
W
EEK

EN
D

C
R

A
S
H

C
O

U
R
S
E

W
EEK

EN
D

C
R

A
S
H

C
O

U
R
S
E

™

BUTLER

CAUDILL

ASP.NET
DATABASE PROGRAMMING

JASON
BUTLER
TONY
CAUDILL

CD-ROM
with assessment
software, sample
code, and more

30 Sessions That
Will Have You
Creating Dynamic,
Data-Driven Web
Applications in
Only 15 Hours

A
SP.N

ET D
ATA

B
A

SE P
R
O

G
R

A
M

M
IN

G

HOUR

15

15he big day is Monday. The day you get to show off what you
know about ASP.NET database programming. The problem is, you’re not

really up to speed. Maybe it’s been a while since you worked with
Active Server Pages. Or maybe you’re new to Microsoft .NET or database
programming. In any event, we’ve got a solution for you — ASP.NET
Database Programming Weekend Crash Course. Open the book Friday
evening and on Sunday afternoon, after completing 30 fast, focused
sessions, you’ll be able to jump right in and start to create dynamic,
data-driven Web applications. It’s as simple as that.

The Curriculum

Get Up to Speed on ASP.NET
Database Programming —
in a Weekend!

Get Up to Speed on ASP.NET
Database Programming —
in a Weekend!

CD-ROM INCLUDES:

• Assessment software
to help gauge your
progress

• General Membership
on Brinkster.com
Web Hosting Service

• .NET Compression
Library trial version

• BrowserHawk
evaluation version

• Infragistics
UltraSuite and
ASPUpload trial
versions

• Sample code from
the book

System Requirements:

Pentium PC running Windows 95
or later, Windows NT 4 or later.
128 MB RAM. See the About the
CD Appendix for details and
complete system requirements.

Category:

Programming/Web Development

WEEKEND CRASH COURSEWEEKEND CRASH COURSE

T

™

ISBN 0-7645-4830-1

,!7IA7G4-feidah!:P;m;o;t;T

FRIDAY
Evening: 4 Sessions, 2 Hours
• Introducing ASP.NET
• Setting Up .NET
• Designing a Database
• SQL, A Primer

SATURDAY
Morning: 6 Sessions, 3 Hours
• Databases, A Primer on

SQL Server 2000
• XML, A Primer
• Developing ASP.NET Pages
• Using HTML Controls
• Using ASP.NET Controls
• User Controls

SATURDAY, continued
Afternoon: 6 Sessions, 3 Hours
• Validating User Input
• Maintaining State in

ASP.NET
• Authentication and

Authorization
• ASP.NET Caching
• Introducing ADO.NET
• Navigating The ADO.NET

Object Model

Evening: 4 Sessions, 2 Hours
• Opening a Connection
• Executing Commands
• Using The DataReader

Object
• Introducing Datasets,

Part I

SUNDAY
Morning: 6 Sessions, 3 Hours
• Introducing Datasets,

Part II
• Data Binding
• Using the DataGrid Control

with Bound Data
• Beating the CRUD out of

the DataGrid
• Data Shaping with

ADO.NET
• Handling ADO.NET Errors

Afternoon: 4 Sessions, 2 Hours
• SOAP
• Web Services
• Migrating From ASP to

ASP.NET
• Migration From ADO to

ADO.Net

WEEKEND

CRASH
COURSE

HOURS

*85555-AIABIi
For more information on
Hungry Minds, go to
www.hungryminds.com

$24.99 US
$37.99 CAN
£19.99 UK incl. VAT

4830-1 cover 10/25/01 2:13 PM Page 1

ASP.NET
Database Programming
Weekend Crash Course™

Jason Butler and Tony Caudill

Cleveland, OH • Indianapolis, IN • New York, NY

014830-1 FM.F 11/7/01 9:00 AM Page i

ASP.NET Database Programming Weekend
Crash Course™
Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2002 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduced
or transmitted in any form, by any means (elec-
tronic, photocopying, recording, or otherwise) with-
out the prior written permission of the publisher.
Library of Congress Catalog Card No.: 2001089343
ISBN: 0-7645-4830-1
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
IB/SZ/RR/QR/IN
Distributed in the United States by Hungry Minds,
Inc.
Distributed by CDG Books Canada Inc. for Canada;
by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa;
by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland;
by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile;
by Ediciones ZETA S.C.R. Ltda. for Peru; by WS

Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.
For general information on Hungry Minds’ products
and services please contact our Customer Care
department within the U.S. at 800-762-2974, out-
side the U.S. at 317-572-3993 or fax 317-572-4002.
For sales inquiries and reseller information, includ-
ing discounts, premium and bulk quantity sales,
and foreign-language translations, please contact
our Customer Care department at 800-434-3422, fax
317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care Department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.
For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 212-884-5000.
For information on using Hungry Minds’ products
and services in the classroom or for ordering exam-
ination copies, please contact our Educational Sales
department at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 317-572-3168 or fax
317-572-4168.
For authorization to photocopy items for corporate,
personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive,
Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTA-
TIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE
DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED
BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS
OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARAN-
TEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER
NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES,
INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: Hungry Minds, the Hungry Minds logo, Weekend Crash Course and related trademarks are
trademarks or registered trademarks of Hungry Minds, Inc. in the United States and other countries and
may not be used without written permission. All other trademarks are the property of their respective
owners. Hungry Minds, Inc., is not associated with any product or vendor mentioned in this book.

is a trademark of Hungry Minds, Inc.

014830-1 FM.F 11/7/01 9:00 AM Page ii

About the Authors
Jason Butler is a Principal Consultant with PricewaterhouseCoopers LLP. Jason has built
numerous Microsoft-centric Web applications for Fortune 500 companies. When not writing
code, he religiously works out at a gym near his home in northern Virginia. Jason is also a
devoted Hootie & The Blowfish fan.
Tony Caudill is a Principal Consultant at PricewaterhouseCoopers LLP. Tony has written and
deployed custom Microsoft Solutions for twenty Fortune 500 Companies to support the inte-
gration of SAP, Siebel, and other ERP/CRM applications. When not managing system imple-
mentation projects, he avidly pursues surfing in southern California at his favorite beaches
and tackles skiing at Big Bear.

Dedications
I would like to dedicate this book to my family and friends who have provided

me with tremendous support and happiness throughout my life. To my mother,
Marian, for inspiring me to be that best person that I possibly can. To Donna,

without whose support, encouragement, and patience this book would never
have been completed. To my father, Al, for always providing much needed

advice and support. And to my stepfather, Steve, for being who you didn't have
to be. I would also like to send my prayers to all of the families impacted by

the tragic events of September 11, 2001.
- Jason

I would like to dedicate this book to my family and friends, who have
supported me and given me tremendous joy over the past year: Marie and

Bradley Caudill. I also would like to offer my prayers for the families impacted
by the tremendous tragedies of September 11 and my support for the

policemen, firefighters, and communities of New York and Washington. And to
the US military leadership, such as my father, Sy, and his wife Sue, who like so

many soldiers before them will face a long, challenging, and difficult road to
building a foundation for us all in our search for peace.

-Tony

014830-1 FM.F 11/7/01 9:00 AM Page iii

Acquisitions Editor
Sharon Cox

Project Editor
Sharon Nash

Development Editor
Michael Koch

Technical Editors
Todd Meister
Peter MacIntyre

Copy Editor
Maarten Reilingh

Editorial Assistant
Cordelia Heaney

Editorial Manager
Mary Beth Wakefield

Senior Vice President, Technical Publishing
Richard Swadley

Vice President and Publisher
Joseph B. Wikert

Project Coordinator
Maridee Ennis

Graphics and Production Specialists
Sean Decker
Joyce Haughey
Gabriele McCann
Kristin McMullan
Jill Piscitelli
Betty Schulte
Erin Zeltner

Quality Control Technician
John Bitter
Susan Moritz
Angel Perez
Carl Pierce
Sossity R. Smith

Proofreading and Indexing
TECHBOOKS Production Services

Credits

014830-1 FM.F 11/7/01 9:00 AM Page iv

A SP.NET Database Programming Weekend Crash Course™ introduces the reader to
ASP.NET database programming in one weekend: 30 sessions of a half hour each, for
15 hours stretching from Friday afternoon to Sunday evening. At the end of each sec-

tion of the book, you’ll get a chance to test your knowledge before continuing. Good luck!

Who Should Read This Book
This book is for people who want to learn to write ASP.NET applications in order to access
and manipulate data in a Web environment. This book assumes that you have a basic
understanding of Web development, including experience with Visual Basic or Visual Basic
Scripting in developing ASP-based applications. The book’s focus is on ASP.NET and ADO.NET
as a suite of components used in data-driven Web application development. It includes a
CD-ROM with ASP.NET editor software and sample code mentioned in the text.

Organization and Presentation
We’ve organized the book into 30 sessions, each requiring approximately 30 minutes. We
divide the sessions as follows:

� Friday evening. Sessions 1 through 4. Reading time: 2 hours.
� Saturday morning. Sessions 5 through 10. Reading time: 3 hours
� Saturday afternoon. Sessions 11 through 16. Reading time: 3 hours.
� Saturday evening. Sessions 17 through 20. Reading time: 2 hours.
� Sunday morning. Sessions 21 through 26. Reading time: 3 hours.
� Sunday afternoon. Sessions 27 through 30. Reading time: 2 hours.

At the end of each session, we present questions designed to check your progress.
The text is sprinkled with icons designed to catch your attention.

Preface

014830-1 FM.F 11/7/01 9:00 AM Page v

Forewordvi

The “minutes to go” icons mark your progress in the session.

The Tip icons offer suggestions on style and mention shortcuts that can save
programming effort.

The Note icons highlight incidental or technical information that clarifies
and expands upon the discussion.

The CD-ROM icon refers to material furnished on the book’s CD. Use it to find
electronic versions of programs and software elements mentioned in the
text.

Contacting the Authors
We can’t guarantee we will solve all of your ASP.NET database programming problems in this
book, but we promise to take a look at your questions and see if we can help. If you get
stuck, you can contact us at the following e-mail address:

tony_and_jason@hotmail.com

Acknowledgments
T ony: First, I would like to acknowledge my wife, Marie, who has been extremely patient and
has provided tremendous support throughout the course of this project. A lot of new life
changes and accomplishments are hitting us this year, including our first child, Brad, and of
course the publication of this book. I’d like to thank Jason Butler, my co-author, for making
this opportunity available and being a solid source of support in its development.

J ason: I would like to dedicate this book to two people: my mother, who has always
inspired me to be the best person I can, and Donna, without whose patience, support, and
encouragement this book would never have been completed.

There are also a few people whom I would like to thank for their support throughout this
project. First, I would like to thank the PwC-eArmyU team, especially Chrystyna, Chris, FJ,
Mark, Volodya, PV, Julie, Travis, and Michael. They truly are some of the finest people with
whom I have had the privilege to work. I would also like to thank my fathers, Steve and Al,
for their unwavering support.

Last but not least, I would like to thank Tony Caudill, my co-author, for being a great
friend and mentor.

Tony and Jason: We would both like to thank PricewaterhouseCoopers LLP and Hungry
Minds for providing the financial and motivational support to accomplish this task while
supporting an extensive consulting practice.

Health and Peace . . .

CD-ROM

Note

Tip

014830-1 FM.F 11/7/01 9:00 AM Page vi

Contents at a Glance
Preface..v
Introduction ..xvii

FRIDAY ..2
Part I—Friday Evening ..4
Session 1–Introducing ASP.NET ..5
Session 2–Setting Up .NET ..13
Session 3–Designing a Database ...21
Session 4–Building a Database ...29

SATURDAY ...44
Part II—Saturday Morning ...46
Session 5–Using SQL: A Primer ...47
Session 6–XML: A Primer ...55
Session 7–Developing ASP.NET Pages ..61
Session 8–Using HTML Controls ..69
Session 9–Using Web Controls ..79
Session 10–Introducing User Controls ...89
Part III—Saturday Afternoon ...100
Session 11–Validating User Input ...101
Session 12–Maintaining State in ASP.NET ..113
Session 13–Authentication and Authorization ...123
Session 14–ASP.NET Caching ..135
Session 15–Introducing ADO.NET ..149
Session 16–Navigating the ADO.NET Object Model ...155
Part IV—Saturday Evening ...168
Session 17–Opening a Connection ..169
Session 18–Executing Commands ..177
Session 19–Using DataReaders ..187
Session 20–Introducing DataSets, Part I ..197

SUNDAY ..208
Part V—Sunday Morning ..210
Session 21–Introducing DataSets, Part II ...211
Session 22–Introducing Data Binding ..223
Session 23–Using the DataGrid Control with Bound Data ...233
Session 24–Beating the CRUD out of the DataGrid Control ...243
Session 25–Data Shaping with ADO.NET ..255
Session 26–Handling ADO.NET Errors ...263
Part VI—Sunday Afternoon ..276
Session 27–SOAP It Up! ...277
Session 28–Web Services ...283
Session 29–Migrating from ASP to ASP.Net ..291
Session 30–Migrating from ADO to ADO.NET ...299

Appendix A–Answers to Part Reviews ..309
Appendix B–What’s on the CD-ROM ...315
Appendix C–ADO.NET Class Descriptions ..319
Appendix D–Coding Differences in ASP and ASP.NET ...355
Index ..369
Hungry Minds, Inc. End User License Agreement ...387

014830-1 FM.F 11/7/01 9:00 AM Page vii

014830-1 FM.F 11/7/01 9:00 AM Page viii

Contents
Preface ...v
Introduction ..xvii

FRIDAY...2
Part I—Friday Evening ...4
Session 1–Introducing ASP.NET ..5

Internet Standards ...5
The Evolution of ASP ..6
The Benefits of ASP.NET ..8
What Is .NET? ..9

.NET Experiences ..9

.NET Clients ...10

.NET Services ...10

.NET Servers ...10

.NET Tools ..11
Session 2–Setting Up .NET ..13

Installation Requirements ..13
Installing ASP.NET and ADO.NET ..15

Installing the .NET Framework SDK ...15
Testing Your Installation ..17
Support for .NET ..19

Session 3–Designing a Database ..21
Designing a Database ..21
Normalization of Data ...24
Security Considerations ...26

Session 4–Building a Database ..29
Creating a Database ..29
Creating SQL Server Tables ...32
Creating a View ..37
Creating a Stored Procedure ...37
Creating a Trigger ...38

SATURDAY ...44
Part II—Saturday Morning ..46
Session 5–Using SQL: A Primer ..47

INSERT Statements ...47
DELETE Statements ...49
UPDATE Statements ..50
SELECT Statements ...51

Session 6–XML: A Primer ...55
The XML Design Specs ...55
The Structure of XML Documents ...56
XML Syntax ...58
XML and the .NET Framework ...59

Session 7–Developing ASP.NET Pages ..61
ASP.NET Events ..61
Page Directives ..64
Namespaces ...66
Choosing a Language ..67

014830-1 FM.F 11/7/01 9:00 AM Page ix

Contentsx

Session 8–Using HTML Controls ...69
Introducing HTML Controls ...70

Using HTML controls ...70
How HTML controls work ...74
Intrinsic HTML controls ...74

HTML Control Events ...74
The Page_OnLoad event ...75
Custom event handlers ..76

Session 9–Using Web Controls ...79
Intrinsic Controls ...80

Using intrinsic controls ...80
Handling intrinsic Web control events ...83

List Controls ..84
Rich Controls ...85

Session 10–Introducing User Controls ..89
Creating a User Control ..90
Adding User Control Properties ...92
Writing Custom Control Methods ...94
Implementing User Control Events ..95

Part III—Saturday Afternoon ...100
Session 11–Validating User Input ..101

Common Aspects of Validation Controls ..102
Display property ...102
Type Property ...103
Operator Property ...103

Using Validation Controls ...103
RequiredFieldValidator ...104
RegularExpressionValidator ..105
CompareValidator ..106
RangeValidator ...108
CustomValidator ..109
ValidationSummary ...111

Session 12–Maintaining State in ASP.NET ...113
Maintaining State Out of Process for Scalability ...113
No More Cookies but Plenty of Milk! ..115

Advantages ..115
Disadvantages ..115
How to make it happen ..115

Out of Process State Management ..118
Session Management with SQL Server ..118

Advantages ..118
Disadvantages ..118
How to make it happen ..119

Session Management with ASP.NET State Server ..120
Advantages ..120
Disadvantages ..120
How to make it happen ..121

Session 13–Authentication and Authorization ...123
Introducing the Key Security Mechanisms ..123
Web.config and Security ...124

Special identities ..127
Using request types to limit access ...128

New Tricks for Forms-based Authentication ...128

014830-1 FM.F 11/7/01 9:00 AM Page x

Using the Passport Authentication Provider ..132
Session 14–ASP.NET Caching ..135

ASP.NET Updates to the ASP Response Model ...136
Caching with ASP.NET ..136
Page Output Caching ...136

Absolute cache expiration ..137
Sliding cache expiration ..137

Fragment Caching ...140
Page Data Caching ...142

Expiration ..143
Displaying all items currently in the data cache ..143
Explicitly removing an item from the data cache ..144
Using the absoluteExpiration parameter ...145
Using the slidingExpiration parameter ...146

File and Key Dependency and Scavenging ..146
Session 15–Introducing ADO.NET ...149

A Brief History of Microsoft Data Access ...149
Differences between ADO and ADO.NET ...150

Transmission formats ..150
Connected versus disconnected datasets ..151
COM marshaling versus text-based data transmission ...151
Variant versus strongly typed data ..151
Data schema ...152

ADO.NET Managed Provider Versus SQL Managed Provider152
Why ADO.NET? ...152

Session 16–Navigating the ADO.NET Object Model ...155
Part IV—Saturday Evening ...168
Session 17–Opening a Connection ..169

Creating a Connection ...170
Opening a Connection ..171
Using Transactions ..174

Session 18–Executing Commands ...177
Building a Command ...178

Connection property ...179
CommandText property ..180
CommandType property ...180
CommandTimeout property ..181
Appending parameters ...181

Executing a Command ...183
ExecuteNonQuery method ..183
Prepare method ..183
ExecuteReader method ..184

Session 19–Using DataReaders ..187
Introducing DataReaders ..187
Using DataReader Properties ...189

Item property ...189
FieldCount property ..189
IsClosed property ..190
RecordsAffected property ..191

Using DataReader Methods ...193
Read method ..193
GetValue method ..193
Get[Data Type] methods ..194

Contents xi

014830-1 FM.F 11/7/01 9:00 AM Page xi

Contentsxii

GetOrdinal method ..194
GetName method ..194
Close method ...194

Session 20–Introducing DataSets, Part I ...197
Constructing a DataAdapter Object ...199

SelectCommand property ...200
UpdateCommand, DeleteCommand, and InsertCommand properties201
Fill method ..201
Update method ...203
Dispose method ..203

Using DataSet Objects ..203
DataSetName property ...203
CaseSensitive property ..204

SUNDAY ...208
Part V—Sunday Morning ...210
Session 21–Introducing DataSets, Part II ..211

Constructing a DataSet ...211
Tables property ...212

TablesCollection Object ..214
Count property ...214
Item property ...214
Contains method ...215
CanRemove method ...216
Remove method ..216
Add method ...216

DataTable Objects ..216
CaseSensitive property ..217
ChildRelations property ...217
Columns property ...217
Constraints property ...218
DataSet property ..218
DefaultView property ..218
ParentRelations property ...218
PrimaryKey property ...218
Rows property ..219
Dispose method ..221
NewRow method ..221

Session 22–Introducing Data Binding ...223
What Is Data Binding? ...223
Binding to Arrays and Extended Object Types ..224
Binding to Database Data ...226
Binding to XML ..227
TreeView Control ..228

Implement the TreeView server control ..229
Session 23–Using the DataGrid Control with Bound Data ..233

DataGrid Control Basics ..233
Binding a set of data to a DataGrid control ..233
Formatting the output of a DataGrid control ..235

Master/Detail Relationships with the DataGrid Control ..236
Populating the Master control ..238
Filtering the detail listing ..239

Session 24–Beating the CRUD out of the DataGrid Control243
Updating Your Data ...243

014830-1 FM.F 11/7/01 9:00 AM Page xii

Handling the OnEditCommand Event ..246
Handling the OnCancelCommand Event ...247
Handling the OnUpdateCommand Event ..247

Checking that the user input has been validated ..248
Executing the update process ...248

Deleting Data with the OnDeleteCommand Event ..249
Sorting Columns with the DataGrid Control ...250

Session 25–Data Shaping with ADO.NET ..255
What Is Data Shaping? ...255
Why Shape Your Data? ...258
DataSet Object ..258
Shaping Data with the Relations Method ..259

Session 26–Handling ADO.NET Errors ..263
OLEDBError Object Description ..265
OLEDBError Object Properties ..267
OLEDBError Object Methods ..267
OLEDBException Properties ...268
Writing Errors to the Event Log ...269

Part VI—Sunday Afternoon ...276
Session 27–SOAP It Up! ..277

Introducing SOAP ...277
Accessing Remote Data with SOAP ...278
SOAP Discovery (DISCO) ...281
Web Service Description Language (WSDL) ..281
Using SOAP with ASP.NET ...282

Session 28–Web Services ..283
Developing a Web Service ...284
Consuming a Web Service ...287

Session 29–Migrating from ASP to ASP.NET ...291
ASP and ASP.NET Compatibility ...291

Scripting language limitations ..292
Rendering HTML page elements ..293
Using script blocks ..294
Syntax differences and language modifications ...295

Enclosing function/subroutine calls in parentheses ..296
Strongly typed variables ...296
Error handling ..296
No more set ..297
Arguments are now passed ByVal as default ..297

Running ASP Pages under Microsoft.NET ...297
Using VB6 Components with ASP.NET ...298

Session 30–Migrating from ADO to ADO.NET ..299
Preparing a Migration Path ...299
ADO and ADO.NET Compatibility ..300
Running ADO under ASP.NET ..302
Early Binding ADO COM Objects in ASP.NET ..304

Appendix A–Answers to Part Reviews ...309
Friday Evening Review Answers ..309
Saturday Morning Review Answers ...310
Saturday Afternoon Review Answers ..311
Saturday Evening Review Answers ...312
Sunday Morning Review Answers ...312
Sunday Afternoon Review Answers ..313

Contents xiii

014830-1 FM.F 11/7/01 9:00 AM Page xiii

Contentsxiv

Appendix B–What’s on the CD-ROM ..315
System Requirements ..315
Using the CD with Windows ..316
What’s on the CD ..316

Author-created materials ...316
The Software Directory ..316

Applications ...317
eBook version of ASP.NET Database Programming Weekend Crash Course318

Troubleshooting ...318
Appendix C–ADO.NET Class Descriptions ...319
Appendix D–Coding Differences in ASP and ASP.NET ..355

Retrieving a Table from a Database ..355
How you did it with VBScript in ASP ...355
How you do it with VB .NET in ASP.NET ...355
How you do it with C# in ASP.NET ...356

Displaying a Table from a Database ..356
How you did it with VBScript in ASP ...356
How you do it with VB .NET in ASP.NET ...357
How you do it with C# in ASP.NET ...358

Variable Declarations ...358
How you did it with VBScript in ASP ...358
How you do it with VB .NET in ASP.NET ...359
How you do it with C# in ASP.NET ...359

Statements ..359
How you did it with VBScript in ASP ...359
How you do it with VB .NET in ASP.NET ...359
How you do it with C# in ASP.NET ...359

Comments ...359
How you did it with VBScript in ASP ...359
How you do it with VB .NET in ASP.NET ...360
How you do it with C# in ASP.NET ...360

Indexed Property Access ..360
How you did it with VBScript in ASP ...360
How you do it with VB .NET in ASP.NET ...360
How you do it with C# in ASP.NET ...360

Using Arrays ..360
How you did it with VBScript in ASP ...360
How you do it with VB .NET in ASP.NET ...361
How you do it with C# in ASP.NET ...361

Initializing Variables ...361
How you did it with VBScript in ASP ...361
How you do it with C# in ASP.NET ...362

If Statements ...362
How you did it with VBScript in ASP ...362
How you do it with VB .NET in ASP.NET ...362
How you do it with C# in ASP.NET ...362

Case Statements ...363
How you did it with VBScript in ASP ...363
How you do it with VB .NET in ASP.NET ...363
How you do it with C# in ASP.NET ...363

For Loops ..364
How you did it with VBScript in ASP ...364
How you do it with VB .NET in ASP.NET ...364
How you do it with C# in ASP.NET ...364

014830-1 FM.F 11/7/01 9:00 AM Page xiv

While Loops ...364
How you did it with VBScript in ASP ...364
How you do it with VB .NET in ASP.NET ...364
How you do it with C# in ASP.NET ...365

String Concatenation ...365
How you did it with VBScript in ASP ...365
How you do it with VB .NET in ASP.NET ...365
How you do it with C# in ASP.NET ...365

Error Handling ...365
How you did it with VBScript in ASP ...365
How you do it with VB .NET in ASP.NET ...366
How you do it with C# in ASP.NET ...366

Conversion of Variable Types ..366
How you did it with VBScript in ASP ...366
How you do it with VB .NET in ASP.NET ...366
How you do it with C# in ASP.NET ...366

Index..369
Hungry Minds, Inc. End User License Agreement...387

Contents xv

014830-1 FM.F 11/7/01 9:00 AM Page xv

014830-1 FM.F 11/7/01 9:00 AM Page xvi

W ith the release of the .NET Framework, Microsoft is taking the most significant risk
in its history. Microsoft has spent billions of dollars, representing over 80 percent of
its R&D budget, on designing and constructing this fundamental shift in its develop-

ment tools in order to build a framework for the future of application development. Microsoft
has effectively realized its vision of Windows in every PC and a PC on every desktop. Its
current problem is that the desktop represents only a portion of the new Internet universe.
With the huge shift brought on by the Internet and its pervasiveness into everything from
watches to cell phones to cars, Microsoft must now shift its view of the future from a
PC-centric orientation to a service-centric orientation.

So what is the future? From Microsoft’s point of view, the future is delivering software as
a service. Instead of purchasing a shrink-wrapped installable solution, you will instead rent,
borrow, or purchase application logic across a distributed network. Software will of course
still be sold on store shelves. However, most, if not all of the business logic and power of
these applications will reside across a set of distributed applications using open Internet-
based standards such as XML and HTTP. This framework will open extensive new possibilities
for you in the process of designing, constructing, delivering, licensing, and collecting fees
for your software.

Why Microsoft .NET?
Why would you as a developer invest in learning and understanding this new foundation of
products and services? Those of you who are practicing solution developers already probably
have a code base of Windows- and Internet-based applications written in Visual Basic, ASP,
C++, or a combination of all three. If you have to address Windows API calls from C++ and
Visual Basic and then integrate those calls as a COM component called by an ASP page, you
will be amazed at how the .NET Framework–based classes provide a common approach and
object model to accessing Windows services and resources. You will be further impressed at
how the choice of development languages is no longer dependent upon power, flexibility, or
support of OOP best practices. Now all languages compile to a Microsoft Intermediate
Language (MSIL) and execute against a Common Language Runtime (CLR).

Introduction

014830-1 FM.F 11/7/01 9:00 AM Page xvii

Introductionxviii

To those familiar with Java, this will seem very interesting. Because there is an interme-
diate language, Microsoft needs only to provide support for the CLR on multiple platforms in
order to provide full cross-platform portability. While at the time of this writing there were
no major announcements in this area, it is anticipated that ports to Linux and other operat-
ing systems is a key way Microsoft will be able to recoup its investment. In fact, Microsoft
has a migration kit, the Java User Migration Path or JUMP, which contains a set of tools
that will enable Java developers to take advantage of the .NET platform. The stated goal of
these tools is to provide a path for Visual J++ and other Java developers to preserve their
existing Java language projects and migrate those projects to the .NET platform. Once you
begin experimenting with C# you will clearly see how realistic it is for this type of approach
to affect the Java community.

The Microsoft .NET Architecture
The Microsoft .NET Architecture is split into three essential areas:

� The .NET platform, which includes the .NET infrastructure and tools to build and
operate a new generation of Web services and applications. The core of the .NET
platform is the .NET Framework, which includes C#, VB .NET, ASP.NET, and ADO.NET.

� .NET products and services, which include Microsoft Windows, MSN.NET, personal
subscription services, Microsoft Office .NET, Microsoft Visual Studio .NET, and
Microsoft bCentral for .NET.

� Third-party .NET services, which are services created by a vast range of partners
and developers who now have the opportunity to produce corporate and vertical
services built on the .NET platform.

The .NET platform contains all of the building blocks for creating .NET products and ser-
vices and integrating third-party .NET solutions. Microsoft is using components of the .NET
platform to extend the platform itself and to build additional .NET products. For example, as
a developer you will be very impressed or possibly amazed that the entire ASP.NET platform
is actually built on C#, which is a new .NET language! Additionally, large portions of the
Visual Studio .NET code base are built on a combination of C++, C#, and VB .NET.

One of the most common themes heard throughout the development community concerns
the stability of the .NET products and services. Compared with prior shifts in technology,
such as when Microsoft moved from a 16-bit architecture to a 32-bit architecture or from
DOS to Windows, this round is much more bearable.

.NET servers and applications
Microsoft’s .NET servers can be split into two primary categories: core services platforms and
specialized services. The core services platforms form the underpinnings of a traditional
Microsoft-centric application, including Windows 2000, SQL Server 2000, and Exchange
2000. These applications are .NET in that they robustly support XML plumbing at the core
of their applications and provide the foundation for building distributed applications. The
second category of servers provides specialized services. The BizTalk Server 2000, for
instance, leverages a higher-level language called XLANG that enables you to define process
flows, transaction flows, and contracts. XLANG also allows very deep integration across

014830-1 FM.F 11/7/01 9:00 AM Page xviii

heterogeneous environments. These specialized servers are designed to accelerate the inte-
gration and aggregation of Web services.

Next-generation Web Services
Microsoft’s core piece of the .NET solution is Web services. Web services are small, specific,
reusable chunks of application logic that can be easily shared across the Internet using open
standards such as XML and HTTP. Solution providers, application developers, and end users
will be able to rent, lease, or purchase the use of these solutions as needed and integrate
them to solve specific problems. Examples of Web services include calendars, notifications,
currency conversions, and user authentication and identity services.

Microsoft’s first entry into this space is the use of the Microsoft Passport User Identity
Service, which provides a single authentication mechanism for any Web site or application.
A user can register with the Passport service and then be seamlessly validated from any par-
ticipant Passport site without the need for an additional login procedure. This service can
be embedded for use as an authentication mechanism by any Web-connected application.

You can look at Web services in the same way you would look at outsourcing portions of a
business. Why would you ever create a delivery infrastructure when you can use FedEx? Why
process your own paychecks, when companies like ADP can handle all of the mechanics for
you? Web services enable you to outsource the generic portions of application development
that today are commonly developed over and over each time a new application is built. Some
people have compared it to building with Legos. From a relatively generic set of components,
in a very short period you can build a complex, robust product that is great fun to use!

We hope this brief introduction provides you a foundation for jumping into our book on
ASP.NET and gives you a perspective on how it is but one small yet important component of
the overall .NET solution.

Introduction xix

014830-1 FM.F 11/7/01 9:00 AM Page xix

014830-1 FM.F 11/7/01 9:00 AM Page xx

ASP.NET
Database Programming
Weekend Crash Course™

014830-1 FM.F 11/7/01 9:00 AM Page 1

024830-1 DPO1.F 11/7/01 9:00 AM Page 2

Part I — Friday Evening
Session 1
Introducing ASP.NET

Session 2
Setting Up .NET

Session 3
Designing a Database

Session 4
Building a Database

024830-1 DPO1.F 11/7/01 9:01 AM Page 3

P A R T

Friday
Evening

I

Session 1
Introducing ASP.NET

Session 2
Setting Up .NET

Session 3
Designing a Database

Session 4
Building a Database

034830-1 PtO1.F 11/7/01 9:01 AM Page 4

Session Checklist
✔ Reviewing the history of ASP
✔ Learning about the .NET vision
✔ Understanding the differences between ASP and ASP.NET

In this session we will introduce the Microsoft .NET Framework and ASP.NET. We will
address the evolution of Microsoft’s Active Server Platform and discuss how .NET
improves upon Microsoft current Active Server offerings, including Active Server Pages.

First, however, let’s examine how the Internet works . . .

Internet Standards
Before, we dive into the evolution of ASP, we should review some basic Web client/server
fundamentals. At the highest level, communication in a Web-based environment occurs
between two entities: (1) a Web client (most commonly a Web browser such as Internet
Explorer or Netscape Navigator), which is an application that requests files from a Web
server, and (2) a Web server, which is a software application, usually residing on a server,
that handles client requests.

It’s easy to deduce that a server is a computer that serves something. In a Web environ-
ment, a server “serves” HTTP responses. A server generally has more processing power than
a personal computer (PC) in order to handle a large number of simultaneous client requests.
A Web server is a server that is capable of handling Web, or HTTP, requests. In the Microsoft
world, this Web server is one part of Internet Information Services (IIS).

Web browsers and servers communicate using a protocol called Transmission Control
Protocol/Internet Protocol (TCP/IP). A protocol is simply a set of rules and procedures that
define how two entities communicate. TCP/IP is actually composed of two parts, TCP and IP.
TCP, often referred to as a transport protocol, wraps data in a digital envelope, called a

Introducing ASP.NET

S E S S I O N

1

044830-1 Ch01.F 11/7/01 9:01 AM Page 5

packet, and ensures that the data is received in the same state in which it was sent. IP,
a network protocol, is responsible for routing packets over a network, like the Internet.
In addition to TCP/IP, Web clients and servers use a higher-level protocol, called HyperText
Transfer Protocol (HTTP). To clarify, let us use the analogy of sending a letter through the
mail. The letter is analogous to HTTP. When writing a letter, you’ll probably write it in a
language that the receiver understands, right? So, if you were a Web browser or server
you would write your letter in HTTP rather than English. The envelope, which contains
a mail-to and return address, is analogous to TCP and your friendly mail carrier is analogous
to IP. The mail carrier ensures that your letter is delivered to the correct street address, in
the correct city, in the correct state. Likewise, IP ensures that your TCP packet is delivered
to the correct IP address.

HTTP is a request-response type protocol that specifies that a client will open a connection
to a server and then send a request using a very specific format. The server will then respond
and close the connection. HTTP has the ability to transfer Web pages, graphics, and any other
type of media that is used by a Web application. Effectively HTTP is a set of messages that
a Web browser and server send back and forth in order to exchange information. The simplest
HTTP message is GET, to which a server replies by sending the requested document. In
addition to GET requests, clients can also send POST requests. POST requests are used most
commonly with HTML forms and other operations that require the client to transmit a block
of data to the server.

That is basically how the Internet works. Now let’s see how we have arrived at ASP.NET.

The Evolution of ASP
Although it may seem as though Microsoft’s Active Server Pages (ASP) technology has been
around forever, it is actually a relatively new technology, introduced in 1996. Prior to ASP,
developers were able to create active Web sites on a Microsoft platform using the Common
Gateway Interface (CGI) and Internet Server Application Programming Interface (ISAPI),
each of which played a part in the evolution of ASP.

CGI was the first widely accepted technique of delivering dynamic Web content. CGI
is effectively a method of extending the functionality of a Web server to enable it to
dynamically generate HTTP responses using a program typically written in C or a scripting
language such as Perl. This allowed page content to be personalized for the user and con-
structed from information stored in a database. Although powerful, CGI did have several
shortcomings. For each HTTP request that a CGI application receives, a new process is
created. After the request has been handled, the process is killed. Repeatedly creating and
killing processes proved be a tremendous burden for even the most capable of Web servers.

Along came Microsoft’s Active Server platform, which addressed the technical limitations
of CGI programming. The Active Server platform was, and really still is, a set of tools that
developers can utilize to write Web applications. Microsoft’s Active Server platform didn’t
however originally include Active Server Pages, ASP. Developers were forced to write ISAPI
extensions or filters.

ISAPI extensions and CGI are very similar with one major exception. Unlike CGI applica-
tions that are generally implemented as executables (EXEs) on the Windows platform, ISAPI
extensions are implemented as Dynamic Link Libraries (DLLs), which means they are loaded
into memory only once, on first demand, and then stay resident in the same process as IIS.

Friday Evening6

044830-1 Ch01.F 11/7/01 9:01 AM Page 6

Therefore, ISAPI extensions do not suffer the same performance problems as CGI applications.
Additionally, ISAPI extensions are multithreaded, which means that they can manage concur-
rent requests without degrading system performance.

Like ISAPI extensions, ISAPI filters are multithreaded, implemented as DLLs, and run in the
same memory space as IIS. However, ISAPI filters are not invoked by client requests. Instead,
ISAPI filters do exactly as their name implies— they filter or intercept and optionally process
HTTP requests. ISAPI filters are actually quite useful in many situations, particularly web
server logging and security. However, because ISAPI filters act on every HTTP request, they
should be used sparingly to avoid severe performance problems.

As useful and powerful as ISAPI extensions and filters are, they can be difficult for novice
programmers to develop. ISAPI DLLs must written in C++; and, even though Visual C++ does
provide a wizard to assist with the task, this proved to be quite a barrier. Recognizing this
issue, Microsoft released several short-lived Active Platform development products that were
actually based on ISAPI. These included dbWeb and Internet Database Connector (IDC),
which evolved into ASP.

In 1996, Microsoft released Active Server Pages and as they say “the rest is history.” ASP
allows developers to execute code inline within a Web page. Although, ASP technology is
still a relatively new way to create dynamic Web sites, during its short life span, it has
evolved to become one of the foremost dynamic Web site development products. This is
probably due to the ease with which complex pages and applications can be created, com-
bined with the ability to use custom components and existing Microsoft and third party
commercial components through the Component Object Model (COM/COM+) architecture.

Since 1996, there have been several versions of ASP. In 1998, Microsoft introduced ASP 2.0
as part of the Windows NT 4.0 Option Pack. With ASP 2.0 and IIS 4.0, an ASP application and
its associated components could be created in a memory space separate from the Web servers
space to improve fault tolerance. In 2000, with the much anticipated release of Windows 2000
(and IIS 5.0), Microsoft unveiled ASP 3.0. To us, differences between the capabilities of
ASP 2.0 and 3.0 appeared to be quite limited. However, running on Windows 2000, ASP’s
performance was greatly improved.

While ASP is powerful and incredibly simple to use, it does have the following drawbacks:

� ASP code can get complicated very quickly. ASP code tends to be unstructured
and gets really messy. Tons of server-side code intermixes with client-side script
code and HTML. After awhile it becomes difficult to figure out what is going on. If
you have a few free hours to blow, try reading someone else’s ASP code and you’ll
see what we mean. It can be a truly painful experience.

� To do anything in ASP you have to write code. ASP has no actual component
model. Developers tend to start at the top of a page and zip right down to the
bottom, executing database queries, running business logic, and generating HTML
along the way.

� Code is mixed with presentation. This causes problems when developers and
designers work together. Supporting internationalization and multiple client types
is difficult.

� The combination of ASP and IIS isn’t always the most reliable of platforms.
Sorry, Mr. Gates! However, in Microsoft’s defense, this instability isn’t necessarily —
or even probably — a platform issue. Microsoft, by making the Active Platform so
open, gave developers the ability to create applications that could quite easily bring

Session 1—Introducing ASP.NET 7

044830-1 Ch01.F 11/7/01 9:01 AM Page 7

IIS to its knees. Developing an ASP application is one thing, developing a good, effi-
cient, reliable ASP application is another. Anyway, ASP fault tolerance could have
been a little better.

� Deploying an ASP application that utilizes COM can be difficult. COM objects must
be registered and are locked by the operating system when being used. As a result,
managing a production application, especially in a Web farm, or a Web application
that utilizes more than one Web server, proved to be quite challenging.

The Benefits of ASP.NET
Microsoft, realizing that ASP does possess some significant shortcomings, developed
ASP.NET. ASP.NET is a set of components that provide developers with a framework with
which to implement complex functionality. Two of the major improvements of ASP.NET over
traditional ASP are scalability and availability. ASP.NET is scalable in that it provides state
services that can be utilized to manage session variables across multiple Web servers in a
server farm. Additionally, ASP.NET possesses a high performance process model that can
detect application failures and recover from them.

Along with improved availability and scalability, ASP.NET provides the following addi-
tional benefits:

� Simplified development: ASP.NET offers a very rich object model that developers
can use to reduce the amount of code they need to write.

� Language independence: ASP pages must be written with scripting. In other
words, ASP pages must be written in a language that is interpreted rather than com-
piled. ASP.NET allows compiled languages to be used, providing better performance
and cross-language compatibility.

� Simplified deployment: With .NET components, deployment is as easy as copying a
component assembly to its desired location.

� Cross-client capability: One of the foremost problems facing developers today is
writing code that can be rendered correctly on multiple client types. For example,
writing one script that will render correctly in Internet Explorer 5.5 and Netscape
Navigator 4.7, and on a PDA and a mobile phone is very difficult, if not impossible,
and time consuming. ASP.NET provides rich server-side components that can auto-
matically produce output specifically targeted at each type of client.

� Web services: ASP.NET provides features that allow ASP.NET developers to effortlessly
create Web services that can be consumed by any client that understands HTTP and
XML, the de facto language for inter-device communication.

� Performance: ASP.NET pages are compiled whereas ASP pages are interpreted. When
an ASP.NET page is first requested, it is compiled and cached, or saved in memory, by
the .NET Common Language Runtime (CLR). This cached copy can then be re-used for
each subsequent request for the page. Performance is thereby improved because after
the first request, the code can run from a much faster compiled version.

Probably one of the most intriguing features of ASP.NET is its integration with the .NET
CLR. The CLR executes the code written for the .NET platform. The .NET compilers target the

Friday Evening8

044830-1 Ch01.F 11/7/01 9:01 AM Page 8

.NET runtime and generate intermediate language (IL) binary code (kind of like Java and
byte code). The code generated by .NET compilers cannot be run directly on the processor
because the generated code is not in machine language. During runtime, the .NET compilers
convert this intermediate code to native machine code and that machine code is eventually
run on the processor. Additionally, the .NET compilers also produce metadata that describes
the code. The .NET runtime loads metadata information for performing different tasks like
resolving method calls, loading different dependent modules, marshaling data from one
component to another, and so on. Since the .NET runtime produces binary code that is later
compiled, effectively any language that is CLR compliant and can generate IL code can be
used to write ASP.NET applications and components.

Code written using the .NET Common Language Runtime, is said to be
managed code. Code that does not use this infrastructure is referred to as
unmanaged code.

.NET offers many programmatic improvements and features, one of which is a new version
of ActiveX Data Objects (ADO) called, not surprisingly, ADO.NET. ADO.NET provides a suite of
data handling and binding facilities. The Web is an inherently disconnected environment: a
Web application connects to a datasource, manipulates the data, reconnects to the data-
source, and updates the data. ADO.NET has been designed to work in a disconnected fash-
ion, which increases data sharing. Additionally, ADO.NET treats data in a very loose,
multidimensional, object-oriented way through a strongly typed object model. With ADO, all
data is represented in two dimensions, rows and columns. With ADO.NET these n-dimen-
sional data representations of data are called datasets. Iterating through, updating, and
deleting related tables in a dataset is exceptionally simple.

What Is .NET?
With .NET, Microsoft is formalizing a vision of an Internet made up of an infinite number of
interoperable Web applications or services, which will operate in concert to form a global
exchange network. The .NET Framework is really a strategy to tie disparate platforms and
devices together, moving data around in a far more efficient manner than it is currently.

.NET is Microsoft’s platform for Web Services. Web Services allow applications to commu-
nicate and share data over the Internet, regardless of operating system or programming lan-
guage. The Microsoft .NET platform includes a comprehensive family of products, built on
Internet standards such as XML and HTTP, that provide facilities for developing, managing,
using, and experiencing XML Web services. There are five areas where Microsoft is building
the .NET platform: .NET Experiences, Clients, Services, Servers, and Tools.

.NET Experiences

.NET Experiences are XML Web services that enable you to access information across the
Internet and from standalone applications. Microsoft will deliver .NET Experiences for indi-
viduals and for businesses. Some of the products that Microsoft is transitioning into .NET
Experiences are the Microsoft Network (MSN) and bCentral.

Note

Session 1—Introducing ASP.NET 9

044830-1 Ch01.F 11/7/01 9:01 AM Page 9

.NET Clients

.NET Clients are PCs, laptops, workstations, phones, handheld computers, Tablet PCs, game
consoles, and other smart devices. All of these devices will have the ability to consume Web
Services. .NET Clients use software that supports Web Services, and enable you to access your
data regardless of location or type. The .NET client software Microsoft will offer includes
Windows CE, Window 2000, and Windows XP. These applications will power PCs, laptops,
workstations, smart phones, handheld computers, and Tablet PCs.

.NET Services
In addition to developers creating XML Web services, Microsoft is creating a core set of ser-
vices that perform routine tasks and act as the backbone for developers to build upon. The
first set of Web Services being built, codenamed “HailStorm,” is user-centric services focused
on users, rather than devices, networks, or applications. “HailStorm” is based upon the
Microsoft Passport user authentication system. With “HailStorm,” users receive relevant
information, as they need it, delivered to the devices they’re using, and based on their
established preferences.

.NET Servers
The .NET Servers, including the Windows 2000 server family, make up Microsoft .NET’s
server infrastructure for developing, deploying, and managing Web Services. Designed with
performance in mind, the .NET Servers will provide enterprises with the resources required
to integrate their systems, applications, and partners via Web Services. The .NET Enterprise
Servers are

� SQL Server 2000 to store, retrieve, and analyze relational data.
� Application Center 2000 to deploy and manage highly available and scalable Web

applications.
� BizTalk Server 2000 to build XML-based business processes across applications and

organizations.
� Commerce Server 2000 for quickly building scalable e-commerce solutions.
� Content Management Server 2001 to manage content for dynamic e-business Web

sites.
� Exchange Server 2000 to enable messaging and collaboration.
� Host Integration Server 2000 for integrating data and applications on legacy systems.
� Internet Security and Acceleration Server 2000 for establishing secure, fast Internet

connectivity.
� Mobile Information 2001 Server to enable application support for mobile devices.
� SharePoint Portal Server 2001 to publish business information.

Friday Evening10

044830-1 Ch01.F 11/7/01 9:01 AM Page 10

.NET Tools
Visual Studio .NET and the Microsoft .NET Framework supply a complete solution for devel-
opers to build, deploy, and manage Web Services. The .NET Tools maximize the performance,
reliability, and security of Web Services.

Visual Studio .NET is the next generation of Microsoft’s multi-language development
environment. Visual Studio .NET will help developers quickly build Web Services and applica-
tions (including ASP.NET applications) using their language of choice. Visual Studio .NET
advances the high-productivity programming languages Visual Basic, which includes new
object-oriented programming features; Visual C++, which advances Windows development
and enables you to build .NET applications; and C# (pronounced C sharp).

The .NET Framework is a high-productivity, standards-based, multi-language application
execution environment that handles the essential “house keeping” chores and eases
deployment and management. It provides an application execution environment that
manages memory, addresses, versioning issues, and improves the reliability, scalability, and
security of applications. The .NET Framework consists of several parts, including the
Common Language Runtime and ASP.NET.

REVIEW

ASP is relatively new Web development technology. Although it is very powerful and simple
to use, it does has some flaws. With ASP.NET, Microsoft has introduced a new Web develop-
ment platform that addresses many, if not all, of ASP’s shortcomings. ASP.NET offers many
programmatic improvements including a new data access technology called ADO.NET.
ADO.NET is designed to work on the Web, which is inherently disconnected. ASP.NET and
ADO.NET are part of larger framework, generically referred to as the .NET Framework. The
.NET Framework is a set of products and services designed to facilitate the development of
interoperable Web applications based on open standards such as SOAP, XML, and HTTP.

QUIZ YOURSELF

1. What is the function of TCP/IP? (See “Internet Standards.”)
2. What are two problems when developing ASP applications? (See “The Evolution

of ASP.”)
3. What are two improvements provided by ASP.NET over ASP? (See “The Benefits of

ASP.NET.”)

Session 1—Introducing ASP.NET 11

044830-1 Ch01.F 11/7/01 9:01 AM Page 11

044830-1 Ch01.F 11/7/01 9:01 AM Page 12

Session Checklist
✔ Requirements for ASP.NET and ADO.NET
✔ Installing ASP.NET and ADO.NET
✔ Testing the installation

B efore getting too deep into .NET you need to make sure that you have the minimal
requirements for the .NET Framework and have successfully installed the software so
that you can walk through the samples in this book. This session will cover the minimal

and recommend configurations and give you some pointers for installing and testing the .NET
Framework.

Installation Requirements
Before you get started with .NET you should first evaluate the minimum system requirements
for the .NET Framework. These include but are not limited to the following:

� Windows 98, Windows ME, Windows NT 4.0, Windows 2000, and Windows XP
� Internet Explorer 5.01 or higher
� Microsoft Data Access Components (MDAC) 2.6 Required, MDAC 2.7 Recommended
� IIS 4.0, IIS 5.0 or higher

While the .NET Framework SDK can be installed on the platforms listed above, for
developers building ASP.NET solutions, and for you, the reader of this book, there are fewer
options. As a server-based component, ASP.NET takes advantage of certain security, thread-
ing, and transaction-based functionality that is not compatible with Windows NT 4.0,
Windows ME, or Windows 98. Table 2-1 provides an installation matrix covering the mix of
solutions recommended by the authors for deploying and developing ASP.NET solutions.

Setting Up .NET

S E S S I O N

2

054830-1 Ch02.F 11/7/01 9:01 AM Page 13

Table 2-1 Recommended Configurations for ASP.NET

Operating Web Database Web MDAC Develop /
System Server Browser Deploy

Windows 2000 IIS 5.1 SQL Server 2000 Internet MDAC 2.7 Develop
Professional or Developer Explorer 5.5
XP Professional

Windows 2000 IIS 5.1 SQL Server 2000 Internet MDAC 2.7 Develop and
Server, Advanced Standard or Explorer 5.5 Deploy
Server, Data Center Enterprise

For more information on Windows 2000, including demonstration versions
and purchasing a license visit http://www.microsoft.com/windows2000/.

Furthermore, in order to run many of the examples in this book you will need to have
access to one of the following versions of SQL Server 2000:

� SQL Server 2000 Developer Edition
� SQL Server 2000 Standard Edition
� SQL Server 2000 Enterprise Edition

SQL Server Developer Edition is the only version of those listed above that you will be
able to install with Windows 2000 Professional. If you are running Windows 2000 Server,
Advanced Server or Data Center, then you can choose the Standard or Enterprise versions of
SQL Server. Please note that while we recommend that you utilize SQL Server 2000 as your
choice for a database platform, you can also use SQL Server 7.0 for the vast majority of
examples in the book.

The .NET Framework includes the option to install the SQL Server 2000 Desktop Edition
(MSDE), however this version of SQL Server does not include its own user interface or tools,
instead users interact with MSDE 2000 through the application in which it is embedded.
MSDE 2000 is packaged with the .NET Framework, but will not be suitable for running all of
the scenarios needed for this book.

For more information on SQL Server 2000 editions, downloading demo
versions of the product, or purchasing a license, please go to http://www.
microsoft.com/sql/techinfo/planning/SQLResKChooseEd.asp

Table 2-2 provides a consolidated list of locations for you to download core compo-
nents of the .NET Framework, including operating systems, databases, and data access
components.

Note

Note

Friday Evening14

054830-1 Ch02.F 11/7/01 9:01 AM Page 14

Table 2-2 Download Sites for Core .NET Application Components

Component Download Site

Windows 2000 http://www.microsoft.com/
windows2000/

Windows 2000 SQL Server http://www.microsoft.com/sql/
default.asp

Microsoft Explorer 5.5 http://www.microsoft.com/windows/
ie/default.htm

Microsoft Data Access Components (MDAC) 2.6 http://www.microsoft.com/data/
download.htm

Microsoft Data Access Components (MDAC) 2.7 http://www.microsoft.com/downloads/
release.asp?ReleaseID=30134

.NET Framework setup files http://msdn.microsoft.com/net/

Visual Studio .NET http://msdn.microsoft.com/vstudio/

Installing ASP.NET and ADO.NET
In order to get started with ASP.NET development there are two approaches you can take:

� Install Visual Studio .NET
� Install the .NET Framework SDK Standard or Premium versions

If you choose to install Visual Studio .NET, then there is no need to install the .NET
Framework SDK, however you should still install MDAC 2.7, as it contains new and useful
functionality for data access. In the following section we will cover the installation of
the freely available .NET Framework SDK, which is all that is required to run the samples
contained in this book.

Installing the .NET Framework SDK
After installing your selected operating system, Web browser, and database system, go to
the MSDN download section at http://www.asp.net to get the setup files you will need
to get started. Alternatively you can visit http://www.microsoft.com/net, http://msdn.
microsoft.com/downloads/default.asp, or http://www.gotdotnet.com.

Session 2—Setting Up .NET 15

054830-1 Ch02.F 11/7/01 9:01 AM Page 15

When selecting which files to download, you should be aware that ASP.NET comes in two
versions:

� Standard, which is what is installed when you install the standard .NET
Framework SDK

� Premium, which provides advanced features specific to ASP.NET development such as
Output Caching, Web Farm Session State, Code Access Hosting, and support for 4 CPU’s
and above

For the purposes of running all of the examples in this book, we recommend that you
download and install the Premium version.

Installation is fairly easy and consists of a single executable file. There are typically two
key issues that arise during the installation process.

� You may be asked to update the Microsoft Windows Installer Components, if this
occurs be sure to allow this update to occur to prevent installation issues.

� You may receive a warning message indicating that Microsoft Data Access Components
2.7 is not installed on your system. If you have followed our recommend installation
scenarios illustrated earlier you should not receive this alert. If you have not installed
MDAC 2.7, all is not lost you can select the ignore button and continue with the
installation. However we recommend that you install MDAC 2.7 prior to beginning
development.

All of the ADO.NET components and ASP.NET components are installed automatically
when you run the setup routines for the .NET Framework SDK. Once the setup routines have
completed, you should plan on activating the samples that are included with the .NET
Framework. The setup page can be located on your PC typically at C:\Program Files\
Microsoft.Net\FrameworkSDK\Samples\startsamples.htm.

To activate the samples, you will need to follow the steps as outlined on the SDK Samples
page. Here are the steps and common issues related to setting up the samples:

1. Select the Install the .NET Framework Samples Database hyperlink and when
prompted choose Run this program from its current location. If you receive any
security warnings, select Yes to allow the installation to continue. This setup will
check to see if you have MSDE installed, if not it will install it, and then it will
proceed to install the sample databases.

2. Select the Complete the Installation hyperlink and when prompted choose Run
this program from its current location. Again, if you receive any security warnings,
select Yes to allow the installation to continue. This will complete the installation
of the setup files.

3. To begin reviewing the samples, navigate to the Start ➪ Programs ➪ Microsoft .NET
Framework SDK Menu and select the Samples and QuickStart Tutorials item. Then
select the hyperlink labeled, Start the ASP.NET QuickStart Tutorial. This will pre-
sent you with the screen shown in Figure 2-1.

4. Run the setup programs included on the CD with this book to install the sample
databases and application files used throughout this book.

Friday Evening16

054830-1 Ch02.F 11/7/01 9:01 AM Page 16

Figure 2-1 The ASP.NET QuickStart Tutorial Page

Testing Your Installation
To test your installation, you can simply begin walking through the default sample applica-
tions by running the QuickStart Tutorials discussed in the previous section. These tutorials
are broken down into the categories shown in Table 2-3:

Table 2-3 QuickStart Tutorials

In This Category You’ll Find . . .

Getting Started An introduction to ASP.NET and a summary overview of each
of the core languages. We highly recommend that you review
the discussion on language support here to familiarize yourself
with Visual Basic .NET and C#.

ASP.NET Web Forms A discussion of the fundamentals of designing pages, using
server controls, accessing databases and building business
objects with ASP.NET. This should be your next stop in the tour
of tutorials.

ASP.NET Web Services A few good examples to familiarize yourself with the concepts
of creating and using Web Services.

Continued

Session 2—Setting Up .NET 17

054830-1 Ch02.F 11/7/01 9:01 AM Page 17

Table 2-3 Continued

In This Category You’ll Find . . .

ASP.NET Web Applications A cursory overview of what an ASP.NET application is, how to
handle state within the application and how the global.aspx
file is used.

Cache Services A good overview of how all of the new caching features are
handled including, output, fragment and data caching.

Configuration Details about the machine.config and the Web.config files,
which are critical in supporting major aspects of how your
application operates from security and state maintenance
to localization.

Deployment A high-level overview on the benefits of the .NET Framework
for deploying applications.

Security A good summary of the multiple methods available to support
authentication and authorization for your application and Web
services.

Localization Information on how to handle date/time, encoding and other
format-related issues when targeting multiple languages.
You’ll also find a high-level overview of using resource files
to support language localization.

Tracing An discussion of how the new tracing functionality can help
you keep your sanity when debugging applications.

Debugging The basics of the new visual debugger and how to turn
debugging on for testing.

Performance A high-level overview of the positive and negatives related
to the in-process and out-of-process state maintenance.

ASP to ASP.NET Migration The key differences in ASP and ASP.NET. This is a great starting
point for those of you familiar with developing for ASP.

Sample Applications Consists of several excellent sample applications, including
a Personalized Portal, an E-Commerce Application, A Class
Browser Application, and the best example of all the
IBuySpy.com application which covers many of the most
crucial elements you will need to understand such as user
logins, shopping baskets, the use of n-tier development best
practices, and the use of Web services. An absolute must
review!

Friday Evening18

054830-1 Ch02.F 11/7/01 9:01 AM Page 18

You will likely face challenges if you have previously installed beta versions of the .NET
Framework SDK. If you have installed beta versions, plan to reinstall the operating system
prior to installing the production version. Even though the beta versions were fairly stable,
anytime you try and simply install production bits over beta bits you are likely to create
problems.

Support for .NET
There are a tremendous number of newsgroups and knowledge base articles available on-line
to support your development efforts. In order to help you identify some of the more popular
support groups available on-line that are specific to ASP.NET and ADO.NET, please refer to
Table 2-4.

Table 2-4 Support Resources for ASP.NET and ADO.NET

Name Type of Support URL

MSDN Online Newsgroups Newsgroup http://msdn.microsoft.com/newsgroups/

ASP.NET Homepage Web Site http://www.asp.net/

Cold Rooster Consulting Web Site http://www.coldrooster.com/default.asp

ASPNG Discussion Lists Discussion List http://www.aspng.com/aspng/index.aspx

IBuySpy Homepage Web Site http://www.ibuyspy.com/

GotDotNet Web Site http://www.gotdotnet.com

REVIEW

You should now be on your way to developing! If you run into issues, be sure to check
http://msdn.microsoft.com and http://support.microsoft.com for additional trou-
bleshooting tips.

QUIZ YOURSELF

1. What are the minimal requirements for installing the .NET Framework?
(See “Installation Requirements.”)

2. Can you successfully use the .NET Framework on Windows 95? (See “Installation
Requirements.”)

3. List two on-line resources that provide support on ASP.NET or ADO.NET?
(See “Support for .NET.”)

Session 2—Setting Up .NET 19

054830-1 Ch02.F 11/7/01 9:01 AM Page 19

054830-1 Ch02.F 11/7/01 9:01 AM Page 20

Session Checklist
Understanding database design concepts
Learning to normalize database tables

Learning the basics of Structured Query Language

The key to developing an active Web site is data. Data is basically unstructured informa-
tion such as a name, address, or user preference (a favorite color, for example). When
you think about it, as Information Technologists, all we do is move data from one place

to another and present it in different formats. There are many different types of data,
including numbers, strings, and dates. For example, the number 30 might represent age, the
string “Jason Butler” might present a name, and 1/1/2000 might represent a date.

A dynamicWeb site starts with a database. This is where information— that is, a collection
of related data elements— is stored, modified, and transmitted. There are many databases
on the market, including Microsoft Access, SQL Server, and Oracle. The type of database you
choose as the back end (or database that supports an application) for your site ultimately
depends on the size and security requirements of your company, as well as your budget.

There are two types of data: (1) relational and (2) non-relational. The difference between
the two is how the data is organized. This session focuses on relational data. Relational
data is stored in a Relational Database Management System (RDBMS). The information in
relational databases is often presented in tables. Tables are created by grouping related data
in columns and rows. When necessary, tables are related back to each other by the RDBMS.

Designing a Database
We believe that the best way to learn is by doing — so, let’s start building a database. We
will be using SQL Server 7.0, but you can use anything you like. The important thing to take
away from this session is not only how to build a SQL Server database, but rather how to

Designing a Database

S E S S I O N

3

064830-1 Ch03.F 11/7/01 9:01 AM Page 21

design and build a database. Use the RDBMS with which you are most comfortable. If you
are a novice, try using Microsoft Access. Access is generally not the RDBMS of choice as the
back end for a high traffic Web site, but it’s a good program to start with.

In the remainder of this session, we will show you how to build a music catalog
database — band names, band members, albums, and so on. For this purpose, you need to
know what information, or data elements, your database will store. For example, you may
want to gather the following information about a band:

1. Band Title
2. Music Type Title (the type of music a band plays, for example, Rock & Roll)
3. Record Company Title
4. Albums
5. Band Members

Next, you need to determine the data type for each element. The data type specifies the
kind of information (numeric, character, and so on) and how much space that information
takes up in a particular column. Though each RDBMS handles data types differently, you are
likely to encounter at least three— characters, integers, and dates— as described in Table 3-1.

Table 3-1 RDBMS Data Type Categories

Data Type SQL Server Data Type Comments

Character char(n), varchar Stores character information such as a
contact’s first name.

Integer int, smallint, tinyint Stores integer values such as a contact’s age.
Integers can also be used to store foreign key
values. We’ll get to that later.

Date datetime, smalldatetime Store dates and times such as time stamp
information.

Next, you have to decide which data type to assign to each band item. At the same time,
you need to determine which elements are optional and which are required (see Table 3-2)
and how much space each element will occupy in the database. For example, you can rea-
sonably assume that a band’s name won’t exceed fifty characters in length. So you specify
in the database design that the column should not accept data elements that are longer
than 50 characters in length. Data types represent the kind of data that can be stored in a
particular column. For example, if you want to store a band’s name, you will store character
data. If you want to store the number of members in the band, you would store the data
as a number or integer. Each RDMS supports different data types. SQL Server, for instance,
provides VARCHAR and CHAR among other data types to store character data, and INT and
FLOAT among others to store numeric data.

Refer to your RDMS’s documentation for supported data types.

Note

Friday Evening22

064830-1 Ch03.F 11/7/01 9:01 AM Page 22

Table 3-2 Optional and Required DB Elements

Contact Element Data Type Size Optional/Required

Band Title VARCHAR 50 Required

Music Type Title VARCHAR 25 Required

Record Company Title VARCHAR 25 Required

Band Members VARCHAR 200 Required

Albums VARCHAR 500 Optional

Table 3-2 does not present an optimal table definition. It is merely a starting
point from which to begin discussion. Database normalization techniques will
be explored later in this session.

Armed with this information, you can now create your table. Follow a standard naming
convention when creating table and column names. For example, you may choose to always
name your tables using the following convention:

t_[plural object descriptor]

Since the table you are creating will contain a record, or row, for each band, choose
t_bands as the table name. Use the following convention to name columns:

[singular object descriptor]_[column descriptor]

You don’t need to follow our naming convention, but we highly recommend
that you use some sort of object naming convention — it will save you time
later.

Figure 3-1 shows the design of your t_bands table.

Figure 3-1 t_bands table

You’ll notice that we have created a field for each of the data elements we defined earlier.
The first field, band_id is our unique identifier. Without going into SQL Server details, we
created the unique identifier by selecting the column’s identity field.

Note

Note

Session 3—Designing a Database 23

064830-1 Ch03.F 11/7/01 9:01 AM Page 23

Your RDBMS should be structured to create a unique identifier for each record. For exam-
ple, the first band could be assigned a unique identifier of 1, the second, 2, and so on. In
Oracle, this is called a sequence, in SQL Server it is referred to as an identity. You should
generally make this unique identifier the table’s primary key. A primary key is a field or
group of fields that uniquely identifies a record.

Take great care when defining a table’s primary key. If there’s even the
slightest possibility of having duplicate information in a primary key or of
your requirements changing in such a way that your primary key is no longer
valid, use something else or a sequence number. Good candidates for primary
keys might be social security numbers or e-mail addresses, but you can never
be too careful. That’s why it’s a good idea to use sequences as primary keys;
the RDBMS ensures that this field will be unique.

OK, now let’s talk constraints. A constraint is a mechanism for enforcing the integrity of
the data in your table. There are several types of constraints. Among these are primary key
constraints, foreign key constraints, unique constraints, and check constraints. Check con-
straints ensure that the data entered in a column follows a set of rules. A unique constraint
ensures that the data inserted into a column, or group of columns, is not duplicated in the
table. A foreign key references the primary key of another table and ensures the data in the
foreign key column is present in the referenced table.

The implementation of constraints differs drastically by RDBMS, so instead of actually
going through the process of creating a constraint in SQL Server, you need to consider
where constraints might be useful in your t_bands table. Because band titles are generally
unique, it’s a good idea to place a unique constraint on the band_title column.

Normalization of Data
Now let’s take a moment to review and validate the design of the t_bands table. Generally,
to validate the design of our table, it’s a good idea to ensure that it is normalized.
Normalization is the process of organizing data into related tables. By normalizing your
data, you are effectively attempting to eliminate redundant data in your database. Several
rules have been established for the normalization of data. These rules are referred to as
normalization forms. The first three normalization forms are:

� First Normal Form (FNF): This rule states that a column cannot contain multiple
values. If you further inspect t_bands for FNF compliance, you should come to the
conclusion that the albums and members fields, band_albums and band_members,
should be broken down into smaller, discrete elements. The band_members and
band_albums columns are currently defined such that if a band has multiple mem-
bers or have released multiple albums, then band_members and band_albums
columns will contain multiple values.

� Second Normal Form (SNF): This rule states that every non-key column must
depend on the entire key, not just the primary key. Because you are using band_id
as your primary key, you are in good shape with respect to SNF.

� Third Normal Form (TNF): This rule is very similar to the SNF rule and states that
all nonkey columns must not depend on any other nonkey columns. A table must
also comply with SNF to be in TNF. OK, you pass this test too!

Note

Friday Evening24

064830-1 Ch03.F 11/7/01 9:01 AM Page 24

There are three other normalization rules that aren’t covered here. Generally, if your
tables are in Third Normal Form, they probably conform to the other rules.

To fully optimize your tables, you should take some additional measures. It’s a good idea
to break your t_bands table into several tables and link them to t_bands via foreign keys.
Also, you should create a t_music_types table that holds all the possible music types. The
t_bands table should have a foreign key to the primary key of the t_music_types table.
This is generally good practice for two reasons: (1) it ensures that your band’s music type
falls into the music type domain and (2) it is easier to maintain. For example, if you change
your mind and want to refer to “R&B” as “Rhythm & Blues,” you won’t have to change every
instance of “R&B” in the band_music_type_title column — you only need to change
the music type title in the t_music_types table. You could also do the same thing for
the band_record_company_title and contact_business_state fields.

At this point, your database contains three tables: (1) t_bands, (2) t_music_types, and
(3) t_record_companies. Figure 3-2 shows a diagram of our new database design:

Figure 3-2 Database design showing relationship of three tables

In the diagram in Figure 3-2, t_bands is linked to t_music_types via a foreign key to
music_type_id and linked to t_record_companies via a foreign key to record_company_id.
This new relationship between the tables is called one-to-many. In a one-to-many relationship,
each entry in the contact type table may be referenced by one or many contacts.

You now have three tables and have met your current requirements. However, what about
bands and albums? Currently, you are storing all of the band’s albums and members in a sin-
gle column, band_albums and band_members, respectively. Currently, if you wanted to
retrieve a list of a band’s members or albums, you would need to retrieve the data in the
band_members or band_albums column and parse it. This is not the optimal approach. The
best approach for this situation is to further normalize your database by creating two new
tables. The first is a table to store all albums (for example, t_albums) and a second that
stores all band members (for example, t_band_members). The tables t_albums and
t_band_members will have foreign keys to the t_bands table. Figure 3-3 shows the new
database diagram.

Figure 3-3 Diagram of expanded table design

Session 3—Designing a Database 25

064830-1 Ch03.F 11/7/01 9:01 AM Page 25

You could certainly modify your table design further. But at some point you need to start
considering performance. Performance can be adversely impacted if, on a regular basis, you
need to join multiple tables with a lot of data. We recommend that you keep the number of
tables in your database to a minimum while following the normalization rules as closely as
possible. You will soon learn that database design is as much art as it is science.

Security Considerations
Probably the most overlooked aspect of database design is security, when it should be a
major consideration. By not securing your database and thereby your data, you are asking
for trouble. Not all data is intended for everyone’s eyes, and not everyone should have the
ability to manipulate your data and definitely not your database’s structure. The majority of
your database users will only need and should only be granted read (or select) access. When
designing your database, you should establish a list of policies and users for your database.
A database user is anyone who needs access to any part of your database. The highest level
of user is the database administrator who will have access to all database objects and data.
Other users will only have access to certain objects and data. The average end user will only
have access to certain objects, but should never have the ability to alter your database
structure. It never ceases to amaze us how many organizations have one “global” user that
has complete control of the database. This is typically a bad scenario, not because people
are intentionally malicious, but because they are people and no one is perfect. The impact
of a simple mistake can take hours and even days to reverse, if reversal is possible at all.
Policies are basically rules that define which actions a user can perform on your database.
Most RDMSs enable you to assign a separate set of policies, or rights, for each object in your
database. User rights generally fall into one of six different categories:

� SELECT enables the user to view data.
� INSERT enables the user to create new data.
� UPDATE enables the user to modify existing data.
� DELETE enables the user to delete data.
� EXECUTE enables the user to execute a stored procedure.
� ALTER enables the user to alter database structure.

We will discuss stored procedures in Session 4, “Building a Database.”

Each user in a database should have a unique user name and password combination. This
will enable your RDMS to enforce the security policies you have established for the user.

Note

Friday Evening26

064830-1 Ch03.F 11/7/01 9:01 AM Page 26

REVIEW

In order to have a truly active Web site, you need to have some sort of data store from
which to retrieve personalized information. In most cases, this “data store” is a relational
database management system (RDBMS) such as SQL Server, Oracle, or Microsoft Access. A
database can consist of many types of objects such as tables and constraints. Designing the
structure of your tables (and other objects) and their interactions is just as much art as it is
science. However, the database normalization rules provide good guidelines to help you
along your way.

QUIZ YOURSELF

1. What is the importance of the primary key in table design? (See “Designing
a Database.”)

2. What is the difference between a primary key and a foreign key? (See “Designing
a Database.”)

3. What is the purpose of normalization? (See “Normalization of Data.”)

Session 3—Designing a Database 27

064830-1 Ch03.F 11/7/01 9:01 AM Page 27

064830-1 Ch03.F 11/7/01 9:01 AM Page 28

Session Checklist
✔ Building a database using SQL Server
✔ Using database objects

In the previous session, we explained how to design and build a database. In this session,
you’ll build the Music database using SQL Server. (If you’re going to build the database
as you go through this session, use either SQL Server 7.0 or 2000.)

When working with SQL Server, you can create a database and its related objects in one
of two ways. Probably the easiest method is to use Enterprise Manager. Enterprise Manager
provides a user interface that enables you to graphically create a database, tables, constraints,
and so on. If you installed SQL Server on your local machine, Enterprise Manager should be
located in the SQL Server program group on the Start menu.

The second method of creating a database with SQL Server is to execute Transact-SQL
(T-SQL) commands against your SQL Server. Although writing T-SQL commands is a little
more difficult than using Enterprise Manager, you have greater control of the objects you
create and can save time.

Which method you use is a matter of personal preference. Throughout this session, we
demonstrate creating database objects with both methods.

Creating a Database
The first step in building a database with SQL Server is to actually create the database. That’s
right. SQL Server is a piece of software that runs on a computer, or server. Once the SQL Server
software is installed you can create a database (or databases) with the SQL Server software

Building a Database

S E S S I O N

4

074830-1 Ch04.F 11/7/01 9:01 AM Page 29

that is then managed by that SQL Server software. Many people refer to SQL Server as a
database, which it is, sort of. SQL Server is actually an application, a Relational Database
Management System (RDBMS), which can contain multiple databases.

We will be using SQL Server 7.0 to create the database in this session. If you
are using SQL Server 2000, the steps will be slightly different.

OK, let’s create the Music database. You’ll start by creating the database using Enterprise
Manager and perform the following steps:

1. Expand the SQL Server Group item, if it isn’t already expanded, in the Enterprise
Manager tree. Once expanded you should see a list of SQL Servers that are regis-
tered with Enterprise Manager.

2. Right-click the SQL Server in which you want to create the Music database.
3. Select New ➪ Database. Figure 4-1 illustrates steps 1, 2, and 3.
4. You see the Database Properties dialog box, shown in Figure 4-1. On the General

tab, enter Music in the Name field. The Database Properties dialog box allows you
to control other features of your database such as file growth, maximum database
size, transaction log files, and so on. For the sake of brevity, accept the defaults.

Figure 4-1 Specifying database properties with Enterprise Manager

That’s it. You have created a SQL Server database using Enterprise Manager. If you want
to create a database with T-SQL, follow these steps:

Note

Friday Evening30

074830-1 Ch04.F 11/7/01 9:01 AM Page 30

1. Select Start ➪ Programs ➪ Microsoft SQL Server ➪ Query Analyzer to open SQL
Server’s Query Analyzer.

2. You see the Connect to SQL Server dialog box. Select the SQL Server on which you
would like to create the Music database from the SQL Server drop-down box. Select
the Use SQL Server authentication radio button. Now enter the appropriate authen-
tication information in the Login Name and Password fields as shown in Figure 4-2.

Figure 4-2 Query Analyzer logon

3. In the Query Analyzer window, enter the following T-SQL statement:
USE master
GO
CREATE DATABASE Music ON PRIMARY
(NAME = MusicData,
FILENAME = ‘C:\MSSQL7\data\MusicData.mdf’

)

In the previous script, you may need to alter the FILENAME string so that it
reflects a valid path on your computer.

In step 3, you essentially created a database named Music and specified that the data
should be stored in the MusicData.mdf file located, in this example, in the C:\MSSQL7\data
directory. The CREATE DATABASE statement accepts many other parameters, such as
MAXSIZE, FILEGROWTH, SIZE, and so on. However, again, for the sake of brevity, you used
the SQL Server defaults.

Once you have entered the previous SQL statement in the Query Analyzer
window, hit the F5 button, which will execute the SQL script.

Note

Note

Session 4—Building a Database 31

074830-1 Ch04.F 11/7/01 9:01 AM Page 31

That’s it. You have now created a database using T-SQL and Query Analyzer.

Creating SQL Server Tables
Now that you have a database, Music, you can add tables to it. If you recall from the previous
session, the Music database contains several tables including t_bands, t_band_members,
t_albums, and so on. Figure 4-3 shows the schema for the Music database.

Figure 4-3 Schema for the Music database

You are not going to create every table in the Music database, but hopefully, based on
the tables you do create, you will be able to build the remaining tables. So, go create the
t_bands table:

1. In Enterprise Manager, right-click on the Music database node and select New ➪
Table.

2. You see the Choose Name dialog box as shown in Figure 4-4. Enter t_bands in the
“Enter a name for the table:” textbox and click OK. The table design grid is now
ready for you to enter column information.

Figure 4-4 Specifying a table’s name

Friday Evening32

074830-1 Ch04.F 11/7/01 9:01 AM Page 32

3. In the design grid, enter band_id in the Column Name field of the first row as
shown in Figure 4-5. In the Datatype column, select int to signify that the
band_id field will contain integer type data. On the same row, deselect the Allow
Nulls checkbox and select the Identity checkbox. Click the Set Primary Key button
(it looks like a key) on the SQL Server toolbar to make the band_id column the
primary key for the t_bands table.

4. Create the band_title, music_type_id, and record_company_id columns, using
Figure 4-5 as a guide.

5. Right-click the t_bands table design grid as shown in Figure 4-5. You see the
Properties dialog box.

Figure 4-5 Creating table columns

6. Select the Indexes/Keys tab and click the New button to create a new index on the
band_title column.

7. Select band_title from the Column name drop-down box and enter IX_band_title
in the Index name text box.

8. Select the Create UNIQUE checkbox and the Index option button, and click the
Close button (as shown in Figure 4-6).

9. Save and close the t_bands design grid.

Session 4—Building a Database 33

074830-1 Ch04.F 11/7/01 9:01 AM Page 33

Figure 4-6 Creating a unique constraint

To create the t_bands table using T-SQL, execute the following commands in Query
Analyzer:

USE Music
GO
CREATE TABLE [dbo].[t_bands] (

[band_id] [int] IDENTITY (1, 1) NOT NULL ,
[band_title] [varchar] (100) NOT NULL ,
[music_type_id] [int] NOT NULL ,
[record_company_id] [int] NOT NULL

) ON [PRIMARY]
GO
ALTER TABLE [dbo].[t_bands] WITH NOCHECK ADD

CONSTRAINT [PK_t_bands] PRIMARY KEY NONCLUSTERED
(

[band_id]
) ON [PRIMARY] ,
CONSTRAINT [IX_bands_title] UNIQUE NONCLUSTERED
(

[band_title]
) ON [PRIMARY]

GO

The second command, or the first command after USE Music, creates the t_bands
table using the CREATE TABLE statement. The third command, ALTER TABLE, creates two
constraints on the t_bands table. The first constraint, named PK_t_bands, is placed on
the band_id field. The PK_t_bands constraint is the primary key for the t_bands table. The
second constraint, named IX_bands_title, is placed on the band_title column and ensures
that the band title is unique.

Friday Evening34

074830-1 Ch04.F 11/7/01 9:01 AM Page 34

Now create t_albums as shown in Figure 4-7.

Figure 4-7 t_albums table

Next you need to create a few constraints on the t_albums table by following these steps:

1. Open the Properties dialog box for the t_albums table and select the Indexes/
Keys tab.

2. Create a constraint named IX_band_albums based on two columns, album_title
and band_id. Make this constraint unique by selecting the “Create UNIQUE” check-
box. This constraint ensures that a band doesn’t have albums duplicated in the
table. In this example, of course, you could assume that a band will never release
two albums with the same name. At this point, you should start to realize that
constraints are basically used to enforce business rules on our tables.

3. Close the Properties dialog box by selecting the “Close” button.
4. Expand the Music database node so you can see a complete listing of all database

objects (that is, Diagrams, Tables, View, Stored Procedures, and so on).
5. Right-click the Diagrams node and select “New Database Diagram.”
6. Work your way through the Create Database Diagram Wizard. Make sure that you

add the t_albums and t_bands tables to the diagram. It is through this database
diagram that you are going to create a foreign key. Specifically, you are going to
create a foreign key to the t_bands table to ensure that all entries in the band_id
column of the t_albums table have a corresponding band_id in the t_bands table.
(This is simply a business rule. You can’t have an album pop out of thin air. It has
to be recorded by a band.)

7. Once the diagram has been created and the two tables mentioned in step 6 are
on the diagram, drag the band_id entry in the t_albums table and drop it on
t_bands.

At this point, you see the Create Relationship dialog box shown in Figure 4-8. On the
Create Relationship dialog box, ensure that the primary key table is t_bands and the
primary key column is band_id. Also ensure that the foreign key table is t_albums and the
foreign key column is band_id. Click OK.

That’s it. You have created the t_albums table using Enterprise Manager. Listing 4-1
shows the T-SQL script you could execute to create the t_albums table and its associated
constraints.

Session 4—Building a Database 35

074830-1 Ch04.F 11/7/01 9:01 AM Page 35

Figure 4-8 Creating a relation between t_bands and t_albums

Listing 4-1 An example of a T-SQL script

CREATE TABLE [dbo].[t_albums] (
[album_id] [int] IDENTITY (1, 1) NOT NULL ,
[album_title] [varchar] (255) NOT NULL ,
[album_publish_date] [datetime] NOT NULL ,
[band_id] [int] NOT NULL ,
[album_price] [smallmoney] NOT NULL

) ON [PRIMARY]
GO
ALTER TABLE [dbo].[t_albums] WITH NOCHECK ADD

CONSTRAINT [DF_t_albums_album_publish_date] DEFAULT (getdate()) FOR
[album_publish_date],

CONSTRAINT [DF_t_albums_album_price] DEFAULT (0.00) FOR [album_price],
CONSTRAINT [PK_t_albums] PRIMARY KEY NONCLUSTERED
(

[album_id]
) ON [PRIMARY] ,
CONSTRAINT [IX_band_albums] UNIQUE NONCLUSTERED
(

[album_title],
[band_id]

) ON [PRIMARY]
GO
ALTER TABLE [dbo].[t_albums] ADD

CONSTRAINT [FK_t_albums_t_bands] FOREIGN KEY
(

[band_id]
) REFERENCES [dbo].[t_bands] (

Friday Evening36

074830-1 Ch04.F 11/7/01 9:01 AM Page 36

[band_id]
)

GO

Everything here should look familiar. These commands are very similar to those used to
create the t_bands table. The only difference is the last command that creates the foreign
key to the band_id column in the t_bands table.

That’s it for tables. Now try creating the rest of the database on your own. If you run
into problems, feel free to use the T-SQL statements that are included on the CD.

Next, we take a quick look at the views, stored procedures, and triggers for SQL Server
database objects.

Creating a View
A view is essentially a SQL Server object that specifies exactly how a user will see that data
in a database. It is a stored query. Views are useful for enforcing security (that is, granting
use access to views, but not tables) and simplifying the user interface to the database by
creating views for the most frequently used queries.

You can create views with Enterprise Manager or T-SQL with Query Analyzer. For the
remainder of this session, we focus solely on Query Analyzer for the sake of brevity. Generally,
if you can create an object using Query Analyzer, using the Enterprise Manager is a cinch.

So, to create a view you use the CREATE VIEW statements as shown in the following
example:

CREATE VIEW [owner.]view_name
AS select_statement

In this line, view_name is the name of the view and select_statement is the SQL
SELECT statement used to return view results.

Suppose you wanted a view that would return the names of all the bands in the t_bands
table. The CREATE VIEW statement would look like this:

USE Music
GO
CREATE VIEW all_bands
AS
SELECT band_title, band_id FROM t_bands

This is a pretty simple example, but a good starting point. To utilize the view, all you
need to do is call it from a SQL statement, like SELECT:

SELECT * FROM all_bands ORDER BY band_title

Creating a Stored Procedure
Stored procedures are precompiled T-SQL statements stored in a SQL Server database.
Because stored procedures are precompiled, they offer better performance than other types

Session 4—Building a Database 37

074830-1 Ch04.F 11/7/01 9:01 AM Page 37

of queries, including views. Additionally, you can pass parameters to and from stored proce-
dures. To create a stored procedure, you use the CREATE PRODCURE statement, which has
the following syntax:

CREATE PROCEDURE procedure_name
[{@parameter_name data_type} [VARYING] [= default] [OUTPUT]]
[, ...n]
AS
sql_statement

If you wanted to create a simple stored procedure that returns all the albums in your
database, ordered alphabetically, you would execute the following statement:

CREATE PROCEDURE pr_albums
AS
SELECT album_title FROM t_albums ORDER BY album_title

If you would like to test a stored procedure, simply go into SQL Server’s
Query Analyzer tool and (1) type the word EXEC (short for execute) followed
by the name of the stored procedures and (2) hit the F5 button.

This statement creates a stored procedure named pr_albums that returns a list of all the
albums in the t_albums table ordered alphabetically. Chances are that if the t_albums table
gets fairly large, you wouldn’t want to return all the rows in the table. You might want to
return all the albums for a specified band. The following stored procedure, pr_albums2,
returns a list of a specified band’s albums, ordered alphabetically:

CREATE PROCEDURE pr_albums2
@iBandID INT

AS
SELECT album_title
FROM t_albums
WHERE band_id = @iBandID
ORDER BY album_title

This stored procedure accepts a parameter, @iBandID. You then include @iBandID in the
SQL statement to return only those rows, or albums titles, whose band_id value is equal to
@iBandID.

Creating a Trigger
A trigger is a special kind of stored procedure that is automatically invoked when the data
it is designed to protect is modified. Triggers help to ensure the integrity of data by pro-
hibiting unauthorized or inconsistent changes. For example, with a trigger you could ensure
that a band could not be deleted from the t_bands table if that band has an album or
albums in the t_t_albums table.

Note

Friday Evening38

074830-1 Ch04.F 11/7/01 9:01 AM Page 38

Triggers do not have parameters and cannot be explicitly invoked. They are only fired
when you try to insert, update, or delete data from a table. The T-SQL syntax for a trigger is:

CREATE TRIGGER trigger_name
ON table_name
FOR {INSERT | UPDATE | DELETE}
AS sql_statement

Now try to enforce the business rule mentioned earlier. You want to make sure that a
band is not deleted if it has an entry in the t_albums table.

Oh, if you haven’t created the t_bands and t_albums tables yet, please do so
now. If you don’t, you won’t be able to create a trigger that references the
t_albums table.

Based on the requirements, it would appear that the trigger should be invoked, or fired,
whenever a band is being deleted from the t_bands table, right? The syntax for this trigger is:

CREATE TRIGGER trg_DeleteBand
ON t_bands
FOR DELETE
AS

IF EXISTS(SELECT album_id FROM t_albums, deleted WHERE t_albums.band_id
=
deleted.band_id)

BEGIN
RAISERROR(Band has albums!’,16,1)

END

All you are doing is creating a trigger named trg_DeleteBand on the t_bands table. The
trigger will be fired whenever a band is being deleted. In order for the band to be deleted,
no records can exist in the t_albums table for that band. To validate that no records exist
in the t_albums table, you use the IF EXISTS statement, which checks to see if there are
any records that match a specified criterion. In your case, the specified criterion is a SQL
statement.

REVIEW

In this session, you learned how to create tables, views, stored procedures, and triggers with
SQL Server. Tables contain the data in a SQL Server database. A view is essentially a SQL
Server object that specifies exactly how a user will see that data in a database. Views are
useful for enforcing security and simplifying the user interface to the database (by creating
views for the most frequently used queries). Stored procedures and triggers are used to
enforce data integrity in a database.

Note

Session 4—Building a Database 39

074830-1 Ch04.F 11/7/01 9:01 AM Page 39

QUIZ YOURSELF

1. What are two methods of creating SQL Server objects? (See session introduction.)
2. What is the function of a view? (See “Creating a View.”)
3. What three actions can fire a trigger? (See “Creating a Trigger.”)

Friday Evening40

074830-1 Ch04.F 11/7/01 9:01 AM Page 40

The following set of questions is designed to provide you with feedback on how
well you understood the topics covered during this part of the book. Please refer to
Appendix A for the answers to each question.

1. Which of the following is not a component of Windows 2000 Internet
Information Services?

a. Gopher Server

b. FTP Server

c. SMTP Server

d. NNTP Server

2. A Web server’s primary responsibility is to manage TCP/IP traffic.

True/False

3. TCP/IP and XML are the two primary protocols for Internet client/server
communications.

True/False

4. Which of the following was the first widely accepted technique for devel-
oping dynamic Web sites?

a. Active Server Pages (ASP)

b. ISAPI Filters

c. ISAPI Extensions

d. Common Gateway Interface (CGI)

P A R T

#
P A R T

Friday Evening
Part Review

I

084830-1 PR01.F 11/7/01 9:01 AM Page 41

5. Windows 3.1 is a supported platform for .NET.

True/False

6. Fill in the blank: ______ is the lowest version of IIS that supports
ASP.NET.

7. Should you install the .NET SDK over beta versions?

Yes/No

8. Do you need to remove Visual Studio 6.0 prior to installing the SDK?

Yes/No

9. In general terms, a database can be thought of as a collection of related
data.

True/False

10. Which of the following is not a Relational Database Management System
(RDBMS)?

a. Microsoft SQL Server 2000

b. Oracle 8i

c. Microsoft Excel

d. IBM DB2

11. Data can be categorized as either relational or non-relational.

True/False

12. Database tables are composed of stored procedures and columns.

True/False

13. Which of the following terms refers to a field or group of fields that
uniquely identify a record?

a. Foreign Key

b. Trigger

c. Primary Key

d. Stored Procedure

14. Enterprise Manager is used to create and manage SQL Server databases.

True/False

Part I–Friday Evening Part Review42

084830-1 PR01.F 11/7/01 9:01 AM Page 42

15. Which of the following languages are used to create SQL Server
databases?

a. PL/SQL

b. T-SQL

c. Visual Basic

d. C++

16. SQL Server is a piece of hardware that can contain multiple databases.

True/False

17. The T-SQL statement used to create a new database is CREATE INSTANCE.

True/False

Part I–Friday Evening Part Review 43

084830-1 PR01.F 11/7/01 9:01 AM Page 43

094830-1 DPO2.F 11/7/01 9:01 AM Page 44

Part II — Saturday Morning
Session 5
Using SQL: A Primer

Session 6
XML: A Primer

Session 7
Developing ASP.NET Pages

Session 8
Using HTML Controls

Session 9
Using Web Controls

Session 10
Introducing User Controls

Part III — Saturday Afternoon
Session 11
Validating User Input

Session 12
Maintaining State in ASP.NET

Session 13
Authentication and Authorization

Session 14
ASP.NET Caching

Session 15
Introducing ADO.NET

Session 16
Navigating the ADO.NET Object Model

Part IV — Saturday Evening
Session 17
Opening a Connection

Session 18
Executing Commands

Session 19
Using DataReaders

Session 20
Introducing Datasets, Part I

094830-1 DPO2.F 11/7/01 9:01 AM Page 45

P A R T

Saturday
Morning

II

Session 5
Using SQL: A Primer

Session 6
XML: A Primer

Session 7
Developing ASP.NET Pages

Session 8
Using HTML Controls

Session 9
Using Web Controls

Session 10
Introducing User Controls

104830-1 PtO2.F 11/7/01 9:01 AM Page 46

Session Checklist
✔ Understanding the usefulness of SQL
✔ Writing SELECT, INSERT, UPDATE, and DELETE SQL commands

A fter you have built a database, whether it be SQL Server or Oracle or Access, a time
will come when you need to do something with it, more than likely retrieve and
modify data. When dealing with data in a database, it turns out that there are four

actions you will most frequently perform: create, retrieve, update, and delete. Collectively
these activities are referred to as CRUD. If someone, probably a manager, asks you for a
CRUD diagram they are simply asking for a diagram representing what commands or actions
you execute against the data store.

In order to execute CRUD commands against a relational database, you need to use
Structured Query Language or SQL (pronounced sequel). SQL, as a querying language, is
composed of a series of statements and clauses, which, when combined, perform different
actions. In this session, we will address the most common SQL commands, INSERT, DELETE,
UPDATE, and SELECT, and their related clauses. In order to demonstrate the use of SQL, you
will execute commands against the Music database discussed in the previous session. So, if
you haven’t already done so, please create the Music database.

INSERT Statements
Now that you’ve designed and constructed a database, it’s time to use it or have someone
else use it. To make a database useful, it needs to contain some data. The SQL command to
add data to a database is INSERT. The basic INSERT statement adds one row at a time to a
table. Variations of the basic INSERT statement enable you to add multiple rows by selecting
data from another table or by executing a stored procedure. In all of these cases, you must

Using SQL: A Primer

S E S S I O N

5

1114830-1 Ch05.F 11/7/01 9:02 AM Page 47

know something about the structure of the table into which you are inserting data. The
following information is useful:

� The number of columns in the table
� The data type of each column
� The names of the columns
� Constraints and column properties

Following is the syntax for a basic INSERT statement:

INSERT INTO tablename [(columnname, ...)] VALUES (constant, ...)

where tablename represents the name of the table into which you want to insert data,
columnname represents the name of the column into which you insert a specific piece of
data, and constant represents the data you want to insert.

For example, if you wanted to add a music type to the t_music_type table in the Music
database, you would write the following statement:

INSERT INTO t_music_types (music_type_title) VALUES (‘Rock and Roll’)

In plain English, this translates into, “insert a record into the t_music_types table and set
the music_type_title field equal to the string Rock and Roll.”

If you’ll recall, the t_music_types table contains two columns: (1) music_type_id and
(2) music_type_title. However, the previous INSERT statement only inserts data into the
music_type_title column. That’s because the music_type_id column is an IDENTITY col-
umn, which means that whenever a new row is added to the table, a unique identity value is
automatically inserted into the music_type_column column. When executing an INSERT
command, you must provide a field name/expression pair for each column that has not been
assigned a default value and does not allow NULL values.

Let’s try another insert statement:

INSERT INTO t_record_companies (record_company_title) VALUES
(‘Atlantic Records’)

Now write an INSERT statement that’s a little more involved. You’re going to add a band to
the t_bands table, which changes the number of columns of the t_bands table to four, two
of which are foreign keys. The music_type_id column is a foreign key to the
t_music_type_id field in the t_music_types table, and the record_company_id column
is a foreign key to the record_company_id field in the t_record_companies table. This
means that you must insert values into these two columns that have corresponding values
in their foreign key column. Assume that in the t_record_companies table, “Atlantic
Records” has a record_company_id value of 1. Assume the same thing for “Rock and Roll”
in the t_music_types table. So the insert statement for the t_bands table should look like
this:

INSERT INTO t_bands (band_title, music_type_id, record_company_id) VALUES
(‘Hootie & The Blowfish’,1,1)

Notice that you enclosed the band_title value, but not the music_type_id and
record_company_id values, in single quotes. This is why you need to know the data types

Saturday Morning48

1114830-1 Ch05.F 11/7/01 9:02 AM Page 48

of the columns into which you are inserting data. If the column into which you are insert-
ing is of a numeric data type, you do not enclose the value in single quotes, however if you
are inserting character data, you need to enclose the value in single quotes. Try running
this statement:

INSERT INTO t_bands (band_title, music_type_id, record_company_id) VALUES
(‘Toad The Wet Sprocket’,’1’,’1’)

You should get an error when executing this command because you are attempting to
insert character data into columns that expect numeric data. Here’s the correct INSERT
statement:

INSERT INTO t_bands (band_title, music_type_id, record_company_id) VALUES
(‘Toad The Wet Sprocket’,1,1)

DELETE Statements
The DELETE command removes a row or multiple rows from a table. Following is the syntax
for a basic DELETE statement:

DELETE FROM tablename [WHERE where expression]

Executing a DELETE statement that does not contain a WHERE clause removes all the
records from a table. This is generally not what you want to do, so be careful when execut-
ing DELETE statements. Here’s an example:

DELETE FROM t_albums

This previous statement will delete all records from the t_albums table.
The WHERE clause is used to narrow the scope of our DELETE statement by specifying cri-

teria that identify the records to delete. Here’s an example:

DELETE FROM t_albums WHERE band_id = 1

Assuming Hootie & The Blowfish have a band_id of 1 in the t_bands table, all of Hootie’s
albums will be removed from the t_albums table.

The WHERE clause can consist of one expression as demonstrated with the previous
DELETE statement or a series of expressions separated by Boolean operators. The Boolean
operators most commonly used are AND, OR, and NOT. When using these operators together,
precedence rules determine the order in which they’re evaluated. When the WHERE clause
consists of statements enclosed in parentheses, the expressions in parentheses are examine
first. After the expressions in parentheses are evaluated, the following rules apply:

� NOT is evaluated before AND. NOT can only occur after AND. OR NOT isn’t allowed.
� AND is evaluated before OR.

Let’s try it out . . .

DELETE FROM t_bands WHERE band_title = ‘Hootie & The Blowfish’ AND
record_company_id = 100

Session 5—Using SQL: A Primer 49

1114830-1 Ch05.F 11/7/01 9:02 AM Page 49

The previous statement will delete all rows from the t_bands table where the value in the
band_title column is equal to Hootie & The Blowfish and the value in the record_
company_id field is 100. Based on the data we inserted earlier, no record should be deleted
from the t_bands table. There is a record that where band_title equals Hootie & The
Blowfish, but that record has record_company_id value of 1. Let’s try an OR . . .

DELETE FROM t_bands WHERE band_title = ‘Toad The Wet Sprocket OR
record_company_id = 100

This statement will delete all rows from t_bands table where the value in the band_title
column is equal to Toad The Wet Sprocket or the value in the record_company_id field is
100. So based on our sample data, one row should be deleted from the t_bands table because
there is one row that contains Toad The Wet Sprocket in the band_title column, but no
rows contain a record_company_id value of 100.

A WHERE clause can also contain something called a predicate. A predicate is a expression
that makes a factual assertion about a column value. Some common examples of predicates
are CONTAINS, LIKE, and NULL. CONTAINS returns true if the value in the specified table
contains a specified value. LIKE returns true if the specified column’s data matches a speci-
fied string pattern.

A string pattern can contain wildcard characters such as the percent sign (%),
which matches one or more characters, and the underscore (_), which
matches one character.

NULL determines whether a column contains data. Let’s try it out:

DELETE FROM t_bands WHERE CONTAINS (band_title,’Toad’)

This statement means, “delete all rows from t_bands where band_title contains Toad.”
Let’s try another:

DELETE FROM t_bands WHERE band_title LIKE ‘Toad%’

In SQL Server, the % is referred to as a wildcard character. The % wildcard
character matches any string of zero or more characters. So placing % in our
previous delete statement instructed SQL Server to delete all records in the
t_bands table where the value in the band_title column begins with “Toad.”

UPDATE Statements
The UPDATE statement enables you to change the data within existing rows. Following is the
syntax for a simple UPDATE statement:

UPDATE tablename SET columnname = contstant [AND columnname =
constant ...] [WHERE where-expression]

Note

Note

Saturday Morning50

1114830-1 Ch05.F 11/7/01 9:02 AM Page 50

The good news about this statement is that the WHERE clause works the same here as it
does with the DELETE statement. It simply more clearly identifies the rows that need to be
updated.

Here’s a sample UPDATE statement:

UPDATE t_bands SET band_title = ‘Hootie and The Blowfish’ WHERE band_id = 1

This statement says, “change the value in the band_title field to “Hootie and The
Blowfish” in all rows where the value in the band_id field is 1.” It’s that simple.

SELECT Statements
The SELECT statement is an important one. You probably use this statement more than any
other SQL statement. As you might have guessed, the SELECT statement is used to retrieve
data from a table or group of tables. The syntax for a SELECT statement is far too compli-
cated to show here. Instead, here’s a demonstration, using the Music database, of some ways
that you can use a SELECT statement. Now get started.

If you want to return all rows from a single table, let’s say t_bands, you use the following
command:

SELECT * FROM t_bands

In this statement, the * returns all columns. So what if you only want to return just a few
rows based on certain criteria? Well, you would use a WHERE clause. To demonstrate this,
execute the following INSERT statements:

INSERT INTO t_band_members (band_member_fname, band_member_lname, band_id)
VALUES
(‘Darius’,’Rucker’,1)
INSERT INTO t_band_members (band_member_fname, band_member_lname, band_id)
VALUES
(‘Mark’,’Bryan’,1)
INSERT INTO t_band_members (band_member_fname, band_member_lname, band_id)
VALUES
(‘Dean’,’Felber’,1)
INSERT INTO t_band_members (band_member_fname, band_member_lname, band_id)
VALUES
(‘Jim’,’Sonefeld’,1)

Now you can execute a command to return all the members of Hootie & The Blowfish as
follows:

SELECT * FROM t_band_members WHERE band_id = 1

Generally, using * is not good practice because it returns all the columns in a table, which
is not generally the desired result. For performance reasons it is a good idea to only request
the columns you need. So what if you don’t want to return all the columns in a row? In that

Session 5—Using SQL: A Primer 51

1114830-1 Ch05.F 11/7/01 9:02 AM Page 51

case, you would simply explicitly define which columns to return. The following statement
returns only two columns from the t_band_members table:

SELECT band_member_fname, band_member_lname FROM t_band_members WHERE
band_id = 1

You can also order the rows returned using an ORDER clause. The ORDER clause allows you
to specify the columns you want to use to order the rows that are returned by a SELECT
statement.

SELECT band_member_fname, band_member_lname FROM t_band_members WHERE
band_id = 1
ORDER BY band_member_lname, band_member_fname

In the previous statement, the results of the SELECT statement will first be ordered by
band_member_lname and then by band_member_fname. So if you had two band members
with the same last name, they would then be ordered by first name. Although, based on the
data we have inserted thus far in the session, sorting by last and first name will yield the
same results as sorting only by last name since all band members have different last names.

When you execute a SELECT statement, the column names are generally included.
Sometimes that’s not appropriate. Luckily, SQL allows you to get around this problem. You
can use an AS clause to rename the columns returned from the SELECT statement as shown
in the following example:

SELECT band_member_fname AS “Last Name”, band_member_lname AS “First Name”
FROM
t_band_members WHERE band_id = 1 ORDER BY band_member_lname,
band_member_fname

Notice that the derived column names are enclosed in quotes. This is because the derived
names contain spaces. If the derived names do not contain spaces — for example, “LName” —
you do not need to use quotes.

OK, we’re getting close to the end. The last type of SELECT statement involves returning
data from more than one table. There are many ways to do this. Here’s a simple example:

SELECT band_member_fname AS “Last Name”, band_member_lname AS “First
Name”,
band_title AS “Band Title” FROM t_band_members, t_bands WHERE
t_band_members.band_id
= t_bands.band_id ORDER BY band_title, _member_lname, band_member_fname

This statement returns data from two tables, t_bands and t_band_members. The FROM
clause lists the tables from which you want to return data. With the statement, you are
returning three columns from the two tables. The columns you want to return are listed
after the SELECT statement. If, by chance, you have two columns with the same name in
tables from which you are selecting, you need to preface the column names with the table
name. For example, the following code is a rewrite of the previous SELECT statement that
explicitly declares from which table you are selecting the columns:

Saturday Morning52

1114830-1 Ch05.F 11/7/01 9:02 AM Page 52

SELECT t_band_members.band_member_fname AS “Last Name”,
t_band_members.band_member_lname AS “First Name”, t_bands.band_title AS
“Band Title”
FROM t_band_members, t_bands WHERE t_band_members.band_id =
t_bands.band_id ORDER BY
t_bands.band_title, t_band_members.band_member_lname,
t_band_members.band_member_fname

So, how are the tables joined when selecting data from two or more tables? Look at the
WHERE clauses in the two previous SELECT statements. The WHERE clause links the tables on
the band_id in each table. So all the rows in each table that have the same band_id value
are displayed. Try taking out the WHERE clause and executing the SQL statement.

REVIEW

SQL is the language used to retrieve and manipulate data in a database. SQL is effectively a
language composed of statements and clauses used in concert to create, retrieve, update,
and delete data. From our experience, the INSERT, DELETE, UPDATE, and SELECT statements
are the most commonly used SQL statements.

QUIZ YOURSELF

1. What is SQL? (See session introduction.)
2. What SQL statement is used to retrieve data from a database table? (See “SELECT

Statements.”)
3. How do you return data from more than one table with a SELECT command?

(See “SELECT Statements.”)

Session 5—Using SQL: A Primer 53

1114830-1 Ch05.F 11/7/01 9:02 AM Page 53

1114830-1 Ch05.F 11/7/01 9:02 AM Page 54

Session Checklist
✔ Understanding the basics and promise of XML
✔ Learning to create a simple XML document

Y ou have probably heard a great deal about eXtensible Markup Language (XML) over the
past few years. XML is on its way to becoming the de facto language for communications
between devices, Web browsers, computers, servers, and applications. In time, any two

applications will be able to exchange information without ever having been designed to talk
to each other.

In many ways, XML is just another file format — one more way to store information.
However, XML as a file format is just the beginning. XML promises to liberate information
from proprietary file formats and make it possible for information to move among multiple
programs on different types of computers without facing the battery of conversion programs
and lost information that is currently necessary. XML promises to dramatically increase both
the efficiency and flexibility of the ways in which you handle information. In doing so, XML
will have an impact on the way in which you use computers; it will change the way you
look at applications.

Fundamentally, XML makes it easy to store information in a hierarchical format, providing a
consistent, easy-to-parse syntax and a set of tools for building rules describing the structure
used to contain information. The XML format can represent both simple and complex informa-
tion, and allows developers to create their own vocabularies for describing that information.
XML documents can describe both themselves and their content.

The XML Design Specs
When you think of an “application,” you tend to think of a Web application — or a desktop
application like Word or Excel. However, the creators of XML were a little less nearsighted

XML: A Primer

S E S S I O N

6

124830-1 Ch06.F 11/7/01 9:02 AM Page 55

when they developed the XML specification. They saw XML as a way of sharing data among
many different kinds of applications. For this reason, the creators of XML established the
following design commandments for the XML specification:

1. XML shall be straightforwardly usable over the Internet.
This does not mean that XML should only be used over the Internet, but rather
that it should be lightweight and easily usable over the Internet.

2. XML shall support a wide variety of applications.
The idea here is that XML should not be application specific. It can be used over
the Internet or in a traditional client/server application. There is no specific tech-
nology behind XML, so any technology should be able to use it.

3. It shall be easy to write programs that process XML documents.
Unable to gain wide acceptance for various reasons, many technologies come and
go. A major barrier to wide acceptance is a high level of difficulty or complexity.
The designers of XML wanted to ensure that it would gain rapid acceptance by
making it easy for programmers to write XML parsers.

4. XML documents should be human-legible and reasonably clear.
Because XML is text-based and follows a strict but simple formatting methodology,
it is extremely easy for a human to get a true sense of what a document means.
XML is designed to describe the structure of its contents.

5. XML documents shall be easy to create.
XML documents can be created in a simple text-editor. Now that’s easy!

There are other XML guidelines, but since this only is an introduction to XML, these will
do for now. The important thing to remember is that XML is simply a file format that can be
used for two or more entities to exchange information.

XML documents are hierarchical: they have a single (root) element, which may contain
other elements, which may in turn contain other elements, and so on. Documents typically
look like a tree structure with branches growing out from the center and finally terminating
at some point with content. Elements are often described as having parent and child rela-
tionships, in which the parent contains the child element.

The Structure of XML Documents
XML documents must be properly structured and follow strict syntax rules in order to work
correctly. If a document is lacking in either if these areas, the document can’t be parsed.
There are two types of structures in every XML document: logical and physical. The logical
structure is the framework for the document and the physical structure is the actual data.

An XML document may consist of three logical parts: a prolog (optional), a document ele-
ment, and an epilog (optional). The prolog is used to instruct the parser how to interpret
the document element. The purpose of the epilog is to provide information pertaining to the
preceding data. Listing 6-1 shows the basic structure of an XML document.

Saturday Morning56

124830-1 Ch06.F 11/7/01 9:02 AM Page 56

Listing 6-1 Basic structure of an XML document

<?xml version=”1.0” ?>
<!-- Above is the prolog -->

<!-- The lines below are contained within the document element: BANDS -->
<BANDS>
<BAND TYPE=”ROCK”>
<NAME>Hootie And The Blowfish</NAME>
<MEMBERS>
<MEMBER>
<FIRST_NAME>Darius</FIRST_NAME>
<LAST_NAME>Rucker</LAST_NAME>

</MEMBER>
<MEMBER>
<FIRST_NAME>Dean</FIRST_NAME>
<LAST_NAME>Felber</LAST_NAME>

</MEMBER>
<MEMBER>
<FIRST_NAME>Mark</FIRST_NAME>
<LAST_NAME>Bryan</LAST_NAME>

</MEMBER>
<MEMBER>
<FIRST_NAME>Jim</FIRST_NAME>
<LAST_NAME>Sonefeld</LAST_NAME>

</MEMBER>
</MEMBERS>
<LABEL>Atlantic Recording Corporation</LABEL>

</BAND>
</BANDS>
<!-- epilog goes here -->

The prolog is made up of two parts: the XML declaration and an optional Document Type
Declaration (DTD). The XML declaration identifies the document as XML and lets the parser
know that it complies with the XML specification. Although the prolog, and thereby the
XML declaration, is optional, we recommend that you include them in all your XML docu-
ments. Here is an example of a simple XML declaration:

<?xml version=”1.0” ?>

The XML declaration can also contain more than just the version attribute. Some of the
more important ones are the encoding and standalone attributes.

The document type declaration establishes the grammar rules for the document or it
points to a document where these rules can be found. The DTD is optional, but, if included,
must appear after the XML declaration.

XML documents can also reference a Schema rather than a DTD. Schemas perform essen-
tially the same function as DTDs, but can describe more complex data types and are actually
XML documents themselves. When possible, we recommend using a Schema rather than a
DTD as Schemas are quickly becoming the de-facto standard for describing XML documents.

Session 6—XML: A Primer 57

124830-1 Ch06.F 11/7/01 9:02 AM Page 57

An XML document is referred to as well formed when it conforms to all XML
syntax rules. A valid XML document follows the structural rules defined in a
Document Type Definition or Schema.

All the data in an XML document is contained within the document element (in this
example, <BANDS>). You can’t have more than one document element in the same document,
but the document element can contain as many child elements as necessary.

XML Syntax
The contents of an XML document are constructed using a very strict syntax that must con-
form to the following rules:

� Tags are case sensitive.
� All tags must be closed.
� Attribute values must be enclosed in quotes.

XML elements can have attributes that allow you to add information to an
element that it does not contain. For example, in Listing 6-1, the BAND
element has a TYPE attribute with a value of “ROCK”.

XML tags are very similar to HTML tags. The less-than (<) and greater-than (>) symbols
are used to delimit tags and the forward slash (/) is used to indicate closing tags.

Elements are building blocks of an XML document. Every element in an XML document,
with the exception of the document element, is a child element. Child elements can contain
one of four content types:

� Element content
� Character content
� Mixed content
� Empty

In our example, the <BAND> and <MEMBERS> elements contain element content. All others
contain character content.

All elements in an XML document are nested, which gives the document a hierarchical
tree appearance. If you’ll notice in the <BANDS> example, all of elements’ sub-elements are
indented. The rules for nesting are strictly enforced.

XML elements can also have attributes. For example:

<BAND TYPE=”ROCK”>

In the previous example, the <BAND> element has an attribute named TYPE that is used
to indicate what kind of music the band plays. Notice that the attribute value is enclosed in

Note

Note

Saturday Morning58

124830-1 Ch06.F 11/7/01 9:02 AM Page 58

quotes, which are required. You can create attributes to help describe your elements. You
could have also used another child element called <TYPE> rather than using an attribute.
Either way is fine. It’s really a matter of preference.

XML and the .NET Framework
The important thing to remember about XML is that it is simply a way of describing data so
that any application that knows the structure of the document can use it. Why do you need
to know about XML when dealing with ASP.NET? Well, much of the .NET Framework revolves
around the concept of universal data and application access. In fact, pretty much every-
thing in the .NET world revolves around the premise of universal access.

Probably two of the most evident examples of XML usage in ASP.NET are the config.web
and global.asax files. Without going into too much detail about these files, they store appli-
cation and configuration data. Here is an example of a config.web file:

<configuration>
<sessionstate timeout=”120”/>
<assemblies>
<add assembly=”mscorlib”/>
<add assembly=”System.Web”/>
<add assembly=”System.Data”/>

</assemblies>
<appsettings>
<add key=”DSN” value=”Server=127.0.0.1;Database=hootie; UID=sa”/>

</appsettings>
</configuration>

From your knowledge of XML, you can see that the document element for the config.web
file is <configuration>. The document element contains several child elements including
<sessionstate>, <assemblies>, and <appsettings>. The <sessionstate> element has an
attribute named timeout that has a value of 120. The <sessionstate> element is empty,
which means that it does not contain any character data. When an element is empty is must
be closed with the /> or </ELEMENT> syntax. The same could have been accomplished by
writing:

<sessionstate timeout=”120”></sessionstate>

XML is also used in ASP.NET with Web Services. A Web Service’s results are always
returned in XML format. Suppose you created a Web Service named Math that has a method
named Add that sums two numbers. If you invoke the Web Service and call the Add function
by passing 2 and 6 as the parameters you might get the following result:

<?xml version=”1.0” ?>
<int xmlns=”http://tempuri.org/”>8</int>

You’ll notice that the result is returned in XML format. The XML document contains a
prolog and a document element. That’s it.

Session 6—XML: A Primer 59

124830-1 Ch06.F 11/7/01 9:02 AM Page 59

This brief introduction of XML and how it is used by the .NET Framework will help you
understand some of the concepts introduced later in the book. For further information
about XML, we recommend visiting the World Wide Web Consortium’s (W3C) XML Web site at
www.w3c.com.

.NET Web Services, like the global.asax and config.web files, are based heavily on XML.
All Web Services responses are serialized as XML. We’ll talk more about Web Services in
Session 28.

REVIEW

“XML is the future . . .” If you’ve heard that once, you’ve heard it a million times. You may
be sick of hearing it, but you accept it because it’s probably true. Simply put, the purpose
of XML is to describe data so it can easily be exchanged. The nice thing about XML is that
it’s easy to learn as its syntax is very similar to its cousin HTML.

QUIZ YOURSELF

1. What is the purpose of XML? (See session introduction.)
2. How many root elements are in an XML document? (See “The XML Design Specs.”)
3. What are the three logical parts of an XML document? (See “The Structure of XML

Documents.”)

Saturday Morning60

124830-1 Ch06.F 11/7/01 9:02 AM Page 60

Session Checklist
Handling ASP.NET events
Using page directives and namespaces

Choosing a language

In this session, we are going to walk you through writing an ASP.NET page. Writing and
ASP.NET page is a little more complicated than writing an ASP page, but once you get
the hang of it, you’ll end up writing a lot less code. ASP.NET pages are event-oriented

rather than procedural. This means that instead of starting at the top of a page and writing
code that is executed as the page is interpreted, you write event-handling code. An event
can be pretty much any type of action, for example, a user submitting a form, a page
loading, or clicking a button, and so on.

ASP.NET Events
When an ASP.NET page is loaded, a structured series of events is fired in a set order. You write
code that responds to these events rather than interspersing it with HTML as the general
practice with ASP. Figure 7-1 shows the ASP.NET event order.

As you can see, the first event to be fired when a page is loaded is the Page_Load event
and the last to be fired is the Page_Unload event. The Page_Load event is fired every time
a page is loaded. In between the Page_Load and the Page_Unload events, control events are
fired. A control event is an event that is wired to a control of some sort. ASP.NET provides
many types of controls including HTML controls, Web controls, user controls, validation
controls, and so on. Don’t concern yourself with the differences between controls right now
(they’re discussed in greater detail in Session 8, “Using HTML Controls”, and Session 9,
“Using Web Controls”.), just be aware that they can all respond to events, like being clicked.

Developing ASP.NET Pages

S E S S I O N

7

134830-1 Ch07.F 11/7/01 9:02 AM Page 61

Figure 7-1 ASP.NET page events

In order to write code for these events, you need to include them in a code declaration
block. In ASP.NET, a code declaration block looks like this:

<SCRIPT [LANGUAGE=”codeLangauge”] RUNAT=”SERVER” [SRC=”externalfilename”]>
‘ Event Handling Code

</SCRIPT>

The LANGUAGE attribute in the <SCRIPT> element specifies the language used in the code
block. The value can be any .NET language like VB or C#. The RUNAT=”SERVER”
attribute/value pair specifies that the script block should be executed on the server-side
rather than the client-side. The SRC attribute enables you to specify an external file where
the code is located.

So, based on what we know at this point, an ASP.NET page should look like this:

<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Source As Object, E As EventArgs)

‘ Page_Load Code
End Sub
Sub Control_Click(Source As Object, E As EventArgs)

‘Control_Click Code
End Sub
Sub Page_Unload(Source As Object, E As EventArgs)

‘ Page_Unload
End Sub

</SCRIPT>
<html>
<head>
<title>ASP.NET Page</title>
</head>
<body>
</body>
</html>

ASP.NET files have an .aspx extension. The .aspx extension simply tells IIS
that an ASP.NET page is being requested and should be handled accordingly.
All code in this session should be written in files with an .aspx extension.Note

Saturday Morning62

134830-1 Ch07.F 11/7/01 9:02 AM Page 62

In ASP.NET, a page is an object, which means it has properties, events and methods. The
Page object has one very important property: isPostBack. The isPostBack property
returns a Boolean value indicating whether the page is being loaded in response to a client
post back. This is important because in many cases you will be initializing controls when a
page is loaded. Since ASP.NET manages control state between requests, you probably don’t
want to initialize a control if the page is responding to a post back. Right? Listing 7-1
shows an example of using the isPostBack property:

Listing 7-1 An isPostBack property example

<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Source As Object, E As EventArgs)

‘ Page_Load Code
lblTest.Text = Page.isPostBack

End Sub
Sub Control_Click(Source As Object, E As EventArgs)

‘Control_Click Code
End Sub
Sub Page_Unload(Source As Object, E As EventArgs)

‘ Page_Unload
End Sub

</SCRIPT>
<html>
<head>
<title>ASP.NET Page</title>
</head>
<body>
<form ID=”frmTest” RUNAT=”SERVER”>
<asp:Label ID=”lblTest” RUNAT=”SERVER”/>
</BR>
<asp:Button ID=”btnSubmit” TEXT=”Submit” RUNAT=”SERVER”/>
</form>
</body>
</html>

As shown in Listing 7-1, we added a snippet of code to the Page_Load event that checks
if the page is being posted back using the isPostBack property. Something that may look
a little foreign are the server-side control declarations a little further down the page. We
declared three server controls including a Form HTML control, a Label Web control and a
Button Web control. You’ll notice that each of these declarations contains a “RUNAT=SERVER”
attribute/value pair. This simply means that the control is rendered on the server and its
events are handled on the server side rather than the client side. We’ll talk more about
controls in later sessions.

The Page class contains many useful properties and methods. Refer to your
.NET documentation for a complete treatment of the Page class.

OK, try running the previous example. When the page is first loaded the word “False”
appears above the Submit button. If you click the Submit button, the form is posted and

Note

Session 7—Developing ASP.NET Pages 63

134830-1 Ch07.F 11/7/01 9:02 AM Page 63

the page is loaded again. The word “True” now appears above the Submit button. That is
because the page is being loaded in response to a post back to the server.

Now, try adding some code to the Control_Click event handler and wiring the Submit
button to fire the Control_Click event handler as shown in Listing 7-2.

Listing 7-2 Using the Control_Click event handler

<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Source As Object, E As EventArgs)

‘ Page_Load Code
lblTest.Text = Page.isPostBack

End Sub
Sub Control_Click(Sender As Object, E As EventArgs)

‘Control_Click Code
Response.Write(“The Submit button was clicked!”)

End Sub
Sub Page_Unload(Source As Object, E As EventArgs)

‘ Page_Unload
End Sub

</SCRIPT>
<html>
<head>
<title>ASP.NET Page</title>
</head>
<body>
<form ID=”frmTest” RUNAT=”SERVER”>
<asp:Label ID=”lblTest” RUNAT=”SERVER”/>
</br>
<asp:Button ID=”btnSubmit” onClick=”Control_Click” TEXT=”Submit”
RUNAT=”SERVER”/>
</form>
</body>
</html>

Take a look at the Button Web control declaration. You’ll notice that we added the
onClick=”Control_Click” attribute/value pair. This declaration wires the btnSubmit
button to fire the Control_Click event handling routine.

Now take a look at the Control_Click event handling method. When fired, by the
btnSubmit Web control, the phrase “The Submit button was clicked!” will be written to
the page response. Try running the page to see what happens.

Page Directives
ASP.NET pages can optionally contain directives that specify settings to be used by the page
compiler. Page directives can be located anywhere within an .aspx file. Additionally each
directive can contain multiple attribute/value pairs specific to the directive. The syntax for
a page directive is:

<%@ directive attribute=”value” [attribute=”value” . . .]%>

Saturday Morning64

134830-1 Ch07.F 11/7/01 9:02 AM Page 64

Table 7-1 lists the directives that are supported by ASP.NET pages.

Table 7-1 ASP.NET Page Directives

Directive Description

@Page The @Page directive defines page-specific attributes used by the ASP.NET
page parser and compiler. An example of a @Page attribute is Language,
which specifies the default language for the page.

@Control The @Control directive defines control-specific attributes used by the
ASP.NET page parser and compiler. An example of a @Control attribute
is Description, which provides a text description of the control.

@Import The @Import directive explicitly imports a namespace into a page. The
only attribute supported by the @Import directive is Namespace, which
indicates the name of namespace to import. (More on namespaces later.)

@Register The @Register directive associates aliases with namespaces and class
names for concise notation in custom server control syntax. For more
information on the @Register directive, see Session 10.

@Assembly An assembly is a unit of reusable code compiled into a .dll file. The
@Assembly directive links an assembly against the current page, making
all of the assembly’s classes and interfaces available for use on the page.
The only attribute supported by the @Assembly directive is
Assemblyname, which indicates the name of the assembly to link.
Assemblies that reside in an application \bin directory are automati-
cally linked to pages within the application, therefore, they do not need
to be linked using the @Assembly directive.

@OutputCache The @OutputCache directive controls the output caching policy for the
page. An example of a @OutputCache attribute is Duration, which
specifies the time (in seconds) that the output cache for the page will
be maintained.

Listing 7-3 shows an example of an ASP.NET page with page directives.

Listing 7-3 An ASP.NET page with page directives

<%@ Page Language=”VB” Description=”ASP.NET Page” %>
<%@ Import Namespace=”System.Net” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>

Sub Page_Load(Source As Object, E As EventArgs)
‘ Page_Load Code
lblTest.Text = Page.isPostBack

End Sub
Continued

Session 7—Developing ASP.NET Pages 65

134830-1 Ch07.F 11/7/01 9:02 AM Page 65

Listing 7-3 Continued

Sub Control_Click(Sender As Object, E As EventArgs)
‘Control_Click Code
Response.Write(“The Submit button was clicked!”)

End Sub
Sub Page_Unload(Source As Object, E As EventArgs)

‘ Page_Unload
End Sub

</SCRIPT>
<html>
<head>
<title>ASP.NET Page</title>
</head>
<body>
<form ID=”frmTest” RUNAT=”SERVER”>
<asp:Label ID=”lblTest” RUNAT=”SERVER”/>
</br>
<asp:Button ID=”btnSubmit” onClick=”Control_Click” TEXT=”Submit”
RUNAT=”SERVER”/>
</form>
</body>
</html>

Our ASP.NET page now contains three directives: @Page, @Import, and @OutputCache.

Namespaces
As we have mentioned several times in this book, ASP.NET, and actually the .NET
Framework, is a hierarchy of classes providing basic services. In order to gain access to these
classes or services, you need to import their namespace into the ASP.NET page.

Table 7-2 lists several of the namespaces that are automatically imported into all pages.

Table 7-2 Namespaces That Are Automatically Imported

Namespace Description

System Contains fundamental classes and base classes that define
commonly-used value and reference data types, events and
event handlers, interfaces, attributes, and processing
exceptions.

System.Collections Contains interfaces and classes that define various collec-
tions of objects, such as lists, queues, arrays, hash tables,
and dictionaries.

System.IO Provides access to the File and Directory objects, which
enable you to add, move, change, create, or delete folders
(directories) and files on the Web server.

Saturday Morning66

134830-1 Ch07.F 11/7/01 9:02 AM Page 66

Namespace Description

System.Web Includes the HTTPRequest class that provides extensive
information about the current HTTP request, the
HTTPResponse class that manages HTTP output to the
client, and the HTTPServerUtility object that provides
access to server-side utilities and processes. System.Web
also includes classes for cookie manipulation, file transfer,
exception information, and output cache control.

System.Web.UI Contains the ASP.NET control classes.

System.Web.UI.HtmlControls Contains the HTML server controls.

System.Web.UI.WebControls Contains the Web controls.

For a list of all of the namespaces imported into ASP.NET pages by default,
refer to your ASP.NET documentation.

Table 7-3 explains some other commonly used namespaces.

Table 7-3 Other Commonly Used Namespaces

Namespace Description

System.Data Provides access to general data access services.

System.Data.OleDb Provides access to OLEDB -specific data access services.

System.Data.SQLClient Provides access to SQL Server data access services.

SystemXML Provides access to the services for manipulating XML.

So, for example, if you wanted to write a page that would be used to access a SQL Server
database, you would include the following @Import page directives in your ASP.NET page:

<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.SqlClient” %>

Choosing a Language
In this session, we have used Visual Basic.NET to write the ASP.NET pages. One of the most
attractive features about the .NET Framework is that it is language neutral. This means that
any language that provides a .NET compiler can be used to write ASP.NET pages. The number
of languages supported is continuously growing. More than likely, at some point, your favorite
language will be supported. And since all code is compiled into intermediate language (IL)
code, there is no performance penalty or gain for using one language rather than another.

Note

Session 7—Developing ASP.NET Pages 67

134830-1 Ch07.F 11/7/01 9:02 AM Page 67

So, when choosing a language, pick the language with which you are most comfortable.
We are guessing that VB.NET and C# will gain the widest acceptance, so, if you’re looking for
support, those might be the best choices.

REVIEW

ASP.NET provides an event-oriented programming model. When an ASP.NET page is loaded, a
structured series of events are fired in a set order. You can write code that responds to these
events rather than interspersing it with HTML, as you had to do if you programmed in ASP.
ASP.NET pages can also be managed and controlled through the use of page directives,
which specify optional settings to be used by the page compiler. One of these page direc-
tives is Import, which provides ASP.NET page access to .NET services.

QUIZ YOURSELF

1. What is a page directive? (See “Page Directives.”)
2. Which namespaces are used for data access? (See “Namespaces.”)
3. What event is fired every time a page is loaded? (See “ASP.NET Events.”)

Saturday Morning68

134830-1 Ch07.F 11/7/01 9:02 AM Page 68

Session Checklist
✔ Understanding the usefulness of HTML controls
✔ Learning to utilize server-side event handling
✔ Implementing HTML controls to maintain state

In today’s distributed computing environment, one of the biggest issues developers face
is writing code that can effectively run on numerous browser types and versions, and
maintaining state between server requests. Writing an Internet application can be very

tedious when attempting to write code that can run simultaneously on different browsers,
operating systems, and other devices. If you’ve ever tried writing an application that takes
full advantage of the feature set of Internet Explorer 5.0 while still being compatible with
Netscape 3.0, you know what we’re talking about.

Many developers take the “lowest-common-denominator” approach to solving this problem.
This means they write applications that utilize the feature set of older browser versions (for
example, Netscape 3.0) and have all other clients, regardless of capability, execute the same
code. Naturally, this approach has drawbacks of its own. For example, in this particular case,
more round-trips to the server are required, resulting in performance degradation.

Using newer browser versions, state maintenance is less of a headache than
with older browsers. For example, with IE 5 and DHTML, HTML form validation
can be done on the fly by the client browser so fewer round trips to the
server are required than when the same application is run on, for example,
Netscape 3.0. All of these extra trips to the server dramatically increase
server load and decrease application performance.

Yet another solution to the multiple browsers problem is writing different code for different
browsers. This is generally accomplished by using a third-party component (or writing your
own) that determines the type of client browser that is making the request and executing the
server-side code written for the requesting browser type. This too is a valid approach to

Note

Using HTML Controls

S E S S I O N

8

144830-1 Ch08.F 11/7/01 9:02 AM Page 69

solving the problem, but also requires the maintenance of a lot of code. If requirements
change while an application is being developed or produced, then code needs to be changed
in multiple locations. That is neither fun nor easy!

Microsoft has effectively solved the problem of state maintenance and multiple client
support by providing HTML controls and Web controls. In this session, we will discuss HTML
controls.

Introducing HTML Controls
HTML controls look exactly like HTML elements with the exception that they have a
runat=”server” attribute/value pair in the opening tag of the HTML element. HTML con-
trols offer many benefits, including:

� Event sets. They provide a set of events for which developers can write server-side
or client-side events to handle.

� Automatic management of the values of the form’s controls. If the form makes a
round trip to the server, HTML controls are automatically populated with the values
they had when the form was submitted to the server.

� Interaction with validation controls. This feature enables developers to verify that
a user has entered correct appropriate information into the control.

� Pass-through of custom attributes. Developers can add any attributes needed to
the HTML control, and the Web Forms framework will read them and render them
without any change in functionality.

The following sections show you how to use HTML controls and how exactly they can be
utilized to solve multiple client and state maintenance problems.

Using HTML controls
Before we start slinging code, there are several things to remember when using HTML controls:

� All HTML controls that post back events must be nested within an HTML control
form.

� All HTML controls must be well formed and must not overlap. Unless otherwise
noted, elements must be closed, either with an ending slash within the tag, or with
a closing tag.

To illustrate how HTML controls work, we will first write a small application using ASP
3.0 and then re-create the same application using ASP.NET. We’ll then compare the two, and
you’ll see how much time and effort HTML controls can save. Listing 8-1 shows the code for
an ASP page that generates an HTML form.

Listing 8-1 An ASP HTML form

<html>
<body>
<%
Dim sName

Saturday Morning70

144830-1 Ch08.F 11/7/01 9:02 AM Page 70

sName = Trim(Request.Form(“cmbPeople”))
If sName <> “” Then
Response.Write(sName)

End If
%>
<form name=”frmPeople” method=”post”>
People

<select name=”cmbPeople”>
<option></option>
<option>Bill Gates</option>
<option>Larry Ellison</option>
<option>Steve Case</option>

</select>
<input type=”submit” value=”Submit”>
</form>
</body>
</html>

What we have effectively done here is create an ASP page with an HTML form that redi-
rects to itself for processing. After the form is submitted, the HTML select element loses its
state, that is, it no longer displays the value you selected prior to submitting the form.

Listing 8-2 shows another ASP page (see file C08-02.asp on the CD-ROM) that actually
maintains the select element’s state.

Listing 8-2 An ASP page that maintains state

<html>
<body>
<%
Dim sName
sName = Trim(Request.Form(“cmbPeople”))
If sName <> “” Then
Response.Write(sName)

End If
%>
<form name=”frmPeople” method=”post”>
People

<select name=”cmbPeople”>
<option></option>
<option<% If sName = “Bill Gates” Then Response.Write(“ selected”)

%>>Bill Gates</option>
<option<% If sName = “Larry Ellison” Then Response.Write(“ selected”)

%>>Larry Ellison</option>
<option<% If sName = “Steve Case” Then Response.Write(“ selected”)

%>>Steve Case</option>
</select>
<input type=”submit” value=”Submit”>
</form>
</body>
</html>

Session 8—Using HTML Controls 71

144830-1 Ch08.F 11/7/01 9:02 AM Page 71

When you reload the page, the value selected is maintained in the select element.
You’ll notice that an If...Then statement was added to each option element to check if
the option value is equivalent to the value submitted. If it is, the option element is marked
as SELECTED. This may not seem like that big of a deal, but as your forms get more and
more complex, the process of writing the code to maintain state for each element can be
very tedious and monotonous. Additionally, this code is very prone to errors. For example,
if we had inadvertently written:

<OPTION<% If sName = “Bill Gats” Then Response.Write(“ SELECTED”) %>>Bill
Gates</OPTION> (error in Gates intentional)

we would receive unexpected results. So, code like this definitely requires thorough testing.
The following sample code is a listing of the HTML source generated by our ASP page.

We’ll compare this source with the HTML source generated by the ASP.NET page we’ll write
in few seconds:

<html>
<body>
Bill Gates
<form name=”frmPeople” method=”post”>
People

<select name=”cmbPeople”>
<option></option>
<option selected>Bill Gates</option>
<option>Larry Ellison</option>
<option>Steve Case</option>

</select>
<input type=”submit” value=”Submit”>
</form>
</body>
</html>

In order to maintain state, you have to use an HTML control. To turn an HTML element
into an HTML control, use the following model:

<HTML Tag [id=”Optional Name”] [attribute=”value” . . .]
runat=”server”]>[</HTML Tag>]

Listing 8-3 shows a sample ASP.NET page (see file C08-03.aspx on the CD-ROM) that
utilizes HTML controls.

Listing 8-3 An ASP.NET page that utilizes HTML controls

<html>
<body>
<%
Dim sName
sName = Trim(Request.Form(“cmbPeople”))
If sName <> “” Then
Response.Write(sName)

End If

Saturday Morning72

144830-1 Ch08.F 11/7/01 9:02 AM Page 72

%>
<form id=”frmPeople” method=”post” runat=”server”>
People

<select id=”cmbPeople” runat=”server”>
<option></option>
<option>Bill Gates</option>
<option>Larry Ellison</option>
<option>Steve Case</option>

</select>
<input type=”submit” value=”Submit”>
</form>
</body>
</html>

Notice that this page is nearly identical to people.asp with a few minor exceptions —
we changed all the name attributes to identify attributes and added the runat=”server”
attribute/value pair to the HTML form and select elements. When you run this page,
the select element’s state will be maintained without the developer having to write an
additional line of code.

Here is a listing of the HTML source generated by our sample code:

<html>
<body>
Bill Gates<form name=”frmPeople” method=”post” action=”people.aspx”
id=”frmPeople”>
<input type=”hidden” name=”__VIEWSTATE”
value=”YTB6LTE2NTY1NTY1MF9fX3g=54b44516” />

People

<select name=”cmbPeople” id=”cmbPeople”>

<option value=””></option>
<option selected value=”Bill Gates”>Bill Gates</option>
<option value=”Larry Ellison”>Larry Ellison</option>
<option value=”Steve Case”>Steve Case</option>

</select>
<input type=”submit” value=”Submit”>
</form>
</body>
</html>

This HTML source looks similar to the HTML source generated by our traditional ASP
sample, but there are several differences:

� An action attribute/value pair was added to our form element.
� A value attribute/value pair was added to each of our option values.
� The following hidden element was added to the form:

<input type=”hidden” name=”__VIEWSTATE”
value=”YTB6LTE2NTY1NTY1MF9fX3g=54b44516” />

Session 8—Using HTML Controls 73

144830-1 Ch08.F 11/7/01 9:02 AM Page 73

Hmmmm . . . That’s weird. Where did all of this extra source code come from, and what
function does it perform? Let us explain . . .

How HTML controls work
All of the HTML code that was added came from the ASP.NET engine. Each of these additions
are being used by the ASP.NET engine to maintain state across client requests. Absolutely no
state is maintained on the server using session variables — definitely a plus for scalability.
The hidden __VIEWSTATE field is used to maintain control state and the value is actually a
compressed and encrypted value. Typically, you probably won’t be able to make much sense
of it. But that’s OK because ASP.NET handles all of the details for you.

The __VIEWSTATE form field is used to maintain control state, not user state.
User state management will be discussed in Session 12, “Maintaining State
in ASP.NET.”

When an ASP.NET page is requested from the server, several things happen relating to
HTML controls. First, the aspx page tries to determine whether the page is a post back. If it
is, the __VIEWSTATE property is examined, the posted data is processed, and state is applied
to the forms elements. All the __VIEWSTATE field does is contain data about control state
when the HTML page is generated.

Put in very simplistic terms, this is what happens. No magic, just some processing that is
transparent to the developer.

Intrinsic HTML controls
As demonstrated in the previous example, the HTML select object can be used as an ASP.NET
HTML control. So you may be wondering what other elements can be ASP.NET HTML con-
trols. Each of the following elements can be used as HTML controls:

<form> <td>
<select> <th>
 <a>
<textarea> <button>
<table> <tr>
<input> (checkbox, image, hidden, file, button, text, submit, radio button)

HTML Control Events
Handling HTML control events is a straightforward process. We can use one of two
approaches to handling events:

1. Utilize the ASP.NET Page_Load event.
2. Create custom event handlers.

Cross-Ref

Saturday Morning74

144830-1 Ch08.F 11/7/01 9:02 AM Page 74

ASP.NET’s Page object provides you with a facility for handling events on the server side
using the Page_Load event. Handling events using the Page_Load event requires you to
write some code that first checks to see if the request is a post back and then performs the
appropriate actions.

The Page_OnLoad event
Listing 8-4 demonstrates how you can handle HTML control events with the Page_OnLoad
event.

Listing 8-4 Using HTML control events with the Page_OnLoad event

<script runat=”server” language=”VB”>
Sub Page_Load(Sender As Object, E As EventArgs)
If Page.IsPostBack Then
Select cmbPeople.value
Case “Bill Gates”
Response.Redirect(“http://www.microsoft.com”)

Case “Larry Ellison”
Response.Redirect (“http://www.oracle.com”)

Case “Steve Case”
Response.Redirect (“http://www.aol.com”)

Case Else
End Select

End If
End Sub
</script>
<html>
<body>
<form id=”frmPeople” method=”post” runat=”server”>
People

<select id=”cmbPeople” runat=”server”>
<option></option>
<option>Bill Gates</option>
<option>Larry Ellison</option>
<option>Steve Case</option>

</select>

<input type=”submit” value=”Submit”>
</form>
</body>
</html>

You’ll notice at the top of this page a function called Page_Load is invoked. This function
is called each time the page is requested by a client. You must check to see whether the
page request is a post back (that is, a form has been submitted) by using the Page object’s
IsPostBack property. If the IsPostBack property returns true, you can check the submitted
values — in this case, the value of the cmbPeople select element.

With ASP.NET we can check the value of a form element using its value prop-
erty. We no longer need to use the Request.Form syntax.

Note

Session 8—Using HTML Controls 75

144830-1 Ch08.F 11/7/01 9:02 AM Page 75

The rest of the code is straightforward. Use Visual Basic’s Select control structure to
redirect the user to a Web site depending on the value selected. Remember that this code is
being handled on the server side, so the browser used by the client is inconsequential.

Custom event handlers
In order to create a custom event handler, you need to do two things:

� Create a subroutine that will act as the event handler.
� Wire an HTML control to call the event handler on the server side.

In the following example, we will create a subroutine called Sample_Handler to handle
event processing. This subroutine will be called by the Submit button by simply adding the
following the runat=”server” and onserverclick=”Sample_Handler” attribute/value
pairs to the control declaration as follows:

<input type=”submit” value=”Submit” id=”smbSubmit” runat=”server”
onserverclick=”Sample_Event”>

That’s all you have to do. Listing 8-5 shows the entire page:

Listing 8-5 Using a custom event handler

<script runat=”server” language=”VB”>
Sub Sample_Handler(Sender As Object, E As EventArgs)
Select cmbPeople.value
Case “Bill Gates”
Response.Redirect (“http://www.microsoft.com”)

Case “Larry Ellison”
Response.Redirect (“http://www.oracle.com”)

Case “Steve Case”
Response.Redirect (“http://www.aol.com”)

Case Else
End Select

End Sub
</script>
<html>
<body>
<form id=”frmPeople” method=”post” runat=”server”>
People

<select id=”cmbPeople” runat=”server”>
<option></option>
<option>Bill Gates</option>
<option>Larry Ellison</option>
<option>Steve Case</option>

</select>

<input type=”submit” value=”Submit” id=”cmbSubmit” runat=”server”
onserverclick=”Sample_Handler”>
</form>
</body>
</html>

Saturday Morning76

144830-1 Ch08.F 11/7/01 9:02 AM Page 76

REVIEW

HTML controls are server-side ASP.NET controls that render browser-specific HTML. HTML
controls reduce the time required to develop HTML that will correctly render on different
browsers; and they can be used to maintain state between server requests. HTML controls
also allow us, as developers, to capture client-side events and process them on the server.

QUIZ YOURSELF

1. What attribute/value pair must be included in an HTML control declaration?
(See “Using HTML controls.”)

2. What is the purpose of the hidden VIEWSTATE form field? (See “How HTML controls
work.”)

3. What is the advantage of using ASP.NET server-side event processing over the more
traditional client-side event processing? (See “HTML Control Events.”)

Session 8—Using HTML Controls 77

144830-1 Ch08.F 11/7/01 9:02 AM Page 77

144830-1 Ch08.F 11/7/01 9:02 AM Page 78

Session Checklist
✔ Understanding the usefulness of ASP.NET Web controls
✔ Learning how to implement Web controls

In the previous session, “Using HTML Controls,” we discussed how to utilize HTML
controls to maintain state between server requests. If you recall, there are two major
problems that Web developers commonly face: (1) state maintenance and (2) browser

compatibility. HTML controls effectively manage the state maintenance issue, but not
the browser compatibility issue. That is where Web controls come in. Web controls are very
similar to HTML controls but provide a higher degree of control and programmability.

Web controls do not map one-to-one with HTML controls. Instead, Web controls are
abstract controls in which the actual HTML rendered by the control might be quite different
from the model that you program against. Web controls include traditional form controls
such as buttons and text boxes, as well as complex controls such as tables. They also include
controls that provide commonly used functionality, for example displaying data in a grid or
choosing dates. Many Web controls can also be bound to a data source such as an ADO.NET
DataSet.

Web controls offer all the same advantages as HTML controls plus the following:

� Type-safe programming capabilities. Web controls offer a rich programming model
that provides type-safe programming capabilities because you, as a developer, can
be certain of the type of data a variable contains. Type-safe programming means
that a variable is declared as a specific data type (for example integer or string) and
can only be assigned values of that type. Type-safe programs are, in most
instances, far easier to debug and result in fewer run-time errors.

� Automatic browser detection. The controls can detect capabilities and create
appropriate output for both basic and rich (HTML 4.0) browsers.

� Custom templates. For some Web controls, you can define your own look and feel
using templates.

Using Web Controls

S E S S I O N

9

154830-1 Ch09.F 11/7/01 9:02 AM Page 79

� More flexible controls. Some controls offer the ability to specify whether a control’s
event causes immediate posting to the server or whether it is cached and raised when
the form is submitted.

� Better communication between controls. This includes the ability to pass events
from a nested control (such as a button in a table) to the container control.

At this point, you may be wondering why Microsoft opted to offer both HTML and Web con-
trols. The answer is simple: flexibility. You can use whichever set of controls you feel more com-
fortable with. HTML controls keep you closer to the content. By contrast, Web controls provide
a more consistent programming model, but distance you a little from the actual output.

You use Web controls in the same way that you use HTML controls. The only difference is
that they must have the runat=”server” name/value pair. You don’t have to do anything
special to access this code library as it’s available by default, but you do have to ensure you
use the correct tag prefix (or namespace) when using the controls.

In general, Web controls can be grouped into one of four basic categories:

� Intrinsic controls
� List controls
� Rich controls
� Validation controls

Intrinsic Controls
The intrinsic controls are designed to provide replacements for the standard HTML controls.
Here is a list of the intrinsic controls:

Button CheckBox
Hyperlink Image
Label LinkButton
Panel Table
TableCell TableRow
TextBox

Using intrinsic controls
We are really fond of Web controls. They are easy to use and immensely programmable. Each
control is an object and therefore has its own set of properties, methods, and events. We
have found that using Web controls greatly eases the pain of writing repetitive HTML code.
You may not feel as closely connected to the HTML when using Web controls, but at least
you’ll know that your page will render correctly regardless of which browser is used.

Here is a code sample that creates an HTML table using the ASP.NET Table Web control:

<html>
<head>
</head>

Saturday Morning80

154830-1 Ch09.F 11/7/01 9:02 AM Page 80

<body>
<asp:Table id=”tblExample” BorderWidth=1 GridLines=”both” runat=”server”/>
</body>
</html>

When you run the page, you’ll notice that nothing is displayed. That’s because we
haven’t added any cells to the data. By examining the HTML output from the page, you
should, however, see the HTML table. Here is the HTML generated in IE 5.5:

<html>
<head>
</head>
<body>
<table id=”tblExample” rules=”all” border=”1” style=”border-width:1px;border-style:solid;”>
</table>
</body>
</html>

If we further examine the HTML output, we see that there is some HTML that we didn’t
add. For example, the style and border attributes were created for us by the ASP.NET engine
based on the properties we set for the Table Web control (here: BorderWidth and
GridLines). This is how browser compatibility is handled. The ASP.NET engine sniffs the
browser to determine its capabilities and sends HTML that the browser can handle. This is a
simple operation, but it’s really a pain if you’re forced to do it yourself.

Next, you’ll expand on the previous sample page by adding a few rows and columns to
the table. There are two ways to accomplish this: you can add TableRow and TableCell Web
controls (a) manually or (b) programmatically. Listing 9-1 shows the manual approach.

Listing 9-1 Using intrinsic controls (manually)

<html>
<head>
</head>
<body>
<asp:Table id=”tblExample” BorderWidth=1 GridLines=”both” runat=”server”>
<asp:TableRow>
<asp:TableCell>Row 1, Cell 1</asp:TableCell>
<asp:TableCell>Row 1, Cell 2</asp:TableCell>
<asp:TableCell>Row 1, Cell 3</asp:TableCell>
<asp:TableCell>Row 1, Cell 4</asp:TableCell>
<asp:TableCell>Row 1, Cell 5</asp:TableCell>

</asp:TableRow>
<asp:TableRow>
<asp:TableCell>Row 2, Cell 1</asp:TableCell>
<asp:TableCell>Row 2, Cell 2</asp:TableCell>
<asp:TableCell>Row 2, Cell 3</asp:TableCell>
<asp:TableCell>Row 2, Cell 4</asp:TableCell>
<asp:TableCell>Row 2, Cell 5</asp:TableCell>

</asp:TableRow>
</asp:Table>
</body>
</html>

Session 9—Using Web Controls 81

154830-1 Ch09.F 11/7/01 9:02 AM Page 81

You’ll notice that all we are doing here is creating rows using the TableRow Web control
and cells using the TableCell Web control. There are two things we would like to mention
here. First, the Web controls must be formed correctly, which means that if we open, for
example, a TableCell, we must close it using the following (XML) syntax:

</asp:TableCell>

Secondly, it isn’t necessary to include the runat=”server” attribute/value pair when
creating the TableRow and TableCell Web controls in the example because they belong to
the Table Web control that did include the runat=”server” attribute/value pair. As a rule,
you should always include it so there’s no confusion about what you’re doing. (We didn’t
include the runat=”server” attribute/value pair for demonstration purposes only.)

Manually adding rows and cells is great if you’re using the table for formatting and know
exactly how many rows and cells you need. In many cases, however, you don’t have this
information so it may be better to take the programmatic approach. Listing 9-2 shows the
code listing that, when run, creates 10 rows and 50 cells programmatically.

Listing 9-2 Using intrinsic controls (programmatically)

<script language=”VB” runat=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)

Dim iRowCount As Integer ‘ Current row count
Dim iColumnCount As Integer ‘ Total number of columns (columns)

For iRowCount = 1 To 10
Dim tRow As New TableRow()
For iColumnCount = 1 To 5

Dim tCell As New TableCell()
tCell.Text = “Row “ & iRowCount & “, Cell “ & iColumnCount
tRow.Cells.Add(tCell) ‘ Add new TableCell object to row

Next
tblExample.Rows.Add(tRow)

Next

End Sub
</script>
<html>
<head>
</head>
<body>
<asp:Table id=”tblExample” BorderWidth=1 GridLines=”both” runat=”server”/>
</body>
</html>

In the body of the HTML, we declare a Table Web control. Since we are not initially
declaring any TableRows or TableCells, we end the Table declaration with /> rather than >.
We could have just as easily closed the Table Web control using the </asp:Table> syntax.
Again, a matter of personal preference! At the beginning of the page, we have included a

Saturday Morning82

154830-1 Ch09.F 11/7/01 9:02 AM Page 82

simple script within the Page_Load event that adds rows and cells rows to the table program-
matically. Every time the page is called, this script will be executed. Because this is not a
book about VB.NET, I won’t go into the syntax of the script. The important thing to realize is
that by using an object’s properties, methods, and events, you can programmatically create
other objects at runtime.

Handling intrinsic Web control events
Now may be as good a time as any to talk about handling Web control events. All ASP.NET
events are handled on the server rather than the client. This is kind of a new way of thinking
for many developers who are used to writing client-side code, but it has the advantage of
providing cross-browser compatibility. Each and every Web control has its own set of events.
You’ll have to refer to your ASP.NET documentation for a complete listing of each control’s
events. For example, the ASP.NET Button Web control has an OnClick event that is fired
when the button is clicked. Listing 9-3 illustrates handling an OnClick event.

Listing 9-3 Handling OnClick events

<script language=”VB” runat=”server”>
Sub btnTest_Click(Sender As Object, E As EventArgs)

If tblExample.Rows.Count = 0 Then
Dim iRowCount As Integer ‘ Current row count
Dim iColumnCount As Integer ‘ Total number of cells (columns)

For iRowCount = 1 To 10
Dim tRow As New TableRow()
For iColumnCount = 1 To 5
Dim tCell As New TableCell()
tCell.Text = “Row “ & iRowCount & “, Cell “ & iColumnCount
tRow.Cells.Add(tCell) ‘ Add new TableCell object to row

Next
tblExample.Rows.Add(tRow)

Next
End If

End Sub
</script>
<html>
<head>
</head>
<body>
<asp:Table id=”tblExample” BorderWidth=1 GridLines=”both” runat=”server”/>
<form runat=”server”>
<asp:Button id=”btnTest” OnClick=”btnTest_Click” Text=”Insert Rows”
runat=”server”/>
</form>
</body>
</html>

Session 9—Using Web Controls 83

154830-1 Ch09.F 11/7/01 9:02 AM Page 83

List Controls
List controls, like intrinsic controls, map closely to HTML elements. The reason they are in
their own category is that List controls present the user with a list of options. The general
rule here is that there is a parent object that contains multiple child objects. For example a
DropDownList control contains one or many List items. The List controls are:

� DataGrid
� DataList
� CheckBoxList
� DropDownList
� ListBox
� RadioButtonList

Since the use of Web controls is uniform regardless of type, I won’t go into
too much detail here. We recommend that you look at your .NET documenta-
tion to get a complete listing of each List control’s properties, methods, and
events.

The following snippet of code illustrates how to create a DropDownList by manually
inserting a List Object:

<html>
<head>
</head>
<body>
<form runat=”server”>
<asp:DropDownList id=”cmbPeople” runat=”server”>
<asp:ListItem value=”0” text=””/>
<asp:ListItem value=”1” text=”Bill Gates”/>
<asp:ListItem value=”2” text=”Larry Ellison”/>
<asp:ListItem value=”3” text=”Steve Case”/>

</asp:DropDownList>

<asp:Button id=”Button1” Text=”Submit” runat=”server”/>
</form>
</body>
</html>

This is a simple example, but probably requires a little clarification. First, you’ll notice
that we used the following syntax to declare a ListItem:

<asp:ListItem value=”1” text=”Bill Gates”/>

Note

Saturday Morning84

154830-1 Ch09.F 11/7/01 9:02 AM Page 84

We could have just as easily used:

<asp:ListItem value=”1”>Bill Gates</asp:ListItem>

OK, now let’s try it programmatically:

<script language=”vb” runat=”server”>
Sub Page_Load(Sender As Object, e As EventArgs)
cmbPeople.Items.Add(“”)
cmbPeople.Items.Add(“Bill Gates”)
cmbPeople.Items.Add(“Larry Ellison”)
cmbPeople.Items.Add(“Steve Case”)

End Sub
</script>
<html>
<head>
</head>
<body>
<form runat=”server”>
<asp:DropDownList id=”cmbPeople” runat=”server”/>

<asp:Button id=”Button1” Text=”Submit” runat=”server”/>
</form>
</body>
</html>

List controls can be bound to a data source very easily. We’ll introduce data
binding in Session 22, “Introducing Data Binding.”

Rich Controls
Rich controls are very different from intrinsic and List Web controls. Intrinsic and List
controls can roughly be traced to a single HTML element. Rich controls provide a piece
of functionality that requires the use of multiple HTML elements. The ASP.NET rich
controls are

� AdRotator
� Calendar

In the “old ASP world,” developers would have either (1) written a lot of HTML/ASP code
or (2) written an ActiveX control to provide the functionality that is now provided by
ASP.NET rich controls. The nice thing is that all state maintenance is managed for us and
the user doesn’t need to download a component. Very convenient! There should soon be
quite an aftermarket for custom rich controls.

Cross-Ref

Session 9—Using Web Controls 85

154830-1 Ch09.F 11/7/01 9:02 AM Page 85

Listing 9-4 demonstrates the ease-of-use of the Calendar control.

Listing 9-4 Using the Calendar control

<html>
<head>
<script language=”VB” runat=”server”>
Sub Calendar_Change(Source As Object, E As EventArgs)
If Page.IsPostBack Then

lblMessage.Text = “You selected “ &
ctlCalendar.SelectedDate.ToLongDateString()

End If
End Sub

</script>
</head>
<body>
<form id=”frmCalendar” runat=”server”>
<asp:Label id=”lblMessage” runat=”server” />

<asp:Calendar id=”ctlCalendar”
BackColor=”white”
BorderWidth=”3”
BorderStyle=”Solid”
BorderColor=”Black”
CellSpacing=”2”
CellPadding=”2”
ShowGridLines=”True”
TitleStyle-BackColor=”white”
TitleStyle-ForeColor=”black”
DayHeaderStyle-ForeColor=”white”
DayStyle-ForeColor=”black”
SelectedDayStyle-BackColor=”red”
OnSelectionChanged=”Calendar_Change”

runat=”server” />
</form>
</body>
</html>

If you view the source for output, you’ll see that Microsoft has really done us a favor
by providing rich controls. The great thing about rich controls is that they are infinitely
customizable.

The fourth category of HTML controls, Validation controls, deserves a session
to itself. So, we’ll be discussing those in Session 11, “Validating User
Input.”Cross-Ref

Saturday Morning86

154830-1 Ch09.F 11/7/01 9:02 AM Page 86

REVIEW

Web controls are server-side ASP.NET controls that render browser-specific HTML Web controls
not only reduce the time required to develop HTML that will correctly render on different
browsers, but Web controls can be used to maintain state between server requests. Web con-
trols also allow us, as developers, to capture client-side events and process them on the server.

QUIZ YOURSELF

1. What advantages do Web controls provide over HTML controls? (See session
introduction.)

2. What are the four basic categories of Web controls? (See session introduction.)
3. (True/False) Web controls map one-to-one with HTML elements. (See session

introduction.)

Session 9—Using Web Controls 87

154830-1 Ch09.F 11/7/01 9:02 AM Page 87

154830-1 Ch09.F 11/7/01 9:02 AM Page 88

Session Checklist
✔ Understanding the importance of User Controls in the .NET Framework
✔ Learning to create a User Control

A fter working through the previous two sessions, you should have a good grasp on the
controls, HTML and Web, which are provided with ASP.NET. Although the controls
packaged with ASP.NET are very useful, chances are you will run into a situation

where creating a custom control might be a good idea. Why? First, the standard ASP.NET
controls are developed to meet the most common functional requirements; they were not
designed to meet every requirement, or very specific requirements. If an HTML or Web
control meets one of your functional requirements but only in a general way, you could
end up writing a ton of code in your ASP.NET pages to customize it. Furthermore, if that
functionality is required on multiple pages (which from our experience is quite common),
maintenance could turn out be a major headache. Second, your pages could require the
combination of several ASP.NET controls. Again, if you code this functionality into each
ASP.NET page, you’re really shooting yourself in the foot. Maintainability! Maintainability!
Maintainability!

Both of these common situations can be addressed with the use of User Controls. User
Controls provide an easy way to partition and reuse simple, common user interface (UI)
functionality across a Web application. Furthermore, User Controls are compiled on demand
and cached in server memory so you can gain a bit of a performance boost. User Controls
do not need to be authored in the same language as the ASP.NET page in which they are
being included. For example, if one developer is creating an ASP.NET using Visual Basic,
he or she can include a User Control written in C# or C++. From a business perspective,
allowing developers to code in the language with which they’re most fluent can drastically
improve performance. Plus, your resource pool broadens.

Introducing User Controls

S E S S I O N

10

164830-1 Ch10.F 11/7/01 9:02 AM Page 89

Creating a User Control
Since User Controls will be included in other ASP.NET pages, you should not include <html>
and <body> elements around the content. Additionally, User Controls that post events
should not contain an HTML Form control. These elements should be placed in the contain-
ing page.

Start with a simple example, creating a custom address User Control.
The first thing you need to do is create the UI elements for the control. In your address

control you have two textboxes for street address, one textbox for city, a dropdown list for
state, and a textbox for Zip Code. Figure 10-1 illustrates what the User Control should look
like.

Figure 10-1 Address User Control UI

Listing 10-1 shows the HTML that we’ll use to construct the address User Control UI.

Listing 10-1 User Control UI in HTML

<asp:Panel ID=”Address” runat=”server”>
<asp:Table ID=AddressTable runat=”server”>
<asp:TableRow ID=Address1Row runat=”server”>
<asp:TableCell ID=Address1Cell runat=”server”>
<asp:Label ID=Address1Label text=”Address 1” runat=”server”

/></BR>
<asp:Textbox ID=txtAddress1 columns=25 maxlength=50 runat=”server”

/>
</asp:TableCell>

</asp:TableRow>
<asp:TableRow ID=Address2Row runat=”server”>
<asp:TableCell ID=Address2Cell runat=”server”>
<asp:Label ID=Address2Label text=”Address 2” runat=”server”

/></BR>
<asp:Textbox ID=txtAddress2 columns=25 maxlength=50 runat=”server”

/>
</asp:TableCell>

</asp:TableRow>
<asp:TableRow ID=CityRow runat=”server”>
<asp:TableCell ID=CityCell runat=”server”>
<asp:Label ID=CityLabel text=”City” runat=”server” /></BR>
<asp:Textbox ID=txtCity columns=25 maxlength=50 runat=”server” />

Saturday Morning90

164830-1 Ch10.F 11/7/01 9:02 AM Page 90

</asp:TableCell>
</asp:TableRow>
<asp:TableRow ID=StateRow runat=”server”>
<asp:TableCell ID=StateCell runat=”server”>
<asp:Label ID=StateLabel text=”State” runat=”server” /></BR>
<asp:DropDownList ID=cmbState runat=”server”>
<asp:ListItem selected=true></asp:ListItem>
<asp:ListItem value=2>California</asp:ListItem>
<asp:ListItem value=3>Virginia</asp:ListItem>

</asp:DropDownList>
</asp:TableCell>

</asp:TableRow>
<asp:TableRow ID=ZipCodeRow runat=”server”>
<asp:TableCell ID=ZipCodeCell runat=”server”>
<asp:Label ID=ZipCodeLabel text=”Zip Code” runat=”server” /></BR>
<asp:Textbox ID=txtZipCode columns=10 maxlength=5 runat=”server”

/>
</asp:TableCell>

</asp:TableRow>
<asp:TableRow ID=SubmitRow runat=”server”>
<asp:TableCell ID=SubmitCell horizontalalign=center runat=”server”>
<asp:Button ID=Submit text=”Submit” runat=”server” />

</asp:TableCell>
</asp:TableRow>

</asp:Table>
</asp:Panel>

If you inspect Listing 10-1 closely, you’ll notice that it is simply a collection of ASP.NET
Web controls. So, now that we have the UI HTML written, how do we turn it into a simple
User Control? Get this . . . instead of giving the file an .aspx extension, simply give an
.ascx extension and that’s it. You have your first User Control, albeit a very simple one.
Go ahead and name your User Control file address.ascx.

Now that you have a User Control, you need to include it in an ASP.NET page. In order to
do this, you must register the control with the page using the Register directive, which
takes the following form:

<% @Register TagPrefix=”myControl” TagName=”Address” src=”address.ascx” %>

That’s pretty self-explanatory with the exception of the TagPrefix and TagName attrib-
utes. If you’ll recall from Session 9, “Using Web Controls,” when adding a Table Web
control, for example, to an ASP.NET page, you use the following syntax:

<asp:Table . . .runat=”server” />

You can generalize this declaration using the following syntax:

<[TagPrefix]:[TagName] . . .runat=”server” />

So, when you add your Address control to an ASP.NET page, you would use the following
syntax:

<myControl:Address . . . runat=”server”>

Session 10—Introducing User Controls 91

164830-1 Ch10.F 11/7/01 9:02 AM Page 91

The following code shows the address.aspx script that will contain the Address User Control:

<% @Page Language=”VB” %>
<% @Register TagPrefix=”myControl” TagName=”Address” src=”address.ascx” %>
<HTML>
<HEAD>
<TITLE>User Control Example</TITLE>
<STYLE>

BODY, TABLE, INPUT, SELECT {font-family:trebuchet; font-size:10pt}
</STYLE>
</HEAD>
<BODY>
<FORM ID=frmAddress runat=”server”>
<myControl:Address ID=AddressControl runat=”server” />
</FORM>
</BODY>
</HTML>

Adding User Control Properties
One of the things that make Web and HTML controls so useful is that they support properties,
methods, and events against which you can program. Guess what? You can customize your
User Control by adding your own custom properties, methods, and events to a User Control.
Let’s start with a few properties.

For this example, you’ll be creating your properties using VB. In VB, the syntax for creat-
ing a property is

[Public|Private] Property [Name] As [Data Type]
Get

‘ Get Implementation Code
End Get
Set

‘ Set Implementation Code
End Set

End Property

Listing 10-2 shows the code for a property for each of our form elements: Address1,
Address2, City, StateID, and ZipCode.

Listing 10-2 Form element properties

<script language=”VB” runat=”server”>
Private m_FontColor As System.Drawing.Color
Private m_Counter As Integer
Public Property Address1 As String

Get
Address1 = txtAddress1.text

End Get
Set

Saturday Morning92

164830-1 Ch10.F 11/7/01 9:02 AM Page 92

txtAddress1.text = value
End Set

End Property
Public Property Address2 As String

Get
Address2 = txtAddress2.text

End Get
Set

txtAddress2.text = value
End Set

End Property
Public Property City As String

Get
City = txtCity.text

End Get
Set

txtCity.text = value
End Set

End Property
Public Property StateID As String

Get
StateID = cmbState.Items(cmbState.SelectedIndex).Value

End Get
Set

For m_Counter = 0 To (cmbState.Items.Count - 1)
If cmbState.Items(m_Counter).Value = value Then

cmbState.SelectedIndex = m_Counter
End If

Next
End Set

End Property
Public Property ZipCode As String

Get
ZipCode = txtZipCode.text

End Get
Set

txtZipCode.text = value
End Set

End Property
Public Property FontColor As System.Drawing.Color

Get
FontColor = m_FontColor

End Get
Set

m_FontColor = value
Address1Label.ForeColor = value
Address2Label.ForeColor = value
CityLabel.ForeColor = value
StateLabel.ForeColor = value
ZipCodeLabel.ForeColor = value

End Set
Continued

Session 10—Introducing User Controls 93

164830-1 Ch10.F 11/7/01 9:02 AM Page 93

Listing 10-2 Continued

End Property
Public Property BGColor As System.Drawing.Color

Get
BGColor = Address.BackColor

End Get
Set

Address.BackColor = value
End Set

End Property
</script>

Add this code to the top of the Address User Control file. Notice the last two properties
listed, FontColor and BGColor. These properties will get and set the font color for all the
User Control’s labels and the background color of the panel that contains the User Control’s
controls. Now add the following code to the script block at the top of your ASP.NET page to
test your new properties:

<script language=”VB” runat=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)

With AddressControl
.BGColor = System.Drawing.Color.Blue
.FontColor = System.Drawing.Color.White
.Address1 = “100 ASP.NET St.”
.City = “Microsoft”
.StateID = 3
.ZipCode = “11111”

End With
End Sub
</script>

Pretty cool, huh? As you can see, the amount of code you’ll need to write will be greatly
reduced once you create a decent sized library of User Controls. And this is just the begin-
ning; you could expose even more properties to make your controls infinitely customizable.

Writing Custom Control Methods
In addition to creating properties, you can write custom methods for a User Control. Custom
methods can be used to populate a list box, validate controls, and so on. The possibilities
are endless. In the following example, we will add a method to Address User Control that
will validate user input and return a Boolean value (true or false) based on the result of the
validation. Include the following code within the <script> block in the address.ascx page:

Public Function ValidateAddress() As Boolean
If Trim(txtAddress1.text) = “” Then

return False
Exit Function

End If
If Trim(txtCity.text) = “” Then

return False

Saturday Morning94

164830-1 Ch10.F 11/7/01 9:02 AM Page 94

Exit Function
End If
If cmbState.SelectedIndex = 0 Then

return False
Exit Function

End If
If Trim(txtZipCode.text) = “” Then

return False
Exit Function

End If
return True

End Function

As you can see in the ValidateAddress method, we do a simple check of a few selected
fields and return a Boolean value based on the result. Pretty simple stuff, but it illustrates
implementing a User Control method fairly well. To test this method, simply add the follow-
ing line of code to the ASP.NET page after declaring the server control:

<%
Response.Write(AddressControl.ValidateAddress)
%>

Implementing User Control Events
User Controls can also respond to events and even respond to ASP.NET events like
Page_OnLoad.
Try putting the following code in the <script> block of address.ascx:

Sub Page_Load(Sender As Object, E As EventArgs)
If Not Page.isPostBack Then

Dim oItem As New ListItem
With oItem

.Value = 10

.Text = “Georgia”
End With
cmbState.Items.Add(oItem)

End If
End Sub

Now try running the ASP.NET page. A Georgia item should now appear in the State list
box. Imagine writing a little routine in the User Control that could populate controls from a
database.

Because User Controls are a collection of ASP.NET controls, you have to use the same
methods as with ASP.NET if you want to implement a control event handler. The first thing
you want to do is write an event handling method. Add the following method, called
btnSubmit_Click for example, to the address.ascx file:

Private Sub btnSubmit_Click(Sender As Object, E As EventArgs)
Response.Write(“Submit button was clicked!”)

End Sub

Session 10—Introducing User Controls 95

164830-1 Ch10.F 11/7/01 9:02 AM Page 95

Now in the address.ascx file, change the btnSubmit button control declaration to the
following:

<asp:Button ID=btnSubmit text=”Submit” onClick=”btnSubmit_Click”
runat=”server” />

Try it out now! You see that now, not only is the Web Form submitted, but the
btnSubmit_Click event is also processed. It’s that simple.

REVIEW

User Controls are a nice feature of ASP.NET. They essentially enable you to write reusable
custom controls based on the standard HTML and Web controls. You can also add custom
properties, methods, and events to allow runtime User Control customization and interaction.
Using User Controls, you can improve application performance as well as maintainability.

QUIZ YOURSELF

1. What is a User Control? (See session introduction.)
2. What directive can you use in an ASP.NET page to import a User Control?

(See “Creating a User Control.”)
3. Why shouldn’t you include the <html>, <body>, and <form> tags in a User Control?

(See “Creating a User Control.”)

Saturday Morning96

164830-1 Ch10.F 11/7/01 9:02 AM Page 96

The following set of questions is designed to provide you with feedback on how
well you understood the topics covered during this part of the book. Please refer to
Appendix A for the answers to each question.

1. SQL is used to create and modify data.

True/False

2. Fill in the blanks: The CRUD activities are ______, ______, ______, and
______.

3. Which of the following SQL statements is used to add data to a table?

a. CREATE

b. ADD

c. INSERT

d. UPDATE

4. INSERT INTO t_bands (band_title) VALUES (Hootie & The Blowfish) is
a valid SQL command. Note: Assume band_title is VARCHAR(100).

True/False

5. XML is the de facto language for the exchange of data between
applications.

True/False

6. Fill in the blank: XML data is stored in a ______ format.

7. XML is compatible with SGML.

True/False

P A R T

#
P A R T

Saturday Morning
Part Review

II

174830-1 PR02.F 11/7/01 9:02 AM Page 97

8. XML was designed to work with only a few applications.

True/False

9. ASP.NET pages are procedural in nature.

True/False

10. Fill in the blank: When an ASP.NET page is loaded, a structured series of
______ are fired in a set order.

11. Fill in the blanks: The first event to be fired when a page is loaded is the
______ event and the last to be fired is the ______ event.

12. Which of the following attributes in the <SCRIPT> element specifies the
language used in the code block?

a. SRC

b. TEXT

c. LANGUAGE

d. LINGO

13. HTML controls maintain their state between client requests.

True/False

14. HTML controls can be used only when the browser requesting the page is
Internet Explorer 4.0 or higher.

True/False

15. The name of the hidden field to maintain control state between client
requests in ASP.NET page is

a. __VIEWSTATE

b. __STATEMAINT

c. __STATE

d. __VIEW

16. Which of the following is not an intrinsic HTML control?

a. <form>

b. <select>

c. <html>

d. <table>

17. Web controls map one-to-one with HTML elements.

True/False

Part II–Saturday Morning Part Review98

174830-1 PR02.F 11/7/01 9:02 AM Page 98

18. Web controls can only be bound to DataSets.

True/False

19. Web controls must be added to an ASP.NET page at design-time.

True/False

20. Which of the following is not a List control?

a. ListBox

b. DataList

c. Table

d. DataGrid

21. ASP.NET User Controls have an .aspx file extension.

True/False

22. User Controls provide an easy way to partition and reuse simple, common
user interface (UI) functionality across a Web application.

True/False

23. User Controls should include <html>, <body>, and <form> elements.

True/False

24. Which of the following ASP.NET page directives is used to register a User
Control?

a. Register

b. Page

c. Control

d. Include

Part II–Saturday Morning Part Review 99

174830-1 PR02.F 11/7/01 9:02 AM Page 99

P A R T

Saturday
Afternoon

III

Session 11
Validating User Input

Session 12
Maintaining State in ASP.NET

Session 13
Authentication and Authorization

Session 14
ASP.NET Caching

Session 15
Introducing ADO.NET

Session 16
Navigating the ADO.NET Object Model

184830-1 PtO3.F 11/7/01 9:02 AM Page 100

Session Checklist
✔ Understanding the use and implementation of ASP.NET validation controls
✔ Using server- and client-side validation with ASP.NET
✔ Building your own custom validation controls

When developing applications that put a heavy emphasis on end-user data, one of
the most tedious and time-consuming activities for a developer is validating user
input. Fortunately, ASP.NET provides a series of controls that can perform both

client-side and server-side validation. These controls include:

� The RequiredFieldValidator control insures that a user either provides a value for
a control or in some way modifies the initial values of a control.

� The CompareValidator control checks to make sure a control contains a specific
value or matches the value contained in a second control.

� The RangeValidator control ensures that the user-provided value for a control falls
within a specified range, or that the value falls within a range specified by other
form controls.

� The RegularExpressionValidator control supports the use of regular expressions
to validate control values, providing an extensively flexible technique for validating
credit card numbering sequences, e-mail addresses, or any other consistent
expressions.

� The CustomValidator control enables the developer to define any server- or client-
side function to validate against, therefore covering any remaining validation not
provided for in the first four controls.

� The ValidationSummary control allows you to collect all of the validation errors
and provide a consolidated listing to the user.

Validating User Input

S E S S I O N

11

194830-1 Ch11.F 11/7/01 9:02 AM Page 101

The use of these embedded controls enables you to eliminate hundreds of lines of custom
client-side code that you have developed or will develop to perform many of these rudimen-
tary validations. Additionally, you receive the benefit of building upon these basic validation
controls to build your own custom validation controls for handling any number of recurring
validation tasks.

Common Aspects of Validation Controls
When using the validation controls you should consider several common factors. First, Using
validation controls will not normally reduce network traffic. When you use validation controls,
validation occurs both at the client as well as at the server. Why? One of the security risks
inherent in depending entirely on client-side validation is that malicious users could create
their own copy of your page, eliminate the client-side validation, and submit invalid or
incorrect values to the business logic of your application. By providing both client- and
server-side validation you have the following two advantages:

� Improved performance on most browsers (achieved by not requiring a roundtrip
before discovering a blank field or incorrect entry).

� Increased security and confidence that the values submitted to the application logic
are within acceptable and, more importantly, expected ranges.

So how do these controls know when to generate client-side code to improve performance
or when to eliminate the client-side JavaScript to prevent incompatibility or errors during
validation? Natively, these controls automatically detect the user’s browser and dynamically
deliver JavaScript client-side code where it is appropriate and safe, and enforce server-side
validation when the browser may not support client-side validation. However, you can
force these controls to always or never use client-side validation with the following page
directives:

<%@ Page ClientTarget = “DownLevel” %>

This will force the validation control to only do validation on the server whereas

<%@ Page ClientTarget = “UpLevel” %>

forces the controls to do both client-side and server-side validation of all posted values.
Be aware that forcing the use of a client-side script with the UpLevel directive will ensure
that all browsers, even those that do not support JavaScript, will receive client-side valida-
tion. So, be careful in using these directives. Typically, you will be better off letting these
controls do the browser sniffing for you.

Display property
When displaying error messages produced during the validation process you will have
control over how the message is displayed. Each control has the ability to generate error

Saturday Afternoon102

194830-1 Ch11.F 11/7/01 9:02 AM Page 102

messages at the point on the page where the validation control is inserted. Additionally,
the output can be streamed as HTML or in plain text. This is controlled by the display
property of each control. The display property can be set to static, dynamic, or none.

By setting the display property to static, the validation control will allocate an
appropriate amount of space on your Web page so that when the error message is displayed,
the layout of the page doesn’t change.

By setting the display property to dynamic, the validation control will not reserve space
on the HTML page for the error message. Therefore, when the error message is displayed,
form elements may be moved around to accommodate the error message and thus disrupt
the desired look of your form.

By setting the display property to none, no message will be displayed immediately
next to the validated control. Why would you ever use this setting? In some situations
you may choose to display all validation errors in a consolidated area of the page or in a
single message box for the user. In this case you can use the ValidationSummary control
to display a summarized list of all error messages rather than displaying them individually
next to each control.

Type Property
When comparing values in controls, the values must be of the same type, and you typically
will need to explicitly tell the validation control the types being compared. The following
type property enumerators are valid: String, Integer, Double, DateTime, and Currency.

Operator Property
When comparing values, the options available for doing the comparison include:
Equal, NotEqual, GreaterThan, GreaterThanEqual, LessThan, LessThanEqual, and
DataTypeCheck.

These operator properties are relatively intuitive except for DataTypeCheck, which
simply evaluates if the values being compared are of the same data type, for instance, that
both are strings or integers.

Using Validation Controls
The following examples are all included in the Session 11 folder on the CD. We will look at a
single example page for using each of the validation controls.

Let’s look at a page that captures basic user information such as the user’s name, e-mail
address, password, age, and a subscription code that enables the user to subscribe to an
online mailing list. Figure 11-1 illustrates the results of using the validation controls to
validate required fields, meet regular expression conditions, and to validate field values
and types.

Session 11—Validating User Input 103

194830-1 Ch11.F 11/7/01 9:02 AM Page 103

Figure 11-1 Use of validation controls

RequiredFieldValidator
The first thing that you will need to do is insure that the user has at least attempted to
complete certain fields. In our example, the only required field is the Full Name field. In
order to validate that a user enters information in the Full Name field, you simply insert
a RequiredFieldValidator control next to the field you want to validate as shown in
Listing 11-1.

Listing 11-1 Example of Using RequiredFieldValidator Control

<%@ Page Language=”vb” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>

Sub Page_Load(Source As Object, E as EventArgs)
If Page.IsPostBack Then

lblTitle.Text = “Submit was successful”
Else

lblTitle.Text = “Leave the field blank and Submit”
End If

End Sub
</SCRIPT>

</HEAD>
<BODY>

<FORM ID=”WebForm1” METHOD=”post” RUNAT=”server” NAME=”WebForm1”>
<P>

Saturday Afternoon104

194830-1 Ch11.F 11/7/01 9:02 AM Page 104

<ASP:LABEL ID=”lblTitle” RUNAT=”SERVER” />
</P>
<P>

Full Name
<ASP:TEXTBOX ID=”txtName” RUNAT=”SERVER”></ASP:TEXTBOX>

</P>
<P>

<ASP:REQUIREDFIELDVALIDATOR
ID=”valReqName”
ERRORMESSAGE=”You Must Fill In The Full Name Field”
RUNAT=”SERVER”
CONTROLTOVALIDATE=”txtName”
BACKCOLOR=”#FFFF80”
DISPLAY=”Static”>

</ASP:REQUIREDFIELDVALIDATOR>
</P>
<P>

<ASP:BUTTON ID=”btnSubmit” RUNAT=”SERVER” TEXT=”Submit”></ASP:BUTTON>
</P>

</FORM>
</BODY>

</HTML>

The ControlToValidate property has been set to the id of the control you want to vali-
date, in this case the txtName control. Next, set the ErrorMessage property to a string. In
this case, we have added some additional html tags, tags, to provide some bold
formatting around the error message. Finally, set the Display property to Static so that
the page formatting will remain consistent, regardless if a message is displayed or not.

RegularExpressionValidator
Next, you need to validate the user’s e-mail address to make sure that it meets standard
Internet e-mail naming conventions. You will do this by utilizing the
RegularExpressionValidator control.

A regular expression is a very flexible method of determining if a string value meets certain
requirements in terms of its use of upper- or lowercase letters, range of letters, number of
characters, use of integers, mix of letters, special characters, or numbers as part of a string.

For example, in the sample registration page, we have created a regular expression to
ensure that the user’s e-mail conforms to standard e-mail formats. This means that it will
contain a series of numbers or letters followed by @ followed by another series of numbers or
letters, followed by a period and a final series of numbers or letters.

The expression that tests if the user’s input conforms to this standard is set in the prop-
erty validationexpression as shown in boldface in Listing 11-2.

Listing 11-2 Implementing RegularExpressionValidator Control

<%@ Page Language=”vb” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Source As Object, E as EventArgs)

Continued

Session 11—Validating User Input 105

194830-1 Ch11.F 11/7/01 9:02 AM Page 105

Listing 11-2 Continued

If Page.IsPostBack Then
lblTitle.Text = “Submit was successful”

Else
lblTitle.Text = “Enter an invalid email address and Hit the Submit

button”
End If

End Sub
</SCRIPT>

</HEAD>
<BODY>

<FORM ID=”WebForm1” METHOD=”post” RUNAT=”server” NAME=”WebForm1”>
<P>

<ASP:LABEL ID=”lblTitle” RUNAT=”SERVER” />
</P>
<P>

Email Address
<ASP:TEXTBOX ID=”txtEmail” RUNAT=”SERVER”></ASP:TEXTBOX>
<ASP:REGULAREXPRESSIONVALIDATOR

ID=”valRegEmail”
ERRORMESSAGE=”Email needs to conform to user@domain.com”
RUNAT=”SERVER”
CONTROLTOVALIDATE=”txtEmail”
VALIDATIONEXPRESSION=”[\w-]+(\+[\w-]*)?@([\w-]+\.)+[\w-]+”
BACKCOLOR=”#FFFF80”
DISPLAY=”Static”>

</ASP:REGULAREXPRESSIONVALIDATOR>
</P>
<P>

<ASP:BUTTON ID=”btnSubmit” RUNAT=”SERVER” TEXT=”Submit”></ASP:BUTTON>
</P>

</FORM>
</BODY>

</HTML>

All of the remaining properties are very similar to those used for the RequiredField
Validator control. The extensive flexibility of the RegularExpressionValidator enables
you to quickly create custom validators for a wide range of validation routines such as:

� Internet URL = http://([\w-]+\.)+[\w-]+(/[\w- ./?%&=]*)?
� US Phone Number = ((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}
� US Social Security Number = \d{3}-\d{2}-\d{4}
� US Complex Zip Code = \d{5}(-\d{4})?

CompareValidator
The CompareValidator is self-explanatory. It is used to compare the value of a user control
to another user control’s value or to a defined value. As illustrated in Listing 11-3, we are
using the control to make sure that the second password entered by the user matches the
first password entered.

Saturday Afternoon106

194830-1 Ch11.F 11/7/01 9:02 AM Page 106

Listing 11-3 Using the CompareValidator Control

<%@ Page Language=”vb” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Source As Object, E as EventArgs)

If Page.IsPostBack Then
lblTitle.Text = “Submit was successful”

Else
lblTitle.Text = “Enter non-identical values and hit the Submit

button”
End If

End Sub
</SCRIPT>

</HEAD>
<BODY>

<FORM ID=”WebForm1” METHOD=”post” RUNAT=”server” NAME=”WebForm1”>
<P>

<ASP:LABEL ID=”lblTitle” RUNAT=”SERVER” />
</P>
<P>

Password
<ASP:TEXTBOX ID=”txtPassword1” RUNAT=”SERVER”

TEXTMODE=”Password”></ASP:TEXTBOX>

</P>
<P>

Re Enter Password
<ASP:TEXTBOX ID=”txtPassword2” RUNAT=”SERVER”

TEXTMODE=”Password”></ASP:TEXTBOX>
<ASP:COMPAREVALIDATOR

ID=”valCompPassword”
ERRORMESSAGE=”The password fields must match each other”
RUNAT=”SERVER”
CONTROLTOVALIDATE=”txtPassword2”
CONTROLTOCOMPARE=”txtPassword1”
BACKCOLOR=”#FFFF80”
DISPLAY=”Dynamic”>

</ASP:COMPAREVALIDATOR>
<ASP:REQUIREDFIELDVALIDATOR

ID=”valReqName”
ERRORMESSAGE=”You must complete values in both fields”
RUNAT=”SERVER”
CONTROLTOVALIDATE=”txtPassword2”
BACKCOLOR=”#FFFF80”
DISPLAY=”Dynamic”>

</ASP:REQUIREDFIELDVALIDATOR>
</P>
<P>

<ASP:BUTTON ID=”btnSubmit” RUNAT=”SERVER” TEXT=”Submit”></ASP:BUTTON>
</P>

</FORM>
</BODY>

</HTML>

Session 11—Validating User Input 107

194830-1 Ch11.F 11/7/01 9:02 AM Page 107

Note the boldfaced code. We have set the ControlToValidate property to the second
password field. Once the user has entered the second password, a client-side validation will
compare it against the first password field defined by the ControlToCompare property.

Additionally, we have set the Type property of the comparison to String to insure that
when the Operator property Equal is applied that the comparison will work correctly. As
already mentioned, you could use any number of operator enumerators to do the comparison
as well as any of the property enumerators.

If we wanted to compare a value rather than two controls, you could simply set the
ValueToCompare property to a specific string rather than use the ControlToCompare
property.

RangeValidator
This control is useful to compare one control to values of two other controls or to a specific
range. In Listing 11-4, we are simply checking to see if the user has entered a valid age
range of equal or greater than 18 but less than or equal to 50 years old.

Listing 11-4 Using a RangeValidator Control

<%@ Page Language=”vb” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Source As Object, E as EventArgs)

If Page.IsPostBack Then
lblTitle.Text = “Submit was successful”

Else
lblTitle.Text = “Enter an age <18 or >50 and hit the Submit button”

End If
End Sub
</SCRIPT>

</HEAD>
<BODY>

<FORM ID=”WebForm1” METHOD=”post” RUNAT=”server” NAME=”WebForm1”>
<P>

<ASP:LABEL ID=”lblTitle” RUNAT=”SERVER” />
</P>
<P>

Age
<ASP:TEXTBOX ID=”txtAge” RUNAT=”SERVER” HEIGHT=”24”

WIDTH=”28”></ASP:TEXTBOX>
<ASP:RANGEVALIDATOR

ID=”RangeValidator1”
ERRORMESSAGE=”You must be older than 18 and less than 50 to

register”
RUNAT=”SERVER”
CONTROLTOVALIDATE=”txtAge”
BACKCOLOR=”#FFFF80”
MINIMUMVALUE=”18”
TYPE=”Integer”
MAXIMUMVALUE=”50”>

</ASP:RANGEVALIDATOR>

Saturday Afternoon108

194830-1 Ch11.F 11/7/01 9:02 AM Page 108

</P>
<P>

<ASP:BUTTON ID=”btnSubmit” RUNAT=”SERVER” TEXT=”Submit”></ASP:BUTTON>
</P>

</FORM>
</BODY>

</HTML>

Most of the properties on this control we have used in the previous examples. The new
property, in boldface, of MinimumValue establishes the minimum range of the compare.
MaximumValue establishes the upper range of the comparison. If you wanted to utilize the
values of other controls, you could use the properties MaximumControl and MinimumControl,
setting the values equal to the id’s of the controls you want to compare against.

Several factors for this control should be noted. If the user leaves a control blank, the
control passes the range validation. To force the user to enter a value, add a RequiredField
validation control as well. If both MaximumControl and MaximumValue are specified, then
the MaximumControl is used. If both MinimumControl and MinimumValue are specified,
then MinimumControl will be used to perform the range validation.

CustomValidator
Although the above controls should cover 90 percent of your validation needs, there will be
scenarios where you will want to take a value the user enters, apply an algorithm, compare
it to a database value, or run it against a Web service to determine if the information is
valid. In these cases, you can utilize the CustomValidator control. This control enables you
to define both client- and server-side validation routines to compare a control value against.
These functions must return Boolean true or false to process the appropriate error mes-
sage for the control.

For the current example, you are going to compare a subscription code provided by the
user against a fixed value. Listing 11-5 illustrates how you can utilize a custom server-side
function and a custom client-side function to perform validation.

In Listing 11-5, we have created a server-side function ValidateSubscriptionServer
that simply accepts the control value as a string and sets objArgs.IsValid equal to true or
false depending upon the result. In this case, you simply check to see if the user control
you are validating has a text value equal to abc123. However, you could have also performed
a database query or any other type of routine to do the comparison.

Next, we have included a client-side validation routine. The routine is a Javascript 1.0-
compliant function called ValidateSubscriptionClient that runs on the client side. Since
this function does not have the RunAt = Server attribute, it can have the same name as
our server-side function, but will be processed as soon as a user moves their mouse from the
Subscription Code field.

Listing 11-5 Using a CustomValidator Control

<%@ Page Language=”vb” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>

Continued

Session 11—Validating User Input 109

194830-1 Ch11.F 11/7/01 9:02 AM Page 109

Listing 11-5 Continued

Sub Page_Load(Source As Object, E as EventArgs)

End Sub

Public Sub ValidateSubscriptionServer(objsource As Object, objArgs As
ServerValidateEventArgs)

If strComp(objArgs.Value, “abc123”, CompareMethod.Text) = 0 Then
objArgs.isValid=True
lblTitle.Text = “Subscription value accepted on client and server!”

Else
objArgs.isValid =False
lblTitle.Text = “Subscription value rejected on server!”

End If
End Sub

</SCRIPT>
<SCRIPT LANGUAGE=”javascript”>

function ValidateSubscriptionClient(objSource,objArgs)
{
if(objArgs.Value==”abc123”)

{
objArgs.IsValid= true;
}

else
{
objArgs.IsValid=false;
}

return;
}

</SCRIPT>
</HEAD>
<BODY>

<FORM ID=”WebForm1” NAME=”WebForm1” METHOD=”post” RUNAT=”server”>
<P>

<ASP:LABEL id=”lblTitle” RUNAT=”SERVER”></ASP:LABEL>
</P>
<P>

Subscription Code
<ASP:TEXTBOX id=”txtSubscription” RUNAT=”SERVER”></ASP:TEXTBOX>
<ASP:CUSTOMVALIDATOR id=”CustomValidator1” RUNAT=”SERVER”

ONSERVERVALIDATE=”ValidateSubscriptionServer”
CLIENTVALIDATIONFUNCTION=”ValidateSubscriptionClient”
BACKCOLOR=”#FFFF80”
CONTROLTOVALIDATE=”txtSubscription”
ERRORMESSAGE=”This Subscription Code is Not Valid”>

</ASP:CUSTOMVALIDATOR>
</P>
<P>

<ASP:BUTTON id=”btnSubmit” RUNAT=”SERVER” TEXT=”Submit”></ASP:BUTTON>
</P>

</FORM>
</BODY>

</HTML>

Saturday Afternoon110

194830-1 Ch11.F 11/7/01 9:02 AM Page 110

To bind these functions to the Web form, you simply insert a CustomValidator control
and set two new properties ClientValidationFunction and OnServerValidate.

In the previous example we have decided to use a server-side function as part of our
validation, and set the OnServerValidate property equal to the server-side function
ValidateSubscriptionServer. We also have enabled a client-side function, by
setting the ClientValidationFunction property equal to the client side function,
ValidateSubscriptionClient.

ValidationSummaryx
The last control that is useful for validation is the ValidationSummary control. This
control provides you with the option of listing all of the validation errors in a consolidated
list for the user, rather than displaying each error message next to the field where the error
actually occurred. To use the control, simply plug a ValidationSummary control somewhere
on the page your user is likely to reference when reviewing problems with validation:

<ASP:VALIDATIONSUMMARY
ID=”valSummary”
SHOWMESSAGEBOX=”False”
DISPLAYMODE=”List”
HEADERTEXT=”Please correct the following errors.”
SHOWSUMMARY=”True”
RUNAT=”SERVER”>

</ASP:VALIDATIONSUMMARY>

The control will automatically display all relevant validation errors in a consolidated area
on the page. If you do not want the individual control errors to display, you will need
to set each validation control ErrorMessage property to an empty string. Setting the
ShowSummary property to False, will prevent the display of each control’s error message.
Instead, only the content of the HeaderText property will be shown.

In addition, you can choose to display error messages in a pop-up message box by setting
the ShowMessageBox property of the ValidationSummary control to True. Be aware that
this will only work properly when used in Internet Explorer 4.0 or higher.

The DisplayMode property can be set to List, BulletList, or SingleParagraph to
modify the manner in which the list of errors is handled.

REVIEW

With the use of these controls, you should now be able to eliminate a tremendous amount of
client- and server-side validation code previously required when developing ASP pages.
Additionally, the ability to construct your own client- and server-side validation controls
should provide you with all the flexibility you need to handle 90 percent of your business
requirements.

Session 11—Validating User Input 111

194830-1 Ch11.F 11/7/01 9:02 AM Page 111

QUIZ YOURSELF

1. When constructing a custom control with custom client-side validation, what
client-side language and version should you utilize? (See “Common Aspects of
Validation Controls.”)

2. What standard ASP.NET validation controls can be combined to perform a value
type and value range check on a text field? (See “CompareValidator” and
“RangeValidator.”)

3. What are the performance impacts of including <%@ Page ClientTarget =
“DownLevel” %> in pages with validation controls? (See “Common Aspects of
Validation Controls.”)

Saturday Afternoon112

194830-1 Ch11.F 11/7/01 9:02 AM Page 112

Session Checklist
✔ Understanding the differences between in-process and out-of-process state

maintenance
✔ Implementing ASP State Server or using SQL Server for state maintenance
✔ Using cookies in user state maintenance

In this session, we will cover the key innovations in state maintenance available in
ASP.NET, and demonstrate how these innovations will enable you as a developer to take
advantage of the latest in state management to support highly scalable and redundant

Web applications.
In ASP.NET, we have optional configuration settings that enable us to select the type of

state maintenance we perform, but still allow us to use the familiar methods of state variable
access from ASP. In fact, we will not have to change our legacy code to take advantage of
the ASP.NET enhancements over ASP with regards to state maintenance. The key differences
lie in the way session state management is handled. In ASP, sessions are by default stored
in process, which creates significant headaches for developers who develop Web sites that
become extremely popular. As the number of users balloon, it becomes apparent that all
of those session values used for personalization and customization are killing application
performance — and that the possible remedies are limited and costly. In ASP.NET, most if not
all of these issues are now very nicely handled using out-of-process state management.

Maintaining State Out of Process for Scalability
In this section, you’ll learn how the previously mentioned improvements can be of tremen-
dous help to developers who are implementing applications that require a high degree of
scalability.

Maintaining State in ASP.NET

S E S S I O N

12

204830-1 Ch12.F 11/7/01 9:02 AM Page 113

In ASP, a Session object is created and maintained on the Web server from which the
page is initiated. In a Web page (for example, somepage.asp) running on server Foo, the
embedded ASP code:

<% Session(“MyFavoriteBeach”) = “Trestles” %>

will cause the variable MyFavoriteBeach to be stored in the memory of server Foo. This
variable and all others created during the user session are persisted across multiple Web
pages. If you need to retrieve the user’s favorite beach, you could simply use the embedded
ASP code, for example:

<% =Session(“MyFavoriteBeach”) %>

One problem with this approach is that if server Foo crashes or otherwise goes down, all
session information is lost, never to be recovered. A second problem with this approach is
that it is extremely difficult to share session values with other ASP pages running on other
servers. The third problem with the old Session object is that it requires the user’s browser
to support client-side cookies.

For more information on Windows Load Balancing Services, review
Microsoft’s WLBS Overview at http://www.microsoft.com/ntserver/
ntserverenterprise/exec/feature/wlbs/default.asp or to get informa-
tion on Network Load Balancing clusters review http://www.microsoft.com/
windows2000/en/advanced/help/using.htm?id=492.

All of these factors create massive headaches for ASP developers attempting to build appli-
cations that will scale efficiently and support application redundancy, load balancing, and
clustering effectively. You are forced to try software solutions such as Windows Load Balancing
Services (WLBS), Network Load Balancing clusters or hardware solutions such as Cisco
LocalDirector. Unfortunately, these solutions are really designed to handle request-based load
balancing where maintaining state on the application server is not a requirement. When you
need to use session-based load balancing and store state on the application server, you have
to take tremendous performance hits with WLBS by turning on the Affinity option, or if using
LocalDirector you have to implement the sticky command which has the same effect—huge
performance degradation. In other words, if you modify either LocalDirector or the WLBS to
use session-based load balancing, then the benefits of request-based load balancing are elimi-
nated. These options slow the system down by requiring them to maintain a user-to-server
mapping and perform a lookup upon each request. It also decreases your ability to provide
fault tolerance.

The result of these solutions is like buying a Ferrari and then limiting it to drive around
town in stop-and-go traffic at 20 mph, rather than allowing it up on the interstate where it
could fly!

The only other way developers can support session maintenance in a Web farm scenario
is to do a ton of custom coding, use a back-end database, and then retrieve the session
information through the use of cookies; or hidden-form data; or by URL munging the data.

With ASP.NET, Microsoft has gone to great lengths to ease this burden and make our lives
as developers much, much simpler! We now have built-in out-of-process and in-process
methods to handle state maintenance in ASP.NET, as well as a choice of using client-side
cookies or munging the session id.

Tip

Saturday Afternoon114

204830-1 Ch12.F 11/7/01 9:02 AM Page 114

No More Cookies but Plenty of Milk!
In ASP.NET you can configure your application to store state without the use of cookies,
also known as the cookieless method. In this method, ASP.NET simply munges the session
id information into the URL of the requested page. This allows you to very easily implement
your session information in a standard aspx page on server Foo, pass that information along
to a relative path static html page, and then finally pass it back to a third aspx page and
maintain state across the session. In order to do this, the session id information is encoded
into the URL and thus isn’t dependent on the client to store it as a cookie. An example of a
munged URL used when the cookieless method is used:

http://localhost/session12cookieless/(a5kb53fnuscirn55a4vt1gyt)/Webform2.
aspx

The value a5kb53fnuscirn55a4vt1gyt highlighted in bold above is a unique key, which has
been “munged” into the URL. This unique key allows the .NET Framework to locate session
information specific to the user. In a cookie based implementation a similar value would be
stored on the user’s hard drive as a cookie.

Advantages
The advantages of this method are:

� Supports state maintenance for all browsers, even those without cookie support.
� Allows you to pass session information between dynamic and static pages.

Disadvantages
The disadvantages of this method include:

� Security risk associated with URL munging the data.
� If implemented in-process, still requires that the user visit the session storing server

to retrieve values.

How to make it happen
To implement this method, follow these steps:

1. Open the web.configWeb.config in the virtual directory of your ASP.NET application.
2. Locate the <system.Web> section of the Web.config file, or if none exists, create one.
3. Locate the <sessionstate> element.
4. Set the value of cookieless = true.
5. Save Web.config.

Session 12—Maintaining State in ASP.NET 115

204830-1 Ch12.F 11/7/01 9:02 AM Page 115

Here is an example of a correctly configured Web.config file enabling cookieless state
maintenance:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.Web>
<sessionState
mode=”InProc”
stateConnectionString=”tcpip=127.0.0.1:42424”
sqlConnectionString=”data source=127.0.0.1;user id=sa;password=”
cookieless=”true”
timeout=”20”
/>

</system.Web>
</configuration>

When modifying the Web.config file be sure to pay particular notice to the
capitalization of sections and elements, the file is case sensitive and incor-
rect capitalization will create errors.

After implementing the method as described above you can now test the use of the cook-
ieless option by turning off cookies in your Web browser, create a virtual directory, add the
Web.config file to the virtual directory and create the following three pages illustrated in
Listings 12-1, 12-2, and 12-3.

Listing 12-1 Code for Webform1.aspx

<HTML>
<HEAD>

<SCRIPT RUNAT=”server” ID=”Script1”>
Sub btn1_Click(Sender As Object, E As EventArgs)

Session(“SomeValue”) = text1.Value
span1.InnerHtml = “Session data created/updated! <P>Your session contains:” &

Session(“SomeValue”) & “”
End Sub
</SCRIPT>

</HEAD>
<BODY>

<FORM RUNAT=”server” ID=”Form1”>
<INPUT ID=”text1” TYPE=”text” RUNAT=”server” NAME=”text1”> <INPUT

TYPE=”submit” ID=”btn1” NAME=”btn1” ONSERVERCLICK=”Btn1_Click” RUNAT=”server”
VALUE=”Submit Query”>

</FORM>
<ASP:HYPERLINK ID=”HyperLink1” RUNAT=”server” NAVIGATEURL=”StaticPage1.htm”>Click

here to navigate to a static page.</ASP:HYPERLINK>

</BODY>
</HTML>

Note

Saturday Afternoon116

204830-1 Ch12.F 11/7/01 9:02 AM Page 116

Listing 12-2 Code for Webform2.aspx

<HTML>
<HEAD>

<SCRIPT RUNAT=”server” ID=”Script1”>
Sub Page_Load()

span1.InnerHtml = “Session data Recovered! <P>Your session contains: “ &
Session(“SomeValue”) & “”

End Sub
</SCRIPT>

</HEAD>
<BODY>

<P>

Click here to modify the session variable
</P>

</BODY>
</HTML>

Listing 12-3 Code for staticpage1.htm

<HTML>
<HEAD>

<TITLE>Static Page</TITLE>
</HEAD>
<BODY>

<P>
Static HTML Page. Of course there are no values to read, but click

here and you will see that session can still be recovered.

</P>
</BODY>

</HTML>

Open the Webform1.aspx page, and look at the URL in your browser, you should see that
upon loading that page ASP.NET has now established a session id embedded in your Web
browser. ASP.NET will use this unique key to track all of your session variables. Type in a
value that you would like to store, then click the Submit Query button. You will see that
the submitted value has been stored. Next, follow the hyperlink to the staticpage1.htm file.
Although no session information is available here because it is an .htm file, you will see
that the embedded session id remains in your browsers URL. Now follow the hyperlink to
the Webform2.aspx page. You will see that the session information has been recovered!

In the previous example, you will notice that we set the mode attribute to InProc. This
means that the state will be stored in process or in the physical memory of the server it was
launched from when the session state was implemented. This means that if the server were
to crash, all session information would be lost. This mode is effectively the mode that you
operate in under traditional ASP. As we discussed earlier, this provides little in the way of
redundancy or failover support needed for highly scalable Web applications.

Session 12—Maintaining State in ASP.NET 117

204830-1 Ch12.F 11/7/01 9:02 AM Page 117

Out of Process State Management
We will now look at two new methods in ASP.NET that use external state management. This
technique stores session values in an external state store instead of the ASP.NET worker
process. By storing it out of process, you can make certain that state is stored across worker
process restarts (such as when the machine must be restarted) as well as across multiple
machines (such as you would commonly face in a Web farm). There are two external state
management approaches:

� The first method relies on using SQL Server to store state. This option provides you
the most scalability and redundancy but requires you to have SQL Server. There is no
Oracle support for this approach as of yet!

� The second method utilizes an “ASP.NET state store.” This is a dedicated NT Service
that can run on any Windows NT or Windows 2000 server.

Session Management with SQL Server
In this method, ASP.NET will utilize a database called ASPState on a selected SQL Server to
store session information. Using this method you can choose to set the property Cookieless
to either True or False, at your discretion, since where or how the unique session id is
stored has no impact on the method used to store the values associated with the session id.
The session id stored in the cookie or alternatively munged in the URL will be the unique key
used to query the ASPState database and track session variables.

Advantages
The advantages of this method are:

� Stores session state out of process, allowing you to run your application across
multiple servers.

� Supports request-based load balancing.
� Provides extensive redundancy, reliability, and uptime when used in conjunction

with clustering and hardware or software load balancing.
� Ability to support periodic “code rot” purges.
� Ability to partition an application across multiple worker processes.
� Ability to partition an application across multiple Web farm machines.

Disadvantages
The disadvantages are:

� Additional network traffic for database queries.
� Maintenance of SQL Server database.

Saturday Afternoon118

204830-1 Ch12.F 11/7/01 9:02 AM Page 118

How to make it happen

In order to use the SQL Server session management, you first need to make
sure that you have SQL Server installed or available along with the
InstallSqlState.sql file that ships with the Premium version of the .NET
Framework SDK. You should also have administrative access to SQL Server.

1. You will need to locate the InstallSqlState.sql file that ships with the Premium
version of the .NET Framework. This file creates a database for storing state values
on a SQL Server Database of your choice. To implement this method, you need to
install this script only once on your targeted database. You will need administrative
access to SQL Server to execute this script.

2. To run the script, launch a command prompt, Start ➪ Programs ➪ Accessories ➪
Command Prompt.

3. Navigate to the [Drive]\WINNT\Microsoft.NET\Framework\[version] directory,
where [Drive] is the installation drive such as C:\ and [version] is the version of
the .NET Framework installed.

4. Type OSQL –S localhost –U [Administrator Userid] –P [Password] <InstallSqlState.sql.
5. An illustrative example of a properly formatted command line would be:

OSQL –S localhost -U sa -P < InstallSqlState.sql
6. Press Enter.

To uninstall this database, you can execute the SQL script
UninstallSqlState.sql using the same process described in this session.

This will create a database called ASPState on the selected SQL Server instance. We
recommend that you restart SQL Server to make sure that the scripts have been applied.
Next, we need to update the <system.Web> section of the Web.config file we used earlier
in this session.

In order to activate SQL Server State Maintenance set the value of mode=”SQLServer”.
Additionally set the sqlConnectionString=”data source=127.0.0.1;user id=sa;
password=”, where data source is the IP address or name of your SQL Server; user id is an
administrative user id, and of course the password for the administrator. Finally save the
Web.config file. The following example provides an example of a properly configured
Web.config file to support SQL Server State Maintenance:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.Web>
<sessionState

mode=”SQLServer”
sqlConnectionString=”data source=127.0.0.1;user id=sa;password=”
stateConnectionString=”tcpip=127.0.0.1:42424”
cookieless=”true”
timeout=”20”

/>
</system.Web>

</configuration>

Note

Note

Session 12—Maintaining State in ASP.NET 119

204830-1 Ch12.F 11/7/01 9:02 AM Page 119

Now you can run the same series of pages that you built earlier in the session, and you
should see that they produce exactly the same results. What really should get you excited is
to see what happens when you start and stop the SQL Server database when these pages are
running to see how the recovery of session information is executed! Now that should make
a few Web farm developers real happy!

Session Management with ASP.NET State Server
A second out of process approach to session state management utilizes an NT service and a
file-based dictionary rather than a database to store state. This solution is likely to be used
by shops that do not utilize SQL Server as their primary database in a Web farm, possibly
using Oracle, or for smaller Web farms that do not yet need the scalability of SQL Server.

The ASP.NET State Server runs externally from worker processes in a dedicated .NET State
Server process that runs as a Windows NT service. There is no end-user code allowed to run
in the same process, thus eliminating the chance of unstable code breaking the service;
additionally, no live object references are maintained.

The ASP.NET State Server stores blobs of binary data, either in memory or on disk. The
.NET worker processes are then able to take advantage of this simple storage service by
saving (using .NET serialization services) all objects contained within a client’s Session
collection object at the end of each Web request. Whenever the client needs to access
the Session collection, the .NET objects will be retrieved as binary streams from the state
server by the appropriate worker process. It is then deserialized into a live instance of the
object and placed back into a new Session collection object exposed to the request handler.
The information stored in the collection is then accessed via the same methods used for
in-process and SQL Server approaches described earlier in the session.

Advantages
The advantages of this method are:

� Stores session state out of process, allowing you to run your application across
multiple servers.

� Supports request-based load balancing.
� Provides adequate redundancy, reliability, and uptime when used in conjunction

with clustering and hardware or software load balancing.
� Ability to support periodic “code rot” purges.
� Ability to partition an application across multiple worker processes.
� Ability to partition an application across multiple Web farm machines.

Disadvantages
The disadvantages are:

� Additional network traffic for data communication.
� Managing a new NT Service.

Saturday Afternoon120

204830-1 Ch12.F 11/7/01 9:02 AM Page 120

How to make it happen
To implement this method all you need to do is activate the aspnet state service. To do this,
shell out to a command prompt and type, net start aspnet_state. In order to activate
ASP State Maintenance, open your Web.config file and modify the <system.Web> section so
that the value of mode=”StateServer”. Additionally set the stateConnectionString=
”tcpip=127.0.0.1:42424”, where tcpip is the IP address of your SQL Server:Port. Finally
save the Web.config file. The following example provides an example of a properly config-
ured Web.config file to support SQL Server State Maintenance.

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.Web>
<sessionState

mode=”StateServer”
sqlConnectionString=”data source=127.0.0.1;user id=sa;password=”
stateConnectionString=”tcpip=127.0.0.1:42424”
cookieless=”true”
timeout=”20”

/>
</system.Web>

</configuration>

Again, you can run the same series of pages that you built earlier in the session and you
should see that they produce exactly the same results. And you should get the same results
when you simulate a state server system crash by starting and stopping the state server ser-
vice when these pages are running. As with the SQL Server method, all state is saved and
recovered very nicely!

REVIEW

With the flexibility provided by the ASP.NET framework, you now have multiple options in
providing flexible, scalable alternatives to the issue of state maintenance. The new frame-
work enables you to provide a personalized experience to all users of your application,
regardless of the various browser implementations that hit your site. And these features are
implemented in a manner that allows you to maintain and support your existing personal-
ization engines.

QUIZ YOURSELF

1. How does ASP.NET’s state maintenance approach assist customers implementing
Web farms? (See “Out of Process State Management.”)

2. In what scenarios does it make sense to set cookies to off? (See “No More Cookies
but Plenty of Milk!”)

3. What are the performance, and reliability differences between using State Server
and SQL Server? (See “Out of Process State Management.”)

Session 12—Maintaining State in ASP.NET 121

204830-1 Ch12.F 11/7/01 9:02 AM Page 121

204830-1 Ch12.F 11/7/01 9:02 AM Page 122

Session Checklist
✔ Understanding the differences between authentication, authorization, and

impersonation
✔ Modifying Web.config to support forms and passport based authentication
✔ Using a database to validate a user’s credentials

In this session, we will look at the approaches you can take to handle authentication
and authorization in your applications. We will start out by defining the terms authen-
tication and authorization as it relates to ASP.NET. We will also provide an overview on

how to implement authentication and authorization within an application’s Web.config
file. Finally we will wrap up with how to use forms based authentication, as well as third
party Web service authentication services such as Microsoft Passport.

Introducing the Key Security Mechanisms
It is important in handling security for ASP.NET applications that you understand the three
key security mechanisms used to determine how a user gains access to a resource within an
ASP.NET application: authentication, authorization, and impersonation.

Authentication is the process of discovering and verifying the identity of a user or service
by examining the user’s credentials and validating those credentials against some authority
such as an LDAP server, a database, an XML file or even a Web service such as Microsoft
Passport. Several authentication mechanisms are available for use with the .NET Framework
role-based security. ASP.NET natively supports Windows, Cookie, and Passport modes of
authentication.

The purpose of authorization is to determine whether a user with a specific identity
should be provided with a requested type of access to a given resource. This is typically
handled by assigning an authenticated user to a predefined role. A role such as end user,

Authentication and Authorization

S E S S I O N

13

214830-1 Ch13.F 11/7/01 9:02 AM Page 123

super user, power user, administrator or anonymous is defined by the application and given
access to execute certain files, run certain functions or add/update/delete certain data.

Impersonation is when an application assumes the user’s identity as the request is passed
to the application from IIS. Then, access is granted or denied based on the impersonated
identity. So, we could establish two accounts in the application called genericUser and
superUser, we could then selectively have incoming Web clients run as one of these accounts
depending upon the rules established during authorization for each specific user.

Web.config and Security
There are two types of XML configuration files used by ASP.NET, they are called
machine.config and Web.config. The format of these files and elements that they can
contain are the same, however the machine.config file provides the default configuration
for all applications and directories, while the Web.config file allows you to modify these
defaults for a specific application or virtual directory. The machine.config is a located at:

[install drive]:\WINNT\Microsoft.NET\Framework\[ASP.NET Version Number]\CONFIG

and there is only one copy of this file per Webserver, whereas there may be dozens of
Web.config files for various applications and subdirectories.

You can establish the conditions for access to a particular directory or application, by
modifying the <system.Web> section in your application’s Web.config file. The conditions
you set in the Web.config file will apply to the directory, which contains it, as well as all
of its associated sub directories.

Within the Web.config file the <system.Web> section establishes the security profile for
the application or directories overseen by it. The general syntax for the security section of
the Web.config file is illustrated in Listing 13-1:

Listing 13-1 General syntax for the security section of the Web.config file

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
<location path=”[Path of specific file to which system.Web applies]”>

<system.Web>
<authentication mode=”[Windows/Forms/Passport/None]”>

<forms name=”[name]” loginUrl=”[url]” protection=”[All, None,
Encryption, Validation]” timeout=”[time in minutes]” path=”[path]” >

<credentials passwordFormat=”[Clear, SHA1, MD5]”>
<user name=”[UserName]” password=”[password]”/>

</credentials>
</forms>
<Passport redirecturl=”internal” />

</authentication>
<authorization>

<allow users=”[comma separated list of users]” roles=”[comma
separated list of roles]” verb=”[GET, POST, HEAD]”/>

<deny users=”[comma separated list of users]” roles=”[comma
separated list of roles]” verb=”[GET, POST, HEAD]”/>

</authorization>
<identity impersonate=”[true/false]” name=”[Domain\Username to operate

under]” password=”[password of Domain\UserName]”/>

Saturday Afternoon124

214830-1 Ch13.F 11/7/01 9:02 AM Page 124

</identity>
<system.Web>

</location>
</configuration>

Note the use of camel-casing throughout the Web.config and machine.
config file where the first letter of the first word is always lower-case and
the first letter of the subsequent word is upper-case, as in “configSections”.
This is important because the entire file is case sensitive, and errors in case
will create application errors.

The default and optional values for these elements are shown in Table 13-1.

Table 13-1 Default and Optional Values for Security Section of Web.config

Element and Default Value Optional Values Comment

<location path=””> Any string that represents If you include a location tag in
a valid path to a file then the settings contained in

the <system.Web> section fol-
lowing this tag will only apply to
the specific file path named in
the path property. This tag is
optional and should typically
only be used for files not sup-
ported by ASP.NET.

<authentication mode= Forms, Passport, None The authentication mode cannot
”Windows”> be set at a level below the

application root directory.

<forms name=”.ASPXAUTH”> Any string for storing You can use any string you like
the cookie for the cookie name.

<forms login Url= Any valid absolute or If the mode is set to Forms, and
”login.aspx”> relative URL if the request does not have a

valid cookie, this is the URL to
which the request is directed for
a forms-based login.

<forms protection= All, None, Encryption The value within the cookie can
”None”> and Validation by encrypted or sent in plain

text. For sites that only use
forms authentication to identify
a user and not for security pur-
poses, then the default None is
just fine.

Continued

Note

Session 13—Authentication and Authorization 125

214830-1 Ch13.F 11/7/01 9:02 AM Page 125

Table 13-1 Continued

Element and Default Value Optional Values Comment

<forms path=”/”> Any valid string Specifies the path value of the
cookie. Cookies are only visible
to the path and server that sets
the cookie.

<credentials Clear, MD5 Tells ASP.NET the password
passwordFormat=”sha1”> format used to decrypt the pass-

word value of the user attribute.
Note that just setting this value
does not automatically encrypt
the password value, instead it is
the developers responsibility to
add the password value in an
encrypted format.

<Passport redirecturl= Any valid URL that The authentication mode must
”internal”> provides a login equal “Passport” for this to

validation apply. When the requested page
requires authentication and
the user has not signed on
with Passport, then the user
will be redirected to the supplied
“redirecturl”.

<user name=””> Any valid user name For example use the value
as string “jsmith”.

<user password=””> Any valid password For example use the value
as string “jsmithspassword”.

<allow users=”*”> Any comma-delimited By default the special character *
list of users indicates that all users are

allowed; alternatively, ? indicates
that anonymous users are
allowed.

<allow roles= > Any comma-delimited The special character * indicates
list of roles that all roles are allowed.

<deny users=””> Any comma-delimited Special characters * for all users
list of users and ? for anonymous user can be

used.

Saturday Afternoon126

214830-1 Ch13.F 11/7/01 9:02 AM Page 126

Element and Default Value Optional Values Comment

<deny roles=””> Any comma-delimited The special character * for all
list of roles roles can be used.

<identity impersonate= True With impersonation set to
”false”> “True”, the usernames and

passwords will be compared
against valid NT User Groups
to determine access based upon
NTFS Access Control Lists.

The ASP.NET Configuration System only applies to ASP.NET Resources, which
are those items handled by the xspisapi.dll. By default items not handled by
this DLL, such as TXT, HTML, GIF, JPEG, and ASP files, are not secured by the
Web.config. To secure these items use the IIS admin tool to register these
files, or use the <location> tag to specify a specific file or directory.

The following example grants access to Tony, while denying it to Jason and anonymous
users:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.Web>
<authorization>

<allow users=”Tony” />
<deny users=”Jason” />
<deny users=”?” />

</authorization>
<system.Web>

</configuration>

Next we’ll look at how users and roles may refer to multiple entities using a comma-
separated list:

<allow users=”Tony, Jason, DomainName\tcaudill” />

As you can see, the domain account (DomainName\tcaudill) must include both the
domain and user name combination.

Special identities
In addition to identity names, there are two special identities: *, which refers to all identi-
ties, and ?, which refers to the anonymous identity. So, to allow Jason and deny all other
users you could set the configuration section as shown in the following code sample:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.Web>
<authorization>

<allow users=”Jason” />

Note

Session 13—Authentication and Authorization 127

214830-1 Ch13.F 11/7/01 9:02 AM Page 127

<deny users=”*” />
</authorization>

<system.Web>
</configuration>

Using request types to limit access
You can also limit access to resources based upon the request type, GET, POST, and HEAD.
The following example lets everyone do a POST, but only Jason can perform a GET request:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.Web>
<authorization>

<allow verb=”GET” users=”Jason” />
<allow verb=”POST” users=”*” />
<deny verb=”GET” users=”*”/>

</authorization>
<system.Web>

</configuration>

When it is determined that a user should be denied, then the default 401 code is
displayed.

New Tricks for Forms-based Authentication
The most common type of authentication that you will want to implement with ASP.NET is
forms-based cookie authentication. In this approach, we use a simple Web form combined
with a modification to the Web.config file to provide user authentication.

Let’s look at an example of using forms-based authentication to validate users against a
database.

The first step is to create the Web.config file as shown in the following example:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.Web>
<authentication mode=”Forms”>

<forms name=”CookieFormApplication” loginUrl=”login.aspx” />
</authentication>
<authorization>

<deny users=”?” />
</authorization>
<sessionState mode=”InProc” cookieless=”false” timeout=”20”/>

</system.Web>
</configuration>

In this example we are setting the authentication mode to use forms based authentica-
tion, establishing that all non-authenticated users should be denied access and that users
will be redirected to the login.aspx to obtain authentication.

We will use an xml file, users.xml, to validate the users during the login session. The
following example shows the format of the xml file used to validate the users credentials.

Saturday Afternoon128

214830-1 Ch13.F 11/7/01 9:02 AM Page 128

<Users>
<User>
<UserEmail>joe@smith.com</UserEmail>
<UserPassword>jsmith</UserPassword>

</User>
<User>
<UserEmail>bill@johnson.com</UserEmail>
<UserPassword>bjohnson</UserPassword>

</User>
</Users>

Once you have created the users.xml file, populate it with some sample user name/
password pairs for testing. Next, you can create the login.aspx form. The login.aspx
form will collect the user name and password of the user and then compare these values
against the xml file. If they match, an authentication cookie will be sent to the user.
Should the username not be found in the XML file then the user is redirected to another
page that allows them to add a new username/password to the xml file. Listing 13-2
provides a sample of the login.aspx form.

Listing 13-2 Example of login.aspx using forms-based authentication

<%@ Import Namespace=”System.XML” %>
<%@ Import Namespace=”System.IO” %>
<%@ Import Namespace=”System.Web.Security “ %>
<%@ Import Namespace=”System.Data.SqlClient” %>
<%@ Import Namespace=”System.Data.OleDB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Page Language=”vb” debug=”True”%>
<HTML>

<HEAD>
<TITLE>Session 13 Cookie Authentication </TITLE>
<SCRIPT LANGUAGE=”VB” RUNAT=”Server”>

Sub btnLogin_Click(ByVal Sender As Object, ByVal E As EventArgs)

Select Case ValidateUserXML(txtusername.text,txtpassword.text)
Case “Success”
FormsAuthentication.RedirectFromLoginPage (txtusername.text,

chkPersistForms.Checked)
Case “PasswordFailed”
lblMessage.Text = “Sorry your password verification for the user “ &

txtusername.text &” failed.”
Case “NoSuchUser”

Response.Redirect(“adduser/adduser.aspx?username=” & txtusername.text)
End Select

End Sub
Sub btnAddNewUser_Click(ByVal Sender As Object, ByVal E As EventArgs)

Response.Redirect(“adduser/adduser.aspx?username=Enter User Name”)
End Sub
Function ValidateUserXML(ByVal username as String, ByVal password as String) as String

Dim cmd as String

Continued

Session 13—Authentication and Authorization 129

214830-1 Ch13.F 11/7/01 9:02 AM Page 129

Listing 13-2 Continued

cmd = “UserEmail=’” & username & “‘“
Dim ds as New DataSet
Dim fs as new

FileStream(Server.MapPath(“users.xml”),FileMode.Open,FileAccess.Read)
Dim reader as new StreamReader(fs)
Dim pass as string
Dim user as string
ds.ReadXml(reader)
fs.Close()
Dim users as DataTable
Users = ds.tables(0)
Dim Matches() as DataRow
Matches = Users.Select(cmd)
If Matches.length >0 Then

Dim row as DataRow
row = matches(0)
pass = row.item(“UserPassword”)
user = row.item(“userEmail”)
if pass = password then

Return “Success”
else

Return “PasswordFailed”
end if

Else
Return “NoSuchUser”

End If
End Function

</SCRIPT>
</HEAD>
<BODY>

<FORM ID=”WebForm1” METHOD=”postPOST” RUNAT=”server”>
<P>

Session 13 Forms Authentication
</P>
<P>

Please enter your username and password information below and then select
the Login Button.

</P>
<P>

<ASP:LABEL ID=”lblMessage” RUNAT=”SERVER”></ASP:LABEL>
</P>
<P>

Email
<ASP:TEXTBOX ID=”txtUserName” RUNAT=”SERVER” TOOLTIP=”Please enter your

Username here”></ASP:TEXTBOX>
</P>
<P>

Password
<ASP:TEXTBOX ID=”txtPassword” RUNAT=”SERVER” TEXTMODE=”Password”

TOOLTIP=”Please enter your password here.”></ASP:TEXTBOX>
</P>

Saturday Afternoon130

214830-1 Ch13.F 11/7/01 9:02 AM Page 130

<P>

<ASP:CHECKBOX ID=”chkPersistForms” RUNAT=”SERVER” TEXT=”Select to Persist
Cookies”></ASP:CHECKBOX>

</P>
<P>

<ASP:BUTTON ID=”btnLogin” RUNAT=”SERVER” TEXT=”Login”
ONCLICK=”btnLogin_Click”></ASP:BUTTON>

<ASP:BUTTON ID=”btnAddUser” RUNAT=”SERVER” TEXT=”Add New User”
ONCLICK=”btnAddNewUser_Click”></ASP:BUTTON>

</P>
</FORM>

</BODY>
</HTML>

The login form displays a login page to the user. When the user selects the Login button,
the btnLogin_Click() method is called. btnLogin_Click() calls a function that compares
the e-mail address entered to the e-mail field to the users.xml file. If a valid e-mail is
found, then the password of the user is tested. Once a match is discovered, then the
FormsAuthentication.RedirectFromLoginPage () method is called to redirect the user
back to the originally requested page or resource while also writing the authentication
cookie to the browser.

To test this functionality out, create another file called default.aspx as shown below,
establish a virtual directory for all of the above described files (default.aspx,
login.aspx, users.xml, Web.config) and browse to the default.aspx page:

<%@ Page Language=”vb”%>
<HEAD>
<SCRIPT Language = “VB” Runat=”Server”>

Sub btnLogout_Click(ByVal Sender As Object, ByVal E As EventArgs)
FormsAuthentication.Signout

Response.Redirect(“default.aspx”)
End Sub

</SCRIPT>
<HTML>
<BODY>
<H1> You successfully logged in and gained access</H1>

<FORM Runat=”Server”>
<asp:Button id=btnLogout runat=”SERVER” Text=”LogOut”

OnClick=”btnLogout_Click”>
</asp:Button>

</P>
</FORM>

</BODY>
</HTML>

And that does it — you have tested the user name and password against an xml file,
authenticated the user, and forwarded the user to the appropriate resource. When you com-
pare this approach against a similar scenario in ASP 3.0, it is clear that ASP.NET is stream-
lining these basic functions for the developer.

Session 13—Authentication and Authorization 131

214830-1 Ch13.F 11/7/01 9:02 AM Page 131

Using the Passport Authentication Provider
Passport authentication is a service supported by Microsoft that provides a centralized
authentication service for single sign-on and core profile services. Using Passport authenti-
cation is not mandatory, but the benefits of using such a service are apparent when you
look at the number of Internet users handled by the Microsoft HotMail or MSN Service.
These users already have profiles established as part of these services; and you can use this
data for your own public Web sites. Additionally it simplifies users’ experience with your
site, in that they do not need to go through a second registration process, but instead use
an existing profile. Should a new visitor not have a Passport profile, the service provides
methods to register the user for a new Passport userid.

The PassportAuthenticationModule provider supplies a wrapper around the Passport
Software Development Kit (SDK) for ASP.NET applications. It requires installation of the
Passport SDK and provides Passport authentication services and profile information from
an IIdentity-derived class called PassportIdentity. This provides an interface to
the Passport profile information as well as methods to encrypt and decrypt Passport
authentication tickets.

The general process for implementing Passport authentication in an ASP.NET application
is as follows:

1. Establish a PREP Passport Account. In order to test the SDK you will need to create
a PREP Passport Account that effectively creates a testing account for development
purposes. This can be done at https://current-register.passporttest.com/

2. Download, install, and configure the Passport SDK. It can be found at
http://www.passport.com/devinfo/Start_Goals.asp. When installing, be sure
to select the installation options for Development/Testing unless you are planning
on implementing a production environment. This option will install a sample
application of AdventureWorks that utilizes the Passport Authentication Scheme.
However this version utilizes standard ASP rather than the ASP.NET Passport
approach.

3. Create a new PREP Site ID by following the instructions at http://siteservices.
passport.com/

4. Create a virtual directory on your default Web site to store the Web.config and
login.aspx files discussed below.

5. Make sure that your site has access to the Internet. The passport service operates
by using the public site http://current-login.passporttest.com.

6. Create a Web.config file and set up Passport as the authentication as shown in
the following example.

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.Web>
<authentication mode=”Passport”>

<passport redirectUrl=”login.aspx”>
</passport>

</authentication>
<authorization>

<deny users=”*”>

Saturday Afternoon132

214830-1 Ch13.F 11/7/01 9:02 AM Page 132

</deny>
</authorization>
<sessionState mode=”InProc” cookieless=”false” timeout=”20”/>

</system.Web>
</configuration>

1. @NL:Next you will need to create a basic login.aspx file which the user will be sent
to by default when they first request a file from your site, as shown in the following
example:

<%@ Page Language=”vb” %>
<%@ Import Namespace=”System.Web”%>
<%@ Import Namespace=”System.Web.SessionState”%>
<%@ Import Namespace=”System.Web.Security”%>
<%@ Import Namespace=”System.Web.HttpUtility”%>
<SCRIPT LANGUAGE=”VB” RUNAT=”SERVER”>
Sub Page_Load(ByVal Sender As System.Object, ByVal e As System.EventArgs)

Dim oPassport As Web.Security.PassportIdentity
Dim sReturnURL As String
Dim sLogoURL As String
Dim sAuthURL As String

‘Create a new PassportIdentity object
oPassport = New Web.Security.passportidentity

‘Dynamically generate the ReturnURL as this page
sReturnURL = Server.URLEncode(“http://” & Request.ServerVariables(“SERVER_NAME”) &

Request.ServerVariables(“SCRIPT_NAME”))

‘Establish the PassportIdentity.LogoURL
slogourl = opassport.LogoTag2(sReturnURL, 3600, True, Nothing, 1033, True, Nothing,

Nothing, True)

‘Determine the users Authenticated Status
If oPassport.IsAuthenticated() Then

Response.Write(“<H3>You are Authenticated, Click Below To SignOut, Note that unless
you have a valid Passport Contract with Microsoft, SignOut functionality may not work
properly.</H3>”)

Else
Response.Write(“<H3>You are Not Authenticated, Click Below To Login.</H3>”)

End If

‘Dynamically display the appropriate Passport Login or Logout Logo
Response.Write(sLogoURL)

END SUB
</SCRIPT>
<HTML>

<BODY>
</BODY>

</HTML>

In this example, we are using PassportIdentity to do all of the authentication labor.
First we create a variable sReturnURL, which describes what URL that Passport should
redirect the user to after a successful login or logout. We then use the sReturnURL to create
the string variable slogourl using the PassportIdentity.LogoTag2() method, which will
dynamically display a login or logout graphic depending on the status of the user’s session.

Session 13—Authentication and Authorization 133

214830-1 Ch13.F 11/7/01 9:02 AM Page 133

To determine if a user is in fact already authenticated we use the PassportIdentity.
IsAuthenticated property, which returns True if a user is authenticated or False
otherwise. Depending upon the user’s state, we display a message indicating if they are
logged on or not. If they are logged in, then the passport service will automatically
create the Passport sign-out hyperlink, otherwise we insert the string of html stored in
the slogourl value, creating a dynamic hyperlink to the Passport sign-in page.

REVIEW

In this session, we reviewed how to handle simple forms-based authentication, as well as
how to implement basic Passport authentication. The forms-based examples show how to
use a database to look up a user’s credentials. The passport example shows how to use
a Web service to validate authentication. You should continue exploring authorization and
impersonation to add further granular security capabilities to your end solution.

QUIZ YOURSELF

1. What security and privacy issues are associated with using Passport authentication?
(See “Introducing the Key Security Mechanisms.”)

2. Provide an example Web.config file that only allows POST requests from the user
John in domain corporate. (See “Web.config and Security.”)

3. What alternatives are there to using a database to look up user credentials?
(See “New Tricks for Forms-based Authentication.”)

Saturday Afternoon134

214830-1 Ch13.F 11/7/01 9:02 AM Page 134

Session Checklist
✔ Implementing Page Output Caching
✔ Using Fragment Caching
✔ Caching Data Objects

In ASP.NET there have been tremendous improvements in providing a framework that
scales much better than previous versions of ASP. Caching is another area where
Microsoft has gone to great lengths to provide ASP.NET developers control over their

application performance and scalability.
What is caching? Caching improves overall system performance by storing frequently

accessed or computationally expensive data in memory. Once a page or piece of data has
been compiled and delivered, it is stored in memory. Subsequent requests access the cache
rather than reinitiating the process that originally created it.

Caching is one of three state management approaches you can use in ASP.NET.

� Session state is used to store data, such as personalization data, that you want
available to the user each time a page is accessed. You need to be efficient about
using this approach, however, as the session information isn’t shared across users.

� Application state is used to store data that needs to be available to the entire appli-
cation. The approach and methods for application state are the same as for session
state, however the visibility of data is global across all application users.

� In caching, we are able to make any object or piece of data globally available to all
users and have robust methods for optimizing how long this data is stored and what
dependencies affect the optimal delivery of the data.

In this session, we will first cover how you can implement caching using the same
Response object properties and methods that were available in ASP. Then, we will cover
how ASP.NET implements page and data output caching to improve the scalability and
responsiveness of your applications.

ASP.NET Caching

S E S S I O N

14

224830-1 Ch14.F 11/7/01 9:02 AM Page 135

ASP.NET Updates to the ASP Response Model
In previous versions of ASP, the Response object used the Expires, ExpiresAbsolute, and
CacheControl properties to support caching. While these methods and properties can still
be used and implemented in the same way, you need to understand how to update the
syntax of your ASP pages to reflect the new ASP.NET framework.

In ASP, using the Response.Expires property will insert an HTTP Header that tells the
client browser to request another copy of the page only if it has been a specified number of
minutes since the last request. So, by inserting the following code in your page:

<%Response.Expires = 10%>

You will ensure that after the first request, the browser will only request the page from
the server if it hasn’t been requested in the last ten minutes. In ASP.NET this can be handled
in the following manner:

<%Response.Cache.SetExpires(DateTime.Now.AddSeconds(600))%>

This method will set the cache to expire in 600 seconds or 10 minutes from the point
that the first request for the page from any client was initiated. This method gives you very
fine control over the expiration of the page as it takes full advantage of the new DateTime
object, which provides a tremendous amount of flexibility in the calculation and formatting
of date and time values.

Additionally you could set this same expiration rule using the OutPutCache page directive
as follows:

<%@ OutputCache Duration=”600”%>

Caching with ASP.NET
ASP.NET supports three types of caching:

� Page output caching, which involves storing the dynamic response generated by a
request in memory.

� Fragment caching, which involves storing a portion of a page in a non-user-specific
key to improve access to this content as part of other dynamic or static pages.

� Page data caching, which involves the storing of arbitrary objects across multiple
requests.

Page Output Caching
Page output caching is typically utilized when you want to store the entire output of a
dynamically created or static page in the cache of the server, the client, or a proxy server
for rapid access across multiple requests. When the page is cached in the output cache, all
subsequent requests for that page are served up from the output cache without activating
the page that originally instantiated it.

Saturday Afternoon136

224830-1 Ch14.F 11/7/01 9:02 AM Page 136

So, if you had a page default.aspx and had set the page to cache the response for a fixed
period of 30 seconds from the last request, and you wanted that cached output to be stored
on any cache-enabled device in the request stream such as the Web server or proxy-servers,
you could set the OutputCache page directive as follows:

<%@ OutputCache Duration=”30” Location=”Any” VaryByParam=”None”>

Or I could use the following code that just replicates the above page directive,

<%
Response.Cache.SetExpires(DateTime.Now.AddSeconds(30))
Response.Cache.SetCacheability(HttpCacheability.Public)
%>

In the next section we will address two approaches for implementing the expiration/
validation policy: absolute cache expiration and sliding cache expiration.

Absolute cache expiration
When using the OutputCache page directive, you can specify that the content is expired a
specified number of seconds after it was first requested. All further requests after the initial
request will simply receive the content stored in the output cache; and the page will not be
processed until the time frame specified has expired. Lets look at the following example
contained on CD in the Session14 folder under the file named “AbsoluteCache.aspx.” In this
example we illustrate a programmatic method for handling absolute cache expiration, rather
than using the OutputCache page directive discussed earlier. By using this programmatic
approach, we can establish a final date for a page to expire rather than simply a span of
time from when it was first initiated. In this example we are expiring the page on a specific
date of December 31, 2009.

Sliding cache expiration
The Cache object can utilize a Boolean property called SetSlidingExpiration. When this
property is set to True, every time a new request is received for the page — for instance
when a new user visits the page or when an existing page visitor selects the refresh button
in his or her browser — then the page is initiated and the output cache expiration is reset
based upon the code, as shown in Figure 14-1.

See the example SlidingCache.aspx on the CD in the Session 14 folder.

When the user selects the Click Here To Refresh hyperlink, the output page is
retrieved from the output cache and redisplayed, thus no values on the page change.
However, if the user selects the Refresh button from the toolbar, simulating a NEW request,
then the page skips retrieving the page out of cache, and instead recompiles the page and
resets the expiration on the output cache, even though the expiration time has not been
reached! In other words, it slides the expiration.

Cross-Ref

Session 14—ASP.NET Caching 137

224830-1 Ch14.F 11/7/01 9:02 AM Page 137

Figure 14-1 An example of sliding expiration when a user requests a page from the
output cache

The code in Listing 14-1 shows the source of the SlidingCache.aspx page shown in
Figure 14-1.

Listing 14-1 Source of the SlidingCache.aspx file

<%@ Page Language=”VB” Debug=”False” Trace=”False” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(ByVal Sender As System.Object, ByVal e As System.EventArgs)

SetOutPutCache()
End Sub
Sub SetOutPutCache

Dim dt As Date ‘ Creates a new DateTime Object
Dim bSlide as Boolean ‘ creates a Boolean Variable to Hold the Sliding

Expiration State
Dim dSec as Double
dSec = 30 ‘Set the expiration delay in Seconds
dt=datetime.now.addseconds(dSec) ‘ This calculates the time 20 seconds from

the time the Page is compiled

bSlide = True

Response.Cache.SetExpires(dt) ‘Sets the cache to expire in 20 seconds

Saturday Afternoon138

224830-1 Ch14.F 11/7/01 9:02 AM Page 138

Response.Cache.SetCacheability(HTTPCacheability.Public)
Response.Cache.SetSlidingExpiration(bSlide) ‘Sets the state of Sliding

Expiration
lblSlide.Text = bSlide
lbldt.Text=datetime.Now.ToLongTimeString
lblExpire.Text =dt.ToLongTimeString
Select Case bSlide
Case True

dInfo.InnerHTML = “<p>Since you have the bSlide Value in your code set to
True, everytime you refresh this page or another user refreshes the page, the expiration
of the page is postponed by another “ & dSec & “ seconds.”

Case False
dInfo.InnerHTML = “<p>Since you have the bSlide Value in your code set to

False, no matter how you refresh this page or how another user refreshes the page, the
page will expire at “ & dt.ToLongTimeString & “.”

End Select
End Sub

</SCRIPT>
</HEAD>
<BODY>

<H2>
Example of SetSlidingExpiration set to
<ASP:LABEL ID=”lblSlide” RUNAT=”SERVER”></ASP:LABEL>

</H2>
<P>

This code was last executed at
<ASP:LABEL ID=”lbldt” RUNAT=”SERVER”></ASP:LABEL>

<P>
The output cache will expire on
<ASP:LABEL ID=”lblExpire” RUNAT=”SERVER”></ASP:LABEL>

<P>
Click Here To Refresh
<DIV ID=”dInfo” RUNAT=”server”>
</DIV>

<P>
</P>

</BODY>
</HTML>

When Cache.SetSlidingExpiration is set to False, the page is always retrieved from
the output cache for all existing users as well as for new requests.

To test this try changing

bslide=True

to

bslide=False

in Listing 14-1. This turns off the sliding expiration functionality. Therefore, all requests
for the page, new or existing will be served from the output cache until you get past the
expiration time of 30 seconds; the next request after this expiration time produces a reset
of the expiration value. You can test this by looking at the code generation time stamp on
the output page.

Session 14—ASP.NET Caching 139

224830-1 Ch14.F 11/7/01 9:02 AM Page 139

Fragment Caching
Fragment caching is an approach that caches a portion of a page in memory rather than the
entire page as is done when using page output caching. Suppose you have a heavily
accessed evaluation or survey form, whose content is static for each user, but whose answers
you would like to track based upon a unique userid or value stored or passed in the URL.
Using page output caching is not going to provide you much benefit, because it depends
upon a unique URL string for caching the output. In our scenario, every request for the
page content will generate a unique URL.

Please refer to the FragmentOutputExample.aspx page in the Session 14 folder on the
accompanying CD. This example illustrates storing the static survey form in a file called
SurveyForm.htm. The first time the page is loaded, SurveyForm.htm is opened and its text is
inserted into a cache variable sMyForm. An absolute expiration of 10 seconds is applied to
the cached variable, so that all requests occurring 10 seconds after the initial request will
load this fragment of the page from cache, rather than loading it from disk.

When you look at the content of the SurveyForm.htm page, you can see that it is a sim-
ple survey form that does not change from user to user. Instead, its results need to be
uniquely stored based upon the userid information passed in the URL. You can handle this
scenario nicely in ASP.NET by caching the fragment of static information in a data cache
and retrieving the static data during the generation of the dynamic page (see Listing 14-2).

Listing 14-2 Using fragment caching

<%@ Import Namespace=”System.IO.StringWriter”%>
<%@ Import Namespace=”System.IO.File”%>
<%@ Import Namespace=”System.IO”%>
<%@ Import Namespace=”System”%>
<%@ Page Language=”vb” %>
<HTML>

<HEAD>
<META HTTP-EQUIV=”Content-Type” CONTENT=”text/html; charset=windows-1252”>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>

Sub Page_Load(ByVal Sender As System.Object, ByVal e As System.EventArgs)
‘ Checks to see if the Form is in Memory
Dim bCheckCache as Boolean
bCheckCache =CheckCache(“sMyForm”)
Select Case bCheckCache

Case True ‘ Set the lblCached to True
lblCached.Text = “True”

Case False ‘Set the lblCached to False
lblCached.Text =”False”

End Select
End Sub
Function CheckCache(sItem as String)

‘Checks for the existince of a Cached Item
Dim bCached as Boolean
If Cache.Get(sItem) = Nothing Then

bCached = False
Else

bCached = True

Saturday Afternoon140

224830-1 Ch14.F 11/7/01 9:02 AM Page 140

End If
Return bCached

End Function
Function GetCachedForm(sFileName as String, sCacheItem as String)

‘Dim String for Cached HTML Form
Dim sMyForm as String
‘Dim StreamReader to Read HTML From File
Dim sr As StreamReader
‘See if Cache Exists
If CheckCache(sCacheItem) Then

sMyForm = Cache.Get(sCacheItem)
‘Otherwise if it doesn’t read in survey to cache
Else

sr = File.OpenText(server.MapPath(sFileName)) ‘Open File
While sr.peek <> -1 ‘Loop Through File

sMyForm = sMyForm & sr.ReadLine() ‘Load Line of Text from File
End While
sr.close() ‘ Close FileStream
sr = Nothing ‘Optional Destroy Object
Cache.Insert(sCacheItem,sMyForm,Nothing, datetime.Now.AddSeconds(10),

timespan.zero) ‘Insert the HTML Form
End If
Return sMyForm

End Function
Sub btnSubmit_Click(sender As Object , e As

System.Web.UI.WebControls.CommandEventArgs)
‘Insert Code to Write Survey Information to Log File or Database

End Sub
</SCRIPT>

</HEAD>
<BODY>

<FORM ID=”FragmentOutputExample” METHOD=”get”
ACTION=”FragmentOutputExample.aspx”>

<H2>
Example of Fragment Caching a Form

</H2>

<%Response.write(GetCachedForm(“SurveyForm.htm”, “sMyForm”))%>

<ASP:BUTTON ID=”btnSubmit” RUNAT=”SERVER” TEXT=”Button”
ONCOMMAND=”btnSubmit_Click”></ASP:BUTTON>

<P>
</P>
<HR SIZE=”1”>
<P>

Was the above form in Cache?
<ASP:LABEL ID=”lblCached” RUNAT=”SERVER”></ASP:LABEL>

</P>
<P>

Page Compiled at:<%=datetime.now.tolongtimestring()%>
</P>

</FORM>
</BODY>

</HTML>

Session 14—ASP.NET Caching 141

224830-1 Ch14.F 11/7/01 9:02 AM Page 141

As can be seen in Listing 14-2, we first test to see if the static form text is in cache.
If it is not stored in memory, we proceed to open the static html file, load the text into
a string, and then store that string in cache, setting an absolute expiration of 10 seconds.
All subsequent requests for this page for the next 10 seconds will achieve a higher
performance because the static page fragment will be pulled from memory. However,
the developer can still leverage the dynamic components of the container page to combine
userid’s or other user-specific data with the form’s response so that the resulting data can
be uniquely identified.

Page Data Caching
ASP.NET additionally exposes the Cache object in the System.Web.Caching namespace,
which provides direct access to the ASP.NET cache engine. The Cache object provides a
collection that allows you to access all information stored in the cache. We can utilize
this capability to support the storage and retrieval of arbitrary objects across HTTP
requests.

Because the ASP.NET cache is private to each ASP.NET application, when the application
is restarted all cache information is lost. However, all active data in the cache is stored in
memory, so we can pass data between pages within the same application. The cache is
thread-safe, which means that it implements automatic locking so that concurrent access
isn’t typically an issue. However, because all pages can access the cache, you can have
scenarios in which user B will view from cache an item that was modified by user A on
the same or a different page. Thus, page data caching works closer to the way variables
established in the Application_OnStart event work, rather than session variables that
are unique to a user session.

You can thus use this feature to store data such as database queries or custom objects;
and you can share these across users of your application. The ASP.NET cache provides
methods for expiring this content based upon the following factors:

� Expiration: You can expire cached data items just as you can expire pages as
shown in the page output caching examples earlier. You can expire a data item at
a specific time such as noon on December 31, 2002. You can also expire an item
60 seconds after its initial request, or relative to the last time it was requested, a
sliding cache.

� File and Key Dependency: You an also expire a cached data item based upon the
status or state of an external file, or another cached data item. As soon as the
dependency rule you set up is violated, the cached item is invalidated and removed.
Another process will then be required to reestablish the cached data.

� Scavenging: This refers to the process whereby the ASP.NET cache engine attempts
to remove infrequently referenced cache data when memory constraints come into
play. When using scavenging you can set up rules that the cache engine should
follow to determine the relative cost of creating the item and how frequently it
should be accessed to remain useful.

Saturday Afternoon142

224830-1 Ch14.F 11/7/01 9:02 AM Page 142

Each of these approaches can be used alone or in combination to provide robust handling
of cached data.

Expiration
When you are using the data cache, the rules for expiration, dependency, and scavenging
are established when you first insert an object into the cache. If you wanted to add your
name to the cache, with no expiration, scavenging, or dependency rules, you would simply
use something like this:

<% Cache.Insert(“sMyName”, “Tony Caudill”) %>

To retrieve this value from the cache, you would use:

<%
Dim sMyName as String
sMyName = Cache.Get(“sMyName”)
%>

If you attempted to write the value of the cached item to your output page prior to using
the Cache.Insert method, you would receive an error message, Attempted to dereference
a null object reference. So, you need a way to check if the cached item is in fact cached
prior to referencing that item. You can do this by seeing if the cached item is equal to
Nothing, as illustrated in the following code:

<% @ Page Language =”VB” Runat=”Server”%>
<%

Dim sMyName as String ‘ Creates a new String Object
If Cache.Get(“sMyName”) = Nothing Then

Cache.Insert(“sMyName”,”Tony Caudill”) ‘ Insert the value
End If

sMyName = Cache.Get(“sMyName”) ‘ Get the value

%>

Displaying all items currently in the data cache
As you use the data cache more frequently, you will find that it is helpful to obtain a listing
of all items that it contains. Because these items are stored in a collection, it is easy to
obtain. Open up the example in your Session 14 folder named datacacheexample.aspx.
Figure 14-2 shows the output.

In this example, we have included a report at the bottom of the page that lists all the
key/value pairs inserted into the cache. This is fairly easily done using the ShowCache()
subroutine in the DataCacheExample.aspx page as illustrated in Listing 14-3.

Session 14—ASP.NET Caching 143

224830-1 Ch14.F 11/7/01 9:02 AM Page 143

Figure 14-2 Output from DataCacheExample.aspx

Listing 14-3 Segment of code from DataCacheExample.aspx for retrieving key/value pairs
stored in Cache

Public Sub ShowCache()
Dim oItem As Object
Dim sText As String
For Each oItem In Cache

If Left(oItem.key, 7) <> “System.” Then
sText = sText & oItem.Key & “=” & Cache(oItem.Key) & “
”

End If
Next

divDisplay.InnerHTML =sText
lblcompile.Text = datetime.Now.ToLongTimeString

End Sub

You simply loop through all of the items stored in the cache collection and filter out all
items that start with the text System. You then attach the resulting key/value pairs into a
string and display them after the <DIV> tag at the bottom of the page.

Explicitly removing an item from the data cache
You may have occasion to remove an item from cache. In the DataCacheExample.aspx file,
we’ve included a subroutine that will remove a key/value pair based upon what key the user
has entered in the form:

Saturday Afternoon144

224830-1 Ch14.F 11/7/01 9:02 AM Page 144

Public Sub BtnRemoveClick(ByVal sender As Object, ByVal e As
System.EventArgs)

Cache.Remove(txtKey.Text.ToString)
showcache()

End Sub

Once the subroutine has removed the selected key/value pair, it then calls the show-
cache() method which regenerates the full listing of all key/value pairs that we discussed
above.

To expire data from the cache automatically we can use the absoluteExpiration and
the slidingExpiration parameters of the Cache.Insert method. These options are
addressed below.

Using the absoluteExpiration parameter
To expire a piece of data at an absolute time or a specified number of seconds after it was
inserted, use the following syntax, highlighted in bold in Listing 14-4, when you insert the
data for the first time:

Listing 14-4 Example of using absolute expiration

<%@ Page Language=”vb” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(ByVal Sender As System.Object, ByVal e As System.EventArgs)

Dim sMyName as String ‘ Creates a new String Object
Dim dt as DateTime
dt.Now.AddSeconds(30)’Set DateTime you need data to expire
If Cache.Get(“sMyName”) = Nothing Then

Cache.Insert(“sMyName”, “Tony Caudill”,Nothing,dt,TimeSpan.Zero)
End If
sMyName = Cache.Get(“sMyName”)
Response.Write(sMyName)

End Sub
</SCRIPT>

</HEAD>
<HTML>

<BODY>
</BODY>

</HTML>

By setting the value of the dt variable to be equal to the current system time plus
30 seconds (dt.Now.AddSeconds(30))and by setting the TimeSpan variable equal to zero
(TimeSpan.Zero), we have provided an absolute expiration of the data cache variable
MyName to occur exactly 30 seconds from the time the data is inserted into the cache. No
matter how many times it is read during the 30 seconds, it will cease to exist when the time
has elapsed. In order to reestablish it in the cache, you would need to perform another
Cache.Insert statement.

Session 14—ASP.NET Caching 145

224830-1 Ch14.F 11/7/01 9:02 AM Page 145

Using the slidingExpiration parameter
To expire the data from the last time it was accessed, you can use the slidingExpiration
parameter as in Listing 14-5:

Listing 14-5 Example of using sliding expiration

<%@ Page Language=”vb” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(ByVal Sender As System.Object, ByVal e As System.EventArgs)

Dim sMyName as String ‘ Creates a new String Object
Dim dt as DateTime
Dim ts as TimeSpan
ts.FromSeconds(30)
If Cache.Get(“sMyName”) = Nothing Then

Cache.Insert(“sMyName”, “Tony Caudill”,Nothing,dt.MaxValue,ts)
End If
sMyName = Cache.Get(“sMyName”)
Response.Write(sMyName)

End Sub
</SCRIPT>

</HEAD>
<HTML>

<BODY>
</BODY>

</HTML>

In the code above, we used dt.MaxValue to indicate that there was no absolute expira-
tion, and ts.FromSeconds(30) to indicate that the item should expire on a sliding basis,
30 seconds from the time it was last accessed. This will ensure that the data remains cached
once every 30 seconds as long as the page is accessed.

File and Key Dependency and Scavenging
File and Key Dependency-based caching are most likely to be used when you are storing
global configuration information in an XML or other physical file that is read from very
frequently but changes infrequently. You can create a file dependency that initiates a
cache update whenever the date/time stamp on the file is updated.

When inserting an object into cache you can use the optional methods
CacheItemPriority, CacheItemPriorityDecay, and CacheItemRemovedCallback to build
rules for scavenging the expiration of cached items. By setting the CacheItemPriority,
you are setting the relative cost of the object, as expressed by the CacheItemPriority
enumerator. This value is used by the cache when it evicts objects. All things being equal,
objects with a lower cost are removed from the cache before objects with a higher cost,
in order to save memory or other application resources. By setting a cached items
CacheItemPriority value to a selection such as AboveNormal, the cache will remove
these items only after lower priority items have been removed. This provides you very
granular, rule-based control in sophisticated caching scenarios. An example of using these

Saturday Afternoon146

224830-1 Ch14.F 11/7/01 9:02 AM Page 146

optional methods are illustrated below which shows storing a DataSet object for absolute
expiration in 2 minutes, and giving it a high priority and slow decay so that it will have pri-
ority over other cached items should resources become constrained:

Cache.Insert(“DataSet”, oDA, Nothing, DateTime.Now.AddMinutes(2), TimeSpan.Zero,
CacheItemPriority.High, CacheItemPriorityDecay.Slow, onRemove)

REVIEW

ASP.NET provides a much more robust caching model, than was previously available in ASP.
This should allow you tremendous flexibility in designing and optimizing your application to
the needs of your end users. The ability to store just about anything in cache including
XML, files, and even objects as part of the data cache opens up nearly unlimited possibilities
for you as a developer.

Remember that when you are storing items in cache, you are increasing
the demands on available memory, so be sure to monitor your application
servers for memory utilization as you expand the use of these features in
your application framework.

QUIZ YOURSELF

1. When would you want to set SlidingCache to True in an application?
(See “Sliding cache expiration.”)

2. Describe the differences between page output caching and data caching?
(See “Page Output Caching” and “Page Data Caching.”)

3. Under what scenarios would data caching be useful? (See “Page Data Caching.”)

Tip

Session 14—ASP.NET Caching 147

224830-1 Ch14.F 11/7/01 9:02 AM Page 147

224830-1 Ch14.F 11/7/01 9:02 AM Page 148

Session Checklist
✔ Understanding the core differences between ADO and ADO.NET
✔ Knowing when to use ADO.NET
✔ Understanding the benefits of ADO.NET for n-tier application development

In this session, we cover the major factors that are key to understanding ADO.NET and
its usefulness for n-tier platform development. We take a brief tour of the history of
ADO and then expand into why the move to n-tier application development has required

the delivery of an enhanced data access layer that more appropriately supports discon-
nected datasets and cross-platform sharing of data and schemas.

A Brief History of Microsoft Data Access
The days of homogenous operating environments are numbered. Most of today’s Internet
applications are deployed in heterogeneous environments that consist of loosely coupled
platforms. These new environments pose new challenges for sharing common services and
system scalability. To address the requirements of these heterogeneous environments,
Microsoft has developed ADO.NET.

There are three key requirements related to data access that have evolved in the
expanded use of distributed computing:

� Robust data exchange among heterogeneous computing environments.
� Native support for the transmission of data sets across firewalls using HTTP.
� Requirement to rapidly scale while supporting a centralized data store.

ADO.NET is an evolution of the ADO model for data access. ADO was an extremely
effective, easy-to-use model that provided the ability to interact with multiple types of
structured data. However, the core element of the ADO model, the RecordSet object, was

Introducing ADO.NET

S E S S I O N

15

234830-1 Ch15.F 11/7/01 9:02 AM Page 149

becoming extremely fat. Originally operating as a simple way to interact with a SQL result
set, the RecordSet object had grown to support disconnected sets of data, data shaping
of multiple datasources, and a complex SQL generation layer that could support optimistic
locking. In short, the RecordSet object was the universal data access object for COM-
oriented environments.

As Internet applications evolved, it became clear that their true strength would be their
ability to operate as loosely coupled systems. These systems can easily communicate and
exchange data across a heterogeneous environment and through an infrastructure whose
primary common transmission protocol was HTTP. ADO depends heavily on COM and specifi-
cally on Advanced Data Table Gram (ADTG) as the native transmission format, which requires
conversion of this binary format to derivative forms such as XML in order to support robust
transmission across HTTP. ADO.NET provides the needed evolution by natively supporting XML,
a text-based format, as the transmission format. This evolution provides the ability to access
middle-tier business logic on any platform or standard— CORBA, COM, and so on— supporting
XML, and have the services of these middle-tier applications made available to one another
through the serialization and deserialization of XML for data interchange. When the transmis-
sion occurs through an XML-based standard there is a significant reduction in the amount of
effort and data conversion required to access data in a heterogeneous environment.

Today’s Internet application systems need to be highly scalable and redundant. As
systems scale, one of the primary limitations becomes the ability of the relational database
management system (RDBMS) to maintain and support open connections to the middle-tier
business objects. Typically there is a fixed limit to the number of open connections that
can be supported by the RDBMS. In a distributed environment, it is likely that you will
have a higher number of middle-tier components desiring simultaneous connections to the
data store. To the extent that these components require an open connection for sorting,
filtering, and manipulating the data, scalability is tremendously limited. ADO.NET natively
supports a disconnected approach that involves pulling down the core set of data and then
performing all filters, sorts, and manipulations on the middle tier. Because of its XML-based
nature, it can also transmit the manipulated data set to another component for further
processing before finally submitting it back to the original data store for update. In the
ADO model, the extent of the disconnected manipulation was limited and thus impacted
scalability — you had to programmatically handle connection opens and closes. In ADO.NET
these happen automatically.

Differences between ADO and ADO.NET
The previous section discussed at a high level some of the fundamental changes in the
ADO.NET framework that are driven by a move to highly distributed, loosely coupled, and
thinly connected applications. This section provides a more detailed look at the differences
between ADO and ADO.NET.

Transmission formats
ADO utilized a very efficient and compact binary format, the Advanced Data Table Gram
(ADTG) format, to provide transmission of data between applications. This limited the direct
transmission of a set of data to applications that could support this format, in this case COM
applications. The transmission of data was further limited in the world of the Internet as

Saturday Afternoon150

234830-1 Ch15.F 11/7/01 9:02 AM Page 150

there was not an easy method for sending this binary format efficiently across firewalls that
often only supported HTTP. These factors effectively limit the full functional use of ADO to
COM environments.

ADO.NET, by contrast, natively supports the text-based XML format for transmission of
data. As a text-based, open, and widely accepted standard, XML can and is supported in
COM, CORBA, and numerous other computing environments. As a text-based format, it can
be readily communicated across HTTP, providing a simple method to transmit structured
data across corporate firewalls.

Connected versus disconnected datasets
ADO (ActiveX Data Objects) is an application programming interface (API) for accessing data
primarily in a connected (cursor-based) scenario. ADO provides the capability of using a
connection-oriented approach to creating, updating, and deleting data through pessimistic
locking. This is a preferred approach in a two- and three-tier environment. ADO optionally
enables you to operate with a client-side cursor providing a disconnected method as well,
and thus provides a solution for n-tier development.

ADO.NET is an API to access data and information in a disconnected manner. It is thus
not very useful in a client/server environment, and in fact is optimized for use in a n-tier
environment in which maintaining open connections to the datasource are typically ineffi-
cient and ineffective.

COM marshaling versus text-based data transmission
When operating in a purely COM environment it is clear that the ADO model provides a very
rich and attractive programming interface. Its ability to use multiple cursor types and con-
nections, and to easily shape, sort, filter, and modify data on multiple-relational and non-
relational sources is apparent. However, the ADO model is only an advantage if all systems
that are interacting with each other are COM based. These very same benefits are a liability
in a distributed and heterogeneous environment where mainframe, UNIX, and numerous
other non-windows-based platforms are involved. In the ADO world, the transmission of a
disconnected recordset from one component to another involves COM marshaling and forces
the receiving component to support COM to accept the transmission. Therefore only COM
objects can use ADO recordsets. And while ADO did provide the capability to save content to
XML and rebuild from an external XML file, the default XML schema employed was optimized
for use in an ADO environment (as opposed to transmission to non-COM based systems).
With ADO.NET, the native support of XML overcomes these issues and provides an approach
for transmission of almost any data type between almost any type of platform. This allows
mainframe systems to communicate with COM-based middleware and then have the result
modified by a CORBA-based Java Servlet while having the data roundtrip back and updating
a centralized relational or nonrelational datasource.

Variant versus strongly typed data
ADO by default will utilize variant data types to comply with script-based environments.
This means that the data types will not be evaluated until runtime, and that they must be
evaluated prior to committing them back to the originating datasource in most cases.

Session 15—Introducing ADO.NET 151

234830-1 Ch15.F 11/7/01 9:02 AM Page 151

ADO.NET utilizes a strongly typed data, which ensures that conversion of data from one
type to another is accurate and complete, and that methods for calculations based upon
ADO.NET provide a more accurate and less error-prone scenario.

Data schema
ADO can represent data relationships and constraints that may exist in the original rela-
tional data store by expressing them through an XML schema. However, this ability is lim-
ited because the schema was optimized to support interaction in a COM-only environment.
ADO.NET natively supports full transformation of a data schema into a disconnected data-
source. This provides for a more universal and leaner data set because it doesn’t carry the
datasource-specific data previously carried by the ADO XML approach.

ADO.NET Managed Provider Versus SQL Managed Provider
The ADO.NET Managed Provider is used to connect to OLEDB Providers and ODBC drivers, and
thus tends to have more overhead and lower performance than the SQL Managed Provider,
which has been optimized to work with SQL Server. The SQL Managed Provider in fact doesn’t
use ODBC and instead talks directly with SQL Server without assistance from OLEDB. Microsoft
has provided this capability for one reason — performance. Microsoft claims that the speed
of moving data between SQL Server and an ASP.NET application can increase by as much as
300 percent using the SQL Managed Provider because of the optimized direct communication
provided.

Why ADO.NET?
ADO.NET should be your strategic choice for n-tier application development in a COM
environment. While it is fairly easy for you to run your ADO code in an *.aspx page as
.NET provides backward compatibility, you will not be able to take advantage of some key
benefits of the .NET framework such as databinding. ADO uses RecordSet objects that
follow guidelines that are no longer suitable in .NET. Therefore, you cannot use a RecordSet
object to populate an ASP.NET or Windows Forms datagrid by attaching it as a datasource.
Instead, you will be required to iteratively loop through the RecordSet object and populate
these databound controls manually.

Additionally, by using the ADO.NET framework, you are inherently preparing your appli-
cation for much more robust activity. Even if you are not using XML extensively within your
application today, by using the ADO.NET framework you have set yourself up for success in
the future.

ADO.NET clearly provides some key advantages in applications that require a readily
transportable disconnected data store or need to support a highly scalable middle tier.
However, there is one core feature that ADO.NET doesn’t support, the use of server-side
cursors. A server-side cursor requires that an open connection be maintained between
the application and the database. In client/server applications, this was a fairly common
approach and there are a number of applications and situations where you still should use
server-side cursors. However, most Web-based systems just don’t need to maintain an
open connection to the database. So, what do you do if your current application code uses

Saturday Afternoon152

234830-1 Ch15.F 11/7/01 9:02 AM Page 152

server-side cursors? You should first examine why you need this type of connection, and
then balance this against the loss of scalability and flexibility that results. You should
consider the option of dropping dynamic, server-side cursors in favor of static, client-side
cursors, which are the preferred cursors within the ADO.NET framework. If you can’t change
your code to employ client-side cursors, then you may be stuck with ADO.

REVIEW

We have covered at a high level how the shift to a distributed computing environment has
created a need for a leaner, more robust data access solution, ADO.NET. You should now
understand some of the key differences between ADO and ADO.NET and be able to better
determine how your own applications may be impacted by ADO.NET.

QUIZ YOURSELF

1. In what scenario is ADO.NET not a suitable approach? (See “Why ADO.NET?”)
2. What is the native transport format for ADO.NET? (See “A Brief History of Microsoft

Data Access.”)
3. How is ADO.NET an advantage when dealing with transporting data across corporate

firewalls? (See “Transmission formats.”)

Session 15—Introducing ADO.NET 153

234830-1 Ch15.F 11/7/01 9:02 AM Page 153

234830-1 Ch15.F 11/7/01 9:02 AM Page 154

Session Checklist
✔ Understanding the relationship between an object and an object model
✔ Learning to navigate an object model
✔ Understanding the relationship between objects in the ADO.NET object

model

Y ou have probably heard the term object-oriented programming (OOP). It is and has
been the buzzword for several years; and although it is a frequently (over?) used
phase, almost everyone you ask will describe the concept of OOP differently.

OOP is effectively a method of developing application code based on objects in order to
promote code reusability, maintainability, and extensibility. An object is defined by a class
and is actually an instance of a class. Multiple objects can be created based on the same
class. A class is a structure that contains both properties, what the class is, and methods,
what the class does. Most people will tell you that the classes you create for an application
should be abstract representations of real-world entities. For example, you might have a
class called “Band” that represents a musical group. OK, so how do you take a class and cre-
ate an object? Well, that’s usually handled by the programming language for which you are
creating the object. The facility for creating an object from a class is generally referred to as
a factory and is basically a means of manufacturing an object based on a class definition.

Don’t concern yourself with the details of how a factory works, just be aware that object
creation is not magic, there is code somewhere that handles it for you. In Visual Basic .NET,
you can create an object using the New keyword as follows:

Dim oConn As New ADOConnection

Navigating the ADO.NET Object Model

S E S S I O N

16

244830-1 Ch16.F 11/7/01 9:03 AM Page 155

In this case, a new object called oConn will be created that is an instance of the
ADOConnection class.

So now that you know what an object is, let’s talk about object models. An object model
gives structure to a hierarchical grouping of functionally related objects. For example all of
the objects under the ADO.NET object model umbrella in some way provide data access func-
tionality. An object model typically expresses the fact that some objects are “bigger” or
more important that others — these objects can be thought of as containing other objects,
or being made up of other objects.

Suppose you want to build an application that will store information about music groups.
In order to facilitate the development of this application, you want to develop a group of
classes, in the form of an object model, that other developers can use to write application
code. In your object model, you might want to create a Band class that can contain other
classes like Album, Member, and RecordCompany classes. Figure 16-1 shows the object model
for this situation.

Figure 16-1 An object model for an application that stores information about
music groups

Band

Member

Album

RecordCompany

Saturday Afternoon156

244830-1 Ch16.F 11/7/01 9:03 AM Page 156

As you can see in Figure 16-1, the Band class can contain a Member, an Album, and
a RecordCompany object. Let’s say that the Band class has the following properties and
methods:

Properties Methods
Name Add
Member Update
Album Delete
RecordCompany Dispose

In the previous scenario, the Member, Album, and RecordCompany properties are actually
classes. Classes can be properties of other classes. So in the previous example, a Band object
can contain a Member class, an Album class, and a RecordCompany class. To make things
easy, say that the Member, Album, and RecordCompany classes all implement just one
property: Name. (Don’t worry about the methods right now.) So, now that you know how the
classes are related and what properties and methods they contain, you can write the follow-
ing code (in Visual Basic) to create your objects and navigate the object model:

Dim oBand As New Band
oBand.Name = “Hootie & The Blowfish”
oBand.Member.Name = “Darius Rucker”
oBand.Album.Name = “Cracked Rear View”
oBand.RecordCompany.Name = “Atlantic”
oBand.Add
oBand.Album.Name = “Fairweather Johnson”
oBand.Update
oBand.Dispose
oBand = Nothing

You’ll notice that, as a developer, when you work with an object model (well
actually objects in general) you don’t need to concern yourself with imple-
mentation details. For example, we know that when we call the Band class’s
Add method, a record is added to a table in our data store for the band, but
we have no idea how. We don’t need to know how. That’s the beauty of
objects.

OK, going back to your example. It’s neat, but not too realistic. Frequently an object of
one type, in this example the oBand object, can contain many objects of another type, such
as Member and Album. This situation can be handled in one of two ways. You can either
implement the Member and Album properties as collection objects or you can create two
more classes, Members and Albums, that sit between the Band class and the Member and
Album classes. The more OOP-like approach would be the latter in order to increase
reusability and maintainability. Figure 16-2 shows the new object model.

Note

Session 16—Navigating the ADO.NET Object Model 157

244830-1 Ch16.F 11/7/01 9:03 AM Page 157

Figure 16-2 Object model with collection classes

The Band class should now implement the following properties and methods:

Properties Methods
Name Add
Members Update
Albums Delete
RecordCompany Dispose

Notice that the Band class’s Member and Album properties have now become Members and
Albums respectively. You can infer here that these properties are collection properties. A
collection property represents a collection class, which is effectively a container for or
group of another type of class. In your example, the Band class’s Members property is actu-
ally a link to your Members collection class, which can contain several Member objects. The
same holds true for the Albums property and class.

Band

Members

Albums

RecordCompany

Member

Album

Saturday Afternoon158

244830-1 Ch16.F 11/7/01 9:03 AM Page 158

Assume the Members and Albums classes implement the same properties and methods:

Properties Methods
Item Add
Count Remove

Dispose

So, now that you know how the classes are related (by examining the object model) and
what properties and methods each class implements, you can navigate your object model
with the code shown in Listing 16-1.

Listing 16-1 Navigating the Band object model

Dim oBand As New Band
Dim oMember As New Member
Dim oAlbum As New Album
Dim x As Integer

oBand.Name = “Hootie & The Blowfish”
oMember.Name = “Darius Rucker”
oBand.Members.Add(oMember)

oMember = New Member
oMember.Name = “Mark Bryan”
oBand.Members.Add(oMember)

oAlbum.Name = “Cracked Rear View”
oBand.Albums.Add(oAlbum)

oAlbum = New Album
oAlbum.Name = “Fairweather Johnson”
oBand.Albums.Add(oAlbum)

For x = 0 To (oBand.Members.Count – 1)
Response.Write(oBand.Members.Item(x).Name)

Next

For x = 0 To (oBand.Albums.Count – 1)
Response.Write(oBand.Albums.Item(x).Name)

Next

oBand.Add

oAlbum.Dispose
oAlbum = Nothing
oMember.Dispose
oMember = Nothing
oBand.Dispose
oBand = Nothing

Session 16—Navigating the ADO.NET Object Model 159

244830-1 Ch16.F 11/7/01 9:03 AM Page 159

As you can see, navigating an object model is straightforward. You create your objects,
set their properties, and call their methods. In Listing 16-1, all you are doing is creating a
few objects, specifically Member and Album objects, and adding them to their parent object’s
collection properties, specifically Members and Albums.

So you may be asking yourself, “What in the world does all this have to do with
ADO.NET?” Well, ADO.NET provides an object model that you can program against in order to
access your data store. The ADO.NET object model is a little larger and a lot more function-
ally robust than your example, but they work the same way. ADO.NET is simply a collection
of objects that offer properties and methods used to access data. Figure 16-3 shows the
ADO.NET object model.

Figure 16-3 The ADO.NET object model

OLEDB Connection

OLEDB Command

OLEDB DataSetCommand

Data Set

OLEDB DataReader SQL DataReaderSQL DataSetCommand

OLEDB Parameter

DataTableMapping

Se
le

ct
Co

m
m

an
d

In
se

rt
Co

m
m

an
d

U
pd

at
eC

om
m

an
d

De
le

te
Co

m
m

an
d

Se
le

ct
Co

m
m

an
d

In
se

rt
Co

m
m

an
d

U
pd

at
eC

om
m

an
d

De
le

te
Co

m
m

an
d

DataTable

DataRelation

DataColumn

DataRow

Constraint

SQL ParameterSQL Command

SQL Connection

Saturday Afternoon160

244830-1 Ch16.F 11/7/01 9:03 AM Page 160

At first glance, the task of navigating the ADO.NET object may seem a little daunting.
Rest assured that if you apply the lessons you learned earlier in this session you will have
no problem at all.

To make this discussion a little more manageable, break the ADO.NET object model into
smaller pieces. Figure 16-4 shows a diagram that represents one fragment of the ADO.NET
object model, the DataSet. The DataSet is a new ADO object that is a memory-resident
database that you can use to access, update, delete, and add data to your data store.

Figure 16-4 The DataSet object

As you can see, the DataSet object model consists of numerous objects and collections
(in gray). Without going into too much detail about the Dataset object’s properties and
methods (and the properties and methods of the many objects that comprise the Dataset
object), here’s how you can leverage your knowledge of object models to fully exploit the
power of the DataSet object.

Data Set

Tables
(DataTable Collection)

Columns
(DataColumn Collection)

Constraints
(Constraints Collection)

Rows
(DataRow Collection)

Relations
(DataRelationCollection)

Table
(Data Table)

Column
(Data Column)

Constraint
(Constraint)

Row
(Data Row)

Session 16—Navigating the ADO.NET Object Model 161

244830-1 Ch16.F 11/7/01 9:03 AM Page 161

The first thing you need to do is create a dataset object. There are many ways to do
this, explicitly or by using a DataSetCommand object’s methods. You can use Visual Basic’s
New keyword as follows:

Dim oDS As New DataSet

Now that you have a dataset object, oDS, you can gain access to its constituent objects.
The Tables collection has the Count property, which returns an integer value representing
the number of tables in your dataset object. Try it out:

Dim x As Integer
x = oDS.Tables.Count

As you can see, you use the DataSet object to access your Tables collection through the
Tables property. Unfortunately, because your dataset is empty, you can’t go much further
than the Tables collection. Instead, you can build a Table, a DataTable, object using the
DataRow and DataColumn objects.

First you’ll declare the object as follows:

Dim oDataSet As DataSet
Dim oTable As DataTable
Dim oRow As DataRow
Dim oColumn As DataColumn

Then create a table object and add it to your dataset object, oDataSet:

oDataSet = New DataSet(“Music”)
oTable = New DataTable(“t_bands”)
oDataSet.Tables.Add(oTable)

These three lines of code have done a great deal. In the first line, you created a DataSet
object and named it Music. How does that work? Well, objects have something called a con-
structor to which you can pass parameters to initialize the object’s properties. Often, an
object has several constructors that all accept different parameters. As you can see, when
constructing your DataSet, oDataSet, DataTable, and oTable objects, you are passing
strings that represent the object’s name. After initializing the DataSet and DataTable
objects, you added oTable to oDataSet’s TableCollection object through the Tables
property.

OK, now that you have a dataset and a datatable, you can create a column (or two) and
add it to oTable’s ColumnCollection through the Columns property:

oColumn = New DataColumn
With oColumn

.ColumnName = “band_id”

.DataType = System.Type.GetType(“System.Int32”)

.AllowDBNull = False

.Unique = True

.AutoIncrement = True

.AutoIncrementSeed = 1

Saturday Afternoon162

244830-1 Ch16.F 11/7/01 9:03 AM Page 162

.AutoIncrementStep = 1
End With
oTable.Columns.Add(oColumn)

All you’ve done in the previous code snippet is (1) create a new DataColumn object
named oColumn, (2) set several of the column’s properties, and (3) added oColumn to
oTable through its Columns property by calling its Add method. Notice that when you
created oColumn, you didn’t pass any parameters to its constructor. That’s OK. You can
always set the properties explicitly, which you did with, for example, the ColumnName
property. Don’t concern yourself right now with all the properties and methods described
in these examples. Try to focus more on how all of these objects are related. Add another
column to oTable:

oColumn = New DataColumn
With oColumn

.ColumnName = “band_title”

.DataType = System.Type.GetType(“System.String”)

.AllowDBNull = False

.Unique = True
End With
oTable.Columns.Add(oColumn)

So at this point, you have a dataset, oDataSet, which contains one DataTable object,
oTable, which in turn contains two DataColumn objects. Actually that’s not exactly true. To
be more exact, you have a DataSet that contains a TableCollection object that contains
one DataTable object that contains a ColumnsCollection object that contains two
DataColumn objects. To illustrate this point, set the primary key on oTable:

oDataSet.Tables(“t_bands”).PrimaryKey = New DataColumn()
{oTable.Columns(“band_id”)}

Don’t worry about the syntax to the right of the equals sign, you get to that in Session
21, “Introducing DataSets, Part II.” If you look at the syntax on the left of the equals sign,
you can see that you are navigating through the hierarchy of DataSet objects to get to the
PrimaryKey property on the DataTable named t_bands.

Now that you have successfully created the structure of oTable, let’s add some data.
To add data to a DataTable object, you need to use the DataRow class.

oRow = oTable.NewRow
oRow(“band_title”) = “Hootie & The Blowfish”
oTable.Rows.Add(oRow)

In the previous code you (1) created a new DataRow object, oRow, based on oTable’s
structure using its NewRow method, (2) added data to the band_title column, and (3)
added oRow to oTable through the RowsCollection’s Add method.

So that is how you can navigate the DataSet object model. The rest of the ADO.NET object
model is essentially the same. The objects may have different properties and methods, but, at
the end of the day, they’re all related in a very elegant hierarchical manner.

Session 16—Navigating the ADO.NET Object Model 163

244830-1 Ch16.F 11/7/01 9:03 AM Page 163

We should mention one more thing about the ADO.NET objects. As you can
see in Figure 16-3, several classes are offered in two flavors, OLEDB and
SQLClient. Two examples of this are the OLEDBConnection and SQLConnection
classes. Each of these “flavors” is referred to as a Managed Provider. What
does this mean? Well, if you are using SQL Server 7.0 or higher, use the
SQLClient classes (that is, SQLConnection, SQLCommand, and so on), otherwise
use the OLEDB classes (i.e., OLEDBConnection, OLEDBCommand). You can
certainly use the OLEDB classes to access a SQL Server database, but you
loose a little performance because the SQL Managed Providers communicate
directly with the SQL Server internal API, skipping the intermediate level
represented by OLEDB.

REVIEW

In this session, you learned about classes, objects, collections, and object models. An object
is an instance of a class. An object model is a hierarchical grouping of objects that are func-
tionally related. The ADO.NET object model provides us, as developers, with an easy-to-use
programming model to access practically any type of data store. Many of the objects that make
up ADO.NET come in two flavors, ADO and SQL, which are referred to as Managed Providers.
With respect to ADO.NET, a Managed Provider is effectively a class that is optimized to work
with a particular type of data store.

QUIZ YOURSELF

1. What is an object model? (See session introduction.)
2. How are objects and classes related? (See session introduction.)
3. What is a Managed Provider? (See session introduction.)

Note

Saturday Afternoon164

244830-1 Ch16.F 11/7/01 9:03 AM Page 164

The following set of questions is designed to provide you with feedback on how
well you understood the topics covered during this part of the book. Please refer to
Appendix A for the answers to each question.

1. The required field validator can be used with a label control.

True/False

2. What is a regular expression that can be used to validate an e-mail
address?

3. More than one validation control can be used together to validate a sin-
gle user input field.

True/False

4. What version of JavaScript should be used for client-side validation?

a. 1.0

b. 1.1

c. 2.0

d. 2000

5. If browsers do not support client-side cookies, what state maintenance
approach can be used?

a. Cookieless

b. Client-side

c. Server-side

d. None of the above

P A R T

#
P A R T

Saturday Afternoon
Part Review

III

254830-1 PR03.F 11/7/01 9:03 AM Page 165

6. Fill in the blank: Use of SQL Server for state maintance uses ______ state
maintenance.

7. List two advantages of using .NET State Server.

8. List two advantages of using SQL Server for state maintenance.

9. Fill in the blank: ______ is the process of discovering and verifying
the identity of a user or service by examining the user’s credentials and
validating those credentials against some authority.

10. Fill in the blank: ______ is when an application assumes the user’s identity
when the request is passed to the application from IIS.

11. What section of the config.Web file is used for storing a list of authorized
users?

a. <authorization>

b. <personal>

c. <credentials>

d. None of the above

12. Fill in the blank: To deny all users access to your ASP.NET application, add
a <deny users="*"/> declarations to the __________________ section of
your config.Web file.

13. Which of the following forms of caching involves storing the dynamic
response generated by a request in memory?

a. Page output caching

b. Fragment caching

c. Page data caching

d. None of the above

14. Which of the following forms of caching involves the storing of arbitrary
objects across multiple requests?

a. Page output caching

b. Fragment caching

c. Page data caching

d. None of the above

Part III—Saturday Afternoon Part Review166

254830-1 PR03.F 11/7/01 9:03 AM Page 166

15. How do you set the TimeSpan variable equal to zero?

16. When are the rules for expiration, dependency, and scavenging established?

17. The RecordSet is a supported object type in .NET.

True/False

18. Server-side cursors are supported in .NET.

True/False

19. .NET can support multiple tables and their relationships in a single
object.

True/False

20. Server-side cursors negatively impact the scalability of an application,
in terms of concurrent users.

True/False

21. A class is an instance of an object.

True/False

22. Fill in the blank: ______ is effectively a method of developing application
code based on objects in order to promote code reusability, maintainability
and extensibility.

23. An object model is a hierarchical grouping of objects that provides
related functionality.

True/False

24. Fill in the blank: With VB .NET the ______ keyword is used to instantiate
a new object.

Part III—Saturday Afternoon Part Review 167

254830-1 PR03.F 11/7/01 9:03 AM Page 167

P A R T

Saturday
Evening

IV

Session 17
Opening a Connection

Session 18
Executing Commands

Session 19
Using DataReaders

Session 20
Introducing Datasets, Part I

264830-1 PtO4.F 11/7/01 9:03 AM Page 168

Session Checklist
✔ Connecting with ADO.NET
✔ Opening a connection
✔ Understanding transaction management with ADO.NET

B efore you can access any part of a database, you need to establish a connection to it.
You can use either the OleDbConnection or SqlConnection object to represent that
connection. Throughout our discussion of ADO.NET, we are going to use a simple anal-

ogy to try and relate ADO.NET objects to something most people use everyday — a telephone.
This will help you visualize what is actually happening when you use the ADO.NET objects. In
the telephone analogy, a connection is analogous to picking up your telephone, dialing the
number, and waiting for someone on the other end to answer.

For the remainder of this session, we will focus on the OLEDB Managed
Provider Connection object, OleDbConnection. The OleDbConnection and
SqlConnection objects map one to one. So, if you are using a SQL Server
database and would like a moderate performance boost, you can use the
SqlConnection object.

By creating an instance of an OleDbConnection object, and specifying data source-
specific information in its properties, you can build a predefined link between the data con-
sumer (your ASP.NET application) and the data provider (your database). Then, once you
have established the connection to the data source, you can use the connection, in concert
with other ADO.NET objects, to execute commands directly against the data source, to exe-
cute stored procedures, and to retrieve and manipulate data.

The OleDbConnection object also offers you the benefit of connection pooling — a
mechanism that keeps connections pooled after you have explicitly closed them. Repeat-
edly opening and closing connections may consume Web server resources and can be a

Note

Opening a Connection

S E S S I O N

17

274830-1 Ch17.F 11/7/01 9:03 AM Page 169

time-consuming process. Connection pooling is effectively a method of improving perfor-
mance when a Web server is regularly accessed.

Creating a Connection
With ADO, ADO.NET’s predecessor, you, as the developer, could create Connection objects
explicitly or through another object such as a Command object. That is no longer the case.
With ADO.NET you must explicitly open your connections using one of its constructors.
Some developers might be taken aback by this feature, however, we recommend that devel-
opers create their connection objects explicitly for two reasons: (1) the code is easier to
maintain and (2) connection pooling can be utilized.

In order to use the OLEDB Managed Provider objects, such as OleDbConnection,
OleDbCommand, and so on, you need to include the OleDb namespace in your ASP.NET page.
To do this, you use the Import construct at the top of your ASP.NET page:

<%@ Import Namespace=”System.Data.OleDb” %>

For all you Visual Basic programmers out there, using a namespace is like
adding a Reference to your project.

Table 17-1 lists the various namespaces you are likely to use in order to access the
ADO.NET objects.

Table 17-1 Namespaces Used to Access ADO.NET Objects

Namespace Contains

System.Data ADO.NET base objects

System.Data.OleDb Managed OLDDB data store objects

System.Data.SqlClient SQL Server-specific implementation
of the ADO.NET objects

System.Data.SqlTypes SQL Server data types

Now you’re ready to create your connection object. In the following code, we’ve used VB
to create a connection object called oConn:

<%@ Import Namespace=”System.Data.OleDb” %>
<script language=”VB” runat=”server”>
Dim oConn As New OleDbConnection

</script>

The ADO.NET Connection objects, OleDb and Sql, have several constructors. A constructor
is essentially the syntax you use to instantiate an object. Any given object can have several
constructors, like the Connection objects, or no constructors, like the DataReader objects,

Note

Saturday Evening170

274830-1 Ch17.F 11/7/01 9:03 AM Page 170

which need to be instantiated or created by another object. In the previous code snippet,
we demonstrated the use of the OleDbConnection’s default constructor that does not accept
any parameters. The Connection objects have another constructor that accepts a connection
string as its only parameter.

If you think back to your telephone analogy, what we have done thus far is pick up the
telephone. Now that you have picked up the phone, it’s time to make a call or open a con-
nection.

Opening a Connection
In order to open a connection to a data source, you need to know a little about the data-
base. Kind of like making a phone call, you need to have a phone number. When opening a
connection, you need to supply several pieces of information depending on the Relational
Database Management System (RDBMS) you are using. Some of these pieces of information
could be server name or IP address, database name, user name, and password. With this cru-
cial information, you will construct a connection string that is effectively a collection of
name/value pairs, separated by semicolons, which tell the Connection object how to con-
nect to your database. The information that you use to construct your connection string
will vary depending on the type of database to which you are trying to connect. Table 17-2
lists some of the most common parameters you will use to build a connection string.

Table 17-2 Parameters Used to Construct a Connection String

Parameter Description

Provider The OLEDB provider used to access the database.

Data Source The IP address or name of the server on which the database resides.

Database The name of the database to be used once the connection is open.

User ID The user ID for the account used to access the database.

Password The password for the account used to access the database.

All of the parameters listed in Table 17-2 are optional with the exception of the
Provider parameter.

Here is a snippet of code that opens, using the OleDbConnection object’s Open method,
a connection to a SQL Server database named “Music” that is located on my local machine:

<%@ Page LANGUAGE=”VB”%>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDB” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)

Dim oConn As OleDBConnection
Dim sConnString As String
sConnString = “Provider=SQLOLEDB;Data Source=(local);Initial

Catalog=Music;User ID=music;Password=music”

Session 17—Opening a Connection 171

274830-1 Ch17.F 11/7/01 9:03 AM Page 171

oConn = New OleDBConnection(sConnString)
oConn.Open()
oConn.Close()

End Sub
</SCRIPT>
<HTML>
<BODY>
Opening a Connection!
</BODY>
</HTML>

In the previous code listing, the connection string, sConnString, contains a
user ID/password combination. You may need to alter the user ID/password
combination to get the code to run successfully on your computer.

We constructed a string, sConnString, that we passed to the connection’s Open()
method. The Open() method in turn parses this string and attempts to open a connection
to the database. The Open() method is equivalent to an operator in our telephone analogy.
The operator takes the phone number you dial and attempts to place the call. The connec-
tion string contains several very important pieces of information including Provider, Data
Source, Initial Catalog, User ID, and Password. The Provider specifies which method
you are using to connect to the database, the Data Source indicates on which server your
database resides, the Initial Catalog represents the name of the database you are
attempting to access, and the User ID and Password are the credentials you need to pass
to the RDBMS in order to gain access. The OleDbConnection object actually has a read-only
property for each of these pieces of information. So, you can easily gather a connection’s
settings using these properties as shown in Listing 17-1.

Listing 17-1 Inspecting a Connection’s Properties

<%@ Page Language=”VB” debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As New OleDbConnection
Dim sConnString As String

sConnString = “Provider=SQLOLEDB;Data Source=(local);Initial
Catalog=Music;User ID=music;Password=music”
With oConn
.ConnectionString = sConnString
.Open()
Response.Write(.Provider & “
”)
Response.Write(.DataSource & “
”)
.Close()

End With
End Sub

Note

Saturday Evening172

274830-1 Ch17.F 11/7/01 9:03 AM Page 172

</SCRIPT>
<HTML>
<BODY>
Opening a Connection!
</BODY>
</HTML>

Let’s talk about the Provider property for a second. There are actually several ways to
connect to a database in the Microsoft world. You can use OLEDB or you can use ODBC.
What’s the difference? The major difference, from a developer’s viewpoint, is performance.
OLEDB communicates directly with the data source whereas ODBC, in most instances, must
go through the OLEDB provider for ODBC in order to access the data source. So, OLEDB pro-
vides a little better performance.

In the previous examples, we used OLEDB. When accessing a database via OLEDB, a data
source-specific provider needs to be specified via the Provider property. Because, in our
examples, we were accessing a SQL Server database, we used the SQLOLEDB provider. To
obtain a provider for the data source you need to access, try contacting the product’s vendor
or Microsoft. The most common providers, for example Oracle, SQL Server, and Microsoft
Access, are readily available.

Connecting to a database via ODBC and ADO is very simple. You simply create a data
source name (DSN) on the server from which you are accessing the data source and then add
a “DSN=value” name/value pair to your connection string.

Creating a DSN is fairly straightforward and well documented. For details see
www.15seconds.com or www.4guysfromrolla.com.

However, it’s not quite as simple with ADO.NET. You cannot connect to a database via
ODBC directly with the OleDbConnection or SqlConnection objects. As a matter of fact,
you can’t use the SqlConnection to a database via ODBC at all. The .NET SQL Server data
provider uses its own protocol to communicate with SQL Server therefore it does not support
the use of an ODBC DSN because it does not add an ODBC layer. You can use the .NET OleDb
data provider in conjunction with a Universal DataLink (UDL) file to connect to a database
via ODBC; however, this is not the approach we recommend. To this point, we have
neglected to mention a third .NET data provider, ODBC. To access the ODBC data provider,
use the following namespace:

System.Data.ODBC

You may need to download the .NET update that includes the ODBC data
provider from www.microsoft.com.

Suppose you’ve created a DSN to a Music database, named “Bands.” To access the data-
base via ODBC, you would use the following code:

Note

Note

Session 17—Opening a Connection 173

274830-1 Ch17.F 11/7/01 9:03 AM Page 173

<%@ Page LANGUAGE=”VB”%>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.ODBC” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)

Dim oConn As OdbcConnection
Dim sConnString As String
sConnString = “DSN=Bands”
oConn = New OdbcConnection(sConnString)
oConn.Open()
oConn.Close()

End Sub
</SCRIPT>
<HTML>
<BODY>
Opening a Connection with ODBC!
</BODY>
</HTML>

You’ll notice that the code is very similar to the previous OLEDB examples. Actually, the
only difference is how you construct the connection string. Instead of providing all of the
database information, such as location, Data Source, and name, Database, you simply
supply a DSN name/value pair. You’ve also already provided the User ID or Password when
you created the DSN.

You’ll notice in all of the examples, we call a Close method. This method
closes the connection that we have opened. Always close connections!!!!! We
can’t emphasize this enough. When you close the connection, it is returned
to the connection pool and can be used by another request.

Now that the connection is open, what can we do with it? Well, to be quite honest not
too terribly much. With the ADO.NET connection objects you can’t directly execute SQL com-
mands against a data source like you could with ADO. In order to create, update, delete, or
retrieve data from our data source, you must utilize other ADO.NET objects such as the
DataReader and DataAdapter objects, both of which we’ll discuss in Sessions 19 and 20,
respectively. The connection does, however, provide several properties and methods to man-
age transactions.

Using Transactions
By definition, a transaction is an atomic unit of work that either fails or succeeds. There is
no such thing as a partially completed transaction. Since a transaction is composed of many
steps, each step in the transaction must succeed for the transaction to be successful. If any
one part of transaction fails, the entire transaction fails. When the transaction fails, the sys-
tem needs to return, or roll back, to its original state.

To demonstrate why you may want to use transactions, we will present a sample scenario.
Imagine that you own your own bank. A customer wants to transfer $5,000 from checking
to savings. So you get on your computer and begin the transaction. Behind the scenes, the
following “units” of work need to be completed:

Note

Saturday Evening174

274830-1 Ch17.F 11/7/01 9:03 AM Page 174

1. Subtract $5,000 from customer’s checking account.
2. Add $5,000 to customer’s saving’s account.

This is a very simple scenario, but we think it illustrates the need for transactions. If
either of these steps fails, but the other succeeds, we have a major problem. If step 1 suc-
ceeds, but step 2 is not successful, you will have a very upset customer on your hands. If
step 1 fails, but step 2 succeeds, you will have a very satisfied customer, but some upset
shareholders. Either way, bad news! So you need to ensure that either both steps are suc-
cessful or that the system returns to its state prior to beginning the transaction.

This is how ADO.NET supports transactions. The ADO.NET connection objects provide the
BeginTransaction method, which, when called, returns a transaction object (either
SQLTransaction or OLEDBTransaction).

The BeginTransation method begins a transaction. When called, the BeginTransaction
method returns a Transaction object (either an OleDbTransaction or SQLTransaction). It
is through the Transaction objects that you can manage your transactions. The Transaction
objects support numerous properties and methods (like any object). We will only discuss a
few of them in this book. If you need more information, we suggest taking a quick glance
at your .NET Framework documentation. The Transaction object’s Commit method commits
the transaction, which means that all the steps in the transaction have completed success-
fully and the new state should be persisted. The transaction object’s RollBack method
returns your data store to its pre-transaction state if one or more of the steps in the trans-
action fail.

So, the basic framework for a transactional ASP.NET page may look like this:

Dim oConn As OleDBConnection
Dim oTransaction As OleDbTransaction
Dim sConnString As String
sConnString = “DSN=Bands”
oConn = New OLEDBConnection(sConnString)
oConn.Open()

oTransaction = oConn.BeginTransaction()

Try
[Transaction Steps]
oTransaction.Commit()

Exit Try

Catch
oTransaction.RollBack()

End Try

We begin the transaction with the BeginTransaction method and then attempt to com-
plete each of the steps of the transaction. Because the steps are within a try . . . catch
structure, if a step fails, the transaction will be rolled back using the RollbackTransaction
method. If all the steps are completed successfully, the transaction is committed with the
CommitTransaction method. The try . . . catch structure is new to VB.NET and, as you
can see, is very useful.

Session 17—Opening a Connection 175

274830-1 Ch17.F 11/7/01 9:03 AM Page 175

Transactions should only be used when writing to your data store. You could
retrieve data from your data store using transactions, but this would really
serve no purpose since you are not attempting to preserve the integrity of
your data. Transactions do incur a bit of a performance penalty, so use them
only when necessary.

REVIEW

With the ADO.NET connection objects, SQLConnection and OleDbConnection, you, as a
developer, can easily connect to relational and non-relational data sources. The ADO con-
nection objects were designed to be very lightweight — and thereby quickly created and
destroyed. The connection objects also provide transaction management facilities through
the transaction objects, which are vital for enterprise application development.

QUIZ YOURSELF

1. What is the main function of the connection objects? (See session introduction.)
2. What is the major difference between ODBC and OLEDB? (See “Opening a

Connection.”)
3. What is a transaction and why are they important for enterprise application devel-

opment? (See “Using Transactions.”)

Note

Saturday Evening176

274830-1 Ch17.F 11/7/01 9:03 AM Page 176

Session Checklist
✔ Understanding the function of the Command objects in ADO.NET
✔ Executing SQL commands against a data store
✔ Appending parameters to a Command object
✔ Filling a DataReader using the Command object’s Execute method

In Session 17, “Opening a Connection,” we introduced the ADO.NET Connection objects.
In this session, we build upon our previous discussion of connections and introduce the
OledbCommand objects. ADO.NET offers two flavors of command objects: OledbCommand

and SqlCommand. Just like the connection object, you can use either object to access a SQL
Server database, but need to use the OleDbCommand object to access any other data source.
However, using the SqlCommand object with SQL Server does provide some performance gain.

So, what is a command? A command is an instruction — in this case to create, retrieve,
update, or delete data in your data store. Most importantly, the Command objects enable you
to fill the DataReader objects with data.

In the telephone analogy we used earlier, you are the Command object. When the person
on the other end answers the phone, you might say, “May I please speak with Tony?” You
have issued a command or request. Or you might say, “Can I have directions to your restau-
rant?” in which case you are asking for information to be returned to you.

For the remainder of this session, we will focus on the OleDb Managed Pro-
vider Command object, OleDbCommand. For the most part, the OleDbCommand
and SqlCommand objects map one-to-one. So if you are using a SQL Server
database and would like to improve performance, you can use the SqlCommand
object. To utilize the SqlCommand object, you will need to import the
System.Data.SqlClient namespace.

Note

Executing Commands

S E S S I O N

18

284830-1 Ch18.F 11/7/01 9:03 AM Page 177

Building a Command
There are many ways of building, or constructing, a command object with ADO.NET. You can
explicitly set the command object’s properties, pass parameters into the command object’s
constructor, or a combination of the two. Following are several examples of how to initialize
(or construct) an OleDbCommand object:

oCmd = New OleDbCommand()
oCmd = New OledbCommand(sSQL)
oCmd = New OledbCommand(sSQL, oConn)

In the previous listing, oConn is an OleDbConnection object and sSQL is a query com-
mand string.

Listing 18-1 shows an example of how you might build a command that returns all of the
rows in the t_bands table in the Music database:

Listing 18-1 Building a Command

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OledbConnection
Dim oCmd As OledbCommand
Dim sSQL As String

sSQL = “SELECT * FROM t_bands”

oConn = New OledbConnection
oConn.ConnectionString = “Provider=SQLOLEDB;Data Source=(local);Initial

Catalog=Music;User ID=music;Password=music”
oConn.Open()

oCmd = New OledbCommand(sSQL, oConn)

oConn.Close
oConn = Nothing

End Sub
</SCRIPT>
<HTML>
<BODY>
Building a Command with ADO.NET!
</BODY>
</HTML>

You’ll notice in the previous sample that we build the OleDbCommand by passing two
parameters to its constructor. The first parameter is a string representing the SQL command
we want to execute. The second parameter is an OleDbConnection object.

Saturday Evening178

284830-1 Ch18.F 11/7/01 9:03 AM Page 178

The OleDbCommand object has several properties that you can explicitly set. Some of
these properties are Connection, CommandText, CommandType, and CommandTimeout.

Connection property
The Connection property is used to set or get the connection against which to execute the
command. You must pass a valid OleDbConnection object to the Connection property or
you will receive an error.

Listing 18-2 shows an example of how you might explicitly set the Connection property
by passing it a valid OleDbConnection object.

Listing 18-2 Explicitly setting a Command object’s Connection properties

<%@ Page Language=”VB”%>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection
Dim oCmd As OleDbCommand
Dim sSQL As String
Dim sConnString As String

sSQL = “SELECT * FROM t_bands”
sConnString = “Provider=SQLOLEDB;Data Source=(local);Initial

Catalog=Music;User ID=music;Password=music”

oConn = New OleDbConnection
With oConn

.ConnectionString = sConnString

.Open()
End With

oCmd = New OledbCommand(sSQL)
With oCmd

.Connection = oConn
End With

oConn.Close()
End Sub
</SCRIPT>
<HTML>
<BODY>
Building a Command with ADO.NET!
</BODY>
</HTML>

Session 18—Executing Commands 179

284830-1 Ch18.F 11/7/01 9:03 AM Page 179

CommandText property
The CommandText property gives you a means of holding your command (as a string) for later
execution. It can contain a SQL statement, a stored procedure name, or a table name. For
example, you can assign a simple SQL statement to the CommandText property as follows:

oCmd.CommandText = “SELECT band_id, band_title, music_type_id, record_company_id FROM
t_bands”

Alternatively, you could assign a stored procedure name to the CommandText property
and tell the Command object you are using a stored procedure by setting the CommandType
property accordingly:

oCmd.CommandText = “prGetBands”
oCmd.CommandType = CommandType.StoredProcedure

CommandType property
The CommandType property gets the CommandText or sets how it is interpreted. The possible
values, or enumerations, of the CommandType property are

� StoredProcedure
� TableDirect
� Text

When the CommandType property is set to StoredProcedure, the CommandText property
is interpreted as a stored procedure. Go figure! If the CommandType is set to TableDirect
and the CommandText property is set to a valid table name, then all the rows and columns
for the specified table are returned. This is generally not a good idea, for performance rea-
sons, when executing the command against a large database. Finally, if the CommandType
property is set to Text, then the CommandText is executed as a SQL text command.

Listing 18-3 presents an example of how to execute a stored procedure called
prCountBands.

Listing 18-3 Executing a stored procedure

<%@ Page Language=”VB” debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OledbConnection
Dim oCmd As OledbCommand
Dim sSQL As String
Dim iBandCount As Integer

oConn = New OledbCOnnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open()

Saturday Evening180

284830-1 Ch18.F 11/7/01 9:03 AM Page 180

oCmd = New OleDbCommand(sSQL, oConn)
oCmd.CommandType = CommandType.StoredProcedure
oCmd.CommandText = “prCountBands”
iBandCount = oCmd.ExecuteScalar()

oConn.Close()

lblBandCount.Text = iBandCount
End Sub
</SCRIPT>
<HTML>
<BODY>
There are <asp:Label ID=”lblBandCount” Text=”” Runat=”server” /> bands in
the database.
</BODY>
</HTML>

CommandTimeout property
The CommandTimeout property gets or sets the time, in seconds, to wait while executing the
command before terminating the attempt and generating an error. The syntax for setting
the CommandTimeout property follows:

oCmd.CommandTimeout = 60

The default value for the CommandTimeout property is 30 seconds. The CommandTimeout
property is not inherited from the command’s Connection. The command object’s
CommandTimeout property and the connection object’s CommandTimeout property are com-
pletely disparate properties. The Command object’s CommandTimeout property sets the maxi-
mum amount of time, in seconds, for a command to attempt to execute before returning an
error. The Connection object’s ConnectionTimeout works the same way. The connection
object attempts to open the connection for a designed amount of time before returning an
error.

Setting the CommandTimeout property’s value to 0 indicates that the com-
mand will attempt to execute indefinitely. We do not recommend this!

Appending parameters
The OleDbCommand object supports a collection property named Parameters. The
Parameters property is actually a OleDbParameterCollection object that can contain
more than one OleDbParameter object. The Parameters property enables you to append
parameters to the Command object. Parameters are generally attached to commands that are
executing stored procedure that require input parameters. For example, you could write the
following stored procedure to return a band’s title based on its band_id:

Note

Session 18—Executing Commands 181

284830-1 Ch18.F 11/7/01 9:03 AM Page 181

CREATE PROCEDURE prGetBandTitle
@iID AS INT = 0

AS
SELECT band_title from t_bands WHERE band_id = @iID
RETURN

So how do you append parameters? First you create an OleDbParameter object. An
OledbParameter object can be constructed in several ways. For now, we’ll focus on con-
structing the OleDbParameter object by setting its properties explicitly rather than passing
them into the OleDbParameter object constructor. The properties we’ll set are
ParameterName, DBType, and Value as follows:

oParam = New OleDbParameter()
oParam.ParameterName = “@iID”
oParam.DBType = OleDbType.Integer
oParam.Value = 1

The OledbParameter object supports an Add() method that you can call to append the
OLEDBParameter to your OLEDBCommand as shown in Listing 18-4.

Listing 18-4 Appending a parameter to a command

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection
Dim oCmd As OleDbCommand
Dim oParam As OleDbParameter
Dim sSQL As String

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open()

oCmd = New OleDbCommand(sSQL, oConn)
oCmd.CommandType = CommandType.StoredProcedure
oCmd.CommandText = “prGetBandTitle”

oParam = New OleDbParameter()
oParam.ParameterName = “@iID”
oParam.DBType = OleDbType.Integer
oParam.Value = 1

oCmd.Parameters.Add(oParam)
End Sub
</SCRIPT>
<HTML>
<BODY>
Appending a Parameter to a Command with ADO.NET!
</BODY>
</HTML>

Saturday Evening182

284830-1 Ch18.F 11/7/01 9:03 AM Page 182

You’ll notice in Listing 18-5 that we first created the OleDbCommand, oCmd, object. Next,
we constructed the OleDbParameter, oParam, object, and set its properties. Finally, we
attached the OledbParameter to the OleDbCommand object using the Parameters collec-
tion’s Add () method with the following line of code:

oCmd.Parameters.Add(oParam)

The Parameter object supports many properties and methods and can become very com-
plex. You should check your .NET documentation for a more detailed look at the
OleDbParameter and SqlParameter objects.

Executing a Command
Now that you know how to construct an OLEDBCommand object, it is time that you ask it do
something. The OLEDBCommand object has many useful methods, including the
ExecuteReader(), ExecuteNonQuery(), and Prepare() methods.

ExecuteNonQuery method
The ExecuteReader() and ExecuteNonQuery() methods are similar in that they both exe-
cute commands against a data source. The main difference is the number of rows returned
when the command is executed. As indicated by its name, the ExecuteNonQuery() method
does not return any rows from the datasource; you probably won’t use this command when
executing a SQL SELECT command. It could, however, be useful when executing INSERT,
UPDATE or DELETE commands depending on your requirements. The ExecuteNonQuery()
method does not require, or for that matter accept any parameters in its constructor. Here
is a sample of calling the ExecuteNonQuery method:

oCmd = New OleDbCommand()
oCmd.Connection = oConn
oCmd.CommandType = CommandType.Text
oCmd.CommandText = “UPDATE t_bands SET band_title = ‘Hootie and The

Blowfish’ WHERE band_title = ‘Hootie & The Blowfish’”
oCmd.ExecuteNonQuery()

You’ll notice that we are executing a SQL UPDATE command so we probably don’t want
any records returned. The ExecuteNonQuery() method does return the number of rows, as
an integer, that were affected by the executed command. So if you wanted to determine
how many records were affected by a command, you could use the following code:

Dim iAffected As Integer
iAffected = oCmd.ExecuteNonQuery()

Prepare method
The Prepare() method is used to create a prepared, or compiled, version of the command
on the datasource. This method is generally used only when the CommandType property is
set to Text; but it does improve performance when executing large SQL commands or

Session 18—Executing Commands 183

284830-1 Ch18.F 11/7/01 9:03 AM Page 183

dynamically generated SQL commands that contain parameters. The syntax for preparing a
command is

oCmd.Prepare()

ExecuteReader method
The ExecuteReader() method executes the CommandText against the command’s
Connection and builds an object capable of forward-only data reads. This object is an
OleDbDataReader. The syntax is

oDR = oCmd.ExecuteReader()

where oDR is an OleDbDataReader object. Simple! Once you have populated the
OleDbDataReader object by calling the OleDbCommand’s ExecuteReader() method, you
have access to the data. We cover DataReader objects in detail in Session 19, “Using
DataReaders.” Listing 18-5 demonstrates how to populate a datareader via the command
object’s Execute method.

Listing 18-5 Populating a DataReader with a command

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection
Dim oCmd As OleDbCommand
Dim oDR As OleDbDataReader

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open()

oCmd = New OleDbCommand()
With oCmd

.Connection = oConn

.CommandType = CommandType.StoredProcedure

.CommandText = “prGetBands”
oDR = oCmd.ExecuteReader()

End With

While oDR.Read()
lstBands.Items.Add(New

ListItem(oDR.Item(“band_title”),oDR.Item(“band_id”)))
End While

oDR.Close()
oConn.Close()

End Sub

Saturday Evening184

284830-1 Ch18.F 11/7/01 9:03 AM Page 184

</SCRIPT>
<HTML>
<BODY>
<asp:ListBox ID=”lstBands” Size=”1” Runat=”server” />
</BODY>
</HTML>

In Listing 18-6, we use the following line of code to populate the DataReader object
with the results of the query:

oDR = oCmd.ExecureReader()

Once the DataReader is populated, we iterate through the DataReader and add an Item to
the ListBox server control, lstBands, for each record using the following statement:

lstBands.Items.Add(New
ListItem(oDR.Item(“band_title”),oDR.Item(“band_id”)))

This method of populating controls with data is very fast, but not very flexible as the
DataReader objects provide for forward-only navigation.

REVIEW

The ADO.NET Command objects, OleDbCommand and SqlCommand, are used to execute com-
mands against a data source. With the Command objects you can execute SQL statements to
insert, update, delete, or select data as well as create database objects such as stored proce-
dures, tables, or triggers. Additionally, using the command object’s ExecuteReader()
method, we can fill a DataReader object for forward-only navigation.

QUIZ YOURSELF

1. What is the main function of a Command object? (See session introduction.)
2. What Command property do you use to add parameters to a Command object? (See

“Appending parameters.”)
3. What are the differences between the ExecuteReader () and ExecuteNonQuery

() methods? (See “ExecuteNonQuery method.”)

Session 18—Executing Commands 185

284830-1 Ch18.F 11/7/01 9:03 AM Page 185

284830-1 Ch18.F 11/7/01 9:03 AM Page 186

Session Checklist
✔ Understanding the function of the DataReader objects in ADO.NET
✔ Filling a DataReader using the Command object’s Execute method
✔ Moving through a DataReader

In the previous session, we introduced the ADO.NET Command objects. In this session, we
build upon the previous discussion of Command objects and further discuss the ADO.NET
DataReader objects. As usual, ADO.NET offers two flavors of DataReader objects:

OleDbDataReader and SqlDataReader. Just like the Connection and Command objects, you
can use either to access a SQL Server database, but need to use the OleDbDataReader object
to access any other data source.

Introducing DataReaders
So, what is a DataReader? A DataReader object is effectively a forward-only collection of
records from your data source. The interesting thing about DataReaders is that they do not
have a public constructor per se. The DataReader is created via a Command object’s
ExecuteReader method. Another interesting thing to note about DataReader objects is
that, unlike many other ADO.NET objects, they can’t be disconnected — that is, they always
need an active connection. Thus, you can’t, for example, pass them between business
objects. The purpose of the DataReader is to provide data for display, that’s it. The
DataReader objects are lightweight and very fast so they are ideal for this purpose.

Looked at in terms of our telephone analogy, the DataReader is analogous to a recording
you might get when say calling a restaurant and requesting directions. When you’re listen-
ing to the directions and feverishly trying to write everything down you might often miss
something. The problem is, you can’t go back because the recording is forward-only. I guess
you could call back! Same with a DataReader. It’s forward only!

Using DataReaders

S E S S I O N

19

294830-1 Ch19.F 11/7/01 9:03 AM Page 187

When creating a DataReader, start by declaring a variable as follows:

Dim oDR As OleDbDataReader

The next thing you need to do is construct your Connection and Command objects.

For more details on constructing Connection and Command objects, refer to
Sessions 17 and 18.

Next, initialize the DataReader object by calling the Command object’s ExecuteReader
method as follows:

oDR = oCmd.Execute()

Now that is easy! Let’s bring it all together . . . The following example illustrates how to
(1) construct and open a Connection, (2) construct a Command, and (3) call the Command’s
ExecuteReader method and pass the result to a DataReader, as shown in Listing 19-1.

Listing 19-1 Constructing a DataReader

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection
Dim oCmd As OleDbCommand
Dim oDR As OleDbDataReader

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open()

oCmd = New OleDbCommand()
With oCmd

.Connection = oConn

.CommandType = CommandType.Text

.CommandText = “SELECT * FROM t_bands”
oDR = .ExecuteReader()

End With
End Sub
</SCRIPT>
<HTML>
<BODY>
Creating a DataReader with ADO.NET
</BODY>
</HTML>

Cross-Ref

Saturday Evening188

294830-1 Ch19.F 11/7/01 9:03 AM Page 188

Using DataReader Properties
OK, so now that you have your DataReader object, what can you do with it? Well, just like
all other objects, the DataReader object has numerous properties and methods. We’ll start
with the properties:

Item property
The Item property returns the value for a given column in its native format. In order to ref-
erence the value of a column, you need to pass a string representing the column name or an
integer representing the column’s index. Take for example the following table called
t_bands:

band_id band_title music_type_id record_company_id

1 Hootie & The Blowfish 1 1

2 Toad the Wet Sprocket 1 1

You could reference the band_title field in either of the following ways:

oDR.Items(“band_title”)
oDR.Items(1)

You’ll notice that we passed a one (1) to the DataReader object’s Items property. To
clarify, the 1 is the column index or location of the column in the row from which we want
to retrieve the data. We used 1 as the index, because the numbering of column indexes
begins with 0.

FieldCount property
The FieldCount property, which is obviously read-only, returns the number fields, as an
integer, in the current record. Here is some sample syntax for getting the FieldCount:

Dim iFCount As Integer
iFCount = oDR.FieldCount

One possible application of the FieldCount property is to iterate through the columns in
a DataReader and write out the column’s value as shown in Listing 19-2.

Listing 19-2 FieldCount property application

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection

Continued

Session 19—Using DataReaders 189

294830-1 Ch19.F 11/7/01 9:03 AM Page 189

Listing 19-2 Continued

Dim oCmd As OleDbCommand
Dim oDR As OleDbDataReader
Dim iFieldCount As Integer
Dim x As Integer

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open()

oCmd = New OleDbCommand()
oCmd.Connection = oConn
oCmd.CommandType = CommandType.Text
oCmd.CommandText = “SELECT * FROM t_bands”
oDR = oCmd.ExecuteReader()

iFieldCount = oDR.FieldCount

While oDR.Read()
Dim oRow As New TableRow()
For x = 0 To (iFieldCount - 1)

Dim oCell As New TableCell()
oCell.Text = oDR.Item(x)
oRow.Cells.Add(oCell)

Next
tblExample.Rows.Add(oRow)

End While

oDR.Close
oConn.Close

End Sub
</SCRIPT>
<HTML>
<BODY>
<asp:Table ID=”tblExample” BorderWidth=1 GridLines=”both” Runat=”server”/>
</BODY>
</HTML>

In Listing19-2, all we’ve done is open our OleDbDataReader object, obtain the number of
fields in the DataReader using the FieldCount property, and iterate through the rows of the
DataReader using the Read method. (We discuss the Read method later in this session.) For
each row, we loop through the fields and create a table cell containing the columns’ value.
Simple!

IsClosed property
The IsClosed method returns a Boolean value indicating whether the DataReader is closed.
A value of true means that the DataReader is closed.

Saturday Evening190

294830-1 Ch19.F 11/7/01 9:03 AM Page 190

RecordsAffected property
The RecordsAffected property returns the number of rows that are changed, inserted,
or deleted by the Command object that opens the DataReader. 0 is returned from the
RecordsAffected property if no records were affected by the command object, and –1
is returned for SELECT commands. The RecordsAffected property is not set until the
DataReader object is closed. The isClosed and RecordsAffected are the only DataReader
properties that can be accessed after the DataReader has been closed.

Listing 19-3 illustrates how you can use the isClosed and RecordsAffected properties
to display information about the Command that was executed to create a DataReader
object.

Listing 19-3 Displaying command information

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection
Dim oCmd As OleDbCommand
Dim oDR As OleDbDataReader
Dim oParam As OleDbParameter
Dim iBandID As Integer = 0

If Page.IsPostBack Then iBandID = lstBands.SelectedItem.Value

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open()

oCmd = New OleDbCommand()
With oCmd

.Connection = oConn

.CommandType = CommandType.StoredProcedure

.CommandText = “prBandDelete”
oParam = New OleDbParameter
With oParam

.ParameterName = “BandID”

.OleDbType = OleDbType.Integer

.Value = iBandID
End With
.Parameters.Add(oParam)
Try

oDR = .ExecuteReader()
lstBands.Items.Clear
lstBands.Items.Add(New ListItem(“”,0))

While oDR.Read()
Continued

Session 19—Using DataReaders 191

294830-1 Ch19.F 11/7/01 9:03 AM Page 191

Listing 19-3 Continued

lstBands.Items.Add(New
ListItem(oDR.Item(“band_title”),oDR.Item(“band_id”)))

End While
Catch err As Exception

Response.Write(“The following error occurred:
” &
err.Message & “
”)

End Try
End With

oDR.Close
oConn.Close

If oDR.isClosed Then
If oDR.RecordsAffected > 0 Then lblDeleted.Text = “You deleted “ &

oDR.RecordsAffected & “ bands from the database.”
End If

End Sub
</SCRIPT>
<HTML>
<BODY>
<FORM ID=”frmBandDelete” Runat=”server”>
<asp:ListBox ID=”lstBands” Size=”1” AutoPostBack=”true” Runat=”server”/>

<asp:Label ID=”lblDeleted” Text=”” ForeColor=”Red” Runat=”server”/>
</FORM>
</BODY>
</HTML>

You’ll notice that Listing 19-3 uses a ListBox Web Control, lstBands, to allow a user to
select a band that he or she would like to delete from the t_bands table. When the Web
Form containing lstBands is submitted, the id of the band is gathered and passed to
OleDbCommand, oCmd, as an OleDbParameter, oParam. The prBandDelete stored procedure,
which deletes the selected band and returns a recordset containing the remaining bands, is
then executed by calling the Command object’s ExecuteReader method. Following is the
code for the prBandDelete stored procedure.

CREATE PROCEDURE prBandDelete
@BandID INT = 0

AS
IF @iBandID > 0

BEGIN
DELETE FROM t_songs WHERE album_id IN (SELECT

album_id FROM t_albums WHERE band_id = @iBandID)
DELETE FROM t_albums WHERE band_id = @iBandID
DELETE FROM t_band_members WHERE band_id = @iBandID
DELETE FROM t_bands WHERE band_id = @iBandID

END

SELECT
band_id, band_title

Saturday Evening192

294830-1 Ch19.F 11/7/01 9:03 AM Page 192

OM
t_bands

DER BY
band_title

You will need to create the prBandDelete stored procedure in the Music
database in order to get this example to work correctly.

When the ExecuteReader method is called, an OleDbDataReader, oDR, is constructed
and then iterated through the data to repopulate the lstBands ListBox. After repopulating
lstBands, we inspect to see that the DataReader has been closed, using the isClosed prop-
erty. We then use the RecordsAffected property to display the number of records that
were deleted from t_bands table.

Using DataReader Methods
Now that you know the properties you are likely to use most often, let’s move onto the
DataReader’s methods. The DataReader objects provide a plethora of methods.

Read method
We’ve touched on the Read method in an earlier example (Listing 19-2). The Read method
advances the DataReader object to the next record each time it is called. In the “Old World”
of ADO you would have had to use a combination of several properties and methods, includ-
ing EOF and MoveNext, to perform the same function as the DataReader’s Read method.
Since the DataReader provides for forward-only navigation, the Read method really mini-
mizes the amount of code you need to write to get to your data. We do not provide a Read
method example here as you can refer to several of the previous examples to see it in
action.

GetValue method
The GetValue method returns the value of a specified field in its native format. You can
effectively use the GetValue method in place of the Item property. The GetValue method
accepts either an integer representing a column index or a string representing a column
name. For example, if the first column (index of 0) of our table is called band_id, we can
use the following statement to get its value:

iID = oDR.GetValue(0)

Or, we can use the following:

iID = oDR.GetValue(“band_id”)

Since band_id is set as an integer in our table, the value returned from the GetValue
method will return an integer, its native format.

Note

Session 19—Using DataReaders 193

294830-1 Ch19.F 11/7/01 9:03 AM Page 193

Get[Data Type] methods
The DataReader object provides a multitude of what we call the Get[Data Type] methods,
including the GetString, GetInt32, and GetBoolean methods. The Get[Data Type] meth-
ods return the data in a column as the specified data type. For example, the GetString
method will return the data in a column in the form of a string. However, no data type con-
version is performed, so the data type of the column must be of the data type specified.
Unlike the GetValue method, the Get[Data Type] methods only accept a column index,
also called an ordinal reference, as a parameter. The following statements demonstrate the
GetString method:

Dim sBandName As String
sBandName = oDR.GetString(0)

GetOrdinal method
The GetOrdinal method returns a column’s ordinal reference value, or index, as an integer
when passed a column name. For example, the following code returns 0 because band_id is
the first column in the t_bands table:

Dim iOrdinal As Integer
iOrdinal = oDR.GetOrdinal(“band_id”)

GetName method
The GetName method is the exact opposite of the GetOrdinal method. It returns a column’s
name as a string when passed its index. For example, the following code snippet will return
band_id:

Dim sName As String
sName = oDR.GetName(0)

Close method
As the name implies, the Close method closes a DataReader object. Unlike other objects,
closing the DataReader object is mandatory when you’re done using it. You will get an error
if you don’t close your DataReader and then attempt to alter your Connection object.
Closing a DataReader’s Connection object immediately closes the DataReader. The syntax is
very simple:

oDR.Close()

That covers the DataReader’s major properties and methods.

There are other DataReader methods and properties. However, chances are
you may never use them. For a complete listing, refer to the .NET
documentation. Note

Saturday Evening194

294830-1 Ch19.F 11/7/01 9:03 AM Page 194

REVIEW

The ADO.NET DataReader objects, OleDbDataReader and SqlDataReader, are a collection of
rows retrieved from a data source. The DataReader object provides forward-only navigation and
must always be connection to your data source via a Connection object. While a DataReader
object is in use, no other operations can be performed on its associated Connection object. To
create a DataReader object, you must call the ExecuteReader method of the OleDbCommand or
SqlCommand object rather than directly using a constructor.

QUIZ YOURSELF

1. What is the main function of a DataReader object? (See “Introducing
DataReaders.”)

2. How is a DataReader object constructed? (See “Introducing DataReaders.”)
3. Can a DataReader object be disconnected from its Connection object? (See

“Introducing DataReaders.”)

Session 19—Using DataReaders 195

294830-1 Ch19.F 11/7/01 9:03 AM Page 195

294830-1 Ch19.F 11/7/01 9:03 AM Page 196

Session Checklist
✔ Understanding the function of the DataSet objects in ADO.NET
✔ Creating a DataSet using the DataAdapter objects

Thus far in our discussion of ADO.NET, we have covered the Connection, Command, and
DataReader objects. In this session, we will cover the DataSet object, probably the
most innovative and exciting of the ADO.NET objects. The DataSet object, much like a

DataReader, is designed to handle the actual data from a database. The DataSet also provides
access to multiple tables, rows, and columns. Figure 20-1 illustrates the hierarchy of
DataSet objects.

Each DataSet object can contain multiple tables, DataTable objects, as well as the rela-
tionships, DataRelation objects, between these tables. A DataSet object is effectively an
off-line copy of your data store. The major advantage of the dataset is that because it’s
designed for disconnected data, you can pass multiple tables, along with their relationships,
around the tiers of your Web application. Not only can you pass DataSet objects around
your Web application, you can also pass them to other systems for processing in the form of
XML, and then retrieve and update your data store with the updated DataSet. The DataSet
object makes the promise of disconnected data a reality.

In our discussion of DataSet objects, we will introduce several other objects that are very
closely related to the dataset, including the DataAdapter, DataTableMapping, DataView,
DataRelation, and DataTable objects.

In the past, data processing has been primarily connection-based. Now, in an effort to
make multi-tier applications more efficient, data processing in general and particularly
ASP.NET data processing is turning to a message-based approach that revolves around
chunks of data in the form of datasets. At the center of this approach is the DataAdapter
object, which provides a bridge to retrieve and update data between a DataSet and a data
store. The DataAdapter object provides this bridge via the Fill method to load data from
a data source into the DataSet and uses the Update method to send changes made in the
DataSet to the data source.

Introducing DataSets, Part I

S E S S I O N

20

304830-1 Ch20.F 11/7/01 9:03 AM Page 197

Figure 20-1 Dataset object model

Again Microsoft has provided two flavors of the DataAdapter, SqlDataAdapter
and OleDbDataAdapter. If you are connecting to a SQL Server database, you
can use the SqlDataAdapter object in conjunction with the SqlConection
and SqlCommand objects to increase overall performance. Throughout this ses-
sion, however, we will use the OleDbDataAdapter object in the examples.

Note

Data Set

DataColumn

DataTable

DataColumnCollection

DataRow

DataRowCollection

Constraint

ConstraintCollection

DataRelation

DataRelationCollection

DataTableCollection

Saturday Evening198

304830-1 Ch20.F 11/7/01 9:03 AM Page 198

Constructing a DataAdapter Object
As with many ADO.NET objects, there are several ways to construct a DataAdapter object.
The default constructor is as follows:

oDA = New OleDbDataAdapter()

You’ll notice that no parameters are passed using the default method. The DataAdapter’s
properties need to be set explicitly after construction. With the second method, we con-
struct a DataAdapter with a specified select OleDbCommand object as follows:

oDA = New OleDbDataAdpater(oCmd)

The third method initializes a new instance of a DataAdapter with a select command
string (for example a SQL statement) and a valid OleDbConnection object as follows:

oDA = New OleDbDataAdapter(sSQL, oConn)

Finally, we can initialize an OleDbDataAdapter with a select command string and a con-
nection string as follows:

oDSComd = New OLEDBDataAdapter(sSQL, sConnString)

This method of constructing a DataAdapter object differs from the previous because a
connection to the database specified in the connection string is created when the
DataAdapter is executed.

In the following snippet of code, we demonstrate initializing a DataAdapter object by
passing a command string and an OleDbConnection object:

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection
Dim oDA As OleDbDataAdapter

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open

oDA = New OleDbDataAdapter(“SELECT * FROM t_bands”, oConn)
oDA = Nothing
oConn.Close()
oConn = Nothing

End Sub
</SCRIPT>

The DataSet object provides several very useful properties, most of which revolve around
manipulating DataSet content.

Session 20—Introducing DataSets, Part I 199

304830-1 Ch20.F 11/7/01 9:03 AM Page 199

SelectCommand property
The SelectCommand property gets or sets a Command object used to select records in a
DataSet. In following code snippet, we will create an OleDbDataAdapter object and set the
SelectCommand:

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)

Dim oConn As OleDbConnection
Dim oCmd As OleDbCommand
Dim oDA As OleDbDataAdapter

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)

oConn.Open()

oCmd = New OleDbCommand(“SELECT * FROM t_bands”, oConn)

oDA = New OleDbDataAdapter()
oDA.SelectCommand = oCmd

End Sub
</SCRIPT>

You notice in the previous example that we (1) create an OleDbConnection object, (2)
create an OleDbCommand object, (3) construct an OleDbDataAdapter object, and (4) set the
OleDbDataAdapter object’s SelectCommand equal to the previously created OleDbCommand
object.

When the SelectCommand property is set to a previously created Command object, as in
the previous example, the Command object is not cloned. The SelectCommand merely main-
tains a reference to the Command object — as shown in the following example. We set the
SelectCommand property without explicitly creating a Command object:

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)

Dim oConn As New OleDbConnection
Dim oDA As New OleDbDataAdapter

With oConn
.ConnectionString = “Provider=SQLOLEDB;Data Source=(local);Initial

Catalog=Music;User ID=music;Password=music”
.Open

End With

Saturday Evening200

304830-1 Ch20.F 11/7/01 9:03 AM Page 200

oDA.SelectCommand = New OleDbCommand
With oDA.SelectCommand
.CommandType = CommandType.Text

.CommandText = “SELECT * FROM t_bands”
.Connection = oConn
End With

oDA = Nothing
oConn.Close
oConn = Nothing

End Sub
</SCRIPT>

Make sense? In effect, we’re creating the SelectCommand explicitly.

UpdateCommand, DeleteCommand, and InsertCommand properties
The UpdateCommand property is used to get or set the command used to update records in
the data source. The UpdateCommand is effectively the Command object used to update
records in the data source for modified rows in the DataSet. When a DataAdapter object’s
Update method is called and (1) the UpdateCommand property is not set and (2) primary key
information is present in the DataSet, the UpdateCommand will be generated automatically.

To keep things brief here, just say that the DeleteCommand and InsertCommand proper-
ties are used to get or set the command used to delete or insert, respectively, records in the
data source when the Update method is called.

We’ll return to the DataAdapter properties later. But first, take a look at the methods
you can use to create DataSet objects.

Fill method
The Fill method is probably the DataAdapter method you will use most frequently. Simply
stated, the Fill method adds data from your data source to a dataset. The Fill method
accepts a variety of parameters including the DataSet object to fill, a string representing
the alias for the newly created DataSet object, an integer representing the lower bound of
records to retrieve, and an integer representing the upper bound of records to retrieve from
our data source. Here are some examples:

� oDSCmd.Fill(oDS)
� oDSCmd.Fill(oDS, “Band Information”)

In the previous sample, the only parameter that is required is the DataSet. Listing 20-1
details how to create a DataSet called “Band Information” and bind it to a DataGrid,
dgBands, control.

Session 20—Introducing DataSets, Part I 201

304830-1 Ch20.F 11/7/01 9:03 AM Page 201

Listing 20-1 Creating a DataSet and binding it to a DataGrid control

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection
Dim oDA As OleDbDataAdapter
Dim oDS As New DataSet

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open

oDA = New OleDbDataAdapter(“SELECT * FROM t_bands”, oConn)
oDA.Fill(oDS, “Band Information”)

dgBands.DataSource = oDS
dgBands.DataBind()

oDS.Dispose()
oDS = Nothing
oDA.Dispose()
oDA = Nothing
oConn.Close()
oConn = Nothing

End Sub
</SCRIPT>
<HTML>
<BODY>
<asp:DataGrid id=”dgBands” runat=”server”

BorderColor=”#000000”
BorderWidth=”2”
GridLines=”Both”
CellPadding=”5”
CellSpacing=”0”
Font-Name=”Arial”
HeaderStyle-BackColor=”#C0C0C0”

/>
</BODY>
</HTML>

As you can see, we simply create and open a connection to the Music database, create a
DataAdapter object, and fill the DataSet by calling the Fill method. If you run this exam-
ple, you may be a little surprised by the output. Instead of a list of bands from the t_bands
table, you actually get a list of the tables in the DataSet. That is because in the process of
binding the DataSet, oDS, to the DataGrid control, dgBands, we set the DataGrids
DataSource property as follows:

dgBands.DataSource = oDS

Saturday Evening202

304830-1 Ch20.F 11/7/01 9:03 AM Page 202

The DataSet’s Tables property, in this case, returns a collection of OleDbDataTable
objects in the DataSet object. More on that in the next Session, “Introducing DataSets, Part
II,” but in the meantime, if you want a list of the bands in the t_bands table, simply set
the dgBands object’s DataMember property as follows:

dgBands.DataSource = oDA.dgBands.DataMember(“Band Information”)

Update method
The Update method calls the respective insert, update, or delete command for each
inserted, updated, or deleted row in the DataSet. There are three different ways to call the
Update method — you can pass:

� An array of DataRow objects
� A DataSet object
� A DataSet object and a string representing a table name

If you make changes to any of the tables in your DataSet, you could use the following
syntax to send the changes to the Music database:

oDA.Update(oDS, “t_bands”)

Dispose method
The Dispose method, when called, disposes of the DataAdapter object.

That’s about all we’ll cover for the DataAdapter object.

The DataAdapter object has many more properties and methods that we
didn’t cover in this discussion. For more details, refer to the .NET
documentation.

Using DataSet Objects
As we mentioned before, a DataSet object is a memory-resident database that provides a
consistent programming model regardless of the data source. A DataSet object represents a
complete set of data including related tables, constraints, and relationships among the
tables. The DataSet object is a very complex object and has numerous properties, methods,
and collections. We’ll start our discussion of datasets with the properties.

DataSetName property
The DataSetName property is used to get or set the name of the DataSet object. This is
fairly straightforward, as shown in the following example:

oDS.DataSetName = “MyDataSet”

Cross-Ref

Session 20—Introducing DataSets, Part I 203

304830-1 Ch20.F 11/7/01 9:03 AM Page 203

Suppose that oDS is a DataSet object. In order to retrieve the name of a DataSet, you
may use:

Dim sName As String
sName = oDS.DataSetName

CaseSensitive property
The CaseSensitive property gets or sets a value (as a Boolean) indicating whether string
comparisons within DataTable objects are case sensitive. The CaseSenstive property
affects operations such as sorting, filtering, and searching a DataTable. The default value for
this property is False. If you want to set the property to True, use the following syntax:

oDS.CaseSensitive = True

By default, setting the CaseSensitive property for a DataSet also sets each of its
DataTable object’s CaseSensitive property to the same value. However, the DataSet’s
CaseSensitive property can be overridden by a DataTable’s CaseSenstive property. In
order to retrieve the CaseSensitive property you may use the following code:

Dim bCase As Boolean
bCase = oDS.CaseSensitive

REVIEW

The ADO.NET DataSet object, is a very complex, yet exciting object. The DataSet is a mem-
ory-resident database that provides a consistent programming model regardless of its data
source. The DataSet is designed to work in a disconnected environment, so passing a
DataSet from one system to another is expected. In order to create a DataSet, you can use a
DataAdapter, OleDbDataAdapter, or SqlDataAdapter object.

QUIZ YOURSELF

1. What are some of the differences between the Command and DataAdapter objects?
(See session introduction.)

2. What is a DataSet and how does it differ from a DataReader? (See session
introduction.)

3. How is the DataAdapter method used to populate a DataSet? (See “Fill method.”)

Saturday Evening204

304830-1 Ch20.F 11/7/01 9:03 AM Page 204

The following set of questions is designed to provide you with feedback on how
well you understood the topics covered during this part of the book. Please refer to
Appendix A for the answers to each question.

1. Which namespace can be used to access the OleDbConnection objects?

a. System.Web

b. System.Data.Connections

c. System.Data.ADO

d. System.Data.OleDb

2. Which namespace can be use to manipulate XML data?

a. System.XML

b. System.Data.Connections

c. System.Data.ADO

d. System.Data.OleDb

3. OleDbConnection and SqlConnection objects must be created explicitly.

True/False

P A R T

#
P A R T

Saturday Evening
Part Review

IV

314830-1 PR04.F 11/7/01 9:03 AM Page 205

4. Which of the following OleDbConnection properties is used to obtain the
database to which an OleDbConnection object is connected?

a. Provider

b. DataSource

c. Database

d. UserID

5. A Command object is basically a facility for executing commands against a
datasource.

True/False

6. In order to create an OleDbCommand object, an OleDbConnection object
must be specified in its constructor.

True/False

7. Which OleDbCommand class property is used to specify the SQL command
or stored procedure to execute?

a. ActiveConnection

b. Command

c. CommandText

d. ExecuteString

8. Fill in the blank: The SqlCommand class’s ______ property gets or sets how
the CommandText is interpreted

9. A DataReader object is a forward-only collection of records from a data
source.

True/False

10. Fill in the blank: The OleDbDataReader object is created via the ______
object’s Execute method.

11. A SqlDataReader object has a constructor.

True/False

12. The OleDbDataReader allows forward and backward row navigation.

True/False

13. A DataSet can contain multiple tables, but not the relationships between
the tables.

True/False

Part IV—Saturday Evening Part Review206

314830-1 PR04.F 11/7/01 9:03 AM Page 206

14. The DataAdapter objects provide a bridge to retrieve and update data
between a DataSet and a data store.

True/False

15. Fill in the blank: The OleDbDataAdapter’s ______ property gets or sets a
Command object used to select records in a DataSet.

16. Fill in the blank: The SqlDataAdapter’s ______ method adds data from a
datasource to a DataSet.

Part IV—Saturday Evening Part Review 207

314830-1 PR04.F 11/7/01 9:03 AM Page 207

324830-1 DPO3.F 11/7/01 9:03 AM Page 208

Part V — Sunday Morning
Session 21
Introducing Datasets, Part II

Session 22
Introducing Data Binding

Session 23
Using the DataGrid Control with Bound Data

Session 24
Beating the CRUD out of the DataGrid Control

Session 25
Data Shaping with ADO.NET

Session 26
Handling ADO.NET Errors

Part VI — Sunday Afternoon
Session 27
SOAP It Up!

Session 28
Web Services

Session 29
Migrating from ASP to ASP.NET

Session 30
Migrating from ADO to ADO.NET

324830-1 DPO3.F 11/7/01 9:03 AM Page 209

P A R T

Sunday
Morning

V

Session 21
Introducing Datasets, Part II

Session 22
Introducing Data Binding

Session 23
Using the DataGrid Control with Bound
Data

Session 24
Beating the CRUD out of the DataGrid
Control

Session 25
Data Shaping with ADO.NET

Session 26
Handling ADO.NET Errors

334830-1 PtO5.F 11/7/01 9:03 AM Page 210

Session Checklist
✔ Learning to construct a DataSet without a DataAdapter object
✔ Learning to navigate the DataSet’s object model
✔ Understanding the relationship between DataSet, DataTable, DataRow, and

DataColumn objects

In the previous session, we began our discussion of DataSet objects, the cornerstone of
ADO.NET. You learned that a dataset is effectively a disconnected copy of a database
and that you can populate a DataSet using a DataAdapter object. In this session,

you’re going to attack some of the DataSet object’s constituent, or child, objects, including
the DataTable, DataColumn, and DataRow objects.

Constructing a DataSet
Before we get started with its constituent objects, lets step back for a moment and discuss
how to construct a DataSet object. In Session 20, “Introducing DataSets, Part I,” you
learned how to construct a DataSet with a DataAdapter object. Oddly enough, you don’t
actually need a DataAdapter object to create a DataSet object. Creating a DataSet object
is fairly straightforward as shown in the following example:

Dim oDS As DataSet
oDS = New DataSet()

There’s another way to explicitly create a DataSet and that is by passing a name for the
DataSet into the constructor as follows:

Dim oDS As DataSet
oDS = New DataSet(“MyDataSet”)

Introducing DataSets, Part II

S E S S I O N

21

344830-1 Ch21.F 11/7/01 9:03 AM Page 211

In Session 20, you learned to set the DataSet’s name using the DataSetName property.
The following example does the same thing as passing the name of the DataSet into the
constructor:

Dim oDS As DataSet
oDS = New DataSet()
oDS.DataSetName = “MyDataSet”

Tables property
As you might suspect, the DataSet object is actually a container class. So what does a
DataSet contain? Well, many things, but most importantly a collection of DataTable objects
in the form of a DataTableCollection object. In order to access a DataSet’s DataTable
objects, we need to go through the DataSet’s Tables property. Make sense? Figure 21-1
helps you visualize the relationships among all the objects.

As you can see in Figure 21-1, the DataSet is a hierarchy of containers, collections, and
objects.

Figure 21-1 A DataSet’s object hierarchy

DataColumnCollection (Collection Object)

DataColumn (Object)

DataRowCollection (Collection Object)

DataRow (Object)

ConstraintCollection (Collection Object)

Constraint (Object)

DataTable(ContainerObject)

DataTableCollection (Collection Object)

DataRelation(Object)

DataRelationCollection (Collection Object)

DataSet(Container Object)

Sunday Morning212

344830-1 Ch21.F 11/7/01 9:04 AM Page 212

A DataSet can contain one or more DataTable objects (among other things) in the form
of a DataTableCollection object and, in turn, a DataTable object can contain one or
more DataColumn and DataRow objects. So, when you access a DataSet’s Tables property,
you are actually accessing a DataTableCollection object. Try this out:

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)

Dim oDS As DataSet
Dim oDTC As DataTableCollection
oDS = New DataSet(“MyDataSet”)
oDTC = oDS.Tables

lblTableCount.Text = oDTC.Count
End Sub
</SCRIPT>
<HTML>
<BODY>
MyDataSet contains <asp:Label Id=”lblTableCount” Text=”” Runat=”server” />
tables.
</BODY>
</HTML>

This example illustrates our “Hierarchy Theory.” As you can see, you created a DataSet
and called it “MyDataSet” with the following line:

oDS = New DataSet(“MyDataSet”)

You also created a DataTableCollection object and initialized it with the DataSet’s
Tables property as follows:

oTS = oDS.Tables

Now that you have a reference to the DataSet’s DataTablesCollection object, you can
access its properties and methods. In this example, you simply write out the number of
tables in the DataTableCollection object using its Count property as follows:

lblTableCount.Text = oDTC.Count

You actually could have accomplished this using the few lines of code that follow:

Dim oDS As DataSet
oDS = New DataSet(“MyDataSet”)
lblTableCount.Text = oDs.Tables.Count

As you can see, even though you are using a DataTableCollection object’s properties
and methods, you don’t necessarily need to explicitly create a DataTableCollection
object. You can just go though the DataSet object.

Session 21—Introducing DataSets, Part II 213

344830-1 Ch21.F 11/7/01 9:04 AM Page 213

By the way, when you run the previous two examples, the Count property should return
a value of zero because you haven’t actually added any DataTable objects to the
DataTableCollection object.

TablesCollection Object
Now that you know what the DataTableCollection object is and how to access it explicitly
and via the DataSet object, let’s take a look at its properties and methods.

Count property
Because we have already used the Count property in a previous example, we’ll keep this
explanation short and sweet. The Count property, which is read-only, returns the number
of DataTable objects in the DataTableCollection object.

Item property
Item is probably the DataTableCollection property you will use most frequently. The
Item property gets a specified DataTable from the DataTableCollection. In order to get the
desired table you either pass an integer representing the table’s index or a string represent-
ing the table’s name to the Item property. Listing 21-1 illustrates how you might use the
Item property:

Listing 21-1 Using the Item property

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As New OleDbConnection
Dim oCmd As New OleDbCommand
Dim oDA As New OleDbDataAdapter
Dim oDS As DataSet
Dim i As Integer
Dim x As Integer

With oConn
.ConnectionString = “Provider=SQLOLEDB; Data Source=(local);

Initial Catalog=Music; User ID=music; Password=music”
.Open

End With

With oCmd
.Connection = oConn
.CommandType = CommandType.Text
.CommandText = “SELECT * FROM t_bands”

End With

Sunday Morning214

344830-1 Ch21.F 11/7/01 9:04 AM Page 214

oDS = New DataSet(“Music”)

oDA.SelectCommand = oCmd
oDA.Fill(oDS, “t_bands”)

oDA.SelectCommand.CommandText = “SELECT * FROM t_music_types”
oDA.Fill(oDS, “t_music_types”)

oDA.SelectCommand.CommandText = “SELECT * FROM t_record_companies”
oDA.Fill(oDS, “t_record_companies”)

For i = 0 To oDS.Tables.Count - 1
Response.Write(oDS.Tables.Item(i).TableName & “
” & chr(13))
For x = 0 To oDS.Tables.Item(i).Columns.Count - 1

Response.Write(“ ” &
oDS.Tables.Item(i).Columns.Item(x).ColumnName & “
” & chr(13))

Next
Next

oDS.Dispose()
oDS = Nothing
oDA.Dispose()
oDA = Nothing
oCmd.Dispose()
oCmd = Nothing
oConn.Close()
oConn = Nothing

End Sub
</SCRIPT>
<HTML>
<BODY>
</BODY>
</HTML>

For a complete listing of the DataTableCollection’s properties, please
refer to the .NET documentation.

Contains method
The Contains method returns a Boolean value indicating whether the DataTableCollection
and thereby the DataSet contain a specified table. The Contains method accepts, as input,
a string representing the table’s name. Here’s a quick example:

Dim bValid As Boolean
bValid = oDS.Tables.Contains(“t_bands”)

Based on previous DataTableCollection examples, bValid should be true.

Cross-Ref

Session 21—Introducing DataSets, Part II 215

344830-1 Ch21.F 11/7/01 9:04 AM Page 215

The IndexOf method returns the index of the specified table. The method accepts either
a string representing a DataTable’s name or a DataTable object as input parameters, as
shown in the following example:

Dim iIndex As Integer
iIndex = oDS.Tables.IndexOf(“t_bands”)

The Clear method, as the name implies, removes all tables from the
DataTableCollection object.

CanRemove method
The CanRemove method returns a Boolean value indicating whether a specified table can be
removed from the DataTableCollection object. The CanRemove method accepts a
DataTable object as its input parameter.

Remove method
The Remove method removes the specified table from the DataTableCollection object. The
Remove method can accept either a table’s name or a DataTable object as its input parame-
ter. Here’s an example:

oDS.Tables.Remove(“t_bands”)

Add method
The Add method adds a table to the DataTableCollection. The Add method can be used in one
of three ways. You can call the Add method and not pass it any input parameters. In this
case a DataTable is added to DataTableCollection and assigned a default name. You can also
pass only a string representing the table’s name. In this case, a DataTable is added to the
DataTableCollection and assigned the specified name. Or you can call the Add method and
pass it a DataTable object. In this case, the specified DataTable is added to the
DataTableCollection. Here’s a quick example:

oDS.Tables.Add(“Bands”)

That’s it for the DataTableCollection object. Basically the DataTableCollection provides
access to the DataTable object’s in a DataSet.

Now that you know how to get to your tables, let’s see what you can do with them.

DataTable Objects
The DataTable object is a central object in the ADO.NET library and effectively represents a
data source’s data. You can manually fabricate a DataTable using its properties and methods,
or you can have it automatically filled using DataSet commands.

Sunday Morning216

344830-1 Ch21.F 11/7/01 9:04 AM Page 216

In order to manually construct a DataTable we can use the following code:

Dim oDT As DataTable
oDT = New DataTable()

You can also pass a string representing the DataTable’s name to the constructor as
follows:

oDT = New DataTable(“MyTable”)

As will all ADO.NET objects, the DataTable object has a variety of properties and meth-
ods. I’ll start with the properties.

CaseSensitive property
The CaseSensitive property is a Boolean value that indicates whether string comparison
within a table is case sensitive. The property’s default value is set to the parent DataSet
object’s CaseSensitive property. The CaseSensitive property affects string comparisons
in sorting, searching, and filtering. Here’s an example:

oDS.Tables.Item(0).CaseSensitive = False

In this statement you are going through a DataSet object’s Tables property to access a
DataTableCollection object. You will then use the DataTableCollection’s Item property to
access the DataTable in the collection with an index of zero. Once you have drilled down to
the DataTable, you can access its properties, in this case the CaseSensitive property.

ChildRelations property
If you have more than one table in your DataSet, chances are that you’ll want to relate
them in some way. The ChildRelations property gets a collection of child relations for a
DataTable in the form of a DataRelationCollection object. This is a little complicated and
we can’t go into it too much in this session. Data relationships are further discussed in
Session 25, “Data Shaping with ADO.NET.”

Columns property
The Columns property gets the collection of columns that belong to a DataTable in the form
of a DataColumnCollection object. The relationship between the Columns property and a
DataTable is very similar to the relationship between the Tables property and a DataSet.
The Columns property exposes a DataColumnCollection through which you can access a
DataTable’s columns. Here’s sample syntax demonstrating how you can access a DataTable’s
columns using the Columns property:

Dim oDCC As DataColumnCollection
oDCC = oDS.Tables(0).Columns

Session 21—Introducing DataSets, Part II 217

344830-1 Ch21.F 11/7/01 9:04 AM Page 217

Constraints property
The Constraints property gets the collection of constraints maintained by a DataTable
object in the form of a ConstraintCollection object. If you’ll recall from our discussion on
database design in Session 3, “Designing A Database,” a table can have zero, one, or multi-
ple constraints. Some typical constraints you’ll find on a given table are foreign key and
unique constraints. We’ll return to the Constraints property in Session 25, “Data Shaping
with ADO.NET.”

DataSet property
If a DataTable belongs to a DataSet, the DataSet property returns a reference to the parent
DataSet. You might find this property useful when processing a form. In the following code
snippet, assume that you have submitted an HTML form that contains a DataGrid control,
dgExample, which is bound to a DataTable. Here’s the syntax:

Dim oDS As DataSet
Dim oDT As DataTable
oDT = cType(dgExample.DataSource, DataTable)
oDS = oDT.DataSet

DefaultView property
The DefaultView property gets a customized view of the DataTable in the form of a
DataView object. A DataView object is a databindable, customized view of a DataTable used
for sorting, filtering, searching, editing, and navigating a DataTable. We’ll talk more about
this in Session 22, “Introducing Data Binding.”

ParentRelations property
The ParentRelations property is very similar to the ChildRelations property except that
it gets the parent relationships rather than the child relationships. (We guess that kind of
makes sense.) The ParentRelations property gets a collection of parent relations for a
DataTable in the form of a DataRelationCollection object. More in Session 25, “Data
Shaping with ADO.NET.”

PrimaryKey property
The PrimaryKey property gets or sets an array of columns that function as primary keys for
a DataTable. In most cases you’ll be getting the primary key columns rather than setting
them. In cases where you need to manually create a custom DataTable object, you’ll set the
PrimaryKey property. The PrimaryKey property returns an array of DataColumn objects.
Likewise, when you are setting the PrimaryKey property, you need to pass it an array of
DataColumn objects. Here’s an example of getting the primary key columns on a DataTable:

Sunday Morning218

344830-1 Ch21.F 11/7/01 9:04 AM Page 218

Dim aPK() As DataColumn
Dim x As Integer

oDT = oDS.Tables(“t_bands”)
aPK = oDT.PrimaryKey

For x = LBound(aPK) to UBound(aPK)
Response.Write(“PRIMARY KEY “ & x & “: “ & aPK(x).ColumnName & “
”

& chr(13))
Next

In this example, you gain access to the Tables collection via the DataSet and then ini-
tialize an array, aPK, using the DataTable object’s PrimaryKey property. We then use a For
loop to iterate through the array.

Rows property
The Rows property provides access to the collection of rows that belong to the table. This
property is similar to the Columns property, but instead of returning a collection of
DataColumn objects, it returns a collection of DataRow objects. It is through the Rows prop-
erty that you can gain access to a DataTable’s constituent DataRow objects’ properties and
methods. A DataTable’s DataColumn objects represent the DataTable’s structure whereas the
DataRow objects represent the DataTable’s data.

Additionally, it is through the DataRow object that you can gain access to the data in your
DataTable objects. Listing 21-2 demonstrates iterating through the DataRowCollection
(returned by the Rows property) in a DataTable and writing its contents to a .NET Table
control.

Listing 21-2 Iterating through a table’s rows

<%@ Page Language=”VB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDb” %>
<SCRIPT LANGUAGE=”VB” RUNAT=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oConn As OleDbConnection
Dim oDA As OleDbDataAdapter
Dim oDS As DataSet
Dim oDT As DataTable
Dim oDR As DataRow
Dim oDC As DataColumn
Dim oTR As TableRow
Dim oTHC As TableHeaderCell
Dim oTC As TableCell

oConn = New OleDbConnection(“Provider=SQLOLEDB;Data
Source=(local);Initial Catalog=Music;User ID=music;Password=music”)
oConn.Open

Continued

Session 21—Introducing DataSets, Part II 219

344830-1 Ch21.F 11/7/01 9:04 AM Page 219

Listing 21-2 Continued

oDA = New OleDbDataAdapter(“SELECT * FROM t_bands”, oConn)

oDS = New DataSet(“Music”)

oDA.Fill(oDS, “t_bands”)

oDT = oDS.Tables(“t_bands”)

oTR = New TableRow
oTR.BackColor = System.Drawing.Color.LightGray
For Each oDC In oDT.Columns

oTHC = New TableHeaderCell
oTHC.Text = oDC.ColumnName
oTR.Cells.Add(oTHC)

Next
tblBands.Rows.Add(oTR)

For Each oDR In oDT.Rows
oTR = New TableRow
For Each oDC In oDT.Columns

oTC = New TableCell
oTC.Text = oDR.Item(oDC)
oTR.Cells.Add(oTC)

Next
tblBands.Rows.Add(oTR)

Next

oTC.Dispose
oTC = Nothing
oTR.Dispose
oTR = Nothing
oDT.Dispose
oDT = Nothing
oDS.Dispose
oDS = Nothing
oDA.Dispose
oDA = Nothing
oConn.Close
oConn = Nothing

End Sub
</SCRIPT>
<HTML>
<BODY>
<asp:Table id=”tblBands” BorderWidth=”1” GridLines=”both” runat=”server”/>
</BODY>
</HTML>

Sunday Morning220

344830-1 Ch21.F 11/7/01 9:04 AM Page 220

As you can see in Listing 21-2, you have constructed a DataSet object , oDS, using a
OleDbDataAdapter object. You then created a reference to the t_bands table, oDT, through
the DataSet’s Tables property. Then you iterated through the columns in the t_bands table
using a For . . . Next structure and added a header cell to the .NET TableRow object,
oTR. The For structure is basically saying “For each column in t_bands, add a cell to the
row.” When you were done adding header cells, you added the row to the .NET Table con-
trol, tblBands. After you added your table header, you began iterating through the
DataRow objects in oDT using another For . . . Next structure. For each row in t_bands,
you then iterate through the columns and add a cell to a TableRow object as follows:

For Each oDC In oDT.Columns
oTC = New TableCell
oTC.Text = oDR.Item(oDC)
oTR.Cells.Add(oTC)

Next

The key piece of code here is the line in which we obtain the data in our column using
the syntax oDR.Item(oDC). All this is saying is “for this row, give me the data in column
oDC.” Pretty simple once you get the hang of it. Although you could have accomplished the
same thing, with a lot less code, using DataBinding, this example illustrates some important
concepts.

OK, those are all the properties we are going to cover for the DataTable object. The
DataTable object also provides numerous methods, but to be quite honest you probably
won’t use most of them. We’ll address only two of the methods, Dispose and NewRow,
provided by the DataTable object. If you’re interested in more, take a gander at your
.NET documentation for a complete listing.

Dispose method
As usual it is good programming practice to dispose of all your objects after you are done
using them in order to release valuable system resources. The DataTable object’s Dispose
method does this for you. Refer to Listing 21-2, to see the Dispose method in action.
(Although there isn’t too much to see.)

NewRow method
The NewRow method creates a new DataRow object with the same schema as the table
through which it is being created. Once a row is created, you can add it to the table’s
DataRowCollection via the Rows property. Here’s an example:

Dim oDR As DataRow
oDR = oDS.Tables(0).NewRow
oDR(“band_title”) = “Toad The Wet Sprocket”
‘ [ADD OTHER COLUMN INFORMATION HERE]
oDS.Tables(0).Rows.Add(oDR)

This example creates a new row in the first table (index of zero) in our DataSet, oDS.

Session 21—Introducing DataSets, Part II 221

344830-1 Ch21.F 11/7/01 9:04 AM Page 221

REVIEW

Wow! We covered a ton of material in this session, including DataTable objects, DataRow
objects, and DataColumn objects. All of these objects constitute a DataSet. Without them, a
DataSet would be fairly useless. We could even say that the true power of the DataSet actu-
ally lies in its constituent objects. Although in this session, we were not able to cover all of
the properties and methods of all of the objects that make up a DataSet, you gained a
clearer understanding of the DataSet object model and how to work with it. The most impor-
tant concept to take away from this session is that a DataSet object is effectively a set of
objects, each with their own properties and methods, which are grouped together in a hier-
archical fashion to provide you, as a developer, with a robust model through which you can
access your data store.

QUIZ YOURSELF

1. What is a collection? (See “Tables property.”)
2. How is a DataTable’s Columns property related to a DataColumnCollection

object? (See “Columns property.”)
3. Through which DataTable properties can you gain access to the DataRows in that

table? (See “Rows property.”)

Sunday Morning222

344830-1 Ch21.F 11/7/01 9:04 AM Page 222

Session Checklist
✔ Understanding basic binding techniques
✔ Connecting ASP.NET Controls to data stores
✔ Binding the TreeView Control to an XML File

OK, so you now understand all of the various ADO.NET objects, methods, and proper-
ties, which provide you a ton of flexibility in handling disconnected data; but now
you want to know how to bind all of those great ASP.NET controls to your data

objects, right? Well, this is the session you have been waiting for! We’ll dive into the process
of connecting our data stores with the basic server controls, and explore how to bind an
XML file to the very useful Treeview control.

What Is Data Binding?
Data binding is the process of connecting a server control to a dataset. Data binding greatly
simplifies the amount and complexity of code required to generate basic output such as fill-
ing a drop-down list box with a set of names and values stored in a database, XML file,
array, hash table or even a custom object. By filtering criteria based upon previous selec-
tions, data binding enables you to provide user interfaces that are more intuitive. It also
assists in separating your code from your content.

If you have worked with ASP previously, then you probably are familiar with using the
RecordSet object to loop through a set of data and then manually build a dynamic drop-
down list or table using the result set. You may have even used Visual Interdev and the
Design Time Controls (DTC) to bind a RecordSet object to the Grid, Label, Checkbox, Option
Group, and other Visual Interdev DTCs. Most likely you also experienced the pain and frus-
tration of attempting to debug the DTCs once they were implemented. Even the simplest DTC

Introducing Data Binding

S E S S I O N

22

354830-1 Ch22.F 11/7/01 9:04 AM Page 223

must have produced about 400 lines of code in your ASP Page, providing a painful and ardu-
ous debugging regime for even the most dedicated professional. With this complexity, you
may have returned to the old Notepad build-it-yourself approach to reduce your late night
troubleshooting sessions!

ASP.NET and ADO.NET now provide the flexibility of the build-it-yourself approach to con-
necting result sets to HTML objects without the headaches of the old DTC objects.

Binding to Arrays and Extended Object Types
The simplest example of data binding can be illustrated using array bound controls.
Listing 22-1 demonstrates binding a simple combo-box control to an array. The first step is
to establish an array structure. You can do this by declaring a new ArrayList and adding a
list of values to it as follows.

Listing 22-1 Example of binding arrays to server controls

<%@ Page Language=”VB” Debug=”False” %>
<HTML>

<SCRIPT LANGUAGE=”VB” RUNAT=”Server”>
Sub Page_Load(Sender as Object, E as EventArgs)

If Not IsPostback Then
‘Dim and fill Array
Dim aList as New ArrayList
With aList

.Add(“Model 300 Skis”)

.Add(“Model 1300 Skis”)

.Add(“Model 2300 Skis”)

.Add(“Model 3300 Skis”)
End With
dbox1.DataSource = aList
dbox1.DataBind()

End If
End Sub
Sub dBox1_SelectedIndexChanged(sender As Object , e As System.EventArgs)

Response.Write (dbox1.SelectedItem.Value.ToString())
End Sub
</SCRIPT>
<BODY>

<FORM RUNAT=”Server” METHOD=”post” ID=”Form1”>
<ASP:DROPDOWNLIST ID=”dBox1” RUNAT=”Server” AUTOPOSTBACK=”true”

ONSELECTEDINDEXCHANGED=”dBox1_SelectedIndexChanged” />
</FORM>

</BODY>
</HTML>

Once the ArrayList is populated, you simply bind it to your selected control, in this
example a DropDownList with an id of dBox1. You perform the binding by setting the
Control.DataSource() method equal to the array and then using the
Control.DataBind() method to bind the array to the control.

Sunday Morning224

354830-1 Ch22.F 11/7/01 9:04 AM Page 224

One of the issues with this approach is that both the value and the text are going to be
the same. So, what if you want to establish an array that had a bound value and bound text
that are different? You can also bind server controls to other objects such as custom classes,
hash tables, and of course ADO.NET objects. Let’s modify the code in Listing 22-1 so that we
use a custom class called Ski that stores the product id and the product title for a set of
skis. You can create an array of classes and then bind the control to the various properties
of the class. This example illustrates how you can take just about any conforming class and
bind its data to the server controls.

Building on the code in Listing 22-1, you simply create a new class called Ski that
accepts a product id and product title when instantiated as shown in Listing 22-2.
Additionally it supports ReadOnly properties to allow the return of the ProductId and
ProductTitle values:

Listing 22-2 Custom class for binding to Webserver controls

Public Class Ski
Private _ProductId as Integer
Private _ProductTitle as String
Public Sub New(ByVal i as Integer, ByVal s as String)

_ProductId= i
_ProductTitle = s

End Sub

Public Overridable ReadOnly Property ProductId()
Get

Return _ProductId
End Get

End Property
Public Overridable ReadOnly Property ProductTitle()

Get
Return _ProductTitle

End Get
End Property

End Class

Then you simply modify the way in which you populate the array as shown in this
example:

Sub Page_Load(Sender as Object, E as EventArgs)
If Not IsPostback Then

Dim aList as New ArrayList()
With aList

.Add(new Ski(1001, “Model 300 Skis”))

.Add(new Ski(1002, “Model 1300 Skis”))

.Add(new Ski(1003, “Model 2300 Skis”))

.Add(new Ski(1004, “Model 3300 Skis”))
End With
dbox1.DataSource = aList
dbox1.DataBind()

End If
End Sub

Session 22—Introducing Data Binding 225

354830-1 Ch22.F 11/7/01 9:04 AM Page 225

Finally, add two new attributes, shown in bold below, to the DropDownList server control
so that you can select which of the class properties provides the dataTextField and
dataValueField attributes:

<ASP:DROPDOWNLIST ID=”dBox1”
RUNAT=”Server”
DATATEXTFIELD=”ProductTitle”
DATAVALUEFIELD=”ProductId”
ONSELECTEDINDEXCHANGED=”dBox1_SelectedIndexChanged”
AUTOPOSTBACK=”true”

/>

The full code for the classbinding example in this section can be found in
the Session 22 folder on the CD-ROM, using the filename dropdownbindto-
objectarray.aspx.

In the following sections, you will see how the data binding functionality can be
extended to include database tables, views, stored procedures and XML datasets.

Binding to Database Data

The examples in this section require that you have the pubs database
installed and available.

Binding a control to a database table, view or stored procedure is very straightforward.
First, you have to make sure you import the System.Data and System.Data.OleDb name-
spaces so that you have access to the ADO.NET objects as shown in Listing 22-3:

Listing 22-3 Example of binding server controls to database

<%@ Page Language=”VB” Debug=”False” %>
<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDB” %>

Then implement a connection to the database in the Page_Load () event:

<HTML>
<SCRIPT LANGUAGE=”VB” RUNAT=”Server”>
Sub Page_Load(Sender as Object, E as EventArgs)

If Not IsPostback Then
Dim connection as New OleDBConnection(“provider=sqloledb;Data

Source=(local);Initial Catalog=pubs;User ID=sa;pwd=;”)

In this case, we are connecting to the Pubs database on the local machine. Next, use the
OleDBDataAdapter and DataSet objects you explored in earlier sessions to get the required
dataset from the Authors table:

Note

CD-ROM

Sunday Morning226

354830-1 Ch22.F 11/7/01 9:04 AM Page 226

Dim myAdapter as New OleDBDataAdapter(“SELECT * FROM Authors”, connection)
Dim myDataset As New DataSet()
myAdapter.Fill(myDataset, “myDataset”)

Then, just as we did in the array examples earlier, you need to set the DataSource prop-
erties on the server control and then call the DataBind() method.

dbox1.DataSource = MyDataset.Tables(0).DefaultView
dbox1.DataBind()

End If
End Sub
</SCRIPT>

Finally, you make sure that you have set the appropriate dataTextField and
dataValueField values on the server control:

<BODY>
<FORM RUNAT=”Server” METHOD=”post” ID=”Form1”>

<ASP:DROPDOWNLIST ID=”dBox1” RUNAT=”Server” DATATEXTFIELD=”au_lname”
DATAVALUEFIELD=”au_id” AUTOPOSTBACK=”true” />

</FORM>
</BODY>

</HTML>

You can use the same approach to bind server controls to stored procedures and views by
modifying the DataAdapter properties as required.

Binding to XML
Binding server controls to an XML file is not any more complicated than binding using a
standard database. Basically, you simply replace the Connection and DataAdapter objects
with a FileStream object and a StreamReader object. The following example shows how to
bind a simple XML dataset to a dropdown control.

You need to import the System.IO namespace in addition to System.Data so that you
can open and read physical files. This will allow you to open and read an xml file stored in a
local directory.

<%@ Page Language=”VB” Debug=”True” Trace=”False”%>
<%@ Import Namespace=”System.IO”%>
<%@ Import Namespace=”System.Data” %>
<HTML>

<SCRIPT LANGUAGE=”VB” RUNAT=”Server”>

Next, you need to open the XML file. In this example, you have an XML representation of
the Authors table from the Pubs database stored as pubs_authors.xml on your CD-ROM in
the Session 22 folder.

Sub Page_Load(Sender as Object, E as EventArgs)
Dim fs As New FileStream(Server.MapPath(“pubs_authors.xml”), FileMode.Open,

FileAccess.Read)

Once you have the file open, you can store its contents in a StreamReader object.

Dim xmlstream as New StreamReader(fs)

Session 22—Introducing Data Binding 227

354830-1 Ch22.F 11/7/01 9:04 AM Page 227

You then can fill your DataSet object using the DataSet.ReadXML() method and passing
in your StreamReader. It is important that you remember to close the FileStream object
when you are done, as it isn’t closed automatically:

Dim ds as New DataSet
If Not IsPostback Then

ds.ReadXML(xmlStream)
fs.Close

From here on out, you handle everything exactly as you did in the database example,
setting the DataSource and calling the DataBind() method:

dbox1.DataSource = ds.Tables(0)
dbox1.DataBind()

End If
End Sub
Sub dBox1_SelectedIndexChanged(sender As Object , e As System.EventArgs)

Response.Write (dbox1.SelectedItem.Value.ToString())
End Sub

</SCRIPT>
<BODY>

<FORM RUNAT=”Server” METHOD=”post” ID=”Form1”>
<ASP:DROPDOWNLIST ID=”dBox1” RUNAT=”Server” DATATEXTFIELD=”au_lname”

DATAVALUEFIELD=”au_id” AUTOPOSTBACK=”true”
ONSELECTEDINDEXCHANGED=”dBox1_SelectedIndexChanged” />

</FORM>
</BODY>

</HTML>

The above code sample is stored in your Session 22 folder on the CD as dropdownbind-
toxml.aspx. Next, we will look at what’s required to bind one of the more advanced con-
trols, the TreeView server control.

TreeView Control
The TreeView control is a supplemental control provided by Microsoft separately from the .NET
Framework. It is one of four controls that are provided by Microsoft specifically for Web devel-
opment purposes. The other ASP.NET Web controls include a Toolbar, TabControl and
Multipage controls. These controls are made available at http://msdn.microsoft.com/
downloads/samples/Internet/ASP_DOT_NET_ServerControls/WebControls/sample.asp.
You will need to download and install these controls in order to run the samples in this section.

The TreeView control provides an excellent opportunity to illustrate how you can use the
flexibility of XML combined with the TreeView control to support a robust navigational
framework for your Web site. In Figure 22-1, you can see the use of the TreeView control to
provide navigation for an online directory.

Sunday Morning228

354830-1 Ch22.F 11/7/01 9:04 AM Page 228

Figure 22-1 TreeView control bound to an XML File

The TreeView control enables you to develop a hierarchical navigational framework to
represent any parent-child relationship. The hierarchical relationship shown in Figure 22-1
is stored in an xml file called treeview.xml.

Implement the TreeView server control
The data binding for the TreeView control is initiated through the TreeNodeSrc attribute.
Here is an excerpt of Listing 22-4, showing the TreeNodeSrc attribute of the TreeView
server control:

<IE:TREEVIEW RUNAT=”server” AUTOPOSTBACK=true ID=tvw1 CHILDTYPE=”Folder” SHOWPLUS=”True”
TREENODESRC=”treeview.xml”>

This statement will bind the treeview control to the treeview.xml file. The treeview.xml
file must support a specific hierarchical format as demonstrated below:

<TREENODES>
<TREENODE Text=”Shopping”>

<TREENODE Text=”The Gap” NavigateURL=”http://www.gap.com” Target=”main”/>
<TREENODE Text=”Brooks Brothers” Type=”item”

NavigateURL=”http://www.brooksbrothers.com” Target=”main”/>
</TREENODE>
<TREENODE Text=”Restaurants”>

<TREENODE Text=”Chianti” Type=”item”/>
<TREENODE Text=”Vinces” Type=”treeview.xml”/>

</TREENODE>
<TREENODE Text=”Books”>

<TREENODE Text=”ASP.Net Books” Target=””/>
<TREENODE Text=”Hungry Minds” NavigateURL=”http://www.hungryminds.com”

Target=”main”/>
<TREENODE Text=”Amazon.com” NavigateURL=”http://www.amazon.com” Target=”main”/>

</TREENODE>
</TREENODES>

Session 22—Introducing Data Binding 229

354830-1 Ch22.F 11/7/01 9:04 AM Page 229

The TREENODESRC Attribute can be any relative or fixed URL pointer, so the xml file
could reside anywhere on your intranet or the internet.

To obtain information on how to set up your Microsoft Internet Explorer
WebControls visit http://msdn.microsoft.com/downloads/c-frame.htm?/
downloads/samples/internet/asp_dot_net_servercontrols/Webcontrols/
sample.asp

Listing 22-4 Example of binding a TreeView control bound to an xml file

<%@ Page Language=”VB” Debug=”true” Trace=”False”%>
<%@ Import Namespace=”Microsoft.Web.UI.WebControls”%>
<%@ Register TagPrefix=”ie” Namespace=”Microsoft.Web.UI.WebControls”
Assembly=”Microsoft.Web.UI.WebControls”%>
<HTML>
<HEAD>
</HEAD>
<BODY ID=”master”>
<FORM ID=”myform” RUNAT=”server”>

<IE:TREEVIEW RUNAT=”server” AUTOPOSTBACK=true ID=tvw1 CHILDTYPE=”Folder”
SHOWPLUS=”True” TREENODESRC=”treeview.xml”>

<IE:TREENODETYPE TYPE=”Root” EXPANDEDIMAGEURL=”images/root.gif”
IMAGEURL=”images/root.gif” CHILDTYPE=”Folder” />

<IE:TREENODETYPE TYPE=”Folder” EXPANDEDIMAGEURL=”images/folderopen.gif”
IMAGEURL=”images/folder.gif” CHILDTYPE=”Item”/>

<IE:TREENODETYPE TYPE=”Item” IMAGEURL=”images/html.gif”/>
</IE:TREEVIEW>

</FORM>
</BODY>
</HTML>

With this solution, we have illustrated the use of data binding to an XML stream, a pow-
erful illustration of how we can easily leverage the ASP.NET framework to enhance the user
experience.

The full source code for this example can be found in the Session 22 folder
on the cd, under the filename treeveiwframeset.htm.

REVIEW

We have covered the basics of data binding in this session and illustrated its use in a wide
range of controls to facilitate dynamic user interface components. The ability to bind your
server controls against such a range of data sources — from hash tables to arrays to custom
classes — provides a wide range of flexibility in handling your user interface elements.

Note

Note

Sunday Morning230

354830-1 Ch22.F 11/7/01 9:04 AM Page 230

QUIZ YOURSELF

1. Is it possible to bind server controls to each other? (See “Binding to Arrays and
Extended Object Types.”)

2. What are the major differences between binding to an XML file and an ADO.NET
dataset? (See “Binding to Database Data” and “Binding to XML.”)

3. List three elements that you can bind server controls to. (See “Binding to Arrays
and Extended Object Types.”)

Session 22—Introducing Data Binding 231

354830-1 Ch22.F 11/7/01 9:04 AM Page 231

354830-1 Ch22.F 11/7/01 9:04 AM Page 232

Session Checklist
✔ Binding controls to one another
✔ Implementing master-detail relationships
✔ Using DataBound columns with the DataGrid control

This session assumes you have SQL Server installed and have access to the
Pubs database.

In this session we cover the basics of the DataGrid control. We start out by describing
how to bind datasets to the DataGrid control, including how to format the output, and
how to handle master/detail relationships. After completing this session, you should be

able to understand how the DataGrid control can be used to eliminate much of the com-
mon scripting you did in ASP to handle the display of data in tables.

DataGrid Control Basics
ASP developers commonly face the problem of how to display a set of data in a table format.
In ASP, you would typically open a RecordSet object and then use Response.Write to dis-
play the results in a dynamically generated table. In ASP.NET this task can be greatly sim-
plified through the use of the DataGrid control.

Binding a set of data to a DataGrid control
In Listing 23-1, we have implemented a DataGrid by simply using the code:

<asp:datagrid id=”datagrid” runat=”server” />

Note

Using the DataGrid Control with
Bound Data

S E S S I O N

23

364830-1 Ch23.F 11/7/01 9:04 AM Page 233

Next, we created a function BindData()that opens a connection to the Pubs database,
selects all the records in the titles table, and then fills a DataSet object with the results.
Finally, we use the datagrid.databind() method to execute the binding. This binds the
dataset to the DataGrid control. The DataGrid control handles all of the effort associated
with formatting the results into a table and displaying the resulting output.

Listing 23-1 Binding a Dataset to a DataGrid control

<%@ Import Namespace=”System.Data.OleDb” %>
<%@ Import Namespace=”system.data” %>
<%@ Page Language=”VB” Debug=”False” Trace=”False”%>
<HTML>

<SCRIPT LANGUAGE=”vb” RUNAT=”server”>
DIM oConn as OleDbConnection
DIM oCmd as OleDbDataAdapter
DIM oDS as new dataset

public sub page_load(sender as object,e as eventargs)
if page.ispostback=false then

BindData()
end if

end sub

Function BindData()
oConn=new OleDbConnection(“provider=sqloledb;Data Source=(local);Initial

Catalog=pubs;User ID=sa;pwd=;”)
oCmd=new OleDbDataAdapter(“select * from titles”,oConn)
oCmd.Fill(oDS,”titles”)
datagrid.datasource=oDS.tables(“titles”).defaultview
datagrid.databind()

End Function

</SCRIPT>
<BODY>

<FORM ID=”form1” RUNAT=”server”>
<ASP:DATAGRID

ID=”datagrid”
RUNAT=”server”
AUTOGENERATECOLUMNS=”True”
DATAKEYFIELD=”title_id”>

</ASP:DATAGRID>
</FORM>

</BODY>
</HTML>

The AutoGenerateColumns property is what automatically generates the columns for the
resulting dataset. The DataKeyField property specifies what data field should be used as a
primary key for the table. This will be important later when we discuss editing and updating
data with the DataGrid control. In this scenario, we did not have much control over which
columns were displayed or how the output of the columns was formatted, it is clear that a
lot of custom code can be eliminated through the use of the DataGrid control. In the next
section we show how to overcome these issues.

Sunday Morning234

364830-1 Ch23.F 11/7/01 9:04 AM Page 234

Formatting the output of a DataGrid control
In the previous section, we let the DataGrid control handle all of the output properties by
setting the AutoGenerateColumns attribute to True. In Listing 23-2, we have set this
attribute to False and have instead used the Columns property combined with the ASP.NET
BoundColumn control to select what fields are displayed and how they are formatted.

Listing 23-2 Using the BoundColumn control and DataFormatString with the DataGrid control

<ASP:DATAGRID ID=”datagrid”
RUNAT=”server”
AUTOGENERATECOLUMNS=”False”
DATAKEYFIELD=”title_id”>

<COLUMNS>
<ASP:BOUNDCOLUMN HEADERTEXT=”YTD Sales”

DATAFIELD=”ytd_sales”
READONLY=”true”
DATAFORMATSTRING=”{0:C}”>

</ASP:BOUNDCOLUMN>
</COLUMNS>
<ALTERNATINGITEMSTYLE BACKCOLOR=”Gainsboro” />
<FOOTERSTYLE FORECOLOR=”White” BACKCOLOR=”Silver” />
<ITEMSTYLE BACKCOLOR=”White” />
<HEADERSTYLE FONT-BOLD=”True” FORECOLOR=”White” BACKCOLOR=”Navy” />

</ASP:DATAGRID>

The DataField property determines what field in the dataset is displayed in the result-
ing output. In this case, we will display the ytd_sales field. Additionally, we have speci-
fied a specific formatting style for this data by using the DataFormatString property. The
value for this property, {0:c}, will format the resulting output in the currency of the end
user’s locale.

The data format string consists of two parts separated by a colon in the form of {X:Yxx},
where X specifies the parameter number in a zero-based list of parameters. This value can
only be 0 because there is only one value in each cell. Y specifies the format to display the
value as shown in Table 23-1.

Table 23-1 Formatting Styles Applied by the DataFormatString property

Format Character Description

C Displays numeric values in currency format.

D Displays numeric values in decimal format.

E Displays numeric values in scientific (exponential) format.

F Displays numeric values in fixed format.

G Displays numeric values in general format.

N Displays numeric values in number format.

X Displays numeric values in hexadecimal format.

Session 23—Using the DataGrid Control with Bound Data 235

364830-1 Ch23.F 11/7/01 9:04 AM Page 235

We can further specify the look and feel of the resulting table by using the HeaderStyle,
FooterStyle, ItemStyle, and AlternatingItemStyle properties. These properties specify
the look and feel of the final output. Use HeaderStyle to format the header row if you
have established headings for any of the output columns. The ItemStyle provides the
default formatting for each new row; and AlternatingItemStyle sets up a contrasting pat-
tern when a long series of alternating data is to be displayed. The results of these format-
ting styles can be seen in Figure 23-1.

Figure 23-1 Results of using various style properties of the DataGrid control

Now that we understand how to control what fields to display and how to format the
resulting output, lets move into a very common use for the DataGrid control, displaying
master/detail relationships

Master/Detail Relationships with the DataGrid Control
When implementing user interfaces, a very common technique for navigating through sets
of data is to utilize Master/Detail controls to facilitate data searching. For example,
Figure 23-2 shows the data relationships that exist between the Authors table and the Titles
Table in the Pubs database.

Sunday Morning236

364830-1 Ch23.F 11/7/01 9:04 AM Page 236

Figure 23-2 Diagram of authors and titles relationship

In Figure 23-2, there is a many-to-many relationship between authors and titles. The
titleauthor table maintains these relationships. It is very likely that you may need to pro-
vide the user of this database a list of authors and provide a list of titles related to a spe-
cific author. You can quickly build such a Master/Detail relationship by using a bound
dropdown list and a DataGrid control. You can load the dropdown list with the authors
table and then filter the titles table by the selected author.

The remainder of this session will refer to the masterdetail.aspx file located
in the session 23 folder of the CD-ROM.

In the masterdetail.aspx file, you’ll find three key functions that support the generation
and binding of all data required to support the master/detail relationship shown in
Listing 23-3.

Listing 23-3 Partial Listing of masterdetail.aspx file illustrating core functions

Sub Page_Load(Src As Object, E as EventArgs)
Dim connection as New OleDBConnection(“provider=sqloledb;Data

Source=localhost;Initial Catalog=pubs;User ID=sa;pwd=”)

If Not IsPostback Then
Connection.Open()
Dim command as New OleDbCommand(“SELECT * FROM Authors Order By au_lname,

au_fname”, connection)
Dim AuthorDataReader As OleDbDataReader = command.ExecuteReader()
Dim sFullName as String
While AuthorDataReader.Read()

sFullName = AuthorDataReader.Item(“au_fname”) & “ “ &
AuthorDataReader.Item(“au_lname”)

Continued

CD-ROM

Session 23—Using the DataGrid Control with Bound Data 237

364830-1 Ch23.F 11/7/01 9:04 AM Page 237

Listing 23-3 Continued

authorlist.items.add(New ListItem(sFullName,
AuthorDataReader.Item(“au_id”)))

End While
AuthorDataReader.Close()
Connection.Close()
BindData()

End If
End Sub

Function GetTitles(ByVal au_id As String) As DataView
Try

Dim connection as New OleDBConnection(“provider=sqloledb;Data
Source=localhost;Initial Catalog=pubs;User ID=sa;pwd=”)

Dim command As New OleDBDataAdapter(“SELECT titles.title_id, titles.title,
titles.price, titles.ytd_sales,titleauthor.au_ord,authors.au_id, titles.pub_id FROM
authors INNER JOIN titleauthor ON authors.au_id = titleauthor.au_id INNER JOIN titles ON
titleauthor.title_id = titles.title_id”, connection)

Dim dataset As New DataSet()
Dim dataView1 as DataView
command.Fill(dataset, “TitleAuthor”)
dataView1 = new DataView(dataset.Tables(“TitleAuthor”))
dataView1.RowFilter = “au_id=’” & au_id &”’”
Return dataview1

Catch myException as Exception
Message.Text = (“Exception: “ + myException.ToString())

End Try
End Function

Function BindData()
Try

Dim TitlesDataView As DataView = GetTitles(authorlist.SelectedItem.Value)
titleGrid.DataSource = TitlesDataView
titleGrid.DataBind()

Catch myException as Exception
Message.Text = (“Exception: “ + myException.ToString())

End Try
End Function

Populating the Master control
In the Page_Load() function we establish a connection to the Pubs database, then proceed
to fill an OleDbDataReader by connecting it to a OleDbCommand which has been attached to
a SQL select statement. We have decided to use a OleDbataReader object here as opposed to
a DataSet object to simply illustrate how it can be used as easily as the DataSet object for
this type of operation, forward reading a set of data.

We loop through the retrieved DataReader using the following control loop:

While AuthorDataReader.Read()
sFullName = AuthorDataReader.Item(“au_fname”) & “ “ &

AuthorDataReader.Item(“au_lname”)
authorlist.items.add(New ListItem(sFullName,

AuthorDataReader.Item(“au_id”)))
End While

Sunday Morning238

364830-1 Ch23.F 11/7/01 9:04 AM Page 238

This allows us to quickly loop through the records and populate the authorlist drop-
down list. Finally we close the OleDbDataReader and the Connection Objects with

AuthorDataReader.Close()
Connection.Close()

It is important to remember that you need to close OleDbDataReader objects when you
are completed with them, as they do not automatically go out of scope, closing the
OleDbConnection the way that DataSet objects do.

General Rule on opening connections: If you explicitly open a connection, for
instance by calling an Open() method, then you will need to use a Close()
method to avoid errors. When using DataSet objects, you never explicitly
open a connection, so closing is not an issue.

Now that we have a master list of authors populated, we need to filter the Titles table for
the selected author and display the details in a DataGrid control. This is done by calling
the BindData() function.

Filtering the detail listing
The BindData() function is the primary function, which initiates grabbing the authorid
selected in the authorlist and then filtering the titles table by calling the GetTitles()
function and passing the authorid value as shown below:

Function BindData()
Try

Dim TitlesDataView As DataView = GetTitles(authorlist.SelectedItem.Value)
titleGrid.DataSource = TitlesDataView
titleGrid.DataBind()

Catch myException as Exception
Message.Text = (“Exception: “ + myException.ToString())

End Try
End Function

The GetTitles() function accepts the authorid and does a multitable query of the
authors, titleauthor, and titles tables to get a list of all titles, the price of each title, and
the year to date revenue for the title. The following example illustrates the use of a
DataView filter to filter the rows returned by the author id:

Function GetTitles(ByVal au_id As String) As DataView
Try

Dim connection as New OleDBConnection(“provider=sqloledb;Data
Source=localhost;Initial Catalog=pubs;User ID=sa;pwd=”)

Dim command As New OleDBDataAdapter(“SELECT titles.title_id, titles.title,
titles.price, titles.ytd_sales,titleauthor.au_ord,authors.au_id, titles.pub_id FROM
authors INNER JOIN titleauthor ON authors.au_id = titleauthor.au_id INNER JOIN titles ON
titleauthor.title_id = titles.title_id”, connection)

Dim dataset As New DataSet()
Dim dataView1 as DataView
command.Fill(dataset, “TitleAuthor”)
dataView1 = new DataView(dataset.Tables(“TitleAuthor”))
dataView1.RowFilter = “au_id=’” & au_id &”’”

Tip

Session 23—Using the DataGrid Control with Bound Data 239

364830-1 Ch23.F 11/7/01 9:04 AM Page 239

Return dataview1
Catch myException as Exception

Message.Text = (“Exception: “ + myException.ToString())
End Try

End Function

Next, we bind the DataGrid control with the filtered DataView object. This is done with
the final two statements of the BindData() function:

titleGrid.DataSource = TitlesDataView
titleGrid.DataBind()

First, you set the DataSource property of the titleGrid to the Default View of the
TitlesDataView, and then you execute the titleGrid.DataBind() method to populate
the DataGrid object. Figure 23-3 shows the results of your work.

Figure 23-3 Example of using the DataGrid control for master/detail relationships

REVIEW

At this point you should be able to implement master/detail user interfaces in your applica-
tions. While the use of the DataGrid control has made your job much easier, the core part
of the work continues to be understanding the use of ADO.NET objects in getting and filter-
ing data.

Sunday Morning240

364830-1 Ch23.F 11/7/01 9:04 AM Page 240

QUIZ YOURSELF

1. How do you control the formatted display of values in a BoundColumn? (See
“Formatting the output of a DataGrid control.”)

2. How can you control the ordering of values into columns of a DataGrid? (See
Master/Detail Relationships with the DataGrid Control.”)

3. Is a master/detail user interface more useful for a many-to-many relationship or a
one-to-many relationship? (See “Master/Detail Relationships with the DataGrid
Control.”)

Session 23—Using the DataGrid Control with Bound Data 241

364830-1 Ch23.F 11/7/01 9:04 AM Page 241

364830-1 Ch23.F 11/7/01 9:04 AM Page 242

Session Checklist
✔ Using the DataGrid control as a user interface for modifying data
✔ Using validation controls with template columns for data validation
✔ Sorting the columns of a DataGrid control

In Session 23, we illustrated how you can use the DataGrid control to support the dis-
play of data. However, just showing the data is useless if you can’t provide updates or
deletes. In this session we will build upon the examples used in Session 23 to illustrate

how the DataGrid control can be used to update data. The DataGrid control comes with a
whole host of built-in functionality that can be exposed to provide a highly customizable
approach to building user interfaces to your database.

This session assumes you have SQL Server Installed and have access to the
Pubs database.

Updating Your Data
The DataGrid control provides the capability to support editing of bound data by using the
EditCommandColumn. The EditCommandColumn handles the automatic generation of “Edit”,
“OK”, and “Cancel” hyperlinks or images to facilitate the user interface elements of editing a
DataGrid control. When the “Edit” hyperlink or alternatively an image is selected, the
EditCommandColumn control will replace a DataGrid control read-only cell with an editable
textbox. Figure 24-1 illustrates the resulting output of using the EditCommandColumn to
build the “Edit” hyperlink.

Note

Beating the CRUD out of the
DataGrid Control

S E S S I O N

24

374830-1 Ch24.F 11/7/01 9:04 AM Page 243

Figure 24-1 Output of using the EditCommandColumn for editing a DataGrid control

The property value that generates the EditCommandColumn is shown in the following
code:

<asp:EditCommandColumn
EditText=”Edit”
CancelText=”Cancel”
UpdateText=”OK” >

</asp:EditCommandColumn>

Figure 24-2 illustrates the results of selecting the “Edit” hyperlink to edit a selected
column.

Figure 24-2 Example of a data row being edited

Sunday Morning244

374830-1 Ch24.F 11/7/01 9:04 AM Page 244

The DataGrid control will automatically display the appropriate hyperlinks — an “Edit”
hyperlink when in standard mode, a “Cancel” and “Submit” hyperlink when in Edit mode.
While the EditCommandColumn handles the generation of the GUI, you still have to provide
all of the code to actually perform the edit, cancel and update functions. You attach the
code modules to call when each of these events happen through the OnEditCommand,
OnUpdateCommand, and OnCancel properties of the DataGrid control. For each of these
properties you implement an appropriate function to handle the mechanics of the opera-
tion. Listing 24-1 illustrates the full HTML required to generate the DataGrid control and
EditCommandColumn as discussed.

Listing 24-1 HTML required to generate the DataGrid and EditCommandColumn

<ASP:DATAGRID ID=”titleGrid”
RUNAT=”SERVER”
FORECOLOR=”Black”
AUTOGENERATECOLUMNS=”false”
DATAKEYFIELD=”title_id”
ONPAGEINDEXCHANGED=”OnPageIndexChanged”
ONEDITCOMMAND=”OnEdit”
ONCANCELCOMMAND=”OnCancel”
ONUPDATECOMMAND=”OnUpdate”
ONDELETECOMMAND=”OnDelete”
ONSORTCOMMAND=”OnSorted”
ALLOWSORTING=”True”
ALLOWPAGING=”True”
PAGESIZE=”5”
PAGERSTYLE-MODE=”NextPrev”
PAGERSTYLE-HORIZONTALALIGN=”Center”>

<ALTERNATINGITEMSTYLE BACKCOLOR=”Gainsboro” />
<FOOTERSTYLE BACKCOLOR=”Silver” FORECOLOR=”White” />
<ITEMSTYLE BACKCOLOR=”White” />
<HEADERSTYLE BACKCOLOR=”Navy”

FORECOLOR=”White”
FONT-BOLD=”True” />

<COLUMNS>
<ASP:BOUNDCOLUMN HEADERTEXT=”Title”

DATAFIELD=”Title”
SORTEXPRESSION=”Title”>

</ASP:BOUNDCOLUMN>
<ASP:TEMPLATECOLUMN HEADERTEXT=”Unit Price”

SORTEXPRESSION=”Price”>
<ITEMTEMPLATE>

<ASP:LABEL id=”Label2”
RUNAT=”server”
TEXT=’<%# String.Format(“{0:C}”,

Container.DataItem(“price”))%>’
WIDTH=”50”
AUTOSIZE=”True”>

</ASP:LABEL>
</ITEMTEMPLATE>
<EDITITEMTEMPLATE>

<ASP:TEXTBOX id=”editprice”
RUNAT=”Server”
TEXT=’<%# Container.DataItem(“price”)%>’

Continued

Session 24—Beating the CRUD out of the DataGrid Control 245

374830-1 Ch24.F 11/7/01 9:04 AM Page 245

Listing 24-1 Continued

WIDTH=”50”>
</ASP:TEXTBOX>

<ASP:COMPAREVALIDATOR id=”valeditprice” RUNAT=”server”

CONTROLTOVALIDATE=”editprice” ERRORMESSAGE=”You must supply a positive currency value.”
TYPE=”Currency” OPERATOR=”GreaterThan” VALUETOCOMPARE=”0”
DISPLAY=”dynamic”></ASP:COMPAREVALIDATOR>

</EDITITEMTEMPLATE>
</ASP:TEMPLATECOLUMN>
<ASP:BOUNDCOLUMN HEADERTEXT=”YTD Sales”

DATAFIELD=”ytd_sales”
SORTEXPRESSION=”ytd_sales”
DATAFORMATSTRING=”{0:C}”>

</ASP:BOUNDCOLUMN>
<ASP:EDITCOMMANDCOLUMN EDITTEXT=”Edit”

CANCELTEXT=”Cancel”
UPDATETEXT=”OK”>

</ASP:EDITCOMMANDCOLUMN>
<ASP:BUTTONCOLUMN TEXT=”Delete”

COMMANDNAME=”Delete”>
</ASP:BUTTONCOLUMN>

</COLUMNS>
</ASP:DATAGRID>

In the following sections we will cover how to handle attaching functions to support the
edit, cancel, update and delete events.

Handling the OnEditCommand Event
As illustrated in Listing 24-1, when a user selects the Edit hyperlink, the OnEditCommand
event is fired, this event has been set to call the OnEdit subroutine. The following example
displays the code contained in the OnEdit Sub:

Sub OnEdit(sender As Object, E As DataGridCommandEventArgs)
Try

‘Set the Grid to Editable
sender.EditItemIndex = E.Item.ItemIndex
BindData()
Message.Text = “Status: In Edit Mode”

Catch myException as Exception
Message.Text = (“Exception: “ + myException.ToString())

End Try
End Sub

This subroutine simply turns the editing mode of the DataGrid control on by setting its
EditItemIndex to the value of the row the user was on when the Edit hyperlink was
selected. This forces the DataGrid control to turn all fields in the selected row which are
not set as ReadOnly to textboxes. When you wish to prevent a column from being edited,
simply set the ReadOnly property of the column to True. In our example, the only column
we are permitting the user to edit is the Unit Price column.

Sunday Morning246

374830-1 Ch24.F 11/7/01 9:04 AM Page 246

Next you must rebind the DataSet by calling the DataBind function. This will render the
OK and Cancel hyperlinks that we established when building the EditCommandColumn. After
the user has had the opportunity to edit the selected field, he or she can then select to
process the update by selecting the OK hyperlink or to cancel the update with the Cancel
hyperlink.

Handling the OnCancelCommand Event
Should the user choose to cancel the update then the OnCancelCommand event fires, which
we have associated with the OnCanel subroutine. This routine simply sets the DataGrid
control back to ReadOnly by setting the EditItemIndex to –1, then we simply rebind the
data to the grid with the BindData function, as shown in the following example:

Sub OnCancel(sender As Object, E As DataGridCommandEventArgs)
Try

sender.EditItemIndex=-1
BindData()
Message.Text = “Status: Update Canceled”

Catch myException as Exception
Message.Text = (“Exception: “ + myException.ToString())

End Try
End Sub

Handling the OnUpdateCommand Event
When the user selects the OK hyperlink the OnUpdateCommand event fires. We have attached
this event to the OnUpdate subroutine. In order to update the data, you need to have a way
of effectively getting the user’s updated values.

When we originally set up the TemplateColumn responsible for handling the display of
the data, we set up an ItemTemplate that handles the formatting and display of values
when the grid is in ReadOnly mode. At the same time, we set the EditItemTemplate to
handle the display of values when the grid is in Edit mode.

<ASP:TEMPLATECOLUMN HEADERTEXT=”Unit Price” SORTEXPRESSION=”Price”>
<ITEMTEMPLATE>

<ASP:LABEL id=”Label2” RUNAT=”server” TEXT=’<%# String.Format(“{0:C}”,
Container.DataItem(“price”))%>’ WIDTH=”50” AUTOSIZE=”True”></ASP:LABEL>

</ITEMTEMPLATE>
<EDITITEMTEMPLATE>

<ASP:TEXTBOX id=”editprice” RUNAT=”Server” TEXT=’<%#
Container.DataItem(“price”)%>’ WIDTH=”50”></ASP:TEXTBOX>

<ASP:COMPAREVALIDATOR id=”valeditprice” RUNAT=”server”

CONTROLTOVALIDATE=”editprice” ERRORMESSAGE=”You must supply a positive currency value.”
TYPE=”Currency” OPERATOR=”GreaterThan” VALUETOCOMPARE=”0”
DISPLAY=”dynamic”></ASP:COMPAREVALIDATOR>

</EDITITEMTEMPLATE>
</ASP:TEMPLATECOLUMN>

Session 24—Beating the CRUD out of the DataGrid Control 247

374830-1 Ch24.F 11/7/01 9:04 AM Page 247

In the EditItemTemplate we set up a textbox to handle the display of editable data and
gave it an id of editprice. Additionally we set up a validation control with an id of valed-
itprice to make sure that the user enters a positive currency value. Below we will cover
how we use the validation control to validate the users input.

Checking that the user input has been validated
When the OnUpdate subroutine fires, the first thing to do is insure that the validator con-
trol, valeditprice is valid. If it is valid, you can then proceed with the update. We use the
following code shown in Listing 24-2 to find the validation control and check that the val-
ues are within acceptable parameters. Assuming that the control is valid, you can then
begin the update process.

Executing the update process
In our OnUpdate routine shown in Listing 24-2 we use the following line of code to find the
editprice text box: txtBox = e.item.findcontrol(“editprice”).

Listing 24-2 OnUpdate subroutine

Sub OnUpdate(sender As Object, E As DataGridCommandEventArgs)
Try

Dim sTitleId as String
Dim dPrice as decimal
Dim txtBox as TextBox
Dim valCtrl as CompareValidator
valCtrl = e.item.findcontrol(“valeditprice”)
If valCtrl.isValid

sTitleId = titlegrid.datakeys.item(e.item.itemindex)
txtBox = e.item.findcontrol(“editprice”)
dPrice =txtBox.Text
UpdateTitles(dPrice, sTitleId)
titleGrid.EditItemIndex=-1
BindData()
Message.Text =”Status: Update Completed”

Else
Message.Text =”Status: No Update, Validation Failed”

End If
Catch myException as Exception

Message.Text = (“Exception: “ + myException.ToString())
End Try
End Sub

We then retrieve its contents with the following code:

dPrice =txtBox.Text

Sunday Morning248

374830-1 Ch24.F 11/7/01 9:04 AM Page 248

The last piece of information we need to call our UpdateTitles function is the Title Id,
which can be found by looking at the bound datakeys collection and passing the edited
rows itemindex value:

sTitleId = titlegrid.datakeys.item(e.item.itemindex)

Now that we have the Title Id and the updated price, we can call our UpdateTitles
function and pass these values. Finally, before we finish we will need to set the DataGrid
control back to ReadOnly and rebind the updated data to the grid so that the cell is set to a
read-only status.

titleGrid.EditItemIndex=-1
BindData()

The following code provides a listing of the UpdateTitles subroutine, which actually per-
forms the database update of the price:

Sub UpdateTitles(price As Decimal, title_id As String)
Dim connection as New OleDBConnection(“provider=sqloledb;Data

Source=localhost;Initial Catalog=pubs;User ID=sa;pwd=”)
Dim command as New OleDbCommand(“UPDATE titles SET [price]=? WHERE [title_id] =?”,

connection)
Dim param0 as New OleDBParameter(“price”, OleDBType.Currency)
param0.Value = price
command.Parameters.Add(param0)
Dim param1 as New OleDBParameter(“title_id”, OleDBType.VarChar)
param1.Value = title_id
command.Parameters.Add(param1)
connection.Open()
command.ExecuteNonQuery()
connection.Close()

End Sub

Deleting Data with the OnDeleteCommand Event
Unfortunately, the EditCommandColumn doesn’t provide an automated way to generate a
Delete or Select hyperlink. However, you can use the ButtonColumn to implement a Delete
method for the DataGrid control as shown in the following code:

<asp:ButtonColumn Text=”Delete” CommandName=”Delete”>
</asp:ButtonColumn>

We attach a subroutine to execute when the hyperlink is selected as illustrated in
Figure 24-2 with the following attribute of the DataGrid control:

OnDeleteCommand=”OnDelete”

The following code illustrates the subroutine that fires when the hyperlink is selected:

Sub OnDelete(sender As Object, E As DataGridCommandEventArgs)
Try

Dim sTitleId as String

Session 24—Beating the CRUD out of the DataGrid Control 249

374830-1 Ch24.F 11/7/01 9:04 AM Page 249

Dim sAuthorID as String
sender.EditItemIndex=-1
sTitleId = titlegrid.datakeys.item(e.item.itemindex)
sAuthorID = AuthorList.SelectedItem.Value
DeleteTitles(sTitleId, sAuthorId)
BindData()
Message.Text=”Status: Delete Successful”

Catch myException as Exception
Message.Text = (“Exception: “ + myException.ToString())

End Try
End Sub

When the OnDelete subroutine is executed, we first set the DataGrid control to
ReadOnly to prevent any misplaced user interfaces once the selected row is deleted as illus-
trated in the following code segment.

sender.EditItemIndex=-1

Next, we obtain the Title Id and Author Id in the same way that we collected them in the
update scenarios earlier. Once we have the Title Id and Author Id we can call the
DeleteTitles subroutine to execute the actual delete as shown in the following example:

Sub DeleteTitles(title_id as String, au_id as String)
Dim connection as New OleDBConnection(“provider=sqloledb;Data

Source=localhost;Initial Catalog=pubs;User ID=sa;pwd=”)
Dim command as New OleDbCommand(“DELETE FROM TitleAuthor WHERE [title_id]=? And

[au_id]=?”, connection)
Dim param0 as New OleDBParameter(“title_id”, OleDBType.VarChar)
param0.Value = title_id
command.Parameters.Add(param0)
Dim param1 as New OleDBParameter(“au_id”, OleDBType.VarChar)
param1.Value = au_id
command.Parameters.Add(param1)
connection.Open()
command.ExecuteNonQuery()
connection.Close()

End Sub

Finally, we call the BindData function to refresh the DataGrid control.

Sorting Columns with the DataGrid Control
Because the DataGrid control doesn’t perform the actual sorting of the data but instead
handles the related events and methods, several steps must be taken in order to implement
sorting on the DataGrid control.

The first step is to set up the following two attributes on the <ASP:DATAGRID>:

OnSortCommand=”OnSorted”
AllowSorting=”True”

The OnSortCommand is the event that will be called when a user initiates a sort event.
The OnSorted subroutine builds the sorted DataView and rebinds the sorted information to

Sunday Morning250

374830-1 Ch24.F 11/7/01 9:04 AM Page 250

the DataGrid control. The AllowSorting attribute will turn the column headers of all tem-
plate columns or bound columns that have implemented a SortExpression attribute into a
hyperlink that users can click to initiate the OnSortCommand. An example of how to add the
attribute to a TemplateColumn can be seen below:

<asp:TemplateColumn HeaderText=”Unit Price” SortExpression=”price” >

The OnSorted subroutine handles all of the heavy lifting associated with the sorting
activity. The OnSorted subroutine used in our example can be reviewed in Listing 24-3.

Listing 24-3 Example of implementing a sorting function for a DataGrid control

Sub OnSorted(source As Object , e As DataGridSortCommandEventArgs)
Try

Dim sSortField as String
Dim TitlesDataView As DataView =

GetTitles(authorlist.SelectedItem.Value)
Dim bSortAsc as Integer
sSortField = e.SortExpression.ToString()
source.EditItemIndex=-1
if Session(“bsortAsc”) = Nothing Then

Session(“bsortAsc”) = 1
Else

bSortAsc= Session(“bsortAsc”)
End If
If bSortAsc = 1 Then

Session(“bSortAsc”) = 0
TitlesDataView.Sort= sSortField & “ DESC”
Message.Text =”Sort Descending on “ & sSortField

Elseif bSortAsc =0 Then
Session(“bSortAsc”)= 1
TitlesDataView.Sort= sSortField & “ ASC”
Message.Text =”Sort Ascending on “ & sSortField

Else
Message.Text=”bSortAsc fell through”

End If
titleGrid.DataSource = TitlesDataView
titlegrid.databind()

Catch myException as Exception
Message.Text = (“Exception: “ + myException.ToString())

End Try
End Sub

To handle the sorting of a column on the DataGrid control, you need to first establish a
DataView object that can be used to sort the information. In the OnSorted function, you
call the GetTitles function and pass the appropriate Author Id:

Dim TitlesDataView As DataView = GetTitles(authorlist.SelectedItem.Value)

Next, you need to know what field the user selected for sorting; we can get the field
name through the SortExpression property:

sSortField = e.SortExpression.ToString()

Session 24—Beating the CRUD out of the DataGrid Control 251

374830-1 Ch24.F 11/7/01 9:04 AM Page 251

You also need to track whether the user desires the sort to be in ascending or descending
order. In our example, we track this through the use of a session variable bSortAsc. When
the value is equal to 1 then the sort is set for ascending, otherwise it is set for descending.

Once you know the field to sort on and the sorting direction, you can use the DataView
to automatically sort the information using the Sort method of the DataView. You simply
pass the name of the field to sort followed by the value ASC if you want the field sorted in
ascending order or DESC if you want it sorted in descending order.

TitlesDataView.Sort= sSortField & “ ASC”

Finally, we simply bind the DataView to the grid as follows:

titleGrid.DataSource = TitlesDataView
titlegrid.databind()

Figure 24-3 shows the resulting output of a user sorting the DataGrid control on the
Unit Price field.

Figure 24-3 Output after sorting the Unit Price field

REVIEW

We have covered most of the major aspects of using the DataGrid control with ADO.NET and
providing a user interface to support data updates, reads, and deletes. The examples pro-
vided for this session also demonstrate how to handle paging of data with the DataGrid
control. You should explore these examples further to understand this technique.

Sunday Morning252

374830-1 Ch24.F 11/7/01 9:04 AM Page 252

QUIZ YOURSELF

1. How do you turn on the editing mode for a DataGrid control? (See “Updating Your
Data.”)

2. How can you use both a range and required field validator to validate user input?
(See “Handling the OnUpdateCommand Event.”)

3. How can you allow the user to better control how a column is sorted? For instance
could you use an external dropdown list to sort columns in a specific manner? (See
“Sorting Columns with the DataGrid Control.”)

Session 24—Beating the CRUD out of the DataGrid Control 253

374830-1 Ch24.F 11/7/01 9:04 AM Page 253

374830-1 Ch24.F 11/7/01 9:04 AM Page 254

Session Checklist
✔ Introducing data shaping
✔ Handling hierarchical datasets

In this session we will explore the ability of the DataSet object to support the use of
parent-child relationships between tables.

What Is Data Shaping?
Data shaping is simply the process of reflecting the parent-child relationships that exist
between data objects. For instance, let’s look at demonstrating the parent-child relationship
between two data objects: a set of stores and a set of titles sold by the stores. Figure 25-1
illustrates this relationship.

In ASP you could store these relationships in a hierarchical recordset by using the Shape
Provider, and then produce a structured output representing the hierarchy to the user. The
shaping syntax allowed you to build these parent-child relationships easily as illustrated in
Listing 25-1.

Data Shaping with ADO.NET

S E S S I O N

25

384830-1 Ch25.F 11/7/01 9:04 AM Page 255

Figure 25-1 Diagram of a parent child relationship

Listing 25-1 Example of Using the ADO Shape Provider

<HTML>
<HEAD>

<SCRIPT LANGUAGE=”VBScript” RUNAT=”Server”>
Function DisplayShape()
Dim myConnection
Dim ShapeCommand
Dim StoresRecordSet
Dim SalesRecordSet
Set myConnection=Server.CreateObject(“ADODB.Connection”)
myConnection.Provider =”MSDataShape”
myConnection.ConnectionString=”DRIVER=SQL

Server;UID=sa;DATABASE=pubs;SERVER=(local);PWD=;”
myConnection.Open

‘Constructing the Shape Command to Build RecordSet
ShapeCommand = “SHAPE {SELECT stor_id, stor_name, stor_address FROM stores}”
ShapeCommand = ShapeCommand &”APPEND ({select *, title from sales inner join

titles on sales.title_id=titles.title_id} AS Sales”
ShapeCommand = ShapeCommand &” RELATE stor_id TO stor_id)”

Set StoresRecordSet = Server.CreateObject(“ADODB.Recordset”)
StoresRecordSet.Open ShapeCommand, myConnection

Response.Write(“<H2>List of Titles Sold By Store</H2>”)
Do While Not StoresRecordSet.EOF

Response.Write(“
<I>”)

Sunday Morning256

384830-1 Ch25.F 11/7/01 9:04 AM Page 256

Response.Write(“Store Name: “ & StoresRecordSet(“stor_name”))
Response.Write(“</I>”)
Response.Write(“<p>Address: “ & StoresRecordSet(“stor_address”) & “</p>”)
Set SalesRecordSet= StoresRecordSet(“Sales”).Value
Response.Write(“<blockquote>”)
Response.Write(“<p><i>List of Titles sold by “ & StoresRecordSet(“stor_name”)

&”</i></p>”)
Do While Not SalesRecordSet.EOF

Response.Write(“<p>Title = “& SalesRecordSet(“title”) & “</p>”)
SalesRecordSet.movenext

Loop
Response.Write(“</blockquote>”)
StoresRecordSet.movenext

Loop
End Function
</SCRIPT>

</HEAD>
<BODY>

<%=DisplayShape%>
</BODY>

</HTML>

Figure 25-2 shows the output from this code segment, producing the expected represen-
tation of the parent-child relationships.

Figure 25-2 Resulting output of using the hierarchical recordset in ASP

ADO.NET does not support the use of the MSDataShape Provider or the shape syntax.
Instead ADO.NET utilizes a method of the DataSet object, the Relations() method.

Session 25—Data Shaping with ADO.NET 257

384830-1 Ch25.F 11/7/01 9:04 AM Page 257

Why Shape Your Data?
The ability to display hierarchical or parent-child relationships is key to a wide variety of
applications. You use these types of relationships whenever you need to list all orders asso-
ciated with a product, all products associated with a category, all files contained in a folder,
or customers located in all cities. Each of these examples can be represented in a parent-
child relationship. Although we could set up a series of stored procedures or commands that
query a set of data based upon a parent’s unique key in order to return the filtered set of
children, this method can create a tremendous amount of overhead.

In ADO.NET, we can use the Relations() method of the DataSet object to identify and
enforce parent-child relationships between disparate sets of data, even if those data sets do
not have an enforced relationship in the source database. As long as there is a way to con-
nect to distinct data stores through a common key field, then we can enforce a parent-child
relationship.

DataSet Object
If you are an ADO programmer, you may look at a DataSet object as a disconnected
RecordSet object that contains one or more tables of data. In effect a DataSet is similar to
a hierarchical RecordSet that is created using the MSDataShape ADO Provider and then
building a SELECT command using the shape syntax as we discussed previously. If you are
an XML developer, you’re more likely to see the DataSet object as a specific Document
Object Model (DOM), which is set to represent tables of data where each table contains a set
of elements with a consistent strongly typed structure. Either of these views provides an
accurate representation of the DataSet object.

The DataSet object in ADO.NET provides the ability to hold an unlimited number of data
tables. We add data tables to the DataSet object by creating a DataAdapter and supplying
a stored procedure or SQL syntax to fill the data table as shown in Listing 25-2:

Listing 25-2 Example of using the DataAdapter and DataSet commands

<%@ Import Namespace=”System.Data.OleDB”%>
<%@ Import Namespace=”System.Data” %>
<%@ Page Language=”VB” Debug=”true” %>
<HTML>

<SCRIPT LANGUAGE=”VB” RUNAT=”server”>

Sub Page_Load()

Dim myConnection as new OleDBConnection(“provider=sqloledb;Data
Source=localhost;Initial Catalog=pubs;User ID=sa;pwd=”)

Dim myDataSet as New DataSet()
Dim StoresDSCommand as new OleDBDataAdapter(“select * from stores”,

myConnection)

StoresDSCommand.Fill(myDataSet,”Stores”)

Dim SalesDSCommand as OleDBDataAdapter
SalesDSCommand = new OleDBDataAdapter(“select *, title from sales inner join

titles on sales.title_id=titles.title_id”, myConnection)

Sunday Morning258

384830-1 Ch25.F 11/7/01 9:04 AM Page 258

SalesDSCommand.Fill(myDataSet,”Sales”)

myDataSet.Relations.Add(“StoreSale”,myDataSet.Tables(“Stores”).Columns(“stor_id”),myDataS
et.Tables(“Sales”).Columns(“stor_id”))

Dim Store as DataRow
Dim Sale as DataRow

Msg.Text=Msg.Text & “<H2>List of Titles Sold By Store</H2>”
for each Store in myDataSet.Tables(“Stores”).Rows

Msg.Text=Msg.Text & “
<I>”
Msg.Text=Msg.Text & “Store Name: “ & Store(“stor_name”).ToString()
Msg.Text=Msg.Text & “</I>”
Msg.Text=Msg.Text & “<p>Address: “ & Store(“stor_address”) & “</p>”
Msg.Text=Msg.Text & “<blockquote>”
Msg.Text=Msg.Text & “<p><i>List of Titles sold by “ & Store(“stor_name”)

&”</i></p>”
for each Sale in Store.GetChildRows(myDataSet.Relations(“StoreSale”))
Msg.Text=Msg.Text & “<p>Title = “ & Sale(“title”).ToString() & “</p>”
next

Msg.Text=Msg.Text &”</blockquote>”
next

end sub

</SCRIPT>
<BODY>

<ASP:LABEL ID=”Msg” RUNAT=”server” />
</BODY>

</HTML>

This code fills the myDataSet object with the contents of the stores table.

SalesDSCommand.Fill(myDataSet,”Sales”)

In order to describe relationships between these tables, so we can easily display or report
on any hierarchical relationships that may exist, we need to use the Relations() method
of the DataSet object. We will cover this in the next section.

Shaping Data with the Relations Method
The Relations method enables you to set the parent-child relationship between two tables
by supplying the name of the relation, the table and column, that should be the parent
relation and the table and column that is the child relation. Looking at the code in Listing
25-2 from the previous section, we set up a relationship between the Stores table and the
Sales table in myDataSet using the following code segment:

myDataSet.Relations.Add(“StoreSale”,myDataSet.Tables(“Stores”).Columns(“stor_id”),myDataS
et.Tables(“Sales”).Columns(“stor_id”))

This will establish a relationship where the Stores table represents the parent and is
joined via the stor_id column to the Sales table. Using this relationship, you can quickly
loop through each of the stores and provide a list of titles sold to each store. The following

Session 25—Data Shaping with ADO.NET 259

384830-1 Ch25.F 11/7/01 9:04 AM Page 259

segment of Listing 25-2, illustrates how you can loop through each of the stores using a
simple For...Next loop:

Dim Store as DataRow
Dim Sale as DataRow

Msg.Text=Msg.Text & “<H2>List of Titles Sold By Store</H2>”

for each Store in myDataSet.Tables(“Stores”).Rows
Msg.Text=Msg.Text & “
<I>”
Msg.Text=Msg.Text & “Store Name: “ & Store(“stor_name”).ToString()
Msg.Text=Msg.Text & “</I>”
Msg.Text=Msg.Text & “<p>Address: “ & Store(“stor_address”) & “</p>”
Msg.Text=Msg.Text & “<blockquote>”
Msg.Text=Msg.Text & “<p><i>List of Titles sold by “ & Store(“stor_name”)

&”</i></p>”

In order to access each of the child records, we use the Relation method established
earlier and a For...Next loop as illustrated in the following example:

for each Sale in Store.GetChildRows(myDataSet.Relations(“StoreSale”))
Msg.Text=Msg.Text & “<p>Title = “ & Sale(“title”).ToString() & “</p>”

next
Msg.Text=Msg.Text &”</blockquote>”

next
end sub

The resulting output of Listing 25-2 can be seen in Figure 25-3.

Figure 25-3 Resulting output of using the relations method in ASP.NET

Sunday Morning260

384830-1 Ch25.F 11/7/01 9:04 AM Page 260

REVIEW

The use of the Relations method enables you to quickly navigate hierarchical relationships
between datasets. This common but powerful technique allows you as a developer to
robustly handle complex relationships with ease.

QUIZ YOURSELF

1. How can parent-child relationships be established between data stores from differ-
ent data sources? (See “Why Shape Your Data?”)

2. Describe the differences between the ADO Shape Command and the ADO.Net
Relations method. (See “What Is Data Shaping?” and “Why Shape Your Data?”)

3. What limits are there in establishing tables and relationships for a specified
DataSet object? (See “Shaping Data with the Relations Method.”)

Session 25—Data Shaping with ADO.NET 261

384830-1 Ch25.F 11/7/01 9:04 AM Page 261

384830-1 Ch25.F 11/7/01 9:04 AM Page 262

Session Checklist
✔ Understanding the OLEDBException class and its interaction with the
OLEDBError object

✔ Implementing custom OLEDBError handling in your application
✔ Implementing a generic event handler that writes errors to the Event Log

ADO.NET provides a framework similar to ADO for handling errors that occur when call-
ing ADO.NET components. When the ADO.NET adapter encounters an error, it throws
an Exception which can then be evaluated for any contained errors.

There are two types of exceptions that can be thrown: an OLEDBException and a a
SQLException. An OLEDBException can be thrown by any OLE DB data source, while a
SQLException is thrown by SQL Server. In this session, we will focus on handling the
OLEDBException, however the approach for handling a SQLException is nearly identical
except you have access to a broader range of properties to evaluate as shown in Table 26-1.

Table 26-1 SQLException Properties not contained in OLEDBException

SQLException Property Description

Class Gets the severity level of the error returned from the SQL
Server .NET Data Provider.

LineNumber Gets the line number within the Transact-SQL command
batch or stored procedure that generated the error.

Number Gets a number that identifies the type of error.

Continued

Handling ADO.NET Errors

S E S S I O N

26

394830-1 Ch26.F 11/7/01 9:04 AM Page 263

Table 26-1 Continued

SQLException Property Description

Procedure Gets the name of the stored procedure or remote procedure
call (RPC) that generated the error.

Server Gets the name of the computer running an instance of SQL
Server that generated the error.

State Gets the number modifying the error to provide additional
information.

The Try . . . Catch . . . Finally error-handling functionality of ASP.NET is very
useful for evaluating ADO.NET errors. Let’s start by creating a function, GetRecords().
GetRecords() is a simple function that attempts to connect to a database, fill a dataset,
and then return the dataset. In the next section we will implement OLEDBErrorHandler(),
a generic error handler that will evaluate the errors that are established during calls in the
GetRecords() function and then write those errors to the browser and to the System Event
Log.

The code listings 26-1, 26-2, 26-3 are each segments of code extracted from
the file errorhandle.aspx in the Session 26 folder of the CD.

Listing 26-1 OLEDBError handling code segment from errorhandle.aspx

<%@ Import Namespace=”System.Diagnostics”%>
<%@ Import Namespace=”System.Exception” %>
<%@ Import Namespace=”System.Data.OleDB” %>
<%@ Import Namespace=”System.Data” %>
<%@ Page Language=”VB” Debug=”False” Trace=”False” %>
<HTML>

<SCRIPT LANGUAGE=”VB” RUNAT=”server”>

Sub ExecuteDBCodeBtn_Click(Sender As Object, E as EventArgs)
Try
Dim MyDataset As DataSet = GetRecords()
grid1.DataSource = MyDataset.Tables(0).DefaultView
grid1.DataBind()
Catch ex as Exception

Dim oLabel as new Label()
Dim sMess as String
oLabel.Text=””
oLabel.Id=”ExecuteDBCodeBtn_ErrorLabel”
Page.Controls.Add(oLabel)
sMess = sMess & “<p>Code Error Occurred</p>”
sMess = sMess & “” & ex.message & “”
oLabel.Text = oLabel.Text & sMess

End Try

Note

Sunday Morning264

394830-1 Ch26.F 11/7/01 9:04 AM Page 264

End Sub

Function GetRecords() As DataSet
Try

Dim connection as New OleDBConnection(txtConnStr.Text)
Dim command as New OleDBDataAdapter(txtSQLStr.Text, connection)
Dim dataset As New DataSet()
command.Fill(dataset, “dataset”)
Return dataset

Catch myException as OLEDBException
OLEDBErrorHandler(myException)

End Try
End Function

The GetRecords() function pulls the connection string from a textbox txtConnStr and
the SQL statement from a textbox txtSQLstr. Next it attempts to fill the dataset and then
return it. Whenever an error occurs in the ADO.NET Adapter, for instance if the password or
server is invalid, or an incorrect statement is encountered in the SQL statement, then an
exception is thrown. Using the Try . . . Catch statement, you can catch the
OLEDBException and then begin the process of handling and evaluating the errors collec-
tion that it contains. This is a much more convenient solution than we had in ASP for cap-
turing and passing a collection of errors. The ability for the OLEDBException class to act as
a wrapper for the OLEDBErrors collection, makes passing the collection to a generic error
handler much more simple.

In the next section, we will expand on the above code example and build an
OLEDBErrorHandler() function in order to examine the ways that we can evaluate the
errors collection.

OLEDBError Object Description
You can sort through the OLEDBException object to work with each of the OLEDBError
objects it wraps. The OLEDBError class is created by the OleDBDataAdapter whenever an
error occurs in connecting to or executing against a datasource. For each error encountered
by the OleDBDataAdapter, a new OLEDBError object is instantiated and added to the
OLEDBErrors collection, which is then wrapped by the OLEDBException class and instanti-
ated as an object.

Listing 26-2, extends Listing 26-1 to illustrate how the OLEDBException object is passed
to a generic error handler function OLEDBErrorHandler. The function can then process the
errors collection. First, we dynamically add a label to the bottom of the page so that we can
display the list of error messages. We will use the label to hold the text of our
OLEDBException and OLEDBError properties.

Listing 26-2 Passing an OLEDBException to an error handler

Function OLEDBErrorHandler(ByVal myException as OLEDBException)
Dim sMess as String
Dim oLabel as new Label()
Dim eItem as OLEDBError

‘Add a label to the page dynamically to show errors

Continued

Session 26—Handling ADO.NET Errors 265

394830-1 Ch26.F 11/7/01 9:04 AM Page 265

Listing 26-2 Continued

oLabel.Text = “”
oLabel.Id=”OleDBLabel”
Page.Controls.Add(new LiteralControl(“<hr>”))
Page.Controls.Add(oLabel)

‘Loop throught the Errors in OLEDBException
sMess=sMess & “<p>Database Error” & myException.ErrorCode.ToString()

&” Occurred: “ & myException.Message &”</p>”
sMess=sMess & “<p>StackTrace: “ & myException.StackTrace.ToString()

&”</p>”
sMess=sMess & “<p>TargetSite: “ & myException.TargetSite.ToString()

&”</p>”
For each eItem in myException.Errors

sMess=sMess & “”
sMess = sMess &”Error Message: “ & eItem.Message & “”
sMess = sMess &”Source of Error: “ & eItem.Source & “”
sMess = sMess &”Native Error Id: “ &

eItem.NativeError.ToString() & “”
sMess = sMess &”SQL State: “ & eItem.SQLState & “”
sMess=sMess & “”
oLabel.Text = oLabel.Text & sMess

Next
WriteEvent(myException)

End Function

This function works by defining a variable, eItem as an OLEDBError object. You can then
use a For . . . Each . . . Next loop to iterate through the collection, and process each
error respectively. The results of this process can be seen in Figure 26-1.

Figure 26-1 Example of handling the OLEDBErrors collection

Sunday Morning266

394830-1 Ch26.F 11/7/01 9:04 AM Page 266

Now the OLEDBError object properties can be accessed and displayed. We will cover these
properties in the next section.

OLEDBError Object Properties
In Listing 26-1, we displayed each of the OLEDBError properties on the label by adding
them consecutively to the sMess string variable. We then displayed the results on the run-
time generated label control. Let’s take a quick review of each of these properties and see
what type of information that they provide:

� The Message property provides a short description of the error that was generated.
In Figure 26-1 you can see that we attempted to include an invalid column
create_error in the SQL Statement. The Message property generates a clear
description of the error, Invalid column name ‘create_error’.

� The NativeError property enables you to obtain the database-specific error infor-
mation typically in the form of a code that you can utilize to reference the database
technical manuals. Only as a last resort do you want to be utilizing these codes for
troubleshooting!

� The Source property retrieves the name of the object that generated the error. In
Figure 26-1 you can determine that we were using the OLEDB provider and connect-
ing to a SQL Server Database.

� The SQLState property gets the five-character error code following the ANSI SQL
standard for the database. The character string value returned for an SQLSTATE con-
sists of a two-character class value followed by a three-character subclass value. A
class value of 01 indicates a warning and is accompanied by a return code of
SQL_SUCCESS_WITH_INFO. Class values other than 01, except for the class IM, indi-
cate an error and are accompanied by a return value of SQL_ERROR. The class IM is
specific to warnings and errors that derive from the implementation of ODBC itself.
The subclass value 000 in any class indicates that there is no subclass for that
SQLSTATE. The assignment of class and subclass values is defined by SQL-92. The
specific references and descriptions for these values can be identified by referencing
the provider documentation. In Figure 26-1, we were provided a SQLState code of
42S22, which maps to an error description of Column not found.

OLEDBError Object Methods
The methods of the OLEDBError object are the same as the other ASP.NET equivalents.

� The Equals() method (inherited from object) determines whether the specified
object is the same instance as the current object.

� The GetHashCode() method (inherited from object) serves as a hash function for a
particular type, suitable for use in hashing algorithms and data structures like a
hash table.

� The GetType() method (inherited from object) gets the type of the object.

Session 26—Handling ADO.NET Errors 267

394830-1 Ch26.F 11/7/01 9:04 AM Page 267

� The ToString() method provides a conversion to string method.
� The Finalize() method (inherited from object) enables the object to attempt to

free resources and perform other cleanup operations before the object is reclaimed
by the Garbage Collector (GC). This method may be ignored by the Common
Language Runtime; therefore, necessary cleanup operations should be done else-
where.

� MemberwiseClone (inherited from object) creates a shallow copy of the current
object.

OLEDBException Properties
The OLEDBException class wraps the OLEDBErrors collection, and as such draws much of
the values for its properties from the underlying collection of OLEDBError objects. For
instance, the values stored in the Source and Message properties are exactly the same as
that of the first OLEDBError object stored in the OLEDBErrors collection. Let’s look at each
property to evaluate how it can be used to garner additional information about the error.

� The ErrorCode property (inherited from ExternalException) provides the error iden-
tification number (HResult) of the error generated by the first OLEDBError object,
the property is read-only, and can be useful for researching the cause of the error.

� The Errors property contains the OLEDBErrors collection and captures all errors
generated by the OleDB data adapter. This is the most frequently used property, and
the one that allows you to cycle through all the errors generated by the OleDB data
adapter.

� The HelpLink property (inherited from Exception) indicates a link to the help file
associated with this exception, and is read-only. Typically in the case of the
OLEDBErrors collection, this property will be emptied; it is more commonly
used with the generic Exception object when errors are raised specifically by the
application.

� The InnerException property (inherited from Exception) retrieves a reference to an
inner (that may be nested) exception.

� The Message property is simply a copy of the message contained in the first
OLEDBError of the Errors collection.

� The Source property is simply a copy of the source property contained in the first
OLEDBError of the Errors collection.

� The StackTrace property (inherited from Exception) indicates the stack trace as a
text string, which is valuable for determining where the error occurred. This prop-
erty allows you to follow from the lowest child in the hierarchy to the originating
function, which initiated the call that established the error. Figure 26-1 shows that
by reviewing the StackTrace property you can identify that the original call that
created the error was in ASP.default_aspx.GetRecords(), indicating the
default.aspx page and the GetRecords() function.

� The TargetSite property (inherited from Exception) indicates the method that
threw this exception. This property is read-only.

Sunday Morning268

394830-1 Ch26.F 11/7/01 9:04 AM Page 268

Writing Errors to the Event Log
Now that you understand how to capture each of the OleDB errors, let’s look at how you
might log these errors to the System Event Log as well as display them to the user. Why
would you want to write errors to the System Event Log? One reason is that whenever you
are dealing with errors in the handling of data, you should provide multiple methods for
identifying, troubleshooting, and resolving the issue. One method you can use to help iden-
tify certain errors is to write errors to the Event Log. This is especially useful in capturing
issues that occur infrequently and may be difficult to track down.

In Listing 26-1 the last statement calls the WriteEvent() function. This function
accepts as a parameter an exception and then goes through the process of writing the error
summary to the Event Log. In order to use this function, you need to import the
System.Diagnostics namespace using:

<%@ Import Namespace=”System.Diagnostics”%>

Then you can implement the generic event log handler as shown in Listing 26-3 which
completes Listing 26-2 discussed earlier in this session:

Listing 26-3 Writing error events to the system event log

Function WriteEvent(ByVal myException as Exception)
Dim sPage as String = Request.Path
Dim Message As String = “Url “ & sPage
Dim sLogName As String = “myLogFile”
Dim oLog as New EventLog

Message = Message & “ Error: “
Message = Message & myexception.message
If (Not EventLog.SourceExists(sLogName)) Then

EventLog.CreateEventSource(sLogName,sLogName)
End if
oLog.Source = sLogName
oLog.WriteEntry(Message, EventLogEntryType.Error)

End Function
</SCRIPT>
<BODY>

<FORM RUNAT=”server” ID=”Form1”>
<H1>

ASP.NET OleDB Exception Handling
</H1>
<P>

This example is useful for testing some of the typical errors that may
occur

while connecting to OleDB datasources. Try creating errors in the
connection string and sql statements to see how error handling is

reported.
</P>
<P>

<ASP:LABEL RUNAT=”Server” ID=”Label1”>Connection String</ASP:LABEL>

Continued

Session 26—Handling ADO.NET Errors 269

394830-1 Ch26.F 11/7/01 9:04 AM Page 269

Listing 26-3 Continued

<ASP:TEXTBOX ID=”txtConnStr” RUNAT=”server” WRAP=”False”
WIDTH=”800”>provider=sqloledb;Data Source=127.0.0.1;Initial Catalog=pubs;User
ID=sa;pwd=;</ASP:TEXTBOX>

</P>
<P>

<ASP:LABEL RUNAT=”Server” ID=”Label2”>SQL Statement</ASP:LABEL>
<ASP:TEXTBOX ID=”txtSQLStr” RUNAT=”server” WRAP=”False”

WIDTH=”800”>SELECT * FROM
GENERATE ERROR IN SQL</ASP:TEXTBOX>

</P>
<P>

<ASP:BUTTON TEXT=”Execute Database Code” ONCLICK=”ExecuteDBCodeBtn_Click”
RUNAT=”server” ID=”Button1” />

</P>
<P>

<ASP:DATAGRID ID=”grid1” RUNAT=”server” />
</P>

</FORM>
</BODY>

</HTML>

With this function, you are simply capturing the page that generated the error and, cre-
ating a new log file called myLogFile, or opening it if it already exists, then writing the
message summary to the log file. That’s it! Now you can open the Event Viewer from your
Control Panel ➪ Administrative Tools ➪ Event Viewer icon and review the log file, as illus-
trated in Figure 26-2, providing a way for remote administrators and local administrators to
troubleshoot issues.

Figure 26-2 Using the Event Viewer to view errors in the Event Log

Sunday Morning270

394830-1 Ch26.F 11/7/01 9:04 AM Page 270

REVIEW

You should now understand how to use the OLEDBException class and the OLEDBErrors col-
lection to retrieve the errors that are produced by the OleDBDataAdapter. As the previous
examples have shown, capturing these errors is straightforward — the real difficulty is
resolving them!

QUIZ YOURSELF

1. How many OleDB errors can be handled by the OLEDBException class? (See
“OLEDBError Object Description.”)

2. How could you implement a global generic OleDB error handler for use across your
application? (See “OLEDBError Object Description.”)

3. If the first OleDB error in an OLEDBErrors collection contained the value Invalid
column name ‘this’ in its Message property, then what would be the value of
the OLEDBException.Message property wrapping this collection? (See
“OLEDBError Object Properties.”)

Session 26—Handling ADO.NET Errors 271

394830-1 Ch26.F 11/7/01 9:04 AM Page 271

394830-1 Ch26.F 11/7/01 9:04 AM Page 272

The following set of questions is designed to provide you feedback on how well
you understood the topics covered during this part of the book. Please refer to
Appendix A for the answers to each question.

1. A DataSet object can be created without the use of the (SQL or ADO)
DataAdapter’s Fill method.

True/False

2. The DataSet is a container class.

True/False

3. Fill in the blank: The ______ property, which is read-only, returns the
number of DataTables in a DataTableCollection object.

4. Fill in the blank: The ______ property gets a specified DataTable from a
DataTableCollection object.

5. Fill in the blank: ______ is the process of connecting a server control to a
DataSet.

6. You can bind server controls to an array of custom classes.

True/False

7. Setting the attribute AutoPostBack=”true” on a server control forces
the reposting of the page to the server.

True/False

8. DTC objects are part of the ASP.NET Framework.

True/False

P A R T

#
P A R T

Sunday Morning
Part Review

V

404830-1 PR05.F 11/7/01 9:04 AM Page 273

9. Fill in the blank: The property ______ is what automatically generates the
columns for a DataGrid control.

10. Using the following property/value combination,
DataFormatString=”{0:C}” for a field will format the contents as what
format type.

a. Decimal

b. Currency

c. Date

d. Fixed

11. To format alternating rows of data in a datagrid, manipulate which
property?

a. HeaderStyle

b. FooterStyle

c. ItemStyle

d. AlternatingItemStyle

12. The DataReader control should be closed with the Close method.

True/False

13. The U in CRUD stands for what?

a. Understand

b. Update

c. Unique

d. Undo

14. You must code your own modules to provide update, delete, and create
functionality.

True/False

15. Fill in the blank: To set the number of records on each page, the ______
property should be set.

16. The RangeValidator Control cannot be used with the DataGrid when in
Edit mode.

True/False

Part V–Sunday Morning Part Review274

404830-1 PR05.F 11/7/01 9:04 AM Page 274

17. Data shaping is simply the process of:

a. Reflecting the parent child relationships

b. Manipulating data values

c. Updating a DataSet

d. None of the above

18. A parent-child relationship is a type of hierarchy.

True/False

19. The DataSet object can hold no more than 10 data tables.

True/False

20. A special provider must be used to shape data with ADO.NET.

True/False

21. Try...Catch...Finally is a type of structured error handling.

True/False

22. The ADOException class acts as a ______ for the ADOErrors collection.

a. Wrapper

b. Object

c. Holding point

d. None of the above

23. What property provides a short description of the error that was
generated?

a. Message

b. NativeError

c. Source

d. None of the above

24. What property retrieves the name of the object that generated the error?

a. Message

b. NativeError

c. Source

d. None of the above

Part V–Sunday Morning Part Review 275

404830-1 PR05.F 11/7/01 9:04 AM Page 275

P A R T

Sunday
Afternoon

VI

Session 27
SOAP It Up!

Session 28
Web Services

Session 29
Migrating from ASP to ASP.NET

Session 30
Migrating from ADO to ADO.NET

414830-1 PtO6.F 11/7/01 9:04 AM Page 276

Session Checklist
✔ Using SOAP in the .NET Platform
✔ Using SOAP in a heterogeneous computing environment

In this session, we discuss how the ASP.NET platform is incorporating at its core the
adoption of open Internet standards to support interoperability across distributed het-
erogeneous computing environments. With ASP.NET you can implement Web Services,

which enable you to build distributed applications that expose your business logic to any
application client regardless of the operating system, programming language, or object
model it is built on. A key standard that is critical to this approach is the SOAP specifica-
tion, which supports the invocation of business objects across the Internet or an intranet
regardless of the client or the server’s operating platform and without requiring any propri-
etary software on either side of the communication.

Introducing SOAP
SOAP (Simple Object Access Protocol) is a wire protocol specification for invoking methods,
on servers, services, components, and objects. As the Internet expands to deliver an ever-
increasing set of services and applications, communication between numerous different
platforms, such as CORBA and COM, is critical to support the evolving needs of application-
to-application communication in Business-to-Business (B2B), Business-to-Commerce (B2C),
and Business-to-Everyone (B2E) environments.

Before SOAP, if you had a business component written as a Java Servlet that supported
the lookup and publication of data, it was basically impossible to instantiate that object
with a COM-based business component running on the opposite side of a firewall. The Java
servlet built on the CORBA platform would typically require the use of the Object
Management Group’s Internet Inter-ORB Protocol (IIOP) to facilitate distributed application
interaction, whereas the COM component would use COM Internet Services (CIS) plus

SOAP It Up!

S E S S I O N

27

424830-1 Ch27.F 11/7/01 9:04 AM Page 277

Distributed Component Object Model (DCOM), Remote Data Services (RDS), or Remote
Scripting to communicate with distributed objects, thus providing no simple or efficient way
for consumer or provider applications to communicate easily across the Internet through
proxy servers and firewalls.

SOAP was submitted to the W3C by Microsoft, IBM, DevelopMentor, and UserLand among
others to address these issues. There are two major stated goals of the SOAP specification:

� Provide a standard object invocation protocol built on Internet standards, using
HTTP as the transport protocol and XML for the data encoding.

� Create an extensible protocol and payload format that can evolve over time.

SOAP eliminates a lot of the complexity associated with the other distributed object
invocation solutions, such as DCOM and IIOP, by simply not specifying how issues such as
garbage collection, type safety, versioning, object by reference, and other similar communi-
cation issues should be handled. Instead it focuses on simply defining the mechanism to
pass commands and parameters between HTTP clients and servers regardless of the operating
system, programming language, or object model used on either side of the communication.

Early product implementations of SOAP illustrate the broad diversity of object models,
platforms, and programming languages. These include:

� Nouveau ORB by Rogue Wave
� Orbix 2000 by Iona
� Voyager by ObjectSpace
� Frontier Groupware by UserLand
� Windows DNA by Microsoft

Accessing Remote Data with SOAP
Let’s look at an example of how the SOAP specification allows two applications to operate
across firewalls to provide services to one another. We will examine a theoretical Web site,
www.soapitup.com, which provides personalized portal pages for its customers. The site
runs on a Sun Solaris platform using Java Servlets to support the delivery of customized
stock quotes and research to its customers.

Another site, www.stockquoteserver.com, is a service that provides realtime stock
quotes, volume and trade data, and other information as a B2B service. This site operates on
a Windows 2000-based architecture using an ASP.NET solution to provide its service.

www.soapitup.com would like to access the GetQuote method of the StockQuote Service
on the www.stockquoteserver.com site, and then return the results of the service to
www.soapitup.com end users.

Prior to the SOAP application this type of communication for anything but the most sim-
plistic of calls would have been extremely difficult and time consuming to develop as the
applications are operating on two distinct object models, CORBA and COM.

With SOAP, however, this heterogeneous environment can communicate easily, allowing
the Java Servlets to activate the COM objects on www.stockquoteserver.com with ease.

Sunday Afternoon278

424830-1 Ch27.F 11/7/01 9:04 AM Page 278

Figure 27-1 illustrates how a www.soapitup.com customer would access the
www.soapitup.com Web site and be provided with a stock quote that was retrieved
by www.soapitup.com from www.stockquoteserver.com.

Figure 27-1 Illustration of SOAP request in heterogeneous environment

Figure 27-1 illustrates each of the steps that occur in a SOAP Communication. Lets look
at each step below:

1. First, a customer opens the stockquote.jsp page on the www.soapitup.com
WebWeb site. The user requests a stock quote by entering a stock name and hitting
the submit button.

2. Next, the stockquote.jsp page captures the stock symbol from the user.
3. The stockquote.jsp page then invokes a client proxy for the www.stockquote-

server.com GetQuote object.
4. This proxy will generate a SOAP client request and encapsulate it in an HTTP POST

as follows:
POST /StockQuote.asmx HTTP/1.1
Host: www.stockquoteserver.com
Content-Type: text/xml; charset=”utf-8”

1) Client visits
www.soapitup.com and
requests a stock quote

9) Client Receives
HTML Page with Result

Internet

Firewall allowing only Port80 Traffic

HTTP + HTML HTTP + HTML

HTTP + HTML
HTTP + XML

HTTP + XML
HTTP + XML

http://www.soapitup.com

• Sun Solaris Platform

stockquote.jsp page

2) Receives request to get quote for IBM from end user

3) Page creates stock proxy object

8) Accepts results from Proxy and displays results to
user in HTML page.

• Java Server Pages

SOAP Client Proxy: Getquote()

4) Converts call to HTTP and XML per SOAP
Specification and Posts to http://
www.stockquote.com/Stockquote.asmx

10) Proxy receives results in XML over HTTP
converts to function return value of $110.25

http://www.stockquote.com

• Windows 2000 Platform

stockquote.asmx page

5) HTTP request arrives from www.soapitup.com/
stockquote.jsp, parameters encoded in XML

6) ASP.NET Calls Method GetQuote()

7) ASP.NET formats and returns results as SOAP
return via XML and HTTP

• Active Server Pages

Function GetQuote(StockSymbol as String)

End Method

Retrieves Stock Value from SQL Server
Returns Stock Value as Integer

Session 27—SOAP It Up! 279

424830-1 Ch27.F 11/7/01 9:04 AM Page 279

Content-Length: nnn
<SOAP-ENV:Envelope>

<SOAP-ENV:Body>
<m:GetQuote xmlns:m=”Some-Namespace-URI”>

<symbol>IBM</symbol>
</m:GetQuote>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

The first four lines are standard HTTP, indicating a posting of the content to
http://www.stockquoteserver.com/StockQuote.asmx. The content type is
defined as text/xml, which lets the server know that the payload is going to be
sent as an XML message.
SOAP defines two types of messages, Call and Response, in order to allow clients to
invoke a remote procedure and allow the called procedure on the server to respond
with appropriate values.
The Call example above defines the envelope and body in a standard XML structure
that clearly indicates we are accessing the GetQuote method and passing the value
IBM as the parameter.

5. Because this request is a standard HTTP POST that embeds XML, there are no issues
passing this request across the firewall protecting the www.stockquoteserver.com
site.

6. Once the stockquote.asmx page receives the request, it can quickly decipher the
XML structure of the request and call the GetQuote method and pass the value IBM
as the parameter.

Because the SOAP specification doesn’t describe how the provider service
should call its respective methods, the only constraint on the provider’s
choice of language or operating system is that it support the SOAP wire
protocol.

7. Once the value is retrieved, a SOAP response message is created as follows:
HTTP/1.1 200 OK
Content-Type: text/xml; charset=”utf-8”
Content-Length: nnnn
<SOAP-ENV:Envelope>

<SOAP-ENV:Body>
<m:GetQuoteResponse xmlns:m=”Some-Namespace-URI”>

<result>110</result>
</m:GetQuoteResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Note

Sunday Afternoon280

424830-1 Ch27.F 11/7/01 9:04 AM Page 280

8. The proxy called on the www.soapitup.com/stockquote.jsp page now can accept
the SOAP response packet above and pass the results back to the calling function.

9. The user then receives the HTML page formatted by the stockquote.jsp page.

SOAP Discovery (DISCO)
The SOAP discovery specification allows a consumer or client to automatically determine
what services and methods a Web Service provides. Through SOAP discovery, the provider
can report this information to the application consumer so that a dialogue can be estab-
lished. Discovery of Web Services (DISCO) is a specification that defines a document format
based on XML and a protocol for getting the discovery document through a known URL.
Through DISCO, a developer can explore the published services available at a specific URL. In
effect, it allows potential client applications of your Web Service to shop around and explore
what is available.

Web Service Description Language (WSDL)
The Services Description Language provides developers of Web Service client applications the
detailed information needed to create proxies for accessing the Web service. The WSDL will
describe the public functions provided by the Web Service, the required and optional para-
meters, the ordering of those parameters, as well as the data types. The WSDL also will spec-
ify the format, type, and structure of the returned data so that the consumer can
appropriately handle the response.

Let’s look at a portion of the WSDL for the StockQuote Service that describes those
requests submitted via a HTTP POST request:

...
<httppost xmlns=”urn:schemas-xmlsoap-org:post-sdl-2000-01-25”>
<service>
<requestResponse name=”GetQuote”

href=”http://www.stockquoteserver.com/StockQuote.asmx/GetQuote”>
<request>
<form>
<input name=”Symbol”/>

</form>
</request>
<response>
<mimeXml ref=”s0:double”/>

</response>
</requestResponse>

</service>
</httppost>

...

In this example the <request> tags enclose a description of the input parameter <sym-
bol> and the <response> tags enclose the format of the response that can be expected
from this service, in this case a value type of double. There is little else required by a con-
sumer of this service in order to begin using the provider.

Session 27—SOAP It Up! 281

424830-1 Ch27.F 11/7/01 9:04 AM Page 281

Using SOAP with ASP.NET
SOAP is the standard wire transmission protocol used when building Web Services with
ASP.NET. This provides you as a developer the ability to ignore the details of implementing
the specific XML code required to provide the required requests. Additionally, ASP.NET pro-
vides built-in facilities for exposing the WSDL of a document by simply appending an ?WSDL
to the end of any *.asmx file.

In Session 28, we will examine ASP.NET Web Services in detail so that you can better
understand how ASP.NET utilizes these published open standards to implement a distributed
computing environment.

REVIEW

By using the power of the SOAP specification, you can easily build distributed applications that
have the capability to marshal other resources regardless of location, platform, or programming
language. Exposing public methods on your business objects in such a manner greatly enhances
reusability, scalability, and integration effectiveness with other applications.

QUIZ YOURSELF

1. If you wanted to find the format of return values supported by a Web Service that
was published by a provider what would you refer to? (See “Web Service
Description Language (WSDL).”)

2. What existing standards and protocols are used in the SOAP specification? (See
“Introducing SOAP.”)

3. What two types of messages are supported by the SOAP specification? (See
“Accessing Remote Data with SOAP.”)

Sunday Afternoon282

424830-1 Ch27.F 11/7/01 9:04 AM Page 282

Session Checklist
✔ Understanding what Web Services are and what they do
✔ Creating a Web Service
✔ Describing Web Services
✔ Accessing Web Services programmatically

The Internet is currently comprised of an enormous number of heterogeneous entities:
servers, operating systems, databases, and so on. Diversity in and of itself isn’t bad,
but when it comes to communication between these heterogeneous entities, diversity

can be a problem.
One way to solve these problems is to develop a set of standards that everyone can use to

communicate. However, when everyone is attached to their own personal set of standards or
protocols, agreeing upon a universal standard becomes nearly impossible. So, what to do?
Well, you take “something” (or “somethings”) that everyone uses, combine them, and turn
them into a standard. These “somethings” are HTTP and XML. HTTP, Hypertext Transfer
Protocol, is the protocol that essentially all Web browsers and servers use to request and
serve Web pages, respectively. XML, Extensible Markup Language, is a cross-platform method
for encoding information transferred over HTTP.

Microsoft has, in the .NET Framework, rolled HTTP and XML into something it calls Web
Services. A Web Service is a seamless way for objects on a server to accept incoming requests
from a client via HTTP and return an XML-based response. Because Web Services are built on
HTTP and XML, they can be used by practically everyone on the Internet. In this session, we
will demonstrate how to build a Web Service and how to discover and use someone else’s
Web Service.

Web Services

S E S S I O N

28

434830-1 Ch28.F 11/7/01 9:04 AM Page 283

Developing a Web Service
In this example, you will write a Web Service that exposes the data in the Music database,
which you have used periodically throughout this book.

You can use any text editor or Visual Studio to build a Web Service. Although the process
is simplified tremendously by using Visual Studio, we will use good ol’ Notepad to write our
Music Web Service, because we know just about everyone has access to Notepad.

Unlike ASP.NET pages, which have a file extension of .aspx, Web Services have a file
extension of .asmx. So, the first thing you need to do is create a file named music.asmx.

Now open the music.asmx file and start it off with the following line of code:

<%@ WebService Language=”VB” class=”Music” %>

This line of code defines your file as a Web Service and indicates that you will be using
VB.NET to write the service. The class attribute represents the class that the Web Service
will expose.

The next thing you need to do, as with an ASP.NET page, is import the namespaces nec-
essary to implement your Web Service. Because you’ll be accessing the Music database you
built in Session 4 with SQL Server, we’ll need to import the System.Data and
System.Data.SqlClient namespaces. Additionally, when writing a Web Service you need to
import the System.Web.Services namespace. Add the following Imports statements to the
music.asmx file:

Imports System
Imports System.Web.Services
Imports System.Data
Imports System.Data.SqlClient

Now that you have imported the appropriate namespaces and thereby have access to the
classes necessary for your implementation, you need to declare your class, Music. To define
a VB.NET class, we use the following structure:

Class [Class Name]
‘ Properties and Methods go here

End Class

So our Music class declaration will look like this:

Class Music
‘ Properties and Method go here

End Class

Since we are using a Web Service-enabled class, the class should be derived from the Web
Service class. In order to accomplish this, our class declaration should be modified as
follows:

Class Music Inherits : WebService
‘ Properties and Method go here

End Class

Sunday Afternoon284

434830-1 Ch28.F 11/7/01 9:04 AM Page 284

Deriving your class from the WebService class is optional, but we recom-
mend that you do so to improve readability.

Your Web Service has to actually do something, so you need to add a method to the
Music class. Your method, call it GetBandInfo for now, will simply return a DataSet con-
taining two DataTables, one with a band’s members and one with a band’s albums when
passed the band’s name as a parameter. To add a public method to a class, use the following
VB.NET syntax:

Public Function [Function Name]([Parameter Name] As [Data Type], . . .])
‘ Implementation Code

End Function

In order to make a method callable via a Web Service you need to add the
<WebMethod()> attribute to your function definition. So, your GetBandInfo method will
look like this before you add implementation code:

<WebMethod()> Public Function GetBandInfo(sBandName As String) As DataSet
‘ Implementation code

End Function

Listing 28-1 shows the complete code for the Music class.

Listing 28-1 A Music class example

<%@ WebService Language=”VB” class=”Music” %>
Imports System
Imports System.Web.Services
Imports System.Data
Imports System.Data.SqlClient

Class Music : Inherits WebService
<WebMethod()> Public Function GetBandInfo(sBandName As String) As

DataSet
Dim oConn As SqlConnection
Dim oCmd As SqlCommand
Dim oDA As SqlDataAdapter
Dim oParam As SqlParameter
Dim oDataSet As New DataSet

oConn = New SqlConnection
With oConn
.ConnectionString = “Data Source=jbutler014a; Initial Catalog=Music;

User ID=music; Password=music”
.Open

End With

oParam = New SqlParameter(“@sBandName”, SqlDbType.VarChar, 100)
Continued

Note

Session 28—Web Services 285

434830-1 Ch28.F 11/7/01 9:04 AM Page 285

Listing 28-1 Continued

oParam.Value = sBandName

oCmd = New SqlCommand
With oCmd
.CommandType = CommandType.StoredProcedure
.CommandText = “prAlbumInfo”
.Parameters.Add(oParam)
.Connection = oConn

End With

oDA = New SqlDataAdapter
With oDA
.SelectCommand = oCmd
.Fill(oDataSet, “Albums”)

End With

oCmd.CommandText = “prMemberInfo”
oDA.Fill(oDataSet, “Members”)

oDA.Dispose
oDA = Nothing
oCmd = Nothing
oConn.Dispose
oConn = Nothing

return oDataSet
End Function

End Class

At this point, you should understand all of the implementation code. What you’ve done
here is add two tables to the DataSet your Web Service will return.

And that’s it! You have successfully written your first Web Service. Now you must deploy
the Web Service. Deploying a Web Service is very simple. If you have your own Web server,
create a virtual directory named “Music” and then copy the music.asmx file into this direc-
tory. That’s it! To call the Web Service, in your Web browser, simply type in the path to the
Web Service. If you actually created the Music virtual directory, the path would look like
this:

http://localhost/Music/music.asmx

Figure 28-1 shows the response you should get from the Web Service.

Sunday Afternoon286

434830-1 Ch28.F 11/7/01 9:04 AM Page 286

Figure 28-1 music.asmx response

The Music Web Service’s response represented in Figure 28-1 is automatically generated
by the Web Services runtime. You’ll notice that this response contains several valuable
pieces of information including the name of the Web Service, the methods implemented by
the Web Service, the required parameters, the return data type and the protocols (such as
SOAP, HTTP GET, or HTTP POST) you can use to invoke the Web Service’s methods. You are
also provided a facility with which to test the Web Service. Type the name of your favorite
band in the sBandName textbox and click the Invoke button. A new browser should open for
you with the Web Service’s XML response to your request. Pretty cool, huh?

Consuming a Web Service
There are basically two ways to use a Web Service. You can either call the Web Service
directly from your browser, as you just did, or you can use some application to programmat-
ically call the service. Making a direct browser request is easy, but programmatically access-
ing a Web Service can be a little more difficult especially if you don’t know anything about
the particular Web Service you’d like to use. In order to communicate with a Web Service,
you need to know what methods it supports, what the input parameters are, and what each
method returns. In other words, you need to establish a communication contract with Web
Service. So how do you get this information? Luckily, Web Services are able to describe
themselves. .NET Web Services automatically produce an XML-formatted Web Service
Description Language (WSDL) document that describes the Service. Appending ?WSDL
to a Web Service’s URL returns an WSDL document that a client application can use to
discover a Web Service. To obtain the WSDL document for your Music Web Service, use the
following URL:

http://localhost/music/music.asmx?SDL

Session 28—Web Services 287

434830-1 Ch28.F 11/7/01 9:04 AM Page 287

You should get an XML document in your browser window. This XML-formatted WSDL
document is effectively your “communication contract” that describes the Web Service. The
WSDL, as you’ll see, details the protocols supported by the Web Service — for example, HTTP
GET, HTTP POST, or SOAP — as well as the semantics for calling the services and returning
values. Here is a small sample of the music.asmx WSDL document:

<soap xmlns=”urn:schemas-xmlsoap-org:soap-sdl-2000-01-25”>
<service>
<addresses>
<address uri=”http://localhost/music/music.asmx” />

</addresses>
<requestResponse name=”GetBandInfo”

soapAction=”http://tempuri.org/GetBandInfo”>
<request ref=”s0:GetBandInfo” />
<response ref=”s0:GetBandInfoResult” />

</requestResponse>
</service>

</soap>

This section of the WSDL document defines how SOAP (refer to the first line) calls should
be made to the Music Web Service. The WSDL also gives the URI (line 4) to use in order to
access the Web Service. Perhaps most importantly, the Music SDL described the method it
implements. On line 7, you can see that we can request the GetBand Info method.

OK, so now that you know where the Web Service is located and what method(s) it sup-
ports, you’re ready to go, right? Well not quite. You now need to build a proxy class through
which to access the Web Service from an application, in this case an ASP.NET page.

A proxy is essentially a class that behaves like a local object, but it is actually just a
mechanism for communicating with the Web Service. The proxy serializes, sends, receives,
and deserializes the method requests. (These activities are commonly referred to as marshal-
ing and transport activities.) There are three ways to create a Web Service proxy:

� Using Visual Studio.NET
� Using command line tools
� Using Internet Explorer 5.5 behaviors

Creating a proxy via VS.NET is simple. It’s essentially the same as adding a reference to a
Visual Basic project. IE behaviors are neat, but they’re outside the scope of this book. So,
you’re going to build a proxy using a command line tool, WSDL.exe. WSDL.exe is a command
line utility that creates a stub or proxy class based on a WSDL document. Once you have
created your proxy class, you can then compile the proxy class into an assembly and use it
to call a Web Service without needing to write any of the aforementioned marshaling or
transport logic.

To create a proxy class based on your Music Web Service, go to your computer’s command
prompt and type the following:

WSDL http://localhost/Music/music.asmx?sdl /l:VB /n:myMusic

If all went well, you should have received a message that looks like this:

.\Music.vb

Sunday Afternoon288

434830-1 Ch28.F 11/7/01 9:04 AM Page 288

The WebServiceUtil utility accepts many different parameters. The /c[ommand]: switch
indicates that you want to create a proxy class. The /pa[th]: switch denotes the location
of the SDL upon which you want to base your proxy class. The /l[anguage]: switch
denotes in which language the proxy class will be created. You can just as easily create a C#
proxy class by changing the language switch to /l:CSharp. Finally, the /n[amespace]:
switch indicates the namespace to create the code in. The default is the global namespace.
We used myMusic for demonstration purposes.

If you can’t find the proxy class Music.vb, it was created in the directory
from which WSDL.exe was executed. This is the default behavior. You could
have specified a physical path in which to create the proxy using the
/o[ut]: switch. For example, /o:C:\.

Now that you have the proxy class, let’s compile it into an assembly. If you haven’t
already done so, create a physical directory named bin in your Music virtual directory’s
physical path. OK, now run the following command:

vbc /out:bin\Music.dll /t:library /r:System.dll /r:System.Xml.dll
/r:System.Web.Services.dll /r:System.Data.dll music.vb

This command simply creates an assembly, music.dll, based on the Music.vb proxy
class and puts it in our /bin directory. The /r[eference]: switch tells the compiler to
include a specified assembly. When compiling a Web Service, you must always include
System.XML.dll and System.Web.Services.dll. The System.Data.dll is included
because you used ADO.NET in the Music Web Service.

That’s it! You’re done. Now that the music.dll component has been deployed to your
/bin directory, you can call the Music Web Service from an ASP.NET page. Here’s an example:

<%@ Page Language=”VB” debug=”true” %>
<%@ Import Namespace=”System.Data” %>
<script language=”VB” runat=”server”>
Sub Page_Load(Sender As Object, E As EventArgs)
Dim oDS As DataSet
Dim wsMusic As New myMusic.Music

oDS = wsMusic.GetBandInfo(“Hootie & The Blowfish”)

dgMembers.DataSource = oDS.Tables(0).DefaultView
dgMembers.DataBind

End Sub
</script>
<html>
<body>
<asp:DataGrid id=”dgMembers” BorderWidth=”1” GridLines=”both”
runat=”server”/>
</body>
</html>

This is a simple example, but you get the point. You’ll notice that when you declared the
variable wsMusic, you used the following line of code:

Dim wsMusic As New myMusic.Music

Note

Session 28—Web Services 289

434830-1 Ch28.F 11/7/01 9:04 AM Page 289

In this line, you are creating a new object based on the Music class in the myMusic
namespace. If you hadn’t specified myMusic as the namespace in which to create the Music
proxy class when you executed the WebServiceUtil utility, but rather used the default, you
could write:

Dim wsMusic As Music

Once you create the wsMusic object, you can call its methods. In the following line of
code, you call the GetBandInfo method and pass it a string, Hootie & The Blowfish:

oDS = wsMusic.GetBandInfo(“Hootie & The Blowfish”)

Because we know the method returns a DataSet, we bound its first table to a DataGrid
control, dgMembers.

REVIEW

Web Services are an exciting piece of the .NET Framework that, with the help of XML and
HTTP, enable you to easily encapsulate your business logic in .NET components and provide
a service to any Web clients that speak HTTP and XML. An XML-based WSDL file, which is
generated by the Web Service’s infrastructure, provides a machine-readable description of
the functionality available through the Web Service.

QUIZ YOURSELF

1. What is Web Service? (See session introduction.)
2. On which two Internet protocols are Web Services based? (See session

introduction.)
3. What methods can be used to access a Web Service? (See “Consuming a Web

Service.”)

Sunday Afternoon290

434830-1 Ch28.F 11/7/01 9:04 AM Page 290

Session Checklist
✔ Understanding the major changes in syntax and function for ASP.NET
✔ Identifying major areas of risk in migrating your applications
✔ Understanding how ASP and ASP.NET can coexist

This session provides an overview of the challenges you will face as you migrate your
applications from ASP to ASP.NET.

ASP and ASP.NET Compatibility
After installing the .NET Framework in your existing ASP environment, you will find that
you are able to continue running your ASP pages without modification. Additionally, as you
begin to write your own ASP.NET pages you will find that they operate nicely side by side
with your existing ASP pages. However, as you begin to migrate code from your ASP pages
to ASP.NET you will find that there are at least four major areas of differences in how you
coded in ASP versus how you will code in ASP.NET:

� You can only script in one language per page or user control.
� Page rendering your content through function calls is no longer supported.
� You must define your functions as script blocks.
� There are syntax differences and language modifications.

Migrating from ASP to ASP.NET

S E S S I O N

29

444830-1 Ch29.F 11/7/01 9:04 AM Page 291

Scripting language limitations
When creating ASP pages, developers will commonly use VBScript, JScript, PerlScript, or
even Python. While the use of scripting languages is fine given their ease of use, they do
have several disadvantages over compilable languages such as C#, VB .NET, or C++. The pri-
mary disadvantage is performance. Every time an ASP page is requested, the page is inter-
preted by the relevant scripting engine and cached to increase performance. This is done
through an in-memory cache, so at any time only a relatively small number of ASP pages
can be effectively cached. The second major disadvantage is that scripting languages are
often designed for accomplishing procedurally oriented tasks in a quick and effective man-
ner. This often means that they lack the full functionality and extensibility that a C# or
VB .NET language would support.

In ASP.NET, pages are generated with languages such as VB .NET, C++, and C#. ASP.NET is
not limited to these languages, however, as ASP.NET pages can be created with any compiler
that can generate .NET Common Language Runtime (CLR)-compliant code. Additionally once
this code is compiled, regardless of the language, it is stored as Microsoft Intermediate
Language (MSIL) in the form of an executable (.exe) or dynamic-link library (.dll) file. When
the code is executed on a client system, it undergoes a final round of Just In Time (JIT)
compilation to transform it into machine-specific instructions. Theoretically, this means
that there are no performance differences between language selections in terms of final
delivered performance! Code written for the .NET platform runs under the control of the
CLR. Language selection under ASP.NET is thus a lifestyle choice rather than a decision
based upon expected performance, integration with the API, or other factors. All languages
have access to and support the same base set of classes and functionality, and all execute to
the same performance standards.

The CLR has been designed to replace the existing runtime layers of COM,
Microsoft Transaction Services (MTS), and COM+.

In ASP, you could readily mingle VBScript- and JScript-coded functions in the same page.
In ASP.NET, VBScript has been replaced by VB .NET, which provides a range of syntax modifi-
cations that you will need to address. Although JScript is still supported, most JScript
developers will prefer to use C#. So, from a core code migration perspective, you should
examine any of your existing ASP pages that incorporate more than one language on the
server side.

While you can no longer mix languages on the server side, you can include a
client-side scripting language that is interpreted by the client browser and is
different from what is used on the server side. For instance, you could have
all of your business logic written in VB .NET and compiled on the server side,
and have client-side code written in JavaScript.

Note

Note

Sunday Afternoon292

444830-1 Ch29.F 11/7/01 9:04 AM Page 292

Rendering HTML page elements
In order to manipulate the display properties of an HTML control in ASP, you would inter-
mingle scripting values with the HTML of the control to modify font sizes, colors, and other
properties of the HTML element — the final code would then be rendered appropriately and
sent to the end user’s browser. In ASP.NET, although you can render directly to the browser,
you should focus instead on using object-oriented techniques to modify the property values
and execute the methods of the ASP.NET server controls.

Listing 29-1 shows an example of an ASP page written to display a textbox with a black
background, gray text, 20pt font, and a defined text value.

Listing 29-1 Using ASP to render an HTML control

<%@Language = “VBScript”%>
<%
Sub DisplayTextBox(forecolor, backcolor, value, fontsize)

Response.Write(“<input type=’text’ name=’txtDisplay’ value=’” & value & “‘“)
Response.Write(“style=color:” & forecolor & “;background-color:”& backcolor &

“;font-size:” &
fontsize & “pt;>”)

Response.Write(“</textbox>”)
End Sub
%>
<HTML>

<BODY>
<%DisplayTextBox “gray”,”black”, “Hello World”,”20” %>

</BODY>
</HTML>

The DisplayTextBox function is called after the <body> tag has been rendered, and the
subroutine accepts the forecolor, backcolor, value, and fontsize attributes passed in
the function call. The DisplayTextBox then effectively generates a series of strings that
are subsequently rendered in the browser.

In ASP.NET, you will need to establish script blocks, and implement structured functions,
which can then manipulate the control directly through the control’s inherent properties
and methods. This is illustrated in Listing 29-2.

Listing 29-2 Using ASP.NET to render an HTML control

<HTML>
<%@ Page Language=”VB” Debug=”False” Trace=”False” %>
<HEAD>

<SCRIPT LANGUAGE=”vb” RUNAT=”server”>
Sub Page_Load(sender as Object, e as EventArgs)

Dim oColor as System.Drawing.Color
UpdateTextBox(oColor.gray,oColor.black,”Hello World”, 20)

End Sub

Function UpdateTextBox(forecolor, backcolor, value, fontsize)
Dim oColor as System.Drawing.Color

Continued

Session 29—Migrating From ASP to ASP.NET 293

444830-1 Ch29.F 11/7/01 9:04 AM Page 293

Listing 29-2 Continued

txtDisplay.Text = value
txtDisplay.ForeColor = forecolor
txtDisplay.BackColor = backcolor
txtDisplay.Font.Size = FontUnit.Point(fontsize)

End Function

</SCRIPT>
</HEAD>
<BODY>

<FORM RUNAT=”server” ID=”Form1”>
<ASP:TEXTBOX ID=”txtDisplay” RUNAT=”server” />

</FORM>
</BODY>

</HTML>

In this example, the UpdateTextBox function is called each time the page is rendered
and passes the requisite parameters similar to what occurred in the ASP example. The
UpdateTextBox function, however, operates very differently — instead of the developer
modifying the output stream rendered in the browser directly, the developer works with the
properties and methods of the TextBox to obtain the desired results.

In both the ASP and the ASP.NET examples, the formatted output and the rendered HTML
are nearly identical, both generating a similar looking HTML 3.2-compliant rendered output.

<input name=”txtDisplay” type=”text” value=”Hello World” id=”txtDisplay”
style=”color:Gray;background-color:Black;font-size:20pt;” />

Using script blocks
In ASP.NET, there is a radical shift away from supporting the unstructured, interpreted
script code that was typically written in procedural terms. In ASP, during each page execu-
tion, the code begins processing the first line of code and then works its way down. This
encouraged ASP developers to intermingle HTML code with the scripting logic to produce a
mess of spaghetti code without good separation of logic and presentation layers.

The impact of the move to script blocks means that the code segment shown in
Listing 29-3 will no longer work.

Listing 29-3 Mixing VBScript and HTML in ASP

<%@Language = “VBScript”%>
<HTML>

<HEAD>
<%Function CreateTable()%>
<TABLE>

<%For x = 1 to 10%>
<TR>

<TD>
<%Response.Write “Cell Number” & x%>

</TD>

Sunday Afternoon294

444830-1 Ch29.F 11/7/01 9:04 AM Page 294

</TR>
<%Next%>

</TABLE>
<%End Function%>

</HEAD>
<BODY>

<%=CreateTable()%>
</BODY>

</HTML>

Instead, the code must be moved to a consolidated script block as shown in Listing 29-4,
and Response.Write statements must be used to properly display the table.

Listing 29-4 Using script blocks in ASP.NET

<%@ Page Language=”VB” Debug=”False” Trace=”False” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”vb” RUNAT=”Server”>
Function CreateTable()
Dim x as Integer
Response.Write(“<table>”)
For x = 1 to 10

Response.Write(“<tr>”)
Response.Write(“<td>”)
Response.Write(“Cell Number” & x)
Response.Write(“</td>”)
Response.Write(“</tr>”)

Next
Response.Write(“</table>”)
End Function
</SCRIPT>

</HEAD>
<BODY>

<%=CreateTable()%>
</BODY>

</HTML>

If you have not used script block based rendering using Response.Write() statements in
your existing ASP applications, you will be in for some long nights migrating your applica-
tion logic to ASP.NET. In fact, you will probably want to go ahead and perform a redesign,
rather than simply performing a line-by-line conversion.

Syntax differences and language modifications
There are a ton of syntax modifications — mostly attached to the switch in supported lan-
guages — that you will need to become familiar with in ASP.NET. For the majority of you
who have been coding primarily in VBScript, you will need to ramp up on the syntax differ-
ences in VB .NET.

Session 29—Migrating From ASP to ASP.NET 295

444830-1 Ch29.F 11/7/01 9:04 AM Page 295

For a full listing of syntax changes that you will need to understand when
using VB .NET in ASP.NET be sure to reference
http://msdn.microsoft.com/vbasic/technical/upgrade/language.asp.

Enclosing function/subroutine calls in parentheses
In the previous examples, we illustrated how in ASP you can call functions or subroutines
without using parentheses to encase the passed parameters. In VB .NET, you must encase all
parameters in parentheses.

Strongly typed variables
ASP supported variant-oriented languages, meaning that you must declare objects as
Variants and then at runtime assign them to objects, integers or any other data type
desired. Since you now are using compiled languages, you must declare variables as a spe-
cific type and then convert them as needed. Table 29-1 shows some of the differences in
variable declaration.

Table 29-1 Declaring Variables

VBScript in ASP VB .NET in ASP.NET

Dim i Dim i As Integer

Dim s Dim s As String

Dim s1,s2 Dim s1, s2 As String

Dim o

Set o = CreateObject(“”) Dim o As New Object()

Error handling
Using VB .NET or C#, you have access to the power of the Try...Catch...Finally state-
ment to handle your errors. This provides significantly more control than is available using
VBScript under ASP. Table 29-2 illustrates how errors are handled in VBScript and how they
are handled in VB .NET.

Table 29-2 Handling Errors

VBScript in ASP VB .NET in ASP.NET

Function WriteFile() Function WriteFile()

On Error Resume Next Try

Note

Sunday Afternoon296

444830-1 Ch29.F 11/7/01 9:04 AM Page 296

VBScript in ASP VB .NET in ASP.NET

‘Do Something ‘Do Something

‘Raise a Fake Error ‘Raise a Fake Error

Err.Raise(1000) Err.Raise(1000)

if Err.Number=0 Then Catch

WriteFile=”No Errors” Return “Error Number “ & Err.Number &” was
raised.”

Else

WriteFile= Err.Number & “ was raised.”

End If End Try

End Function End Function

No more set
In VBScript, you often declare a variable as an object, then use the Set statement to assign
it to an instance of a COM object. Neither the use of Set in this fashion nor the use of Let
statements are supported in VB .NET.

Arguments are now passed ByVal as default
A subtle change that is going to cause a lot of headaches for you is that most parameters
are passed by value as the default. This is the exact opposite of VB6. For example, take a
procedure such as:

Function add(A As Int, B As Int)
A=A+B
Return A

End Function

When you use it in VB .NET as add(C, D) you will discover that neither of the input
variables C or D is modified by the procedure.

Running ASP Pages under Microsoft.NET
As we mentioned earlier, you can operate your ASP pages side by side with your ASP.NET
pages. You should consider several other factors when operating a portion of your applica-
tion in ASP and the other portion on ASP.NET:

� Session variables are not natively shared between ASP and ASP.NET pages.
� You will not have access to the ADO.NET components from ASP.

Session 29—Migrating From ASP to ASP.NET 297

444830-1 Ch29.F 11/7/01 9:04 AM Page 297

� You should maintain your security framework in ASP.
� Avoid mixing ASP and ASP.NET if you are building .NET applications for distribution.

Assuming that you are not making extensive use of session variables and are not plan-
ning on redistributing the application, then mixing your ASP and ASP.NET pages should be
fairly straightforward.

Using VB6 Components with ASP.NET
In the next session, we will examine how you can use VB6 components — or for that matter
any unmanaged code — in your ASP.NET applications. Additionally we will show how you
can use these components via early binding using the TlbImp.exe utility.

The type library importer utility (TlbImp.exe) is responsible for converting the type defi-
nitions found within a COM type library into equivalent definition in .NET runtime metadata
format. A detailed documentation of the utility can be found in the .NET documentation.

REVIEW

We have covered at a high level the major differences in ASP and ASP.NET. Overall you prob-
ably have the feeling that there is quite a bit of rework to perform in order to successfully
migrate to ASP.NET. We hope, however, that you do appreciate the significant benefits that
can be obtained through this migration effort.

QUIZ YOURSELF

1. How is the rendering of HTML objects handled in ASP.NET? (See “Rendering HTML
page elements.”)

2. What is a script block? (See “Using script blocks.”)
3. Can you early bind VB6 components in ASP.NET? (See “Using VB6 Components with

ASP.NET.”)

Sunday Afternoon298

444830-1 Ch29.F 11/7/01 9:04 AM Page 298

Session Checklist
✔ Modifying code to run ADO under ASP.NET
✔ Early binding ADO COM objects in ASP.NET
✔ Understanding performance issues of using ADO under the .NET Framework

In this session, we look at what is required to begin the migration of your existing ADO
code to the .NET Framework. These options range from straight code migration to
employing early binding to full migration of your ADO business objects to ADO.NET.

Preparing a Migration Path
ADO.NET is a very different animal from ADO. Migrating to ADO.NET from ADO is not a path
well traveled at this point, nor is it one that should be taken lightly. But ADO.NET is a criti-
cal piece of the ASP.NET Framework; and, like ADO itself, ADO.NET is likely to become a
common data access footprint. If you are choosing the ASP.NET platform as your develop-
ment platform, then you should plan on adopting ADO.NET to support your data handling
code.

Because the ADO.NET platform is significantly different from the ADO solution, do not
underestimate the time required to perform a migration. Unlike ASP code, which can be
ported to ASP.NET with relatively few modifications, ADO.NET provides no such luxury. In
fact, it is possible that you will first begin your migration to ASP.NET by migrating your ASP
VBScript or JScript to ASP.NET and continuing to run your ADO code as is. So, yes, it is pos-
sible to execute your ADO code in an ASP.NET page, with some limitations.

When you are comfortable operating in the .NET Framework, then you should begin the
process of looking at how to transform your ADO code to ADO.NET. A few things should
guide your thinking when preparing for this task:

Migrating from ADO to ADO.NET

S E S S I O N

30

454830-1 Ch30.F 11/7/01 9:04 AM Page 299

� Forget about how your ADO code operates and remove any preconceptions about
how it should translate into ADO.NET.

� Go back to the design of your data access components and begin mapping the
design to the new ADO.NET model. Look at the features provided and determine if
the cost in relation to the benefit is worth the migration.

� As you migrate data tier objects, focus first on those objects providing the lowest
risk and highest benefit. Because you can operate ASP and ASP.NET as well as ADO
and ADO.NET in the same environment, you don’t have to force yourself into a big
bang migration step. Instead, you can make the migration incrementally.

In the next sections, we look at how you can migrate your ADO code to the ASP.NET
Framework.

ADO and ADO.NET Compatibility
We have covered much of the new functionality offered in the ADO.NET object model and its
advantages and disadvantages in the .NET Framework. Table 30-1 offers a useful summary of
some of the essential compatibility differences that you should be aware of when attempt-
ing to decide when and how you will begin the migration of your ADO code to ADO.NET. The
table provides a description of the key differences in major features of the two data access
frameworks to help guide your thinking when deciding what to upgrade.

Table 30-1 Comparing Features of ADO and ADO.NET

Feature ADO ADO.NET

Data storage Uses the RecordSet object, DataSet object may consist of
and presentation which may contain multiple collections of one or more

result sets to store the Database Tables, Relationships,
results for multiple tables and Constraints that form a

memory-resident database

Relationships between Supports the use of the Supports the DataRelation object
multiple tables SHAPE provider to build to associate rows in one DataTable

hierarchical RecordSet, or object with rows in another
requires the use of a JOIN DataTable object
query to create a view from
multiple database tables in
a single result table

Access to individual Scans rows sequentially Uses a navigation approach for
rows of a data set nonsequential access to each row

in a table. Has the capability to
follow hierarchical relationships to
navigate from rows in one table to
related rows in another table

Sunday Afternoon300

454830-1 Ch30.F 11/7/01 9:04 AM Page 300

Feature ADO ADO.NET

Support for Provided by the RecordSet Supported for forward-only
server-side cursors object through setting execution via the DataReader.

the Connection Object DataReader can also execute SQL
commands directly and handle the
return of data rows

Support for Supported in the RecordSet The DataSet object supports
Disconnected Data object but typically supports disconnected data access by
Access connected access, represented storing data in XML

by the Connection object.
Communication to a database
occurs through the OLE DB
provider

Support for passing By default uses COM All transports occur with an XML
data between providers marshaling to transmit file, and provide ability to
and consumers, tiers a disconnected record set, transport schemas via XSD
or components effectively limiting this

capability to COM
environments. Limited
capability to store data as
an XML file and then use
manual programmatic tasks
to transport to non COM
oriented consumers

Support for Not natively supported in Fully supported with WebServices
transferring data the RecordSet object. leveraging SOAP and XML as the
across firewalls. Transport can occur through envelope and HTTP as the

the use of COM Internet transport
Services (CIS) plus
Distributed Component Object
Model (DCOM), Remote Data
Services (RDS), use of the
SOAP Toolkit or remote
scripting, all of which provide
their own complications in
terms of requirements on
the consumer side of the
transaction or complexity of
support on the server side

Continued

Session 30—Migrating from ADO to ADO.NET 301

454830-1 Ch30.F 11/7/01 9:04 AM Page 301

Table 30-1 Continued

Feature ADO ADO.NET

Scalability ADO typically incurs ADO.NET supports disconnected
extensive database locks access to database data, thus
that, when combined with removing much of the competition
lengthy active database for limited database resources and
connections, tend to providing a much more scalable
compete for limited solution
database resources and
thus limit scalability

Running ADO under ASP.NET
Here’s an example illustrating the various methods that can be used to run your existing
ADO code in the .NET Framework. First let’s look at a typical ASP page that retrieves a list of
authors from the Pubs database using ASP and ADO, shown in Listing 30-1.

Listing 30-1 A typical ASP page for retrieving data from a database

<%@ LANGUAGE = “VBSCRIPT” %>
<HTML>

<BODY>
<%

DIM oConn, oRS
Set oConn = Server.CreateObject(“ADODB.Connection”)
Set oRS = Server.CreateObject(“ADODB.RecordSet”)
oConn.Open “provider=sqloledb;Data Source=(local);Initial Catalog=pubs;User

ID=sa;pwd=”
Set oRS = oConn.execute(“SELECT * FROM Authors;”)
Response.Write(“<H1>ADO Running Under ASP</H1>”)
Response.Write(“<H2>Using Late Binding</H2>”)
if oRS.BOF and oRS.EOF then

Response.Write(“No Records”)
else

oRS.MoveFirst
Do While Not oRS.EOF

Response.Write(oRS(“au_fname”) _
& “ “ & oRS(“au_lname”) & “
”)

oRS.MoveNext
Loop
Response.Write(“<p>End of RecordSet</p>”)

end if
oRS.close
Set oRS = nothing

%>
</BODY>

</HTML>

Sunday Afternoon302

454830-1 Ch30.F 11/7/01 9:04 AM Page 302

This code will not run as it is under ASP.NET, primarily due to syntax differences in the
languages. To test this, change the file extension of the previous code from *.asp to *.aspx
and see what error messages are displayed. In order to migrate this code to the .NET
Framework using VB as the programming language, you would need to eliminate the Set
statement from your code. Next, you need to fully qualify your object references, so in
Listing 30-1 you must append a .value to each of your RecordSet value references. You
must enclose your method parameters in parentheses, and you must set the page directive
ASPCOMPAT=”True”. Listing 30-2 shows the required modifications (shown in bold) made to
Listing 30-1 to make the ASP code using ADO operational under ASP.NET.

Listing 30-2 A migrated ASP page that runs under ASP.NET using unmanaged ADO code

<%@ LANGUAGE = “VB” ASPCOMPAT=”True”%>
<HTML>

<BODY>
<%

DIM oConn, oRS
‘We removed Set statement
oConn = Server.CreateObject(“ADODB.Connection”)
‘We removed Set statement
oRS = Server.CreateObject(“ADODB.RecordSet”)
‘We Added Parentheses
oConn.Open(“provider=sqloledb;Data Source=(local);Initial Catalog=pubs;User

ID=sa;pwd=”)
‘We Removed Set statement
oRS = oConn.execute(“SELECT * FROM Authors;”)
Response.Write(“<H1>ADO Running Under ASP.NET</H1>”)
Response.Write(“<H2>Using Late Binding</H2>”)
if oRS.BOF and oRS.EOF then

Response.Write(“No Records”)
else

oRS.MoveFirst
Do While Not oRS.EOF

‘ Added .Value
Response.Write(oRS(“au_fname”).Value _

& “ “ & oRS(“au_lname”).Value & “
”)
oRS.MoveNext

Loop
Response.Write(“<p>End of RecordSet</p>”)

end if
oRS.close
‘Removed the Set statement
oRS = nothing %>
</BODY>

</HTML>

This approach enables you to migrate much of your existing ADO code to ASP.NET by sim-
ply handling the syntax differences between VBScript and VB .NET.

However, this approach requires that you utilize late binding. When handling COM objects
under the .NET Framework, early binding is the preferred method. Early binding allows your
application to bind directly to the address of the function being called and thus avoids the
extra overhead in doing a runtime lookup. This generally provides a twofold performance
increase over late binding in terms of execution speed. Additionally early binding provides

Session 30—Migrating from ADO to ADO.NET 303

454830-1 Ch30.F 11/7/01 9:04 AM Page 303

you with type safety. Early binding also provides compile time warnings if the data type of
a parameter or return value is incorrect, saving a lot of time when writing and debugging
code.

For details on the advantages of early versus late binding refer to Microsoft
Knowledge Base Article ID: Q245115, “Using Early Binding and Late Binding
in Automation.”

We can perform early binding of ADO COM objects through the use of a .NET Framework
utility called Tlbimp.exe. We cover this in the following section.

Early Binding ADO COM Objects in ASP.NET
The .NET Framework introduces two new classifications for object activation:

� Managed objects
� Unmanaged objects

Managed objects are objects created with .NET-compliant compilers such as C# and VB .NET.
Unmanaged objects are the current generation of COM objects including the ADO objects.
Managed objects take full advantage of the .NET Framework. For instance, managed objects
can be changed without unloading the DLL. Managed objects don’t need to be registered
using regsvr32; you can simply copy them from system to system without the headaches
associated with DLL hell.

When you are using a managed object, it’s simple to make that object available within
your application. All you have to do is import the objects into your code using the @
Import page directive:

<%@ Import namespace=”Myobject”>

To activate the object with VB you instantiate the object as follows.

Dim thisObject as New MyObject()

Working with unmanaged objects is slightly more complicated, as the .NET Framework
cannot just access the object as it normally would with managed code objects. In order to
use unmanaged objects such as ADO, you need to use Runtime Callable Wrappers (RCW). RCW
act as a proxy for the unmanaged object. These wrappers work just like any other managed
class in the .NET runtime client, but they just marshal calls between managed and unman-
aged code.
In order to use this approach and support early binding of ADO COM objects in an *.aspx
page you will need to do the following:

1. Create the RCW for the ADO object, in this case msado15.dll.
2. Add the managed wrapper of the object to the bin directory.
3. Use the object as a normal managed code object.

Cross-Ref

Sunday Afternoon304

454830-1 Ch30.F 11/7/01 9:04 AM Page 304

The type library importer utility (TlbImp.exe) is responsible for converting the type defi-
nitions found within a COM type library into equivalent definitions in the .NET runtime
metadata format. (A full detailed documentation of the utility can be found in the .NET
documentation.) In order to use this utility so that you can incorporate your ADO library
elements for use in your ASP.NET pages you have to do the following:

1. Locate the ADO objects, typically located at C:\Program Files\Common Files\
system\ado\msado15.dll.

2. Locate the TlbImp.exe file, typically located at C:\Program
Files\Microsoft.Net\FrameworkSDK\Bin.

3. Run the TlbImp.Exe import utility as follows:

[Insert Path]\TlbImp [Insert Path]\msado15.dll /out: [Destination
Path]\ADODB.dll

This will create a DLL named ADODB.dll with the RCW wrapper for use in your .NET
applications. Now that the wrapper is created, the next thing to do is to copy the ADODB.dll
to the bin directory of your ASP.NET application. If you do not have a bin directory, you
should create one under your application root.

Once the previous steps are carried out, instantiating the object is the same as using any
normal managed object. You set up the namespace and the assembly to reflect the
ADODB.dll we created earlier.

<%@ Import Namespace=”ADODB”%>
<%@ Assembly Name = “ADODB”%>
<%@ Page Language=”VB”%>

Then you can just access the ADO COM object as you would any managed COM component
and get the benefits associated with early binding as illustrated in Listing 30-3.

Listing 30-3 Accessing an ADO.COM object with early binding

<%@ Import Namespace=”ADODB”%>
<%@ Assembly Name = “ADODB”%>
<%@ Page Language=”VB”%>
<HTML>
<HEAD>

<TITLE>ADO Access from ASP.NET with Early Binding</TITLE>
</HEAD>

<BODY>
<%

DIM oConn as New ADODB.Connection
DIM oRS as New ADODB.RecordSet
DIM oCmd as New ADODB.Command

oConn.Open (“provider=sqloledb;Data Source=(local);Initial Catalog=pubs;User
ID=sa;pwd=”)

oRS.CursorType=ADODB.CursorTypeEnum.adOpenKeyset

Continued

Session 30—Migrating from ADO to ADO.NET 305

454830-1 Ch30.F 11/7/01 9:04 AM Page 305

Listing 30-3 Continued

oRS.LockType= ADODB.LockTypeEnum.adLockOptimistic
oRS.Open (“Authors”,oConn,,, ADODB.CommandTypeEnum.adCmdTable)

If (oRS.BOF OR oRS.EOF) Then
Response.Write(“No records found”)

End If

Response.Write(“<H2>Using Early Binding</H2>”)
if oRS.BOF and oRS.EOF then

Response.Write(“No Records”)
else

oRS.MoveFirst
Do While Not oRS.EOF

Response.Write(oRS(“au_fname”).Value _
& “ “ & oRS(“au_lname”).Value & “
”)

oRS.MoveNext
Loop

Response.Write(“<p>End of RecordSet</p>”)
end if

%>
</BODY>
</HTML>

REVIEW

We covered how to adapt your existing ADO code to operate in ASP.NET, summarized the key
differences between the features of ADO and ADO.NET, and discussed how to take advantage
of early binding of COM objects. These are some of the major alternatives you should con-
sider when you start migrating code to the .NET Framework.

QUIZ YOURSELF

1. What utility provides the ability to early bind COM objects in the .NET Framework?
(See “Early Binding ADO COM Objects in ASP.NET.”)

2. What are two major advantages of early binding? (See “Running ADO under
ASP.NET.”)

3. List two syntax differences between ASP and ASP.NET. (See “Running ADO under
ASP.NET.”)

Sunday Afternoon306

454830-1 Ch30.F 11/7/01 9:04 AM Page 306

The following set of questions is designed to provide you with feedback on how
well you understood the topics covered during this part of the book. Please refer to
Appendix A for the answers to each question.

1. SOAP is a Microsoft proprietary standard.

True/False

2. SOAP-encapsulated data can freely transport across corporate firewalls.

True/False

3. List two examples of commercial applications implementing SOAP.

4. Which language can support SOAP?

a. VB

b. Java

c. COBOL

d. All of the above

5. Microsoft’s Web Services are based on HTTP and HTML.

True/False

P A R T

#
P A R T

Sunday Afternoon
Part Review

VI

464830-1 PR06.F 11/7/01 9:04 AM Page 307

6. Which of the following file extensions is used for a Web Service?

a. .aspx

b. .ascx

c. .asmx

d. .ws

7. Fill in the blank: The ______ attribute needs to be added to VB method to
make it Web-callable.

8. Fill in the blank: A ______ document is a “communication contract” that
describes a Web Service.

9. In ASP.NET you can combine VB .NET and C# on the same page.

True/False

10. Theoretically, VB .NET performs less efficiently than C# in ASP.NET.

True/False

11. The CLR has been designed to replace the existing runtime layers of COM,
Microsoft Transaction Services (MTS), and COM+.

True/False

12. Set statements are supported in VB .NET.

True/False

13. Multiple DataTable objects can be stored in one DataSet.

True/False

14. Late binding provides better overall compiled performance than early
binding.

True/False

15. It is possible to execute unmanaged ADO under ASP.NET.

True/False

16. The tlbimp.exe utility must be used to support early binding of unman-
aged code.

True/False

Part VI–Sunday Afternoon Part Review308

464830-1 PR06.F 11/7/01 9:04 AM Page 308

This appendix provides the answers for the Part Review questions.

Friday Evening Review Answers

1. A
2. False. A Web server’s primary responsibility is to handle HTTP requests.
3. False. The two primary protocols for Internet client/server communications are

TCP/IP and HTTP.
4. D
5. False. Windows 3.1 is not a supported .NET platform. However, Windows 98, ME, NT,

2000, and XP can run .NET applications. ASP.NET Server Side Applications are, how-
ever, limited to 2000 and XP Platforms for development and production.

6. IIS 4.0
7. No. Installing the final release of the .NET SDK over the Beta Releases is not

recommended.
8. No. Installing the .NET SDK side by side with your Visual Studio 6.0 or other

applications is supported.
9. True. A database in the most general terms can be thought of as a collection of

tables. A database can also contain many other objects such as the relationships
between tables, stored procedures, triggers, and views.

10. C
11. True
12. False. Database tables are composed of rows and columns.
13. C
14. True. Either Query Analyzer or Enterprise Manager can be used to manage a SQL

Server database and its constituent objects.

A P P E N D I X

Answers to Part Reviews

A

474830-1 AppA.F 11/7/01 9:04 AM Page 309

15. B
16. False. SQL Server is a software application, not hardware.
17. False. The T-SQL statement used to create a new database is CREATE DATABASE.

Saturday Morning Review Answers

1. True
2. Create, Retrieve, Update, Delete
3. C. The SQL INSERT statement is used to add data to a table.
4. False. The field value needs be enclosed in single quotes since it is a string. The

correct SQL statement is INSERT INTO t_bands (band_title) VALUES (‘Hootie &
The Blowfish’).

5. True
6. Hierarchical
7. True. XML is actually a subset of SGML.
8. False. XML was designed to work with any application.
9. False. ASP.NET pages are event-based. When an ASP.Net page is loaded a series of

events, including Page_Load, are fired.
10. Events
11. Page_Load, Page_Unload
12. C
13. True. HTML controls maintain their state between client requests by utilizing the

hidden “VIEWSTATE” form field.
14. False. HTML controls generate HTML code specific to the requesting browser type.
15. A
16. C
17. False
18. False. Web controls can be bound to many types of data stores including XML,

arrays or COM objects.
19. False. ASP.NET Controls can be programmatically added to a page at run-time.
20. C
21. False. ASP.NET User controls have an .ascx file extension.
22. True. You can modularize the design of your application by encapsulating

frequently used presentation logic in User controls.
23. False. <html>, <body>, and <form> tags should not be included in User controls.

By excluding these HTML tags from User controls, you will be less limited in where
you can use the controls.

24. A

Appendix A310

474830-1 AppA.F 11/7/01 9:05 AM Page 310

Saturday Afternoon Review Answers

1. False. The required field validator can be used with controls supporting user input.
2. ^([a-zA-Z0-9_\-\.]+)@((\[[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})|([a-zA-Z0-9\-

\.]+))\.([a-zA-Z]{2,3}|[0-9]{1,3})(\]?)$, which will validate a series of letters or
numbers regardless of capitalization, including “_” and “-”, ^([a-zA-Z0-9_\-\.]+),
followed by a literal @ character, followed by either an IP address or alternately a
domain name using a valid extension such as COM, BIZ, and so on.

3. True. Multiple Validation controls can be used to validate a single control.
4. A
5. A
6. Out-of-process
7. Stores session state out-of-process, allowing you to run your application across

multiple servers; Supports request-based load balancing; Provides adequate redun-
dancy, reliability, and uptime when used in conjunction with clustering and hard-
ware or software load balancing; Provides ability to support periodic “code rot”
purges; Provides ability to partition an application across multiple worker
processes.

8. Stores session state out-of-process, allowing you to run your application across
multiple servers; Supports request-based load balancing; Provides extensive redun-
dancy, reliability, and uptime when used in conjunction with clustering and
hardware or software load balancing; Provides ability to support periodic “code
rot” purges; Provides ability to partition an application across multiple worker
processes; Provides ability to partition an application across multiple Web farm
machines, Additionally the use of SQL Server provides the use of the Enterprise
series of features in terms of memory optimization, clustering, database mirroring,
failover and scalability that is less easily achieved using the State Server approach.

9. Authentication
10. Impersonation
11. A
12. <authorization>
13. A
14. C
15. TimeSpan.Zero provides an absolute expiration.
16. When you first insert an object into the cache.
17. False. The Recordset object is a traditional ADO object. .NET uses a series of

objects, including DataReader and DataSet objects, to mimic the Recordset object’s
functionality.

18. True
19. True. The DataSet object can contain multiple tables, in the form of DataTable

objects, as well the relationships between the tables.

Answers to Part Reviews 311

474830-1 AppA.F 11/7/01 9:05 AM Page 311

20. True
21. False. An object is an instance of a class.
22. Object Oriented Programming or OOP
23. True
24. New

Saturday Evening Review Answers

1. D
2. A
3. False. A Connection object, either a SQLConnection or an OLEDBConnection, can

be created through a Command object.
4. C
5. True
6. False. The ADO.NET Command objects provide several constructors.
7. C
8. CommandType
9. True. You can only move forward through a DataReader object.

10. OLEDBCommand
11. False. A DataReader can only be created through a Command object.
12. False. You can only move forward through a DataReader object.
13. False. The DataSet object can contain multiple tables, in the form of DataTable

objects, as well the relationships between the tables.
14. True.
15. SelectCommand
16. Fill

Sunday Morning Review Answers

1. True. A DataSet can be created explicitly through a variety of constructors.
2. True. A DataSet can contain numerous constituent objects, most notably

DataTable objects.
3. Count
4. Item
5. Data binding
6. True
7. True. Setting a control’s AutoPostBack property to “true” forces the page in which

it contained to repost when its state is changed.

Appendix A312

474830-1 AppA.F 11/7/01 9:05 AM Page 312

8. False
9. AutoGenerateColumns

10. B
11. D
12. True. You should close all objects when you are done using them. Doing so releases

valuable server resources.
13. B. Update.
14. True. The DataAdapter objects provide methods to manage data updates, deletes,

or inserts.
15. PageSize
16. False
17. A
18. True
19. False. There is no set limit to the number of tables a DataSet object can contain.
20. False. A DataSet is an ideal object to implement data shaping.
21. True VB.NET now impements the Try...Catch...Finally construct for error

handling.
22. A
23. A
24. C

Sunday Afternoon Review Answers

1. False. SOAP is the proposed Internet standard that is currently being evaluted by
the World Wide Web Consortium.

2. True. Since SOAP utilizes HTTP as its transport mechanism, and assuming the fire-
wall supports HTTP requests, SOAP traffic can be handled just as easily as simple
Web requests.

3. Rogue Wave’s Nouveau ORB, Iona’s Orbix 2000, ObjectSpace’s Voyager, Userland’s
Frontier Groupware Product, Microsoft’s Windows DNA

4. D
5. False. Microsoft’s Web Services are based on HTTP and XML.
6. C
7. <WebMethod()>
8. Web Service Description Language or WSDL
9. False When authoring an ASP.NET page, you must use only one language.

10. False All ASP.NET pages are translated into the same Intermediate Langauge that
is then compiled at run-time. So, there is no performance benefit to using one
language over another.

11. True

Answers to Part Reviews 313

474830-1 AppA.F 11/7/01 9:05 AM Page 313

12. False
13. True
14. False
15. True. You can either turn ASP Compatibility on, or implement a Runtime Callable

Wrapper with the type library importer utility (TlbImp.exe).
16. True

Appendix A314

474830-1 AppA.F 11/7/01 9:05 AM Page 314

This appendix provides you with information on the contents of the CD that accompa-
nies this book. For the latest and greatest information, please refer to the ReadMe file
located at the root of the CD. Here is what you will find:

� System Requirements
� Using the CD with Windows, Linux, and Macintosh
� What’s on the CD
� Troubleshooting

System Requirements
Make sure that your computer meets the minimum system requirements listed in this

section. If your computer doesn’t match up to most of these requirements, you may have a
problem using the contents of the CD.

For Windows 9x, Windows 2000, Windows NT4 (with SP 4 or later), Windows Me, or
Windows XP:

The following are the system requirements for running the CD-ROM:

� A PC with a 133 MHz or higher Pentium-compatible CPU
� 128MB of RAM minimum; 256MB recommended, because more memory generally

improves responsiveness
� A minimum of 850MB of disk storage space to install the .NET Framework and the

sample programs on the CD
� A CD-ROM drive
� A Windows-compatible monitor with at least 256 colors
� Windows (Service Pack 6) 2000 or Windows XP
� Internet Explorer 5.5
� Data Access Components 2.6
� .NET Framework SDK
� IIS 4.0, or IIS 5.0

A P P E N D I X

What’s on the CD-ROM

B

484830-1 AppB.F 11/7/01 9:05 AM Page 315

The software provided with this book is not compatible for installation on the Mac OS,
Linux, or other operating systems or non-PC hardware.

Using the CD with Windows
To install the items from the CD to your hard drive, follow these steps:

1. Insert the CD into your computer’s CD-ROM drive.
2. A window will appear with the following options: Install, Explore, eBook, Links,

and Exit.
Install: Gives you the option to install the supplied software and/or the author-
created samples on the CD-ROM.
Explore: Allows you to view the contents of the CD-ROM in its directory structure.
eBook: Allows you to view an electronic version of the book.
Links: Opens a hyperlinked page of web sites.
Exit: Closes the autorun window.

If you do not have autorun enabled or if the autorun window does not appear, follow the
steps below to access the CD.

1. Click Start ➪ Run.
2. In the dialog box that appears, type d:\setup.exe, where d is the letter of your

CD-ROM drive. This will bring up the autorun window described above.
3. Choose the Install, Explore, eBook, Links, or Exit option from the menu. (See

Step 2 in the preceding list for a description of these options.)

What’s on the CD
The following sections provide a summary of the software and other materials you’ll find

on the CD.

Author-created materials
All author-created material from the book, including code listings and samples, are on

the CD in the folder named “Author”.

� The sample programs developed or discussed in the text
� SQL scripts to create the Music database discussed in the text

The Software Directory
The Software directory contains the self-assessment test and evaluation or trial applica-

tions that may assist you in your ASP.NET development.
The installation files for each application can be found in their respective subdirectories.

Appendix B316

484830-1 AppB.F 11/7/01 9:05 AM Page 316

The HMI Test directory contains test software and data files. Their purposes are to help
you determine how much you have learned from this book and to help you identify sessions
you may need to study more, as well as those you can skip.

Applications
The following evaluation or trial products are on the CD:

� Adobe Acrobat Reader
� BrowserHawk

BrowserHawk allows developers to accurately recognize Web browsers and their capa-
bilities. This tool allows you to easily create dynamic Web sites which support a
wide variety of browsers. BrowserHawk frees you from all the hassles and complexi-
ties involved in detecting and accounting for browser differences. It allows you to
easily produce sites with a consistent look, feel, and level of operation for all visi-
tors to your site, regardless of the browser used, with graceful degradation for older
browsers. For more information, visit www.cyscape.com.

� ASPUpload
ASPUpload is an Active Server component which enables an ASP application to
accept, save and manipulate files uploaded with a browser. For more information,
visit www.aspupload.com.

� Brinkster.com Web Hosting Service
Brinkster is a Web hosting company focused on providing Microsoft active server
pages (ASP) hosting services to the small and mid-market web developer. Services
offered allow unconstrained creativity in the design of fully functional and interac-
tive Web sites. For more information, visit www.brinkster.com

� .NET Compression Library
This tool is filled with components which extend the .NET class library. Xceed devel-
opers have created a new object-oriented, transactional design that is a radical
departure from traditional ActiveX Zip component architectures. For more informa-
tion, visit www.exceedsoft.com.

� Infragistics UltraSuite
Infragistics UltraSuite offers a huge array of ActiveX controls for Windows develop-
ment, giving developers everything necessary to create solutions that look great
and run efficiently, faster than ever before. For more information visit
www.infragistics.com.

Shareware programs are fully functional, trial versions of copyrighted programs. If you
like particular programs, register with their authors for a nominal fee and receive licenses,
enhanced versions, and technical support. Freeware programs are copyrighted games, appli-
cations, and utilities that are free for personal use. Unlike shareware, these programs do not
require a fee or provide technical support. GNU software is governed by its own license,
which is included inside the folder of the GNU product. See the GNU license for more details.

Trial, demo, or evaluation versions are usually limited either by time or functionality
(such as being unable to save projects). Some trial versions are very sensitive to system date
changes. If you alter your computer’s date, the programs will “time out” and will no longer
be functional.

What’s on the CD-ROM 317

484830-1 AppB.F 11/7/01 9:05 AM Page 317

eBook version of ASP.NET Database Programming Weekend Crash Course
The complete text of this book is on the CD in Adobe’s Portable Document Format (PDF).

You can read and search through the file with the Adobe Acrobat Reader (also included on
the CD). For more information on Adobe Acrobat Reader, go to www.adobe.com.

Troubleshooting
If you have difficulty installing or using any of the materials on the companion CD, try

the following solutions:
� Turn off any anti-virus software that you may have running. Installers some-

times mimic virus activity and can make your computer incorrectly believe that it is
being infected by a virus. (Be sure to turn the anti-virus software back on later.)

� Close all running programs. The more programs you’re running, the less memory is
available to other programs. Installers also typically update files and programs; if
you keep other programs running, installation may not work properly.

� Reference the ReadMe: Please refer to the ReadMe file located at the root of the
CD-ROM for the latest product information at the time of publication.

If you still have trouble with the CD, please call the Hungry Minds Customer Care phone
number: (800) 762-2974. Outside the United States, call 1 (317) 572-3994. You can also
contact Hungry Minds Customer Service by e-mail at techsupdum@hungryminds.com.
Hungry Minds will provide technical support only for installation and other general quality
control items; for technical support on the applications themselves, consult the program’s
vendor or author.

Appendix B318

484830-1 AppB.F 11/7/01 9:05 AM Page 318

OleDbConnection Class

Properties

ConnectionString Gets or sets the string used to open a data store.

ConnectionTimeout Gets or sets the time to wait while establishing a con-
nection before terminating the attempt and generating
an error.

Container Returns the Container that contains the component. The
Container is an interface to the component’s container.

Database Gets the name of the current database or the database to
be used once a connection is open.

DataSource Gets the location and filename of the data source.

Provider Gets the name of OLE DB provider.

ServerVerison Gets a string containing the version of the server to
which the client is connected.

Site Gets or sets the site of the component. A site binds a
component to a container and enables communication
between them, as well as provides a way for the container
to manage its components.

State Gets the current state of the connection.

Methods

BeginTransaction Begins a database transaction.

ChangeDatabase Changes the current database for an open
OleDbConnection.

Continued

A P P E N D I X

ADO.NET Class Descriptions

C

494830-1 AppC.F 11/7/01 9:05 AM Page 319

OleDbConnection Class Continued

Methods

Close Closes the connection to the datasource. This is the pre-
ferred method.

CreateCommand Creates and returns an OleDbCommand object associates
with the OleDbConnection.

Dispose Disposes of the OleDbConnection object.

Equals Determines whether the specified object is the same
instance as the current object.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such
as a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime
service this will be an object of type ILease.

GetOleDbSchemaTable Returns the schema table and associated restriction
columns of the specified schema.

GetType Gets the type of the object.

InitializeLifeTimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

Open Opens a database connection with the current property
settings specified by the ConnectionString.

ToString Returns a string that represents the current object.

OleDbCommand Class

Properties

CommandText Gets or sets the SQL command text or stored procedure to
execute at the data source.

CommandTimeout Gets or sets the time to wait while executing the command
before terminating the attempt and generating an error.

CommandType Gets or sets how the CommandText property is interpreted.

Connection Gets or sets the OleDbConnection used by this instance
of the OleDbCommand.

Appendix C320

494830-1 AppC.F 11/7/01 9:05 AM Page 320

Container Returns the IContainer that contains the component.

DesignTimeVisible Gets or sets a value indicating whether the command
object should be visible in a customized Windows Forms
Designer control.

Parameters Gets the collection of OleDbParameterCollection.

Site Gets or sets the site of the component.

Transaction Gets or sets the transaction in which the OleDbCommand
executes.

UpdatedRowSource Gets or sets how command results are applied to the
DataRow when used by the Update method of a
DBDataAdapter.

Methods

Cancel Cancels the execution of a command.

CreateParameter Create an instance of an OleDbParameter object.

Dispose Releases the resources used by the component.

Equals Determines whether the specified object is the same
instance as the current object.

ExecuteNonQuery Executes a SQL statement against the Connection and
returns the number of rows affected.

ExecuteReader Overloaded. Send the CommandText to the Connection and
builds an OldDbDataReader.

ExecuteScalar Executes the query, and returns the first column of the
first row in the resultset returned by the query. Extra
columns or rows are ignored.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime
service this will be an object of type ILease.

GetType Gets the type of the object.

InitializeLifeTimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

Continued

ADO.NET Class Descriptions 321

494830-1 AppC.F 11/7/01 9:05 AM Page 321

OleDbConnection Class Continued

Methods

Prepare Creates a prepared (or compiled) version of the command
on the data source.

ResetCommandTimeout Resets the CommandTimeout property to the default value.

ToString Returns a string that represents the current object.

OleDbDataReader Class

Properties

Depth Gets a value indicating the depth of the nesting for cur-
rent row.

FieldCount Indicates the number of fields within the current record.
This property is read-only.

IsClosed Indicates whether the DataReader is closed.

Item Overloaded. Gets the value a column in its native format.

RecordsAffected Gets the number of rows changed, inserted, or deleted by
the execution of the SQL statement.

Methods

Close Closes the OleDbDataReader object.

Equals Determines whether the specified object is the same
instance as the current object.

GetBoolean Returns the value of the specified column as a Boolean.

GetByte Returns the value of the specified column as a byte.

GetBytes Returns the value of the specified column as a byte array.

GetChar Returns the value of the specified column as a character.

GetChars Returns the value of the specified column as a character
array.

GetDataTypeName Returns the name of the back-end data type.

GetDateTime Returns the value of the specified column as a DateTime
object.

GetDecimal Returns the value of the specified column as a Decimal
object.

Appendix C322

494830-1 AppC.F 11/7/01 9:05 AM Page 322

GetDouble Returns the value of the specified column as a double-
precision floating-point number.

GetFieldType Returns the type that is the data type of the object.

GetFloat Returns the value of the specified column as a single-
precision floating-point number.

GetGuid Returns the value of the specified column as a globally
unique identifier.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetInt16 Returns the value of the specified column as a 16-bit
signed integer.

GetInt32 Returns the value of the specified column as a 32-bit
signed integer.

GetInt64 Returns the value of the specified column as a 64-bit
signed integer.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime
service this will be an object of type ILease.

GetName Returns the name of the specified column.

GetOrdinal Gets the column ordinal, given the name of the column.

GetSchemaTable Returns a DataTable that describes the column metadata
of the OleDbDataReader.

GetString Returns the value of the specified column as a string.

GetTimeSpan Returns the value of the specified column as a TimeSpan
object.

GetType Gets the type of the object.

GetValue Gets the value of the column at the specified ordinal in
its native format.

GetValues Gets all the attribute columns in the current row.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

Continued

ADO.NET Class Descriptions 323

494830-1 AppC.F 11/7/01 9:05 AM Page 323

OleDbDataReader Class Continued

Methods

IsDBNull Advances the data reader to the next result, when read-
ing the results of batch SQL statements.

NextResult Advances the data reader to the next result, when read-
ing the results of batch SQL statements.

Read Advances the OleDbDataReader to the next record.

ToString Returns a string that represents the current object.

OleDbDataAdapter Class

Properties

AcceptChangesDuringFill Gets or sets a value indicating whether AcceptChanges is
called on a DataRow after it is added to the DataTable.

Container Returns the IContainer that contains the component.

DeleteCommand Gets or sets a command for deleting records from the
data set.

InsertCommand Gets or sets a command used to insert new records into
the data source.

MissingMappingAction Determines the action to take when incoming data does
not have a matching table or column.

MissingSchemaAction Determines the action to take when existing DataSet
schema does not match incoming data.

SelectCommand Gets or sets a command used to select records in the data
source.

Site Gets or sets the site of the component. A site binds a
component to a container and enables communication
between them, as well as provides a way for the container
to manage its components.

TableMappings Gets a collection that provides the master mapping
between a source table and a DataTable.

UpdateCommand Gets or sets a command used to update records in the
data source.

Methods

Dispose Releases the resources used by the component.

Appendix C324

494830-1 AppC.F 11/7/01 9:05 AM Page 324

Equals Determines whether the specified object is the same
instance as the current object.

Fill Overloaded. Adds or refreshes rows in the DataSet to
match those in an ADO Recordset or Record object.

FillSchema Overloaded. Adds a DataTable to a DataSet and config-
ures the schema to match that in the data source.

GetFillParameters Gets the parameters set by the user when executing an
SQL SELECT statement.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime
service this will be an object of type ILease.

GetType Gets the type of the object.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

ToString Returns a string that represents the current object.

Update Overloaded. Calls the respective INSERT, UPDATE, or
DELETE statements for each inserted, updated, or deleted
row in the DataSet from a DataTable named “Table.”

OleDbParameterCollection Class

Properties

Count Gets the number of OleDbParameter objects in the
collection.

Item Overloaded. Gets or sets the OleDbParameter with a
specified attribute. Overloading is the practice of supply-
ing more than one definition for a given a property or
method within the scope of a class.

Methods

Add Overloaded. Adds an OleDbParameter to the
OleDbCommand.

Continued

ADO.NET Class Descriptions 325

494830-1 AppC.F 11/7/01 9:05 AM Page 325

OleDbParameterCollection Class Continued

Properties

Clear Removes all items from the collection.

Contains Overloaded. Indicates whether an OleDbParameter exists
in the collection.

CopyTo Copies OleDbParameter objects from the
OleDbParameterCollection to the specified array.

Equals Overloaded. Determines whether two object instances are
equal.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime ser-
vice this will be an object of type ILease.

GetType Gets the type of the current instance.

IndexOf Overloaded. Gets the location of the OleDbParameter in
the collection.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

Insert Inserts an OleDbParameter in the collection at the speci-
fied index.

Remove Removes the specified OleDbParameter from the collection.

RemoveAt Overloaded. Removes the specified OleDbParameter from
the collection.

ToString Returns a string that represents the current object.

OleDbParameter Class

Properties

DBType Gets or sets the DBType of the parameter.

Direction Gets or sets a value indicating whether the parameter is
input-only, output-only, bidirectional, or a stored proce-
dure return value parameter.

Appendix C326

494830-1 AppC.F 11/7/01 9:05 AM Page 326

isNullable Gets or sets a value indicating whether the parameter
accepts null values.

OleDbType Gets or sets the OleDbType of the parameter.

ParameterName Gets or sets the name of the OleDbParameter.

Precision Gets or sets the maximum number of digits used to repre-
sent the Value property.

Scale Gets or sets the number of decimal places to which Value
is resolved.

Size Gets or sets the maximum size, in bytes, of the data
within the column.

SourceColumn Gets or sets the name of the source column mapped to
the DataSet and used for loading or returning the Value.

SourceVersion Gets or sets the DataRowVersion to use when loading
Value.

Value Gets or sets the value of the parameter.

Methods

Equals Overloaded. Determines whether two objects instances are
equal.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime ser-
vice this will be an object of type ILease.

GetType Gets the type of the current instance.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

ToString Gets a string containing the ParameterName.

SqlConnection Class

Properties

ConnectionString Gets or sets the string used to open a SQL Server database.

Continued

ADO.NET Class Descriptions 327

494830-1 AppC.F 11/7/01 9:05 AM Page 327

SqlConnection Class Continued

Properties

ConnectionTimeout Gets or sets the time to wait while establishing a connec-
tion before terminating the attempt and generating an
error.

Container Returns the IContainer that contains the component.

Database Gets the name of the current database or the database to
be used once a connection is open.

DataSource Gets the name of the instance of SQL Server to which to
connect.

PacketSize Gets the size (in bytes) of network packets used to com-
municate with an instance of SQL Server.

ServerVerison Gets a string containing the version of the instance of
SQL Server to which the client is connected.

Site Gets or sets the site of the component.

State Gets the current state of the connection.

WorkStationID Gets a string that identifies the database client.

Methods

BeginTransaction Begins a database transaction.

ChangeDatabase Changes the current database for an open SqlConnection.

Close Closes the connection to the datasource. This is the pre-
ferred method.

CreateCommand Creates and returns an SqlCommand object associates with
the SqlConnection.

Dispose Disposes of the SqlConnection object.

Equals Determines whether the specified object is the same
instance as the current object.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime ser-
vice this will be an object of type ILease.

GetType Gets the type of the object.

Appendix C328

494830-1 AppC.F 11/7/01 9:05 AM Page 328

InitializeLifeTimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

Open Opens a database connection with the current property
settings specified by the ConnectionString.

ToString Returns a string that represents the current object.

SqlCommand Class

Properties

CommandText Gets or sets the Transact-SQL command text or stored pro-
cedure to execute at the data source.

CommandTimeout Gets or sets the time to wait while executing the command
before terminating the attempt and generating an error.

CommandType Gets or sets how the CommandText property is interpreted.

Connection Gets or sets the SqlConnection used by this instance of
the SqlCommand.

Container Returns the IContainer that contains the component.

DesignTimeVisible Gets or sets a value indicating whether the command
object should be visible in a customized Windows Forms
Designer control.

Parameters Gets the collection of SqlParameterCollection.

Site Gets or sets the site of the component.

Transaction Gets or sets the transaction in which the SqlCommand
executes.

UpdatedRowSource Gets or sets how command results are applied to the
DataRow when used by the Update method of a
DBDataAdapter.

Methods

Cancel Cancels the execution of a command.

CreateParameter Creates an instance of an SqlParameter object.

Dispose Releases the resources used by the component.

Continued

ADO.NET Class Descriptions 329

494830-1 AppC.F 11/7/01 9:05 AM Page 329

SqlCommand Class Continued

Methods

Equals Determines whether the specified object is the same
instance as the current object.

ExecuteNonQuery Executes a SQL statement against the Connection and
returns the number of rows affected.

ExecuteReader Overloaded. Send the CommandText to the Connection and
builds an OldDbDataReader.

ExecuteScalar Executes the query, and returns the first column of the
first row in the resultset returned by the query. Extra
columns or rows are ignored.

ExecuteXMLReader Sends the CommandText to the SqlConnection and builds
an XmlReader object.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime ser-
vice this will be an object of type ILease.

GetType Gets the type of the object.

InitializeLifeTimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

Prepare Creates a prepared (or compiled) version of the command
on the data source.

ResetCommandTimeout Resets the CommandTimeout property to the default value.

ToString Returns a string that represents the current object.

SqlDataReader Class

Properties

Depth Gets a value indicating the depth of the nesting for
current row.

FieldCount Indicates the number of fields within the current record.
This property is read-only.

IsClosed Indicates whether the DataReader is closed.

Appendix C330

494830-1 AppC.F 11/7/01 9:05 AM Page 330

Item Overloaded. Gets the value of a column in its native format.

RecordsAffected Gets the number of rows changed, inserted, or deleted by
the execution of the SQL statement.

Methods

Close Closes the SqlDataReader object.

Equals Determines whether the specified object is the same
instance as the current object.

GetBoolean Returns the value of the specified column as a Boolean.

GetByte Returns the value of the specified column as a byte.

GetBytes Returns the value of the specified column as a byte array.

GetChar Returns the value of the specified column as a character.

GetChars Returns the value of the specified column as a character
array.

GetDataTypeName Returns the name of the back-end data type.

GetDateTime Returns the value of the specified column as a DateTime
object.

GetDecimal Returns the value of the specified column as a Decimal
object.

GetDouble Returns the value of the specified column as a double-
precision floating-point number.

GetFieldType Returns the type that is the data type of the object.

GetFloat Returns the value of the specified column as a single-
precision floating-point number.

GetGuid Returns the value of the specified column as a globally
unique identifier.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetInt16 Returns the value of the specified column as a 16-bit
signed integer.

GetInt32 Returns the value of the specified column as a 32-bit
signed integer.

Continued

ADO.NET Class Descriptions 331

494830-1 AppC.F 11/7/01 9:05 AM Page 331

SqlDataReader Class Continued

Methods

GetInt64 Returns the value of the specified column as a 64-bit
signed integer.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime ser-
vice this will be an object of type ILease.

GetName Returns the name of the specified column.

GetOrdinal Gets the column ordinal, given the name of the column.

GetSchemaTable Returns a DataTable that describes the column metadata
of the SqlDataReader.

GetSqlBinary Gets the value of the specified column as a SqlBinary.

GetSqlBoolean Gets the value of the specified column as a SqlBoolean.

GetSqlByte Gets the value of the specified column as a SqlByte.

GetSqlDataTime Gets the value of the specified column as a SqlDateTime.

GetSqlDecimal Gets the value of the specified column as a SqlDecimal.

GetSqlDouble Gets the value of the specified column as a SqlDouble.

GetSqlGuid Gets the value of the specified column as a SqlGuid.

GetSqlInt16 Gets the value of the specified column as a SqlInt16.

GetSqlInt32 Gets the value of the specified column as a SqlInt32.

GetSqlInt64 Gets the value of the specified column as a SqlInt64.

GetSqlMoney Gets the value of the specified column as a SqlMoney.

GetSqlSingle Gets the value of the specified column as a SqlSingle.

GetSqlString Gets the value of the specified column as a SqlString.

GetSqlValue Gets an object that is a representation of the underlying
SqlDbType variant.

GetSqlValues Gets all the attribute columns in the current row.

GetString Returns the value of the specified column as a string.

GetTimeSpan Returns the value of the specified column as a TimeSpan
object.

GetType Gets the type of the object.

Appendix C332

494830-1 AppC.F 11/7/01 9:05 AM Page 332

GetValue Gets the value of the column at the specified ordinal in
its native format.

GetValues Gets all the attribute columns in the current row.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

IsDBNull Advances the data reader to the next result, when read-
ing the results of batch SQL statements.

NextResult Advances the data reader to the next result, when read-
ing the results of batch SQL statements.

Read Advances the SqlDataReader to the next record.

ToString Returns a string that represents the current object.

SqlDataAdapter Class

Properties

AcceptChangesDuringFill Gets or sets a value indicating whether AcceptChanges is
called on a DataRow after it is added to the DataTable.

Container Returns the IContainer that contains the component.

DeleteCommand Gets or sets a command for deleting records from the
data set.

InsertCommand Gets or sets a command used to insert new records into
the data source.

MissingMappingAction Determines the action to take when incoming data does
not have a matching table or column.

MissingSchemaAction Determines the action to take when existing DataSet
schema does not match incoming data.

SelectCommand Gets or sets a command used to select records in the data
source.

Site Gets or sets the site of the component.

TableMappings Gets a collection that provides the master mapping
between a source table and a DataTable.

UpdateCommand Gets or sets a command used to update records in the
data source.

Continued

ADO.NET Class Descriptions 333

494830-1 AppC.F 11/7/01 9:05 AM Page 333

SqlDataAdapter Class Continued

Methods

Dispose Releases the resources used by the component.

Equals Determines whether the specified object is the same
instance as the current object.

Fill Overloaded. Adds or refreshes rows in the DataSet to
match those in an ADO Recordset or Record object.

FillSchema Overloaded. Adds a DataTable to a DataSet and config-
ures the schema to match that in the data source.

GetFillParameters Gets the parameters set by the user when executing an
SQL SELECT statement.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime
service this will be an object of type ILease.

GetType Gets the type of the object.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

ToString Returns a string that represents the current object.

Update Overloaded. Calls the respective INSERT, UPDATE, or
DELETE statements for each inserted, updated, or deleted
row in the DataSet from a DataTable named “Table.”

SqlParameterCollection Class

Properties

Count Gets the number of SqlParameter objects in the collection.

Item Overloaded. Gets or sets the SqlParameter with a
specified attribute.

Methods

Add Overloaded. Adds an SqlParameter to the SqlCommand.

Clear Removes all items from the collection.

Appendix C334

494830-1 AppC.F 11/7/01 9:05 AM Page 334

Contains Overloaded. Indicates whether an SqlParameter exists in
the collection.

CopyTo Copies SqlParameter objects from the
SqlParameterCollection to the specified array.

Equals Overloaded. Determines whether two object instances are
equal.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime ser-
vice this will be an object of type ILease.

GetType Gets the type of the current instance.

IndexOf Overloaded. Gets the location of the SqlParameter in the
collection.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

Insert Inserts an SqlParameter in the collection at the speci-
fied index.

Remove Removes the specified SqlParameter from the collection.

RemoveAt Overloaded. Removes the specified SqlParameter from
the collection.

ToString Returns a string that represents the current object.

SqlParameter Class

Properties

DBType Gets or sets the DBType of the parameter.

Direction Gets or sets a value indicating whether the parameter is
input-only, output-only, bidirectional, or a stored proce-
dure return value parameter.

IsNullable Gets or sets a value indicating whether the parameter
accepts null values.

Continued

ADO.NET Class Descriptions 335

494830-1 AppC.F 11/7/01 9:05 AM Page 335

SqlParameter Class Continued

Properties

Offset Gets or sets the offset of the Value property.

ParameterName Gets or sets the name of the SqlParameter.

Precision Gets or sets the maximum number of digits used to repre-
sent the Value property.

Scale Gets or sets the number of decimal places to which Value
is resolved.

Size Gets or sets the maximum size, in bytes, of the data
within the column.

SourceColumn Gets or sets the name of the source column mapped to
the DataSet and used for loading or returning the Value.

SourceVersion Gets or sets the DataRowVersion to use when loading
Value.

SqlDbType Gets or sets the SqlDbType of the parameter.

Value Gets or sets the value of the parameter.

Methods

Equals Overloaded. Determines whether two objects instances are
equal.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifeTimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime ser-
vice, this will be an object of type ILease.

GetType Gets the type of the current instance.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

ToString Gets a string containing the ParameterName.

Appendix C336

494830-1 AppC.F 11/7/01 9:05 AM Page 336

DataSet Class

Properties

CaseSensitive Gets or sets a value indicating whether string comparisons
within DataTable objects are case-sensitive.

Container Gets the container for the component.

DataSetName Gets or sets the name of this DataSet.

DefaultViewManager Gets a custom view of the data contained by the DataSet
that allows filtering, searching, and navigating using a
custom DataViewManager.

DesignMode Gets a value indicating whether the component is cur-
rently in design mode.

EnforceConstraints Gets or sets a value indicating whether constraint rules
are followed when attempting any update operation.

ExtendedProperties Gets the collection of custom user information.

HasErrors Gets a value indicating whether there are errors in any of
the rows in any of the tables of this DataSet.

Locale Gets or sets the locale information used to compare
strings within the table.

Namespace Gets or sets the namespace of the DataSet.

Prefix Gets or sets an XML prefix that aliases the namespace of
the DataSet.

Relations Get the collection of relations that link tables and allow
navigation from parent tables to child tables.

Site Gets or sets a System.ComponentModel.ISite for the
DataSet.

Tables Gets the collection of tables contained in the DataSet.

Methods

AcceptChanges Commits all the changes made to this DataSet since it
was loaded or the last time AcceptChanges was called.

BeginInit Begins the initialization of a DataSet that is used on a
form or used by another component. The initialization
occurs at runtime.

Continued

ADO.NET Class Descriptions 337

494830-1 AppC.F 11/7/01 9:05 AM Page 337

DataSet Class Continued

Methods

Clear Clears the DataSet of any data by removing all rows in all
tables.

Clone Clones the structure of the DataSet, including all
DataTable schemas, relations, and constraints.

Copy Copies both the structure and data for this DataSet.

Dispose Disposes of the component.

End Init Ends the initialization of a DataSet that is used on a
form or used by another component. The initialization
occurs at runtime.

Equals Determines whether the specified object is the same
instance as the current object.

GetChanges Overloaded. Returns a copy of the DataSet containing all
changes made to it since it was last loaded, or since
AcceptChanges was called.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetService Gets the implementer of the IServiceProvider.

GetType Gets the type of the current instance.

GetXml Returns the XML representation of the data stored in the
DataSet.

GetXmlSchema Returns the XSD schema for the XML representation of
the data stored in the DataSet.

HasChanges Overloaded. Gets a value indicating whether the DataSet
has changes, including new, deleted, or modified rows.

InferXmlSchema Returns the XSD schema for the XML representation of
the data stored in the DataSet.

Merge Overloaded. Merges this DataSet with a specified
DataSet.

ReadXml Overloaded. Reads XML schema and data into the
DataSet.

ReadXmlSchema Overloaded. Reads an XML schema into the DataSet.

Appendix C338

494830-1 AppC.F 11/7/01 9:05 AM Page 338

RejectChanges Rolls back all the changes made to this DataSet since it
was created, or the last time DataSet.AcceptChanges
was called.

Reset Resets the DataSet to its original state. Subclasses should
override Reset to restore a DataSet to its original state.

ToString Returns a string that represents the current object.

WriteXml Overloaded. Writes XML schema and data from the
DataSet.

WriteXmlSchema Overloaded. Writes the DataSet structure as an XML schema.

DataView Class

Properties

AllowDelete Sets or gets a value indicating whether deletes are allowed.

AllowEdit Gets or sets a value indicating whether edits are allowed.

AllowNew Gets or sets a value indicating whether the new rows can
be added using the AddNew method.

ApplyDefaultSort Gets or sets a value indicating whether to use the default
sort.

Container Gets the container for the component.

Count Gets the number of records in the DataView after
RowFilter and RowStateFilter have been applied.

DataViewManager Gets the DataView associated with this view.

DesignMode Gets the value indicating whether the component is
currently in design mode.

Item Gets a row of data from a specified table. In C#, this
property is the indexer for the DataView class.

RowFilter Gets or sets the expression used to filter which rows are
viewed in the DataView.

RowStateFilter Gets or sets the row state filter used in the DataView.

Site Gets or sets the site of the component.

Sort Gets or sets the sort column or columns, and sort order
for the table.

Table Gets or sets the source DataTable.

Continued

ADO.NET Class Descriptions 339

494830-1 AppC.F 11/7/01 9:05 AM Page 339

DataView Class Continued

Methods

AddNew Adds a new row to the DataView.

BeginInit Begins the initialization of a DataView that is used on a
form or used by another component. The initialization
occurs at runtime.

Delete Deletes a row at the specified index.

Dispose Disposes of the DataView object.

EndInit Ends the initialization of a DataView that is used on a
form or used by another component. The initialization
occurs at runtime.

Equals Determines whether the specified object is the same
instance as the current object.

Find Overloaded. Finds a row in the DataView.

GetEnumerator Gets the enumerator for the DataView.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetService Gets the implementer of the IServiceProvider.

GetType Gets the type of the object.

ToString Returns a string that represents the current object.

DataTableCollection Class

Properties

Count Gets the total number of elements in a collection.

IsReadOnly Indicates whether the BaseCollection is read-only. This
property is read-only.

IsSynchronized Indicates whether the BaseCollection is synchronized.
This property is read-only.

Item Overloaded. Gets the specified table from the collection.

SyncRoot Gets an object that can be used to synchronize the
collection.

Appendix C340

494830-1 AppC.F 11/7/01 9:05 AM Page 340

Methods

Add Overloaded. Adds a DataTable to the collection.

AddRange Copies the elements of the specified DataTable array to
the end of the collection.

CanRemove Verifies if a DataTable can be removed from the collection.

Clear Clears the collection of any tables.

Contains Overloaded. Verifies whether the collection contains a
specific table.

CopyTo Copies all the elements of the current
InternalDataCollectionBase to a one-dimensional
Array, starting at the specified
InternalDataCollectionBase index.

Equals Determines whether the specified object is the same
instance as the current object.

GetEnumerator Gets an IEnumerator for the collection.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetType Gets the type of the object.

IndexOf Overloaded. Returns the index of a specified table.

Remove Overloaded. Removes a table from the collection.

RemoveAt Removes the table at the given index from the collection.

ToString Returns a string that represents the current object.

DataTable Class

Properties

CaseSensitive Indicates whether string comparisons within the table are
case-sensitive.

ChildRelations Gets the collection of child relations for this DataTable.

Columns Gets the collection of columns that belong to this table.

Constraints Gets the collection of constraints maintained by this table.

Container Gets the container for the component.

Continued

ADO.NET Class Descriptions 341

494830-1 AppC.F 11/7/01 9:05 AM Page 341

DataTable Class Continued

Properties

DataSet Gets the DataSet that this table belongs to.

DefaultView Gets a customized view of the table that may include a
filtered view, or a cursor position.

DesignMode Gets a value indicating whether the component is
currently in design mode.

DisplayExpression Gets or sets the expression that will return a value used
to represent this table in UI.

ExtendedProperties Gets the collection of customized user information.

HasErrors Gets a value indicating whether there are errors in any of
the rows in any of the tables of the DataSet to which the
table belongs.

Locale Gets or sets the locale information used to compare
strings within the table.

MinimumCapacity Gets or sets the initial starting size for this table.

Namespace Gets or sets the namespace for the DataTable.

ParentRelations Gets the collection of parent relations for this DataTable.

Prefix Gets or sets an XML prefix that aliases the namespace of
the DataTable.

PrimaryKey Gets or sets an array of columns that function as primary
keys for the DataTable.

Rows Gets the collection of rows that belong to this table.

Site Gets or sets an System.ComponentModel.ISite for the
DataTable.

TableName Gets or sets the name of the DataTable.

Methods

AcceptChanges Commits all the changes made to this table since the last
time AcceptChanges was called.

BeginInit Begins the initialization of a DataTable that is used on a
form or used by another component. The initialization
occurs at runtime.

Clear Clears the table of all data.

Appendix C342

494830-1 AppC.F 11/7/01 9:05 AM Page 342

Clone Clones the structure of the DataTable, including all
DataTable schemas, relations, and constraints.

Compute Executes a command against the DataTable object’s
DataRowCollection ad returns the computed value.

Copy Copies both the structure and data for this DataTable.

Dispose Overloaded. Releases the resources used by the
MarshalByValueComponent.

EndInit Ends the initialization of a DataTable that is used on a
form or used by another component. The initialization
occurs at runtime.

EndLoadData Turns off notifications, index maintenance, and constraints
while loading data.

Equals Determines whether the specified object is the same
instance as the current object.

GetChanges Overloaded. Gets a copy of the DataTable containing all
changes made to it since it was last loaded, or since
AcceptChanges was called.

GetErrors Returns an array of DataRow objects that contain errors.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetService Gets the implementer of the IServiceProvider.

GetType Gets the type of the object.

ImportRow Copies a DataRow, including original and current values,
DataRowState values, and errors, into a DataTable.

NewRow Creates a new DataRow with the same schema as the table.

RejectChanges Rolls back all changes that have been made to the table
since it was loaded, or the last time AcceptChanges was
called.

Select Overloaded. Returns an array of DataRow objects.

ToString Returns the TableName and DisplayExpression, if there
is one, as a concatenated string.

ADO.NET Class Descriptions 343

494830-1 AppC.F 11/7/01 9:05 AM Page 343

DataColumnCollection Class

Properties

Count Gets the total number of elements in a collection.

IsReadOnly Indicates whether the InternalDataBaseCollection is
read-only. This property is read-only.

IsSynchronized Indicates whether the InternalDataBaseCollection is
synchronized. This property is read-only.

Item Overloaded. Gets the specified DataColumn from the
collection. In C#, this property is the indexer for the
ColumnsCollection class.

SyncRoot Gets an object that can be used to synchronize the
collection.

Methods

Add Overloaded. Adds a DataColumn to the columns collection.

AddRange Copies the elements of the specified DataColumn array to
the end of the collection.

CanRemove Checks if a given column can be removed from the
collection.

Clear Clears the collection of any columns.

Contains Overloaded. Checks whether the collection contains a
specified column.

CopyTo Copies all the elements of the current
InternalDataCollectionBase to a one-dimensional
Array, starting at the specified
InternalDataCollectionBase index.

Equals Determines whether the specified object is the same
instance as the current object.

GetEnumerator Gets an IEnumerator for the collection.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetType Gets the type of the object.

IndexOf Returns the index of a column specified by name.

Remove Overloaded. Removes a column from the collection.

Appendix C344

494830-1 AppC.F 11/7/01 9:05 AM Page 344

RemoveAt Removes the column at the specified index from the
collection.

ToString Returns a string that represents the current object.

DataColumn Class

Properties

AllowDBNull Gets or sets a value indicating whether NULL values are
allowed in this column for rows belonging to the table.

AutoIncrement Gets or sets a value indicating whether the column auto-
matically increments the value of the column for new
rows added to the table.

AutoIncrementSeed Gets or sets the starting value for a column that has its
AutoIncrement property set to true.

AutoIncrementStep Gets or sets the increment used by a column with its
AutoIncrement property set to true.

Caption Gets or sets the caption for this column.

ColumnMapping Gets or sets the MappingType of the column.

ColumnName Gets or sets the name of the column within the
DataColumnCollection.

Container Gets the container for the component.

DataType The type of data stored in the column.

DefaultValue Gets or sets the default value for the column when
creating new rows.

DesignMode Gets a value indicating whether the component is
currently in design mode.

Expression Gets or sets the expression used either to filter rows, cal-
culate the column’s value, or create an aggregate column.

ExtendedProperties Gets the collection of custom user information.

MaxLength Gets or sets the maximum length of a text column.

Namespace Gets or sets the namespace of the DataColumn.

Ordinal Gets the position of the column in the
DataColumnCollection collection.

Continued

ADO.NET Class Descriptions 345

494830-1 AppC.F 11/7/01 9:05 AM Page 345

DataColumn Class Continued

Properties

Prefix Gets or sets an XML prefix that aliases the namespace of
the DataTable.

ReadOnly Gets or sets a value indicating whether the column allows
changes once a row has been added to the table.

Site Gets or sets the site of the component.

Sparse Gets or sets a value indicating whether the column should
store data in a fashion optimized for sparse data patterns.

Table Gets the DataTable to which the column belongs to.

Unique Gets or sets a value indicating whether the values in each
row of the column must be unique.

Methods

Dispose Disposes of the component by releasing all resources used
by the component.

Equals Determines whether the specified object is the same
instance as the current object.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetService Gets the implementer of the IServiceProvider.

GetType Gets the type of the object.

ToString Returns the expression of the column, if one exists.

DataRowCollection Class

Properties

Count Gets the count of the rows in DataRowCollection.

IsReadOnly Indicates whether the InternalDataBaseCollection is
read-only. This property is read-only.

IsSynchronized Indicates whether the InternalDataBaseCollection is
synchronized. This property is read-only.

Appendix C346

494830-1 AppC.F 11/7/01 9:05 AM Page 346

Item Gets the row at the specified index. In C#, this property is
the indexer for the DataRowCollection class.

SyncRoot Gets an object that can be used to synchronize the
collection.

Methods

Add Overloaded. Adds a DataRow to the DataRowCollection.

Clear Clears the collection of all rows.

Contains Overloaded. Gets a value indicating whether any row in
the collection contains a specified value in the primary
key or keys column.

CopyTo Copies all the elements of the current
InternalDataBaseCollection to a one-dimensional
Array, starting at the specified
InternalDataBaseCollection index.

Equals Determines whether the specified object is the same
instance as the current object.

Find Overloaded. Gets a specified DataRow.

GetEnumerator Gets an IEnumerator for the collection.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetType Gets the type of the object.

Remove Overloaded. Removes a specific row from the
DataRowCollection.

RemoveAt Removes the row with the specified index from the
collection.

ToString Returns a string that represents the current object.

DataRow Class

Properties

HasErrors Gets a value indicating whether there are errors in a col-
umn’s collection.

Continued

ADO.NET Class Descriptions 347

494830-1 AppC.F 11/7/01 9:05 AM Page 347

DataRow Class Continued

Properties

Item Overloaded. Gets or sets data stored in a specified column.
In C#, this property is the indexer for the DataRow class.

ItemArray Gets or sets all of the values for this row through an array.

RowError Gets or sets the custom error description for a row.

RowState Gets the current state of the row in regards to its rela-
tionship to the DataRowCollection.

Table Gets the DataTable for which this row has a schema.

Methods

AcceptChanges Commits all the changes made to this row since the last
time AcceptChanges was called.

BeginEdit Begins an edit operation on a DataRow object.

CancelEdit Cancels the current edit on the row.

ClearErrors Clears the errors for the row, including the RowError and
errors set with SetColumnError.

Delete Deletes the row.

EndEdit Ends the edit occurring on the row.

Equals Determines whether the specified object is the same
instance as the current object.

GetChildRows Overloaded. Gets the child rows of this DataRow.

GetColumnError Overloaded. Gets the error description for a column.

GetColumnsInError Gets an array of columns that have errors.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetParentRow Overloaded. Gets the parent row of a DataRow.

GetParentRows Overloaded. Gets the parent rows of this DataRow.

GetType Gets the type of the object.

HasVersion Gets a value indicating whether a specified version exists.

IsNull Overloaded. Gets a value indicating whether the specified
column contains a NULL value.

Appendix C348

494830-1 AppC.F 11/7/01 9:05 AM Page 348

RejectChanges Rejects all changes made to the row since AcceptChanges
was last called.

SetColumnError Overloaded. Sets the error description for a column.

SetParentRow Overloaded. Sets the parent row of a DataRow.

SetUnspecified Sets the value of a DataColumn with the specified name
to unspecified.

ToString Returns a string that represents the current object.

DataRelationCollection Class

Properties

Count Gets the total number of elements in a collection.

IsReadOnly Indicates whether the InternalDataCollectionBase is
read-only. This property is read-only.

IsSynchronized Indicates whether the InternalDataCollectionBase is
synchronized. This property is read-only.

Item Overloaded. Get the specified DataRelation from the
collection. In C#, this property is the indexer for the
ataRelationCollection class.

SyncRoot Gets an object that can be used to synchronize the
collection.

Methods

Add Overloaded. Adds a DataRelation to the
DataRelationCollection.

AddRange Copies the elements of the specified DataRelation array
to the end of the collection.

Clear Clears the collection of any relations.

Contains Gets a value of true if this collection has a relation with
the given name (case insensitive), false otherwise.

CopyTo Copies all the elements of the current
InternalDataCollectionBase to a one-dimensional
Array, starting at the specified
InternalDataCollectionBase index.

Equals Determines whether the specified object is the same
instance as the current object.

Continued

ADO.NET Class Descriptions 349

494830-1 AppC.F 11/7/01 9:05 AM Page 349

DataRelationConnection Class Continued

Methods

GetEnumerator Gets an IEnumerator for the collection.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetType Gets the type of the object.

Remove Removes a DataRelation from the collection.

RemoveAt Removes the relation at the specified index from the col-
lection. An IndexOutOfRangeException is generated if this
collection doesn’t have a relation at this index. The
CollectionChanged event is fired if it succeeds.

ToString Returns a string that represents the current object.

DataRelation Class

Properties

ChildColumns Gets the child columns of this relation.

ChildKeyConstraint Gets the ForeignKeyConstraint for the relation.

ChildTable Gets the child table of this relation.

DataSet Gets the DataSet to which the relation’s collection
belongs to.

Nested Gets or sets a value indicating whether relations are nested.

ParentColumns Gets the parent columns of this relation.

ParentKeyConstraint Gets the constraint that ensures values in a column are
unique.

ParentTable Gets the parent table of this relation.

RelationName Gets or sets the name used to retrieve a DataRelation
from the DataRelationColleciton.

Methods

Equals Determines whether the specified object is the same
instance as the current object.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

Appendix C350

494830-1 AppC.F 11/7/01 9:05 AM Page 350

GetType Gets the type of the object.

ToString Gets the RelationName, if one exists.

ConstraintCollection Class

Properties

Count Gets the total number of elements in a collection.

IsReadOnly Indicates whether the InternalDataCollectionBase is
read-only. This property is read-only.

IsSynchronized Indicates whether the InternalDataCollectionBase is
synchronized with the data source. This property is
read-only.

Item Overloaded. Get the specified Constraint from the
collection. In C#, this property is the indexer for
the ConstraintCollection class.

SyncRoot Gets an object that can be used to synchronize the
collection.

Methods

Add Overloaded. Adds a Constraint to the
ConstraintCollection.

AddRange Copies the elements of the specified Constraint array to
the end of the collection.

CanRemove Indicates if a Constraint can be removed.

Clear Clears the collection of any relations.

Contains Gets a value of true if this collection has a relation with
the given name (case insensitive), false otherwise.

CopyTo Copies all the elements of the current
InternalDataCollectionBase to a one-dimensional
Array, starting at the specified
InternalDataCollectionBase index.

Equals Determines whether the specified object is the same
instance as the current object.

GetEnumerator Gets an IEnumerator for the collection.

Continued

ADO.NET Class Descriptions 351

494830-1 AppC.F 11/7/01 9:05 AM Page 351

Constraint Class Continued

Properties

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetType Gets the type of the object.

Remove Removes a Constraint from the collection.

RemoveAt Removes the constraint at the specified index from the
collection.

ToString Returns a string that represents the current object.

Constraint Class

Properties

ConstraintName The name of a constraint in the ConstraintCollection.

Table Gets the DataTable to which the constraint applies.

Methods

Equals Determines whether the specified object is the same
instance as the current object.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetType Gets the type of the object.

ToString Gets the ConstraintName, if there is one, as a string.

DataTableMappingCollectionClass

Properties

Count Gets the total number of elements in a collection.

Item Overloaded. Get the specified DataTableMapping from
the collection. In C#, this property is the indexer for the
DataTableMappingCollection class.

Appendix C352

494830-1 AppC.F 11/7/01 9:05 AM Page 352

Methods

Add Overloaded. Adds a DataTableMapping to the
DataTableMappingCollection.

AddRange Copies the elements of the specified DataTableMapping
array to the end of the collection.

Clear Clears the collection of any relations.

Contains Gets a value of true if this collection has a relation with
the given name (case insensitive), false otherwise.

CopyTo Copies the elements of the DataTableMappingCollection
to the specified array.

GetByDataSetTitle Gets the DataTableMapping object with the specified
DataSet table name.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifetimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime
service this will be an object of type ILease.

GetType Gets the type of the object.

IndexOf Overloaded. Gets the location of the specified
DataTableMapping object within the collection.

IndexOfDataSetTitle Gets the location of the DataTableMapping object with
the specified DataSet table name.

InitializeLifetimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

Insert Inserts a DataTableMapping object into the
DataTableMappingCollection at the specified index.

Remove Removes a DataTableMapping from the collection.

RemoveAt Removes the DataTableMapping at the specified index
from the collection.

ToString Returns a string that represents the current object.

ADO.NET Class Descriptions 353

494830-1 AppC.F 11/7/01 9:05 AM Page 353

DataTableMapping Class

Properties

ColumnMappings Gets the DataColumnMappingCollection for the
DataTable.

DataSetTable Gets or sets the table name from a DataSet.

SourceTable Gets or sets the case-sensitive source table name from a
data source.

Methods

Equals Determines whether the specified object is the same
instance as the current object.

GetDataTableBySchemaAction Returns the current DataTable for a given DataSet using
the specified MissingSchemaAction.

GetHashCode Serves as a hash function for a particular type, suitable
for use in hashing algorithms and data structures such as
a hash table.

GetLifetimeService Retrieves a lifetime service object that controls the life-
time policy for this instance. For the default Lifetime
service this will be an object of type ILease.

GetType Gets the type of the object.

InitializeLifeTimeService Objects can provide their own lease and so control their
own lifetime. They do this by overriding the
InitializeLifetimeService method provided on
MarshalByRefObject.

ToString Converts the current SourceTable name to a string.

Appendix C354

494830-1 AppC.F 11/7/01 9:05 AM Page 354

Retrieving a Table from a Database

How you did it with VBScript in ASP

Function GetStores(stor_id)
Dim oRS, oConn, oCmd, oParam
OConn = “provider=sqloledb;Data Source=(local);Initial Catalog=pubs;User

ID=sa;pwd=;”
Set oCmd = Server.CreateObject(“ADODB.Command”)
OCmd.CommandText = “SELECT * FROM Stores WHERE [stor_id]=?”
OCmd.ActiveConnection = oConn
Set oParam = oCmd.CreateParameter(“stor_id”,3,1,,stor_id)
OCmd.Parameters.Append oParam
Set oRS = Server.CreateObject(“ADODB.Recordset”)
ORS.Open oCmd
Set GetStores = oRS

End Function

How you do it with VB .NET in ASP.NET

Function GetStores(stor_id As Integer) As DataSet
Dim oConn as New OLEDBConnection(“provider=sqloledb;Data Source=(local);Initial

Catalog=pubs;User ID=sa;pwd=;”)
Dim oCmd as New OLEDBDataAdapter(“SELECT * FROM Stores WHERE [stor_id]=?”, oConn)
Dim oParam as New OLEDBParameter(“stor_id”,OLEDBType.Integer)
oParam.Value = stor_id
oCmd.SelectCommand.Parameters.Add(oParam)
Dim oDS As New DataSet()
oCmd.Fill(oDS, “stores”)
Return oDS

End Function

A P P E N D I X

Coding Differences in ASP and ASP.NET

D

504830-1 AppD.F 11/7/01 9:05 AM Page 355

How you do it with C# in ASP.NET

DataSet GetStores(int stor_id) {
OleDbConnection oConn = new OleDbConnection(“provider=sqloledb;Data

Source=(local);Initial Catalog=pubs;User ID=sa;pwd=;”);
OleDbDataAdapter oCmd = new OleDbDataAdapter(“SELECT * FROM Stores WHERE

[stor_id]=?”, oConn);
OleDbParameter oParam = new OleDbParameter(“stor_id”, OleDbType.Integer);
oParam.Value = stor_id;
oCmd.SelectCommand.Parameters.Add(oParam);
DataSet oDS = new DataSet();
oCmd.Fill(oDS, “stores”);
return oDS;

}

Displaying a Table from a Database

How you did it with VBScript in ASP

<%@ LANGUAGE=”VBScript” %>
<%
Dim oRS
Function CreateTable(stor_id)

Set oRS = GetStores(stor_id)
Do While Not oRS.EOF

Response.Write(“<TABLE>”)
Response.Write(“<TR>”)
For Each oField in oRS.Fields

Response.Write(“<TD Align = Center>”)
If isNull(oField) Then

Response.Write(“ ”)
Else

Response.Write(oField.value)
End If
Response.Write(“</TD>”)

Next
oRS.moveNext
Response.Write(“</TR>”)

Loop
Response.Write(“</TABLE>”)
ORS.close
Set oRS = Nothing

End Function

Function GetStores(stor_id)
Dim oRS, oConn, oCmd, oParam
OConn = “provider=sqloledb;Data Source=(local);Initial Catalog=pubs;User

ID=sa;pwd=;”
Set oCmd = Server.CreateObject(“ADODB.Command”)
OCmd.CommandText = “SELECT * FROM Stores WHERE [stor_id]=?”
OCmd.ActiveConnection = oConn

Appendix D356

504830-1 AppD.F 11/7/01 9:05 AM Page 356

Set oParam = oCmd.CreateParameter(“stor_id”,3,1,,stor_id)
OCmd.Parameters.Append oParam
Set oRS = Server.CreateObject(“ADODB.Recordset”)
ORS.Open oCmd
Set GetStores = oRS

End Function
%>
<html>
<body>
<%
CreateTable(“7066”)
%>

How you do it with VB .NET in ASP.NET

<%@ Import Namespace=”System.Data” %>
<%@ Import Namespace=”System.Data.OleDB”%>
<%@ Page Language=”VB” Debug=”False” Trace=”False” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”vb” RUNAT=”server”>
Sub Page_Load(sender as object, e as eventargs)

CreateTable(7066)
End Sub
Function GetStores(stor_id As Integer) As DataSet

Dim oConn as New OLEDBConnection(“provider=sqloledb;Data
Source=(local);Initial Catalog=pubs;User ID=sa;pwd=;”)

Dim oCmd as New OLEDBDataAdapter(“SELECT * FROM Stores WHERE [stor_id]=?”,
oConn)

Dim oParam as New OLEDBParameter(“stor_id”,OLEDBType.Integer)
oParam.Value = stor_id
oCmd.SelectCommand.Parameters.Add(oParam)
Dim oDS As New DataSet()
oCmd.Fill(oDS, “stores”)
Return oDS

End Function

Sub CreateTable(stor_id as Integer)
Dim oDS As DataSet = GetStores(stor_id)
grid1.DataSource = oDS.Tables(0).DefaultView
grid1.DataBind()

End Sub

</SCRIPT>
</HEAD>
<BODY>

<FORM RUNAT=”server” ID=”Form1”>
<ASP:DATAGRID ID=”grid1” RUNAT=”server” />

</FORM>
</BODY>

</HTML>

Coding Differences in ASP and ASP.NET 357

504830-1 AppD.F 11/7/01 9:05 AM Page 357

How you do it with C# in ASP.NET

<%@ Import Namespace=”System.Data.OleDb”%>
<%@ Import Namespace=”System.Data”%>
<%@ Page Language=”C#” Debug=”False” Trace=”False” %>
<HTML>

<HEAD>
<SCRIPT LANGUAGE=”C#” RUNAT=”server”>
protected void Page_Load(Object sender, EventArgs E)
{

CreateTable(7066);
}

void CreateTable(int stor_id)
{

DataSet oDS = GetStores(stor_id);
grid1.DataSource = oDS.Tables[0].DefaultView;
grid1.DataBind();

}
DataSet GetStores(int stor_id) {

OleDbConnection oConn = new OleDbConnection(“provider=sqloledb;Data
Source=(local);Initial Catalog=pubs;User ID=sa;pwd=;”);

OleDbDataAdapter oCmd = new OleDbDataAdapter(“SELECT * FROM Stores WHERE
[stor_id]=?”, oConn);

OleDbParameter oParam = new OleDbParameter(“stor_id”, OleDbType.Integer);
oParam.Value = stor_id;
oCmd.SelectCommand.Parameters.Add(oParam);
DataSet oDS = new DataSet();
oCmd.Fill(oDS, “stores”);
return oDS;

}

</SCRIPT>
</HEAD>
<BODY>

<FORM RUNAT=”server” ID=”Form1”>
<ASP:DATAGRID ID=”grid1” RUNAT=”server” />

</FORM>
</BODY>

</HTML>

Variable Declarations

How you did it with VBScript in ASP

Dim x
Dim s
Dim s1,s2
Dim o
Set o = Server.CreateObject(“ADODB.Command”)

Appendix D358

504830-1 AppD.F 11/7/01 9:05 AM Page 358

How you do it with VB .NET in ASP.NET

Dim i As Integer
Dim s As String
Dim s1, s2 As String
Dim o as new OleDbDataAdapter()

How you do it with C# in ASP.NET

int i;
String s;
String s1, s2;
OleDbDataAdapter o = new OleDbDataAdapter();

Statements

How you did it with VBScript in ASP

Response.Write(“SomeText”)

How you do it with VB .NET in ASP.NET

Response.Write(“SomeText”)

How you do it with C# in ASP.NET

Response.Write(“SomeText”);

Comments

How you did it with VBScript in ASP

‘ A One Liner

‘ Multi-line
‘ Comment

Coding Differences in ASP and ASP.NET 359

504830-1 AppD.F 11/7/01 9:05 AM Page 359

How you do it with VB .NET in ASP.NET

‘ A One Liner

‘ Multi-line
‘ Comment

How you do it with C# in ASP.NET

// A One Liner

/*
Multi-line
Comment
*/

Indexed Property Access

How you did it with VBScript in ASP

Dim s
Dim s1
s = Request.QueryString(“Name”)
s1 = Request.Cookies(“Key”)

How you do it with VB .NET in ASP.NET

Dim s As String
Dim s1 As String
s = Request.QueryString(“Name”)
s1 = Request.Cookies(“Key”).Value

How you do it with C# in ASP.NET

s= Request.QueryString[“Name”];
s1 = Request.Cookies[“Name”].Value;

Using Arrays

How you did it with VBScript in ASP

‘ One Dimensional Array with 3 elements
Dim x(3)
x(0) = “SomeText1”

Appendix D360

504830-1 AppD.F 11/7/01 9:05 AM Page 360

x(1) = “SomeText2”
x(2) = “SomeText3”

‘ Two Dimensional Array with 3 elements
Dim y(3,3)
y(0,0) = “SomeText1”
y(1,0) = “SomeText2”
y(2,0) = “SomeText3”

How you do it with VB .NET in ASP.NET

‘ One Dimensional Array with 3 elements
Dim x(3) As String
x(0) = “SomeText1”
x(1) = “SomeText2”
x(2) = “SomeText3”

‘ Two Dimensional Array
Dim y(3,3) As String
y(0,0) = “SomeText1”
y(1,0) = “SomeText2”
y(2,0) = “SomeText3”

How you do it with C# in ASP.NET

// A One Dimensional Array with 3 elements
String[] x = new String[3];
x[0] = “SomeText1”;
x[1] = “SomeText2”;
x[2] = “SomeText3”;

// A Two Dimensional Array with 3 elements
String[,] y = new String[3,3];
y[0,0] = “SomeText1”;
y[1,0] = “SomeText2”;
y[2,0] = “SomeText3”;

Initializing Variables

How you did it with VBScript in ASP

Dim s
Dim i
Dim a(3)
s = “Hello World”

Coding Differences in ASP and ASP.NET 361

504830-1 AppD.F 11/7/01 9:05 AM Page 361

i = 1
a(0) = 3.00
a(1) = 4.00
a(2) = 5.00
How you do it with VB.NET in ASP.NET
Dim s As String = “Hello World”
Dim i As Integer = 1
Dim a() As Double = { 3.00, 4.00, 5.00 }

How you do it with C# in ASP.NET

string s = “Hello World”;
int i = 1;
Double[] a ={ 3.00, 4.00, 5.00 };

If Statements

How you did it with VBScript in ASP

If i = 0 Then
Response.Write i

elseIf i = 1 Then
Response.Write i

Else
Response.Write i

End If

How you do it with VB .NET in ASP.NET

If i = 0 Then
Response.Write(i)

elseIf i = 1 Then
Response.Write(i)

Else
Response.Write(i)

End If

How you do it with C# in ASP.NET

if (i==0)
Response.Write(i);

if (i==1)
Response.Write(i);

else
Response.Write(i);

Appendix D362

504830-1 AppD.F 11/7/01 9:05 AM Page 362

Case Statements

How you did it with VBScript in ASP

Select Case sStockSymbol
case “MSFT”

Response.Write(“Buy”)

case “ORCL”
Response.Write(“Sell”)

case else
Response.Write(“Hold”)

End Select

How you do it with VB .NET in ASP.NET

Select (sStockSymbol)
case “MSFT” :

Response.Write(“Buy”)

case “ORCL” :
Response.Write(“Sell”)

case else :
Response.Write(“Hold”)

End Select

How you do it with C# in ASP.NET

switch (sStockSymbol) {
case “MSFT” :

Response.Write(“Buy”);
break;

case “ORCL” :
Response.Write(“Sell”);
break;

default :
Response.Write(“Hold”);
break;

}

Coding Differences in ASP and ASP.NET 363

504830-1 AppD.F 11/7/01 9:05 AM Page 363

For Loops

How you did it with VBScript in ASP

Dim i
For i = 0 To 10

Response.Write “NewValue “ & i
Next

How you do it with VB .NET in ASP.NET

Dim i As Integer
For i = 0 To 10

Response.Write(“NewValue “ & i.ToString())
Next

How you do it with C# in ASP.NET

for (int i=0; i < 10; i++) {
Response.Write(“New Value” + i.ToString());

}

While Loops

How you did it with VBScript in ASP

Dim i
i = 0
Do While i < 1

Response.Write(i)
i = i + 1

Loop

How you do it with VB .NET in ASP.NET

Dim i As Integer = 0

Do While i < 10
Response.Write(i.ToString())
i = i + 1

Loop

Appendix D364

504830-1 AppD.F 11/7/01 9:05 AM Page 364

How you do it with C# in ASP.NET

int i = 0;

while (i < 10) { Response.Write(i.ToString());
i++;

}

String Concatenation

How you did it with VBScript in ASP

Dim s1, s2
s2 = “hello”
s2 = s2 & “ world”
s1 = s2 & “ !!!”

How you do it with VB .NET in ASP.NET

Dim s1, s2 As String
s2 = “hello”
s2 &= “ world”
s1 = s2 & “ !!!”

How you do it with C# in ASP.NET

string s1;
string s2 = “hello”;
s2 += “ world”;
s1 = s2 + “ !!!”;

Error Handling

How you did it with VBScript in ASP

Function WriteFile()
On Error Resume Next
‘Do Something
‘Raise a Fake Error
Err.Raise(1000)
if Err.Number=0 Then

WriteFile=”No Errors”
Else

WriteFile= Err.Number & “ was raised.”
End If

End Function

Coding Differences in ASP and ASP.NET 365

504830-1 AppD.F 11/7/01 9:05 AM Page 365

How you do it with VB .NET in ASP.NET

Function WriteFile()
Try

‘Do Something
‘Raise a Fake Error
Err.Raise(1000)

Catch
Return “Error Number “ & Err.Number &” was raised.”

End Try
End Function

How you do it with C# in ASP.NET

public static string WriteFile(){
try{

/* Do Something to
Raise Error */
throw new Exception(“1000”);

}
catch(Exception e){

return(“Error Number “ + e.Message + “ was raised”);
}
}

Conversion of Variable Types

How you did it with VBScript in ASP

Dim i
Dim s
Dim d

i = 3
s = CStr(i)
d = CDbl(s)

How you do it with VB .NET in ASP.NET

Dim i As Integer
Dim s As String
Dim d As Double

i = 3
s = i.ToString()
d = CDbl(s)

How you do it with C# in ASP.NET

int i = 10;
string s = i.ToString();
double d = double.Parse(s);

Appendix D366

504830-1 AppD.F 11/7/01 9:05 AM Page 366

© 2001 Hungry Minds, Inc. All rights reserved. Hungry Minds, the Hungry Minds logo and Weekend Crash Course are trademarks or registered trademarks of Hungry Minds.
All other trademarks are the property of their respective owner.

Red Hat® Linux® 7 Weekend
Crash Course™

by Naba Barkakati
432 pages
Red Hat Linux 7 on 3 CDs
ISBN 0-7645-4741-0

Visual Basic® 6 Weekend
Crash Course™

by Richard Mansfield
408 pages
ISBN 0-7645-4679-1

Flash™ 5 Weekend Crash
Course™

by Shamms Mortier
408 pages
ISBN 0-7645-3546-3

Dreamweaver® 4 Weekend
Crash Course™

by Wendy Peck
408 pages
ISBN 0-7645-3575-7

Available wherever
books are sold,

or go to:
www.hungryminds.com

Get Up to Speed
in a Weekend!

Also available:

Access® 2000 Programming Weekend Crash Course™

by Cary N. Prague, Jennifer Reardon, Lawrence S. Kasevich, Diana Reid, and
Phuc Phan 600 pages ISBN 0-7645-4688-0

Active Server Pages 3 Weekend Crash Course™

by Eric Smith 450 pages ISBN 0-7645-4756-9

C++ Weekend Crash Course™

by Stephen R. Davis 552 pages ISBN 0-7645-4689-9

C# Weekend Crash Course™ (Available July 2001)
by Stephen R. Davis 432 pages ISBN 0-7645-4789-5

HTML 4.01 Weekend Crash Course™

by Greg Perry 480 pages ISBN 0-7645-4746-1

Java™ 2 Weekend Crash Course™

by Julio Sanchez and Maria Canton 432 pages ISBN 0-7645-4768-2

JavaScript Weekend Crash Course™

by Steven Disbrow 408 pages ISBN 0-7645-4804-2

JSP Weekend Crash Course™

by Andrew Utter and Geremy Kawaller 408 pages ISBN 0-7645-4796-8

Linux® Weekend Crash Course™

by Terry Collins and Naba Barkakati 450 pages ISBN 0-7645-3593-5

Each book comes with a CD-ROM and
features 30 fast, focused lessons that will
have you up and running in only 15 hours.

514830-1 BoB.F 11/7/01 9:05 AM Page 367

514830-1 BoB.F 11/7/01 9:05 AM Page 368

�
absolute cache expiration, 137, 145
AcceptChanges method

DataRow class, 348
DataSet class, 337
DataTable class, 342

AcceptChangesDuringFill property
OleDbDataAdapter class, 324
SqlDataAdapter class, 333

access levels, 26
Active Server Pages (ASP)

coding differences from ASP.NET, 355–366
data display in, 233
evolution of, 6–8
migrating to ASP.NET, 291–298
Response object, 136
sample HTML form, 70–71
state management, 71–72, 113–114

Active Server platform, 6
ActiveX Data Objects (ADO)

ADO.NET versus, 150–152
history, 149–150
migrating to ADO.NET, 299–306
.NET version, 9

Add method
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 347
DataTableCollection class, 341
DataTableCollection object, 216
DataTableMappingCollection class, 353
OledbParameter object, 182–183
OleDbParameterCollection class, 325
SqlParameterCollection class, 334

AddNew method, DataView class, 340
AddRange method
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349

DataTableCollection class, 341
DataTableMappingCollection class, 353

Adobe Acrobat Reader, 318
ADODB.dll, 305
ADO.NET

ADO versus, 150–152
benefits, 152–153
class descriptions. See appendix C
command objects, 177–185
connection objects, 169–176
data binding, 223–231
data shaping, 255–261
DataGrid control. See DataGrid control
DataReaders, 187–195
DataSet object overview, 197–204, 211–222
error handling, 263–271
history, 9, 149–150
installation, 15–16
migrating from ADO, 299–306
object model, 160–164
support groups, 19
system requirements, 13–14

ADO.NET Managed Provider, 152
Advanced Data Table Gram (ADTG) format,

150–151
allow roles element, in Web.config, 126
allow users element, in Web.config, 126
AllowDBNull property, DataColumn class, 345
AllowDelete property, DataView class, 339
AllowEdit property, DataView class, 339
AllowNew property, DataView class, 339
AllowSorting attribute, OnSortCommand

event, 251
ALTER rights, 26
ALTER TABLE statement, 34
AlternatingItemStyle property, DataGrid

control, 236
anti-virus software, 318
Application Center 2000, 10
application state, 135
ApplyDefaultSort property, DataView

class, 339

Index

524830-1 Index.F 11/7/01 9:05 AM Page 369

array coding compared, 360–361
array-bound controls, 224–226
ArrayList, declaring, 224
AS clause, in SELECT statements, 52
.ascx extension, 91
ASP. See Active Server Pages (ASP)
ASP to ASP.NET Migration tutorial, 18
ASP.NET

basic benefits, 8–9
caching. See caching
coding differences from ASP, 355–366
cookieless method of state maintenance, 115–117
event overview, 61–64
HTML controls, 69–77
installation, 15–16
key security mechanisms, 123–124
migrating from ASP, 291–298
namespaces, 66–67
page directive overview, 64–66
running ASP pages under, 297–298
SOAP and, 282
Standard versus Premium version, 16
support groups, 19
system requirements, 13–14
User controls, 89–96
Web controls, 79–87
Web Services, 10, 59, 283–90
XML in, 59–60. See also XML

ASP.NET Configuration System, 127
ASP.NET Homepage, 19
ASP.NET QuickStart Tutorial Page, 16–18
ASP.NET State Server, 120–121
aspnet state service, 121
ASP.NET Web Applications tutorial, 18
ASP.NET Web Forms tutorial, 17
ASP.NET Web Services tutorial, 17
ASPNG Discussion Lists, 19
ASPState database, 119
ASPUpload, 317
.aspx extension, 62
@Assembly directive, 65
asterisk, in SELECT statements, 51
authentication

defined, 123
forms-based, 128–131
Passport, 132–134

authentication mode element, in
Web.config, 125

Author folder (CD), 316
authorization, 123–124
AutoGenerateColumns property, DataGrid

control, 234
AutoIncrement property, DataColumn class, 345
AutoIncrementSeed property, DataColumn

class, 345
AutoIncrementStep property, DataColumn

class, 345
automatic browser detection, 79, 81, 317

�
background color of User Controls, 94
BeginEdit method, DataRow class, 348
BeginInit method
DataSet class, 337
DataTable class, 342
DataView class, 340

BeginTransaction method
in ADO.NET, 175
OleDbConnection class, 319
SqlConnection class, 328

beta versions, 19
BindData() function, 239–240
BizTalk Server 2000, 10
Boolean operators, 49–50
bound data. See data binding
BoundColumn control, DataGrid control, 235
Brinkster.com, 317
BrowserHawk, 317
browsers

automatic detection, 79, 81, 317
compatibility issues, 69–70
as Web clients, 5

btnLogin_Click() method, 131

�
C Sharp

array coding, 361
case statements, 363
code for displaying tables, 358
code for retrieving tables, 356
comment code, 360
error handling, 366
for loops, 364
if statements, 362
indexed property access, 360
statement code, 359
string concatenation, 365
variable declaration coding, 359
variable initialization coding, 362
variable type conversion, 366
while loops, 365

C++, 7
Cache object, in System.Web.Caching

namespace, 142
Cache Services tutorial, 18
CacheItemPriority method, 146–147
CacheItemPriorityDecay method, 146–147
Cache.SetExpires method,

Response object, 136
caching

fragment, 140–142
overview of, 135
page data, 142–147
page output, 136–139
updates to ASP Response object, 136

Index370

524830-1 Index.F 11/7/01 9:05 AM Page 370

Calendar control, 86
Call messages, 280
camel-casing, 125
Cancel method
OleDbCommand class, 321
SqlCommand class, 329

CancelEdit method, DataRow class, 348
CanRemove method
ConstraintCollection class, 351
DataColumnCollection class, 344
DataTableCollection class, 341
DataTableCollection object, 216

Caption property, DataColumn class, 345
case sensitivity, in Web.config, 116, 125
case statements, 363
CaseSensitive property
DataSet class, 337
DataSet object, 204
DataTable class, 341
DataTable object, 217

CD
AbsoluteCache.aspx, 137
classbinding example, 226
datacacheexample.aspx file, 143–144
dropdownbindtoxml.aspx file, 228
error handling files, 264–266, 269–270
FragmentOutputExample.aspx file, 140
masterdetail.aspx file, 237
pubs_authors.xml file, 227
SlidingCache.aspx file, 137–139
system requirements and list of contents, 315–318
treeviewframeset.htm file, 230
T-SQL statements for database creation, 37
validation controls, 103

cells, adding, 81–83
CGI. See Common Gateway Interface (CGI)
ChangeDatabase method
OleDbConnection class, 319
SqlConnection class, 328

character content (XML), 58
character data, 22
check constraints, 24
ChildColumns property, DataRelation

class, 350
ChildKeyConstraint property, DataRelation

class, 350
ChildRelations property, DataTable

class, 341
ChildRelations property, DataTable

object, 217
ChildTable property, DataRelation class, 350
Choose Name dialog box, 32
class declarations, 284–285
Class property, SQLException object, 263
classes

object models and, 156–157
objects of, 155

Clear method
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 347
DataSet class, 338
DataTable class, 342
DataTableCollection class, 341
DataTableCollection object, 216
DataTableMappingCollection class, 353
OleDbParameterCollection class, 326
SqlParameterCollection class, 334

ClearErrors method, DataRow class, 348
client/server basics, 10
client-side cursors, 153
client-side validation, 102, 109–111
ClientValidationFunction property,

CustomValidator control, 111
Clone method
DataSet class, 338
DataTable class, 343

Close method
DataReader object, 194
OleDbConnection class, 320
OleDbDataReader class, 322
SqlConnection class, 328
SqlDataReader class, 331

CLR, 8–9, 292
code declaration block, 62
Cold Rooster Consulting, 19
collection classes, 158
collection properties, 158
colors of User Controls, 94
column indexes

in Get[Data Type] methods, 194
in Item property, 189

ColumnMapping property, DataColumn class, 345
ColumnMappings property, DataTableMapping

class, 354
ColumnName property, DataColumn class, 345
columns

adding with Web controls, 81–83
creating for tables, 33, 35
referencing in DataReader object, 189
sorting with DataGrid control, 250–252

Columns property
DataTable class, 341
DataTable object, 217

COM marshaling, 151, 301
COM objects, ASP with, 8
command objects

building, 178–183
defined, 177
methods, 183–185

/c[ommand]:switch, WebServiceUtil, 289
CommandText property
OleDbCommand class, 320
OledbCommand object, 180
SqlCommand class, 329

Index 371

524830-1 Index.F 11/7/01 9:05 AM Page 371

CommandTimeout property
OleDbCommand class, 320
OledbCommand object, 181
SqlCommand class, 329

CommandType property
OleDbCommand class, 320
OledbCommand object, 180–181
SqlCommand class, 329

comment code, 359–360
Commerce Server 2000, 10
CommitTransaction method, 175
Common Gateway Interface (CGI), 6
CompareValidator control, 101, 106–108
compatibility issues, browsers, 69–70
compilation, 8–9, 292
compiled languages, 292
Compute method, DataTable class, 343
configuration, recommended, 14
Configuration tutorial, 18
config.web file, 59
Connect to SQL Server dialog box, 31
connection objects

closing connections, 239
creating, 170–171
opening connections, 171–174, 239
overview of, 169–170
using transactions, 174–176

connection pooling, 169–170
Connection property
OleDbCommand class, 320
OledbCommand object, 179

connection strings
ADO.NET parameters, 171
constructing DataAdapter with, 199

connection-oriented approach, 151, 197
ConnectionString property
OleDbConnection class, 319
SqlConnection class, 327

ConnectionTimeout property
Connection object, 181
OleDbConnection class, 319
SqlConnection class, 328

Constraint class, 352
ConstraintCollection class, 351–352
ConstraintName property, Constraint

class, 352
constraints

setting in SQL Server, 33–35
in tables, 24

Constraints property
DataTable class, 341
DataTable object, 218

constructors
of ADO.NET objects, 162, 170–171
DataAdapter object, 199

Container property
DataColumn class, 345
DataSet class, 337
DataTable class, 341

DataView class, 339
OleDbCommand class, 321
OleDbConnection class, 319
OleDbDataAdapter class, 324
SqlCommand class, 329
SqlConnection class, 328
SqlDataAdapter class, 333

Contains method
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 347
DataTableCollection class, 341
DataTableCollection object, 215
DataTableMappingCollection class, 353
OleDbParameterCollection class, 326
SqlParameterCollection class, 335

CONTAINS predicate, with WHERE clause, 50
Content Manager Server 2001, 10
@Control directive, 65
control declarations, 63
control events

defined, 61
HTML, 74–76
Web, 83

Control_Click event handler, 64
controls

data binding. See data binding
HTML, 70–74
User, 89–96
validation. See validation controls
Web, 79–87

ControlToValidate property
of CompareValidator control, 107–108
in RequiredFieldValidator control, 105

cookieless method, 115–117
cookies, 126
Copy method
DataSet class, 338
DataTable class, 343

CopyTo method
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 347
DataTableCollection class, 341
DataTableMappingCollection class, 353
OleDbParameterCollection class, 326
SqlParameterCollection class, 335

Count property
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 346
DataTableCollection class, 340
DataTableCollection object, 214
DataTableMappingCollection class, 352
DataView class, 339
OleDbParameterCollection class, 325

Index372

524830-1 Index.F 11/7/01 9:05 AM Page 372

SqlParameterCollection class, 334
of Tables, 162

Create Database Diagram Wizard, 35
CREATE DATABASE statement, 31
CREATE PROCEDURE statement, 38
Create Relationship dialog box, 35–36
CREATE TABLE statement, 34
CREATE TRIGGER statement, 39
CREATE VIEW statements, 37
CreateCommand method
OleDbConnection class, 320
SqlConnection class, 328

CreateParameter method
OleDbCommand class, 321
SqlCommand class, 329

credentials passwordFormat element,
in Web.config, 126

cross-client capability, 8
CRUD, 47
custom address, 90–92
custom attributes, 70
custom event handlers, 76
custom templates, 79
customizing User Controls, 92–95
CustomValidator control, 101, 109–111

�
data binding

array-bound controls, 224–226
to databases, 226–227
to DataGrid control, 233–234
editing bound data, 243–246
overview of, 223–224
TreeView control, 228–230
to XML files, 227–228

data elements, 22
data schema, 152
data shaping
DataSet object, 258–259
overview of, 255–258
Relations method, 257–260

data source names (DSNs), 173
Data Source parameter, Connection object, 171
data types

conversion coding, 366
DataReader method for, 194
defined, 22
knowledge required to insert data, 48–49
setting in SQL Server, 33
type-safe programming, 79
for validation controls, 103, 108

DataAdapter object
basic function, 197
constructing, 199–203
data shaping and, 258–259

Database parameter, Connection object, 171
Database Properties dialog box, 30
Database property, OleDbConnection class, 319

Database property Properties dialog box,
SqlConnection class, 328

database user access rights, 26
databases. See also Structured Query

Language (SQL)
adding data with INSERT, 47–49
ADO.NET connections, 170–174
binding controls to, 226–227
code for displaying tables, 356–358
code for retrieving tables, 355–356
creating in SQL Server, 29–32. See also

SQL Server
data normalization, 24–26
designing, 21–24
security issues, 26

DataColumn class, 345–346
DataColumn object, 162–163
DataColumnCollection class, 344–345
DataField property, DataGrid control, 235
DataFormatString property, DataGrid

control, 235
DataGrid control

data binding to, 202, 233–234
Master/Detail controls, 236–240
output formatting, 235–236
sorting columns, 250–252
updating data, 243–246

DataKeyField property, DataGrid control, 234
DataReader object

building with ExecuteReader() method,
184–185

methods, 193–194
overview of, 187–188
properties, 189–193

DataRelation class, 350–351
DataRelation object, 300
DataRelationCollection class, 349–350
DataRow class, 347–349
DataRow object

accessing, 219
creating, 163, 221
declaring, 162

DataRowCollection class
iterating through, 219–221
properties and methods, 346–347

DataSet class, 337–339
DataSet objects

constructing, 199–203, 211–214
data binding with, 226–227
data shaping and, 258–259
DataTable object, 216–221
DataTableCollection object, 214–216
model, 161–163, 197, 198
properties, 203–204
RecordSet versus, 300–301

DataSet property
DataRelation class, 350
DataTable class, 342
DataTable object, 218

Index 373

524830-1 Index.F 11/7/01 9:05 AM Page 373

DataSetName property
DataSet class, 337
DataSet object, 203–204

DataSet.ReadXML() method, 228
datasets, 9
DataSetTable property, DataTableMapping

class, 354
DataSource property
OleDbConnection class, 319
SqlConnection class, 328

DataTable class, 341–343
DataTable objects, 217–221
DataTableCollection class, 340–341
DataTableCollection object, 212–216
DataTableMapping class, 354
DataTableMappingCollection class, 352–353
DataType property, 345
DataTypeCheck property, 103
DataView class, 339–340
DataView control, Sort method, 252
DataViewManager property, DataView class, 339
date data, 22
DateTime object, 136
DBType property
OleDbParameter class, 326
SqlParameter class, 335

Debugging tutorial, 18
DefaultValue property, DataColumn class, 345
DefaultView property
DataTable class, 342
DataTable object, 218

DefaultViewManager property, DataSet
class, 337

Delete method
DataGrid control, 249–250
DataRow class, 348
DataView class, 340

DELETE rights, 26
DELETE statements, 49–50
DeleteCommand property
DataAdapter object, 201
OleDbDataAdapter class, 324
SqlDataAdapter class, 333

deny roles element, in Web.config, 127
deny users element, in Web.config, 126
dependency rules, 142, 146–147
deployment of ASP.NET, 8
Deployment tutorial, 18
Depth property
OleDbDataReader class, 322
SqlDataReader class, 330

derived column names, quotes for, 52
Design Time Controls (DTC), 223–224
DesignMode property
DataColumn class, 345
DataSet class, 337
DataTable class, 342
DataView class, 339

DesignTimeVisible property
OleDbCommand class, 321
SqlCommand class, 329

developer tools, 11, 292
Direction property
OleDbParameter class, 326
SqlParameter class, 335

DISCO, 281
disconnected data access support, 301
Discovery of Web Services (DISCO), 281
Display property of validation controls,

102–103, 105
DisplayExpression property, DataTable

class, 342
DisplayMode property, of ValidationSummary

control, 111
DisplayTextBox function, 293
Dispose method
DataAdapter object, 203
DataColumn class, 346
DataSet class, 338
DataTable class, 343
DataTable object, 221
DataView class, 340
OleDbCommand class, 321
OleDbConnection class, 320
OleDbDataAdapter class, 324
SqlCommand class, 329
SqlConnection class, 328
SqlDataAdapter class, 334

document type declaration (DTD), 57
documents, XML structure, 56–58
double quotes, 52, 58–59
DownLevel directive, 102
download sites, 15, 228
dropdownbindtoxml.aspx file, 228
DropDownList, 84–85
Dynamic Link Libraries, 6–7
Dynamic setting, 103
dynamic Web content, 6

�
early binding, 303–306
eBook version, 318
EditCommandColumn control, 243–246
editing bound data, 243–246
element content, 58
elements, 58–59
EndEdit method, DataRow class, 348
EndInit method
DataSet class, 338
DataTable class, 343
DataView class, 340

EndLoadData method, DataTable class, 343
EnforceConstraints property, DataSet

class, 337

Index374

524830-1 Index.F 11/7/01 9:05 AM Page 374

Enterprise Manager
database creation with, 30
ease of use, 29
table creation, 32–33

epilog of XML document, 56
Equals method
Constraint class, 352
ConstraintCollection class, 351
DataColumn class, 346
DataColumnCollection class, 344
DataRelation class, 350
DataRelationCollection class, 349
DataRow class, 348
DataRowCollection class, 347
DataSet class, 338
DataTable class, 343
DataTableCollection class, 341
DataTableMapping class, 354
DataView class, 340
OleDbCommand class, 321
OleDbConnection class, 320
OleDbDataAdapter class, 325
OleDbDataReader class, 322
OLEDBError object, 267
OleDbParameter class, 327
OleDbParameterCollection class, 326
SqlCommand class, 330
SqlConnection class, 328
SqlDataAdapter class, 334
SqlDataReader class, 331
SqlParameter class, 336
SqlParameterCollection class, 335

error handling
ADO.NET overview, 263–265
ASP to ASP.NET migration, 296–297
coding compared, 365–366
Event Log, 269–270
OLEDBError object, 265–268
OLEDBException properties, 268

error messages, displaying, 102–103, 111
ErrorCode property, OLEDBException

object, 268
errorhandle.aspx file, 264–266, 269–270
ErrorMessage property, ValidationSummary

control, 111
Errors property, OLEDBException object, 268
evaluation software, 317
event handling methods, 95–96
Event Log, 269–270
event sets, 70
events, 61–64
exceptions, 263–271
Exchange Server 2000, 10
EXECUTE rights, 26
ExecuteNonQuery method
OleDbCommand class, 321
OledbCommand object, 183
SqlCommand class, 330

ExecuteReader method
DataReader object, 187–188, 193
OleDbCommand class, 321
OledbCommand object, 184–185
SqlCommand class, 330

ExecuteScalar method
OleDbCommand class, 321
SqlCommand class, 330

ExecuteXMLReader method, SqlCommand
class, 330

expiration rules
absolute and sliding cache, 137–139
page data caching, 143–146

Expires property, Response object, 136
Expression property, DataColumn class, 345
ExtendedProperties property
DataColumn class, 345
DataSet class, 337
DataTable class, 342

eXtensible Markup Language (XML). See XML
external state management, 113–114, 118–121

�
factories, for objects, 155
FieldCount property
DataReader object, 189–190
OleDbDataReader class, 322
SqlDataReader class, 330

file and key-based dependency caching, 142,
146–147

Fill method
DataAdapter object, 201–203
OleDbDataAdapter class, 325
SqlDataAdapter class, 334

FillSchema method
OleDbDataAdapter class, 325
SqlDataAdapter class, 334

filters, 7, 239–240
Finalize() method, OLEDBError object, 268
Find method
DataRowCollection class, 347
DataView class, 340

firewalls, 301
first normal form, 24
font color, 94
FooterStyle property, DataGrid control, 236
for loops, 364
For . . . Next loops, Relations method, 260
foreign key constraints, 24–25, 35
form validation, 69
forms login Url element, in Web.config, 125
forms name element, in Web.config, 125
forms path element, in Web.config, 126
forms protection element, in Web.config, 125
forms-based authentication, 128–131
fragment caching, 140–142
freeware programs, 317

Index 375

524830-1 Index.F 11/7/01 9:05 AM Page 375

FROM clause, in SELECT statements, 52–53
fully qualified object references, 303

�
GET messages, 6
Get[Data Type] methods, DataReader

object, 194
GetBoolean method
OleDbDataReader class, 322
SqlDataReader class, 331

GetByDataSetTitle method,
DataTableMappingCollection
class, 353

GetByte method
OleDbDataReader class, 322
SqlDataReader class, 331

GetBytes method
OleDbDataReader class, 322
SqlDataReader class, 331

GetChanges method
DataSet class, 338
DataTable class, 343

GetChar method
OleDbDataReader class, 322
SqlDataReader class, 331

GetChars method
OleDbDataReader class, 322
SqlDataReader class, 331

GetChildRows method, DataRow class, 348
GetColumnError method, DataRow class, 348
GetColumnsInError method, DataRow class, 348
GetDataTableBySchemaAction method,

DataTableMapping class, 354
GetDataTypeName method
OleDbDataReader class, 322
SqlDataReader class, 331

GetDateTime method
OleDbDataReader class, 322
SqlDataReader class, 331

GetDecimal method
OleDbDataReader class, 322
SqlDataReader class, 331

GetDouble method
OleDbDataReader class, 323
SqlDataReader class, 331

GetEnumerator method
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 347
DataTableCollection class, 341
DataView class, 340

GetErrors method, DataTable class, 343
GetFieldType method
OleDbDataReader class, 323
SqlDataReader class, 331

GetFillParameters method
OleDbDataAdapter class, 325
SqlDataAdapter class, 334

GetFloat method
OleDbDataReader class, 323
SqlDataReader class, 331

GetGuid method
OleDbDataReader class, 323
SqlDataReader class, 331

GetHashCode method
Constraint class, 352
ConstraintCollection class, 352
DataColumn class, 346
DataColumnCollection class, 344
DataRelation class, 350
DataRelationCollection class, 350
DataRow class, 348
DataRowCollection class, 347
DataSet class, 338
DataTable class, 343
DataTableCollection class, 341
DataTableMapping class, 354
DataTableMappingCollection class, 353
DataView class, 340
OleDbCommand class, 321
OleDbConnection class, 320
OleDbDataAdapter class, 325
OleDbDataReader class, 323
OLEDBError object, 267
OleDbParameter class, 327
OleDbParameterCollection class, 326
SqlCommand class, 330
SqlConnection class, 328
SqlDataAdapter class, 334
SqlDataReader class, 331
SqlParameter class, 336
SqlParameterCollection class, 335

GetInt16 method
OleDbDataReader class, 323
SqlDataReader class, 331

GetInt32 method
OleDbDataReader class, 323
SqlDataReader class, 331

GetInt64 method
OleDbDataReader class, 323
SqlDataReader class, 332

GetLifeTimeService method
DataTableMapping class, 354
DataTableMappingCollection class, 353
OleDbCommand class, 321
OleDbConnection class, 320
OleDbDataAdapter class, 325
OleDbDataReader class, 323
OleDbParameter class, 327
OleDbParameterCollection class, 326
SqlCommand class, 330
SqlConnection class, 328
SqlDataAdapter class, 334
SqlDataReader class, 332

Index376

524830-1 Index.F 11/7/01 9:05 AM Page 376

SqlParameter class, 336
SqlParameterCollection class, 335

GetName method
DataReader object, 194
OleDbDataReader class, 323
SqlDataReader class, 332

GetOleDbSchemaTable method,
OleDbConnection class, 320

GetOrdinal method
DataReader object, 194
OleDbDataReader class, 323
SqlDataReader class, 332

GetParentRow method, DataRow class, 348
GetParentRows method, DataRow class, 348
GetSchemaTable method
OleDbDataReader class, 323
SqlDataReader class, 332

GetService method
DataColumn class, 346
DataSet class, 338
DataTable class, 343
DataView class, 340

GetSqlBinary method, SqlDataReader
class, 332

GetSqlBoolean method, SqlDataReader
class, 332

GetSqlByte method, SqlDataReader class, 332
GetSqlDataTime method, SqlDataReader

class, 332
GetSqlDecimal method, SqlDataReader

class, 332
GetSqlDouble method, SqlDataReader

class, 332
GetSqlGuid method, SqlDataReader class, 332
GetSqlInt16 method, SqlDataReader class, 332
GetSqlInt32 method, SqlDataReader class, 332
GetSqlInt64 method, SqlDataReader class, 332
GetSqlMoney method, SqlDataReader class, 332
GetSqlSingle method, SqlDataReader

class, 332
GetSqlString method, SqlDataReader

class, 332
GetSqlValue method, SqlDataReader class, 332
GetSqlValues method, SqlDataReader

class, 332
GetString method
OleDbDataReader class, 323
SqlDataReader class, 332

GetTimeSpan method
OleDbDataReader class, 323
SqlDataReader class, 332

Getting Started tutorial, 17
GetTitles() function, 239–240
GetType method
Constraint class, 352
ConstraintCollection class, 352
DataColumn class, 346
DataColumnCollection class, 344

DataRelation class, 351
DataRelationCollection class, 350
DataRow class, 348
DataRowCollection class, 347
DataSet class, 338
DataTable class, 343
DataTableCollection class, 341
DataTableMapping class, 354
DataTableMappingCollection class, 353
DataView class, 340
OleDbCommand class, 321
OleDbConnection class, 320
OleDbDataAdapter class, 325
OleDbDataReader class, 323
OLEDBError object, 267
OleDbParameterCollection class, 326
SqlCommand class, 330
SqlDataAdapter class, 334
SqlDataReader class, 332
SqlParameter class, 336
SqlParameterCollection class, 335

GetType property, SqlConnection class, 328
GetValue method
DataReader object, 193
OleDbDataReader class, 323
SqlDataReader class, 333

GetValues method
OleDbDataReader class, 323
SqlDataReader class, 333

GetXml method, DataSet class, 338
GetXmlSchema method, DataSet class, 338
GNU software, 317
GotDotNet Web site, 19

	
HailStorm, 10
HasChanges method, DataSet class, 338
HasErrors property
DataRow class, 347
DataSet class, 337
DataTable class, 342

HasVersion method, DataRow class, 348
HeaderStyle property, DataGrid control, 236
HelpLink property, OLEDBException object, 268
hidden elements, 73
hierarchies, 56, 255–261
HMI Test directory (CD), 317
Host Integration Server 2000, 10
HTML control events, 74–76
HTML controls

ASP to ASP.NET migration, 293–294
overview of, 70–74

Hungry Minds customer service, 318
HyperText Transfer Protocol, 6

Index 377

524830-1 Index.F 11/7/01 9:05 AM Page 377

IBuySpy.com, 18, 19
identity impersonate element,

in Web.config, 127
IF EXISTS statement, 39
if statements, 362
impersonation, 124
@Import directive, 65, 304
ImportRow method, DataTable class, 343
indexed property access, 360
indexes, 189
IndexOf method
DataColumnCollection class, 344
DataTableCollection class, 341
DataTableCollection object, 216
OleDbParameterCollection class, 326
SqlParameterCollection class, 335

IndexOfDataSetTitle method,
DataTableMappingCollection class,
353

InferXmlSchema method, DataSet class, 338
Infragistics UltraSuite, 317
InitializeLifeTimeService method
DataTableMapping class, 354
DataTableMappingCollection class, 353
OleDbCommand class, 321
OleDbConnection class, 320
OleDbDataAdapter class, 325
OleDbDataReader class, 323
OleDbParameter class, 327
OleDbParameterCollection class, 326
SqlCommand class, 330
SqlConnection class, 329
SqlDataAdapter class, 334
SqlDataReader class, 333
SqlParameter class, 336
SqlParameterCollection class, 335

initializing variables, 361–362
InnerException property, OLEDBException

object, 268
in-process state management, 113–114, 117
Insert method
DataTableMappingCollection class, 353
OleDbParameterCollection class, 326
SqlParameterCollection class, 335

INSERT rights, for database users, 26
INSERT statements, 47–49
InsertCommand property
DataAdapter object, 201
OleDbDataAdapter class, 324
SqlDataAdapter class, 333

instability, 7–8
installation

ASP.NET and ADO.NET components, 15–16
CD, 316
InstallSqlState.sql file, 119
system requirements, 13–14
testing, 17–19

InstallSqlState.sql file, 119
integer data, 22
Internet Explorer 5.5, 15
Internet Security and Acceleration Server 2000, 10
Internet Server Application Programming

Interface (ISAPI), 6–7
Internet standards, 5–6
intrinsic HTML controls, 74
intrinsic Web controls, 80–83
ISAPI. See Internet Server Application

Programming Interface (ISAPI)
IsClosed property
DataReader object, 190
OleDbDataReader class, 322
SqlDataReader class, 330

IsDBNull method
OleDbDataReader class, 324
SqlDataReader class, 333

IsNull method, DataRow class, 348
IsNullable property
OleDbParameter class, 327
SqlParameter class, 335

isPostBack property, 63
IsPostBack property, 75
IsReadOnly property
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 346
DataTableCollection class, 340

IsSynchronized property
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 346
DataTableCollection class, 340

Item property
ConstraintCollection class, 351
DataColumnCollection class, 344
DataReader object, 189
DataRelationCollection class, 349
DataRow class, 347
DataRowCollection class, 346
DataTableCollection class, 340
DataTableCollection object, 214–215
DataTableMappingCollection class, 352
DataView class, 339
GetValue method for, 193
OleDbDataReader class, 322
OleDbParameterCollection class, 325
SqlDataReader class, 331
SqlParameterCollection class, 334

ItemArray property, DataRow class, 347
ItemStyle property, DataGrid control, 236

�
Java servlets, 278–281
JOIN queries, 300

Index378

524830-1 Index.F 11/7/01 9:05 AM Page 378

JScript, 292
Just In Time compilation, 292

�
/l[anguage]: switch, WebServiceUtil, 289
label color, 94
LANGUAGE attribute, 62
language independence, 8, 67–68
late binding, 303–304
Let statement, 297
LIKE predicate, with WHERE clause, 50
LineNumber property, SQLException object, 263
list controls, 84–85
ListBox Web Controls, 192
LocalDirector, 114
Locale property
DataSet class, 337
DataTable class, 342

Localization tutorial, 18
location path element, in Web.config, 125
log file, 269–270
logical structure, 56–57
login names, 31
login.aspx form, 129–131, 133

machine.config file, 124
managed code, 9
managed objects, 304
Managed Providers, 164
marshaling and transport activities, 288
Master/Detail controls, 236–240
masterdetail.aspx file, 237–238
MaximumControl property, of RangeValidator

control, 109
MaximumValue property, of RangeValidator

control, 109
MaxLength property, DataColumn class, 345
MDAC 2.7

download site, 15
recommended, 13–14, 16

MemberwiseClone() method, OLEDBError
object, 268

memory, impact of caching on, 147
Merge method, DataSet class, 338
Message property
OLEDBError object, 267
OLEDBException object, 268

message-based approach, 197
metadata, 9
methods
btnLogin_Click() method, 131
caching, 145–147
of classes, 155
command objects, 183–185
connection, 172

Constraint class, 352
ConstraintCollection class, 351–352
cookieless, 115–117
customizing for User Controls, 94–95
data shaping, 257–260
DataAdapter object, 201–203
DataColumn class, 346
DataColumnCollection class, 344–345
DataReader object, 187–194
DataRelation class, 350–351
DataRelationCollection class, 349–350
DataRow class, 348–349
DataRowCollection class, 347
DataSet class, 337–339
DataTable class, 342–343
DataTable object, 221
DataTableCollection class, 341
DataTableCollection object, 215–216
DataTableMapping class, 354
DataTableMappingCollection class, 353
DataView class, 340
OleDbCommand class, 321–322
OledbCommand object, 183–185
OleDbConnection class, 319–320
OleDbDataAdapter class, 324–325
OleDbDataReader class, 322–324
OLEDBError object, 267–268
OleDbParameter class, 327
OledbParameter object, 182–183
OleDbParameterCollection class, 325–326
Response object (ASP), 136
SqlCommand class, 329–330
SqlConnection class, 328–329
SqlDataAdapter class, 334
SqlDataReader class, 331–333
SqlParameter class, 336
SqlParameterCollection class, 334–335
Table object, 163
transaction, 175

Microsoft Access, 22
Microsoft Data Access Components (MDAC).

See MDAC 2.7
Microsoft Intermediate Language, 292
Microsoft Windows Installer Components, 16
migration

ADO to ADO.NET, 299–306
ASP to ASP.NET, 291–298

MinimumCapacity property, DataTable
class, 342

MinimumControl property, of RangeValidator
control, 109

MinimumValue property, of RangeValidator
control, 109

MissingMappingAction property
OleDbDataAdapter class, 324
SqlDataAdapter class, 333

MissingSchemaAction property
OleDbDataAdapter class, 324
SqlDataAdapter class, 333

Index 379

524830-1 Index.F 11/7/01 9:05 AM Page 379

Mobile Information 2001 Server, 10
MSDN Online Newsgroups, 19
Multipage control, 228
multithreading, 7
munging, 115–117

�
/n[amespace]: switch, WebServiceUtil, 289
names, 30–32
Namespace property
DataColumn class, 345
DataSet class, 337
DataTable class, 342

namespaces
needed for data binding, 226
needed for Web Services, 284
OleDb, 170
overview of, 66–67

naming conventions, 23
NativeError property, OLEDBError object, 267
Nested property, DataRelation class, 350
.NET Clients, 10
.NET Common Language Runtime (CLR), 8–9, 292
.NET Compression Library, 317
.NET Experiences, 9
.NET Framework

download sites, 15
overview of, 11
system requirements, 13–14

.NET Framework SDK
installation, 15–16
testing installation, 17–19

.NET platform elements, 9–11

.NET Servers, 10

.NET Services, 10

.NET Tools, 11
Network Load Balancing clusters, 114
network protocols, 6
new databases. See databases
New keyword, 155–156
new tables. See tables
NewRow method
DataTable class, 343
DataTable object, 163, 221

NextResult method
OleDbDataReader class, 324
SqlDataReader class, 333

None setting, for validation control display
property, 103

normalization of data, 24–26
Notepad, 284
n-tier development, 151
NULL predicate, with WHERE clause, 50
Number property, SQLException object, 263

�
object models

ADO.NET, 160–164
overview of, 156–159

object-oriented programming, 155
objects, defined, 155
ODBC data provider, 173–174
Offset property, SqlParameter class, 336
OldDbType property, OleDbParameter class, 327
OLEDB data provider, 173
OleDbCommand class, 320–322
OleDbCommand object

building, 178–183
constructing DataAdapter with, 199
function of, 177
methods, 183–185

OleDbConnection class, 164, 319–320
OleDbConnection object

connection properties in, 172
constructing DataAdapter with, 199
overview of, 169–170

OleDbDataAdapter class, 324–325
OleDbDataAdapter object

data binding with, 226–227
OLEDBError class creation, 265
SqlDataAdapter versus, 198

OleDbDataReader class, 322–324
OleDbDataReader object, 187, 193, 238–239
OLEDBError object, 265–268
OLEDBErrorHandler, 264–265
OLEDBException object, 263–265
OleDbParameter class, 326–327
OleDbParameterCollection class, 325–326
OnCancel property, DataGrid control, 245, 247
OnCancelCommand event, DataGrid control, 247
OnClick events, 83
OnDeleteCommand event, DataGrid control,

249–250
OnEditCommand property, DataGrid control,

245–247
one-to-many relationships, 25
OnServerValidate property, of

CustomValidator control, 111
OnSortCommand event, DataGrid control,

250–251
OnUpdateCommand event, DataGrid control,

247–249
OnUpdateCommand property, DataGrid control,

245
Open method

of ADO.NET connection string, 172
OleDbConnection class, 320
SqlConnection class, 329

Operator property, of validation controls, 103
optional elements in relational databases, 22–23
ORDER clause, in SELECT statements, 52
Ordinal property, DataColumn class, 345

Index380

524830-1 Index.F 11/7/01 9:05 AM Page 380

out-of-process state management, 113–114,
118–121

@OutputCache directive, 65, 136–137

�
/pa[th]: switch, WebServiceUtil, 289
packets, 6
PacketSize property, SqlConnection class, 328
@Page directive, 65
page data caching, 142–147
page directives, 64–66
Page object, 63
page output caching, 136–139
Page_Load event

connecting to databases in, 226
handling HTML control events with, 75–76

Page_OnLoad event, 75–76
PageLoad() function, 238
ParameterName property
OleDbParameter class, 327
SqlParameter class, 336

parameters, 181–182
Parameters property
OleDbCommand class, 321
OledbCommand object, 181–183
SqlCommand class, 329

parent-child relationships. See hierarchies
ParentColumns property, DataRelation

class, 350
parentheses, 296
ParentKeyConstraint property,

DataRelation class, 350
ParentRelations property
DataTable class, 342
DataTable object, 218

ParentTable property, DataRelation class, 350
Passport authentication, 132–134
Passport redirecturl element, in

Web.config, 126
Passport SDK, 132
PassportAuthenticationModule, 132
Password parameter, Connection object,

171–172
passwords, 31, 126
percent sign, 50
Performance tutorial, 18
pessimistic locking, 151
platform independence, SOAP, 277–282
policies, 26
pop-up boxes, 111
POST requests, 6
prBandDelete stored procedure, 192–193
precedence rules, 49
Precision property
OleDbParameter class, 327
SqlParameter class, 336

predicates, with WHERE clause, 50

Prefix property
DataColumn class, 346
DataSet class, 337
DataTable class, 342

Premium version, 16
PREP Passport accounts, 132
Prepare method
OleDbCommand class, 322
OledbCommand object, 183–184
SqlCommand class, 330

primary key
defined, 24
setting in ADO.NET, 163
setting in SQL Server, 33

PrimaryKey property
DataTable class, 342
DataTable object, 218–219

Procedure property, SQLException object, 264
procedures, stored, 37–38
prolog, 56–57
properties

ASP Response object, 136
of classes, 155
classes as, 157
Constraint class, 352
ConstraintCollection class, 351
customizing for User Controls, 92–94
DataAdapter object, 200–201
DataColumn class, 345–346
DataColumnCollection class, 344
DataGrid control, 234–236, 245–247
DataReader object, 189–193
DataRelation class, 350
DataRelationCollection class, 349
DataRow class, 347–348
DataRowCollection class, 346–347
DataSet class, 337
DataSet object, 203–204, 212–214
DataTable class, 341–342
DataTable object, 217–221
DataTableCollection class, 340
DataTableCollection object, 214–215
DataTableMapping class, 354
DataTableMappingCollection class, 352
DataView class, 339
OleDbCommand class, 320–321
OledbCommand object, 179–183
OleDbConnection class, 319
OleDbDataAdapter class, 324
OleDbDataReader class, 322
OLEDBError object, 267
OLEDBException object, 268
OleDbParameter class, 326–327
OleDbParameterCollection class, 325
Page object, 63, 75
sliding cache expiration, 137–139
SqlCommand class, 329
SqlConnection class, 327–328

Continued

Index 381

524830-1 Index.F 11/7/01 9:05 AM Page 381

properties (continued)
SqlDataAdapter class, 333
SqlDataReader class, 330–331
SQLException, 263–264
SqlParameter class, 335–336
SqlParameterCollection class, 334
Tables collection, 162
TablesCollection object, 214–215
validation controls, 102–111
value property, 75

Properties dialog box, 33, 35
protocols, 5
Provider parameter, Connection object,

171, 173
Provider property, OleDbConnection class, 319
proxy classes, 288–289
public methods, 285
pubs_authors.xml file, 227

�
Query Analyzer

creating views, 37
opening in T-SQL, 31
stored procedure creation, 37–38
table creation with, 34
trigger creation, 38–39

QuickStart Tutorials, 16–18
quotes. See double quotes; single quotes

�
RangeValidator control, 101, 108–109
Read method
DataReader object, 190, 193
OleDbDataReader class, 324
SqlDataReader class, 333

ReadMe file, 315, 318
ReadOnly property, DataColumn class, 346
ReadXml method, DataSet class, 338
ReadXmlSchema method, DataSet class, 338
RecordsAffected property
DataReader object, 191–193
OleDbDataReader class, 322
SqlDataReader class, 331

RecordSet object
building lists and tables, 223
DataSet versus, 300, 301
evolution of, 149–150
obsolete, 152

@Register directive, 65, 91
RegulatorExpressionValidator control,

101, 105–106
RejectChanges method
DataRow class, 348
DataSet class, 339
DataTable class, 343

relational databases, 21. See also databases
RelationName property, DataRelation

class, 350
Relations method, data shaping, 257–260
Relations property, DataSet class, 337
relationships, creating, 35–36
remote access, 278–281
Remove method
ConstraintCollection class, 352
DataColumnCollection class, 344
DataRelationCollection class, 350
DataRowCollection class, 347
DataTableCollection class, 341
DataTableCollection object, 216
DataTableMappingCollection class, 353
OleDbParameterCollection class, 326
SqlParameterCollection class, 335

RemoveAt method
ConstraintCollection class, 352
DataColumnCollection class, 345
DataRelationCollection class, 350
DataRowCollection class, 347
DataTableCollection class, 341
DataTableMappingCollection class, 353
OleDbParameterCollection class, 326
SqlParameterCollection class, 335

request types, 128
request-response type protocols, 6
required elements, 22–23
RequiredFieldValidator control, 101, 104–105
Reset method, DataSet class, 339
ResetCommandTimeout method
OleDbCommand class, 322
SqlCommand class, 330

Response messages, 280–281
Response object, 136
Response.Write() statements, 295
rich controls, 85–86
Rollback Transaction method, 175
root elements, 56
RowError property, DataRow class, 348
RowFilter property, DataView class, 339
rows

adding with Web controls, 81–83
deleting, 49–50
selecting, 51–53

Rows property
DataTable class, 342
DataTable object, 219–221

RowState property, DataRow class, 348
RowStateFilter property, DataView class, 339
RUNAT attribute, 62
runat=”server” attribute/value pair

with HTML controls, 70, 73, 76
with Web controls, 80, 82

Runtime Callable Wrappers (RCW), 304–305

Index382

524830-1 Index.F 11/7/01 9:05 AM Page 382

�
Sample Applications, 18
samples, 16
scalability, 8, 302
Scale property
OleDbParameter class, 327
SqlParameter class, 336

scavenging, 142, 146–147
schemas, 32, 57
script blocks, 294–295
scripting languages, 292
second normal form, 24
security

forms-based authentication for, 128–131
key mechanisms in ASP.NET, 123–124

security policies, 26
security section of Web.config, 124–128
Security tutorial, 18
Select method, DataTable class, 343
SELECT rights, 26
SELECT statements, 51–53
SelectCommand property
DataAdapter object, 200–201
OleDbDataAdapter class, 324
SqlDataAdapter class, 333

sequence numbers, 24
server controls, 225–227
Server property, SQLException object, 264
servers

.NET platform, 10
running controls on, 63, 225, 226–227
on World Wide Web, 5

server-side cursors, 152–153, 301
server-side validation, 102, 109–111
ServerVersion property
OleDbConnection class, 319
SqlConnection class, 328

session id information, munging, 115–117
session management. See state maintenance
Session object, 114
session state, 135
Set statement, 297
SetColumnError method, DataRow class, 348
SetParentRow method, DataRow class, 349
SetSlidingExpiration property, 137–139
SetUnspecified method, DataRow class, 349
setup routines, 16
Shape Provider, 255–257
SHAPE providers, 300
SharePoint Portal Server 2001, 10
shareware programs, 317
showcache() method, 145
ShowCache() subroutine, 143–144
ShowMessageBox property, of

ValidationSummary control, 111
ShowSummary property, of ValidationSummary

control, 111

Simple Object Access Protocol (SOAP)
DISCO, 281
overview of, 277–278
remote access, 278–281
WSDL, 281, 287–288

single quotes, 48–49
Site property
DataColumn class, 346
DataSet class, 337
DataTable class, 342
DataView class, 339
OleDbCommand class, 321
OleDbConnection class, 319
OleDbDataAdapter class, 324
SqlCommand class, 329
SqlConnection class, 328
SqlDataAdapter class, 333

Size property
OleDbParameter class, 327
SqlParameter class, 336

sliding cache expiration, 137–139, 146
sMyForm variable, 140
SOAP. See Simple Object Access Protocol (SOAP)
social security numbers, 106
Software directory (CD), 316
Sort property, DataView class, 339
SortExpression property, DataGrid

control, 251
sorting

with DataGrid control, 250–252
with ORDER clause, 52

Source property
OLEDBError object, 267
OLEDBException object, 268

SourceColumn property
OleDbParameter class, 327
SqlParameter class, 336

SourceTable property, DataTableMapping
class, 354

SourceVersion property
OleDbParameter class, 327
SqlParameter class, 336

Sparse property, DataColumn class, 346
special identities, 127–128
SQL. See Structured Query Language (SQL)
SQL Managed Provider, 152
SQL Server

2000 Desktop Edition, 14
database creation, 29–32
as .NET Enterprise Server, 10
requirements for ASP.NET development, 14
session management with, 118–120
stored procedure creation, 37–38
table creation, 32–37
trigger creation, 38–39
view creation, 37

SqlCommand class, 329–330
SqlCommand object, 177
SqlConnection class, 164, 327–329

Index 383

524830-1 Index.F 11/7/01 9:05 AM Page 383

SqlConnection object, 169
SqlDataAdapter class, 333–334
SqlDataAdapter object, 198
SqlDataReader class, 330–333
SqlDataReader object, 187
SqlDbType property, SqlParameter class, 336
SQLException properties, 263–264
SqlParameter class, 335–336
SqlParameterCollection class, 334–335
SQLState property, OLEDBError object, 267
SRC attribute, 62
sReturnURL, 133
StackTrace property, OLEDBException

object, 268
Standard version, 16
state maintenance

ASP.NET versus ASP, 113–114
cookieless method, 115–117
efficiency of newer browsers, 69
external approaches, 118–121
HTML control overview, 70–77

State property
OleDbConnection class, 319
SqlConnection class, 328
SQLException object, 264

statements, coding compared, 359
Static setting, for validation control display

property, 103
stored procedures, creating, 37–38
StoredProcedure value, CommandType

property, 180
string concatenation, 365
strongly typed data, 152, 296
Structured Query Language (SQL)

defined, 47
DELETE statements, 49–50
INSERT statements, 47–49
SELECT statements, 51–53
UPDATE statements, 50–51

support groups, 19
SurveyForm.htm, 140
switches, WebServiceUtil, 289
SyncRoot property
ConstraintCollection class, 351
DataColumnCollection class, 344
DataRelationCollection class, 349
DataRowCollection class, 347
DataTableCollection class, 340

syntax differences, 295–297
System Event Log, 269–270
System namespace, 66
system requirements

ASP.NET, 13–14
CD, 315

System.Collections namespace, 66
System.Data namespace

description, 67, 170
needed for data binding, 226
needed for Web Services, 284

System.Data.OleDb namespace
description, 67, 170
needed for data binding, 226

System.Data.SQLClient namespace
description, 67, 170
needed for SqlCommand object, 177
needed for Web Services, 284

System.Data.SqlTypes namespace, 170
System.Diagnostics namespace, 269
System.IO namespace, 66, 227
System.Web namespace, 67
system.web section, of Web.config, 124–128
System.Web.Caching namespace, 142
System.Web.Services namespace, 284
System.Web.Services.dll, 289
System.Web.UI namespace, 67
System.Web.UI.HtmlControls namespace, 67
System.Web.UI.WebControls namespace, 67
SystemXML namespace, 67
System.XML.dll, 289

�
TabControl control, 228
Table property
Constraint class, 352
DataColumn class, 346
DataRow class, 348
DataView class, 339

Table Web control, 80–81
TableCell control, 81–83
TableDirect value, CommandType property, 180
TableMappings property
OleDbDataAdapter class, 324
SqlDataAdapter class, 333

TableName property, DataTable class, 342
TableRow control, 81–83
tables

adding data with INSERT, 47–49
adding rows and columns with Web controls,

81–83
binding controls to, 226–227
code for displaying, 356–358
code for retrieving, 355–356
creating in ADO.NET, 162–163
creating in SQL Server, 32–37
deleting rows, 49–50
designing, 23–24

Tables property
DataSet class, 337
DataSet object, 212–214

tags, 58. See also XML
TargetSite property, OLEDBException

object, 268
TCP/IP, 5–6
telephone numbers, 106
testing stored procedures, 38
Text value, CommandType property, 180

Index384

524830-1 Index.F 11/7/01 9:05 AM Page 384

third normal form, 24
thread-safe cache, 142
TlbImp.exe utility, 298, 305
Toolbar control, 228
tools, 11
ToString method
Constraint class, 352
ConstraintCollection class, 352
DataColumn class, 346
DataColumnCollection class, 345
DataRelation class, 351
DataRelationCollection class, 350
DataRow class, 349
DataRowCollection class, 347
DataSet class, 339
DataTable class, 343
DataTableCollection class, 341
DataTableMapping class, 354
DataTableMappingCollection class, 353
DataView class, 340
OleDbCommand class, 322
OleDbConnection class, 320
OleDbDataAdapter class, 325
OleDbDataReader class, 324
OLEDBError object, 268
OleDbParameter class, 327
OleDbParameterCollection class, 326
SqlCommand class, 330
SqlConnection class, 329
SqlDataAdapter class, 334
SqlDataReader class, 333
SqlParameter class, 336
SqlParameterCollection class, 335

Tracing tutorial, 18
Transaction objects, 175
Transaction property
OleDbCommand class, 321
SqlCommand class, 329

transactions, in ADO.NET, 174–176
Transact-SQL (T-SQL)

advantages, 29
database creation with, 31
table creation, 34–37

Transmission Control Protocol/Internet Protocol
(TCP/IP), 5–6

TreeNodesrc attribute, TreeView control,
229–230

TreeView control, 228–230
treeviewframeset.htm, 230
trial software, 317
triggers, 38–39
troubleshooting CD, 318
try . . . catch structure, 175
Type property

of CompareValidator control, 107–108
of validation controls, 103

type-safe programming, 79

�
underscore, 50
UninstallSqlState.sql, 119
unique constraints, 24, 33–34
Unique property, DataColumn class, 346
unmanaged code, 9
unmanaged objects, 304
Update method
DataAdapter object, 203
OleDbDataAdapter class, 325
SqlDataAdapter class, 334

UPDATE rights, 26
UPDATE statements, 50–51
UpdateCommand property
DataAdapter object, 201
OleDbDataAdapter class, 324
SqlDataAdapter class, 333

UpdatedRowSource property
OleDbCommand class, 321
SqlCommand class, 329

updates to bound data, 243–246
UpdateTextBox function, 294
UpLevel directive, 102
URLs

custom validators for, 106
munging session id information in, 115–117

user access, 126–128
User Controls

adding properties, 92–94
creating, 90–92
overview of, 89
responding to events, 95–96
writing custom methods, 94–95

User ID parameter, Connection object, 171–172
user name element, in Web.config, 126
user password element, in Web.config, 126
user rights, 26
users.xml file, 128–129

�
validation controls

common aspects, 102–103
DataGrid control, 248
interaction with, 70
overview of, 101–102
using, 103–111

ValidationExpression property, for
RegulatorExpressionValidator
control, 106

ValidationSummary control, 101, 111
Value property

checking, 75
OleDbParameter class, 327
SqlParameter class, 336

values, automatic management, 70
variable declaration, 296, 358–359

Index 385

524830-1 Index.F 11/7/01 9:05 AM Page 385

variable initialization, 361–362
variable type conversion, 366
variant data types, 151
variant-oriented languages, 296
VB .NET

array coding, 361
ASP.NET requirements, 292
case statements, 363
code for displaying tables, 357
code for retrieving tables, 355
comment code, 360
developing Web Services with, 284–286
error handling, 366
for loops, 364
if statements, 362
indexed property access, 360
New keyword, 155–156
statement code, 359
string concatenation, 365
syntax differences from VBScript, 295–297
variable declaration coding, 359
variable type conversion, 366
while loops, 364

VBScript
array coding, 360–361
ASP.NET requirements and, 292
case statements, 363
code for displaying tables, 356–357
code for retrieving tables, 355
comment code, 359
error handling, 365
for loops, 364
if statements, 362
indexed property access, 360
statement code, 359
string concatenation, 365
syntax differences from VB .NET, 295–297
variable declaration coding, 358
variable initialization coding, 361–362
variable type conversion, 366
while loops, 364

version attribute, of XML declaration, 57
views, creating, 37
_VIEWSTATE field, 74
Visual Studio .NET

building Web Services with, 284
download site, 15
overview of, 11

�
Web control events, 83
Web controls

intrinsic controls, 80–83
list controls, 84–85
overview of, 79–80
rich controls, 85–86

Web Service Description Language (WSDL),
281, 287–288

Web Services
developing, 284–287
overview of, 10, 283
using, 287–290
XML format, 59

Web sites
SQL Server 2000, 14
support groups, 19
TreeView control, 228, 230
Windows 2000, 14
Windows Load Balancing Services, 114

Web.config file
ASP.NET State Server, 121
cookieless state maintenance, 115–116
Passport authentication, 132–133
purpose of, 124
security section options, 124–128
setting forms-based authentication, 128
SQL Server state maintenance, 119–120

WebMethod() attribute, 285
WebServiceUtil, 289
well-formed XML documents, 58
WHERE clause

with DELETE statement, 49–50
in SELECT statements, 51–52
with UPDATE statement, 51

while loops, 364–365
wildcard characters, 50
Windows 98, 13
Windows 2000, 14–15
Windows Load Balancing Services, 114
Windows ME, 13
Windows NT 4.0, 7, 13
Windows XP, 14
WorkStationID property, SqlConnection

class, 328
World Wide Web client/server basics, 5–6
WriteEvent() function, 269–270
WriteXml method, DataSet class, 339
WriteXmlSchema method, DataSet class, 339
WSDL, 281, 287–288
WSDL.exe, 288

�
XML

ADO.NET support, 150–151
document structure, 56–58
overview of, 55–60
syntax, 58–59

XML declaration, 57
XML files

data binding to, 227–228
in forms-based authentication, 128–129

xspisapi.dll, 127

�
zip codes, 106

Index386

524830-1 Index.F 11/7/01 9:05 AM Page 386

Hungry Minds, Inc.
End-User License Agreement
READ THIS. You should carefully read these terms and conditions before opening the soft-
ware packet(s) included with this book (“Book”). This is a license agreement (“Agreement”)
between you and Hungry Minds, Inc. (“HMI”). By opening the accompanying software
packet(s), you acknowledge that you have read and accept the following terms and condi-
tions. If you do not agree and do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software packet(s) to the place you obtained
them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclusive
license to use one copy of the enclosed software program(s) (collectively, the
“Software”) solely for your own personal or business purposes on a single com-
puter (whether a standard computer or a workstation component of a multi-user
network). The Software is in use on a computer when it is loaded into temporary
memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or other
storage device). HMI reserves all rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copyright,
in and to the compilation of the Software recorded on the disk(s) or CD-ROM
(“Software Media”). Copyright to the individual programs recorded on the Software
Media is owned by the author or other authorized copyright owner of each pro-
gram. Ownership of the Software and all proprietary rights relating thereto remain
with HMI and its licensers.

3. Restrictions On Use and Transfer.
(a) You may only (i) make one copy of the Software for backup or archival pur-

poses, or (ii) transfer the Software to a single hard disk, provided that you
keep the original for backup or archival purposes. You may not (i) rent or
lease the Software, (ii) copy or reproduce the Software through a LAN or
other network system or through any computer subscriber system or bulletin-
board system, or (iii) modify, adapt, or create derivative works based on the
Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You may
transfer the Software and user documentation on a permanent basis, provided
that the transferee agrees to accept the terms and conditions of this Agreement
and you retain no copies. If the Software is an update or has been updated, any
transfer must include the most recent update and all prior versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in Appendix F
of this Book. These limitations are also contained in the individual license agree-
ments recorded on the Software Media. These limitations may include a require-
ment that after using the program for a specified period of time, the user must pay
a registration fee or discontinue use. By opening the Software packet(s), you will
be agreeing to abide by the licenses and restrictions for these individual programs
that are detailed in Appendix F and on the Software Media. None of the material
on this Software Media or listed in this Book may ever be redistributed, in original
or modified form, for commercial purposes.

534830-1 EULA.F 11/7/01 9:05 AM Page 387

5. Limited Warranty.
(a) HMI warrants that the Software and Software Media are free from defects in

materials and workmanship under normal use for a period of sixty (60) days
from the date of purchase of this Book. If HMI receives notification within
the warranty period of defects in materials or workmanship, HMI will replace
the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE
CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN
THIS BOOK. HMI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED
IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE
OPERATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.
(a) HMI’s entire liability and your exclusive remedy for defects in materials and work-

manship shall be limited to replacement of the Software Media, which may be
returned to HMI with a copy of your receipt at the following address: Software
Media Fulfillment Department, Attn.: ASP.NET Database Programming Weekend
Crash Course, Hungry Minds, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256,
or call 1-800-762-2974. Please allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has resulted from accident, abuse,
or misapplication. Any replacement Software Media will be warranted for the
remainder of the original warranty period or thirty (30) days, whichever is longer.

(b) In no event shall HMI or the author be liable for any damages whatsoever
(including without limitation damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss) aris-
ing from the use of or inability to use the Book or the Software, even if HMI
has been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability
for consequential or incidental damages, the above limitation or exclusion
may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software for or on behalf of the United States of America, its agencies and/or
instrumentalities (the “U.S. Government”) is subject to restrictions as stated in
paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar
clauses in the NASA FAR supplement, as applicable.

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and
may not be modified or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement shall take precedence
over any other documents that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any court or tribunal to be
invalid, illegal, or otherwise unenforceable, each and every other provision shall
remain in full force and effect.

534830-1 EULA.F 11/7/01 9:05 AM Page 388

	ASP.NETDatabase ProgrammingWeekend Crash Course ™
	Front Matter
	Preface
	Who Should Read This Book
	Organization and Presentation
	Contacting the Authors
	Acknowledgments

	Contents
	Introduction
	Why Microsoft .NET?
	The Microsoft .NET Architecture

	Friday
	Part I - Friday Evening
	Session 1 - Introducing ASP.NET
	Internet Standards
	The Evolution of ASP
	The Benefits of ASP.NET
	What Is .NET?
	.NET Experiences
	.NET Clients
	.NET Services
	.NET Servers

	Review
	Quiz Yourself

	Session 2 - Setting Up .NET
	Installation Requirements
	Installing ASP.NET and ADO.NET
	Installing the .NET Framework SDK

	Testing Your Installation
	Support for .NET
	Review
	Quiz Yourself

	Session 3 - Designing a Database
	Designing a Database
	Normalization of Data
	Security Considerations
	Review
	Quiz Yourself

	Session 4 - Building a Database
	Creating a Database
	Creating SQL Server Tables
	Creating a View
	Creating a Stored Procedure
	Creating a Trigger
	Review
	Quiz Yourself

	Part I - Friday Evening Part Review

	Saturday
	Part II - Saturday Morning
	Session 5 - Using SQL: A Primer
	INSERT Statements
	DELETE Statements
	UPDATE Statements
	SELECT Statements
	Review
	Quiz Yourself

	Session 6 - XML: A Primer
	The XML Design Specs
	The Structure of XML Documents
	XML Syntax
	XML and the .NET Framework
	Review
	Quiz Yourself

	Session 7 - Developing ASP.NET Pages
	ASP.NET Events
	Page Directives
	Namespaces
	Choosing a Language
	Review
	Quiz Yourself

	Session 8 - Using HTML Controls
	Introducing HTML Controls
	Using HTML controls
	How HTML controls work
	Intrinsic HTML controls

	HTML Control Events
	The Page_OnLoad event
	Custom event handlers

	Review
	Quiz Yourself

	Session 9 - Using Web Controls
	Intrinsic Controls
	Using intrinsic controls
	Handling intrinsic Web control events

	List Controls
	Rich Controls
	Review
	Quiz Yourself

	Session 10 - Introducing User Controls
	Creating a User Control
	Adding User Control Properties
	Writing Custom Control Methods
	Implementing User Control Events
	Review
	Quiz Yourself

	Part II - Saturday Morning Part Review

	Part III - Saturday Afternoon
	Session 11 - Validating User Input
	Common Aspects of Validation Controls
	Display property
	Type Property
	Operator Property

	Using Validation Controls
	RequiredFieldValidator
	RegularExpressionValidator
	CompareValidator
	RangeValidator
	CustomValidator
	ValidationSummaryx

	Review
	Quiz Yourself

	Session 12 - Maintaining State in ASP.NET
	Maintaining State Out of Process for Scalability
	No More Cookies but Plenty of Milk!
	Out of Process State Management
	Review
	Quiz Yourself

	Session 13 - Authentication and Authorization
	Introducing the Key Security Mechanisms
	Web.config and Security
	Special identities
	Using request types to limit access

	New Tricks for Forms-based Authentication
	Using the Passport Authentication Provider
	Review
	Quiz Yourself

	Session 14 - ASP.NET Caching
	ASP.NET Updates to the ASP Response Model
	Caching with ASP.NET
	Page Output Caching
	Absolute cache expiration
	Sliding cache expiration

	Fragment Caching
	Page Data Caching
	Expiration
	File and Key Dependency and Scavenging

	Review
	Quiz Yourself

	Session 15 - Introducing ADO.NET
	A Brief History of Microsoft Data Access
	Differences between ADO and ADO.NET
	Transmission formats
	Connected versus disconnected datasets
	COM marshaling versus text-based data transmission
	Variant versus strongly typed data
	Data schema

	ADO.NET Managed Provider Versus SQL Managed Provider
	Why ADO.NET?
	Review
	Quiz Yourself

	Session 16 - Navigating the ADO.NET Object Model
	Review
	Quiz Yourself

	Part III - Saturday Afternoon Part Review

	Part IV - Saturday Evening
	Session 17 - Opening a Connection
	Creating a Connection
	Opening a Connection
	Using Transactions
	Review
	Quiz Yourself

	Session 18 - Executing Commands
	Building a Command
	Connection property
	CommandText property
	CommandType property
	CommandTimeout property
	Appending parameters

	Executing a Command
	ExecuteNonQuery method
	Prepare method
	ExecuteReader method

	Review
	Quiz Yourself

	Session 19 - Using DataReaders
	Introducing DataReaders
	Using DataReader Properties
	Item property
	FieldCount property
	IsClosed property
	RecordsAffected property

	Using DataReader Methods
	Read method
	GetValue method
	Get[Data Type] methods
	GetOrdinal method
	GetName method
	Close method

	Review
	Quiz Yourself

	Session 20 - Introducing DataSets, Part I
	Constructing a DataAdapter Object
	SelectCommand property
	UpdateCommand, DeleteCommand, and InsertCommand properties
	Fill method
	Update method
	Dispose method

	Using DataSet Objects
	DataSetName property
	CaseSensitive property

	Review
	Quiz Yourself

	Part IV - Saturday Evening Part Review

	Sunday
	Part V - Sunday Morning
	Session 21 - Introducing DataSets, Part II
	Constructing a DataSet
	Tables property

	TablesCollection Object
	Count property
	Item property
	Contains method
	CanRemove method
	Remove method
	Add method

	DataTable Objects
	CaseSensitive property
	ChildRelations property
	Columns property
	Constraints property
	DataSet property
	DefaultView property
	ParentRelations property
	PrimaryKey property
	Rows property
	Dispose method
	NewRow method

	Review
	Quiz Yourself

	Session 22 - Introducing Data Binding
	What Is Data Binding?
	Binding to Arrays and Extended Object Types
	Binding to Database Data
	Binding to XML
	TreeView Control
	Implement the TreeView server control

	Review
	Quiz Yourself

	Session 23 - Using the DataGrid Control with Bound Data
	DataGrid Control Basics
	Binding a set of data to a DataGrid control
	Formatting the output of a DataGrid control

	Master/Detail Relationships with the DataGrid Control
	Populating the Master control
	Filtering the detail listing

	Review
	QUIZ YOURSELF

	Session 24 - Beating the CRUD out of the DataGrid Control
	Updating Your Data
	Handling the OnEditCommand Event
	Handling the OnCancelCommand Event
	Handling the OnUpdateCommand Event
	Checking that the user input has been validated
	Executing the update process

	Deleting Data with the OnDeleteCommand Event
	Sorting Columns with the DataGrid Control
	Review
	Quiz Yourself

	Session 25 - Data Shaping with ADO.NET
	What Is Data Shaping?
	Why Shape Your Data?
	DataSet Object
	Shaping Data with the Relations Method
	Review
	Quiz Yourself

	Session 26 - Handling ADO.NET Errors
	OLEDBError Object Description
	OLEDBError Object Properties
	OLEDBError Object Methods
	OLEDBException Properties
	Writing Errors to the Event Log
	Review
	Quiz Yourself

	Part V - Sunday Morning Part Review

	Part VI - Sunday Afternoon
	Session 27 - SOAP It Up!
	Introducing SOAP
	Accessing Remote Data with SOAP
	SOAP Discovery (DISCO)
	Web Service Description Language (WSDL)
	Using SOAP with ASP.NET
	Review
	Quiz Yourself

	Session 28 - Web Services
	Developing a Web Service
	Consuming a Web Service
	Review
	Quiz Yourself

	Session 29 - Migrating from ASP to ASP.NET
	ASP and ASP.NET Compatibility
	Scripting language limitations
	Rendering HTML page elements
	Using script blocks
	Syntax differences and language modifications

	Running ASP Pages under Microsoft.NET
	Using VB6 Components with ASP.NET
	Review
	Quiz Yourself

	Session 30 - Migrating from ADO to ADO.NET
	Preparing a Migration Path
	ADO and ADO.NET Compatibility
	Running ADO under ASP.NET
	Early Binding ADO COM Objects in ASP.NET
	Review
	Quiz Yourself

	Part VI - Sunday Afternoon Part Review

	Appendixes
	Appendix A
	Answers to Part Reviews
	Friday Evening Review Answers
	Saturday Morning Review Answers
	Saturday Afternoon Review Answers
	Saturday Evening Review Answers
	Sunday Morning Review Answers
	Sunday Afternoon Review Answers

	Appendix B
	What’s on the CD-ROM
	System Requirements
	Using the CD with Windows
	What’s on the CD
	The Software Directory
	Troubleshooting

	Appendix C
	ADO.NET Class Descriptions

	Appendix D
	Coding Differences in ASP and ASP.NET
	Retrieving a Table from a Database
	Displaying a Table from a Database
	Variable Declarations
	Statements
	Comments
	Indexed Property Access
	Using Arrays
	Initializing Variables
	If Statements
	Case Statements
	For Loops
	While Loops
	String Concatenation
	Error Handling
	Conversion of Variable Types

	Index
	Hungry Minds, Inc. End- User License Agreement

