, the instruction pointer is updated to point to the next instruction in memory.
(There is some silicon magic afoot inside modern CPUs that guesses what's to be fetched next and
keeps it on a side shelf so it'll be there when fetched only much more quickly—but the process as I've
described it is true in terms of the outcome.)

So the process goes: Fetch and execute; fetch and execute. The CPU works its way through memory,
with the instruction pointer register leading the way. As it goes, it works: Moving data around in
memory, moving values around in registers, passing data to peripherals, crunching data in arithmetic or
logical operations.

Computer programs are lists of binary machine instructions stored in memory. They are no different



from any other list of data bytes stored in memory except in how they are treated when fetched by the
CPU.

The Foreman's Innards

I made the point earlier that machine instructions are binary codes. This is something we often gloss
over, yet to understand the true nature of the CPU, we have to step away from the persistent image of
machine instructions as numbers. They are not numbers. They are binary patterns designed to throw
electrical switches.

Inside the CPU is a very large number of transistors. Some small number of those transistors go into
making up the fireman's pockets: machine registers for holding information. The vast bulk of those
transistors (which now number in the several millions in such CPUs as the Pentium III) are switches
connected to other switches, which are connected to still more switches in a mind-numbingly complex
network.

The very simple machine instruction 01000000 (40H) directs the CPU to add one to the value stored in
register AX. It's very instructive of the true nature of computers to think about the execution of machine
instruction 01000000 in this way:

The CPU fetches a byte from memory. This byte contains the code 01000000. Once the byte is fully
within the CPU, the CPU in essence lets the machine instruction byte push eight transistor switches.
The lone 1 digit pushes its switch "up" electrically; the rest of the digits, all 0s, push their switches
"down."

In a chain reaction, those eight switches flip the states of first dozens, then hundreds, then thousands,
and finally tens of thousands of tiny transistor switches within the CPU. It isn't random—this furious
moment of electrical activity within the CPU operates utterly according to patterns etched into the
silicon of the CPU by Intel's teams of engineers. Ultimately—perhaps after hundreds of thousands of
individual switch throws—the value contained in register AX is suddenly one greater than it was before.

How this happens is difficult to explain, but you must remember that any number within the CPU can
also be looked upon as a binary code, including numbers stored in registers. Also, most switches within
the CPU contain more than one handle. These switches are called gates and work according to the
rules of logic. Perhaps two, or three, or even more up switch throws have to arrive at a particular gate
at the same time in order for one down switch throw to pass through that gate.

These gates are used to build complex internal machinery within the CPU. Collections of gates can add
two numbers in a device called an adder, which again is nothing more than a crew of dozens of little
switches working together first as gates and then as gates working together to form an adder.

As part of the cavalcade of switch throws kicked off by the binary code 01000000, the value in register
AX was dumped trapdoor style into an adder, while at the same time the number 1 was fed into the
other end of the adder. Finally, rising on a wave of switch throws, the new sum emerges from the adder
and ascends back into register AX—and the job is done.

The foreman of your computer, then, is made of switches—just like all the other parts of the computer.
It contains a mind-boggling number of such switches, interconnected in even more mind-boggling ways.
But the important thing is that whether you are boggled or (like me on off-days) merely jaded by it all,
the CPU, and ultimately the computer, does exactly what we tell it to. We set up a list of machine
instructions as a table in memory, and then, by God, that mute iron brick comes alive and starts earning
its keep.

Changing Course

The first piece of genuine magic in the nature of computers is that a string of binary codes in memory
tells the computer what to do, step by step. The second piece of that magic is really the jewel in the
crown: There are machine instructions that change the order in which machine instructions are fetched
and executed.

In other words, once the CPU has executed a machine instruction that does something useful, the next
machine instruction may tell the CPU to go back and play it again—and again, and again, as many



times as necessary. The CPU can keep count of the number of times that it has executed that
particular instruction or list of instructions and keep repeating them until a prearranged count has been
met.

Or it can arrange to skip certain sequences of machine instructions entirely if they don't need to be
executed at all.

What this means is that the list of machine instructions in memory does not necessarily begin at the top
and run without deviation to the bottom. The CPU can execute the first 50 or a hundred or a thousand
instructions, then jump to the end of the program—or jump back to the start and begin again. It can skip
and bounce up and down the list like a stone tossed over a calm pond. It can execute a few instructions
up here, then zip down somewhere else and execute a few more instructions, then zip back and pick up
where it left off, all without missing a beat or even wasting too much time.

How is this done? Recall that the CPU contains a register that always contains the address of the next
instruction to be executed. This register, the instruction pointer, is not essentially different from any of
the other registers in the CPU. Just as a machine instruction can add one to register AX, another
machine instruction can add—or subtract—some number to or from the address stored in the
instruction pointer. Add 100 to the instruction pointer, and the CPU will instantly skip 100 bytes down
the list of machine instructions before it continues. Subtract 100 from the address stored in the
instruction pointer, and the CPU will instantly jump back 100 bytes up the machine instruction list.

And finally, the Third Whammy: The CPU can change its course of execution based on the work it has
been doing. The CPU can decide whether to execute a given instruction or group of instructions, based
on values stored in memory, or based on the state of special one-bit CPU registers called flags. The
CPU can count up how many times it needs to do something, and then do that something that number
of times.

So, not only can you tell the CPU what to do, you can tell it where to go. Better, you can sometimes let
the CPU, like a faithful bloodhound, sniff out the best course forward in the interest of getting the work
done the quickest possible way.

In Chapter 1, I spoke of a computer program being a sequence of steps and tests. Most of the machine
instructions understood by the CPU are steps, but others are tests. The tests are always two-way tests,
and in fact the choice of what to do is always the same: Jump or don't jump. That's all. You can test for
any of numerous different conditions, but the choice is always one of jumping to another place in the
program, or just keep truckin' along.

The Plan

I can sum it all up by borrowing one of the most potent metaphors for computing ever uttered: The
computer is a box that follows a plan. These are the words of Ted Nelson, author of the uncanny book
Computer Lib/Dream Machines, and one of those very rare people who have the infuriating habit of
being right most of the time.

You write the plan. The computer follows it by passing the instructions, byte by byte, to the CPU. At the
bottom of it, the process is a hellishly involved electrical chain reaction involving hundreds of thousands
of switches composed of many hundreds of thousands or even millions of transistors. That part of it,
however, is hidden from you so that you don't have to worry about it. Once you tell all those heaps of
transistors what to do, they'll know how to do it.

This plan, this list of machine instructions in memory, is your assembly language program. The whole
point of this book is to teach you to correctly arrange machine instructions in memory for the use of the
CPU.

With any luck at all, by now you'll have a reasonable conceptual understanding of both what computers
do and what they are. It's time to start looking more closely at the nature of the operations that machine
instructions force the CPU to perform.



Chapter 4: The Right to Assemble The Process of

Making Assembly Language Programs

Nude with Bruises and Other Perplexities

Years ago (back in the 1960s-had to be!) I recall reading about a comely female artist who produced
her oil paintings by the intriguing process of rolling naked on a tarp splattered with multicolored oil
paint, and then throwing herself against a canvas taped to the studio wall. (I can see the headline now:
"NUDE WITH BRUISES" FETCHES RECORD PRICE AT NY AUCTION...)

I've seen people write programs this way. The old GWBASIC language that was included free with
every copy of DOS worked like that. So does Perl, its counterpart in the Linux universe: You roll in an
intoxicating collection of wild and powerful program statements, and then smear them around on the
screen until something works. And something invariably does work, no matter how little thought goes
into the program's design. GWBASIC and Perl are like that. They pay a cost in program performance to
make it easy to create safe code that doesn't require a lot of forethought or design work. The programs
that result, while workable in that they don't crash the machine, can take seven seconds to paint a
screen, or 20 minutes to sort a database with 150 check records in it.

You can't paint "Nude with Bruises" in assembly language. Trust me.

Sweet Blindness: The Software Components Conundrum

But there are other perfectly proper programming paradigms that won't work with assembly language,
either. One is commonly used with my own beloved Delphi: Decide what you want to do, sketch out a
design based on a reasonable amount of forethought, and then go hunting through a veritable Sears
Catalog of software component products looking for canned code that will do more or less what you
need. In fact, you design your program to cater to the quirks and limitations of the software components
that you have, can find, or can afford to buy.

The goal here is, in some respects, to do as little programming as possible. You attempt to wire
together a collection of black boxes that will get the job done, while spending as little time as possible
at it. Delphi works this way, as does its evil twin, Visual Basic, along with most of the high-level Java
products including JBuilder and Visual Café. The software components have various names (VCL,
ActiveX, Java Beans) but they are conceptually alike in one important way: They hide what they do
internally so that you don't have to spend a lot of time understanding them.

This sounds like something I frown on, but people who know me will understand that it's been a major
portion of my professional life: I founded and edited Visual Developer Magazine, which focused on only
these products and this way of developing software. When I write code these days, that's how I do it.
(In Delphi.)

I do it because I've made the conscious decision not to understand all of what's going on in my
software. For me it's a time thing: Sure, I'm interested in what's going on inside, but if I spent all the
time it took to understand it at a very deep level, I'd never finish writing the software. I do have a life,
and not all of it is bashing code.

Remember what I said in the introduction to this book: You learn assembly language to understand how
things work. Like all forms of education, you trade time and disciplined energy for knowledge. I've made
the conscious decision (and you probably will too) that the time and energy required to learn Windows
(or Linux X11) programming at the assembly level costs more than the knowledge is worth.

This wasn't true with DOS, which in truth most people don't use anymore. Nor is it true for Linux, where
a deep knowledge of the operating system and how it works is extremely valuable. In this book I'm
largely treating DOS as training wheels for Linux, where I'm convinced that most of the serious
assembly work in the near future is going to happen. Learn DOS and 16-bit flat model (which is the old
"Tiny" or "COM file" model) and you will slide into Linux like a hot knife into butter.

I started this chapter this way as a warning: You can't write assembly language programs by trial and
error, nor can you do it by letting other people do your thinking for you. It is a complicated and tricky



process compared to GWBASIC or Perl or such we-do-it-all-for-you environments as Delphi and Visual
Basic. You have to pay attention. You have to read the sheet music. And most of all, you have to
practice.



DOS and DOS files

In the previous chapter, I defined what a computer program is, from the computer's perspective. It is,
metaphorically, a long journey in very small steps. A long list of binary codes directs the CPU to do
what it must to accomplish the job at hand. These codes are, even in their hexadecimal shorthand
form, gobbledygook to us here in meatspace:

  FE FF A2 37 4C 0A 29 00 91 CB 60 61 E8 E3 20 00 A8 00 B8 29 1F FF 69 55
  7B F4 F8 5B 31

Is this a real program or isn't it? You'd probably have to ask the CPU, unless you were a machine-code
maniac of the kind that hasn't been seen since 1977. (It isn't.)

But the CPU has no trouble with programs presented in this form. In fact, the CPU can't handle
programs any other way. The CPU simply isn't equipped to understand a string of characters such as

  LET X = 42

or even something that we out here would call assembly language:

  MOV AX,42

To the CPU, it's binary only and hold the text, please.

So, while it is possible to write computer programs in pure binary (I have done it, but not since 1977),
it's unpleasant work and will take you until the next Ice Age to accomplish anything useful.

The process of developing assembly language programs is a path that runs from what we call source
code that you can read, to something called machine code that the CPU can execute. In the middle is a
resting point called object code that we'll take up a little later.

The process of creating true machine-code programs is one of translation. You must start with
something that you and the rest of us can read and understand, and then somehow convert that to
something the CPU can understand and execute. Before examining either end of that road, however,
we need to understand a little more about the land on which the road is built.

The God Above, the Troll Below

Most of all, we need to understand DOS, both for its own sake and as a sort of idiot younger brother of
Linux. Some people look upon DOS as a god; others as a kind of troll. In fact, DOS is a little of both.
Mostly what you must put behind you is the common notion that DOS is a part of the machine itself and
somehow resides in the same sort of silicon as the CPU. Not so! DOS is a computer program of an
only slightly special nature, called an operating system.

In part, an operating system is a collection of routines that do nothing but serve the hardware
components of the computer itself. By hardware components I mean such things as disk drives,
printers, scanners, and so on. DOS acts something like a troll living under the bridge to your disk drive.
You tell the troll what you want to do with the disk drive, and the troll does it, his way, and at some cost
(in machine cycles) to you.

You could write a program that handled every little aspect of disk operation itself (many game
programmers have done exactly that) but it would be more trouble than it was worth, since every
program that runs on a computer needs to access the disk drives. And regardless of how grumpy the
troll is, he does get the job done, and (assuming your disk drives aren't falling-down damaged) does it
right every time. Can you guarantee that you know all there is to know about running a disk drive?
Forgive me if I have my doubts. That is, in my opinion, what trolls are for.

The other (and more interesting) thing that operating systems do is run programs. It is here that DOS
seems more godlike than troll-like. When you want to run a program on your computer, you type its
name at the DOS command line. DOS goes out and searches one or more disk drives for the named



program, loads it into memory at a convenient spot, sets the instruction pointer to the start of the
program, and boots the CPU in the rear to get it going.

DOS then patiently waits for the program to run its course and stop. When the program stops, it hands
the CPU obediently back to DOS, which again tilts a hand to its ear and listens for your next command
from the command line.

So, as programmers, we use DOS two ways: One is as a sort of toolkit, an army of trolls if you will,
each of which can perform some service for your program, thereby saving your program that effort. The
other is as a means of loading a program into memory and getting it going, and then catching the
machine gracefully on the rebound when your program is through.

I mention DOS again and again in this book. Everywhere you look in 16-bit assembly language, you're
going to see the old troll's face. Get used to it.

DOS Files: Magnetic Memory

Very simply, DOS files are memory banks stored on a magnetic coating rather than inside silicon chips.
A DOS file contains some number of bytes, stored in a specific order. One major difference from RAM
memory is that DOS files stored on disk are sequential-access memory banks.

A disk (be it floppy or hard) is a circular platform coated with magnetic plastic of some sort. (Here,
magnetic plastic is simply a polymer in which iron oxide particles or something similar is embedded.) In
a floppy disk drive, the platform is a flexible disk of tough plastic; in a hard disk, the platform is a rigid
platter of aluminum metal. Data is stored as little magnetic disturbances on the plastic coating in a
fashion similar to that used in audio cassettes and VCRs. A sensor called a read/write head sits very
close beside the rotating platform and waits for the data to pass by.

A simplified illustration of a rotating disk device is shown in Figure 4.1. The area of the disk is divided
into concentric circles called tracks. The tracks are further divided radially into sectors. A sector
(typically containing

Figure 4.1: Rotating disk storage.

512 bytes) is the smallest unit of storage that can be read or written at one time. A DOS disk file
consists of one or more sectors containing the file's data.

The read/write head is mounted on a sliding shaft that is controlled by a solenoid mechanism. The
solenoid can move the head horizontally to position the head over a specific track. (In Figure 4.1, the
head is positioned over track 2—counting from 0, remember!) However, once the head is over a
particular track, it has to count sectors until the sector it needs passes beneath it. The tracks can be
accessed at random, just like bytes in the computer's memory banks, but the sectors within a track
must be accessed sequentially.

Perhaps the single most valuable service DOS provides is handling the headaches of distributing data
onto empty sectors on a disk. Programs can hand sectors of data to DOS, one at a time, and let DOS
worry about where on the disk they can be placed. Each sector has a number, and DOS keeps track of



what sectors belong together as a file. The first sector in a file might be stored on track 3, sector 9; the
second sector might be stored on track 0, sector 4, and so on. You don't have to worry about that.
When you ask for sector 0 of your file, DOS looks up its location in its private tables and goes directly
to track 3, sector 9 and brings the sector's data back to you.

Binary Files

The data stored in a file are just binary bytes and can be anything at all. Files like this, where there are
no restrictions on the contents of a file, are called binary files, since they can legally contain any binary
code. Like all files, a binary file consists of some whole number of sectors, with each sector (typically)
containing 512 bytes. The least space any file on your disk occupies is 512 bytes; when you see the
DOS DIR command tell you a file has 17 bytes it in, that's the count of how many bytes were stored in
that file. But like a walk-in closet with only one pair of shoes in it, the rest of the sector is still there,
empty but occupying space on the disk.

A binary file has no structure, but is simply a long series of binary codes divided into numbered groups
of 512 and stored out on disk in a scheme that for now is best left to DOS to understand. Later on, you
can study up on it, especially once you learn more about Linux, in which entire file systems can be
loaded as though they were just more programs—which, of course, they are.

Text Files

If you've ever tried to use the DOS TYPE command to display a binary file (like an .EXE or .COM file)
to the screen, you've seen some odd things indeed. There's no reason for such files to be intelligible on
the screen; they're intended for other "eyes," typically the CPU's.

There is a separate class of files that is specifically restricted to containing human-readable
information. These are text files, because they contain the letters, digits, and symbols of which printed
human information (text) is composed.

Unlike binary files, text files have a certain structure to them. The characters in text files are divided into
lines. A line in a text file is defined not so much by what it contains as by how it ends. A special series
of invisible characters called an end-of-line (EOL) marker tags the end of a line. The first line in a text
file runs from the first byte in the file to the first EOL marker; the second line starts immediately after the
first EOL marker and runs to the second EOL marker, and so on. The text characters falling between
two sequential EOL markers are considered a single line.

This scheme is the same for both DOS and Linux. What differs is the exact nature of the EOL marker.
The EOL marker for DOS is not one character but two: the carriage return character (called CR by
those who know and love it) followed by the linefeed character (similarly called LF). You don't see these
characters on the screen as separate symbols, but you see what they do: They end the line. Anywhere
a line ends in an ordinary DOS text file, you'll find a mostly invisible partnership of one CR character
and one LF character hanging out. With Linux things are different: a single LF, without a partner CR.

Why two characters to end a line in a DOS text file? Long ago, there was (and still is, at hamfests) an
incredible mechanical nightmare called a Teletype machine. These were invented during World War II
as robot typewriters that could send written messages over long distances through electrical signals
that could pass over wires. It was a separate mechanical operation to return the typing carriage to the
left margin of the paper (carriage return) and another to feed the paper up one line to expose the next
clean line of paper to the typing carriage (line feed). A separate electrical signal was required to do
each of these operations, and while I don't know why that was necessary, it has carried over into the
dawn of the twenty-first century in the form of those two characters, CR and LF. Not only is this a case
of the tail wagging the dog, it's a case of the tail walking around 30 years after the poor dog rolled over
and died.

Figure 4.2 shows how CR and LF divide what might otherwise be a single meaningless string of
characters into a structured sequence of lines. It's important to understand the structure of a text file
because that structure dictates how some important software tools operate, as I explain a little later.



Figure 4.2: The structure of a DOS text file.

The CR character is actually character 13 in the ASCII character set summarized in Appendix D. The
LF character is character 10. They are two of a set of several invisible characters called whitespace,
indicating their role in positioning visible text characters ('a', '*', etc.) within the white space of a text
page. The other whitespace characters include the space character itself (character 32), the tab
character (character 9), and the form feed character (character 12), which can optionally divide a text
file further into pages.

Living Fossils

Another character, the bell character (BEL), falls in between binary and text characters. When
displayed or printed, it signals that a tone should be sounded. Back in the old Teletype days, the BEL
character caused the teletype machine to ring its bell—which was literally a mechanical bell struck by a
little hammer. BEL characters are allowed in text files, but are little used these days and considered
sloppy practice. Many modern printers and most displays don't handle them correctly anyway; like the
CR/LF pair, they are a barely surviving remnant of an increasingly fossilized past.

Another one of these fossilized characters will eventually cause you some trouble: the end-of-file (EOF)
marker character. Unlike EOL, EOF is a single character, ASCII character 26, sometimes written as
Ctrl+Z because you will generate the EOF character by holding the control key down and pressing the Z
key.

The EOF character, properly, is not a DOS convention at all. DOS inherited EOF from the even older
days of CP/M-80, which reigned between 1976 and 1982. In CP/M's archaic file system, there was no
precise count of how many bytes were present in a text file. The operating system counted how many
disk sectors were allocated to a text file, but within the last sector CP/M could not simply count its way
to the final byte. Instead, CP/M insisted on there being an end-of-file marker at the very end of the
significant data and would ignore anything after that marker.

DOS and Windows, by contrast, keep a precise count of how many characters are present in a text file,
and therefore do not require any sort of EOF marker at all. However, some older DOS utilities



recognize EOF, as a nod to older CP/M text files that were sometimes carried forward into the DOS
world. As character 26 (Ctrl+Z) is not a displayable character and not true white space, this ordinarily
did no harm. However, some editors and other utilities will not display or manipulate text past an
embedded Ctrl+Z.

Some DOS utilities recognize EOF, and some do not. If you find a text file that seems to end
prematurely, use a binary viewer such as DEBUG (more on which shortly) to see if a Ctrl+Z character
has found its way into the interior of the file. Ctrl+Z is not otherwise useful in any text files I'm aware of,
so removing it will not damage the file.

Keep in mind that this only applies to text files. Binary files may contain any character values at all, and
thus may be shot full of Ctrl+Z characters, any or all of which may be vital to the file's usefulness. We
return to the issue of inspecting and changing the contents of binary files in a little while.

Text Editors

Manipulating a text file is done with a program called a text editor. A text editor is a word processor for
program source code files. In its simplest form, a text editor works like this: You type characters at the
keyboard, and they appear on the screen. When you press the Enter key, an EOL marker (for DOS, the
two characters CR and LF) is placed at the end of a line, and the cursor moves down to the next line.

The editor also allows you to move the cursor back up into text you've already entered, in order to
change it. You can delete words and whole lines and replace them with newly entered text.

Ultimately, when you decide that you're finished, you press some key like F2, or some combination of
keys like Ctrl+K+D, and the text editor saves the text you entered from the keyboard as a text file. This
text file is the source code file you'll eventually present to the assembler for processing. Later on, you
can load that same text file back into the editor to make repairs on faulty lines that cause errors during
assembly or bugs during execution.

It's possible to use a word processor as a program text editor. In older times, many programmers used
WordStar, WordPerfect, Microsoft Word, and other available word processors to edit their program
text. This works—as long as you remember to write your text file to disk in "non-document mode" or
"ASCII text mode." Most true word processors embed countless strange little codes in their text files, to
control such things as margin settings, font selections, headers and footers, and soft page and line
breaks. These codes are not recognized ASCII characters but binary values and actually turn the
document file from a text file to a binary file. The codes will give the assembler fits. If you write a
program source code file to disk as a document file, it will not assemble. See the word processor
documentation for details on how to export a document file as a pure ASCII text file.

Software was expensive in years past, and programmers (who tend to be cheap, yours truly not
excluded) understandably wanted to get the most bang for their software budget and used word
processors for everything they could. These days, software has become cheap or (increasingly) even
free, and there are a multitude of plain ASCII text editors available freely for download from the
Internet.

I'll even go you better than that. On the CD-ROM associated with this book I've arranged to distribute a
programming text editor specifically designed for assembly language programmers—in fact, specifically
designed to work seamlessly with the assembly that I teach in this book (which is also on the CD-
ROM—what a deal!). NASM-IDE was written in Turbo Pascal, and its editor works a great deal like the
editors you may have used in Borland's DOS-based programming products. I explain how to use
NASM-IDE in great detail in the next chapter.

In earlier editions of this book I spoke of something called JED, which was a simple assembly-
programming editor that I had written for my own use—also in Turbo Pascal. JED is history, and while
you can still use it if you have it, it doesn't interface well with NASM, the assembler I teach throughout
this book. NASM-IDE is a great deal like JED but much more sophisticated—and obviously, it was
created to work with NASM.

If for some reason the CD-ROM didn't come to you with the book, both NASM-IDE and NASM itself can
be downloaded from the Internet without charge, along with the listing files. See Appendix C, "Web
URLS for Assembly Programmers."



If you have a text editor that you've used for some time and prefer, there's no reason not to use it. It
just won't make following along with the text quite as easy.



Compilers and Assemblers

With that understanding of DOS files under your belt, you can come to understand the nature of two
important kinds of programs: compilers and assemblers. Both fall into a larger category of programs we
call translators.

A translator is a program that accepts human-readable source code files and generates some kind of
binary file. The binary file could be an executable program file that the CPU can understand, or it could
be a font file, or a compressed binary data file, or any of a hundred other types of binary file.

Program translators are translators that generate machine instructions that the CPU can understand. A
program translator reads a source code file line by line, and writes a binary file of machine instructions
that accomplishes the computer actions that the source code file describes. This binary file is called an
object code file.

A compiler is a program translator that reads in source code files written in higher-level languages such
as C++ and Pascal and writes out object code files.

An assembler is a special type of compiler. It, too, is a program translator that reads source code files
and outputs object code files for execution by the CPU. However, an assembler is a translator designed
specifically to translate what we call assembly language into object code. In the same sense that a
language compiler for Pascal or C++ compiles a source code file to an object code file, we say that an
assembler assembles an assembly language source code file to an object code file. The process, one
of translation, is similar in both cases. Assembly language, however, has an overwhelmingly important
characteristic that sets it apart from compilers: total control over the object code.

Assembly Language

Some people define assembly language as a language in which one line of source code generates one
machine instruction. This has never been literally true, since some lines in an assembly language
source code file are instructions to the translator program (rather than to the CPU) and do not generate
machine instructions at all.

Here's a better definition:

Assembly language is a translator language that allows total control over every individual machine
instruction generated by the translator program. Such a translator program is called an assembler.

Pascal or C++ compilers, on the other hand, make a multitude of invisible and inalterable decisions
about how a given language statement will be translated into machine instructions. For example, the
following single Pascal instruction assigns a value of 42 to a numeric variable called I:

  I := 42;

When a Pascal compiler reads this line, it outputs a series of four or five machine instructions that take
the value 42 and store it in memory at a location encoded by the name I. Normally, you the Pascal
programmer have no idea what these four or five instructions actually are, and you have utterly no way
of changing them, even if you know a sequence of machine instructions that is faster and more efficient
than the sequence that the compiler uses. The Pascal compiler has its own way of generating machine
instructions, and you have no choice but to accept what it writes to disk to accomplish the work of the
Pascal statements in the source code file.

An assembler, however, has at least one line in the source code file for every machine instruction it
generates. It has more lines than that to handle numerous other things, but every machine instruction in
the final object code file is controlled by a corresponding line in the source code file.

Each of the CPU's many machine instructions has a corresponding mnemonic in assembly language.
As the word suggests, these mnemonics began as devices to help programmers remember a particular
binary machine instruction. For example, the mnemonic for binary machine instruction 9CH, which
pushes the flags register onto the stack, is PUSHF—which is a country mile easier to remember than
9CH.



When you write your source code file in assembly language, you will arrange series of mnemonics,
typically one mnemonic per line in the source code text file. A portion of a source code file might look
like this:

  MOV  AH,12H       ; 12H is Motor Information Service
  MOV  AL,03H       ; 03H is Return Current Speed function
  XOR  BH,BH        ; Zero BH for safety's sake
  INT  71H          ; Call Motor Services Interrupt

Here, the words MOV, XOR, and INT are the mnemonics. The numbers and other items to the
immediate right of each mnemonic are that mnemonic's operands. There are various kinds of operands
for various machine instructions, and some instructions (such as PUSHF mentioned previously) have
no operands at all. I thoroughly describe each instruction's operands when we cover that instruction.

Taken together, a mnemonic and its operands are called an instruction. This is the word I'll be using
most of the time in this book to indicate the human-readable proxy of one of the CPU's pure binary
machine code instructions. To talk about the binary code specifically, we'll always refer to a machine
instruction.

The assembler's most important job is to read lines from the source code file and write machine
instructions to an object code file. See Figure 4.3.

Figure 4.3: What the assembler does.

Comments

To the right of each instruction is some information starting with a semicolon. This information is called
a comment, and its purpose should be plain: to cast some light on what the associated assembly
language instruction is for. The instruction MOV AH,12H places the value 12H in register AH—but why?
What is the instruction accomplishing in the context of the assembly language program that you're
writing? The comment provides the why.

Far more than in any other programming language, comments are critical to the success of your
assembly language programs. My own recommendation is that every instruction in your source code
files should have a comment to its right.

Structurally, a comment begins with the first semicolon on a line, and continues to the EOL marker at
the end of that line. This is one instance where understanding how a text file is structured is very
important—because in assembly language, comments end at the ends of lines. In most other
languages such as Pascal and C++, comments are placed between pairs of comment delimiters like (*
and *), and EOL markers at line ends are ignored.

Comments begin at semicolons and end at EOL.

Beware "Write-Only" Source Code!

This is as good a time as any to point out a serious problem with assembly language. The instructions
themselves are almost vanishingly terse, and while each instruction states what it does, there is nothing



to indicate a context within which that instruction operates. You can build that context into your Pascal
or Basic code with some skill and discipline (along with identifiers that point to their purpose), but in
assembly language you can only add context through comments.

Without context, assembly language starts to turn into what we call "write-only" code. It can happen like
this: On November 1, in the heat of creation, you crank out about 300 instructions in a short utility
program that does something important. You go back on January 1 to add a feature to the
program—and discover that you no longer remember how it works. The individual instructions are all
correct, and the program assembles and runs as it should, but knowledge of how it all came together
and how it works from a height have vanished under Christmas memories and eight weeks of doing
other things. In other words, you wrote it, but you can no longer read it, or change it. Voila! Write-only
code.

Comment like crazy. Each individual line should have a comment, and every so often in a sizeable
source code file, take a few lines out and make entire lines into comments, explaining what the code is
up to at this point in its execution.

While comments do take room in your source code disk files, they are not copied into your object code
files, and a program with loads of comments runs exactly as fast as the same program with no
comments at all.

You will be making a considerable investment in time and energy when you write assembly language
programs—far more than in "halfway to heaven" languages like C and C++, and unthinkably more than
in "we do it all for you" IDEs like Delphi and Visual Basic. It's more difficult than just about any other
way of writing programs, and if you don't comment, you may end up having to simply toss out hundreds
of lines of inexplicable code and write it again, from scratch.

Work smart. Comment till you drop.

Object Code and Linkers

There's no reason at all why an assembler cannot read a source code file and write out a finished,
executable program file as its object code file. The assembler I'm teaching in this book, NASM, can do
precisely that, and for much of the book we'll use it that way. Most of the older assemblers, including
Microsoft's MASM and Borland's TASM, don't have this ability, however. Object code files produced by
such assemblers are a sort of intermediate step between source code and executable program. This
intermediate step is a type of binary file called a relocatable object module, or (more simply) an .OBJ
file, after the file extension used by the assembler when it creates the file. For example, a source code
file called FOO.ASM would be assembled into an object file called FOO.OBJ. (The "relocatable" portion
of the concept is crucial, but a little advanced for this chapter. More on it later.)

.OBJ files cannot themselves be run as programs. An additional step, called linking, is necessary to
turn .OBJ files into executable program files.

The reason for .OBJ files as intermediate steps is that a single large source code file may be cut up
into numerous smaller source code files to keep them manageable in size and complexity. The
assembler assembles the various component fragments separately, and the several resulting .OBJ files
are woven together into a single, executable program file. This process is shown in Figure 4.4.



Figure 4.4: The assembler and linker.

When you're first starting out, it's unlikely that you will be writing programs spread out across several
source code files. That's why we won't be using a linker initially. However, once you get into certain
more advanced assembly ideas, you'll want to use the linker to change even a single .OBJ file into an
executable program file. The larger your programs become, however, the more time can be saved by
cutting them up into components. There are two reasons for this:

You can move tested, proven routines into separate libraries and link them into any program you
write that might need them. This way, you can reuse code over and over again and not build the
same old wheels every time you begin a new programming project in assembly language.

1.

Once portions of a program are tested and found to be correct, there's no need to waste time
assembling them over and over again along with newer, untested portions of a program. Once a
major program gets into the tens of thousands of lines of code (and you'll get there sooner than
you might think), you can save an enormous amount of time by assembling only the portion of a
program that you are currently working on, and linking the finished portions into the final program
without reassembling the whole thing every time.

2.

Executable Program Files

Programs are written to be executed, and the file that you ultimately create in assembly language
programming (or most any programming, actually) is called an executable program file. Under Linux (as
I describe toward the end of this book), there is only a single kind of executable program file. In DOS
work, however, there are two types of executable program files: .COM files and .EXE files. I deal with
both in this book, and the specific technical differences will have to wait until I've covered a little more
ground. But in purely practical terms, .COM files are produced directly by the NASM assembler,
whereas .EXE files are generated by a linker.

The linker program may be seen as a kind of translator program, but its major role lies in combining
multiple object code files into a single executable program file. The linker would accept, for example,
three object code files: FOO.OBJ, BAR.OBJ, and BAS.OBJ, and knit them together into a single
executable program file. This file would by default be called FOO.EXE, but you can specify any name
you like to the linker.

An executable file can be run by typing its name (without the .COM or .EXE extension) at the DOS
prompt and pressing Enter:

  C:\>FOO



A Real Assembler: NASM

For quite a few years there was only one assembler product in general use for the PC: Microsoft's
Macro Assembler, better known as MASM. MASM was and remains an enormously popular program
and has established a standard for assembler operation on the PC. In 1988, Borland International
released its answer to MASM in the form of Turbo Assembler, which was quickly christened TASM by
syllable-conserving programmers. TASM was a great deal faster than MASM and started an arms race
with MASM that went on for some years. Borland's products (and eventually Borland itself) began
losing the race with Microsoft in the later 1990s, and today TASM is no longer available. MASM can be
purchased from Microsoft, and is included in several of Microsoft's developer product bundles. It's an
excellent product, and if you go on to do professional (that is, paying) work in assembly language,
you're more than likely to be called upon to use it.

I'm not, however, going to be covering MASM in any detail in this book.

Something wonderful happened in the mid-1990s that changed the world of software forever. The idea
of open source software caught fire and caught the imagination of programmers everywhere. In open
source software, programmers collaborate (generally over the Internet) with dozens or even hundreds
of other programmers and create software products that no single programmer (or even two or three)
could have produced alone. To facilitate the collaborative process (and to eliminate fights over who
owns the software), open source software is turned loose with all of its source code and
documentation, and made available for free to whoever wants it.

When the idea first got the attention of the mainstream, it seemed simply nuts. Why would
programmers do all this work for nothing? While some of the founders of the open source movement,
such as the estimable Richard Stallman, insist that software should ideally be free for ethical reasons,
the practical reality is that the open source concept of free software makes projects possible that would
never happen otherwise. Many hands are required to create complex software, and the arguments that
arise over ownership, marketing, and distribution have killed many good software products that the
world could well have used. By making software "no secrets" by design and letting anyone who wants it
have it, these arguments go away and collaborative effort becomes possible.

The largest and most visible open source project, of course, is the Linux operating system, begun by
Linus Torvalds, a Finnish college student, in 1991. I have a couple of chapters on writing assembly
language under Linux toward the end of this book. But the big win for us assembly language geeks is
that in 1997, an open source assembler appeared. Its name is NASM, the Net-Wide Assembler, and it
has improved relentlessly since its first release. Now, in 2000, it is brutally effective, easy to learn, and
best of all, it's still free. I explain lots more about NASM through the course of this book, but you should
fire up your Web browser and go look at the NASM Web site at www.web-sites.co.uk/nasm/tools.html.

In case the copy of the book you own no longer has the CD-ROM in it, or if the CD-ROM is damaged or
otherwise unreadable, you can download NASM from this Web site and many other places. The version
of NASM I'm using throughout this book (the one that is on the CD-ROM) is 0.98. If you have an older
version from somewhere, please obtain the 0.98 release so you don't get confused when I talk about
features that don't exist in your copy!

Most commercial assemblers (such as MASM and TASM) come with their own special debugging tools,
called debuggers. MASM's debugger is called CodeView, and TASM's debugger is called Turbo
Debugger. Both are enormously sophisticated programs, and I won't be discussing either in this book,
in part due to their intimate connection with their associated assemblers, but mostly because there is a
debugger shipped with every copy of DOS and Windows—even Windows NT. This debugger, simply
named DEBUG, is more than enough debugger to cut your teeth on and will get you familiar enough
with debugger concepts to move up to a commercial debugger later on.

I describe DEBUG much more fully in a following section.

Setting Up a Working Directory

The process of creating and perfecting assembly language programs involves a lot of different kinds of
DOS files and numerous separate software tools. Unlike the tidy, fully integrated environments of Turbo



Pascal, Delphi, or Visual Basic, assembly language development comes in a great many pieces with
(as it were) some assembly required.

I recommend setting up a development subdirectory on your hard disk and putting all of the various
pieces in that subdirectory. For ease of understanding, let's call this directory ASM. I've actually created
an ASM directory for you on the CD-ROM that comes with this book. It's completely set up and ready to
go, software and all, and all you need to do is copy the contents of the CD-ROM directory
FORDOS\ASM to one of your hard disk drive units. You can't run any of the software correctly from the
CD-ROM! (CD-ROMs are by nature read-only devices, and you'll need to be writing files right and left.)
If you're doing your assembly work in a DOS box under Windows, it's easy: Go back "up" into Windows
and drag the contents of the FORDOS directory from the CD-ROM to an appropriate hard drive
location, most likely on C: or D: but wherever you have room for it. ASM and all its subdirectories will
come right along.

If you're using DOS, you'll need to use the XCOPY command, like this:

  C:\>XCOPY F:\FORDOS C: /s

Note that by convention here, the CD-ROM drive is F: and the destination hard disk drive unit is C:. Use
whatever your particular drive units might be. Don't forget the /s parameter. It tells XCOPY to bring the
directory structure along as it copies, so the subdirectories on the CD-ROM will be reproduced on your
hard drive.

Once you've copied the ASM directory from the CD-ROM, that's all the copying you'll need to do.

If you don't have a usable CD-ROM for this book (and if you bought it used, the CD-ROM is often
missing or damaged), you'll have to create the ASM directory and load it yourself. Create and move into
ASM by using these DOS commands:

  C:\>MD ASM
  C:\>CD ASM

(Obviously, you don't have to put the ASM directory on the C: drive. Put it where it goes best on your
system.) Then, install the following:

Your text editor or development environment. If you're using NASM-IDE (see Chapter 5), you'll
need to obtain the archive file NASMIDE.ZIP and unzip it into the ASM directory. Make sure
you've enabled your ZIP utility to create directories, because the NASM-IDE archive contains
example code residing in a subdirectory called EXAMPLES. You can download NASM-IDE from
its home page www.inglenook.co.uk/nasmide/. (This URL was current late winter 2000.) For
other text editors such as Brief or Epsilon, you'll need to consult the product's documentation.

1.

The assembler NASM itself. Like NASM-IDE, NASM comes in a ZIP archive, and you must
unzip it into the ASM directory. Make sure the copy you obtain is version 0.98! (Version 0.97 is
still widely present on download sites like SimTel. Don't use it!) The archive file name is
NASM098.ZIP. You can download the latest version of NASM from the NASM home page
www.web-sites.co.uk/nasm/.

2.

The subdirectories. As with NASM-IDE, there are subdirectories encoded in the NASM ZIP
archive file, and you must enable your unzip utility to create those subdirectories during the
process of extracting the files from the archive.

3.

Your linker. Commercial assemblers such as MASM and TASM include their own linkers. Many
people who use NASM under DOS use the ALINK linker, created by Anthony Williams. With
Anthony's permission I've included ALINK on the CD-ROM. It's the only linker I discuss in this
book. ALINK has a home page from which you can download the latest version in case you're
reading this book long after its publication date: http://alink.home.dhs.org/.

4.

DEBUG. A copy of DEBUG.EXE is installed with all current copies of DOS and Windows, even
Windows NT. In ancient times, DEBUG.EXE was actually DEBUG.COM. If your version of DOS
is that old, you probably ought to upgrade. Find DEBUG.EXE on your system and copy it to the
ASM directory or to some directory on your DOS path.

5.

6.



Odds and ends. A source code listing program, while not essential, can be very helpful—such
programs print out neatly formatted listings on your printer. I have written a useful one called
JLIST10 that I have placed on the CD-ROM for this book—but you need to understand that it
only operates with LaserJet or compatible laser printers. Add anything else that may be helpful,
keeping in mind that a lot of files are generated during assembly language development, and
you should strive to keep unnecessary clutter to a minimum.

6.



The Assembly Language Development Process

As you can see, there are a lot of different file types and a fair number of programs involved in the cycle
of writing, assembling, and testing an assembly language program. The cycle itself sounds more
complex than it is. I've drawn you a map to help you keep your bearings during the discussions in this
chapter. Figure 4.5 shows the most complex form of the assembly language development process in a
"view from a height." At first glance it may look like a map of the LA freeway system,

Figure 4.5: The assembly language development process.

but in reality the flow is fairly straightforward. And NASM allows you to remove a certain amount of the
complexity-the separate linker operation-for simple, single-source-file programs like those you'll write
while learning your way around the instruction set. Finally, NASM-IDE helps even further by invoking
some of the utilities automatically, so you're not constantly hammering on the keyboard.

Nonetheless, if you pursue professional-level assembly language programming, this is the map you'll
need to follow. Let's take a quick tour.

Assembling the Source Code File

The text editor first creates a new text file, and later changes that same text file, as you extend, modify,
and perfect your assembly language program. As a convention, most assembly language source code
files are given a file extension of .ASM. In other words, for the program named FOO, the assembly
language source code file would be named FOO.ASM.

It is possible to use file extensions other than .ASM, but I feel that using the .ASM extension can
eliminate some confusion by allowing you to tell at a glance what a file is for-just by looking at its name.
All told, about nine different kinds of files can be involved during assembly language development-more
if you take the horrendous leap into Windows software development. (We're only going to speak of four
or five in this book.) Each type of file will have its own standard file extension. Anything that will help
you keep all that complexity in line will be worth the (admittedly) rigid confines of a standard naming
convention.

As you can see from the flow in Figure 4.5, the editor produces a source code text file, which we show



as having the .ASM extension. This file is then passed to the assembler program itself, for translation to
a relocatable object module file with an extension of .OBJ.

When you invoke the assembler, DOS will load the assembler from disk and run it. The assembler will
open the source code file you named after the name of the assembler and begin processing the file.
Almost immediately afterward, it will create an object file with the same name as the source file, but
with an .OBJ extension.

As the assembler reads lines from the source code file, it will examine them, construct the binary
machine instructions the source code lines represent, and then write those machine instructions to the
object code file.

When the assembler comes to the end of the source code file, it will close both source code file and
object code file and return control to DOS.

Assembler Errors

Note well: The previous paragraphs describe what happens if the .ASM file is correct. By correct, I
mean that the file is completely comprehensible to the assembler and can be translated into machine
instructions without the assembler getting confused. If the assembler encounters something it doesn't
understand when it reads a line from the source code file, we call the misunderstood text an error, and
the assembler displays an error message.

For example, the following line of assembly language will confuse the assembler and summon an error
message:

  MOV AX,VX

The reason is simple: There's no such thing as a "VX." What came out as "VX" was actually intended to
be "BX," which is the name of a register. (The V key is right next to the B key and can be struck by
mistake without your fingers necessarily knowing that they done wrong.)

Typos like this are by far the easiest kind of error to spot. Others that take some study to find involve
transgressions of the assembler's many rules. For example:

  MOV ES,0FF00H

This looks like it should be correct, since ES is a real register and 0FF00H is a real 16-bit quantity that
will fit into ES. However, among the multitude of rules in the fine print of the 86-family of assemblers is
one that states you cannot directly move an immediate value (any number like 0FF00H) directly into a
segment register like ES, DS, SS, or CS. It simply isn't part of the CPU's machinery to do that. Instead,
you must first move the immediate value into a register like AX, and then move AX into ES.

You don't have to remember the details here; we'll go into the rules later on when we discuss the
individual instructions. For now, simply understand that some things that look reasonable are simply
against the rules for technical reasons and are considered an error.

There are much, much more difficult errors that involve inconsistencies between two otherwise
legitimate lines of source code. I won't offer any examples here, but I wanted to point out that errors
can be truly ugly, hidden things that can take a lot of study and torn hair to find. Toto, we are definitely
not in Basic anymore...

The error messages vary from assembler to assembler, and they may not always be as helpful as you
might hope. The error NASM displays upon encountering the "VX" typo follows:

  testerr.asm:20: symbol 'vx' undefined

This is pretty plain, assuming you know what a "symbol" is. The error message NASM will present when
you try to load an immediate value into ES is far less helpful:

  Testerr.asm:20: invalid combination of opcode and operands



It'll let you know you're guilty of performing illegal acts with an opcode and its operands, but that's it.
You have to know what's legal and what's illegal to really understand what you did wrong. As in running
a stop sign, ignorance of the law is no excuse.

Assembler error messages do not absolve you from understanding the CPU's or the assembler's rules.

I hope I don't frighten you too terribly by warning you that for more abstruse errors, the error messages
may be almost no help at all.

You may make (or will make-let's get real) more than one error in writing your source code files. The
assembler will display more than one error message in such cases, but it may not necessarily display
an error for every error present in the source code file. At some point, multiple errors confuse the
assembler so thoroughly that it cannot necessarily tell right from wrong anymore. While it's true that the
assembler reads and translates source code files line by line, there is a cumulative picture of the final
assembly language program that is built up over the course of the whole assembly process. If this
picture is shot too full of errors, in time the whole picture collapses.

The assembler will stop and return to DOS, having printed numerous error messages. Start at the first
one and keep going. If the following ones don't make sense, fix the first one or two and assemble
again.

Back to the Editor

The way to fix errors is to load the .ASM file back into your text editor and start hunting up the error.
This loopback is shown in Figure 4.5.

The error message will almost always contain a line number. Move the cursor to that line number and
start looking for the false and the fanciful. If you find the error immediately, fix it and start looking for the
next.

Here's a little logistical snag: How do you make a list of the error messages on paper so that you don't
have to memorize them or scribble them down on paper with a pencil? You may or may not be aware
that you can redirect the assembler's error message displays to a DOS text file on disk.

It works like this: You invoke the assembler just as you normally would, but add the redirection operator
">" and the name of the text file to which you want the error messages sent. If you were assembling
FOO.ASM with NASM and wanted your error messages written out to a disk file named ERRORS.TXT,
you would invoke NASM this way:

  C:\ASM>NASM FOO > ERRORS.TXT

(I've omitted certain command-line parameters for simplicity's sake.) Here, error messages will be sent
to ERRORS.TXT in the current DOS directory C:\ASM. When you use redirection, the output does not
display on the screen. The stream of text from NASM that you would ordinarily see is quite literally
steered in its entirety to another place, the file ERRORS.TXT.

Once the assembly process is done, the DOS prompt will appear again. You can then print the
ERRORS.TXT file on your printer and have a handy summary of all that the assembler discovered was
wrong with your source code file.

Note well that if you're using an interactive development environment like NASM-IDE (which is provided
on this book's CD-ROM and described in detail in the next chapter), you won't have to bother with
redirection to a file or to the printer. NASM-IDE and other development environments accumulate error
messages in a separate window that you can keep on display while you go back and edit your .ASM
file. This is a much more convenient way to work, and I powerfully recommend it.

Assembler Warnings

As taciturn a creature as an assembler may appear to be, it genuinely tries to help you any way it can.
One way it tries to help is by displaying warning messages during the assembly process. These
warning messages are a monumental puzzle to beginning assembly language programmers: Are they



errors or aren't they? Can I ignore them or should I fool with the source code until they go away?

Alas, there's no clean answer. Sorry about that.

Warnings are the assembler acting as experienced consultant, and hinting that something in your
source code is a little dicey. Now, in the nature of assembly language, you may fully intend that the
source code be dicey. In an 86-family CPU, dicey code may be the only way to do something fast
enough, or just to do it at all. The critical factor is that you had better know what you're doing. (And if
you're reading this book, my guess is that you probably don't.)

The most common generator of warning messages is doing something that goes against the
assembler's default conditions and assumptions. If you're a beginner doing ordinary, 100-percent-by-
the-book sorts of things, you should crack your assembler reference manual and figure out why the
assembler is tut-tutting you. Ignoring a warning may cause peculiar bugs to occur later on during
program testing. Or, ignoring a warning message may have no undesirable consequences at all. I feel,
however, that it's always better to know what's going on. Follow this rule:

Ignore an assembler warning message only if you know exactly what it means.

In other words, until you understand why you're getting a warning message, treat it as though it were an
error message. Only once you fully understand why it's there and what it means should you try to make
the decision whether to ignore it or not.

In summary: The first part of the assembly language development process (as shown in Figure 4.5) is a
loop. You must edit your source code file, assemble it, and return to the editor to fix errors until the
assembler spots no further errors. You cannot continue until the assembler gives your source code file
a clean bill of health.

When no further errors are found, the assembler will write an .OBJ file to disk, and you will be ready to
go on to the next step.

Linking

As I explain shortly, there's nothing to prevent an assembler from generating an executable program
file (that is, an .EXE or .COM file) direct from your source code file. NASM can do this, and we'll take
advantage of that shortcut while we're getting started. However, in traditional assembly language work,
what actually happens is that the assembler writes an intermediate object code file with an .OBJ
extension to disk. You can't run this .OBJ file, even though it generally contains all the machine
instructions that your assembly language source code file specified. The .OBJ file needs to be
processed by another translator program, the linker.

The linker performs a number of operations on the .OBJ file, most of which would be meaningless to
you at this point. The most obvious task the linker does is to weave several .OBJ files into a single
.EXE executable program file. Creating an assembly language program from multiple .ASM files is
called modular assembly, and I explain how to do it (with an example) in Chapter 9.

Why create multiple .OBJ files when writing a single executable program? One of two major reasons is
size. A middling assembly language application might be 50,000 lines long. Cutting that single
monolithic .ASM file up into multiple 8,000-line .ASM files would make the individual .ASM files smaller
and much easier to understand.

The other reason is to avoid assembling completed portions of the program every time any part of the
program is assembled. One thing you'll be doing is writing assembly language procedures, which are
small detours from the main run of steps and tests that can be taken from anywhere within the
assembly language program. Once you write and perfect a procedure, you can tuck it away in an .ASM
file with other completed procedures, assemble it, and then simply link the resulting .OBJ file into the
working .ASM file. The alternative is to waste time by reassembling perfected source code over and
over again every time you assemble the main portion of the program.

This is shown in Figure 4.5. In the upper-right corner is a row of .OBJ files. These .OBJ files were
assembled earlier from correct .ASM files, yielding binary disk files containing ready-to-go machine
instructions. When the linker links the .OBJ file produced from your in-progress .ASM file, it adds in the
previously assembled .OBJ files, which are called modules. The single .EXE file that the linker writes to



disk contains the machine instructions from all of the .OBJ files handed to the linker when then linker is
invoked.

Once the in-progress .ASM file is completed and made correct, its .OBJ module can be put up on the
rack with the others and added to the next in-progress .ASM source code file. Little by little you
construct your application program out of the modules you build one at a time.

A very important bonus is that some of the procedures in an .OBJ module may be used in a future
assembly language program that hasn't even been begun yet. Creating such libraries of "toolkit"
procedures can be an extraordinarily effective way to save time by reusing code over and over again,
without even passing it through the assembler again!

Many traditional assemblers, such as MASM and TASM, require that you use a linker to process even a
single small .OBJ file into an executable .COM or .EXE file. Connecting multiple modules is only one of
several things the linker is capable of doing. More recent assemblers such as NASM can often take up
some of the work that a linker normally does and allow you to create simple executable programs from
single .ASM files. But keep in mind that to produce an executable .EXE file from multiple assembly
language source code files, you must invoke the linker.

The linker I discuss in this book is called ALINK, and like NASM and NASM-IDE, it's a free utility
created by a dedicated assembly programmer. Anthony Williams is its creator, and he was kind enough
to allow me to redistribute ALINK on the CD-ROM for this book.

Invoking the linker is again done from the DOS command line. Linking multiple files involves naming
each file on the command line. With ALINK, you simply name each .OBJ file on the command line after
the word ALINK, with a space between each file name. You do not have to include the .OBJ extension-
ALINK assumes that all modules to be linked end in .OBJ:

  C:\ASM>ALINK FOO BAR BAS

There are many different options and commands that may be entered along with the file names, to do
things slightly (or considerably) fancier. We use ALINK a lot more later on in this book, and at that point
I'll explain its command syntax in greater detail.

Linker Errors

As with the assembler, the linker may discover problems as it weaves multiple .OBJ files together into a
single .EXE file. Linker errors are subtler than assembler errors and are usually harder to find.
Fortunately, they are rarer and not as easy to make.

As with assembler errors, when you are presented with a linker error you have to return to the editor
and figure out what the problem is. Once you've identified the problem (or think you have) and changed
something in the source code file to fix the problem, you must reassemble and relink the program to
see if the linker error went away. Until it does, you have to loop back to the editor, try something else,
and assemble/link once more.

If possible, avoid doing this by trial and error. Read your assembler and linker documentation.
Understand what you're doing. The more you understand about what's going on within the assembler
and the linker, the easier it will be to determine who or what is giving the linker fits.

Testing the .EXE File

If you receive no linker errors, the linker will create and fill a single .EXE file with the machine
instructions present in all of the .OBJ files named on the linker command line. The .EXE file is your
executable program. You can run it by simply naming it on the DOS command line and pressing Enter:

  C:\ASM>FOO

When you invoke your program in this way, one of two things will happen: The program will work as you
intended it to, or you'll be confronted with the effects of one or more program bugs. A bug is anything in
a program that doesn't work the way you want it to. This makes a bug somewhat more subjective than



an error. One person might think red characters displayed on a blue background is a bug, while another
might consider it a clever New Age feature and be quite pleased. Settling bug versus feature conflicts
like this is up to you. Consensus is called for here, with fistfights only as a last resort.

There are bugs and there are bugs. When working in assembly language, it's quite common for a bug
to completely "blow the machine away," which is less violent than some think. A system crash is what
you call it when the machine sits there mutely and will not respond to the keyboard. You may have to
press Ctrl+Alt+Delete to reboot the system, or (worse) have to press the Reset button, or even power
down and then power up again (that is, flip the power switch off, wait 10 seconds, and switch it on
again). Be ready for this-it will happen to you, sooner and oftener than you will care for.

Figure 4.5 announces the exit of the assembly language development process as happening when your
program works perfectly. A very serious question is this: How do you know when it works perfectly?
Simple programs assembled while learning the language may be easy enough to test in a minute or
two. But any program that accomplishes anything useful at all will take hours of testing at minimum. A
serious and ambitious application could take weeks-or months-to test thoroughly. A program that takes
various kinds of input values and produces various kinds of output should be tested with as many
different combinations of input values as possible, and you should examine every possible output every
time.

Even so, finding every last bug is considered by some to be an impossible ideal. Perhaps-but you
should strive to come as close as possible, in as efficient a fashion as you can manage. I have a lot
more to say about bugs and debugging throughout the rest of this book.

Errors versus Bugs

In the interest of keeping the Babel effect at bay, I think it's important to carefully draw the distinction
between errors and bugs. An error is something wrong with your source code file that either the
assembler or the linker kicks out as unacceptable. An error prevents the assembly or link process from
going to completion and will thus prevent a final .EXE file from being produced.

A bug, by contrast, is a problem discovered during execution of a program under DOS. Bugs are not
detected by either the assembler or the linker. Bugs can be benign, such as a misspelled word in a
screen message or a line positioned on the wrong screen row; or a bug can make your DOS session
run off into the bushes and not come back.

Both errors and bugs require that you go back to the text editor and change something in your source
code file. The difference here is that most errors are reported with a line number telling you where to go
in your source code file to fix the problem. Bugs, on the other hand, are left as an exercise for the
student. You have to hunt them down, and neither the assembler nor the linker will give you much in
the line of clues.

Debuggers and Debugging

The final, and almost certainly the most painful, part of the assembly language development process is
debugging. Debugging is simply the systematic process by which bugs are located and corrected. A
debugger is a utility program designed specifically to help you locate and identify bugs.

Debugger programs are among the most mysterious and difficult to understand of all programs.
Debuggers are part X-ray machine and part magnifying glass. A debugger loads into memory with your
program and remains in memory, side by side with your program. The debugger then puts tendrils down
into both the operating system (for our purposes, DOS, and later Linux) and into your program and
enables some truly peculiar things to be done.

One of the problems with debugging computer programs is that they operate so quickly. Thousands of
machine instructions can be executed in a single second, and if one of those instructions isn't quite
right, it's past and gone long before you can identify which one it is by staring at the screen. A debugger
allows you to execute the machine instructions in a program one at a time, allowing you to pause
indefinitely between each one to examine the effects of the last instruction on the screen. The
debugger also lets you look at the contents of any location in memory, and the values stored in any
register, during that pause between instructions.



Commercial assemblers such as MASM are generally packaged with their own advanced debuggers.
MASM's CodeView is a brutally powerful (and hellishly complicated) creature that I don't recommend to
beginners. For this reason, I won't try to explain how to use CodeView in this book.

Besides, CodeView is bundled with expensive Microsoft development tools and thus costs a fair
amount of money. Very fortunately, every copy of DOS and Windows, irrespective of version, is
shipped with a more limited but perfectly good debugger called DEBUG. DEBUG can do nearly
anything that a beginner would want from a debugger, and in this book we'll do all our DOS debugging
with DEBUG.

Because DEBUG is included with your operating system, it's not one of the provided tools on the CD-
ROM included with this book. And because its location has changed from version to version of DOS
and Windows, I recommend looking around in your system directories until you locate it. In older
versions of DOS it's called DEBUG.COM. In newer versions of DOS and all versions of Windows, it's
DEBUG.EXE.

I've found that on most systems, DEBUG is already on your path, and you can invoke it from any
directory you happen to be in. Try invoking DEBUG before you suffer too much looking for it. If a dash
character ("-") prompt appears, DEBUG is on your path and you don't need to know precisely where it
is. (Type a Q to quit DEBUG.)



DEBUG and How to Use It

The assembler and the linker are rather single-minded programs. As translators, they do only one thing:
Translate. This involves reading data from one file and writing a translation of that data into another file.

That's all a translator needs to do. The job isn't necessarily an easy thing for the translator to do, but it's
easy to describe and understand. Debuggers, by contrast, are like the electrician's little bag of tools:
They do lots of different things in a great many different ways and take plenty of explanation and
considerable practice to master.

In this section, I introduce you to DEBUG, a program that will allow you to single-step your assembly
language programs and examine their innards (and the machine's innards) between each and every
machine instruction. This section is only an introduction-DEBUG is learned best by doing, and you'll be
both using and learning DEBUG's diverse powers all through the rest of this book. By providing you with
an overview of what DEBUG does here, you'll be more capable of integrating its features into your
general understanding of assembly language development process as we examine it through the rest of
the book.

DEBUG's Bag of Tricks

It's well worth taking a page or so simply to describe what sorts of things DEBUG can do before actually
showing you how they're done. It's actually quite a list:

Display or change memory and files. Your programs will both exist in and affect memory, and
DEBUG can show you any part of memory-which implies that it can show you any part of any
program or binary file as well. It displays memory as a series of hexadecimal values, with a
corresponding display of any printable ASCII characters to its right. We'll show you some examples
a little later on. In addition to seeing the contents of memory, you can change those contents as well,
and if the contents of memory represent a file, you can write the changed file back out to disk.

Display or change the contents of all CPU registers. CPU registers allow you to work very
quickly, and you should use them as much as you can. This means that you need to see what's
going on in the registers while you use them, and with one command, DEBUG can display the
contents of all machine registers and flags at one time. If you want to change the contents of a
register while stepping through a program's machine instructions, you can do that as well.

Fill a region of memory with a single value. If you have an area of memory that you want blanked
out, DEBUG will allow you to fill that area of memory with any character or binary value.

Search memory for sequences of binary values. You can search any area of memory for a
specific sequence of characters or binary values. This could include names stored in memory or
sequences of machine instructions. This allows you to examine or change something that you know
exists somewhere in memory but not where.

Assemble new machine instructions into memory. DEBUG contains a simple assembler that
does much of what NASM can do-one machine instruction at a time. If you want to replace a
machine instruction somewhere within your program, you can type MOV AX,BX rather than have to
look up and type the raw binary machine code values 8BH 0C3H.

Unassemble binary machine instructions into their mnemonics and operands. The flip side of
the last feature is also possible: DEBUG can take the two hexadecimal values 8BH and 0C3H and
tell you that they represent the assembly language mnemonic MOV AX,BX. This feature is utterly
essential when you need to trace a program in operation and understand what is happening when
the next two bytes in memory are read into the CPU and executed. If you don't know what machine
instruction those two bytes represent, you'll be totally lost.

Single-step a program under test. Finally, DEBUG's single most valuable skill is to run a program



one machine instruction at a time, pausing after each instruction for as long as you like. During this
pause you can look at or change memory, look at or change registers, search for things in memory,
patch the program by replacing existing machine instructions with new ones, and so on. This is what
you'll do most of the time with DEBUG.

Taking DEBUG for a Spin

DEBUG can be a pretty forbidding character, terse to the point of being almost mute. You'll be spending
a lot of time standing on DEBUG's shoulders and looking around, however, so you'd best get used to it
now.

The easiest way to start is to use DEBUG to load a file into memory and examine it. On the CD-ROM
associated with this book is a file called SAM.TXT. It's an ordinary DOS text file, whose contents were
used to demonstrate the line structuring of text files with CR and LF. (See Figure 4.2.) If you don't have
the CD-ROM for some reason, you can simply load your text editor and enter the following lines:

  Sam
  was
  a
  man.

Make sure you press Enter after the period at the end of "man." Then save the file to disk as SAM.TXT.

Let's lay SAM out on DEBUG's dissection table so that we can take a look at his innards. DEBUG will
load itself and the file of your choice into memory at the same time, with only one command. Type
DEBUG followed by the name of the file you want to load:

  C:\ASM>DEBUG SAM.TXT

Make sure you use the full file name. Some assembler programs such as MASM and TASM will allow
you to use only the first part of the file name and assume a file extension like .ASM, but DEBUG requires
the full file name.

Like dour old Cal Coolidge, DEBUG doesn't say much, and never more than it has to. Unless DEBUG
can't find SAM.TXT, all it will respond with is a single dash character (-) as its prompt, indicating that all is
well and that DEBUG is awaiting a command.

Looking at a Hex Dump

Looking at SAM.TXT's interior is easy. Just type a D at the dash prompt. (Think, Dump.) DEBUG will
obediently display a hex dump of the first 128 bytes of memory containing the contents of SAM.TXT read
from disk. The hexadecimal numbers will probably look bewilderingly mysterious, but to their right you'll
see the comforting words "Sam was a man" in a separate area of the screen. To help a little, I've taken
the hex dump of SAM.TXT as you'll see it on your screen and annotated it in Figure 4.6.



Figure 4.6: A hex dump of SAM.TXT.

This is a hex dump. It has three parts:

The leftmost part on the screen is the address of the start of each line of the dump. Each line
contains 16 bytes. An address has two parts, and you'll notice that the left part of the address
does not change while the right part is 16 greater at the start of each succeeding line. The 86-
family CPU's two-part addresses are a source of considerable confusion and aggravation, and I'll
take them up in detail in Chapter 5. For now, ignore the unchanging part of the address and
consider the part that changes to be a count of the bytes on display, starting with 100H.

1.

The part of the hex dump in the middle is the hexadecimal representation of the 128 bytes of
memory being displayed. Sixteen bytes are shown in each row.

2.

The part to the right of the hexadecimal values (and thus on the right-hand side of the hex dump)
are those same 128 bytes of memory displayed as ASCII characters. Now, not all binary values
have corresponding printable ASCII characters. Any invisible or unprintable characters are shown
as period (.) characters.

3.

This can be confusing. The last displayable character in SAM.TXT is a period and is actually the very first
character on the second line of the hex dump. The ASCII display portion of the dump shows four
identical periods in a row. To find out what's a period and what's simply a nondisplayable character, you
must look back to the hexadecimal side and recognize the ASCII code for a period, which is 2EH.

Here is a good place to point out that an ASCII table of characters and their codes is an utterly essential
thing to have. In ancient days, Borland's seminal Sidekick product included a very good ASCII table, and
it had the advantage of always waiting in memory only a keystroke away. Sidekick and Windows didn't
get along, however, and once Windows became ubiquitous, Sidekick went away. Assuming you don't
have Sidekick (or some other memory-resident utility with an ASCII table), I'd advise you to take a
photocopy of the ASCII table provided in Appendix D and keep it close at hand.

Memory Garbage

Take a long, close look at the hexadecimal equivalents of the characters in SAM.TXT. Notice that
SAM.TXT is a very short file (20 bytes), but that 128 bytes are displayed. Any time you enter the D
command, DEBUG will display 128 bytes of the area of memory you're looking at. (That area may contain
a file-as it does here-or it may not. You're perfectly free to examine memory whether you've loaded a file
into it or not.)

How, then, do you know where your file ends? This is an interesting problem that presents us with some
interesting challenges. DEBUG doesn't tell you where a file ends-one of its few serious shortcomings, in
my view. You have to know going in-and the best way to do that, for short files especially, is to use the
DOS DIR command and write down its length value for the file. DOS knows how large a file is, down to
the byte, and DIR will tell you for any file you list.

DIR will tell you that the SAM.TXT file is 19 bytes long. (Try it!) You can then count bytes in the hex
dump until you find the last character, which in SAM's case is the final 0AH value of the last line feed
character. Anything after that final 0AH value is garbage in memory and not part of the file! So, it matters
where the end of the file is.

Some very old DOS text editors appended a single invisible byte at the end of every text file they wrote to
disk. This byte, 1AH, was intended as a marker to show you very clearly where the end of the file was.
Some of these text editors are still kicking around, and it's possible that you have one. (To see if you do,
type in a simple sentence like "Where will it all end?" and save to disk. Go in with debug and see if there
is a 1AH byte immediately after the end of the sentence.) The 1AH marker is a holdover from even more
ancient times, from the CP/M operating system, which was simpler than DOS and remembered only the
number of disk storage blocks a file occupied. The precise byte where the file's data ended within the
final block was unknown to CP/M, so the text editors of the time used a 1AH byte to mark the tail end of
the file.

There's a file on your CD-ROM, OLDSAM.TXT, which was created with such a text editor and has the
final 1AH marker. (Note the time stamp on OLDSAM.TXT!) OLDSAM is otherwise identical to SAM.TXT.
Note that when you do a DOS DIR command on the directory containing the two files, that OLDSAM.TXT



is 20 bytes long-the 1AH marker byte is considered part of the file and counted with all the rest of the
data.

Most of the time, memory garbage is not entirely random, but instead may be part of the code or data left
over from the last program to be loaded and executed in that area of memory. You can safely ignore
memory garbage, but should know what it is and why it appears in your hex dumps.

You might occasionally see recognizable data strings from other programs in memory garbage and
wonder how they got into your current program. Note well: They didn't get into your current program.
They were just there, and now show through beyond the end of the file you last loaded under DEBUG.
Knowing where legitimate information ends and where garbage begins is always important and not
generally as clear-cut as it is here.

Changing Memory with DEBUG

DEBUG can easily change bytes in memory, whether they are part of a file loaded from disk or not. The
DEBUG command to change bytes is the E command. (Think, Enter new data.) You can use the E
command to change some of the data in SAM.TXT. Part of this process is shown toward the bottom of
Figure 4.6.

Notice the command line:

  -e 010e

To taciturn Mr. Debug, this means, "Begin accepting entered bytes at address 010EH." I show the
lowercase Es used in the command to put across the point that DEBUG is not sensitive to case, even for
letters used as hexadecimal digits. In other words, there is nothing sacred about using uppercase A
through E for hex digits. They can be lowercase or uppercase as you choose, and you don't even have to
be consistent about it.

What DEBUG does in response to the E command shown in Figure 4.6 is display the following prompt:

  38E3:010E 61.

The cursor waits after the period for your input. What DEBUG has done is shown you what value is
already at address 010EH, so that you can decide whether you want to change it. If not, just press Enter,
and the dash prompt will return. Here, it's asking you whether you want to replace the value 61. There's
no H after it, but you must never forget that DEBUG always works in hex. That "61" is intended to be
61H.

Otherwise, enter a hexadecimal value to take the place of value 61H. In Figure 4.6, I wanted to use 6FH,
and typed it as "6f." Don't type the H! Once you type a replacement value, but before you press Enter,
you have two choices:

That is all, in fact, that you wish to change. Press Enter and return to the dash prompt.1.

You wish to change the byte at the next address as well. In this case, press the space bar
instead. DEBUG will display the byte at the next highest address and wait for your replacement
value, just as it did the first time.

2.

This is shown in Figure 4.6. In fact, Figure 4.6 shows four successive replacements of bytes starting at
address 010EH. Notice the lonely hex byte 0A followed by a period. What happened there is that I
pressed Enter without typing a replacement byte, ending the E command and returning to the dash
prompt.

You'll also note that the next command typed at the dash prompt was "q," for Quit. Typing Q at the dash
prompt will return you immediately to DOS.

The Dangers of Modifying Files

Keep in mind that what I've just demonstrated was not changing a file, but simply changing the contents
of a file loaded into memory. A file loaded into memory through DEBUG as we did with SAM.TXT is



called a memory image of that file. Only the memory image of the file was changed. SAM.TXT remains
on disk, unchanged and unaware of what was happening to its doppelganger in memory.

You can save the altered memory image of SAM.TXT back to disk with a simple command: Type W and
then Enter. (Think, Write.) DEBUG remembers how many bytes it read in from disk, and it writes those
bytes back out again. It provides a tally as it writes:

  Writing 0013 bytes

The length figure here is given in hex, even though DEBUG does not do us the courtesy of displaying an
H after the figure. 13H is 19 decimal, and there are exactly 19 bytes in SAM.TXT. DEBUG writes out only
the significant information in the file. It does not write out anything that it didn't load in, unless you
explicitly command DEBUG to write out additional bytes beyond the end of what was originally read.

If you haven't already figured out what was done to poor SAM.TXT, you can dump it again and take a
look. If you simply press D for another dump, however, you're in for a surprise: The new dump does not
contain any trace of SAM.TXT at all. (Try it!) If you're sharp you'll notice that the address of the first line
is not what it was originally, but instead is this:

  38E3:0180

(The first four digits will be different on your system, but that's all right-look at the second four digits
instead during this discussion.) If you know your hex, you'll see that this is the address of the next eight
lines of dumped memory, starting immediately after where the first dump left off.

The D command works that way. Each time you press D, you get the next 128 bytes of memory, starting
with 0100H. To see SAM.TXT again, you need to specify the starting address of the dump, which was
0100H:

  -d 0100

Enter that command, and you'll see a dump of the altered memory image of SAM.TXT:

  38E3:0100 53 61 6D 0D 0A 77 61 73-0D 0A 61 0D 0A 6D 6F 6F  Sam..was..a..moo
  38E3:0110 73 65 0A B2 C4 76 04 26-F7 24 5D C2 04 00 55 8B  se...v.&.$]...U.
  38E3:0120 EC 83 EC 12 FF 76 06 FF-76 04 9A 66 17 7D 30 89  .....v..v..f.}0.
  38E3:0130 46 FE 83 7E 10 00 75 0F-C4 76 08 26 8B 34 F7 DE  F..~..u..v.&.4..
  38E3:0140 C4 5E 0C 03 DE EB 03 C4-5E 0C 89 5E F6 8C 46 F8  .^......^..^..F.
  38E3:0150 C4 76 08 26 8B 1C C4 7E-F6 26 8D 01 8C C2 89 46  .v.&...~.&.....F
  38E3:0160 F2 89 56 F4 2B C9 51 06-57 FF 76 0A FF 76 08 0E  ..V.+.Q.W.v..v..
  38E3:0170 E8 83 06 50 FF 76 06 FF-76 04 9A 4B 05 EF 32 FF  ...P.v..v..K..2.

Sam, as you can see, is now something else again entirely.

Now, something went a little bit wrong when you changed Sam from a man to a moose. Look closely at
memory starting at address 0111H. After the "e" (65H) is half of an EOL marker. The carriage return
character (0DH) is gone, because you wrote an "e" over it. Only the line feed character (0AH) remains.

This isn't fatal, but it isn't right. A lonely line feed in a text file can cause trouble or not, depending on
what you try to do with it. If you load the altered SAM.TXT into the NASM-IDE text editor (I explain
NASM-IDE in Chapter 5), you'll see a peculiar symbol (a rectangle with a circle in the middle of it) after
the word "moose." This is how the NASM-IDE editor indicates certain invisible characters that are not
EOL or EOF markers, by using the graphical symbol set from the PC character ROM. The rectangle tells
you that a nonprintable character is present at that point in the file. (Load the CD-ROM file MOOSE.TXT
into NASM-IDE and you'll see what I mean.)

The lesson here is that DEBUG is a loaded gun without a safety catch. There are no safeguards. You
can change anything inside a file with it, whether it makes sense or not, or whether it's dangerous or not.
All safety considerations are up to you. You must be aware of whether or not you're overwriting important
parts of the file.



This is a theme that will occur again and again in assembly language: Safety is up to you. Unlike Basic,
which wraps a protective cocoon around you and keeps you from banging yourself up too badly,
assembly language lets you hang yourself without a whimper of protest.

Keep this in mind as we continue.

Examining and Changing Registers

If you saved SAM.TXT back out to disk in its altered state, you created a damaged file. (I did this for you,
by creating the file MOOSE.TXT.) Fixing SAM.TXT requires reconstructing the last EOL marker by
inserting the CR character that you overwrote using the E command. Unfortunately, this means you'll be
making SAM.TXT larger than it was when DEBUG read it into memory. To save the corrected file back
out to disk, we need to somehow tell DEBUG that it needs to save more than 13H bytes out to disk. To
do this we need to look at and change a value in one of the CPU registers.

Registers, if you recall, are special-purpose memory cubbyholes that exist inside the CPU chip itself,
rather than in memory chips outside the CPU. DEBUG has a command that allows us to examine and
change register values as easily as we examine and change memory.

At the dash prompt, type R. (Think, Registers.) You'll see a display like this:

  - r
  AX=0000 BX=0000 CX=0014 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000 
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0100  NV UP EI PL NZ NA PO NC 
  1980:0100 53                 PUSH  BX

The bulk of the display consists of register names followed by equal signs, followed by the current values
of the registers. The cryptic characters NV UP EI PL NZ NA PO NC are the names of flags; we discuss
them later in the book.

The line beneath the register and flag summaries is a disassembly of the byte at the address contained
by the instruction pointer. (The instruction pointer is a register which is displayed by the DEBUG R
command, under the shorter name IP. Find IP's value in the preceding register display-it should be
0100H, which is also the address of the "S" in "Sam.") This line will be useful when you're actually
examining an executable program file in memory. In the case of SAM.TXT, the disassembly line is
misleading, because SAM is not an executable program and contains nothing we intend to be used as
machine instructions.

The hexadecimal value 53H, however, is a legal machine instruction-just as it is the ASCII code for
uppercase S. DEBUG doesn't know what kind of file SAM.TXT is. SAM could as well be a program file as
a text file; DEBUG makes no assumptions based on the file's contents or its file extension. DEBUG
examines memory at the current address and displays it as though it were a machine instruction. If
memory contains data instead of machine instructions, the disassembly line should be ignored, even
though it will always be there.

This is once again an example of the problems you can have in assembly language if you don't know
exactly what you're doing. Code and data look the same in memory. They are only different in how you
interpret them. In SAM.TXT, the hex value 53H is the letter S; in an executable program file, 53H would
be the machine instruction PUSH BX. We make good use of the disassembly line later on in the book,
when we get down to examining real assembly language programs. For now, just ignore it.

When DEBUG loads a file from disk, it places the number of bytes in the file in the CX register. CX is a
general-purpose register, but it is often used to contain such count values and is therefore sometimes
called the count register.

Notice that the value of CX is 13H-just the number DEBUG reported when it wrote the altered SAM.TXT
out to disk in response to the W command. If we change the value in CX, we change the number of
bytes DEBUG will write to disk.

So let's fix SAM.TXT. In changing the word "man" to "moose" we wrote over two characters: the period at
the end of the sentence and the CR character portion of the last line's EOL marker. We could start at
address 0112H and enter a period character (2EH-use your ASCII table!) followed by a CR character



(0DH). In doing so, however, we would overwrite the LF character, which is just as bad or worse.

Unlike a text editor, DEBUG will not just shove over the values to the right of the point where you wish to
insert new values. DEBUG has no insert mode. You have to enter all three characters: The period, the
CR, and the LF.

Use the E command to enter them, and then display a dump of the file again:

  - e 0112
  1980:0112 0D.2e  0A.0d  1A.0a

  - d 0100
  38E3:0100 53 61 6D 0D 0A 77 61 73-0D 0A 61 0D 0A 6D 6F 6F  Sam..was..a..moo
  38E3:0110 73 65 2E 0D 0A 76 04 26-F7 24 5D C2 04 00 55 8B  se.....&.$]...U.
  38E3:0120 EC 83 EC 12 FF 76 06 FF-76 04 9A 66 17 7D 30 89  .....v..v..f.}0.
  38E3:0130 46 FE 83 7E 10 00 75 0F-C4 76 08 26 8B 34 F7 DE  F..~..u..v.&.4..
  38E3:0140 C4 5E 0C 03 DE EB 03 C4-5E 0C 89 5E F6 8C 46 F8  .^......^..^..F.
  38E3:0150 C4 76 08 26 8B 1C C4 7E-F6 26 8D 01 8C C2 89 46  .v.&...~.&.....F
  38E3:0160 F2 89 56 F4 2B C9 51 06-57 FF 76 0A FF 76 08 0E  ..V.+.Q.W.v..v..
  38E3:0170 E8 83 06 50 FF 76 06 FF-76 04 9A 4B 05 EF 32 FF  ...P.v..v..K..2.

Now the file is repaired, and we can write it back to disk. Except-SAM.TXT in memory is now two bytes
longer than SAM.TXT on disk. We need to tell DEBUG that it needs to write two additional bytes to disk
when it writes SAM.TXT back out.

DEBUG keeps its count of SAM.TXT's length in the BX and CX registers. The count is actually a 32-bit
number split between the two 16-bit registers BX and CX, with BX containing the high half of the 32-bit
number. This allows us to load very large files into DEBUG, with byte counts that cannot fit into a single
16-bit register like CX. Sixteen-bit registers can only contain values up to 65,535. If we wanted to use
DEBUG on an 80,000-byte file (which is not big at all these days, as files go), we'd be out of luck if
DEBUG only kept a 16-bit count of the file size in a single register.

But for small changes to files, or for working with small files, we only have to be aware of and work with
the count in CX. Adding 2 to the byte count only changes the low half of the number, contained in CX.
Changing the value of CX is done with the R command, by specifying CX after R:

  -r cx

DEBUG responds by displaying the name "CX," its current value, and a colon prompt on the next line:

  CX 0013
  :

Add 2 to the value of CX and enter 0015 at the colon prompt. Press Enter. DEBUG simply returns the
dash prompt without congratulating you on your success-remember, it's a utility of few words.

Now, however, when you enter a W command to write SAM.TXT back to disk, DEBUG displays this
message:

  Writing 0015 bytes

The new, longer SAM.TXT has been written to disk in its entirety. Problem solved.

One final note on saving files back out to disk from DEBUG: If you change the values in either BX or CX
to reflect something other than the true length of the file, and then execute a W command to write the file
to disk, DEBUG will write as many bytes to disk as are specified in BX and CX. This could be 20,000
bytes more than the file contains, or it could be zero bytes, leaving you with an empty file. You can
destroy a file this way. Either leave BX and CX alone while you're examining and patching a file with
DEBUG, or write the initial values in BX and CX down, and enter them back into BX and CX just before
issuing the W command.



The Hacker's Best Friend

There is a great deal more to be said about DEBUG, but most of it involves concepts we haven't yet
covered. DEBUG is the single most useful tool you have as an assembly language programmer, and I'll
be teaching you more of its features as we get deeper and deeper into the programming process itself.

The next chapter describes NASM-IDE, a simple program editor and development environment created
specifically for people who are using the NASM assembler. If you do not intend to use NASM-IDE, you
can skip right over Chapter 5 and meet us on the other side in Chapter 6, where we begin our long trek
through the 86-family instruction set.



Chapter 5: NASM-IDE: A Place to Stand Give me a

lever long enough, and a place to stand, and I will

move the Earth.

-ARCHIMEDES

Access to Tools

The old guy was speaking literally about the mechanical advantage of the lever here, but behind his
words there is a larger truth about work in general: To get something done, you need a place to work,
with access to tools. My radio bench in the garage is set up that way: a large, flat space to lay ailing
transmitters down, and a shelf above where my oscilloscope, VTVM, frequency counter, signal
generator, and dip meter are within easy reach.

Much of the astonishing early success of Turbo Pascal was grounded in that truth. For the first time, a
compiler vendor gathered up the most important tools of software development and put them together
in an intuitive fashion so that the various tasks involved in creating software flowed easily from one step
to the next. From a menu that was your place to stand, you pressed one key, and your Pascal program
was compiled. You pressed another one, and the program was run. It was simple, fast, and easy to
learn. Turbo Pascal literally took Pascal from a backwater language favored by academics to the most
popular compiled language in history at that time.

What Borland so boldly introduced in 1983 was adopted (reluctantly at times) by its major competitor,
Microsoft. Today, Microsoft's Visual Studio (including Visual C++ and Visual Basic) and Borland's
Delphi are the best examples of what we call integrated development environments (IDEs). They
provide well-designed menus to give you that place to stand and a multitude of tools that are only one
or two keystrokes away.

A little remarkably, there is no true equivalent to Turbo Pascal in the assembly language field. Neither
MASM nor Borland's Turbo Assembler (TASM) has that same comfortable place to stand. The reasons
for this may seem peculiar to you, the beginner: Seasoned assembly language programmers either
create their own development environments (they are, after all, the programming elite) or they simply
work from the naked operating system command prompt. The appeal of a Turbo Pascal-type
environment is not so strong to them as it is to you.

NASM-IDE

Robert Anderton of the United Kingdom had a slightly radical idea some time back that challenges that
notion: He wanted to create an IDE for assembly language work, one that would be simple enough for
beginners to use. Out of this radical idea came NASM-IDE, which was written-most appropriately-in
Borland Pascal, the mature successor to Turbo Pascal, which made the idea of a built-in programming
IDE mainstream. NASM-IDE is a DOS-based utility, and there is no version for Linux. (When we get to
Linux we're going to do it the way the big boys do: from the command line.) Robert is working on a
more advanced IDE, in Java, that will function for both DOS and Linux, but that's for another time, and
perhaps the next edition of this book. For now, we're learning under DOS and starting from square one.
NASM-IDE is just the thing.

I've arranged with Robert to distribute NASM-IDE on the CD-ROM in this book. If for some reason your
copy of the book lacks a CD-ROM (as used computer books often do) or has a damaged and
unreadable CD-ROM, you can download NASM-IDE free of charge from Robert's home page at
www.inglenook.co.uk/nasmide/index.html.

NASM-IDE has the advantage for us that it was created specifically for use with the NASM assembler,
which we'll begin using shortly. NASM has the power to assemble directly to a DOS .COM executable
file, making the separate link step (as I describe in Chapter 4) unnecessary for simple programs that
you write in only one source code file. NASM-IDE takes advantage of this power and allows you to edit,
assemble, and test simple assembly language programs very quickly. (We explore modular assembly
and linking in a later chapter, as it remains a very important topic for intermediate and advanced



assembly work.)



NASM-IDE's Place to Stand

Like Turbo Pascal and the other integrated development environments from both Borland and
Microsoft, NASM-IDE's most visible part is a text editor. If you look back once again to Figure 4.5, you'll
see that all roads seem to lead back to the text editor in good time. In general, you do most of your
thinking while staring at the text editor screen, so it seems a logical location to put your place to stand.

So, one way to think of NASM-IDE is as a text editor from which you can do additional, assembly-
language-related things. You invoke NASM-IDE like a text editor, in fact. If you're working from DOS,
the first time you want to work on a particular source code file, you type the name NASMIDE followed
by the name of the source code file:

  C:\ASM>NASMIDE EAT2.ASM

(Here, "EAT2.ASM" is the name of an assembly language source code file that we'll be working on later
in this book.)

I recommend that you place the directory containing NASM-IDE on your DOS path. That way, no matter
where you are on your hard drive, you can type "NASMIDE" and NASM-IDE will come up, ready for
work.

When you bring up NASM-IDE using the preceding command line, what you'll see should look a lot like
Figure 5.1.

Figure 5.1: The NASM-IDE environment.

NASM-IDE consists of an empty space (with a texture to fill it, indicating that it's empty) in which you
can open windows containing information. At the top of the screen is a menu bar. At the bottom of the
screen is a prompt bar. The menu bar provides several menus of options that you can pull down (either
from the keyboard or with the mouse) to accomplish the various things that NASM-IDE can do. The
prompt bar gives you terse reminders of the most important commands that you can issue via the
function keys and various hot keys. Square in the middle of the screen is an edit window containing the
file you opened when you invoked NASM-IDE.

Telling NASM-IDE Where NASM Is

There isn't a lot of installing or configuring to be done with either NASMIDE or NASM itself. I've
arranged a directory on this book's CD-ROM called ASM with all the various tools in it in the right
places. However, you need to copy that directory to a place on your hard drive, because you cannot
write files to the CD-ROM. You can drag the ASM directory from the CD-ROM to one of your hard drive
units using Windows Explorer, and all of the subdirectories under ASM will come along. However, if
you're working purely from DOS, you need to use XCOPY to do the copying.

Once you get NASM-IDE running, you need to do one essential piece of configuration before you can
use it: You must tell it the exact path where the NASM executable file resides. This cannot be the path
of the CD-ROM! I recommend making ASM a subdirectory on the root of one of your hard drives; for
example, C:\ASM rather than C:\programming\ ASM. The drive unit doesn't have to be C:, especially in
these days of multigigabyte hard drives where a typical Windows 95 PC has units C:, D:, E:, and
possibly even F:, all with 2 gigabytes of storage or more. (A Windows 95 hard drive unit cannot contain



more than 2 gigabytes.)

Choose one and copy the ASM directory from your CD-ROM to your hard drive. Then bring up NASM-
IDE and pull down the Options menu. Select the Options|Assembler item by either highlighting it and
pressing Enter, or double-clicking on it with your mouse. A dialog box will appear. You shouldn't change
anything in this box except for one item: the edit line labeled NASM Location. When the dialog box
appears, this line will be blank. You need to enter the full path of the NASM executable file where it was
copied to your hard drive.

If you copied the ASM directory to the root of your D: drive (probably better than putting it on C: since
everybody wants to be on C: and C: is often a little crowded), the path to NASM will be this:

  D:\ASM\nasm16.exe

Obviously, if you copied the ASM directory to C: or E:, the initial letter will not be D:. Think it through.
But this is the line you should type into the field marked NASM Location. Then click on the button
labeled OK. NASM-IDE now knows where the assembler lives and will be able to invoke it for you
behind the scenes.

With that accomplished, you're ready to rock. So let's see what NASM-IDE and NASM can do.

The Edit Window

The edit window is the part of NASM-IDE that you'll be seeing most often. It contains the assembly
language source code file you're working on at any given time. Within the edit window you can type
text, delete text, change text, and search for sequences of characters (strings) in your text. This is
where you'll write new code and change code that doesn't work correctly. The cursor moves in
response to the mouse, and you can move it from the keyboard as well.

The edit window works a great deal like the edit window present in the last generation of DOS-based
Borland language products, Borland Pascal and Borland C++. If you have any experience in those
DOS-based products, you'll feel right at home. The various hot keys and function keys all do pretty
much the same things as they did in those products.

When you first bring up a file in the edit window (as you did with EAT2.ASM just now), the file will be in
an edit window centered in the middle of the screen. There will be a line of empty space on all four
sides. If all you're doing is editing that one file, there's no need to waste the empty space all around the
edit window. At the top edge of the edit window are two controls: a small square on the left, and an
upward-pointing arrow on the right. The upward-pointing arrow expands (or zooms) your edit window to
occupy the full screen. The small square closes the edit window, which then vanishes.

Text screens are small enough as it is. I always zoom my edit windows so that they become as large as
possible. One click on the arrow control on the top edge of the edit window is all it takes.

At the top edge of the edit window is the full path of the file currently loaded and being edited in that
window.

The Menu Bar

All along the top edge of the NASM-IDE screen is the menu bar. Each word in the menu bar is the
name of a separate menu. If you click on one of these menu names with the mouse, the menu proper
(containing a number of menu items) will drop down beneath the name, and the top item on the menu
will be highlighted with a green bar. Each item in a menu represents a command of some sort. You can
move the highlight bar up and down by pressing the up/down arrow keys on the keyboard. To execute
the menu command represented by the highlighted item, you press Enter. You can click on a menu
option with the mouse, and the command it represents will be executed right then.

Sometimes a menu item's name is followed by three dots or periods. This indicates that this menu item,
when selected, brings up a dialog box that you must fill out with some additional information in order to
execute the command. I describe these dialog boxes a little later in this chapter.

At the right edge of the menu bar is a time display. The time is taken from your machine's system clock.



Although nearly all PC systems these days are equipped with a mouse, it's possible to use NASM-IDE
without a mouse. (The mouse makes many things quicker and easier, however.) Note that the menu
names in the menu bar have the first letters of their names highlighted in a separate color. (This will be
red unless you change it.) The distinctive color on the first characters of the menu names reminds you
of the hot keys associated with the menus. You can pull down any of the menus by pressing Alt
followed by the highlighted letter.

For example, the E in "Edit" in the menu bar is in red. If you press Alt-E, you'll pull down the Edit menu.
Then you can use the up/down arrow keys on the keyboard to move the item highlight bar up and
down. When the highlight bar is over the option that you want, you simply press Enter to select that
item and issue the command that it represents.

Note that the items in some of the menus are divided into groups by single horizontal lines. These lines
are there only to help you recall that certain menu items are related to one another. The dividing lines
cannot be selected and have no command-related function themselves.

I go through most of NASM-IDE's menu items in detail later in this chapter.

The Prompt Bar

At the bottom of the screen is another horizontal bar. This one, called the prompt bar, contains little
reminders of certain hot keys that are functional at various times in NASM-IDE, depending on what you
have open on the screen and what you're doing with it.

However, the most useful function of the prompt bar is to enlarge upon NASM-IDE's menu items a little.
When you have a menu pulled down, the prompt bar will show you a short description of what the
highlighted menu item is for. This will help you a lot while you're learning NASM-IDE and will make it a
lot less necessary to be constantly flipping through this book looking for an explanation of a particular
menu item that you haven't quite committed to memory.

Keep in mind that the prompt bar is not interactive; that is, there's nothing you can select in it, and
nothing you can click on. It's there to give you little mental noodges, especially while you're learning the
NASM-IDE system.

Other Windows

Files under edit aren't the only things that appear in windows in NASM-IDE. In fact, anything that isn't
on the menu bar or the prompt bar must be in a window. Most of the time, it'll be assembly source code
text files in the window. But you will see other information in windows as well.

The most significant of these is probably the help window. If you press F1 from almost anywhere in
NASM-IDE, the help window will appear, and you can navigate around in it to read up on many of
NASM-IDE's features. I have more to say about the help window later in this chapter.

When NASM-IDE invokes NASM to assemble a source code file for you, it will create a window for any
error or warning messages that NASM generates while translating your source code file. This window
will appear even when it's empty, to indicate that the assembly process went through completely and
correctly.

There are error message boxes that will appear if certain things (such as loading a file from disk) don't
go quite right. These are windows, too. Finally, several of the menu items bring up small windows called
dialog boxes that must be filled in (by you) with additional information to complete the job the menu
item was intended to accomplish. I discuss these dialog box windows in connection with the menu
items that bring them up.

NASM-IDE windows have a few things in common. All windows have some sort of title at the center of
their top edges, to indicate what they're for. Windows containing source code files will have the full path
of the file shown in the window. All windows in NASM-IDE have the close control on their top edge. This
is the small square toward the left side of the top edge of the window. Dialog box windows, however,
lack the zoom control on the right edge. You can close any window, but it only makes sense to zoom
certain types of windows, primarily the help window and the edit windows containing your source code



files.



Using NASM-IDE's Tools

The very best way to explain NASM-IDE's various features and how they are used is to run through a
simple programming session with a real assembly language program and explain what happens as we
go. The program we'll use is EAT2.ASM, which is shown later in this book. It's not much of a program,
really, and exists only to get you started in understanding the internal mechanisms of a real, working
assembly language program.

The goal of EAT2.ASM is to be assembled into the executable program file EAT2.COM. When run
(either from inside NASM-IDE or from the DOS prompt), EA2.COM displays this simple message on
your screen:

  Eat at Joe's . . .
  . . . ten million flies can't ALL be wrong!

That's all it does. After it displays those two lines, it ceases executing and returns control to DOS.

The file EAT2.ASM is present on the CD-ROM, along with NASM-IDE and the other tools provided for
you. If you don't have or can't read the CD-ROM for this book, you can download all the example code
files from my Web site at www.duntemann.com/downloads.htm.

If, as I have suggested earlier, you have created a subdirectory on your hard disk called ASM (or if
you've copied the CD-ROM directory ASM over to your hard drive), all the .ASM example files need to
be in the ASM directory. In order for NASM-IDE to operate correctly, the assembler executable
NASM.EXE must be available on your hard drive where NASM-IDE can find it. Your best bet is to copy
the ASM directory over from the CD-ROM either using Windows Explorer (if you're working from within
Windows) or using DOS XCOPY.

Invoking NASM-IDE

Make the current directory your working assembly language subdirectory, which I have suggested you
(nay, have pestered you mercilessly) to call ASM. From the DOS prompt, invoke NASM-IDE with the
file name EAT2 after it:

  C:\ASM>NASMIDE EAT2.ASM

Two things: Notice first that you must type the ".ASM" at the end of the file name EAT2! Unlike many
similar utilities, NASM-IDE has no default file extension and will not automatically append ".ASM" at the
end of a file name entered without an extension. In other words, if you don't enter the ".ASM" file
extension, NASM-IDE will not be able to find the file and will put up an error message window like the
one shown in Figure 5.2.

Figure 5.2: A NASM-IDE error message box.

Also, keep in mind that while NASM-IDE's official name (when we're talking about it in this book) has a
hyphen between "NASM" and "IDE," the name of the file that you type on the command line is
"NASMIDE" without a hyphen. If you type "NASM-IDE" at the DOS command line, DOS will not know
what you're talking about.



What happens if you simply run NASM-IDE without specifying a file name? If you have been working on
a .ASM file of some sort and last exited NASM-IDE with that file still in a window, NASM-IDE will load
that file from disk and put it in a window, just as it was when you last shut down NASM-IDE. If, on the
other hand, you're bringing up NASM-IDE for the very first time, or if there was no file in a window when
you last shut NASM-IDE down, there will be no file in a window when the NASM-IDE environment
appears. NASM-IDE remembers what it was doing when you last shut it down, and absent other
instructions, it will pick up precisely where it left off.

NASM-IDE's ability to remember the name of the last file you worked on makes it unnecessary for you
to remember what project you were in the middle of when you pulled the plug and went to bed.
Furthermore, NASM-IDE also remembers the exact cursor position where the cursor was when you
saved your file and exited, as well as whether the edit window was zoomed. So, most of the time, if
you're in the middle of a project and want to get back down to it, you only need to type "NASMIDE"
followed by Enter on the DOS command line. If you were working on EAT2.ASM before and had it open
when you shut NASM-IDE down, you don't have to type EAT2.ASM again on the command line when
you invoke NASM-IDE.

When you create a new file or load a file into the editor for the first time, it becomes, by default, the
current file. This means it is the file that will be assembled when you tell NASM-IDE to invoke NASM to
translate your source code file to an executable or an object code file. I explain more about the concept
of the current file later in this book. Typically, unless you begin doing fancier things, the current file will
simply be the source code file you have open in an edit window.

Moving Around the Edit Window

When you're in NASM-IDE and an assembly language source code file is displayed in an edit window,
any characters you type on the keyboard will be inserted into the file and displayed on your screen. You
can move the cursor around within the current file by using any of a number of cursor movement keys.

The easiest to remember are the PC's cursor keypad keys. The four arrow keys will move the cursor
one character position in the direction the arrow points. The PgUp key will move the cursor up one
page (that is, the size of your text screen; typically 25, 43, or 50 lines depending on how you set it up-
more on that shortly) whereas PgDn will move the cursor one page down. The Home key will move the
cursor immediately to the left screen margin, and the End key will move the cursor immediately to the
end of the current line. (The end of the line is defined as the character after the rightmost nonblank
character in the line.)

There are numerous other cursor movement keys that you can use within JED. I describe them all in
detail later in this chapter. You can also zero in on a particular location in the file by clicking on a
character with the mouse. The cursor will move immediately to the point at which you clicked. You can
use the mouse to slide up and down within the file by clicking on the "thumb" of the scroll bar on the
right-hand edge of the edit window, and then dragging the thumb up or down. (The thumb is a small
rectangle set into the scroll bar.)

Take a few moments scooting around inside EAT2.ASM until you feel comfortable with it.

Making Changes to the File

The simplest way to change the file is simply to type something at the keyboard. All such characters will
appear at the cursor, and the cursor will move one position to the right for each character.

You can insert a new line beneath the current line by pressing Enter.

Getting rid of unwanted text is as important as adding new text. Deleting one character at a time can be
done by moving the cursor to the immediate right of the offending character, and simply using the
backspace key to back the cursor over it. The character will disappear. You can also place the cursor
to the left of the text you want to delete, and then press the Del key once for each character to be
deleted. Text to the right of the cursor will be pulled in toward the left as characters disappear.

You can delete an entire line by placing the cursor on the line and pressing Ctrl-Y. This can be done all
too easily by accident, and you lose a line that you may or may not have in your head or written down
on paper. Be careful!



NASM-IDE contains several other ways to delete text, all of which will be described later in this chapter.
For the sake of the current guided tour through NASM-IDE, move the cursor to the blank line
immediately beneath EAT2.ASM's comment header (line 9 in the file) and type the phrase "MVO
ax,bx." That done, press Enter and add a new line beneath it.

Saving Changes to a File

As they say in Chicago, that grand old (and cold) town where I grew up, "Vote early and often." The
same philosophy applies to saving the changes you make to your current file within NASM-IDE. Every
so often, perhaps when you kick back in your chair to think for a bit, save your work. It's easy: one
keystroke, the function key F2. There's no visible indicator that anything's actually happening, but
pressing F2 will save your file in its entirety back to the place from which you loaded it, wherever that
might be on your system.

Get in the habit of pressing F2 once in a while. Keep in mind that if you save your work every five
minutes, you will never lose more than five minutes of work!

NASM-IDE keeps an eye on things and does its level best to keep you from losing any of your work. If
you try to exit NASM-IDE without saving your file to disk, it will remind you with the dialog box shown in
Figure 5.3.

Before it will exit back to DOS, NASM-IDE will require some response from you. If you click on the
green button reading "Yes," NASM-IDE

Figure 5.3: When you exit without saving.

will save your work to disk, just as though you had pressed F2. Clicking on the button reading "No" will
allow you to exit NASM-IDE without saving your work-and any changes you made that you have not
saved will be lost. Finally, if you click on the button reading "Cancel," the command will be cancelled,
and nothing else will happen. Your work will not be saved, nor will NASM-IDE exit back to DOS.

If you don't have a mouse, you can press Enter to select "Yes," which is the default option for this
dialog box. (NASM-IDE gives you every opportunity not to lose your changes!) If you want to move to
one of the other buttons but don't have a mouse, you must use the Tab key to bounce from one button
to another. The buttons will change when they are selected: The text after the initial character of the
button labels will be in white rather than yellow. The three buttons cycle, so if you tab right past the
button you want, press it a few more times and you'll get back to your chosen button. Then when you
press Enter, that button will be clicked and the appropriate action taken.

Assembling the Current File

If you're satisfied that you've understood all the various NASM-IDE features I've described so far on this
tour, it's time to assemble EAT2.ASM and make an actual runnable program file out of it. Press function
key F9. NASM-IDE will invoke the assembler NASM behind the scenes. You won't see anything to
indicate it on your screen; NASM-IDE will remain there as always.

However, assuming you did what I told you earlier and typed some new text at line 9 of EAT2.ASM, the
screen will split horizontally and a new window will be displayed beneath the text window containing
EAT2.ASM. This window has the title "Error Information" and will look a lot like Figure 5.4.



Figure 5.4: The error information window appears.

If you recall, you made a change to EAT2.ASM a little earlier by typing the phrase "MVO ax,bx" on line
9. This phrase is something like an assembly language mnemonic-but only something, and in the form I
gave it to you the assembler NASM will have no idea what to do with it. So, NASM dutifully complained
in the form of an error message. You can see this error message in Figure 5.4. When NASM tells you
"Parser: Instruction Expected" that means that what it got in the line it paused at was not an instruction.
You've inserted an error into EAT2.ASM here because no instruction in the 86-family instruction set is
named MVO. This may not prevent your fevered fingers from transforming MOV (which is a legal
instruction) to MVO in the furious passion of creation-or under the influence of the caffeine shakes.

The error information window will remain on the screen until you close it, which you can do by clicking
on the close control at the upper-left corner of the window. And until you fix the error you inserted into
EAT2.ASM, that's as far as we can go here.

Fixing it, however, is easy. NASM-IDE is reasonably smart and has placed the cursor right where it
thinks the error is in the edit window.

In this case, the error was pretty blatant, and NASM-IDE has no trouble spotting it. That may not
always be the case. There is no ironclad guarantee that after spotting an error, the cursor will be placed
at the location of the error. Assembly language is nothing if not tricky. You have to be able to identify
errors based on what you've written, not simply on where NASM-IDE suggests they may be hiding.

In this case NASM-IDE has the error dead to rights, and you can fix the error by nuking the whole line
with a quick Ctrl-Y. After that, press F2 to save the file to disk again. Then press F9 again to try the
assembly process once more.

Note that the error information window will still appear. However, it carries a brighter message this time:
"No errors occurred." Every time you assemble, the error information message will appear, either with
this message-or with an error message or a warning. (More on warnings later on.)

Running the Executable File

If you don't see any error messages in the error information window, that means NASM got through it
all right and created the executable .COM file that is the point of the whole exercise. You can run the
EAT2.COM file from the DOS prompt, just like you can run any .COM or .EXE file from the DOS
prompt. However, it's easier than even that. NASM-IDE can run your executable program file for you,
right from inside NASM-IDE.

The shortcut is Ctrl-F9. If you prefer, you can pull down the Assemble menu and select Run. NASM-
IDE will go away for a moment, and instead you'll see a blank DOS screen with the output of your
program on it-in this case, the backhanded advertising slogan for Joe's Restaurant. See Figure 5.5.



Figure 5.5: Running the executable program file.

Getting back to NASM-IDE is no big deal: Just do as the screen instructs you, and press any key.



NASM-IDE's Editor in Detail

As NASM-IDE's beating heart, the text editor deserves a little space all to itself. People who have read
earlier editions of this book (there were two, in fact, though the first one didn't live very long and really
doesn't count) may notice a remarkable resemblance between NASM-IDE's text window and my own
JED editor, which is what I described for the two earlier editions of this book. The reason is pretty
simple: Both JED and NASM-IDE were based on the Borland Binary Editor, a text editor module that
could be linked into Turbo Pascal and Borland Pascal programs.

NASM-IDE uses a newer version of the editor than the one I incorporated into JED (which I originally
wrote in 1989 with Turbo Pascal 5.0), and has the further advantage of using the Turbo Vision
application framework, which provides all the window controls, the buttons, the scrollbars, and so on.
But the two are remarkably alike in many ways, especially from the standpoint of the keystrokes that
control their text editors.

Loading Files into the Editor

When you invoke NASM-IDE and it begins running, it loads either the file you named on the command
line when you invoked it (as I described and showed you earlier) or else the last file it worked on, as
recorded in a configuration file called NASMIDE.INI. (You can inspect this file, which is maintained by
NASM-IDE, but don't alter it yourself!)

Individual lines within an edit file are limited to 254 characters. Loading a file with longer lines will cause
the editor to insert hyphens at the 254-character point. You'll get an error box if you try to type past the
254-character point on any line.

Although it's not something you'll do a lot, it's useful to know that you can load more than one text file
into NASM-IDE's environment at once. This can be handy when you want to cut or copy text out of one
file and paste it into another. Each file remains in a separate edit window.

Opening a file in an edit window from inside NASM-IDE is done using either the menus or hotkeys.
Selecting the File|Open menu item with the mouse will bring up a dialog box that will allow you to
specify the file you want to open. The same dialog box can be invoked with the F3 hot key.

File|Open or F3 brings up the Open File dialog box.

The dialog is one of the more complex ones you'll encounter in using NASM-IDE, and I've shown it in
Figure 5.6. Like all parts of NASM-IDE, the dialog box allows you to work either with the mouse or
purely from the keyboard. Most people have a mouse, so I'll emphasize mouse-enabled techniques in
my explanations.

Figure 5.6: The Open File dialog box.

From a height, what the dialog presents you with is a list of files (marked Files) from which you can
choose (these are shown in the rectangular area in the center) as well as an edit line where the
currently selected file's name is displayed. (That's the line at the top, marked Name.) If you click once
on a file listed in the Files box, its name will appear in the Name box. You can move the highlight bar
around the list of files with the arrow keys if you prefer to work from the keyboard.

By default, the only files that will appear in the dialog box are those with a .ASM file extension.



Directories will appear as well, indicated by a backslash character after the directory name. You can
display files with file extensions other than .ASM, but you will have to place the cursor after the .ASM
extension in the Name edit box, and backspace over ".ASM." Then type whatever extension you wish
to display and press Enter.

Choosing a file to open is simple: You double-click on a file name in the Files list box, or else press
Enter when the file you want to open is highlighted. The file will be opened and placed in an edit
window.

You also have the option of typing the name of a file in the Name line at the top of the dialog. If another
file name is already there, you will have to backspace over it before you type the new name in.

You can navigate through a DOS directory structure using the dialog box. Directories are shown with a
backslash character after them to let you know that they are directories. Double-clicking on a directory
name will take you into that directory and display any files present there.

A special symbol, "..\" indicates the parent directory. If you double-click on ..\, you will move up one
level in the directory hierarchy. This is the same way you move to the parent directory using the DOS
CD command, so it should come as no surprise.

A two-line blue bar at the bottom of the dialog box displays detailed information about the highlighted
file, including its size, its timestamp (that is, the last time and date that it was modified), and the
directory path where it resides.

Moving the Cursor

If you have a mouse, use it. Putting the cursor where you want it is easy: You click on a point on the
screen and the cursor is simply there. Moving up and down through the file is done by grabbing the edit
window's scroll bar thumb and dragging it. Most people who have any experience at all with graphical
user interface (GUI) environments such as Windows will take to this without any trouble.

Many people who do a lot of text editing prefer to do their in-file cursor navigation strictly from the
keyboard, to avoid having to take their hands away to grab the mouse. It's up to you. The mouse is
there if you want it, but mouse or no mouse, there is a whole elaborate system for moving the cursor
around without ever taking your hands away from the keyboard.

Apart from the obvious keypad keys, all editor commands are hot keys based on the Ctrl key. That is,
you must hold the Ctrl key down while pressing another key or two keys. All of the hot keys that control
cursor movement are grouped together for you in a cluster toward the left side of the keyboard:

This arrangement of cursor command keys will be familiar to anyone who has worked with the
WordStar word processor, which in ancient times was almost everybody-and today is almost nobody
except those of us who were around in ancient times.

One Character at a Time

Moving the cursor one character at a time can be done in all four directions:

Ctrl-E or Up Arrow moves the cursor up one character.

Ctrl-X or Down Arrow moves the cursor down one character.



Ctrl-S or Left Arrow moves the cursor left one character.

Ctrl-D or Right Arrow moves the cursor right one character.

The position of these four keys (E, X, S, and D) provides a hint as to which way they move the cursor.
Look at how they are arranged on the keyboard:

Until the directions become automatic to your fingers (as they will, if you do enough editing!), thinking of
the "magic diamond" will remind you which way the cursor will move for which keypress.

When you move the cursor to the bottom of the screen and press Ctrl-X one more time, the screen will
scroll. All the lines on the screen will jump up by one, and the top line will disappear. As long as the
cursor is on the bottom line of the screen and you continue to press Ctrl-X, the screen will scroll
upward. If you use Ctrl-E to move the cursor back in the opposite direction (upward) until it hits the top
of the screen, further Ctrl-Es will scroll the screen downward one line per Ctrl-E.

One Word at a Time

NASM-IDE will also move the cursor one word at a time to the left or right:

Ctrl-A or Ctrl-Left Arrow moves the cursor left one word.

Ctrl-F or Ctrl-Right Arrow moves the cursor right one word.

More hints are given here, since the A key is on the left side of the magic diamond, and the F key is on
the right side of the magic diamond.

One Screen at a Time

It is also possible to move the cursor upward or downward through the file one whole screen at a time.
Upward in this sense means toward the beginning of the file; downward means toward the end of the
file. A screen is the height of your CRT display (25, 43, or 50 lines, depending on how you've
configured the NASM-IDE environment) minus four lines for the menu and prompt bars and the edit
window borders.

Ctrl-R or PgUp moves the cursor up one screen.

Ctrl-C or PgDn moves the cursor down one screen.

Moving the Cursor by Scrolling the Screen

I have described how the screen will scroll when you use the one- character-at-a-time commands to
move upward (Ctrl-E) from the top line of the screen or downward (Ctrl-X) from the bottom line of the
screen. You can scroll the screen upward or downward no matter where the cursor happens to be by
using the scrolling commands:

Ctrl-W scrolls the screen down one line.

Ctrl-Z scrolls the screen up one line.



When you scroll the screen with these commands, the cursor rides with the screen as it scrolls upward
or downward, until the cursor hits the top or bottom of the screen. Then further scrolling will make the
screen slip past the cursor. The cursor will never vanish and will always be visible.

These are all of the cursor movement commands that may be invoked by one Ctrl keystroke. There are
a few more that are accomplished by holding the Ctrl key down and pressing two keys in succession.
You must hold the Ctrl key down through both keypresses!

Moving to the Ends of the Line

No matter where your cursor is on the screen, it is always within a line, even if that line happens to be
empty of characters. There are two commands that will move the cursor either to the beginning (left
end) of the line (screen column 1) or to the end of the line, which is the position following the last visible
character on the line:

Ctrl-Q/S or Home sends the cursor to the beginning of the line.

Ctrl-Q/D or End sends the cursor to the end of the line.

Moving to the Ends of the File

The last set of cursor movement commands I describe takes the cursor to the beginning of the file or to
the end of the file. If the file you are editing is more than a few screens long, it can save you a great
deal of pounding on the keyboard to move one screen at a time.

Ctrl-Q/R or Ctrl-PgUp sends the cursor to the beginning of the file.

Ctrl-Q/C or Ctrl-PgDn sends the cursor to the end of the file.

Because all of the current file is in memory all of the time, moving between the ends of the file can be
done very quickly.

Insert Mode and Cursor Coordinates

At the bottom edge of every edit window, toward the left side, are a pair of numbers indicating where
the cursor is within the file. While you were moving the cursor around, the line and column numbers
were continually changing to reflect the cursor's coordinates.

The number on the left is the line number, counting from the beginning of the file. The number on the
right is the column number, reflecting the position of the cursor within its line. The line number always
indicates the line in the file that contains the cursor-again, counting from the beginning of the file, not
from the top of the screen.

There's another matter that you may or may not have noticed, and that is the state of the Insert toggle.
A toggle is a condition that may exist in one of two different states. A toggle is like a switch controlling
the lights in a room; the switch may be either on or off. The way you control the Insert toggle is with the
Ins key: Tap Ins and you flip the state of the Insert toggle. Tap it again and you flip the state again.

The way you can monitor its state is by the shape of the text cursor in the edit window. The default is
for Insert to be on. When Insert is on, the text cursor is a small flashing line. When Insert is off, the text
cursor is a flashing block instead.

But what does it do? The Insert toggle determines how newly typed characters are added to your work
file. When Insert is on (that is, if the cursor is a flashing line), characters that you type are inserted into
the file. The characters appear over the cursor and immediately push the cursor and the rest of the line
to the right to make room for themselves. The line becomes one character longer for each character
that you type. If you press Enter, the cursor moves down one line, carrying with it the part of the line
lying to its right.

When Insert is off (that is, if the cursor is a flashing block), characters that you type will overwrite
characters that already exist in the file. Assuming you're typing in the middle of the file, somewhere
within a line, you will overwrite one character for every character that you type. Only if you overwrite



existing characters all the way to the end of the line or the end of the file and keep typing will the total
number of characters in the file actually increase. If you press Enter, the cursor will move down to the
first character of the next line down, but nothing else will change. A line will only be added to the file if
you press Enter with the cursor on the last line of the file.

Turning Insert on and off is done with a single control keypress:

Ctrl-V or Ins toggles Insert on and off.

The Indent Toggle

Indent is another toggle. It indicates whether NASM-IDE's auto-indent feature is on or off. When Indent
is on, the cursor will automatically move beneath the first visible character on a new line when you
press Enter. In other words (assuming that Indent is on), given this little bit of text on your screen:

  Adjust:
      MOV AX, [BP] + 6
      SUB AX, Increment_  <--Before pressing Enter
      _

      ^
      | After pressing Enter

Before pressing Enter, the cursor is at the end of the last line of text, immediately after the word
"Increment." When you press Enter, the cursor will move down one line, but it will also space over to
the right automatically until it is beneath the S in "SUB." This allows you to begin typing the next line of
code without having to space the cursor over so that it is beneath the start of the previous line.

Like Insert, Indent can be toggled on and off. It takes a double control keystroke to do it:

Ctrl-Q/I toggles Indent on and off.

Indent is considered on when the letter I appears in the bottom line of the edit window frame, to the left
of the cursor coordinates, almost in the corner. If the I is there, you will get an automatic indent to the
start of the previous line when you press Enter to insert a new line.

Deleting Text

There are also a number of different ways to delete text in NASM-IDE. The simplest is to use the Del
(Delete) key. Pressing Ctrl-G performs exactly the same delete function:

Ctrl-G or Del deletes one character to the right of the cursor.

The cursor does not move. It swallows the character to its right, and the rest of the line to its right
moves over to fill in the position left by the deleted character. The Backspace key can be used to delete
characters to the left of the cursor; another way it differs from Del is that the cursor rides to the left on
each deletion:

Backspace deletes one character to the left of the cursor.

You can think of backspace as eating one character to the left as it moves the cursor leftward. You can
also (to save a few keystrokes) delete one word to the right of the cursor:

Ctrl-T deletes one word to the right of the cursor.

When you press Ctrl-T, all characters from the cursor position rightward to the end of the current word
will be deleted. If the cursor happens to be on a space or group of spaces between words, that space
or spaces will be deleted up to the beginning of the next word. It's possible to delete from the cursor
position to the end of the cursor line:

Ctrl-Q/Y deletes from the cursor to the end of the line.

And finally, it's possible to delete the entire cursor line with a single control keystroke:



Ctrl-Y deletes the entire line containing the cursor.

The line beneath the cursor moves up to take the place of the deleted line, pulling up the rest of the file
behind it.

A warning here for those of you with thick fingers: The T and Y characters are right next to one another
on the keyboard. In a late-night frenzy at the keyboard you may find yourself reaching for Ctrl-T to
delete a word and hit Ctrl-Y instead, losing the entire line irretrievably. I've done this often enough that I
simply broke myself of the habit of using Ctrl-T at all.

Undoing Changes to a Line

NASM-IDE's editor keeps a backup copy of each line while you're working on it, and retains that copy
as long as the cursor remains within the line. Therefore, if you delete a word or some other portion of
the line, or add something to a line by mistake, you can undo those changes to the line as long as you
haven't yet left the line. Once you leave the line even momentarily, the editor throws away the backup
copy, and Undo is no longer possible.

Ctrl-Q/L restores a line to its condition before you entered it.

One drawback is that the undo feature will not restore a line deleted partially with Ctrl-Q/Y or entirely
with the Ctrl-Y command. Once a line is deleted, the cursor (by necessity) leaves the line, and so the
editor does not retain the backup copy of the line. Be careful how you use Ctrl-Y!

Marking Text Blocks

For several kinds of operations, it's useful to be able to mark a text block. You might want to copy the
text to the clipboard, cut the text to the clipboard, or delete the block of text entirely. A logical pointer
embedded invisibly in your text called a marker is used to specify the beginning and end of a text block.
There are only two of these markers, and in consequence only one block may be marked within a given
file at any given time. These block markers are named B and K, after the commands that position them
in your file. (You can try and remember them this way: B and K are on opposite ends of the word block
and the markers mark opposite ends of a block of text.)

The block markers are invisible and do not appear on your screen in any way. If both are present in a
file, however, all the text between them (that is, the currently marked block) is shown as highlighted
text.

As with most things in NASM-IDE, there are two ways to mark a block of text with the block markers.
The easy way is with the mouse. Simply click the mouse at the point in the file where you want the
marked block of text to begin, and hold the left button down. With the left button held down, drag the
cursor to the other end of the block. The text between the two ends of the block will become highlighted
as you drag the mouse. When the end of the block is where you want it to be, just let go of the left
mouse button. The block will remain highlighted until you move the cursor again.

Placing the block markers can be done from the keyboard with a pair of two-character control
keystrokes:

Ctrl-K/B places the B marker.

Ctrl-K/K places the K marker.

Again, when you mark a block from the keyboard, the block will remain marked only until you move the
cursor somehow. So, once you mark a block, do whatever you intend to do with the block immediately.
As soon as you move the cursor by even one character, the block vanishes and is no longer marked.

The Clipboard and Block Commands

The simplest block command to understand is Delete Block. Getting rid of big chunks of text that are no
longer needed is easy: Mark the text as a block, and then issue the Delete Block command:

Ctrl-K/Y or Ctrl-Del will delete a block of text.



For some reason, this command is called Clear in NASM-IDE's Edit menu. Delete or clear, it does the
same thing: It wipes away the highlighted block of text.

The rest of the block commands mostly concern the clipboard. The clipboard is a special text buffer
built into NASM-IDE, into which you can copy blocks of text, and from which you can insert text into
different places in the same text file, or into entirely different text files. People who use Windows a lot
will be familiar with the clipboard, though there was no direct equivalent under DOS.

Copy is useful when you have some standard text construction (a standard boilerplate comment header
for procedures, perhaps) that you need to use several times within the same text file. Rather than type
it from the keyboard each time, you type it once, mark it as a block, and then copy it to the clipboard by
pressing Ctrl-Ins.

Ctrl-Ins will copy the highlighted block of text to the clipboard.

Once it's in the clipboard, you move the cursor position to where you need it. Simply put the cursor
where the first character of the copied text must go, and then issue the Paste command:

Shift-Ins will paste the clipboard contents to the cursor position.

Moving a block of text is similar to copying a block of text. The difference, of course, is that the marked
block of text vanishes from its original position and reappears at the cursor position. It must pass
through the clipboard on its way from one place to another. As with copying a block, the process of
moving text requires two operations: First you cut the block from its original position into the clipboard,
and then you paste the block from the clipboard to the cursor position. Cutting the block is done by
highlighting a block of text and then pressing Shift-Del:

Shift-Del will cut the highlighted block of text to the clipboard.

Once the block of text is in the clipboard, you can use the Shift-Ins hot key to paste the text from the
clipboard to the cursor position, just as you did to copy a block to multiple places in the file or in
different files.

All of the clipboard-related commands may also be given from the Edit menu. Once you mark a block
by highlighting it, you can pull down the Edit menu and select the Cut, Copy, or Clear items to act on
the marked block. Once you have some text in the clipboard, you can pull down the Edit menu and
select Paste to paste the clipboard text into the current file at the cursor position.

One final clipboard command allows you to actually look at what text is currently in the clipboard. This
command is available only from the Edit menu. When you select Edit|Show clipboard, a text window will
open that shows exactly what text is in the clipboard. You can edit the text if you like, and your changes
will be reflected in the text that you paste into your other file or files.

When you're finished looking at the clipboard text in its window, click on the close control (the small
square on the left end of the top edge of the window) and it will close. The clipboard text, however,
remains on the clipboard.

Searching for Text

Much of the power of electronic text editing lies in its ability to search for a particular character pattern
in a text file. Furthermore, once found, it's a logical extension of the search concept to replace the
found text string with a different text string. For example, if you decide to change the name of a variable
to avoid conflict with another identifier in a program, you might wish to have the text editor locate every
instance of the old variable name in a program and replace each one with the new variable name.

NASM-IDE's editor can do both search and search/replace operations with great ease-and such easy
searching makes page numbering unnecessary. If you wish to work on the part of a program that
contains a particular procedure, all you need do is search for that procedure's name and you will move
the cursor right to the spot you want:

Ctrl-Q/F will find a given text string.

The Find command can also be issued from the menu bar by selecting the Search|Find menu item.



When you issue the Find command (either from the keyboard or from the menu; it doesn't matter),
NASM-IDE brings up a dialog box to find out what you want to find and how you want to configure the
search. This dialog is shown in Figure 5.7.

Figure 5.7: The Find dialog box.

The text that you're searching for goes in the Text to find edit field in the dialog box. You then tab down
to the two options fields. These are check boxes, and they both default to blank. The first specifies a
case-sensitive search. If you check it, the text found must match the text you enter in Text to find both
in characters and in case.

The second check box specifies that the search must be for Whole words only. This allows you to avoid
finding strings inside of larger strings. For example: Suppose you're looking for the register name "AX."
In the middle of your assembly file, you have a comment that reads like this:

  ; Axe the dead space at the end of the string

If you don't check Whole words only, your search for "AX" will also find "Axe" because "ax" is inside
"axe." You could also discriminate between the two by case, but that's less reliable, especially when
you're searching source code files written by other people who may have entirely different habits in
using character case. (Or who aren't consistent in how they use it-that's even worse.)

If Whole words only is checked, a search for "AX" will not find "Axe," or "Tax," or "maximum," or
anything else that isn't simply..."AX."

Once you have the Find dialog box filled in the way you want it, press the OK button. The search will
commence, and if the search is successful the cursor will move to the first character of the first
instance of the found text string. If the editor cannot find any instance of the requested text string in the
work file, it displays an error message box containing the message "Search string not found." You must
then click on the OK button to continue editing.

Searching for Additional Instances

Most assembly language source code files will have multiple instances of common identifiers like "AX."
If you want to find not the first one but the third or fourth (or one further down that you know you can
identify from its context), you need to search for additional instances of the text. NASM-IDE has a
command for this as well: Search again. This command may be issued from the menu bar, by selecting
menu item Search|Search again. The shortcut for Search again is Ctrl-L, which is very handy.
(Sometimes using the mouse is more hand motion than it needs to be.)

Ctrl-L will find (or replace) the next instance of a given text string.

Replacing Found Text

Many times, the whole reason for finding a text string is to replace it with something else-sometimes not
simply once but for every instance of the text string in the file. NASM-IDE has special machinery to do
exactly this: the Replace command. Once the search text is found, NASM-IDE will replace the search
text with replacement text that you provide.



As with Find, you can issue the Replace command either from the menu bar by selecting the
Search|Replace menu item, or from the keyboard, by pressing Ctrl-QA.

Ctrl-QA will find and replace a given text string with your text.

As with Find, the Replace command brings up a dialog box, (shown in Figure 5.8) into which you must
enter:

Figure 5.8: The Replace dialog box.

The text you're searching for.1.

The text you want to replace the found text with.2.

The kind of search you want to conduct (that is, whole words only or case-sensitive or both).3.

Whether to prompt for each replacement.4.

Whether to swoop through the file and replace all instances of the original text with your
replacement text.

5.

The search options are the same as those I described for the Find command. If you leave the Replace
dialog box in its default state and click OK, the editor will locate the first instance of the search string,
highlight it, and display another dialog box that asks the question: "Replace this instance?" You can
click on the Yes button to replace the instance, the No button to leave it alone, or the Cancel button to
end the Replace operation entirely. (Cancel is most useful when you're doing a Replace all operation
and running through the whole file replacing every instance of some text string.)

Note that just as with the Find command, you can use the Ctrl-L hot key to perform a subsequent
Replace command on the next instance of the text string you just replaced. Each Ctrl-L will locate and
replace the next instance of the search text until no more instances of the search text are found in the
file.

Saving Your Work

It's very important to keep in mind what is happening while you edit text files with the editor. You are
editing entirely within memory. Nothing goes out to disk while you are actually doing the edit. You can
work on a file for hours, and one power failure or dog tripping over your PC's power cord will throw it all
away. You must develop the discipline of saving your work every so often.

You can save your work by going to the menu bar, pulling down the File menu, and selecting the Save
item. But the easiest way to execute a Save command from within the editor is with the Save shortcut,
F2.

F2 saves your work file.

Press F2 early and often. Everything depends on it.



Other NASM-IDE Features

Most of what you do with NASM-IDE involves editing assembly language source code files, but by no
means all. In this final section of the chapter I discuss some of the other things that NASM-IDE can do.

Exiting NASM-IDE

There is more than one way to get out of NASM-IDE once you're finished with the job at hand. The File
menu has an Exit item, and that's the easiest to remember, and it will do the job. The shortcut for the
File|Exit menu item is Alt-X:

Alt-X exits to DOS.

NASM-IDE keeps track of whether a file has been changed by you since the last time it was saved to
disk. If you attempt to exit NASM-IDE with unsaved changes on deck, NASM-IDE will bring up a dialog
box asking if you want to save your changes. Most of the time you do—and in most cases you'll click
the Yes button. But other occasions might arise when the best thing to do is abandon a changed file
and start again. The most common example of this is a careless Replace all command that went
through your entire file and did a lot of unintended and difficult-to-reverse things. The best thing to do in
such a case is leave NASM-IDE without saving the damaged file, and then coming back in with the
most recent copy. This is another good reason to save often: You don't want to abandon a bad
"Replace all" change (what some programmers have with grim remembrance come to call a "search
and destroy") along with two hours' worth of useful work.

Save often. And know when not to save. It's all part of the game.

Changing the Display Size

By default, NASM-IDE brings up a traditional 25-line by 80-character DOS text screen. This isn't a lot of
room to move, especially when virtually every modern display adapter is capable of showing you either
43 lines (on some ancient hardware) or 50 lines on a text screen. When I use NASM-IDE in my own
work, I use 50 lines, every time.

Setting it up is easy. Pull down the Options|Environment menu item. The dialog box shown in Figure
5.9 will appear. The top pane governs your screen size. The default is 25 lines, but you can check
43/50 instead by clicking on the 43/50 lines button. Then when you click on OK, the screen size will
change immediately.

Figure 5.9: The Environment Options dialog box.

What it changes to depends on your hardware. If you have an EGA (Enhanced Graphics Adapter)
(which is most unlikely in the year 2000), you'll get a 43-line screen. If you have a VGA (Video Graphics
Array) or anything more recent than the VGA, you'll get a 50-line screen. Note that these are mutually
exclusive; a single system cannot (as far as I know) let you choose from 43 lines or 50 lines. You get
the big screen, however many lines that works out to on your particular hardware.

DOS Shell

People who have grown up using nothing but Microsoft Windows have a little trouble sometimes



understanding what a DOS shell is or why it's useful. The answer, of course, is that there was a time
when we didn't have Windows and couldn't just click on a window and open up another program without
closing the first one.

But a DOS shell was a very handy thing to have in the DOS era, and NASM-IDE provides one. If you
select the File|DOS shell menu item, NASM-IDE will tuck itself away and open up a DOS shell. It's like
exiting NASM-IDE without really exiting it. You can run DOS programs, look at and copy files, and so
on. When you're done, you simply type "exit" and press Enter and in a pop you're back inside NASM-
IDE as though you'd never left.

This is still useful for doing things like invoking your linker, since NASM-IDE doesn't do that for you. I
return to the DOS shell when we discuss linking modular files later in this book.



Chapter 6: An Uneasy Alliance The x86 CPU and Its

Segmented Memory System

As comedian Bill Cosby once said: I told you that story so I could tell you this one...We're pretty close to
a third finished with this book, and I haven't even begun describing the principal element in PC
assembly language: the x86 CPU. Most books on assembly language, even those targeted at
beginners, assume that the CPU is as good a place as any to start their story, without considering the
mass of groundwork without which most beginning programmers get totally lost and give up.

That's why I began at the real beginning, and took 150 pages to get to where the other guys start.

Keep in mind that this book was created to supply that essential groundwork. It is not a complete
course in PC assembly language. Once you run off the end of this book, you'll have one leg up on any
of the multitude of beginner books on assembly language from other publishers.

And it's high time we got right to the heart of things, and met the foreman of the PC itself.

The Joy of Memory Models

I wrote this book in large part because I could not find a beginning text in assembly language that I
respected in the least. Nearly all books on assembly start by introducing the concept of an instruction
set, and then begin describing machine instructions, one by one. This is moronic, and the authors of
such books should be hung. Even if you've learned every single instruction in an instruction set, you
haven't learned assembly language.

You haven't even come close.

The naïve objection that a CPU exists to execute machine instructions can be disposed of pretty easily:
It executes machine instructions once it has them in its electronic hands. The real job of a CPU, and
the real challenge of assembly language, lies in locating the required instructions and data in memory.
Any idiot can learn machine instructions. (Many do.) The skill of assembly language consists of a deep
comprehension of memory addressing. Everything else is details—and easy details, at that.

This is a difficult business, made much more difficult by the fact that there are a fair number of different
ways to address memory in the x86 CPU family. (The "x86" indicates any member of Intel's
microprocessor family that includes the 8086, 8088, 80286, 80386, 80486, Pentium, and the Pentium
descendents.) Each of these ways is called a memory model. There are three major memory models
that you can use with the more recent members of the x86 CPU family, and a number of minor
variations on those three, especially the one in the middle.

The oldest memory model is called real mode flat model. It's relatively straightforward. The middle-aged
memory model is called the real mode segmented model. It may be the most hateful thing you ever
have to learn in any kind of programming, assembly or otherwise. DOS programming at its peak used
the real mode segmented model. The newest memory model is called protected mode flat model, and
it's the memory model behind modern operating systems such as Windows NT and Linux. (Note that
the protected mode flat model is available only on the 386 and newer CPUs. The 8086, 8088, and 286
do not support it.) Windows 9x falls somewhere between models, and I doubt anybody except the
people at Microsoft really understands all the kinks in the ways it addresses memory—maybe not even
them. Windows 9x crashes all the time, and one main reason in my view is that it has a completely
insane memory model. (Dynamic link libraries, or DLLs—a pox on homo computationis—are the other
major reason.) Its gonzo memory model isn't the only reason you shouldn't consider writing Win 9x
programs in assembly, but it's certainly the best one.

I have a strategy in this book, and before we dive in, I'll lay it out: I will begin by teaching you
programming under the real mode flat model, under DOS. It's amazingly easy to learn. I will discuss
real mode segmented model because you will keep stubbing your toe on it here and there and need to
know it, even if you never do any serious programming in it. However, the future lies in protected mode
flat model, especially under Linux. It's also amazingly easy to learn—the hard part is fooling with all the
Linux system calls that don't exist under DOS. And the key is this: Real mode flat model is very much
like protected mode flat model in miniature.



There is a big flat model, and a little flat model. If you grasp real mode flat model, you will have no
trouble with protected mode flat model. That monkey in the middle is just the dues you have to pay to
consider yourself a real master of memory addressing.

So let's go see how this crazy stuff works.

16 Bits'll Buy You 64K

The year I graduated from college, Intel introduced the 8080 CPU and basically invented
microcomputing. (Yes, I'm an old guy, but I've been blessed with a sense of history—by virtue of having
lived through quite a bit of it.) That was 1974, and the 8080 was a white-hot little item at the time. I had
one that ran at 1 MHz, and it was a pretty effective word processor, which is mostly what I did with it.

The 8080 was an 8-bit CPU, meaning that it processed 8 bits of information at a time. However, it had
16 address lines coming out of it. The "bitness" of a CPU—how many bits wide its accumulator and
general-purpose registers are—is important, but to my view the far more important measure of a CPU's
effectiveness is how many address lines it can muster in one operation. In 1974, 16 address lines was
aggressive, because memory was extremely expensive, and most machines had 4K or 8K bytes at very
most—and some had a lot less.

Sixteen address lines will address 64K bytes. If you count in binary (which computers always do) and
limit yourself to 16 binary columns, you can count from 0 to 65,535. (The colloquial "64K" is shorthand
for the number 66,536.) This means that every one of 65,536 separate memory locations can have its
own unique number, from 0 up to 65,535. This number is an address, a concept I introduced
functionally back in Chapter 3. If you want to find out what's recorded in memory location number
24,263, you place the number 24,263 on a memory system's address lines, and the memory system will
read the contents at that location and send them back to you.

The 8080 memory-addressing scheme was very simple: You put a 16-bit address out on the address
lines, and you got back the 8-bit value that was stored at that address. Note well: There is no
necessary relation between the number of address lines in a memory system and the size of the data
stored at each location. The 8080 stored 8 bits at each location, but it could have stored 16 or even 32
bits at each location, and still had 16 memory address lines.

By far and away, the operating system most used with the 8080 was CP/M-80. CP/M-80 was a little
unusual in that it existed at the top of installed memory—sometimes so that it could be contained in
ROM, but mostly just to get it out of the way and allow a consistent memory starting point for transient
programs—those that (unlike the operating system) were loaded into memory and run only when
needed. When CP/M-80 read a program in from disk to run it, it would load the program into low
memory, at address 0100H—that is, 256 bytes from the bottom of memory. The first 256 bytes of
memory were called the program segment prefix (PSP) and contained various odd bits of information
as well as a general-purpose memory buffer for the program's disk input/output (I/O). But the
executable code itself did not begin until address 0100H.

I've drawn the 8080 and CP/M-80 memory model in Figure 6.1.



Figure 6.1: The 8080 memory model.

The 8080's memory model as used with CP/M-80 was simple, and people used it a lot. So, when Intel
created its first 16-bit CPU, the 8086, it wanted to make it easy for people to translate CP/M-80
software from the 8080 to the 8086—what we call porting. One way to do this was to make sure that a
16-bit addressing system such as that of the 8080 still worked. So, even though the 8086 could
address 16 times as much memory as the 8080 (16 x 64K = 1 MB), Intel set up the 8086 so that a
program could take some 64K byte segment within that megabyte of memory and run entirely inside it,
just as though it were the smaller 8080 memory system.

This was done by the use of segment registers—which are basically memory pointers located in CPU
registers that point to a place in memory where things begin, whether this be data storage, code
execution, whatever. We'll have a lot more to say about the use of segment registers very shortly. For
now, it suffices to think of them as pointers indicating where, within the 8086's megabyte of memory, a
program ported from the 8080 world would begin. See Figure 6.2.



Figure 6.2: The 8080 memory model inside an 8086 memory system.

When speaking of the 8086 and 8088, there are four segment registers to consider—and again, we'll
be dealing with them in detail very soon. But for the purposes of Figure 6.2, consider the register called
CS—which stands for code segment. Again, it's a pointer pointing to a location within the 8086's
megabyte of memory. This location acts as the starting point for a 64K region of memory, within which
a quickly converted CP/M-80 program can run very happily.

This was very wise short-term thinking—and catastrophically bad long-term thinking. Any number of
CP/M-80 programs were converted to the 8086 within a couple of years. The problems began big time
when programmers attempted to create new programs from scratch that had never seen the 8080 and
had no need for the segmented memory model. Too bad—the segmented model dominated the
architecture of the 8086. Programs that needed more than 64K of memory at a time had to use memory
in 64K chunks, switching between chunks by switching values into and out of segment registers.

This was, and is, a nightmare. There is one good reason to learn it, however: Understanding the way
segments work will help you understand how the two x86 flat models work, and in the process you will
come to understand the nature of the CPU a lot better.

So, having worked my way up to the good stuff, I find myself faced with a tricky conundrum.
Programming involves two major components of the PC: the CPU and memory. Most books begin by
choosing one or the other and describing it. My own opinion is that you can't really describe memory
and memory addressing without describing the CPU, and you can't really describe the CPU without
going into memory and memory addressing.

So let's do both at once.

The Nature of a Megabyte

When running in segmented real mode, the x86 CPUs can use up to a megabyte of directly
addressable memory. This memory is also called real mode memory. Most modern x86 machines have
a lot more memory than that—typically 32 MB or more. (My own machines have 256 MB of memory.)
However, most modern x86 machines run in protected mode, which can address up to 4 giga bytes of



memory. We return to protected mode in a big way toward the end of this book, in discussing Linux.

As I discussed briefly in Chapter 3, a megabyte of memory is actually not 1 million bytes of memory, but
1,048,576 bytes. It doesn't come out even in our base 10 because computers insist on base 2. Those
1,048,576 bytes expressed in base 2 are 100000000000000000000B bytes. (We don't use commas in
base 2—that's yet another way to differentiate binary notation from decimal apart from the suffixed B.)
That's 220, a fact that we'll return to shortly. The number 100000000000000000000B is so bulky that it's
better to express it in the compatible (and much more compact) base 16, which we call hexadecimal.
The quantity 220 is equivalent to 165, and may be written in hexadecimal as 100000H. (If the notion of
number bases still confounds you, I'd recommend another trip through Chapter 2, if you haven't been
through it already. Or, perhaps, even if you have.)

Now, here's a tricky and absolutely critical question: In a bank of memory containing 100000H bytes,
what's the address of the very last byte in the memory bank? The answer is not 100000H. The clue is
the flip side to that question: What's the address of the first byte in memory? That answer, you might
recall, is 0. Computers always begin counting from 0. It's a dichotomy that will occur again and again in
computer programming. The last in a row of four items is item number 3, because the first item in a row
of four is item number 0. Count: 0, 1, 2, 3.

The address of a byte in a memory bank is just the number of that byte starting from zero. This means
that the last, or highest, address in a memory bank containing 1 megabyte is 100000H minus one, or
0FFFFFH. (The initial zero, while not mathematically necessary, is there for the convenience of your
assembler. Get in the habit of using an initial zero on any hex number beginning with the hex digits A
through F.)

The addresses in a megabyte of memory, then, run from 00000H to 0FFFFFH. In binary notation, that
is equivalent to the range of 00000000000000000000B to 11111111111111111111B. That's a lot of
bits—20, to be exact. If you look back to Figure 3.3 in Chapter 3, you'll see that a megabyte memory
bank has 20 address lines. One of those 20 bits is routed to each of those 20 address lines, so that any
address expressed as 20 bits will identify one and only one of the 1,048,576 bytes contained in the
memory bank.

That's what a megabyte of memory is: some arrangement of memory chips within the computer,
connected by an address bus of 20 lines. A 20-bit address is fed to those 20 address lines to identify 1
byte out of the megabyte.

Backward Compatibility

Modern x86 CPUs such as the Pentium can address much more memory than this and have a lot of
machinery that I won't be discussing in this book. With the 8086 and 8088 CPUs, the 20 address lines
and 1 megabyte of memory was literally all they had. They didn't speak of the real mode segmented
model back in the 8088 era because that one model was all there was.

More powerful memory models didn't really come about until the appearance of the 80386 in 1986. The
386 was Intel's first true 32-bit CPU, and the first to fully implement a 32-bit protected mode. The 80286
was a transitional CPU that tried—but did not completely succeed—in implementing a protected mode.
People simply used it as a faster 8088. (Later on, I talk more about what the "protected" in "protected
mode" means.) The 386 and later Intel CPUs could address 4 gigabytes of memory without carving it
up into smaller segments. In the 32-bit CPUs, a segment is 4 gigabytes—so one segment is, for the
most part, plenty.

However, a huge pile of DOS software written to make use of segments was everywhere around and
had to be dealt with. So, to maintain backward compatibility with the ancient 8086 and 8088, newer
CPUs were given the power to limit themselves to what the older chips could address and execute.
When a Pentium CPU places itself into real mode segmented model, it very nearly becomes an 8086.
This may seem a waste, but it allows the Pentium to run old DOS software originally written for the
8086. Think of it as training wheels to get you up to speed in assembly language.

Whenever a newer CPU such as the 386 or Pentium is set up to look like an 8086, we say that it is in
real mode. The term real mode was coined as a contrast to protected mode, which is the much more
powerful mode used in newer operating systems (such as Windows 9x and NT, as well as Linux) that
allows the operating system much more control over what programs running on the machine can do.



When you launch an MS-DOS window or "DOS box" under Windows 9x or NT, you're creating what
amounts to a little real mode island inside the Windows protected mode memory system. If you have a
Windows machine, you should do all your assembly language for this book in an MS-DOS window, so
that real mode conventions apply. (For Linux, obviously, this limitation does not apply!)

16-Bit Blinders

In real mode segmented model, an x86 CPU can "see" a full megabyte of memory. That is, the CPU
chips set themselves up so that they can use 20 of their 32 address pins and can pass a 20-bit address
to the memory system. From that perspective, it seems pretty simple and straightforward.
However,...the bulk of all the trouble you're ever likely to have in understanding real mode segmented
model stems from this fact: that whereas those CPUs can see a full megabyte of memory, they are
constrained to look at that megabyte through 16-bit blinders.

You may call this peculiar. (If you do any significant amount of programming in this mode, you'll
probably call it much worse.) But you must understand it, and understand it thoroughly.

The blinders metaphor is closer to literal than you might think. Look at Figure 6.3. The long rectangle
represents the megabyte of memory that the CPU can address in real mode segmented model. The
CPU is off to the right. In the middle is a piece of metaphorical cardboard with a slot cut in it. The slot is
1 byte wide and 65,536 bytes long. The CPU can slide that piece of cardboard up and down the full
length of its memory system. However, at any one time, it can only access 65,536 bytes.

Figure 6.3: Seeing a megabyte through 64K blinders.

The CPU's view of memory in real mode segmented model is peculiar. It is constrained to look at
memory in chunks, where no chunk is larger than 65,536 bytes in length—what we call "64K." Making
use of those chunks—that is, knowing which one is currently in use and how to move from one to
another—is the real skill of real mode segmented model programming. The chunks are called



segments, and it's time to take a closer look at what they are and how they're used.



The Nature of Segments

We've spoken informally of segments so far as chunks of memory within the larger megabyte memory
space that the CPU can see and use in real mode segmented model. More formally, a segment is a
region of memory that begins on a paragraph boundary and extends for some number of bytes. In real
mode segmented model this number is less than or equal to 64K (65,536). We've spoken of the
number 64K before. But paragraphs?

Time out for a lesson in 86-family trivia. A paragraph is a measure of memory equal to 16 bytes. It is
one of numerous technical terms used to describe various quantities of memory. We've spoken of
some of them before, and all of them are even multiples of 1 byte. Bytes are data atoms, remember;
loose memory bits never exist in the absence of a byte of memory to contain them. These terms are of
uneven usefulness, but you should be aware of all of them, which are given in Table 6.1.

Table 6.1: Collective Terms for Memory

  VALUE

NAME DECIMAL HEX

Byte 1 01H

Word 2 02H

Double word 4 04H

Quad word 8 08H

Ten byte 10 0AH

Paragraph 16 10H

Page 256 100H

Segment 65,536 10000H

Table 6.1 lists two names for each term. Some of these terms, such as ten byte, occur very rarely, and
others, such as page, occur almost never. The term paragraph is almost never used, except in
connection with the places where segments may begin.

Any memory address evenly divisible by 16 is called a paragraph boundary. The first paragraph
boundary is address 0. The second is address 10H; the third address 20H, and so on. (Remember that
10H is equal to decimal 16.) Any paragraph boundary may be considered the start of a segment.

This doesn't mean that a segment actually starts every 16 bytes up and down throughout that megabyte
of memory. A segment is like a shelf in one of those modern adjustable bookcases. On the back face of
the bookcase are a great many little slots spaced one-half inch apart. A shelf bracket can be inserted
into any of the little slots. However, there aren't hundreds of shelves, but only four or five. Nearly all of
the slots are empty and unused. They exist so that a much smaller number of shelves may be adjusted
up and down the height of the bookcase as needed.

In a very similar manner, paragraph boundaries are little slots at which a segment may be begun. An
assembly language program may make use of only four or five segments, but each of those segments
may begin at any of the 65,536 paragraph boundaries existing in the megabyte of memory available in
the real mode segmented model.

There's that number again: 65,536-our beloved 64K. There are 64K different paragraph boundaries
where a segment may begin. Each paragraph boundary has a number. As always, the numbers begin
from 0, and go to 64K minus one; in decimal 65,535, or in hex 0FFFFH. Because a segment may begin
at any paragraph boundary, the number of the paragraph boundary at which a segment begins is called
the segment address of that particular segment. We rarely, in fact, speak of paragraphs or paragraph
boundaries at all. When you see the term segment address, keep in mind that each segment address
is 16 bytes (one paragraph) farther along in memory than the segment address before it. See Figure
6.4.



Figure 6.4: Memory addresses versus segment addresses.

In short, segments may begin at any segment address. There are 65,536 segment addresses evenly
distributed across real mode's full megabyte of memory, 16 bytes apart. A segment address is more a
permission than a compulsion; for all the 64K possible segment addresses, only five or six are ever
actually used to begin segments at any one time. Think of segment addresses as slots where
segments may be placed.

So much for segment addresses; now, what of segments themselves? The most important thing to
understand is that a segment may be up to 64K bytes in size, but it doesn't have to be. A segment may
be only 1 byte long, or 256 bytes long, or 21,378 bytes long, or any length at all short of 64K bytes.

A Horizon, Not a Place

You define a segment primarily by stating where it begins. What, then, defines how long a segment is?
Nothing, really-and we get into some really tricky semantics here. A segment is more a horizon than a
place. Once you define where a segment begins, that segment can encompass any location in memory
between that starting place and the horizon-which is 65,536 bytes down the line.

Nothing says, of course, that a segment must use all of that memory. In most cases, when you define a
segment to exist at some segment address, you only end up considering the next few hundred bytes as
part of that segment, until you get into some truly world-class programs. Most beginners read about
segments and think of them as some kind of memory allocation, a protected region of memory with
walls on both sides, reserved for some specific use.

This is about as far from true as you can get. In real mode nothing is protected within a segment, and
segments are not reserved for any specific register or access method. Segments can overlap. (People
often don't think about or realize this.) In a very real sense, segments don't really exist, except as
horizons beyond which a certain type of memory reference cannot go. It comes back to that set of 64K
blinders that the CPU wears, as I drew in Figure 6.3. I think of it this way: A segment is the location in
memory at which the CPU's 64K blinders are positioned. In looking at memory through the blinders, you
can see bytes starting at the segment address and going on until the blinders cut you off, 64K bytes
down the way.



The key to understanding this admittedly metaphysical definition of a segment is knowing how
segments are used. And coming to understand that finally brings us to the subject of registers.

Making 20-Bit Addresses out of 16-Bit Registers

A register, as I've hinted before, is a memory location inside the CPU chip rather than outside the CPU
in a memory bank somewhere. The 8088, 8086, and 80286 are often called 16-bit CPUs because their
internal registers are almost all 16 bits in size. The 80386 and its successors are called 32-bit CPUs
because most of their internal registers are 32 bits in size. The x86 CPUs have a fair number of
registers, and they are an interesting crew indeed.

Registers do many jobs, but one of their more important jobs is holding addresses of important
locations in memory. If you'll recall, the 8086 and 8088 have 20 address pins, and their megabyte of
memory (which is the real mode segmented memory we're talking about) requires addresses 20 bits in
size.

How do you put a 20-bit memory address in a 16-bit register?

Easy. You don't.

You put a 20-bit address in two 16-bit registers.

What happens is this: All memory locations in real mode's megabyte of memory have not one address
but two. Every byte in memory is assumed to reside in a segment. A byte's complete address, then,
consists of the address of its segment, along with the distance of the byte from the start of that
segment. The address of the segment is (as we said before) the byte's segment address. The byte's
distance from the start of the segment is the byte's offset address. Both addresses must be specified to
completely describe any single byte's location within the full megabyte of real mode memory. When
written out, the segment address comes first, followed by the offset address. The two are separated
with a colon. Segment:offset addresses are always written in hexadecimal. Make sure that the colon is
there so that people know you're specifying an address and not just a couple of numbers!

I've drawn Figure 6.5 to help make this a little clearer. A byte of data we'll call MyByte exists in memory
at the location marked. Its address is given as 0001:001D. This means that MyByte falls within
segment 0001H and is located 001DH bytes from the start of that segment. Note that when two
numbers are used to specify an address with a colon between them, you do not end each of the two
numbers with an H for hexadecimal.



Figure 6.5: Segments and offsets.

You can omit leading zeros if you like; that is, instead of saying 00B2:0004 you could write 0B2:4. (The
leading zero is retained in front of the B in keeping with assembly language policy of never allowing a
hex number to begin with the hex digits A through F.) As a good rule of thumb, however, I recommend
using all four hex digits in both components of the address except when all four digits are zeros. In
other words, you can abbreviate 0000:0061 to 0:0061 or 0B00:0000 to 0B00:0.

The universe is perverse, however, and clever eyes will perceive that MyByte can have two other
perfectly legal addresses: 0:002D and 0002:000D. How so? Keep in mind that a segment may start
every 16 bytes throughout the full megabyte of real memory. A segment, once begun, embraces all
bytes from its origin to 65,535 bytes further up in memory. There's nothing wrong with segments
overlapping, and in Figure 6.3 we have three overlapping segments. MyByte is 2DH bytes into the first
segment, which begins at segment address 0000H. MyByte is 1DH bytes into the second segment,
which begins at segment address 0001H. It's not that MyByte is in two or three places at once. It's in
only one place, but that one place may be described in any of three ways.

It's a little like Chicago's street-numbering system. Howard Street is 76 blocks north of Chicago's
"origin," Madison Street. Howard Street is, however, only 4 blocks north of Touhy Avenue. You can
describe Howard Street's location relative to either Madison Street or Touhy Avenue, depending on
what you want to do.

An arbitrary byte somewhere in the middle of real mode's megabyte of memory may fall within literally
tens of thousands of different segments. Which segment the byte is actually in is strictly a matter of
convention.

This problem appears in real life to confront programmers of the IBM PC. The PC keeps its time and
date information in a series of memory bytes that starts at address 0040:006C. There is also a series of
memory bytes containing PC timer information located at 0000:046C. You guessed it-we're talking
about exactly the same starting byte. Different writers speaking of that same byte may give its address
in either of those two ways, and they'll all be completely correct.



The way, then, to express a 20-bit address in two 16-bit registers is to put the segment address into
one 16-bit register, and the offset address into another 16-bit register. The two registers taken together
identify 1 byte among all 1,048,576 bytes in real mode's megabyte of memory.

Is this awkward? You bet. But it was the best we could do for a good many years.



16-Bit and 32-Bit Registers

Think of the segment address as the starting position of real mode's 64K blinders. Typically, you'll move
the blinders to encompass the location where you wish to work, and then leave the blinders in one
place while moving around within their 64K limits.

This is exactly how registers tend to be used in real mode segmented model assembly language. The
8088, 8086, and 80286 have exactly four segment registers specifically designated as holders of
segment addresses. The 386 and later CPUs have two more that can be used in real mode. (You need
to be aware of the kind of machine you're running on if you intend to use the two additional segment
registers.) Each segment register is a 16-bit memory location existing within the CPU chip itself. No
matter what the CPU is doing, if it's addressing some location in memory, the segment address of that
location is present in one of the six segment registers.

The segment registers have names that reflect their general functions: CS, DS, SS, ES, FS, and GS.
FS and GS exist only in the 386 and later Intel x86 CPUs—but are still 16 bits in size. All segment
registers are 16 bits in size, irrespective of the CPU.

CS stands for code segment. Machine instructions exist at some offset into a code segment. The
segment address of the code segment of the currently executing instruction is contained in CS.

DS stands for data segment. Variables and other data exist at some offset into a data segment.
There may be many data segments, but the CPU may only use one at a time, by placing the
segment address of that segment in register DS.

SS stands for stack segment. The stack is a very important component of the CPU used for
temporary storage of data and addresses. I explain how the stack works a little later; for now
simply understand that, like everything else within the 8086/8088's megabyte of memory, the stack
has a segment address, which is contained in SS.

ES stands for extra segment. The extra segment is exactly that: a spare segment that may be used
for specifying a location in memory.

FS and GS are clones of ES. They are both additional segments with no specific job or specialty.
Their names come from the fact that they were created after ES. (Think, E, F, G.) Don't forget that
they exist only in the 386 and later x86 CPUs!

General-Purpose Registers

The segment registers exist only to hold segment addresses. They can be forced to do a very few other
things, but by and large, segment registers should be considered specialists in segment address
containing. The x86 CPUs have a crew of generalist registers to do the rest of the work of assembly
language computing. Among many other things, these general-purpose registers are used to hold the
offset addresses that must be paired with segment addresses to pin down a single location in memory.
They also hold values for arithmetic manipulation, for bit-shifting (more on this later), and many other
things. They are truly the craftsman's pockets inside the CPU.

But we come here to one of the biggest and most obvious differences between the older 16-bit x86
CPUs (the 8086, 8088, and 80286) and the newer 32-bit x86 CPUs starting with the 386: the size of the
general-purpose registers. When I wrote the very first edition of this book in 1989, the 8088 still ruled
the PC computing world, and I limited myself to discussing what the 8088 had within it.

Those days are long gone. Even the fully 32-bit 386 is considered an antique, and the 486 is
considered ever more quaint as the years go by. It's a 32-bit world, and I'd be cheating you out of some
useful CPU power if I neglected to explain the 32-bit general-purpose registers. Chances are
overwhelming that your machine is fully 32-bit in nature, so all of these registers (with one or two minor
exceptions) can be used in assembly language programs written for DOS or a DOS window under
Microsoft Windows.

Like the segment registers, the general-purpose registers are memory locations existing inside the CPU
chip itself. Also, like the segment registers, they all have names rather than numeric addresses. The
general-purpose registers really are generalists in that all of them share a large suite of capabilities.



However, some of the general-purpose registers also have what I call a hidden agenda: a task or set of
tasks that only it can perform. I explain all these hidden agendas as I go—keeping in mind that some of
the hidden agendas are actually limitations of the older 16-bit machines. The newer general-purpose
registers are much more..., er,...general.

The general-purpose registers fall into three general classes: the 16-bit general-purpose registers, the
32-bit extended general-purpose registers, and the 8-bit register halves. These three classes do not
represent three entirely distinct sets of registers at all. The 16-bit and 8-bit registers are actually names
of regions inside the 32-bit registers. Register growth in the x86 CPU family has come about by
extending registers existing in older CPUs. Adding a room to your house doesn't make it two
houses—just one bigger house. And so it has been with the x86 registers.

There are eight 16-bit general-purpose registers: AX, BX, CX, DX, BP, SI, DI, and SP. (SP is a little
less general than the others, but we'll get to that.) These all existed in the 8086, 8088, and 80286
CPUs. They are all 16 bits in size, and you can place any value in them that may be expressed in 16
bits or fewer. When Intel expanded the x86 architecture to 32 bits in 1986, it doubled the size of all
eight registers and gave them new names by prefixing an E in front of each register name, resulting in
EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP.

So...were these just bigger registers, or new registers?

Both.

As with a lot of things in assembly language, this becomes a lot clearer by drawing a diagram. See
Figure 6.6, which shows how SI, DI, BP, and SP doubled in size and got new names—without entirely
losing their old ones.

Figure 6.6: Extending the 16-bit general-purpose registers.

Each of the four registers shown in Figure 6.6 is fully 32 bits in size. However, in each register, the
lower 16 bits have a name of their own. The lower 16 bits of ESI, for example, may be referenced as SI.
The lower 16 bits of EDI may be referenced as DI. If you're writing programs for an 8088 machine such
as the ancient IBM PC, you can only reference the DI part—the high 16 bits don't exist on that CPU!

Unfortunately, the high 16 bits of the 32-bit general-purpose registers do not have their own names.
You can access the low 16 bits of ESI as SI, but to get at the high 16 bits, you must refer to ESI and
get the whole 32-bit shebang.

Register Halves

The same is true for the other four general-purpose registers EAX, EBX, ECX, and EDX, but there's an
additional twist: The low 16 bits are themselves divided into two 8-bit halves. So, what we have are



register names on not two but three levels. The 16-bit registers AX, BX, CX, and DX are present as the
lower 16-bit portions of EAX, EBX, ECX, and EDX. But AX, BX, CX, and DX are themselves divided
into 8-bit halves, and assemblers recognize special names for the two halves. The A, B, C, and D are
retained, but instead of the X, a half is specified with an H (for high half) or an L (for low half). Each
register half is 1 byte (8 bits) in size. Thus, making up 16-bit register AX, you have byte-sized register
halves AH and AL; within BX there is BH and BL, and so on.

Again, this can best be shown in a diagram. See Figure 6.7. As I mentioned earlier, one quirk of this
otherwise very useful system is that there is no name for the high 16-bit portion of the 32-bit registers.
In other words, you can read the low 16 bits of EAX by specifying AX in an assembly language
instruction, but there's no way to specify the high 16 bits by themselves. This keeps the naming
conventions for the registers a little simpler (would you like to have to remember EAXH, EBXH, ECXH,
and EDXH on top of everything else?), and the lack is not felt as often as you might think.

Figure 6.7: 8-bit, 16-bit, and 32-bit registers.

One nice thing about the 8-bit register halves is that you can read and change one half of a 16-bit
number without disturbing the other half. This means that if you place the word-sized hexadecimal
value 76E9H into register AX, you can read the byte-sized value 76H from register AH, and 0E9H from
register AL. Better still, if you then store the value 0AH into register AL and then read back register AX,
you'll find that the original value of 76E9H has been changed to 760AH.

Being able to treat the AX, BX, CX, and DX registers as 8-bit halves can be extremely handy in
situations where you're manipulating a lot of 8-bit quantities. Each register half can be considered a
separate register, leaving you twice the number of places to put things while your program works. As
you'll see later on, finding a place to stick a value in a pinch is one of the great challenges facing
assembly language programmers.

Keep in mind that this dual nature involves only the 16-bit general-purpose registers AX, BX, CX, and
DX. The other 16-bit general-purpose registers SP, BP, SI, and DI, are not similarly equipped. There
are no SIH and SIL 8-bit registers, for example, as convenient as that would sometimes be.

The Instruction Pointer

Yet another type of register lives inside the x86 CPUs. The instruction pointer (usually called IP) is in a
class by itself. In radical contrast to the gang of eight general-purpose registers, IP is a specialist par
excellence—more of a specialist than even the segment registers. It can do only one thing: It contains
the offset address of the next machine instruction to be executed in the current code segment.

A code segment is an area of memory where machine instructions are stored. The steps and tests of
which a program is made are contained in code segments. Depending on the programming model
you're using, there may be many code segments in a program, or only one. The current code segment
is that code segment whose segment address is currently stored in code segment register CS. At any



given time, the machine instruction currently being executed exists within the current code segment.

While executing a program, the CPU uses IP to keep track of where it is in the current code segment.
Each time an instruction is executed, IP is incremented by some number of bytes. The number of bytes
is the size of the instruction just executed. The net result is to bump IP further into memory, so that it
points to the start of the next instruction to be executed. Instructions come in different sizes, ranging
typically from 1 to 6 bytes. (Some of the more arcane forms of the more arcane instructions may be
even larger.) The CPU is careful to increment IP by just the right number of bytes, so that it does in fact
end up pointing to the start of the next instruction, and not merely into the middle of the last instruction
or some other instruction.

If IP contains the offset address of the next machine instruction, where is the segment address? The
segment address is kept in the code segment register CS. Together, CS and IP contain the full address
of the next machine instruction to be executed.

The nature of this address depends on what CPU you're using, and what programming model you're
using it for. In the 8088, 8086, and 80286, IP is 16 bits in size. In the 386 and later CPUs, IP (like all the
other registers except the segment registers) graduates to 32 bits in size.

In real mode segmented model, CS and IP working together give you a 20-bit address pointing to one
of the 1,048,576 bytes in real mode memory. In both of the two flat models (more on which shortly), CS
is set by the operating system and held constant. IP does all the instruction pointing that you the
programmer have to deal with. In the 16-bit flat model (real mode flat model), this means IP can follow
instruction execution all across a full 64K segment of memory. The 32-bit flat model does far more than
double that; 32 bits can represent 4,294,967,290 different memory addresses. So, in 32-bit flat model
(that is, protected mode flat model), IP can follow instruction execution across over 4 gigabytes of
memory—considerably more than most people are likely to have in their machines.

This week, at least.

IP is notable in being the only register that can neither be read nor written to directly. It's possible to
obtain the current value of IP, but the method involves some trickery that will have to wait until we
discuss branching instructions in Chapter 10.

The Flags Register

There is one additional type of register inside the CPU: what we generically call the flags register. It is
16 bits in size in the 8086, 8088, and 80286, and its formal name is FLAGS. It is 32 bits in size in the
386 and later CPUs, and its formal name in the 32-bit CPUs is EFLAGS. Most of the bits in the flags
register are single-bit registers called flags. Each of these individual flags has a name, such as CF, DF,
OF, and so on, and each has a very specific meaning within the CPU.

When your program performs a test, what it tests are one or another of the single-bit flags in the flags
register. Since a single bit may contain one of only two values, 1 or 0, a test in assembly language is
truly a two-way affair: Either a flag is set to 1 or it isn't. If the flag is set to 1, the program takes one
action; if the flag is set to 0, the program takes a different action.

The flags register is almost never dealt with as a unit. What happens is that many different machine
instructions test the various flags to decide which way to go on some one-way-or-the-other decision.
We're concentrating on memory addressing at the moment, so for now I'll simply promise to go into flag
lore in more detail at more appropriate moments later in the book, when we discuss machine
instructions that test the various flags in the flags register.



The Three Major Assembly Programming Models

I mentioned earlier that there are three major programming models that you might encounter in
assembly language work. The differences between them lie (mostly) in the use of registers to address
memory. (And the other differences, especially on the high end, are for the most part hidden from you
by the operating system.) In this section I'm going to lay out the three models, all of which we'll touch on
throughout the course of the rest of this book.

Real Mode Flat Model

In real mode, if you recall, the CPU can see only 1 megabyte (1,048,576) of memory. You can access
every last one of those million-odd bytes by using the segment:offset trick shown earlier to form a 20-bit
address out of two 16-bit addresses. Or...you can be content with 64K of memory, and not fool with
segments at all.

In the real mode flat model, your program and all the data it works on must exist within a single 64K
block of memory. Sixty-four kilobytes! Pfeh! What could you possibly accomplish in only 64K bytes?
Well, the first version of WordStar for the IBM PC fit in 64K. So did the first three major releases of
Turbo Pascal-in fact, the Turbo Pascal program itself occupied a lot less than 64K because it compiled
its programs into memory. The whole Turbo Pascal package-compiler, text editor, and some odd tools-
came to just over 39K. Thirty-nine kilobytes! You can't even write a letter to your mother (using
Microsoft Word) in that little space these days!

True, true. But that's mostly because we don't have to. Memory's gotten cheap, and our machines now
contain what by historical standards is an enormous amount of it. So we've gotten lazy and hoggish and
wasteful, simply because we can get away with it.

But if you take pains to make effective use of memory, you can do spectacular things in 64K. Certainly,
for your first simple steps in assembly language programming, you won't need anything near 64K-and
the simplicity of the model will make it much easier to become familiar with the machine instructions
you'll use to write your programs. Finally, real mode flat model is the "little brother" of protected mode
flat model, which is the code model you use when programming under Linux. If you learn the ways of
real mode flat model, protected mode flat model will be a snap. (All the trouble you'll have won't be with
assembly code or memory models, but with the byzantine requirements of Linux itself.)

The real mode flat model is shown diagrammatically in Figure 6.8. There's not much to it. The segment
registers are all set to point to the beginning of the 64K block of memory you can work with. (The
operating system sets them when it loads and runs your program.) They all point to that same place
and never change as long as your program is running. That being the case, you can simply forget about
them. Poof! No segment registers, no fooling with segments, and none of the ugly complication that
comes with them.



Figure 6.8: The real mode flat model.

Because a 16-bit register such as BX can hold any value from 0 to 65,535, it can pinpoint any single
byte within the full 64K your program has to work with. Addressing memory can thus be done without
the explicit use of the segment registers. The segment registers are still functioning, of course, from the
CPU's point of view. They don't disappear and are still there, but the operating system sets them to
values of its own choosing when it launches your program, and those values will be good as long as the
program runs. You don't have to access the segment registers in any way to write your program.

Most of the general-purpose registers may contain addresses of locations in memory. You use them in
conjunction with machine instructions to bring data in from memory and write it back out again.

At the top of the single segment that your program exists within, you'll see a small region called the
stack. The stack is a LIFO (last in, first out) storage location with some very special uses. I explain
what the stack is and how it works in considerable detail in Chapter 8.

Real mode flat model is the programming model we'll use for our first several example programs.

Real Mode Segmented Model

The first two editions of this book focused entirely on real mode segmented model, which was the
mainstream programming model throughout the MS-DOS era, and still holds true when you boot your
Windows 9x machine into MS-DOS mode, or launch an MS-DOS window. It's a complicated, ugly
system that requires you to remember a lot of little rules and gotchas. I'm still going to teach it here,
because some people may still wish to write code to run under MS-DOS, and also because it illustrates
the use of segments very clearly. (Under real mode flat model you can squint a little and pretend that
segments don't really exist.)

In real mode segmented model, your program can see the full 1MB of memory available to the CPU in
real mode. It does this by combining a 16-bit segment address with a 16-bit offset address. It doesn't
just glom them together into a 32-bit address, however. You need to think back to my discussion of
segments earlier in this chapter. A segment address is not really a memory address. A segment



address specifies one of the 65,535 slots at which a segment may begin. One of these slots exists
every 16 bytes from the bottom of memory to the top. Segment address 0000H specifies the first such
slot, at the very first location in memory. Segment address 0001H specifies the next slot, which lies 16
bytes higher in memory. Jumping up-memory another 16 bytes gets you to segment address 0002H,
and so on. You can translate a segment address to an actual 20-bit memory address by multiplying it
by 16. Segment address 0002H is thus equivalent to memory address 0020H, which is the 32nd byte in
memory.

But such multiplication isn't something you have to do. The CPU handles the combination of segments
and offsets into a full 20-bit address. Your job is to tell the CPU where the two different components of
that 20-bit address are. The customary notation is to separate the segment register and the offset
register by a colon. For example:

  SS : SP
  SS : BP
  ES : DI
  DS : SI
  CS : BX

Each of these five register combinations specifies a full 20-bit address. ES:DI, for example, specifies
the address as the distance in DI from the start of the segment called out in ES.

I've drawn a diagram outlining real mode segmented model in Figure 6.9. In contrast to real mode flat
model (shown in Figure 6.8), the diagram here shows all of memory, not just the one little 64K chunk
that your real mode flat model program is allocated when it runs. A program written for real mode
segmented model can see all of real mode memory.

Figure 6.9: The real mode segmented model.

The diagram shows two code segments and two data segments. In practice you can have any
reasonable number of code and data segments, not just two of each. You can access two data
segments at the same time, because you have two segment registers available to do the job: DS and
ES. Each can specify a data segment, and you can move data from one segment to another using any
of several machine instructions. (We speak more of this in later chapters.) However, you only have one



code segment register, CS. CS always points to the current code segment, and the next instruction to
be executed is pointed to by the IP register. You don't load values directly into CS to change from one
code segment to another. Machine instructions called jumps change to another code segment as
necessary. Your program can span several code segments, and when a jump instruction (there are
several kinds) needs to take execution into a different code segment, it changes the value in CS for
you.

There is only one stack segment for any single program, specified by the stack segment register SS.
The stack pointer register SP points to the memory address (relative to SS, albeit in an upside-down
direction) where the next stack operation will take place. The stack will require some considerable
explaining, which I take up in Chapter 8.

You need to keep in mind that in real mode, there will be pieces of the operating system (and if you're
using an 8086 or 8088, that will be the whole operating system) in memory with your program, along
with important system data tables. You can destroy portions of the operating system by careless use of
segment registers, which will cause the operating system to crash and take your program with it. This is
the danger that prompted Intel to build new features into its 80386 and later CPUs to support a
protected mode. In protected mode, application programs (that is, the programs that you write, as
opposed to the operating system or device drivers) cannot destroy the operating system nor other
applications programs that happen to be running elsewhere in memory in a multitasking system. That's
what the protected means.

(Yes, it's true that there is a sort of rudimentary protected mode present in the 80286, but no one ever
really used it and it's not much worth discussing today.)

Protected Mode Flat Model

Intel's CPUs have implemented a very good protected mode architecture since the 386 appeared in
1986. However, application programs cannot make use of protected mode by themselves. The
operating system must set up and manage a protected mode before application programs can use it.
MS-DOS couldn't do this, and Microsoft Windows couldn't really do it either until Windows NT first
appeared in 1994.

Other protected mode operating systems have since appeared. The best known is probably Linux, the
implementation of Unix written from scratch by a young Finnish college student during the first half of
the 1990s. Windows NT and Linux are vying for the same general market, and while NT will probably
remain the market leader for years to come, Linux is showing surprising strength for something that no
one organization actually owns in the strictest sense of the word.

Protected mode assembly language programs may be written for both Windows NT and Linux. The
easiest way to do it under NT is to create console applications, which are text-mode programs that run
in a text-mode window called a console. The console is controlled through a command line almost
identical to the one in MS-DOS. Console applications use protected mode flat model and are fairly
straightforward compared to writing Windows applications. The default mode for Linux is a text console,
so it's even easier to create assembly programs for Linux, and a lot more people appear to be doing it.
The memory model is very much the same.

I've drawn the protected mode flat model in Figure 6.10. Your program sees a single block of memory
addresses running from zero to a little over 4 gigabytes. Each address is a 32-bit quantity. All of the
general-purpose registers are 32 bits in size, and so one GP register can point to any location in the full
4-GB address space. The instruction pointer is 32 bits in size as well, so EIP can indicate any machine
instruction anywhere in the 4 GB of memory.



Figure 6.10: The protected mode flat model.

The segment registers still exist, but they work in a radically different way. Not only don't you have to
fool with them; you can't. The segment registers are now to be considered part of the operating system,
and in most cases you can neither read nor change them directly. Their new job is to define where your
4GB memory space exists in physical or virtual memory. If these terms mean nothing to you, don't fret-
you'll pick them up over time, and I don't have the space to explain them in detail here.

It's enough to understand that when your program runs, it receives a 4-GB address space in which to
play, and any register can potentially address any of those 4 billion memory locations, all by itself. Not
all of the 4 GB is at your program's disposal, and there are certain parts of the memory space that you
can't use or even look at. Unfortunately, the rules are specific to the operating system you're running
under, and I can't generalize too far without specifying Linux or Windows NT or some other protected
mode OS.

But it's worth taking a look back at Figure 6.8 and comparing real mode flat model to protected mode
flat model. The main difference is that in real mode flat model, your program owns the full 64K of
memory that the operating system hands it. In protected mode flat model, you are given a portion of 4
GB of memory as your own, while other portions will still belong to the operating system. Apart from
that, the similarities are striking: A general-purpose (GP) register by itself can specify any memory
location in the full memory address space, and the segment registers are really the tools of the
operating system and not you the programmer. (Again, in protected mode flat model, a GP register can
hold the address of any location in its 4-GB space, but attempting to actually read or write certain
locations will be forbidden by the OS and will trigger an error.)

Note well that we haven't really talked about machine instructions yet, and we've been able to pretty
crisply define the universe in which machine instructions exist and work. Memory addressing and
registers are key in this business. If you know them, the instructions will be a snap. If you don't know
them, the instructions won't do you any good!

What difficulty exists in programming for protected mode flat model lies in understanding the operating
system, its requirements, and its restrictions. This can be a substantial amount of learning: Windows
NT and Linux are major operating systems that can take years of study. I'm going to introduce you to
protected mode assembly programming in flat model later in this book, but you're going to have to learn
the operating system on your own. This book is only the beginning-there's a long road out there to be
walked, and you're barely off the curb.



Reading and Changing Registers with DEBUG

Much or most of what defines your assembly language programs lies in your use of registers. Machine
instructions act on registers, and registers define how memory is addressed and what is read from or
placed there. While you're developing and debugging your programs, a lot of what you'll be looking at is
the contents of your registers.

The DOS DEBUG utility provides a handy window into the CPU's hidden world of registers. How DEBUG
does this is the blackest of all black arts and I can't begin to explain it in an introductory text. For now,
just consider DEBUG a magic box. One thing to keep in mind is that DEBUG is a real mode creature. It
doesn't work in protected mode. You can only use it while debugging real mode programs, whether
segmented or flat model. Protected mode debuggers do exist, but DEBUG isn't one of them.

Looking at the registers from DEBUG doesn't even require that you load a program into DEBUG. Simply
run DEBUG, and at the dash prompt type the single-letter command R. The display will look something
very close to this:

  - R
  AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0100  NV UP EI PL NZ NA PO NC
  1980:0100 389A5409   CMP   [BP+SI+0954],BL          SS:0954=8A

I say "something very close" because details of the display will vary depending on what resident
programs you have loaded in memory, which version of DOS you're using, and so on. What will vary will
be the values listed as present in the various registers, and the machine instruction shown in the third
line of the display (here, CMP [BP+SI+0954],BL).

What will not vary is the fact that every CPU register has its place in the display, along with its current
value shown to the right of an equals sign. The characters "NV UP EI PL NZ NA PO NC" are a summary
of the current values of the flags in the flags register.

The preceding display is that of the registers when no program has been loaded. All of the general-
purpose registers except for SP have been set to 0, and all of the segment registers have been set to the
value 1980H. These are the default conditions set up by DEBUG in the CPU when no program has been
loaded. (The 1980H value will probably be different for you-it represents the first available segment in
memory above DOS, and where that segment falls depends on what else exists in memory both above
and below DOS.)

Changing a register is done very simply, again using DEBUG's R command. To change the value of AX,
type R AX and press Enter:

  -R AX
  AX:0000
  :0A7B
  -

DEBUG will respond by displaying the current value of AX (here, "0000") and then, on the following line,
a colon prompt. It will wait for you to either enter a new numeric value for AX, or else for you to press
Enter. If you press Enter, the current value of the register will not be changed. In the preceding example,
I typed "0A7B" (you needn't type the H indicating hex) followed by Enter.

Once you do enter a new value and then press Enter, DEBUG does nothing to verify that the change has
been made. To see the change to register AX, you must display all the registers again using the R
command:

  - R
  AX=0A7B BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0100  NV UP EI PL NZ NA PO NC
  1980:0100 389A5409   CMP   [BP+SI+0954],BL          SS:0954=8A



Take a few minutes to practice entering new values for the general-purpose registers, then display the
registers as a group to verify that the changes were made. While exploring, you might find that the IP
register can be changed, even though I said earlier that it can't be changed directly. The key word is
directly; DEBUG knows all the dirty tricks.

Inspecting the Video Refresh Buffer with DEBUG

One good way to help your knowledge of memory addressing sink in is to use DEBUG to take a look at
some interesting places in the PC's memory space.

One easy thing to do is look at the PC's video display adapter's text screen video refresh buffer. A video
refresh buffer is a region of memory with a difference: Any characters written to buffer memory are
instantly displayed on the computer's screen. This is accomplished electrically through special use of the
information that comes out of the memory data pins. Precisely how it is done is outside the scope of this
book. For now, simply understand that writing a character to your text mode display screen (which is not
the Windows graphical UI screen!) can be done by writing the ASCII code for that character into the
correct address in the video refresh buffer portion of memory.

The text mode display buffer is the screen that appears when you're running DOS or else working in a
DOS window (or "DOS box") from within MS Windows. It consists not of icons or graphical images or
figures but simple textual characters, arranged in a matrix typically 25 high and 80 wide. This used to be
the mainstay of all computing; now, text screens seem downright quaint to most people.

As with any memory location anywhere within the PC, the video refresh buffer has a segment address.
What that segment address is depends on the kind of display installed in the PC. There are two separate
possibilities, and which is present is easy enough to determine: If your PC has a color screen, the
segment address of the video refresh buffer is 0B800H. If you have a monochrome screen (a situation
now becoming vanishingly rare), the segment address is 0B000H instead.

It takes 2 bytes in the buffer to display a character. The first of the two (that is, first in memory) is the
ASCII code of the character itself. For example, an A would require the ASCII code 41H; a B would
require the ASCII code 42H, and so on. (The full ASCII code set is shown in Appendix D.) The second of
the two bytes is the character's attribute. Think of it this way: In the display of a character on the screen,
the ASCII code says what and the attribute says how. The attribute dictates the color of a character and
its background cell on a color screen. On a monochrome screen, the attribute specifies whether a
character is underlined or displayed in reverse video. (Reverse video is a character display mode in
which a dark character is shown on a light background, rather than the traditional light character on a
dark or black background.) Every character byte has an attribute byte and every attribute byte has its
character byte; neither can ever exist alone.

The very first character/attribute pair in the video refresh buffer corresponds to the character you see in
the upper-left-hand corner of the text screen. The next character/attribute pair in the buffer is the
character on the second position on the top line of the screen, and so on. I've drawn a diagram of the
relationship between characters on the screen and byte values in the video refresh buffer in Figure 6.11.



Figure 6.11: The PC's video refresh buffer.

In Figure 6.11, the three letters "ABC" are displayed in the upper-left corner of the screen. Notice that the
"C" is underlined. The screen shown in Figure 6.11 is a monochrome screen. The video refresh buffer
therefore begins at 0B000:0. The byte located at address 0B000:0 is ASCII code 41H, corresponding to
the letter "A." The byte at address 0B00:0001 is the corresponding attribute value of 07H. The 07H value
as an attribute dictates normal text in both color and monochrome displays, in which normal means white
characters on a black background.

The byte at 0B000:0005 is also an attribute byte, but its value is 01H. On a monochrome screen, 01H
makes the corresponding character underlined. On a color display, 01H makes the character blue on a
black background.

There is nothing about the video refresh buffer to divide it into the lines you see on the display. The first
160 characters (80 ASCII codes plus their 80 attribute bytes) are shown as the first line, and the
subsequent 160 characters are shown on the next line down the screen.

You might rightfully ask what ASCII code is in the video refresh buffer for locations on the screen that
show no character at all. The answer, of course, is that there is a character there in every empty space:
the space character, whose ASCII code is 20H.

You can inspect the memory within the video refresh buffer directly, through DEBUG. Take the following
steps:

Clear the screen by entering CLS at the DOS prompt and pressing Enter.1.

Invoke DEBUG.2.

Decide where your video refresh buffer is located, and enter the proper segment address into the
ES register through the R command. Remember: Color screens use the 0B800H segment
address, while monochrome screens use the 0B000H segment address. (In the year 2000, it's a
98 percent chance that your screen is color and not monochrome.) Note from the following
session dump that 0B800H must be entered into DEBUG as "B800," without the leading zero.
NASM (your assembler) must have that leading zero, and DEBUG cannot have it. Sadly, no one
ever said that all parts of this business had to make perfect sense.

3.

Dump the first 128 bytes of the video refresh buffer by entering D ES:0 and pressing Enter.4.

Dump the next 128 bytes of the video refresh buffer simply by entering the D command by itself a
second time. (I won't say "press Enter" every time. It's assumed: You must follow a command by
pressing Enter.)

5.

What you'll see should look a lot like the following session dump:



  C:\ASM>debug
  - r es
  ES 1980
  :b800
  - d es:0
  B800:0000 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:0010 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:0020 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:0030 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:0040 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:0050 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:0060 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:0070 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  - d
  B800:0080 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:0090 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:00A0 43 07 3A 07 5C 07 41 07-53 07 4D 07 3E 07 64 07 C.:.\.A.S.M.>.d.
  B800:00B0 65 07 62 07 75 07 67 07-20 07 20 07 20 07 20 07 e.b.u.g. . . . .
  B800:00C0 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:00D0 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:00E0 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .
  B800:00F0 20 07 20 07 20 07 20 07-20 07 20 07 20 07 20 07  . . . . . . . .

The first 80 character/attribute pairs are the same: 20H/07H, which display as plain, ordinary blank
space. When you execute the CLS command on most machines, the screen is cleared, and the DOS
prompt reappears on the second line from the top of the screen, not the top line. The top line is typically
left blank, as is the case here.

You'll see in the second block of 128 dumped bytes the DOS prompt and the invocation of DEBUG in
lowercase. Keep in mind when reading DEBUG hex dumps that any character not readily displayed as
one of the standard ASCII letters, numbers, or punctuation marks is represented as a period character.
This is why the 07H attribute character is shown on the right portion of DEBUG's display as a period
character, since the ASCII code 07H has no displayable equivalent.

You can keep dumping further into the video refresh buffer by pressing DEBUG's D command
repeatedly.

Reading the Basic Input/Output System Revision Date

Another interesting item that's easy to locate in your PC is the revision date in the ROM BIOS. ROM
(read-only memory) chips are special memory chips that retain their contents when power to the PC is
turned off. The BIOS (Basic Input/Output System) is a collection of assembly language routines that
perform basic services for the PC: disk handling, video handling, printer handling, and so forth. The BIOS
is kept in ROM at the very top of the PC's megabyte of address space.

The BIOS contains a date, indicating when it was declared finished by its authors. This date is always at
the same address and can be easily displayed using DEBUG's D command. The address of the date is
0FFFF:0005. The DEBUG session is shown in the following listing. Note again that the hex number
0FFFFH must be entered without its leading zero:

  - d ffff:0005
  FFFF:0000                30 34 2F-33 30 2F 39 37 00 FC B8    04/30/97...
  FFFF:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0080 00 00 00 00 00                                   .....



One useful peculiarity of DEBUG illustrated here is that when you begin a hex dump of memory at an
address that is not evenly divisible by 16, DEBUG spaces the first byte of the dump over to the right so
that paragraph boundaries still fall at the left margin.

Another rather peculiar thing to keep in mind while looking at the particular dump shown in the preceding
is that only the first line of memory shown in the dump really exists. The segment 0FFFFH begins only
16 bytes before the end of real mode's megabyte of memory space. (See Figure 6.4 for a good
illustration of this.) The byte at 0FFFF:000F is the last byte in real mode memory-and DEBUG is a real
mode creature. Addresses from 0FFFF:0010 to 0FFFF:0FFFF would require more than 20 address bits
to express, so in real mode they might as well not exist. (They do exist-but DEBUG can't see them!)

DEBUG won't tell you that-it'll just give you endless pages of zeroes for memory beyond the real mode
megabyte pale. (Several readers have told me that certain versions of DEBUG take a different approach,
and wrap their display around to the bottom of memory instead, and begin displaying bytes at 0000:0000
once they run out of high memory. It's something to watch out for, and if memory beyond the FFFF:000F
point is not zeros, you're in fact seeing such a wrap to low memory.)

Transferring Control to Machine Instructions in Read-Only
Memory

So far we've looked at locations in memory as containers for data. All well and good-but memory
contains machine instructions as well. A very effective illustration of a machine instruction at a particular
address is also provided by the ROM BIOS-and right next door to the BIOS revision date, at that.

The machine instruction in question is located at address 0FFFF:0. Recall that, by convention, the next
machine instruction to be executed is the one whose address is stored in CS:IP. Run DEBUG. Load the
value 0FFFFH into code segment register CS, and 0 into instruction pointer IP. Then dump memory at
0FFFF:0.

  - r cs
  CS 1980
  :ffff
  - r ip
  IP 0100
  :0
  - r
  AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=FFFF IP=0000  NV UP EI PL NZ NA PO NC
  FFFF:0000 EA5BE000F0  JMP F000:E05B
  - d cs:0
  FFFF:0000 EA 5B E0 00 F0 30 34 2F-33 30 2F 38 37 00 FC B8  .[...04/30/87...
  FFFF:0010 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0020 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0030 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0040 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................
  FFFF:0070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00  ................

Look at the third line of the register display, which we've been ignoring up until now. To the right of the
address display FFFF:0000 is this series of five bytes: EA5BE000F0.

These five bytes make up the machine instruction we want. Notice that the first line of the memory dump
begins with the same address, and, sure enough, shows us the same five bytes.

Trying to remember what machine instruction EA5BE000F0 is would try anyone's intellect, so DEBUG is
a good sport and translates the five bytes into a more readable representation of the machine instruction.
This translation is placed to the right of the binary machine code EA5BE000F0. We call this process of
translating binary machine codes back into human-readable assembly language mnemonics unassembly
or, more commonly, disassembly:



  JMP F000:E05B.

What this instruction does, quite simply, is tell the CPU to jump to the address 0F000:0E05B and begin
executing the machine instructions located there. If we execute the machine instruction at CS:IP, that's
what will happen: The CPU will jump to the address 0F000:0E05B and begin executing whatever
machine instructions it finds there.

All IBM-compatible PCs have a JMP instruction at address 0FFFF:0. The address to which that JMP
instruction jumps will be different for different makes and models of PC. This is why on your machine you
won't necessarily see the exact five bytes EA5BE000F0, but whatever five bytes you find at 0FFFF:0,
they will always begin with 0EAH. The 0EAH byte specifies that this instruction will be a JMP instruction.
The remainder of the machine instruction is the address to which the CPU must jump. If that address as
given in the machine instruction looks a little scrambled, well, it is...but that's the way the x86 CPUs do
things. We return to the issue of funny-looking addresses a little later.

DEBUG has a command, G (for Go), that begins execution at the address stored in CS:IP. If you enter
the G command and press Enter, the CPU will jump to the address built into the JMP instruction and
begin executing machine instructions. What happens then?

If you're running under DOS, your machine will go into a cold boot, just as it would if you powered down
and powered up again. (So make sure you're ready for a reboot before you try it!)

This may seem odd. But consider: The CPU chip has to begin execution somewhere. When the CPU
"wakes up" after being off all night with the power removed, it must get its first machine instruction from
somewhere and start executing. Built into the silicon of the x86 CPU chips is the assumption that a legal
machine instruction will exist at address 0FFFF:0. When power is applied to the CPU chip, the first thing
it does is place 0FFFH in CS, and 0 in IP. Then it starts fetching instructions from the address in CS:IP
and executing them, one at a time, in the manner that CPUs must.

This is why all PCs have a JMP instruction at 0FFFF:0, and why this JMP instruction always jumps to the
routines that bring the PC up from stone cold dead to fully operational.

Unfortunately, if you're running in a DOS window under Windows 9x or NT, jumping to 0FFFF:0 won't
initiate a cold boot. Under Windows 9x, the JMP will close your DOS window. Under NT, it won't even do
that...It'll just exit DEBUG. You see, Windows lives in protected mode, and it's...um...protected from little
tricks like idle jumps to 0FFFF:0.

But if you're running DOS-what the heck, go ahead: Load 0FFFFH into CS and 0 into IP, and press G.
Feel good?

It's what we call the feeling of power.



Chapter 7: Following Your Instructions Meeting

Machine Instructions up Close and Personal

Overview

The most visible part of any assembly language program is its machine instructions, those atoms of
action that are the steps a program must take to get its work done. The collection of instructions
supported by a given CPU is that CPU's instruction set. For example, the 8086 and 8088 CPUs share
the same instruction set, which is why most people consider them the same CPU.

This cannot be said for the later CPUs in the family, all of which offer additional instructions not found in
the original 8086/8088. I can't cover all the x86 machine instructions in this book, even the original set
introduced with the 8086. Those that I will describe are the most common and the most useful, and the
easiest for newcomers to understand. It's not just a space issue, either. Some of the instructions (and
for the most recent CPUs, such as the Pentium, a good many of them) are dedicated to way-down-
deep functions that support the workings of protected mode operating systems and virtual memory. I
could spend a whole book the size of this one just explaining the concepts that go into such operating
systems and would have to before I could explain the instructions from which one builds them.

Nor will I abandon the discussion of memory addressing begun in the last chapter. As I've said before,
understanding how the CPU and its instructions address memory is more difficult but probably more
important than understanding the instructions themselves. In and around the descriptions of the
machine instructions I'll present from this point on there will be discussions and elaboration on memory
addressing. Pay attention! If you don't learn that, memorizing the entire instruction set will do you no
good at all.



Assembling and Executing Machine Instructions with DEBUG

The most obvious way to experiment with machine instructions is to build a short program out of them
and watch it go. This can easily be done (and we'll be doing it a lot in later chapters), but it's far from
the fastest way to do things. Editing source code and assembling it (and linking, when you must link) all
take time, and when you only want to look at one machine instruction in action (rather than a crew of
them working together), the full development cycle is overkill.

Once more, we turn to DEBUG.

At the close of the last chapter we got a taste of a DEBUG feature called unassembly, which is a
peculiar way of saying what most of us call disassembly. This is the reverse of the assembly process
we looked at in detail in Chapter 3. Disassembly is the process of taking a binary machine instruction
such as 42H and converting it into its more readable assembly language equivalent, INC DX.

In addition to all its other tools, DEBUG also contains a simple assembler, suitable for taking assembly
language mnemonics such as INC DX and converting them to their binary machine code form. (That is,
taking "INC DX" from you, and translating it to 42H.) Later on we'll use a stand-alone assembler
program called NASM to assemble complete assembly language programs. For the time being, we can
use DEBUG to do things one or two instructions at a time and get a feel for the process.

Assembling a MOV Instruction

The single most common activity in assembly language work is getting data from here to there. There
are several specialized ways to do this, but only one truly general way: The MOV instruction. MOV can
move a byte, word (16 bits), or double word (32 bits) of data from one register to another, from a
register into memory, or from memory into a register. What MOV cannot do is move data directly from
one address in memory to a different address in memory. (To do that, you need two separate MOV
instructions—one from memory to a register, and second from the register back out to memory.)

The name MOV is a bit of a misnomer, since what is actually happening is that data is copied from a
source to a destination. Once copied to the destination, however, the data does not vanish from the
source, but continues to exist in both places. This conflicts a little with our intuitive notion of moving
something, which usually means that something disappears from a source and reappears at a
destination.

Because MOV is so general and obvious in its action, it's a good place to start in working with DEBUG's
assembler.

Bring up DEBUG and use the R command to display the current state of the registers. You should see
something like this:

  - r
  AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0100  NV UP EI PL NZ NA PO NC
  1980:0100 701D     JO     011F

We more or less ignored the third line of the register display in the previous chapter. Now let's think a
little bit more about what it means.

When DEBUG is loaded without a specific file to debug, it simply takes the empty region of memory
where a file would have been loaded (had a file been loaded when DEBUG was invoked) and treats it
as though a program file were really there. The registers all get default values, most of which are zero.
IP, however, starts out with a value of 0100H, and the code segment register CS gets the segment
address of DEBUG's workspace, which is theoretically empty.

But ... memory is never really empty. A byte of memory always contains some value, whether true
garbage that happened to reside in memory at power-up time, or else a leftover value remaining from
the last time that byte of memory was used in some computing operation. In the preceding register
dump, memory at CS:IP contains a JO instruction. This rather obscure instruction (Jump on Overflow)
was not placed there deliberately, but is simply DEBUG's interpretation of the two bytes 701DH that



happen to reside at CS:IP. Most likely, the 701D value was part of some data table belonging to the last
program to use that area of memory. It could have been part of a word processor file, or a spreadsheet,
or anything else. Just don't think that some program necessarily put a JO instruction in memory.
Machine instructions are just numbers, after all, and what numbers in memory do depends completely
on how you interpret them—and what utility program you feed them to.

DEBUG's internal assembler assembles directly into memory, and places instructions one at a time—as
you enter them at the keyboard—into memory at CS:IP. Each time you enter an instruction, IP is
incremented to the next free location in memory. So, by continuing to enter instructions, you can
actually type an assembly language program directly into memory.

Try it. Type the A command (for Assemble) and press Enter. DEBUG responds by displaying the
current value of CS:IP and then waits for you to enter an assembly language instruction. Type MOV
AX,1. Press Enter. DEBUG again displays CS:IP and waits for a second instruction. It will continue
waiting for instructions until you press Enter without typing anything. Then you'll see DEBUG's dash
prompt again.

Now, use the R command again to display the registers. You should see something like this:

  - r
  AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0100  NV UP EI PL NZ NA PO NC
  1980:0100 B80100    MOV    AX,0001

The registers haven't changed—but now the third line shows that the JO instruction is gone, and that
the MOV instruction you entered has taken its place. Notice once again that CS contains 1980H, and IP
contains 0100H. The address of the MOV instruction is shown as 1980:0100; in other words, at CS:IP.

Executing a MOV Instruction with the Trace Command

Note that you haven't executed anything. You've simply used DEBUG's Assemble command to write a
machine instruction into a particular location in memory.

There are two ways to execute machine instructions from within DEBUG. One way is to execute a
program in memory, starting at CS:IP. This means that DEBUG will simply start the CPU executing
whatever sequence of instructions begins at CS:IP. We looked at the G command very briefly at the
end of the last chapter, when we found the JMP instruction that reboots your PC on power-up, and
used G to execute that instruction. The command is quite evocative: Go. But don't type G just yet ...

Here's the reason: You haven't entered a program. You've entered one instruction, and one instruction
does not a program make. The instruction after your MOV instruction could be anything at all, recalling
that DEBUG is simply interpreting garbage values in memory as random machine instructions. A series
of random machine instructions could easily go berserk, locking your system into an endless loop or
writing zeroes over an entire segment of memory that may contain part of DOS or Windows, or of
DEBUG itself. We'll use DEBUG's G command a little later, once we've constructed a complete
program in memory.

Go executes programs in memory starting at CS:IP; Trace executes the single instruction at CS:IP.

For now, let's consider the mechanism DEBUG has for executing one machine instruction at a time. It's
called Trace, and you invoke it by typing T. The Trace command will execute the machine instruction at
CS:IP, then give control of the machine back to DEBUG. Trace is generally used to single-step a
machine-code program one instruction at a time, in order to watch what it's up to every step of the way.
For now, it's a fine way to execute a single instruction and examine that instruction's effects.

So type T. DEBUG will execute the MOV instruction you entered at CS:IP, and then immediately display
the registers before returning to the dash prompt. You'll see this:

  AX=0001 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0103  NV UP EI PL NZ NA PO NC
  1980:0103 6E    DB    6E



Look at the first line. DEBUG says AX is now equal to 0001. It held the default value 0000 before;
obviously, your MOV instruction worked.

And there's something else to look at here: The third line shows an instruction called DB at CS:IP. Not
quite true—DB is not a machine instruction, but an assembly language directive that means Define
Byte. DB has other uses, but in this case it's simply DEBUG's way of saying that the number 6EH does
not correspond to any machine instruction. It is truly a garbage byte sitting in memory, doing nothing.
Executing a 6EH byte as though it were an instruction, however, could cause your machine to do
unpredictably peculiar things, up to and including locking up hard.

Remember, of course, that the 6EH was what happened to lie in memory one address up from the
MOV AX,1 instruction on my machine at that particular time. You almost certainly encountered
something else when you tried the experiment just now. In fact, I just rebooted my machine and tried it
again and found an XCHG BP,[8001] instruction there instead. There's nothing meaningful about the
instructions you find in memory with DEBUG this way. DEBUG is interpreting random values in memory
as instructions, so almost any instruction may turn up—and if the random values do not represent a
legal machine instruction, you'll see a DB directive instead.



Machine Instructions and Their Operands

As we said earlier, MOV copies data from a source to a destination. MOV is an extremely versatile
instruction, and understanding its versatility demands a little study of this notion of source and a
destination.

Source and Destination Operands

Most machine instructions, MOV included, have one or more operands. (Some instructions have no
operands.) In the machine instruction MOV AX,1, there are two operands. The first is AX, and the
second is the digit 1.

By convention in assembly language, the first operand belonging to a machine instruction is the
destination operand. The second operand is the source operand.

With the MOV instruction, the sense of the two operands is pretty literal: The source operand is copied
to the destination operand. In MOV AX,1, the source operand 1 is copied into the destination operand
AX. The sense of source and destination is not nearly so literal in other instructions, but a rule of thumb
is this: Whenever a machine instruction causes a new value to be generated, that new value is placed
in the destination operand.

There are three different flavors of data that may be used as operands. These are memory data,
register data, and immediate data. I've laid some example MOV instructions out on the dissection pad
in Table 7.1 to give you a flavor for how the different types of data are specified as operands to the
MOV instruction.

Table 7.1: MOV and Its Operands

MACHINE
INSTRUCTION

DESTINATION
OPERAND

SOURCE OPERAND

MOV AX, 1 Source is immediate data.

MOV BX, CX Both are 16-bit register data.

MOV DL, BH Both are 8-bit register data.

MOV [BP], DI Destination is memory data at
SS:BP.

MOV DX, [SI] Source is memory data at DS:SI.

MOV BX, [ES:BX] Source is memory data at ES:BX.

Immediate data is by far the easiest to understand. We look at it first.

Immediate Data

The MOV AX,1 machine instruction that I had you enter into DEBUG was a good example of what we
call immediate data accessed through an addressing mode called immediate addressing. Immediate
addressing gets its name from the fact that the item being addressed is immediate data built right into
the machine instruction. The CPU does not have to go anywhere to find immediate data. It's not in a
register, nor is it stored in a data segment somewhere out in memory. Immediate data is always right
inside the instruction being fetched and executed.

Immediate data must be of an appropriate size for the operand. In other words, you can't move a 16-bit
immediate value into an 8-bit register half such as AH or DL. Neither DEBUG nor the stand-alone
assemblers will allow you to assemble an instruction like this:

  MOV CL,67EF

CL is an 8-bit register, and 67EFH is a 16-bit quantity. Won't go!

Because it's built right into a machine instruction, you might think immediate data would be quick to



access. This is true only to a point: Fetching anything from memory takes more time than fetching
anything from a register, and instructions are, after all, stored in memory. So, while addressing
immediate data is somewhat quicker than addressing ordinary data stored in memory, neither is
anywhere near as quick as simply pulling a value from a CPU register.

Also keep in mind that only the source operand may be immediate data. The destination operand is the
place where data goes, not where it comes from. Since immediate data consists of literal constants
(numbers such as 1, 0, or 7F2BH), trying to copy something into immediate data rather than from
immediate data simply has no meaning and is always an error.

Register Data

Data stored inside a CPU register is known as register data, and accessing register data directly is an
addressing mode called register addressing. Register addressing is done by simply naming the register
we want to work with. Here are some entirely legal examples of register data and register addressing:

  MOV AX,BX
  MOV BP,SP
  MOV BL,CH
  MOV ES,DX
  ADD DI,AX
  AND DX,SI

The last two examples point up the fact that we're not speaking only of the MOV instruction here.
Register addressing happens any time data in a register is acted on directly, irrespective of what
machine instruction is doing the acting.

The assembler keeps track of certain things that don't make sense, and one such situation is having a
16-bit register and an 8-bit register half within the same instruction. Such operations are not legal-after
all, what would it mean to move a 2-byte source into a 1-byte destination? And while moving a 1-byte
source into a 2-byte destination might seem more reasonable, the CPU does not support it and it
cannot be done.

Playing with register addressing is easy using DEBUG. Bring up DEBUG and assemble the following
series of instructions:

  MOV AX,67FE
  MOV BX,AX
  MOV CL,BH
  MOV CH,BL

Now, reset the value of IP to 0100 using the R command. Then execute the four machine instructions
by issuing the T command four times in a row. The session under DEBUG would look like this:

  - A
  333F:0100 MOV AX,67FE
  333F:0103 MOV BX,AX
  333F:0105 MOV CL,BH
  333F:0107 MOV CH,BL
  333F:0109
  - R IP
  IP 0100
  :0100
  - R
  AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=333F ES=333F SS=333F CS=333F IP=0100  NV UP EI PL NZ NA PO NC
  333F:0100 B8FE67    MOV   AX,67FE
  - T

  AX=67FE BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=333F ES=333F SS=333F CS=333F IP=0103  NV UP EI PL NZ NA PO NC



  333F:0103 89C3     MOV   BX,AX
  - T

  AX=67FE BX=67FE CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=333F ES=333F SS=333F CS=333F IP=0105  NV UP EI PL NZ NA PO NC
  333F:0105 88F9     MOV   CL,BH
  - T

  AX=67FE BX=67FE CX=0067 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=333F ES=333F SS=333F CS=333F IP=0107  NV UP EI PL NZ NA PO NC
  333F:0107 88DD     MOV   CH,BL
  - T

  AX=67FE BX=67FE CX=FE67 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=333F ES=333F SS=333F CS=333F IP=0109  NV UP EI PL NZ NA PO NC
  333F:0109 1401     ADC   AL,01

Keep in mind that the T command executes the instruction displayed in the third line of the most recent
R command display. The ADC instruction in the last register display is yet another garbage instruction,
and although executing this particular instruction would not cause any harm (it's just an ADC: Add with
Carry), I recommend against executing random instructions just to see what happens. Executing certain
jump or interrupt instructions could wipe out sectors on your hard disk or, worse, cause internal damage
to DOS that would not show up until later on.

Let's recap what these four instructions accomplished. The first instruction is an example of immediate
addressing: The hexadecimal value 067FEH was moved into the AX register. The second instruction
used register addressing to move register data from AX into BX. Keep in mind that the way the
operands are written is slightly contrary to the common-sense view of things. The destination operand
comes first. Moving something from AX to BX is done by executing MOV BX,AX. Assembly language is
just like that sometimes-if that were the most peculiar thing about it, I for one would be mighty grateful
...

The third instruction and fourth instruction both move data between register halves rather than full, 16-
bit registers. These two instructions accomplish something interesting. Look at the last register display,
and compare the value of BX and CX. By moving the value from BX into CX a byte at a time, it was
possible to reverse the order of the two bytes making up BX. The high half of BX (what we sometimes
call the most significant byte, or MSB, of BX) was moved into the low half of CX. Then the low half of
BX (what we sometimes call the least significant byte, or LSB, of BX) was moved into the high half of
CX. This is just a sample of the sorts of tricks you can play with the general-purpose registers.

Just to disabuse you of the notion that the MOV instruction should be used to exchange the two halves
of a 16-bit register, let me suggest that you do the following: Before you exit DEBUG from your previous
session, assemble this instruction and execute it using the T command:

  XCHG CL,CH

The XCHG instruction exchanges the values contained in its two operands. What was interchanged
before is interchanged again, and the value in CX will match the values already in AX and BX. A good
idea while writing your first assembly language programs is to double-check the instruction set
periodically to see that what you have cobbled together with four or five instructions is not possible
using a single instruction. The x86 instruction set is very good at fooling you in that regard! (One
caution: Later on, you might find that cobbling something together from simple instructions might run
more quickly than the same thing accomplished by a single specialized instruction, especially on the
newest Pentium-class CPUs. Pentium optimization is a truly peculiar business-but we're way ahead of
ourselves now in speaking of what's fast and what's not. Learn how it works first-and then we can
explore how fast it is!)

Memory Data

Immediate data is built right into its own machine instruction. Register data is stored in one of the
CPU's limited collection of internal registers. In contrast, memory data is stored somewhere in the



megabyte vastness of real mode memory. Specifying that address is much more complicated than
simply reaching into a machine instruction or naming a register.

You should recall that a memory location must be specified in two parts: a segment address, which is
one of 65,536 segment slots spaced every 16 bytes in memory, and an offset address, which is the
number of bytes by which the specified byte is offset from the start of the segment. Within the CPU, the
segment address is kept in one of the four segment registers, while the offset address (generally just
called the offset) may be in one of a select group of general-purpose registers that includes only BP,
BX, SI, and DI. (Register SP is a special case and addresses data located on the stack, as I explain in
Chapter 8. To pin down a single byte anywhere within real mode's megabyte of memory, you need both
the segment and offset components. We generally write them together, specified with a colon to
separate them, as either literal constants or register names: 0B00:0167, DS:SI or CS:IP.

BX's Hidden Agenda

One of the easiest mistakes to make early on is to assume that you can use any of the general-purpose
registers to specify an offset for memory data. Not so! If you try to specify an offset in AX, CX, or DX,
the assembler will flag an error.

In real mode, only BP, BX, SI, and DI may hold an offset for memory data.

(This isn't true for more advanced CPUs working in protected mode, as we'll see toward the end of this
book.) So, in fact, general-purpose registers AX, CX, and DX aren't quite so general after all. Why was
general-purpose register BX singled out for special treatment? Think of it as the difference between
dreams and reality for Intel. In the best of all worlds, every register could be used for all purposes.
Unfortunately, when CPU designers get together and argue about what their nascent CPU is supposed
to do, they are forced to face the fact that there are only so many transistors on the chip to do the job.

Each chip function is given a budget of transistors (sometimes numbering in the tens or even hundreds
of thousands). If the desired logic cannot be implemented using that number of transistors, the
expectations of the designers have to be brought down a notch and some CPU features shaved from
the specification.

The early x86 CPUs including the 8086 and 8088 are full of such compromises. There were not enough
transistors available at design time to allow all general-purpose registers to do everything, so in
addition to the truly general-purpose ability to hold data, each 8086/8088 register has what I call a
"hidden agenda." Each register has some ability that none of the others share. I describe each
register's hidden agenda at some appropriate time in this book, and I call it out as such.

In the 20-odd years since the 8086 was created, Intel has hugely expanded the power of its x86 family
of CPUs. And sure enough, when you get into 32-bit protected mode, most of the limitations imposed
by early transistor budgets go away, and general-purpose registers become almost completely general.
However, when acting in real mode (as we're speaking of here), the Pentium, 486, and 386 CPUs take
on just about all the characteristics of the 8086 and 8088, including this sort of limitation, which is built
into the logic that decodes the instruction set for real mode.

Should you, then, be learning this sort of bad-old-days limitation? I think so. What it teaches you is that
limitations exist and need to be remembered. Even the mighty Pentium II has limitations and
restrictions. You need to develop a grasp of them, or you'll be floundering around wondering why things
don't work.

Using Memory Data

With one or two important exceptions (the string instructions, which I cover to a degree-but not
exhaustively-later on), only one of an instruction's two operands may specify a memory location. In
other words, you can move an immediate value to memory, or a memory value to a register, or some
other similar combination, but you can't move a memory value directly to another memory value. This is
just an inherent limitation of the CPU, and we have to live with it, inconvenient as it gets at times.

Specifying a memory address as one of an instruction's operands is a little complicated. The offset
address must be resident in one of the general-purpose registers that can legally hold an offset
address. (Remember, that's only BP, BX, SI, and DI-not any of the others such as AX, CX, or DX.) To



specify that we want the data at the memory location contained in the register rather than the data in
the register itself, we use square brackets around the name of the register. In other words, to move the
word at address DS:BX into register AX, we would use the following instruction:

  MOV AX,[BX]

Similarly, to move a value residing in register DX into the word at address DS:DI, you would use this
instruction:

  MOV [DI],DX

Segment Register Assumptions

The only problem with these examples is this: "DS" isn't anywhere in either instruction. Where does it
say to use DS as the segment register?

It doesn't. To keep addressing notation simple, the x86 CPUs in real mode make certain assumptions
about certain instructions in combinations with certain registers. There is no comprehensible system to
these assumptions, and like dates in history or Spanish irregular verbs, you'll just have to memorize
them, or at least know where to look them up. (The where is in Appendix B in this book.)

One of these assumptions is that in working with memory data, the MOV instruction uses the segment
address stored in segment register DS unless you explicitly tell it otherwise. In the case of the two
preceding examples, we did not tell the MOV instruction to use some segment register other than DS,
so it fell back on its assumptions and used DS. However, had you specified the offset as residing in
register SP instead of BX or DI, the MOV instruction would have assumed the use of segment register
SS instead. This assumption involves a memory mechanism known as the stack, which we won't really
address until the next chapter.

Overriding Segment Assumptions for Memory Data

But what if you want to use ES as a segment register for memory data addressed in the MOV
instruction? It's not difficult. The instruction set includes what are called segment override prefixes.
These are not precisely instructions, but are more like the filters that may be snapped in front of a
camera lens. The filter is not itself a lens, but it alters the way the lens operates.

There is one segment override prefix for each of the four segment registers: CS, DS, SS, and ES. In
assembly language they are written as the name of the segment register followed by a colon, as shown
in Table 7.2.

Table 7.2: Segment Override Prefixes

SEGMENT OVERRIDE PREFIX FUNCTION

CS: Forces use of code segment register CS

DS: Forces use of the data segment register DS

SS: Forces use of the stack segment register SS

ES: Forces use of the extra segment register ES

In use, the segment override prefix is placed immediately in front of the memory data reference whose
segment register assumption is to be overridden. For example, to force a MOV instruction to copy a
value from the AX register into a location at some offset (contained in SI) into the code segment, you
would use this instruction:

  MOV [CS:SI],AX

Without the CS: override prefix, this instruction would move the value of AX into the data segment, at
an address specified as DS:SI.



Prefixes in use are very reminiscent of how an address is written; in fact, understanding how prefixes
work will help you keep in mind that in every reference to memory data within an instruction, there is a
ghostly segment register assumption floating in the air. You may not see the ghostly DS: assumption in
your MOV instruction, but if you forget that it's there, the whole concept of memory data will begin to
seem arbitrary and magical.

Every reference to memory data includes either an assumed segment register or else a segment
override prefix to specify a segment register other than the assumed segment register.

At the machine-code level, a segment override prefix is a single binary byte. The prefix byte is placed in
front of rather than within a machine instruction. In other words, if the binary bytes comprising a MOV
AX,[BX] instruction are 8BH 07H, adding the ES segment override prefix to the instruction (MOV
AX,[ES:BX]) places a single 26H in front of the opcode bytes, giving us 26H 8BH 07H as the full binary
equivalent.

If you're sharp, the question will already have occurred to you: What about the flat models? Recall that
in both real mode flat model and protected mode flat model, the segment registers all point to the same
place and are not changed during the run of the program. In the flat models you do not use segment
overrides. What I have explained previously about segment overrides applies only to the real mode
segmented model!

Real Mode Memory Data Summary

Real mode memory data consists of a single byte or word in memory, addressed by way of a segment
value and an offset value. The register containing the offset address is enclosed in square brackets to
indicate that the contents of memory, rather than the contents of the register, are being addressed. The
segment register used to address memory data is usually assumed according to a complex set of rules.
Optionally, a segment override prefix may be placed in the instruction to specify some segment register
other than the default segment register.

Figure 7.1 shows diagrammatically what happens during a MOV AX,[ES:BX] instruction. The segment
address component of the full 20-bit memory address is contained inside the CPU in segment register
ES. Ordinarily, the segment address would be in register DS, but the MOV instruction contains the ES:
segment override prefix. The offset address component is specified to reside in the BX register.

Figure 7.1: How memory data is addressed.

The CPU sends out the values in ES and BX to the memory system side by side. Together, the two



values pin down one memory location where MyWord begins. MyWord is actually two bytes, but that's
fine-all the x86 CPUs working in real mode (except for the 8088) can bring both bytes into the CPU at
once, while the 8088 brings both bytes in separately, one after the other. The CPU handles details like
that and you needn't worry about it. Because AX is a 16-bit register, of course, two 8-bit bytes can fit
into it quite nicely.

The segment address may reside in any of the four segment registers: CS, DS, SS, or ES. However,
the offset address may reside only in registers BX, BP, SP, SI, or DI. AX, CX, and DX may not be used
to contain an offset address during real mode memory addressing.

Limitations of the MOV Instruction

The MOV instruction can move nearly any register to any other register. For reasons having to do with
the limited budget of transistors on the 8086 and 8088 chips, MOV can't quite do any move you can
think of-in real mode, at least. Here's a list of MOV's real mode limitations:

MOV cannot move memory data to memory data. In other words, an instruction like MOV
[SI],[BX] is illegal. Either of MOV's two operands may be memory data, but both cannot be at
once.

1.

MOV cannot move one segment register into another. Instructions like MOV CS,SS are illegal.
This could have been handy, but it simply can't be done.

2.

MOV cannot move immediate data into a segment register. You can't code up MOV
CS,0B800H. Again, it would be handy but you just can't do it.

3.

MOV cannot move one of the 8-bit register halves into a 16-bit register, nor vice versa. There
are easy ways around any possible difficulties here, and preventing moves between operands of
different sizes can keep you out of numerous kinds of trouble.

4.

These limitations, of course, are over and above those situations that simply don't make sense: moving
a register or memory into immediate data, moving immediate data into immediate data, specifying a
general-purpose register as a segment register to contain a segment, or specifying a segment register
to contain an offset address. Table 7.3 shows numerous illegal MOV instructions that illustrate these
various limitations and nonsense situations.

Table 7.3: Rogue MOV Instructions

ILLEGAL MOV INSTRUCTION WHY IT'S ILLEGAL

MOV 17,1 Only one operand may be immediate data.

MOV 17,BX Only the source operand may be immediate data.

MOV CX,DH The operands must be the same size.

MOV [DI],[SI] Only one operand may be memory data.

MOV DI,[DX:BX] DX is not a segment register.

MOV ES,0B800 Segment registers may not be loaded from immediate data.

MOV DS,CS Only one operand may be a segment register.

MOV [AX],BP AX may not address memory data (nor may CX or DX).

MOV SI,[CS] Segment registers may not address memory data.

Some Notes on Assembler Syntax

Although we haven't talked about it a whole lot just yet, this book focuses on a particular assembler
called NASM. And if this book is your first exposure to assembly language, nothing I've said so far
should cause you any cognitive dissonance with your earlier experience, since you have no earlier
experience. However, if you've played with assembly language using other assemblers, you will soon
begin to see small differences between what you once learned in writing assembly language
mnemonics and what I'm teaching in this book. These differences are matters of syntax, and they may



become important, especially if you ever try to convert source code to NASM from another assembler
such as MASM, TASM, or A86.

In the best of all worlds, every assembler would respond in precisely the same way to all the same
mnemonics and directives set up all the same ways. In reality, syntax differs. Here's a common
example: In Microsoft's MASM, memory data that includes a segment override must be coded like this:

  MOV AX,ES:[BX]

Note here that the segment override "ES:" is outside the brackets enclosing BX. NASM places the
overrides inside the brackets:

  MOV AX,[ES:BX]

These two lines perform precisely the same job. The people who wrote NASM feel (and I concur) that it
makes far more sense to place the override inside the brackets than outside. The difference is purely
one of syntax. The two instructions mean precisely the same thing, right down to generating the very
same binary machine code: 3E 8B 07.

Worse, when you enter the same thing in DEBUG, it must be done this way:

  ES: MOV AX,[BX]

Differences in syntax will drive you crazy on occasion, especially when flipping between NASM and
DEBUG. It's best to get a firm grip on what the instructions are doing, and understand what's required
to make a particular instruction assemble correctly. I point out some common differences between
NASM and MASM throughout this book, since MASM is by far the most popular assembler in the x86
world, and more people have been exposed to it than any other.



Reading and Using an Assembly Language Reference

The MOV instruction is a good start. Like a medium-sized screwdriver, you'll end up using it for normal
tasks and maybe some abnormal ones, just as I use screwdrivers to pry nails out of boards, club black
widow spiders in the garage bathroom, discharge large electrolytic capacitors, and other intriguing
things over and above workaday screw turning. (Not all of these are a good idea ... but then again,
many have said that assembly language programming isn't a good idea ...) The x86 instruction set
contains dozens of instructions, however, and over the course of the rest of this book, I mix in
descriptions of various other instructions with further discussions of memory addressing and program
logic and design.

Remembering a host of tiny, tangled details involving dozens of different instructions is brutal and
unnecessary. Even the Big Guys don't try to keep it all between their ears at all times. Most keep a blue
card or some other sort of reference document handy to jog their memories about machine instruction
details.

Blue Cards

A blue card is a reference summary printed on a piece of colored card stock. It folds up like a road map
and fits in your pocket. The original blue card may actually have been blue, but knowing the perversity
of programmers in general, it was probably bright orange.

Blue cards aren't always cards anymore. One of the best is a full sheet of very stiff shiny plastic, sold by
Micro Logic Corporation of Hackensack, New Jersey. The one sold with Microsoft's MASM is actually
published by Intel and has grown to a pocket-sized booklet stapled on the spine.

Blue cards contain very terse summaries of what an instruction does, which operands are legal, which
flags it affects, and how many machine cycles it takes to execute. This information, while helpful in the
extreme, is often so tersely put that newcomers might not quite fathom which edge of the card is up.

An Assembly Language Reference for Beginners

In deference to people just starting out in assembly language, I have put together a beginner's
reference to the most common x86 instructions and called it Appendix A. It contains at least a page on
every instruction I cover in this book, plus a few additional instructions that everyone ought to know. It
does not include descriptions on every instruction, but only the most common and most useful. Once
you've gotten skillful enough to use the more arcane instructions, you should be able to read the NASM
documentation (or that of some other assembler) and run with it.

On page 213 is a sample entry from Appendix A. Refer to it during the following discussion.

The instruction's mnemonic is at the top of the page, highlighted in a box to make it easy to spot while
flipping quickly through the appendix. To the mnemonic's right is the name of the instruction, which is a
little more descriptive than the naked mnemonic.

Flags

Immediately beneath the mnemonic is a minichart of machine flags in the Flags register. I haven't
spoken in detail of flags yet, but the Flags register is a collection of 1-bit values that retain certain
essential information about the state of the machine for short periods of time. Many (but by no means
all) x86 instructions change the values of one or more flags. The flags may then be individually tested
by one of the JMP instructions, which then change the course of the program depending on the state of
the flags.

We'll get into this business of tests and jumps in Chapter 10. For now, simply understand that each of
the flags has a name, and that for each flag is a symbol in the flags minichart. You'll come to know the
flags by their two-character symbols in time, but until then, the full names of the flags are shown to the
right of the minichart. The majority of the flags are not used frequently in beginning assembly language
work. Most of what you'll be paying attention to, flags-wise, is the Carry flag (CF). It's used, as you
might imagine, for keeping track of binary arithmetic when an arithmetic operation carries out of a single



byte or word.

There will be an asterisk (*) beneath the symbol of any flag affected by the instruction. How the flag is
affected depends on what the instruction does. You'll have to divine that from the Notes section. When
an instruction affects no flags at all, the word <none> will appear in the minichart.

In the example page, the minichart indicates that the NEG instruction affects the Overflow flag, the Sign
flag, the Zero flag, the Auxiliary carry flag, the Parity flag, and the Carry flag. The ways that the flags
are affected depend on the results of the negation operation on the operand specified. These ways are
summarized in the second paragraph of the Notes section.

NEG Negate (Two's Complement; That Is, Multiply by -1)

Flags affected:

       O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
       F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *      * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms: 8086/8 286 386 486 Pentium

       NEG r8          X             X         X        X            X
       NEG m8          X             X         X        X            X
       NEG r16         X             X         X        X            X
       NEG m16         X             X         X        X            X
       NEG r32                                 X        X            X
       NEG m32                                 X        X            X

Examples:

       NEG AL
       NEG ECX
       NEG BYTE [BX] ; Negates byte quantity at DS:BX
       NEG WORD [DI] ; Negates word quantity at DS:BX

Notes:

This is the assembly language equivalent of multiplying a value by -1. Keep in mind that negation is not
the same as simply inverting each bit in the operand. (Another instruction, NOT, does that.) The
process is also known as generating the two's complement of a value. The two's complement of a
value added to that value yields zero. -1 = $FF; -2 = $FE; -3 = $FD; and so forth.

If the operand is 0, CF is cleared and ZF is set; otherwise, CF is set and ZF is cleared. If the operand
contains the maximum negative value (-128 for 8-bit or -32768 for 16-bit), the operand does not
change, but OF and CF are set. SF is set if the result is negative, else SF is cleared. PF is set if the
low-order 8 bits of the result contain an even number of set (1) bits; otherwise, PF is cleared.

Note You must use a type override specifier (BYTE or WORD) with memory data.

       r8 = AL AH BL BH CL CH DL DH       r16 = AX BX CX DX BP SP SI DI
       sr = CS DS SS ES
       m8 = 8-bit memory data             m16 = 16-bit memory data
       i8 = 8-bit immediate data          i16 = 16-bit immediate data
       d8 = 8 bit signed displacement     d16 = 16-bit signed displacement

Legal Forms

A given mnemonic represents a single x86 instruction, but each instruction may include more than one
legal form. The form of an instruction varies by the type and order of the operands passed to it.



What the individual forms actually represent are different binary number opcodes. For example,
beneath the surface, the POP AX instruction is the number 58H, whereas the POP SI instruction is the
number 5EH.

Sometimes there will be special cases of an instruction and its operands that are shorter than the more
general cases. For example, the XCHG instruction, which exchanges the contents of the two operands,
has a special case when one of the operands is register AX. Any XCHG instruction with AX as one of
the operands is represented by a single-byte opcode. The general forms of XCHG (for example, XCHG
r16,r16) are always 2 bytes long instead. This implies that there are actually two different opcodes that
will do the job for a given combination of operands; for example, XCHG AX,DX. True enough—and
some assembler programs are smart enough to choose the shortest form possible in any given
situation. If you are hand-assembling a sequence of raw opcode bytes, say, for use in a higher-level
language INLINE statement, you need to be aware of the special cases, and all special cases will be
marked as such in the Legal forms section.

When you want to use an instruction with a certain set of operands, make sure you check the Legal
forms section of the reference guide for that instruction to make sure that the combination is legal. The
MOV instruction, for example, cannot move one segment register directly into another, nor can it move
immediate data directly into a segment register. Neither combination of operands is a legal form of the
MOV instruction, though they make sense and would be nice to have.

In the example reference page on the NEG instruction, you see that a segment register cannot be an
operand to NEG. (If it could, there would be a NEG sr item in the Legal forms list.) If you want to
negate the value in a segment register, you'll first have to use MOV to move the value from the
segment register into one of the general-purpose registers before using NEG on the general-purpose
register, and finally moving the negated value back into the segment register. (Note well that using
NEG on a segment register is an almighty peculiar thing to do, and for that reason, that form of NEG
was not given any transistor budget in the real mode portion of the x86 CPUs.)

Operand Symbols

The symbols used to indicate the nature of the operands in the Legal forms section are summarized at
the bottom of every page in the reference appendix. They're close to self-explanatory, but I'll take a
moment to expand upon them slightly here:

r8— An 8-bit register half, one of AH, AL, BH, BL, CH, CL, DH, or DL.

r16— A 16-bit general-purpose register, one of AX, BX, CX, DX, BP, SP, SI, or DI.

sr— One of the four segment registers, CS, DS, SS, or ES.

m8— An 8-bit byte of memory data.

m16— A 16-bit word of memory data.

m32— A 32-bit word of memory data.

i8— An 8-bit byte of immediate data.

i16— A 16-bit word of immediate data.

i32— A 32-bit word of immediate data.

d8— An 8-bit signed displacement. We haven't covered these yet, but a displacement is a distance
between the current location in the code and another place in the code to which we want to jump.
It's signed (that is, either negative or positive) because a positive displacement jumps you higher



(forward) in memory, whereas a negative displacement jumps you lower (back) in memory. We
examine this notion in detail in Chapter 10.

d16— A 16-bit signed displacement. Again, for use with jump and call instructions. See Chapter
10.

d32— A 32-bit signed displacement.

Examples

Whereas the Legal forms section shows what combinations of operands is legal for a given instruction,
the Examples section shows examples of the instruction in actual use, just as it would be coded in an
assembly language program. I've tried to put a good sampling of examples for each instruction,
demonstrating the range of different possibilities with the instruction. This includes situations that
require type override specifiers, which I cover in the next section.

Notes

The Notes section of the reference page describes the instruction's action briefly and provides
information on how it affects the flags, how it may be limited in use, and any other detail that needs to
be remembered, especially things that beginners would overlook or misconstrue.

What's Not Here ...

Appendix A differs from most detailed assembly language references in that it does not have the binary
opcode encoding information, nor indications of how many machine cycles are used by each form of
the instruction.

The binary encoding of an instruction is the actual sequence of binary bytes that the CPU digests and
recognizes as the machine instruction. What we would call POP AX, the machine sees as the binary
number 58H. What we call ADD SI,07733H, the machine sees as the 4-byte sequence 81H 0C6H 33H
77H. Machine instructions are encoded into anywhere from one to four (rarely more) binary bytes
depending on what instruction they are and what their operands are. Laying out the system for
determining what the encoding will be for any given instruction is extremely complicated, in that its
component bytes must be set up bit by bit from several large tables. I've decided that this book is not
the place for that particular discussion and have left encoding information out of the reference
appendix.

Finally, I've included nothing anywhere in this book that indicates how many machine cycles are
expended by any given machine instruction. A machine cycle is one pulse of the master clock that
makes the PC perform its magic. Each instruction uses some number of those cycles to do its work,
and the number varies all over the map depending on criteria that I won't be explaining in this book.

Furthermore, as Michael Abrash explains in his immense book Michael Abrash's Graphics
Programming Black Book (Coriolis Group Books, 1997), knowing the cycle requirements for individual
instructions is rarely sufficient to allow even an expert assembly language programmer to calculate how
much time a given series of instructions will take. He and I both agree that it is no fit subject for
beginners, and I will let him take it up in his far more advanced volume.



Rally Round the Flags, Boys!

We haven't studied the Flags register as a whole. Flags is a veritable junk drawer of disjointed little bits
of information, and it's tough (and perhaps misleading) to just sit down and describe all of them in detail
at once. What I do is describe the flags as we encounter them in discussing the various instructions in
this and future chapters.

Flags as a whole is a single 16-bit register buried inside the CPU. Of those 16 bits, 9 are actually used
as flags in real mode on the x86. The remaining 7 bits are undefined in real mode and ignored. You can
neither set them nor read them. Some of those 7 bits become defined and useful in protected mode on
the 386 CPU and its successors, but their uses are fairly arcane and I won't be covering them in this
book.

A flag is a single bit of information whose meaning is independent from any other bit. A bit can be set to
1 or cleared to 0 by the CPU as its needs require. The idea is to tell you, the programmer, the state of
certain conditions inside the CPU, so that your program can test for and act on the states of those
conditions.

I often imagine a row of country mailboxes, each with its own little red flag on the side. Each flag can be
up or down, and if the Smiths' flag is up, it tells the mailman that the Smiths have placed mail in their
box to be picked up. The mailman looks to see if the Smiths' flag is raised (a test) and, if so, opens the
Smiths' mailbox and picks up the waiting mail.

Each of the Flags register's nine flags has a two-letter symbol by which most programmers know them.
I use those symbols most of the time, and you should become familiar with them. The flags, their
symbols, and brief descriptions of what they stand for follows:

OF— The Overflow flag is set when the result of an operation becomes too large to fit in the
operand it originally occupied.

DF— The Direction flag is an oddball among the flags in that it tells the CPU something that you
want it to know, rather than the other way around. It dictates the direction that activity moves (up-
memory or down-memory) during the execution of string instructions. When DF is set, string
instructions proceed from high memory toward low memory. When DF is cleared, string
instructions proceed from low memory toward high memory. I take this up again when I discuss the
string instructions.

IF— The Interrupt enable flag is a two-way flag. The CPU sets it under certain conditions, and
you can set it yourself using the STI and CLI instructions. When IF is set, interrupts are enabled
and may occur when requested. When IF is cleared, interrupts are ignored by the CPU.

TF— When set, the Trap flag allows DEBUG's Trace command to do what it does, by forcing the
CPU to execute only a single instruction before calling an interrupt routine. This is not an especially
useful flag for ordinary programming and I won't have anything more to say about it.

SF— The Sign flag becomes set when the result of an operation forces the operand to become
negative. By negative, we only mean that the highest-order bit in the operand (the sign bit)
becomes 1 during a signed arithmetic operation. Any operation that leaves the sign positive will
clear SF.

ZF— The Zero flag becomes set when the results of an operation become zero. If the operand
becomes some nonzero value, ZF is cleared.

AF— The Auxiliary carry flag is used only for BCD arithmetic. BCD arithmetic treats each
operand byte as a pair of 4-bit "nybbles" and allows something approximating decimal (base 10)
arithmetic to be done directly in the CPU hardware by using one of the BCD arithmetic instructions.
These instructions are not much used anymore; I discuss BCD arithmetic only briefly later on.



PF— The Parity flag will seem instantly familiar to anyone who understands serial data
communications, and utterly bizarre to anyone who doesn't. PF indicates whether the number of
set (1) bits in the low-order byte of a result is even or odd. For example, if the result is 0F2H, PF
will be cleared because 0F2H (11110010) contains an odd number of 1 bits. Similarly, if the result
is 3AH (00111100), PF will be set because there is an even number (four) of 1 bits in the result.
This flag is a carryover from the days when all computer communications were done through a
serial port, for which a system of error detection called parity checking depends on knowing
whether a count of set bits in a character byte is even or odd. PF has no other use and I won't be
describing it further.

CF— The Carry flag is by far the most useful flag in the Flags register, and the one you will have
to pay attention to most. If the result of an arithmetic or shift operation "carries out" a bit from the
operand, CF becomes set. Otherwise, if nothing is carried out, CF is cleared.

Check That Reference Page!

What I call "flag etiquette" is the way a given instruction affects the flags in the Flags register. You must
remember that the descriptions of the flags on the previous pages are generalizations only and are
subject to specific restrictions and special cases imposed by individual instructions. Flag etiquette for
individual flags varies widely from instruction to instruction, even though the sense of the flag's use may
be the same in every case.

For example, some instructions that cause a zero to appear in an operand set ZF, while others do not.
Sadly, there's no system to it and no easy way to keep it straight in your head. When you intend to use
the flags in testing by way of conditional jump instructions (see Chapter 10), you have to check each
individual instruction to see how the various flags are affected.

Flag etiquette is a highly individual matter. Check the reference for each instruction to see if it affects
the flags. Assume nothing!

A simple lesson in flag etiquette involves two new instructions, INC and DEC, and yet another
interesting ability of DEBUG.

Adding and Subtracting One with INC and DEC

Several x86 machine instructions come in pairs. Simplest among those are INC and DEC, which
increment and decrement an operand by one, respectively.

Adding one to something or subtracting one from something are actions that happen a lot in computer
programming. If you're counting the number of times a program is executing a loop, or counting bytes in
a table, or doing something that advances or retreats one count at a time, INC or DEC can be very
quick ways to make the actual addition or subtraction happen.

Both INC and DEC take only one operand. An error will be flagged by DEBUG or by your assembler if
you try to use either INC or DEC with two operands, or without any operands.

Try both by using the Assemble command and the Trace command under DEBUG. Assemble this short
program, display the registers after entering it, and then trace through it:

  MOV AX,FFFF
  MOV BX,002F
  DEC BX
  INC AX

The session should look very much like this:

  - A
  1980:0100 MOV AX,FFFF
  1980:0103 MOV BX,002D
  1980:0106 INC AX



  1980:0107 DEC BX
  1980:0108 
  - R
  AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0100  NV UP EI PL NZ NA PO NC
  1980:0100 B8FFFF    MOV    AX,FFFF
  - T

  AX=FFFF BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0103  NV UP EI PL NZ NA PO NC
  1980:0103 BB2D00    MOV    BX,002D
  - T

  AX=FFFF BX=002D CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0106  NV UP EI PL NZ NA PO NC
  1980:0106 40      INC      AX
  - T

  AX=0000 BX=002D CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0107  NV UP EI PL ZR AC PE NC
  1980:0107 4B      DEC      BX
  - T
  AX=0000 BX=002C CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
  DS=1980 ES=1980 SS=1980 CS=1980 IP=0108  NV UP EI PL NZ NA PO NC
  1980:0108 0F      POP      CS

Watch what happens to the registers. Decrementing BX predictably turns the value 2DH into value
2CH. Incrementing 0FFFFH, on the other hand, rolls over the register to 0 since 0FFFFH is the largest
unsigned value that can be expressed in a 16-bit register. Adding 1 to it rolls it over to zero, just as
adding 1 to 99 rolls the rightmost two digits of the sum to zero in creating the number 100. The
difference with INC is that there is no carry. The Carry flag is not affected by INC, so don't try to use it to
perform multidigit arithmetic.

Using DEBUG to Watch the Flags

When INC rolled AX over to zero, the Carry flag was not affected, but the Zero flag (ZF) became set
(that is, equal to 1). The Zero flag works that way: When the result of an operation becomes zero, ZF is
almost always set.

DEC sets the flags in the same way. If you were to execute a DEC DX instruction when DX contained
1, DX would become zero and ZF would be set.

Apart from looking at a reference guide, how can you tell what flags are affected by a given instruction?
DEBUG allows you to see the flags as they change, just as it lets you dump memory and examine the
values in the general-purpose and segment registers. The second line of DEBUG's three-line register
display contains eight cryptic symbols at its right margin. You've been seeing them, I'm sure, without
having a clue as to their meaning.

Eight of the nine 8086/8088 flags are represented by two-character symbols. (The odd flag out is Trap
flag TF, which is reserved for exclusive use by DEBUG itself and cannot be examined while DEBUG
has control of the machine.) Unfortunately, the symbols DEBUG uses are not the same as the standard
flag symbols that programmers call the flags by. The difference is that DEBUG's flag symbols do not
represent the flags' names but rather the flags' values. Each flag can be set or cleared, and DEBUG
displays the state of each flag by having a unique symbol for each state of each flag, for a total of 16
distinct symbols in all. The symbols' meanings are summarized in Table 7.4.



Table 7.4: DEBUG's Flag State Symbols

FLAG NAME SET SYMBOL CLEAR SYMBOL

OF Overflow flag OV NV

DF Direction flag DN UP

IE Interrupt enable flag EI DI

SF Sign flag NG PL

ZF Zero flag ZR NZ

AF Auxiliary carry flag AC NA

PF Parity flag PE PO

CF Carry flag CY NC

The best I can say for this symbol set is that it's not obviously obscene. It is, however, nearly
impossible to memorize. You'd best keep a reduced copy of this table (perhaps taped to the back of a
business card) near your keyboard if you intend to watch the waving of the x86 CPU flags.

When you first run DEBUG, the flags are set to their default values, which are these:

  NV UP EI PL NZ NA PO NC

You'll note that all these symbols are clear symbols except for EI, which must be set to allow interrupts
to happen. Whether you are aware of it or not, interrupts are happening constantly within your PC.
Each keystroke you type on the keyboard triggers an interrupt. Every 55 milliseconds, the system clock
triggers an interrupt to allow the BIOS software to update the time and date values kept in memory as
long as the PC has power. If you disabled interrupts for any period of time, your real-time clock would
stop and your keyboard would freeze up. Needless to say, IE must be kept set nearly all the time.

Each time you execute an instruction with the Trace command, the flags display will be updated. If the
instruction that was executed affected any of the flags, the appropriate symbol will be displayed over
the previous symbol.

With Table 7.4 in hand, go back and examine the flags display for the four-instruction DEBUG trace
shown a few pages back. The first display shows the default values for all the flags, since no
instructions have been executed yet. No change appears for the second and third flags displays,
because the MOV instruction affects none of the flags.

But look closely at the flags display after the INC AX instruction executes. Three of the flags have
changed state: ZF has gone from NZ (clear) to ZR (set), indicating that the operand of INC went to zero
as a result of the increment operation. AF has gone from NA to AC. (Let's just skip past that one;
explaining what it means would be more confusing than helpful.) Parity flag PF has gone from PO to
PE. This means that as a result of the increment operation, the number of bits present in the low byte of
BX went from odd to even.

Finally, look at the last flags display, the one shown after the DEC BX instruction was executed. Again,
ZF, AF, and PF changed. ZF went to NZ, indicating that the DEC instruction left a nonzero value in its
operand. PF, moreover, went from PE to PO, indicating that the number of bits in the low byte of BX
was odd after the DEC BX instruction.

One thing to keep in mind is that even when a flag doesn't change state from display to display, it was
still affected by the previously executed instruction. Five out of nine flags are affected by every INC and
DEC instruction that the CPU executes. Not every DEC instruction decrements its operand down to
zero, but every DEC instruction causes some value to be asserted in ZF. The same holds true for the
other four affected flags: Even if the state of an affected flag doesn't change as a result of an
instruction, the state is asserted, even if only reasserted to its existing value.

Thorough understanding of the flags comes with practice and dogged persistence. It's one of the more
chaotic aspects of assembly language programming, but as we'll see when we get to conditional
branches, flags are what make the CPU truly come alive to do our work for us.





Using Type Specifiers

Back on the sample reference appendix page (see page 212), notice the following example uses of the
NEG instruction:

  NEG BYTE [BX] ; Negates byte quantity at DS:BX
  NEG WORD [DI] ; Negates word quantity at DS:BX

Why BYTE [BX]? Or WORD [DI]? Used in this way, BYTE and WORD are what we call type specifiers,
and you literally can't use NEG (or numerous other machine instructions) on memory data without one
or the other. They are not instructions in the same sense that NEG is an instruction. They exist in the
broad class of things we call directives. Directives give instructions to the assembler. In this case, they
tell the assembler how large the operand is when there is no other way for the assembler to know.

The problem is this: The NEG instruction negates its operand. The operand can be either a byte or a
word; in real mode, NEG works equally well on both. But ... how does NEG know whether to negate a
byte or a word? The memory data operand [BX] only specifies an address in memory, using DS as the
assumed segment register. The address DS:BX points to a byte-but it also points to a word, which is
nothing more than two bytes in a row somewhere in memory. So, does NEG negate the byte located at
address DS:BX? Or does it negate the two bytes (a word) that start at address DS:BX?

Unless you tell it somehow, NEG has no way to know.

Telling an instruction the size of its operand is what BYTE and WORD do. Several other instructions
that work on single operands only (such as INC, DEC, and NOT) have the same problem and use type
specifiers to resolve this ambiguity.

Types in Assembly Language

Unlike nearly all high-level languages such as Pascal and C++, the notion of type in assembly language
is almost wholly a question of size. A word is a type, as is a byte, a double word, a quad word, and so
on. The assembler is unconcerned with what an assembly language variable means. (Keeping track of
such things is totally up to you.) The assembler only worries about how big it is. The assembler does
not want to have to try to fit 10 pounds of kitty litter in a 5-pound bag, which is impossible, nor 5 pounds
of kitty litter in a 10-pound bag, which can be confusing and under some circumstances possibly
dangerous.

Register data always has a fixed and obvious type, since a register's size cannot be changed. BL is
one byte and BX is two bytes.

The type of immediate data depends on the magnitude of the immediate value. If the immediate value
is too large to fit in a single byte, that immediate value becomes word data and you can't load it into an
8-bit register half. An immediate value that can fit in a single byte may be loaded into either a byte-sized
register half or a full word-sized register; its type is thus taken from the context of the instruction in
which it exists and matches that of the register data operand into which it is to be loaded. But if you try
to load immediate data into a destination that's too small for it, the assembler will give you an error.
Here's a trivial example:

  MOV BL,0FFFFH

When it encounters this, NASM will complain by saying, "Warning: Byte value exceeds bounds." BL
can hold values from 0 to 0FFH. (0 to 255). The value 0FFFFH is out of bounds because it is much
larger than 0FFH.

Memory data is something else again. We've spoken of memory data so far in terms of registers
holding offsets without considering the use of named memory data. I discuss named memory data in
the next chapter, but in brief terms, you can define named variables in your assembly language
programs using such directives as DB and DW. It looks like this:

  Counter     DB 0



  MixTag      DW 32

Here, Counter is a variable allocated as a single byte in memory by the DB (Define Byte) directive.
Similarly, MixTag is a variable allocated as a word in memory by the DW (Define Word) directive.

By using DB, you give variable Counter a type and hence a size. You must match this type when you
use the variable name Counter in an instruction to indicate memory data. The way to do this is to use
the BYTE directive, as I mentioned a little earlier. This, for example, will be accepted by the assembler:

  MOV BL,BYTE [Counter]

This instruction will take the current value located in memory at the address represented by the variable
name Counter and will load that variable into register half BL. You might wonder: Why do I need to put
the BYTE directive there? The assembler should know that Counter is 1 byte in size because it was
defined using the directive DB.

In some assemblers, including Microsoft's MASM, it would. However, NASM's authors feel that it's
important to be as explicit with assemblers as possible and leave little or nothing for the assembler to
infer from context. So, although NASM uses the DB directive to allocate one byte of memory for the
variable Counter, it does not remember that Counter takes up only one byte when you insert Counter
as an operand in a machine instruction. You must build that specification into your source code, by
using the BYTE directive. This will force you to think a little bit more about what you're doing at every
point that you do it; that is, right where you use variable names as instruction operands. Doing so may
help you avoid certain really stupid mistakes-like the ones I used to make all the time while I was
working with MASM, most of which came out of trying to let the assembler do my thinking for me.

To me, this is a wonderful thing, and one of the main reasons I chose NASM as the focus of this book.

Now here's another case, one that NASM will assemble without a burp:

  MOV BL,BYTE MixTag

This looks innocent enough until you remember that MixTag is actually 2 bytes (one word) in size,
having been defined with the DW directive. You might think this is an error, because MixTag isn't the
same size as BL. True enough-but the key is that there's no ambiguity here. The assembler knows
what you want, even if what you want is peculiar. The type specifier BYTE forces the assembler to look
upon MixTag as being 1 byte in size. MixTag is not byte-sized, however, so what actually happens is
that the least significant (lowermost) byte of MixTag will be loaded into BL, with the most significant
byte left high and dry.

Is this useful? It can be. Is it dangerous? You bet. It is up to you to decide whether overriding the type
of memory data makes sense and is completely your responsibility to ensure that doing so doesn't
sprinkle your code with bugs. But nothing is left for the assembler to decide. That's what type specifiers
are for: to make it clear to the assembler in every case what it is supposed to do. Whether that in fact
makes sense is up to you. Use your head-and know what you're doing. That's more important in
assembly language than anywhere else in computer programming.



Chapter 8: Our Object All Sublime Creating

Programs that Work

Overview

They don't call it "assembly" for nothing. Facing the task of writing an assembly language program
brings to mind images of Christmas morning: You've spilled 1,567 small metal parts out of a large box
marked Land Shark HyperBike (Some Assembly Required) and now you have to somehow put them all
together with nothing left over. (In the meantime, the kids seem more than happy playing in the box…)

I've actually explained just about all you absolutely must understand to create your first assembly
language program. Still, there is a nontrivial leap from here to there; you are faced with many small
parts with sharp edges that can fit together in an infinity of different ways, most wrong, some workable,
but only a few that are ideal.

So here's the plan: In the following section I will present you with the completed and operable Land
Shark HyperBike-which I will then tear apart before your eyes. This is the best way to learn to
assemble: By pulling apart programs written by those who know what they're doing. Over the rest of this
book we'll pull a few more programs apart, in the hope that by the time it's over you'll be able to move in
the other direction all by yourself.



The Bones of an Assembly Language Program

The following listing is perhaps the simplest correct program that will do anything visible and still be
comprehensible and expandable. This issue of comprehensibility is utterly central to quality assembly
language programming. With no other computer language (not even APL or that old devil FORTH) is
there anything even close to the risk of writing code that looks so much like something scraped off the
wall of King Tut's tomb.

The program EAT.ASM displays one (short) line of text on your display screen:

  Eat at Joe's!

For that you have to feed 28 lines of text file to the assembler. Many of those 28 lines are unnecessary
in the strict sense, but serve instead as commentary to allow you to understand what the program is
doing (or more important, how it's doing it) six months or a year from now.

One of the aims of assembly language coding is to use as few instructions as possible in getting the job
done. This does not mean creating as short a source code file as possible. (The size of the source file
has nothing to do with the size of the executable file assembled from it!) The more comments you put
in your file, the better you'll remember how things work inside the program the next time you pick it up. I
think you'll find it amazing how quickly the logic of a complicated assembly language file goes cold in
your head. After no more than 48 hours of working on other projects, I've come back to assembler
projects and had to struggle to get back to flank speed on development.

Comments are neither time nor space wasted. IBM used to say, One line of comments per line of code.
That's good-and should be considered a minimum for assembly language work. A better course (that I
will in fact follow in the more complicated examples later on) is to use one short line of commentary to
the right of each line of code, along with a comment block at the start of each sequence of instructions
that work together in accomplishing some discrete task.

Here's the program. Read it carefully:

  ; Source name     : EAT.ASM
  ; Executable name : EAT.COM
  ; Code model:     : Real mode flat model
  ; Version         : 1.0
  ; Created date    : 6/4/1999
  ; Last update     : 9/10/1999
  ; Author          : Jeff Duntemann
  ; Description     : A simple example of a DOS .COM file programmed using
  ;                   NASM-IDE 1.1 and NASM 0.98.

  [BITS 16]          ; Set 16 bit code generation
  [ORG 0100H]        ; Set code start address to 100h (COM file)

  [SECTION .text]    ; Section containing code
  START:

    mov  dx, eatmsg  ; Mem data ref without [] loads the ADDRESS!
    mov  ah,9        ; Function 9 displays text to standard output.
    int  21H         ; INT 21H makes the call into DOS.

    mov  ax, 04C00H  ; This DOS function exits the program
    int  21H         ; and returns control to DOS.

  [SECTION .data]    ; Section containing initialized data

  eatmsg   db "Eat at Joe's!", 13, 10, "$" ;Here's our message

The Simplicity of Flat Model



After all our discussion in previous chapters about segments, this program might seem,
um,…suspiciously simple. And indeed it's simple, and it's simple almost entirely because it's written for
the 16-bit real mode flat model. (I drew this model out in Figure 6.8.) The first thing you'll notice is that
there are no references to segments or segment registers anywhere. The reason for this is that in real
mode flat model, you are inside a single segment, and everything you do, you do within that single
segment. If everything happens within one single segment, the segments (in a sense) "factor out" and
you can imagine that they don't exist. Once we assemble EAT.ASM and create a runnable program
from it, I'll show you what those segment registers are up to and how it is that you can almost ignore
them in real mode flat model.

But first, let's talk about what all those lines are doing.

At the top is a summary comment block. This text is for your use only. When NASM processes a .ASM
file, it strips out and discards all text between any semicolon and the end of the line the semicolon is in.
Such lines are comments, and they serve only to explain what's going on in your program. They add
nothing to the executable file, and they don't pass information to the assembler. I recommend placing a
summary comment block like this at the top of every source code file you create. Fill it with information
that will help someone else understand the file you've written or that will help you understand the file
later on, after it's gone cold in your mind.

Beneath the comment block is a short sequence of commands directed to the assembler. These
commands are placed in square brackets so that NASM knows that they are for its use, and are not to
be interpreted as part of the program.

The first of these commands is this:

  [BITS 16]          ; Set 16 bit code generation

The BITS command tells NASM that the program it's assembling is intended to be run in real mode,
which is a 16-bit mode. Using [BITS 32] instead would have brought into play all the marvelous 32-bit
protected mode goodies introduced with the 386 and later x86 CPUs. On the other hand, DOS can't run
protected mode programs, so that wouldn't be especially useful.

The next command requires a little more explanation:

  [ORG 0100h]        ; Set code start address to 100h (COM file)

"ORG" is an abbreviation of origin, and what it specifies is sometimes called the origin of the program,
which is where code execution begins. Code execution begins at 0100H for this program. The 0100h
value (the h and H are interchangeable) is loaded into the instruction pointer IP by DOS when the
program is loaded and run. So, when DOS turns control over to your program (scary thought, that!), the
first instruction to be executed is the one pointed to by IP-in this case, at 0100H.

Why 0100H? Look back at Figure 6.8. The real mode flat model (which is often called the .COM file
model) has a 256-byte prefix at the beginning of its single segment. This is the Program Segment
Prefix (PSP) and it has several uses that I won't be explaining here. The PSP is basically a data buffer
and contains no code. The code cannot begin until after the PSP, so the 0100H value is there to tell
DOS to skip those first 256 bytes.

The next command is this:

  [SECTION .text]    ; Section containing code

NASM divides your programs into what it calls sections. These sections are less important in real mode
flat model than in real mode segmented model, when sections map onto segments. (More on this later.)
In flat model, you have only one segment. But the SECTION commands tell NASM where to look for
particular types of things. In the .text section, NASM expects to find program code. A little further down
the file you'll see another SECTION command, this one for the .data section. In the .data section,
NASM expects to find the definitions for your initialized variables. A third section is possible, the .bss
section, which contains uninitialized data. EAT.ASM does not use any uninitialized data, so this section
does not exist in this program. I discuss uninitialized data later on, in connection with the stack.



Labels

The next item in the file is something called a label:

  START:

A label is a sort of bookmark, holding a place in the program code and giving it a name that's easier to
remember than a memory address. The START: label indicates where the program begins. Technically
speaking, the START: label isn't necessary in EAT.ASM. You could eliminate the START: label and the
program would still assemble and run. However, I think that every program should have a START: label
as a matter of discipline. That's why EAT.ASM has one.

Labels are used to indicate where JMP instructions should jump to, and I explain that in detail later in
this chapter and in later chapters. The only distinguishing characteristic of labels is that they're followed
by colons. Some rules govern what constitutes a valid label:

Labels must begin with a letter or with an underscore, period, or question mark. These last three
have special meanings (especially the period), so I recommend sticking with letters until you're way
further along in your study of assembly language and NASM.

Labels must be followed by a colon when they are defined. This is basically what tells NASM that
the identifier being defined is a label. NASM will punt if no colon is there and will not flag an error,
but the colon nails it, and prevents a misspelled mnemonic from being mistaken for a label. So use
the colon!

Labels are case sensitive. So yikes:, Yikes:, and YIKES: are three completely different labels. This
differs from practice in a lot of languages (Pascal particularly) so keep it in mind.

Later on, we'll see such labels used as the targets of jump instructions. For example, the following
machine instruction transfers the flow of instruction execution to the location marked by the label
GoHome:

  JMP GoHome

Notice that the colon is not used here. The colon is only placed where the label is defined, not where it
is referenced. Think of it this way: Use the colon when you are marking a location, not when you are
going there.

Variables for Initialized Data

The identifier eatmsg defines a variable. Specifically, eatmsg is a string variable (more on which
follows) but still, as with all variables, it's one of a class of items we call initialized data: something that
comes with a value, and not just a box that will accept a value at some future time. A variable is defined
by associating an identifier with a data definition directive. Data definition directives look like this:

  MyByte      DB 07H            ; 8 bits in size
  MyWord      DW 0FFFFH         ; 16 bits in size
  MyDouble    DD 0B8000000H     ; 32 bits in size

Think of the DB directive as "Define Byte." DB sets aside one byte of memory for data storage. Think
of the DW directive as "Define Word." DW sets aside one word of memory for data storage. Think of
the DD directive as "Define Double." DD sets aside a double word in memory for storage, typically for
full 32-bit addresses.

I find it useful to put some recognizable value in a variable whenever I can, even if the value is to be
replaced during the program's run. It helps to be able to spot a variable in a DEBUG dump of memory
rather than to have to find it by dead reckoning-that is, by spotting the closest known location to the
variable in question and counting bytes to determine where it is.



String Variables

String variables are an interesting special case. A string is just that: a sequence or string of characters,
all in a row in memory. A string is defined in EAT.ASM:

  eatmsg   DB "Eat at Joe's!", 13, 10, "$" ;Here's our message

Strings are a slight exception to the rule that a data definition directive sets aside a particular quantity
of memory. The DB directive ordinarily sets aside one byte only. However, a string may be any length
you like, as long as it remains on a single line of your source code file. Because there is no data
directive that sets aside 16 bytes, or 42, strings are defined simply by associating a label with the place
where the string starts. The eatmsg label and its DB directive specify one byte in memory as the
string's starting point. The number of characters in the string is what tells the assembler how many
bytes of storage to set aside for that string.

Either single quote (') or double quote (") characters may be used to delineate a string, and the choice
is up to you, unless you're defining a string value that itself contains one or more quote characters.
Notice in EAT.ASM the string variable eatmsg contains a single-quote character used as an
apostrophe. Because the string contains a single-quote character, you must delineate it with double
quotes. The reverse is also true: If you define a string that contains one or more double-quote
characters, you must delineate it with single-quote characters:

  Yukkh    DB    'He said, "How disgusting!" and threw up.',"$"

You may combine several separate substrings into a single string variable by separating the substrings
with commas. Both eatmsg and Yukkh do this. Both add a dollar sign ($) in quotes to the end of the
main string data. The dollar sign is used to mark the end of the string for the mechanism that displays
the string to the screen. More on that mechanism and marking string lengths in a later section.

What, then, of the "13,10" in eatmsg? This is the carriage return and linefeed pair I discussed in an
earlier chapter. Inherited from the ancient world of electromechanical Teletype machines, these two
characters are recognized by DOS as meaning the end of a line of text that is output to the screen. If
anything further is output to the screen, it will begin at the left margin of the next line below. You can
concatenate such individual numbers within a string, but you must remember that they will not appear
as numbers. A string is a string of characters. A number appended to a string will be interpreted by
most operating system routines as an ASCII character. The correspondence between numbers and
ASCII characters is shown in Appendix D.

Directives versus Instruction Mnemonics

Data definition directives look a little like machine instruction mnemonics, but they are emphatically not
machine instructions. One very common mistake made by beginners is looking for the binary opcode
represented by a directive such as DB or DW. There is no binary opcode for DW, DB, and the other
directives. Machine instructions, as the name implies, are instructions to the CPU itself. Directives, by
contrast, are instructions to the assembler.

Understanding directives is easier when you understand the nature of the assembler's job. (Look back
to Chapter 4 for a detailed refresher if you've gotten fuzzy on what assemblers and linkers do.) The
assembler scans your source code text file, and as it scans your source code file it builds an object
code file on disk. It builds this object code file step by step, one byte at a time, starting at the beginning
of the file and working its way through to the end. When it encounters a machine instruction mnemonic,
it figures out what binary opcode is represented by that mnemonic and writes that binary opcode (which
may be anywhere from one to six actual bytes) to the object code file.

When the assembler encounters a directive such as DW, it does not write any opcode to the object
code file. DW is a kind of signpost to the assembler, reading "Set aside two bytes of memory right here,
for the value that follows." The DW directive specifies an initial value for the variable, and so the
assembler writes the bytes corresponding to that value in the two bytes it set aside. The assembler
writes the address of the allocated space into a table, beside the label that names the variable. Then
the assembler moves on, to the next directive (if there are further directives) or to whatever comes next



in the source code file.

For example, when you write the following statement in your assembly language program:

  MyVidOrg    DW    0B800H

what you are really doing is instructing the assembler to set aside two bytes of data (Define Word,
remember) and place the value 0B800H in those two bytes. The assembler writes the identifier
MyVidOrg and the variable's address into a table it builds of identifiers (both labels and variables) in
the program for later use by other elements of the program, or the linker.

The Difference between a Variable's Address and Its Contents

I've left discussion of EAT.ASM's machine instructions for last-at least in part because they're easy to
explain. All that EAT.ASM does, really, is hand a string to DOS and tell DOS to display it on the screen
by sending it to something called standard output. It does this by passing the address of the string to
DOS-not the character values contained in the string itself. This is a crucial distinction that trips up a lot
of beginners. Here's the first instruction in EAT.ASM:

  mov  dx, eatmsg    ; Mem data ref without [] loads the ADDRESS!

If you look at the program, you can see that while DX is 2 bytes in size, the string eatmsg is 15 bytes in
size. At first glance, this MOV instruction would seem impossible-but that's because what's being
moved is not the string itself, but the string's address, which (in the real mode flat model) is 16 bits-2
bytes-in size. The address will thus fit nicely in DX.

When you place a variable's identifier in a MOV instruction, you are accessing the variable's address,
as explained previously. By contrast, if you want to work with the value stored in that variable, you must
place the variable's identifier in square brackets. Suppose you had defined a variable in the .data
section called MyData this way:

  MyData    DW    0744H

The identifier MyData represents some address in memory, and at that address the assembler places
the value 0744H. Now, if you want to copy the value contained in MyData to the AX register, you would
use the following MOV instruction:

  MOV AX,[MyData]

After this instruction, AX would contain 0744H.

There are many situations in which you need to move the address of a variable into a register rather
than the contents of the variable. In fact, you may find yourself moving the addresses of variables
around more than the contents of the variables, especially if you make a lot of calls to DOS and BIOS
services.

If you've used higher-level languages such as Basic and Pascal, this distinction may seem inane. After
all, who would mistake the contents of a variable for its location? Well, that's easy for you to say-in
Basic and Pascal you rarely if ever even think about where a variable is. The language handles all that
rigmarole for you. In assembly language, knowing where a variable is located is essential in order to do
lots of important things.

Making DOS Calls

What EAT.ASM really does, as I mentioned previously, is call DOS and instruct DOS to display a string
located at a particular place in memory. The string itself doesn't go anywhere; EAT.ASM tells DOS
where the string is located, and then DOS reaches up into your .data section and does what it must
with the string data.

Calling DOS is done with something called a software interrupt. I explain these in detail later in this



chapter. But if you look at the code you can get a sense for what's going on:

  mov  dx, eatmsg    ; Mem data ref without [] loads the ADDRESS!
  mov  ah,9          ; Function 9 displays text to standard output.
  int  21H           ; INT 21H makes the call into DOS.

Here, the first line loads the address of the string into register DX. The second line simply loads the
constant value 9 into register AH. The third line makes the interrupt call, to interrupt 21H.

The DOS call has certain requirements that must be set up before the call is made. It must know what
particular call you want to make, and each call has a number. This number must be placed in AH and,
in this case, is call 09H (Display String). For this particular DOS call, DOS expects the address of the
string to be displayed to be in register DX. If you satisfy those two conditions, you can make the DOS
software interrupt call INT 21H-and there's your string on the screen!

Exiting the Program and Setting ERRORLEVEL

Finally, the job is done, Joe's has been properly advertised, and it's time to let DOS have the machine
back. Another DOS service, 4CH (Terminate Process), handles the mechanics of courteously
disentangling the machine from EAT.ASM's clutches. Terminate Process doesn't need the address of
anything, but it will take whatever value it finds in the AL register and place it in the ERRORLEVEL
DOS variable. DOS batch programs can test the value of ERRORLEVEL and branch on it.

EAT.ASM doesn't do anything worth testing in a batch program, but if ERRORLEVEL will be set
anyway, it's a good idea to provide some reliable and harmless value for ERRORLEVEL to take. This is
why 0 is loaded into AL prior to ending it all by the final INT 21 instruction. If you were to test
ERRORLEVEL after running EAT.EXE, you would find it set to 0 in every case.

That's really all there is to EAT.ASM. Now let's see what it takes to run it, and then let's look more
closely at its innards in memory.



Assembling and Running EAT.ASM

To assemble and run EAT.ASM, we can load it into NASM-IDE, and then let NASM-IDE invoke NASM.
That's how we're going to do it here. You should understand, however, that NASM-IDE is simply a
"place to stand." NASM is what actually does the work of assembling the file.

Here's the sequence:

Run NASM-IDE.1.

Select the Open item from the File menu. (We would say this, in shorthand form, "Select
File|Open.")

2.

Highlight the name of file EAT.ASM, and click on the OK button. EAT.ASM will load and be
displayed in a window. If EAT.ASM isn't in the same directory as NASM-IDE, you may have to
navigate to the directory where EAT.ASM lives by clicking on directory names in the dialog box.

3.

Select Assemble|Assemble. The Error window will appear in the lower half of the display, even if
only to tell you, "No errors occurred."

4.

Assuming no errors occurred, select Assemble|Run. The display will clear, and EAT's message
will be displayed in the upper-left corner of the display. Beneath it you'll see DOS's message,
"Press any key to continue…" Press any key, and the display will return to NASM-IDE, showing
EAT.ASM.

5.

Assembler and Interactive Development Environment

There it is: You've assembled and run an assembly language program. It's important at this point to
ponder who's doing what on your system. If you read Chapter 5, you know that NASM-IDE is an
interactive development environment (IDE) containing a source code editor and a few other tools.
NASM-IDE is not the assembler. The assembler is called NASM, and NASM is a separate program that
does not actually require NASM-IDE for its use. When you select Assemble | Assemble in NASM-IDE,
the NASM-IDE program invokes the NASM assembler behind the scenes and passes the name of the
program you're working on to NASM, which assembles it and writes the file EAT.COM to disk. Later,
when you select Assemble | Run in NASM-IDE, the NASM-IDE program runs EAT.COM for you.

Technically, you don't need NASM-IDE. You can invoke the assembler yourself from the DOS
command line, and you can of course run the generated EAT.COM file by naming it on the command
line as well. NASM-IDE is there to save you time and let you make changes and reassemble your
program quickly and with less keyboarding.

You should, however, understand what NASM-IDE is doing. One major thing it's doing for you is
constructing a proper command line by which to invoke NASM. To treat EAT.ASM as a program written
for real mode flat model and to generate EAT.COM from EAT.ASM, the following command line has to
be used to invoke NASM:

  C:\>NASM16 EAT.ASM -F BIN -O EAT.COM

It's certainly easier just selecting Assemble | Assemble, no? Still, over time you should study the
various command-line options that NASM supports so that you can begin to do more advanced things
than NASM-IDE is capable of doing. They're all described in detail in NASM's documentation, which is
present on the CD ROM for this book.

This particular command line is fairly easy to explain:

NASM16 is the name of the version of NASM intended for use with real mode programs under
DOS. On your disk it will be NASM16.EXE.

1.

EAT.ASM is the name of the source code file you wish to assemble.2.

-F BIN indicates the output format. There are many different types of files that NASM is capable
of producing. The one we want is the .COM file, which is generated as a simple binary image of
the generated machine-code bytes and any initialized data. The "BIN" indicates "binary image."

3.

4.



The other key thing about .COM files is the 0100H code origin, but that's handled in the source
code, as I explained earlier.

3.

-O EAT.COM is the name of the output file. You can call the generated code file anything you
want. If you don't specify the name of the output file, NASM will just lop off the ".ASM" and call
the file EAT. Unfortunately, the name "EAT" doesn't indicate to DOS that it's a runnable
program, so DOS won't know what to do with it. That's why you have to specify the full output file
name "EAT.COM" on the command line.

4.

Later on in this book, we're going to invoke NASM from the command line to produce a type of file that
NASM-IDE won't be able to tell NASM how to produce. Therefore, we'll have to do it ourselves.

What Happens When a .COM File Runs

It's often useful to know just what happens when you run a program of your own creation. DOS treats
its two kinds of executable programs a little differently when it runs them. .COM files are the simpler of
the two. (I speak of .EXE files a little later in this chapter.) .COM files are a simple image of the
instructions and data assembled out of the source code file. When you execute a .COM program from
the DOS command line, here's what happens:

The .COM file is loaded into memory at a location of DOS's choosing. It doesn't change the file
when it loads the file; the file is loaded exactly as it was saved to disk by the assembler.

1.

AX, BX, DX, BP, SI, and DI are set to 0.2.

The instruction pointer IP is set to 0100H.3.

The number of bytes loaded from disk and stored into memory is placed in the CX register.4.

The stack pointer is set to the highest address in the program's segment, minus one.5.

All four segment registers CS, SS, DS, and ES are set to the same value: the segment address
of the single segment in which the .COM program must run. DOS chooses this value.

6.

DOS transfers control to the instruction at CS:IP, and your program is off and running!7.

You can see this very plainly by loading EAT.COM with DEBUG. Here's a dump of the registers
immediately after loading EAT.COM into memory:

  -r
  AX=0000 BX=0000 CX=001C DX=0000 SP=FFFE BP=0000 SI=0000 DI=0000
  DS=1470 ES=1470 SS=1470 CS=1470 IP=0100  NV UP EI PL NZ NA PO NC
  1470:0100 BA0C01    MOV    DX,010C

You'll sometimes hear the real mode flat model referred to as the Tiny model. This is a term that
originated in the C programming community, which has separate names for several different
arrangements of code and data, depending on whether there is a single segment for code and data or
multiple segments.

The real mode flat model is simplicity itself—so simple, in fact, that it doesn't teach you much about
segments. Maybe you don't need to know that much about segments to craft useful programs these
days (especially in protected mode flat model), but I've found it very useful to know just how our CPUs
evolved, and segments are a big part of that. So, that said, let's look at EAT.ASM crafted for the real
mode segmented model.



One Program, Three Segments

The main problem with real mode flat model is that everything you do must fit into 64K of memory. This isn't much
of a pinch for learning assembly language and just playing around writing small utilities, but once you try to create
something ambitious-say, a word processor or database-driven e-mail client-you find that code and data begin to
crowd one another in a big hurry. So, for all its trouble, real mode segmented model was the only way to make full
use of real mode's megabyte of memory.

Today, of course, you'd either create a Windows application (which you would probably not attempt in assembly)
or you'd work in protected mode flat model under an implementation of Unix for the Intel x86 CPUs. Nonetheless, if
you understand segments, you have it in yourself to understand every other aspect of assembly work.

Let's do the Land Shark HyperBike trick again, this time with a version of EAT.ASM specifically written to use the
real mode segmented model. Here's the bike-and then we'll take it apart just like last time:

  ; Source name     : EATSEG.ASM
  ; Executable name : EATSEG.EXE
  ; Code model:     : Real mode segmented model
  ; Version         : 1.0
  ; Created date    : 9/10/1999
  ; Last update     : 9/10/1999
  ; Author          : Jeff Duntemann
  ; Description     : A simple example of a DOS .EXE file programmed for
  ;                   real mode segmented model, using NASM-IDE 1.1,
  ;                   NASM 0.98, and ALINK. This program demonstrates
  ;                   how segments are defined and initialized using NASM.

  [BITS 16]           ; Set 16 bit code generation

        SEGMENT junk  ; Segment containing code

  ..start:            ; The two dots tell the linker to Start Here.
                      ; Note that this is a special symbol and MUST
                      ; be in lower case! "..start:"  "..START:"

  ; SEGMENT SETUP
  ;
  ;  In real mode segmented model, a program uses three segments, and it must
  ;  set up the addresses in the three corresponding segment registers. This
  ;  is what the ASSUME directive does in MASM; we ASSUME nothing in NASM!
  ;  Each of the three segments has a name (here, code, data, and stack) and
  ;  these names are identifiers indicating segment addresses. It is the
  ;  appropriate segment address that is moved into each segment register.
  ;  Note that you can't move an address directly into a segment register;
  ;  you must first move the address into a general purpose register. Also
  ;  note that we don't do anything with CS; the ..start: label tells the
  ;  linker where the code segment begins.

    mov  ax,data      ; Move segment address of data segment into AX
    mov  ds,ax        ; Copy address from AX into DS
    mov  ax,stack     ; Move segment address of stack segment into AX
    mov  ss,ax        ; Copy address from AX into SS

    mov  sp,stacktop  ; Point SP to the top of the stack

    mov  dx,eatmsg    ; Mem data ref without [] loads the ADDRESS!
    mov  ah,9         ; Function 9 displays text to standard output.
    int  21H          ; INT 21H makes the call into DOS.

    mov  ax, 04C00H   ; This DOS function exits the program
    int  21H          ;  and returns control to DOS.

        SEGMENT data  ; Segment containing initialized data



  eatmsg   db "Eat at Joe's!", 13, 10, "$" ;Here's our message

        SEGMENT stack stack ;This means a segment of *type* "stack"
                            ; that is also *named* "stack"! Some
                            ; linkers demand that a stack segment
                            ; have the explicit type "stack"
          resb 64      ; Reserve 64 bytes for the program stack
    stacktop:          ; It's significant that this label points to
                       ;  the *last* of the reserved 64 bytes, and
                       ;  not the first!

Three Segments

Assembly language programs written for real mode segmented model must contain at least three segments: One
for code, one for data, and one for the stack. Larger programs may contain more than one code segment and
more than one data segment, but real mode programs may contain only one stack segment at a time.

EATSEG.ASM has those three necessary segments. Each segment has a name: stack,data, and code, which
indicate pretty clearly what the segment is for. The code segment, pretty obviously, contains the machine
instructions that do the program's work. The data segment contains initialized variables.

The stack segment contains the program's stack. I haven't explained stacks just yet, and because you don't really
need to understand stacks in order to understand how EATSEG.ASM works, I'm going to hold off just a little while
longer. In short, a stack is simply an ordered place to stash things for the short term-and that will have to do until
we cover the concept in depth in the next section.

Each of the three segments is declared using the SEGMENT directive, which is a command that tells NASM that a
segment begins here. The SEGMENT directive must be followed by the segment's name. You can name the
segments whatever you like, but custom suggests that when you have only three segments, they be called
stack,data, and code. Why obscure the meaning of what you're writing?

The segment containing the stack has some special considerations attached to it, especially regarding the linking
of several files together into one executable program. One of these considerations is that the stack have the type
"stack" attached to it. This tells the linker (as I explain later) that this particular segment is special-it's a stack
segment and not just a data segment. Hence the line:

  SEGMENT stack stack

Nobody's stuttering here. The SEGMENT directive is creating a stack named "stack" that is of the type "stack."
The first identifier is the name; the second is the type. You could change the name of the segment to MyStack or
GreasedPig if you like, but it's important to let the type of the stack segment be precisely stack. More on this after
we explain something else.

Don't ASSUME…

If you remember, in the real mode flat model, the operating system sets all four segment registers to the same
value (one that it selects) when the program is loaded into memory and run. In the real mode segmented mode,
the different segments are indeed different and distinct regions of memory and are not all the same place. When
the program begins running, DOS doesn't set the segment registers to anything. Your program must do that on its
own. (DOS does, of course, set CS to the start of the code segment before giving control to your program. The
other segment registers it leaves alone.)

This is what the first part of EATSEG.ASM does: It takes the addresses represented by the segment names for the
data and stack segments and loads them into DS and SS, the segment registers governing those segments:

  mov  ax,data     ; Move segment address of data segment into AX
  mov  ds,ax       ; Copy address from AX into DS
  mov  ax,stack    ; Move segment address of stack segment into AX
  mov  ss,ax       ; Copy address from AX into SS



Keep in mind that you can only load a segment register from a general-purpose register-you can't load it from
anything else, either immediate data or memory data. This is why the segment addresses have to pass through AX
to get into DS and SS. (Because we're not using ES to govern a segment defined at assembly time right there in
our program, we don't need to load ES with anything right off the bat.)

This is a good place to point out a crucial difference between NASM (the assembler that we're using in this book)
and Microsoft's extremely popular MASM, which is probably the most-used assembler in history: MASM attempts
to associate segment names with segment types. NASM does not.

With one small exception done as a courtesy to the linker, NASM does not know which segment is the code
segment, nor which segment is the data segment, nor which segment is the stack segment. You define a segment
by name:

  SEGMENT data       ; Segment containing initialized data

The name "data," however, tells you that it's the data segment. The assembler doesn't look for the string "data"
and note somewhere that the segment named data is the data segment. This is why you could change the
preceding line to this:

  SEGMENT GreasedPig ; Segment containing initialized data

Nothing would change. GreasedPig is an odd name for a segment, but a completely legal one.

In MASM, Microsoft defines the ASSUME directive, which associates segment names with segment registers. This
allows MASM to generate segment prefixes automatically when it creates the opcodes called out by a particular
mnemonic in your source code. This is a tricky and subtle business, so to make this clearer, imagine a memory
variable defined in a segment that is addressed via ES:

      SEGMENT JunkSegment
  JunkChunk   DW   0FFA7H

At the beginning of the program, you have to make sure ES is loaded with the segment address of JunkSegment:

  MOV AX, JunkSegment ; Load segment address of JunkSegment into ES via AX
  MOV ES, AX

Ordinarily, using NASM, you have to specify when a piece of memory data is located relative to the ES register,
because the default is DS:

  MOV AX,[ES:JunkChunk] ; Move word variable JunkChunk from JunkSegment (ES) into AX

That's the NASM way. Using Microsoft's MASM, you can associate a segment name with ES using the ASSUME
directive:

  ASSUME ES:JunkSegment

Having associated ES and JunkSegment this way, you could now write the MOV instruction without explicitly
including the ES: segment prefix:

  MOV AX,[JunkChunk] ; Move word variable JunkChunk from JunkSegment (ES) into AX

Thanks to ASSUME, MASM knows that the variable JunkChunk is located in extra segment ES, so it inserts the
ES: prefix behind the scenes as it generates the opcode for this mnemonic. Many of us (NASM's authors included)
don't think this is a particularly good idea. It makes the source code less specific and hence less readable-a
person not familiar with the program might assume (heh-heh) that JunkChunk is in the data segment associated
with DS because there's no ES: prefix and DS is the default for memory variable references like that.

So, NASM has nothing like ASSUME. When you move away from the default addressing of memory variables
relative to DS, you must include the segment register prefix inside the square brackets of all memory variable



references!

Naming the Stack Segment

The exception I noted earlier is that NASM allows you to say which segment is the stack segment:

  SEGMENT MyStack stack

Here, MyStack is the name of the segment (which can be any legal identifier) and stack is the type. This is not for
NASM's benefit-it will not take any action of its own based on knowing that the segment named MyStack is in fact
the stack segment. But some linkers need to know that there is a stack segment defined in the program. Stack
segments are special as segments go, at least in part (kind of like Tigger) there can be only one-but there must be
one! Some linkers check to see whether there is a segment in a program designated as the stack segment, and to
keep such linkers quiet NASM allows you to give the stack type to a segment defined with SEGMENT.

This is a good idea and I recommend that you do it.

Choosing a Starting Point

There are no jumps, loops, or subroutines in EATSEG.ASM. If you've a smattering of assembly language smarts
you may wonder if the ..start: label at the beginning of the code segment is unnecessary except for readability
purposes. After all, start is not referenced anywhere within the program.

On the other hand, code execution has to begin somewhere, and you need to tell the assembler (and especially
the linker) where code execution must begin. This is the purpose of the ..start: label.

The issue is this: DOS needs to know at what address to begin execution when it loads and runs the program.
(DOS sets code segment register CS when it loads your program into memory prior to executing it.) You might
think DOS could assume that execution would begin at the start of the code segment, but there may be more than
one code segment, and under most circumstances the programmer does not specify the order of multiple code
segments within a single program. (The linker has the power to rearrange multiple code segments for reasons that
I can't explain in this book.) Better to have no doubt about it, and for that reason you the programmer should pick a
starting point and tell the assembler what it is.

You may notice that leaving out ..start: won't keep NASM from assembling a program, and while the linker will
complain about the lack of a starting point, the linker will default to starting execution at the beginning of the code
segment-which in our case is the only code segment, so there's no ambiguity there.

Nonetheless, it's bad practice to leave out the starting point label.

Assembling and Linking EATSEG.ASM

Although NASM can generate a .COM file (for a real mode flat model program) directly, it can't generate a .EXE
file for a real mode segmented model program in the same way. Once you move away from a single segment in
real mode flat model, NASM needs the help of a linker to generate the final .EXE file.

I've obtained permission to distribute an excellent free linker with this book's CD-ROM. The linker is ALINK, written
by Anthony Williams. It's on the CD-ROM, and if you copied the executable file ALINK.EXE to your hard drive
along with everything else, you can invoke it simply by naming it.

NASM-IDE was intended for writing programs in real mode flat model, so it relies exclusively on NASM and does
not have any machinery for invoking a linker. That means that NASM-IDE won't be able to do the assemble and
link tasks for us. It's time to face the fiendish command line.

If you're working from DOS you can simply assemble and link from the DOS command line. If you're working with
NASM-IDE in a DOS box under Windows, it's probably easier to "shell out" to the DOS command line from inside
NASM-IDE. This is done by selecting the menu item File|DOS Shell. You will see NASM-IDE vanish and be
replaced by a blank screen with the DOS prompt. When you're done with the DOS shell, type EXIT followed by
Enter to return to NASM-IDE.

Assembling EATSEG.ASM is done with the following command line:



  C:\>NASM16 EATSEG.ASM -f obj -o EATSEG.OBJ

This command line will assemble EATSEG.ASM to the file EATSEG.OBJ, in the standard .OBJ linkable file format.
Linking is even easier:

  C:\>ALINK EATSEG.OBJ

Here, ALINK will convert EATSEG.OBJ into EATSEG.EXE. I explain more about linkers and what they do in the
next chapter. Here, ALINK is acting more as a file format converter than anything else, since there's only one file
to be linked. Later on, we'll see how ALINK can connect multiple .OBJ files into a single executable file.

After ALINK runs, you'll have the file EATSEG.EXE on your hard disk. That's the file that you can name at the
DOS command line to run EATSEG.



Last In, First Out via the Stack

One problem with assembly language is that it's tough knowing where to put things. There are only so many
registers to go around. Having variables in a data segment is helpful, but it isn't the whole story. People who
come to assembly from higher-level languages such as Pascal and Basic find this particularly jarring, since
they're used to being able to create new variables at any time as needed.

The x86 CPUs contain the machinery to create and manage a vital storage area called the stack. The name is
appropriate, and for a usable metaphor I can go back to my high school days, when I was a dishwasher for
Resurrection Hospital on Chicago's Northwest Side.

Five Hundred Plates an Hour

What I did most of the time was pull clean plates from a moving conveyor belt of little prongs that emerged
endlessly from the steaming dragon's mouth of a 180° dishwashing machine. This was hot work, but it was a
lot less slimy than stuffing the dirty plates into the other end of the machine.

When you pull 500 plates an hour out of a dishwashing machine, you had better have some place efficient to
stash them. Obviously, you could simply stack them on a table, but stacked ceramic plates in any place
habituated by rowdy teenage boys is asking for fragments. What the hospital had instead was an army of little
wheeled stainless steel cabinets equipped with one or more spring-loaded circular plungers accessed from the
top. When you had a handful of plates, you pushed them down into the plunger. The plunger's spring was
adjusted such that the weight of the added plates pushed the whole stack of plates down just enough to make
the new top plate flush with the top of the cabinet.

Each plunger held about 50 plates. We rolled one up next to the dragon's mouth, filled it with plates, and then
rolled it back into the kitchen where the clean plates were used at the next meal shift to set patients' trays.

It's instructive to follow the path of the first plate out of the dishwashing machine on a given shift. That plate
got into the plunger first and was subsequently shoved down into the bottom of the plunger by the remaining
49 plates that the cabinet could hold. After the cabinet was rolled into the kitchen, the kitchen girls pulled
plates out of the cabinet one by one as they set trays. The first plate out of the cabinet was the last plate in.
The last plate out of the cabinet had been the first plate to go in.

The x86 stack is like that. We call it a last in, first out, or LIFO stack.

An Upside-Down Segment

Two of the x86 registers team up to create and maintain the stack. Like everything else in 86-land, the stack
must exist within a segment. The SS (Stack Segment) register holds the segment address of the segment
chosen to be the stack segment, and the SP (Stack Pointer) register points to locations within the stack
segment. As with all other segments in real mode, the stack segment may be as much as 65,536 bytes long,
but it may be any length less than that as well. You'll find in practice that the stack rarely needs to be larger
than a thousand bytes or so unless you're doing some really peculiar things.

The stack segment begins at SS:0, but the truly odd thing about it is that all the stack action happens at the
opposite end of the stack segment. When a stack segment is set up, the SS register points to the base or
beginning of the stack segment, and SP is set to point to the end of the stack segment. To store something in
the stack segment (which we usually call "pushing something onto the stack"), we move SP "down the stack"
(that is, closer to SS) and then copy the item to the memory location pointed to by SS:SP.

This takes some getting used to. Figure 8.1 provides the big picture of the stack segment and the two pointers
that give it life. In real mode flat model, SS is set to the base of the stack segment by DOS when the program
is loaded and begins running. (And all the other segment registers are set to the same address.) In real mode
segmented model, you set SS from the address of the segment that you define within the program in two
steps, first using NASM's SEGMENT directive:



Figure 8.1: The big picture of the real mode stack.

  SEGMENT stack stack

Then you need a couple of MOV instructions to get the address of segment stack into SS:

  mov  ax,stack     ; Move segment address of stack segment into AX
  mov  ss,ax        ; Copy address from AX into SS

Defining a stack segment just provides a starting point address for that segment. No room is actually reserved
for the stack by the SEGMENT directive. That requires a new directive that we haven't discussed:

  resb 64      ; Reserve 64 bytes for the program stack

RESB means "REServe Byte." And it means just that: It tells the assembler to set aside 64 bytes starting at
the beginning of the stack segment and not to let anything else (such as memory variables) be defined in that
reserved space. You can use RESB to reserve as much stack as you think you'll need; 64 bytes is enough for
simple experimentation. If you're writing a more ambitious program, you may be better off looking at what it
does and actually estimating a worst-case demand for stack space.

Note that you don't need to use RESB to reserve stack space if you're working in real mode flat model. The
stack in that model exists at the very highest addresses of the single segment the program lives in. The space
isn't reserved in the strictest sense, and you have to be careful not to let your code or data get so high in
memory that it collides with your stack. This is called a stack crash and you're not likely to see one in your own
programs until you get a lot further along in your assembly experience.

SP is set to the far (that is, the high, address-wise) end of the stack segment. (See Figure 8.1, where an arrow
indicates the initial value of SP.) Again, if you're working in real mode flat model, DOS does it when your
program is loaded—as you can see if you load EAT.COM with DEBUG and display the registers with the R
command. SP will have a value something like 0FFFEH—in any case, something fairly high rather than close
to 0000H.

And if you're working in real mode segmented model, you have to set SP yourself. This is done by first



indicating the initial address to be contained in SP:

       resb 64    ; Reserve 64 bytes for the program stack
  stacktop:       ; It's significant that this label points to
                  ;  the *last* of the reserved 64 bytes, and
                  ;  not the first!

Note that the label stacktop: is immediately after the RESB 64 directive. The label stacktop: represents an
address at the very end of the block of reserved memory locations set aside by RESB. Although the position
of the two lines on the source code listing suggests that stacktop: points beyond the block of memory set
aside by RESB, that's not the case. The stacktop: label resolves to the offset of the last byte in that block of
64 bytes.

You load the address represented by the stacktop: label into SP when the program begins, typically right after
you set up the segment registers:

  mov  sp,stacktop    ; Point SP to the top of the stack

After that's set up, you have valid values in both SS and SP, and you can begin using the stack.

Pushing Data

You can place data onto the stack in numerous ways, but the most straightforward way involves a trio of
related machine instructions, PUSH, PUSHF, and PUSHA. The three are similar in how they work, and differ
as to what they push onto the stack. PUSHF pushes the Flags register onto the stack. PUSHA pushes all
eight of the 16-bit general-purpose registers. PUSH pushes a 16-bit register or memory value that is specified
by you in your source code, like so:

  PUSHF     ; Push the Flags register
  PUSHA     ; Push AX, CX, DX, BX, SP, BP, SI, and DI, in that order, all at once
  PUSHAD    ; Push EAX, ECX, EDX, EBX, ESP, ESP, EBP, ESI, and EDI, all at once
  PUSH AX   ; Push the AX register
  PUSH [BX] ; Push the word stored in memory at DS:BX
  PUSH DI   ; Push the DI register
  PUSH ES   ; Push the ES register

Note that PUSHF takes no operands. You'll generate an assembler error if you try to hand it an operand;
PUSHF pushes the flags and that's all it is capable of doing.

PUSH and PUSHF work this way: First SP is decremented by one word (two bytes) so that it points to an
empty area of the stack segment that is two bytes long. Then whatever is to be pushed onto the stack is
written to memory in the stack segment at the offset address in SP. Voila! The data is safe on the stack, and
SP has crawled two bytes closer to SS. We call the word of memory pointed to by SP the top of the stack.

PUSHA works the same way, except that it pushes eight 16-bit registers at once, thus using 16 bytes of stack
space at one swoop. One thing to remember is that PUSHA is a newer instruction that doesn't exist on the
8086 and 8088. It first appeared with the 286.

PUSHAD was added with the 386, and it pushes all eight 32-bit general-purpose registers onto the stack in
one blow.

All memory between SP's initial position and its current position (the top of the stack) contains real data that
was explicitly pushed on the stack and will presumably be fetched from the stack (we say popped from the
stack) later on. In real mode segmented model, the stack exists in a separate segment, and memory between
SS and SP is considered free and available and is used to store new data that is to be pushed onto the stack.
This is not the case in real mode flat model, where the stack shares the same segment that everything else in
the program is using.

What can and cannot be pushed onto the stack is complicated and depends on what CPU you're using. None
of the x86 CPUs can push 8-bit registers onto the stack. You can't push AL or BH or any other of the 8-bit
registers. Segment registers and 32-bit extended general-purpose registers can be pushed in real mode,



assuming you have a 386 or later CPU. Similarly, immediate data can be pushed onto the stack, but only if
you have a 286 or later CPU. Keeping track of all this used to be a problem, but you're unlikely to be running
code on CPUs earlier than the 386 these days.

Your morbid curiosity may be wondering what happens when SP runs out of room in its downward crawl and
collides with SS. Nothing good, certainly—it depends heavily on how your program is laid out—but I would lay
money on your program crashing hard and possibly taking the system down with it. (If you're working in a DOS
box under Windows NT you at least won't crash the operating system. All bets are off for Windows 9x!)

Stack crashes are serious business, at least in part because there is only one stack in action at a time in real
mode. It's a little hard to explain (especially at this stage in our discussion), but this means that the stack you
set up for your own program must be large enough to support as well the needs of DOS and any interrupt-
driven code (typically in the BIOS) that may be active while your program is running. Even if you don't fully
understand how someone else may be using your program's stack at the same time you are, give those other
guys some extra room—and keep an eye on the proximity of SS and SP while you trace a program in DEBUG.

POP Goes the Opcode

In general, what gets pushed must get popped, or you can end up in any of several different kinds of trouble.
Getting a word of data off the stack is done with another trio of instructions, POP, POPF, andPOPA. As you
might expect, POP is the general-purpose one-at-a-time popper, while POPF is dedicated to popping the flags
off of the stack. POPA pops 16 bytes off the stack into the eight general-purpose 16-bit registers. POPAD is
the flip side of PUSHAD and pops the top 32 bytes off the stack into the eight general-purpose 32-bit registers.

  POPF     ; Pop the top of the stack into Flags
  POPA     ; Pop the top 16 bytes from the stack into AX, CX, DX, BX, SP,
           ;  BP, SI, and DI
  POPAD    ; Pop the top 32 bytes into EAX, ECX, EDX, EBX, ESP, ESP, EBP,
           ;  ESI, and EDI
  POP SI   ; Pop the top of the stack into SI
  POP CS   ; Pop the top of the stack into CS
  POP [BX] ; Pop the top of the stack into memory at DS:BX

As with PUSH, POP only operates on word-sized operands. Don't try to pop data from the stack into an 8-bit
register such as AH or CL.

POP works pretty much the way PUSH does, but in reverse: First the word of data at SS:SP is copied from the
stack and placed in POP's operand, whatever you specified that to be. Then, SP is incremented (rather than
decremented) by two bytes, so that in effect it moves two bytes up the stack, away from SS.

It's significant that SP is decremented before placing a word on the stack at push time, but incremented after
removing a word from the stack at pop time. Certain other CPUs work in the opposite manner, which is
fine—just don't get confused. Unless the stack is empty, SP points to real data, not empty space.

Ordinarily, you don't have to remember that fact, as PUSH and POP handle it all for you and you don't have to
manually keep track of what SP is pointing to. If you decide to manipulate the stack pointer directly, it helps to
know the sequence of events behind PUSH and POP—and that's an advanced topic that I won't be going into
in this book.

Figure 8.2 shows the stack's operation in a little more detail. The values of the four "X" registers at some
hypothetical point in a program's execution are shown at the top of the figure. AX is pushed first on the stack.



Figure 8.2: How the stack works.

Its least significant byte is at SS:SP, and its most significant byte is at SS:SP+1. (Remember that both bytes
are pushed onto the stack at once, as a unit!)

Each time one of the registers is pushed onto the stack, SP is decremented two bytes down toward SS. The
first three columns show AX, BX, and CX being pushed onto the stack, respectively. But note what happens in
the fourth column, when the instruction POP DX is executed. The stack pointer is incremented by two bytes
and moves away from SS. DX now contains a copy of the contents of CX. In effect, CX was pushed onto the
stack, and then immediately popped off into DX.

That's a roundabout way to copy the value of CX into DX. MOV DX,CX is lots faster and more straightforward.
However, MOV will not operate on the Flags register. If you want to load a copy of Flags into a register, you
must first push the Flags register onto the stack with PUSHF, then pop the flags word off the stack into the
register of your choice with POP. Getting the Flags register into BX is done like this:

  PUSHF  ; Push the flags register onto the stack..
  POP BX ; ..and pop it immediately into BX

Storage for the Short Term

The stack should be considered a place to stash things for the short term. Items stored on the stack have no
names, and in general must be taken off the stack in the reverse order that they were put on. Last in, first out,
remember. LIFO!

One excellent use of the stack allows the all-too-few registers to do multiple duty. If you need a register to
temporarily hold some value to be operated on by the CPU and all the registers are in use, push one of the
busy registers onto the stack. Its value will remain safe on the stack while you use the register for other things.
When you're finished using the register, pop its old value off the stack—and you've gained the advantages of
an additional register without really having one. (The cost, of course, is the time you spend moving that
register's value onto and off of the stack. It's not something you want to do in the middle of an often-repeated
loop!)



Using DOS Services through INT

I think of EAT.ASM as something of a Tom Sawyer program. It doesn't do much, and it does what it
does in time-honored Tom Sawyer fashion—by getting somebody else to do all the work. All that EAT
does is display a character string on your screen. The visible part of that string is the advertising slogan
itself: Eat at Joe's! The other part is the pair of invisible characters we call newline or EOL: carriage
return (0DH) followed by line feed (0AH). (For more on EOL markers and how they interact with text,
see Chapter 4.) The EOL marker does nothing more than return the display cursor to the left margin of
the next screen line, so that any subsequent text displayed will begin at the left margin and not nipping
at the heels of Eat at Joe's!

Both parts of our advertising slogan are sent to the display at once, and via the same mechanism:
through a DOS service.

As I explain in Chapter 4, DOS is both a god and a troll. It controls all the most important elements of
the machine in godlike fashion: the disk drives, the printer, and (to some extent) the display. At the
same time, DOS is like a troll living under a bridge to all those parts of your machine: You tell the troll
what you want done, and the troll will go out and do it for you.

There is another troll guarding the bridges to other components of your machine called the BIOS, to
which we'll return in a little while. DOS and BIOS both offer services, which are simple tasks that your
programs would have to do themselves if the services were not provided. Quite apart from saving you
the programmer a lot of work, having DOS and BIOS services helps guarantee that certain things will
be done in identical fashion on all machines, which (especially in terms of disk storage) is a major
reason software written for DOS runs on so many different machines: All the machine-dependent stuff
is done the same way.

One of the services DOS provides is simple (far too simple, actually) access to your machine's display.
For the purposes of EAT.ASM (which is just a lesson in getting your first assembly language program
written and operating), simple services are enough.

So—how do we use DOS and BIOS services? The way is as easy to use as it is tricky to understand:
through software interrupts.

An Interrupt That Doesn't Interrupt Anything

As one new to the x86 family of processors back in 1981, the notion of a software interrupt drove me
nuts. I kept looking and looking for the interrupter and interruptee. Nothing was getting interrupted.

The name is unfortunate, even though I admit that there was some reason for calling software
interrupts what they are. They are, in fact, courteous interrupts—if you can still call an interrupt an
interrupt when it is so courteous that it does no interrupting at all.

The nature of software interrupts and DOS services is best explained by a real example illustrated
twice in EAT.ASM. As I hinted previously, DOS keeps little sequences of machine instructions tucked
away within itself. Each sequence does something useful—read something from a disk file, display
something to the screen, send something to the printer. DOS uses them to do its own work, and it also
makes them available (with its troll hat on) to you the programmer to access from your programs.

Well, there is the critical question: How do you find something tucked away inside of DOS? All code
sequences, of course, have addresses, and Microsoft or IBM could publish a booklet of addresses
indicating where all the code is hidden. There are numerous good reasons not to pass out the
addresses of the code itself, however. DOS is evolving and (we should hope) being repaired on an
ongoing basis. Repairing and improving code involves adding, changing, and removing machine
instructions, which changes the size of those hidden code sequences—and also, in consequence,
changes their location. Add a dozen instructions to one sequence, and all the other sequences up-
memory from that one sequence will have to shove over, to make room. Once they shove over, they'll
be at different addresses, so instantly the booklets are obsolete. Even one byte added to or removed
from a code sequence in DOS could change everything. What if the first code sequence has a bug that
must be fixed?

The solution is ingenious. At the very start of real mode memory, down at segment 0, offset 0, is a



special table with 256 entries. Each entry is a complete address including segment and offset portions,
for a total of 4 bytes per entry. The first 1,024 bytes of memory in any x86 machine are reserved for this
table, and no code or data may be placed there.

Each of the addresses in the table is called an interrupt vector. The table as a whole is called the
interrupt vector table. Each vector has a number, from 0 to 255. The vector occupying bytes 0 through
3 in the table is vector 0. The vector occupying bytes 4 through 7 is vector 1, and so on, as shown in
Figure 8.3.

Figure 8.3: The interrupt vector table.

None of the addresses is burned into permanent memory the way BIOS routines are. When your
machine starts up, DOS and BIOS fill many of the slots in the interrupt vector table with addresses of
certain service routines within themselves. Each version of DOS knows the location of its innermost
parts, and when you upgrade to a new version of DOS, that new version will fill the appropriate slots in
the vector table with upgraded and accurate addresses.

What doesn't change from DOS version to DOS version is the number of the interrupt that holds a
particular address. In other words, since the PC first began, interrupt 21H has pointed the way into
darkest DOS to DOS's services dispatcher, a sort of multiple-railway switch with spurs heading out to
the many (over 50) individual DOS service routines. The address of the dispatcher has changed with
every DOS version, but regardless of version, programs can find the address of the dispatcher in slot
21H of the interrupt vector table.

Furthermore, programs don't have to go snooping the table for the address themselves. The x86 CPUs
include a machine instruction that makes use of the interrupt vector table. The INT (INTerrupt)
instruction is used by EAT.ASM to request the services of DOS in displaying two strings on the screen.
At two places, EAT.ASM has an INT 21H instruction. When an INT 21H instruction is executed, the
CPU goes down to the interrupt vector table, fetches the address from slot 21H, and then jumps



execution to the address stored in slot 21H. Since the DOS services dispatcher lies at the address in
slot 21H, the dispatcher gets control of the machine and does the work that it knows how to do.

The process is shown in Figure 8.4. When DOS loads itself at boot time, one of the many things it does
to prepare the machine for use is put correct addresses in several of the vectors in the interrupt vector
table. One of these addresses is the address of the dispatcher, which goes into slot 21H.

Figure 8.4: Riding the interrupt vector into DOS.

Later on, when you type the name of your program MYPROG on the DOS command line, DOS loads
MYPROG.EXE into memory and gives it control of the machine. MYPROG.EXE does not know the
address of the DOS dispatcher. MYPROG does know that the dispatcher's address will always be in
slot 21H of the vector table, so it executes an INT 21 instruction. The correct address lies in vector
21H, and MYPROG is content to remain ignorant and simply let the INT 21 instruction and vector 21H
take it where it needs to go.

Back on the Northwest Side of Chicago, where I grew up, there was a bus that ran along Milwaukee
Avenue. All Chicago bus routes had numbers, and the Milwaukee Avenue route was number 56. It
started somewhere in the tangled streets just north of Downtown, and ended up in a forest preserve
just inside the city limits. The Forest Preserve District ran a swimming pool called Whelan Pool in that
forest preserve. Kids all along Milwaukee Avenue could not necessarily have told you the address of
Whelan Pool. But come summer, they'd tell you in a second how to get there: Just hop on bus number
56 and take it to the end of the line. It's like that with software interrupts. Find the number of the vector
that reliably points to your destination, and ride that vector to the end of the line, without worrying about
the winding route or the address of your destination.

Note that the INT 21 instruction does something else: It pushes the address of the next instruction (that
is, the instruction immediately following the INT 21 instruction) on the stack before it follows vector 21H
into the depths of DOS. Like Hansel and Gretel, the INT 21 was pushing some breadcrumbs to the
stack as a way of helping execution find its way back to MYPROG.EXE after the excursion down into
DOS—but more on that later.



Now, the DOS dispatcher controls access to dozens of individual service routines. How does it know
which one to execute? You have to tell the dispatcher which service you need, and you do so by
placing the service's number in 8-bit register AH. The dispatcher may require other information as well
and will expect you to provide that information in the correct place before executing INT 21.

Look at the following three lines of code from EAT.ASM:

  mov  dx,eatmsg   ; Mem data ref without [] loads the ADDRESS!
  mov  ah,09H      ; Function 9 displays text to standard output.
  int  21H         ; INT 21H makes the call into DOS.

This sequence of instructions requests that DOS display a string on the screen. The first line sets up a
vital piece of information: the offset address of the string to be displayed on the screen. Without that,
DOS will not have any way to know what it is that we want to display. The dispatcher expects the offset
address to be in DX and assumes that the segment address will be in DS.

In flat model, DS is initialized by DOS at execution time. In segmented model, the address of the data
segment was loaded into DS earlier in the program by these two instructions:

  mov  ax,data    ; Move segment address of data segment into AX
  mov  ds,ax      ; Copy address from AX into DS

Once loaded, DS is not disturbed during the full run of the program, so the DOS dispatcher's
assumption is valid even though DS is loaded at the start of program execution and not each time we
want to display a string.

In moving 09H into register AH, we tell the dispatcher which service we want performed. Service 09H is
DOS's Print String service. This is not the fastest nor in other ways the best way to display a string on
the PC's screen, but it is most certainly the easiest.

DOS service 09H has a slightly odd requirement: That the end of the string be marked with a dollar sign
($). This is the reason for the dollar sign hung incongruously on the end of EAT.ASM's advertising
slogan string. Given that DOS does not ask us to pass it a value indicating how long the string is, the
end of the string has to be marked somehow, and the dollar sign is DOS's chosen way. It's a lousy way,
unfortunately, because with the dollar sign acting as a marker, there is no way to display a dollar sign.
If you intend to talk about money on the PC's screen, don't use DOS service 9! As I said, this is the
easiest, but certainly not the best way to display text on the screen.

With the address of the string in DS:DX and service number 09H in AH, we take a trip to the dispatcher
by executing INT 21H. The INT instruction is all it takes—boom!, and DOS has control, reading the
string at DS:DX and sending it to the screen through mechanisms it keeps more or less to itself.

Getting Home Again

So much for getting into DOS. How do we get home again? The address in vector 21H took control into
DOS, but how does DOS know where to go to pass execution back into EAT.EXE? Half of the
cleverness of software interrupts is knowing how to get there, and the other half—just as clever—is
knowing how to get back.

To get into DOS, a program looks in a completely reliable place for the address of where it wants to go:
the address stored in vector 21H. This address takes execution deep into DOS, leaving the program
sitting above DOS. To continue execution where it left off prior to the INT 21 instruction, DOS has to
look in a completely reliable place for the return address, and that completely reliable place is none
other than the top of the stack.

I mentioned earlier (without much emphasis) that the INT 21 instruction pushes an address to the top of
the stack before it launches off into the unknown. This address is the address of the next instruction in
line for execution: the instruction immediately following the INT 21 instruction. This location is
completely reliable because, just as there is only one interrupt vector table in the machine, there is only
one stack in operation at any one time. This means that there is only one top of the stack—that is,
SS:SP—and DOS can always send execution back to the program that called it by popping the address



off the top of the stack and jumping to that address.

The process is shown in Figure 8.5, which is the continuation of Figure 8.4. Just as the INT instruction
pushes a return address onto the stack and then jumps to the address stored in a particular vector,
there is a

Figure 8.5: Returning home from an interrupt.

"combination" instruction that pops the return address off the stack and then jumps to the address. The
instruction is IRET (for Interrupt RETurn), and it completes this complex but reliable system of jumping
toan address when you really don't know the address. The trick, once again, is knowing where the
address can reliably be found. (There's actually a little more to what the software interrupt mechanism
pushes onto and pops from the stack, but it happens transparently enough that I don't want to
complicate the explanation at this point—and you're unlikely to be writing your own software interrupt
routines for a while.)

This should make it clear by now what happens when you execute an INT 21 instruction. EAT.ASM
uses DOS services to save it the trouble of writing its string data to the screen a byte at a time. The
address into DOS is at a known location in the interrupt vector table, and the return address is at a
known location on the stack. Whereas I've described the software interrupt system in terms of the DOS
service dispatcher interrupt 21H, the system is precisely the same for all other software interrupts—and
there are many. In the next chapter we use a few more and explore some of the many services
available through the BIOS interrupts that control your video display and printer.

Software Interrupts versus Hardware Interrupts

Software interrupts evolved from an older mechanism that did involve some genuine interrupting:
hardware interrupts. A hardware interrupt is your CPU's mechanism for paying attention to the world
outside itself.



There is a fairly complex electrical system built into your PC that allows circuit boards to send signals to
the CPU. An actual metal pin on the CPU chip is moved from one voltage level to another by a circuit
board device like a disk drive controller or a serial port board. Through this pin, the CPU is tapped on
the shoulder by the external device. The CPU recognizes this tap as a hardware interrupt. Like software
interrupts, hardware interrupts are numbered, and for each interrupt number there is a slot reserved in
the interrupt vector table. In this slot is the address of an interrupt service routine (ISR) that performs
some action relevant to the device that tapped the CPU on the shoulder. For example, if the interrupt
signal came from a serial port board, the CPU would then allow the serial port board to transfer a
character byte from itself into the CPU.

Most properly, any routine that lies at the end of a vector address in the interrupt vector table is an ISR,
but the term is usually reserved for hardware interrupt service routines.

The only difference between hardware and software interrupts is in the event that triggers the trip
through the interrupt vector table. With a software interrupt the triggering event is part of the software;
that is, an INT instruction. With a hardware interrupt, the triggering event is an electrical signal applied
to the CPU chip itself without any INT instruction taking a hand in the process. The CPU itself pushes
the return address on the stack when it recognizes the electrical pulse that triggers the interrupt;
however, when the ISR is done, a RET instruction sends execution home, just as it does for a software
interrupt.

Hardware ISRs can be (and usually are) written in assembly language. It's a difficult business, because
the negotiations between the hardware and software must be done just so, or the machine may lock up
or go berserk. This is no place for beginners, and I would advise you to develop some skill and obtain
some considerable knowledge of your hardware setup before attempting to write a hardware ISR.



Chapter 9: Dividing and Conquering Using

Procedures and Macros to Battle Complexity

Programming in Martian

There is a computer language called APL (an acronym for A Programming Language, how clever) that
has more than a little Martian in it. APL was the first computer language I learned (on a major IBM
mainframe), and when I learned it, I learned a little more than just APL.

APL uses a very compact notation, with dozens of odd little symbols, each of which is capable of some
astonishing power such as matrix inversion. You can do more in one line of APL than you can in one
line of anything else I have learned since. The combination of the strange symbol set and the compact
notation makes it very hard to read and remember what a line of code in APL actually does.

So it was in 1977. Having mastered (or so I thought) the whole library of symbols, I set out to write a
text formatter program. The program would justify right and left, center headers, and do a few other
things of a sort that we take for granted today but which were very exotic in the seventies.

The program grew over a period of a week to about 600 lines of squirmy little APL symbols. I got it to
work, and it worked fine-as long as I didn't try to format a column that was more than 64 characters
wide. Then everything came out scrambled.

Whoops. I printed the whole thing out and sat down to do some serious debugging. Then I realized with
a feeling of sinking horror that, having finished the last part of the program, I had no idea how the first
part worked.

The APL symbol set was only part of the problem. I soon came to realize that the most important
mistake I had made was writing the whole thing as one 600-line monolithic block of code lines. There
were no functional divisions, nothing to indicate what any 10-line portion of the code was trying to
accomplish.

The Martians had won. I did the only thing possible: I scrapped it. And I settled for ragged margins in
my text.



Boxes within Boxes

This sounds like Eastern mysticism, but it's just an observation from life: Within any action is a host of
smaller actions. Look inside your common activities. When you brush your teeth you do the following:

Pick up your toothpaste tube.

Unscrew the cap.

Place the cap on the sink counter.

Pick up your toothbrush.

Squeeze toothpaste onto the brush from the middle of the tube.

Put your toothbrush into your mouth.

Work it back and forth vigorously.

And so on. The original list went the entire page. When you brush your teeth, you perform every one of
those actions. However, when you think about the sequence, you don't run through the whole list. You
bring to mind the simple concept "brushing teeth."

Furthermore, when you think about what's behind the action we call "getting up in the morning," you might
assemble a list of activities like this:

Shut off the clock radio.

Climb out of bed.

Put on your robe.

Let the dogs out.

Make breakfast.

Brush your teeth.

Shave.

Shower.

Get dressed.

Brushing your teeth is on the list, but within the activity you call "brushing your teeth" is a whole list of
smaller actions, as listed previously. The same can be said for most of the activities shown in the
preceding list. How many individual actions, for example, does it take to put a reasonable breakfast
together? And yet in one small, if sweeping, phrase, "getting up in the morning," you embrace that whole
host of small and even smaller actions without having to laboriously trace through each one.

What I'm describing is the "Chinese boxes" method of fighting complexity. Getting up in the morning
involves hundreds of little actions, so we divide the mass up into coherent chunks and set the chunks into
little conceptual boxes. "Making breakfast" is in one box, "brushing teeth" is in another, and so on. Closer
inspection of any box shows that its contents can also be divided into numerous boxes, and those smaller
boxes into even smaller boxes.

This process doesn't (and can't) go on forever, but it should go on as long as it needs to in order to satisfy
this criterion: The contents of any one box should be understandable with only a little scrutiny. No single
box should contain anything so subtle or large and involved that it takes hours of hair-pulling to figure it
out.

Procedures as Boxes for Code

The mistake I made in writing my APL text formatter is that I threw the whole collection of 600 lines of APL
code into one huge box marked "text formatter."



While I was writing it, I should have been keeping my eyes open for sequences of code statements that
worked together at some identifiable task. When I spotted such sequences, I should have set them off as
procedures. Each sequence would then have a name that would provide a memory tag for the sequence's
function. If it took 10 statements to justify a line of text, those 10 statements should have been named
JustifyLine, and so on.

Xerox's legendary APL programmer Jim Dunn later told me that I shouldn't ever write an APL procedure
that wouldn't fit on a single 25-line terminal screen. "More than 25 lines and you're doing too much in one
procedure. Split it up," he said. Whenever I worked in APL after that, I adhered to that rather sage rule of
thumb. The Martians still struck from time to time, but when they did, it was no longer a total loss.

All computer languages have procedures of one sort or another, and assembly language is no exception.
Your assembly language program may have numerous procedures. There's no limit to the number of
procedures, as long as the total number of bytes of code contained by all the procedures together does
not exceed 65,536 (one segment). Other complications arise at that point, but there are mechanisms in
assembly language to deal sensibly with those complications.

But that's a lot of code. You needn't worry for a while, and certainly not while you're just learning assembly
language. (I won't be treating the creation of multiple code segments in this book.) In the meantime, let's
take a look at the "Eat at Joe's" program, expanded a little to include a couple of procedures:

  ; Source name     : EAT2.ASM
  ; Executable name : EAT2.COM
  ; Code model      : Real Mode Flat Model
  ; Version         : 1.0
  ; Created date    : 7/31/1999
  ; Last update     : 9/11/1999
  ; Author          : Jeff Duntemann
  ; Description     : A simple example of a DOS .COM file programmed using
  ;                   NASM-IDE 1.1 and NASM 0.98 and incorporating procedures.

  [BITS 16]         ; Set 16 bit code generation
  [ORG 0×0100]      ; Set code start address to 100h (COM file)

  [SECTION .text]   ; Section containing code

  Start:
    mov DX,EatMsg1  ; Load offset of Eat1 string into DX
    call Writeln    ;  and display it
    mov DX,EatMsg2  ; Load offset of Ear2 string into DX
    call Writeln    ;  and display it

    mov ax, 04C00H  ; This function exits the program
    int 21H         ; and returns control to DOS.

  ;-----------------------------|
  ;      PROCEDURE SECTION      |
  ;-----------------------------|

  Write:
    mov AH,09H      ; Select DOS service 9: Print String
    int 21H         ; Call DOS
    ret             ; Return to the caller

  Writeln:
    call Write      ; Display the string proper through Write
    mov DX,CRLF     ; Load offset of newline string to DX
    call Write      ; Display the newline string through Write
    ret             ; Return to the caller

  ;-----------------------------|
  ;      DATA SECTION           |



  ;-----------------------------|

  [SECTION .data]   ; Section containing initialized data

  EatMsg1  DB   "Eat at Joe's . . . ",'$'
  EatMsg2  DB   "...ten million flies can't ALL be wrong!",'$'
  CRLF   DB   0DH,0AH,'$'

Calling and Returning

EAT2.ASM does about the same thing as EAT.ASM. It prints a second line as part of the advertising
slogan, and that's all in the line of functional innovation. The way the two lines of the slogan are displayed,
however, bears examination:

  mov DX,EatMsg1    ; Load offset of Eat1 string into DX
  call Writeln      ;  and display it

Here's a new machine instruction: CALL. The label Writeln refers to a procedure. As you might have
gathered (especially if you've programmed in an older language such as Basic or FORTRAN), CALL
Writeln simply tells the CPU to go off and execute a procedure named Writeln.

The means by which CALL operates may sound familiar: CALL first pushes the address of the next
instruction after itself onto the stack. Then CALL transfers execution to the address represented by the
name of the procedure. The instructions contained in the procedure execute. Finally, the procedure is
terminated by CALL's alter ego: RET (for RETurn). The RET instruction pops the address off the top of
the stack and transfers execution to that address. Since the address pushed was the address of the first
instruction after the CALL instruction, execution continues as though CALL had not changed the flow of
instruction execution at all. See Figure 9.1.



Figure 9.1: Calling a procedure and returning.

This should remind you strongly of how software interrupts work. The main difference is that the caller
does know the exact address of the routine it wishes to call. Apart from that, it's very close to being the
same process. (Also note that RET and IRET are not interchangeable. CALL works with RET just as INT
works with IRET. Don't get those return instructions confused!)

The structure of a procedure is simple and easy to understand. Look at the Write procedure from
EAT2.ASM:

  Write:
    mov AH,09H    ; Select DOS service 9: Print String
    int 21H       ; Call DOS
    ret           ; Return to the caller

The important points are these: A procedure must begin with a label, which is (as you should recall) an
identifier followed by a colon. Also, somewhere within the procedure, and certainly as the last instruction in
the procedure, there must be at least one RET instruction. There may be more than one RET instruction.
Execution has to come back from a procedure by way of a RET instruction, but there can be more than
one exit door from a procedure. Using more than one RET instruction requires the use of condition jump
instructions, which I won't take up until the next chapter.

Calls within Calls

Within a procedure you can do anything that you can do within the main program. This includes calling
other procedures from within a procedure. Even something as simple as EAT2.ASM does that. Look at the
Writeln procedure:

  Writeln:



    call Write    ; Display the string proper through Write
    mov DX,CRLF   ; Load offset of newline string to DX
    call Write    ; Display the newline string through Write
    ret           ; Return to the caller

The Writeln procedure displays a string to your screen, and then returns the cursor to the left margin of
the following screen line. This action is actually two distinct activities, and Writeln very economically uses
a mechanism that already exists: the Write procedure. The first thing that Writeln does is call Write to
display the string itself to the screen. Remember that the caller loaded the address of the string to be
displayed into DX before calling Writeln. Nothing has disturbed DX, so Writeln can immediately call
Write, which will fetch the address from DX and display the string to the screen.

Returning the cursor is done by displaying the newline sequence, which is stored in a string named CRLF.
(If you recall, the carriage return and line feed character pair was built right into our message string in the
EAT.ASM program that we dissected in Chapter 8.) Writeln again uses Write to display CRLF. Once that
is done, the work is finished, and Writeln executes a RET instruction to return execution to the caller.

Calling procedures from within procedures requires you to pay attention to one thing: stack space.
Remember that each procedure call pushes a return address onto the stack. This return address is not
removed from the stack until the RET instruction for that procedure executes. If you execute another
CALL instruction before returning from a procedure, the second CALL instruction pushes another return
address onto the stack. If you keep calling procedures from within procedures, one return address will pile
up on the stack for each CALL until you start returning from all those nested procedures.

If you run out of stack space, your program will crash and return to DOS, possibly taking DOS with it. This
is why you should take care not to use more stack space than you have. Ironically, in small programs
written in real mode flat model, this usually isn't a problem. Stack space isn't allocated in real mode flat
model; instead the stack pointer points to the high end of the program's single segment, and the stack
uses as much of the segment as it needs. For small programs with only a little data (such as the toy
programs we're building and dissecting in this book), 95 percent of the space in the segment has nothing
much to do and can be used by the stack if the stack needs it. (Which it doesn't—not in this kind of
programming!)

Things are different when you move to real mode segmented model. In that model, you have to explicitly
allocate a stack segment of some specific size, and that is all the space that the stack has to work with.
So, ironically, in a program that can potentially make use of the full megabyte of real mode memory, it's
much easier to foment a stack crash in segmented model than flat model. So, when you allocate space for
the stack in real mode segmented model, it makes abundant sense to allocate considerably more stack
space than you think you might ever conceivably need. EAT2.ASM at most uses 4 bytes of stack space,
because it nests procedure calls two deep. (Writeln within itself calls Write.) In a program like this, stack
allocation isn't an issue, even if you migrated it to the segmented model.

Nonetheless, I recommend allocating 512 bytes of stack to get you in the habit of not being stingy with
stack space. Obviously, you won't always be able to keep a 128-to-1 ratio of need-to-have, but consider
512 bytes a minimum for stack space allocation in any reasonable program that uses the stack at all. (We
allocated only 64 bytes of stack in EATSEG.ASM simply to show you what stack allocation was. The
program does not, in fact, make any use of the stack at all.) If you need more, allocate it. Don't forget that
there is only one stack in the system, and while your program is running, DOS and the BIOS and any
active memory resident programs may well be using the same stack. If they fill it, you'll go down with the
system—so leave room!

When to Make Something a Procedure

The single most important purpose of procedures is to manage complexity in your programs by replacing a
sequence of machine instructions with a descriptive name. This might hardly seem to the point in the case
of the Write procedure, which contains only two instructions apart from the structurally necessary RET
instruction.

True. But—the Writeln procedure hides two separate calls to Write behind itself: one to display the string,
and another to return the cursor to the left margin of the next line. The name Writeln is more readable and
descriptive of what the underlying sequence of instructions does than the sequence of instructions itself.



Extremely simple procedures such as Write don't themselves hide a great deal of complexity. They do
give certain actions descriptive names, which is valuable in itself. They also provide basic building blocks
for the creation of larger and more powerful procedures, as we'll see later on. And those larger procedures
will hide considerable complexity, as you'll soon see.

In general, when looking for some action to turn into a procedure, see what actions tend to happen a lot in
a program. Most programs spend a lot of time displaying things to the screen. Such procedures as Write
and Writeln become general-purpose tools that may be used all over your programs. Furthermore, once
you've written and tested them, they may be reused in future programs as well without adding to the
burden of code that you must test for bugs.

Try to look ahead to your future programming tasks and create procedures of general usefulness. I show
you more of those by way of examples as we continue, and tool building is a very good way to hone your
assembly language skills.

On the other hand, a short sequence (5 to 10 instructions) that is only called once or perhaps twice within
a middling program (that is, over hundreds of machine instructions) is a poor candidate for a procedure.

You may find it useful to define large procedures that are called only once when your program becomes
big enough to require breaking it down into functional chunks. A thousand-line assembly language
program might split well into a sequence of 9 or 10 largish procedures. Each is only called once from the
main program, but this allows your main program to be very indicative of what the program is doing:

  Start: call Initialize
         call OpenFile
  Input: call GetRec
         call VerifyRec
         call WriteRec
         loop Input
         call CloseFile
         call CleanUp
         call ReturnToDOS

This is clean and readable and provides a necessary view from a height when you begin to approach a
thousand-line assembly language program. Remember that the Martians are always hiding somewhere
close by, anxious to turn your program into unreadable hieroglyphics.

There's no weapon against them with half the power of procedures.



Using BIOS Services

In the last chapter we looked closely at DOS services, which are accessed through the DOS services
dispatcher. The DOS dispatcher lives at the other end of software interrupt 21H and offers a
tremendous list of services at the disposal of your programs. There's another provider of services in
your machine that lives even deeper than DOS: the ROM BIOS. ROM is an acronym for read-only
memory, and it indicates memory chips whose contents are burned into their silicon and do not vanish
when power is turned off. BIOS is an acronym for Basic Input/Output System, and it is just that: a
collection of fundamental routines for dealing with your computer's input and output peripherals. These
include disk drives, displays, printers, and the like. DOS uses BIOS services as part of some of the
services that it provides.

Like DOS, BIOS services are accessed through software interrupts. Unlike DOS, which channels nearly
all requests for its services through the single interrupt 21H, BIOS uses numerous interrupts (about 10)
and groups similar categories of services beneath the control of different interrupts. For example, video
display services are accessed through interrupt 10H, keyboard services come through interrupt 16H,
printer services through interrupt 17H, and so on.

The overall method for using BIOS services, however, is very similar to that of DOS. You load a service
number and sometimes other initial values into the registers and then execute an INT <n> instruction,
where the n depends on the category of services you're requesting.

Nothing difficult about that at all. Let's start building some tools.

Positioning the Hardware Cursor

So far, in writing to the display, we've simply let the text fall where it may. In general this means one line
of text following another, and when the screen fills, DOS scrolls the screen upward to make room on
the bottom line for more text. This makes for dull programs, very similar to programming in the bad old
days when everything was done on clunky mechanical printers called Teletypes. (Indeed, this kind of
screen I/O is called "glass Teletype" I/O, due to its similarity to a printer scrolling paper up one line at a
time.)

Let's leave the glass teletypes behind and take full control of the cursor. BIOS service 10H (often
nicknamed VIDEO, in uppercase, for reasons that are obscure) offers a simple service to position the
hardware cursor on the text screen. The service number is loaded into AH. This is a common thread
through all BIOS services: The service number is placed into AH. A 0 must be placed in BH unless you
intend to tinker with multiple text display pages. That's a story for another time (and not an especially
useful feature in the twenty-first century), so while you're learning, assume BH should be set to 0 for
cursor positioning.

The new position of the cursor must be loaded into the two halves of the DX register. Cursor positions
are given as X,Y coordinate pairs. The X component of the cursor position is the number of character
columns to the right of the left margin where we want the cursor to be. The Y component is the number
of lines down from the top of the screen where we want the cursor to be. The X component is loaded
into DL, and the Y component is loaded into DH. The routine itself is nothing more than this:

  GotoXY:
    mov AH,02H   ; Select VIDEO service 2: Position cursor
    mov BH,0     ; Stay with display page 0
    int 10H      ; Call VIDEO
    ret          ; Return to the caller

Don't forget that the X and Y values must be loaded into DX by the caller (and that means you!). Using
GotoXY is done this way:

    mov DX,[TextPos] ; TextPos contains X,Y position values
    call GotoXY      ; Position cursor
    mov DX,EatMsg1   ; Load offset of EatMsg1 string into DX
    call Write       ;  and display it



EAT3.ASM uses GotoXY to position the cursor, but it does something else as well: It clears the display.
If you're going to be moving the cursor at will around the screen with GotoXY, it makes sense to start
with a completely empty screen so that the remains of earlier programs and DOS commands don't
clutter up the view.

There's another VIDEO service that can do the job. Service 6 is an interesting and powerful one: Not
only does it clear the screen, it can scroll the screen as well, by any specified number of lines.
Furthermore, it can clear or scroll the entire screen, or only a rectangular portion of the screen, leaving
the rest of the screen undisturbed.

If the term scrolling is unfamiliar to you, just press Enter repeatedly at the DOS prompt and watch what
happens when you reach the bottom line of the screen. The displayed text on the screen jumps up by
one line, and an empty line appears at the bottom of the screen. The DOS prompt is then redisplayed in
the empty line. Scrolling is the process of making the screen jump up by one or more lines and inserting
one or more blank lines at the bottom as appropriate.

Using VIDEO Service 6

Understanding VIDEO service 6 involves a fair number of values that need to be passed to the service
in registers. The one unchanging item is the service number itself, passed as 6 in (as with all BIOS
services) register AH.

Service 6 acts upon a rectangular region of the display. This may be the full screen or it may be only
part of the screen. You must pass the coordinates of the upper-left and lower-right corners of the region
you want to work on in registers CX and DX. Because screen coordinates are always smaller than 255
(which is the largest value that can be expressed in 8 bits), the register halves of CX and DX are used
independently to carry the X and Y values.

The upper-left corner's X coordinate is passed in CL, and the upper-left corner's Y coordinate is passed
in CH. These are zero-based coordinates, meaning that they count from 0 rather than 1. Confusion is
possible here because most high-level languages such as Borland Pascal number coordinates on the
screen from 1. In other words, the upper-left corner of the screen in Borland Pascal is given by the
coordinates 1,1. To the BIOS, however, that same corner of the screen is 0,0. The width and height
values of a typical screen in Borland Pascal would be 80 × 25; the BIOS would say 79 × 24.

Similarly, the lower-right corner's X coordinate is passed in DL, and the lower-right corner's Y
coordinate is passed in DH. (Again, counting from 0.)

Service 6 either scrolls or clears the region. It can scroll the screen upward by any arbitrary number of
lines. This number is passed to service 6 in register AL. Clearing the region is a special case of
scrolling it: When you specify that 0 lines be scrolled, the entire region is cleared instead.

The full screen is actually a special case of a rectangular region. By passing the coordinates of the
upper-left and lower-right corners of the screen (0,0 and 79,24), the full screen is cleared.

Procedures with Multiple Entry Points

This is a lot of versatility for one service to handle, and it brings up a couple of questions. First of all,
how versatile should a single procedure be? Should there be one procedure to clear the whole screen,
another procedure to clear part of a screen, and a third procedure to scroll part of the screen?

The answer is that one procedure can do all three, and not duplicate any code at all. The method
involves writing a single procedure that has four different entry points. Each entry point is a label, which
may be called with a CALL instruction. When a given entry point's label is called, execution begins at
the instruction specified by that label. There is only one RET instruction, so the procedure is in fact one
procedure. It's like a house with three front doors but only one back door; having three front doors does
not make it three separate houses.

Here's what such a creature might look like:

  ClrScr:
    mov CX,0      ; Upper left corner of full screen



    mov DX,LRXY   ; Load lower-right XY coordinates into DX
  ClrWin:
    mov AL,0      ; 0 specifies clear entire region
  ScrlWin:
    mov BH,07H    ; Specify "normal" attribute for blanked line(s)
  VIDEO6:
    mov AH,06H    ; Select VIDEO service 6: Initialize/Scroll
    int 10H       ; Call VIDEO
    ret           ; Return to the caller

There's nothing much to this. What we have here is a collection of MOV instructions which set up
values in registers before calling VIDEO through interrupt 10H. Note that all of the entry points must be
given as valid labels with colons.

The multiple entry points exist only to allow you to skip certain portions of the procedure that set up
values that you don't want set. All the registers used by VIDEO service 6 must be set up somewhere.
However, they can either be set within the procedure or in the caller's code just before the procedure is
called. If the procedure sets them, they have to be set to some generally useful configuration (say,
clearing the entire screen), whereas if the caller sets them, the registers can be set to serve the caller's
needs and make service 6 perform any of its varied combinations.

So it is with procedure ClrScr. If you enter ClrScr through its main or top entry point, all of its internal
code will be executed. CX and DX will be set to the upper-left and lower-right corner coordinates of the
full screen, AL is set to 0 to clear the full screen rather than scroll it, and BH is loaded with the "normal"
(that is, blank, for white text on a black background) text display attribute. Then service 6 is called.

If you wish to clear only a rectangular area of the screen (a window.), you would use the ClrWin entry
point. This entry point starts executing the code after CX and DX are set to the corners of the full
screen. This means that the caller must load CX and DX with the upper-left and lower-right corners of
the screen region to be cleared. Calling ClrWin without setting CX and DX at all will execute service 6
with whatever leftover garbage values happen to be in CX and DX. Something will happen, for certain.
Whether it's something that you want to happen is far less certain.

Keeping in mind that for proper operation, all of service 6's required registers must be set, calling
ClrWin would be done this way:

  mov CX,0422H ; Set upper left corner to X=22H; Y=04H
  mov DX,093AH ; Set lower right corner to X=3AH; Y=09H
  call ClrWin  ; Call the window-clear procedure

The two MOV instructions are worth a closer look. Rather than use a separate instruction to load each
half of DX and CX, the two halves are loaded together by loading a 16-bit immediate data value into the
full 16-bit register. Thus, two MOV instructions can do the work that a first glance might think would
take four MOV instructions. This is a good example of writing tight, efficient assembler code. The trick
is to document it (as I've done in the preceding) to make sure you understand six weeks from now what
the magic number 093AH really means!

The first instruction at the label ClrWin sets AL to 0. Setting AL to 0 indicates that the region is to be
cleared, not scrolled. If, in fact, you do want to scroll the region, you need to skip the MOV instruction
that loads 0 into AL. This is the purpose of the entry point labeled ScrlWin. It gets you into the
procedure below the point at which you select clearing over scrolling. This means that you not only
have to set the corners of the region to be scrolled, but also the number of lines to scroll as well:

  mov CX, 0422H ; Set upper left corner to  X=22H; Y=04H 
  mov DX, 093AH ; Set lower right corner to X=3AH;  Y=09H
  mov AL, 1     ; Set to scroll by one line
  call ScrlWin  ; Call the window-scroll procedure

As you can see, more and more of the work is being done by caller and less and less within the
procedure.



Note that there is no entry point to scroll the full screen. To scroll the full screen, you need to load the
coordinates of the corners of the full screen into CX and DX, and then call ClrWin as though you were
clearing just a portion of the screen. If you do a lot of screen scrolling, you might define a separate
routine for scrolling the full screen. As an interesting exercise, write such a routine and a program to
test it.

As one more entry point, I included a label VIDEO6, which short-circuits all of the register setup apart
from loading the service number itself into AH. This allows you to do something odd and infrequently
done, such as scrolling the entire screen by three lines.

Memory Data or Immediate Data?

You may be wondering what the variable identifier LRXY is for and where it is defined. What it's for is
simply to hold the current X, Y coordinates for the lower-right corner of the screen. Where it's defined is
in the program's data segment, in the usual way variables are defined, as you'll see if you look ahead to
the full listing of EAT3.ASM which follows.

The more interesting question is why. Most of the time I've been showing you values loaded into
registers from immediate data, and this is often useful. The coordinates of the upper-left corner of the
full screen, for example, are always going to be 0,0, and nothing will ever change that. The lower-right
corner, however, is not necessarily always 79,24.

The original 1981 vintage IBM MDA and CGA graphics adapters are indeed capable of 80 by 25 text
screens and no more. However, with an EGA, it is possible to have an 80 by either 25 or 43 text
screen, and the VGA introduced in 1987 with the PS/2 line can display either 25- or 50-line screens, all
80 characters wide. The newer super VGA video boards are capable of even more different text
modes, some of them with more than 80 characters in a visible line. If your program can determine
what size screen is in force when it is invoked, it can modify its displays accordingly.

Avoid dropping immediate values into code (we call this hard coding) whenever you can. A better
strategy, which I follow from now on, uses variables in the data segment initialized with currently correct
values when the program begins running.

Use Comment Headers!

As time goes on, you'll find yourself creating dozens or even hundreds of procedures as a means of not
reinventing the same old wheel. The libraries of available procedures that most high-level language
vendors supply with their compilers just don't exist with assembly language. By and large, you create
your own.

Keeping such a list of routines straight is no easy task when you've written them all yourself. You must
document the essential facts about each individual procedure or you'll forget them, or remember them
incorrectly and act on bad information. (The resultant bugs are often devilishly hard to find because
you're sure you remember everything there is to know about that proc! After all, you wrote it!)

I recommend adding a comment header to every procedure you write, no matter how simple. Such a
header should contain the following information:

The name of the procedure

The date it was last modified

What it does

What data items the caller must pass it to make it work correctly

What data is returned by the procedure, if any, and where it is returned (for example, in register
CX)

What other procedures, if any, are called by the procedure

Any "gotchas" that need to be kept in mind while writing code that uses the procedure



A typical workable procedure header is this:

  ;---------------------------------------------------------------
  ;  WRITELN -- Displays information to the screen via DOS
  ;             service 9 and issues a newline
  ;  Last update 9/11/99
  ;
  ;  1 entry point:
  ;
  ;  Writeln:
  ;   Caller must pass:
  ;   DS: The segment of the string to be displayed
  ;   DX: The offset of the string to be displayed
  ;       String must be terminated by "$"
  ;   Action: Displays the string at DS:DX up to the "$" marker
  ;           marker, then issues a newline. Hardware cursor
  ;           will move to the left margin of the following
  ;           line. If the display is to the bottom screen
  ;           line, the screen will scroll.
  ;   Calls: Write
  ;---------------------------------------------------------------

A comment header does not relieve you of the responsibility of commenting the individual lines of code
within the procedure. It's a good idea to put a short comment to the right of every line that contains a
machine instruction mnemonic, and also (in longer procedures) a comment block describing every
major functional block within the procedure.

A program written to make use of procedures to control the screen follows. Examine EAT3.ASM, and
notice the various commenting conventions. For a very short program such as this, such elaborate
internal documentation might seem overkill. Once your programs get serious, however, you'll be very
glad you expended the effort.

  ; Source name     : EAT3.ASM
  ; Executable name : EAT3.COM
  ; Code model      : Real mode flat model
  ; Version         : 1.0
  ; Created date    : 7/31/1999
  ; Last update     : 9/11/1999
  ; Author          : Jeff Duntemann
  ; Description     : A DOS .COM file demonstrating the use of software
  ;                   interrupts to control the text mode display through
  ;                   calls into BIOS VIDEO interrupt 10H. Assemble with
  ;                   NASM 0.98.

  [BITS 16]       ; Set 16 bit code generation
  [ORG 0×0100]    ; Set code start address to 100h (.COM file)

  [SECTION .text] ; Section containing code

  Start:
    call ClrScr   ; Clear the full display

    ; Make sure you understand the difference between
    ;  MOV DX,Identifier and MOV DX,[Identifier] !!!

    mov word [TextPos],0914H  ; 0914H = X @ 20, Y @ 9

    mov DX,[TextPos] ; TextPos contains X,Y position values
    call GotoXY      ; Position cursor
    mov DX,EatMsg1   ; Load offset of EatMsg1 string into DX
    call Write       ;  and display it



    mov DX,[TextPos] ; Re-use text position variable
    mov DH,10        ; Put new Y value into DH but re-use X
    call GotoXY      ; Position cursor
    mov DX,EatMsg2   ; Load offset of EatMsg2 string into DX
    call Write       ;  and display it
    mov DX,1701H     ; Move cursor to bottom left corner of screen
    call GotoXY      ;  so that 'Press enter...' msg is out of the way.

    mov ax,4C00H     ; This function exits the program
    int 21H          ;  and returns control to DOS.

  ;-----------------------------|
  ;      PROCEDURE SECTION      |
  ;-----------------------------|

  ;---------------------------------------------------------------
  ;  GOTOXY  - Positions the hardware cursor to X,Y
  ;  Last update 7/31/99
  ;
  ;  1 entry point:
  ;
  ;  GotoXY:
  ;   Caller must pass:
  ;   DL: X value   These are both 0-based; i.e., they
  ;   DH: Y value    assume a screen 24 by 79, not 25 by 80
  ;   Action: Moves the hardware cursor to the X,Y position
  ;           loaded into DL and H.
  ;---------------------------------------------------------------
  GotoXY:
    mov AH,02H  ; Select VIDEO service 2: Position cursor
    mov BH,0    ; Stay with display page 0
    int 10H     ; Call VIDEO
    ret         ; Return to the caller

  ;---------------------------------------------------------------
  ;  CLRSCR  - Clears or scrolls screens or windows
  ;  Last update 3/5/89
  ;
  ;  4 entry points:
  ;
  ;  ClrScr:
  ;   No values expected from caller
  ;   Action: Clears the entire screen to blanks with 07H as
  ;           the display attribute
  ;
  ;  ClrWin:
  ;   Caller must pass:
  ;   CH: Y coordinate, upper left corner of window
  ;   CL: X coordinate, upper left corner of window
  ;   DH: Y coordinate, lower right corner of window
  ;   DL: X coordinate, lower right corner of window
  ;   Action: Clears the window specified by the caller to
  ;           blanks with 07H as the display attribute
  ;
  ;  ScrlWin:
  ;   Caller must pass:
  ;   CH: Y coordinate, upper left corner of window
  ;   CL: X coordinate, upper left corner of window
  ;   DH: Y coordinate, lower right corner of window
  ;   DL: X coordinate, lower right corner of window
  ;   AL: number of lines to scroll window by (0 clears it)



  ;   Action: Scrolls the window specified by the caller by
  ;           the number of lines passed in AL. The blank
  ;           lines inserted at screen bottom are cleared
  ;           to blanks with 07H as the display attribute
  ;
  ;  VIDEO6:
  ;   Caller must pass:
  ;   CH: Y coordinate, upper left corner of window
  ;   CL: X coordinate, upper left corner of window
  ;   DH: Y coordinate, lower right corner of window
  ;   DL: X coordinate, lower right corner of window
  ;   AL: number of lines to scroll window by (0 clears it)
  ;   BH: display attribute for blanked lines (07H is "normal")
  ;   Action: Generic access to BIOS VIDEO service 6. Caller
  ;           must pass ALL register parameters as shown above
  ;---------------------------------------------------------------

  ClrScr:
    mov CX,0     ; Upper left corner of full screen
    mov DX,LRXY  ; Load lower-right XY coordinates into DX
  ClrWin:
    mov AL,0     ; 0 specifies clear entire region
  ScrlWin:
    mov BH,07H   ; Specify "normal" attribute for blanked line(s)
  VIDEO6:
    mov AH,06H   ; Select VIDEO service 6: Initialize/Scroll
    int 10H      ; Call VIDEO
    ret          ; Return to the caller

  ;---------------------------------------------------------------
  ;  WRITE  - Displays information to the screen via DOS
  ;           service 9: Print String
  ;  Last update 7/31/99
  ;
  ;  1 entry point:
  ;
  ;  Write:
  ;   Caller must pass:
  ;   DS: The segment of the string to be displayed
  ;   DX: The offset of the string to be displayed
  ;       String must be terminated by "$"
  ;   Action: Displays the string at DS:DX up to the "$" marker
  ;---------------------------------------------------------------

  Write:
    mov AH,09H   ; Select DOS service 9: Print String
    int 21H      ; Call DOS
    ret          ; Return to the caller

  ;---------------------------------------------------------------
  ;  WRITELN - Displays information to the screen via DOS
  ;            service 9 and issues a newline
  ;  Last update 7/31/99
  ;
  ;  1 entry point:
  ;
  ;  Writeln:
  ;   Caller must pass:
  ;   DS: The segment of the string to be displayed
  ;   DX: The offset of the string to be displayed
  ;       String must be terminated by "$"



  ;   Action: Displays the string at DS:DX up to the "$" marker
  ;           marker, then issues a newline. Hardware cursor
  ;           will move to the left margin of the following
  ;           line. If the display is to the bottom screen
  ;           line, the screen will scroll.
  ;   Calls: Write
  ;---------------------------------------------------------------

  Writeln:
    call Write    ; Display the string proper through Write
    mov DX,CRLF   ; Load offset of newline string to DX
    call Write    ; Display the newline string through Write
    ret           ; Return to the caller

  ;----------------------------|
  ;     DATA SECTION           |
  ;----------------------------|

  [SECTION .data]    ; Section containing initialized data

                ; Combined 0-based X,Y of 80 × 25 screen LR corner:
  LRXY     DW   184FH ; 18H = 24D; 4FH = 79D

  TextPos  DW   0  ; Memory variable to store text screen coordinates

  EatMsg1  DB   "Eat at Joe's . . . ",'$'
  EatMsg2  DB   "...ten million flies can't ALL be wrong!",'$'
  CRLF     DB   0DH,0AH,'$'
  Space    DB   " ",'$'



Building External Libraries of Procedures

You'll notice that the EAT3.ASM program given at the end of the previous section had most of its bulk
devoted to procedures. This is as it should be, with the caution that the procedures it uses are the kind
you're likely to use in any and all of your assembly language programs. Keeping cursor movement and
screen-clearing routines in source code form in every single program you write is a waste of space and
can clutter up the program in a way that makes it less easy to understand.

The answer is to break the utility procedures out into an external library that you can assemble only once,
and then link into every program that uses its procedures without assembling the library every time you
assemble the program. This is called modular programming, and it is an extremely effective tool for
programming efficiently in any language, assembly language not excluded.

I describe this process briefly back in Chapter 4 and show it pictorially in Figures 4.4 and 4.5. A program
might consist of three or four separate .ASM files, each of which is assembled separately to a separate
.OBJ file. To produce the final executable .EXE file, the linker weaves all of the .OBJ files together,
resolving all of the references from one to the other, finally creating an .EXE file.

Each .ASM file is considered a module, and each module contains one or more procedures and possibly
some data definitions. When all the declarations are done correctly, all of the modules may freely call
one another, and any procedure may refer to any data definition.

The trick, of course, is to get all the declarations right.

Public and External Declarations

If you reference a label in your program (by, say, including a CALL instruction to that label) without
defining that label anywhere in the program, the assembler will gleefully give you an error message.
(You've probably already experienced this if you've begun writing your own programs in assembly.) In
modular programming, you're frequently going to be calling procedures that don't exist anywhere in the
program that you're actually working on. How to get past the assembler's watchdogs?

The answer is to declare a procedure external. This works very much like it sounds: The assembler is
told that a given label will have to be found outside the program somewhere, in another module. Once
told that, that assembler is happy to give you a pass on an undefined label. You've promised the
assembler that you'll provide it later, and the assembler accepts your promise and keeps going without
flagging the undefined label.

The promise looks like this:

  EXTERN ClrScr

Here, you've told the assembler that the label ClrScr represents a procedure and that it will be found
somewhere external to the current module. That's all the assembler needs to know to withhold its error
message.

And having done that, the assembler's part is finished. It leaves in place an empty socket in your
program where the external procedure may later be plugged in. I sometimes think of it as an eyelet
where the external procedure will later hook in.

Over in the other module where procedure ClrScr exists, it isn't enough just to define the procedure. An
eyelet needs a hook. You have to warn the assembler that ClrScr will be referenced from outside the
module. The assembler needs to forge the hook that will hook into the eyelet. You forge the hook by
declaring the procedure global, meaning that other modules anywhere in the program may freely
reference the procedure. Declaring a procedure global is simplicity itself:

  GLOBAL ClrScr

That done, who actually connects the hook and the eyelet? The linker does that during the link operation.
After all, why call it a linker if it doesn't link anything? At link time, the linker takes the two .OBJ files
generated by the assembler, one from your program and the other from the module containing ClrScr,



and combines them into a single .EXE executable file. (The number of .OBJ files isn't limited to two; you
can have almost any number of separately assembled external modules.) When the .EXE file is loaded
and run, the program can call ClrScr as cleanly and quickly as though both had been declared in the
same source code file.

This process is summarized in Figure 9.2.

Figure 9.2: Connecting globals and externals.

What works for procedures works for data as well, and it can work in either direction. Your program can
declare a variable as GLOBAL, and that variable may then be used by any module in which the same
variable name is declared as external with the EXTERN directive. I show you how this works in the
VIDLIB.ASM library presented a little later in this chapter. Finally, procedure libraries themselves may
share data and procedures in any combination, as long as the declarations are handled correctly.

We sometimes say that a program or module containing procedures or variables declared as public
exports those items. Also, we say that a program or module that uses procedures or variables that are
external to it imports those items.

The Mechanics of Globals and Externals

I've described the source code mechanics of assembly language programs in detail in the last few
chapters. External modules are similar to programs. There are two major differences, concerning things
that external modules lack:

External modules do not contain a main program and hence have no start address. That is, no label
..start: exists to indicate to the linker that this is the point at which code execution is to begin.
External modules are not intended to be run by themselves, so a start address is both unnecessary
and (if one were added) a temptation to chaos.

External modules have no stack segment. This is not an absolute requirement (there are few such
requirements in assembler work), but for simple assembly language programming it's true enough.



Your stack segment should be defined in your main program module. External modules should have
none—they use the one defined by the programs that call them. Recall that in real mode segmented
model, there is only one stack in operation at any given time, and that the one you define in your
program is used by everything running on your machine—including the operating system—while your
program has control.

External modules may have a data segment. If the external is to define a variable that is to be shared by
the main program or by other externals, it obviously must have a data segment for that variable to reside
in. But less obviously, if the external is to share a variable with another external or with the main
program, it must still define a data segment, even if that data segment is empty except for the external
declaration.

If a segment (whether a code segment or a data segment) is to export anything, that segment must be
declared public. This is done with the PUBLIC keyword, which instructs the linker to make access to the
segment possible from outside the module that contains the segment:

  SEGMENT data PUBLIC
  SEGMENT code PUBLIC

This is easier to demonstrate than to explain. Take a look at the following external module, which is a
library containing all of the simple display control procedures introduced in EAT3.ASM:

  ; Source name   : VIDLIB.ASM
  ; Compiled name : VIDLIB.OBJ
  ; Code model:   : Real mode segmented model
  ; Version       : 1.0
  ; Created date  : 9/12/1999
  ; Last update   : 9/12/1999
  ; Author        : Jeff Duntemann
  ; Description   : A simple example of a separately assembled module
  ;                 containing utility procedures for controlling the
  ;                 PC display. Assembled using NASM 0.98. DOS programs
  ;                 can link to these routines by declaring them EXTERN
  ;                 and then linking the program .OBJ to VIDLIB.OBJ using
  ;                 a linker like ALINK.

  [BITS 16]          ; Set 16 bit code generation

  ;----------------------------|
  ;   BEGIN DATA SEGMENT       |
  ;----------------------------|
        SEGMENT data PUBLIC

  ;Note that the following items are defined externally to this module, and
  ; for certain routines in this module to function these data items must
  ; be linked in from a properly assembled external module.

        EXTERN CRLF,LRXY

  ;Note also that there are no memory variables that reside in this data
  ; segment!
  ;The data segment must be here so that the EXTERN declarations may be
  ; made.

  ;----------------------------|
  ;   BEGIN CODE SEGMENT       |
  ;----------------------------|

        SEGMENT code PUBLIC ; This segment may be accessed externally

  ; Note that the following items are GLOBAL, and may be accessed by
  ;  external files that declare them EXTERN.
        GLOBAL GotoXY,ClrScr,ClrWin,ScrlWin,VIDEO6



        GLOBAL Write,Writeln

  ;---------------------------------------------------------------
  ;  GOTOXY  -- Positions the hardware cursor to X,Y
  ;  Last update 9/12/99
  ;
  ;  1 entry point:
  ;
  ;  GotoXY:
  ;   Caller must pass:
  ;   DL: X value   These are both 0-based; i.e., they
  ;   DH: Y value     assume a screen 24 by 79, not 25 by 80
  ;   Action:  Moves the hardware cursor to the X,Y position
  ;            loaded into DL and H.
  ;---------------------------------------------------------------
  GotoXY:
        mov AH,02H   ; Select VIDEO service 2: Position cursor
        mov BH,0     ; Stay with display page 0
        int 10H      ; Call VIDEO
        ret          ; Return to the caller

  ;---------------------------------------------------------------
  ;  CLRSCR  -- Clears or scrolls screens or windows
  ;  Last update 9/12/99
  ;
  ;  4 entry points:
  ;
  ;  ClrScr:
  ;   No values expected from caller
  ;   Action:  Clears the entire screen to blanks with 07H as
  ;            the display attribute
  ;
  ;  ClrWin:
  ;   Caller must pass:
  ;   CH: Y coordinate, upper left corner of window
  ;   CL: X coordinate, upper left corner of window
  ;   DH: Y coordinate, lower right corner of window
  ;   DL: X coordinate, lower right corner of window
  ;   Action:  Clears the window specified by the caller to
  ;            blanks with 07H as the display attribute
  ;
  ;  ScrlWin:
  ;   Caller must pass:
  ;   CH: Y coordinate, upper left corner of window
  ;   CL: X coordinate, upper left corner of window
  ;   DH: Y coordinate, lower right corner of window
  ;   DL: X coordinate, lower right corner of window
  ;   AL: number of lines to scroll window by (0 clears it)
  ;   Action: Scrolls the window specified by the caller by
  ;           the number of lines passed in AL. The blank
  ;           lines inserted at screen bottom are cleared
  ;           to blanks with 07H as the display attribute
  ;
  ;  VIDEO6:
  ;   Caller must pass:
  ;   CH: Y coordinate, upper left corner of window
  ;   CL: X coordinate, upper left corner of window
  ;   DH: Y coordinate, lower right corner of window
  ;   DL: X coordinate, lower right corner of window
  ;   AL: number of lines to scroll window by (0 clears it)



  ;   BH: display attribute for blanked lines (07H is "normal")
  ;   Action:  Generic access to BIOS VIDEO service 6. Caller
  ;            must pass ALL register parameters as shown above
  ;---------------------------------------------------------------

  ClrScr:
        mov CX,0           ; Upper left corner of full screen
        mov DX,word [LRXY] ; Load lower-right XY coordinates into DX
  ClrWin:  mov AL,0        ; 0 specifies clear entire region
  ScrlWin:  mov BH,07H     ; "Normal" attribute for blanked line(s)
  VIDEO6:  mov AH,06H      ; Select VIDEO service 6: Initialize/Scroll
           int 10H         ; Call VIDEO
           ret             ; Return to the caller

  ;---------------------------------------------------------------
  ;  WRITE  -- Displays information to the screen via DOS
  ;           service 9: Print String
  ;  Last update 9/12/99
  ;
  ;  1 entry point:
  ;
  ;  Write:
  ;   Caller must pass:
  ;   DS: The segment of the string to be displayed
  ;   DX: The offset of the string to be displayed
  ;       String must be terminated by "$"
  ;   Action: Displays the string at DS:DX up to the "$" marker
  ;---------------------------------------------------------------

  Write:
        mov AH,09H   ; Select DOS service 9: Print String
        int 21H      ; Call DOS
        ret          ; Return to the caller

  ;---------------------------------------------------------------
  ;  WRITELN -- Displays information to the screen via DOS
  ;             service 9 and issues a newline
  ;  Last update 9/12/99
  ;
  ;  1 entry point:
  ;
  ;  Writeln:
  ;   Caller must pass:
  ;   DS: The segment of the string to be displayed
  ;   DX: The offset of the string to be displayed
  ;       String must be terminated by "$"
  ;   Action: Displays the string at DS:DX up to the "$" marker
  ;           marker, then issues a newline. Hardware cursor
  ;           will move to the left margin of the following
  ;           line. If the display is to the bottom screen
  ;           line, the screen will scroll.
  ;   Calls: Write
  ;---------------------------------------------------------------

  Writeln:
        call Write   ; Display the string proper through Write
        mov DX,CRLF  ; Load address of newline string to DS:DX
        call Write   ; Display the newline string through Write
        ret          ; Return to the caller

VIDLIB.ASM has both a code segment and a data segment. Note well that both segments are declared



with the PUBLIC keyword. A common mistake made by beginners is to declare the procedures and
variables public, but not the segments that they reside in. Nonobvious it may be, but essential
nonetheless: Make your module segments public if they contain any public declarations!

The code segment contains all the procedures declared as GLOBAL. VIDLIB, after all, exists to offer
these procedures to programs and other libraries. The data segment, on the other hand, contains only
the following statement:

  EXTERN CRLF,LRXY

VIDLIB.ASM declares no variables of its own—that is, variables that are defined and exist within VIDLIB.
Instead, it uses two variables that are declared and reside within the main program module EAT4.ASM.
(EAT4.ASM is identical to EAT3.ASM, save that it has had its procedures removed and declared as
external and two of its variables declared public. The program's function is exactly the same as that of
EAT3.ASM.)

The preceding EXTERN statement indicates that two variables referenced within the module are to be
imported from somewhere. You don't have to specify from where. The names of the variables have to be
there, and that's all. Unlike many assemblers, NASM is case-sensitive for variable names and labels
(though not for keywords and instruction mnemonics), so be careful of character case.

NASM declines the variable-typing syntax Microsoft uses with MASM and does not require that external
variable identifiers be typed. That is, with NASM you don't have to say whether a variable is a byte, a
word, a double word, and so on. NASM assumes that the size of the item where it is declared governs its
use in all places—and the burden of enforcing that falls on you. If you declare an EXTERN to be a byte
(say, with DB) and then try to link that EXTERN to a GLOBAL that is in fact a word, what actually
happens may not be what you want.

Dividing a Segment across Module Boundaries

Note that the names of the code segment and data segment in the external module are the same as the
names of the code segment and data segment in the main program module. The data segment is named
data in both, and the code segment is named code in both. This is not an absolute requirement, but it
simplifies things greatly and is a good way to set things up while you're just learning your way around in
assembly language. Regardless of the number of external modules that link with your main program, the
program as a whole contains only one code segment and one data segment. Until your data
requirements and code size get very large, you won't need more than a single code and data segment.
There are ways to use multiple code and data segments within a single assembly language program, but
that's an advanced topic that I won't be addressing in this book.

As long as the code and data segments are declared with the PUBLIC directive in all the modules
sharing the segments, the linker will consider all to be part of the same code and data segments.

Your Main Program Module

So here's our backhanded advertising program, as modified for use with an external display control
module:

  ; Source name     : EAT4.ASM
  ; Executable name : EAT4.EXE
  ; Code model:     : Real mode segmented model
  ; Version         : 1.0
  ; Created date    : 9/12/1999
  ; Last update     : 9/12/1999
  ; Author          : Jeff Duntemann
  ; Description     : A simple example of a DOS .EXE file programmed for
  ;                   real mode segmented model, using NASM 0.98 and ALINK.
  ;                   This program demonstrates how separately-assembled
  ;                   modules sharing both code and data are linked into a
  ;                   single executable module.



  [BITS 16]          ; Set 16 bit code generation

  ;----------------------------|
  ;   BEGIN CODE SEGMENT       |
  ;----------------------------|

  ; Note that the following items are external to EAT4.ASM, and must
  ;  be linked from the external file VIDLIB.OBJ. Assemble VIDLIB.ASM
  ;  first to VIDLIB.OBJ before attempting the link.

        EXTERN GotoXY,Write,Writeln,ClrScr

        SEGMENT code PUBLIC

  ; SEGMENT SETUP
  ;
  ;  In real mode segmented model, a program uses three segments, and it must
  ;  set up the addresses in the three corresponding segment registers. This
  ;  is what the ASSUME directive does in MASM; we ASSUME nothing in NASM!
  ;  Each of the three segments has a name (here, code, data, and stack) and
  ;  these names are identifiers indicating segment addresses. It is the
  ;  appropriate segment address that is moved into each segment register.
  ;  Note that you can't move an address directly into a segment register;
  ;  you must first move the address into a general purpose register. Also
  ;  note that we don't do anything with CS; the ..start: label tells the
  ;  linker where the code segment begins.

  ..start:               ; This is where program execution begins:
        mov ax,data      ; Move segment address of data segment into AX
        mov ds,ax        ; Copy address from AX into DS
        mov ax,stack     ; Move segment address of stack segment into AX
        mov ss,ax        ; Copy address from AX into SS

        mov sp,stacktop  ; Point SP to the top of the stack

        call ClrScr      ; Clear the full display

        mov word [TextPos], 0914H  ; 0914H = X @ 20, Y @ 9

        mov DX,[TextPos] ; TextPos contains X,Y position values
        call GotoXY      ; Position cursor
        mov DX,Eat1      ; Load offset of Eat1 string into DX
        call Write       ;  and display it

        mov DX,[TextPos] ; Re-use text position variable
        mov DH,10        ; Put new Y value into DH
        call GotoXY      ; Position cursor
        mov DX,Eat2      ; Load offset of Ear2 string into DX
        call Writeln     ;  and display it

        mov AH,4CH       ; Terminate process DOS service
        mov AL,0         ; Pass this value back to ERRORLEVEL
        int 21H          ; Control returns to DOS

  ;----------------------------|
  ;   BEGIN DATA SEGMENT       |
  ;----------------------------|
        SEGMENT data PUBLIC
        GLOBAL LRXY,CRLF

  LRXY     DW   184FH ; 18H = 24D; 4FH = 79D; 0-based XY of LR screen corner

  TextPos  DW   0
  Eat1     DB   "Eat at Joe's...",'$'
  Eat2     DB   "...ten million flies can't ALL be wrong!",'$'
  CRLF     DB   0DH,0AH,'$'



  ;----------------------------|
  ;   END DATA SEGMENT         |
  ;----------------------------|

  ;----------------------------|
  ;   BEGIN STACK SEGMENT      |
  ;----------------------------|

        SEGMENT stack stack ;This means a segment of *type* "stack"
                            ; that is also *named* "stack"! Some
                            ; linkers demand that a stack segment
                            ; have the explicit type "stack"

        resb 64             ; Reserve 64 bytes for the program stack
  stacktop:                 ; It's significant that this label points to
                            ;  the *last* of the reserved 64 bytes, and
                            ;  not the first!

  ;----------------------------|
  ;   END STACK SEGMENT        |
  ;----------------------------|

EAT4.ASM differs in only a few ways from EAT3.ASM. First of all, the data and code segment
declarations now include the PUBLIC directive:

  SEGMENT data PUBLIC
  SEGMENT code PUBLIC

This is easy to forget but you must keep it in mind: The segments containing imported or exported items
as well as the imported or exported items themselves must be declared as public.

Take note of the declaration of two of the variables in the data segment as global:

  GLOBAL LRXY,CRLF

This allows external modules to use these two variables. The other variables declared in the main
program, Eat1, Eat2, and TextPos, are not declared as public and are inaccessible from external
modules. We would say that those three variables are private to the main program module EAT4.ASM.

EAT4.ASM contains no procedure declarations of its own. All the procedures it uses are imported from
VIDLIB.ASM, and all are therefore declared as external in the code segment, using this statement:

  EXTERN GotoXY,Write,Writeln,ClrScr

Something to keep in mind is that while VIDLIB.ASM exports seven procedures (seven labels, actually,
since four are entry points to the ClrScr procedure), EAT4.ASM only imports the four immediately
previous. The ClrWin, ScrlWin, and VIDEO6 entry points to procedure ClrScr are declared as global in
VIDLIB.ASM, but they are not declared as external in EAT4.ASM. EAT4.ASM only uses the four it
imports. The other three are available, but the EAT4.ASM does not call them and therefore does not
bother declaring them as external. If you were to expand EAT4.ASM to use one of the three other entry
points to ClrScr, you would have to add the entry point to the EXTERN list.

Once all the external and global declarations are in place, your machine instructions may reference
procedures and variables across module boundaries as though they were all within the same large
program. No special qualifiers have to be added to the instructions. CALL ClrScr is written the same
way, whether ClrScr is declared in the main program module or in an external module such as
VIDLIB.ASM.

Linking Multiple Modules



The linker hasn't had to do much linking so far. Once you have multiple modules, however, the linker
begins to earn its keep. To link multiple modules, you must specify the name of the .OBJ file for each
module on the linker command line.

Up until now, the linker command line contained only the name of the main program module:

  ALINK EAT3

Now you must add the names of all external modules to the linker command line:

  ALINK EAT4 VIDLIB

Pretty obviously, if you forget to name an external module on the linker command line, the linker will not
be able to resolve the external references involving the missing .OBJ file, and you will get linker error
messages like this one, one for each unresolved external reference:

  Undefined symbol 'CLRSCR' in module EAT4.ASM

Batch Files for Building Modular Programs

NASM-IDE was created for use with real mode flat model programs, which cannot, strictly speaking, be
modular in nature and assembled with a linker from separately assembled modules. So, if you're going to
be doing a lot of work in real mode segmented model, you might consider creating batch files containing
the commands you need to issue to the assembler and the linker. This will save you a lot of typing:
Instead of typing two full commands on the DOS command line every time you want to build a program,
you type only the name of the batch file, and DOS executes any commands in the batch file just as
though you had typed them by hand.

Here's a batch file I created (called BUILD4.BAT) to build EAT4.EXE:

  NASM16 EAT4.ASM -f obj -o EAT4.OBJ
  NASM16 VIDLIB.ASM -f obj -o VIDLIB.OBJ
  ALINK EAT4.OBJ VIDLIB.OBJ

It's nothing more than a simple text file containing the three commands you would need to type
separately: two for the assembler and a third to link the two assembled files together into the finished
.EXE program. To run this batch program, just type "BUILD4" at the DOS prompt. You'll be able to follow
the progress of the three program runs, including any error messages or warnings.

External Module Summary

Here are some points to keep in mind when you're faced with splitting a single program up into a main
program and one or more external modules. The assumption here is that the final program will consist of
only one code segment and only one data segment. Larger arrangements of segments are possible
(especially with multiple code segments) but require additional considerations I won't be covering in this
book.

Declare the code segments PUBLIC in all modules, and give them all the same name.

Declare the data segments PUBLIC in all modules, and give them all the same name.

Declare all exported procedures, entry points, and variables as GLOBAL. Put the exported
declaration statement inside the segment where the exported items are declared.

Declare all imported procedures, entry points, and variables as EXTERN. Put the imported
declaration statement inside the segment where the imported items are to be used. Data is used in
the data segment, code in the code segment.

Finally, don't forget to add the names of all external modules to the linker command line in the link
step. For example, ALINK MYPROG MODULE1 MODULE2 MODULE3.



If this still seems fuzzy to you, follow VIDLIB.ASM and EAT4.ASM as a model. Certainly it would be worth
beefing up VIDLIB.ASM by adding more screen control procedures.



Creating and Using Macros

There is more than one way to split an assembly language program into more manageable chunks.
Procedures are the most obvious way, and certainly the easiest to understand. The mechanism for
calling and returning from procedures is built right into the CPU and is independent of any given
assembler product.

Today's major assemblers provide another complexity-management tool that works a little differently:
macros. Macros are a different breed of cat entirely. Whereas procedures are implemented by the use of
CALL and RET instructions built right into the instruction set, macros are a trick of the assembler and do
not depend on any particular instruction or group of instructions.

Most simply put, a macro is a label that stands for some sequence of text lines. This sequence of text
lines can be (but is not necessarily) a sequence of instructions. When the assembler encounters the
macro label in a source code file, it replaces the macro label with the text lines that the macro label
represents. This is called expanding the macro, because the name of the macro (occupying one text line)
is replaced by several lines of text, which are then assembled just as though they had appeared in the
source code file all along. (Of course, a macro doesn't have to be several lines of text. It can be only
one-but then there's a lot less advantage to using them!)

Macros bear some resemblance to include files in high-level languages such as Pascal. In Turbo Pascal,
an include command might look like this:

  {$I ENGINE.DEF}

When this include command is encountered, the compiler goes out to disk and finds the file named
ENGINE.DEF. It then opens the file and starts feeding the text contained in that file into the source code
file at the point where the include command was placed. The compiler then processes those lines as
though they had always been in the source code file.

You might think of a macro as an include file that's built right into the source code file. It's a sequence of
text lines that is defined once, given a name, and then may be dropped into the source code again and
again by simply using the name.

This process is shown in Figure 9.3. The source code as stored on disk has a definition of the macro,
bracketed between %macro and %endmacro directives. Later in the file, the name of the macro
appears several times. When the assembler processes this file, it copies the macro definition into a
buffer somewhere in memory. As it assembles the text read from disk, the assembler drops the
statements contained in the macro into the text wherever the macro name appears. The disk file is not
affected; the expansion of the macros occurs only in memory.



Figure 9.3: How macros work.

Macros versus Procedures: Pro and Con

There are advantages to macros over procedures. One of them is speed. It takes time to execute the
CALL and RET instructions that control entry to and exit from a procedure. In a macro, neither instruction
is used. Only the instructions that perform the actual work of the macro are executed, so the macro's
work is performed as quickly as possible.

There is a cost to this speed, and the cost is in extra memory used, especially if the macro is called a
great many times. Notice in Figure 9.3 that three invocations of the macro generate a total of 12
instructions in memory. If the macro had been set up as a procedure, it would have required the four
instructions in the body of the procedure, plus one RET instruction and three CALL instructions to do the
same work. This would give you a total of eight instructions for the procedure and 12 for the macro. And
if the macro were called five or seven times or more, the difference would grow. Every time a macro is
called, all of its instructions are duplicated in the program another time.

In short programs, this may not be a problem, and in situations where the code must be as fast as
possible-as in graphics drivers-macros have a lot going for them.

By and large, think macros for speed and procedures for compactness.

The Mechanics of Macro Definition

A macro definition looks a little like a procedure definition, framed between a pair of directives: %macro
and %endmacro. Note that the %endmacro directive is on the line after the last line of the macro. Don't
make the mistake of treating %endmacro like a label that marks the macro's last line.

One important shortcoming of macros vis-à-vis procedures is that macros can have only one entry point.
A macro, after all, is a line of code that is inserted into your program in the midst of the flow of execution;
execution has to go through the whole thing. The ClrScr procedure described in the last section cannot
be converted into a macro without splitting it up into four separate invocations of VIDEO interrupt 10H. If
the ClrScr function (clearing the full screen to blanks for the normal video attribute) alone were written as
a macro, it would look like this:

  %macro ClrScr
      mov CX,0     ; Upper left corner of full screen



      mov DX,LRXY  ; Load lower-right XY coordinates into DX
      mov AL,0     ; 0 specifies clear entire region
      mov BH,07H   ; Specify "normal" attribute for blanked line(s)
      mov AH,06H   ; Select VIDEO service 6: Initialize/Scroll
      int 10H      ; Call VIDEO
  %endmacro

You can see that ClrScr has shed its RET instruction and its additional entry points, but apart from that,
it's exactly the same sequence of instructions. Functionally it works the same way, except that every time
you clear your screen, ClrScr's six instructions are dropped into the source code.

Macros are called simply by naming them. Don't use the CALL instruction! Just place the macro name
on a line:

  ClrScr

The assembler will handle the rest.

Defining Macros with Parameters

So far, macros may seem useful but perhaps not especially compelling. What makes macros really sing
is their ability to mimic high-level language subroutines and take arguments through parameters. For
example, if you were to define a macro named GotoXY that would position the hardware cursor, you
could pass it the X and Y values as arguments, separated by a comma:

  GotoXY 17,3           ; Move the cursor to the Name field

You'd have to pinch yourself to be sure you weren't working in Basic, no?

Macro parameters are, again, artifacts of the assembler. They are not pushed on the stack or set into
COMMON or anything like that. The parameters are simply placeholders for the actual values (called
arguments) that you pass to the macro through its parameters.

I've converted the GotoXY procedure to a macro to show you how this works. Here's the macro:

  %macro   GotoXY 2     ; NewX,NewY
           mov DH,%2    ; The NewY parameter loads into DH
           mov DL,%1    ; The NewX parameter loads into DL
           mov AH,02H   ; Select VIDEO service 2: Position cursor
           mov BH,0     ; Stay with display page 0
           int 10H      ; Call VIDEO
  %endmacro

So where are the parameters? This is another area where NASM differs radically from MASM. MASM
allows you to use symbolic names-such as the words NewX and NewY-to stand for parameters. NASM
relies on a simpler system that declares the number of parameters, and then refers to the parameters by
number rather than symbolic name.

In the definition of macro GotoXY, the number 2 after the name of the macro indicates that the
assembler is to look for two parameters. This number must be present-as 0-even when you have a
macro with no parameters. Later down in the macro, the two parameters are referenced by number. "%1"
indicates the first parameter used after the name "GotoXY," and "%2" indicates the second parameter:

  GotoXY 11,14
  Name   %1 %2

I call the two parameters NewX and NewY-but they don't exist anywhere in the code! They're strictly
creatures of the imagination to help me remember what the macro is doing. This is one place (perhaps
the only one) where I think I prefer MASM's way of doing things to NASM's.



Macro parameters are a kind of label, and they may be referenced anywhere within the macro-but only
within the macro. Here, the parameters are referenced as operands to a couple of MOV instructions. The
arguments passed to the macro in %1 (NewX) and %2 (NewY) are thus loaded into DL and DH.

The actual values passed into the parameters are referred to as arguments. Don't confuse the actual
values with the parameters. If you understand Pascal, it's exactly like the difference between formal
parameters and actual parameters. A macro's parameters correspond to Pascal's formal parameters,
whereas a macro's arguments correspond to Pascal's actual parameters. The macro's parameters are
the labels following the name of the macro in the line in which it is defined. The arguments are the values
specified on the line where the macro is invoked.

The Mechanics of Macro Parameters

A macro may have as many parameters as will fit on one line. This is a rather arbitrary restriction, leaving
you no recourse but to use short parameter names if you need lots of parameters for a single macro.

When a macro is invoked, arguments are separated by commas. The arguments are dropped into the
macro's parameters in order, from left to right. If you pass only two arguments to a macro with three
parameters, you're likely to get an error message from the assembler, depending on how you've
referenced the unfilled parameter. The assembler is building opcodes depending on the types of
operands passed as arguments; if you don't pass an argument for a given parameter, any instructions
that reference that parameter won't be constructable by the assembler, hence the errors.

If you pass more arguments to a macro than there are parameters to receive the arguments, the
extraneous arguments will be ignored.

Local Labels within Macros

I haven't really gone into labels and branches yet, but there's an important problem with labels used
inside macros. Labels in assembly language programs must be unique, and yet a macro is essentially
duplicated in the source code as many times as it is invoked. This means there will be error messages
flagging duplicate labels...unless a macro's labels are treated as local. Local items have no meaning
outside the immediate framework within which they are defined. Labels local to a macro are not known
outside the macro definition.

All labels defined within a macro are considered local to the macro and are handled specially by the
assembler. Here's an example from the file MYLIB.MAC; don't worry if you don't fully understand all of
the instructions it uses:

  %macro  UpCase 2                ; Target,Length 
          mov CX,%2               ; CX is acting as length counter for loop
          mov BX,%1               ; String will be at DS:BX
  %%Tester: cmp BYTE [BX],'a'     ; Is string character below 'a'?
          jb %%Bump               ; If so, leave character alone
          cmp BYTE [BX],'z'       ; Is string character above 'z'?
          ja %%Bump               ; If so, leave character alone
          and BYTE [BX],11011111b ; Char is lc alpha, so force bit 5 to 0
  %%Bump:  inc BX                 ; Bump BX to point to next char in string
          loop %%Tester           ; And go back and do it again!
  %endmacro

A label in a macro is made local by beginning it with two percent signs: "%%." When marking a location
in the macro, the local label should be followed by a colon. When used as an operand to a jump or call
instruction (such as JB and LOOP in the preceding), the local label is not followed by a colon. The
important thing is to understand that unless the labels Tester and Bump were made local to the macro
by adding the prefix "%%," there would be multiple instances of a label in the program and the assembler
would generate a duplicate label error on the second and every subsequent invocation of the macro.

Because labels must in fact be unique within your program, NASM takes a formal label such as
%%Tester and generates an actual label from it that will be unique in your program by using the prefix
"..@" plus a four-digit number and the name of the label. Each time your macro is invoked, NASM will



change the number, and thus generate unique synonyms for each local label within the macro. The label
%%Tester, for example, might become ..@1771.Tester and the number would be different each time the
macro is invoked. This happens behind the scenes and you'll rarely be aware that it's going on unless
you read the code dump listing files generated by NASM.

Macro Libraries

Just as procedures may be gathered in libraries external to your program, so may macros be gathered
into macro libraries. A macro library is really nothing but a text file that contains the source code for the
macros in the library. Unlike procedures gathered into a module, macro libraries are not separately
assembled and must be passed through the assembler each time the program is assembled. This is a
problem with macros in general, not only with macros that are gathered into libraries. Programs that
manage complexity by dividing code up into macros will assemble more slowly than programs that have
been divided up into separately assembled modules.

Macro libraries are used by including them into your program's source code file. The means to do this is
the %include directive. The %include directive precedes the name of the macro library:

  %include "MYLIB.MAC"

Technically this statement may be anywhere in your source code file, but you must keep in mind that all
macros must be fully defined before they are invoked. For this reason, it's a good idea to use the
%include directive near the top of your source code file, before any possible invocation of one of the
library macros could occur.

If the macro file you want to include in a program is not in the same directory as NASM itself, you may
need to provide a more complete DOS path specification as part of the %include directive:

  %include "BOOK\MYLIB.MAC"

Otherwise, NASM may not be able to locate the macro file and will hand you a relatively unhelpful error
message:

  D:\NASM\BOOK\EAT5.ASM:18: unable to open include file 'MYLIB.MAC'

The following is a macro library containing macro versions of all the procedures we discussed in the
previous section, plus a few more:

  ; Source name   : MYLIB.MAC
  ; File type     : NASM macro library
  ; Code model:   : Real mode segmented OR flat model
  ; Version       : 2.0
  ; Created date  : 9/12/1999
  ; Last update   : 9/18/1999
  ; Author        : Jeff Duntemann
  ; Description   : A simple example of a multi-line macro file
  ;                 for NASM containing utility procedures for
  ;                 controlling the PC display. Assembled using
  ;                 NASM 0.98. Include this file in your programs
  ;                 with the directive:
  ;                   %include "MYLIB.MAC"

  ;---------------------------------------------------------------
  ;  CLEAR  -- Clears the entire visible screen buffer
  ;  Last update 9/16/99
  ;
  ;   Caller must pass:
  ;   In VidAddress: The address of the video refresh buffer
  ;   In ClearAtom:  The character/attribute pair to fill the



  ;                  buffer with. The high byte contains the
  ;                  attribute and the low byte the character.
  ;   In BufLength:  The number of *characters* in the visible
  ;                  display buffer, *not* the number of bytes!
  ;                  This is typically 2000 for a 25-line screen
  ;                  or 4000 for a 50-line screen.
  ;   Action:        Clears the screen by machine-gunning the
  ;                  character/attribute pair in AX into the
  ;                  display buffer beginning at VidAddress.
  ;---------------------------------------------------------------
  %macro   Clear 3 ;VidAddress,ClearAtom,BufLength
           les DI,[%1]    ;VidAddress
           mov AX,%2      ;ClearAtom
           mov CX,%3      ;BufLength
           rep stosw
           GotoXY 0,0
  %endmacro

  ;---------------------------------------------------------------
  ;  RULER  -- Displays a "1234567890"-style ruler on-screen
  ;  Last update 9/16/99
  ;
  ;   Caller must pass:
  ;   In VidAddress: The address of the start of the video buffer
  ;   In Length:     The length of the ruler to be displayed
  ;   In ScreenW:    The width of the current screen (usually 80)
  ;   In ScreenY:    The line of the screen where the ruler is
  ;                  to be displayed (0-24)
  ;   In ScreenX:    The row of the screen where the ruler should
  ;                  start (0-79)
  ;   Action:        Displays an ASCII ruler at ScreenX,ScreenY.
  ;---------------------------------------------------------------
  %macro   Ruler 5        ;VidAddress,Length,ScreenW,ScreenX,ScreenY
           les   DI,[%1]  ; Load video address to ES:DI
           mov   AL,%5    ; Move Y position to AL
           mov   AH,%3    ; Move screen width to AH
           imul  AH       ; Do 8-bit multiply AL*AH to AX
        add  DI,AX     ; Add Y offset into vidbuff to DI
        add  DI,%4     ; Add X offset into vidbuf to DI
        shl  DI,1      ; Multiply by two for final address
        mov  CX,%2     ; CX monitors the ruler length
        mov  AH,07     ; Attribute 7 is "normal" text
        mov  AL,'1'    ; Start with digit "1"
  %%DoChar: stosw          ; Note that there's no REP prefix!
            add  AL,'1'    ; Bump the character value in AL up by 1
            aaa            ; Adjust AX to make this a BCD addition
            add  AL,'0'    ; Basically, put binary 3 in AL's high nybble
            mov  AH,07     ; Make sure our attribute is still 7
            loop %%DoChar  ; Go back & do another char until BL goes to 0
  %endmacro

  ;---------------------------------------------------------------
  ;  UPCASE -- Converts lowercase to uppercase characters
  ;              in a string.
  ;  Last update 9/18/99
  ;
  ;     Caller must pass:
  ;     In Target: The offset (relative to DS) of the string
  ;     In Length: The length of the string in characters
  ;     Action:    Scans the string at DS:BX and replaces chars



  ;                in the range 'a'..'z' to 'A'..'Z'.
  ;---------------------------------------------------------------
  %macro  UpCase 2                  ; Target,Length
          mov CX,%2                 ; CX is acting as length counter for
                                    ; loop
          mov BX,%1                 ; String will be at DS:BX
  %%Tester: cmp BYTE [BX],'a'  ; Is string character below 'a'?
            jb %%Bump               ; If so, leave character alone
            cmp BYTE [BX],'z'       ; Is string character above 'z'?
            ja %%Bump               ; If so, leave character alone
            and BYTE [BX],11011111b ; Char is lc alpha, so force bit 5 to 0
  %%Bump:  inc BX                   ; Bump BX to point to next char in
                                    ; string
           loop %%Tester            ; And go back and do it again!
  %endmacro

  ;---------------------------------------------------------------
  ;  GOTOXY  -- Positions the hardware cursor to X,Y
  ;  Last update 9/18/99
  ;
  ;     Caller must pass:
  ;     In NewX: The new X value
  ;     In NewY: The new Y value
  ;       These are both 0-based; i.e., they assume a screen
  ;     whose dimensions are 24 by 79, not 25 by 80.
  ;    Action:  Moves the hardware cursor to the X,Y position
  ;             passed as NewX and NewY.
  ;---------------------------------------------------------------
  %macro   GotoXY 2    ;NewX,NewY
           mov DH,%2   ;NewY
           mov DL,%1   ;NewX
           mov AH,02H  ; Select VIDEO service 2: Position cursor
           mov BH,0    ; Stay with display page 0
           int 10H     ; Call VIDEO
  %endmacro

  ;---------------------------------------------------------------
  ;  NEWLINE -- Sends a newline sequence to DOS Standard Output
  ;             via DOS service 40H
  ;  Last update 9/16/99
  ;
  ;   Caller need not pass any parameters.
  ;   Action:  Sends a newline sequence DOS Standard Output
  ;---------------------------------------------------------------
  %macro   Newline 0
           Write CRLF,2
  %endmacro

  ;---------------------------------------------------------------
  ;  POKECHAR  -- Inserts a single character into a string
  ;  Last update 9/16/99
  ;
  ;   Caller must pass:
  ;   In Target:  The name of the string to be poked at
  ;   In TheChar: The character to be poked into the string
  ;   In ToPos:   The 0-based position in the string to poke to
  ;   Action:     Pokes character passed in TheChar into string
  ;               passed in Target to position passed in ToPos.
  ;               The first character in the string is 0, etc.
  ;---------------------------------------------------------------



  %macro   PokeChar 3          ;Target,TheChar,ToPos
           mov BX,%1           ; Load the address of target string into BX
           mov BYTE [BX+%3],%2 ; Move char into the string
  %endmacro

  ;---------------------------------------------------------------
  ;  WRITE  -- Displays information to the screen via DOS
  ;            service 40: Print String to Standard Output
  ;  Last update 9/16/99
  ;
  ;   Caller must pass:
  ;   In ShowIt:     The name of the string to be displayed
  ;   In ShowLength: The length of the string to be displayed
  ;   Action:  Displays the string to DOS Standard Output
  ;---------------------------------------------------------------
  %macro   Write 2    ;ShowIt,ShowLength
           mov BX,1   ; Selects DOS file handle 1: Standard Output
           mov CX,%2  ; ShowLength: Length of string passed in CX
           mov DX,%1  ; Showit: Offset address of string passed in DX
           mov AH,40H ; Select DOS service 40: Print String
           int 21H    ; Call DOS
  %endmacro

  ;---------------------------------------------------------------
  ;  WRITELN -- Displays information to the screen via DOS
  ;             service 40H: Display to Standard Output, then
  ;             issues a newline
  ;  Last update 9/16/99
  ;
  ;     Caller must pass:
  ;     In ShowIt:     The name of the string to be displayed
  ;     In ShowLength: The length of the string to be displayed
  ;     Action:        Displays the string in ShowIt, then issues a
  ;                    newline. Hardware cursor will move to the
  ;                    left margin of the following line. If the
  ;                    display is to the bottom screen line, the
  ;                    screen will scroll.
  ;   Calls: Write
  ;---------------------------------------------------------------
  %macro   Writeln 2    ;ShowIt,ShowLength
           Write %1,%2  ; Display the string proper through Write
           Write CRLF,2 ; Display the newline string through Write
  %endmacro

And, finally, yet another version of EAT.ASM, this time rearranged to make use of the macros in
MYLIB.MAC. The macro library is included by way of the %include directive immediately after the
[SECTION .text] command near the top of the file. Note that although EAT5 uses real mode flat model,
there is nothing model-specific about the macros in MYLIB.MAC. I've created a version of EAT5 for real
mode segmented model called EAT5SEG.ASM, which uses the exact same macros and runs precisely
the same way. (EAT5SEG.ASM is on the CD-ROM, but not printed here in the book text.)

  ; Source name     : EAT5.ASM
  ; Executable name : EAT5.COM
  ; Code model:     : Real mode flat model
  ; Version         : 1.0
  ; Created date    : 9/15/1999
  ; Last update     : 9/18/1999
  ; Author          : Jeff Duntemann
  ; Description     : A simple example of a DOS .COM file programmed for



  ;                   real mode flat model, using NASM 0.98 and ALINK.
  ;                   This program demonstrates how multi-line macros are
  ;                   used with NASM.

  [BITS 16]            ; Set 16 bit code generation
  [ORG 0100H]          ; Set code start address to 100h (COM file)

  [SECTION .text]      ; Section containing code

  %include "MYLIB.MAC" ; Load in screen control macro library

  START:               ; This is where program execution begins:

        Clear VidOrigin,07B0H,4000 ; Replace B0 with 20 for space clear

        GotoXY 14H,09H             ; Position cursor
        Write Eat1,Eat1Length       ; and display first text line

        GotoXY 14H,0AH             ; Position cursor
        Writeln Eat2,Eat2Length     ; and display second text line

        mov AH,4CH   ; Terminate process DOS service
        mov AL,0     ; Pass this value back to ERRORLEVEL
        int 21H      ; Control returns to DOS

  [SECTION .data]    ; Section containing initialized data

  LRXY       DW  184FH ; 18H = 24D; 4FH = 79D; 0-based XY of LR screen corner

  VidOrigin  DD  0B8000000H  ; Change to 0B0000000H if you have a mono CRT!
  Eat1       DB  "Eat at Joe's..."
  Eat1Length EQU $-Eat1
  Eat2       DB  "...ten million flies can't ALL be wrong!"
  Eat2Length EQU $-Eat2
  CRLF       DB  0DH, 0AH

EAT5 goes back to real mode flat model and should be assembled and run from within NASM-IDE. The
ALINK linker is not required.

You'll spot something odd in EAT5.ASM: Instead of using ClrScr to clear the screen as I have been for
the last several incarnations of EAT, I've replaced ClrScr with a new macro called Clear. Clear (defined
in VIDLIB.MAC) uses some technology I haven't explained yet, but will return to in Chapter 11. The
lesson is that there are numerous ways to skin a screen, and we've moved here from having the BIOS do
it for us to doing it all on our own. Take it on faith for now, until I come back to it. More to the point for the
current discussion is the use of the GotoXY and Write and Writeln macros.

Additionally, if you look closely at the main program procedure in EAT5.ASM, something odd may occur
to you: It's starting to look like something other than an assembly language program. This is true, and it's
certainly possible to create so many macros that your programs will begin to look like some odd high-
level language. I actually used such a language in my first job as a programmer, and so complete was
the transformation that I didn't actually realize I was using assembly macros until someone pointed it out.

The danger there is that unless you name your macros carefully and document them both in their macro
library files and on the lines where they are invoked, your programs will not be any more comprehensible
for their presence. Dividing complexity into numerous compartments is only half the job-labeling the
compartments is just as (or more) important!



Chapter 10: Bits, Flags, Branches, and Tables

Easing into Mainstream Assembly Programming

Overview

You don't take off until all your flight checks are made.

That's the reason that we haven't done a lot of instruction arranging in this book up until here, now that
we are in the last quarter of the book. I've found that machine instructions aren't the most important part
of assembly language programming. What's most important is understanding your machine and your
tools and how everything fits together. Higher-level languages such as Pascal and Modula-2 hide much
of those essential details from you. In assembly language you must see to them yourself. For some
reason, authors of previous beginner books on assembly language haven't caught on to this fact.

This fact (in fact) was the major motivation for my writing this book.

If you've digested everything I've said so far, however, you're ready to get in and understand the
remainder of the x86 instruction set. I won't teach it all in this book, but the phrase ready to understand
is germane. You can now find yourself a reference and learn what instructions I don't cover on your
own. The skills you need to build programming expertise are now yours, and if this book has
accomplished that much, I'd say it's accomplished a lot.

So, let the fun begin.



Bits Is Bits (and Bytes Is Bits)

Assembly language is big on bits.

Bits, after all, are what bytes are made of, and one essential assembly language skill is building bytes
and taking them apart again. A technique called bit mapping is widely used in assembly language. Bit
mapping assigns special meanings to individual bits within a byte to save space and squeeze the last
little bit of utility out of a given amount of memory.

There is a family of instructions in the x86 instruction set that allows you to manipulate the bits within
the bytes by applying Boolean logical operations to the bytes on a bit-by-bit basis. These are the
bitwise logical instructions: AND, OR, XOR, and NOT. Another family of instructions allows you to slide
bits back and forth within a single byte or word. These are the most-used shift/rotate instructions: ROL,
ROR, RCL, RCR, SHL, and SHR. (There are a few others that I will not be discussing in this book.)

Bit Numbering

Dealing with bits requires that we have a way of specifying which bits we're dealing with. By convention,
bits in assembly language are numbered, starting from 0, at the least-significant bit in the byte, word, or
other item we're using as a bit map. The least-significant bit is the one with the least value in the binary
number system. (Return to Chapter 2 and reread the material on base 2 if that seems fuzzy to you.) It's
also the bit on the far right, if you write the value down as a binary number.

It works best as a visual metaphor. See Figure 10.1.

Figure 10.1: Bit numbering.

When you count bits, start with the bit on the right, and number them from 0.

"It's the Logical Thing to Do, Jim . . ."

Boolean logic sounds arcane and forbidding, but remarkably, it reflects the realities of ordinary thought
and action. The Boolean operator AND, for instance, pops up in many of the decisions you make every
day of your life. For example, to write a check that doesn't bounce, you must have money in your
checking account AND checks in your checkbook. Neither alone will do the job. ("How can I be
overdrawn?" goes the classic question, "I still have checks in my checkbook!") You can't write a check
you don't have, and a check without money behind it will bounce. People who live out of their
checkbooks (and they always end up ahead of me in the checkout line at Safeway) must use the AND
operator frequently.

When mathematicians speak of Boolean logic, they manipulate abstract values called True and False.
The AND operator works like this. Condition1 AND Condition2 will be considered True if both
Condition1 and Condition2 are True. If either condition is False, the result will be False.

There are in fact four different combinations of the two input values, so logical operations between two
values are usually summarized in a form called a truth table. The truth table for the AND operator is
shown in Table 10.1.



Table 10.1: The AND Truth Table for Formal Logic

CONDITION1 OPERATOR CONDITION2 RESULT

False AND False = False

False AND True = False

True AND False = False

True AND True = True

There's nothing mysterious about the truth table. It's just a summary of all possibilities of the AND
operator as applied to two input conditions. The important thing to remember is that only when both
input values are True will the result also be True.

That's the way mathematicians see AND. In assembly language terms, the AND instruction looks at two
bits and yields a third bit based on the values of the first two bits. By convention, we consider a 1 bit to
be True and a 0 bit to be False. The logic is identical; we're just using different symbols to represent
True and False. Keeping that in mind, we can rewrite AND's truth table to make it more meaningful for
assembly language work. See Table 10.2.

Table 10.2: The AND Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 AND 0 = 0

0 AND 1 = 0

1 AND 0 = 0

1 AND 1 = 1

The AND Instruction

The AND instruction embodies this concept in the x86 instruction set. The AND instruction performs the
AND logical operation on two like-sized operands and replaces its first operand with the result of the
operation. (By first, I mean the operand closest to the mnemonic.) In other words, consider this
instruction:

  AND AL,BL

What will happen here is that the CPU will perform a gang of eight bitwise AND operations on the eight
bits in AL and BL. Bit 0 of AL is ANDed with bit 0 of BL, bit 1 of AL is ANDed with bit 1 of BL, and so on.
Each AND operation generates a result bit, and that bit is placed in the first operand (here, AL) after all
eight AND operations occur. This is a common thread among machine instructions that perform some
operation on two operands and produce a result: The result replaces the first operand, not the second!

Masking Out Bits

A major use of the AND instruction is to isolate one or more bits out of a byte value or a word value.
Isolate here simply means to set all unwanted bits to a reliable 0 value. As an example, suppose we are
interested in testing bits 4 and 5 of a value to see what those bits are. To do that, we have to be able to
ignore the other bits (bits 0 through 3 and 6 through 7), and the only way to safely ignore bits is to set
them to 0.

AND is the way to go. We set up a bit mask in which the bit numbers that we want to inspect and test
are set to 1, and the bits we wish to ignore are set to 0. To mask out all bits but bits 4 and 5, we must
set up a mask in which bits 4 and 5 are set to 1, with all other bits at 0. This mask in binary is
00110000B, or 30H. (To verify it, count the bits from the right-hand end of the binary number, starting
with 0.) This bit mask is then ANDed against the value in question. Figure 10.2 shows this operation in
action, with the 30H bit mask just described and an initial value of 9DH.



Figure 10.2: The anatomy of an AND instruction.

The three binary values involved are shown laid out vertically, with the LSB (that is, the right-hand end)
of each value at the top. You should be able to trace each AND operation and verify it by looking at
Table 10.2.

The end result is that all but bits 4 and 5 are guaranteed to be 0 and can thus be safely ignored. Bits 4
and 5 could be either 0 or 1. (That's why we need to test them; we don't know what they are.) With the
initial value of 9DH, bit 4 turns out to be a 1, and bit 5 turns out to be a 0. If the initial value were
something else, bits 4 and 5 could both be 0, both be 1, or some combination of the two.

Don't forget: The result of the AND operation replaces the first operand after the operation is complete.

For an example of the AND instruction in operation isolating bits in a word, look ahead to the Byte2Str
procedure, which follows later in this chapter.

The OR Instruction

Closely related to the AND logical operation is OR, which, like the AND logical operation, has an
embodiment with the same name in the x86 instruction set. Structurally, the OR instruction works
identically to AND. Only its truth table is different: While AND requires that both its operands be 1 for
the result to be 1, OR is satisfied that at least one operand has a 1 value. The truth table for OR is
shown in Table 10.3.

Table 10.3: The OR Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 OR 0 = 0

0 OR 1 = 1

1 OR 0 = 1

1 OR 1 = 1

Because it's unsuitable for isolating bits, OR is used much more rarely than AND.

The XOR Instruction



In a class by itself is the exclusive OR operation, embodied in the XOR instruction. XOR, again, does in
broad terms what AND and OR do: It performs a logical operation on two operands, and the result
replaces the first operand. The logical operation, however, is exclusive or, meaning that the result is 1
only if the two operands are different (that is, 1 and 0 or 0 and 1). The truth table for XOR (Table 10.4)
should make this slippery notion a little clearer.

Table 10.4: The XOR Truth Table for Assembly Language

BIT 1 OPERATOR BIT 2 RESULT BIT

0 XOR 0 = 0

0 XOR 1 = 1

1 XOR 0 = 1

1 XOR 1 = 0

Look Table 10.4 over carefully! In the first and last cases, where the two operands are the same, the
result is 0. In the middle two cases, where the two operands are different, the result is 1.

Some interesting things can be done with XOR, but most of them are a little arcane for a beginners'
book. I will show you one handy XOR trick, however: XORing any value against itself yields 0. In the old
days, this was faster than loading a 0 into a register from immediate data. Although that's no longer the
case, it's an interesting trick to know. How it works should be obvious from reading the truth table, but
to drive it home I've laid it out in Figure 10.3.

Figure 10.3: Using XOR to zero a register.

Follow each of the individual XOR operations across the figure to its result value. Because each bit in
AL is XORed against itself, in every case the XOR operations happen between two operands that are
identical. Sometimes both are 1, sometimes both are 0, but in every case the two are the same. With
the XOR operation, when the two operands are the same, the result is always 0. Voila! Zero in a
register.

The NOT Instruction

Easiest to understand of all the bitwise logical instructions is NOT. The truth table for NOT is simpler
than the others we've looked at because NOT only takes one operand. And what it does is simple as
well: NOT takes the state of each bit in its single operand and changes it to its opposite state. What



was 1 becomes 0 and what was 0 becomes 1. I show it in Table 10.5.

Table 10.5: The NOT Truth Table for Assembly Language

BIT OPERATOR RESULT BIT

0 NOT 1

1 NOT 0

Segment Registers Don't Respond to Logic!

One limitation of the segment registers CS, DS, SS, ES, FS, and GS is that they cannot be used with
any of the bitwise logical instructions. If you try, the assembler will hand you an "Illegal use of segment
register" error. If you need to perform a logical operation on a segment register, you must first copy the
segment register's value into one of the registers AX, BX, CX, DX, BP, SI, and DI; perform the logical
operation on the new register; and then copy the result back into the segment register.

Banging bits in segment registers is a dicey business if what's in the segment register is truly a
segment address. Sometimes it would be handy to use segment registers as spare, general-purpose
registers, but this can only be done in real mode. In real work in today's world, you're likely to be
working in protected mode, where segment registers can only be used as segment registers. So, it's
really not losing any genuine chip features, but gaining 4 gigabytes of memory instead. That's a bargain
I can live with.



Shifting Bits

The other way of manipulating bits within a byte is a little more straightforward: You shift them to one
side or the other. There are a few wrinkles to the process, but the simplest shift instructions are pretty
obvious: SHL SHifts its operand Left, whereas SHR SHifts its operand Right.

All of the shift instructions (including the slightly more complex ones I describe a little later) have the
same general form, illustrated here by the SHL instruction:

  SHL <register/memory>,<count>

The first operand is the target of the shift operation, that is, the value that you're going to be shifting. It
can be register data or memory data, but not immediate data. The second operand specifies the
number of bits by which to shift.

Shift by What?

This <count> operand is a little peculiar. On the 8086 and 8088, it can be one of two things: the
immediate digit 1, or else the register CL. (Not CX!) If you specify the count as 1, then the shift will be
by one bit. If you wish to shift by more than one bit at a time, you must load the shift count into register
CL. Counting things is CX's (and hence CL's) hidden agenda; it counts shifts, loops, string elements,
and a few other things that we look at later in this book. That's why it's sometimes called the count
register and can be remembered by the C in count.

Although you can load a number as large as 255 into CL, it really only makes sense to use count
values up to 32. If you shift any bit in a double word by 32, you shift it completely out of the double
word-not to mention out of any byte or word!

Starting with the 286, the <count> operand may be any immediate value from 1 to 255. If you're quite
sure your code will never have to run on an 8086 or 8088, using an immediate operand instead of
loading CL can save you an instruction and a little time.

How Bit Shifting Works

Understanding the shift instructions requires that you think of the numbers being shifted as binary
numbers, and not hexadecimal or decimal numbers. (If you're fuzzy on binary notation, again, take
another slip through Chapter 1.) A simple example would start with register AX containing a value of
0B76FH. Expressed as a binary number (and hence as a bit pattern), 0B76FH is as follows:

  1011011101101111

Keep in mind that each digit in a binary number is one bit. If you execute an SHL AX,1 instruction, what
you'd find in AX after the shift is the following:

  0110111011011110

A 0 has been inserted at the right-hand end of the number, and the whole shebang has been bumped
toward the left by one digit. Notice that a 1 bit has been bumped off the left end of the number into
cosmic nothingness.

Bumping Bits into the Carry Flag

Well, not exactly cosmic nothingness . . . The last bit shifted out is bumped into a temporary bucket for
bits called the Carry flag, often abbreviated as CF. The Carry flag is one of those odd bits lumped
together as the Flags register, which I described in Chapter 6. You can test the state of the Carry flag
with a branching instruction, as I explain later in this chapter.

Keep in mind when using shift instructions, however, that a lot of different instructions use the Carry
flag as well as the shift instructions. If you bump a bit into the Carry flag with the intent of testing that bit



to see what it is, test it before you execute another instruction that affects the Carry flag. This includes
all the arithmetic instructions, all the bitwise logical instructions, a few miscellaneous instructions-and,
of course, all the other shift instructions.

If you shift a bit into the Carry flag and then immediately execute another shift instruction, the first bit
will be bumped off the end of the world and into cosmic nothingness.

Byte2Str: Converting Numbers to Displayable Strings

As we've seen, DOS has a fairly convenient method for displaying text to your screen. The problem is
that it only displays text-if you want to display a numeric value from a register as a pair of digits, DOS
won't help. You first have to convert the numeric value into its string representation, and then display
the string representation through DOS.

Converting hexadecimal numbers to hexadecimal digits isn't difficult, and the routine to do the job
demonstrates several of the new concepts we're exploring in this chapter. Read the code for procedure
Byte2Str carefully:

  ;---------------------------------------------------------------
  ;  Byte2Str -- Converts a byte passed in AL to a string at
  ;              DS:SI
  ;  Last update 9/18/99
  ;
  ;  1 entry point:
  ;
  ;  Byte2Str:
  ;   Caller must pass:
  ;   AL : Byte to be converted
  ;   DS : Segment of destination string
  ;   SI : Offset of destination string
  ;
  ;   This routine converts 8-bit values to 2-digit hexadecimal
  ;   string representations at DS:SI. The "H" specifier is
  ;   *not* included. Four separate output examples: 
  ;   02  B7  FF  6C
  ;---------------------------------------------------------------

  Byte2Str:
      mov DI,AX           ; Duplicate byte in DI
      and DI,000FH        ; Mask out high 12 bits of DI
      mov BX,Digits       ; Load offset of Digits into DI
      mov AH,BYTE [BX+DI] ; Load digit from table into AH
      mov [SI+1],AH       ;  and store digit into string
      xor AH,AH           ; Zero out AH
      mov DI,AX           ; And move byte into DI
      ; WARNING: The following instruction requires 286 or better!
      shr DI,4            ; Shift high nybble of byte to low
      mov AH,BYTE [BX+DI] ; Load digit from table into AH
      mov [SI],AH         ;  and store digit into string
      ret                 ; We're done-go home!

Note that this is a procedure, and not a macro. (It could be turned into a macro, however. Why not give
it a shot?)

To call Byte2Str, you must pass the value to be converted to a string in AL and the address of the
string into which the string representation is to be stored as DS:SI. Typically, DS will already contain the
segment address of your data segment, so you most likely will only need to pass the offset of the start
of the string in SI.

In addition to the code shown here, Byte2Str requires the presence of a second string in the data
segment. This string, whose name must be Digits, contains all 16 of the digits used to express



hexadecimal numbers. The definition of Digits looks like this:

  Digits DB '0123456789ABCDEF'

The important thing to note about Digits is that each digit occupies a position in the string whose offset
from the start of the string is the value it represents. In other words, "0" is at the start of the string, zero
bytes offset from the string's beginning. The character "7" lies seven bytes from the start of the string,
and so on. Digits is what we call a lookup table and it represents (as I explain in the following sections)
an extremely useful mechanism in assembly language.

Splitting a Byte into Two Nybbles

Displaying the value stored in a byte requires two hexadecimal digits. The bottom four bits in a byte are
represented by one digit (the least-significant, or rightmost, digit) and the top four bits in the byte are
represented by another digit (the most significant, or leftmost, digit). Converting the two digits must be
done one at a time, which means that we have to separate the single byte into two 4-bit quantities,
which are often called nybbles.

To split a byte in two, we need to mask out the unwanted half. This is done with an AND instruction.
Note in Byte2Str that the first instruction, MOV DI,AX, copies the value to be converted (which is in AL)
into DI. You don't need to move AH into DI here, but there is no instruction to move an 8-bit register
half such as AL into a 16-bit register such as DI. AH comes along for the ride, but we really don't need
it. The second instruction masks out the high 12 bits of DI using AND. This eliminates whatever might
have earlier been in free rider AH, as well as the high 4 bits of AL. What's left in DI is all we want: the
lower 4 bits of what was originally passed to the routine in AL.

Using a Lookup Table

The low nybble of the value to be converted is now in DI. The address of Digits is loaded into BX. Then
the appropriate digit character is copied from Digits into AH. The whole trick of using a lookup table lies
in the way the character in the table is addressed:

  MOV AH,BYTE [BX+DI]

DS:BX points to the start of Digits, so [BX] would address the first character in Digits. To get at the
desired digit, we must index into the lookup table by adding the offset into the table to BX. There is an
x86 addressing mode intended precisely for use with lookup tables, called base indexed addressing.
That sounds more arcane than it is; what it means is that instead of specifying a memory location at
[BX], we add an index contained in register DI to BX and address a memory location at [BX+DI].

If you recall, we masked out all of DI but the four lowest bits of the byte we are converting. These bits
will contain some value from 0 through 0FH. Digits contains the hexadecimal digit characters from 0 to
F. By using DI as the index, the value in DI will select its corresponding digit character in Digits. We
are using the value in DI to look up its equivalent hexadecimal digit character in the lookup table Digits.
See Figure 10.4.



Figure 10.4: Using a lookup table.

So far, we've read a character from the lookup table into AH. Now, we use yet another addressing
mode to move the character from AX back into the second character of the destination string, whose
address was passed to Byte2Str in DS:SI. This addressing mode is called indirect displacement
addressing, though I question the wisdom of memorizing that term. The mode is nothing more than
indirect addressing (that is, addressing the contents of memory at [SI]) with the addition of a literal
displacement:

  MOV [SI+1],AH

This looks a lot like base indexed addressing (which is why the jargon may not be all that useful) with
the sole exception that what is added to SI is not a register but a literal constant.

Once this MOV is done, the first of the two nybbles passed to Byte2Str in AL has been converted to its
character equivalent and stored in the destination string variable at DS:SI.

Now we have to do it again, this time for the high nybble.

Shifting the High Nybble into the Low Nybble

The high nybble of the value to be converted has been waiting patiently all this time in AL. We didn't
mask out the high nybble until we moved AX into DI and did our masking on DI instead of AX. So, AL is
still just as it was when Byte2Str began.

The first thing to do is clear AH to 0. Byte2Str uses the XOR AH,AH trick I described in the last
section. Then we copy AX into DI with MOV. All that remains to be done is to somehow move the high
nybble of the low byte of DI into the position occupied by the low nybble. The fastest way to do this is
simply to shift DI to the right by four bits. This is what the four SHR DI,4 instructions in Byte2Str do.



The low nybble is simply shifted off the edge of DI, into the Carry flag, and then out into nothingness.
After the shift, what was the high nybble is now the low nybble, and once again, DI can be used as an
index into the Digits lookup table to MOV the appropriate digit into AH.

One minor caution: The instruction SHR DI,4 does not exist on the 8086 and 8088 CPUs. Prior to the
286, you could not provide any immediate operand to the shift instructions except for 1. Now, any
immediate value that may be expressed in 8 bits may be used as the shift count operand. If your code
must be able to run on any x86 CPU, you have to replace SHR DI,4 with four SHR DI,1 instructions. It's
a good idea to flag any use of instructions that do not exist on early CPUs in your source code. While
it's true that there are damned few 8088s and 8086s left out there, there are a few, and the reaction of
old chips to undefined instructions is always a crapshoot and may produce some crazy bugs.

Finally, there is the matter of storing the digit into the target string at DS:SI. Notice that this time, there
is no +1 in the MOV instruction:

  MOV [SI],AH

Why not? The high nybble is the digit on the left, so it must be moved into the first byte in the target
string. Earlier, we moved the low nybble into the byte on the right. String indexing begins at the left and
works toward the right, so if the left digit is at index 0 of the string, the right digit must be at index 0+1.

Byte2Str does a fair amount of data fiddling in only a few lines. Read it over a few times while following
the preceding discussion through its course until the whole thing makes sense to you.

Converting Words to Their String Form

Having converted a byte-sized value to a string, it's a snap to convert 16-bit words to their string forms.
In fact, it's not much more difficult than calling Byte2Str . . . twice:

  ;---------------------------------------------------------------
  ;  Word2Str -- Converts a word passed in AX to a string at
  ;         DS:SI
  ;  Last update 9/18/99
  ;
  ;  1 entry point:
  ;
  ;  Word2Str:
  ;   Caller must pass:
  ;   AX : Word to be converted
  ;   DS : Segment of destination string
  ;   SI : Offset of destination string
  ;---------------------------------------------------------------
  Word2Str:
      mov CX,AX      ; Save a copy of convertee in CX
      xchg AH,AL     ; Swap high and low AX bytes to do high first
      call Byte2Str  ; Convert AL to string at DS:SI
      add SI,2       ; Bump SI to point to second 2 characters
      mov AX,CX      ; Reload convertee into AX
      call Byte2Str  ; Convert AL to string at DS:SI
      ret            ; And we're done!

The logic here is fairly simple-if you understand how Byte2Str works. Moving AX into CX simply saves
an unmodified copy of the word to be converted in CX. Something to watch out for here: If Byte2Str
were to use CX for something, this saved copy would be mangled, and you might be caught wondering
why things weren't working correctly. This is a common enough bug for the following reason: You
create Byte2Str, and then create Word2Str to call Byte2Str. The first version of Byte2Str does not
make use of CX, so it's safe to use CX as a storage bucket.

However-later on you beef up Byte2Str somehow, and in the process add some instructions that use
CX. You plum forgot that Word2Str stored a value in CX while Word2Str was calling Byte2Str. It's



pointless arguing whether the bug is that Byte2Str uses CX, or that Word2Str assumes that no one
else is using CX. To make things work again, you would have to stash the value somewhere other than
in CX. Pushing it onto the stack is your best bet if you run out of registers. (You might hit on the idea of
stashing it in an unused segment register such as ES-but I warn against it! Later on, if you try to use
these utility routines in a program that makes use of ES, you'll be in a position to mess over your
memory addressing royally, and once you move to protected mode you can't play with the segment
registers at all. Let segment registers hold segments. Use the stack instead.)

Virtually everything that Word2Str does involves getting the converted digits into the proper positions in
the target string. A word requires four hexadecimal digits altogether. In a string representation, the high
byte occupies the left two digits, and the low byte occupies the right two digits. Since strings are
indexed from the left to the right, it makes a certain sense to convert the left end of the string first.

This is the reason for the XCHG instruction. It swaps the high and low bytes of AX, so that the first time
Byte2Str is called, the high byte is actually in AL instead of AH. (Remember that Byte2Str converts the
value passed in AL.) Byte2Str does the conversion and stores the two converted digits in the first two
bytes of the string at DS:SI.

For the second call to Byte2Str, AH and AL are not exchanged. Therefore, the low byte will be the one
converted. Notice the following instruction:

  ADD SI,2

This is not heavy-duty math, but it's a good example of how to add a literal constant to a register in
assembly language. The idea is to pass the address of the second two bytes of the string to Byte2Str
as though they were actually the start of the string. This means that when Byte2Str converts the low
byte of AX, it stores the two equivalent digits into the second two bytes of the string.

For example, if the high byte was 0C7H, the digits C and 7 would be stored in the first two bytes of the
string, counting from the left. Then, if the low byte were 042H, the digits 4 and 2 would be stored at the
third and fourth bytes of the string, respectively. The whole string would look like this when the
conversion was complete:

  C742

As I've said numerous times before: Understand memory addressing and you've got the greater part of
assembly language in your hip pocket. Most of the trick of Byte2Str and Word2Str lies in the different
ways they address memory. If you study them, study the machinery behind the lookup table and target
string addressing. The logic and shift instructions are pretty obvious and easy to figure out by
comparison.



Flags, Tests, and Branches

Those assembler-knowledgeable folk who have stuck with me this long may be wondering why I haven't
covered conditional jumps until this late in the book. I mean, we've explained procedures already and haven't
even gotten to jumps yet.

Indeed. That's the whole point. I explained procedures before jumps because when people learn those two
concepts the other way around, they have a tendency to use jumps for everything, even when procedures are
called for. Unlike some high-level languages such as Pascal and Modula-2, there is no way around jumps-
what Pascal and Modula people so derisively call "GOTOs"-in assembly language. Sadly, some people then
assume that jumps are It, and don't bother imposing any structure at all on their assembly language programs.
By teaching procedures first, I feel that I've at least made possible a more balanced approach on the part of
the learner.

Besides, I felt it wise to teach how to manage complexity before teaching the number one means of creating
complexity.

Unconditional Jumps

A jump is just that: an abrupt change in the flow of instruction execution. Ordinarily, instructions are executed
one after the other, in order, moving from low memory toward high memory. Jump instructions alter the
address of the next instruction to be executed. Execute a jump instruction, and zap! All of a sudden you're
somewhere else in the code segment. A jump instruction can move execution forward in memory or backward.
It can bend execution back into a loop. (And it can tie your program logic in knots . . .)

There are two kinds of jumps: conditional and unconditional. An unconditional jump is a jump that always
happens. It takes this form:

  JMP <label>

When this instruction executes, the sequence of execution moves to the instruction located at the label
specified by <label>. It's just that simple.

The unconditional JMP instruction is of limited use by itself. It almost always works in conjunction with the
conditional jump instructions that test the state of the various x86 flags. You'll see how this works in just a little
while, once we've gone through conditional jumps too.

Conditional Jumps

A conditional jump instruction is one of those fabled tests I introduced in Chapter 1. When executed, a
conditional jump tests something, usually one of the flags in the Flags register. If the flag being tested
happens to be in a particular state, execution may jump to a label somewhere else in the code segment, or it
may simply fall through to the next instruction in sequence.

This two-way nature is important. A conditional jump instruction either jumps, or it falls through. Jump, or no
jump. It can't jump to one of two places, or three. Whether it jumps or not depends on the current value of one
single bit within the CPU.

For example, there is a flag that is set to 1 by certain instructions when the result of that instruction is zero: the
Zero flag ZF. The DEC (DECrement) instruction is a good example. DEC subtracts one from its operand. If by
that subtraction the operand becomes zero, ZF is set to 1. One of the conditional jump instructions, JZ (Jump
if Zero) tests ZF. If ZF is found set to 1, a jump occurs, and execution transfers to a label. If ZF is found to be
0, execution falls through to the next instruction in line.

Here's a simple (and nonoptimal) example, using instructions you should already understand:

            mov byte [Counter],17 ; We're going to do this 17 times
  WorkLoop: call DoWork           ; Process the data
            dec byte [Counter]    ; Subtract 1 from the counter
            jz  AllDone           ; If the counter is zero, we're done!
            jmp WorkLoop          ; Otherwise, go back and execute the loop again



The label AllDone isn't shown in the example because it's somewhere else in the program, maybe a long way
off. The important thing is that the JZ instruction is a two-way switch. If ZF is equal to 1, execution moves to
the location marked by the label AllDone. If ZF is equal to 0, execution falls through to the next instruction in
sequence. Here, that would be the unconditional jump instruction JMP WorkLoop.

This simple loop is one way to perform a call to a procedure some set number of times. A count value is
stored in a variable named Counter. The procedure is called. After control returns from the procedure,
Counter is decremented by one. If that drops the counter to 0, the procedure has been called the full number
of times, and the loop sends execution elsewhere. If the counter still has some count in it, execution loops
back to the procedure call and begins the loop again.

Note the use of an unconditional jump instruction to close the loop.

Beware Endless Loops!

This is a good place to warn you of a common sort of bug that produces the dreaded endless loop, which
locks up your machine and forces you to reboot to get out. Suppose the preceding code snippet was instead
done the following way:

  WorkLoop: mov byte [Counter],17 ; We're going to do this 17 times
            call DoWork           ; Process the data
            dec byte [Counter]    ; Subtract 1 from the counter
            jz  AllDone           ; If the counter is zero, we're done!
            jmp WorkLoop          ; Otherwise, go back and execute the loop again

This becomes a pretty obvious endless loop. (However, you'll be appalled at how often such an obvious bug
will dance in your face for hours without being recognized as such . . .) The key point is that the instruction that
loads the initial value to the counter is inside the loop! Every time the loop happens, the counter is counted
down by one . . . and then immediately reloaded with the original count value. The count value thus never gets
smaller than the original value minus one, and the loop (which is waiting for the counter to become zero) never
ends.

You're unlikely to do something like this deliberately, of course. But it's very easy to type a label at the wrong
place or (easier still!) to type the name of the wrong label, a label that might be at or before the point where a
counter is loaded with its initial value.

Assembly language programming requires concentration and endless attention to detail. If you pay attention to
what you're doing, you'll make fewer "stupid" errors like the preceding one.

But I can promise you that you'll still make a few.

Jumping on the Absence of a Condition

There are a fair number of conditional jump instructions, of which I'll discuss only the most common in this
book. Their number is increased by the fact that almost every conditional jump instruction has an alter ego: a
jump when the specified condition is not set to 1.

The JZ instruction provides a good example. JZ jumps to a new location in the code segment if the Zero flag
(ZF) is set to 1. JZ's alter ego is JNZ (Jump if Not Zero). JNZ jumps to a label if ZF is 0 and falls through if ZF
is 1.

This may be confusing at first, because JNZ jumps when ZF is equal to 0. Keep in mind that the name of the
instruction applies to the condition being tested and not necessarily the binary bit value of the flag. In the
previous code example, JZ jumped when the DEC instruction decremented a counter to zero. The condition
being tested is something connected with an earlier instruction, not simply the state of ZF.

Think of it this way: A condition raises a flag. "Raising a flag" means setting the flag to 1. When one of
numerous instructions forces an operand to a value of zero (which is the condition), the Zero flag is raised.
The logic of the instruction refers to the condition, not to the flag.

As an example, let's improve the little loop shown on page 333. I should caution you that its first



implementation, while correct and workable in the strictest sense, is awkward and not the best way to code
that kind of thing. It can be improved in several ways. Here's one:

            mov byte [Counter],17 ; We're going to do this 17 times
  WorkLoop: call DoWork           ; Process the data
            dec byte [Counter]    ; Subtract 1 from the counter
            jnz WorkLoop          ; If the counter is zero, we're done!
            < more code >

The JZ instruction has been replaced with a JNZ instruction. That makes much more sense, since to close the
loop we have to jump, and we only close the loop while the counter is greater than 0. The jump back to label
WorkLoop will happen only while the counter is greater than 0.

Once the counter decrements to 0, the loop is considered finished. JNZ falls through, and the code that
follows the loop (which I don't show here) executes. The next instruction could be a JMP to label AllDone, as
shown earlier, or it could be the next bit of work that the assembly language program has to do. The point is
that if you can position the program's next task immediately after the JNZ instruction, you don't need to use
the JMP instruction at all. Instruction execution will just flow naturally into the next task that needs performing.
The program will have a more natural and less-tangled top-to-bottom flow and will be easier to read and
understand.

Flags

Back in Chapter 6, I explained the Flags register and briefly described the purposes of all the flags it contains.
Most flags are not terribly useful, especially when you're first starting out as a programmer. The Carry flag (CF)
and the Zero flag (ZF) will be 90 percent of your involvement in flags as a beginner, with the Direction flag
(DF), Sign flag (SF), and Overflow flag (OF) together making up an additional 9.998 percent. It might be a
good idea to reread that part of Chapter 6 now, just in case your grasp of flag etiquette has gotten a little rusty.

As explained earlier, JZ jumps when ZF is 1, whereas JNZ jumps when ZF is 0. Most instructions that perform
some operation on an operand (such as AND, OR, XOR, INC, DEC, and all arithmetic instructions) set ZF
according to the results of the operation. On the other hand, instructions that simply move data around (such
as MOV, XCHG, PUSH, and POP) do not affect ZF or any of the other flags. (Obviously, POPF affects the
flags by popping the top-of-stack value into them.) One irritating exception is the NOT instruction, which
performs a logical operation on its operand but does not set any flags-even when it causes its operand to
become 0. Before you write code that depends on flags, check your instruction reference to make sure that
you have the flag etiquette down correctly.

Comparisons with CMP

One major use of flags is in controlling loops. Another is in comparisons between two values. Your programs
will often need to know whether a value in a register or memory is equal to some other value. Further, you may
want to know if a value is greater than a value or less than a value if it is not equal to that value. There is a
jump instruction to satisfy every need, but something has to set the flags for the benefit of the jump instruction.
The CMP (CoMPare) instruction is what sets the flags for comparison tasks.

CMP's use is straightforward and intuitive. The second operand is compared with the first, and several flags
are set accordingly:

  cmp <op1>,<op2>    ; Sets OF, SF, ZF, AF, PF, and CF

The sense of the comparison can be remembered if you simply recast the comparison in arithmetic terms:

  Result = <op1> - <op2>

CMP is very much a subtraction operation where the result of the subtraction is thrown away, and only the
flags are affected. The second operand is subtracted from the first. Based on the results of the subtraction,
the other flags are set to appropriate values.

After a CMP instruction, you can jump based on several arithmetic conditions. People who have a fair



grounding in math, and FORTRAN or Pascal programmers will recognize the conditions: Equal, Not equal,
Greater than, Less than, Greater than or equal to, and Less than or equal to. The sense of these operators
follows from their names and is exactly like the sense of the equivalent operators in most high-level
languages.

A Jungle of Jump Instructions

There is a bewildering array of jump instruction mnemonics, but those dealing with arithmetic relationships sort
out well into just six categories, one category for each of the six preceding conditions. Complication arises out
of the fact that there are two mnemonics for each machine instruction, for example, JLE (Jump if Less than or
Equal) and JNG (Jump if Not Greater than). These two mnemonics are synonyms in that the assembler
generates the identical binary opcode when it encounters either mnemonic. The synonyms are a convenience
to you the programmer in that they provide two alternate ways to think about a given jump instruction. In the
preceding example, Jump if Less than or Equal to is logically identical to Jump if Not Greater than. (Think
about it!) If the importance of the preceding compare was to see if one value is less than or equal to another,
you'd use the JLE mnemonic. On the other hand, if you were testing to be sure one quantity was not greater
than another, you'd use JNG. The choice is yours.

Another complication is that there is a separate set of instructions for signed and unsigned comparisons. I
haven't spoken much about assembly language math in this book, and thus haven't said much about the
difference between signed and unsigned quantities. A signed quantity is one in which the high bit of the
quantity is considered a built-in flag indicating whether the quantity is negative. If that bit is 1, the quantity is
considered negative. If that bit is 0, the quantity is considered positive.

Signed arithmetic in assembly language is complex and subtle, and not as useful as you might immediately
think. I won't be covering it in detail in this book, though most all assembly language books treat it to some
extent. All you need know to get a high-level understanding of signed arithmetic is that in signed arithmetic,
negative quantities are legal. Unsigned arithmetic, on the other hand, does not recognize negative numbers.

Greater Than versus Above

To tell the signed jumps apart from the unsigned jumps, the mnemonics use two different expressions for the
relationships between two values:

Signed values are thought of as being greater than or less than. For example, to test whether one signed
operand is greater than another, you would use the JG (Jump if Greater) mnemonic after a CMP
instruction.

Unsigned values are thought of as being above or below. For example, to tell whether one unsigned
operand is greater than (above) another, you would use the JA (Jump if Above) mnemonic after a CMP
instruction.

Table 10.6 summarizes the arithmetic jump mnemonics and their synonyms. Any mnemonics containing the
words above or below are for unsigned values, while any mnemonics containing the words greater or less are
for signed values. Compare the mnemonics with their synonyms and see how the two represent opposite
viewpoints from which to look at identical instructions.



Table 10.6: Arithmetic Jump Mnemonics and Their Synonyms

MNEMONICS SYNONYMS

JA Jump If Above JNBE Jump If Not Below or Equal

JAE Jump If Above or Equal JNB Jump If Not Below

JB Jump If Below JNAE Jump If Not Above or Equal

JBE Jump If Below or Equal JNA Jump If Not Above

JE Jump If Equal JZ Jump If Result is Zero

JNE Jump If Not Equal JNZ Jump If Result is Not Zero

JG Jump If Greater JNLE Jump If Not Less Than or Equal

JGE Jump If Greater or Equal JNL Jump If Not Less

JL Jump If Less JNGE Jump If Not Greater or Equal

JLE Jump If Less or Equal JNG Jump If Not Greater

Table 10.6 simply serves to expand the mnemonics into a more comprehensible form and associate a
mnemonic with its synonym. Table 10.7, on the other hand, sorts the mnemonics out by logical condition and
according to their use with signed and unsigned values. Also listed in Table 10.7 are the flags whose values
are considered in each jump instruction. Notice

Table 10.7: Arithmetic Tests Useful After a CMP Instruction

CONDITION
PASCAL
OPERATOR

UNSIGNED
VALUES

JUMPS
WHEN

SIGNED
VALUES

JUMPS
WHEN

Equal = JE ZF=1 JE ZF=1

Not Equal <> JNE ZF=0 JNE ZF=0

Greater than > JA CF=0 and JG ZF=0 or

Not Less than or
equal to

  JNBE ZF=0 JNLE SF=OF

Less than < JB CF=1 JL SF<>OF

Not Greater than
or equal to

  JNAE   JNGE  

Greater than or
equal to

>= JAE CF=0 JGE SF=OF

Not Less than   JNB   JNL  

Less than or equal
to

<= JBE CF=1 or
ZF=1

JLE ZF=1 and
SF<>OF

Not Greater than   JNA   JNG  

that some of the jump instructions require one of two possible flag values in order to take the jump, while
others require both of two flag values.

Several of the signed jumps compare two of the flags against one another. JG, for example, will jump when
either ZF is 0, or when the Sign flag (SF) is equal to the Overflow flag (OF). I won't spend any further time
explaining the nature of the Sign flag or Overflow flag. As long as you have the sense of each instruction
under your belt, understanding exactly how the instructions test the flags can wait until you've gained some
programming experience.

Some people have trouble understanding how it is that JE and JZ mnemonics are synonyms, as are JNE and
JNZ. Think again of the way a comparison is done within the CPU: The second operand is subtracted from the
first, and if the result is 0 (indicating that the two operands were in fact equal), the Zero flag is set to 1. That's
why JE and JZ are synonyms: Both are simply testing the state of the Zero flag.



Detecting the Installed Display Adapter

A useful example of CMP and the conditional jump instructions in action involves detecting the installed
display adapter. At the beginning of the 1990s, there were five different mainstream IBM display adapters in
reasonably common use in PCs, from the first generation introduced with the original PC in 1981 to the VGA
and MCGA introduced with the PS/2 series in 1987. Going into the twenty-first century, nearly all of those
adapters except for the VGA are mostly extinct.

So, the code I'm about to show you is mostly a technical exercise, but if you work with older machines (and
one reason to work in assembly is to create software that works quickly enough on older machines), it may be
useful for sorting out what any given machine can do from a text video standpoint.

It isn't quite enough to know which board is installed in a given machine. The way a certain board operates
can change severely depending on whether a monochrome or color monitor is attached to the board. The
most obvious difference (and the one of most interest to the programmer) is that memory address of the video
display buffer is one address for the color monitor and a different address for the monochrome monitor. This
schizophrenic quality of the EGA, VGA, and MCGA is so pronounced that it makes sense to consider the
EGA/color monitor combination an entirely separate display adapter from the EGA/monochrome monitor
combination, and ditto for the VGA. (The MCGA is one of those adapters approaching extinction
asymptotically.)

In my method, I use a separate numeric code to represent each legal adapter/monitor combination. There are
nine possibilities in all, summarized in Table 10.8.

Table 10.8: Legal PC Display Adapter/Monitor Combinations

CODE ADAPTER/MONITOR SEGMENT OF DISPLAY BUFFER

00 None None

01H MDA/monochrome 0B000H

02H CGA/color 0B800H

04H EGA/color 0B800H

05H EGA/monochrome 0B000H

07H VGA/monochrome 0B000H

08H VGA/color 0B800H

0AH MCGA/color (digital) 0B800H

0BH MCGA/monochrome 0B000H

0CH MCGA/color (analog) 0B800H

The codes are not consecutive; note that there is no code 3, 6, or 9. I didn't make these codes up arbitrarily.
They are, in fact, the display adapter/ monitor combination codes returned by one of the VGA BIOS services.

The procedure DispID given in the following listing determines which display adapter is installed in the
machine upon which DispID is running. DispID then returns one of the codes listed in Table 10.8. I
recommend that your programs define a byte-sized variable in their data segments where this code can be
stored throughout the programs' duration. If you detect the adapter with DispID immediately on program
startup, your program can inspect the code any time it needs to make a decision as to which video features to
use.

Given what I've told you about CMP and conditional jump instructions so far, see if you can follow the logic in
DispID before we go through it blow by blow:

  ;---------------------------------------------------------------
  ;  DispID - Identifies the installed display adapter
  ;  Last update 9/18/99
  ;
  ;  1 entry point:



  ;
  ;  DispID:
  ;   Caller passes no parameters
  ;   Routine returns a code value in AX.
  ;   The codes are these:
  ;   0 : Adapter is unknown; recommend aborting
  ;   1 : MDA (Monochrome Display Adapter)
  ;   2 : CGA (Color Graphics Adapter)
  ;
  ;---------------------------------------------------------------

  DispID:
      mov AH,1AH     ; Select PS/2 Identify Adapter Service
      xor AL,AL      ; Select Get Combination Code Subservice (AL=0)
      int 10H        ; Call VIDEO
      cmp AL,1AH     ; If AL comes back with 1AH, we have a PS/2
      jne TryEGA     ; If not, jump down to test for the EGA
      mov AL,BL      ; Put Combination Code into AL
      ret            ;  and go home!
  TryEGA: mov AH,12H ; Select EGA Alternate Function
      mov BX,10H     ; Select Get Configuration Information subservice
      int 10H        ; Call VIDEO
      cmp BX,10H     ; If BX comes back unchanged, EGA is *not* there
      je  OldBords   ; Go see whether it's an MDA or CGA
      cmp BH,0       ; If BH = 0, it's an EGA/color combo
      je  EGAColor   ;  otherwise it's EGA/mono
      mov AL,5       ; Store code 5 for EGA mono
      ret            ;  and go home!
  EGAColor:
      mov AL,4       ; Store code 4 for EGA color
      ret            ;  and go home!
  OldBords:
      int 11H        ; Call Equipment Configuration interrupt
      and AL,30H     ; Mask out all but bits 4 & 5
      cmp AL,30H     ; If bits 4 & 5 are both =1, it's an MDA
      jne CGA        ;  otherwise it's a CGA
      mov AL,1       ; Store code 1 for MDA
      ret            ;  and go home!
  CGA:  mov AL,2     ; Store code 2 for CGA
      ret            ;  and go home!

DispID is the most complex piece of code shown so far in this book. The overall strategy is not obvious and
warrants some attention.

IBM's standard display boards appeared in three generations. The first generation consisted of the original
Color Graphics Adapter (CGA) and Monochrome Display Adapter (MDA). The second generation consisted
solely of the Enhanced Graphics Adapter (EGA). Finally, the third generation came in with the PS/2 in April of
1987 and provided the Video Graphics Array (VGA) and Multi-Color Graphics Array (MCGA). Although "super"
successors of the VGA appeared regularly going into the 1990s, their superness was strictly on the graphics
side. The evolution of the PC text display pretty much ceased with the VGA and MCGA.

The simplest way to find out what display board is installed in a machine is to ask the machine by querying
BIOS services. There are BIOS services specific to each generation of display board, and by some quirk of
fate all such services are well behaved, by which I mean that querying a service that doesn't exist (because an
older generation of video board is installed) will not crash the system. (IBM's BIOS standard is extremely
downward compatible in that newer generations all contain everything the older generations do.) Furthermore,
if a BIOS service specific to a generation of boards is found not to exist, that tells us that the installed board is
not a member of that generation or a newer generation.

Assuming that the target machine could have any of the standard IBM display boards in it, it makes sense to
test for the presence of the newest boards first. Then, through a process of elimination, we move to the older



and older boards.

The first test that DispID makes, then, is for the VGA or MCGA generation, that is, the PS/2 boards. The PS/2
machines contain in their ROM BIOS a service (VIDEO Service 1AH) designed specifically to identify the
installed display adapter. DispID calls VIDEO service 1AH, having cleared AL to 0 via XOR. As it happens, if a
PS/2 BIOS is present on the bus, the 1AH service number is returned in register AL. On return from the INT
10H call, we test AL for 1AH using CMP. If 1AH is not found in AL, we know up front that there is no PS/2
BIOS in the system, and therefore no VGA or MCGA.

After the CMP instruction is the JNE TryEGA conditional branch. If the CMP instruction finds that AL is not
equal to 1AH, then control jumps down to the code that tests for the next older generation of video boards: the
EGA. If AL is equal to 1AH, then the PS/2 BIOS is present and has placed the display adapter code in BL.
DispID then copies BL into AL (which is where DispID returns the display code) and executes a RET
instruction to pass control back to the caller.

Testing for the EGA is done a little differently, but the same general idea holds: We call an EGA-specific
VIDEO service not present in the oldest generation of boards. The key test, again, is whether a certain register
comes back unchanged. There is a twist, however: If BX comes back with the same value it held when the
VIDEO call was made (here, 10H), then an EGA BIOS does not exist in the machine. (Isn't the PC wonderful?)
Here, after the CMP BX,10H instruction, we do a JE OldBords and not a JNE as we did when testing for the
PS/2 generation. If BX comes back in an altered state, we assume an EGA is present and that BX contains
information on the display configuration.

If an EGA BIOS is found, a value in BH tells us whether the EGA is connected to a monochrome or color
monitor. (Remember, there is a different code for each.) The value in BH is not the code itself, as it was with
the PS/2 BIOS, so we have to do a little more testing to get the right code into AL. If BH contains 0, then the
attached monitor is color. Any other value in BH indicates a monochrome system. The following sequence of
instructions from DispID takes care of loading the proper EGA-specific code into AL:

      cmp BH,0      ; If BH = 0, it's an EGA/color combo
      je  EGAColor  ;  otherwise it's EGA/mono
      mov AL,5      ; Store code 5 for EGA mono
      ret           ;  and go home!
  EGAColor:
      mov AL,4      ; Store code 4 for EGA color
      ret           ;  and go home!

You'll find yourself writing sequences like this a lot, when a single test decides between one of two courses of
action. One course here is to load the value 5 into AL, and the other course is to load 4 into AL. Notice that
after the appropriate MOV instruction is executed, a RET takes care of passing execution back to the caller. If
DispID were not a procedure, but simply a sequence coded into the main line of instructions, you would need
an unconditional jump (JMP) after each MOV to continue on with instruction execution somewhere else in the
program. Using RET is much neater-which is yet another reason to wrap up small tasks such as display
adapter identification in a procedure wrapper.

Finally, if neither PS/2 nor EGA are present, DispID realizes that, by default, one of the original generation of
display boards is on the bus. Telling MDA from CGA is not done with a BIOS call at all, because the first
generation BIOS did not know which display board was present. (That was a feature instituted with the EGA in
1984.) Instead, there is a separate software interrupt, 11H, that returns machine configuration information.

Testing Bits with TEST

Service 11H returns a word's worth of bits in AX. Singly or in twos or threes, the bits tell a tale about specific
hardware options on the installed PC. These hardware options are summarized in Figure 10.5.



Figure 10.5: Interrupt 11H configuration information.

The bits we need to examine are bits 4 and 5. If both are set to 1, then we know we have a Monochrome
Display Adapter. If the two bits are set to any other combination, the adapter must be a Color Graphics
Adapter; all other alternatives have by this time been eliminated.

Testing for two 1 bits in a byte is an interesting exercise-which is one reason I've retained this code in the
book, even though it's not as compellingly useful as it was 10 years ago. The x86 instruction set recognizes
that bit testing is done a lot in assembly language, and it provides what amounts to a CMP instruction for bits:
TEST.

The Phantoms of the Opcodes

TEST performs an AND logical operation between two operands, and then sets the flags as AND would,
without altering the destination operation, as AND would. Here's the TEST instruction syntax:

  TEST <operand>,<bit mask>

The bit mask operand should contain a 1 bit in each position where a 1 bit is to be sought in the operand, and
0 bits in all the other bits.

What TEST does is AND the operand against the bit mask and set the flags as AND would. The operand
doesn't change. For example, if you want to determine if bit 3 of AX is set to 1, you would use this instruction:

  TEST AX,3       ; 3 in binary is 00001000B

AX doesn't change as a result of the operation, but the AND truth table is asserted between AX and the binary
pattern 00001000. If bit 3 in AX is a 1 bit, then the Zero flag is cleared to 0. If bit 3 in AX is a 0 bit, then the
Zero flag is set to 1. Why? If you AND 1 (in the bit mask) with 0 (in AX), you get 0. (Look it up in Table 10.2,



the AND truth table.) And if all eight bitwise AND operations come up 0, the result is 0, and the Zero flag is
raised to 1, indicating that the result is 0.

Key to understanding TEST is thinking of TEST as a sort of Phantom of the Opcode, where the Opcode is
AND. TEST pretends it is AND, but doesn't follow through with the results of the operation. It simply sets the
flags as though an AND operation had occurred.

CMP is another Phantom of the Opcode and bears the same relation to SUB as TEST bears to AND. CMP
subtracts its second operand from its first, but doesn't follow through and store the result in the first operand. It
just sets the flags as though a subtraction had occurred.

TEST Pointers

Here's something important to keep in mind: TEST is only useful for finding 1 bits. If you need to identify 0 bits,
you must first flip each bit to its opposite state with the logical NOT instruction, as I explained earlier. NOT
changes all 1 bits to 0 bits, and all 0 bits to 1 bits. Once all 0 bits are flipped to 1 bits, you can test for a 1 bit
where you need to find a 0 bit. (Sometimes it helps to map it out on paper to keep it all straight in your head.)

Also, TEST will not reliably test for two or more 1 bits in the operand at one time. TEST doesn't check for the
presence of a bit pattern; it checks for the presence of a single 1 bit. In other words, if you need to check to
make sure that both bits 4 and 5 are set to 1, TEST won't hack it.

And unfortunately, that's what we have to do in DispID.

What we're looking for in the last part of DispID is the monochrome code in bits 4 and 5, which is the value
30H; that is, both bits 4 and 5 set to 1. Don't make the mistake (as I did once, in ages long past) of assuming
that we can use TEST to spot the two 1 bits in bits 4 and 5:

  test AL,30H   ; If bits 4 & 5 are both =1, it's an MDA
  jnz CGA       ;  otherwise it's a CGA

This doesn't work! The Zero flag will be set only if both bits are zero. If either bit is 1, ZF will become 0, and
the branch will be taken. However, we only want to take the branch if both bits are 1.

Here's where your right brain can sometimes save both sides of your butt. TEST only spots a single 1 bit at a
time. We need to detect a condition where two 1 bits are present. So let's get inspired and first flip the state of
all bits in the Equipment Identification Byte with NOT, and then look at the byte with TEST. After using NOT,
what we need to find are two 0 bits, not two 1 bits. And if the two bits in question (4 and 5) are now both zero,
the whole byte is zero, and the Zero flag will be set and ready to test via JNZ:

  not AL       ; Invert all bits in the equipment ID byte
  test AL,30H  ; See if either of bits 4 or 5 are 1-bits
  jnz CGA      ; If both = 0, they originally were both 1's,
               ; and the adapter is a monochrome

Tricky, tricky. But as you get accustomed to the instruction set and its quirks, you'll hit upon lots of nonobvious
solutions to difficult problems of that kind.

So, get that right brain working: How would you test for a specific pattern that was a mix of 0 bits and 1 bits?



Assembly Odds 'n Ends

Practice is the word.

You can do a lot with what you've learned so far, and certainly, you've learned enough to be able to figure out
the rest with the help of an assembly language reference and perhaps a more advanced book on the subject.
For the remainder of this chapter we're going to do some practicing, flexing some assembly language muscles
and picking up a few more instructions in the process.

Yet Another Lookup Table

The lookup table named Digits (used by Byte2Str and Word2Str in the previous section) is so obvious that it
didn't need much in the line of comments or explanations. Digits simply converted the table's index into the
ASCII character equivalent to the value of the index. Digits is only 16 bytes long, and its contents pretty much
indicate what it's for:

  Digits  DB '0123456789ABCDEF'

Most of the time, your lookup tables will be a little less obvious. A lookup table does not have to be one single
DB variable definition. You can define it pretty much as you need to, either with all table elements defined on a
single line (as with Digits) or with each table element on its own line.

Consider the following lookup table:

  OriginTbl DW   0B000H  ; Code 0: No adapter identified
            DW   0B000H  ; Code 1: MDA
            DW   0B800H  ; Code 2: CGA
            DW   0B000H  ; Undefined
            DW   0B800H  ; Code 4: EGA/color
            DW   0B000H  ; Code 5: EGA/mono
            DW   0B000H  ; Undefined
            DW   0B000H  ; Code 7: VGA/mono
            DW   0B800H  ; Code 8: VGA/color
            DW   0B000H  ; Undefined
            DW   0B800H  ; Code 0AH: MCGA/color (digital)
            DW   0B000H  ; Code 0BH: MCGA/mono
            DW   0B800H  ; Code 0CH: MCGA/color (analog)

Here's a table in which each table element has its own DW definition statement on its own line. This table treats
a problem connected with the numerous different kinds of display adapters installable in a PC. There are two
different addresses where the video refresh buffer begins. On boards connected to color or color/gray scale
monitors, the address is B800:0000, whereas on monochrome monitors, the address is B000:0000. (Refer back
to Figure 6.11 and the accompanying text if you've forgotten what the video refresh buffer is.)

If you intend to address video memory directly (and doing so is much faster than working through DOS as we
have been), then you have to know at which address the video refresh buffer lies. Knowing which display
adapter is installed is the hardest part—and the DispID procedure described in the previous section answers
that question. Each of the nine codes returned by DispID has a video refresh buffer address associated with it.
But which goes with which? You could use a long and interwoven series of CMP and JE tests, but that's the
hard road and is grossly wasteful of memory and machine cycles. A lookup table is simpler, faster in execution,
and much easier to read and understand.

The following routine uses the OriginTbl lookup table shown previously to return the segment portion of the
video refresh buffer address in AX. OriginTbl must be present in the data segment, and the display adapter
code must be passed to VidOrg in AL:

  ;---------------------------------------------------------------
  ;  VidOrg -- Returns origin segment of video buffer
  ;  Last update 9/20/99
  ;



  ;  1 entry point:
  ;
  ;  VidOrg:
  ;   Caller must pass:
  ;   AL : Code specifying display adapter type
  ;   VidOrg returns the buffer origin segment in AX
  ;---------------------------------------------------------------
  VidOrg:
     xor AH,AH        ; Zero AH
     mov DI,AX        ; Copy AX (with code in AL) into DI
     shl DI,1         ; Multiply code by 2 to act as word index
     mov BX,OriginTbl ; Load address of origin table into BX
     mov AX,[BX+DI]   ; Index into table using code as index
     ret              ; Done; go home!

This works a lot like the Digits lookup table mechanism in Byte2Str. There's an important difference, however:
Each entry in the OriginTbl lookup table is two bytes in size, whereas each entry in Digits was one byte in size.

Using Shift Instructions to Multiply by Powers of Two

To use the Digits lookup table, we simply used the value to be converted as the index into the table. Because
each element in the table was one byte in size, this worked. When table elements are more than one byte long,
you have to multiply the index by the number of bytes in each table element, or the lookup won't find the correct
table element.

OriginTbl is a good working example. Suppose you get a code 2 back from DispID, indicating that you have a
CGA in the system. Adding the 2 code to the starting address of the table (as we did with Digits) takes us to the
start of the second element in the table. Read across to the comment at the right of that second element and
see which code it applies to: code 1, the MDA! Not cool . . .

If you scan down to find the table element associated with the CGA, you'll find that it starts at an offset of four
from the start of the table. To index into the table correctly, you have to add 4, not 2, to the offset address of the
start of the table. This is where multiplication comes in.

There is a general-purpose multiply instruction in the x86 CPU, but MUL is outrageously slow as machine
instructions go. There's a better way— in some cases. When you need to multiply a value by some power of 2
(that is, 2, 4, 8, 16, 32, and so on), you can do it by using the shift left instruction, SHL. Shifting a value to the
left by one bit multiplies the overall value by 2. Shifting a value to the left by two bits multiplies the value by 4.
Shifting a value to the left by three bits multiplies the value by 8, and so on.

Magic? Not at all. Work it out on paper by expressing a number as a bit pattern (that is, in binary form), shifting
the bit pattern one bit to the right, and then converting the binary form back to decimal or hex. Like so:

     00110101        Binary equivalent of 35H, 53 decimal
     <--- by one bit yields
     01101010        Binary equivalent of 6AH, 106 decimal

Sharp readers may have guessed that shifting to the right divides by powers of two—and that's also correct.
Shifting right by one bit divides by 2; shifting right by two bits divides by 4, and so on.

The advantage to multiplying with shift instructions is that it's fast. Even on the oldest and slowest x86 CPUs,
shifting a byte-sized value in a register to the left by one bit takes only two machine cycles—2 . . . as opposed
to 77 (on those same older machines) with MUL. And MUL can do no better than 13 cycles even on the newest
Pentium-class processors.

As we say, no contest.

Once the index is multiplied by two with SHL, the index is added to the starting address of the table, just as with
Digits. A word-sized MOV then copies the correct segment address from the table into AX, for return to the
caller.



This illustrates how you can realize enormous speed advantages by structuring your tables properly. Even if it
means leaving a little wasted space at the end of each element, do your best to make the length of your table
elements equal to some power of two. That means making each element 1, 2, 4, 8, 16, 32, or some larger
power of two in size, but not 3, 7, 12, 20, or 25 bytes in size.

Tables within Tables

Tables are about the handiest means at your disposal for grouping data together and organizing them.
Sometimes tables can be as simple as those I've just shown you, which are simply sequences of single values.

In most cases, you'll need something a little more sophisticated. Sometimes you'll need a table of tables, and
(surprise!) the x86 instruction set contains some built-in machinery to handle such nested tables quickly and
easily.

Let's continue on with the issue of video support. In the previous section we looked at a table containing the
display buffer addresses for each of the display adapters identified by DispID. This is good, but not enough:
Each adapter has a name, a display buffer address, and a screen size dictated by the size of the current
character font. These items comprise a table of information about a display adapter, and if you wanted to put
together a summary of all that information about all legal display adapters, you'd have to create such a table of
tables.

Below is such a two-level table:

  ;---------------------------------------------------------------
  ; DISPLAY ADAPTER INFORMATION LOOKUP TABLE
  ;
  ; This is the lookup table containing information on all legal
  ; display adapters. The first field in each element is a 26-
  ; character string containing a brief description of the
  ; adapter. The next field is the segment of the video refresh
  ; buffer. The last three fields are the number of screen lines
  ; an adapter displays when the 8-pixel, 14-pixel, and 16-pixel
  ; fonts are loaded, respectively. Note that not all adapters
  ; support all fonts, but a screen line count is given for all
  ; three fonts for all adapter types. Illegal combinations will
  ; not be accessed.
  ;---------------------------------------------------------------
  VidInfoTbl DB   'No adapter identified      '  ; Code 0
             DW   0B000H
             DB   25,25,25
             DB   'Monochrome Display Adapter '  ; Code 1
             DW   0B000H
             DB   25,25,25
             DB   'Color Graphics Adapter     '  ; Code 2
             DW   0B800H
             DB   25,25,25
             DB   'Code 3: Undefined          '  ; Code 3
             DW   0B000H
             DB   25,25,25
             DB   'EGA with color monitor     '  ; Code 4
             DW   0B800H
             DB   43,25,25
             DB   'EGA with mono monitor      '  ; Code 5
             DW   0B000H
             DB   43,25,25
             DB   'Code 6: Undefined          '  ; Code 6
             DW   0B000H
             DB   25,25,25
             DB   'VGA with mono monitor      '  ; Code 7
             DW   0B000H
             DB   50,27,25



             DB   'VGA with color monitor     '  ; Code 8
             DW   0B800H
             DB   50,27,25
             DB   'Code 9: Undefined          '  ; Code 9
             DW   0B000H
             DB   25,25,25
             DB   'MCGA with digital color    '  ; Code 0AH
             DW   0B800H
             DB   25,25,25
             DB   'MCGA with monochrome       '  ; Code 0BH
             DW   0B000H
             DB   25,25,25
             DB   'MCGA with analog color     '  ; Code 0CH
             DW   0B800H
             DB   25,25,25

The table consists of 12 subtables, one for each possible code returned by DispID as well as a subtable for
several undefined codes. Why a subtable for undefined codes? We're going to follow the same general strategy
of indexing into the table based on the value of the code. In other words, to get the information for code 4, we
have to look at the fifth table (counting from zero) which requires that tables 0 through 4 already exist. Code 3 is
undefined, yet something must hold its place in the table for our indexing scheme to work.

Each subtable occupies three lines, for clarity's sake. Here's a typical subtable:

        DB   'EGA with color monitor   '  ; Code 4
        DW   0B800H
        DB   43,25,25

The first line is a 27-character quoted string containing the name of the display adapter. The second line is a
word-sized address, the segment address of the visible display buffer corresponding to that name. The third line
contains three numeric values. These are screen sizes, in lines, relating to the font sizes currently in force. The
first value is the number of lines on the screen with the 8-pixel font in force. The second value is the number of
lines on the screen with the 14-pixel font in force. The third value is the number of lines on the screen with the
16-pixel font in force. The items stored in the subtables give you just about everything you'd really need to know
about a given display adapter to do useful work with it. The character string is set to precisely 27 characters in
length so that with the addition of the display buffer segment address and the three screen size values, the
length of the whole table entry comes out to exactly 32 bytes.

When your assembly language programs begin executing, they should inspect such a table and extract the
values pertinent to the currently installed display adapter. These extracted values should be ordinary variables
in the data segment, easily accessible without further table searching. These variables should be defined
together, as a block, with comments explaining how they are related:

  ;---------------------------------------------------------------
  ; DISPLAY INFORMATION VARIABLES
  ;
  ; The following block of variables all relate to the video
  ; system and are initialized by the VidCheck procedure:
  ;---------------------------------------------------------------
  DispType   DB   0      ; Code for display adapter type
  VidSegment DW   0B000H ; Segment of installed display buffer
  VidOrigin  DW   0      ; Offset for FAR pointer to refresh buffer
  VisibleX   DB   80     ; Number of columns on screen
  VisibleY   DB   25     ; Number of lines on screen
  VidBufSize DW   4000   ; Default to 25 X 80 X 2 (char & attribute)
  FontSize   DB   8      ; Either 8, 14, or 16; default to 8
  BordName   DW   0      ; NEAR pointer to name string of installed board
  ; 18H = 24D; 4FH = 79D; Combined 0-based X,Y of 80 x 25 screen LR corner:
  LRXY    DW   184FH



As the comments indicate, a single routine named VidCheck reads values from the two-level lookup table
VidInfoTbl and loads those values into the variables shown in the preceding listing.

VidCheck is an interesting creature and demonstrates the way of dealing with two-level tables. Read it over
carefully—again, this is as complex a piece of code as you're going to see in this book:

  ;---------------------------------------------------------------
  ;  VidCheck -- Identifies display board & display parameters
  ;  Last update 9/18/99
  ;
  ;  1 entry point:
  ;
  ;  VidCheck:
  ;   Caller need pass no parameters.
  ;   VidCheck identifies the installed display board by
  ;   calling DispID. It then calculates numerous display
  ;   information values, which it then stores in the block
  ;   of display information variables in the data segment.
  ;---------------------------------------------------------------
 
  VidCheck:
          ; First task is to figure out which board is on the bus:
          call DispID            ; Ask BIOS for adapter code; returns in AL
          mov [DispType],AL      ; Store display adapter code in DispType

          ; Next we determine the font size currently in force:
          cmp AL,0AH             ; See if board is an MCGA
          jl  TryOld             ; If less than code 0AH, it's not an MCGA
          mov [FontSize],BYTE 16 ; MCGA supports *only* 16 pixel text font
          jmp GetName            ; Jump ahead to look up adapter name string
  TryOld: cmp [DispType],BYTE 01 ; Is the display adapter code 1, for MDA?
          jne TryCGA             ; If not, go test for CGA code 2
          mov [FontSize],BYTE 14 ; MDA uses *only* 14-pixel text font
          jmp GetName            ; Jump ahead to look up adapter name string
  TryCGA: cmp [DispType],BYTE 02 ; Is the display adapter code 2, for CGA?
          jne TryVGA             ; If not, go test for EGA/VGA font size
          mov [FontSize],BYTE 08 ; CGA uses *only* 8-pixel text font
          jmp GetName            ; Jump ahead to look up adapter name string
  TryVGA: mov AH,11H             ; Select VIDEO Get Font Information subservice
          mov AL,30H             ;  requires AH = 11H and AL = 30H
          mov BH,0               ; 0 = Get info about current font
          int 10H                ; Call VIDEO
          mov [FontSize],CL      ; Font size in pixels is returned in CL

          ; Next we get the name string for the board from the info table:
  GetName:
          mov AL,[DispType]      ; Load display adapter code into AL
          xor AH,AH              ; Zero AH so we don't copy trash into DI
          mov DI,AX              ; Copy AX (with code in AL) into DI
          mov CL,5               ; We must shift the code 5 bits to mult. by 32
          shl DI,CL              ; Multiply code by 32 to act as table index
          mov BX,VidInfoTbl      ; Load address of origin table into BX
          mov [BordName],BX      ; Save pointer to video info. table in BordName
          add [BordName],DI      ; Add offset into table to right element

          ; Next we get the refresh buffer segment from the table:
          mov AX,[BX+DI+27]      ; Index into table past name string to segment
          mov [VidSegment],AX    ; Store segment from table to VidSegment variable

          ; Here we calculate the number of lines on-screen from font size:
          xor AH,AH              ; Make sure AH has no trash in it
          mov AL,[FontSize]      ; Load the font size in pixels into AL



          cmp AL,8               ; Is it the 8-pixel font?
          jne Try14              ; If not, try the 14-pixel font
          mov AL,1               ; The 8-pixel font is table offset 1
          jmp ReadLns            ; Jump ahead to read screen lines from table
  Try14:  cmp AL,14              ; Is it the 14-pixel font?
          jne Do16               ; If not, it has to be the 16-pixel font
          mov AL,2               ; The 14-pixel font is table offset 2
          jmp ReadLns            ; Jump ahead to read screen lines from table
  Do16:   mov AL,3               ; The 16-pixel font is table offset 3
  ReadLns:
          add DI,AX              ; Add font size offset to table element offset
          mov AL,[BX+DI+28]      ; Load the screen lines value from the table
          mov [VisibleY],AL      ; and store it in the VisibleY variable
          mov AH,[VisibleX]      ; Load the screen columns value to AH
          xchg AH,AL             ; Exchange AH & AL for 0-basing
          dec AL                 ; Subtract one from column count for 0-basing
          dec AH                 ; Subtract one from line count for zero-basing
          mov [LRXY],AX          ; And store 0-based X,Y word into LRXY variable

          ; Finally, we calculate the size of the refresh buffer in bytes:
          mov AL,[VisibleY]      ; We multiply screen lines time screen columns
          mul BYTE [VisibleX]    ; times 2 (for attributes) to get buffer size
          shl AX,1               ; Multiply lines * columns by 2
          mov [VidBufSize],AX    ; Store refresh buffer size in VidBufSize

          ret                    ; Return to caller

The first thing VidCheck does is call DispID to determine which display adapter is installed. Build on your own
tools—there's no need to duplicate logic if you can avoid it. The adapter ID code is stored in the variable
DispType.

It's possible to use the table to look up the number of lines on the screen from the current text font size, but to
do that you have to determine the font size. Determining the font size is a good exercise in the use of the CMP
instruction and conditional jumps. Certain adapters support only one font size. The MCGA has only the 16-pixel
font. The CGA has only the 8-pixel font. The MDA has only the 14-pixel font. A series of compares and jumps
selects a font size based on the display adapter ID code. The trickiness comes in with the EGA and VGA, which
are versatile operatives capable of using more than one size of font. Fortunately, BIOS has a service that
reports the size in pixels of the text font currently being used, and this service is used to query the font size.
Whatever it turns out to be, the font size is stored in the FontSize variable in the data segment.

Base-Indexed-Displacement Memory Addressing

So far, we haven't dealt with the VidInfoTbl table at all. This changes when we want to look up the string
containing the English-language description of the installed display adapter. There are three general steps to be
taken in reading any two-level lookup table:

Derive the offset of the subtable from the beginning of the larger table.1.

Derive the offset of the desired information within the subtable.2.

Read the information from the subtable.3.

Each of the subtables is exactly 32 bytes in size. To move from the start of the VidInfoTbl to a desired
subtable, we multiply the index of the subtable by 32, just as we did in the previous section, in reading one
single value from OriginTbl. The index, here, is the display adapter ID code. We multiply the index by 32 by
loading it into register DI, and then shifting DI to the left by 5 bits. (Shifting left by 5 bits multiplies the shifted
quantity by 32.) We use the form:

  mov CL,5
  shl DI,CL

because it is shorter and faster to shift by CL than to shift by using five SHL DI,1 opcodes in sequence. This



sequence is universal in that any x86 processor can execute it. For the 286 and newer CPUs, you can simply
shift left by 5 as an immediate operand:

  shl DI,5

Once you graduate to protected mode programming, you can begin using such newer opcodes with complete
safety, because protected mode works only on the newer CPUs.

Because the display adapter description is the first item in every subtable, no offset into the subtable is
necessary. (The offset, if you must think of an offset, is 0.) The shifted quantity in DI is added to the address of
the larger table, and the sum becomes the 16-bit address to the display adapter description string. This address
is saved in the BordName variable.

At this point within VidCheck, we have the address of the VidInfoTbl table itself in BX and the offset of the
desired subtable in DI. Now we want to fetch the segment address of the display buffer from the middle of the
subtable. The segment address is at some fixed offset from the start of the subtable. I say "fixed" because it
never changes and will be the same regardless of which subtable is selected by the adapter ID code. In the
case of the segment address, the offset is 27, since the segment address is 27 bytes from the start of the
subtable.

Expressed as a sum, the segment address is at the following offset from the start of VidInfoTbl: DI + 27. Since
BX contains the offset of VidInfoTbl from the start of the data segment, we can pin down the segment address
in the data segment with this sum: BX + DI + 27.

Is there a way to address memory using this three-part sum?

There is, indeed, and it is the most complex of the numerous x86 addressing modes: Base-indexed-
displacement addressing, a term you probably can't memorize and shouldn't try. Specifically to serve two-level
lookup tables like this one, the CPU understands MOV statements such as the following:

  mov AX,[BX+DI+27]

Here, the base is the address of the larger table in BX; the index is the offset of the subtable within the larger
table, stored in DI; and the displacement is the fixed distance between the start of the subtable and the data we
wish to address.

You can't just use any registers in building a memory address using based-indexed-displacement addressing.
The base register may be only BP or BX. (Think of general-purpose register BX's hidden agenda as that of
base register; the B is your memory hook.) The index register may be only SI or DI. These registers' names,
Source Index and Destination Index, should provide you with their own memory hooks.

Finally, the displacement may not be a register at all, but may be only a literal value such as 27 or 14 or 3.

Finding the Number of Lines in the Screen

Reading the screen line count from the subtable is the trickiest part of the whole process. In one sense, the list
of three different line count values is a table within a table within a table, but x86 addressing only goes down
two levels. What we must do is point BX and DI plus a displacement to the first of the three values, and then
add a second index to DI that selects one of the three line counts.

This second index is placed into AL, which is eventually (as part of AX) added to DI. The line count is read from
the table with the following instruction:

  mov AL,[BX+DI+28]

with the second index already built into DI.

The rest of VidCheck fills a few other video-related variables such as LRXY, which bundles the X,Y position of
the lower-right corner of the screen into a single 16-bit quantity. The size of the video buffer in bytes is
calculated as the X size of the screen times the Y size of the screen times 2, and stored in VidBufSize.



Equates and the Current Location Counter

To make VidCheck show its stuff, I've written a short program called INFO.ASM that reports certain facts about
the installed display controller. As a program, INFO.ASM doesn't present any assembly language mechanisms
we haven't used before, except in one respect: string lengths.

To display a string, you have to tell DOS just how long the string is, in characters. Counting characters is
difficult, and if you get it wrong, you'll either display too much string or not enough.

The solution is simple: The assembler can do the counting. Here's the notation:

  VidIDStr  DB  ' The installed video board is: '
  LVidIDStr EQU $-VidIDStr

The first statement is nothing more than a simple string constant definition that we've been using all along. The
second statement is a new kind of statement, an equate, which looks a lot like a data definition but is not.

A data definition sets aside and initializes an area of memory to some value. An equate, by contrast, generates
a value similar to a simple constant in such languages as Pascal. An equate allocates no memory, but instead
generates a value that is stored in the assembler's symbol table. This value may then be used anywhere a
literal constant of that type may be used.

Here, we're using an equate to generate a value giving us the length of the string defined immediately before
the equate. The expression $-VidIDStr resolves to the difference between two addresses: One is the address
of the first byte of the string variable VidIDStr, and the other is the current location counter, the assembler's
way of keeping track of the code and data it's generating. (The current location counter bears no relation
whatsoever to IP, the instruction pointer!) When the assembler is generating information (either code or data)
inside a segment, it begins with a counter set to zero for the start of the segment. As it works its way through
the segment, generating code or allocating data, it increments this value by one for each byte of generated
code or allocated data.

The expression $-VidIDStr is evaluated immediately after the string VidIDStr is allocated. This means the
assembler's current location counter is pointing to the first byte after VidIDStr. Because the variable name
VidIDStr itself resolves to the address of VidIDStr, and $ resolves to the location counter immediately after
VidIDStr is allocated, the expression $-VidIDStr evaluates to the length of VidIDStr. Even if you add or delete
characters to the contents of VidIDStr, the length count will always come out correct, because the calculation
always subtracts the address of the beginning of the string from the address just past the end of the string.

This mechanism is used to pass a reliable string length to DOS when using DOS call 40H in the Write macro.
The Write macro illustrates an advance in another way:

  %macro   Write 2 ;ShowIt,ShowLength
        mov BX,1   ; Selects DOS file handle 1: Standard Output
        mov CX,%2  ; ShowLength: Length of string passed in CX
        mov DX,%1  ; Showit: Offset address of string passed in DX
        mov AH,40H ; Select DOS service 40: Print String
        int 21H    ; Call DOS
  %endmacro

This is a mechanism different from the one we used in the earliest iterations of the EAT program. If you recall,
when using DOS service 09H, you had to mark the end of a string passed to DOS with a dollar sign symbol.
This was a crude holdover from CP/M, and more modern DOS programs all use DOS service 40H. This allows
you to display strings containing dollar signs—not a feature without value in some applications, such as
financial programming.

Here's how you use DOS interrupt 21H service 40H: You must pass the offset address of the string in DX, the
length of the string in CX, and a file handle in BX. I won't explain file handles in detail in this book, but any good
DOS reference will be adequate in picking up the details. By passing the handle of a disk-based text file to DOS
service 40H, you can write text to a disk-based text file instead of to the screen.

As given, Write uses standard file handle 1, which is standard output. Standard output is by default directed to



the screen display, but you can use various DOS commands to redirect standard output to other destinations,
such as the printer or a disk file.

Finally, here is the whole of the INFO.ASM program:

  ; Source name     : INFO.ASM
  ; Executable name : INFO.COM
  ; Code model:     : Real mode flat model
  ; Version         : 2.0
  ; Created date    : 9/18/1999
  ; Last update     : 9/19/1999
  ; Author          : Jeff Duntemann
  ; Description     : A utility to query and display information about
  ;                   the installed PC video adapter, programmed for
  ;                   real mode flat model, using NASM 0.98 and ALINK.
  ;                   This program demonstrates how lookup tables and
  ;                   numerous instructions are used.

  [BITS 16]                  ; Set 16 bit code generation
  [ORG 0100H]                ; Set code start address to 100h (COM file)

  [SECTION .text]            ; Section containing code

  %include "BOOK\MYLIB.MAC"  ; Load in screen control macro library

  START:                     ; This is where program execution begins:
        call VidCheck        ; Initialize all video information variables

        Clear VidSegment,ClearAtom,VidBufSize ; Clear the screen

        ; Here we display the name of the program and its author:
        Writeln IDString,LIDString    ; Display the program name
        Writeln AuthorStr,LAuthorStr  ; display the author name
        Newline

        ; Here we display the name of the installed video board:
        Write VidIDStr,LVidIDStr      ; Display the intro string
        mov BX,1         ; Select DOS file handle 1: Standard Output
        mov CX,27        ; The name strings are 27 bytes long
        mov DX,[BordName]; The string address is stored in BordName
        mov AH,40H       ; Service 40H: Write string to file
        int 21H          ; Call DOS to display to Standard Output
        Newline

        ; Here we display the segment address of the refresh buffer:
        Write OrgIDStr,LOrgIDStr ; Display the intro string
        mov AX,[VidSegment]      ; AX gets the value to convert to a string
        mov SI,DigitStr          ; String equivalent is written to DigitStr
        call Word2Str            ; Do the actual string conversion
        PokeChar DigitStr,'H',4  ; Append 'H' on the end of the string
        Writeln DigitStr,5       ; and display the string equivalent

        ; Here we display the size of the current text font:
        Write FontSzStr,LFontSzStr ; Display the intro string
        mov AL,[FontSize]          ; AL gets the value to convert to a string
        mov SI,DigitStr            ; String equivalent is written to DigitStr
        call Byte2Str              ; Do the actual string conversion
        PokeChar DigitStr,'H',2    ; Append 'H' on the end of the string
        Writeln DigitStr,3         ; and display the string equivalent

        ; Here we display the number of lines on the screen:
        Write ScrnLnStr,LScrnLnStr
        mov AL,[VisibleY]       ; AL gets the value to convert to a string
        mov SI,DigitStr         ; String equivalent is written to DigitStr



        call Byte2Str           ; Do the actual string conversion
        PokeChar DigitStr,'H',2 ; Append 'H' on the end of the string
        Writeln DigitStr,3      ; and display the string equivalent

        ;Finally, we display the size of the video refresh buffer:
        Write BufSizStr,LBufSizStr ; Display the intro string
        mov AX,[VidBufSize]        ; AX gets the value to convert to a string
        mov SI,DigitStr            ; String equivalent is written to DigitStr
        call Word2Str              ; Do the actual string conversion
        PokeChar DigitStr,'H',4    ; Append 'H' on the end of the string
        Writeln DigitStr,5         ; and display the string equivalent
        Newline

        mov AH,4CH                 ; Terminate process DOS service
        mov AL,0                   ; Pass this value back to ERRORLEVEL
        int 21H                    ; Control returns to DOS

  ;---------------------------------------------------------------
  ;  Byte2Str -- Converts a byte passed in AL to a string at
  ;         DS:SI
  ;  Last update 9/18/99
  ;
  ;  1 entry point:
  ;
  ;  Byte2Str:
  ;   Caller must pass:
  ;   AL : Byte to be converted
  ;   DS : Segment of destination string
  ;   SI : Offset of destination string
  ;
  ;   This routine converts 8-bit values to 2-digit hexadecimal
  ;   string representations at DS:SI.
  ;---------------------------------------------------------------

  Byte2Str:
      mov DI,AX           ; Duplicate byte in DI
      and DI,000FH        ; Mask out high 12 bits of DI
      mov BX,Digits       ; Load offset of Digits into DI
      mov AH,BYTE [BX+DI] ; Load digit from table into AH
      mov [SI+1],AH       ;  and store digit into string
      xor AH,AH           ; Zero out AH
      mov DI,AX           ; And move byte into DI
  ;    shr DI,4           ; This can do the four shifts on 286 and later
      shr DI,1            ; Shift high nybble of byte to
      shr DI,1            ;  low nybble
      shr DI,1
      shr DI,1
      mov AH,BYTE [BX+DI] ; Load digit from table into AH
      mov [SI],AH         ;  and store digit into string
      ret                 ; We're done—go home!

  ;---------------------------------------------------------------
  ;  Word2Str -- Converts a word passed in AX to a string at
  ;         DS:SI
  ;  Last update 9/19/99
  ;
  ;  1 entry point:
  ;
  ;  Word2Str:
  ;   Caller must pass:
  ;   AX : Word value (16 bits) to be converted



  ;   DS : Segment of destination string
  ;   SI : Offset of destination string
  ;---------------------------------------------------------------

  Word2Str:
      mov CX,AX      ; Save a copy of convertee in CX
      xchg AH,AL     ; Swap high and low AX bytes to do high first
      call Byte2Str  ; Convert AL to string at DS:SI
      add SI,2       ; Bump SI to point to second 2 characters
      mov AX,CX      ; Reload convertee into AX
      call Byte2Str  ; Convert AL to string at DS:SI
      ret            ; And we're done!

  ;---------------------------------------------------------------
  ;  VidCheck -- Identifies display board & display parameters
  ;  Last update 9/18/99
  ;
  ;  1 entry point:
  ;
  ;  VidCheck:
  ;   Caller need pass no parameters.
  ;   VidCheck identifies the installed display board by
  ;   calling DispID. It then calculates numerous display
  ;   information values, which it then stores in the block
  ;   of display information variables in the data segment.
  ;---------------------------------------------------------------

  VidCheck:
      ; First task is to figure out which board is on the bus:
      call DispID       ; Ask BIOS for adapter code; returns in AL
       mov [DispType],AL ; Store display adapter code in DispType

          ; Next we determine the font size currently in force:
          cmp AL,0AH             ; See if board is an MCGA
          jl  TryOld             ; If less than code 0AH, it's not an MCGA
          mov [FontSize],BYTE 16 ; MCGA supports *only* 16 pixel text font
          jmp GetName            ; Jump ahead to look up adapter name string
  TryOld: cmp [DispType],BYTE 01 ; Is the display adapter code 1, for MDA?
          jne TryCGA             ; If not, go test for CGA code 2
          mov [FontSize],BYTE 14 ; MDA uses *only* 14-pixel text font
          jmp GetName            ; Jump ahead to look up adapter name string
  TryCGA: cmp [DispType],BYTE 02 ; Is the display adapter code 2, for CGA?
          jne TryVGA             ; If not, go test for EGA/VGA font size
          mov [FontSize],BYTE 08 ; CGA uses *only* 8-pixel text font
          jmp GetName            ; Jump ahead to look up adapter name string
  TryVGA: mov AH,11H             ; Select VIDEO Get Font Information subservice
          mov AL,30H             ;  requires AH = 11H and AL = 30H
          mov BH,0               ; 0 = Get info about current font
          int 10H                ; Call VIDEO
          mov [FontSize],CL      ; Font size in pixels is returned in CL

          ; Next we get the name string for the board from the info table:
  GetName:
          mov AL,[DispType]      ; Load display adapter code into AL
          xor AH,AH              ; Zero AH so we don't copy trash into DI
          mov DI,AX              ; Copy AX (with code in AL) into DI
          mov CL,5               ; We must shift the code 5 bits to mult. by 32
          shl DI,CL              ; Multiply code by 32 to act as table index
          mov BX,VidInfoTbl      ; Load address of origin table into BX
          mov [BordName],BX      ; Save pointer to video info. table in BordName
          add [BordName],DI      ; Add offset into table to right element



          ; Next we get the refresh buffer segment from the table:
          mov AX,[BX+DI+27]      ; Index into table past name string to segment
          mov [VidSegment],AX    ; Store segment from table to VidSegment variable

          ; Here we calculate the number of lines on-screen from font size:
          xor AH,AH              ; Make sure AH has no trash in it
          mov AL,[FontSize]      ; Load the font size in pixels into AL
          cmp AL,8               ; Is it the 8-pixel font?
          jne Try14              ; If not, try the 14-pixel font
          mov AL,1               ; The 8-pixel font is table offset 1
          jmp ReadLns            ; Jump ahead to read screen lines from table
  Try14:  cmp AL,14              ; Is it the 14-pixel font?
          jne Do16               ; If not, it has to be the 16-pixel font
          mov AL,2               ; The 14-pixel font is table offset 2
          jmp ReadLns            ; Jump ahead to read screen lines from table
  Do16:   mov AL,3               ; The 16-pixel font is table offset 3
  ReadLns:
          add DI,AX              ; Add font size offset to table element offset
          mov AL,[BX+DI+28]      ; Load the screen lines value from the table
          mov [VisibleY],AL      ; and store it in the VisibleY variable
          mov AH,[VisibleX]      ; Load the screen columns value to AH
          xchg AH,AL             ; Exchange AH & AL for 0-basing
          dec AL                 ; Subtract one from column count for 0-basing
          dec AH                 ; Subtract one from line count for zero-basing
          mov [LRXY],AX          ; And store 0-based X,Y word into LRXY variable

          ; Finally, we calculate the size of the refresh buffer in bytes:
          mov AL,[VisibleY]      ; We multiply screen lines time screen columns
          mul BYTE [VisibleX]    ; times 2 (for attributes) to get buffer size
          shl AX,1               ; Multiply lines * columns by 2
          mov [VidBufSize],AX    ; Store refresh buffer size in VidBufSize

          ret                    ; Return to caller

  ;---------------------------------------------------------------
  ;  DispID - Identifies the installed display adapter
  ;  Last update 9/18/99
  ;
  ;  1 entry point:
  ;
  ;  DispID:
  ;   Caller passes no parameters
  ;   Routine returns a code value in AX.
  ;   The codes are these:
  ;   0 : Adapter is unknown; recommend aborting
  ;   1 : MDA (Monochrome Display Adapter)
  ;   2 : CGA (Color Graphics Adapter)
  ;
  ;---------------------------------------------------------------

  DispID:
          mov AH,1AH    ; Select PS/2 Identify Adapter Service
          xor AL,AL     ; Select Get Combination Code Subservice (AL=0)
          int 10H       ; Call VIDEO
          cmp AL,1AH    ; If AL comes back with 1AH, we have a PS/2
          jne TryEGA    ; If not, jump down to test for the EGA
          mov AL,BL     ; Put Combination Code into AL
          ret           ;  and go home!
  TryEGA: mov AH,12H    ; Select EGA Alternate Function
          mov BX,10H    ; Select Get Configuration Information subservice
          int 10H       ; Call VIDEO
          cmp BX,10H    ; If BX comes back unchanged, EGA is *not* there



          je  OldBords  ; Go see whether it's an MDA or CGA
          cmp BH,0      ; If BH = 0, it's an EGA/color combo
          je  EGAColor  ;  otherwise it's EGA/mono
          mov AL,5      ; Store code 5 for EGA mono
          ret           ;  and go home!
  EGAColor:
          mov AL,4      ; Store code 4 for EGA color
          ret           ;  and go home!
  OldBords:
          int 11H       ; Call Equipment Configuration interrupt
          and AL,30H    ; Mask out all but bits 4 & 5
          cmp AL,30H    ; If bits 4 & 5 are both =1, it's an MDA
          jne CGA       ;  otherwise it's a CGA
          mov AL,1      ; Store code 1 for MDA
          ret           ;  and go home!
  CGA:    mov AL,2      ; Store code 2 for CGA
          ret           ;  and go home!

  [SECTION .data]

  ;---------------------------------------------------------------
  ; DISPLAY INFORMATION VARIABLES
  ;
  ; The following block of variables all relate to the video
  ; system and are initialized by the VidCheck procedure:
  ;---------------------------------------------------------------
  DispType   DB   0      ; Code for display adapter type
  VidSegment DW   0B000H ; Segment of installed display buffer
  VidOrigin  DW   0      ; Offset for FAR pointer to refresh buffer
  VisibleX   DB   80     ; Number of columns on screen
  VisibleY   DB   25     ; Number of lines on screen
  VidBufSize DW   4000   ; Default to 25 X 80 X 2 (char & attribute)
  FontSize   DB   8      ; Either 8, 14, or 16; default to 8
  BordName   DW   0      ; NEAR pointer to name string of installed board
  ; 18H = 24D; 4FH = 79D; Combined 0-based X,Y of 80 x 25 screen LR corner:
  LRXY       DW   184FH

  ;---------------------------------------------------------------
  ; DISPLAY ADAPTER INFORMATION LOOKUP TABLE
  ;
  ; This is the lookup table containing information on all legal
  ; display adapters. The first field in each element is a 26-
  ; character string containing a brief description of the
  ; adapter. The next field is the segment of the video refresh
  ; buffer. The last three fields are the number of screen lines
  ; an adapter displays when the 8-pixel, 14-pixel, and 16-pixel
  ; fonts are loaded, respectively. Note that not all adapters
  ; support all fonts, but a screen line count is given for all
  ; three fonts for all adapter types. Illegal combinations will
  ; not be accessed.
  ;---------------------------------------------------------------
  VidInfoTbl DB   'No adapter identified      '  ; Code 0
             DW   0B000H
             DB   25,25,25
             DB   'Monochrome Display Adapter '  ; Code 1
             DW   0B000H
             DB   25,25,25
             DB   'Color Graphics Adapter     '  ; Code 2
             DW   0B800H
             DB   25,25,25
             DB   'Code 3: Undefined          '  ; Code 3



             DW   0B000H
             DB   25,25,25
             DB   'EGA with color monitor     '  ; Code 4
             DW   0B800H
             DB   43,25,25
             DB   'EGA with mono monitor      '  ; Code 5
             DW   0B000H
             DB   43,25,25
             DB   'Code 6: Undefined          '  ; Code 6
             DW   0B000H
             DB   25,25,25
             DB   'VGA with mono monitor      '  ; Code 7
             DW   0B000H
             DB   50,27,25
             DB   'VGA with color monitor     '  ; Code 8
             DW   0B800H
             DB   50,27,25
             DB   'Code 9: Undefined          '  ; Code 9
             DW   0B000H
             DB   25,25,25
             DB   'MCGA with digital color    '  ; Code 0AH
             DW   0B800H
             DB   25,25,25
             DB   'MCGA with monochrome       '  ; Code 0BH
             DW   0B000H
             DB   25,25,25
             DB   'MCGA with analog color     '  ; Code 0CH
             DW   0B800H
             DB   25,25,25

  Digits     DB   '0123456789ABCDEF' ; Lookup table for numeric/string conv.

  ;---------------------------------------------------------------
  ; These two variables are screen-clear "atoms" useable by the
  ; Clear macro. The high byte is the display attribute, while
  ; the low byte is the character with which Clear fills the
  ; video refresh buffer to clear the screen.
  ;---------------------------------------------------------------
  HToneAtom DW   07B0H     ; Clears screen to halftone pattern
  ClearAtom DW   0720H     ; Clears screen to blanks

  ;---------------------------------------------------------------
  ; This is where all predefined string variables are stored.
  ;---------------------------------------------------------------
  CRLF       DB    0DH,0AH    ; Newline string
  IDString   DB   '>>>INFO V2.0'
  LIDString  EQU   $-IDString
  AuthorStr  DB   '  by Jeff Duntemann K7JPD'
  LAuthorStr EQU   $-AuthorStr
  VidIDStr   DB   '  The installed video board is: '
  LVidIDStr  EQU   $-VidIDStr
  OrgIDStr   DB   '  The segment of the video refresh buffer is: '
  LOrgIDStr  EQU   $-OrgIDStr
  FontSzStr  DB   '  The size of the current text font is: '
  LFontSzStr EQU   $-FontSzStr
  ScrnLnStr  DB   '  The number of lines currently on the screen is: '
  LScrnLnStr EQU   $-ScrnLnStr
  BufSizStr  DB   '  The size of the refresh buffer in bytes is: '
  LBufSizStr EQU   $-BufSizStr
  DigitStr   DB   '    '
  LDigitStr  EQU   $-DigitStr





Chapter 11: Stringing Them Up Those Amazing

String Instructions

Overview

Most people, having learned a little assembly language, grumble about the seemingly huge number of
instructions it takes to do anything useful. By and large, this is a legitimate gripe-and the major reason
people write programs in higher-level languages such as Pascal and Basic. The x86 instruction set, on
the other hand, is full of surprises, and the surprise most likely to make apprentice assembly
programmers gasp is the instruction group we call the string instructions.

They alone of all the instructions in the x86 instruction set have the power to deal with long sequences
of bytes or words at one time. (In assembly language, any contiguous sequence of bytes or words in
memory may be considered a string-not simply sequences of human-readable characters.) More
amazingly, they deal with these large sequences of bytes or words in an extraordinarily compact way:
by executing an instruction loop entirely inside the CPU! A string instruction is, in effect, a complete
instruction loop baked into a single instruction.

The string instructions are subtle and complicated, and I won't be able to treat them exhaustively in this
book. Much of what they do qualifies as an advanced topic. Still, you can get a good start on
understanding the string instructions by using them to build some simple tools to add to your video
toolkit.

Besides, for my money, the string instructions are easily the single most fascinating aspect of assembly
language work.



The Notion of an Assembly Language String

Words fail us sometimes by picking up meanings as readily as a magnet picks up iron filings. The word
string is a major offender here. It means roughly the same thing in all computer programming, but there
is a multitude of small variations on that single theme. If you learned about strings in Turbo Pascal,
you'll find that what you know isn't totally applicable when you program in C, or Basic, or assembly.

So here's the Big View: A string is any contiguous group of bytes, of any arbitrary size up to the size of
a segment. The main concept of a string is that its component bytes are right there in a row, with no
interruptions.

That's pretty fundamental. Most higher-level languages build on the string concept in several ways.
Turbo Pascal treats strings as a separate data type, limited to 255 characters in length, with a single
byte at the start of the string to indicate how many bytes are in the string. In C, a string may be longer
than 255 bytes, and it has no length byte in front of it. Instead, a C string is said to end when a byte
with a binary value of 0 is encountered. In Basic, strings are stored in something called string space,
which has a lot of built-in code machinery associated with it.

When you begin working in assembly, you have to give up all that high-level language stuff. Assembly
strings are just contiguous regions of memory. They start at some specified address, go for some
number of bytes, and stop. There is no length byte to tell how many bytes are in the string and no
standard boundary characters such as binary 0 to indicate where a string starts or ends.

You can certainly write assembly language routines that allocate Turbo Pascal-style strings or C-style
strings and manipulate them. To avoid confusion, however, you must think of the data operated on by
your routines to be Pascal or C strings rather than assembly strings.

Turning Your "String Sense" Inside-Out

Assembly strings have no boundary values or length indicators. They can contain any value at all,
including binary 0. In fact, you really have to stop thinking of strings in terms of specific regions in
memory. You should instead think of strings in much the same way you think of segments: in terms of
the register values that define them.

It's slightly inside-out compared to how you think of strings in such languages as Pascal, but it works:
You've got a string when you set up a pair of registers to point to one (or a single register, if you're
working in real mode or protected mode flat model). And once you point to a string, the length of that
string is defined by the value you place in register CX.

This is key: Assembly strings are wholly defined by values you place in registers. There is a set of
assumptions about strings and registers baked into the silicon of the CPU. When you execute one of
the string instructions (as I describe a little later), the CPU uses those assumptions to determine which
area of memory it reads from or writes to.

Source Strings and Destination Strings

There are two kinds of strings in assembly work. Source strings are strings that you read from.
Destination strings are strings that you write to. The difference between the two is only a matter of
registers; source strings and destination strings can overlap. In fact, the very same region of memory
can be both a source string and a destination string, all at the same time.

Here are the assumptions the CPU makes about strings when it executes a string instruction:

A source string is pointed to by DS:SI.

A destination string is pointed to by ES:DI.

The length of both kinds of strings is the value you place in CX.

Data coming from a source string or going to a destination string must pass through register AX.

Note that the use of segment registers mostly applies to real mode segmented model. In real mode flat



model, as you should know by now, all the segment registers contain the same value, and are therefore
basically factored out of consideration for many things, string work included. (The same is true of
protected mode flat model, as you'll learn in later chapters.) The CPU can recognize both a source
string and a destination string simultaneously, because DS:SI and ES:DI can hold values independent
of one another. However, because there is only one CX register, the length of source and destination
strings must be identical when they are used simultaneously, as in copying a source string to a
destination string.

One way to remember the difference between source strings and destination strings is by their offset
registers. SI means "source index," and DI means "destination index."



REP STOSW, the Software Machine Gun

The best way to cement all that string background information in your mind is to see a string instruction
at work. In this section I lay out a very useful video display tool that makes use of the simplest string
instruction, STOSW. (Think: STOre String by Word.) The discussion involves something called a prefix,
which I haven't gone into yet. Bear with me for now. We'll discuss prefixes in a little while.

Machine-Gunning the Video Display Buffer

The ClrScr procedure we discussed earlier relied on BIOS to handle the actual clearing of the screen.
BIOS is very much a black box, and we're not expected to know how it works. The trouble with BIOS is
that it only knows how to clear the screen to blanks. Some programs (such as the most recent releases
of Borland/Turbo Pascal) give themselves a stylish, sculpted look by clearing the screen to one of the
PC's halftone characters, which are character codes 176 to 178. BIOS can't do this. If you want the
halftone look, you'll have to do it yourself. It doesn't involve anything more complex than replicating a
single word value (two bytes) into every position in your video refresh buffer.

Such things should always be done in tight loops. The obvious way is to put the video refresh buffer
segment into the extra segment register ES, the refresh buffer offset into DI, the number of words in
your refresh buffer into CX, the word value to clear the buffer to into AX, and then code up a tight loop
this way:

  Clear:  mov ES:[DI],AX  ; Copy AX to ES:DI
          inc DI          ; Bump DI to next *word* in buffer, 
          inc DI          ;  which means incrementing by 1 twice
          dec CX          ; Decrement CX by one position
          jnz Clear       ; And loop again until CX is 0

This will work. It's even tolerably fast, especially on newer CPUs. But all of the preceding code is
equivalent to this one single instruction:

  rep stosw

Really. Really.

There are two parts to this instruction, actually. As I said, REP is a new type of critter, called a prefix.
We'll get back to it. Right now, let's look at STOSW. The mnemonic means STOre String by Word. Like
all the string instructions, STOSW makes certain assumptions about some CPU registers. It works only
on the destination string, so DS and SI are not involved. However, these assumptions must be
respected and dealt with:

ES must be loaded with the segment address of the destination string (that is, the string into
which data will be stored). This is automatically the case in flat model and does not have to be
set up by you.

1.

DI must be loaded with the offset address of the destination string. (Think: DI, the destination
index.)

2.

CX (think: the Count register) must be loaded with the number of times the copy of AX is to be
stored into the string. Note that this does not mean the size of the string in bytes!

3.

AX must be loaded with the word value to be stored into the string.4.

Executing the STOSW Instruction

Once you set up these four registers, you can safely execute a STOSW instruction. When you do, this
is what happens:

The word value in AX is copied to the word at ES:DI.1.

DI is incremented by 2, such that ES:DI now points to the next word in memory following the one2.



1.

just written to.
2.

Note that we're not machine-gunning here. One copy of AX gets copied to one word in memory. The DI
register is adjusted so that it'll be ready for the next time STOSW is executed.

One very important point to remember is that CX is not decremented by STOSW. CX is decremented
automatically only if you put the REP prefix in front of STOSW. Lacking the REP prefix, you have to do
the decrementing yourself, either explicitly through DEC or through the LOOP instruction, as I explain a
little later in this chapter.

So, you can't make STOSW run automatically without REP. However, you can, if you like, execute
other instructions before executing another STOSW. As long as you don't disturb ES, DI, or CX, you
can do whatever you wish. Then when you execute STOSW again, another copy of AX will go out to
the location pointed to by ES:DI, and DI will be adjusted yet again. (You have to remember to
decrement CX somehow.) Note that you can change AX if you like, but the changed value will be
copied into memory. (You may want to do that—there's no law saying you have to fill a string with only
one single value.)

However, this is like the difference between a semiautomatic weapon (which fires one round every time
you press and release the trigger) and a fully automatic weapon, which fires rounds continually as long
as you hold the trigger down. To make STOSW fully automatic, just hang the REP prefix ahead of it.
What REP does is beautifully simple: It sets up the tightest of all tight loops completely inside the CPU
and fires copies of AX into memory repeatedly (hence its name), incrementing DI by 2 each time and
decrementing CX by 1, until CX is decremented down to 0. Then it stops, and when the smoke clears,
you'll see that your whole destination string, however large, has been filled with copies of AX.

Man, now that's programming!

The following macro sets up and triggers REP STOSW to clear the video refresh buffer. Clear was
designed to be used with the block of video information variables initialized by the VidCheck procedure
I described in Chapter 10. It needs to be passed a far pointer (which is nothing more than a full 32-bit
address consisting of a segment and an offset laid end to end) to the video refresh buffer, the word
value to be blasted into the buffer, and the size of the buffer in bytes.

  ;---------------------------------------------------------------
  ;  CLEAR  -- Clears the entire visible screen buffer
  ;  Last update 9/20/99
  ;
  ;   Caller must pass:
  ;   In VidAddress: The address of the video refresh buffer
  ;   In ClearAtom:  The character/attribute pair to fill the
  ;                  buffer with. The high byte contains the
  ;                  attribute and the low byte the character.
  ;   In BufLength:  The number of *characters* in the visible
  ;                  display buffer, *not* the number of bytes!
  ;                  This is typically 2000 for a 25-line screen
  ;                  or 4000 for a 50-line screen.
  ;   Action:        Clears the screen by machine-gunning the
  ;                  character/attribute pair in AX into the
  ;                  display buffer beginning at VidAddress.
  ;---------------------------------------------------------------
  %macro Clear 3 ;VidAddress,ClearAtom,BufLength
      les DI,[%1]   ; Load ES and DI from FAR pointer
      mov AX,%2     ; Load AX with word to blast into memory
      mov CX,%3     ; Load CX with length of buffer in bytes
      shr CX,1      ; Divide size of buffer by 2 for word count
      cld           ; Set direction flag so we blast up-memory
      rep stosw     ; Blast away!
      GotoXY 0,0    ; Move hardware cursor to UL corner of screen
  %endmacro



Don't let the notion of a far pointer throw you. It's jargon you're going to hear again and again, and this
was a good point at which to introduce it. A pointer is an address, quite simply. A near pointer is an
offset address only, used in conjunction with some value in some segment register that presumably
doesn't change. All pointers to objects inside a real mode flat model program are by definition near
pointers.

A far pointer is a pointer that consists of both a segment value and an offset value, both of which may
be changed at any time, working together. The video refresh buffer is not usually part of your data
segment, so if you're going to work with it, you're probably going to have to access it with a far pointer,
as we're doing here. Any time you need to reference something that exists outside the 64K boundaries
of a real mode flat model program (such as your system's text video buffer), you're going to have to
work with a far pointer.

Note that most of Clear is setup work. The LES instruction loads both ES and DI with the address of
the destination string. The screen atom (display character plus attribute value) is loaded into AX.

The handling of CX deserves a little explanation. The value in BufLength is the size in bytes of the
video refresh buffer. Remember, however, that CX is assumed to contain the number of times that AX
is to be machine-gunned into memory. AX is a word, and a word is 2 bytes long. So, each time STOSW
fires, 2 bytes of the video refresh buffer will be written to. Therefore, in order to tell CX how many times
to fire the gun, we have to divide the size of the refresh buffer (which is given in bytes) by 2, in order to
express the size of the refresh buffer in words.

As I explained in Chapter 10, dividing a value in a register by 2 is easy. All you have to do is shift the
value of the register to the right by one bit. This what the SHR CX,1 instruction does: divides CX by 2.

STOSW and the Direction Flag DF

Note the CLD instruction in the Clear macro. I've avoided mentioning it until now to avoid confusing
you. Most of the time you'll be using STOSW, you'll want to run it "uphill" in memory; that is, from a
lower memory address to a higher memory address. In Clear, you put the address of the start of the
video refresh buffer into ES and DI, and then blast character/attribute pairs into memory at successively
higher memory addresses. Each time STOSW fires a word into memory, DI is incremented twice to
point to the next higher word in memory.

This is the logical way to work it, but it doesn't have to be done that way. STOSW can just as easily
begin at a high address and move downward in memory. On each store into memory, DI can be
decremented by 2 instead.

Which way STOSW fires—uphill toward successively higher addresses, or downhill toward
successively lower addresses—is governed by one of the flags in the Flags register. This is the
Direction flag DF. DF's sole job in life is to control the direction of certain instructions that, like STOSW,
can move in one of two directions in memory. Most of these (like STOSW) are string instructions.

The sense of DF is this: When DF is set (that is, when DF has the value 1), STOSW and its fellow
string instructions work downhill, from higher to lower addresses. When DF is cleared (that is, when it
has the value 0), STOSW and its siblings work uphill from lower to higher addresses. This in turn is
simply the direction in which the DI register is adjusted: When DF is set, DI is decremented. When DF
is cleared, DI is incremented.

The Direction flag defaults to 0 (uphill) when the CPU is reset. It is generally changed in one of two
ways: with the CLD instruction, or with the STD instruction. CLD clears DF, and STD sets DF. (You
should keep in mind when debugging that the POPF instruction can also change DF, by popping an
entire new set of flags from the stack into the Flags register.) It's always a good idea to place the
appropriate one of CLD or STD right before a string instruction to make sure that your machine gun
fires in the right direction!

People sometimes get confused and think that DF also governs whether CX is incremented or
decremented by the string instructions. Not so! Nothing in a string instruction ever increments CX! You
place a count in CX and it counts down, period. DF has nothing to say about it.

The Clear macro is part of the MYLIB.MAC macro library on the CD-ROM for this book. As you build
new macro tools, you might place them in MYLIB.MAC as well.





The Semiautomatic Weapon: STOSW without REP

I chose to show you REP STOSW first because it's dramatic in the extreme. But even more, it's actually
simpler to use REP than not to use REP.REP simplifies string processing from the programmer's
perspective, because it brings the instruction loop inside the CPU. You can use the STOSW instruction
without REP, but it's a little more work. The work involves setting up the instruction loop outside the
CPU and making sure it's correct.

Why bother? Simply this: With REP STOSW, you can only store the same value into the destination
string. Whatever you put into AX before executing REP STOSW is the value that gets fired into
memory CX times. STOSW can be used to store different values into the destination string by firing it
semiautomatically and changing the value in AX between each squeeze of the trigger.

Also, by firing each character individually, you can change the value in DI periodically to break up the
data transfer into separated regions of memory instead of one contiguous area as you must with REP
STOSW. This may be hard to picture until you see it in action. The SHOWCHAR program listing I
present a little later will give you a for instance that will make it instantly clear what I mean.

You lose a little time in handling the loop yourself, outside the CPU. This is because there is a certain
amount of time spent in fetching the loop's instruction bytes from memory. Still, if you keep your loop as
tight as you can, you don't lose an objectionable amount of speed, especially on the newer processors
like the Pentium.

Who Decrements CX?

Early in my experience with assembly language, I recall being massively confused about where and
when the CX register was decremented when using string instructions. It's a key issue, especially when
you don't use the REP prefix.

When you use REP STOSW (or REP with any of the string instructions), CX is decremented
automatically, by 1, for each memory access the instruction makes. And once CX gets itself
decremented down to 0, REP STOSW detects that CX is now 0 and stops firing into memory. Control
then passes down to the next instruction in line. But take away REP, and the automatic decrementing
of CX stops. So, also, does the automatic detection of when CX has been counted down to 0.

Obviously, something has to decrement CX, since CX governs how many times the string instruction
accesses memory. If STOSW doesn't do it-you guessed it-you have to do it somewhere else, with
another instruction.

The obvious way to decrement CX is to use DEC CX. And the obvious way to determine if CX has been
decremented to 0 is to follow the DEC CX instruction with a JNZ (Jump if Not Zero) instruction. JNZ
tests the Zero flag ZF and jumps back to the STOSW instruction until ZF becomes true. And ZF
becomes true when a DEC instruction causes its operand (here, CX) to become 0.

The LOOP Instructions

With all that in mind, consider the following assembly language instruction loop. Note that I've split it
into three parts by inserting blank lines:

  DoChar: stosw        ; Note that there's no REP prefix!

          add  AL,'1'  ; Bump the character value in AL up by 1
          aaa          ; Adjust AX to make this a BCD addition
          add  AL,'0'  ; Basically, put binary 3 in AL's high nybble
          mov  AH,07   ; Make sure our attribute is still 7

          dec  CX      ; Decrement the count by 1..
          jnz  DoChar  ; ..and loop again if CX > 0

Ignore the block of instructions in the middle for the time being. What it does is what I suggested could
be done a little earlier: change AX inbetween each store of AX into memory. I'll explain in detail shortly.



Look instead (for now) to see how the loop runs. STOSW fires, AX is modified, and then CX is
decremented. The JNZ instruction tests to see if the DEC instruction has forced CX to zero. If so, the
Zero flag ZF is set, and the loop will terminate. But until ZF is set, the jump is made to the label
DoChar, where STOSW fires yet again.

There is a simpler way, using an instruction I haven't discussed until now: LOOP. The LOOP instruction
combines the decrementing of CX with a test and jump based on ZF. It looks like this:

  DoChar:  stosw         ; Note that there's no REP prefix!

           add   AL,'1'  ; Bump the character value in AL up by 1
           aaa           ; Adjust AX to make this a BCD addition
           add   AL,'0'  ; Basically, put binary 3 in AL's high nybble
           mov   AH,07   ; Make sure our attribute is still 7

           loop  DoChar  ; Go back & do another char until CX goes to 0

The LOOP instruction first decrements CX by 1. It then checks the Zero flag to see if the decrement
operation forced CX to zero. If so, it falls through to the next instruction. If not (that is, if ZF remains 0,
indicating that CX was still greater than 0), LOOP branches to the label specified as its operand.

So, the loop keeps looping the LOOP until CX counts down to 0. At that point, the loop is finished, and
execution falls through and continues with the next instruction following the loop.

Displaying a Ruler on the Screen

As a useful demonstration of when it makes sense to use STOSW without REP (but with LOOP) let me
offer you another item for your video toolkit.

The Ruler macro which follows displays a repeating sequence of ascending digits from 1 at some
selectable location on your screen. In other words, you can display a string of digits like this at the top
of a window:

  123456789012345678901234567890123456789012345678901234567890

This might allow you to determine where in the horizontal dimension of the window a line begins or
some character falls. The macro allows you to specify how long the ruler is, in digits, and where on the
screen it will be displayed.

A call to Ruler would look like this:

  Ruler VidOrigin,20,80,15,5

This invocation (assuming you had defined VidOrigin to be the address of the start of the video refresh
buffer in your machine) places a 20-character long ruler at position 15,5. The "80" argument indicates
to Ruler that your screen is 80 characters wide. If you had a wider or narrower text screen, you would
have to change the "80" to reflect the true width of your screen in text mode.

Don't just read the code inside Ruler! Load it up into a copy of EAT5.ASM, and display some rulers on
the screen. You don't learn half as much by just reading assembly code as you do by loading and using
it!

  ;---------------------------------------------------------------
  ;  RULER  -- Displays a "1234567890"-style ruler on-screen
  ;  Last update 9/16/99
  ;
  ;   Caller must pass:
  ;   In VidAddress: The address of the start of the video buffer
  ;   In Length:     The length of the ruler to be displayed
  ;   In ScreenW:    The width of the current screen (usually 80)
  ;   In ScreenY:    The line of the screen where the ruler is



  ;                  to be displayed (0-24)
  ;   In ScreenX:    The row of the screen where the ruler should
  ;                  start (0-79)
  ;   Action:        Displays an ASCII ruler at ScreenX,ScreenY.
  ;---------------------------------------------------------------
  %macro   Ruler  5 ;VidAddress,Length,ScreenW,ScreenX,ScreenY
           les    DI,[%1] ; Load video address to ES:DI
           mov    AL,%5   ; Move Y position to AL
           mov    AH,%3   ; Move screen width to AH
           imul   AH      ; Do 8-bit multiply AL*AH to AX
           add    DI,AX   ; Add Y offset into vidbuff to DI
           add    DI,%4   ; Add X offset into vidbuf to DI
           shl    DI,1    ; Multiply by two for final address
           mov    CX,%2   ; CX monitors the ruler length
           mov    AH,07   ; Attribute 7 is "normal" text
           mov    AL,'1'  ; Start with digit "1"

  %%DoChar: stosw          ; Note that there's no REP prefix!
            add   AL,'1'   ; Bump the character value in AL up by 1
            aaa            ; Adjust AX to make this a BCD addition
            add   AL,'0'   ; Basically, put binary 3 in AL's high nybble
            mov   AH,07    ; Make sure our attribute is still 7
            loop  %%DoChar ; Go back & do another char until BL goes to 0
  %endmacro

Over and above the LOOP instruction, there's a fair amount of new assembly technology at work here
that could stand explaining. Let's detour from the string instructions for a bit and take a closer look.

Simple Multiplies with IMUL

Ruler can put its ruler anywhere on the screen at all, to a position passed as ScreenX and ScreenY.
It's not using GotoXY, either. It's actually calculating a position in the video refresh buffer where the
ruler characters must be placed-and then using STOSW to place them there.

Locations in the text video refresh buffer are always expressed as offsets from a single segment
address that is either B000H or B800H. The algorithm for determining the offset in bytes for any given
X and Y values looks like this:

  Offset = ((Y * width in characters of a screen line) + X) * 2

Pretty obviously, you have to move Y lines down in the screen buffer, and then move X bytes over from
the left margin of the screen to reach your X,Y position.

The trickiest part of implementing the algorithm lies in multiplying the Y value by the screen width.
There is an instruction to do the job, IMUL, but it's a little quirky and (as assembly instructions go) not
very fast.

It is, however, fast enough for what we're doing here, which is just positioning the ruler somewhere on
the screen. The positioning only needs to be done once, not many times within a tight loop. So, even if
IMUL is slow as instructions go (and it's much faster than it used to be on ancient machines like the
8086 and 8088), when you only need to use it to set up something else, it's certainly fast enough.

IMUL always operates in conjunction with the AX register. In every case, the destination for the product
value is AX, or else AX and DX for products larger than 32,767.

On the simpler CPUs operating in real mode, there are basically two variations on IMUL, and the
difference turns on the size of the operands. If you are multiplying two 8-bit quantities, you can put one
in AL and the other in some 8-bit register or memory location. The product will be placed in AX. If you
are multiplying two 16-bit quantities, one can be placed in AX and one in a 16-bit register or memory
location. The product from multiplying two 16-bit quantities is too large to fit in a single 16-bit register,
so the low-order 16 bits are placed in AX, and the high-order 16 bits are placed in DX. You have no



control over the destination; it's either AX or AX:DX. Also, one of the operands must be in AL (for 8-bit
multiples) or AX (for 16-bit multiples). You have no control over that; it's impossible to multiply (for
example) CX x BX, or DX x DS:[BX].

One very common bug you may commit when using IMUL is simply forgetting that when given 16-bit
operands, IMUL changes the value in DX. The easiest way to avoid this problem is to use IMUL in its
8-bit mode whenever possible, which is when both multiplier and multiplicand are less than 256. If
either operand is 16 bits in size, DX will be altered.

Here are some examples of some legal forms of IMUL:

  imul  byte [bx] ; multiplies AL × byte at DS:[BX]
  imul  bh        ; multiplies AL × BH

  imul  word [bx] ; multiplies AX × word at DS:[BX]
  imul  bx        ; multiplies AX × BX

In the first two lines, the destination for the product is AX. In the second two lines, the destination for
the product is DX:AX

IMUL sets two flags in those cases where the product is larger than the two operands. The flags
involved are the Carry flag CF and the Overflow flag OF. For example, if you're multiplying two 8-bit
operands and the product is larger than 8 bits, both CF and OF will be set. Otherwise, the two flags will
be cleared.

Now, why the final multiplication by 2? Keep in mind that every character position in the screen buffer is
represented by 2 bytes: One character byte and one attribute byte. So, moving X characters from the
left margin actually moves X × 2 bytes into the screen buffer. You might think of an 80-character line on
the screen as being 80 characters long, but it's actually 160 characters long in the screen buffer, to
account for the invisible attribute bytes.

This multiplication by 2 is done by using the SHL instruction to shift DI to the left by one bit. As I
explained in Chapter 10, this is exactly the same as multiplying DI by 2.

The Limitations of Macro Arguments

There's another problem you will eventually run into if you're like most people. Given the macro header
for Ruler:

  %macro Ruler 5 ;VidAddress,Length,ScreenW,ScreenX,ScreenY

you might be tempted to write something like this:

  mov   al,%5
  imul  %3

No go! The assembler will call you on it, complaining of an illegal immediate. What went wrong? You
can freely use constructions like these:

  mov  al,%5
  add  di,%4
  cmp  al,%2

All of these use arguments from the macro header. So what's that assembler complaining about? The
problem here is that on the simpler CPUs, the IMUL instruction cannot work with immediate operands.
(Starting with the 386, a separate form of IMUL can take an immediate operand.) And this isn't just a
problem with IMUL; all instructions that cannot work with immediate operands will reject a macro
argument under these circumstances.

And "these circumstances" involve the way that the macro is invoked. In an early test version of the
Ruler macro that used the IMUL %3 instruction shown previously, I tried to use the following line, which



invokes the macro to display a ruler:

  Ruler VidOrigin,20,80,50,10 ; Draw ruler

It didn't work! Except for the video origin address argument, all of these arguments are numeric literals.
A numeric literal, when used in an assembly language instruction, is called immediate data. When the
macro is expanded, the argument you pass to the macro is substituted into the actual instruction that
uses a macro argument, just as you passed it to the macro.

In other words, if you pass the value 10 in the %5 argument (ScreenY), the instruction MOV AL,%5
becomes MOV AL,10 once the macro is expanded by the assembler. Now, MOV AL,10 is a completely
legal instruction. But if you pass the literal value 80 in the %3 argument (ScreenW), you cannot use
IMUL %3, because after expansion this becomes IMUL 80, which is not a legal instruction on anything
older than the 386.

The problem is not that you're using macro arguments with IMUL. The problem is that you're passing a
numeric literal in a macro argument to an instruction that (in the form we're using it) cannot accept
immediate data.

The version of Ruler given in MYLIB.MAC loads the %3 (ScreenW) argument into AH using a MOV
instruction. This means that you can use numeric literals when invoking Ruler. Using literals saves
memory by making memory variables unnecessary, and if you'd prefer to define a meaningful name for
the screen width rather than hard coding the value 80 in the source (which is unwise), you can define a
symbol called ScreenWidth as an equate. I explained equates at the end of Chapter 10. The
SHOWCHAR.ASM routine defines a ScreenWidth value as an equate.

Adding ASCII Digits

Once the correct offset into the buffer for the ruler's beginning is calculated in DI (and once we set up
initial values for CX and AX), we're ready to start making rulers.

Immediately before the STOSW instruction, we load the ASCII digit '1' into AL. Note that the instruction
MOV AL,'1' does not move the numeric value 01 into AL! The '1' is an ASCII character, and the
character '1' (the "one" digit) has a numeric value of 31H, or 49 decimal.

This becomes a problem immediately after we store the digit '1' into video memory with STOSW. After
digit '1,' we need to display digit '2,' and to do that we need to change the value stored in AL from '1' to
'2.'

Ordinarily, you can't just add '1' to '1' and get '2'; 31H + 31H will give you 62H, which (when seen as an
ASCII character) is lowercase letter b, not '2'! However, in this case the x86 instruction set comes to
the rescue, in the form of a somewhat peculiar instruction called AAA, Adjust AL after BCD Addition.

What AAA does is allow us, in fact, to add ASCII character digits rather than numeric values. AAA is
one of a group of instructions called the BCD instructions, so called because they support arithmetic
with Binary Coded Decimal (BCD) values. BCD is just another way of expressing a numeric value,
somewhere between a pure binary value like 01 and an ASCII digit like '1.' A BCD value is a 4-bit value,
occupying the low nybble of a byte. It expresses values between 0 and 9 only. (That's what the
"decimal" part of "Binary Coded Decimal" indicates.) It's possible to express values greater than 9 (from
9 to 15, actually) in 4 bits, but those additional values are not valid BCD values. See Figure 11.1.



Figure 11.1: Unpacked BCD digits.

The value 31H is a valid BCD value, because the low nybble contains 1. BCD is a 4-bit numbering
system, and the high nybble (which in the case of 31H contains a 3) is ignored. In fact, all of the ASCII
digits from '0' through '9' may be considered legal BCD values, because in each case the characters'
low 4 bits contain a valid BCD value. The 3 stored in the high four bits of each digit is ignored.

So, if there were a way to perform BCD addition on the 86-family CPUs, adding '1' and '1' would indeed
give us '2' because '1' and '2' can be manipulated as legal BCD values.

AAA (and several other instructions I don't have room to discuss here) gives us that ability to perform
BCD math. The actual technique may seem a little odd, but it does work. AAA is in fact a sort of a
fudge factor, in that you execute AAA after performing an addition using the normal addition instruction
ADD. AAA takes the results of the ADD instruction and forces them to come out right in terms of BCD
math.

AAA basically does these two things:

It forces the value in the low 4 bits of AL (which could be any value from 0 to F) to a value between
0 and 9 if they were greater than 9. This is done by adding 6 to AL and then forcing the high nybble
of AL to 0. Obviously, if the low nybble of AL contains a valid BCD digit, the digit in the low nybble
is left alone.

If the value in AL had to be adjusted, it indicates that there was a carry in the addition, and thus AH
is incremented. Also, the Carry flag CF is set to 1, as is the Auxiliary carry flag AF. Again, if the low
nybble of AL contained a valid BCD digit when AAA was executed, AH is not incremented, and the
two Carry flags are cleared (forced to 0) rather than set.

AAA thus facilitates base 10 (decimal) addition on the low nybble of AL. After AL is adjusted by AAA,
the low nybble contains a valid BCD digit and the high nybble is 0. (But note well that this will be true
only if the addition that preceded AAA was executed on two valid BCD operands! And ensuring that
those operands are valid is your responsibility, not the CPU's!)



This allows us to add ASCII digits such as '1' and '2' using the ADD instruction. Ruler does this
immediately after the STOSW instruction:

  add  AL,'1'    ; Bump the character value in AL up by 1
  aaa            ; Adjust AX to make this a BCD addition

If prior to the addition the contents of AL's low nybble were 9, adding '1' would make the value 0AH,
which is not legal BCD. AAA would then adjust AL by adding 6 to AL and clearing the high nybble.
Adding 6 to 0A would give 10, so once the high nybble is cleared the new value in AL would be 00.
Also, AH would have been incremented by 1.

In Ruler we're not adding multiple columns but instead are simply rolling over a count in a single
column and displaying the number in that column to the screen. Therefore, we just ignore the
incremented value in AH and use AL alone.

Adjusting AAA's Adjustments

There is one problem: AAA clears the high nybble to 0. This means that adding '1' and '1' doesn't quite
equal '2,' the displayable digit. Instead, AL becomes 02, which in ASCII is the dark "smiley face"
character. To make AL a displayable ASCII digit again, we have to add 30H to AL. This is easy to do:
Just add '0' to AL, which has a numeric value of 30H. So, adding '0' takes 02H back up to 32H, which is
the numeric equivalent of the ASCII digit character '2.' This is the reason for the ADD AL,'0' instruction
that immediately follows AAA.

There's a lot more to BCD math than what I've explained here. When you want to perform multiple-
column BCD math, you have to take carries into account, which involves a new flag called the Auxiliary
carry flag AF. There are also the AAD, AAM, and AAS instructions for adjusting AL after BCD divides,
multiplications, and subtractions, respectively. The same general idea applies: All the BCD adjustment
instructions force the standard binary arithmetic instructions to come out right for BCD operands.

And yet another problem: AAA increments AH whenever it finds a value in the low nybble of AL greater
than 9. In Ruler, AH contains the text attribute we're using to display our ruler, and if AH is
incremented, the attribute will change and we'll end up displaying parts of the ruler in different colors.
This is why we have to do one last adjustment to AAA's adjustments: We reassert our desired text
attribute in AH each time we change the ASCII digit in AL.

An interesting thing to do is comment out the ADD AL,'0' instruction in the Ruler macro and then run
the RULER.ASM test program. Another interesting thing to do (especially if you work on a color screen,
as you almost certainly do) is to comment out the MOV AH,07 instruction in Ruler and then run
RULER.ASM. Details count, big time!

Ruler's Lessons

The Ruler macro is a good example of using STOSW without the REP prefix. We have to change the
value in AX every time we store AX to memory, and thus can't use REP STOSW. Note that nothing is
done to ES:DI or CX while changing the digit to be displayed, and thus the values stored in those
registers are held over for the next execution of STOSW. Ruler is a good example of how LOOP works
with STOSW to adjust CX downward and return control to the top of the loop. LOOP, in a sense, does
outside the CPU what REP does inside the CPU: adjust CX and close the loop. Try to keep that straight
in your head when using any of the string instructions!



Storing Data to Discontinuous Strings

Sometimes you have to break the rules. Until now I've been explaining the string instructions under the
assumption that the destination string is always one continuous sequence of bytes in memory. This isn't
necessarily the case. In addition to changing the value in AX between executions of STOSW, you can
change the destination address as well. The end result is that you can store data to several different
areas of memory within a single very tight loop.

Displaying an ASCII Table in a Big Hurry

I've created a small demo program to show you what I mean. It's not as useful a tool as the Ruler
macro, but it makes its point and is easy to understand. The SHOWCHAR.ASM program clears the
screen and shows a table containing all 256 ASCII characters, neatly displayed in four lines of 64
characters each. The table includes the "undisplayable" ASCII characters corresponding to the control
characters whose values are less than 32. They are displayable from SHOWCHAR because the
program writes them directly into video memory. Neither DOS nor BIOS are aware of the display of the
control characters, so they have no opportunity to interpret or filter out those characters with special
meanings.

SHOWCHAR.ASM introduces a number of new concepts and instructions, all related to program loops.
(String instructions such as STOSW and program loops are intimately related.) Read over the main
body of the SHOWCHAR.ASM program carefully. We go over it idea by idea through the next several
pages.

  ; Source name     : SHOWCHAR.ASM
  ; Executable name : SHOWCHAR.COM
  ; Code model:     : Real mode flat model
  ; Version         : 1.0
  ; Created date    : 9/18/1999
  ; Last update     : 9/18/1999
  ; Author          : Jeff Duntemann
  ; Description     : A simple example of a DOS .COM file programmed for
  ;                   real mode flat model, using NASM 0.98 and ALINK.
  ;                   This program demonstrates how multi-line macros are
  ;                   used with NASM.

  [BITS 16]             ; Set 16 bit code generation
  [ORG 0100H]           ; Set code start address to 100h (COM file)

  [SECTION .text]       ; Section containing code

  %include "MYLIB.MAC"  ; Load in screen control macro library

  START:                ; This is where program execution begins:

          Clear VidOrigin,0720H,4000    ; Clear full video buffer to spaces
          ; Show a 64-character rule above the table display:

           Ruler VidOrigin,LineLen,ScrnWidth,0,LinesDown-1
           les  DI,[VidOrigin]           ; Put vid seg in ES & offset in DI
           add  DI,ScrnWidth*LinesDown*2 ; Start table display down a ways
           mov  CX,256      ; There are 256 chars in the ASCII set
           mov  AX,0700H    ; Start with char 0, attribute 7

  DoLine:  mov  BL,LineLen  ; Each line will consist of 64 characters
  DoChar:  stosw            ; Note that there's no REP prefix!
           jcxz  AllDone    ; When the full set is printed, quit
           inc  AL          ; Bump the character value in AL up by 1
           dec  BL          ; Decrement the line counter by one
           loopnz DoChar    ; Go back & do another char until BL goes to 0
           add  DI,(ScrnWidth - LineLen)*2 ; Move DI to start of next line
           jmp  DoLine      ; Start display of the next line



  AllDone: GotoXY 0,12      ; Move hardware cursor down below char. table
           mov  AH,4CH      ; Terminate process DOS service
           mov  AL,0        ; Pass this value back to ERRORLEVEL
           int  21H         ; Control returns to DOS

  [SECTION .data]           ; Section containing initialized data

  LRXY      DW  184FH ; 18H = 24D; 4FH = 79D; 0-based XY of LR screen corner

  VidOrigin DD  0B8000000H  ; Change to 0B0000000H if you have a mono CRT!
  CRLF      DB  0DH,0AH

  ScrnWidth EQU 80          ; Width of the screen in characters
  LineLen   EQU 64          ; Length of one line of the ASCII table
  LinesDown EQU 4           ; Number of lines down to start ASCII  table

The Nature of Equates

You might remember (and it wouldn't hurt to go back and take another look) how we calculated the
offset from the beginning of the video refresh buffer to the memory location corresponding to an
arbitrary X, Y position on the screen. We used the ADD instruction, along with the SHL instruction to
multiply by 2.

There is another way to perform calculations of that general sort in assembly work: by letting the
assembler itself do them, while the program is being assembled. Take a look at the following line, lifted
from SHOWCHAR.ASM:

  add  DI,ScrnWidth*LinesDown*2 ; Start table display down a ways

This is new indeed. What can we make of this? What sort of an operand is ScrnWidth*LinesDown*2?
The answer is that it's a simple integer operand, no different from the value 12, 169, or 15,324.

The key is to go back to SHOWCHAR and find out what ScrnWidth and LinesDown are. You might
have thought that these were variables in memory, defined with the DW operator. Instead, they're
something I touched on only briefly at the end of Chapter 10: equates. Equates are defined with the
EQU operator, and if you find yourself confused over the differences between EQU and DW, don't
despair. It's an easy enough thing to do.

One road to understanding harkens back to the Pascal language. What is the difference between a
variable and a simple constant? A variable is located at one and only one particular place in memory. A
simple constant, on the other hand, is a value dropped into the program anywhere it is used and exists
at no particular place in memory. Simple constants are used mostly in expressions calculated by the
compiler during compilation.

It's the same thing here. The DW and DB operators define and set aside areas of memory for storage
of data. A DW exists somewhere at some address and only exists in one place. The EQU, by contrast,
is a symbol you define mostly for the assembler's use. It sets aside no memory and has no particular
address. Consider this line from SHOWCHAR:

  LinesDown EQU   4    ; Number of lines down to start ASCII table

The value defined as LinesDown exists at no single place in the SHOWCHAR program. It allocates no
storage. It's actually a notation in the assembler's symbol table, telling the assembler to substitute the
value 4 for the symbol LinesDown, anywhere it encounters the symbol LinesDown. The same is true
of the equates for ScrnWidth and LineLen.

When the assembler encounters equates in a program, it performs a simple textual substitution of the
values assigned to the symbol defined in the equate. The symbol is dumped, and the value is dropped
in. Then assembly continues, using the substituted values rather than the symbols. In a very real sense,
the assembler is pausing to alter the source code when it processes an equate, then picks up its
assembly task again. This is exactly what happens when the assembler processes a macro, by the
way.



An example may help. Imagine that the assembler is assembling SHOWCHAR.ASM when it encounters
the following line from SHOWCHAR:

  add  DI,ScrnWidth*LinesDown*2 ; Start table display down a ways

It looks up ScrnWidth and LinesDown in its symbol table and discovers that they are equates. It then
calls time-out from assembling and processes the two equates by substituting their values into the line
of source code for their text symbols. The line of source code changes to the following:

  add  DI,80*4*2        ; Start table display down a ways

Assembly-Time Calculations

But in assembling the preceding line, the assembler has to pull another trick out of its hat. It has to be
able to deal with the expression 80*4*2. We've not seen this before in our discussions, but the
assembler happily parses the expression and performs the math exactly as you would imagine: It cooks
80*4*2 down to the single integer value 640. It then performs another substitution on the line in
question, which finally cooks down to this:

  add  DI,640          ; Start table display down a ways

At last, the line becomes an utterly ordinary line of assembly language code, which is turned to object
code in a trice.

So, the assembler can in fact do a little math on its own, quite apart from the arithmetic instructions
supported by the CPU. This is called assembly-time math, and it has some very important limitations:

Assembly-time calculations may only be done on values that are fixed and unambiguous at
assembly time. This most pointedly excludes the contents of variables. Equates are fine. DBs,
DWs, and DDs are not. Variables are empty containers at assembly time; just buckets into which
values will be thrown later on at runtime. You can't perform a calculation with the contents of an
empty bucket!

Assembly-time calculations are performed once, at assembly time, and cannot be recalculated at
runtime for a different set of values. This should be obvious, but it's easy enough to misconstrue
the nature of assembly-time math while you're a beginner.

Let me point out an important consequence of the use of assembly-time math in SHOWCHAR. In
SHOWCHAR, the ASCII table is displayed four lines down from the top of the screen, at the left margin.
Now, what do we need to do to allow the ASCII table to be moved around the screen at runtime?

Oh, not much: Just rewrite the whole thing.

I'm not trying to be funny. That's the price you pay for the convenience of assembly-time calculation.
We baked the screen position of the ASCII table into the program at the source code level. If we
wanted to parameterize the position of the ASCII table, we'd have to take a whole different approach
and do what we did with RULER.ASM: use the IMUL instruction to perform the multiplication that
calculates the offset into the screen buffer, at runtime.

We can change the LinesDown equate in SHOWCHAR.ASM to have a value of 6 or 10-but we then
have to reassemble SHOWCHAR for the change to take. The calculation is done only once, at
assembly time. Thereafter, as long as we use the resulting .EXE file, the ASCII table will be the number
of lines down the screen that we defined in the LinesDown equate.

Assembly-time calculations may not seem very useful now, in the light of these restrictions. However,
they serve a purpose that may not be immediately obvious: They make it a little easier for us to read the
sense in our own source code. We could have just skipped the equates and the assembly-time math,
done the math in our heads and written the line of code like this:

  add  DI,640          ; Start table display down a ways



How obvious is it to you that adding 640 to DI starts the display of the table down the screen by 4 lines?
Using equates and assembly-time math builds the screen-positioning algorithm into the source code,
right there where it's used.

Equates and assembly-time math cost you nothing in terms of runtime speed or memory usage. They
do slow down the assembly process a little, but the person who uses your programs never knows that-
and it's the user that you want to wow with your assembly language brilliance. And anything that makes
your own source code easier to read and modify is well worth the minuscule extra time it takes to
assemble.

Nested Instruction Loops

Once all the registers are set up correctly according to the assumptions made by STOSW, the real
work of SHOWCHAR is performed by two instruction loops, one inside the other. The inner loop
displays a line consisting of 64 characters. The outer loop breaks up the display into four such lines.
The inner loop is by far the more interesting of the two. Here it is:

  DoChar: stosw         ; Note that there's no REP prefix!
          jcxz  AllDone ; When the full set is printed, quit
          inc  AL       ; Bump the character value in AL up by 1
          dec  BL       ; Decrement the line counter by one
          loopnz DoChar ; Go back & do another char until BL goes to 0

The work here (putting a character/attribute pair into the video buffer) is again done by STOSW. Once
again, STOSW is working solo, without REP. Without REP to pull the loop inside the CPU, you have to
set the loop up yourself.

Keep in mind what happens each time STOSW fires. The character in AX is copied to ES:DI and DI is
incremented by 2. At the other end of the loop, the LOOPNZ instruction decrements CX by 1 and
closes the loop.

During register setup, we loaded CX with the number of characters we wanted to display-in this case,
256. Each time STOSW fires, it places another character on the screen, and there is one fewer
character left to display. CX acts as the master counter, keeping track of when we finally display the last
remaining character. When CX goes to zero, we've displayed the full ASCII character set and the job is
done.

Jumping When CX Goes to 0

Hence the instruction JCXZ. This is a special branching instruction created specifically to help with
loops like this. Back in Chapter 10, I explained how it's possible to branch using one of the many
variations of the JMP instruction, based on the state of one of the machine flags. Earlier in this chapter,
I explained the LOOP instruction, which is a special-purpose sort of a JMP instruction, one combined
with an implied DEC CX instruction. JCXZ is yet another variety of JMP instruction, but one that doesn't
watch any of the flags or decrement any registers. Instead, JCXZ watches the CX register. When it
sees that CX has just gone to zero, it jumps to the specified label. If CX is still nonzero, execution falls
through to the next instruction in line.

In the case of the inner loop shown previously, JCXZ branches to the "close up shop" code when it
sees that CX has finally gone to 0. This is how the SHOWCHAR program terminates.

Most of the other JMP instructions have partners that branch when the governing flag is not true. That
is, JC (Jump on Carry) branches when the Carry flag equals 1. Its partner, JNC (Jump on Not Carry),
jumps if the Carry flag is not 1. However, JCXZ is a loner. There is no JCXNZ instruction, so don't go
looking for one in the instruction reference!

Closing the Inner Loop

Assuming that CX has not yet been decremented down to 0 by the STOSW instruction (a condition
watched for by JCXZ), the loop continues. AL is incremented. This is how the next ASCII character in



line is selected. The value in AX is sent to the location at ES:DI by STOSW, and the character code
proper is stored in AL. If you increment the value in AL, you change the displayed character to the next
one in line. For example, if AL contains the value for the character A (65), incrementing AL changes the
A character to a B (66). On the next pass through the loop, STOSW will fire a B at the screen instead of
an A.

Why not just increment AX? The AH half of AX contains the attribute byte, and we do not want to
change that. By explicitly incrementing AL instead of AX, we ensure that AH will never be altered.

After the character code in AL is incremented, BL is decremented. Now, BL is not directly related to the
string instructions. Nothing in any of the assumptions made by the string instructions involves BL. We're
using BL for something else entirely here. BL is acting as a counter that governs the length of the lines
of characters shown on the screen. BL was loaded earlier with the value represented by LineLen; here,
64. On each pass through the loop, the DEC BL instruction decrements the value of BL by 1. Then the
LOOPNZ instruction gets its moment in the sun.

LOOPNZ is a little bit different from our friend LOOP that we examined earlier. It's just different enough
to get you into trouble if you don't truly understand how it works. Both LOOP and LOOPNZ decrement
the CX register by 1. LOOP watches the state of the CX register and closes the loop until CX goes to 0.
LOOPNZ watches both the state of the CX register and the state of the Zero flag ZF. (LOOP ignores
ZF.) LOOPNZ will only close the loop if CX <> 0 and ZF = 0. In other words, LOOPNZ closes the loop
only if CX still has something left in it, and if the Zero flag ZF is not set.

So, what exactly is LOOPNZ watching for here? Remember that immediately prior to the LOOPNZ
instruction, we're decrementing BL by 1 through a DEC BL instruction. The DEC instruction always
affects ZF. If DEC's operand goes to zero as a result of the DEC instruction, ZF goes to 1 (is set).
Otherwise, ZF stays at 0 (remains cleared). So, in effect, LOOPNZ is watching the state of the BL
register. Until BL is decremented to 0 (setting ZF), LOOPNZ closes the loop. After BL goes to zero, the
inner loop is finished and execution falls through LOOPNZ to the next instruction.

What about CX? Well, LOOPNZ is watching CX-but so is JCXZ. JCXZ is actually the switch that
governs when the whole loop-both inner and outer portions-has done its work and must stop. So, while
LOOPNZ does watch CX, somebody else is doing that task, and that somebody else will take action on
CX before LOOPNZ can. LOOPNZ's job is thus to decrement CX, but to watch BL. It governs the inner
of the two loops.

Closing the Outer Loop

But does that mean JCXZ closes the outer loop? No. JCXZ tells us when both loops are finished.
Closing the outer loop is done a little differently from closing the inner loop. Take another look at the
two nested loops:

  DoLine: mov  BL,LineLen ; Each line will consist of 64 characters
  DoChar: stosw           ; Note that there's no REP prefix!
          jcxz  AllDone   ; When the full set is printed, quit
          inc  AL         ; Bump the character value in AL up  by 1
          dec  BL         ; Decrement the line counter by one
          loopnz DoChar   ; Go back & do another char until BL goes to 0
          add  DI,(ScrnWidth - LineLen)*2 ; Move DI to start of next line
          jmp  DoLine     ; Start display of the next line

The inner loop is considered complete when we've displayed one full line of the ASCII table to the
screen. BL governs the length of a line, and when BL goes to zero (which the LOOPNZ instruction
detects), a line is finished. LOOPNZ then falls through to the ADD instruction that modifies DI.

We modify DI to jump from the end of a completed line to the start of the next line at the left margin.
This means we have to "wrap" by some number of characters from the end of the ASCII table line to the
end of the visible screen. The number of bytes this requires is given by the assembly-time expression
(ScrnWidth-LineLen)*2 . This is basically the difference between the length of one ASCII table line and
width of the visible screen. Multiplying by 2 is done because each character position is actually
represented by both a character and an attribute byte in the video refresh buffer. The result of the



expression is the number of bytes we must move into the video refresh buffer to come to the start of the
next line at the left screen margin.

But after that wrap is accomplished by modifying DI, the outer loop's work is done, and we close the
loop. This time, we do it unconditionally, by way of a simple JMP instruction. The target of the JMP
instruction is the DoLine label. No ifs, no arguments. At the top of the outer loop (represented by the
DoLine label), we load the length of a line back into the now-empty BL register and drop back into the
inner loop. The inner loop starts firing characters at the screen again, and will continue to do so until
JCXZ detects that CX has gone to 0.

At that point, both the inner and outer loops are finished, and the full ASCII table has been displayed.
SHOWCHAR's work is done, and it terminates.

SHOWCHAR.ASM Recap

Let's look back at what we've just been through. SHOWCHAR.ASM contains two nested loops. The
inner loop shoots characters at the screen via STOSW. The outer loop shoots lines of characters at the
screen, by repeating the inner loop some number of times. (Here, four.)

The inner loop is governed by the value in the BL register, which is initially set up to take the length of a
line of characters. (Here, 64.) The outer loop is not explicitly governed by the number of lines to be
displayed. That is, you don't load the number 4 into a register and decrement it. Instead, the outer loop
continues until the value in CX goes to 0, indicating that the whole job is done.

The inner and outer loops both modify the registers that STOSW works with. The inner loop modifies
AL after each character is fired at the screen. This makes it possible to display a different character
each time STOSW fires. The outer loop modifies DI (the destination index register) each time a line of
characters is complete. This allows us to break the destination string up into four separate,
noncontinuous lines.

The Other String Instructions

STOSW is only one of the several string instructions in the x86 instruction set. I would have liked to
cover the others here, but space won't allow in this edition at least. In particular, the MOVSW instruction
is useful, because it allows you to copy entire regions of memory from one place to another,
screamingly fast, and with only a single instruction:

  REP MOVSW

You probably understand enough about string instruction etiquette now to pick up MOVSW yourself
from an assembly language reference. All of the same register conventions apply, only with MOVS
you're working with both the source and destination strings at the same time.

I felt it important to discuss not only the string instructions, but their supporting cast of characters:
LOOP, LOOPNZ, and JCXZ. Individual instructions are important, but not nearly as important as the
full context within which they work. Now that you've seen how STOSW is used in non-REP loops, you
should be able to apply the same knowledge to the other string instructions as well.

Further Research: Building Your Assembly Language Video
Toolkit

Video is important-it's the fundamental way your programs communicate with their users. Fast video is
essential, and BIOS-based video generally fails in that regard-especially on older and slower machines.
The Clear and Ruler macros are good examples of just how fast video routines can be made with solid
knowledge of assembly language.

You have the fundamentals of a really good and extremely fast toolkit of video routines for your
assembly language programs. To get some serious practice in assembly language design and
implementation, it's up to you to fill that toolkit out.

Here's a list of some of the new routines you should design and perfect for your video toolkit:



WriteFast. A routine to move a string of characters from your data segment to the visible display
buffer. You can do this easily using instructions we've discussed so far. A suggestion: Use the
LOOP instruction for an easy time of it, or research the MOVSW instruction for a trickier-but much
faster-routine.

WritelnFast. Like WriteFast, but moves the hardware cursor to the beginning of the following line
after the write. If the write is to the bottom line on the screen, scroll the screen using INT 10 BIOS
calls, or for more speed, MOVSW.

WriteDown. A routine to move a string of characters from the data segment to the visible display
buffer, only vertically. This is useful for displaying boxes for menus and other screen forms, using
the PC's line-drawing characters. SHOWCHAR.ASM gives you a hint as to how to approach this
one.

DrawBox. Using WriteFast and WriteDown, create a routine that draws a box on the screen using
the PC's suite of predefined text box draw characters. Allow the programmer to specify whether it is
made of single-line or double-line line-drawing characters.

GetString. A delimited field-entry routine. Delineate a field somehow, by highlighting the
background or framing a portion of a line with vertical bar characters, and allow the user to move
the cursor and enter characters within the bounds of the field. When the user presses Enter, return
the entered characters to a buffer somewhere in the data segment. This is ambitious and might
require 70 or 80 instructions, but it's likely to be a lot of fun and will be extremely useful if you write
a full-screen text application that puts particular things at particular places on the screen.

Getting your video tools in order will allow you to move on to other, more involved subjects such as file
I/O and interface to the serial and parallel ports. "Real" assembly-language programs require all these
things, and you should strive to create them as small, easily read and understood toolkit-style
procedures and macros. Create them so that they call one another rather than duplicating function-
assembly language is difficult enough without creating routines that do the same old things over and
over again.



Chapter 12: The Programmer's View of Linux Tools

and Skills to Help You Write Assembly Code under

a True 32-Bit OS

Where to Now?

Where indeed? If you've followed me this far, you've been exposed to nearly every concept commonly
used in assembly language work. As a working environment we've been using MS-DOS, which made a
lot of things easier—made most of it possible, in fact. DOS is simple, forgiving, and present in nearly all
Windows machines either as a lurker-beneath-the-windows (for Windows 9x) or a very high quality
emulation (Windows NT). Either way, it was likely that you had access to DOS if you had a PC
anywhere in your life.

The trouble is, DOS is the past. At best, it's a training ground for understanding the environments
where all the real action is now taking place. And that's basically one of two places these days:
Windows and Unix. Most other environments have withered severely and exist primarily as "legacy
support"—that is, for people who can't afford the money or effort required to move from where they are
to Windows or Unix.

On the x86 family of processors (which is what we've been discussing), the undisputed king of Unix
implementations is Linux. And where we're going is Linux. It's a true 32-bit protected mode operating
system, and it offers the chance to create real 32-bit flat model programs in assembly without a
prohibitive amount of head banging. So, what remains of this book will serve to get you started on
learning assembly coding for Linux.

Why Not Windows?

The first edition of this book was published in 1992. In the last few years, I've received many letters
from readers of the first edition, requesting a second edition that explained how to write Microsoft
Windows programs in assembly code. I looked into it. I paled. And I shook my head. Don't go
there—you may never come back.

The problem is this: A Windows application isn't so much a stand-alone program as a custom-built
extension of Windows itself. A DOS assembly program begins at the top, runs down from there, may do
some looping back, but eventually it ends. It may touch the operating system from time to time by
making system calls, but the nature of those calls is simple: You set up some parameters in registers or
on the stack, and you make an INT 21H call into DOS. When DOS does what it must, it returns control
to your program. That's about all there is to it.

The relationship between Windows and its applications is much closer and far more complex. When a
Windows program is running and the user presses a mouse button, Windows intercepts the mouse
signal and (in effect) taps your program on the shoulder and whispers: "The user just clicked the right
mouse button. What are you going to do about it?" A tremendously complex system of events and
responses, of messages passed and messages intercepted, runs through Windows and all of its
applications like the threads of water flowing over a rocky streambed. From a distance, it's gorgeous.
Up close, it borders on chaotic. And in assembly language, you're up as close as it gets.

Just understanding how Windows and Windows applications work at the assembly level could take you
months of study. Coding a sizeable app could take a year. Balance against this the fact that a lot of the
work in dealing with Windows is always done in precisely the same ways, and you have a tailor-made
excuse for drop-in software components and boilerplate code. This is what you get with programming
environments like Visual C++, Visual Basic, and Delphi, which basically hand you a generic Windows
program with all the infrastructure in place—windows, scroll bars, mouse support, the works—but
nothing in the line of specifics. Nonetheless, getting that massive a head start pretty much eliminates
any advantage you might have in working in assembly.

But what about speed and size? Nothing beats assembly at speed and size, right? Well, nothing beats
good assembly at the speed and size game. However . . . you need to keep in mind that when a



Windows application is running, much or even most of the time code execution is actually somewhere
down in Windows, executing DLLs or other Windows machinery that you have no control over. The
parts that you actually write will not likely be what dominate the user's perception of the application's
speed.

Besides, today's C and Pascal compilers have gotten mighty damned good at generating near-optimal
machine code for a specified sequence of high-level language statements. Ace assembly hacks can do
better, but it's a little discouraging to ponder just how close to your heels the wolves are snapping.

In truth, coding in assembly for Windows is good for one thing and one thing only: to gain a bit-level,
way-down-deep under-the-skin understanding of how Windows works. This can be a very good and
valuable thing, and if you want to pursue it, I salute you. I also suspect that once you gain that hard-
won understanding of Windows internals, you'll run screaming to the most efficient Windows RAD
(Rapid Application Development) environment you can find. (For me, that was Delphi.)

Only one book to my knowledge has ever been written about coding in assembly for Windows:
Windows Assembly Language and Systems Programming, by Barry Kauler (R & D Books, 1997). And
for all that it's 400 pages long, it's only a start. Most of what you need to know will have to be found
elsewhere, in Microsoft's massive technical documentation.

Good luck. Heh-heh. You'll need it.

And Why Linux?

The decision to cover Linux was not automatic. There were actually two other contenders—or maybe a
contender and a half. The half-of-a-contender was DOS protected mode, using a 32-bit DOS extender
and the DOS Protected Mode Interface, or DPMI. This would have been reasonably simple, and I
almost went that way. I turned back because DOS and DPMI just aren't used anymore by anything that
isn't legacy. Why make brand-new antiques? No, strike that—the metaphor is inapt; antiques are by
definition valuable. Why make brand-new kitsch?

Besides, DPMI, for all that it works, is really a crutch under a small and very unpowerful OS. For all the
effort you will eventually put into learning assembly technology, you deserve to work with more
horsepower than that.

The true alternate contender was something called a Windows console application. These are special
programs written to be run under Windows NT, in a console—basically, a true 32-bit text-mode window
rather than a 16-bit text-mode DOS emulation window. NT console applications are genuine 32-bit
programs and are relatively simple to write. They can even do cool Windows-ish things such as display
graphical message boxes without a prohibitive amount of fuss. One problem: You must run them under
Windows NT, which isn't cheap and currently isn't all that common. On DOS and Windows 9x systems,
Windows console applications won't run at all.

Ultimately, I chose Linux because it was every bit as powerful as Windows NT (especially in the realm
we're discussing in this book) as well as free. Furthermore, there is an immense amount of free code
out there on the Internet written for use with Linux. You can install a Linux partition on the same hard
disk as a Windows partition, so you don't have to give up your "real work" in Windows to play around
with Linux coding.

Finally, Linux (as the reigning x86 king of the Unix world) is one of the last places where x86 text-mode
programming is still done in a big way. Windows console applications are little-used exceptions to the
GUI rule in the Microsoft world. In Linux, text mode is still mainstream.

That's where we're going. Let's see what it'll take to get there.



Prerequisites-Yukkh!

Yes, I know, patience isn't one of your virtues. It's not one of mine either. But before you write your first
line of assembly code under Linux, there are a number of things that you had better do, or you'll end of
up thrashing a lot and wasting a lot of time. That's the only way some people learn, but it's hard on the
hair and sucks up valuable hours out of your life that you will never have again. (This seems not to
matter much when you're 18-but when you're 47, as I am at this writing, it matters a lot.) The list is
short, but plan to spend some time on it:

Learn Linux.1.

Learn EMACS.2.

Learn C programming.3.

These three things-surprise!-are way too much for me to attempt to explain in this book. I recommend
you buy or borrow a full book (or more) on each of them, work through tutorials, and do your best to
become a journeyman practitioner in all three areas. Allow me to explain why.

Linux Is Not DOS!

The single most important thing to remember if you're coming to Linux for the first time is that although
Linux bears some functional resemblance to a grown-up DOS, it's radically different in a great many
ways. Some of these ways are so fundamental that people who use Linux (and other versions of Unix)
on a total lifestyle basis no longer think of them as notable-and, thus, even beginner books will not fully
prepare you for the sense of alienness that you'll encounter in your first few days in front of the beast.

The best example I can give you is this: In the first few days that I began working with Linux, I wrote a
short C program that generated a date display. The program was trivial, and it compiled without
difficulty. But when I named the compiled binary program in order to run it, bash (a user shell and
roughly equivalent to DOS's COMMAND.COM) told me the file wasn't there! This drove me nuts for
some time. The executable file I had generated was right there in the current directory, as I could verify
with the ls command. However, when I typed the name of the file followed by Enter, bash pleaded
ignorance of its existence. What I hadn't learned yet is that to run a Unix (and hence a Linux)
executable, you have to enter the full path name, put the directory in which the executable file exists on
the path, or prepend the explicit current directory specifier "./". Absent one of those location specifiers,
bash doesn't search the current directory for a named executable file!

Yes, to me this is stupid-but I came up through DOS. People who started out with Linux or some other
flavor of Unix don't think of this as remarkable at all, and there are some technical reasons why it may
be better to do things this way. But the lesson here is that you need to be very attentive as you learn
Linux, and try very hard not to make assumptions based on your DOS or Windows experience.

If you've never touched a Unix system before, trust me, it's a lot to swallow in a hurry. See if there's a
local community college course you can take on it, or corral a couple of your Unix friends, buy them
beer and pizza, and encourage them to talk while you take furious notes. At minimum, buy several
books on Linux and read them through, following along at your keyboard and typing the commands as
they're presented. At the simple user level, Linux is Unix, so any good beginner book on Unix will be
useful, and there are currently a multitude of new Linux-specific beginner books on the stands. (Books
that are specific to a particular distribution of Linux-Red Hat, Debian, or Caldera, for example- are now
beginning to appear and these may be even more helpful. Haunt the local Borders regularly and keep
your eyes open. If you install Red Hat Linux, I recommend Learning Red Hat Linux by Bill McCarty,
from O'Reilly.)

In going forward, I am going to assume that you know how to log in and out, navigate around within
Unix directories, and all that elementary user-level stuff. If I use a term or cite a Unix command that
you're not familiar with, look it up in one of those other books that you ought to have close at hand.

The distribution I used in preparing this book in the late summer and fall of 1999 was Red Hat 6. It's by
far the Linux distribution in widest use, and if you adopt it, you will have plenty of company, which in the
computer business is always a plus.



EMACS: More than an Editor

I didn't bother looking for a Linux programming editor/environment to put on this book's CD-ROM,
because if you have Linux you've already got one-or several. In fact, if you've been using Linux as a
programmer for more than half an hour, you've probably already glommed onto an editor and would be
unwilling to switch to anything I would likely be able to hand you. Although there are dozens or
(perhaps) hundreds of text editors available for Unix, most Unix people use one of either vi or EMACS.
And in the Linux world, as best I can tell, EMACS is the editor of choice.

EMACS is way more than just an editor. It's much closer to the integrated text-mode environments
used in the last days of DOS for such products as Borland C++ and Borland Pascal. It understands C
syntax, C++ syntax, and assembly syntax-though, alas, not the assembly syntax we'll be using. (More
on this sad little disconnect later.) EMACS can build an executable from inside the editor and do an
awful lot of other things I've never had occasion to fool with. Whole books have been written on
EMACS (O'Reilly has one) and it would be worthwhile to grab such a book and digest it. If you intend to
stick with Linux and do any significant programming for it, EMACS is indispensable. Learn as much of it
as you can.

It's a C World

I'm a notorious Pascal bigot, and it pains me to say this, but Linux (as a genuine implementation of
Unix) is inescapably a C world. Most of Linux is written in C, and what little isn't in C is in assembly.
Virtually all the programming examples you'll see for Linux that don't involve interpreted languages
such as Perl or Tcl will be in C. Most significantly (as I explain in greater detail later), the runtime library
your assembly programs will use to communicate with the operating system is written in C and requires
that you use the C protocols for function calling, rather than the more sensible Pascal ones.

So, before you attempt your first assembly program, buy a book and get down and hack some C. You
don't need to do a lot of it, but make sure you understand all the basic C concepts, especially as they
apply to function calls. I'll try to fill in the lower-level gaps in this book, but I can't teach the language
itself nor all the baggage that comes with it. You may find it distasteful (as I did and do) or you may love
it, but what you must understand is that you can't escape it, even if your main interest in Linux is
assembly language.

There are some excellent Pascal implementations for Linux, most of them free, so if you don't stick with
assembly you have some alternatives to C. My choice is FreePascal 32. Go to the following Web site
for more details and for the software itself: http://gd.tuwien.ac.at/languages/pascal/fpc/www/.



NASM for Linux

Another (minor) reason that I chose NASM as the focus assembler for this book is that a very good
implementation-still free-exists for Linux. I've included NASM for Linux, version 0.98, on the CD-ROM
for this book. That's the version with which I wrote all the code examples published here. However,
there's no saying how long this book will remain in use, and if it's for more than a year or so (and the
first edition lasted over seven years), you might check the NASM Web site to see if a newer release is
available at www.web-sites.co.uk/nasm/.

This is its home page in early 2000. If it moves in subsequent years, you may have to hunt with a Web
search engine. My hunch is that it will always exist somewhere. Free software never dies, though it
sometimes gets a little dusty.

You can download NASM in either source code form or in assembled binary form, as an RPM (Red Hat
Package Manager) archive. Installing the RPM file might seem to be easier, but there's a catch: You
must choose one of two different RPM archives, depending on whether you're using libc5 or libc6. If
you know your Linux system well, you probably know which version of the C library it uses; on the other
hand, if you're relatively new to Linux, you might not. That's why I have not included the RPM version
on the CD-ROM but NASM's full source code in C, which you rebuild in the process of installing it.

Installing NASM's Source Code

Don't faint, newcomers. It's not that hard, and rebuilding tools is a fact of Linux life. Installing the source
code and rebuilding it from scratch avoids the libc version problem, as gcc (the Linux C compiler)
knows what C library it has, and it uses it to build the NASM assembler binary correctly. That's why
you'll find the file nasm-0.98.tar on the CD-ROM for this book. A tar file is an archive file, like a .ZIP file
in the DOS world, only without compression. It's simply a way to combine multiple files into one file for
easy transport over a network.

Your Linux system probably has a directory /usr/local/src on it. That's a good place to start. (If it
doesn't, consider creating a directory with that pathname.) Copy the nasm-0.98.tar file from the CD-
ROM into /usr/local/src, and then use tar to extract all the files from it. The tar utility is one of my least-
favorite Unix utilities, because it has a whole different mindset for dealing with command-line
parameters, and if you type something it doesn't understand or like, it will just sit there mute until you
Ctrl-C out of it.

So, use this command line, and make sure you get it precisely as shown here:

  tar xvf nasm-0.98.tar

Rebuilding NASM

Once you get tar to extract all the files from the archive, you'll notice that tar has created a new
directory on your hard drive. Use cd to move to this directory:

  cd nasm-0.98

There will be a fair number of files in this directory. The next step configures NASM's make files for
rebuilding. You execute this step with the following command:

  ./configure

The configure step looks at your system, sees what C compilers you have installed, and tests those it
finds for suitability. It looks to see what C library your system is using, checks a few other things, and
finally creates the make files it will need to recreate the NASM binaries. Once configure has completed
its job, you need to execute one very simple command:

  ./make



This will do a lot, though it won't take a great deal of time, especially if you have a reasonably fast
machine and a fast hard drive. (Mine is a 400-MHz Pentium II and the whole build took about 15
seconds.) A great many obscure messages will flow by on your screen. Many of them will be warnings,
but you don't need to be concerned about those-the compiler is simply complaining about things in the
NASM source code that aren't simon-pure by its own reckoning. A warning is not an indication that the
compiler can't understand something or generate correct code.

Once NASM is installed, it makes sense to add to your search path the path to the bin directory where
NASM is installed. This command will do it:

  PATH=$PATH:/usr/local/bin

Obviously, if you installed NASM somewhere else (and the preceding path is simply where the NASM
make process installs it by default), enter the full path after the colon. At this point, NASM is there,
installed as a brand-new binary, and ready to go to work.

But there's a lot to talk about first. NASM, like a lot of things in the Linux world, does not work alone,
nor in a vacuum.



What's GNU?

Way back in the late 1970s, a wild-eyed Unix hacker named Richard Stallman wanted his own copy of
Unix. He didn't want to pay for it, however, so he did the obvious thing: He began writing his own
version. (If it's not obvious to you, well, you don't understand Unix culture.) However, he was
unsatisfied with all the programming tools currently available and objected to their priciness as well. So,
as a prerequisite to writing his own version of Unix, Stallman set out to write his own compiler,
assembler, and debugger. (He had already written his own editor, the legendary EMACS.)

Stallman had named his version of Unix GNU, a recursive acronym meaning GNU's Not Unix. This was
a good chuckle, and one way of getting past AT&T's trademark lawyers, who were fussy in those days
about who used the word Unix and how. As time went on, the GNU tools (the C compiler and its other
Swiss army knife go-alongs) took on a life of their own, and as it happened, Stallman never actually
finished GNU itself. Other free versions of Unix appeared, and there was some soap opera for a few
years regarding who actually owned what parts of which. This so disgusted Stallman that he created
the Free Software Foundation as the home base for GNU tools development and created a radical sort
of software license called the GNU Public License (GPL), which is sometimes informally called
"copyleft." Stallman released the GNU tools under the GPL, which not only required that the software
be free (including all source code), but prevented people from making minor mods to the software and
claiming the derivative work as their own. Changes and improvements had to be given back to the GNU
community.

This seemed to be major nuttiness at the time, but over the years since then it has taken on a peculiar
logic and life of its own. The GPL has allowed software released under the GPL to evolve tremendously
quickly, because large numbers of people were using it and improving it and giving back the
improvements without charge or restriction. Out of this bubbling open source pot eventually arose
Linux, the premier GPL operating system. Linux was built with and is maintained with the GNU tool set.
If you're going to program under Linux, regardless of what language you're using, you will eventually
use one or more of the GNU tools.

The Swiss Army Compiler

The copy of EMACS that you will find on modern distributions of Linux doesn't have a whole lot of
Richard Stallman left in it—it's been rewritten umpteen times by many other people over the past 20-
odd years. Where the Stallman legacy persists most strongly is in the GNU compilers. There are a
number of them, but the one that you must understand as thoroughly as possible is the GNU C
Compiler, gcc. (Lowercase letters are something of an obsession in the Unix world, a fetish not well
understood by a lot of people, myself included.)

Why use a C compiler for working in assembly? Two reasons:

Most of Linux and all of the standard C library for Linux are written in C for gcc. The C library is the
only reasonable way to communicate with Linux from an assembly program. Gcc has a great deal
of intimate knowledge of the standard C library that you'll need to learn if you choose not to use it.
Love Linux, love gcc. There's no way around it.

More interestingly, gcc does much more than simply compile C code. It's a sort of Swiss army knife
development tool. In fact, I might better characterize what it does as building software rather than
simply compiling it. In addition to compiling C code to object code, gcc governs both the assembly
step and the link step.

Assembly step? Yes, indeedy. There is a GNU assembler, gas. And a GNU linker, ld. What gcc does is
control them like puppets on strings. If you use gcc (especially at the beginner level), you don't have to
do much messing around with gas and ld.

Let's talk more about this.

Building Code the GNU Way

Assembly language work is a departure from C work, and gcc is first and foremost a C compiler. So, we
need to look first at the process of building C code. On the surface, building a C program for Linux



using the GNU tools is pretty simple. Behind the scenes, however, it's a seriously hairy business. While
it looks like gcc does all the work, what gcc really does is act as master controller for several GNU
tools, supervising a code assembly line that you don't need to see unless you specifically want to.

Theoretically, this is all you need to do to generate an executable binary file from C source code:

  gcc eatc.c -o eatc

Here, gcc takes the file eatc.c (which is a C source code file) and crunches it to produce the file eatc.
(The -o option tells gcc what to name the executable output file.) Note well that in the Linux world,
executable files typically do not have file extensions, as they do under DOS and Windows. What might
be eatc.com or eatc.exe under DOS is simply eatc under Linux.

However, there's more going on here than meets the eye. Take a look at Figure 12.1 as we go through
it. In the figure, shaded arrows indicate movement of information. Blank arrows indicate program
control.

Figure 12.1: How gcc builds Linux executables.

The programmer invokes gcc from the shell command line. gcc takes control of the system and
immediately invokes a utility called the C preprocessor, cpp. The preprocessor takes the original C
source code file and handles certain items like #includes and #defines. It can be thought of as a sort of
macro expansion pass on the source code file, if "macro expansion pass" means anything to you. If
not, don't fret it—it's a C thing and not germane to assembly work.

When cpp is finished with its work, gcc takes over in earnest. From the preprocessed source code file,
gcc generates an assembly language source code file with a .s file extension. This is literally the
assembly code equivalent of the C statements in the original .c file, in human-readable form. If you
develop any skill in reading AT&T assembly syntax and mnemonics, you can learn a lot from inspecting



the .s files produced by gcc.

When gcc has completed generating the assembly language equivalent of the C source code file, it
invokes the GNU assembler, gas, to assemble the .s file into object code. This object code is written
out in a file with a .o extension.

The final step involves the GNU linker, ld. The .o file contains binary code, but it's only the binary code
generated from statements in the original .c file. The .o file does not contain the code from the standard
C libraries that are so important in C programming. Those libraries have already been compiled and
simply need to be linked into your application. The linker ld does this work at gcc's direction. The good
part is that gcc knows precisely which of the standard C libraries need to be linked to your application
to make it work, and it always includes the right libraries in their right versions. So, although gcc doesn't
actually do the linking, it knows what needs to be linked—and that is valuable knowledge indeed, as
you will learn if you ever try to invoke ld manually.

At the end of the line, ld spits out the fully linked and executable program file. At that point, the build is
done, and gcc returns control to the Linux shell. Note that all of this is typically done with one simple
command to gcc!

How We Use gcc in Assembly Work

The process I just described, and drew out for you in Figure 12.1, is how a C program is built under
Linux using the GNU tools. I went into some detail here because we're going to use part—though only
part—of this process to make our assembly programming easier. It's true that we don't need to convert
C source code to assembly code—and in fact, we don't need gas to convert gas assembly source code
to object code. But we need gcc's expertise at linking. Linking a Linux program is much more complex
than linking a simple DOS program. So we're going to tap in to the GNU code-building process at the
link stage, so that gcc can coordinate the link step for us.

When we assemble a Linux program using NASM, NASM generates a .o file containing binary object
code. Invoking NASM under Linux is typically done this way:

  nasm -f elf eatlinux.asm

This command will direct NASM to assemble the file eatlinux.asm and generate a file called eatlinux.o.
The "-f elf" part of it tells NASM to generate object code in the ELF format (the acronym means
Executable and Linking Format, so saying "ELF format" is redundant even though everyone does it)
rather than one of the numerous other object code formats that NASM is capable of producing. The
eatlinux.o file is not by itself executable. It needs to be linked. So, we call gcc and instruct it to link the
program for us:

  gcc eatlinux.o -o eatlinux

What of this tells gcc to link and not compile? The only input file called out in the command is a .o file
containing object code. This fact alone tells gcc that all that needs to be done is to link the file with the
C library to produce the final executable. The "-o eatlinux" tells gcc that the name of the final
executable file is to be "eatlinux." (Remember that Linux does not use file extensions on executable
program files.)

Including the -o specifier is important. If you don't tell gcc precisely what to name the final executable
file, it will name that file "a.out." Yes, "a.out," every time—irrespective of what your object file or source
files are called.

Why Not gas?

You might be wondering why, if there's a perfectly good assembler installed automatically with every
copy of Linux, I'm bothering to show you how to install and use another one. First of all, there is no gas
lookalike for DOS as best I know, so you can't take your first steps in gas assembly while working with
DOS. But more important, gas uses a peculiar syntax that is utterly unlike that of all the other familiar
assemblers used in the x86 world (MASM and TASM as well as NASM) and a whole set of instruction



mnemonics unique to itself. I find them ugly, nonintuitive, and hard to read. This is the AT&T syntax, so
called because it was created by AT&T as a portable assembly notation to make Unix easier to port
from one underlying CPU to another. It's ugly because it was designed to be generic, and it can be
recast for any reasonable CPU you could come up with. (Don't forget that Unix significantly predates
the x86, and gas's predecessor is older than the x86.)

If it were this simple, I wouldn't mention gas at all, since you don't need to use it to write Linux code in
NASM. However, one of the major ways you'll end up learning many of the standard C library calls is by
using them in short C programs and then inspecting the assembly output gcc generates. (I have more
to say about this later on.) What gcc generates first when it compiles a C program is a file (with a .s
extension) of assembly language source code using the AT&T syntax and mnemonics. It may not be
necessary to learn the AT&T syntax thoroughly enough to write it, but it will be very helpful if you can
pick it up well enough to read it. I'll show you an example later on, and when I do I'll summarize the
important differences between AT&T and the NASM syntax and mnemonics, which are more properly
called the Intel syntax and mnemonics.



The make Utility and Dependencies

If you've done any programming in C at all, you're almost certainly familiar with the idea of the make
utility. The make mechanism grew up in the C world, and although it's been adopted by many other
programming languages and environments, it's never been adopted quite as thoroughly (or as nakedly)
as in the C world.

What the make mechanism does is build executable program files from their component parts. Like
gcc, the make utility is a puppet master that executes other programs according to a master plan, which
is a simple text file called a make file. The make file (which by default is named "makefile") is a little like
a computer program in that it specifies how something is to be done. But unlike a computer program, it
doesn't specify the precise sequence of operations to be taken. What it does is specify what pieces of a
program are required to build other pieces of the program, and in doing so ultimately defines what it
takes to build the final executable file. It does this by specifying certain rules called dependencies.

Dependencies

Throughout this book we've been looking at teeny little programs with a hundred lines of code or less.
In the real world, useful programs can take thousands, tens of thousands, or even millions of lines of
source code. (The current release of Linux represents about 10 million lines of source code, depending
on how you define what's a "part" of Linux. At last realizing that program bugs increase at least linearly
with the size of a program's source code suite, Microsoft has stopped bragging about how many lines
of code it took to create Windows NT. In truth, I'm not sure I want to know.) Managing such an
immense quantity of source code is the central problem in software engineering. Making programs
modular is the oldest and most-used method of dealing with program complexity. Cutting up a large
program into smaller chunks and working on the chunks separately helps a great deal. In ambitious
programs, some of the chunks are further cut into even smaller chunks, and sometimes the various
chunks are written in more than one programming language. Of course, that creates the additional
challenge of knowing how the chunks are created and how they all fit together. For that you really need
a blueprint.

A make file is such a blueprint.

In a modular program, each chunk of code is created somehow, generally by using a compiler or an
assembler and a linker. Compilers, assemblers, and linkers take one or more files and create new files
from them. An assembler, as you've learned, takes a .asm file full of assembly language source code
and uses it to create a linkable object code file or (in some cases) an executable program file. You can't
create the object code file without having and working with the source code file. The object code file
depends on the source code file for its very existence.

Similarly, a linker connects multiple object code files into a single executable file. The executable file
depends on the existence of the object code files for its existence. The contents of a make file specify
which files are necessary to create which other files, and what steps are necessary to accomplish that
creation. The make utility looks at the rules (called dependencies) in the make file and invokes
whatever compilers, assemblers, and other utilities it sees are necessary to build the final executable or
library file.

There are numerous flavors of make utilities, and not all make files are comprehensible to all make
utilities everywhere. The Unix make utility is pretty standard, however, and the one that comes with
Linux is the one we'll be discussing here.

Let's take an example that actually makes a simple Linux assembly program. Typically, in creating a
make file, you begin by determining which file or files are necessary to create the executable program
file. The executable file is created in the link step, so the first dependency you have to define is which
files the linker requires to create the executable file. As I explained earlier in this chapter, under Linux
the link step is handled for us by the GNU C compiler, gcc. (Turn back to Figure 12.1 and the
associated discussion if it's still fuzzy as to why a C compiler is required to link an assembly program.)
The dependency itself can be pretty simply stated:

  eatlinux: eatlinux.o



All this says is that to generate the executable file eatlinux, we first need to have the file eatlinux.o. The
line is actually a dependency line written as it should be for inclusion in a make file. In any but the
smallest programs (such as this one) the linker will have to link more than one .o file. So this is
probably the simplest possible sort of dependency: One executable file depends on one object code
file. If there are additional files that must be linked to generate the executable file, these are placed in a
list, separated by spaces:

  linkbase: linkbase.o linkparse.o linkfile.o

This line tells us that the executable file linkbase depends on three object code files, and all three of
these files must exist before we can generate the executable file that we want.

Lines like these tell us what files are required, but not what must be done with them. That's an essential
part of the blueprint, and it's handled in a line that follows the dependency line. The two lines work
together. Here's both lines for our simple example:

  eatlinux: eatlinux.o
       gcc eatlinux.o -o eatlinux

The second line is indented by custom. The two lines together should be pretty easy to understand:
The first line tells us what file or files are required to do the job. The second line tells us how the job is
to be done: in this case, by using gcc to link eatlinux.o into the executable file eatlinux.

Nice and neat: We specify which files are necessary and what has to be done with them. The make
mechanism, however, has one more very important aspect: knowing whether the job as a whole
actually has to be done at all.

When a File Is Up to Date

It may seem idiotic to have to come out and say so, but once a file has been compiled or linked, it's
been done, and it doesn't have to be done again . . . until we modify one of the required source or
object code files. The make utility knows this. It can tell when a compile or a link task needs to be done
at all, and if the job doesn't have to be done, make will refuse to do it.

How does make know if the job needs doing? Consider this dependency:

  eatlinux: eatlinux.o

Make looks at this and understands that the executable file eatlinux depends on the object code file
eatlinux.o, and that you can't generate eatlinux without having eatlinux.o. It also knows when both files
were last changed, and if the executable file eatlinux is newer than eatlinux.o, it deduces that any
changes made to eatlinux.o are already reflected in eatlinux. (It can be absolutely sure of this because
the only way to generate eatlinux is by processing eatlinux.o.)

The make utility pays close attention to Linux timestamps. Whenever you edit a source code file, or
generate an object code file or an executable file, Linux updates that file's timestamp to the moment
that the changes were finally completed. And even though you may have created the original file six
months ago, by convention we say that a file is newer than another if the time value in its timestamp is
more recent than that of another file, even one that was created only 10 minutes ago.

(In case you're unfamiliar with the notion of a timestamp, it's simply a value that an operating system
keeps in a file system directory for every file in the directory. A file's timestamp is updated to the current
clock time whenever the file is changed.)

When a file is newer than all of the files that it depends upon (according to the dependencies called out
in the make file), that file is said to be up to date. Nothing will be accomplished by generating it again,
because all information contained in the component files is reflected in the dependent file.

Chains of Dependencies



So far, this may seem like a lot of fuss to no great purpose. But the real value in the make mechanism
begins to appear when a single make file contains chains of dependencies. Even in the simplest make
files, there will be dependencies that depend on other dependencies. Our completely trivial example
program requires two dependency statements in its make file.

Consider that the following dependency statement specifies how to generate an executable file from an
object code (.o) file:

  eatlinux: eatlinux.o
       gcc eatlinux.o -o eatlinux

The gist here is that to make eatlinux, you start with eatlinux.o and process it according to the recipe in
the second line. Okay, . . . so where does eatlinux.o come from? That requires a second dependency
statement:

  eatlinux.o: eatlinux.asm
       nasm -f elf eatlinux.asm

Here we explain that to generate eatlinux.o, we need eatlinux .asm . . . and to generate it we follow the
recipe in the second line. The full makefile would contain nothing more than these two dependencies:

  eatlinux: eatlinux.o
       gcc eatlinux.o -o eatlinux
  eatlinux.o: eatlinux.asm
       nasm -f elf eatlinux.asm

These two dependency statements define the two steps that we must take to generate an executable
program file from our very simple assembly language source code file eatlinux.asm. However, it's not
obvious from the two dependencies I show here that all the fuss is worthwhile. Assembling eatlinux.asm
pretty much requires that we link eatlinux.o to create eatlinux. The two steps go together in virtually all
cases.

But consider a real-world programming project, in which there are hundreds of separate source code
files. Only some of those files might be "on the rack" and undergoing change on any given day.
However, to build and test the final program, all of the files are required. But . . . are all the compilation
steps and assembly steps required? Not at all.

An executable program is knit together by the linker from one or more-often many more-object code
files. If all but (let's say) two of the object code files are up to date, there's no reason to compile the
other 147 source code files. You just compile the two source code files that have been changed, and
then link all 149 object code files into the executable.

The challenge, of course, is correctly remembering which two files have changed-and being sure that
all changes that have been recently made to any of the 149 source code files are reflected in the final
executable file. That's a lot of remembering, or referring to notes. And it gets worse when more than
one person is working on the project, as will be the case in nearly all commercial software development
projects. The make utility makes remembering any of this unnecessary. Make figures it out and does
only what must be done, no more, no less.

The make utility looks at the make file, and it looks at the timestamps of all the source code and object
code files called out in the make file. If the executable file is newer than all of the object code files,
nothing needs to be done. However, if any of the object code files are newer than the executable file,
the executable file must be relinked. And if one or more of the source code files are newer than either
the executable file or their respective object code files, some compiling must be done before any linking
is done.

What make does is start with the executable file and look for chains of dependency moving away from
that. The executable file depends on one or more object files, which depend on one or more source
code files, and make walks the path up the various chains, taking note of what's newer than what and
what must be done to put it all right. Make then executes the compiler, assembler, and linker selectively
to be sure that the executable file is ultimately newer than all of the files that it depends on. Make



ensures that all work that needs to be done gets done. Furthermore, make avoids spending
unnecessary time compiling and assembling files that are already up to date and do not need to be
compiled or assembled. Given that a full build (by which I mean the recompilation and relinking of every
single file in the project) can take several hours on an ambitious program, make saves an enormous
amount of idle time when all you need to do is test changes made to one small part of the program.

There is actually a lot more to the Unix make facility than this, but what I've described are the
fundamental principles. You have the power to make compiling conditional, inclusion of files
conditional, and much more. You won't need to fuss with such things on your first forays into assembly
language (or C programming, for that matter), but it's good to know that the power is there as your
programming skills improve and you take on more ambitious projects.

Using make from within EMACS

The EMACS source code editor has the power to invoke the make facility without forcing you to leave
the editor. This means that you can change a source code file in the editor and then compile it without
dropping back out to the Linux shell. EMACS has a command called Compile, which is an item in its
Tools menu. When you select Tools | Compile, EMACS will place the following command in the
command line at the bottom of its window and wait for you to do something:

  compile command: make -k

You can add additional text to this command line, you can backspace over it and delete parts of it (like
the -k option), or you can press Enter and execute the command as EMACS wrote it. In most cases
(especially while you're just getting started) all you need to do is press Enter.

Here's what happens: EMACS invokes the make utility. Unless you typed another name for the make
file, make assumes that the make file will be called "makefile." The -k option instructs make to stop
building any file in which an error occurs and to leave the previous copy of the target file undisturbed. If
this doesn't make sense to you right now, don't worry-it's a good idea to use -k until you're really sure
you don't need to. EMACS places it on the command line automatically, and you have to explicitly
backspace over it to make it go away.

When it invokes make, EMACS opens a new text buffer and pipes all text output from the make
process into that buffer. It will typically split your EMACS window so that the make buffer window is
below the buffer you were in when you selected Tools | Compile. This allows you to see the progress of
the make operation (including any error or warning messages) without leaving EMACS.

Of course, if make determines that the executable file is up to date, it will do nothing beyond displaying
a message to that effect:

  make: 'eatlinux' is up to date.

If you're using EMACS in an X Window window (which is what will happen automatically if you have X
Window running when you invoke EMACS), you can switch from window to window by clicking with the
mouse on the window you want to work in. This way you can click your way right back to the window in
which you're editing source code.

One advantage to having make pipe its output into an EMACS buffer is that you can save the buffer to
a text file for later reference. To do this, just keep the cursor in the make window, select the Files |
Save Buffer As command, and then give the new buffer file a name.



Understanding AT&T Instruction Mnemonics

I've alluded a time or two in this book to the fact that there is more than one set of mnemonics for the x86
instructions set. There is only one set of machine instructions, but the machine instructions are pure binary
bit patterns that were never intended for human consumption. A mnemonic is just that: a way for human
beings to remember what the binary bit pattern 1000100111000011 means to the CPU. Instead of writing
16 ones and zeros in a row (or even the slightly more graspable hexadecimal equivalent $89 $C3), we say
MOV BX,AX.

Keep in mind that mnemonics are just that—memory joggers for humans—and are creatures unknown to
the CPU itself. Assemblers translate mnemonics to machine instructions. Although we can agree among
ourselves that MOV BX,AX will translate to 1000100111000011, there's nothing magical about the string
MOV BX,AX. We could as well have agreed on "COPY AX TO BX" or "STICK GPREGA INTO GPREGB."
We use MOV BX,AX because that was what Intel suggested we do, and since it designed and
manufactures the CPU chips, we feel that it has no small privilege in such matters.

There is another set of mnemonics for the x86 processors, and, as luck would have it, those mnemonics
predominate in the Linux world. They didn't come about out of cussedness or contrariness, but because the
people who originally created Unix also wished to create a family of nearly portable assemblers to help
implement Unix on new platforms. I say "nearly portable" because a truly portable assembler is impossible.
(Supposedly, the C language originated as an attempt to create a genuinely portable assembler
notation—which, of course, is the definition of a higher-level language.) What they did do was create a set
of global conventions that all assemblers within the Unix family would adhere to, and thus make creating a
CPU-specific assembler faster and less trouble. These conventions actually predate the creation of the x86
processors themselves.

When gcc compiles a C source code file to machine code, what it really does is translate the C source code
to assembly language source code, using what most people call the AT&T mnemonics. (Unix was created
at AT&T in the sixties, and the assembler conventions for Unix assemblers were defined there as well.)
Look back to Figure 12.1. The gcc compiler takes as input a .c source code file, and outputs a .s assembly
source file, which is then handed to the GNU assembler gas for assembly. This is the way the GNU tools
work on all platforms. In a sense, assembly language is an intermediate language used mostly for the C
compiler's benefit. In most cases, programmers never see it and don't have to fool with it.

In most cases. However, if you're going to deal with the GNU debugger gdb at a machine-code level (rather
than at the C source code level), the AT&T mnemonics will be in your face at every single step of the way,
heh-heh. In my view the usefulness of gdb is greatly reduced by its strict dependence on the AT&T
instruction mnemonics. I keep looking for somebody to create a DEBUG-style debugger for Linux that uses
Intel's own mnemonics, but so far I've come up empty.

Therefore, it would make sense to become at least passingly familiar with the AT&T mnemonic set. There
are some general rules that, once digested, make it much easier. Here's the list in short form:

AT&T mnemonics and register names are invariably in lowercase. This is in keeping with the Unix
convention of case sensitivity, and at complete variance with the Intel convention of uppercase for
assembly language source. I've mixed uppercase and lowercase in the text and examples to get you
used to seeing assembly source both ways, but you have to remember that while Intel (and hence
NASM) suggests uppercase but will accept lowercase, AT&T requires lowercase.

Register names are always preceded by the percent symbol, %. That is, what Intel would write as AX
or EBX, AT&T would write as %ax and %ebx. This helps the assembler recognize register names.

Every AT&T machine instruction mnemonic that has operands has a single-character suffix indicating
how large its operands are. The suffix letters are b, w, and l, indicating byte (8 bits), word (16 bits), or
long (32 bits). What Intel would write as MOV BX,AX, AT&T would write as movw %ax,%bx. (The
changed order of %ax and %bx is not an error. See the next rule!)

In the AT&T syntax, source and destination operands are placed in the opposite order from Intel
syntax. That is, what Intel would write as MOV BX,AX, AT&T would write as movw %ax,%bx. In other
words, in AT&T syntax, the source operand comes first, followed by the destination. This actually
makes a little more sense than Intel conventions, but confusion and errors are inevitable.



In the AT&T syntax, immediate operands are always preceded by the dollar sign, $. What Intel would
write as PUSH DWORD 32, AT&T would write as pushl $32. This helps the assembler recognize
immediate operands.

AT&T documentation refers to "sections" where we would say "segments." A segment override is thus
a section override in AT&T parlance. This doesn't come into play much because segments are not a
big issue in 32-bit flat model programming. Still, be aware of it.

Not all Intel instruction mnemonics have AT&T equivalents. JCXZ, JECXZ, LOOP, LOOPZ, LOOPE,
LOOPNZ, and LOOPNE do not exist in the AT&T mnemonic set, and gcc never generates code that
uses them. This won't be a problem for us, as we're using NASM, but you won't see these instructions
in gdb displays.

In the AT&T syntax, displacements in memory references are signed quantities placed outside
parentheses containing the base, index, and scale values. I'll treat this one separately a little later, as
you'll see it a lot in .s files and you should be able to understand it.

There are a handful of other issues that would be involved in programs more complex than we'll take up in
this book. These mostly involve near versus far calls and jumps and their associated return instructions.

Examining gas Source Files Created by gcc

The best way to get a sense for the AT&T assembly syntax is to look at an actual AT&T-style .s file
produced by gcc. Doing this actually has two benefits: First of all, it will help you become familiar with the
AT&T mnemonics and formatting conventions. In addition, you may find it useful, when struggling to figure
out how to call a C library function from assembly, to create a short C program that calls the function of
interest and then examines the .s file that gcc produces when it compiles your C program. The dateis.c
program which follows was part of my early research, and I used it to get a sense for how ctime() was
called at the assembly level. Obviously, for this trick to work you must have at least a journeyman
understanding of the AT&T mnemonics. (I discuss ctime() and other time-related C library calls in detail in
the next chapter.)

You don't automatically get a .s file every time you compile a C program. The .s file is created, but once gas
assembles the .s file to a binary object code file (typically a .o file), it deletes the .s file. If you want to
examine a .s file created by gcc, you must compile with the -S option. (Note that this is an uppercase S.
Case matters big time in the Unix world!) The command would look like this:

  gcc dateis.c -S

Note that the output of this command is the assembly source file only. If you specify the -S option, gcc
understands that you want to generate assembly source rather than an executable program file, so all it will
generate is the .s file. To compile a C program to an executable program file, you must compile it again
without the -S option.

Here's dateis.c. It does nothing more than print out the date and time as returned by the standard C library
function ctime():

  #include <time.h>
  #include <stdio.h>
  int main()
    {
      time_t timeval;
  
      (void)time(&timeval);
      printf("The date is: %s", ctime(&timeval));
      exit(0);
    }

It's not much of a program, but it does illustrate the use of three C library function calls, time(), ctime(), and
printf(). When gcc compiles the preceding program (dateis.c), it produces the file dateis.s, which follows. I
have manually added the equivalent Intel mnemonics as comments to the right of the AT&T mnemonics, so



you can see what equals what in the two systems. (Alas, neither gcc nor any other utility I have ever seen
will do this for you!)

       .file      "dateis.c"
       .version   "01.01"
  gcc2_compiled.:
  .section  .rodata
  .LC0:
       .string    "The date is: %s"
  .text
       .align 4
  .globl main
       .type      main,@function
  main:
       pushl %ebp           # push ebp
       movl %esp,%ebp       # mov ebp,esp
       subl $4,%esp         # sub esp,4
       leal -4(%ebp),%eax   # lea eax,ebp-4
       pushl %eax           # push eax
       call time            # call time  
       addl $4,%esp         # add esp,4
       leal -4(%ebp),%eax   # lea eax,ebp-4
       pushl %eax           # push eax
       call ctime           # call ctime
       addl $4,%esp         # add esp,4
       movl %eax,%eax       # mov eax,eax
       pushl %eax           # push eax
       pushl $.LC0          # push dword .LC0
       call printf          # call printf
       addl $8,%esp         # add esp,8
       pushl $0             # push dword 0
       call exit            # call exit
       addl $4,%esp         # add esp,4
       .p2align 4,,7
  .L1:
       leave                # leave
       ret             # ret
  .Lfe1:
       .size      main,.Lfe1-main
       .ident     "GCC: (GNU) egcs-2.91.66 19990314/Linux (egcs-1.1.2 release)"

One thing to keep in mind when reading this is that dateis.s is assembly language code produced
mechanically by a compiler, and not by a human programmer! Some things about the code (such as why
the label .L1 is present but never referenced) are less than ideal and can only be explained as artifacts of
gcc's compilation machinery. In a more complex program there may be some customary use of a label .L1
that doesn't exist in a program this simple.

Some quick things to note here while reading the preceding listing:

When an instruction does not take operands (call, leave, ret), it does not have an operand-size suffix.
Calls and returns look pretty much alike in both Intel and AT&T syntax.

When referenced, the name of a message string is prefixed by a dollar sign ($) the same way that
numeric literals are. In NASM, a named string variable is considered a variable and not a literal. This is
just another AT&T peccadillo to be aware of.

Note that the comment delimiter in the AT&T scheme is the pound sign (#) rather than the semicolon
used in nearly all Intel-style assemblers, including NASM.

AT&T Memory Reference Syntax



As you'll remember from earlier chapters, referencing a memory location (as distinct from referencing its
address) is done by enclosing the location of the address in square brackets, like so:

  mov ax, dword [ebp]

Here, we're taking whatever 32-bit quantity is located at the address contained in EBP and loading it into
register AX. The x86 processors allow a number of different ways of specifying the address. To a core
address called a base we can add another register called an index, and to that a constant value called a
displacement. We used this sort of addressing to locate a string within a table of strings back in Chapter 11.
Such addressing modes can look like this:

  mov eax, dword [ebx-4]    ; Base minus displacement
  mov al, byte [bx+di+28]   ; Base plus index plus displacement

I haven't really covered this, but you can add an additional factor to the index called a scale, which is a
power of two by which you multiply the index:

  mov al, byte [bx+di*4]

The scale can't be any arbitrary value, but must be one of 2, 4, or 8. (The value 1 is legal but doesn't
accomplish anything useful.) This mode, called scaled indexed addressing, is only available in 32-bit flat
model and will not work in 16-bit modes at all—which is why I haven't mentioned it in this book before now.

All of the examples I've shown you so far use the Intel syntax. The AT&T syntax for memory addressing is
considerably different. In place of square brackets, AT&T uses parentheses to enclose the components of a
memory address:

  movb (%ebx),%al    # mov byte al,[ebx] in Intel syntax

Here, we're moving the byte quantity at [ebx] to AL. (Don't forget that the order of operands is reversed from
what Intel syntax does!) Inside the parentheses you place the base, the index, and the scale, when present.
(The base must always be there.) The displacement, when one exists, must go in front of and outside the
parentheses:

  movl -4(%ebx),%eax        # mov dword eax,[ebx-4] in Intel syntax
  movb 28(%ebx,%edi),%eax   # mov byte eax,[ebx+edi+28] in Intel syntax

Note that in AT&T syntax, you don't do the math inside the parentheses. The base, index, and scale are
separated by commas, and plus signs and asterisks are not allowed. The schema for interpreting an AT&T
memory reference is as follows:

  ±disp(base,index,scale)

The ± symbol indicates that the displacement is signed; that is, it may be either positive or negative, to
indicate whether the displacement value is added to or subtracted from the rest of the address. Typically,
you only see the sign as explicitly negative; without the minus symbol, the assumption is that the
displacement is positive. The displacement value is optional. You may omit it entirely if there's no
displacement in the memory reference. Similarly, you may omit the scale if there is no scale value present
in the effective address.

What you will see most of the time, however, is a very simple type of memory reference:

  -16(%ebp)

The displacements will vary, of course, but what this almost always means is that an instruction is
referencing a data item somewhere on the stack. C code allocates its variables on the stack, in a stack
frame, and then references those variables by constant offsets from the value in EBP. EBP acts as a
"thumb in the stack," and items on the stack may be referenced in terms of offsets (either positive or
negative) away from EBP. The preceding reference would tell a machine instruction to work with an item at



the address in EBP minus 16 bytes.

I have a lot more to say about stack frames in the next chapter.



Using the GNU Debugger

The first thing you have to understand about the GNU debugger gdb is that it was designed to work as a
high-level debugger on C programs. That is, gdb allows programmers to single-step a C program by
stepping from one C statement to another, setting breakpoints on C statements, and so on. It isn't nearly
as good as DOS DEBUG at poking around assembly code programs, or any programs at the binary level
irrespective of their source language. I've been looking for some sort of DEBUG clone for Linux, but as yet
haven't found it. If you're going to use a debugger to work on your assembly code, gdb will have to do.
(And if you find a DEBUG clone for Linux, please let me know! There will be a third edition of this book
someday.)

In terms of their basic concepts, DEBUG and gdb are very much alike. Both load a program into memory
and allow you to examine its innards, as well as examine memory and registers. How they look to you
sitting in your chair, however, is radically different. And some of that difference has to do with the nature of
Linux assembly programs versus DOS assembly programs.

Your Code, My Code, and Our Code

When you write a DOS assembly language program, as I explained in the earlier parts of this book, you
write all of it. All the code that runs is only the code that you write, or that you explicitly and optionally link
into it. When you run that program, DOS hands control of the machine to the program, right at the first
machine instruction you wrote at the start of your program. It continues to run your code until you return
control back to DOS with a call to service 04CH of INT 21H.

This is simple and easy to understand, which is one important reason I started you off with DOS
programming rather than Linux programming. Linux is different. Lots different. And once you begin using a
debugger to go inside the binary space of a program you've written, you have to understand that
difference thoroughly.

To communicate with the Linux kernel, an assembly language program should use the C library as its
communications layer. It's possible to make direct kernel calls, but it's not a good idea, as the details of
making those calls may change from version to version of Linux. We're going to play it straight in this book
and make all input and output calls through the standard C library.

This means we have to link the C library into an assembly language program. Doing so allows us to call C
library functions such as printf(), ctime(), and so on. However, linking in those function calls comes with a
certain amount of baggage, and the baggage consists of startup and shutdown code.

In truth, when you create a Linux assembly language program as I explain in this and the next chapter,
you're creating a sort of a hybrid. The structure of this hybrid is shown in Figure 12.2.

Figure 12.2: The structure of a Linux assembly language program.

Linking your assembly language program to the C library adds in all the code shown in the top bar. In
addition to the code containing library calls such as printf(), there is a block of code that runs before your
program begins, and another block that runs after your program ends. In a sense, your program is only a
subroutine called by a boilerplate empty program in the C library. Your program is called as though it were
a subroutine (with the CALL instruction) and it returns control to the C library code using a RET
instruction.



Technically, your program is a subroutine, and it helps to think of it as one. That's how I've drawn it in
Figure 12.2. When Linux begins executing your program, it actually starts, not at the top of the code you
wrote, but at the beginning of the startup code. When the startup code has done what it must, it executes
a CALL instruction that takes execution down into your assembly code. When the assembly language
program you wrote returns control to its caller via RET, the shutdown code begins executing, and it's the
shutdown code that actually returns control to Linux.

In between, you can make as many calls into the C runtime library code as you like. When you link your
program with gcc, the code containing the C library routines that you call is linked into the program. Note
well that the startup and shutdown code, as well as all the code for the library calls, are all physically
present in the executable file that you generate with gcc. You're not making calls into a DLL somewhere.
Whatever calls are made into the Linux kernel are made by the C library code.

The problem caused by the presence of the startup code in your executable file is that when you begin
single-stepping the program, you're single-stepping through C library code. That can be enlightening, and I
encourage you to do it a few times while you're first getting your Linux legs. However, after a while you'll
be pounding on the keyboard trying to get through it so that you can figure out why your code isn't working
correctly. You need a way to skip past the startup code. And skipping code means you need some
signposts in the executable file so that you have someplace to skip to. For this you need symbols in your
executable file.

Spotting Symbols in an Executable File

To use gdb, you need to be able to access symbols defined within your program, that is, labels for
variables and locations in the code. They allow you to jump from one place in the program forward to
another without single-stepping through the intervening code. Such symbols are usually included in the
executable file by default but can be stripped out to make the executable file smaller.

To determine whether symbols are present in one of your executable files, execute the nm utility on that
file:

  nm hilinux

No one's ever explained to me what nm stands for; my hunch is it's a scrunched form of "name." (When it
was created, people communicated with Unix on electromechanical Teletype machines, which were
ponderously slow and difficult to type on. There was a big payback in using short names for things.) What
you'll see when you run nm will either be a list of symbols, or else this message:

  hilinux: no symbols

The list, when you get one, will be quite long—and most of the symbols on the list will be unfamiliar to you.
That's because they're symbols of elements of the C library that have been linked into your program. Your
symbols, the ones defined in your assembly language program, will be there somewhere—alas, they're not
all clustered conveniently together. Look for main—assuming you defined a label main in your program
(and you must or you will have trouble linking it with the C library), it will be there, probably near the end of
the list. Here's a typical nm listing for a very simple program that I present in the next chapter:

  0804943c ? _DYNAMIC
  08049420 ? _GLOBAL_OFFSET_TABLE_
  080483fc R _IO_stdin_used
  08049414 ? __CTOR_END__
  08049410 ? __CTOR_LIST__
  0804941c ? __DTOR_END__
  08049418 ? __DTOR_LIST__
  0804940c ? __EH_FRAME_BEGIN__
  0804940c ? __FRAME_END__
  080494dc A __bss_start
  08049400 D __data_start
           U __deregister_frame_info@@GLIBC_2.0
  080483b0 t __do_global_ctors_aux



  08048320 t __do_global_dtors_aux
           U __gmon_start__
           U __libc_start_main@@GLIBC_2.0
           U __register_frame_info@@GLIBC_2.0
  080494dc A _edata
  080494f4 A _end
  080483dc A _etext
  080483dc ? _fini
           U _fp_hw
  08048274 ? _init
  080482f0 T _start
  08049408 d completed.3
  08049400 W data_start
  08048368 t fini_dummy
  0804940c d force_to_data
  0804940c d force_to_data
  08048370 t frame_dummy
  08048314 t gcc2_compiled.
  08048320 t gcc2_compiled.
  080483b0 t gcc2_compiled.
  080483dc t gcc2_compiled.
  08048390 t init_dummy
  080483d4 t init_dummy
  080483a0 T main
  080494dc b object.8
  08049404 d p.2

The program this listing was generated from, boiler.asm, has only one symbol in it: main. The capital T to
the left of the symbol main indicates that the symbol resides in the [text] section of your program, and the
fact that it's capitalized indicates that main is global. Local symbols (which means all symbols you do not
explicitly mark as global) are indicated by small letters here. Because nm is virtually undocumented, I don't
know what all the various tags mean, but t or T indicates items residing in the [text] section, and d or D
indicates items residing in the [data] section.

What are all the rest of these symbols? Mostly, they're code labels and data items from the C library,
which gcc links into your program. Most of the time you won't have to fool with them, especially when
you're just getting started.

Stripping Symbols out of an Executable File

When you're done debugging a program, you can strip the symbols out of the program to reduce the size
of the program on disk. For small programs the reduction can be substantial; the eatlinux.asm program I
show you in the next chapter went from 12 to 3K bytes after I stripped the symbols out of it.

Stripping the symbols out of a program is trivial. You use the strip command, followed by the name of the
executable:

  strip eatlinux

And that's it! Like most Unix utilities, strip is a taciturn creature and won't say anything unless something
goes wrong. No comment, no problems.

Loading a Program for Debugging

Loading a program for debugging via gdb is easy: On the Linux shell command line, you follow the
command gdb with the name of the executable file you wish to debug:

  gdb eatlinux



This command runs gdb and loads the file to be debugged into memory, much as you did with DEBUG
under DOS. Once loaded, you'll see gdb's command prompt:

  (gdb)

Alas, that's where the resemblance ends. You'll get a command prompt from gdb, but you can't begin
single-stepping the program or inspecting registers yet.

The problem is this: Linux, like all versions of Unix, is a multiuser, multitasking operating system, orders of
magnitude more complex than DOS. Other programs are running and continue running while you're in
there with your assembly program and gdb, single-stepping. This means that special measures must be
taken by Linux to allow your program to share the machine with all other running programs, and those
measures cannot be taken until you explicitly run the program. Most critical to your efforts as a
programmer is the fact that Linux doesn't calculate initial register values for a program until it has spawned
a process in which to run it. A process is a sort of operational frame within which a program is run. I think
of a process as a frying pan into which you pour your executable code from its "can" on disk in order to do
something with it. In a very real sense, a debuggable program (that is to say, something you can look at
with a debugger and glean useful information from) doesn't really exist until the program has been run.
You can't cook your Spam while it's still in the can, brother.

Now, the command to run a program from within gdb is "run"; however, there's a catch. If you issue the
run command (which is roughly equivalent to DEBUG's G command), the program will run, and run until
completion, then stop running. It won't pause anywhere for you to start single-stepping or inspecting
registers or memory.

Before you run the program from within gdb, you must set at least one breakpoint.

Setting Breakpoints in gdb

Setting breakpoints in gdb isn't difficult. It does require that debugging symbols be present in your
executable file, as I mentioned a little earlier in this chapter. You can set a breakpoint on any symbol listed
by the nm utility as being in the [text] section of your program by the t or T symbol to the left of the
symbol's name. While you're just getting started, many or most of these symbols will be of locations within
the startup or shutdown code, or within the C library. On the other hand, you should be able to recognize
your own symbols.

The symbol you're most likely to want to set a breakpoint on is main, which in nearly all cases will be the
beginning of your program. (The C library assumes—and hence requires—that the main program it is
linked to be called "main.") Setting a breakpoint on main is easy enough to do:

  (gdb) break main

Gdb will respond by confirming the breakpoint, giving it an identification number, and telling you its
machine address:

  Breakpoint 1 at 0x80483d6

Additional breakpoints will be called out as Breakpoint 2, Breakpoint 3, and so forth. Once you've set at
least one breakpoint, you can execute the run command. When you do, you'll see a message like this,
specific to your system, of course:

  Starting program: /usr/local/nasmbook/showargs
  
  Breakpoint 1, 0x80483d6 in main ()
  (gdb)

What this means is that program execution is paused at the breakpoint called out in the message. The big
hex number is the 32-bit address where execution was paused. If you have set other breakpoints, you can
skip to them, in sequence, by executing the continue command to move from breakpoint to breakpoint.
Another way to do this (if you know how many breakpoints away from your destination you are) is to give a



numeric parameter to the continue command:

  continue 2

This will skip past the next two breakpoints and is equivalent to executing the continue command twice.
Leaving out the number entirely is equivalent to "continue 1."

If you decide you no longer need a breakpoint and it's getting in your way, you can remove the breakpoint
with the delete command. You must provide delete with the identification number of the breakpoint to be
removed:

  delete 1

On the other hand, you can disable a breakpoint without removing it completely. A disabled breakpoint
remains in gdb's breakpoint table, but execution will not pause there. To disable a breakpoint, use the
disable command followed by the breakpoint's identification number:

  disable 1

Turning a disabled breakpoint back on is done with the enable command, followed by the breakpoint's
identification number:

  enable 1

Keeping track of what's enabled and what's disabled can be a challenge. To help out, you can request at
any time a summary description of all existing breakpoints by using the info breakpoints command:

  (gdb) info breakpoints
  Num Type           Disp Enb Address    What
  1   breakpoint     keep y   0x080483d6 <main+6>
  2   breakpoint     keep y   0x080483de <showit>
  (gdb)

Here, the breakpoint's identification number is at the left margin, with the type of the item (here,
"breakpoint") to the right, followed by the breakpoint's disposition and enable status. An enabled
breakpoint will show the letter y under the Enb header. A disabled breakpoint will show an n.

A breakpoint's disposition status is an advanced topic that I won't take up in detail. Basically, the
disposition status specifies what happens to the breakpoint when the breakpoint is hit during program
execution. "Keep" is the default and indicates that nothing happens; the breakpoint remains in existence
and enabled. Other disposition status values can direct gdb to delete or disable the breakpoint when it is
hit.

The address of a breakpoint is the memory address in hex of the instruction on which the breakpoint has
been set. The What header is more useful when you're debugging C code. For assembly work, it indicates
the location of the breakpoint relative to a symbol—usually the symbol on which you set the breakpoint.

Sharp readers may be wondering why the "What" value for Breakpoint 1 in the preceding listing is given as
<main+6>. Why not just <main>? There's a small and very technical oddity here that stems from the
special nature of the label main. For gcc to successfully link your assembly programs to the C library, the
starting point of your programs must be labeled main, and the label main must be declared as global. The
main program part of all C programs must be called main, and what you're doing in a sense is writing a C
program in which the main program is written in assembly. (All the rest of it, in the libraries, is written in C.)

So, this special label main is hard-coded into the GNU tools in a number of ways. One of these ways
involves breakpoints set by gdb. If you want to begin single-stepping your program, but you don't want to
single-step through the startup code first, a breakpoint at main is a natural thing to want. (Single-stepping
through the startup code is possible, and can be educational, but it involves some special techniques that
I'm not going to take it up here.)



However, . . . at the very beginning of your assembly language main program are some required
instructions, sometimes called prolog code, that create a stack frame for your program. I explain this in
detail in the next chapter; consider it a "forward reference" for now. That prolog is required, and all the
programs you'll see me present in the next chapter will have this identical sequence at their beginnings:

  main:
      push ebp      ; Set up stack frame for debugger
      mov ebp,esp
      push ebx      ; Program must preserve ebp, ebx, esi, & edi
      push esi
      push edi
      ;;; Everything before this is boilerplate; use it for all ordinary apps!

Following the main label are exactly five instructions. These instructions are crucial for your program to be
able to access the stack and avoid trashing important register values, and the GNU debugger gdb makes
the assumption that in nearly all cases you'll want to begin single-stepping after these instructions have
executed. (Its reasoning: Your program won't work correctly until they've executed, so why waste the time
stepping through them?) So, when you request a breakpoint on the main program with this command:

  break main

gdb will actually set a breakpoint six instructions after the label main. This guarantees that the stack frame
has been set up, allowing you to access variables on the stack. These variables include any command line
parameters passed to your program at startup, so it is an important consideration.

If you really and truly do want to set a breakpoint precisely at the main label, you need to execute this
command:

  break *main

There's not a whole lot of advantage in it, unless you want to watch stack frame setup actually happen.
(There's nothing wrong with that, of course. But once you've seen it happen a time or two there's not much
sense in watching it every time you debug!)

Providing Command-Line Arguments

It's often useful to be able to provide command-line arguments when debugging a program. Doing it is
easy: Just follow the run command with whatever arguments you would type on the command line for the
program, exactly as you would type them:

  (gdb) run fee fie foe fum

Here, four command-line arguments will be passed to the program being run under gdb. One nice touch is
that these same arguments will be retained by gdb and used every time you begin program execution with
the run command. That is, you don't have to retype them every time you use run to start program
execution again. (Obviously, they are lost when you exit gdb.)

If you want to provide a different set of command-line arguments while debugging the same program, you
can use the set args command to enter a new set:

  (gdb) set args foo bar bas bat

And if you've forgotten precisely which arguments are being stored by gdb for your next program run, you
can display them with show args:

  (gdb) show args
  Argument list to give program being debugged when it is started is:
      foo bar bas bat



Given the extreme brevity of most gdb (and all Unix) prompts and messages, show args takes the award
for about the gabbiest command you'll encounter.

Examining Registers

Whatever DEBUG can show you, gdb can show you as well. I don't think the gdb display formats are as
intuitive and easy to grasp as DEBUG's, but with some practice they're perfectly usable.

You can display the contents of CPU registers with the info reg command. The command and its display
look like this:

  (gdb) info reg
       eax: 0x40101db8  1074798008
       ecx:  0x80483d0   134513616
       edx: 0x40100234  1074790964
       ebx: 0x401031b4  1074803124
       esp: 0xbffffbac -1073742932
       ebp: 0xbffffbb8 -1073742920
       esi: 0xbffffc04 -1073742844
       edi:        0x1           1
       eip:  0x80483d6   134513622
    eflags:      0x246 IOPL: 0; flags: PF ZF IF
  orig_eax: 0xffffffff          -1
        cs:       0x23          35
        ss:       0x2b          43
        ds:       0x2b          43
        es:       0x2b          43
        fs:        0x0           0
        gs:        0x0           0
  (gdb)

This is straightforward. Every value except for eflags is given both in hex (the left-hand value) and
decimal. The way that the Flags register is displayed is one place where I think gdb has it way better than
DEBUG: Every flag that is set appears in the list, after "flags:". Flags that are cleared are not displayed at
all. "IOPL" means "I/O Privilege Level" and is an indicator of what permissions your program has been
given to perform I/O. In most cases this will be 0, meaning no permission at all! (This is one reason why
it's useful to let the C library handle I/O, since the C library then gets to deal with the complexities of
requesting I/O permissions.)

Once you've moved beyond the assembly language basics I'm teaching in this book, you may wish to
examine the floating-point processor registers, and for this you need a slightly different command:

    (gdb) info all-reg
        eax: 0x40101db8  1074798008
        ecx:  0x80483d0   134513616
        edx: 0x40100234  1074790964
        ebx: 0x401031b4  1074803124
        esp: 0xbffffbac -1073742932
        ebp: 0xbffffbb8 -1073742920
        esi: 0xbffffc04 -1073742844
        edi:        0x1           1
        eip:  0x80483d6   134513622
     eflags:      0x246 IOPL: 0; flags: PF ZF IF
   orig_eax: 0xffffffff          -1
         cs:       0x23          35
         ss:       0x2b          43
         ds:       0x2b          43
         es:       0x2b          43
         fs:        0x0           0
         gs:        0x0           0



        st0: 0x00000000000000000000 Empty Zero   0
        st1: 0x00000000000000000000 Empty Zero   0
        st2: 0x00000000000000000000 Empty Zero   0
        st3: 0x4004a400000000000000 Empty Normal 41
        st4: 0x4007ce00000000000000 Empty Normal 412
        st5: 0x00000000000000000000 Empty Zero   0
        st6: 0x4002c000000000000000 Empty Normal 12
        st7: 0x40018000000000000000 Empty Normal 4
      fctrl:   0x037f 64 bit; NEAR; mask INVAL DENOR DIVZ OVERF UNDER LOS;
      fstat: 0x0000 flags 0000; top 0; 
       ftag: 0xffff
        fip: 0x0809ffaa
        fcs: 0x035d0023
     fopoff: 0xbfffead8
     fopsel:     0x002b
     fopsel:     0x002b
   (gdb)

I can't take up the floating-point processor (FPU) in this book, but once you begin to program it you'll need
to understand most of what info all-reg displays.

Examining Program Variables and Individual Registers

Whereas you can use the info regs command to see a dump of all the registers at once, you can also
examine both registers and program variables individually. There are two distinct mechanisms for
displaying individual items in gdb, and when you're working with assembly language in NASM, you're going
to have to use both of them.

The first is the easiest to understand. The print command will display the value stored in any of the
general-purpose registers. The only trick is to prefix the name of the register with a dollar sign:

  (gdb) print $edx

What gdb displays in response will take just a little explaining:

  $1 = 1074790964

(Obviously, you may see some other value than the one shown here.) Unless you apply a format code
(more on which follows), the default display of register values will be in decimal. The "$1 =" indicates that
the display has been logged in the value history. The value history is a memory-based table in which gdb
keeps values displayed using the print command. Each time you display something using print, gdb tucks
the displayed value away in the value history and gives it an identification number, starting with 1. You can
then redisplay the value by executing the print command on the value history identification number:

  (gdb) print $$1

Note that there is an additional "$" symbol here.

One important caution is that gdb cannot display values for 8-bit or 16-bit registers. In other words, you
cannot display AX all by itself, or AH or AL. The symbols $ax, $ah, and $al (and their opposite numbers in
the other registers) are not defined in gdb's symbol table.

The print command is the best way to display values of program variables other than ASCII strings or
other arrays. You can specify how the variable will be displayed (and this applies to registers as well) with
a format code. The format code allows you to display registers or variables in decimal, octal, binary, or
hex, or as ASCII characters. The code is placed after a slash, before the name of the register or variable
to be displayed:

  (gdb) print /x seconds
  $5 = 0x2a



Here, an integer program variable named seconds is displayed in hexadecimal. You could as well display
it as an ASCII character:

  (gdb) print /c seconds
  $6 = 42 '*'

It's the same value (decimal 42, hex 2A) but displayed as its ASCII equivalent, which is the asterisk
character (*). You can display a register or a variable in binary by using the t format code. This is useful
when you're interpreting a register value as a bitmap or as a set of flags:

  (gdb) print /t $ebx
  $7 = 1000000001001000010100010000

Note that when using the t format code, leading zeros in the display are suppressed, so you will not always
get 32 ones or zeros. (There are only 28 in the preceding value. The four highest-order bits in the value
are 0 and have been suppressed.) A summary of all the format codes available to the print command is
given in Table 12.1.

Table 12.1: Format Codes for gdb's Print and x Commands

CODE CMD DEFINITION

c Both Assume the data is a single byte, and display it as an ASCII character

d Both Assume data is an integer, and display it in signed decimal

i x Display the memory value as a machine instruction mnemonic

o Both Assume data is an integer, and display it in octal

s x Assume data is a null-terminated string, and display it as a string

t Both Display data in binary (think: base 2)

u Both Assume the data is an integer, and display it in unsigned decimal

x Both Assume the data is an integer, and display it in hexadecimal

Here, however, is a problem: The print command has no way to display anything that won't fit in a
character or integer value, so strings can't be displayed that way. Instead, you must display null-
terminated string variables with the x command (think "examine"), which is intended for use in examining
memory. Program variables exist in memory, and hence can be displayed with the x command. Here's a
typical use of the x command to display a string variable:

  (gdb) x /s &eatmsg

As with the print command, the format codes are placed first, preceded by a slash symbol (/). The name of
the variable follows, preceded by an ampersand (&). C programmers will recognize the use of the
ampersand here: It's the "address of" operator in C. In C, the expression &eatmsg would return the
address of the variable eatmsg. That's just what we're doing here: We're handing the x command the
address of the variable eatmsg, so that it can display memory starting at that address.

Note that values displayed by the x command are not retained in the value history!

The format code s indicates that the x command should treat memory as a null-terminated string. Starting
with the address indicated by &eatmsg, x will then display memory as a null-terminated string. Table 12.1
shows the various format codes available for use with the x command. Note that two of the format codes,
s and I, are available only with the x command. Print does not support them.

You can use the address-of operator with the print command to determine the memory address of a
program variable. To display the address of a variable named seconds, you would issue this command:

  (gdb) print &seconds



  $8 = (<data variable, no debug info> *) 0x80496d5

This will also work for code labels, to determine the address at which a label exists.

The x command can dump memory for a specified number of bytes beginning at a specified address. The
two additional tricks (over and above the format code) are the repeat count and the unit size. The repeat
count is a number placed immediately after the slash in the x command, and it specifies the number of
units to dump. The format command comes next and indicates which way the data must be displayed.
Finally, the unit size specifies how large each displayed unit is. For a traditional memory count, this is best
done as a byte, for which the code is b. The address may be specified as a literal address in hex, or as the
address in a register, or as the address of a specific variable name or program label. Here's an example of
a memory dump of 64 bytes, each formatted in hex:

  (gdb) x /64xb 0x8049500
  0x8049500:    0x55   0x89   0xe5   0xc9   0xc3   0x90   0x90   0x90
  0x8049508:    0x90   0x90   0x90   0x90   0x90   0x90   0x90   0x90
  0x8049510:    0x55   0x89   0xe5   0x60   0x68   0x00   0x00   0x00
  0x8049518:    0x00   0xe8   0xfe   0xfe   0xff   0xff   0x83   0xc4
  0x8049520:    0x04   0xa3   0xe0   0x97   0x04   0x08   0x68   0xe0
  0x8049528:    0x97   0x04   0x08   0xe8   0x1c   0xff   0xff   0xff
  0x8049530:    0x83   0xc4   0x04   0x50   0x68   0x2c   0x96   0x04
  0x8049538:    0x08   0xe8   0xfe   0xfe   0xff   0xff   0x83   0xc4
  (gdb)

The "/64xb" tells you first how many units, then how to format it (in hex), and finally the size of the
displayed units (bytes). Table 12.2 lists all the available unit size codes.

Table 12.2: Unit Size Codes for gdb's x Command

CODE INDICATED SIZE

b Byte (8 bits)

h Half word (16 bits or 2 bytes)

w Word (32 bits or 4 bytes)

g Giant word (64 bits or 8 bytes)

Half an hour experimenting with the various codes will give you a good feeling for how you can display
memory and items in memory using gdb. The memory dump display isn't as nice as DEBUG's side-by-side
hex-and-ASCII display, but once you've worked with it for a while you can get a good feel for what's out
there lurking in memory.

Changing Register and Program Variable Values

Changing values within machine registers and simple variables (that is, variables that are not strings or
arrays) can be done with the print command. Just as print can show you what's in a register or a variable,
it can place new values in them as well. The notation looks a lot like an assignment statement in C:

  (gdb) print $edx=42
  $9 = 42

Here, the EDX register will be given the new value 42. Print will echo the new value and assign it a
number in the value history. This can be done with simple program variables as well. For example, given a
32-bit integer variable named seconds, you can store a new value into seconds this way:

  (gdb) print seconds=57
  $9 = 57

There's another way to do the same thing. The set var command will change the value of a variable



without echoing the value back to you, and without adding another record to the value history:

  (gdb) set var seconds=17

That's all it takes—and that's all you'll see. The effect of the set var command on the program variable is
the same as though you had used print.

Patching memory at arbitrary addresses is something you may need to do from time to time. Another
variation of the set command will get you there. You need to provide the name of a valid simple data type
so that gdb knows what size and range to allow for the intended data. The notation for storing an integer
value into memory at an arbitrary address looks like this:

  (gdb) set {int}0x80964d5 = 68

C programmers may understand this as a sort of type cast into a raw memory location that has no notion
of type, size, or range. You're using the type identifier int as a template so that gdb can correctly store the
new value at that address. The preceding statement will use 4 bytes starting at the specified address,
because an integer is 4 bytes in size. The following set command stores the same value a little differently:

  (gdb) set {char}0x80964d5 = 68

Here, we're using the char (character) type as our template. The char type occupies only 1 byte, so in this
case, the very same value of 68 (ASCII character "D") is stored in only 1 byte at the specified address,
rather than at 4 consecutive bytes.

Single-Stepping Your Programs

As I explained earlier in this book with respect to DOS DEBUG, perhaps the most important job of a
debugger is to let you execute an assembly language program one instruction at a time, so that you can
determine exactly when it begins to malfunction. What occurs inside a debugger to make this possible is
interesting, but way beyond the scope of this book. For our purposes here, it's enough to understand how
to make it happen, and how to interpret what you see as you go.

I've explained how to set breakpoints, and it's important to understand what's going on when the program
you're testing is paused at a breakpoint: The program is still running—in other words, it is an active Linux
process—but through its own brand of magic, gdb has seized control of the machine back from your
program for the time being. While the program is paused at a breakpoint, you can examine its register and
variable values, examine any location in memory that you have permission to examine, change register
and program variable values, and patch any memory location that you have permission to change. Finally,
you can pick up execution again, in one of two ways:

You can continue program execution at full speed, so that your program will run without pause until
the point of execution encounters another breakpoint, or until it ends normally—or abnormally.

You can continue execution one step at a time, using gdb's single-stepping commands.

Both are useful techniques. The continue command takes your program out of pause mode, and simply
lets it run as though it were running outside the debugger. (It actually runs a little bit more slowly, because
gdb is still there, watching for breakpoints as your program goes.) Once you pick up execution again with
continue, the program will run until it encounters any breakpoint, at which time it will pause once again.

You can also pick up execution with the until command, which allows you to specify a particular breakpoint
at which to pause. You must follow the word until with the identification number of the breakpoint at which
you want to pause:

  (gdb) until 2

Note well that if execution for some reason never passes breakpoint 2 (if your code branches around that
breakpoint, for example), your program could well execute to completion (or to some problem that halts it)
without pausing again.



The continue and until commands are useful ways to move from breakpoint to breakpoint within a
program. But the really cool way to move around inside your code is one instruction at a time, watching
things happen as you go. This is what single-stepping is all about, and with gdb it's remarkably easy.

Single-stepping is simple in principle: You type a gdb command that executes a single machine
instruction. You type the command again, and you execute the instruction after that. In between instruction
executions, you can look at registers, memory locations, and other things that might provide telltales to
your program's operation.

There are two commands that single-step at the machine-instruction level: stepi and nexti. The i at the end
of each command indicates that these step by machine instruction, and not by C source code statements.
The two related commands, step and next, work with C and Modula 2 code only. (Never forget that the
overwhelming majority of gdb's users are debugging C code at the C source code level, and not assembly
code at all.)

The nexti and stepi instructions have shorthand forms: ni and si.

The difference between stepi and nexti may seem odd at first: Stepi executes the next machine instruction
in the execution path, irrespective of which instruction it is, whereas nexti executes the next machine
instruction in the execution path unless that instruction is a CALL instruction. If nexti executes a CALL
instruction, it executes the whole of the subroutine invoked by that CALL instruction without pausing.

Users of Borland's programming languages are probably familiar with two debugging commands built into
Borland's interactive environments: Step Over and Trace Into. Trace Into corresponds to gdb's stepi
command, and Step Over corresponds to gdb's nexti command.

The idea is this: While you're stepping along through a program, you may wish to avoid climbing down into
subroutines and stepping through them instruction by instruction—unless you're debugging the subroutine.
This is especially true of subroutines that are in fact calls into the standard C library. If you're hitting a bug,
it's unlikely to be in the C library. (Suspect your own code in virtually every case. Those library routines are
extremely robust!) So, assuming you can trust the C library functions your program is calling, you probably
don't want to waste time going through them an instruction at a time. The same may be true of subroutines
in your own personal code library. You may have written them and proven them out long ago, so rather
than go through them an instruction at a time, you'd prefer to execute the whole subroutine at once.

If this is the case, you should single-step with nexti. When nexti encounters a CALL instruction, it executes
CALL and all the instructions within the subroutine invoked by that CALL instruction as though the whole
subroutine were a single instruction. Boom! The subroutine has run, and you go on to the next instruction
in the code execution sequence.

Stepi, on the other hand, treats all machine instructions identically: It follows the CALL instruction down
into its subroutine and executes each of the subroutine's instructions in turn, coming back when the
subroutine executes a RET instruction.

It really is that simple. The trick, as usual, is knowing what's happening based on what you see on your
screen. Without some preparation, nexti and stepi are pretty closed-mouthed and unhelpful. Stop at a
breakpoint and execute nexti, and this is what you'll see:

  (gdb) nexti
  0x80483d9 in main ()

The hex number is the 32-bit value of the program counter at that instruction. And that's all it tells you. You
can, however, instruct gdb to be a little more verbose. This is done with the display command, using the
following syntax:

  (gdb) display /i $pc
  1: x/i $eip 0x80483d6 <main+6>    movl 0x8(%ebp),%ecx

More like it! Here we have three major pieces of information: the machine address of the next instruction
to be executed, its offset in instructions from the nearest label, and the machine instruction mnemonic, in
AT&T format. The /i portion of the display command instructs gdb to display what it finds in memory as
machine instructions, using gdb's built-in disassembler. The $pc is a built-in symbol that specifies what



address to use in this display: the address currently stored in the program counter register, EIP.

The "1:" at the left margin is the identification number of this display format. It's possible to have several
display formats active at the same time, so that you can automatically display one or more register or other
items every time execution pauses. For example, if you're watching what happens to ECX, you might issue
this display command as well:

  (gdb) display /x $ecx
  2: /x $ecx = 0x1

Now we have a second active display format, showing us the value of register ECX in hex format. Now,
every time you issue the nexti command, you'll see something like this:

  2: /x $ecx = 0x1
  1: x/i $eip 0x80483d9 <main+9>    movl 0xc(%ebp),%ebx

This way, you can watch the effects that executing instructions have on registers or program variables as
the program progresses.

Note that as you create new display formats, they stack up with the oldest at the bottom. If you want to
delete a display format so that it doesn't display, you can issue the delete display command, passing it the
identification number of the display format:

  (gdb) delete display 2

Display format 2 will be deleted. Note that gdb does not reuse display identification numbers within a
single session. If you create yet another display format after deleting format 2, the new display format will
get the number 3 rather than reusing the number 2.

To summarize: Here's the process you'll take to single-step an assembly program with gdb, outlined in
step-by-step (how else?) fashion:

Run gdb with the name of the executable file as your sole command-line argument:

gdb eattime

1.

Set a breakpoint at the label where you wish to start single-stepping. In many cases that will be
main, but not always . . . Once your programs get more complex than the ones I show in this book,
you'll usually be able to zero in on one malfunctioning portion of your program quickly without
having to step through the whole thing from the beginning:

(gdb) break main

2.

Issue the display command to create a display format that shows the memory location at the
program counter as a machine instruction:

(gdb) display /i $pc

(Don't forget: $pc is a special predefined symbol that means "program counter" and contains the
current value of EIP.) The display format created by the display command will show you the
machine instruction that will be executed next, in AT&T mnemonics. You can create additional
display formats to watch the values of registers or program variables and memory locations.

3.

Run the program so that it will execute until it pauses at the breakpoint you set:

(gdb) run

4.

To begin single-stepping, execute the nexti or stepi commands, as needed, to execute that
displayed machine instruction:

5.

6.



nexti

5.

Assuming you've first issued the display command shown in step 3, after nexti or stepi executes the
instruction you saw in response to the display command, gdb will display the instruction that is in
turn up next for execution. You can immediately use nexti or stepi to execute another instruction or
use the print or x commands to look at registers, program variables, or memory.

6.

That's really all there is to single-stepping. In my early explorations with gdb under Linux I found that
single-stepping my way through a program was a superb way to become bilingual with respect to the
AT&T assembly mnemonics. I printed out a copy of the original NASM source code file that I had written,
using Intel mnemonics, and kept that beside me while I followed the action of the program on the screen.
Very quickly I found that I could read and understand the AT&T mnemonics without any trouble at all.

There is a great deal more to gdb than I have room to cover in this chapter. I encourage you to look up the
full gdb documentation on the Web and read through it, and perhaps print it to paper and put it in a binder.
I hate to put specific URLs in a book that may be in print for many years (considering that the half-life of
most URLs seems to be months if not mere weeks), so the best way to proceed is to search for the string
"gdb documentation" using a Web search engine such as Alta Vista. The documentation set for the GNU
tools has been posted on a great many Web sites around the world, and you should be able to find copies
very quickly.



Your Work Strategy

There are smart ways to work and dumb ways to work. The dumb ways often get the same things done,
but for twice the expended time. (Maybe more. How much is your time worth?) It pays to have an
organized approach to any kind of programming work, and in this section I'm going to suggest a way of
setting up your working environment so that you will waste as little time as possible.

Put Only One Project in One Directory

Traditional practice in the Unix world has long been "one makefile, one directory." What this means is
that you should create a separate directory for every project whose end result is a single executable
program file. Don't just create one directory for assembly language work and then fill it with umpty-
several different projects. This invites confusion, and it makes certain things (such as using the make
facility) trickier and more error-prone.

If you confine each project to its own directory, you can keep the default make file named "makefile"
and not worry about typing the name of the make file into EMACS each time you want to rebuild the
project. (And with only one make file in the directory, you won't have to worry about accidentally
invoking make on the wrong make file. I've done this. If you block on it, you'll soon be doubting your
sanity.)

This also allows you to have standard names for test files, log files, and so on, that will be identical
irrespective of which project you happen to be working on at any given time. If all the files were
glommed together in one huge directory, you'd have to remember a whole set of unique names, one set
for each project. Why bother? Directories cost little in disk space and do an enormous amount to
manage complexity.

Consider EMACS Home

All of the various steps required for programming can be done right from inside EMACS. You can edit
source code files and make files. You can assemble files and link them to generate executable files.
You can run the executable program files to test them. You can invoke the GNU debugger. You can
execute nearly any Unix command that can be issued from inside a Unix shell such as bash. Why
waste time ducking in and out of EMACS as though it were nothing more than a text editor?

More than one book has been written about EMACS. I recommend the book Learning GNU EMACS by
Debra Cameron, Bill Rosenblatt, and Eric S. Raymond (O'Reilly, 1996). My one gripe is that it doesn't
cover the X Window version of EMACS specifically, but all the key commands are the same. I don't
want to duplicate a lot of that book's excellent material here, and EMACS is relatively intuitive on the
editing side.

The important big-picture thing to understand about EMACS is that it is buffer-based, and those buffers
either may be related to disk files, or may simply contain other text that is not from a disk file. When you
open a file, EMACS opens a buffer and loads text from the opened file into that buffer. You can also
open a buffer as a scratch buffer, type something in it, cut or copy portions of that buffer into another
buffer, and then just kill the scratch buffer (delete it) without saving it to disk. (There is a separate
EMACS menu item for killing buffers.)

When EMACS runs the make facility, it pipes output from make and from the tools that make invokes
into a new buffer. That buffer is the same as any other EMACS buffer, and if you want, you can give the
buffer a name and save it to a disk file as a record of the make session. It does the same when you
invoke the GNU debugger from inside EMACS: gdb's output is piped into a buffer, which you can save
to disk if you choose for later reference.

Most usefully, you can invoke a Unix shell (I use bash) from inside EMACS, and EMACS will pipe its
output into a new buffer, which like any buffer can be saved to disk. Especially while you're learning,
there's very little that you'll need to do that can't be done either from the EMACS menus or from a shell
opened from within EMACS.

Opening a Shell from inside EMACS



This last is worth explaining, because it is less obvious than most of the editing commands. There is
currently no EMACS menu item that opens a shell in a window. (There should be!) To open a shell, the
command is "Esc x shell." You press the Esc key followed by the lowercase x key (don't press both at
once!) and, in its command line at the bottom of its window, EMACS will display the unhelpful string "M-
x." This is its way of expressing the sequence Esc x on a PC. (The M stands for "Meta," which was the
name of a control key on some ancient and mercifully forgotten minicomputer dumb terminal.) On other
computers or terminals that may lack an Esc key, there may be other ways of initiating the command.
EMACS was written to be portable. After the string "M-x" you must type "shell" and then press Enter.

EMACS will open a new buffer in a window and will begin piping shell output from the default shell into
that window. At the top of the window will be your familiar shell prompt, waiting for you to type shell
commands just as you did before you invoked EMACS. You can invoke the executables you build with
make by naming them (usually prepended by "./") just as you would from the shell.

Note that you can exit the shell by typing "exit," but the window and buffer that EMACS opened for the
shell will not go away by themselves. You have to kill the buffer as a separate operation, using the Files
| Kill Current Buffer menu item.

I mentioned it earlier, but keep in mind that you can launch the GNU Debugger by selecting the EMACS
menu item Tools | Debugger.



Chapter 13: Coding for Linux Applying What You've

Learned to a True Protected Mode Operating

System

Overview

Ican see the "fan" mail now: "How can you claim your book is about Linux assembly language when
you don't present any Linux code until the very last chapter?" (I get notes like this every time the book I
wrote isn't exactly the book that a reader has hoped to find.) The answer here, of course, is that this
book isn't about Linux assembly language. It's about assembly language for Intel's x86 family of
processors. Most people still start fooling around with x86 assembly under DOS, so that's where I
started. Many who started with assembly under DOS would like to move on to something more powerful
and more pertinent to real computing today, and more and more people see that destination as Linux.

So, whereas I began this book against a DOS backdrop, I'm finishing it against a Linux backdrop. The
book, however, is about neither DOS nor Linux. Nearly everything that I've taught you so far applies to
Linux as truly as DOS: addressing modes, machine instructions, and one- and two-level data tables, to
name just a few. In truth, some things don't apply: real mode segmented model and DOS calls,
primarily. The rest is as good under Linux as it is under DOS.

That being the case, you now have most of what you need to write assembly language programs for
x86 processors under Linux. This chapter fills in the essentials of how Linux work differs from DOS
work at the code level. If in fact there is a third edition of this book someday (and I hope there will be), I
am considering rewriting it almost completely so that DOS at last vanishes into the mists of history, and
we begin with Linux and stay with Linux throughout. You may be surprised at how little of what I've
taught you will have to change. Stay tuned.



Genuflecting to the C Culture

I made it plain in the previous chapter that Linux was a C world from top to bottom. Some people think
that by this I mean most of the programs written for Linux are written in C, that the people who created
Linux were C people, and so on. True enough—but not enough truth. C was created for Unix, and Unix
was created in C. The two evolved together and left indelible marks on one another. Even if Linux or
some other species of Unix were reimplemented in Pascal (a very good idea, in my view), the C flavor
would still be there, and would have to be there, or what we would have would not be Unix at all.

The Primacy of Libraries

Not all of this C culture is pertinent to assembly language work, but a good part of it is. The part that
most affects assembly work, ironically, is the primacy of the standard C libraries. Linux and the
standard C libraries are inseparable. The libraries are the way that applications and utilities
communicate with the Linux kernel. They stand in place of the DOS INT 21H interface I explained in
early chapters.

There are basically three reasons for this:

Portability. This is less important than it used to be, and for those of us who feel that the CPU wars
were won by Intel long ago, it may not be important at all. But it's a fact that the standard C libraries
were created to make the porting of Unix to other processors easier.

Complexity management. Linux is an order of magnitude (at least) more complex than DOS. It can
do more, and can do it (thanks to some of that complexity) with far greater robustness and
flexibility. Much of that complexity can be hidden from typical end-user utilities and applications,
and the C library is the most important means by which that hiding is done.

Kernel evolution. Linux—like Unix itself—is a work in progress. One reason Unix has had such
staying power is that it has been able to evolve to meet the needs of modern users on modern
machines, irrespective of its origins on creaking ancient minicomputers with less processor power
than a Wal-Mart video game. One reason that this has been possible is that the kernel is not much
burdened by layers of "legacy obligations" like those that have made the DOS/Windows 9x
chimera such an unholy and crash-prone muddle. The main reason it remains thus unburdened is
that the kernel is off limits and not accessed directly by utility and application code. Any legacy
burden is borne by the standard C library. The kernel is free to move in the directions that it must,
and the standard C libraries are rewritten as necessary so that the same face is presented to
utilities and applications.

The INT 80H Kernel Function Interface

This last item brings up a subject I'm asked about a lot: the Linux INT 80H kernel function call interface.
Just as there is a software interrupt-based function call interface to DOS, there is a way to call the
Linux kernel through software interrupts. Instead of INT 21H it uses INT 80H, but the basic idea is
almost identical: You set up parameters in registers and then call INT 80H. There are over 200 kernel
primitives that may be called this way. If you keep to these primitives, you don't need the C library.

The INT 80H interface seems to pull at the imaginations of people who have an aversion to C. Many of
these are Europeans, on whose continent Pascal still thrives; and being a Pascal guy myself, I can well
understand it. That being said, I advise against it, and I won't explain the INT 80H mechanism further in
this book. Some information can be found at the Web site of Konstantin Boldyshev at
http://lightning.voshod.com/asm. This is a marvelous (and humbling) site, and worth digesting for the
context even if you never intend to try some of the tricks he describes.

The INT 80H interface is what the C library uses to communicate with the kernel, and the authors of
Linux make it clear that they reserve the right to change the parameters and semantics (that is, what
the calls do) of kernel primitives as necessary without notice or apology. If you make use of kernel
primitives through INT 80H, your Linux programs will become version-specific. This is not a good thing
and will not endear you to users of your software.

If you intend to do any kind of programming at all under Linux, you will have to cut a personal karmic



truce with the C language. If you intend to work in assembly, you will have to move beyond an uneasy
truce (hey, is there ever an easy truce?) to active and willing collaboration. It can be done. I do it all the
time.

Get used to it.

C Calling Conventions

One of the most peculiar things I learned early about Linux programs (peculiar to me, at least) is that
the main portion of a Linux program is a subroutine call—called from the startup code linked in at the
link stage. That is, when Linux executes a program, it loads that program into memory and runs it—but
before your code runs, some standard library code runs, and then executes a CALL instruction to the
main: label in the program. (Yes, ye purists and gurus, there is some other grimbling involved). This is
the reason that the main program portion of a C program is called the main function. It really is a
function, the standard C library code calls it, and it returns control to the standard C library code by
executing a RET instruction. I diagrammed this in Figure 12.2 in the previous chapter, and it might be
useful to take another look at the figure if this still isn't clear to you.

The way the main program obtains control is therefore the first example you'll see of a set of rules we
call the C calling conventions. The C library is nothing if not consistent, and that is its greatest virtue.
All C library functions implemented on x86 processors follow these rules. Bake them into your synapses
early, and you'll lose a lot less hair than I did trying to figure them out by beating your head against
them.

Perforce:

A procedure (which is the more generic term for what C calls a function) must preserve the values
of the EBX, ESP, EBP, ESI, and EDI 32-bit registers. That is, although it may use those registers,
when it returns control to its caller, the values those registers have must be the same values they
had before the function was called. The contents of all other general-purpose registers may be
altered at will. (Because Linux is a protected mode operating system, this pointedly does not
include the segment registers, which are off limits and should not be altered for any reason.)

A procedure's return value is returned in EAX if it is a value 32 bits in size or smaller. Sixty-four-bit
integer values are returned in EDX and EAX, with the low 32 bits in EAX and the high 32 bits in
EDX. Floating-point return values are returned at the top of the floating-point stack. (I won't be
covering floating-point numerics work in this book.) Strings, structures, and other items larger than
32 bits in size are returned by reference; that is, the procedure returns a pointer to them in EAX.

Parameters passed to procedures are pushed onto the stack in reverse order. That is, given the C
function MyFunc(foo, bar, bas), bas is pushed onto the stack first, bar second, and foo last. More
on this later.

Procedures do not remove parameters from the stack. The caller must do that after the procedure
returns, either by popping the procedures off or (more commonly, since it is usually faster) by
adding an offset to the stack pointer ESP. (Again, I'll explain what this means in detail later on,
when we actually do it.)

Understanding these rules thoroughly will allow you to make calls to the multitude of functions in the
standard C library, as well as other extremely useful libraries such as ncurses, all of which are written in
C (either currently or originally) and follow the conventions as I've described them. Much of what I have
to teach you about Linux assembly language work involves how to call library functions. Most of the rest
of it is no different from DOS—and that you already know!



A Framework to Build On

We've been through some pretty substantial programs at the end of our DOS sojourn, so rather than start
again with the most primitive "eat at Joe's" one-liner, I'll present a sort of boilerplate assembly program that
provides some useful mechanisms that nearly all programs will find handy. The beginning and end are set up
for you; when you want to create a new assembly language program for Linux, you just load the boilerplate
program and fill in the middle with your own code.

So let's get started. Here it is. Read it over carefully:

  ; Source name     : BOILER.ASM
  ; Executable name : BOILER -- though this isn't intended to be run!
  ; Version         : 1.0
  ; Created date    : 10/1/1999
  ; Last update     : 10/18/1999
  ; Author          : Jeff Duntemann
  ; Description     : A "skeleton" program in assembly for Linux, using NASM 0.98
  ;
  ; Build using these commands:
  ;  nasm -f elf boiler.asm
  ;  gcc boiler.o -o boiler
  ;
  ; HOWEVER, the program as given here is "boilerplate" and has nothing "useful"
  ;  to do. The idea is to give you a head start on new projects, by providing
  ;  the things that every (or nearly every) simple Linux assembly program must
  ;  have.

  [SECTION .text]      ; Section containing code

  global main          ; Required so linker can find entry point
  
  main:
       push ebp        ; Set up stack frame
       mov ebp,esp     ; ebp is our "thumb" in the stack
       push ebx        ; Program must preserve ebp, ebx, esi, & edi
       push esi
       push edi
       ;;; Everything before this is boilerplate; use it for all ordinary apps!
       ;;; This is where you put your own code!

       ;;; Everything after this is boilerplate; use it for all ordinary apps!
       pop edi         ; Restore saved registers
       pop esi
       pop ebx
       mov esp,ebp     ; Destroy stack frame before returning
       pop ebp
       ret             ; Return control to Linux

  [SECTION .data]     ; Section containing initialized data

  [SECTION .bss]      ; Section containing uninitialized data

Saving and Restoring Registers

One of the odder provisions of the C calling conventions that I described earlier is that a program may not
arbitrarily change all general-purpose registers. To me this is dumb; if the operating system doesn't want an
application to change certain registers, it should save those register values before handing control to the
application. However, we must deal with what is, as they say, and the best way to do that is to just save the
registers that must be saved before we begin, and restore them again before we pack it up and go home.



The registers that cannot be changed by a Linux application are EBX, ESP, EBP, ESI, and EDI. You'll notice
that BOILER.ASM saves these registers onto the stack when the program begins, and then restores them
from the stack before control returns to Linux.

One very important but extremely nonobvious conclusion you must draw from this requirement to save EBX,
ESP, EBP, ESI, and EDI is that the other general-purpose registers may be trashed. Yes, trashed-and not only
by you. When you call procedures written by other people-primarily in the standard C libraries and in utility
libraries such as ncurses-those procedures may alter the values in EAX, ECX, and EDX. (The stack pointer
ESP is a special case and needs special care of a sort not applicable to other registers.) What this means for
you is that you cannot assume that (for example) a counter value you're tracking in ECX will be left untouched
when you call a C library function such as printf. If you're using ECX to count passes through a loop that calls
a library function-or any function that you yourself didn't write-you must save your value of ECX on the stack
before you call the library function and restore it after the library function returns. The same applies to EAX
and EDX. (EAX is often used to return values from library functions, so it's not a good idea to use it to store
counters and addresses and such when you're making library function calls.) If you need to keep their values
intact across a call to a library function, you must save them to the stack before the library function is called.

On the other hand, the sacred nature of EBX, EBP, ESI, and EDI means that these registers will keep their
values when you make C library calls. What is binding on you is binding on the C library as well. Library
functions that must use these registers save and restore them without any attention from you.

Setting Up a Stack Frame

The stack is extremely important in assembly language work, and this is doubly true in Linux work, because
Linux is a C world, and in C (as in most high-level languages including Pascal) the stack has a central role.
The reason for this is simple: Compilers are machines that write assembly language code, and they are not
human and clever like you. (Although I've met some people who appear less intelligent than some of your
better compilers . . .) This means a compiler has to use what might seem brute force methods to create its
code, and most of those methods depend heavily on the use of the stack.

Compiler code generation is doctoral thesis stuff and I won't have much more to say about it in this book. One
compiler mechanism that bears on Linux assembly work is that of the stack frame. Compilers depend on stack
frames to create local variables in functions (in Pascal we call them procedures), and while stack frames are
less useful in assembly work, you must understand them, because they provide an easy way to access
command-line arguments and environment variables.

A stack frame is a location on the stack marked as belonging to a particular function. It is basically the region
between the addresses contained in two registers: base pointer EBP, and stack pointer ESP. This draws
better than it explains; see Figure 13.1.



Figure 13.1: A stack frame.

A stack frame is created by pushing the caller's copy of EBP on the stack to save it, and then copying the
caller's stack pointer ESP into register EBP. The first two instructions in any assembly program that honors the
C calling conventions must be these:

  push ebp
  mov ebp,esp

After this, you must either leave EBP alone, or else if you must use it in a serious pinch make sure you can
restore it before the change violates any C library assumptions. (I recommend leaving it alone!) EBP is
considered the anchor of your new stack frame, which is the main reason it shouldn't be changed. There are
things stored on the stack above (that is, at higher addresses than) your stack frame that often need to be
referenced in your code, and EBP is the only safe way to reference them. (These things aren't shown in Figure
13.1, but I return to them later in this chapter.)

Less obvious is the fact that EBP is also the hidey-hole in which you stash the caller's stack pointer value,
ESP. This is yet another reason not to change EBP once you create your stack frame. Returning control at the
end of your program with a random value in ESP is the shortest path to trouble I could name.

Once EBP is safely anchored as one end of your stack frame, the stack pointer ESP is free to move up and
down the stack as required. The first things you need to put on the stack, however, are the caller's values for
EBX, ESI, and EDI, as shown in Figure 13.1. The order in which these three are saved isn't crucial, but the
order I show in Figure 13.1 is customary. They will be popped back off the stack when the stack frame is
destroyed at the end of your program, handing back to the caller (which in our case is the startup/shutdown
code from the C library) the same values those registers had when the startup code called your program as
the function main.

But once EBX, ESI, and EDI are there, you can push and pop whatever you need to for temporary storage.
Calling C library functions requires a fair amount of pushing and popping, as we see shortly.

Destroying a Stack Frame

Before your program ends its execution by returning control to the startup/shutdown code (refer back to Figure
12.2 if this relationship isn't clear), its stack frame must be destroyed. This sounds to many people like



something wrong is happening, but not so: The stack frame must be destroyed, or your program will crash.
"Put away" might be a better term than "destroyed" . . . but let it pass. What we must do is leave the stack and
the sacred registers in the same state they had when your program received control from the startup code.

Your stack must be clean before you destroy the stack frame and return control. This simply means that any
temporary values that you may have pushed onto the stack during the program's run must be gone. All that is
left on the stack should be the caller's EBP, EBX, ESI, and EDI values. Basically, if EDI was the last of the
caller's values that you saved on the stack, ESP (the stack pointer) had better be pointing to that saved EDI
value, or there will be trouble.

Once your stack is clean, to destroy the stack frame you must first pop the caller's register values back into
their registers, making sure your pops are in the correct order. Handing back the caller's EBX value in EDI will
still crash your program! With that done, we undo the logic we followed in creating the stack frame: We restore
the caller's ESP by moving the value from EBP into ESP, and finally pop the caller's EBP value off the stack:

  mov esp,ebp
  pop ebp

That's it! The stack frame is gone, and the stack and sacred registers are now in the same state they were in
when the startup code handed control to our program. It's now safe to execute the RET instruction that sends
control to the shutdown code from the C library.

The file BOILER.ASM I showed earlier (it's on the CD-ROM for this book) is a boilerplate Linux assembly
language program. It has a comment header, the three sections [.text], [.data], and [.bss], and all the code
necessary to create and then destroy a stack frame. In between, you place the code for your own programs.
All of the programs we create in the rest of this chapter will be built on this common framework.



The Perks of Protected Mode

I've said plenty of times that x86 protected mode is a wonderful thing, but I've never actually come out
and said what it gives you. It's a long list, and I can't cover it all in detail, but in truth, while you're just
starting out, most of it will be under the covers inside the operating system and not something you can
build into your own programs.

In short, from the perspective of beginning assembly programmers, it comes down to more instructions,
more versatile registers, a more stable and predictable environment, and no segments! (Can you tell
which part I like best?)

You Know You Have a 386 or Better

An excellent and underappreciated thing about protected mode is simply this: You know you're running
on a 386 or more advanced Intel processor. There's much less to be concerned about in terms of
whether you can use certain instructions as there are when you're running DOS. Nearly every new
processor family that Intel has released has added some instructions to the x86 instruction set, but the
really big gulf is between the 386 and those CPUs that came before it. Thirty-two-bit protected mode is
not present in the 8088, 8086, or 286, so whatever limitations are attached to those processors you can
just forget.

No Segments!

I explained the nature of 32-bit flat model in earlier chapters and won't recap too thoroughly here.
Segments still exist in 32-bit protected mode, but as each segment can be as large as 4 GB, all the
segments are basically in the same memory space, and thus factor out. (This is why we call it "flat.")
The 32-bit offset address can be considered the sole address for an item, and it may be contained in a
single 32-bit register.

This means that we need no longer be concerned about such things as segment overrides, or recalling
whether a data item is addressed relative to DS or ES. This banishes a good deal of complexity from
programs, and you'll find that flat model coding is remarkably simple compared to the segment
wrestling DOS programmers suffered through starting in 1981.

More Versatile Registers and Addressing

One of the more aggravating limitations of ancient Intel CPUs such as the 8086 and 8088 is that the
general-purpose registers weren't exactly general. Addressing memory, for example, was limited to
EBX and EBP in most cases, which meant a lot of fancy footwork when several separate items had to
be addressed at the same time.

This restriction has pretty much gone away. You can address memory with any of the general-purpose
registers. You can even address memory directly with ESP, something that its predecessor SP could
not do. (You shouldn't change the value in ESP without considerable care, but ESP can now take part
in addressing modes from which the stack pointer was excluded in 16-bit land.)

There's now a general-purpose memory-addressing scheme in which all the GP registers can
participate equally, and I've sketched it out in Figure 13.2.



Figure 13.2: Protected mode memory addressing.

When I first saw this, wounds still bleeding from 16-bit 8088-class segmented memory addressing, it
looked too good to be true. But it is! Here are the rules:

The base and index registers may be any of the 32-bit general-purpose registers, including ESP.

The displacement may be any 32-bit constant. Obviously, 0, while legal, isn't useful.

The scale must be one of the values 1, 2, 4, or 8. That's it! The value 1 is legal but doesn't do
anything useful, so it's never used.

The index register is multiplied by the scale before the additions are done. In other words, it's not
(base + index) x scale. Only the index register is multiplied by the scale.

All of the elements are optional and may be used in almost any combination.

This last point is worth enlarging upon. There are several different ways you can address memory, by
gathering the components in the figure in different combinations. Examples are shown in Table 13.1.

Table 13.1: Protected Mode Memory-Addressing Schemes

SCHEME EXAMPLE DESCRIPTION

[BASE] [edx] Base only

[DISP.] [0x4044d72a] Displacement (constant address) only

[BASE + DISP.] [ecx + 17] Base plus displacement

[INDEX × SCALE] [ebx * 4] Index times scale

[INDEX × SCALE + DISP.] [eax * 8 + 65] Index times scale plus displacement

[BASE + INDEX × SCALE] [esp + edi * 2] Base plus index times scale

[BASE + INDEX × SCALE +
DISP.]

[esi + ebp * 4 +
9]

Base plus index times scale plus
displacement

Note here that the displacement term in an address can be any constant value from 0 to 0xffffffff. (Hey,
all those little fs look funny to me, too, but we're in Unixland now, where Capital Letters Are For
Engraving In Stone, sheesh.) So, although 0x4044d72a may seem like a different beast than the
number 17, they're both legal 32-bit quantities. The numbers are probably used for different things:
0x4044d72a is most likely a full 32-bit address, whereas 17 is probably an offset into a table. However,
both are legal and may be considered valid displacement components in a protected mode memory
address.

There's a slightly dark flip side to this new and expanded register picture:

Using the 16-bit general-purpose registers AX, BX, CX, DX, SP, BP, SI, and DI will slow you down.
Now that 32-bit registers rule, making use of the 16-bit registers is considered a special case that adds
to the size of the opcodes that the assembler generates, and slows your code down. Now, note well
that by "use" I mean explicitly reference in your source code. The AX register, for example, is still there
inside the silicon of the CPU (as part of the larger EAX register) and placing data there won't slow you
down. You just can't place data in AX by using "AX" as an operand in an opcode and not slow down.
This syntax generates a slow opcode:

  mov ax,542

You can do the same thing this way, and the opcode NASM generates will execute much more quickly:

  mov eax,542

It's time to kiss those old 16-bit register names good-bye.



More Instructions

Most beginners probably think that the "new" instructions available with the 386 and later processors
are the best part of working in 32-bit protected mode, but that's a pretty naïve view. I think of those new
instructions as the least of the advantages of protected mode. There are two major reasons for this
opinion:

The majority of the new instructions are way-down-deep items of use almost exclusively by those
who write system software, that is, device drivers and especially operating systems. These new
instructions are in fact the machinery by which protected mode is configured and managed. In most
cases the operating system won't let you use them—not that they're especially useful in writing
simple applications and utilities.

The really useful new instructions aren't new at all, but are simply more powerful ways of using the
old familiar instructions such as PUSH, SHL, and SHR, coupled with the more versatile memory
addressing I just finished explaining. Even these are relatively few.

All that being said, there are some useful new instructions that were introduced with the 386, and I'll
take a little time to highlight the most useful of them. One thing I won't be covering here are the
instructions introduced with the 486 and Pentium family. Why? To use them, you have to be sure you're
using a 486, a Pentium, or whatever CPU in which the instructions were first implemented, or
later—and that's generally more trouble than it's worth, especially when you're first starting out. (My
favorite of those gotchas is this: The Pentium introduced an instruction called CPUID, which tells you
what CPU you're using . . . but you have to be sure you have at least a Pentium under the sheet metal
before you dare use it!)

More Versatile Pushes and Pops

First of all, you can now push immediate values onto the stack with the PUSH instruction. This is most
useful when calling C library functions that expect certain values to be placed on the stack before the
call, as we'll see later in this chapter. Here's an example:

  push 0x4044d72a

The immediate operand can be any value that fits in 32 bits.

The 386 introduced the ability to push and pop all 32-bit GP registers at once. The PUSHAD instruction
pushes EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI onto the stack. The POPAD instruction pops
values off the stack into these same registers. (Sixteen-bit equivalents to PUSHAD and POPAD were
introduced with the 286, but are not particularly useful in a 32-bit memory model like the one Linux
uses.) It's possible to use PUSHAD and POPAD to save and restore the registers coming into and
going out of the main programs you write under Linux. However, in creating BOILER.ASM, I stuck with
the more limited C calling conventions, which only saves EBX, EBP, ESI, and EDI—and ESP inside
EBP. Note that the value pushed onto the stack for ESP is not popped back into ESP by POPAD, but is
simply discarded.

The related instructions PUSHFD and POPFD push and pop the EFLAGS register to and from the
stack. They are the 32-bit equivalents of PUSHF and POPF, which were available on the 8086/8088.
Pushing EFLAGS onto the stack with PUSHFD and then popping the pushed value off the stack into a
32-bit register is one way to get a copy of the EFLAGS register that can be examined at your leisure.

More Versatile Shifts and Rotates

As I said earlier, the best of the new instructions are simply enhancements to instructions you
encountered on the 8086/8088. Among the best of these are enhancements to the shift and rotate
instructions. There are six such instructions: SHL, SHR, ROL, ROR, RCL, and RCR. (The instructions
SAL and SAR are just duplicate names for SHL and SHR.) I dealt with the shift instructions in Chapter
10, as they exist on the 8088 and 8086. For those ancient CPUs, you can express the number of bits
by which to shift in one of only two ways:

  shl AX,1  ; Shift left by 1
  shl AX,CL ; Shift left by number in CL



(Note that this discussion applies to any of the shift/rotate instructions, and not just SHL.) To shift an
operand by 1 bit, you could specify the literal value 1. To shift by any greater number of bits greater
than 1, you had to first load a count value into the CL register, and then use CL as the second operand.
Well, that was the 16-bit world. In 32-bit protected mode you can drop the use of CL and use an
immediate value for any legal shift values, 1 or whatever up to 31. It becomes legal to use instructions
that look like this:

  shl eax,17

Note that the shift count is limited to 31. If you shift a 32-bit operand by 32 or more bits in either
direction, you're left with nothing but zeros in the operand, because all significant bits will be shifted
completely out of the operand into nothingness. So, for the shift instructions, at least, shifting by more
than 31 bits is meaningless.

It's less obviously true for the rotate instructions, but here, too, there's no advantage to rotating a value
by more than 31 bits. The rotate instructions, if you recall, rotate bits off one end of the operand and
then feed them back into the opposite end of the operand, to begin the trip again. If you mentally follow
a single bit through the rotation process, you'll realize that after 32 rotations, any given bit is where it
was when you started rotating the value. What's true of one bit is true of them all, so 31 rotations is as
much as will be useful on a 32-bit value. This is why, in protected mode programming (and on the 286
as well), the shift-by count is truncated to 5 bits: The largest value expressible in 5 bits is . . . 32!

Looking for 0 Bits with BT

Back in Chapter 10 I introduced the TEST instruction, which allows you to determine whether any given
bit in a byte or word is set to 1. As I explained, TEST has its limits: It's not cut out for determining when
a bit is set to 0.

The 386 and newer processors have an instruction that allows you to test for either 0 bits or 1 bits. BT
(Bit Test) performs a very simple task: It copies the specified bit from the first operand into the Carry
flag CF. In other words, if the selected bit was a 1 bit, the Carry flag becomes set. If the selected bit
was a 0 bit, the Carry flag is cleared. You can then use any of the conditional jump instructions that
examine and act on the state of CF.

BT is easy to use. It takes two operands: The first one is the value containing the bit in question. The
second operand is the ordinal number of the bit you want to test, starting from 0:

  bt <value containing bit>,<bit number>

Once you execute a BT instruction, you should immediately test the value in the Carry flag and branch
based on its value. Here's an example:

  bt eax,4    ; Test bit 4 of AX
  jnc quit    ; We're all done if bit 4 = 0

Note that we're branching if CF is not set; that's what JNC (Jump if Not Carry) does.

I hate to discuss code efficiency too much in a beginners' book, but there is a caution here: The BT
instruction is pretty slow as instructions go—and bit-banging is often something you do a great many
times inside tight loops, where instruction speed can be crucial. Using it here and there is fine, but if
you're inside a loop, consider whether there might be a better way to test bits. Creaky old TEST is
much faster . . . but TEST only tests for 1 bits. Depending on your application, you may be able to test
for 0 bits more quickly another way, perhaps shifting a value into the Carry flag with SHL or SHR, using
NOT to invert a value . . . There are no hard and fast rules, and everything depends on the dynamics of
what you're doing. (That's why I'm not teaching optimization in this book!)

Crash Protection

This sounds wonderful, but you have to understand: The protection in "protected mode" is for the



operating system. Programs that you write will crash right and left, trust me. However, no matter what
idiotic things your program might do, either accidentally or on purpose, its chances of bringing down
Linux in flames are close to nil. In all the time I've been using Linux, I have never crashed the operating
system. Not even once. It is far and away the most robust OS I've ever touched, and that includes
Windows NT, which I use every day and have for five years.

On the other hand, this benefit cuts both ways. Linux is a multitasking operating system, and many
programs can be executing at the same time. The features of protected mode also serve to protect the
other programs from your program—and your programs from the other programs. Bullying is prohibited.

You will encounter the protection mechanism sooner or later, most likely when you try to address a
portion of memory for which your program does not have permission. You must keep in mind that
although a 32-bit memory address can theoretically run from 0 to 0xffffffff, your program does not have
permission to access all of those addresses. And by access I mean write or read! You can't just start
from address 0 and inspect every memory location your computer has. Snooping is prohibited
too—except for your own little corner of Linux's world.

The message that comes up under Red Hat 6 for protection errors is this:

  Segmentation fault (core dumped)

Not very helpful in and of itself, huh? This is why gdb is so crucial—and why I spent so much of
Chapter 12 on it. If you're single-stepping through gdb, you will (in most cases) know precisely which
instruction causes the problem, because the fault will be thrown as soon as you single-step that
instruction. If that instruction references memory, you can probably assume that it references a region
of memory for which you don't have permission. You may also discover that a protection fault occurs
during a C library call, but what that means is that you passed a bad value of some sort to the C library.
This is less common, and you simply have to take a much closer look at what you're passing to the
library code.

What does the "core dumped" part of the message mean? When a segmentation fault occurs, Linux
creates a kind of postmortem file containing a description of the machine's state when the fault
happened, including a snapshot of your program's binary code. This file's name defaults to "core" and it
could be useful in debugging except that NASM does not currently embed the same information in its .o
files that gcc embeds in its .o files generated from C programs. The core file is therefore much more
difficult to interpret for NASM programs than for C programs. The NASM team indicates that this is on
its to-do list for the assembler, and with some luck we'll see that feature added soon. All the more
reason to watch the NASM Web site for new releases!



Characters Out

Enough warm-up-it's time to start writing programs! Actually, we've already been through a complete and
assemble-able program called BOILER.ASM. However, if you assemble BOILER.ASM and run it, you
won't see anything. It takes no real action and doesn't display any output. Making an "Eat at Joe's"
program out of it requires that we make a C library function call to display text on the screen. This isn't
particularly difficult, and it's good practice in learning the conventions for making C library calls from
assembly. I explained the C calling conventions in some detail in an earlier section of this chapter, and
now we'll actually put them to work. Consider the following assembly program, which is built on the
BOILER.ASM foundation I showed you earlier:

  ; Source name     : EATLINUX.ASM
  ; Executable name : EATLINUX
  ; Version         : 1.0
  ; Created date    : 11/12/1999
  ; Last update     : 11/22/1999
  ; Author          : Jeff Duntemann
  ; Description     : A simple program in assembly for Linux, using NASM 0.98,
  ;  demonstrating the use of the puts C library routine to display text.
  ;
  ; Build using these commands:
  ;  nasm -f elf eatlinux.asm
  ;  gcc eatlinux.o -o eatlinux
  ;

  [SECTION .text]        ; Section containing code

  extern puts
  global main            ; Required so linker can find entry point

  main:
      push ebp           ; Set up stack frame for debugger
      mov ebp,esp
      push ebx           ; Program must preserve ebp, ebx, esi, & edi
      push esi
      push edi
      ;;; Everything before this is boilerplate; use it for all ordinary apps!

      push dword eatmsg  ; Push a 32-bit pointer to the message on the stack
      call puts          ; Call the clib function for displaying strings
      add esp, 4         ; Clean stack by adjusting esp back 4 bytes

      ;;; Everything after this is boilerplate; use it for all ordinary apps!
      pop edi            ; Restore saved registers
      pop esi
      pop ebx
      mov esp,ebp        ; Destroy stack frame before returning
      pop ebp
      ret                ; Return control to Linux

 [SECTION .data]         ; Section containing initialized data

 eatmsg: db "Eat at Joe's!",10,0

 [SECTION .bss]          ; Section containing uninitialized data

The C library has a number of routines for displaying text to the screen. The simplest of all of them to
understand is puts, which, as its name implies, puts a string to standard output. (I explain what standard
output is very shortly.) Here's the code required to call puts from within an assembly program:

  push dword eatmsg  ; Push a 32-bit pointer to the message on the stack
  call puts          ; Call the clib function for displaying strings



  add esp,4          ; Call cleans stack by adjusting esp back 4 bytes

This is a wonderful example, in miniature, of the process you'll use to call most any C library routine. All
library routines take their parameters on the stack, which means you have to push either numeric values
that fit in 32 bits, or else pointers to strings or other larger data objects. In this case, we push a 32-bit
pointer to a text string on the stack. The string itself is defined in the [.data] section of the program, and by
now it should be pretty familiar:

  eatmsg: db "Eat at Joe's!",10,0

Note well that in the PUSH instruction we specify eatmsg and not [eatmsg]. What we need to push is the
address of eatmsg, and not the data that eatmsg contains. As you should recall from earlier chapters,
when you reference the name of a data item you're actually referencing its address. To reference its
contents you must surround it by brackets. Here, we leave out the brackets and thus push the string's
address on the stack instead.

The text to be displayed is followed by two numbers: a 10 and a 0. The 10 is the numeric code for what
Unix people call newline, which is the character that, when sent to the screen or to a text file, moves the
current position to the left margin of the next line. In the x86 Unix world, newline is equivalent to ASCII
linefeed, Ctrl-A, which has a numeric value of 10. On other hardware systems, newline might be
something else entirely, but as long as you're working on Linux for the x86 processors, the 10 will be
interpreted by the system as newline.

In Unix jargon the 0 is called a null, and it is used almost everywhere in the standard C library to indicate
the end of a string. The puts library function displays the text at the location passed to it in the pointer
pushed on the stack, from the first character up to the first null that it encounters. The null is important. If
you don't append a null to the end of the string, puts will keep stuffing bytes from memory to the screen
until it encounters a null somewhere up-memory of the original string-which could mean that hundreds of
random garbage characters will appear on your screen.

The Three Standard Files

This is a good place to explain that puts and the other character-output library functions don't send text
explicitly to your screen display. They send it to a special Unix mechanism called standard output, which is
a destination to which you can send text. Standard output defaults to the screen display. Unless you
redirect standard output to some other place (such as a disk-based text file), characters written to
standard output will appear on your screen.

Standard output is one of three standard text streams that Linux will open and make available to a running
Linux application, no matter how small. A stream is a logical file intended for use with text information.
These are the three standard streams:

Standard output (stdout) which defaults to the screen display. It can be redirected to a text file or
some other text-oriented device such as a printer.

Standard error (stderr) which also defaults to the screen display. The availability of this standard file
allows programs to write their error messages to something other than the screen display, for
debugging or logging purposes. This "something other" is typically a text file, which then provides a
persistent record of what errors occurred during the program's execution.

Standard input (stdin) which (in contrast to stdout and stderr) is a source of text. It defaults to the
system keyboard, but it can be redirected to a text file, which can allow you to drive a program with
"canned" inputs stored in a separate file.

If your program sends text to standard output (which is what happens by default), you can redirect its
output to a text file when executing the program on the Unix command line:

  # ./eatlinux > eattext.txt

Here, instead of appearing on your screen, the text displayed by the EATLINUX program is sent to the text
file eattext.txt instead.



I don't have the room in this book to discuss how to programmatically redirect the standard streams to
other sources or destinations, but any good book on Unix or Linux C programming will explain it in detail.
Like most everything else, it's nothing more complex than a function call.

Formatted Text with printf

The puts library routine may seem pretty useful, but compared to a few of its more sophisticated siblings,
it's kid stuff. With puts you can only send a simple text string to a stream, without any sort of formatting.
Worse, puts always includes a newline at the end of its display, whether you include one in your displayed
string or not. (Notice when you run the executable program EATLINUX that there is a blank line after its
output. That's the second newline, inserted by the puts routine.) This prevents you from using multiple
calls to puts to output several text strings all on a single line.

About the best you can say for puts is that it has the virtue of simplicity. For nearly all of your character
output needs, you're way better off using a much more powerful library routine: printf. The printf routine
allows you to do a number of truly useful things, all with one function call:

Output text without a newline

Convert numeric data to text in numerous formats by passing formatting codes along with the data

Output text to a stream that includes multiple strings stored separately

If you've worked with C for more than half an hour, printf will be perfectly obvious to you, but for people
coming from other languages (such as Pascal, which has no direct equivalent), it may take a little
explaining.

The printf routine will gladly display a simple string like "Eat at Joe's!"-but you can merge other text
strings and converted numeric data with that base string as it travels toward standard output, and show it
all seamlessly together. This is done by dropping formatting codes into the base string, and then passing a
data item to printf for each of those formatting codes, along with the base string. A formatting code begins
with a percent sign and includes information relating to the type and size of the data item being merged
with the base string, as well as how that information should be presented.

Let's look at a very simple example to start out. Here's a base string containing one formatting code:

  "The answer is %d, and don't you forget it!"

The %d formatting code simply tells printf to convert a signed integer value to text, and substitute that text
for the formatting code in the base string. Of course, you must now pass an integer value to printf (and I
show you how that's done shortly), but when you do, printf will convert the integer to text and merge it with
the base string as it sends text to the stream. If the decimal value passed is 42, on your screen you'll see
this:

  The answer is 42, and don't you forget it!

A formatting code actually has a fair amount of structure, and the printf mechanism as a whole has more
wrinkles than I have room here to describe. Any good C reference will explain the whole thing in detail-one
more reason why it's useful to know C before you attempt Linux assembly work. Table 13.2 lists the most
common and useful ones.



Table 13.2: Common printf Formatting Codes

CODE BASE DESCRIPTION

%c n/a Displays a character as a character

%d 10 Converts an integer and displays it in decimal

%s n/a Displays a string as a string

%x 16 Converts an integer and displays it in hex

%% n/a Displays a percent sign

The most significant enhancement you can make to the formatting codes is to place an integer value
between the % symbol and the code letter:

  %5d

This code tells printf to display the value right-justified within a field 5 characters wide. If you don't put a
field width value there, printf will simply give the value as much room as its digits require.

Passing Arguments to printf

The real challenge in working with printf, assuming you understand how it works logically, is knowing how
to pass it all the arguments that it needs to pull off any particular display. Like the Writeln function in
Pascal, printf has no set number of arguments. It can take as few arguments as one base string, or as
many arguments as you need, including additional strings, character values, and numeric values of
various sorts.

All arguments to C library functions are passed on the stack. This is done either directly, by pushing the
argument value itself on the stack, or indirectly, by pushing a 32-bit pointer to the argument onto the stack.
For 32-bit or 64-bit data values, you push the values themselves onto the stack. (The big instruction set
win with protected mode is that you can push immediate values onto the stack, something that was
impossible prior to the introduction of the 386.) For larger data items such as strings and arrays, you push
a pointer to the items onto the stack.

When there are multiple arguments passed to printf, they all have to be pushed onto the stack, and in a
very particular and nonintuitive order: from right to left as they would appear if you were to call printf()
from C. The base string is considered the leftmost argument and is always pushed onto the stack last. A
simple example will help here:

  printf('%d + %d = %d ... for large values of %d.',2,2,5,2);

This is a C statement that calls printf(). The base string is enclosed in quotes and is the first argument.
After the string are several numeric arguments. There must be one numeric value for each of the %d
formatting codes embedded in the base string. The order that these items must go onto the stack is from
the right reading toward the left: 2,5,2,2, and finally the base string. In assembly, you'd do it this way:

  push dword 2
  push dword 5
  push dword 2
  push dword 2
  push dword mathmsg
  call printf
  add esp,20

The identifier mathmsg is the base string, and its address is pushed last of all the arguments. Remember
that you don't push the string itself onto the stack. You push the string's address, and the C library code
will follow the address and fetch the string's data using its own machinery.

The ADD instruction at the end of the sequence represents what you'll hear described as "cleaning up the
stack." Each time you push something onto the stack with a PUSH instruction, the stack pointer ESP



moves toward low memory by a number of bytes equal to the size of whatever was pushed. In our case
here, all arguments are exactly 4 bytes in size. Five such arguments thus represent 20 bytes of change in
ESP for the sake of making the call. After the call is done, ESP must be moved back to where it was
before you started pushing arguments on the stack. By adding 20 to the value in ESP, the stack pointer
moves back up by 20 bytes and will then be where it was before you began to set up the printf call.

If you forget to clean up the stack, or if you clean it up by the wrong number of bytes, your program will
almost certainly throw a segmentation fault. Details-dare I call it neatness?-count!

Here's another example, in which three separate strings are merged at standard output by the call to
printf:

       push dword dugongs    ; Rightmost arg is pushed first
       push dword mammals    ; Next arg to the left
       push dword setbase    ; Base string is pushed last
       call printf           ; Make the printf call
       add esp,12            ; Stack cleanup: 3 args x 4 bytes = 12

       [SECTION .data]       ; Section containing initialized data

  setbase db 'Does the set of %s contain the set of %s?',10,0
  mammals db 'mammals',0
  dugongs db 'dugongs',0

I haven't shown everything here for the sake of brevity-how often do you need to see the comment
headers?-but by now you should be catching the sense of making calls to printf. The three crucial things
to remember are these:

Arguments are pushed onto the stack from right to left, starting with the function call as it would be
written in C. The base string is pushed last. If you're doing anything even a little complex with printf, it
helps to write the call out first in C form, and then translate it from there into assembly.

After the call to printf, you must add to ESP a value equal to the total size of all arguments pushed
onto the stack. Don't forget that for strings you're pushing the address of the string and not the data
contained in the string! For most arguments this will be 4 bytes.

The printf function call trashes everything but the sacred registers. Don't expect to keep values in
other registers intact through a call to printf! (If you try to keep a counter value in ECX while
executing a loop that calls printf, the call to printf will destroy the value in your counter. You must
save ECX on the stack before each call to a library function, and restore it after the library call returns-
or use a sacred register such as ESI, EDI, or EBX.)

If you can't get a printf call to work in assembly, write up a simple one-liner C program containing the call,
and see if it works there. If it does, you're probably getting the order or number of the arguments wrong.
Never forget that there must be one argument for each formatting code!



Characters In

Reading characters from the Linux keyboard is as easy as sending characters to the screen display. In fact,
the C library calls for reading data from the keyboard (which is the default data source assigned to standard
input) are almost the inverse of those that display data to standard output. This was deliberate, even though
there are times when the symmetry gets in the way, as I'll explain.

String Input with fgets

If you poke around in a C library reference (and you should—there are a multitude of interesting routines
there that you can call from assembly programs), you may discover the gets routine. You may have
wondered (if I didn't choose to tell you here) why I didn't cover it. The gets routine is simplicity itself: You
pass it the name of a string array in which to place characters, and then the user types characters at the
keyboard, which are placed in the array. When the user presses Enter, gets appends a null at the end of
the entered text and returns. What's not to love?

Well, how big is the array? And how dumb is your user?

Here's the catch: There's no way to tell gets when to stop accepting characters. If the user types in more
characters than you've allocated room to accept them in an array, gets will gleefully keep accepting
characters, and overwrite whatever data is sitting next to your array in memory. If that something is
something important, your program will crash hard.

That's why, if you try to use gets, gcc will warn you that gets is dangerous. It's old, and much better
machinery has been created in times since. The designated successor to gets is fgets, which has some
safety equipment built-in—and some complications, too.

The complications stem from the fact that you must pass a file handle to fgets. In general, standard C
library routines whose names begin with f act on files. (I explain how to work with disk files later in this
chapter.) You can use fgets to read text from a disk file—but remember, in Unix terms, your keyboard is
connected to a file, the file called standard input. If we can connect fgets to standard input, we can read
text from the keyboard, which is what the old and hazardous gets does automatically.

The bonus in using fgets is that it allows us to specify a maximum number of characters for the routine to
accept from the keyboard. Anything else the user types will be truncated and discarded. If this maximum
value is no larger than the string buffer you define to hold characters entered by the user, there's no chance
that using fgets will crash your program.

Connecting fgets to the standard input file is easy. The C library predefines three standard file handles, and
these handles are linked into your program automatically. The three are stdin (standard input), stdout
(standard output), and stderr (standard error). For accepting input from the keyboard through fgets, we
want to use stdin. It's there; you simply have to declare it as extern.

So here's how to use the fgets routine:

Make sure you have declared extern fgets and extern stdin along with your other external
declarations at the top of the .text section.

1.

Declare a buffer variable large enough to hold the string data you want the user to enter. Use the
RESB directive in the [.bss] section of your program.

2.

To call fgets, first push the file handle. You must push the handle itself, not the handle's address! So
use the form push dword [stdin].

3.

Next, push the value indicating the maximum number of characters you want fgets to accept. Make
sure it is no larger than the buffer variable you declare in [.bss]! The stack must contain the actual
value—don't just push the address of a variable holding the value. Pushing an immediate value or
the contents of a memory variable will work.

4.

Next, push the address of the buffer variable where fgets is to store the characters entered by the
user.

5.

Finally, call fgets itself.6.

7.



6.

(And as with all library function calls, don't forget to clean up the stack!)7.

In terms of actual code, it should look something like this:

  push dword [stdin]  ; Push predefined file handle for standard input
  push dword 72       ; Accept no more than 72 characters from keyboard
  push dword instring ; Push address of buffer for entered characters
  call fgets          ; Call fgets
  add esp,12          ; 3 args X 4 bytes = 12 for stack cleanup

Here, the identifier instring is a memory variable defined like this:

  [SECTION .bss]      ; Section containing uninitialized data
  instring resb 96    ; Reserve 96 bytes for string entry buffer

Recall that the RESB directive just sets aside space for your variable; that space is not preloaded with any
particular value, with spaces, or nulls, or anything. Until the user enters data through fgets, the string
storage you allocate using RESB is uninitialized and could contain any garbage values at all.

From the user side of the screen, fgets simply accepts characters until the user presses Enter. It doesn't
automatically return after the user types the maximum permitted number of characters. (That would prevent
the user from backing over input and correcting it.) However, anything the user types beyond the number of
permitted characters is discarded.

The CHARSIN.ASM file shown later in this chapter contains the preceding code.

Using scanf for Entry of Numeric Values

In a peculiar sort of way, the C library function scanf is printf running backward: Instead of outputting
formatted data in a character stream, scanf takes a stream of character data from the keyboard and
converts it to numeric data stored in a numeric variable. Scanf works very well, and it understands a great
many formats that I won't be able to explain in this book, especially for the entry of floating-point numbers.
(Floating-point values are a special problem in assembly work, and I won't be taking them up in this edition
of this book.)

For most simple programs you may write while you're getting your bearings in Linux assembly, you'll be
entering simple integers, and scanf is very good at that. You pass scanf the name of a numeric variable in
which to store the entered value and a formatting code indicating what form that value will take on data
entry. The scanf function will take the characters typed by the user and convert them to the integer value
that the characters represent. That is, scanf will take the two ASCII characters "4" and "2" entered
successively and convert them to the integer value 42 after the user presses Enter.

What about a prompt string, instructing the user what to type? Well, many newcomers get the idea that you
can combine the prompt with the format code in a single string handed to scanf—but that won't work. It
seems like it should—hey, after all, you can combine formatting codes with the base string to be displayed
using printf. And in scanf, you can theoretically use a base string containing formatting codes . . . but the
user would then have to type the prompt as well as the numeric data!

So, in actual use, the only string used by scanf is a string containing the formatting codes. If you want a
prompt, you must display the prompt before calling scanf, using printf. To keep the prompt and the data
entry on the same line, make sure you don't have a newline called out at the end of your prompt string!

The scanf function automatically takes character input from standard input. You don't have to pass it the
file handle stdin, as with fgets. (There is a C library routine fscanf to which you do have to pass a file
handle, but for integer data entry, there's no hazard in using scanf.)

Here's how to use the scanf routine:

Make sure you have declared extern scanf along with your other external declarations at the top of
the [.text] section.

1.

Declare a memory variable of the proper type to hold the numeric data read and converted by scanf.2.



1.

My examples here will be for integer data, so you would create such a variable with either the DD
directive or the RESD directive. Obviously, if you're going to keep several separate values, you'll
need to declare one variable per value entered.

2.

To call scanf for entry of a single value, first push the address of the memory variable that will hold
the value. (See the following discussion about entry of multiple values in one call.)

3.

Next, push the address of the format string that specifies what format that data will arrive in. For
integer values, this is typically the string "%d."

4.

Call scanf.5.

Clean up the stack.6.

The code for a typical call would look like this:

  push dword intval   ; Push the address of the integer buffer
  push dword iformat  ; Push the address of the integer format string
  call scanf          ; Call scanf to enter numeric data
  add esp,8           ; Clean up the stack

It's possible to present scanf with a string containing multiple formatting codes, so that the user could enter
multiple numeric values with only one call to scanf. I've tried this, and it makes for a very peculiar user
interface. The feature is better used if you're writing a program to read a text file containing rows of integer
values expressed as text, and convert them to actual integer variables in memory. For simply obtaining
numeric values from the user through the keyboard, it's best to accept only one value per call to scanf.

The following program shows how you would set up prompts alongside a data entry field for accepting both
string data and numeric data from the user through the keyboard. After accepting the data, the program
displays what was entered, using printf.

  ; Source name     : CHARSIN.ASM
  ; Executable name : CHARSIN
  ; Version         : 1.0
  ; Created date    : 11/21/1999
  ; Last update     : 11/30/1999
  ; Author          : Jeff Duntemann
  ; Description     : A data input demo for Linux, using NASM 0.98
  ;
  ; Build using these commands:
  ;  nasm -f elf charsin.asm
  ;  gcc charsin.o -o charsin
  ;

  [SECTION .text]         ; Section containing code

  extern stdin            ; Standard file variable for input
  extern fgets
  extern printf
  extern scanf
  global main             ; Required so linker can find entry point

  main:
      push ebp            ; Set up stack frame for debugger
      mov ebp,esp
      push ebx            ; Program must preserve ebp, ebx, esi, & edi
      push esi
      push edi
      ;;; Everything before this is boilerplate; use it for all ordinary apps! 

      ;; First, an example of safely limited string input using fgets. Unlike
      ;; gets, which does not allow limiting the number of chars entered, fgets
      ;; lets you specify a maximum number. However, you must also specify a



      ;; file (hence the 'f' in 'fgets') so we must push the stdin handle.

      push dword sprompt  ; Push address of the string input prompt string  
      call printf         ; Display it
      add esp,4           ; Clean up stack for 1 arg

      push dword [stdin]  ; Push predefined file handle for standard input
      push dword 72       ; Accept no more than 72 characters from keybd.
      push dword instring ; Push address of buffer for entered characters
      call fgets          ; Call fgets
      add esp,12          ; 3 args X 4 bytes = 12 for stack cleanup

      push dword instring ; Push address of entered string data buffer
      push dwrod sshow    ; Push address of the string display prompt
      call printf         ; Call printf
      add esp,8           ; Clean up the stack

      ;; Next, we'll use scanf to enter numeric data. This is easier, because
      ;; unlike strings, integers can only be so big and hence are self-
      ;; limiting.

      push dword iprompt  ; Push address of the integer input prompt
      call printf         ; Display it
      add esp,4           ; Clean up the stack

      push dword intval   ; Push the address of the integer buffer
      push dword iformat  ; Push the address of the integer format string
      call scanf          ; Call scanf to enter numeric data
      add esp,8           ; Clean up the stack
   
      push dword [intval] ; Push integer value to display
      push dword ishow    ; Push base string
      call printf         ; Call printf to convert & display the integer
      add esp,8           ; Clean up the stack
      ;;; Everything after this is boilerplate; use it for all ordinary apps!
      pop edi             ; Restore saved registers
      pop esi
      pop ebx
      mov esp,ebp         ; Destroy stack frame before returning
      pop ebp
      ret                 ; Return control to Linux

  [SECTION .data]         ; Section containing initialized data

  sprompt db 'Enter string data, followed by Enter: ',0
  iprompt db 'Enter an integer value, followed by Enter:    ',0
  iformat db '%d',0
  sshow  db 'The string you entered was: %s',10,0
  ishow  db 'The integer value you entered was: %5d',10,0

  [SECTION .bss]          ; Section containing uninitialized data

  intval   resd  1        ; Reserve one uninitialized double word
  instring resb 128       ; Reserve 128 bytes for string entry buffer



Be a Time Lord

The standard C libraries contain a pretty substantial group of functions that manipulate dates and times. Although
these functions were originally designed to handle date values generated by the real-time clock in ancient AT&T
minicomputer hardware, they have by now become a standard interface to any operating system's real-time clock
support. People who program in C under DOS or for Windows use the very same group of functions, and they
work more or less the same way irrespective of what platform you're working with.

By understanding how to call these functions as assembly language procedures, you'll be able to read the current
date, express time and date values in numerous formats, apply timestamps to files, and do many other useful
things.

Let's take a look at how it works.

The C Library's Time Machine

Somewhere deep inside the standard C library, there is a block of code that, when invoked, looks at the real-time
clock in the computer, reads the current date and time, and translates that into a standard, 32-bit unsigned
integer value. This value is the number of seconds that have passed in the "Unix Epoch," which began on
January 1, 1970, 00:00:00 universal time. Every second that passes adds one to this value. When you read the
current time or date via the C library, what you'll retrieve is the current value of this number.

The number is called time_t. The time_t value is currently in the high 900,000,000s, and will flip to 10 digits (1
billion seconds since January 1, 1970) on September 9, 2001, at 7:46:40 A.M. UTC. This isn't a Y2K-style hazard
in the immediate future, since even a signed 32-bit integer can express a quantity over 2 billion, and an unsigned
32-bit integer can express over 4 billion. Furthermore, a properly implemented C library doesn't assume that this
is a 32-bit quantity at all. So, when the whole thing flips in the year 2069, we'll already be using at least 64-bit
values for everything and the whole problem will be put off for another 292 billion years or so. If we haven't fixed
it once and for all by then, we'll deserve to go down in the Cosmic Crunch that cosmologists are predicting.

A time_t value is just an arbitrary seconds count and doesn't tell you much on its own, though it can be useful for
calculating elapsed times in seconds. A second standard data type implemented by the standard C library is
much more useful. A tm structure (which is often called a struct, and which is what Pascal people would call a
record) is a grouping of nine 32-bit values that express the current time and date in separately useful chunks, as
summarized in Table 13.3. Note that although a struct (or record) is nominally a grouping of unlike values, in the
current x86 Linux implementation, a tm value is more like an array or a data table, because all nine elements are
the same size, which is 32 bits, or 4 bytes. I've described it that way in Table 13.3, by including a value that is the
offset from the beginning of the structure for each element in the structure. This allows you to use a pointer to the
beginning of the structure and an offset from the beginning to close in on any given element of the structure.

Table 13.3: The Values Contained in the tm Structure

OFFSET IN BYTES C LIBRARY NAME DEFINITION

0 tm_sec Seconds after the minute, from 0

4 tm_min Minutes after the hour, from 0

8 tm_hour Hour of the day, from 0

12 tm_mday Day of the month, from 1

16 tm_mon Month of the year, from 0

20 tm_year Year since 1900, from 0

24 tm_wday Days since Sunday, from 0

28 tm_yday Day of the year, from 0

32 tm_isdst Daylight Savings Time flag

There are C library functions that convert time_t values to tm values and back. I cover a few of them in this
book, but they're all pretty straightforward, and once you've thoroughly internalized the C calling conventions, you
should be able to work out an assembly calling mechanism for any of them.



Fetching time_t Values from the System Clock

Any single second of time (at least those seconds after January 1, 1970) can be represented as a 32-bit
unsigned integer in the Unix system.

Fetching the value for the current time is done by calling the time function:

  push dword 0      ; Push a 32-bit null pointer to stack, since
                    ; we don't need a buffer. Time value is
                    ; returned in eax.
  call time         ; Returns calendar time in eax
  add esp, byte 4   ; Clean up stack after call
  mov [oldtime],eax ; Save time value in memory variable

The time function can potentially return the time value in two places: In EAX, or in a buffer that you allocate
somewhere. To have time place the value in a buffer, you pass it a pointer to that buffer on the stack. If you don't
want to store the time value in a buffer, you must still hand it a null pointer on the stack. That's why we push a 0
value in the preceding code; 0 is the value of a null pointer.

No other arguments need to be passed to time. On return, you'll have the current time value (what Unixoids call
time_t) in EAX. That's all there is to it.

Converting a time_t Value to a Formatted String

At this writing, time_t is up to about 950,000,000. (Scary to think that that many seconds have passed since the
middle of my senior year in high school-which is precisely the time I first learned about computers!) By itself,
time_t doesn't tell you a great deal. The C library contains a function that will return a pointer to a formatted
string representation of a given time_t. This is the ctime function. It returns a pointer to a string buried
somewhere in the runtime library. This string has the following format:

  Thu Dec 2 13:59:20 1999

The first field is a three-character code for the day of the week, followed by a three-character code for the month
and a two-space field for the day of the month. The time follows, in 24-hour format, and the year brings up the
rear. For good measure (though it is sometimes a nuisance), the string is terminated by a newline.

Here's how you use ctime:

  push dword oldtime ; Push *address* of calendar time value
  call ctime         ; Returns pointer to ASCII time string in eax
  add esp, byte 4    ; Clean up stack after call

This looks pretty conventional, but there is something here that you must notice, as it's a little unconventional:
You pass ctime the address of a time_t value, not the value itself! You're used to passing 32-bit integer values
by pushing the values themselves onto the stack, say, for display by printf. Not so here. A time_t value is
currently, under Linux, represented as a 4-byte integer, but there is no promise that it will always be thus. So, to
keep its options open (and to ensure that Unix can be used for thousands or even millions of years to come,
egad), the C library requires a pointer to the current time. Maybe in a thousand years it'll be a quad word . . .
who's to say?

So you push a pointer to the time_t value that you want to represent as a string, and then call ctime. What ctime
returns is a pointer to the string, which it keeps somewhere inside the library. You can use that pointer to display
the string on the screen via printf or to write it to a text file.

Generating Separate Local Time Values

The C library also gives you a function to break out the various components of the date and time into separate
values, so you can use them separately or in various combinations. This function is localtime, and given a
time_t value, it will break out the date and time into the fields of a tm structure described in Table 13.3. Here's
the code to call it:



  push dword oldtime  ; Push address of calendar time value
  call localtime      ; Returns pointer to static time structure in eax
  add esp, byte 4     ; Clean up stack after call

Here, oldtime is a time_t value. Given this value, localtime returns in EAX-much in the fashion of ctime-a
pointer to a tm structure within the runtime library somewhere. By using this pointer as a base address, you can
access the fields in the structure by using a constant displacement from the base (here, shown as stored in
EAX):

  mov edx, dword [eax+20] ; Year value is 20 bytes offset into tm 
  push edx                ; Push value onto the stack
  push dword yrmsg        ; Push address of the base string
  call printf             ; Display string and year value with printf
  add esp, byte 8         ; Clean up the stack

By using the displacements shown in Table 13.3, you can access all the other components of the time and the
date in the tm structure, stored as 32-bit integer values.

Uninitialized Storage and [.bss]

To newcomers, the difference between the [.data] and [.bss] sections of the program may be obscure. Both are
used for holding variables . . . so, what's the deal? Is it (like many other things in computing) just more, . . . um, . .
. bss?

Not really. Again, the difference is more a matter of convention than anything else. The [.data] section was
intended to contain initialized data; that is, variables that you provide with initial values. Most of the time, these
will be base strings for data display containing prompts and other string data that doesn't change during the
course of a program's execution. Sometimes you'll store count values there that define the number of lines in an
output report, and so on. These values are much like values defined as CONSTANT in Pascal. They're defined at
compile time and are not supposed to change.

In assembly, of course, you can change them if you want. But for variables that begin without values (that is, are
uninitialized) which are given values over the course of a program's execution (which is the way most high-level
language programmers think of variables), you should probably allocate them in the [.bss] section.

There are two groups of data-definition pseudoinstructions that I've used informally all along. They are what I call
the defines and the reserves. The define pseudoinstructions give a name, a size, and a value to a data item. The
reserves only give a name and a size. Here are some examples:

  rowcount dd 6
  fileop   db 'w',0
  timemsg  db "Hey, what time is it? It's %s",10,0

  timediff resd 1  ; Reserve 1 integer (4 bytes) for time difference
  timestr  resb 40 ; Reserve 40 bytes for time string
  tmcopy   resd 9  ; Reserve 9 integer fields for time struct tm

The first group are the defines. The ones you'll use most often are DD (define double) and DB (define byte). The
DB pseudoinstruction is unique in that it allows you to define character arrays very easily, and it is generally used
for string constants. For more advanced work, NASM provides you with DW (define word) for 16-bit quantities,
DQ (define quad word) for 64-byte quantities, and DT (define ten-byte) for 80-bit quantities. These larger types
are used for floating-point arithmetic, which I won't be covering in this book.

The second group are reserves. They all begin with "RES," followed by the code that indicates the size of the
item to be reserved. NASM defines RESB, RESW, RESD, RESQ, and REST for bytes, words, doubles, quads,
and 10-bytes. The reserves allow you to allocate arrays of any type, by specifying an integer constant after the
pseudoinstruction. RESB 40 allocates 40 bytes, and RESD 9 allocates 9 doubles (32-bit quantities) all in a
contiguous array.



Making a Copy of clib's tm Struct with MOVSD

It's sometimes handy to be able to keep a separate copy of a tm structure, especially if you're working with
several date/time values at once. So, after you use localtime to fill the C library's hidden tm structure with
date/time values, you can copy that structure to a structure allocated in the [.bss] section of your program.

Doing such a copy is a straightforward use of the REP MOVSD (Repeat Move String Double) instruction. MOVSD
is an almost magical thing: Once you set up pointers to the data area you want to copy, and the place you want
to copy it to, you store the size of the area in ECX and let REP MOVSD do the rest. In one operation it will copy
an entire buffer from one place in memory to another.

To use REP MOVSD, you place the address of the source data-that is, the data to be copied-into ESI. You move
the address of the destination location-where the data is to be placed-in EDI. The number of items to be moved
is placed in ECX. You make sure the Direction flag is cleared (for more on this, see Chapter 11) and then
execute REP MOVSD:

  mov esi, eax          ; Copy address of static tm from eax to esi
  mov edi, dword tmcopy ; Put the address of the local tm copy in edi
  mov ecx,9             ; A tm struct is 9 dwords in size under Linux
  cld                   ; Clear df to 0 so we move up-memory
  rep movsd             ; Copy static tm struct to local copy in .bss

Here, we're moving the C library's tm structure to a buffer allocated in the [.bss] section of the program. The tm
structure is 9 double words-36 bytes-in size. So, we have to reserve that much space and give it a name:

  tmcopy   resd 9       ; Reserve 9 integer fields for time struct tm

The preceding code assumes that the address of the C library's already-filled tm structure is in EAX, and that a
tm structure tmcopy has been allocated. Once executed, it will copy all of the tm data from its hidey-hole inside
the C runtime library to your freshly allocated buffer.

The REP prefix puts MOVSD in automatic-rifle mode, as I explained in Chapter 11. That is, MOVSD will keep
moving data from the address in ESI to the address in EDI, counting ECX down by one with each move, until
ECX goes to zero. Then it stops.

One oft-made mistake is forgetting that the count in ECX is the count of data items to be moved, not the number
of bytes to be moved! By virtue of the D on the end of its mnemonic, MOVSD moves double words, and the value
you place in ECX must be the number of 4-byte items to be moved. So, in moving 9 double words, MOVSD
actually transports 36 bytes from one location to another-but you're counting doubles here, not bytes.

The following program knits all of these snippets together into a demo of the major Unix time features. There are
many more time functions to be studied in the C library, and with what you now know about C function calls, you
should be able to work any of them out.

   ; Source name     : TIMETEST.ASM
   ; Executable name : TIMETEST
   ; Version         : 1.0
   ; Created date    : 12/2/1999
   ; Last update     : 12/3/1999
   ; Author          : Jeff Duntemann
   ; Description     : A demo of time-related functions for Linux, using NASM 0.98
   ;
   ; Build using these commands:
   ;  nasm -f elf timetest.asm
   ;  gcc timetest.o -o timetest
   ;

   [SECTION .text]           ; Section containing code

   extern ctime
   extern getchar
   extern printf



   extern localtime
   extern time

   global main               ; Required so linker can find entry point
  
   main:
       push ebp              ; Set up stack frame for debugger
       mov ebp,esp
       push ebx              ; Program must preserve ebp, ebx, esi, & edi
       push esi
       push edi
       ;;; Everything before this is boilerplate; use it for all ordinary apps!

   ;;; Generate a time_t calendar time value with clib's time function============
       push dword 0          ; Push a 32-bit null pointer to stack, since
                             ;  we don't need a buffer. Time value is
                             ;  returned in eax.
       call time             ; Returns calendar time in eax
       add esp, byte 4       ; Clean up stack after call
       mov [oldtime],eax     ; Save time value in memory variable
 
   ;;; Generate a string summary of local time with clib's ctime function=========
       push dword oldtime    ; Push address of calendar time value
       call ctime            ; Returns pointer to ASCII time string in eax
       add esp, byte 4       ; Clean up stack after call

       push eax              ; Push pointer to ASCII time string on stack
       push dword timemsg    ; Push pointer to base message text string
       call printf           ; Merge and display the two strings
       add esp, byte 8       ; Clean up stack after call 

   ;;; Generate local time values into clib's static tm struct====================
       push dword oldtime    ; Push address of calendar time value
       call localtime        ; Returns pointer to static time structure in eax
       add esp, byte 4       ; Clean up stack after call

   ;;; Make a local copy of clib's static tm struct===============================
       mov esi, eax          ; Copy address of static tm from eax to esi
       mov edi, dword tmcopy ; Put the address of the local tm copy in edi
       mov ecx,9             ; A tm struct is 9 dwords in size under Linux
       cld                   ; Clear df to 0 so we move up-memory
       rep movsd             ; Copy static tm struct to local copy in .bss
 
   ;;; Display one of the fields in the tm structure==============================
       mov edx, dword [tmcopy+20] ; Year value is 20 bytes offset into tm
       push edx              ; Push value onto the stack
       push dword yrmsg      ; Push address of the base string
       call printf           ; Display string and year value with printf
       add esp, byte 8       ; Clean up the stack

   ;;; Wait a few seconds for user to press Enter so we have a time difference====

       call getchar

   ;;; Calculating seconds passed since program began running with difftime=======
       push dword 0          ; Push null ptr; we'll take value in eax
       call time             ; Get current time value; return in eax
       add esp, byte 4       ; Clean up the stack
       mov [newtime],eax     ; Save new time value

       sub eax,[oldtime]     ; Calculate time difference value
       mov [timediff],eax    ; Save time difference value
  
       push dword [timediff] ; Push difference in seconds onto the stack



       push dword elapsed    ; Push addr. of elapsed time message string
       call printf           ; Display elapsed time
       add esp, byte 8       ; Clean up the stack

   ;;; Everything after this is boilerplate; use it for all ordinary apps!
       pop edi               ; Restore saved registers
       pop esi
       pop ebx
       mov esp,ebp           ; Destroy stack frame before returning
       pop ebp
       ret                   ; Return control to Linux

   [SECTION .data]           ; Section containing initialized data

   timemsg db "Hey, what time is it? It's %s",10,0
   yrmsg   db "The year is 19%d.",10,0
   elapsed db "A total of %d seconds has elapsed since program began running.",10,0

   [SECTION .bss]            ; Section containing uninitialized data

   oldtime  resd 1           ; Reserve 3 integers (doubles) for time values
   newtime  resd 1
   timediff resd 1
   timestr  resb 40          ; Reserve 40 bytes for time string
   tmcopy   resd 9           ; Reserve 9 integer fields for time struct tm



Generating Random Numbers

As our next jump on this quick tour of Unix library calls from assembly, let's get seriously random. (Or
modestly pseudorandom, at least.) The standard C library has a pair of functions that allow programs to
generate pseudorandom numbers. The pseudo is significant here. Research indicates that there is no
provable way to generate a truly random random number strictly from software. In fact, the whole notion of
what random really means is a spooky one and keeps a lot of mathematicians off the streets these days.
Theoretically you'd need to obtain triggers from some sort of quantum phenomenon (radioactivity is the one
most often mentioned) to achieve true randomness. But lacking a nuclear-powered random-number generator,
we'll have to fall back on pseudo-ness and learn to live with it.

A simplified definition of pseudorandom would run something like this: A pseudorandom-number generator
yields a sequence of numbers of no recognizable pattern, but the sequence can be repeated by passing the
same seed value to the generator. A seed value is simply a whole number that acts as an input value to an
arcane algorithm that creates the sequence of pseudorandom numbers. Pass the same seed to the generator,
and you get the same sequence. However, within the sequence, the distribution of numbers within the
generator's range is reasonably scattered and random.

The standard C library contains two functions relating to pseudorandom numbers:

The srand function passes a new seed value to the random-number generator. This value must be a 32-
bit integer. If no seed value is passed, the value defaults to 1.

The rand function returns a 31-bit pseudorandom number. The high bit is always 0 and thus the value is
always positive if treated as a 32-bit signed integer.

Once you understand how they work, using them is close to trivial.

Seeding the Generator with srand

Getting the seed value into the generator is actually more involved than making the call that pulls the next
pseudorandom number in the current sequence. And it's not that the call to srand is that difficult: You push
the seed value onto the stack, and then call srand:

  push eax    ; Here, the seed value is in eax
  call srand  ; Seed the pseudorandom number generator
  add esp,4   ; Clean up the stack

That's all you have to do! The srand function does not return a value. But . . . what do you use as a seed
value?

That's the rub.

If it's important that your programs not work with the same exact sequence of pseudorandom numbers every
time they run, you clearly don't want to use an ordinary integer hard-coded into the program. You'd ideally
want to get a different seed value each time you run the program. The best way to do that (though there are
others) is to seed srand with the seconds count since January 1, 1970, as returned by the time function,
which I explained in the previous section. This value (called time_t) is an unsigned integer that is currently
(February 2000) in the high 900 millions and will flip to 1 billion in 2001. It changes every second, so with every
passing second you have a new seed value at your disposal, one that by definition will never repeat.

Almost everyone does this, and the only caution is that you must make certain that you don't call srand to
reseed the sequence more often than once per second. In most cases, for programs that are run, do their
work, and terminate in a few minutes or hours, you only need to call srand once, when the program begins
executing. If you are writing a program that will remain running for days or weeks or longer without terminating
(such as a server), it might be a good idea to reseed your random-number generator once per day.

Here's a short code sequence that calls time to retrieve the time value, and then hands the time value to
srand:

  push dword 0 ; Push a 32-bit null pointer to stack, since



               ; we don't need a buffer.
  call time    ; Returns time_t value (32-bit integer) in eax
  add esp,4    ; Clean up stack
  push eax     ; Push time value in eax onto stack
  call srand   ; Time value is the seed value for random gen.
  add esp,4    ; Clean up stack

The initial push of a zero simply indicates to time that you're not passing in a variable to accept the time value.
The null pointer (which is what a zero value is in this context) has to be there on the stack to keep the time
function happy, however. The value you want to keep is returned in EAX.

Generating Pseudorandom Numbers

Once you've seeded the generator, getting numbers in the pseudorandom sequence is easy: You pull the next
number in the sequence with each call to rand. And the rand function is as easy to use as anything in the C
library: It takes no arguments (so you don't need to push anything onto the stack or clean up the stack
afterward) and the pseudorandom number is returned in EAX.

The following program demonstrates how srand and rand work. It also shows off a couple of interesting
assembly tricks, and I spend the rest of this section discussing them.

  ; Source name     : RANDTEST.ASM
  ; Executable name : RANDTEST
  ; Version         : 1.0
  ; Created date    : 12/1/1999
  ; Last update     : 12/2/1999
  ; Author          : Jeff Duntemann
  ; Description     : A demo of Unix rand & srand using NASM 0.98
  ;
  ; Build using these commands:
  ;  nasm -f elf randtest.asm
  ;  gcc randtest.o -o randtest
  ;

  extern printf
  extern puts
  extern rand
  extern scanf
  extern srand
  extern time

  [SECTION .text]          ; Section containing code

  global main              ; Required so linker can find entry point

  main:
     push ebp              ; Set up stack frame for debugger
     mov ebp,esp
     push ebx              ; Program must preserve ebp, ebx, esi, & edi
     push esi
     push edi
     ;;; Everything before this is boilerplate; use it for all ordinary apps!

     ;; Start by seeding the random number generator with a time value:
  Seedit: push dword 0     ; Push a 32-bit null pointer to stack, since
                           ; we don't need a buffer.
     call time             ; Returns time_t value (32-bit integer) in eax
     add esp,4             ; Clean up stack
     push eax              ; Push time value in eax onto stack
     call srand            ; Time value is the seed value for random gen.
     add esp,4             ; Clean up stack



     ;; All of the following code blocks are identical except for the size of
     ;; the random value being generated.

     ;; Create and display an array of 31-bit random values:
     mov edi, dword pull31 ; Copy address of random # subroutine into edi
     call puller           ; Pull as many numbers as called for in [pulls]
     push dword 32         ; Size of numbers being pulled, in bits
     push dword [pulls]    ; Number of random numbers generated
     push dword display    ; Address of base display string
     call printf           ; Display the label
     add esp,12            ; Clean up stack from printf call
     call shownums         ; Display the rows of random numbers

     ;; Create and display an array of 16-bit random values:
     mov edi, dword pull16 ; Copy address of random # subroutine into edi
     call puller           ; Pull as many numbers as called for in [pulls]
     push dword 16         ; Size of numbers being pulled, in bits
     push dword [pulls]    ; Number of random numbers generated
     push dword display    ; Address of base display string
     call printf           ; Display the label
     add esp,12            ; Clean up stack from printf call
     call shownums         ; Display the rows of random numbers

     ;; Create and display an array of 8-bit random values:
     mov edi, dword pull8  ; Copy address of random # subroutine into edi
     call puller           ; Pull as many numbers as called for in [pulls]
     push dword 8          ; Size of numbers being pulled, in bits
     push dword [pulls]    ; Number of random numbers generated
     push dword display    ; Address of base display string
     call printf           ; Display the label
     add esp,12            ; Clean up stack from printf call
     call shownums         ; Display the rows of random numbers

     ;; Create and display an array of 7-bit random values:
     mov edi, dword pull7  ; Copy address of random # subroutine into edi
     call puller           ; Pull as many numbers as called for in [pulls]
     push dword 7          ; Size of numbers being pulled, in bits
     push dword [pulls]    ; Number of random numbers generated
     push dword display    ; Address of base display string
     call printf           ; Display the label
     add esp,12            ; Clean up stack from printf call
     call shownums         ; Display the rows of random numbers

     ;; Create and display an array of 4-bit random values:
     mov edi, dword pull4  ; Copy address of random # subroutine into edi
     call puller           ; Pull as many numbers as called for in [pulls]
     push dword 4          ; Size of numbers being pulled, in bits
     push dword [pulls]    ; Number of random numbers generated
     push dword display    ; Address of base display string
     call printf           ; Display the label
     add esp,12            ; Clean up stack from printf call
     call shownums         ; Display the rows of random numbers

     ;; Clear a buffer to nulls
  Bufclr: mov ecx, BUFSIZE+5 ; Fill whole buffer plus 5 for safety
  .loop:  dec ecx          ; BUFSIZE is 1-based so decrement first!
     mov byte [randchar+ecx],0 ; Mov null into the buffer
     cmp ecx,0             ; Are we done yet?
     jnz .loop             ; If not, go back and stuff another null

     ;; Create a string of random alphanumeric characters
  Pulchr: mov ebx, BUFSIZE ; BUFSIZE tells us how many chars to pull
  .loop: dec ebx           ; BUFSIZE is 1-based, so decrement first!



     mov edi, dword pull6  ; For random in the range 0-63
     call puller           ; Go get a random number from 0-63
     mov cl,[chartbl+eax]  ; Use random # in eax as offset into table
                           ;  and copy character from table into cl
     mov [randchar+ebx],cl ; Copy char from cl to character buffer
     cmp ebx,0             ; Are we done having fun yet?
     jne .loop             ; If not, go back and pull another

     ;; Display the string
     mov eax,1             ; Output a newline
     call newline          ;  using the newline subroutine
     push dword randchar   ; Push the address of the char buffer 
     call puts             ; Call puts to display it
     add esp,4             ; Clean up the stack
     mov eax,1             ; Output a newline
     call newline          ;  using the newline subroutine

     ;;; Everything after this is boilerplate; use it for all ordinary apps!
     pop edi               ; Restore saved registers
     pop esi
     pop ebx
     mov esp,ebp           ; Destroy stack frame before returning
     pop ebp
     ret                   ; Return control to Linux
  ;;; SUBROUTINES=============================================================

  ;---------------------------------------------------------------
  ; Random number generator subroutines -- Last update 12/1/1999
  ;
  ; This routine provides 5 entry points, and returns 5 different "sizes" of
  ; pseudorandom numbers based on the value returned by rand. Note first of
  ; all that rand pulls a 31-bit value. The high 16 bits are the most "random"
  ; so to return numbers in a smaller range, you fetch a 31-bit value and then
  ; right shift it zero-fill all but the number of bits you want. An 8-bit
  ; random value will range from 0-255, a 7-bit value from 0-127, and so on.
  ; Respects ebp, esi, edi, ebx, and esp. Returns random value in eax.
  ;---------------------------------------------------------------
  pull31: mov ecx,0  ; For 31 bit random, we don't shift
          jmp pull
  pull16: mov ecx,15 ; For 16 bit random, shift by 15 bits
          jmp pull
  pull8:  mov ecx,23 ; For 8 bit random, shift by 23 bits
          jmp pull
  pull7:  mov ecx,24 ; For 7 bit random, shift by 24 bits
          jmp pull
  pull6:  mov ecx,25 ; For 6 bit random, shift by 25 bits
          jmp pull
  pull4:  mov ecx,27 ; For 4 bit random, shift by 27 bits
  pull:   push ecx   ; rand trashes ecx; save shift value on stack
          call rand  ; Call rand for random value; returned in eax
          pop ecx    ; Pop stashed shift value back into ecx
          shr eax,cl ; Shift the random value by the chosen factor
                     ;  keeping in mind that part we want is in cl
          ret        ; Go home with random number in eax

  ;---------------------------------------------------------------
  ; Newline outputter -- Last update 12/1/1999
  ;
  ; This routine allows you to output a number of newlines to stdout, given by
  ; the value passed in eax. Legal values are 1-10. All sacred registers are
  ; respected. Passing a 0 value in eax will result in no newlines being issued.
  ;---------------------------------------------------------------



  newline:
     mov ecx,10        ; We need a skip value, which is 10 minus the
     sub ecx,eax       ;  number of newlines the caller wants.
     add ecx, dword nl ; This skip value is added to the address of
     push dword ecx    ;  the newline buffer nl before calling printf.
     call printf       ; Display the selected number of newlines
     add esp,4         ; Clean up the stack
     ret               ; Go home
  nl db 10,10,10,10,10,10,10,10,10,10,0

     ;; This subroutine displays numbers six at a time
     ;; Not intended to be general-purpose...
  shownums:
     mov esi, dword [pulls]   ; Put pull count into esi
  .dorow: mov edi,6           ; Put row element counter into edi
  .pushr: dec edi             ; Decrement row element counter
     dec esi                  ; Decrement pulls counter
     push dword [stash+esi*4] ; Push number from array onto stack
     cmp edi,0                ; Have we filled the row yet?
     jne .pushr               ; If not, go push another one
     push dword showarray     ; Push address of base display string
     call printf              ; Display the random numbers
     add esp,28               ; Clean up the stack
     cmp esi,0                ; See if pull count has gone to <> 0
     jnz .dorow               ; If not, we go back and do another row!
     ret                      ; Done, so go home!

     ;; This subroutine pulls random values and stuffs them into an
     ;; integer array. Not intended to be general purpose. Note that
     ;; the address of the random number generator entry point must
     ;; be loaded into edi before this is called, or you'll seg fault!
  puller:
     mov esi, dword [pulls] ; Put pull count into esi
  .grab: dec esi            ; Decrement counter in esi
     call edi               ; Pull the value; it's returned in eax
     mov [stash+esi*4],eax  ; Store random value in the array
     cmp esi,0              ; See if we've pulled 4 yet
     jne .grab              ; Do another if esi <> 0
     ret                    ; Otherwise, go home!

  [SECTION .data]           ; Section containing initialized data

  pulls     dd 36           ; How many numbers do we pull?
  display   db 10,'Here is an array of %d %d-bit random numbers:',10,0
  showarray db '%10d %10d %10d %10d %10d %10d',10,0
  chartbl   db '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz-@'

  [SECTION .bss]            ; Section containing uninitialized data

  BUFSIZE equ 70
  randval resd 1            ; Reserve an integer variable
  stash  resd 72            ; Reserve an array of 72 integers for randoms
  randchar resb BUFSIZE+5   ; Buffer for storing randomly chosen characters

Some Bits Are More Random than Others

Under Linux, the rand function returns a 31-bit unsigned value in a 32-bit integer. (The sign bit of the integer-
the highest of all 32 bits-is always cleared.) The Unix documentation for rand and srand indicates that the
low-order bits of a value generated by rand are less random than the high-order bits. This means that if you're
going to use only some of the bits of the value generated by rand, you should use the highest-order bits you



can.

I honestly don't know why this should be so, nor how bad the problem is. I'm not a math guy, and I will take the
word of the people who wrote the rand documentation. But it bears on the issue of how to limit the range of
the random numbers that you generate.

The issue is pretty obvious: Suppose you want to pull a number of random alphanumeric ASCII characters?
You don't need numbers that range from 0 to 2 billion. There are only 127 ASCII characters, and in fact only
62 are letters and numbers. (The rest are punctuation marks, whitespace, control characters, or nonprinting
characters such as the smiley faces.) What you want to do is pull random numbers between 0 and 61.

Pulling numbers that range from 0 to 2 billion until you find one less than 62 will take a long time. Clearly, you
need a different approach. The one I took treats the 31-bit value returned by rand as a collection of random
bits. I extracted a subset of those bits just large enough to meet my needs. Six bits can express values from 0
to 63, so I took the highest-order 6 bits from the original 31-bit value and used those to specify random
characters.

It's easy: I simply shifted the 31-bit value to the right until all bits but the highest-order 6 bits had been shifted
off the right end of the value into oblivion. The same trick works with any (reasonable) number of bits. All you
have to do is select by how many bits to shift. I created a subroutine with multiple entry points, each entry
point selecting a number of bits to select from the random value:

  pull31: mov ecx,0  ; For 31 bit random, we don't shift
          jmp pull
  pull16: mov ecx,15 ; For 16 bit random, shift by 15 bits
          jmp pull
  pull8:  mov ecx,23 ; For 8 bit random, shift by 23 bits
          jmp pull
  pull7:  mov ecx,24 ; For 7 bit random, shift by 24 bits
          jmp pull
  pull6:  mov ecx,25 ; For 6 bit random, shift by 25 bits
          jmp pull
  pull4:  mov ecx,27 ; For 4 bit random, shift by 27 bits
  pull:   push ecx   ; rand trashes ecx; save shift value on stack
          call rand  ; Call rand for random value; returned in eax
          pop ecx    ; Pop stashed shift value back into ecx
          shr eax,cl ; Shift the random value by the chosen factor
                     ;  keeping in mind that part we want is in cl
          ret        ; Go home with random number in eax

To pull a 16-bit random number, call pull16. To pull an 8-bit random number, call pull8, and so on. I did
discover that the smaller numbers are not as random as the larger numbers, and the numbers returned by
pull4 are probably not random enough to be useful. (I left the pull4 code in so you could see for yourself by
running RANDTEST.)

The logic here should be easy to follow: You select a shift value, put it in ECX, push ECX on the stack, call
rand, pop ECX from the stack, and then shift the random number (which rand returns in EAX) by the value in
CL-which, of course, is the lowest 8 bits of ECX.

Why does ECX go onto the stack? ECX is not one of the sacred registers in the C calling conventions, and
virtually all C library routines use ECX and trash its value. If you want to keep a value in ECX across a call to a
library function, you have to save your value somewhere before the call, and restore it after the call is
complete. The stack is the best place to do this.

I used the pull6 routine to pull random 6-bit numbers to select characters from a character table, thus creating
a string of random alphanumeric characters. I padded the table to 64 elements with two additional characters
(- and @) so that I wouldn't have to test each pulled number to see if it was less than 62. If you need to limit
random values to some range that is not a power of 2, choose the next largest power of 2-but try to design
your program so that you don't have to choose randoms in a range like 0 to 65. Much has been written on
random numbers in the algorithm books, so if the concept fascinates you, I direct you there for further study.



Calls to Addresses in Registers

I use a technique in RANDTEST.ASM that sometimes gets forgotten by assembly newcomers: You can
execute a CALL instruction to a subroutine address held in a register. You don't always have to use CALL
with an immediate label. In other words, the following two CALL instructions are both completely legal and
equivalent:

  mov ebx, dword pull8
  call pull8
  call ebx

Why do this? You'll find your own reasons over time, but in general it allows you to treat subroutine calls as
parameters. In RANDTEST.ASM, I factored out a lot of code into a subroutine called puller, and then called
puller several times for different sizes of random number. I passed puller the address of the correct random-
number subroutine to call by loading the address of that subroutine into EDI:

    ;; Create and display an array of 8-bit random values:
    mov edi, dword pull8 ; Copy address of random # subroutine into edi
    call puller          ; Pull as many numbers as called for in [pulls]

Down in the puller subroutine, the code calls the requested random-number subroutine this way:

  puller:
     mov esi, dword [pulls] ; Put pull count into esi
  .grab: dec esi            ; Decrement counter in esi
     call edi               ; Pull the value; it's returned in eax
     mov [stash+esi*4],eax  ; Store random value in the array
     cmp esi,0              ; See if we've pulled enough yet
     jne .grab              ; Do another if esi <> 0
     ret                    ; Otherwise, go home!

See the CALL EDI instruction? In this situation (where EDI was previously loaded with the address of
subroutine pull8), what is called is pull8-even though the label "pull8" is nowhere present in subroutine
puller. The same code in puller can be used to fill a buffer with all the different sizes of random numbers, by
calling the subroutine address passed to it in EDI.

This technique was available in the 8086/8088, but was not often used because in the older processors it was
very slow. Since the 486, it's been only slightly slower than calling an immediate label. Calling an address in a
register gives you a lot of power to generalize code-just make sure you document what you're up to, since the
label which you're calling is not contained in the CALL instruction.

Local Labels

I haven't presented any particularly long or complex programs in this book, so having problems with code
labels conflicting with one another hasn't really been an issue. But as you begin to write "real" code for Linux,
you'll eventually be writing programs hundreds or even (with some practice and persistence) thousands of
lines long. You will soon find that duplicate code labels will be a problem. How will you always remember that
you already used the label loop on line 187 of a 1,432-line program?

You won't. And sooner or later, you'll try and use the label loop again. NASM will call you on it with an error.

This is a common enough problem (especially with obviously useful labels such as loop) that NASM's authors
created a feature to deal with it: local labels. Local labels are founded on the fact that nearly all labels in
assembly work (outside of names of subroutines and major sections) are "local" in nature, by which I mean
that they are only referenced by JMP instructions that are very close to them-perhaps only two or three
instructions away. Such labels are usually parts of tight loops and are not referenced from far away in the
code.

Here's an example:



     ;; Clear a buffer to nulls
  Bufclr: mov ecx, BUFSIZE+5   ; Fill whole buffer plus 5 for safety
  .loop:  dec ecx              ; BUFSIZE is 1-based so decrement first!
     mov byte [randchar+ecx],0 ; Mov null into the buffer
     cmp ecx,0                 ; Are we done yet?
     jnz .loop                 ; If not, go back and stuff another null
  
     ;; Create a string of random alphanumeric characters
  Pulchr: mov ebx, BUFSIZE     ; BUFSIZE tells us how many chars to pull
  .loop:  dec ebx              ; BUFSIZE is 1-based, so decrement first!
     mov edi, dword pull6      ; For random in the range 0-63
     call puller               ; Go get a random number from 0-63
     mov cl,[chartbl+eax]      ; Use random # in eax as offset into table
                               ; and copy character from table into cl
     mov [randchar+ebx],cl     ; Copy char from cl to character buffer
     cmp ebx,0                 ; Are we done having fun yet?
     jne .loop                 ; If not, go back and pull another

You'll see that throughout this code snippet the label .loop has a period in front of it. This period marks it as a
local label-and there are two .loop labels here, each a separate and distinguishable label. Local labels are
local to the first nonlocal label (that is, the first label not prefixed by a period; we call these global) that
precedes them in the code. In the preceding code snippet, the first label .loop is local to the global label
Bufclr. It is not visible further up the source code past Bufclr, and once you get above Bufclr, there may be
another local label called .loop, without any conflict with the two .loop local labels.

Going down the source code from the global label Bufclr, the local label .loop is referenceable until the next
global label, Pulchr, is encountered. You'll see that after Pulchr, there is another .loop, which does not
conflict with the .loop that "belongs" to Bufclr. As long as a global label exists between the two of them,
NASM has no trouble distinguishing them.

Some notes on local labels:

In a library of subroutines, local labels are at least local to the subroutine in which they are defined. Each
subroutine begins with a label (the name of the subroutine, which is a label), so a local label defined within
a subroutine will at most be visible until the beginning of the next subroutine. You may, of course, have
global labels within subroutines, which will confine visibility of local labels even further.

It's perfectly legal and often helpful to define global labels that are never referenced, simply to provide a
context for local labels. If you're writing a utility program that executes in straight-through fashion without a
lot of jumping or long-distance looping back, you may go a long way without needing to insert a global
label. I like to use global labels to set off major functional parts of a program, whether those labels are
ever called or not. This allows me to use local labels freely within those major functional modules. As a
personal stylistic convention, I mark such nonreferenced global labels by using a capital letter for the first
letter in the label. All labels meant to be referenced begin with lowercase letters. As a side benefit, these
labels can be used as breakpoints when debugging with gdb.

Local labels, unfortunately, are not accessible as breakpoints within gdb. I'm not entirely sure why this is
so, but gdb will refuse to set a breakpoint on a local label.

A rule of thumb that I use: Global labels and all references to them should occur within a single screen's
worth of code. In other words, you should be able to see both a local label and everything that refers to it
without scrolling your program editor. This is just a guide to help you keep sense in your programs, but
I've found it very useful in my own work.

If you're writing dense code with a lot of intermixed global and local labels, be careful that you don't try to
JMP to a local label on the other side of a global label. This is one reason not to have 15 local labels
called .loop within one part of a program-you can easily get them confused, and in trying to jump to one
five instructions up, you may unknowingly be jumping to one seven instructions down. NASM won't warn
you if there is a local label with the same name on your side of a global label and you try to jump to a local
label on the other side of the global label. Bugs like this can be insanely difficult to find sometimes. Like
any tool, local labels have to be used carefully to be of greatest benefit.



Placing Constant Data in a Subroutine

By now you're used to thinking of code as living in the [.text] section, and data as living in the [.data] section.
In almost all cases this is a good way to organize things, but there's no absolute demand that you separate
code and data in this way. It's possible to define data within a subroutine using NASM's pseudoinstructions
including DB, DW, and DD. I've created a useful subroutine that shows how this is done and is a good
example of when to do it.

The subroutine allows you to issue some number of newline characters to standard output, specified by a
value passed to the subroutine in EAX:

  newline:
      mov ecx,10        ; We need a skip value, which is 10 minus the
      sub ecx,eax       ;  number of newlines the caller wants.
      add ecx, dword nl ; This skip value is added to the address of
      push dword ecx    ;  the newline buffer nl before calling printf.
      call printf       ; Display the selected number of newlines
      add esp,4         ; Clean up the stack
      ret               ; Go home
  nl  db 10,10,10,10,10,10,10,10,10,10,0

The buffer nl contains 10 newline characters, followed by a null. It is thus a null-terminated string of newline
characters, and you can pass all of it-or any chunk starting in the middle and going to the end-to printf. If you
pass printf the address of the beginning of the string, printf will output all 10 newlines, and your display will
scroll by 10 lines. If you pass printf the address of the third newline, printf will output only 8 newlines, having
skipped the first 2. If you only want printf to output a single newline, you pass printf the address of the very
last newline, so that the only things that printf actually sends to standard output will be the final newline and
the null character.

All the trickery is in calculating the address to pass to printf. The algorithm: To output x newline(s), we need to
skip past 10 - x newline(s). This is why we load 10 into ECX and subtract EAX from it. The resulting value in
EAX becomes the offset that, when added to the address represented by nl, gives you the address of the
place in the string where printf should begin outputting.

Having the data right in the subroutine means that it's easy to cut and paste the subroutine from one program
into another without leaving the essential table of newline characters behind. And because the only code that
ever uses the newline table is the subroutine itself, there's no benefit to placing the newline table in the more
centrally visible [.data] section.



Accessing Command-Line Arguments

One of the most useful things to be able to do when writing simple utilities is to pass them
parameters—C people call them arguments—on the command line. If you're working in C or Pascal,
these are set up as predefined arrays or functions and are a snap to use. In assembly, there's no such
convenience. (Surprise!) You have to know where and how they're stored, which is (alas) nontrivial.

On the other hand, getting at command-line arguments is a wonderful exercise both in the use of
pointers and also of accessing the stack up-memory from EBP, where a number of interesting things live.
EBP is your marker driven into the stack, and it anchors your access to both your own items (stored
down-memory from EBP) and those owned by the runtime library, which are up-memory.

Because we're talking about a pointer to a pointer to a table of pointers to the actual argument strings,
the best way to begin is to draw a picture of the lay of the land. Figure 13.3 shows the pointer
relationships and stack structures we have to understand to identify and read the command-line
arguments.

Figure 13.3: Linux command-line arguments.

As I explained earlier in this chapter, when Linux passes control to your program, the C library's startup
code gets control first, and it sets up a number of things for you, before the code that you wrote ever
begins executing. One of the things the startup code does is set up your program's access to the
command-line arguments. It does this by building a table of pointers to the arguments and placing a
pointer to that table of pointers on the stack, up-memory from EBP.

The startup code places other things on the stack as well. Immediately above EBP is the return address
for your portion of the code. When your code is done, it executes a RET instruction, which takes
execution back into the runtime library code's shutdown sequence. This RET instruction uses the return
address just above EBP to take execution to the shutdown sequence. The shutdown sequence has its
own return address, which eventually takes it back into Linux. You don't need to access the return
address for anything; and certainly don't change it!

Immediately above the return address, at offset 8 from EBP (as the literature would say, at EBP+8) is an
integer count of the number of arguments. There will always be at least one, because the name of the
program is the first command-line argument. (After all, you typed the name on the command line, no?)

Immediately above the argument count, at EBP+12, is a pointer to the argument table. Immediately
above that, at EBP+16, is a pointer to the table of environment variable pairs. Reading environment
variable pairs is done pretty much the same way as reading command-line arguments, so if you
understand one, you won't have much trouble with the other.

Addressing the Stack Relative to EBP

Our crooked trail to the command-line arguments begins at the address stored in EBP. EBP is your
anchor point in the stack. It allows you to access the stack using more than just the PUSH and POP
instructions. The stack is just memory, after all, and can be addressed through registers just as any area
of memory can (assuming you have permissions in that area, one always has to say when speaking of
Unix . . .).



Such addressing is done via offsets from the address stored in EBP. Here's a simple example:

  mov ecx,[ebp+8]   ; Load argument count into ecx
  mov ebx,[ebp+12]  ; Load pointer to argument table into ebx

The first instruction copies the argument count from the stack into ECX. If you refer to Figure 13.3, you'll
see that the argument count is stored on the stack 8 bytes up-memory from EBP. So, by adding the
displacement 8 to the address in EBP, you go right to it. Similarly, the second instruction copies the
pointer to the argument table from its spot on the stack, 12 bytes up-memory from EBP, into EBX.

Once you have these two items in registers, you're most of the way there. With the pointer to the
argument table in EBX (as the preceding code snippet shows), you now have a pointer to the first
element in the argument table, which is always a pointer to the program name as you typed it on the
command line. (You're following all this on Figure 13.3, aren't you?)

Scaled Addressing

One of the marvelous new features introduced on the x86 architecture with the 386 is scaled addressing.
I described this earlier in this chapter, but it's worth recapping as I explain how to use it to access the
rest of the arguments through the table of argument pointers.

We now have a pointer to the beginning of the argument pointer table, stored in EBX. Obtaining the other
pointers in the table requires that we somehow index into that table. Scaled addressing is the best way to
do it. With scaled addressing, we can multiply a register value by 2, 4, or 8, and add it to the base
register to generate the final address.

Consider the argument pointer I marked as Arg(1) in Figure 13.3. It's a pointer, and like all pointers in
protected mode flat model, it's 32 bits—4 bytes—in size. With another 4-byte pointer beneath it, Arg(1) is
4 bytes from the beginning of the pointer table.

So, let's do some pointer math. We start with the address of pointer Arg(0), lying at the very beginning of
the table. We need to add 4 to it to reach Arg(1). Here's the algorithm:

  <BASE POINTER> + (<ARGUMENT INDEX> X 4)

The base pointer we already have in EBX. The argument index for Arg(0) is 0, for Arg(1) is 1, and so on.
The address for Arg(1) would thus be the base pointer plus 1 times 4—which points at the pointer to
Arg(1). The address for Arg(3) would be the base pointer plus 3 times 4, or 12 bytes from the start of the
table. As you can see in Figure 13.3, that's exactly where Arg(3) is. The way this encodes in NASM
syntax is this:

  push dword [ebx+esi*4]     ; Push address of an arg on the stack

We're pushing the pointer onto the stack here, but scaled addressing can of course be used anywhere
you can use a memory address in assembly work. The important part of the notation is [EBX + ESI * 4].
This is the implementation of our addressing algorithm, and it's baked right into the silicon of the CPU!

I've written a short program that displays all the command-line arguments, and in doing so demonstrates
how to use scaled addressing to get the address of any given argument. Read it carefully:

  ; Source name     : SHOWARGS.ASM
  ; Executable name : SHOWARGS
  ; Version         : 1.0
  ; Created date    : 10/1/1999
  ; Last update     : 12/3/1999
  ; Author          : Jeff Duntemann
  ; Description     : A demo that shows how to access command line arguments
  ;                   stored on the stack by addressing them relative to ebp.
  ;
  ; Build using these commands:



  ;  nasm -f elf showargs.asm
  ;  gcc showargs.o -o showargs
  ;
  ; To test, execute with some command-line arguments:
  ;  ./showargs foo bar bas bat
  
  [SECTION .text]      ; Section containing code
  
  global main          ; Required so linker can find entry point
  extern printf        ; Notify linker that we're calling printf

  main:
  push ebp             ; Set up stack frame for debugger
     mov ebp,esp
     push ebx          ; Program must preserve ebp, ebx, esi, & edi
     push esi
     push edi
     ;;; Everything before this is boilerplate; use it for all ordinary apps!
     mov edi,[ebp+8]   ; Load argument count into edi
     mov ebx,[ebp+12]  ; Load pointer to argument table into ebx
     xor esi,esi       ; Clear esi to 0
  .showit:
     push dword [ebx+esi*4] ; Push address of an arg on the stack
     push esi          ; Push arg number on the stack
     push dword argmsg ; Push address of display string on the stack
     call printf       ; Display the arg number and arg
     add esp, byte 12  ; Clean up stack after printf call
     inc esi           ; Bump arg number to next arg
     dec edi           ; Decrement arg counter by 1
     jnz .showit       ; If arg count is 0, we're done

     ;;; Everything after this is boilerplate; use it for all ordinary apps!
     pop edi           ; Restore saved registers
     pop esi
     pop ebx
     mov esp,ebp       ; Destroy stack frame before returning
     pop ebp
     ret               ; Return control to Linux

  [SECTION .data]      ; Section containing initialized data

  argmsg    db "Argument %d: %s",10,0

  [SECTION .bss]       ; Section containing uninitialized data

The logic I followed is this: We begin by copying the argument count into EDI and the pointer to the start
of the argument pointer table into EBX. We clear ESI to 0 by XORing it against itself. With that
accomplished, we go into a loop that pushes the argument pointer, the argument number, and a base
string onto the stack and calls printf to display them. After printing each argument, we increment the
argument number in ESI and decrement the argument count in EDI. When EDI goes to 0, we've
displayed all the arguments, and we're done.

One final note on this program, which I've said before but must emphasize: If you're calling a C library
function in a loop, you must either use the sacred registers to hold your counters that govern the loop, or
you must push them onto the stack before making a library call. The library trashes the nonsacred
registers such as EAX, ECX, and EDX. If you had tried to store the argument count in ECX, the count
would have been destroyed the first time you called printf. The sacred nature of EBX, ESI, and EDI
makes them ideal for this use. (EBP is reserved for use in addressing data on the stack, so don't try to
use it for anything like counters unless you very carefully save its value on the stack!)

There is a pointer to a table of environment variables on the stack at EBP+16. It's set up pretty much the
same way, so you could very easily create a program to print out all the environment strings in that table.



The major difference is this: There is no count of the number of environment variables stored anywhere.
The end of the table of pointers to environment variables is marked by a null pointer; that is, a pointer
whose value is 0. You have to fetch each pointer and test it against 0 before attempting to display data at
the pointer address.

For tomorrow's assignment, modify SHOWARGS.ASM to display the environment variables as well. (I've
written such a program, but it isn't printed here in the chapter. Find it on the CD-ROM to check your work:
SHOWENV.ASM.)



Simple File I/O

The last example program I present in this book is nominally about working with disk-based text files.
However, it pulls together a lot of assembly tricks and features I've explained in previous sections and adds a
few more. It's the largest and most complex program in this book, and if you can read it and follow the flow of
the logic, you've gotten everything from this book that I set out to teach you. It's more like a "real" program
than anything else in this book, in that it works with command-line arguments, writes output to a disk file, and
does other useful things that any utility you'll set out to build will likely use.

The program TEXTFILE.ASM creates and fills a text file with text. You can specify the number of lines to be
filled in the file, as well as text for the lines. If you don't specify text for the file, the program will generate a line
of randomly chosen characters and use that instead. Invoking the program would thus be done like this:

  #./textfile 150 Time for tacos!

This invocation would create a new file (the name of which is fixed in the program as "testeroo.txt") and write
the text "Time for tacos!" to the file 150 times before closing the file. If the file TESTEROO.TXT already exists,
it will be overwritten from the beginning. If you don't type anything after the line count number, the program will
fill the file with random alphanumeric characters. If you don't type an integer as the first argument, TEXTFILE
will display an error message. If you only type the program name and press Enter, TEXTFILE will display
several lines explaining what it is and how to use it.

That's about all there is to say about the program TEXTFILE. The whole program is printed at the end of this
chapter. I pull out short sequences for discussion as we go.

Converting Strings into Numbers with sscanf

When you type a number on the command line when invoking a program, you can access that number as one
of the command-line arguments, through the mechanisms I described a little earlier in this chapter. However,
there's a catch: The number is present as text, and you can't just take the textual string "751" and load it into a
register or an integer variable. To make use of numeric arguments as numbers, you must convert their textual
expression into numeric form.

The C library has several functions to handle this challenge. Some of them, such as strtod, are pretty specific
and limited, and convert text to only one numeric type. One of them, however, has the ability to convert almost
any textual expression of a legal numeric value into an appropriate numeric form. This is sscanf, and it's the
one we'll look at in TEXTFILE.ASM.

The sscanf function takes three parameters, which you must push on the stack in the following order:

First push a pointer to a numeric variable to contain the numeric value generated by sscanf. We're
generating a 32-bit integer here, which is also called a double. So, in TEXTFILE.ASM, we pass the
address of the memory variable linecount, which is a 32-bit integer.

1.

Next push the address of a formatting code string that tells sscanf what numeric format you want the
input text to be converted to. Here the code string is "%d," which as you may recall from our printf
discussion is the code for doubles (32-bit integers).

2.

Finally, push the address of the text string to be converted to the numeric value that it represents. In
TEXTFILE.ASM, we push the address of arg(1), which is the first command-line argument you type on
the command line when you invoke the program.

3.

Once these three parameters are pushed onto the stack, call sscanf. It returns the converted value in the
numeric variable whose address you passed as the first parameter. It also returns a code in EAX to indicate
whether the conversion was successful. If the return value in EAX is 0, then an error occurred, and you
shouldn't assume you have anything useful in your numeric variable. If the conversion went through
successfully, you'll see the number 1 in EAX.

This is the simplest way to use sscanf. It can convert whole arrays of numbers at once, but this is a more
specialized use that you're unlikely to need when you're just starting out. The string passed to sscanf as the
third parameter can contain multiple formatting codes, and then the string whose address you pass it as the
third parameter should have text describing numeric values for each code in the format string.



The whole process looks like this:

  mov ebx,[ebp+12]     ; Put pointer to argument table into ebx
  push dword linecount ; Push address of line count integer for sscanf
  push dword intformat ; Push address of integer formatting code
  push dword [ebx+4]   ; Push pointer to arg(1)
  call sscanf          ; Call sscanf to convert arg(1) to an integer
  add esp,12           ; Clean up the stack
  cmp eax,1            ; Return value of 1 says we got a number
  je chkdata           ; If we got a number, go on; else abort

Assuming the user entered at least one argument on the command line (and the program has already verified
this), a pointer to that first argument is located at an offset of 4 from the beginning of the command-line
argument pointer table. (The very first element in the table, which we call arg(0), points to the name of the
program as the user typed it on the command line.) That's why we push the contents of location [EBX+4] onto
the stack; we had already loaded EBX with the address of the argument pointer table. What's located at
[EBX+4] is the pointer to arg(1), the first command-line argument. Refer to Figure 13.3 if this is still fuzzy.

Creating and Opening Files

By this time you should be pretty comfortable with the general mechanism for making C library calls from
assembly. And whether you realize it or not, you're already pretty comfortable with some of the machinery for
manipulating text files. You've already used printf to display formatted text to the screen by way of standard
output. The very same mechanism is used to write formatted text to disk-based text files-you're basically
substituting a real disk file for standard output. So, understanding text file I/O shouldn't be much of a
conceptual leap. But unlike standard output, which is predefined for you by the C library and always available,
you have to create or open a disk-based text file in order to use it. The fopen function is what does the job.

There are three general ways to open a file: for reading, for writing, and for appending. When you open a file
for reading, you can read text from it via such functions as fgets, but you can't write to the file. When you open
a file for writing, whatever may have been in the file before is thrown away, and new material is written at the
beginning of the file. When you open a file for appending, you may write to the file, but new material is written
after any existing material, and whatever was originally in the file is retained.

Ordinarily, when you open a file for writing you can't read from it, but there are special modes that allow both
reading from and writing to a file. For text files especially (which are what we're speaking of here) that
introduces some complications, so for the most part, text files are opened for either reading or for writing, but
not both at once.

In the Unix file system, if you open a file for either writing or appending and the file does not already exist, the
file is created. If you don't know if a file exists and you need to find out, attempt to open it for reading and not
for writing, or you'll get the file whether it exists or not!

To use fopen, you must push the following parameters onto the stack before the call:

First onto the stack is a pointer to a code indicating which mode the file should be opened for. The
various available modes are listed in Table 13.4. The ones you'll typically use for text files are "r," "w,"
and "a." These should be defined as short character strings, followed by a null:

writecode  db 'w',0
opencode   db 'r',0

1.



Table 13.4: File Access Codes for Use with fopen

CODE
SENSE DESCRIPTION

"r" Opens an existing text file for reading

"w" Creates a new text file, or opens and truncates an existing file

"a" Creates a new text file, or opens an existing file so that new text is added at the
end

"r+" Opens an existing text file for either writing or reading

"w+" Creates a new text file, or opens and truncates an existing file for both read and
write access

"a+" Creates a new text file, or opens an existing file for reading or for writing so that
new text may be added at the end

Next onto the stack is the address of the character string containing the name of the file to be opened.2.

With those two items on the stack, you make the call to fopen. If the file was successfully opened, fopen
returns a file handle in EAX. If the open was unsuccessful, EAX will contain 0. Here's how opening a file for
reading looks in code:

  push dword opencode ; Push pointer to open-for-read code "r"
  push ebx            ; Pointer to name of help file is passed in ebx

  call fopen          ; Attempt to open the file for reading
  cmp eax,0           ; fopen returns null if attempted open failed
  <jump as needed>

The process to create a file and then write to it is identical, except that you must push the "w" code onto the
stack instead of the "r" code.

Reading Text from Files with fgets

When fopen successfully creates or opens a file for you, it returns a file handle in EAX. Keep that file handle
safe somewhere-I recommend either copying it to a memory variable allocated for that purpose or putting it in
one of the sacred registers. If you store it in EAX, ECX, or EDX and then make a call to almost any C library
function, the file handle in the register will be trashed and you'll lose it.

Once a file is opened for reading, you can read text lines from it sequentially with the fgets function. Each time
you call fgets on an opened text file, it will read one line of the file, which is defined as all the characters up to
the next newline character, which in the Unix world always indicates the end of a text line.

Now, in any given file there's no way of knowing how many characters there will be until the next newline, so it
would be dangerous to just turn fgets loose to bring back characters until it encounters a newline. If you
attempt to open the wrong kind of file (a binary code file is one possibility, or a compressed data file), you
might bring in thousands of bytes before encountering the binary 10H value that the file system considers a
newline. Whatever buffer you had allocated to hold the incoming text would overflow and fgets would perhaps
destroy adjacent data or crash your program.

For that reason, you must also pass a limit value to fgets. When it begins reading a line, fgets keeps track of
how many characters it has brought in from the file, and when it gets to one short of the limit value, it stops
reading characters. It then adds a newline to the buffer for the final character and returns.

Set up calls to fgets this way:

First, push the file handle onto the stack.1.

Next, push the character count limit value. This must be the actual integer value, and not a pointer to
the value!

2.

3.



2.

Finally, push the address of the character buffer into which fgets should store the characters that it
reads from the file.

3.

With all that done, call fgets. If fgets returns a 0 in EAX, then you've either reached the end of the file, or else
a file error happened during the read. Either way, there's no more data forthcoming from the file. But without a
0 coming back in EAX, you can assume that valid text is present in the buffer at the address you passed to
fgets on the stack.

I used fgets to create a simple disk-based help system for TEXTFILE. ASM. When the user enters no
command-line arguments at all, TEXTFILE reads a short text file from disk and displays it to standard output.
This is a common and courteous thing to do with command-line programs, and I recommend that all utilities
you build for everyday use work this way.

The code for the help system is relatively simple and demonstrates both fopen and fgets:

  diskhelp:
     push dword opencode ; Push pointer to open-for-read code "r"
     push ebx            ; Pointer to name of help file is passed in ebx
     call fopen          ; Attempt to open the file for reading
     cmp eax,0           ; fopen returns null if attempted open failed
     jne .disk           ; Read help info from disk, else from memory
     call memhelp
     ret
  .disk: mov ebx,eax     ; Save handle of opened file in ebx
  .rdln: push ebx        ; Push file handle on the stack
     push dword HELPLEN  ; Limit line length of text read
     push dword helpline ; Push address of help text line buffer
     call fgets          ; Read a line of text from the file
     add esp,12          ; Clean up the stack
     cmp eax,0           ; A returned null indicates error or EOF
     je .done            ; If we get 0 in eax, close up & return
     push dword helpline ; Push address of help line on the stack
     call printf         ; Call printf to display help line
     add esp,4           ; Clean up the stack
     jmp .rdln

  .done: push ebx        ; Push the handle of the file to be closed
     call fclose         ; Closes the file whose handle is on the stack
     add esp,4           ; Clean up the stack
     ret                 ; Go home

When subroutine diskhelp is called, the caller passes a pointer to the name of the help file to be read in EBX.
The file is first opened. If the attempt to open the help file fails, a very short "fail safe" help message is
displayed from strings stored in the [.data] section of the program. (This is the call to memhelp, which is
another short subroutine in TEXT-FILE.ASM.) Never leave the user staring at a mute cursor, wondering what's
going on!

Once the help file is opened, we start looping through a sequence that reads text lines from the opened file
with fgets, and then writes those lines to standard output with printf. The maximum length of the lines to be
read is defined by the equate HELPLEN. (As a convention, things in a program defined as macros or equates
are named in uppercase letters.) Pushing an equate value on the stack is no different from pushing an
immediate value, and that's how the instruction is encoded. But instead of being specified (perhaps differently)
at several places all over your source code, the maximum length of your help file lines is defined in only one
place and may be changed by changing that one equate only. Equates are good. Use them whenever you
can.

Each time a line is read from the file, the address of the line is pushed onto the stack and displayed with
printf. When no more lines are available to be read in the help file, fgets returns a 0 in EAX, and the program
branches to the function call that closes the file.

Note the fclose function, which is quite simple: You push the file handle of the open file onto the stack, and



call fclose. That's all it takes to close a file!

Writing Text to Files with fprintf

Earlier in this chapter, I explained how to write formatted text to the display by way of standard output, using
the printf function. The C library provides a function that writes the very same formatted text to any opened
text file. The fprintf function does exactly what printf does, but it takes one additional parameter on the stack:
the file handle of an opened text file. The same text stream that printf would send to standard output is sent
by fprintf to that opened file.

So I won't bother reexplaining how to format text for printf using formatting codes and base strings. It's done
the same way, with the same codes. Instead, I'll simply summarize how to set up a call to fprintf:

First push any values or pointers to values (as appropriate) onto the stack. There's no difference here
from the way it's done for a call to printf.

1.

Next push the base string containing the formatting codes. Again, just as for printf.2.

Finally (and here's where fprintf differs from printf), push the file handle of the file to which the text
should be written.

3.

Then call fprintf. Your text will be written to the open file. Note that to use fprintf, the destination file must
have been opened for either writing or appending. If you attempt to use fprintf on a file opened for reading,
you will generate an error and fprintf will return without writing any data.

An error code is returned in EAX. However, unlike the other functions we've discussed, the error code is a
negative number, not 0! So, although you should compare the returned value against 0, you actually need to
jump on a value less than 0-rather than 0 itself. Typically, to jump on an fprintf error condition, you would use
JL (Jump if Less), which will jump on a value less than 0.

Here's the fprintf call from TEXTFILE.ASM:

  mov edi,[linecount]  ; The number of lines to be filled is in edi

  push esi             ; esi is the pointer to the line of text
  push dword 1         ; The first line number
  push dword writebase ; Push address of the base string
  push ebx             ; Push the file handle of the open file
  writeline:
       cmp dword edi,0      ; Has the line count gone to 0?
       je donewrite         ; If so, go down & clean up stack
       call fprintf         ; Write the text line to the file
       dec edi              ; Decrement the count of lines to be written
       add dword [esp+8],1  ; Update the line number on the stack
       jmp writeline        ; Loop back and do it again
       donewrite:
       add esp,16           ; Clean up stack after call to fprintf

The call to fprintf is a pretty minor part of this. But there's still something very interesting to see here: The
code doesn't clean up the stack immediately after the call to fprintf. In every other case of a call to a C library
function, I have adjusted the stack to remove parameters immediately after the function call. What's different
here?

This part of the code from TEXTFILE.ASM writes a single text line to the output file repeatedly, for a number of
times specified in the memory variable linecount. Instead of wasting time pushing and removing the
parameters for every write to the file, I waited until all the calls to fprintf were finished, and only then (at the
label donewrite) cleaned up the stack.

But that leaves the question of changing the line number value for each write. TEXTFILE writes an initial line
number before each line of text written to the file, and that number changes for each line. But instead of
pushing a new line number value for each call to fprintf (which would require removing and repushing
everything else, too), reach right into the stack and update the value that has been pushed on the stack, after
each call to fprintf:



  add dword [esp+8],1  ; Update the line number on the stack

I counted the number of bytes in each of the parameters passed to fprintf, and worked out where the pushed
line number value was on the stack. In this case (and it may change depending on how many values you pass
to fprintf) it was 8 bytes higher on the stack than the position of the stack pointer ESP.

There's nothing dicey about changing parameters that have already been pushed onto the stack, especially if
it can save you a whole bunch of pushing and popping. Just make sure you know where the things are that
you want to change! Needless to say, attempting to update a counter but changing an address instead can
lead to a quick crash. This is assembly, guys. Your cushy chair is gone.

Gathering Your Subroutines into Libraries

Just as with DOS, you can build your own libraries of subroutines that you develop and use them in all your
programs. Here's how to go about it in general terms:

No entry-point definition or register saving has to happen. Just create a new source code file and paste
the subroutine source code into the file, which must have a .ASM file extension.

List all of the callable entry points to all subroutines, as well as any other identifiers that may be used by
other programs and libraries, as global.

If the subroutines call any C library routines, or routines in other libraries you own or have created, or use
variables or other identifiers defined outside the library, declare all such external identifiers as extern.

When adding library routines to a program, update the make file for that program so that the final
executable has a dependency on the library.

This last point is the only one that requires additional discussion. The following make file builds the
TEXTFILE.ASM demo program, which links in a library called LINLIB.ASM. Note that there is a whole new line
specifying how the object file LINLIB.O is assembled, and also that the final binary file TEXTFILE depends on
both TEXTFILE.O and LINLIB.O.

Because the TEXTFILE executable depends on both TEXTFILE.O and LINLIB.O, any time you make changes
to either TEXTFILE.ASM or LINLIB.ASM, the make utility will completely relink the executable file via gcc.
However, unless you change both .ASM files, only the .ASM file that is changed will be assembled. The magic
of make is that it does nothing that doesn't need to be done.

  textfile: textfile.o linlib.o
        gcc textfile.o linlib.o -o textfile
  textfile.o: textfile.asm
        nasm -f elf textfile.asm
  linlib.o: linlib.asm
        nasm -f elf linlib.asm

The file LINLIB.ASM is on the CD-ROM for this book. The subroutines it contains have been gathered from
other programs in this chapter, so it would be repetitive to reprint them all here.

Finally, the TEXTFILE.ASM program follows, in its entirety. Make sure you can read all of it-there's nothing
here I haven't covered somewhere in the book. And if you want a challenge, here's one for your next project:
Expand TEXTFILE to read in a text file, and write it out again with line numbers in front of each line of text.
This sort of utility is called a text filter, and it's one of the most common sorts of Unix programs there is.

  ; Source name     : TEXTFILE.ASM
  ; Executable name : TEXTFILE
  ; Version         : 1.0
  ; Created date    : 11/21/1999
  ; Last update     : 12/4/1999
  ; Author          : Jeff Duntemann
  ; Description     : A text file I/O demo for Linux, using NASM 0.98
  ;



  ; Build using these commands:
  ;   nasm -f elf textfile.asm
  ;   nasm -f elf linlib.asm
  ;   gcc textfile.o linlib.o -o textfile
  ;
  ; Note that this program requires several subroutines in an external
  ; library named LINLIB.ASM.

  [SECTION .text]         ; Section containing code

  ;; These externals are all from the standard C library:
  extern fopen
  extern fclose
  extern fgets
  extern fprintf
  extern printf
  extern sscanf
  extern time

  ;; These externals are from the associated library LINLIB.ASM: 
  extern seedit           ; Seeds the random number generator
  extern pull6            ; Generates a 6-bit random number from 0-63
  extern newline          ; Outputs a specified number of newline chars

  global main             ; Required so linker can find entry point

  main:
       push ebp           ; Set up stack frame for debugger
       mov ebp,esp
       push ebx           ; Program must preserve ebp, ebx, esi, & edi
       push esi
       push edi
       ;;; Everything before this is boilerplate; use it for all ordinary apps!
     call seedit          ; Seed the random number generator

     ;; First test is to see if there are command line arguments at all.
     ;; If there are none, we show the help info as several lines. Don't
     ;; forget that the first arg is always the program name, so there's
     ;; always at least 1 command-line argument!
     mov eax,[ebp+8]      ; Load argument count from stack into eax
     cmp eax,1            ; If count is 1, there are no args
     ja chkarg2           ; Continue if arg count is > 1
     mov ebx, dword diskhelpnm ; Put address of help file name in ebx
     call diskhelp        ; If only 1 arg, show help info...
     jmp gohome           ; ...and exit the program

     ;; Next we check for a numeric command line argument 1:
  chkarg2:
     mov ebx,[ebp+12]     ; Put pointer to argument table into ebx
     push dword linecount ; Push address of line count integer for sscanf
     push dword intformat ; Push address of integer formatting code
     push dword [ebx+4]   ; Push pointer to arg(1)
     call sscanf          ; Call sscanf to convert arg(1) to an integer
     add esp,12           ; Clean up the stack
     cmp eax,1            ; Return value of 1 says we got a number
     je chkdata           ; If we got a number, go on; else abort
     mov eax, dword err1  ; Load eax with address of error message #1
     call showerr         ; Show the error message
     jmp gohome           ; Exit the program

     ;; Here we're looking to see if there are more arguments. If there
     ;; are, we concatenate them into a single string no more than BUFSIZE
     ;; chars in size. (Yes, I *know* this does what strncat does...)



  chkdata:
     cmp dword [ebp+8],3  ; Is there a second argument?
     jae getlns           ; If so, we have text to fill a file with
     call randline        ; If not, generate a line of random text
                          ; Note that randline returns ptr to line in esi
     jmp genfile          ; Go on to create the file

     ;; Here we copy as much command line text as we have, up to BUFSIZE
     ;; chars, into the line buffer buff. We skip the first two args
     ;; (which at this point we know exist) but we know we have at least
     ;; one text arg in arg(2). Going into this section, we know that
     ;; ebx contains the pointer to the arg table. All other bets are off.
  getlns: mov edx,2       ; We know we have at least arg(2), start there
     mov edi,dword buff   ; Destination pointer is start of char buffer
     xor eax,eax          ; Clear eax to 0 for the character counter
     cld                  ; Clear direction flag for up-memory movsb

  grab: mov esi,[ebx+edx*4] ; Copy pointer to next arg into esi
  .copy: cmp byte [esi],0 ; Have we found the end of the arg?
     je .next             ; If so, bounce to the next arg
     movsb                ; Copy char from [esi] to [edi]; inc edi & esi
     inc eax              ; Increment total character count
     cmp eax,BUFSIZE      ; See if we've filled the buffer to max count
     je addnul            ; If so, go add a null to buff & we're done
     jmp .copy

  .next: mov byte [edi],' ' ; Copy space to buff to separate args
     inc edi              ; Increment destination pointer for space
     inc eax              ; Add one to character count too
     cmp eax,BUFSIZE      ; See if we've now filled buff
     je addnul            ; If so, go down to add a null and we're done
     inc edx              ; Otherwise, increment the argument count
     cmp edx, dword [ebp+8] ; Compare against argument count
     jae addnul           ; If edx = arg count, we're done
     jmp grab             ; And go back and copy it

  addnul: mov byte [edi],0 ; Tuck a null on the end of buff
     mov esi, dword buff  ; File write code expects ptr to text in esi

     ;; Now we create a file to fill with the text we have:
  genfile:
     push dword writecode ; Push pointer to file write/create code ('w')
     push dword newfilename ; Push pointer to new file name
     call fopen           ; Create/open file
     add esp,8            ; Clean up the stack
     mov ebx,eax          ; eax contains the file handle; save in ebx

     ;; File is open. Now let's fill it with text:
     mov edi,[linecount]  ; The number of lines to be filled is in edi

     push esi             ; esi is the pointer to the line of text
     push dword 1         ; The first line number
     push dword writebase ; Push address of the base string
     push ebx             ; Push the file handle of the open file

  writeline:
     cmp dword edi,0      ; Has the line count gone to 0?
     je donewrite         ; If so, go down & clean up stack
     call fprintf         ; Write the text line to the file
     dec edi              ; Decrement the count of lines to be written
     add dword [esp+8],1  ; Update the line number on the stack
     jmp writeline        ; Loop back and do it again
  donewrite:



     add esp,16           ; Clean up stack after call to fprintf

     ;; We're done writing text; now let's close the file:
  closeit:
     push ebx             ; Push the handle of the file to be closed
     call fclose          ; Closes the file whose handle is on the stack
     add esp,4

     ;;; Everything after this is boilerplate; use it for all ordinary apps!
  gohome: pop edi         ; Restore saved registers
     pop esi
     pop ebx
     mov esp,ebp          ; Destroy stack frame before returning
     pop ebp
     ret                  ; Return control to to the C shutdown code

  ;;;
  SUBROUTINES================================================================

  ;--------------------------------------------------------------
  ; Disk-based mini-help subroutine -- Last update 12/5/1999
  ;
  ; This routine reads text from a text file, the name of which is passed by
  ; way of a pointer to the name string in ebx. The routine opens the text file,
  ; reads the text from it, and displays it to standard output. If the file
  ; cannot be opened, a very short memory-based message is displayed instead.
  ;---------------------------------------------------------------
  diskhelp:
     push dword opencode  ; Push pointer to open-for-read code "r"
     push ebx             ; Pointer to name of help file is passed in ebx
     call fopen           ; Attempt to open the file for reading
     add esp,8            ; Clean up the stack
     cmp eax,0            ; fopen returns null if attempted open failed
     jne .disk            ; Read help info from disk, else from memory
     call memhelp
     ret
  .disk: mov ebx,eax      ; Save handle of opened file in ebx
  .rdln: push ebx         ; Push file handle on the stack
     push dword HELPLEN   ; Limit line length of text read
     push dword helpline  ; Push address of help text line buffer
     call fgets           ; Read a line of text from the file
     add esp,12           ; Clean up the stack
     cmp eax,0            ; A returned null indicates error or EOF
     jle .done            ; If we get 0 in eax, close up & return
     push dword helpline  ; Push address of help line on the stack
     call printf          ; Call printf to display help line
     add esp,4            ; Clean up the stack
     jmp .rdln

  .done: push ebx         ; Push the handle of the file to be closed
     call fclose          ; Closes the file whose handle is on the stack
     add esp,4            ; Clean up the stack
     ret                  ; Go home

  memhelp:
     mov eax,1
     call newline
     mov ebx, dword helpmsg ; Load address of help text into eax
  .chkln: cmp dword [ebx],0 ; Does help msg pointer point to a null?
     jne .show              ; If not, show the help lines
     mov eax,1              ; Load eax with number of newslines to output
     call newline           ; Output the newlines



     ret                    ; If yes, go home
  .show: push ebx           ; Push address of help line on the stack
     call printf            ; Display the line
     add esp,4              ; Clean up the stack
     add ebx,HELPSIZE       ; Increment address by length of help line
     jmp .chkln             ; Loop back and check to see if we done yet

  showerr:
     push eax             ; On entry, eax contains address of error message
     call printf          ; Show the error message
     add esp,4            ; Clean up the stack
     ret                  ; Go home; no returned values

  randline:
     mov ebx, BUFSIZE     ; BUFSIZE tells us how many chars to pull
     mov byte [buff+BUFSIZE+1],0 ; Put a null at the end of the buffer first
  .loop: dec ebx          ; BUFSIZE is 1-based, so decrement
     call pull6           ; Go get a random number from 0-63
     mov cl,[chartbl+eax] ; Use random # in eax as offset into table
                          ;  and copy character from table into cl
     mov [buff+ebx],cl    ; Copy char from cl to character buffer
     cmp ebx,0            ; Are we done having fun yet?
     jne .loop            ; If not, go back and pull another
     mov esi, dword buff  ; Copy address of the buffer into esi
     ret                  ;  and go home

  [SECTION .data]         ; Section containing initialized data

  intformat   dd '%d',0
  writebase   db 'Line #%d: %s',10,0
  newfilename db 'testeroo.txt',0
  diskhelpnm  db 'helptextfile.txt',0
  writecode   db 'w',0
  opencode    db 'r',0
  chartbl  db '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz-@'
  err1     db 'ERROR: The first command line argument must be an integer!',10,0
  helpmsg  db 'TEXTTEST: Generates a test file. Arg(1) should be the # of ',10,0
  HELPSIZE EQU $-helpmsg
           db 'lines to write to the file. All other args are concatenated',10,0
           db 'into a single line and written to the file. If no text args',10,0
           db 'are entered, random text is written to the file. This msg ',10,0
           db 'appears only if the file HELPTEXTFILE.TXT cannot be opened. ',10,0
  helpend  dd 0

  [SECTION .bss]           ; Section containing uninitialized data

  linecount resd 1         ; Reserve integer to hold line count
  HELPLEN   EQU 72         ; Define length of a line of help text data
  helpline  resb HELPLEN   ; Reserve space for disk-based help text line
  BUFSIZE   EQU 64         ; Define length of text line buffer buff
  buff      resb BUFSIZE+5 ; Reserve space for a line of text.



Conclusion: Not the End, But Only the Beginning

Overview

You never really learn assembly language.

You can improve your skills over time, by reading good books on the subject, by reading good code
that others have written, and most of all, by writing lots and lots of code yourself. But at no point will you
be able to stand up and say, I know it.

You shouldn't feel bad about this. In fact, I take some encouragement from occasionally hearing that
Michael Abrash, author of Zen of Assembly Language, Zen of Code Optimization, and his giant
compendium Michael Abrash's Graphics Programming Black Book, has learned something new about
assembly language. Michael has been writing high-performance assembly code for almost 20 years
and has evolved into one of the two or three best assembly language programmers in the Western
hemisphere.

If Michael is still learning, is there hope for the rest of us?

Wrong question. Silly question. If Michael is still learning, it means that all of us are students and will
always be students. It means that the journey is the goal, and as long as we continue to probe and
hack and fiddle and try things we never tried before, that over time we will advance the state of the art
and create programs that would have made the pioneers in our field catch their breath in 1977.

For the point is not to conquer the subject, but to live with it, and grow with your knowledge of it. The
journey is the goal, and with this book I've tried hard to help those people who have been frozen with
fear at the thought of starting the journey, staring at the complexity of it all and wondering where the
first brick in that Yellow Brick Road might be.

It's here, with nothing more than the conviction that you can do it.

I got out of school in recession year 1974 with a B.A. in English, summa cum laude, and not much in
reliable prospects outside of driving a cab. I finessed my way into a job with Xerox Corporation,
repairing copy machines. Books were fun, but paperwork makes money-so I picked up a tool bag and
had a fine old time for several years, before finessing my way into a computer programming position.

But I'll never forget that first awful moment when I looked over the shoulder of an accomplished
technician at a model 660 copier with its panels off, to see what looked like a bottomless pit of little
cams and gears and drums and sprocket chains turning and flipping and knocking switch actuators
back and forth. Mesmerized by the complexity, I forgot to notice that a sheet of paper had been fed
through the machine and turned into a copy of the original document. I was terrified of never learning
what all the little cams did and missed the comforting simplicity of the Big Picture-that a copy machine
makes copies.

That's Square One-discover the Big Picture. Ignore the cams and gears for a bit. You can do it. Find
out what's important in holding the Big Picture together (ask someone if it's not obvious) and study that
before getting down to the cams and gears. Locate the processes that happen. Divide the Big Picture
into subpictures. See how things flow. Only then should you focus on something as small and as lost in
the mess as an individual cam or switch.

That's how you conquer complexity, and that's how I've presented assembly language in this book.
Some might say I've shorted the instruction set, but covering the instruction set was never the real goal
here.

The real goal was to conquer your fear of the complexity of the subject, with some metaphors and
some pictures and some funny stories to bleed the tension away.

Did it work? You tell me. I'd really like to know.



Where to Now?

If you've followed me so far, you've probably lost your fear of assembly language, picked up some skills
and a good part of the instruction set, and are ready to move on. What's next? Ideally, you need an
intermediate book on assembly language. The bad news is, assembly language has had a bad couple
of years in the book industry, and most of the useful books I've found are now out of print. Tom Swan's
masterful Mastering Turbo Assembler (Howard W. Sams & Co., 1995) is the most significant exception,
and is still in print as of early 2000.

Worse, every single one of them focuses on DOS. There has never been an x86 assembly language
book focusing on Linux, as best I know. This isn't to say there will never be one, but I don't see one on
the immediate horizon.

On the other hand, the Internet has made it much easier to find out-of-print books. There are two sites
that you simply must bookmark, and visit regularly, if you want to find books that are no longer available
from the publisher or through Amazon.com. Both of these sites are brokers of used books, and what
they do is direct you to an independent used bookstore somewhere that contributed listings of books to
their master Web database. Here they are:

Alibris has better shipping but a more limited database. You deal directly with Alibris itself rather
than the separate used book dealers. It's at www.alibris.com.

Bibliofind is less direct, but its listings are larger and I've found a number of things listed here that
Alibris does not list. You send your order to Bibliofind via the Web, and Bibliofind forwards it to the
bookstore that listed the book you want. You then conclude the order by sending payment to the
bookstore rather than Bibliofind. It's at www.bibliofind.com.

I've used both firms very successfully and I endorse them both without hesitation.

Mastering Turbo Assembler
Tom Swan
HowardW. Sams & Co., 1995
ISBN 0-672-30526-7

Tom's intermediate-level assembly volume is a natural next step if you're working with the Borland
tools. I have never seen a better intermediate-level text. It has gone through a couple of editions and is
reasonably abundant on the used market. The downside, of course, is that it was published some years
back and focuses on DOS real mode segmented model. The TASM assembly code is easily converted
to NASM, and the principles Tom teaches apply well to Linux assembly as well, even though Tom does
not mention Linux or NASM.

Mastering Turbo Debugger
Tom Swan
Howard W. Sams & Co, 1990
ISBN 0-672-48454-4

For my money, this is the only good book on debugging ever published, and for what I consider an
advanced topic, it's remarkably approachable. Again, it focuses on DOS and the Borland tools, but
Tom's higher-level strategies for finding and nuking bugs in your code are absolutely essential reading,
no matter what assembler you're using, now or at any time in the future. It's been out of print for some
time, but you can find it regularly on the used book market.

PC Magazine Programmer's Technical Reference: The Processor and Coprocessor
Robert L. Hummel
Ziff-Davis Press, 1992
ISBN 1-562-76016-5

This is not a tutorial but a reference on Intel's x86 processors through the 486, and it's by far the best
one ever written or likely to be written for some time. It has the best discussion of that mysterious
protected mode that I've ever seen, and its description of the individual assembly instructions is
wonderfully crafted. I'm tempted to have my own copy taken apart and rebound as hardcover-if I don't,
it's going to fall to pieces any day now! Alas, out of print but you should grab it if you find it.



Michael Abrash's Graphics Programming Black Book
Michael Abrash
Coriolis Group Books, 1997
ISBN 1-576-10174-6

This is a huge book (1,300+ pages) covering code optimization, largely for graphics applications (where
it matters the most) but explained in a way that can be applied to almost anything. Some of it involves
C programming, but much of it is pure, expert-level assembly-and on the CD-ROM is the original text of
Michael's 1989 classic Zen of Assembly Language, which was barely off press when its publisher went
under. The book was thus lost in the crush of a big business reorganization, and it never recovered.
You'll need to get some practice and some context before all of this book will be completely
comprehensible, but it's beautifully written and whether you can read it now, grab it if you see it so it'll
be there on your shelf when you're ready for it. (Alas, it went out of print in early 2000, just as I am
completing the book you're now reading.)



Stepping off Square One

Okay-with a couple of new books in hand and good night's sleep behind you, strike out on your own a
little. Set yourself a goal, and try to achieve it: something tough, say, an assembly language utility that
locates all files anywhere on a hard disk drive with a given ambiguous file name. That's ambitious for a
newcomer and will take some research and study and (perhaps) a few false starts. But you can do it,
and once you do it you'll be a real journeyman assembly language programmer.

Becoming a master takes work, and time. Michael Abrash's massive Graphics Programming Black
Book (recently out of print but still in some stores) is a compilation of the secret knowledge of a
programming master. It's not easy reading, but it will give you a good idea where your mind has to be to
consider yourself an expert assembly language programmer.

Keep programming. Michael can show you things that would have taken you years to discover on your
own, but they won't stick in your mind unless you use them. Set yourself a real challenge, something
that has to be both correct and fast: Rotate graphics objects in 3-D, transfer data through a serial port
at 19,200 bits per second, things like that.

You can do it.

Coming to believe the truth in that statement is the essence of stepping away from Square One-and the
rest of the road, like all roads, is taken one step at a time.



Appendix A: Partial 8086/8088 Instruction Set

Reference

Overview

Instruction Reference Page Text Page  

AAA 535 310  

ADC 536 201  

ADD 538 11  

AND 540 67  

BT 542 466 386+

CALL 543 454  

CLC 544    

CLD 545 374  

CMP 546 183  

DEC 548 21  

IMUL 549 309  

INC 551 11  

INT 552 86  

IRET 553 263  

J? 554 Only in Appendix A

JCXZ 556 389  

JECXZ 557 422

JMP 558 190  

LEA 559 Only in Appendix A

LOOP 560 276  

LOOPNZ/LOOPNE 561 389  

LOOPZ/LOOPE 562 422  

MOV 563 75  

NEG 564 212  

NOP 565 Only in Appendix A

NOT 566 213  

OR 567 67  

POP 568 214  

POPA 569 253 286+

POPAD   253 386+

POPF 570 253  

POPFD 571 465 386+

PUSH 572 115  

PUSHA 573 251 286+

PUSHAD 574 251 386+

PUSHF 575 85  

PUSHFD 576 465 386+



RET 577 263  

ROL 578 316  

ROR 580 316  

SBB 582 11  

SHL 583 316  

SHR 585 316  

STC 587 Only in Appendix A

STD 588 376  

STOS 589 596  

SUB 590 140  

XCHG 592 198  

XOR 593 86  



Notes on the Instruction Set Reference

Instruction Operands

When an instruction takes two operands, the destination operand is the one on the left, and the source
operand is the one on the right. In general, when a result is produced by an instruction, the result
replaces the destination operand. For example, in this instruction:

ADD BX,SI

the BX register is added to the SI register, and the sum is then placed in the BX register, overwriting
whatever was in BX before the addition.

Flag Results

Each instruction contains a flag summary that looks like this (the asterisks will vary from instruction to
instruction):

O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
*       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

The nine flags are all represented here. An asterisk indicates that the instruction on that page affects
that flag. If a flag is affected at all (that is, if it has an asterisk beneath it), it will be affected according to
these rules:

OF Set if the result is too large to fit in the destination operand.

IF Set by the STI instruction; cleared by CLI.

TF For debuggers; not used in normal programming and may be ignored.

SF Set when the sign of the result forces the destination operand to become negative.

ZF Set if the result of an operation is zero. If the result is nonzero, ZF is cleared.

AF Auxiliary carry used for 4-bit BCD math. Set when an operation causes a carry out of a 4-bit
BCD quantity.

PF Set if the number of 1 bits in the low byte of the result is even; cleared if the number of 1
bits in the low byte of the result is odd. Used in data communications applications but little
else.

CF Set if the result of an add or shift operation carries out a bit beyond the destination operand;
otherwise cleared. May be manually set by STC and manually cleared by CLC when CF
must be in a known state before an operation begins.

Some instructions force certain flags to become undefined. When this is the case, it is noted under
"Notes." Undefined means don't count on it being in any particular state.



AAA Adjust AL after BCD Addition

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
                     *  *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        AAA

Examples:

        AAA

Notes:

AAA makes an addition come out right in AL when what you're adding are BCD values rather than ordinary
binary values. Note well that AAA does not perform the arithmetic itself, but is a postprocessor after ADD or
ADC. The AL register is an implied operand and may not be explicitly stated-so make sure that the preceding
ADD or ADC instruction leaves its results in AL!

A BCD digit is a byte with the high 4 bits set to 0, and the low 4 bits containing a digit from 0 to 9. AAA will
yield garbage results if the preceding ADD or ADC acted upon one or both operands with values greater than
09.

After the addition of two legal BCD values, AAA will adjust a non-BCD result (that is, a result greater than 09 in
AL) to a value between 0 and 9. This is called a decimal carry, since it is the carry of a BCD digit and not
simply the carry of a binary bit.

For example, if ADD added 08 and 04 (both legal BCD values) to produce 0C in AL, AAA will take the 0C and
adjust it to 02. The decimal carry goes to AH, not to the upper 4 bits of AL, which are always cleared to 0 by
AAA.

If the preceding ADD or ADC resulted in a decimal carry (as in the preceding example), both CF and AF are
set to 1 and AH is incremented by 1. Otherwise, AH is not incremented and CF and AF are cleared to 0.

This instruction is subtle. See the detailed discussion in Chapter 11.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



ADC Arithmetic Addition with Carry

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        ADC r8,r8
        ADC m8,r8
        ADC r8,m8
        ADC r16,r16
        ADC m16,r16
        ADC r16,m16
        ADC r32,r32    386+
        ADC m32,r32    386+
        ADC r32,m32    386+
        ADC r8,i8
        ADC m8,i8
        ADC r16,i16
        ADC m16,i16
        ADC r32,i32    386+
        ADC m32,i32    386+
        ADC r16,i8
        ADC m16,i8
        ADC r32,i8     386+
        ADC m32,i8     386+
        ADC AL,i8
        ADC AX,i16
        ADC EAX,i32    386+

Examples:

        ADC BX,DI
        ADC EAX,5
        ADC AX,0FFFFH            ;Uses single-byte opcode
        ADC AL,42H               ;Uses single-byte opcode
        ADC BP,17H
        ADC WORD [BX+SI+Inset],5
        ADC WORD ES:[BX],0B800H

Notes:

ADC adds the source operand and the Carry flag to the destination operand, and after the operation, the result
replaces the destination operand. The add operation is an arithmetic add, and the carry allows multiple-
precision additions across several registers or memory locations. (To add without taking the Carry flag into
account, use the ADD instruction.) All affected flags are set according to the operation. Most importantly, if the
result does not fit into the destination operand, the Carry flag is set to 1.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data



        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



ADD Arithmetic Addition

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        ADD r8,r8
        ADD m8,r8
        ADD r8,m8
        ADD r16,r16
        ADD m16,r16
        ADD r16,m16
        ADD r32,r32    386+
        ADD m32,r32    386+
        ADD r32,m32    386+
        ADD r8,i8
        ADD m8,i8
        ADD r16,i16
        ADD m16,i16
        ADD r32,i32    386+
        ADD m32,i32    386+
        ADD r16,i8
        ADD m16,i8
        ADD r32,i8     386+
        ADD m32,i8     386+
        ADD AL,i8
        ADD AX,i16
        ADD EAX,i32    386+

Examples:

        ADD BX,DI
        ADD AX,0FFFFH            ;Uses single-byte opcode
        ADD AL,42H               ;Uses single-byte opcode
        ADD EAX,5
        ADD BP,17H
        AND DWORD [EDI],EAX
        ADD WORD [BX+SI+Inset],5
        ADD WORD ES:[BX],0B800H

Notes:

ADD adds the source operand to the destination operand, and after the operation, the result replaces the
destination operand. The add operation is an arithmetic add, and does not take the Carry flag into account.
(To add using the Carry flag, use the ADC Add with Carry instruction.) All affected flags are set according to
the operation. Most importantly, if the result does not fit into the destination operand, the Carry flag is set to 1.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data



        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



AND Logical AND

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        AND r8,r8
        AND m8,r8
        AND r8,m8
        AND r16,r16
        AND m16,r16
        AND r16,m16
        AND r32,r32    386+
        AND m32,r32    386+
        AND r32,m32    386+
        AND r8,i8
        AND m8,i8
        AND r16,i16
        AND m16,i16
        AND r32,i32    386+
        AND m32,i32    386+
        AND AL,i8
        AND AX,i16
        AND EAX,i32    386+

Examples:

        AND BX,DI
        AND EAX,5
        AND AX,0FFFFH           ;Uses single-byte opcode
        AND AL,42H              ;Uses single-byte opcode
        AND DWORD [EDI],EAX
        AND WORD ES:[BX],0B800H
        AND WORD [BP+SI],DX

Notes:

AND performs the AND logical operation on its two operands. Once the operation is complete, the result
replaces the destination operand. AND is performed on a bit-by-bit basis, such that bit 0 of the source is
ANDed with bit 0 of the destination, bit 1 of the source is ANDed with bit 1 of the destination, and so on. The
AND operation yields a 1 if both of the operands are 1; and a 0 only if either operand is 0. Note that the
operation makes the Auxiliary carry flag undefined. CF and OF are cleared to 0, and the other affected flags
are set according to the operation's results.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement





BT Bit Test (386+)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
                        *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        BT r16,r16    386+
        BT m16,r16    386+
        BT r32,r32    386+
        BT m32,r32    386+
        BT r16,i8     386+
        BT m16,i8     386+
        BT r32,i8     386+
        BT m32,i8     386+

Examples:

        BT AX,CX
        BT [BX+DI],DX
        BT AX,64
        BT EAX,EDX
        BT ECX,17

Notes:

BT copies a single specified bit from the left operand to the Carry flag, where it can be tested or fed back into
a quantity using one of the shift/rotate instructions. Which bit is copied is specified by the right operand.
Neither operand is altered by BT.

When the right operand is an 8-bit immediate value, the value specifies the number of the bit to be copied. In
BT AX,5, bit 5 of AX is copied into CF. When the immediate value exceeds the size of the left operand, the
value is expressed modulo the size of the left operand. That is, because there are not 66 bits in EAX, BT
EAX,66 pulls out as many 32s from the immediate value as can be taken, and what remains is the bit number.
(Here, 2.) When the right operand is not an immediate value, the right operand not only specifies the bit to be
tested but also an offset from the memory reference in the left operand. This is complicated. See a detailed
discussion in a full assembly language reference.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



CALL Call Procedure

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
           <none>          IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        CALL <near label>
        CALL <far label>
        CALL r16
        CALL m16
        CALL r32      386+
        CALL m32      386+

Examples:

        CALL InsideMySegment      ;InsideMySegment is a Near label
        CALL OutsideMySegment     ;OutsideMySegment is a Far label
        CALL BX
        CALL EDX
        CALL WORD [BX+DI+17]      ;Calls Near address at [BX+DI+17]
        CALL DWORD [BX+DI+17]     ;Calls full 32-bit address at [BX+DI+17]

Notes:

CALL transfers control to a procedure address. Before transferring control, CALL pushes the address of the
instruction immediately after itself onto the stack. This allows a RET instruction (see also) to pop the return
address into either CS:IP or IP only (depending on whether it is a Near or Far call) and thus return control to
the instruction immediately after the CALL instruction.

In addition to the obvious CALL to a defined label, CALL can transfer control to a Near address within a 16-bit
general-purpose register, and also to an address located in memory. These are shown in the Legal Forms
column as m16 and m32. m32 is simply a full 32-bit address stored at a location in memory that may be
addressed through any legal x86 memory-addressing mode. CALL m16 and CALL m32 are useful for creating
jump tables of procedure addresses.

There are many more variants of the CALL instruction with provisions for working with the protection
mechanisms of operating systems. These are not covered here, and for more information you should see an
advanced text or a full assembly language reference.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



CLC Clear Carry Flag (CF)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
                        *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        CLC <none>

Examples:

        CLC

Notes:

CLC simply sets the Carry flag (CF) to the cleared (0) state. Use CLC in situations where the Carry flag must
be in a known cleared state before work begins, as when you are rotating a series of words or bytes using the
rotate instructions RCL and RCR. It can also be used to put CF into a known state before returning from a
procedure, to indicate that the procedure had succeeded or failed, as desired.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



CLD Clear Direction Flag (DF)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
          *                IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        CLD <none>

Examples:

        CLD

Notes:

CLD simply sets the Direction flag (DF) to the cleared (0) state. This affects the adjustment performed by
repeated string instructions such as STOS, SCAS, and MOVS. Typically, when DF = 0, the destination pointer
is increased, and decreased when DF = 1. DF is set to one with the STD instruction.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



CMP Arithmetic Comparison

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        CMP r8,r8
        CMP m8,r8
        CMP r8,m8
        CMP r16,r16
        CMP m16,r16
        CMP r16,16
        CMP r32,r32    386+
        CMP m32,r32    386+
        CMP r32,m32    386+
        CMP r8,i8
        CMP m8,i8
        CMP r16,i16
        CMP m16,i16
        CMP r32,i32    386+
        CMP m32,i32    386+
        CMP r16,i8
        CMP m16,i8
        CMP r32,i8     386+
        CMP m32,i8     386+
        CMP AL,i8
        CMP AX,i16
        CMP EAX,i32    386+

Examples:

        CMP BX,DI
        CMP EAX,5
        CMP AX,0FFFFH            ;Uses single-byte opcode
        CMP AL,42H               ;Uses single-byte opcode
        CMP BP,17H
        CMP WORD [BX+SI+Inset],5
        CMP WORD ES:[BX],0B800H

Notes:

CMP compares its two operations, and sets the flags to indicate the results of the comparison. The destination
operand is not affected. The operation itself is identical to subtraction of the source from the destination
without borrow (SUB), save that the result does not replace the destination. Typically, CMP is followed by one
of the conditional jump instructions; that is, JE to jump if the operands were equal; JNE if they were unequal;
and so forth.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data



        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



DEC Decrement Operand

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *         * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        DEC m8
        DEC m16
        DEC m32
        DEC r8
        DEC r16
        DEC r32

Examples:

        DEC AL
        DEC CX
        DEC EBX
        DEC BYTE [BP]   ; Decrements the BYTE at [BP]
        DEC WORD [BX]   ; Decrements the WORD at [BX]
        DEC DWORD [EDX] ; Decrements the DWORD at [EDX]

Notes:

Remember that segment registers cannot be decremented with DEC. All register-half opcodes are 2 bytes in
length, but all 16-bit register opcodes are 1 byte in length. If you can decrement an entire register of which
only the lower half contains data, use the 16-bit opcode and save a byte.

As with all instructions that act on memory, memory data forms must be used with a data size specifier such
as BYTE, WORD, and DWORD! NASM doesn't assume anything!

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



IMUL Signed Integer Multiplication

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *               *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        IMUL r8
        IMUL m8
        IMUL r16
        IMUL m16
        IMUL r32           386+
        IMUL i32           386+
        IMUL r16,i8        286+
        IMUL r16,i16       286+
        IMUL r32,i8        386+
        IMUL r32,i16       386+
        IMUL r16,r16       386+
        IMUL r16,m16       386+
        IMUL r32,r32       386+
        IMUL r32,m32       386+
        IMUL r16,r16,i8    286+
        IMUL r16,m16,i8    286+
        IMUL r16,r16,i16   286+
        IMUL r16,m16,i16   286+
        IMUL r32,r32,i8    386+
        IMUL r32,m32,i8    386+
        IMUL r32,r32,i32   386+
        IMUL r32,m32,i32   386+

Examples:

        IMUL CH            ; AL * CH --> AX
        IMUL BX            ; AX * BX --> DX:AX
        IMUL ECX           ; EAX * ECX --> EDX:EAX
        IMUL WORD [BX+DI]  ; AX * DS:[BX+DI] --> DX:AX
        IMUL EAX,ECX       ; EAX * ECX --> EAX
        IMUL ECX,EAX,15    ; EAX * 15 --> ECX

Notes:

In its oldest, single-operand form (usable on all processors), IMUL multiplies its operand by AL, AX, or EAX,
and the result is placed in AX, in DX:AX, or in EDX:EAX. If IMUL is given an 8-bit operand (either an 8-bit
register or an 8-bit memory operand), the results will be placed in AX. This means that AH will be affected,
even if the results will fit entirely in AL.

Similarly, if IMUL is given a 16-bit operand, the results will be placed in DX:AX, even if the entire result will fit
in AX! It's easy to forget that IMUL affects DX on 16-bit multiples, and EDX in 32-bit multiples. Keep that in
mind!

In both the two- and three-operand forms, the product replaces the contents of the first operand. In the two-
operand form, the two operands are multiplied together, and the product replaces the first operand. In this it is
like most other arithmetic and logical instructions. In the three-operand form, the second and third operand are
multiplied, and the product replaces the first operand.



Note that with the two- and three-operand forms, there is the possibility that the product will not entirely fit in
the destination register. When using those forms, the CF and OF flags will both be 0 (cleared) only if the
product fits entirely in the destination. It's best to use the original forms in cases where you aren't sure of the
range the product might take.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



INC Increment Operand

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *         * * * *   IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        INC r8
        INC m8
        INC r16
        INC m16
        INC r32    386+
        INC m32    386+

Examples:

        INC AL
        INC BX
        INC EDX
        INC BYTE [BP]   ; Increments the BYTE at [BP]
        INC WORD [BX]   ; Increments the WORD at [BX]
        INC DWORD [ESI] ; Increments the DWORD at [ESI]

Notes:

Remember that segment registers cannot be incremented with INC. All register-half (r8) opcodes are 2 bytes
in length, but all 16-bit register (r16) opcodes are 1 byte in length. If you can increment an entire register of
which only the lower half contains data, use the 16-bit opcode and save a byte.

As with all instructions that act on memory, memory data forms must be used with a data size specifier such
as BYTE, WORD, and DWORD! NASM doesn't assume anything!

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



INT Software Interrupt

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            * *            IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        INT3            NASM-specific shorthand for INT 3
        INT i8

Examples:

        INT3      ; NASM requires this to generate an INT 3 instruction
        INT 10H

Notes:

INT triggers a software interrupt to one of 256 vectors in the first 1,024 bytes of memory. The operand
specifies which vector, from 0 to 255. When an interrupt is called, the Flags register is pushed on the stack
along with the return address. The IF flag is cleared, which prevents further interrupts (either hardware or
software) from being recognized until IF is set again. TF is also cleared.

A special form of the instruction allows calling Interrupt 3 with a single-byte instruction. Debuggers use
Interrupt 3 to set breakpoints in code by replacing an instruction with the single-byte opcode for calling
Interrupt 3. NASM does not recognize this, and if you want to use INT 3 for some reason (and that instruction
form isn't of much use unless you're writing a debugger), you must use a special mnemonic form INT3 rather
than INT 3. This is advanced stuff; be careful.

Virtually all your applications of INT will use the other form, which takes an 8-bit immediate numeric value.

Always return from a software interrupt service routine with the IRET instruction. IRET restores the flags that
were pushed onto the stack by INT, and in doing so clears IF, allowing further interrupts.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



IRET Return from Interrupt

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        * * * * * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        IRET

Examples:

        IRET

Notes:

IRET must be used to exit from interrupt service routines called through INT or through interrupt hardware
such as serial ports and the like. IRET pops the return address from the top of the stack into CS and IP, and
then pops the next word from the stack into the Flags register. All flags are affected.

If the interrupt was triggered by hardware, there may be additional steps to be taken to prepare the hardware
for another interrupt before IRET is executed. Consult your hardware documentation.

When using NASM, the actual opcode generated for IRET depends on the setting of the BITS setting, and
governs whether a 16-bit return or 32-bit return is generated.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



J? Jump on Condition

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

                     Descriptions                                 Jump if flags are
        JA/JNBE d   (Jump If Above/Jump If Not Below or Equal)    CF=0 AND ZF=0
        JAE/JNB d   (Jump If Above or Equal/Jump If Not Below)    CF=0
        JB/JNAE d   (Jump If Below/Jump If Not Above or Equal)    CF=1
        JBE/JNA d   (Jump If Below or Equal/Jump If Not Above)    CF=1 OR ZF=1
        JE/JZ   d   (Jump If Equal/Jump If Zero)                  ZF=1
        JNE/JNZ d   (Jump If Not Equal/Jump If Not Zero)          ZF=0
        JG/JNLE d   (Jump If Greater/Jump If Not Less or Equal)   ZF=0 OR SF=OF
        JGE/JNL d   (Jump If Greater or Equal/Jump If Not Less)   SF=OF
        JL/JNGE d   (Jump If Less/Jump If Not Greater or Equal)   SFOF
        JLE/JNG d   (Jump If Less or Equal/Jump If Not Greater)   ZF=1 OR SFOF
        JC      d   (Jump If Carry flag set)                      CF=1
        JNC     d   (Jump If Carry flag Not set)                  CF=0
        JO      d   (Jump If Overflow flag set)                   OF=1
        JNO     d   (Jump If Overflow flag Not set)               OF=0
        JP/JPE  d   (Jump If PF set/Jump if Parity Even)          PF=1
        JNP/JPO d   (Jump If PF Not set/Jump if Parity Odd)       PF=0
        JS      d   (Jump If Sign flag set)                       SF=1
        JNS     d   (Jump If Sign flag Not set)                   SF=0

        d without NEAR = 8-bit signed displacement; use NEAR before d to specify
        segment-wide displacement.

Examples:

        JB HalfSplit        ;Jumps if CF=1
        JLE TooLow          ;Jumps if either ZF=1 or SFOF
        JG NEAR WayOut      ;Jumps if greater to 16-bit displacement
                            ; in real mode or 32-bit displacement in
                            ; 32-bit protected mode.

Notes:

By default all these instructions make a short jump (127 bytes forward or 128 bytes back) if some condition is
true, or fall through if the condition is not true. The conditions all involve flags, and the flag conditions in question
are given to the right of the mnemonic and its description.

The mnemonics incorporating "above" or "below" are for use after unsigned comparisons, whereas the
mnemonics incorporating "less" or "greater" are for use after signed comparisons. "Equal" and "Zero" may be
used after unsigned or signed comparisons.

NASM allows use of the segmentwide form by inserting the NEAR keyword after the instruction mnemonic. In real
mode this allows the use of a 16-bit signed displacement, and in 32-bit protected mode this allows the use of a
32-bit signed displacement. Use of NEAR is only supported with 386 and newer CPUs.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI



        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



JCXZ Jump If CX = 0

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        JCXZ <short displacement>

Examples:

        JCXZ AllDone   ;Label AllDone must be within 127 bytes!

Notes:

Many instructions use CX as a count register, and JCXZ allows you to test and jump to see if CX has become
0. The jump may only be a short jump (that is, no more than 127 bytes forward or 128 bytes back) and will be
taken if CX = 0 at the time the instruction is executed. If CX is any other value than 0, execution falls through
to the next instruction. See also the Jump on Condition instructions.

JCXZ is most often used to bypass the CX = 0 condition when using the LOOP instruction. Because LOOP
decrements CX before testing for CX = 0, if you enter a loop governed by LOOP with CX = 0, you will end up
iterating the loop 65,536 times, hence JCXZ.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



JECXZ Jump If ECX = 0

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        JECXZ <short displacement>     386+

Examples:

        JECXZ AllDone ;Label AllDone must be within 127 bytes!

Notes:

This instruction operates identically to JCXZ, except that the register tested is ECX, and not CX.

JECXZ is most often used to bypass the ECX = 0 condition when using the LOOP instruction. Because LOOP
decrements ECX before testing for ECX = 0, if you enter a loop governed by LOOP with ECX = 0, you will end
up iterating the loop 2,147,483,648 times, hence JECXZ.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



JMP Unconditional Jump

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        JMP <short displacement>
        JMP <near label>
        JMP <far label>
        JMP r16
        JMP r32        386+
        JMP m16
        JMP m32

Examples:

        JMP RightCloseBy         ;Plus or minus 128 bytes
        JMP InsideMySegment      ;To 16-bit offset from CS
        JMP OutsideMySegment     ;To immediate 32-bit address
        JMP DX                   ;To 16-bit offset stored in DX register
        JMP EAX                  ;To 32-bit offset stored in EAX register
        JMP WORD [BX+DI+17]      ;To Near address stored at [BX+DI+17]
        JMP DWORD [BX+DI+17]     ;To full 32-bit address stored at [BX+DI+17]

Notes:

JMP transfers control unconditionally to the destination given as the single operand. In addition to defined
labels, JMP can transfer control to a 16-bit signed offset from IP (or 32-bit signed offset from EIP) stored in a
general-purpose register, or to an address (either Near or Far) stored in memory and accessed through any
legal addressing mode. These m16 and m32 forms are useful for creating jump tables in memory, where a
jump table is an array of addresses. For example, JMP [BX+DI+17] would transfer control to the 16-bit offset
into the code segment found at the based-indexed-displacement address [BX+DI+17].

No flags are affected, and, unlike CALL, no return address is pushed onto the stack.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



LEA Load Effective Address

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        LEA r16,m<any size>
        LEA r32,m<any size>

Examples:

        LEA EBX,[EAX+EDX*4+128]    ;Loads calculated address into EBX
        LEA BP,MyWordVar           ;Loads offset of MyWordVar to BP

Notes:

LEA derives the offset of the source operand from the start of its segment and loads that offset into the
destination operand. The destination operand must be a register and cannot be memory. The source operand
must be a memory operand, but it can be any size. The address stored in the destination operand is the
address of the first byte of the source in memory, and the size of the source in memory is unimportant.

This is a good, clean way to place the address of a variable into a register prior to a procedure or interrupt call.

LEA can also be used to perform register math, since the address specified in the second operand is
calculated but not accessed. The address can thus be an address for which your program does not have
permission to access. Any math that can be expressed as a valid address calculation may be done with LEA.

This is one of the few places where NASM does not require a size specifier before an operand that gives a
memory address, again, because LEA calculates the address but moves no data to or from that address.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



LOOP Loop until CX/ECX = 0

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        LOOP d8

Examples:

        LOOP PokeValue

Notes:

LOOP is a combination decrement counter, test, and jump instruction. It uses the CX register in 16-bit modes,
and ECX in 32-bit modes. The operation of LOOP is logistically identical in both modes, and I use 16-bit
coding as an example here.

LOOP simplifies code by acting as a DEC CX instruction, a CMP CX,0 instruction, and JZ instruction, all at
once. A repeat count must be initially loaded into CX. When the LOOP instruction is executed, it first
decrements CX. Then it tests to see if CX = 0. If CX is not 0, LOOP transfers control to the displacement
specified as its operand:

             MOV CX,17
        DoIt:     CALL CrunchIt
             CALL StuffIt
             LOOP DoIt

Here, the two procedure CALLs will be made 17 times. The first 16 times through, CX will still be nonzero and
LOOP will transfer control to DoIt. On the 17th pass, however, LOOP will decrement CX to 0, and then fall
through to the next instruction in sequence when it tests CX.

LOOP does not alter any flags, even when CX is decremented to 0. Warning: Watch your initial conditions! If
CX is initially 0, LOOP will decrement it to 65,535 (0FFFFH) and then perform the loop 65,535 times. Worse, if
you're working in 32-bit protected mode and enter a loop with ECX = 0, the loop will be performed over 2 billion
times, which might be long enough to look like a system lockup.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



LOOPNZ/LOOPNE Loop While CX/ECX > 0 and ZF = 0

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        LOOPNZ d8
        LOOPNE d8

Examples:

        LOOPNZ StartProcess
        LOOPNE GoSomewhere

Notes:

LOOPNZ and LOOPNE are synonyms and generate identical opcodes. Like LOOP, they use either CX or ECX
depending on the BITS setting and hence the mode. LOOPNZ/LOOPNE decrements CX and jumps to the
location specified in the target operand if CX is not 0 and the Zero flag ZF is 0. Otherwise, execution falls
through to the next instruction.

What this means is that the loop is pretty much controlled by ZF. If ZF remains 0, the loop is looped until CX is
decremented to 0. But as soon as ZF is set to 1, the loop terminates. Think of it as "Loop While Not Zero
Flag."

Keep in mind that LOOPNZ does not itself affect ZF. Some instruction within the loop (typically one of the
string instructions) must do something to affect ZF to terminate the loop before CX/ECX counts down to 0.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



LOOPZ/LOOPE Loop While CX/ECX > 0 and ZF = 1

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        LOOPZ d8
        LOOPE d8

Examples:

        LOOPZ SenseOneShots
        LOOPE CRCGenerate

Notes:

LOOPZ and LOOPE are synonyms and generate identical opcodes. Like LOOP, they use either CX or ECX
depending on the BITS setting and hence the mode. LOOPZ/LOOPE decrements CX and jumps to the
location specified in the target operand if CX is not 0 and the Zero flag ZF is 1. Otherwise, execution falls
through to the next instruction.

What this means is that the loop is pretty much controlled by ZF. If ZF remains 1, the loop is looped until CX is
decremented to 0. But as soon as ZF is cleared to 0, the loop terminates. Think of it as "Loop While Zero
Flag."

Keep in mind that LOOPZ does not itself affect ZF. Some instruction within the loop (typically one of the string
instructions) must do something to affect ZF to terminate the loop before CX/ECX counts down to 0.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



MOV Move (Copy) Right Operand into Left Operand

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        MOV r8,r8
        MOV m8,r8
        MOV r8,m8
        MOV r8,i8
        MOV m8,i8
        MOV r16,r16
        MOV m16,r16
        MOV r16,m16
        MOV m16,i16
        MOV r16,i16
        MOV r32,r32   386+
        MOV m32,r32   386+
        MOV r32,m32   386+
        MOV r32,i32   386+
        MOV m32,i32   386+
        MOV sr,r16
        MOV sr,m16
        MOV r16,sr
        MOV m16,sr

Examples:

        MOV AL,BH
        MOV EBX,EDI
        MOV BP,ES
        MOV ES,AX
        MOV AX,0B800H
        MOV ES:[BX],0FFFFH
        MOV CX,[SI+Inset]

Notes:

This is perhaps the most used of all instructions. The flags are not affected.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



NEG Negate (Two's Complement; i.e., Multiply by -1)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        NEG r8
        NEG m8
        NEG r16
        NEG m16
        NEG r32        386+
        NEG m32        386+

Examples:

        NEG AL
        NEG DX
        NEG ECX
        NEG BYTE [BX]   ; Negates BYTE quantity at [BX]
        NEG WORD [DI]   ; Negates WORD quantity at [BX]
        NEG DWORD [EAX] ; Negates DWORD quantity at [EAX]

Notes:

This is the assembly language equivalent of multiplying a value by -1. Keep in mind that negation is not the
same as simply inverting each bit in the operand. (Another instruction, NOT, does that.) The process is also
known as generating the two's complement of a value. The two's complement of a value added to that value
yields zero. -1 = $FF; -2 = $FE; -3 = $FD; and so forth.

If the operand is 0, CF is cleared and ZF is set; otherwise, CF is set and ZF is cleared. If the operand contains
the maximum negative value (-128 for 8-bit or -32,768 for 16-bit), the operand does not change, but OF and
CF are set. SF is set if the result is negative, or else SF is cleared. PF is set if the low-order 8 bits of the result
contain an even number of set (1) bits; otherwise, PF is cleared.

Note You must use a size specifier (BYTE, WORD, DWORD) with memory data!

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



NOP No Operation

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        NOP <none>

Examples:

        NOP

Notes:

This, the easiest-to-understand of all 86-family machine instructions, simply does nothing. Its job is to take up
space in sequences of instructions. When fetched by the CPU, NOP is executed as XCHG AX,AX. So, some
work is actually done, but it's not useful work, and no data is altered anywhere. The flags are not affected.
NOP is used for "NOPping out" machine instructions during debugging, leaving space for future procedure or
interrupt calls, or padding timing loops.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



NOT Logical NOT (One's Complement)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        NOT r8
        NOT m8
        NOT r16
        NOT m16
        NOT r32        386+
        NOT m32        386+

Examples:

        NOT CL
        NOT DX
        NOT EBX
        NOT WORD [SI+5]

Notes:

NOT inverts each individual bit within the operand separately. That is, every bit that was 1 becomes 0, and
every bit that was 0 becomes 1. This is the "logical NOT" or "one's complement" operation. See the NEG
instruction for the negation, or two's complement, operation.

After execution of NOT, the value FFH would become 0; the value AAH would become 55H.

Note You must use a size specifier (BYTE, WORD, DWORD) with memory data!

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



OR Logical OR

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        OR r8,r8
        OR m8,r8
        OR r8,m8
        OR r16,r16
        OR m16,r16
        OR r16,m16
        OR r32,r32    386+
        OR m32,r32    386+
        OR r32,m32    386+
        OR r8,i8
        OR m8,i8
        OR r16,i16
        OR m16,i16
        OR r32,i32    386+
        OR m32,i32    386+
        OR AL,i8
        OR AX,i16
        OR EAX,i32    386+

Examples:

        OR EBX,EDI
        OR AX,0FFFFH            ;Uses single-byte opcode
        OR AL,42H               ;Uses single-byte opcode
        OR WORD [ES:BX],0B800H
        OR WORD [BP+SI],DX

Notes:

OR performs the OR logical operation between its two operands. Once the operation is complete, the result
replaces the destination operand. OR is performed on a bit-by-bit basis, such that bit 0 of the source is ORed
with bit 0 of the destination, bit 1 of the source is ORed with bit 1 of the destination, and so on. The OR
operation yields a 1 if one of the operands is 1; and a 0 only if both operands are 0. Note that the operation
makes the Auxiliary carry flag undefined. CF and OF are cleared to 0, and the other affected flags are set
according to the operation's results.

Note You must use a size specifier (BYTE, WORD, DWORD) with memory data!

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



POP Pop Top of Stack into Operand

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        POP r16
        POP m16
        POP r32
        POP m32
        POP sr

Examples:

        POP WORD [BX]
        POP EAX
        POP DX
        POP DWORD [EAX+ECX]
        POP ES

Notes:

It is impossible to pop an 8-bit item from the stack. Also remember that the top of the stack is defined (in 16-bit
modes) as the word at address SS:SP, and there's no way to override that using prefixes. In 32-bit modes, the
top of the stack is the DWORD at [ESP]. There is a separate pair of instructions, PUSHF and POPF, for
pushing and popping the Flags register.

All register forms have single-byte opcodes. NASM recognizes them and generates them automatically, even
though there are larger forms in the CPU instruction decoding logic.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



POPA Pop All 16-Bit Registers (286+)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
             <none>        IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        POPA

Examples:

        POPA

Notes:

PUSHA pushes all 16-bit general-purpose registers onto the stack. This instruction is present on the 286 and
later CPUs and is not available in the 8086/8088.

The 16-bit general-purpose registers are popped in this order:

DI, SI, BP, SP, BX, DX, CX, AX

There's one wrinkle here: The SP value popped off the stack is not popped back into SP! (That would be
insane, since we're using SP to manage the stack as we pop values off of it.) The value in SP's position on the
stack is simply discarded when instruction execution reaches it.

POPA is usually used in conjunction with PUSHA, but nothing guarantees this. If you pop garbage values off
the stack into the general registers, well, interesting things (in the sense of the old Chinese curse) can and
probably will happen.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



POPF Pop Top of Stack into Flags

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        * * * * * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        POPF <none>

Examples:

        POPF

Notes:

POPF pops the 16-bit word at the top of the stack into the Flags register. The top of the stack is defined as the
word at SS:SP, and there is no way to override that with prefixes.

SP is incremented by two after the word comes off the stack. Remember that SP always points to either an
empty stack or else real data. There is a separate pair of instructions, PUSH and POP, for pushing and
popping other register data and memory data.

PUSHF and POPF are most used in writing 16-bit interrupt service routines, where you must be able to save
and restore the environment, that is, all machine registers, to avoid disrupting machine operations while
servicing the interrupt.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



POPFD Pop Top of Stack into EFlags (386+)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        * * * * * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        POPFD <none>

Examples:

        POPFD

Notes:

POPFD pops the double word (4 bytes) at the top of the stack into the EFlags register. In 32-bit protected
mode, the top of the stack is defined as the DWORD at [ESP], and there is no way to override the SS
segment with prefixes.

ESP is incremented by 4 after the word comes off the stack. Remember that ESP always points to either an
empty stack or else real data. There is a separate pair of instructions, PUSH and POP, for pushing and
popping other register data and memory data, in both 16-bit and 32-bit sizes.

PUSHFD and POPFD are most used in writing 32-bit interrupt service routines, where you must be able to
save and restore the environment, that is, all machine registers, to avoid disrupting machine operations while
servicing the interrupt.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



PUSH Push Operand onto Top of Stack

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        PUSH r16
        PUSH m16
        PUSH r32        386+
        PUSH m32        386+
        PUSH sr
        PUSH i8         286+
        PUSH i16        286+
        PUSH i32        386+

Examples:

        PUSH WORD [BX]
        PUSH EAX
        PUSH DI
        PUSH ES
        PUSH DWORD 5
        PUSH WORD 1000H

Notes:

It is impossible to push an 8-bit item onto the stack. Also remember that the top of the stack is defined (in 16-
bit modes) as the word at address SS:SP, and there's no way to override that using prefixes. In 32-bit modes
the top of the stack is the DWORD at [ESP]. There is a separate pair of instructions, PUSHF and POPF, for
pushing and popping the Flags register.

Also remember that SP/ESP is decremented before the push takes place; SP points to either an empty stack
or else real data.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



PUSHA Push All 16-Bit GP Registers (286+)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        PUSHA             286+

Examples:

        PUSHA

Notes:

PUSHA pushes all 16-bit general-purpose registers onto the stack. This instruction is present on the 286 and
later CPUs and is not available in the 8086/8088.

The registers are pushed in this order:

AX, CX, DX, BX, SP, BP, SI, DI

However, note that the value of SP pushed is the value SP had before the first register was pushed onto the
stack. In the course of executing PUSHA, the stack pointer is decremented by 16 bytes (8 registers x 2 bytes
each).

The Flags register is not pushed onto the stack by PUSHA; see PUSHF.

        r8 = AL AH BL BH CL CH DL DH         r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS               r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data               m16 = 16-bit memory data
        m32 = 32-bit memory data             i8 = 8-bit immediate data
        i16 = 16-bit immediate data          i32 = 32-bit immediate data
        d8 = 8-bit signed displacement       d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



PUSHAD Push All 32-Bit GP Registers (386+)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        PUSHAD        386+

Examples:

        PUSHAD

Notes:

PUSHA pushes all 32-bit general-purpose registers onto the stack. This instruction is present on the 386 and
later CPUs and is not available in the 8086, 8088, or 286.

The registers are pushed in this order:

EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

However, note that the value of ESP pushed is the value SP had before the first register was pushed onto the
stack. In the course of executing PUSHAD, the stack pointer is decremented by 32 bytes (8 registers x 4 bytes
each).

The EFlags register is not pushed onto the stack by PUSHAD; see PUSHFD.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



PUSHF Push 16-Bit Flags onto Stack

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        PUSHF <none>

Examples:

        PUSHF

Notes:

PUSHF simply pushes the current contents of the Flags register onto the top of the stack. The top of the stack
is defined as the word at SS:SP, and there is no way to override that with prefixes.

SP is decremented before the word goes onto the stack. Remember that SP always points to either an empty
stack or else real data. There is a separate pair of instructions, PUSH and POP, for pushing and popping
other register data and memory data.

The Flags register is not affected when you push the flags, but only when you pop them back with POPF.

PUSHF and POPF are most used in writing interrupt service routines, where you must be able to save and
restore the environment, that is, all machine registers, to avoid disrupting machine operations while servicing
the interrupt.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



PUSHFD Push 32-Bit EFlags onto Stack (386+)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        PUSHFD <none>     386+

Examples:

        PUSHFD

Notes:

PUSHFD simply pushes the current contents of the 32-bit EFlags register onto the top of the stack. The top of
the stack in 32-bit modes is defined as the word at [SS:ESP], and there is no way to override that with
prefixes.

ESP is decremented before the EFlags double word goes onto the stack. Remember that ESP always points
to either an empty stack or else real data. There is a separate pair of instructions, PUSH and POP, for pushing
and popping other register data and memory data, and (in the 286 and later processors) immediate data.

The EFlags register is not affected when you push the flags, but only when you pop them back with POPFD.

PUSHFD and POPFD are most used in writing interrupt service routines, where you must be able to save and
restore the environment, that is, all machine registers, to avoid disrupting machine operations while servicing
the interrupt.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



RET Return from Procedure

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        RET
        RETN
        RETF
        RET i8
        RETN i8
        RET i16
        RETF i16

Examples:

        RET
        RET 12H
        RETN
        RETF 117H

Notes:

There are two kinds of returns: Near and Far, where Near is within the current code segment and Far is to
some other code segment. Ordinarily, the RET form is used, and the assembler resolves it to a Near or Far
return opcode to match the procedure definition's use of the NEAR or FAR specifier. Specifying RETF or
RETN may be done when necessary.

RET may take an operand indicating how many bytes of stack space are to be released on returning from the
procedure. This figure is subtracted from the stack pointer to erase data items that had been pushed onto the
stack for the procedure's use immediately prior to the procedure call.

The RETF and RETN forms are not available in Microsoft's MASM prior to V5.0!

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



ROL Rotate Left

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *               *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        ROL r8,1
        ROL m8,1
        ROL r16,1
        ROL m16,1
        ROL r32,1    386+
        ROL m32,1    386+
        ROL r8,CL
        ROL m8,CL
        ROL r16,CL
        ROL m16,CL
        ROL r32,CL   386+
        ROL m32,CL   386+
        ROL r8,i8    286+
        ROL m8,i8    286+
        ROL r16,i8   286+
        ROL m16,i8   286+
        ROL r32,i8   386+
        ROL m32,i8   386+

Examples:

        ROL AL,1
        ROL WORD [BX+SI],CL
        ROL BP,1
        ROL DWORD [EBX+ESI],9
        ROL BP,CL

Notes:

ROL rotates the bits within the destination operand to the left, where left is toward the most significant bit
(MSB). A rotate is a shift (see SHL and SHR) that wraps around; the leftmost bit of the operand is shifted into
the rightmost bit, and all intermediate bits are shifted one bit to the left. Except for the direction the shift
operation takes, ROL is identical to ROR.

The number of bit positions shifted may be specified either as an 8-bit immediate value, or by the value in CL-
not CX or ECX. (The 8086 and 8088 are limited to the immediate value 1.) Note that while CL may accept a
value up to 255, it is meaningless to shift by any value larger than 16, even though the shifts are actually
performed on the 8086 and 8088. (The 286 and later limit the number of shift operations performed to the
native word size except when running in Virtual 86 mode.)

The leftmost bit is copied into the Carry flag on each shift operation. OF is modified only by the shift-by-one
forms of ROL; after shift-by-CL forms, OF becomes undefined.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data



        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



ROR Rotate Right

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *               *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        ROR r8,1
        ROR m8,1
        ROR r16,1
        ROR m16,1
        ROR r32,1    386+
        ROR m32,1    386+
        ROR r8,CL
        ROR m8,CL
        ROR r16,CL
        ROR m16,CL
        ROR r32,CL   386+
        ROR m32,CL   386+
        ROR r8,i8    286+
        ROR m8,i8    286+
        ROR r16,i8   286+
        ROR m16,i8   286+
        ROR r32,i8   386+
        ROR m32,i8   386+

Examples:

        ROR AL,1
        ROR WORD [BX+SI],CL
        ROR BP,1
        ROR DWORD [EBX+ESI],9
        ROR BP,CL

Notes:

ROR rotates the bits within the destination operand to the right, where right is toward the least significant bit
(LSB). A rotate is a shift (see SHL and SHR) that wraps around; the rightmost bit of the operand is shifted into
the leftmost bit, and all intermediate bits are shifted one bit to the right. Except for the direction the shift
operation takes, ROR is identical to ROL.

The number of bit positions shifted may be specified either as an 8-bit immediate value, or by the value in CL-
not CX or ECX. (The 8086 and 8088 are limited to the immediate value 1.) Note that while CL may accept a
value up to 255, it is meaningless to shift by any value larger than 16-or 32 in 32-bit mode-even though the
shifts are actually performed on the 8086 and 8088. (The 286 and later limit the number of shift operations
performed to the native word size except when running in Virtual 86 mode.)

The rightmost bit is copied into the Carry flag on each shift operation. OF is modified only by the shift-by-one
forms of ROR; after shift-by-CL forms, OF becomes undefined.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data



        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



SBB Arithmetic Subtraction with Borrow

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        SBB r8,r8
        SBB m8,r8
        SBB r8,m8
        SBB r16,r16
        SBB m16,r16
        SBB r16,m16
        SBB r32,r32    386+
        SBB m32,r32    386+
        SBB r32,m32    386+
        SBB r8,i8
        SBB m8,i8
        SBB r16,i16
        SBB m16,i16
        SBB r32,i32    386+
        SBB m32,i32    386+
        SBB r16,i8
        SBB m16,i8
        SBB r32,i8     386+
        SBB m32,i8     386+
        SBB AL,i8
        SBB AX,i16
        SBB EAX,i32    386+

Examples:

        SBB BX,DI
        SBB AX,0FFFFH       ;Uses single-byte opcode
        SBB AL,42H          ;Uses single-byte opcode
        SBB BP,17H
        SBB WORD [BX+SI+Inset],5
        SBB WORD [ES:BX],0B800H

Notes:

SBB performs a subtraction with borrow, where the source is subtracted from the destination, and then the
Carry flag is subtracted from the result. The result then replaces the destination. If the result is negative, the
Carry flag is set. To subtract without taking the Carry flag into account (i.e., without borrowing), use the SUB
instruction.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement





SHL Shift Left

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        SHL r8,1
        SHL m8,1
        SHL r16,1
        SHL m16,1
        SHL r32,1    386+
        SHL m32,1    386+
        SHL r8,CL
        SHL m8,CL
        SHL r16,CL
        SHL m16,CL
        SHL r32,CL   386+
        SHL m32,CL   386+
        SHL r8,i8    286+
        SHL m8,i8    286+
        SHL r16,i8   286+
        SHL m16,i8   286+
        SHL r32,i8   386+
        SHL m32,i8   386+

Examples:

        SHL AL,1
        SHL WORD [BX+SI],CL
        SHL BP,1
        SHL EAX,9
        SHL BP,CL

Notes:

SHL shifts the bits within the destination operand to the left, where left is toward the most significant bit (MSB).
The number of bit positions shifted may be specified either as an 8-bit immediate value, or by the value in CL-
not CX or ECX. (The 8086 and 8088 are limited to the immediate value 1.) Note that while CL may accept a
value up to 255, it is meaningless to shift by any value larger than 16-or 32 in 32-bit mode-even though the
shifts are actually performed on the 8086 and 8088. (The 286 and later limit the number of shift operations
performed to the native word size except when running in Virtual 86 mode.) The leftmost bit of the operand is
shifted into the Carry flag; the rightmost bit is cleared to 0. The Auxiliary carry flag (AF) becomes undefined
after this instruction. OF is modified only by the shift-by-one forms of SHL; after shift-by-CL forms, OF
becomes undefined.

SHL is a synonym for SAL (Shift Arithmetic Left). Except for the direction the shift operation takes, SHL is
identical to SHR.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data



        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



SHR Shift Right

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        SHR r8,1
        SHR m8,1
        SHR r16,1
        SHR m16,1
        SHR r32,1    386+
        SHR m32,1    386+
        SHR r8,CL
        SHR m8,CL
        SHR r16,CL
        SHR m16,CL
        SHR r32,CL   386+
        SHR m32,CL   386+
        SHR r8,i8    286+
        SHR m8,i8    286+
        SHR r16,i8   286+
        SHR m16,i8   286+
        SHR r32,i8   386+
        SHR m32,i8   386+

Examples:

        SHR AL,1
        SHR WORD [BX+SI],CL
        SHR BP,1
        SHR EAX,9
        SHR BP,CL

Notes:

SHR shifts the bits within the destination operand to the right, where right is toward the least-significant bit
(LSB). The number of bit positions shifted may be specified either as an 8-bit immediate value, or by the value
in CL—not CX or ECX. (The 8086 and 8088 are limited to the immediate value 1.) Note that while CL may
accept a value up to 255, it is meaningless to shift by any value larger than 16—or 32 in 32-bit mode—even
though the shifts are actually performed on the 8086 and 8088. (The 286 and later limit the number of shift
operations performed to the native word size except when running in Virtual 86 mode.) The rightmost bit of the
operand is shifted into the Carry flag; the leftmost bit is cleared to 0. The Auxiliary carry flag (AF) becomes
undefined after this instruction. OF is modified only by the shift-by-one forms of SHL; after shift-by-CL forms,
OF becomes undefined.

SHR is a synonym for SAR (Shift Arithmetic Right). Except for the direction the shift operation takes, SHR is
identical to SHL.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data



        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



STC Set Carry Flag (CF)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
                        *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        STC <none>

Examples:

        STC

Notes:

STC asserts the Carry flag (CF) to a known set state (1). Use it prior to some task that needs a bit in the Carry
flag. It can also be used to put CF into a known state before returning from a procedure, to indicate that the
procedure had succeeded or failed, as desired.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



STD Set Direction Flag (DF)

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
          *                IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        STD <none>

Examples:

        STD

Notes:

STD simply asserts the Direction flag (DF) to the set (1) state. This affects the adjustment performed by
repeated string instructions such as STOS, SCAS, and MOVS. Typically, when DF = 0, the destination pointer
is increased, and decreased when DF = 1. DF is set to 0 with the CLD instruction.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



STOS Store String

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        STOS ES:m8
        STOS ES:m16
        STOSB
        STOSW
        STOSD             386+

Examples:

        STOS ES:WordVar    ;Stores AX to [ES:DI]
        STOS ES:ByteVar    ;Stores AL to [ES:DI]
        STOSB              ;Stores AL to [ES:DI]
        STOSW              ;Stores AX to [ES:DI]
        STOSD              ;Stores EAX to [EDI]
        REP STOSW          ;Stores AX to [ES:DI] and up, for CX repeats

Notes:

Stores either AL (for 8-bit store operations), AX (for 16-bit operations), or EAX (for 32-bit operations) to the
location at [ES:DI] or (for 32-bit operations) [EDI]. ES must be the segment of the destination and cannot be
overridden. (For 32-bit protected mode flat model, all segments are congruent and thus ES does not need to
be specified explicitly.) Similarly, DI or EDI must always be the destination offset.

By placing an operation repeat count (not a byte, word, or dword count!) in CX/ECX and preceding the
mnemonic with the REP prefix, STOS can do an automatic "machine-gun" store of AL/AX/EAX into successive
memory locations beginning at the initial [ES:DI] or [EDI]. After each store, DI/EDI is adjusted (see next
paragraph) by either by 1 (for 8-bit store operations), 2 (for 16-bit store operations), or 4 (for 32-bit store
operations), and CX is decremented by 1. Don't forget that CX/ECX counts operations (the number of times a
data item is stored to memory) and not bytes!

Adjusting means incrementing if the Direction flag is cleared (by CLD) or decrementing if the Direction flag has
been set.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



SUB Arithmetic Subtraction

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        SUB r8,r8
        SUB m8,r8
        SUB r8,m8
        SUB r16,r16
        SUB m16,r16
        SUB r16,m16
        SUB r32,r32    386+
        SUB m32,r32    386+
        SUB r32,m32    386+
        SUB r8,i8
        SUB m8,i8
        SUB r16,i16
        SUB m16,i16
        SUB r32,i32    386+
        SUB m32,i32    386+
        SUB r16,i8
        SUB m16,i8
        SUB r32,i8     386+
        SUB m32,i8     386+
        SUB AL,i8
        SUB AX,i16
        SUB EAX,i32    386+

Examples:

        SUB BX,DI
        SUB AX,0FFFFH            ;Uses single-byte opcode
        SUB AL,42H               ;Uses single-byte opcode
        SUB BP,17H
        SUB ECX,DWORD [ESI+5]
        SUB EAX,17
        SUB WORD [BX+SI+Inset],5
        SUB WORD [ES:BX],0B800H

Notes:

SUB performs a subtraction without borrow, where the source is subtracted from the destination, and the
result replaces the destination. If the result is negative, the Carry flag is set. Multiple-precision subtraction can
be performed by following SUB with SBB (Subtract with Borrow) which takes the Carry flag into account as a
borrow.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data



        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



XCHG Exchange Operands

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
            <none>         IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        XCHG r8,r8
        XCHG r8,m8
        XCHG r16,r16
        XCHG r16,m16
        XCHG r32,r32    386+
        XCHG r32,m32    386+

Examples:

        XCHG AL,DH
        XCHG BH,BYTE [SI]
        XCHG SP,BP
        XCHG DX,WORD [DI]  
        XCHG ESI,EDI
        XCHG ECX,DWORD [EBP+38]
        XCHG AX,BX   ; Uses single-byte opcode

Notes:

XCHG exchanges the contents of its two operands. This is why there is no form of XCHG for identical
operands; that is, XCHG AX,AX is not a legal form since exchanging a register with itself makes no logical
sense.

Exchanging an operand with AX may be accomplished with a single-byte opcode, saving fetch time and code
space. All good assemblers recognize these cases and optimize for them, but if you are hand-assembling
INLINE statements for some high-level language, keep the single-byte special cases in mind.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



XOR Exclusive Or

Flags affected:

        O D I T S Z A P C  OF: Overflow flag  TF: Trap flag AF: Aux carry
        F F F F F F F F F  DF: Direction flag SF: Sign flag PF: Parity flag
        *       * * * * *  IF: Interrupt flag ZF: Zero flag CF: Carry flag

Legal forms:

        XOR r8,r8
        XOR m8,r8
        XOR r8,m8
        XOR r16,r16
        XOR m16,r16
        XOR r16,m16
        XOR r32,r32    386+
        XOR m32,r32    386+
        XOR r32,m32    386+
        XOR r8,i8
        XOR m8,i8
        XOR r16,i16
        XOR m16,i16
        XOR r32,i32    386+
        XOR m32,i32    386+
        XOR AL,i8
        XOR AX,i16
        XOR EAX,i32    386+

Examples:

        XOR BX,DI
        XOR AX,0FFFFH           ;Uses single-byte opcode
        XOR AL,42H              ;Uses single-byte opcode
        XOR EBX,DWORD [EDI]
        XOR WORD [ES:BX],0B800H
        XOR WORD [BP+SI],DX

Notes:

XOR performs the exclusive OR logical operation between its two operands. Once the operation is complete,
the result replaces the destination operand. XOR is performed on a bit-by-bit basis, such that bit 0 of the
source is XORed with bit 0 of the destination, bit 1 of the source is XORed with bit 1 of the destination, and so
on. The XOR operation yields a 1 if the operands are different, and a 0 if the operands are the same. Note that
the operation makes the Auxiliary carry flag undefined. CF and OF are cleared to 0, and the other affected
flags are set according to the operation's results.

        r8 = AL AH BL BH CL CH DL DH        r16 = AX BX CX DX BP SP SI DI
        sr = CS DS SS ES FS GS              r32 = EAX EBX ECX EDX EBP ESP ESI EDI
        m8 = 8-bit memory data              m16 = 16-bit memory data
        m32 = 32-bit memory data            i8 = 8-bit immediate data
        i16 = 16-bit immediate data         i32 = 32-bit immediate data
        d8 = 8-bit signed displacement      d16 = 16-bit signed displacement
        d32 = 32-bit unsigned displacement



Appendix B: Segment Register Assumptions for

Real Mode Segmented Model

One reason the segmented modes are so awful is that there is a whole layer of assumptions to be
remembered about which segments are used in which ways with which instructions, and what may be
overridden with override prefixes. Here's a quick summary you can refer to if it ever gets all turned
around in your head. Keep in mind that this applies only to real mode segmented model. In 32-bit
protected mode (as in Linux), all the segments point to the same memory space, and thus you don't
need to "mess with" segments and overrides.

Where allowed, segment assumptions may be overridden with the segment override prefixes. These
are DS:, SS:, CS:, and ES:. Under NASM, they must be placed inside the memory reference brackets.
(MASM and TASM place them outside the brackets.) Here's an example of such an override in action:

  mov [ES:BX],AX

The assumptions are these:

When the offset is specified in BX, SI, or DI, the assumed segment register is DS.1.

When the offset is specified in SP, the assumed segment register is SS. This may not be
overridden!

2.

When the offset is specified in BP, the assumed segment register is SS.3.

For string instruction LODS, the assumed segment is DS and the assumed offset is SI. This may
not be overridden!

4.

For string instructions STOS and SCAS, the assumed segment is ES and the assumed offset is
DI. This may not be overridden!

5.

For string instruction MOVS, the source must be pointed to by DS:SI and the destination must
be pointed to by ES:DI. This may not be overridden!

6.



Appendix C: Web URLs for Assembly Programmers

Many assembly language books have gone out of print, but a great deal of assembly language
information can be found on the Web. I include a number of sites that were current in early 2000 in the
following list. Web addresses change or go bad on an aggravatingly regular basis, so if you can't find
one of these sites, assume first that it's been moved, and only after some unsuccessful effort with the
search engines, assume that the site is gone forever. (And for some things such as NASM, you can
almost assume that it's been moved. Software as potent as NASM doesn't just disappear!)

The NASM home page: www.web-sites.co.uk/nasm/

The ALINK home page: http://alink.home.dhs.org/

The NASM-IDE home page: www.inglenook.co.uk/nasmide/

Linux assembly language page: http://lightning.voshod.com/asm/

Jan's Linux assembly page: http://bewoner.dma.be/JanW/eng.html

The 80x86 Assembly Pages: www.fys.ruu.nl/~faber/Amain.html

These are the best pages I've seen, and they've all been around for a while. You'll find links pages on
some of them that may direct you to newer Web sites that don't exist as I write this. The Web is a living
organism, and you never surf the same wave twice. Keep both eyes open, so you don't miss anything!



Appendix D: Segment Register Assumptions

Where allowed, segment assumptions can be overridden with the segment override prefixes. These are
DS: SS: CS: ES:. For example:

  mov ES:[BX],AX

The assumptions are these:

When the offset is specified in BX, SI, or DI, the assumed segment register is DS.1.

When the offset is specified in SP, the assumed segment register is SS. CANNOT BE
OVERRIDDEN.

2.

When the offset is specified in BP, the assumed segment register is SS.3.

For string instruction LODS, the assumed segment is DS and the assumed offset is SI.
CANNOT BE OVERRIDDEN.

4.

For string instruction STOS and SCAS, the assumed segment is ES and the assumed offset is
DI. CANNOT BE OVERRIDDEN.

5.

For string instruction MOVS, the source must be pointed to be DS:SI and the destination must
be pointed to by ES:DI. CANNOT BE OVERRIDDEN.

6.



Appendix E: What's on the CD-ROM?

The CD-ROM included with Assembly Language Step-by-Step, Second Edition includes the following
items:

The x86 NASM assembler for DOS

The x86 NASM assembler for Linux

Anthony Williams's ALINK free linker for DOS

Robert Anderton's NASM-IDE programming environment for DOS

All the example programs presented in the book, in source code form

The author's JLIST10 LaserJet source code print utility



Index

Numbers
8080 CPU (Intel), 153-156

8086 CPU (Intel), 152, 154-159, 165, 167-169, 193

8088 CPU (Intel), 152, 155, 158, 159, 161, 165, 167-169, 193

80286 CPU (Intel), 158, 165, 167, 169, 180



Index

A
AAA instruction, 384-387, 535

AAD instruction, 387

AAM instruction, 387

AAS instruction, 387

Abrash, Michael, 57, 216, 525

ADC instruction, 201, 536-537

adder, 69-70

ADD instruction, 385, 475, 538-539

address. See also memory addressing
for bits, 59
for bytes, 61
for code sequence, in DOS, 257-265
definition of, 11, 153-154
for memory, 13, 55-56, 157-163, 177, 425
of peripheral, 65
start, 245, 291
in text file hex dump, 109
of variable, versus contents, 235, 470

address lines, 153, 154, 158

address pins:
in CPU chips, 63
in memory chips, 56, 57, 59
in peripherals, 64

ALINK, 94, 102, 246-247, 597, 601

Anderton, Robert, 120, 601

AND instruction, 318-320, 326, 344-346, 540-541

APL language, 267-268

arguments:
command-line, 436-437, 504-510
in macros, 305, 306, 383
numeric, 510-511
for printf, 474-476

ASCII characters, 80, 109-110, 185-186
displaying, 388-396
random generation of, 498-499
in strings, 233, 384-387

ASM directory, 92-94, 122-123, 127

.ASM files, 96, 127, 414
in modular assembly, 101, 288
in NASM-IDE text editor, 136
for subroutines, 518

Assemble command, 220

assembler(s), 84, 85, 414. See also specific assemblers
comparison of, 88, 91
in DEBUG, 107, 194-196
directives to, 224, 234
and errors, 96-100
for general calculations, 389-391
for GNU, 409, 410, 413, 421



invoking, 238
and linkers, 102
and macros, 301-302, 308, 382-383
and .OBJ files, 88-90
open source, 92
operation of, 96
portable, 421
syntax of, 210

assembly language:
beginner's reference to, 211-217, 531-593
Boolean logic in, 318-322
command-line arguments in, 504
comments in, 86-88, 228-230
definition of, 84-85, 152, 421
for hardware interrupt service routines, 265
IDE for, 120
instructions in, 85-87, 197, 368, 369 (see also instructions)
macros in, 301-314
for older computers, 339
problems in, 114, 115
procedures in, 101, 270-276, 301 (see also procedures)
signed arithmetic in, 337
strings in, 370-372
variables in, 235-236 (see also variables)
video toolkit for, 397-398

assembly language programming, 9-13
approach to, 73-76, 228, 427, 448-450, 525-526, 529
ASM directory for, 92-94
comprehensibility in, 228
debugging in (see DEBUG; gdb)
executable program files in, 90, 101
file types in, 96
hexadecimal in, 40, 46
for Linux, 399-405, 428-429
as machine instructions, 72, 193
process of, 94-106
in protected mode, 180
resources for, 527-529, 597-598

assembly language program sample (DOS), 228-240
and DOS services, 255-264
external modules in, 292-299
macro library in, 312-314
procedures in, 270-271, 288
for real mode segmented model, 240-247

assembly language program sample (Linux), 455, 460-461, 465, 469-470

assembly-time math, 391-392

ASSUME directive, 244

AT&T:
mnemonics used by, 421-424, 448
syntax from, 413, 422-427

attribute, of character, 185

attribute byte, 185, 382, 394

Auxiliary carry flag (AF), 218, 222, 387, 533

AX register, 169-172, 203, 207, 322, 371-375, 381



Index

B
Babbage, Charles, 50

base, of Unix memory address, 425, 426, 463

base(s), alternate, 15–21
notation for, 25

base indexed addressing, 327

base-indexed-displacement addressing, 357

bash, in Linux, 403, 449, 450

basic input/output system. See BIOS

Basic programming language, 13, 16, 235, 369, 370

batch files, 300

bell (BEL) character, 80–81

binary (base 2), 40–46, 53, 324
notation for, 42, 157

binary code, 67–70, 75, 76, 86, 216

binary coded decimal (BCD) arithmetic values, 218, 384–387

binary decisions, 4

binary files, 79, 82, 84, 101

BIOS (basic input/output system), 188, 189, 256, 372
services of, 277–287, 342, 355

BIOS revision date, 188–189

bit(s):
and CPU effectiveness, 153
definition of, 53, 58
isolating, 318–320
manipulating, 316, 323
numbering, 316, 317

bit mapping, 316

bit mask, 319

BITS command, 230

bit shifting, 168, 316, 323–331, 466

bitwise logical instructions, 316–322

BOILER.ASM program, 456, 460–461, 465, 469–470

Boldyshev, Konstantin, 453

Boolean logical operations, 316–322

Borland Binary Editor, 134

Borland C++, 405

Borland Pascal, 279, 405

Borland Turbo Assembler. See TASM

BP register, 169, 172, 203, 207, 322, 357, 596

branching, 342, 346, 393, 467

breakpoints, in gdb, 433–436, 443, 502

BT (Bit Test) instruction, 467, 542

buffers, and EMACS, 449–450

bugs, 103, 104, 414



BX register, 169, 171, 172, 203, 207, 322, 357, 595, 599

byte(s):
address for, 59, 61
as basic unit, 59, 67, 160
converting value to string, 326–329
definition of, 58
moving, 194
storage of, 59
as type, 224

BYTE directive, 223–226

Byte Magazine, 58



Index

C
C++, 88, 123

compiler for, 84, 85

C programming language, 88. See also C library
command-line arguments in, 504
compiler for, 401
debugger for, 427
and Linux, 403, 405, 409
stack role in, 458-461
strings in, 370
and Unix, 452

Caldera Linux, 404

CALL instruction, 271-274, 280, 429, 454, 499-500, 543

carriage return (CR) character, 80, 81, 233, 255

Carry flag (CF), 212, 219, 221, 222, 324, 335, 382, 467, 533-534

case sensitivity:
of DEBUG, 112
of labels, 232
of NASM, 296, 422
in Unix, 409, 422, 423

C calling conventions, 454-455, 457, 469, 511

central processing unit (CPU), 61-64, 66. See also specific CPUs
backward compatibility with, 159, 75
binary code for, 75
function of, 152
and hardware interrupts, 264-265
limitations of, 204
machine instructions for, 67-72
and peripherals, 64
registers in, 65-66, 71, 164-171
and string instructions, 369, 371, 377

CGA graphics adapter, 282, 340, 341, 344, 355

character byte, 185, 382

character strings, 123, 233

CHARSIN.ASM file, 478, 480-482

CLC instruction, 534, 544

CLD instruction, 375, 376, 545

Clear macro, 374-376, 397

C library. See also specific library functions
date/time manipulation with, 482-491
function arguments in, 474-476
function calls in, 424, 428, 454-455, 477, 508
as Linux communications layer, 428-429, 452-454
pseudorandom numbers generated with, 491-499
robustness of, 445
symbols for elements of, 430-431, 433
text-to-number conversion with, 510-511

CLI instruction, 218, 533

CL register, 323, 356

CMP instruction, 336, 337, 339-343, 346, 355, 546-547



code. See also source code
application of, 53
binary, 67-70, 75-76, 86, 216
versus data, 12, 115, 189, 503
definition of, 11-12
execution of, 230, 245, 291
format, in gdb, 439, 440
prolog, 435
reuse of, 90, 101-102
shutdown, 460, 505
source, 76
startup, 429, 435, 460
write-only, 87

code segment, 168, 173, 178, 242
in external modules, 295, 296, 301
start label for, 245-246

CodeView, 92, 105

columnar notation, 25

.COM files, 90, 100, 230, 238-240

command-line arguments, 436-437, 504-510

comments:
in instructions, 86-88, 228-230
in procedures, 283
in Unix, 425

Compaq, 21

compilers, 84, 414, 458. See also specific compilers

CompuServe, numeric IDs for, 25

computer(s):
components of, 62
electrical nature of, 44-45, 50-53, 71-72
memory needed for, 57-58
processing speed of, 61

Computer Lib/Dream Machines (Nelson), 71

computer programming, 2-3, 5, 66
counting from zero in, 157-158
and open source software, 91

conditional branch, 342, 346

conditional jump instructions, 272, 332-339, 355
example of, 339-344

console applications, for Windows, 180, 402

COSMAC ELF computer, 48-49, 54, 57

counting from zero, 43-44, 157-158

count register, 116, 323

CP/M-80, 81-82, 111, 154

cpp (C preprocessor), 410

CS (code segment) register, 168, 173, 178, 206, 245, 322

current location counter, 358-359

cursor positioning, procedure for, 277-278, 288

CX register, 169, 171, 172, 203, 322, 323, 371-379, 393-396
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D
data:

versus code, 12, 115, 189, 503
definition of, 11-12
external/global, 290-291
grouping, in tables, 350
initialized, 232, 242, 486
in operands, 198-199
storage of, 77-79
uninitialized, 231, 486

data bus, 64-66

data definition(s), 288, 358, 486-487, 503

data definition directive, 232-234

data pins:
in CPU chips, 63
in memory chips, 56, 57, 59, 63, 184
in peripherals, 64

data segment, 168, 178, 242
in external modules, 291, 295, 296, 301

date representation, in C, 485-486

DB (Define Byte) directive, 197, 198, 225, 232, 233, 487, 503

DD (Define Double) directive, 232, 487, 503

Debian Linux, 404

DEBUG, 92, 105-118
assembler in, 107, 194-196
case sensitivity of, 112
to change memory, 111-114
to examine BIOS revision date, 188-189
to examine/change register, 114-118, 183-184
to examine text files, 82, 108-111
executing machine instructions in, 196-198
flags in, 221-223
versus gdb, 427, 437
to inspect video refresh buffer, 187-188
installing, 94
syntax of, 210
unassembly feature in, 190, 194

debuggers, 92, 104-106, 183, 443
books on, 528
for DOS (see DEBUG)
for GNU, 421, 427-448

DEC instruction, 219-221, 223, 332, 378, 394, 548

declarations, 288-296, 301

define pseudoinstructions, 486-487

Delphi, 13, 74, 75, 88, 92, 120, 400

dependencies, 414-419

destination address, 388

destination index (DI) register, 169, 172, 203, 207, 322, 357, 371-376, 595, 596, 599

destination operand, 198, 199, 201

destination string, 371-372, 387



Difference Engine, 50

Digital Equipment Corporation (DEC), 21, 25, 26

Digits lookup table, 326-327, 347, 349

Direction flag (DF), 218, 222, 335, 376

directives, 224, 232-234. See also specific directives

directories, organization of, 448-449

disassembly, 115-116, 190, 194

disk, definition of, 77

disk drive, and DOS, 76

displacement:
in jumps, 215
for time/date representations, 486
in Unix memory address, 422, 425-427, 463

display adapter:
detecting, 339-344, 348
lookup table for, 351-355

Display command, 188

DOS, 75-78, 256, 399, 400, 427-428, 451
assembler run by, 96, 601
calling, 236
debugger for (see DEBUG)
executable program files in, 90, 239
versus Linux, 403-404, 428, 432, 452
and NASM-IDE, 120, 150, 246
and numeric value display, 324-326
and protected mode, 230
and real mode segmented model, 152
sample assembly language program in, 228-240
text files in, 80-82
text mode display buffer in, 184
under Windows, 159, 246, 453

DOS Protected Mode Interface (DPMI), 401, 402

DOS services, 256-265, 276-277, 359

double word, 58, 67-68, 162
bit shifting in, 323
moving, 194
storage of, 232
as type, 224

DP register, 169

DQ (Define Quad Word) directive, 487

DrawBox routine, 398

DS (data segment) register, 168, 205, 206, 322, 595, 596, 599

DT (Define Ten-Byte) directive, 487

Dunn, Jim, 270

DW (Define Word) directive, 225, 226, 232, 487, 503

DX register, 169, 171, 172, 203, 207, 322, 381

dynamic link libraries (DLLs), 152
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E
EAT.ASM program, 228–240

EAX register, 170, 171, 455, 457, 484, 511–513

EBP register, 170, 427, 454, 457–460, 504–509

EBX register, 170, 171, 454, 457, 459, 460, 506

ECX register, 170, 171, 457, 476, 506, 508, 513

EDI register, 170, 454, 457, 459, 460, 508

EDX register, 170, 171, 455, 457, 508, 513

EGA graphics adapter, 282, 339–343, 355

ELF format, 412

EMACS:
advantages of, 449–450
for Linux, 403–405, 409
make utility used from, 419–420

endless loop, 333–334

%endmacro directive, 304

end-of-file (EOF) marker, 81, 110–111

end-of-line (EOL) marker, 79–81, 255–256

entry points:
to macros, 304
to procedures, 279–282, 299

environment variables, 509

equates, 358, 383, 390–391, 515

EQU operator, 390

error(s):
assembler, 96–99
versus bugs, 104
linker, 102–103
in NASM-IDE, 126, 132–133
record of, 471

error message(s):
for assembler, 97–99
and macro labels, 307
for NASM-IDE, 126, 132
for undefined procedure label, 288–289

ES (extra segment) register, 168, 206, 322, 372, 373, 599

ESI register, 170, 171, 454, 457, 459, 460, 465, 476, 488, 508

ESP register, 170, 454–460, 462, 465, 476

exclusive or operation, 320

executable program files, 89, 90, 100–103, 120, 133
in C, 410–411
and dependencies, 414–419
symbols in (in Linux), 429–432

.EXE files, 90, 100–103, 246–247, 288. See also executable program files

expansion slots, 65

exporting, 291, 299

external modules, 289–301



EXTERN directive, 290, 301, 477, 479
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F
fclose function, 515

fgets function, 477-478, 512-515

file handle, 359

flags, 71, 174, 183, 212, 217-219, 335-336, 533-534
in DEBUG, 221-223
testing with conditional jump, 332, 334, 339

Flags register, 174, 183, 212, 217, 219
in bit shifting, 324
in gdb versus DEBUG, 437
on stack, 251, 255

fopen function, 512-514

format code, in gdb, 439, 440

formatting codes, for printf, 473-474, 476

fprintf function, 516-517

FreePascal 32, 405

Free Software Foundation, 408

FS register, 168, 322

functions, in C, 454, 458. See also specific functions
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G
gas (GNU assembler), 409, 410, 413, 421

gates, 69

gcc (GNU C compiler), 409–413, 415, 421
source files created by, 423–425

gdb (GNU debugger), 421, 427–448
command-line arguments in, 436–437
versus DEBUG, 427, 437
display format in, 446–447
loading program for, 432–433
register display in, 437–443
setting breakpoints in, 433–436, 443, 502
to single-step program, 443–448, 468

general-purpose (GP) registers, 168–172, 182, 202–205, 209
and C calling conventions, 454–455, 457
examining from DEBUG, 183
in older CPUs, 462
in protected mode flat model, 180
in real mode flat model, 177
on stack, 251

gets function, 476–477

GetString routine, 398

gigahertz, definition of, 63

GLOBAL directive, 290, 301

global (nonlocal) labels, 501–503

global procedures, 289–299

GNU, 408–413, 421

GNU Public License (GPL), 408

Go command, 191, 196–197

graphical user interface (GUI), 136

GS register, 168, 322

GWBASIC language, 73, 75
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H
hard coding, 282

hardware:
components of, 76
testing for specific, 344

hardware interrupts, 264

hexadecimal (base 16), 26-31
arithmetic in, 34-40
and DEBUG, 112
notation for, 26, 33, 157, 165-166

hex dump:
for BIOS revision date, 188-189
for gdb, 441
of text file for DEBUG, 108-111
for video refresh buffer, 187-188
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I
IBM PC:

CPUs in, 62, 68
display adapters for, 339
memory in, 54, 167

illegal immediate, 382

immediate addressing, 199

immediate data, 198–200, 202, 208, 282
and bit shifting, 323
numeric literals as, 383
type of, 224–225

immediate operands, 383

importing, 291, 299

IMUL instruction, 381–383, 549–550

INC instruction, 219–221, 223, 551

%include directive, 308

include files, 302

index, of address, 425, 463

indexing, in bit shifting, 327–329

indirect displacement addressing, 327

INFO.ASM program, 358–367

initialized data, 232, 242, 486

instruction loop, nested, 392–396

instruction pointer (IP), 68, 71, 115, 172–174
changing with DEBUG, 184
and code execution, 230
in protected mode flat model, 180

instructions, 10–12, 85–87, 173, 197, 368, 369. See also specific instructions
bitwise logical, 316
and Carry flag, 324

instruction set, 193, 301

integrated development environments (IDEs), 120, 121

Intel:
CPUs from, 62, 67, 152, 153, 158, 180, 452
PC memory from, 58
syntax of, 422, 424, 425

Interrupt enable flag (IF), 218, 222, 533

interrupts:
hardware, 264–265
software, 256–265

interrupt service routine (ISR), 264

interrupt vector, 257–260

interrupt vector table, 257–265

INT instruction, 259–265, 277, 552

I/O address, 65

IRET instruction, 263, 553
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J
J? instruction, 554-555

JA instruction, 337

JBuilder, 74

JC instruction, 393

JCXZ instruction, 393-395, 422, 556

JECXZ instruction, 422, 557

JED, 83, 134

JG instruction, 337

JLE instruction, 336, 337

JL instruction, 516

JLIST10 source code listing program, 94, 601

JMP instruction, 190-191, 197, 212, 332, 335, 396, 558
branching with, 393
and labels, 231, 232, 501-503

JNC instruction, 393

JNG instruction, 336, 337

JNZ instruction, 334, 335, 378

jump(s), 178, 190-191, 331-344
example of, 339-344
mnemonics for, 336-339

JZ instruction, 334-335
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K
kilobit, definition of, 54
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L
labels, 231-232, 234

in Linux code, 429, 500-503
in macros, 306-307
in procedures, 272
undefined, 288-289

ld (GNU linker), 409, 411-412

LEA instruction, 559

Learning GNU EMACS (Cameron, Rosenblatt, and Raymond), 449

Learning Red Hat Linux (McCarty), 404

least-significant bit, 316, 317

least-significant byte (LSB), 202

LES instruction, 375

libraries:
of macros, 308-314
of procedures, 288-301

line(s), in text files, 79-81

linefeed (LF) character, 80, 81, 233, 255

linker(s), 89-90, 414, 415, 418. See also ALINK
in assembly language development process, 101-103
and execution start point, 246
and external/global procedures, 288-290, 299-301
for GNU, 409
installing, 94
invoking, 102

linker errors, 102-103

LINLIB.ASM library, 518

LINLIB.O, 518

Linux, 73, 75, 182
assembly programming for, 399-405, 428-429, 451
character display in, 469-476
and C library, 428-429, 452-454 (see also C library)
command-line arguments in, 504-509
crashes in, 467-468
debugger for (see gdb)
versus DOS, 403-404, 428, 432, 452
executable program files in, 90, 409-412, 415-417, 429-432
linking in, 412-413
local labels in, 501-503
make utility in, 415-417
mnemonics used in, 421-423
NASM implementation for, 405-408
as open source project, 91, 408
and protected mode, 152, 153, 159, 175, 180, 468
reading characters from keyboard in, 476-482
sample assembly language program for, 455, 460-461, 469-470
source code in, 414
stack in, 458-461
startup code for, 429, 435
text files in, 80
Web sites for, 597



literal constant, 327, 331, 358, 425

local labels:
in Linux, 501-503
in macros, 306-307

localtime function, 485-487

lookup table, 326-328, 347-360

loop, 4, 100
controlling, with flags, 336
endless, 333-334
instruction, nested, 392-396
tight, in string instructions, 372, 374

LOOP instruction, 378-380, 387, 393-394, 422, 560

LOOPE instruction, 422, 562

LOOPNE instruction, 422, 561

LOOPNZ instruction, 393-395, 422, 561

LOOPZ instruction, 422, 562
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M
machine code, 76

machine cycle, 216–217

machine instructions, 67–72, 96, 182, 193
blue card references for, 211
in code segment, 242
versus data definition directives, 234
and debuggers, 105, 107
in disassembly, 194
executing, with DEBUG, 196–198
jumps in, 178, 190–191, 331–344
legal forms of, 214
in memory, 189–191
mnemonics for, 85–86, 107, 212, 214, 336–339, 420
prefixes in, 206
from program translators, 84–86, 101
random, 197, 201
searching for specific, 107, 197, 444–445

%macro, 304

macro(s), 301–314. See also specific macros
calling, 304, 383
defining, 304–306
labels in, 306–307
naming convention for, 515

macro libraries, 308–314

make file, 414, 415, 418

make utility, 413–420

MASM (Microsoft), 88, 90–91, 120, 225
debugger in, 92, 105
linker in, 94, 102
versus NASM, 243–245, 305–306
syntax of, 210, 296, 595

mass storage, serial-access devices for, 55

Mastering Turbo Assembly (Swan), 527

Mastering Turbo Debugger (Swan), 528

MCGA display adapter, 339, 340, 342, 355

MDA graphics adapter, 282, 340, 342, 344, 355

megabyte, 59, 157–158

memory:
address for, 13, 55–56, 157–163, 177, 425
amount of, 57–59, 153, 175
changing, with DEBUG, 111–114
and CPU, 63–64
and debuggers, 105–107, 110
garbage in, 110–111, 195
for macros, 303–304
moving data to/from, 195, 199, 208
nature of, 50–51
read-only, 277
serial-access versus random-access, 55
64K, 153–154, 160–162, 167, 175, 182, 240, 375
storing to different areas of, 388



terms used with, 160–162
virtual, 193
in x86 computers, 157, 159

memory access time, 57

memory addressing, 152, 174, 176, 182, 184, 193–194, 331. See also specific methods
AT&T syntax for, 425–427
in protected mode, 180, 181, 462–464
for x86 CPUs, 152–157

memory bank, 59, 60, 77, 157–158

memory cell, 52–55, 60

memory chip, 53–60, 64, 277

memory data, 198, 199
and bit shifting, 323
and general-purpose registers, 203–205
and segment registers, 205–207
type of, 224–226

memory image, 113

memory models, 152–157, 174–182

Merced 64-bit CPU, 63

Michael Abrash's Graphics Programming Black Book (Abrash), 57, 216, 525, 528–529

Micro Logic Corporation, 211

Microsoft Macro Assembler. See MASM

Microsoft Word, 83

minicomputer, 21, 482

MITS Altair 8800 computer, 62

mnemonic:
in assembly language, 85–86, 212, 214, 420
AT&T, 421–424, 448
DEBUG identification of, 107
for jump instructions, 336–339

modem, 66

Modula-2, 315, 331

modular assembly, 101, 288–301

modular programs, 414–415

modules, 288–301
in assembly language development process, 101, 102

most significant byte (MSB), 202

MOV instruction, 194–198, 202, 210, 563
in BIOS services, 280–281
in display adapter test, 343
legal forms of, 214
limitations of, 207–209, 255

MOVSD instruction, 487–488

MOVSW instruction, 396–397

MS-DOS, 159, 177, 180. See also DOS

MUL instruction, 349, 350

multiplying bit quantities, 380–382

MYLIB.MAC macro library, 308–312, 376
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N
NASM, 83, 88, 92, 95, 225, 226, 468, 601

case sensitivity of, 296
.EXE files from, 100, 131-133, 246
installing, 93-94, 406-407
invoking, 238, 239, 412
and linkers, 102
for Linux, 405-408
and local labels, 307, 501-503
versus MASM, 243-245, 305-306
and NASM-IDE, 122-123, 238
pseudoinstructions in, 486-487, 503
syntax of, 210, 296, 595
Web site for, 92, 94, 406, 597

NASM-IDE, 83, 93, 95, 120-135, 601
configuring, 122-123
display size in, 149-150
DOS shell in, 150
and errors, 89, 126, 132, 133
exiting from, 149
home page for, 597
invoking, 121, 127-129, 134
and linkers, 246
and nonprintable characters, 114
and real mode flat model, 300
sample program in, 237-239

NASM-IDE text editor, 133-148

NEG instruction, 212-215, 223, 224, 564

Nelson, Ted, 71

Net-Wide Assembler. See NASM

newline characters, 255, 470-472, 503-504, 513-514

nonlocal labels, 501

NOP instruction, 565

NOT instruction, 322, 335, 346, 566

null, 471

numeric arguments, 510-511

numeric literal, 383

nybble, 58, 218, 326
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O
object code, 76

object code files, 84, 96, 100-103, 234
in C, 410-411
and comments, 88
and dependencies, 414-418

.OBJ files, 88-90, 96, 100-103, 288, 300. See also object code files

octal (base 8), 21-26

offset address, 165-168, 203, 204
in instruction pointer, 172
in protected mode flat model, 461
in real mode segmented model, 177-178, 207

open source software, 91, 408

operands, 86, 198-199, 201, 215
in bitwise logical instructions, 318-322
DEBUG identification of, 107
and PUSHF instruction, 251

operating system, 76-77. See also specific operating systems
and protected mode, 180, 193, 467

ORG command, 230

OriginTbl lookup table, 347-349

OR instruction, 320, 567

output file, 238-239

Overflow flag (OF), 217, 222, 335, 339, 382, 533
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P
pages:

in memory, 160, 162
in text files, 80

paragraph, in memory, 160, 162

paragraph boundary, 160, 162

parameters. See also arguments
for macros, 305-306
in utilities, 504

parity checking, 219

Parity flag (PF), 218, 222, 533

Pascal, 13, 16, 123, 235, 315, 331, 369, 453. See also Turbo Pascal
command-line arguments in, 504
compiler for, 84, 85, 401, 458
implementations for Linux, 405
text editor for, 134
variables versus constants in, 390

PC Magazine Programmer's Technical Reference: The Processor and Coprocessor (Hummel), 528

Pentium CPUs, 62, 68, 152, 158, 159
instruction set for, 193, 464-465
limitations of, 204

peripherals, 62, 64, 66

Perl programming language, 73, 75

pins:
in CPU chips, 63
in memory chips, 56-57

pointer, 375

POP instruction, 253-255, 568

POPA instruction, 253, 569

POPAD instruction, 253, 465

POPF instruction, 253, 376, 570

POPFD instruction, 465, 571

porting, 154

prefix, 372
for segment override, 205-207, 595, 599

printf function, 472-476, 503-504, 508, 511, 515

procedures, 101, 269-276, 282-283, 458
calling, 272-274, 288-289
comments in, 283-284
entry points to, 279-282, 299
external/global, 289-299
versus jumps, 331
libraries of, 288-301
versus macros, 302-304
and register values, 454-455
reusing, 276

process, definition of, 432

program(s):
definition of, 68



nature of, 66-67

program counter, 12

program crashes, 467-468, 477

program segment prefix (PSP), 154, 230

program translators, 84

prolog code, 435

protected mode, 159, 179
advantages of, 461-467, 595
and DOS, 230
general-purpose registers in, 204, 462-464
and Linux, 399, 455, 468
and newer opcodes, 356, 464-467
segment registers in, 322, 330

protected mode flat model, 152, 153, 157-159, 173, 175, 180-182
segment registers in, 207, 461-462

PUBLIC directive, 291-296, 298, 301

public segments, 291-295

puller subroutine, 500

PUSH instruction, 251, 465, 475, 572

PUSHA instruction, 251, 573

PUSHAD instruction, 252, 465, 574

PUSHF instruction, 251, 255, 575

PUSHFD instruction, 465, 576

puts function, 470-472
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Q
quad word, 58, 162, 224
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R
RAM chips, 54, 59

rand function, 491–499

random-access memory (RAM), 54, 55–57

random numbers, generating, 491

RANDTEST.ASM program, 493–500

RCL instruction, 316, 466

RCR instruction, 316, 466

read-only memory (ROM), 277

read/write head, 77, 78

real mode, 159, 175, 204, 248
segment addresses in, 163, 165–167, 322

real mode flat model, 152, 153, 173, 175–177, 182
example program in, 228–237
flags in, 217
limits of, 240
memory data in, 207
and modular assembly, 300
and NASM-IDE, 300
prefix in, 230
sections in, 231
segment registers in, 176, 207, 229, 243, 249, 371
stack crash in, 250, 274

real mode memory, 157

real mode segmented model, 152–161, 165, 177–180, 595–596
batch files in, 300
registers in, 167, 173, 178–179, 243, 249, 371
sample program in, 240–243
sections in, 231
stack in, 274–275, 291

real-time clock support, 482

rebooting, 103

record, 483

Red Hat Linux, 404, 468

Red Hat Package Manager (RPM), 406

redirection operator, 99

register(s). See also specific registers
and C calling conventions, 454–455, 457
in CPU, 65–66, 71, 164–174
and debuggers, 105, 107, 114–118, 183–191, 437–443
function of, 165, 182
halves of, 169, 171–172, 209
moving data to/from, 194–195, 199, 207
for peripherals, 66
on stack, 251, 255
and strings, 371–373
Unix naming convention for, 422

register addressing, 200

register data, 198–202
and bit shifting, 323



type of, 224

relays, 51

relocatable object module (.OBJ file), 88–90, 96

REP prefix, 373–374, 377

RESB (Reserve Byte) directive, 250, 477, 478, 487

RESD (Reserve Double) directive, 487

reserve pseudoinstructions, 486–487

RESQ (Reserve Quad) directive, 487

REST (Reserve Ten-Byte) directive, 487

RESW (Reserve Word) directive, 487

RET instruction, 265, 272–274, 280, 343, 429, 454, 505, 577

reverse video, 185

Richman, Bill, 49

ROL instruction, 316, 466, 578–579

ROR instruction, 316, 466, 580–581

rotate instructions, 316, 465–466

rotating disk device, 77–78

RULER.ASM program, 380

Ruler macro, 379–380, 382–383, 386, 387, 397
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S
SAL instruction, 466

SAM.TEXT program, 108-117

SAR instruction, 466

SBB instruction, 582

scale, of address, 426, 463

scaled indexed addressing, 426, 506-507

scanf function, 478-482

screen clearing procedure, 278-281, 288, 372

scrolling, 278, 279, 281-282

SECTION commands, 230-231

sections, in programs, 231

sectors, 77-79

seed value, 491, 492

segment(s), of memory, 160, 162-166
public, 291-295
and real mode flat model, 229
and real mode segmented model, 242-243

segment address, 162-168, 203
in instruction pointer, 173
in real mode segmented model, 177-178, 207
for video refresh buffer, 185, 187

SEGMENT directive, 242, 245, 249, 250

segment override prefixes, 205-207, 595, 599

segment registers, 154-157, 167-168, 182, 243
and bitwise logical instructions, 322
examining from DEBUG, 183
and Linux, 455
for memory data, 205-207
moving, 208
in protected mode flat model, 180-181
in real mode flat model, 176, 207, 229, 243, 249, 371
in real mode segmented model, 178-179, 243, 371

serial-access devices, 55

services dispatcher, for DOS, 259-261

shift instructions, 316, 323, 375, 465-466
multiplying with, 350

SHL instruction, 316, 323, 349-350, 382, 466, 583-584

SHOWARGS.ASM program, 507-508

SHOWCHAR.ASM program, 383, 388-396

SHR instruction, 316, 323, 375, 466, 585-586

shutdown code, 460, 505

sign bit, 218

signed displacement, 215, 426

signed values, 337-339

Sign flag (SF), 218, 222, 335, 339, 533

silicon chips, 53-57, 63, 69



single inline memory module (SIMM), 54, 59

software development, 74
open-source, 91
tools for, 119

software interrupt:
for BIOS services, 277-287
to call Linux kernel, 453
for DOS services, 236, 256-265
versus procedure call, 272

source code, 76
managing complexity of, 414
reuse of, 90, 101-102
for subroutines, 518

source code files:
assembler handling of, 85, 96-100, 234
in C, 410-411
comments in, 229-230
and dependencies, 416-418
errors in, 98, 104
extension for, 96
free, 408
from gcc, 423-425
macros in, 302, 303, 306, 308
in NASM-IDE edit window, 123
size of, 228
text editor for, 82, 83
translation to binary files, 84

source index (SI) register, 169, 172, 203, 207, 322, 357, 372, 595, 596, 599

source operand, 198, 199

source string, 371-372

SP (stack pointer) register, 172, 178, 207, 248, 595, 599

srand function, 491-497

sscanf function, 510-511

SS (stack segment) register, 168, 178, 206, 248-249, 322, 595, 596, 599

stack, 168, 177, 178, 205, 242, 247-255
accessing relative to EBP, 504-509
and addresses in DOS, 260-264
and addresses in Unix, 427
cleaning up, 475, 517
and C library function arguments, 474-476
LIFO (last in, first out), 248, 255
popping data from, 252-255, 265
and procedure calls, 272-275, 455, 457
pushing data on, 251-252, 465
reserving space in, 250, 275

stack crash, 250, 252, 274-275

stack frame, 458-461

stack segment, 242-243, 245, 248-250

Stallman, Richard, 91, 408, 409

standard error (stderr), 471, 477

standard input (stdin), 471, 477

standard output (stdout), 235, 359, 470-472, 477, 511-512

start address, 245, 291

startup code, for Linux, 429, 435, 460



STC instruction, 587

STD instruction, 376, 588

STI instruction, 218

storage, 11
to different memory areas, 388
on disk, 77-78
mass, 55
short-term (stack), 255
temporary (registers), 65, 255

STOS instruction, 589, 596

STOSW instruction:
and nested instruction loops, 392-396
with REP, 372-376
without REP, 377-387, 393

stream, definition of, 471

string(s), 232-233
addressing, 425
in assembly language, 369-372
converting numbers to, 325
definition of, 232, 371
delineation of, 233
length of, 358-359

string instructions, 369, 372, 376, 397. See also specific string instructions

string space, 370

string variables, 232-233

strtod function, 510

struct, 483

SUB instruction, 346, 590-591

subroutines, in C, 454, 503-504
libraries of, 518-519

switches, 50, 51, 69-70

synonyms, for mnemonics, 336-339

syntax, 209-210
AT&T, 413, 422-427

system crashes, 103, 252, 467-468
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T
tar file, 406

TASM (Borland), 88, 91, 120, 595
linker in, 94, 102

Teletype machine, 80, 81, 233, 277, 430

ten byte, 160, 162

test, 3-4
of assembly language program, 103-104
for bits, 344-346
and conditional jumps, 332, 334, 339
for display adapter (example), 339-344
and flags, 217
machine instructions as, 71

TEST instruction, 344-347, 466-467

text editor, 82-84, 93, 96
and end-of-file marker, 110-111
for Linux, 404
in NASM-IDE, 121, 133-148
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