ASP.NET Bible

by mridula Parihar and et al. ISBN: 0764548166
Hungry Minds © 2002 (855 pages)

Learn the ins and outs of ASP.NET using Visual Basic and C# with this comprehesive reference
tool.

Table of Contents

ASP.NET Bible

Preface

Partl - ASP.NET Basics

Chapter 1 - Understanding the .NET Framework
Chapter 2 - Getting Started with ASP.NET
Chapter 3 - Building Forms with Web Controls
Chapter 4 - Using Rich Web Controls

Chapter 5 - Creating and Using Custom Controls
Chapter 6 - Validating User Input

Chapter 7 - Debugging ASP.NET Pages

Part 1l - ASP.NET Database Programming

Chapter 8 - Introducing ADO.NET

Chapter 9 - Understanding Data Binding
Chapter 10 - Working with Data Grids

Chapter 11 - Using Templates

Chapter 12 - Using SQL Server with ASP.NET
Chapter 13 - Advanced Data Binding and XML
Part 11l - Advanced ASP.NET

Chapter 14 - ASP.NET Application Configuration
Chapter 15 - Developing Business Objects
Chapter 16 - Building HTTP Handlers

Chapter 17 - Understanding Caching

Chapter 18 - Building Wireless Applications with ASP.NET Mobile Controls
Chapter 19 - ASP.NET Security

Chapter 20 - Localizing ASP.NET Applications
Chapter 21 - Deploying ASP.NET Applications
Part 1V - Building Web Services

Chapter 22 - Introduction to Web Services
Chapter 23 - Web Services Infrastructure
Chapter 24 - Understanding SOAP

Chapter 25 - Building a Web Service

Chapter 26 - Deploying and Publishing Web Services
Chapter 27 - Finding Web Services

Chapter 28 - Consuming Web Services

Part V - Building ASP.NET Applications

Chapter 29 - ASP.NET Blackjack

Chapter 30 - Chatty Discussion Forum

Appendix A - Visual Basic Syntax

Appendix B - Visual Basic Functions and Features

Appendix C - Visual Basic Object-Oriented Programming
Appendix D - C# Syntax

Appendix E - C# Classes

Appendix F - C# Components

Index

List of Figures

List of Tables

List of Sidebars

ASP.NET Bible

Mridula Parihar et al.
Published by

Hungry Minds, Inc.
909 Third Avenue

New York, NY 10022
wWww. hungr ym nds. com

Copyright © 2002 Hungry Minds, Inc. All rights reserved. No part of this book, including
interior design, cover design, and icons, may be reproduced or transmitted in any form,
by any means (electronic, photocopying, recording, or otherwise) without the prior written
permission of the publisher.

Library of Congress Control Number: 2001093388
ISBN: 0-7645-4816-6

10987654321

1B/SQ/QS/QS/IN

Distributed in the United States by Hungry Minds, Inc.

Distributed by CDG Books Canada Inc. for Canada; by Transworld Publishers Limited in
the United Kingdom; by IDG Norge Books for Norway; by IDG Sweden Books for
Sweden; by IDG Books Australia Publishing Corporation Pty. Ltd. for Australia and New
Zealand; by TransQuest Publishers Pte Ltd. for Singapore, Malaysia, Thailand,
Indonesia, and Hong Kong; by Gotop Information Inc. for Taiwan; by ICG Muse, Inc. for
Japan; by Intersoft for South Africa; by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland; by Distribuidora Cuspide for
Argentina; by LR International for Brazil; by Galileo Libros for Chile; by Ediciones ZETA
S.C.R. Ltda. for Peru; by WS Computer Publishing Corporation, Inc., for the Philippines;
by Contemporanea de Ediciones for Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia Media Distributor, Inc. for Micronesia; by
Chips Computadoras S.A. de C.V. for Mexico; by Editorial Norma de Panama S.A. for
Panama; by American Bookshops for Finland.

For general information on Hungry Minds' products and services please contact our
Customer Care department within the U.S. at 800-762-2974, outside the U.S. at 317-
572-3993 or fax 317-572-4002.

For sales inquiries and reseller information, including discounts, premium and bulk
quantity sales, and foreign-language translations, please contact our Customer Care
department at 800-434-3422, fax 317-572-4002 or write to Hungry Minds, Inc., Attn:
Customer Care Department, 10475 Crosspoint Boulevard, Indianapolis, IN 46256.

For information on licensing foreign or domestic rights, please contact our Sub-Rights
Customer Care department at 212-884-5000.

For information on using Hungry Minds' products and services in the classroom or for
ordering examination copies, pleas e contact our Educational Sales department at 800-
434-2086 or fax 317-572-4005.

For press review copies, author interviews, or other publicity information, please contact
our Public Relations department at 317-572-3168 or fax 317-572-4168.

For authorization to photocopy items for corporate, personal, or educational use, please
contact Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, or fax
978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR
HAVE USED THEIR BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER
AND AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT
TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS BOOK
AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO
WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTIONS CONTAINED IN
THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES
REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND
COMPLETENESS OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS
STATED HEREIN ARE NOT GUARANTEED OR WARRANTED TO PRODUCE ANY
PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES CONTAINED
HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE
PUBLISHER NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR
ANY OTHER COMMERCIAL DAMAGES, INCLUDING BUT NOT LIMITED TO
SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: Hungry Minds and the Hungry Minds logo are trademarks or registered
trademarks of Hungry Minds, Inc. All other trademarks are the property of their
respective owners. Hungry Minds, Inc., is not associated with any product or vendor
mentioned in this book.

is a
trade
mark
£ ™ of
Hungry Minds Hungr
y
Minds,
Inc.
Credits
Acquisitions Editor
Sharon Cox

Project Editor

Sharon Nash

Development Editor

Nancy D. Warner

Technical Editor

Michael MacDonald

Copy Editor

Bill McManus

Editorial Manager

Mary Beth Wakefield

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Publisher

Joseph B. Wikert

Project Coordinator

Bill Ramsey

Graphics and Production Specialists
Sean Decker

Melanie DesJardins

Joyce Haughey

Barry Offringa

Betty Schutte

Quality Control Technician

Laura Albert

David Faust

John Greenough

Andy Hollandbeck

Proofreading and Indexing

TECHBOOKS Production Services

About the Authors

Mridula Parihar has a master's degree in Applied Operations Research from Delhi
University. She is a Microsoft Certified Solution Developer (MCSD) and has worked
approximately 2% years with NIIT Ltd. Mridula spent her first year in the Career
Education Group (CEG) of NIIT, in which she taught NIIT students and was involved in
scheduling and managing resources. For the past 1% years, she has been working in the
Knowledge Solutions Business (KSB) group of NIIT, in which she has had the
opportunity to work on varied technical projects. Mridula has been involved in design,
development, testing, and implementation of instructor-led training courses. Her primary
responsibilities include instructional review, technical review, and ensuring 1ISO
compliance. For the past six months, Mridula has been involved in textbook writing on
varied technical subjects such as TCP/IP and .NET.

Essam Ahmed is an accomplished developer with more than 10 years of professional
programming and design experience. Essam enjoys writing — his publications include
JScript .NET Programming (published October 2001 by Hungry Minds), more than 50
book reviews at codegur u. com and various articles at aspt oday. com and

t hecodechannel . com Essam's professional affiliations include the IEEE Computer
Society (htt p: // conmput er . or g), the Association for Computing Machinery
(http://acm or g), and the Worldwide Institute of Software Architects

(Wwwv. wM sa. or @), in which he is a practicing member. Essam was a speaker at VSLive
2001 in Sydney, Australia. Essam's Web site is ww. desi gns2sol uti ons. com

Jim Chandler is an independent consultant with extensive experience in architecting
and developing custom, integrated software solutions for small to medium-sized
businesses in the Midwest. Before focusing his career on the Windows platform, Jim was
a Graphics Partner at Digital Equipment Corporation, evangelizing X11 and Motif. Jim is
also a co-author of the Visual Basic.NET Bible and an active member of the St. Louis
.NET Users Group. He has delivered presentations on such topics as ASP.NET, XML,
and Web services to the St. Louis developer community. His research interests include
everything .NET as well as COM+ and developing mobile applications for the Pocket PC.
Outside the daily challenges of developing applications and fulfilling his research
interests, Jim shares his spare time with his wife, Rhonda, and their two sons, Sam and
Thomas.

Bill Hatfield is the best-selling author of several computer books, including ASP.NET
For Dummies, two editions of Active Server Pages For Dummies (on Classic ASP),
Visual InterDev For Dummies, and Creating Cool VBScript Web Pages (all from Hungry
Minds). He is also the editor of three monthly publications from Pinnacle Publishing on
.NET technologies: C# Developer, .NET Developer, and ActiveWeb Developer. He's an
independent corporate trainer and maintains a Web site (wwv. edgequest . com
dedicated to helping developers solve problems. He works from his home in
Indianapolis, Indiana, where he and his wife have celebrated the birth of their first child,
Bryce Christopher. Of course, now that he has a real baby, he can stop dressing up the
cat in little outfits.

Richard Lassan is a Senior Consultant with GA Sullivan in Nashville, TN. He is currently
involved in learning and writing about .NE T. Richard can be reached at

ri ckl @asullivan. com

Peter B. Macintyre lives and works in Charlottetown, Prince Edward Island, Canada
(the home of the fictional Anne of Green Gables). Peter and his wife, Dawn, are trying to
raise four kids: Daniel (14), Charity (12), Michael (12), and Simon (11). He has been in
the software development industry for over 12 years and has seen many changes in

technology in that time frame. Peter can be reached at pet er mrac@ sn. net and is
available for small to midsized consulting projects.

Dave Wanta has been working in Web development since the mid-1990s. His Microsoft-
centric Web technology has led him to develop a number of large e-commerce and B2B
applications. His love for ASP.NET has led him to build the largest online ASP.NET
directory, at ww. 123aspx. com You can usually find Dave online discussing ASP.NET
topics at the lists found at wwv. aspf ri ends. com

About the Series Editor

Michael Lane Thomas s an active development-community and computer-industry
analyst who presently spends a great deal of time spreading the gospel of Microsoft
.NET in his current role as a .NET technology evangelist for Microsoft. In working with
over a half-dozen publishing companies, Michael has written numerous technical articles
and written or contributed to almost 20 books on numerous technical topics, including
Visual Basic, Visual C++, and .NET technologies. He is a prolific supporter of the
Microsoft certification programs, having earned his MCSD, MCSE+I, MCT, MCP+SB,
and MCDBA.

In addition to technical writing, Michael can also be heard over the airwaves from time to
time, including two weekly radio programs on Entercom (Www. ent er com coni)
stations, most often in Kansas City on News Radio 980KMBZ (ww. knbz. coni). He
can also occasionally be caught on the Internet doing an MSDN Webcast

(wwv. mi cr osoft. coml usa/ webcast s/) discussing .NET, the next generation of Web
application technologies.

Michael started his journey through the technical ranks back in college at the University
of Kansas, where he earned his stripes and a couple of degrees. After a brief stint as a
technical and business consultant to Tokyo-based Global Online Japan, he returned to
the States to climb the corporate ladder. He has held assorted roles, including those of
IT manager, field engineer, trainer, independent consultant, and even a brief stint as
Interim CTO of a successful dot-com, although he believes his current role as .NET
evangelist for Microsoft is the best of the lot. He can be reached via email at

m t homas@ri crosoft. com

First and foremost, | want to dedicate this book to my Supreme Guide who has always
guided me in the right direction. Then, | would like to dedicate this book to my Mom and
Dad, without whose support | could have never completed this book. My Mom and Dad
have always been a constant source of energy and encouragement for me. Also, | must
thank my brothers, Amit and Abhay, who have always given their constant support to
me. — Mridula Parihar

For my sons, Vikranth and Siddharth — Essam Ahmed

I'd like to dedicate this book to my family, whose love and support mean everything to
me. | love you all. And, finally, the answer to the question posed by my sons, Sam and
Thomas, who asked: "Dad, will our name be in the book, too?" You bet! — Jim
Chandler

To my lovely wife Melanie for the patience, kindness, and love she showsto our child
every hour of every day. Bryce couldn't have picked abetter mom! — Bill Hatfield

To my parents, William and Eleanor, for always being there. — Rick Lassan

I would like to dedicate the chapters that | wrote to my lovely wife, Dawn Etta Riley.
Without your patience and understanding, | would not have been able to pull this off! |
know it has been hard sometimes, but reward comes with hard work. | love you very

much and appreciate all that you do for me and all that you are to me. — Peter
Maclintyre

To my Parents, Roy and Terry, and my Brother Bob for being the coolest brother
someone could have. — Dave Wanta

Preface

Introduction of the Microsoft .NET platform has begun a new era in the field of
application development that will drive the next-generation Internet. ASP.NET, a part of
the Microsoft .NET platform, is a revolutionary programming framework that enables the
rapid development of enterprise-class Web applications. It provides the easiest and most
scalable way to develop, deploy, and run Web applications that can target any browser
or device. In fact, these features are only a few of several that make ASP.NET
developers' first choice for creating Web applications.

ASP.NET makes application development much easier than it was with classic ASP, and
hence it has dramatically improved developers' productivity. ASP.NET enables you to
provide richer functionality to your Web applications by writing the least amount of code.
The best part is that ASP.NET enables you to select any of the available .NET
programming languages. So, unlike classic ASP, in which you had to depend on
interpreted VBScript and JScript languages, ASP.NET provides a wide choice of
programming languages.

In addition to the usual Web applications, ASP.NET allows you to create other types,
which enables you to extend your applications' reach to new customers and business
partners. For example, XML Web services enable sharing of data across the Internet
regardless of the operating system and the programming language — this certainly
widens the reach of your applications. Also, ASP.NET provides you with mobile controls
that enable your applications to target a large number of mobile Web devices.

Deploying server applications has always been a pain for developers. With ASP.NET,
however, developers do not need to worry on this front at all, because ASP.NET has
dramatically simplified the deployment process. Deploying a Web application simply
requires you to copy it to the Web server.

In addition to providing a rich developer experience, ASP.NET provide a rich user
experience. ASP.NET Web applications are faster than the classic ASP applications.
The reason is quite obvious. Unlike classic ASP, in which you relied only on interpreted
languages, ASP.NET enables you to use compiled programming languages. Thus,
ASP.NET applications do not require an explicit compilation step and, in turn, execute
faster. Additionally, ASP.NET has rich caching and state-management features that add
to the improved performance of ASP.NET Web applications. In addition to providing high
performance and scalability, ASP.NET applications are highly reliable and secure. The
greater reliability and security features enable your application users to build more
confidence in using them.

This book seeks to provide to all Web-application developers a greater understanding of
ASP.NET. This book covers ASP.NET from its basic features to its advanced features,
such as application configuration, caching, security, localization, XML Web services, and
deployment.

Icons Used in This Book

Each icon used in this book signifies a special meaning. Here's what each icon means:
Note Note icons provide supplemental information about the subject at
hand but generally something that isn't quite the main idea. Notes
are often used to elaborate on a detailed technical point.
Tip Tips provide special information or advice. They indicate a more
efficient way of doing something or a technique that may not be

obvious.

Caution Caution icons warn you of a potential problem or error.
Cross- Cross-Reference icons direct you to related information
Reference in another section or chapter.

How This Book Is Organized

The basic aim of this book is to provide Web-application developers with insight into
ASP.NET features and to enable them to develop rich, secure, and reliable Web
applications. The book begins by introducing the basic features of ASP.NET and then
moves on to explore the advanced ASP.NET features.

This book is divided into five parts.

Part I: ASP.NET Basics

This part presents the salient features of the .NET Framework and introduces you to the
relationship of the .NET Framework with ASP.NET. This part covers the basic features of
ASP.NET, including the Web controls, Rich Web controls, and Validation controls. In
addition, this part discusses how to create custom Web controls and to use various
ASP.NET debugging techniques to debug Web applications.

Part Il: ASP.NET Database Programming

This part provides an overview of the ADO.NET technology. It discusses how to use SQL
Server with ASP.NET applications to access and manipulate server-side data. This part
also covers data binding with ASP.NET server controls and discusses how to work with
Data Grids. Also, it discusses working with XML. Finally, it presents you with Web-server
control templates to customize the look and layout of server controls.

Part 1lI: Advanced ASP.NET

This part covers the advanced features of ASP.NE T, such as application configuration,
caching, and security. This part discusses how to develop business objects (the .NET
components), build HTTP handlers, and develop wireless applications using mobile
controls. It also discusses how to develop localized ASP.NET applications. Finally, this
part presents you with the deployment of ASP.NET applications.

Part 1V: Building Web Services

This part gives you an overview of Web services, the Web services infrastructure, and
the Simple Object Access Protocol (SOAP). It then discusses how to build and deploy
Web services. Finally, this part discusses how to find and consume Web services.

Part V: Building ASP.NET Applications

The Web services section covers the foundational technologies of Web services (such
as XML and SOAP) as well as detailed information on how to develop, debug, and
consume ASP.NET Web services using the Microsoft .NET Framework and ASP.NET.

Appendixes

This section of the book provides an overview of Visual Basic .NET and C#. Use this
section as a reference for these programming languages. In fact, this section provides an
easy way for beginners to get started with ASP.NET by introducing the salient features of
Visual Basic .NET and C#.

Companion Web Site

This book provides a companion Web site from which you can download the code from
various chapters. All the code listings reside in a single WinZip file that you can
download by going to ww. hungr ym nds. conf ext r as and selecting the ASP.NET
Bible link. After you download the file (ASPNETBI bl e. zi p), and if you have WinZip
already on your system, you can open it and extract the contents by double-clicking. If
you don't currently have WinZip, you can download an evaluation version from

WWW. Wi Nzi p. com

When extracting the files, use WinZip's default options (confirm that the Use Folder
Names option is checked) and extract the ASPNETBI bl e. zi p file to a drive on your
system that has about 3MB of available space. The extraction process creates a folder
called ASPNETBI bl e. As long as the Use Folder Names option is checked in the Extract
dialog box, an entire folder structure is created within the ASPNETBI bl e folder. You'll
see folders arranged by chapter number, and some of those chapter folders will contain
subfolders.

If you'd rather download just the code you need from a particular chapter — when you
need it — simply click the separate chapter link on the Web site instead of downloading
the entire WinZip file.

Acknowledgments

It's a great feeling to acknowledge the efforts and contributions of each one of those who
were involved in the development of this book. | would like to acknowledge the time and
effort put in by the teams at both ends, NIIT and Hungry Minds. At NIIT, | would like to
convey my special thanks to Ms. Anita Sastry, the Project Manager, and Sunil Kumar
Pathak, the Graphics Designer. Without their valuable contributions, this book wouldn't
have been possible. Also, | would like to thank Namrata, Rashim, Meeta, Ashok, Nitin,
and Yesh for their timely help. Thank you once again for giving a helping hand when it
was needed the most.

At Hungry Minds, my special thanks go to the Acquisitions Editor, Sharon Cox, and the
Project Editor, Sharon Nash, who gave me the opportunity to write this book. Also, |
would like to acknowledge the Technical Editors, Ken Cox and Michael MacDonald, and
the Copy Editor, Bill McManus, for their valuable input and constant support. Thank you
all for your valuable contributions, without which this book wouldn't be possible. —
Mridula Parihar

Tom Archer — for helping me get my writing career off the ground. Sharon Cox — a
great acquisitions editor to work with! Sharon Nash — thanks for your patience. My
family — for their ongoing support in all of my endeavors. — Essam Ahmed

I would like to thank Bill Evjen for giving me the opportunity to fulfill the lifelong goal of
becoming a published author as well as his dedication to the St. Louis .NET Users group
— it is an outstanding organization due in large part to his efforts. | would also like to
thank Craig Smyth, whose support and encouragement have contributed much to the
career success | enjoy today. | am also grateful to Bob Hundman at Novus International
for allowing me to "disappear" when | needed to while writing for this book. And, of
course, a special thank you to my wife, Rhonda, who was patient and supportive while |
worked into the wee hours of many nights and during our family vacation in order to meet
the book's deadlines. — Jim Chandler

Thanks to Chris Webb, Sharon Cox, Sharon Nash, and everyone else at Hungry Minds
who helped put this together. You guys are great to work with! — Bill Hatfield

I would like to give thanks and praise to God above for giving me the talents and skills
that it takes to be both a computer specialist and an author. Of course, the great people
at Hungry Minds who gave me this opportunity need to be mentioned as well, namely
Sharon Cox and Sharon Nash. Their attention to detail and occasional prodding are what
helped make this project a success! — Peter Maclntyre

To my Wife, my "Best Friend" (Karen), for all of her encouragement while | contributed to
this book. — Rick Lassan

rart: ASP.NET Basics

Chapter List
Chapter 1: Understanding the .NET Framework
Chapter 2: Getting Started with ASP.NET
Chapter 3: Building Forms with Web Controls
Chapter 4: Using Rich Web Controls
Chapter 5: Creating and Using Custom Controls
Chapter 6: Validating User Input
Chapter 7: Debugging ASP.Net Pages

chapter 1: UNderstanding the .NET Framework

Overview

The Internet revolution of the late 1990s represented a dramatic shift in the way
individuals and organizations communicate with each other. Traditional applications,
such as word processors and accounting packages, are modeled as stand-alone
applications: they offer users the capability to perform tasks using data stored on the
system the application resides and executes on. Most new software, in contrast, is
modeled based on a distributed computing model where applications collaborate to
provide services and expose functionality to each other. As a result, the primary role of
most new software is changing into supporting information exchange (through Web
servers and browsers), collaboration (through e-mail and instant messaging), and
individual expression (through Web logs, also known as Blogs, and e-zines — Web
based magazines). Essentially, the basic role of software is changing from providing
discrete functionality to providing services.

The .NET Framework represents a unified, object-oriented set of services and libraries
that embrace the changing role of new network-centric and network-aware software. In
fact, the .NET Framework is the first platform designed from the ground up with the
Internet in mind.

This chapter introduces the .NET Framework in terms of the benefits it provides. |
present some sample code in Visual C# .NET, Visual Basic .NET, Visual Basic 6.0, and

Visual C++; don't worry if you're not familiar with these languages, since | describe in the
discussion what each sample does.

Benefits of the .NET Framework

The .NET Framework offers a number of benefits to developers:

] A consistent programming model

] Direct support for security

] Simplified development efforts

" Easy application deployment and maintenance

Consistent programming model

Different programming languages offer different models for doing the same thing. For
example, the following code demonstrates how to open a file and write a one-line
message to it using Visual Basic 6.0:

Public Sub testFileAccess()
On Error GoTo handle_Error

" Use native method of opening an writing to a file...
Dim outputFile As Long

outputFile = FreeFile

Open "c:\temp\test.txt" For Output As #outputFile
Print #outputFile, "Hello World!"

Close #outputFile

' Use the Microsoft Scripting Runtime to

' open and write to the file...

Dim fso As Object

Set fso = CreateObject("Scripting.FileSystemObject")
Dim outputText As TextStream

Set outputText = fso.CreateTextFile("c:\temp\test2.txt")
outputText.WriteLine "Hello World!"

outputText.Close

Set fso = Nothing

Exit Sub

handle_Error:
' Handle or report error here
End Sub
This code demonstrates that more than one technique is available to create and write to
a new file. The first method uses Visual Basic's built-in support; the second method uses

the Microsoft Scripting Runtime. C++ also offers more than one way of performing the
same task, as shown in the following code:

#include <fstream>
#include <iostream>
#include <cstdlib>
#include <stdio.h>

using namespace std,;

int main(int argc, char* argvf[])
{
/I Use the C Runtime Library (CRT)...
FILE *testFile;
if((testFile = fopen("c:\\temp\\test3.txt",
"wt")) == NULL) {
cout << "Could not open first test file!" << endl;

return 1,

}
fprintf(testFile,"Hello World\n");

fclose(testFile);

/I Use the Standard Template Library (STL)...
ofstream outputStream("c:\\temp\\test4.txt");
if(loutputStream) {
cout << "Could not open second test file!" << endl;
return(1);
}
outputStream << "Hello World!" << endl;
outputStream.close();

return O;

}

What both code listings demonstrate is that when using different programming
languages, a disparity exists among the techniques that developers use to perform the
same task. The difference in techniques comes from how different languages interact
with and represent the underlying system that applications rely on, thereby increasing
the amount of training that developers need. The following code demonstrates how to
perform the same tasks in Visual Basic .NET and Visual C# .NET.

Visual Basic .NET:Imports System.lO
Imports System.Text

Module Demo

Sub Main()
Dim outputFile As StreamWriter = _
New StreamWriter("c:\temp\test5.txt")
outputFile.WriteLine("Hello World!")
outputFile.Close()
End Sub

End Module

Visual C# .NET:
using System.lO;
using System.Text;

class Demo {
static void Main() {
StreamWriter outputFile =
new StreamWriter("c:\\temp\\test6.txt");
outputFile.WriteLine("Hello World!");
outputFile.Close();

}

The preceding code demonstrates, apart from slight syntactical differences, that the
technique for writing to a file in either language is identical — both listings use the
StreamW it er class to write the "Hello World!" message out to the text files. In fact,

unlike the Visual Basic and Visual C++ listings, which demonstrate that there's more
than one way to do something within the same language, the preceding listings show
that there's a unified means of accomplishing the same task by using the .NET Class
Library.

The .NET Class Library is a key component of the .NET Framework — it is sometimes
referred to as the Base Class Library (BCL). The .NET Class Library contains hundreds
of classes you can use for tasks such as the following:

] Processing XML

] Working with data from multiple data sources

] Debugging your code and working with event logs

] Working with data streams and files

. Managing the run-time environment

] Developing Web services, components, and standard Windows applications
. Working with application security

" Working with directory services

The functionality that the .NET Class Library provides is available to all .NET languages,
resulting in a consistent object model regardless of the programming language
developers use.

Direct support for security

Developing an application that resides on a user's desktop system and uses local
resources is easy, from a security point of view, because security simply isn't a
consideration in this scenario. Security becomes much more important when you create
applications that access data on remote systems or applications that perform privileged
tasks on behalf of nonprivileged users, because systems may have to authenticate
users, and encryption (scrambling to avoid eavesdropping) may be necessary to secure
data communications.

Windows NT, Windows 2000, and Windows XP have a number of security features
based on Access Control Lists (ACLs). An ACL contains a number of entries that specify
which users may access, or are explicitly denied access, to resources such as files and
printers. ACLs are a great way of protecting executable files (applications) from
unauthorized access, but they do not secure all parts of the file. The .NET Framework
enables both developers and system administrators to specify method-level security.
Developers (through easy-to-use programming language constructs called attributes)
and systems administrators (by using administrative tools and byediting an application's
configuration file) can configure an application's security so that only authorized users
can invoke a component's methods.

The .NET Framework uses industry-standard protocols such as TCP/IP and means of
communications such as the Extensible Markup Language (XML), Simple Object Access
Protocol (SOAP, a standard application messaging protocol), and HTTP to facilitate
distributed application communications. This makes distributed computing more secure,
because .NET developers cooperate with network connectivity devices as opposed to
attempting to work around their security restrictions.

Simplified development efforts

Two aspects of creating Web-based applications present unique challenges to Web
developers: visual page design and debugging applications. Visual page design is
straightforward when creating static content; however, when you need to present the
result of executing a query in a tabular format using an ASP page, page design can get
rather involved. This is because developers need to mix traditional ASP code, which
represents the application's logic, and HTML, which represents the presentation dof the
data. ASP.NET and the .NET Framework simplify development by allowing developers to
separate an application's logic from its presentation, resulting in an easier-to-maintain
code base. ASP.NET can also handle the details of maintaining the state of controls,

such as the contents of text boxes, between calls to the same ASP.NET page, thereby
reducing the amount of code you need to write. Visual Studio .NET, which is tightly
integrated with the .NET Framework, assists developers as they create ASP.NET and
other applications by providing visual designers that facilitate visual drag and drop
editing, making page layout and form layout a breeze.

Another aspect of creating applications is debugging. Developers sometimes make
mistakes; systems don't behave as you expect them to, and unexpected conditions arise
— all of these issues are collectively referred to as, using the affectionate term, "bugs."
Tracking down bugs — known as "debugging" — quickly and effectively requires
developers to be familiar with a variety of tools, sometimes available from a third party,
and techniques — a combination of programming techniques and techniques for using a
particular tool. The .NET Framework simplifies debugging with support for Runtime
diagnostics.

Runtime diagnostics not only help you track down bugs but also help you determine how
well your applications perform and assess the condition of your application. The .NET
Framework provides three types of Runtime diagnostics:

] Event logging

" Performance counters

] Tracing

Event logging

Windows 2000 and Windows XP have a feature called an Event Log _ a database
containing information about important hardware or software events. The Event Log is
useful for recording information about the status of your applications and provides
systems administrators a means of diagnosing problems, since they can review Event
Log entries using the Event Viewer (supplied with Windows and available in the
Administrative Tools group in the Control Panel). There are three types of Event Log
events:

" Informational events: Usually contain basic information, such as an
application starting or shutting down

] Warning events: Usually provide information about unusual conditions that
have the potential to become errors

] Error events: Represent critical errors in an application that prevent it from

executing normally

Events are stored in Event Logs — Windows supports three types of Event Logs:

] Application: Contains messages that applications such as Microsoft SQL
Server log

" System: Contains messages that device drivers and system services log.

] Security: Contains system-generated messages about events that occur

when security auditing is enabled
The .NET Framework makes it easy to work with the Event Log as shown in the following
code:
Imports System
Imports System.Diagnostics

Module eventLogDemo

Sub Main()
If Not EventLog.SourceExists("ASPnetBible") Then
EventLog.CreateEventSource(_
"ASPnetBible", "Application™)

Console.WriteLine(_
"Created new EventSource 'ASPnetBible™)
End If

Dim evLog As New EventLog()
evLog.Source = "ASPnetBible"

" Note: this listing does not show the
' complete message for brevity
evLog.WriteEntry("...starting")

Console.WriteLine("Wrote 'starting'...")

evLog.WriteEntry("... exiting")
Console.WriteLine("Wrote 'exit"...")
End Sub

End Module

This code is a Visual Basic .NET console application that creates an Event Source called
ASPnetBible and logs the application's starting and exiting events to the system's
Application event log — although the listing doesn't show it, both messages are
informational.

Performance counters

Performance counters are useful for monitoring the health and performance of an
application. You can chart the value of performance counters using the Performance
applet in the Administrative Tools folder of the systems Control Panel. The .NET
Framework makes it easy for you to read the value of existing performance counters,
such as the system's percent CPU Utilization, as well as create your own application-
specific performance counters. The following code demonstrates how to work with
performance counters in a simple Windows Forms application:

' Create a new performace counter
Dim counterCollection As New CounterCreationDataCollection()
Dim couterltem As New CounterCreationData()

counterName = "demoCounter"
perfCatName = "ASPnetBible"

couterltem.CounterName = counterName
couterltem.CounterType =
PerformanceCounterType.NumberOfitems32
counterCollection.Add(couterltem)
PerformanceCounterCategory.Create(perfCatName, _

"sample counter", counterCollection)

' ...elsewhere in the application - Increment the counter

Dim perfCounter As PerformanceCounter
perfCounter = New PerformanceCounter()
perfCounter.CategoryName = perfCatName
perfCounter.CounterName = counterName
perfCounter.ReadOnly = False
perfCounter.IncrementBy(50)
System.Threading.Thread.Sleep(2000)
perfCounter.IncrementBy(-50)

'...elsewhere in the application - Delete the sample counter

PerformanceCounterCategory.Delete(perfCatName)

This code demonstrates how to create a new performance counter category and counter
using the Cout er Cr eat i onDat aCol | ecti on and Cout er Cr eat i onDat a classes —
the fragment shown is from the sample application's Load event handler. In the next
section of the code, from a button's Cl i ck event handler, the code creates an instance
of the sample performance counter, increments it, and waits two seconds before
decrementing the counter. The last part of the code shows how to delete the
performance counter when the form closes.

Tracing

Debugging an application by using the Visual Studio .NET debugger is a great way to
track down problems; however, there are many scenarios in which things happen too
quickly to follow interactively or in which you simply need to know the sequence of
events that lead to a problem before the problem occurs.

Tracing is an alternative to using a debugger to step through each line of code as your
application executes. You can configure ASP.NET tracing by using two methods: page-
level tracing and application-level tracing. Both types of tracing provide similar results;
however, the difference is in how you access the results for each approach. Page-level
tracing provides trace details on the ASPX page when it completes executing, and
application-level tracing stores the details of the trace in a file called (by default)
trace. acx, which is located in the same directory as the ASP.NET application — you
can view the file by using your browser.

When you enable tracing, which is disabled by default, ASP.NET records detailed
information about the page request, trace messages, control information, cookies,
header information, the contents of any form fields, and a raw output of the contents of
server variables (like CONTENT_TYPE and HTTP_REFERRER). Table 1-1 shows a
fragment of a trace output from a simple ASP.NET page.

Table 1-1: Fragment of an ASP.NET Page Trace

Category Message From From
First(s) Last(s)
| aspx. page | Begin Init | |
| aspx. page | End Init | 0000096 | 0.000096
aspx. page Begi n
LoadVi ewst at 0.000189 0.000092
e
aspx. page End
LoadVi ewst at 0.000308 0.000119
e
aspx. page Begi n 0.000393 0.000085
ProcessPost D
ata

Table 1-1: Fragment of an ASP.NET Page Trace

Category Message From From
First(s) Last(s)
aspx. page End 0.000551 0.000158
Pr ocessPost D
at a
Page_Load 0.000647 0.000096
event
handl er
started
Page_Load 0.000729 0.000082
event
handl er exit

The last two entries in Table 1-1 are custom Trace messages written using the
Page. Trace. Wite(...) method.

Easy application deployment and maintenance

Applications are often made up of several components:
] Web pages

] Windows forms-based components
" Web services
] Components housed in DLLs

The .NET Framework makes it possible to install applications that use some or all of
these components without having to register DLLs (using r egsvr 32. exe) or to create

Registration Database (also known as the system Registry) entries.

The .NET Framework makes it easy to deploy applications using zero-impact installation
— often all that's required to install an application is to copy it into a directory along with
the components it requires. This is possible because the .NET Framework handles the
details of locating and loading components an application needs, even if you have
several versions of the same component available on a single system. All of this is
possible because the .NET Framework records extra information about an application's
components — the extra information is called metadata. A component of the .NET
Framework, the Class Loader, inspects an application's metadata and ensures that all of
the components the application depends on are available on the system before the
application begins to execute. This feature of the .NET Framework works to isolate
applications from each other despite changes in system configuration, making it easier to
install and upgrade applications.

Once an application is running on a system, it is sometimes necessary to change certain
traits of the application, such as its security requirements, optional parameters, and even
database connections. .NET Framework applications use a configuration model based
on application-configuration files. A configuration file is a text file that contains XML
elements that affect the behavior of an application. For example, an administrator can
configure an application to use only a certain version of a component the application
relies on, thereby ensuring consistent behavior regardless of how often the component is
upgraded. The following code shows an ASP.NET's basic configuration file; the file is
called web. confi g:

<configuration>
<system.web>
<pages
buffer="true"
enableSessionState="true" />
<appSettings>
<add key="dsn" value="localhost;uid=sa;pwd="/>

</appSettings>
</system.web>

</configuration>

This code shows that the ASP.NET application will have page buffering on (pages will be
sent to clients only when the page is completely rendered), and that ASP.NET will track
individual clients' session information (as shown in the pages tag). This code also
demonstrates how to define a custom configuration key, called dsn — within the

appSet ti ngs section, which applications have access to through the TraceSwi t ch

class.

Elements of the .NET Framework
The .NET Framework consists of three key elements (as shown in Flgure 1-1):

NET|| Visuni €O NET [Visusl Cov NET || JsScrioe NET_| |

ASPNET |

Wiradowrs F o i}
Neb Serw -| [':_- |

|. Commaon Type Sysicn | |

LT DN SysEi |

Figure 1-1: Components of the .NET Framework

= Common Language Runtime
= NET Class Library
= Unifying components

Common Language Runtime

The Common Language Runtime (CLR) is a layer between an application and the
operating system it executes on. The CLR simplifies an application's design and reduces
the amount of code developers need to write because it provides a variety of execution
services that include memory management, thread management, component lifetime
management, and default error handling. The key benefit of the CLR is that it
transparently provides these execution services to all applications, regardless of what
programming language they're written in and without any additional effort on the part of
the developer.

The CLR is also responsible for compiling code just before it executes. Instead of
producing a binary representation of your code, as traditional compilers do, .NET
compilers produce a representation of your code in a language common to the .NET
Framework: Microsoft Intermediate Language (MSIL), often referred to as IL. When your
code executes for the first time, the CLR invokes a special compiler called a Just In Time
(JIT) compiler, which transforms the IL into executable instructions that are specific to
the type and model of your system's processor. Because all .NET languages have the
same compiled representation, they all have similar performance characteristics. This
means that a program written in Visual Basic .NET can perform as well as the same
program written in Visual C++ .NET. (C++ is the language of choice for developers who
need the best possible performance a system can deliver.)

Common Type System
The Common Type System (CTS) is a component of the CLR and provides a common
set of data types, each having a common set of behaviors. In Visual Basic, for example,

the String data type maps to the CTS Syst em St ri ng class. Therefore, if a JScript
.NET client needs to communicate with a component implemented in VB .NET, the client
doesn't have to do any additional work to exchange information because it's using a type
common to both JScript .NET and VB .NET. The CTS eliminates many interoperability
problems that exist outside .NET.

.NET programming languages take advantage of the CTS by enabling developers to use
their language's built-in data types — the .NET compilers convert the native data types'
into their equivalent CTS types at compile time. Developers can also use CTS types
directly in their code if they wish. Table 1-2 describes each standard CTS data type.

Table 1-2: Common Type System Data Types

Complete Name Description

System Byte Unsigned 8-bit integer

ranging in value from 0
to positive 255

System I nt 16 Signed 16-bit integer

capable of holding
values from negative
32,768 to positive
32,767

System | nt 32 Signed 32-bit integer

having a range from
negative 2,147,483,648
to positive
2,147,483,647

System I nt 64 Signed 64-bit integer

ranging from negative
9,223,372,036,854,755,
808 to positive
9,223,372,036,854,755,
807

System Singl e Single-precision 32-bit

floating-point number

System Doubl e Double-precision 64-bit

floating-point number

System Deci mal Signed 96-bit floating-

point value with up to 28
digits on either side of
the decimal

System Char 16-bit Unicode

character (unsigned
values)

System String Sequence of Unicode

characters with a
capacity of about two
billion characters

Syst em Qbj ect 32-bit address,

referencing an instance
of a class

System Bool ean Unsigned 32-bit number

that may contain only O
(False) or 1 (True)

You can use other non-CTS-compliant data types in your applications and components;
you're free to use non-CTS-compliant data types, but they may not be available on other
implementations of the .NET Framework for other operating systems (see Table 1-3).

Table 1-3: Non-CTS-compliant Data Types

Complete Name Description

System SByt e Signed 8-bit integer

ranging from negative 128
to positive 127

System Ul nt 16 16-bit unsigned integer

ranging from O to positive
65,535

System Ul nt 32 32-bit unsigned integer

ranging from O to positive
4,294,967,295

System Ul nt 64 64-bit unsigned integer

ranging from O to positive
184,467,440,737,095,551,
615

.NET Class Library

In an earlier section, "Consistent programming models across programming languages,"
the .NET Class Library was described as containing hundreds of classes that model the
system and services it provides. To make the .NET Class Library easier to work with and
understand, it's divided into namespaces. The root namespace of the .NET Class Library
is called System, and it contains core classes and data types, such as | nt 32, Cbj ect,
Array, and Consol e. Secondary namespaces reside within the System namespace.

Examples of nested namespaces include the following:
= System.Diagnostics: Contains classes for working with the Event Log
= System.Data: Makes it easy to work with data from multiple data
sources (Syst em Dat a. O eDb resides within this namespace and
contains the ADO.NET classes)
= System.lO: Contains classes for working with files and data streams
Figure 1-2 illustrates the relationship between some of the major namespaces in the
.NET Class Library.

CCMAMESCEs

Syt
ceMAMESPACEs> << MAMBspace s> <aAMespaces s
SystemData Syrslem Diagnostics System 0
cClaages cCla s celasss i Clpsse s L h
DranaSat Dataliow Debug EventLiog Derectory File5Ebream

Figure 1-2: Organization of the .NET Class Library

The benefits of using the .NET Class Library include a consistent set of services
available to all .NET languages and simplified deployment, because the .NET Class
Library is available on all implementations of the .NET Framework.

Unifying components
Until this point, this chapter has covered the low-level components of the .NET
Framework. The unifying components, listed next, are the means by which you can
access the services the .NET Framework provides:

= ASP.NET

= Windows Forms
= Visual Studio .NET

ASP.NET

ASP.NET introduces two major features: Web Forms and Web Services.

Web Forms

Developers not familiar with Web development can spend a great deal of time, for
example, figuring out how to validate the e-mail address on a form. You can validate the
information on a form by using a client-side script or a server-side script. Deciding which
kind of script to use is complicated by the fact that each approach has its benefits and
drawbacks, some of which aren't apparent unless you've done substantial design work.
If you validate the form on the client by using client-side JScript code, you need to take
into consideration the browser that your users may use to access the form. Not all
browsers expose exactly the same representation of the document to programmatic
interfaces. If you validate the form on the server, you need to be aware of the load that
users might place on the server. The server has to validate the data and send the result
back to the client. Web Forms simplify Web development to the point that it becomes as
easy as dragging and dropping controls onto a designer (the surface that you use to edit
a page) to design interactive Web applications that span from client to server.

Web Services

A Web service is an application that exposes a programmatic interface through standard
access methods. Web Services are designed to be used by other applications and
components and are not intended to be useful directly to human end users. Web
Services make it easy to build applications that integrate features from remote sources.
For example, you can write a Web Service that provides weather information for
subscribers of your service instead of having subscribers link to a page or parse through
a file they download from your site. Clients can simply call a method on your Web
Service as if they are calling a method on a component installed on their system — and
have the weather information available in an easy-to-use format that they can integrate
into their own applications or Web sites with no trouble.

Windows Forms

Windows Forms is the name of a unified set of classes that provides support for creating
traditional desktop applications — applications that have a graphical user interface
(GUI). Windows Forms make it easy to develop end-user applications using any .NET
programming language. Furthermore, through Visual Studio .NET, developers can easily
design forms by using drag-and-drop editing.

Visual Studio .NET

Visual Studio .NET fulfills the promise of a single development environment for all
languages. Visual Studio .NET simplifies development in a mixed-language environment
through features such as support for end-to-end debugging across all programming
languages; visual designers for XML, HTML, data, and server-side code; and full
IntelliSense support (statement completion). Visual Studio .NET replaces the Visual
Basic 6, Visual C++, and Visual InterDev development environments.

Visual Studio .NET is able to provide this level of integration because it relies and builds
on the facilities of the .NET Framework. Designers for Web forms and Windows Forms
enhance developer productivity during the development cycle. Integration of deployment
features enhances productivity during post-deployment debugging. Table 1-4
summarizes Visual Studio .NET's major features.

Table 1-4: Visual Studio .NET's Major Features

Feature Benefit

Table 1-4: Visual Studio .NET's Major Features

Feature Benefit

Single IDE Simplifies mixed-language development with
support for Visual Basic, C++, C#, and JScript
.NET

Task List Organizes tasks and manages errors and

warnings in a single place. Tasks are read from
specialized comments in source code and are
presented in a tabular format. Double-click the
task to jump to the section of source code where
the task was entered.

Solution Explorer Provides a hierarchical view of a solution
organized into projects. Allows the management
of related projects within a single solution.

Server Explorer Manages your computer and other computers on
the network, including resources such as SQL
Server, message queues, services, and so on.
Integrates performance and event monitoring
and Web services.

Multi-Monitor support Makes the best possible use of available screen
space
IntelliSense Ensures consistent statement completion across

all supported languages

Dynamic Help Makes reference documentation available based
on what you're working on

End-to-end debugging Facilitates cross-language, process, and system
debugging through the Visual Studio .NET
debugger; the learning curve is reduced, and
developers are better able to take advantage of
the debugger's features.

Deployment support Integrates deployment into each solution
(project); as changes are made in the solution,
deployment information is updated. You can
deploy your solution using traditional setup
(install on a single system), Web setup, and Web
download. This feature also facilitates
deployment for debugging across systems.

Summary

This chapter introduced you to the .NET Framework and its components in the context of
the problems and the benefits the .NET Framework provides. The next chapter
discusses setting up the development environment for creating ASP.NET applications,
creating a simple ASP.NET application using both VB and C#, and deploying an
application on a Web server.

chapter 2 Getting Started with ASP.NET

Overview

The Microsoft .NET Framework provides a powerful platform for the development of
applications for both the desktop and the Internet. The .NE T Framework allows you to
develop Internet applications with an ease that was never provided before. To develop
Internet applications, the .NET Framework is equipped with ASP.NET. ASP.NET is a
powerful programming framework for the development of enterprise-class Web
applications.

This chapter introduces you to the .NET Framework and ASP.NET. You'll learn to set up
the development environment for creating ASP.NET applications. You'll also learn how
to create an ASP.NET application by using Visual Basic .NET and C#, and deploy the
application.

Introducing the .NET Framework

Since 1995, Microsoft has been constantly making efforts to shift focus from the
Windows -based platforms to the Internet. Microsoft introduced Active Server Pages
(ASP) as an endeavor toward Internet programming. However, writing ASP script, an
interpreted script, was a traditional way of programming as compared to the existing
structured object-oriented programming. Moreover, it was very difficult to debug and
maintain the unstructured ASP code. Definitely, you could combine the code written in
structured object-oriented languages, such as Visual Basic, with ASP code. However,
you could combine the VB code only as a component. Moreover, the software integration
for the Web development was quite complicated and required an understanding of a host
of technologies and integration issues on the part of the developers. Therefore, an
architecture was needed that would allow the development of Web applications in a
more structured and consistent manner.

Recently, Microsoft introduced the .NET Framework with a vision for developers to
create globally distributed software with Internet functionality and interoperability. The
.NET Framework includes multiple languages, class libraries, and a common execution
platform. In addition, the .NET Framework includes protocols that allow developers to
integrate software over the Internet and the .NET Enterprise Servers, such as SQL
Server 2000, Commerce Server 2000, and BizTalk Server. Thus, the .NET Framework
provides the richest built-in functionality for software integration ever provided by any
platform. Also, with the .NET Framework, developing the Internet applications is as easy
as developing desktop applications.

The .NET Framework frees the software developer from most of the operating system
specifics, such as memory management and file handling, because the .NET Framework
covers all the layers of software development above the operating system. Figure 2-1
describes the different components of the .NET Framework.

The NET Framework

ASP.NET Windows Forms
[WL‘lJSt‘[‘.n’ICL"b][Web Forms |

Contrals | | DHI'."."III!J]

lﬂSI’.N[-I Application ':;er1.-'|-::|:5| |1."|.f|ntlcl.usﬁr3]4 n:nlmn*:iu:f‘.'icea|

MET Framework Base Classes

| Aponer | | xmu | [Theeading | | 10 |
l Met i I Security I] Diagnostics | | Eic. |
Common Language Runtime

[ann::,- I'n."lnn;:qmmml Iftnmmm Type S:,-*.tam; Il ife Cycle Monitor mc_;]

Figure 2-1: The .NET Framework

The top layer represents user and program interfaces, and includes Windows Forms,
Web Forms, Web Services, and Application Services. Windows Forms provide a Win32-
based user interface. Web Forms provide a Web-based user interface. Web Services are
the most revolutionary program interfaces because they allow programs to communicate
over the Internet. The Internet-based program interfaces, which include Web Forms and
Web Services, are implemented by ASP.NET, which is a built-in component of the .NET
Framework.

The middle layer represents the .NET Framework classes, which are universally
available across multiple languages. The usage of these classes is consistent across all
languages included in the .NET Framework.

The base layer represents the common execution platform called the Common
Language Runtime (CLR). This is the most important component of the .NET
Framework. The CLR provides support for multiple languages and allows cross-
language inheritance. For example, you can inherit a class written in Visual Basic from a
class written in Visual C++. Thus, with .NET, the choice of a programming language
simply depends on the user's choice. With .NET, it is possible to create applications by
using multiple languages. The multiple-language support is possible because the CLR
provides a common system of data types. In addition, the CLR performs the memory
management and monitors the complete life cycle of objects, while it tracks objects and
handles garbage collection.

Visual Studio .NET (VS.NET) is the first release of the products based on the .NET
Framework. It includes Visual Basic, Visual C++, and C#. VS.NET provides a common
Integrated Development Environment (IDE) for all languages. Therefore, developers
always work in a consistent environment irrespective of the language they use.

With that basic understanding of the .NET Framework, you are ready to look at the basic
features of ASP.NET.

Introducing ASP.NET

ASP.NET, the next version of ASP, is a programming framework that is used to create
enterprise-class Web applications. The enterprise-class Web applications are accessible
on a global basis, leading to efficient information management. However, the advantages
that ASP.NET offers make it more than just the next version of ASP.

ASP.NET is integrated with Visual Studio .NET, which provides a GUI designer, a rich
toolbox, and a fully integrated debugger. This allows the development of applications in a

What You See is What You Get (WYSIWYG) manner. Therefore, creating ASP.NET
applications is much simpler.

Unlike the ASP runtime, ASP.NET uses the Common Language Runtime (CLR) provided
by the .NET Framework. The CLR is the .NET runtime, which manages the execution of
code. The CLR allows the objects, which are created in different languages, to interact
with each other and hence removes the language barrier. CLR thus makes Web
application development more efficient.

In addition to simplifying the designing of Web applications, the .NET CLR offers many
advantages. Some of these advantages are listed as follows.

=Improved performance: The ASP.NET code is a compiled CLR code instead
of an interpreted code. The CLR provides just-in-time compilation, native
optimization, and caching. Here, it is important to note that compilation is a
two-stage process in the .NET Framework. First, the code is compiled into
the Microsoft Intermediate Language (MSIL). Then, at the execution time,
the MSIL is compiled into native code. Only the portions of the code that
are actually needed will be compiled into native code. This is called Just In
Time compilation. These features lead to an overall improved performance
of ASP.NET applications.

= Flexibility: The entire .NET class library can be accessed by ASP.NET
applications. You can use the language that best applies to the type of
functionality you want to implement, because ASP.NET is language
independent.

= Configuration settings: The application-level configuration settings are
stored in an Extensible Markup Language (XML) format. The XML format is
a hierarchical text format, which is easy to read and write. This format
makes it easy to apply new settings to applications without the aid of any
local administration tools.

= Security: ASP.NET applications are secure and use a set of default
authorization and authentication schemes. However, you can modify these
schemes according to the security needs of an application.

In addition to this list of advantages, the ASP.NET framework makes it easy to migrate
from ASP applications.

Before you start with your first ASP.NET application, take a quick look at how to set up
the development environment, described next.

Setting Up the Development Environment

ASP.NET is based on the CLR, class libraries, and other tools integrated with the
Microsoft .NET Framework. Therefore, to develop and run the ASP.NET applications,
you need to install the .NET Framework. The .NET Framework is available in two forms:
= NET Framework SDK (Software Development Kit)
=Visual Studio .NET (VS.NET)

You can install the .NET Framework SDK or VS.NET on a machine that has one ofthe
following operating systems:

= Windows 2000

=\Windows NT 4.0

= Windows Me

=\Windows 98

=\Windows XP Professional

Installation of the .NET Framework SDK is very simple — just run the Setup program
and follow the onscreen instructions. However, the development machine must have
Internet Explorer 5.5 or higher available before the installation. Otherwise, you will be
prompted to download it before you install the .NET Framework SDK.

To develop any Web application, you need Internet Information Server (lIS) configured
on either the development machine (in the case of Windows 2000 or Windows NT 4.0) or
another machine on the network. In the latter case, the .NET Framework must be
installed on the machine on which 1IS is configured.
Note In the case of Windows 2000 Server, the IIS server is
automatically installed.

In addition to installing 11S, you need to install SQL Server 7.0 or higher to develop
ASP.NET database applications. You can install SQL Server on the development
machine or any other machine on the network.

You can create ASP.NET applications by just installing the .NET Framework SDK and
configuring an IIS server. In this case, you need to use a text editor, such as Notepad, to
write the code. Therefore, if you do this, you'll have to work without the IDE and other
integrated tools that come with VS.NET. Hence, installing VS.NET is recommended, to
get the full benefit of the .NET features.

VS.NET Beta 2 comes with four CD-ROMs:
= Windows Component Update CD
*VS.NET CD1
*VS.NET CD2
=VS.NET CD3

When you run the Setup program from VS.NET CD1, a dialog box appears that prompts
you for the following three options:

=Windows Component Update

= Install Visual Studio .NET

= Check for Service Releases

If you have not run the Setup program from the Windows Component Update CD, only
the first of the preceding three options will be available. In this case, you need to insert
the Windows Component Update CD in the CD-ROM drive of the machine and click the
first link, Windows Component Update, to begin the update. This option updates
Windows with the components that are required to install .NET. Some of the components
include Microsoft Windows Installer 2.0, Setup Runtime Files, and Microsoft Data Access
Components 2.7. Then, follow the onscreen instructions. In the process, you'll need to
reboot the machine several times. After the Windows Component Update is complete,
you can use the second link to install VS.NET. After VS.NET is installed, you can click
the third link to check for any updates.

When you start Visual Studio .NET, the Start Page is displayed prominently in the
window. Figure 2-2 displays the Visual Studio .NET window.

[e [&@ Yiew Tesh Weadrw elp

al= ~NEg- | 5] ==K . e e =
= 000 @B niaasim ST .
s || Saatee Eaplnar L
e Frapert Hes Fragert
3 Bl Ephover] 2 Chas e
Dy1ame Hepp X
& Ll

=

. -
i PR
ik e § e

L] oty Tl
P i B

| ssorating o 1o =

& sl I 1]

L
Figure 2-2: The Visual Studio .NET window

The VS.NET window contains the Solution Explorer window to the right. This window
displays the projects that are created. The Toolbox and Server Explorer windows can be
seen hidden at the extreme left. When you point to the Toolbox or Server Explorer, the
corresponding window opens. You use the Toolbox to create the user interface for an
application. The Server Explorer window is used to add any Web server or database
connection.

The main Start Page window is the central location from where you can perform several
tasks, such as create a new project, open an existing project, and get the latest news
and recent articles at the MSDN online library. The different options available on the
Start Page and what they enable you to do are described as follows:
= Get Started: Create a new project or open an existing project.
=What's New: Identify the new features of Visual Studio .NET.
= Online Community: Contact other developers online. To do this, you must
have a newsgroup reader configured on your machine.
=Headlines: Get the latest news from the MSDN online library.
= Search Online: Search the Web.
=Downloads: Get the latest product updates, SDK releases, and sample code
from the Internet.
=Web Hosting: Post your Web applications and Web services created in
Visual Studio .NET directly to the Internet.
= MyProfile: Set the IDE-specific preferences.

Creating an ASP.NET Application

After you've set up the development environment for ASP.NET, you can create your first
ASP.NET Web application. You can create an ASP.NET Web application in one of the
following ways:
=Use a text editor: In this method, you can write the code in a text editor, such
as Notepad, and save the code as an ASPX file. You can save the ASPX
file in the directory C:\inetpub\wwwroot. Then, to display the output of the
Web page in Internet Explorer, you simply need to type
http:/ /1 ocal host/ <fil enane>. aspx in the Address box. If the 1IS
server is installed on some other machine on the network, replace
"localhost" with the name of the server. If you save the file in some other
directory, you need to add the file to a virtual directory in the Default
WebSite directory on the IIS server. You can also create your own virtual
directory and add the file to it.
=Use the VS.NET IDE: In this method, you use the IDE of Visual Studio .NET
to create a Web page in a WYSIWYG manner. Also, when you create a
Web application, the application is automatically created on a Web server
(IIs server). You do not need to create a separate virtual directory on the
IIS server.

From the preceding discussion, it is obvious that the development of ASP.NET Web
applications is much more convenient and efficient in Visual Studio .NET.

ASP.NET Web pages consist of HTML text and the code. The HTML text and the code
can be separated in two different files. You can write the code in Visual Basic or C#. This
separate file is called the code behind file. In this section, you'll create simple Web pages
by using VB as well as C#.

Cross- For more information on code behind files, refer to
Reference Chapter 3.

Before you start creating a Web page, you should be familiar with basic ASP.NET
syntax. At the top of the page, you must specify an @ Page directive to define page-
specific attributes, such as language. The syntax is given as follows:

<%@ Page attribute = value %>

To specify the language as VB for any code output to be rendered on the page, use the
following line of code:

<%@ Page Language = "VB" %>

This line indicates that any code in the block, <%%>, on the page is compiled by using
VB.

To render the output on your page, you can use the Response. Wit e() method. For
example, to display the text "hello” on a page, use the following code:

<% Response.Write("Hello") %>
Note The syntax used in the block, <% %>, must correspond to the
language specified in the @ Page directive. Otherwise, an error is
generated when you display the page in a Web browser.
You can use HTML tags in the argument passed to the Response. Wit e() method.
For example, to display the text in bold, you use the following code:

<% Response.Write(" Hello ") %>

For dynamic processing of a page, such as the result of a user interaction, you need to
write the code within the <Scri pt > tag. The syntax of the <Scr i pt > tag is given as
follows:

<Script runat="server" [language=codelanguage]>
code here
</Script>

In this syntax . . .
=runat ="server" indicates that the code is executed at the server side.
=[| anguage=codel anguage] indicates the language that is used. You can
use VB, C#, or JScript .NET. The square brackets indicate that this attribute
is optional. If you do not specify this attribute, the default language used is
VB.

After gaining an understanding of the basic ASP.NET page syntax, you can now create a
simple ASP.NET Web application. In the following sections, you'll create a simple Web
application by using VB and C#. To do so, you'll use the VS.NET IDE.

Creating a Visual Basic Web Application

You can create an ASP.NET application using Visual Basic by creating a Visual Basic
Web Application project. To do so, complete the following steps:
1. Select File ® New ® Project. The New Project dialog box appears.
2. Select Visual Basic Projects from the Project Types pane.
3. Select ASP.NET Web Application from the Templates pane. The
Name box contains a default name of the application. The Location
box contains the name of a Web server where the application will be
created. However, you can change the default name and location. In
this case, the name of the sample application is SampleVB. The New
Project dialog box now appears as shown in Figure 2-3.

T
[w

Progscl Types: Templster
4 Viousl Dase Progechs =
] Viousl CE Prosscls E @ ﬁ
B Vil L Propciy Wi Chaes Liwaty Wikt
1 iousl FoaPro Paojacts Apkesbon Corirol Librasy

= Setup ard Dapkosmmant Propscls

W] Oltreet Paceeciy
] Wisusl §hucho: S olutions ‘39 ‘ﬁ @
fpphcalon Wb Gerace 'Wsh Conral
L j

e e
Hame |5 arpiev

Location {ritp HE TSERVER-F20 =| [|

Propest vall s exmabend o Ritg AVHE TSERVE RFSLS gl
Sy [0] coma | v |

Figure 2-3: The New Project dialog box
4. Click OK to complete the process.
VS.NET displays the application, as shown in Figure 2-4. By default, the file
WebForml.aspx is selected and displayed. In addition to several other files,
WebForml.vb is also created. You can write the page logic in this file. This file is the
code behind file.

4 Sgmpla Wl - Waiawssl Visss| Wathc WLV sl] - Wbl e 7, s
[B [Yiew [Pogect Deild Oebig Fgrest Table Jossn Frames Jeals e |alp
Al 3-8 @ [SRR I =R T * | # |

e bk] s |

LT A "

B Dy L HTHL i]
Dhspek LI 55|H e

Taaild 1 masdnmis 4, ¥ Failail, § dhipgad EI!.I IEI‘H ﬂ

a|] |
T Eﬂ.q:u:rz L e e e -ﬂ'ﬂm. i:.-
T .
Figure 2-4: The VS.NET window with a new project

The WebForm1l.aspx file is displayed in Design mode by default. To view the file in
HTML mode, click HTML at the bottom of the WebForm1.aspx file window.

As you can see in HTML view, the language to be used on the page is VB. Any HTML
text or code (in the <%%> block) within the <Body> </ Body> block is rendered on the
page when it is displayed in a Web browser.

The default background color of a page is white. You can change the background color
of a page by setting the bgcol or attribute of the <Body> element. When you set this
attribute, you are prompted to pick the color, as shown in Figure 2-5.

<hody hgcn:ulu:ur=l:>—

...

Figure 2-5: Setting the bgcol or attribute

When you select a color from the color palette, the corresponding color code is set as
the value of the bgcol or attribute. A sample of such code is given as follows:

<Body bgcolor="#ccccff">
Write the following code within the <Body> </ Body> element to display the text "Hello
World":

<% Response.Write(" <Center> Hello World </Center>
") %>

After you complete writing the code for your application, you need to build your
application so that you can execute it on a Web server. To build the project, choose Build
® Build.

Tip You can also build a project by pressing Ctrl + Shift + B.

When you build a project, the Web Form class file is compiled to a Dynamic Link Library
(DLL) file along with other executable files in the project. The ASPX file is copied to the
Web server without any compilation. You can change the ASPX file (only the visual
elements of the page) without recompiling, because the ASPX file is not compiled. Later,
when you run the page, the DLL and ASPX files are compiled into a new class file and
then run.

The output of the page that you developed is displayed in Figure 2-6.

A hnplo calhenS ampdeVE WabF a1 aps - Bicresol lntemeet Explons
Flie Edii View Favoiies Took illelp [=]
=D D) A Bsewh aiFeeisr | fHeney | b
N T T e ——— =] e ||Links *
|

Hello World

& Dane ¥ Lecal inwanet

Figure 2-6: A sample output of the Web page

Creating a C# Web Application

In addition to Visual Basic, you can also use C# to create ASP.NET Web applications.
To do so, you need to create a Visual C# Web application project as follows:

1. Select File ® New ® Project. The New Project dialog box appears.

2. Select Visual C# Projects from the Project Types pane.

3. Select Web Application from the Templates pane. The Name box
contains a default name of the application. The Location box contains
the name of a Web server where the application will be created.
However, you can change the default name and location. In this case,
the name of the sample application is SampleCSharp.

4. Click OK to complete the process.

When you switch to HTML view of the WebForm1.aspx file, you'll notice that the
language specified in the @ Page directive is C#. To create a Web page that displays

"Hello World," you simply need to write the following code in the <Body> </ Body> block
of the page:

<% Response.Write(" <Center> Hello World </Center>
"); %>

Notice that the code in the <%%> block is terminated with a semicolon. This difference in
syntax is due to the fact that the language for this page is C# and not VB.

When you build the application and execute it, a Web page appears in the browser
displaying the text "Hello World."

Deploying an ASP.NET Web Application

After creating and testing your ASP.NET Web applications, the next step is deployment.
Deployment is the process of distributing the finished applications (without the source
code) to be installed on other computers.

In Visual Studio .NET, the deployment mechanism is the same irrespective of the
programming language and tools used to create applications. In this section, you'll
deploy the "Hello World" Web application that you created. You can deploy any of the
application that was created by using VB or C#. Here, you'll deploy the application
created by using VB. To do so, follow these steps:

1. Open the Web application project that you want to deploy. In this case,
open the SampleVB project.

2. Select File ® Add Project ® New Project to open the Add New Project
dialog box.

3. From the Project Types pane, select Setup and Deployment Projects.
From the Templates pane, select Web Setup Project.

4. Change the default name of the project. In this case, change it to
"SampleVBDeploy."

5. Click OK to complete the process. The project is added in the Solution
Explorer window. Also, a File System editor window appears to the left,
as shown in Figure 2-7. The editor window has two panes. The left pane
displays different items. The right pane displays the content of the item
selected in the left pane.

Lt Piage tfom woe Fibe Spatem |5 ample¥ B Dapley] | 1k =
& File S peters o Tanged Hachins Hoarne [Tvpe

) Global fizmambly Cache Folde: alGbbal Ammrbide Cach . Fokder
4] (gl Wieks Appieation: Foldes al'web Aopbcsbon Foider Fokder

Figure 2-7: The Deployment editor

6. Select Web Application Folder in the left pane of the File System editor
window. Then, from the Action menu, select Add ® Project Output to
open the Add Project Output Group dialog box, shown in Figure 2-8.

Add Project Output Group |

Project:

Primary output
Localized resources
Drebug Symbols
Content Files
Source Filez

o] |

d

L

Caonfiguration; I [Active]

Dezcription:

1

L€

| 21 I Cancel Help |

Figure 2-8: The Add Project Output Group dialog box

7. Verify that SampleVB is selected in the Project drop-down list. Then,
select Primary Output and Content Files from the list.

8. Click OK. The output files and content files of the SampleVB project are
added to the solution.

9. Select Web Application Folder in the File System editor and select

Properties Window from the View menu to open the Properties window.

10. Setthe Virtual Di rect ory property to a folder, <folder name>, that

would be the virtual directory on the target computer where you want to
install the application. By default, this property is set to

Sanmpl eVBDepl oy, which is the name of the Web Setup project that you
added. In this case, set the property to Depl oyedAppl i cati on.

The <folder name> should be a new folder name and should not

already exist on the target machine. Otherwise, the contents in the

folder will be overwritten.

11. In the same Properties window of the Web Application Folder, set the
Def aul t Docunent property to WebForm1l.aspx. This property is used
to set the default Web Forms page for the application.

12. Build the solution by selecting Build Solution from the Build menu.

13. After the solution is built successfully, a SampleVBDeploy.msi file is
created in the Debug directory of the Web Setup project. The default
path is \documents and settings\<login name>\My Documents\Visual
Studio
Projects\SampleVB\SampleVBDeploy\Debug\SampleVBDeploy.msi.

14. Copy the SampleVBDeploy.msi file to the Web server computer
(c:\inetpub\wwwroot) where you want to deploy the application.

15. Double-click the SampleVBDeploy.msi file on the target computer to run
the installer.

Note To run the installer, you must have the install permissions on the
computer. And, to install to the Web server, you must have IIS
permissions.

Caution

After the installation is complete, you can run your application on the target computer. To
do so, start Internet Explorer and enter htt p: / / <conput er

name>/ Depl oyedAppl i cati on in the address box. The "Hello World" page that you
developed is displayed.

Summary

In this chapter, you learned how to set up the development environment for creating
ASP.NET applications. Then, you learned how to create a simple ASP.NET application
by using both VB and C#. Finally, you learned how to deploy an application on a Web
server.

chapter 3: BUilding Forms with Web Controls

Overview

The increased use of the Internet in the business scenario has shifted focus from
desktop applications to Web-based applications. Because of this shift in focus, a Web
development technology is needed that can combine the capabilities of different
languages and simplify application development. Microsoft's response to this need is the
release of ASP.NET, which provides a common Web development platform.

ASP.NET is a powerful programming platform that is used to develop and run Web-
based applications and services. ASP.NET provides improved features, such as
convenient debugging tools, over the earlier Web development technologies. ASP.NET
provides a rich set of controls to design Web pages. Visual Studio .NET provides visual
WYSIWYG (What You See Is What You Get) HTML editors. Therefore, you can design
Web pages by simply dragging and dropping the controls. ASP.NET supports the C#,
Visual Basic .NET, and JScript .NET languages, all of which you can use to build
programming logic for your Web pages. You can choose which one of these languages
to use based on your proficiency on a particular language. One of the most important
features of ASP.NET is that it provides separate files for page presentation and
programming logic, which simplifies Web application development. This chapter
introduces you to designing simple Web pages by using basic Web controls. You'll also
learn how to handle various events of these controls.

Introducing ASP.NET Web Forms

The ASP.NET Web Forms technology is used to create programmable Web pages that
are dynamic, fast, and interactive. Web pages created using ASP.NET Web Forms are
called ASP.NET Web Forms pages or simply Web Forms pages.

ASP.NET uses the .NET Framework and enables you to create Web pages that are
browser independent. In addition to being browser independent, the following are some
of the features that may lead you to select Web Forms over other technologies to create
dynamic Web pages:
=Web Forms can be designed and programmed using Rapid Application
Development (RAD) tools.
=Web Forms support a rich set of controls and are extensible, because they
provide support for user-created and third-party controls.
= Any of the .NET Framework language can be used to program the ASP.NET
Web Forms pages.
= ASP.NET uses the Common Language Runtime (CLR) of the .NET
Framework and thus benefits from its features, such as type safety and
inheritance.

Web Forms components

An ASP.NET Web Forms page consists of a user interface and programming logic. The
user interface helps display information to users, while the programming logic handles
user interaction with the Web Forms pages. The user interface consists of a file
containing a markup language, such as HTML or XML, and server controls. This file is
called a page and has .aspx as its extension.

The functionality to respond to user interactions with the Web Forms pages is
implemented by using programming languages, such as Visual Basic .NET and C#. You
can implement the programming logic in the ASPX file or in a separate file written in any
CLR-supported language, such as Visual Basic .NET or C#. This separate file is called
the code behind file and has either .aspx.cs or .aspx.vb as its extension depending on
the language used. Thus, a Web Forms page consists of a page (ASPX file) and a code
behind file (.aspx.cs file or .aspx.vb file).

Web Forms server controls
You can design a Web Forms page by using controls called Web Forms server controls.
You can program the functionality to be provided for the server controls. The server
controls are different from the usual Windows controls because they work within the
ASP.NET Framework. The different types of server controls are described as follows:
= HTML server controls: These controls refer to the HTML elements that
can be used in server code. The HTML elements can be converted into
HTML server controls. To do so, you need to use attributes, such as | D
and RUNAT, in the tags that are used to add the HTML controls. You can
also add these controls to the page by using the HTML tab of the
toolbox. The different tabs of the toolbox are shown in Figure 3-1.

Toolbox
Data |

‘Wweh Farms | ~]

| k- Fuirter
A Label
TeutBox

| x0qoog X

'
=

Buttan

LirkB utton
ImageButtan
HyperLink,
DropDownlist
ListE ox
DataGrid
Dratalist
Repeater
CheckBox
CheckBosList
FadicB uttonList
RadioB uttan

B 755 77 DB B) BR b L2

Image

Comporents |ﬂ
HTHL |
Clipboard Ring |

General |
Figure 3-1: The Visual Studio .NET toolbox

= ASP.NET server controls: These controls do not map one-to-one to
HTML server controls. ASP.NET server controls include traditional form

controls, such as text boxes and buttons, and complex controls, such as
tables.

= Validation controls: These controls are used to validate users' input.
Validation controls can be attached to input controls to check the values
entered.

= User controls: These controls are created from the existing Web Forms
pages and can be used in other Web Forms pages.

Creating Web Forms Application Projects

Before you use any server control to design a Web Forms page, you need to create an
ASP.NET Web Application project. You can create either a Visual Basic .NET or a C#

Web Application project, depending on the programming language you want to use. A
Web Application project is always created on a Web server.

Note A Web server must be installed on the development computer to
create a Web Application project.

The steps to create an ASP.NET Web Application project are as follows:

1. Select Start ® Programs ® Microsoft Visual Studio .NET 7.0 ®
Microsoft Visual Studio .NET 7.0 to start Visual Studio.NET.

2. Select File ® New ® Project to open the New Project dialog box.

3. Select Visual Basic Projects or Visual C# Projects in the Project Types
pane.

4, Select ASP.NET Web Application in the Templates pane.

5. Specify the project name in the Name box, if necessary.

6. Specify the name of the computer where you want to create the
application, in the Location box if necessary, and click OK. The name of
the computer should be in the form http://computer name. A new Web
Application project is displayed in the designer window, as shown in

Figure 3-2.

el g B e b - il Wil Dl MET bl

[@e L& Yiew [Crogect Deild Oebig Fgoest Table Posen Frames Jeals Wisdew |felp

En b - = N [« ECRCRCERR 1 = - Lol = -
E.‘:. 5 D - ' n i N e
-Rl st e Tk] S o | Salutos Evpiorsr - Pl Covirele Aaplcatoa 1 X
i E imk-Hei] F L
: fabutrm 'Wiok: Corirgh, dpmlesbon 1 sk
! (i vatelt_Crnivsly_Rowplls oo
1 il Aeboreres
ke
&) dppensbhyirie ok
i g Giskea wem
A frses oo
T b oring
g e R
i O] el g
| @ [oagn |5 W
gk L
| T B =1
|
L)
a |]
= [ad E:_.urz._.: P -
B aily

Figure 3-2: A Web Application project
Note By default, the Name and the Location boxes contain a project name
and the computer name, respectively. However, you can change the
default names.

When you create a Web Application project, the Application Wizard creates the
necessary project files along with the page file and code behind class file as described:
=WebForm1.aspx: This page file consists of the user interface for the visual
representation of the Web Forms page. The file has two views, Design and
HTML. The default view is Design view.
o Design view: This view represents the user interface for
the Web Forms page. You can place controls directly from
the toolbox to the Web Forms page in Design view. By
default, the page layout of the Web Forms page is
GridLayout. This layout enables you to accurately position
controls on the page by using the absolute coordinates
(X,Y) of the page. In addition to GridLayout, ASP.NET
provides another page layout, which is called FlowLayout.
In FlowLayout, you can add text to the page directly in
Design mode. You can change the page layout from the
default GridLayout to FlowLayout. To do so, right-click the
page in Design view and select Properties from the context
menu. Next, in the DOCUMENT Property Pages dialog box,
from the Page Layout list box, select FlowLayout.
o HTML view: This view represents the ASP.NET code for
the Web Forms page. To open HTML view, click the HTML
tab in the designer. When the Web Application project is a
Visual Basic project or a C# project, the scripting language
used in the HTML page is Visual Basic or C#, respectively.
=WebForm1l.aspx.cs or WebForml.aspx.vb: This file consists of the code to
implement programming logic in the Web Forms page. You can view the
code file by using the Show All Files icon in the Solution Explorer window. If
the Web Application project is a Visual Basic project, you use Visual Basic
.NET to implement the programming logic and the code file is called the
WebForm1.aspx.vb file. Conversely, if the Web Application project is a C#
project, you use C# to implement the programming logic and the code file is
called the WebForm1l.aspx.cs file. The code file (WebForml.aspx.vb)
appears within the WebForm1.aspx node as shown in Figure 3-3.

Saolution Explarer - YWeb_Contrals_Application

EE| Sl

@ Solution “Web_Controlz_dpplication' (1 project]
- @9 Web_Controls_Application

- (53] References

- i hin

e Agzemblylnfo.vb

& 5] Global azax

— Al Siyles.css

- |58 weh.corlig

e Web_Controls_spplication. vedizco
WwiebForml. azpu
2] WebForml.aspu.vb

Figure 3-3: The Solution Explorer window showing all the files

Using Web Controls

You can add ASP.NET server controls to a Web Forms page by using either of the
following two features:

= The Web Forms section of the toolbox

= The ASP.NET code

You add controls from the toolbox in Design view of the Web Forms page (the ASPX
file). The toolbox categorizes the different types of controls in separate tabs, such as
Web Forms, HTML, Components, and Data. You can use the HTML tab to add HTML
controls and use the Web Forms tab to add the ASP.NET server controls to Web Forms.
However, to make the HTML controls available for coding at the server end, these
controls need to be converted to server controls. To do so, right-click the HTML control
on the page and select Run As Server Control from the context menu. While selecting
between HTML and Web server controls, using Web server controls is preferred,
because they provide a rich object model and are adaptable to multiple browsers
depending on browser capabilities. However, HTML server controls are preferred when
migrating from the existing ASP pages to ASP.NET pages, because, unlike Web server
controls, HTML server controls map directly to HTML tags.

You can also add a Web control to a page by using the ASP.NET code. You can access
the ASP.NET code in the HTML view of the page (ASPX file). The actual syntax depends
on the type of control that you want to add. The syntax used to add an HTML TextBox
control is given as follows:

<input id="Textl" Type=text runat="server">

You can add ASP.NET server controls by using an Extensible Markup Language (XML)
tag referenced as asp. When you add an ASP.NET TextBox control, the following syntax
is generated for you:

<asp:TextBox id="TextBox1" runat="server"></asp:TextBox>
Note When you use the toolbox to add Web controls in Design view, the
corresponding ASP.NET syntax is automatically generated.
In the preceding code, the XML tag asp maps to the System.Web.UI..WebControls
namespace. This is different from the HTML server controls where the i nput tag lacks
any such mapping. However, the Web server controls use the r unat =ser ver attribute,
which is similar to the HTML server controls.

You can also programmatically add a control at run time. The following VB.NET code
snippet demonstrates how to add a TextBox control at run time:

Dim TextBox1l as New TextBox()

Controls.Add(TextBox1)

Every control has specific properties and methods. You can set control properties to
modify the appearance or behavior of controls. For example, you can set the font, color,
and size of a control. You can use the control methods to perform a specific task, such
as moving a control. You can set control properties at design times by using the
Properties window or at run time by using the code. Every control has a property called
| D that is used for the unique identification of the control. You can set the property of a
control at run time by using the following syntax:

ControllD.PropertyName=Value

In this syntax:

=Cont r ol | Drepresents the | D property of the control.

= PropertyName represents the control property.

= Value represents the value assigned to PropertyName, which is a control's

property.

Figure 3-4 displays a Web Forms page that contains almost every basic Web control.
You can see that the Web Forms page is a user registration form. The form is designed
to accept user input through various controls. After filling out the form, a user may click
the Register button to complete the registration process. Alternatively, a user may click
the Reset button to clear the values entered in the form. Table 3-1 lists the IDs of the
different controls used in the form. The section that follows describes some of the basic
Web controls in detail.

IL'wr Registration I"u:urml

Namao Ii

E-mail |
State (Only for US residents) Iseleniﬂale -

Sex " Male
" Female
Subseribe for I™ Books
P
rE 3

Bearch more Websites at

Fegister | Fesst |
Figure 3-4: A Web Forms page
Table 3-1: IDs of different controls

’ Control ‘ Contains ’ ID

| TextBox | Name | UserName

| TextBox | E-mail | Email

| DropDownlList | State | USStateList

| RadioButtonList | Sex | SexOption

| CheckBoxList | Subscriptions | SubscriptionOption
| HyperLink | Search | SearchLink

| Button | Register | RegisterButton

| Button | Reset | ResetButton

Label control

You use the Label control to display static text in a Web Forms page that users cannot
edit. When you add a Label control, the text "Label" appears as its caption. However,
you can use the Text property to modify the caption. Table 3-2 lists some of the
properties of the Label control.

Table 3-2: Properties of the Label control

Property Description

Text Represents

the caption
of a label

BackCol or Represents

the
background
color of a
label

For eCol or Represents

the font
color of a
label

Vi si bl e Indicates

whether or
not a label is
visible

You can also change the text of a label by using the following code:

Labell.Text="Welcome"

In this code, Label 1 is the ID of the Label control for which you want to change the
state. You can use the Vi si bl e property of the Label control to make it visible or not.
For example, in the following code, the Vi si bl e property is set to False, making the
label invisible:

Labell.Visible=False

TextBox control

You use the TextBox control to get information, such as text, numbers, and dates, from
users in a Web Forms page. You can set the Text Mode property of a TextBox control to
set the type as a single-line, password, or multiline TextBox control. By default, a
TextBox control is a single-line text box that allows users to type characters in a single
line only. A password TextBox control is similar to the single-line text box, but masks the
characters that are typed by users and displays them as asterisks (*). A multiline
TextBox control allows users to type multiple lines and wrap text.

The appearance of the TextBox control can be modified by using properties such as
BackCol or or For eCol or . Table 3-3 lists some of the properties of the TextBox
control.

Table 3-3: Properties of the TextBox control

Property Description

Text Represents the text

to be displayed in the
TextBox control.
Also, you can use
this property to set or
retrieve the text to or
from a TextBox
control at run time.

MaxLengt h Represents the
number of characters
that a user can type
in the TextBox
control.

W dt h

Represents the width
of a TextBox control.
This property takes
value in pixels.

Col umms Represents the width
of a TextBox control
in characters. If you
set both the W dt h
and Col ums
properties, the W dt h
property takes
precedence over the
Col umms property.
The default value is
0.

Text Mode Represents the

behavior of the
TextBox control, such
as single-line,
multiline, or

Table 3-3: Properties of the TextBox control

Property Description

password. By default,
the control is a
single-line text box.
To set a password
text box, set this
property to
TextBoxMode.Passw
ord. To set a multiline
text box, set this
property to
TextBoxMode.MultiLi
ne. The values
SingleLine, MultiLine,
and Password are
part of an enum
called TextBoxMode.
You cannot specify it
directly.

Hei ght Represents the

vertical size of the
TextBox control and
takes value in pixels.

Rows Represents the

vertical size of the
MultiLine TextBox
control and takes
value in number of
rows The default
value is 0.

W ap Represents the word

wrap behavior in a
multiline TextBox
control. The text
wraps automatically if
the value is set to
True. However, a
user must press a
carriage return to
move to a next line if
the value is set to
False. The default
value is True.

Note The Hei ght and W dt h properties do not work in browsers that
do not support Cascading Style Sheets (CSS). The CSS is a list of
CSS styles that is used to apply a general rule to attributes of a set
of elements.

CheckBox and CheckBoxList controls

Check boxes provide you with independent choices or options that you can select. You
can add check boxes to a Web Forms page by using either the CheckBox control or the
CheckBoxList control. The CheckBox control is a single check box that you can work
with. On the other hand, the CheckBoxList control is a collection of several check boxes.
After you add the CheckBoxList control, you need to add a list of items to it. To do so:

1. Display the Properties window of the CheckBoxList control.

2. Click the ellipsis button for the Items property of the CheckBoxList
control.

3. In the Listltem Collection Editor dialog box, click Add to create a hew
item. A new item is created and its properties are displayed in the
Properties pane of the dialog box.

4. Verify that the item is selected in the Members list, and then set the
item properties. Each item is a separate object and has following
properties:

= Text : Represents the text to be displayed for the item in
the list.

= Val ue: Represents the value associated with the item
without displaying it. For example, you can set the
Text property of an item as the city name and the
Val ue property to the postal code of the city. Thus,
you can keep the Text and Val ue properties different
when you do not want the actual value to be displayed
to the user.

= Sel ect ed: A Boolean value that indicates whether or
not the item is selected.

In addition to adding the CheckBoxList control and the member items at design time, you
can programmatically add them at run time. To do so, you use the following VB.NET
code:

Dim CheckBoxListl As New CheckBoxList()
Controls.Add(CheckBoxList1)

CheckBoxListl.ltems.Add("Check1")
The Add() method of the Items class can take either a string argument or a Listitem
object. This code snippet uses the Add() method that takes one string argument to

represent the text of the item.
The Add() method can also take a Listltem object as an argument. The Listitem

constructor can take one argument (one string to represent the text of the item) or two
arguments (one string for the text and another string for the value of the item). The
following code snippet explains the usage of the Listitem object in the Add() method:

Dim Listlteml1 as New Listltem("Checkl","check")

CheckBoxListl.ltems.Add(Listltem1)

The following VB.NET code snippet assumes that the Web Forms page contains a
TextBox control and a Button control. The following code is also associated with the

Cl i ck event of the button. When the user enters a number in the text box and clicks the

button, the specified number of check boxes is added to the CheckBoxList control:
‘Create a CheckBoxList object

Dim CheckBoxListl as New CheckBoxList()

'Adding the CheckBoxList control to the page

Controls.Add(CheckBoxList1)

'Declare the total number of items
Dim ChkCount as Integer

'‘Declare the current number of items
Dim ChkCtr as Integer

‘Accept the total number of items
ChkCount = Val(TextBox1.Text)

For ChkCtr = 0 To ChkCount-1
CheckBoxListl.ltems.Add("Check" & ChkCtr)
Next ChkCtr

The choice between using the CheckBox control and the CheckBoxList control depends
on application needs. The CheckBox control provides more control over the layout of the
check boxes on the page. For instance, you can set the font and color of the check
boxes individually or include text between different check boxes. On the other hand, the
CheckBoxList control is a better choice if you need to add a series of connected check
boxes, such as check boxes to represent areas of interest.

You can identify whether a check box is checked or not by using the Checked property
of the CheckBox control. The Checked property returns a Boolean value, as indicated in
the code that follows. If the control is checked, it returns True; otherwise, it returns False.

Dim CheckBox1 as New CheckBox()
Dim IsChk as Boolean

IsChk=CheckBox1.Checked

If you have a CheckBoxList control and you want to identify the item that has been
checked, you use either the Sel ect edl ndex or Sel ect edl t emproperty of the control.
The Sel ect edl ndex property returns an integer value indicating the index (the first
item has an index 0) of the selected item. This property returns -1 if nothing is selected.

Dim i As Integer

i=CheckBoxListl.SelectedIndex()
The Sel ect edl t emproperty, on the other hand, returns the selected item:

Dim Listltem1 As New Listlitem()

Listitem1=CheckBoxListl.Selectedltem()
You can also access the Text, Val ue, or Sel ect ed property of the item. For example,
the following code retrieves the Text property of the selected item:

Dim CityName as String

CityName=CheckBoxListl.Selectedltem.Text

When you add a CheckBox control to a page, you can set the caption of the check box
by setting the Text property. Then, you can change the orientation of the caption by
setting the Text Al i gn property. Table 3-4 describes some of the properties of the
CheckBox and CheckBoxList controls.

Table 3-4: Properties of the CheckBox and CheckBoxList controls

Property Available Description
with

Text CheckBox Represents

the caption
of the
CheckBox
control.

Text Ali gn

CheckBox
and
CheckBoxList

Represents
the text
orientation
of the
CheckBox
and
CheckBoxLi
st controls.

Itenms

CheckBoxList

Represents
the

Table 3-4: Properties of the CheckBox and CheckBoxList controls

Property Available Description
with

collection of
individual
check boxes
in the
CheckBoxLi
st control.
Each item
has three
properties,
Text,

Val ue, and
Sel ect ed,
associated
with it.

RadioButton and RadioButtonList controls

Radio buttons provide a set of choices or options that you can select. You can add radio
buttons to a Web Forms page by using either the RadioButton control or the
RadioButtonList control. The RadioButton control is a single radio button. On the other
hand, the RadioButtonList control is a collection of radio buttons. Radio buttons are
seldom used singly. Usually, you use radio buttons in a group. A group of radio buttons
provides a set of mutually exclusive options — you can select only one radio button in a
group. You can group a set of radio buttons in two ways:
= Place a set of RadioButton controls on the page and assign them
manually to a group. To do so, you can use the Gr oupNane property.
= Place a RadioButtonList control on the page; the radio buttons in the
control are automatically grouped.
After you add a RadioButtonList control, you need to add the individual radio buttons.
You can do so by using the | t ens property in the same way as you do for the

CheckBoxList control.

You add the items to a RadioButtonList control at run time in the same way as you add
items to a CheckBoxList control. The following VB.NET code snippet demonstrates how
to add items to a RadioButtonList control programmatically:

Dim RadioButtonListl As New RadioButtonList()
Controls.Add(RadioButtonList1)

RadioButtonListl.ltems.Add("Radiol")

You can use the Checked property of the RadioButton control to identify whether or not
the control is selected. For the RadioButtonList control, you can access the index of the
selected item by using the Sel ect edl ndex property and access the selected item by
using the Sel ect edl t emproperty of the control.

Table 3-5 describes some of the properties of the RadioButton and RadioButtonList
controls. Like the CheckBox control, the RadioButton control offers more control over the
layout of the radio buttons on the page.

Table 3-5: Properties of the RadioButton and RadioButtonList controls

Property Available with Description

Text RadioButton Represents

the caption
of the
RadioButton
control.

Table 3-5: Properties of the RadioButton and RadioButtonList controls

Property Available with Description

Text Ali gn RadioButton Represents

and the text
RadioButtonList orientation
of the
RadioButton
and
RadioButton
List controls.

| tems RadioButtonList tl?}(;presents

collection of
the
individual
radio
buttons in
the
RadioButton
List control.
Each item
has three
properties
associated
with it:
Text,

Val ue, and
Sel ect ed.

ListBox control

The ListBox control is a list of predefined items and allows users to select one or more
items from the list. The ListBox control is a collection of items. The individual list items
can be added by using the | t ems property of the ListBox control.

You can add list items to the ListBox control in the same way you add items to the
CheckBoxList and RadioButtonList controls. You can access the index of the selected
item by using the Sel ect edl ndex property and access the selected item in the list by
using the Sel ect edl t emproperty of the control.

Table 3-6 describes some of the properties of the ListBox control.

Table 3-6: Properties of the ListBox control

Property Description

Itens Represents the
collection of list items in
the ListBox control.
Each list item has three
properties associated
with it: Text, Val ue,
and Sel ect ed.

Wdth Represents the size of
a ListBox control and
takes value in pixels.

Hei ght

Represents the vertical
size of the ListBox
control and takes value
in pixels.

Table 3-6: Properties of the ListBox control

Property Description

Rows Represents the vertical

size of the ListBox
control and takes value
in number of rows. If the
control contains more
than the specified
number of items, the
control displays a
vertical scroll bar.

Sel ecti onMbde Represents the number
of items that can be
selected. To allow users
to select only one item,
set the

Sel ecti onMode
property to
ListSelectionMode.Singl
e. To allow users to
select multiple items,
set the

Sel ecti onMbde
property to
ListSelectionMode.
Multiple.
ListSelectionMode is
the enum that allows
you to specify the
selection mode. To
select more than one
item, users can hold the
Ctrl or Shift key while
clicking multiple items.
This is possible only
when you set the

Sel ecti onMbde
property to
ListSelectionMode.Multi
ple.

DropDownList control

The DropDownList control allows users to select an item from a set of predefined items
— each item is a separate object with its own properties, such as Text, Val ue, and
Sel ect ed. You can add these predefined items to a DropDownList control by using its
I t ens property. Unlike the ListBox control, you can select only one item at a time, and
the list of items remains hidden until a user clicks the drop-down button.

You can add list items to the DropDownList control in the same way you add items to the
CheckBoxList, RadioButtonList, and ListBox controls. You can access the index of the
selected item by using the Sel ect edl ndex property and access the selected item in
the list by using the Sel ect edl t emproperty of the control.

Table 3-7 describes some of the properties of the DropDownList control.

Table 3-7: Properties of the DropDownList control

Property Description

Itens Represents
the

Table 3-7: Properties of the DropDownList control

Property Description

collection of
items in the
DropDownLi
st control.
Each item
has three
properties
associated
with it:
Text,

Val ue, and
Sel ect ed.

Wdth Represents

the width of
a
DropDownLi
st control
and takes
value in
pixels.

Hei ght Represents

the vertical
size of the
DropDownLi
st control
and takes
value in
pixels.

HyperLink control

The HyperLink control creates links on a Web page and allows users to navigate from
one page to another in an application or an absolute URL. You can use text or an image
to act as alink in a HyperLink control. When users click the control, the target page
opens. Table 3-8 describes some of the properties of the Hyperlink control.

Table 3-8: Properties of the HyperLink control

Property Description

Text Represents

the text
displayed as
a link.

| mageUr | Represents

the image
displayed as
a link. The
image file
should be
stored in the
same
application
project.

Navi gat eUr | Represents

the URL of

Table 3-8: Properties of the HyperLink control

Property Description ‘
the target
page.
Note The | mageUr | property takes precedence when both the Text

and the | mageUr | properties are set.
The following code illustrates how to set the Navi gat eUr | property programmatically:

Dim HyperLinkl as New HyperLink()

HyperLink1l.NavigateUrl="http://www.msn.com"

Table control

A table is used to display information in a tabular format. A table consists of rows and
columns. The intersection of a row and a column is called a cell. You can add a table to
a Web Forms page by using the Table control. This control displays information statically
by setting the rows and columns at design time. Also, you can program the Table control
to display information dynamically at run time.
You can add rows at design time by setting the Rows property, which represents a
collection of TableRow objects; a TableRow object represents a row in the table. You
can add cells to a table row by setting the Cel | s property of the TableRow object. The
Cel | s property represents a collection of TableCell objects; a TableCell object
represents a cell in a table row. Thus, to set rows and columns of a table at the design
time, you first add the Table control to the form. Then, set the Rows property of the Table
control to add TableRow objects. Finally, set the Cel | s property of the TableRow
objects to add TableCells objects. The steps are given as follows:
1. Display the Properties window of the Table control.
2. Click the ellipsis button for the Rows property of the Table control.
3. Inthe TableRow Collection Editor dialog box, click Add to create a
new row. A new row is created and its properties are displayed in the
Properties pane of the dialog box.
4. Verify that the row is selected in the Members list, and then click the
ellipsis button for the Cells property to add a cell for the row.
5. In the TableCell Collection Editor dialog box, click Add to create a new
cell. A new cell is created and its properties are displayed at the right
side of the dialog box. Table 3-9 describes some of the properties of
the TableCell object.

You can also add the rows and columns (cells) to a table at run time programmatically.
To do so, you first need to create the TableRow and TableCell objects:

Dim Tablel as New Table()

Dim TableRowObj As New TableRow()

Dim TableCellObj As New TableCell()

Then, you need to add the TableCell object to the TableRow object:
TableRowObj.Cells.Add(TableCellObj)

Finally, you need to add the TableRow object to the Table control. If the ID of the Table
control is Tablel, use the following code to add the TableRow object to the Table control:

Tablel.Rows.Add(TableRowObj)
Table 3-9: Properties of the TableCell object

Property Description
Col umSpan

Represents
the number

Table 3-9: Properties of the TableCell object

Property Description

of columns
that the cell
spans. By
default, this
property is
set to 0.

RowSpan Represents

the number
of rows that
the cell
spans. By
default, this
property is
set to 0.

Vertical Align Represents

the vertical
alignment,
such as top
and bottom
of the cell.

Hori zontal Al'ign Represents

the
horizontal
alignment,
such as left
and right of
the cell.

Text Represents

the text
contents of
a cell.

The following Visual Basic .NET code snippet demonstrates how to add rows and cells
(columns) at run time. Assume that the Web Forms page contains a Table control, a
Button control, and two TextBox controls (to accept the number of rows and cells that
need to be added to the table). The fllowing code is also associated with the Cl i ck
event of the Button control:

' Declare the total number of rows
Dim RowCnt As Integer
'Declare the current row counter

Dim RowCtr As Integer

'‘Declare the total number of cells

Dim CellCtr As Integer
‘Declare the current cell counter
Dim CellCnt As Integer

'‘Accept the total number of rows and columns from the user
RowCnt = Val(TextBox1.Text)

CellCnt = Val(TextBox2.Text)

For RowCtr = 1 To RowCnt
‘Creating a TableRow object
Dim TableRowObj As New TableRow()
For CellCtr = 1 To CellCnt
'‘Creating a TableCell object
Dim TableCellObj As New TableCell()
TableCellObj.Text = RowCtr & "Row, " & CellCtr & " Cell "
'Add the new TableCell object to row
TableRowObj.Cells.Add(TableCellObj)
Next
'‘Add new row to table
Tablel.Rows.Add(TableRowObj)
Next

Image control

The Image control allows users to display images in a Web Forms page and manage
them at design time or at run time. After you add an Image control to a Web Forms page,
you need to set the image to be displayed in the control. You can do so by using the

I mageUr | property. Table 310 describes some of the properties of the Image control.

Table 3-10: Properties of the Image control

Property Description

| mageUr | Represents

the URL of
the image to
be displayed
in the
control.

| mgeAl i gn Represents

the
alignment of
the image
with respect
to the other
controls in
the page
and not just
the text.

Al t er nat eText Represents

the text that
is displayed
as a tooltip
or when the
image
cannot be
loaded.

Consider the following code that is used to set the | mageUr | property of the Image
control in the Page_Load event:

Dim Imgl as New Image()

Imgl.ImageUrl="Rose.gif"
Button, LinkButton, and ImageButton controls

The Button control on a Web Forms page is used to perform an event, such as form
submit, on the server. You can create three types of server control buttons:
= Button: Represents a standard button.
= LinkButton: Represents a button that can act as a hyperlink in a page.
However, a LinkButton control causes the page to be submitted to the
server.
= |ImageButton: Represents a graphical button to provide a rich button
appearance. You can set the ImageUrl property to point to a specific
image.
Table 3-11 describes some of the properties of the server control buttons.
Table 3-11: Properties of the button server control

Property Available with Description
Text Button and Represents the text to be
LinkButton displayed on the Button
and the LinkButton
controls.
Enabl ed Button, Represents whether or not
LinkButton, and the button is available at
ImageButton run time. By default, this

property is set to True,
indicating that the button
is available at run time.

| mageUr |

ImageButton Represents the URL of the
image to be displayed in
the control.

Al ternateText ImageButton Represents the text that is

displayed as a tooltip or
when the image cannot be
loaded.

Working with Events

A Web Forms application provides fast, dynamic, and user-interactive Web Forms
pages. When users interact with different Web controls on a page, events are raised. In
the traditional client forms or client-based Web applications, the events are raised and
handled on the client side. However, in Web Forms applications, the events are raised
either on the client or on the server, but are always handled on the server. ASP.NET
server controls support only server-side events, while HTML server controls support both
server-side and client-side events.

Round trips

Most Web pages require processing on the server. For example, consider an Orders
Web page used to receive orders on the Web. When a user enters a value for the
quantity of a product to be bought, the page must check on the server to see whether or
not the quantity requested is available. This type of dynamic functionality is
accomplished by handling server control events. Whenever a user interaction requires
some kind of processing on the server, the Web Forms page is submitted to the server,
processed, and then returned to the browser (client). This sequence is called a round
trip. Figure 3-5 describes round trips.

Server
Browser (.aspx) (.aspx.vb or .aspx.cs)

Find

A

Y

Application code

Find

10 items found

Processed form for

the browser

Figure 3-5: A round trip
Most of the user interactions with the server controls result in round trips. Because a
round trip involves sending the Web Forms page to the server and then displaying the
processed form in the browser, the server control events affect the response time in the
form. Therefore the number of events available in Web Forms server controls is limited,
usually to Cl i ck events. The events that occur quite often, such as the OnMbuseOQver
event, are not supported by server controls. However, some server controls support
events that occur when the control's value changes. Table 3-12 describes the events
associated with different ASP.NET server controls.

Table 3-12: Events associated with ASP.NET server controls

Control(s) Event Description

Text Changed Oceurs

when the
content of
the text box
is changed.

TextBox

RadioButton and CheckedChanged Occurs
Checked

CheckBox when the
value of the
property
changes.

RadioButtonList, Sel ect edl ndexChanged Occurs

CheckBoxList,ListBox, when you
andDropDownList change the
selection in
the list.

Button, LinkButton, and Cick Occurs
ImageButton when you
click the
button. This
event
causes the
form to be

Table 3-12: Events associated with ASP.NET server controls

Control(s) Event Description

submitted to
the server.

By default, only the Cl i ck event of the Button, LinkButton, and ImageButton server
controls causes the form to be submitted to the server for processing — the form is said
to be posted back to the server. The Change events associated with other controls are
captured and cached and do not cause the form to be submitted immediately. When the
form is posted back (as a result of a button click), all the pending events are raised and
processed. No particular sequence exists for processing these Change events, such as
Text Changed and CheckChanged on the server. The Cl i ck event is processed only
after all the Change events are processed.

You can set the change events of server controls to result in the form post back to the
server. To do so, modify the Aut oPost Back property to True.

Event handlers

When the events are raised, you need to handle them for processing. The procedures
that are executed when an event occurs are called event handlers. An event handler is
associated with the corresponding event by using the W t hEvent s and Handl es

keywords. The W t hEvent s keyword is used to declare the control generating an event.

For example, when you declare a control, say | magel as 'Protected WithEvents Imagel
As System.Web.Ul.WebControls.Image’, the W t hEvent s keyword specifies that

| magel is an object variable used to respond to events raised by the instance assigned
to the variable. The Handl es keyword is used to associate the event handler with the
event, which is raised by the control. The control in turn is declared by using the

W t hEvent s keywords.

Event handlers are automatically created when you double-click the control in Design
mode of the form. For example, the following code is generated when you double-click a
Button control whose ID is RegisterButton. You can then write the code in the event
handler to perform the intended task.

Public Sub RegisterButton_Click(ByVal sender As System.Object,
ByVal e As System.EventArgs) Handles RegisterButton.Click

End Sub

In this code:
= The procedure Regi st er Butt on_Cl i ck is the event handler for the
Cl i ck event of the button with ID RegisterButton. The Handl es
keyword associates the event with the event handler.
= The procedure takes two arguments. The first argument contains the
event sender. An event sender is an object, such as a form or a control,
that can generate events. The second argument contains the event data.

Implementing the events and event handlers
After discussing the events and event handlers in detail, we'll now implement them for
the Web Forms page shown in Figure 3-3, earlier in the chapter.
In Figure 3-3, when you click the Register button, another page should open displaying a
relevant message along with the username entered in the UserName TextBox control.
Before you can proceed to write the event handlers, you need to add another Web
Forms page (the target page) to the Application project. To do so:
1. Select Project ® Add Web Form. The Add New Item dialog box
opens.
2. Specify the name of the Web Forms page and click Open. In this case,
leave the default name of the Web Forms page, WebForm2.aspx.

Tip When you add a Web Forms page to a project, the name of the Web

Forms page automatically takes the next number. For example, if
WebForm1 already exists in the project, the default name of the new
Web Forms page would be WebForm2.

Because the target page (WebForm2) should display a message, you need to add a

Label control to this page. Set the | D property of this Label control to MessageLabel .

To implement this functionality, you need to write the following code in the Cl i ck event

of the Register button (in the WebForm1 page):

Response.Redirect("WebForm2.aspx?strTextValue=" & "Hi," &

UserName.Text & ", You have been successfully registered")

In this code, the Response. Redi rect method takes the URL of the target page. The
URL specifies another form named WebForm2.aspx (that you added) and passes a text
string along with the value in the TextBox control whose ID is UserName in a variable
called st r Text Val ue.

After passing the text in the st r Text Val ue variable, the Label control in the target
form, WebForm2, must be initialized in the | ni t procedure of the form as follows:

MessagelLabel. Text = Request.QueryString("strTextValue™)

In this code, the value stored in the st r Text Val ue is set as the caption of the label with
ID MessagelLabel in WebForm2.

The Web Forms page displayed in Figure 3-3 also contains a Reset button. When you
click the Reset button, all the controls should be empty. To implement this functionality,
use the following code:

UserName.Text =

Email.Text =
USStatelList.ClearSelection()
SexOption.ClearSelection()

SubscriptionOptions.ClearSelection()

In this code:
= The Text property of the TextBox controls with IDs UserName and
Email are set to a null value.
= ClearSelection is a method of the list controls, such as ListBox,
DropDownList, CheckBoxList, and RadioButtonList controls. The method
is used to clear any selection made in the list.

Handling post back

As mentioned earlier, the Web Forms page is posted back to the server only when a
Button, LinkButton, or ImageButton ASP.NET server control is clicked. After the page is
posted to the server, it is processed there. You can respond to a button event in one of
the following ways:
= Write an event handler for the Cl i ck event of the button.
= Write the event handler for the Load event of the Web Forms page. The
Load event is generated when the form is loaded from the server to the
client (browser). You can use the IsPostBack property in the Load event
to determine whether the page has been processed for the first time or
by a button click. To understand the IsPostBack property better, consider
the following code in the Page_Load event of the WebForm1 page. The
following code checks whether the IsPostBack property is True. If it is,
the Visible property of the Register button is set to False.

= Private Sub Page_Load(ByVal sender As System.Object, ByVal e
As

= System.EventArgs) Handles MyBase.Load

= If ResetButton.Page.IsPostBack = True Then

" RegisterButton.Visible = False
" End If
End Sub

Using the view state
In all Web applications, whenever a Web page is processed at the server, the page is
created from scratch. In traditional Web applications, the server discards the page
information after processing and sending the page to the browser. Because the page
information is not preserved on the server, the Web pages are called stateless. However,
the Web Forms framework works around this limitation and can save the state
information of the form and its controls. To implement this, the Web Forms framework
provides the following options:
= The ViewsState: The framework automatically saves the state of the
page and its current properties, and the state of the server controls and
their base properties, with each round trip.
= The State Bags: Every page has a state bag that stores values to be
restored in the next round trip.

The framework automatically stores and restores page information with each round trip.
So, you do not need to worry about storing and restoring the page information with each
round trip.

The ViewState contains the state of all the controls on a page between requests sent to
the server. The state information is stored as hidden form fields as nhame-value pairs in
the System.Web.UI.StateBag object. When you view an ASP.NET page in a browser,
you can see the ViewState for this page by displaying the source code of the page. To
do so, select View ® Source in the browser in which the ASP.NET page is displayed.
The ViewState thus is stored in a page rather than in the server. For complex pages that
contain many controls, the ViewState information is too large to be stored in a page and
might affect the performance of the page. This is the only disadvantage with ViewState.
By default, the ViewState is enabled for all the server controls. All the server controls
have the Enabl eVi ewSt at e property set to True by default. Therefore, to take
advantage of the ViewState, you do not need to do anything explicitly. However, as
already mentioned, due to performance issues, you can set the Enabl eVi ewSt at e
property to False to disable the ViewState. If you do not want to maintain the state of any
of the server controls on an ASP.NET page, you can set the Enabl eVi ewSt at e
property of the page to False:

<%@ Page EnableViewState="false" %>

Summary

This chapter served as a foundation for creating Web Forms applications. This chapter
introduced you to the basic Web controls used for designing Web Forms pages. You
learned the basic steps to create a Web Application project. Then, you learned the usage
and properties of Web controls. The chapter also introduced you to events. You learned
how to handle server-side events. Finally, you learned to handle post back and use the
view state.

chapter 2: USING Rich Web Controls

Overview

ASP.NET has brought about a complete change in the way controls are used in Web
applications. In addition to the client-side rendering of controls, ASP.NET provides
controls that can be rendered on the server side. This allows server-side processing, and
thus provides dynamic Web pages resulting in a rich and improved user experience.
The previous chapter discussed the basic Web controls. In addition to these Web
controls, there are specific Web controls that have more complex and rich functionality.
These controls are called Rich Web controls, examples of which are the AdRotator and
Calendar controls. Some of the Rich Web controls include:

= TreeView

= TabStrip

= MultiPage

= Toolbar

In this chapter, you will learn about the functionality of these Rich Web controls and learn
how to work with them in ASP.NET.

Using the AdRotator Control

The AdRotator control is used to display flashing ads, such as banner ads and news
flashes on Web pages. The control is capable of displaying ads randomly, because the
control refreshes the display every time the Web page is refreshed, thereby displaying
different ads for different users. Also, you can assign priorities to the ads so that certain
ads are displayed more frequently than others.

You can add the AdRotator control in an ASP.NET Web page by using the following
syntax:

<asp:AdRotator
propertyname = propertyvalue
propertyname = propertyvalue
>

</asp:AdRotator>

Alternatively, you can use the toolbox provided with VS.NET to add the control to the
page. When you do so, the code is automatically generated and can be seen in the
HTML view of the ASPX file.

Properties of the AdRotator control

Along with the properties that are inherited from the System.Web.UI.Control base class,
the AdRotator control has three additional properties:

= AdvertisenentFile

= KeywordFilter

= Target

This section describes these properties in detail.

AdvertisementFile
The AdvertisementFile property represents the path to an Advertisement file. The
Advertisement file is a well-formed XML document that contains information about the
image to be displayed for advertisement and the page to which a user is redirected when
the user clicks the banner or image. The following is the syntax of the Advertisement file:
<Advertisements>

<Ad>

<ImageUrl>

URL of the image to display
</ImageUrl>
<NavigateUrl>

URL of the page to navigate to
</NavigateUrl>
<AlternateText>

Text to be displayed as ToolTip
</AlternateText>
<Keyword>

keyword used to filter
</Keyword>
<Impressions>

relative weighting of ad
</Impressions>

</Ad>

</Advertisements>
Note The Advertisement file must be a well-formed XML document, as
the AdvertisementFile property of the AdRotator control needs to
be set to an XML file.

The following are the different elements used in the Advertisement file:

= | mageUr | : Specifies an absolute or relative URL to an image file that
presents the image for the advertisement. This element refers to the
image that will be rendered in a browser.

= Navi gat eUr | : Specifies the URL of a page to navigate to, if a user
clicks the advertisement image. If this parameter is not set, the ad is
not "live." Although this parameter is optional, it must be specified,
because the ad must direct clients to a target URL when it is clicked.

= AlternateText: Is an optional parameter that specifies some
alternative text that will be displayed if the image specified in the
I mageUr | parameter is not accessible. In some browsers, the
Al t er nat eText parameter appears as a ToolTip for the ad.

= Keywor d: Is an optional parameter that specifies categories, such as
computers, books, and magazines that can be used to filter for specific
ads.

= | npressions:Isan optional parameter that provides a number that
indicates the weight of the ad in the schedule of rotation relative to the
other ads in the file. The larger the number, the more often the ad will
be displayed.

KeywordFilter
The KeywordFilter property specifies a category filter to be passed to the source of the
advertisement. A keyword filter allows the AdRotator control to display ads that match a
given keyword. This enables the AdRotator control to display more context-sensitive ads,
where the context is specified in the ASPX page containing the AdRotator control. When
you use a keyword filter, three conditions arise:
= Both the Keywor dFi | t er and Adverti senent Fi | e properties are
set. In such a case, the AdRotator control renders the image that
matches the keyword specified.
= The Adverti sement Fi | e property points to a valid Advertisement
file, and the Keywor dFi | t er property specifies a keyword that
matches no images. In such a case, the control renders a blank
image, and a trace warning is generated.

= The Keywor dFi | t er property is empty. In such a case, keyword
filtering will not be used to select an ad.

Target
The Target property specifies the name of the browser window or frame in which the
advertisement needs to be displayed. This parameter can also take any of the HTML
frame-related keywords, such as the following:

= _top: Loads the linked document into the topmost window.

= bl ank: Loads the linked document into a new browser window.

= sel f: Loads the linked document in the same window.

= parent: Loads the linked document in the parent window of the

window that contains the link.

After looking at the properties, let's understand the events associated with the AdRotator
control.

Events of the AdRotator control

The AdRotator control supports the adCreated event that you can handle to monitor the
activities of a user or a session. The adCreated event is generated with every round trip
to the server, after the AdRotator control is created but before the page is rendered in
the browser. The event handler for the adCreated event is OnAdCreated and has the
following syntax:

OnAdCreated (sender as Object, e as AdCreatedEventArgs)
The event handler takes two parameters. The first parameter represents the object that
raises the event. The second parameter represents the AdCreatedEventArgs object that
contains the data related to this event. The AdCreatedEventArgs object has a set of
properties that provide information specific to the AdCreated event:
= AdProperti es:Is an IDictionary type object that provides all the
advertisement properties that have been set for the currently selected
advertisement.
= AlternateText: Is a String type value that sets the ALT property of the
image that is sent to the browser. In some browsers, this text is displayed
as a ToolTip when the mouse cursor hovers over the image.
= | mageUrl :Is a String value that sets the URL of the image that is
displayed in the AdRotator control.
= Navi gateUrl : Is a String type value that specifies the URL of the Web
page to navigate to when a user clicks the advertisement.
The OnAdCreated event handler can be used to select ads in a local code or to modify
the rendering of an ad selected from the Advertisement file. If an advertisement file is
set, the parameters of the AdCreated event handler are set to the selected ad when the
event is generated. The source image that is specified by the Advertisement file is sized
by the browser to the dimensions of the AdRotator control, regardless of the image's
actual size. The ad is selected based on impressions weighting from the file.
If the values are not set in the Advertisement file, the developer can modify the values in
the ImageUrl, NavigateUrl, and AlternateText properties to modify the rendering of the
AdRotator control. A very common use of this is when developers need to populate the
event arguments with values pulled from a database.

Rendering ads to client browsers using AdRotator
The following code uses the AdRotator server-side control to render ads to the client
browsers. The AdRotator control uses an Advertisement file named Ads.xml.
<%@ Page Language="VB" %>
<html>
<head>

</head>

<body>
<form runat="server">
<h3>AdRotator Example</h3>
<asp:AdRotator id="AdRotatorl" runat="server" AdvertisementFile="Ads.xml"/>

</form>

</body>

</html>

The following code describes the Ads.xml file that is used by the AdRotator control. The
file contains two advertisements that will be dynamically shown to different users. The
first ad points to an image file named Saturn.gif. When users click this image, they are
directed to the Saturn Web site. The second ad points to the image named Moon.jpg.
When users click this image, they are directed to the Moon Web site.

<Advertisements>
<Ad>
<ImageUrl>
saturn.gif
</ImageUrl>

<NavigateUrl>
http://www.saturnrings.com/
</NavigateUrl>

<AlternateText>
Saturn Rings Web Site
</AlternateText>
<Impressions>
1
</Impressions>
<Keyword>
Saturn
</Keyword>
</Ad>

<Ad>
<ImageUrl>
Moon.jpg
</ImageUrl>
<NavigateUr|>
http://www.moon.com
</NavigateUrl>
<AlternateText>

Moon Explorers Web Site
</AlternateText>
<Impressions>

1
</Impressions>
<Keyword>

Moon

</Keyword>
</Ad>

</Advertisements>
Figure 4-1 shows the output of the preceding code.

&l hitp=Mocalhost ads_aspx - Microsoft Intemet Explarer

| File Edit View Favorites Tools Help n
| erd - 5 - @ 2 A Dseach (aiFavoites o] | Links ™
2]

AdRotator Example

_ﬂh_ll_p . ..I'I'II;III)II-JI[;:II.EI mi:ﬁrﬁa‘m i | i :ﬁr—l__.-c;.l];ra m.!;
Figure 4-1: Sample output of the AdRotator control

Using the Calendar Control

The Calendar control is used to display a one-month calendar. Users can use this control
to view dates or select a specific day, week, or month.
The following is the syntax to add the Calendar control:
<asp:Calendar id="Calendarl" runat="server"
propertyname = propertyvalue
propertyname = propertyvalue
/>
Properties of the Calendar control

The Calendar control has properties that you can set when you add the control to your
page. Table 41 describes some of the properties of the Calendar control.

Table 4-1: Properties of the Calendar control

‘ Property ‘ Description

Cel | Paddi ng Specifies the space
between cells.

‘ Cel | Spaci ng ‘ Specifies the space

Table 4-1: Properties of the Calendar control

Property

Description

between the contents
of a cell and the cell's
border.

DayNanmeFor mat

Specifies the format of
the day name.

Fi r st DayOf Week

Sets a value for the
day of the week that
will be displayed in
the calendar's first
column.

ShowNext Pr evMbnt h

Takes a Boolean
value and specifies
whether or not the
calendar is capable of
displaying next and
previous month
hyperlinks.

Next Mont hText

Shows the HTML text
for the "Next Month"
navigation hyperlink if
the

ShowNext Pr evMont

h property is set to
true.

Next Pr evFor mat

Specifies the format of
the next month and
previous month
hyperlinks.

Pr evMbnt hText

Shows the HTML text
for the previous month

hyperlink if the
ShowNext Pr evMont

h property is set to
true.

Sel ect edDat e

Represents the date
selected in the
Calendar control.

Sel ect edDat es

Specifies a collection
of Dat eTi ne objects
representing days
highlighted on the
calendar. This is a
read-only property.

Sel ecti onMode

Specifies whether the
user can select a day,
week, or month. The
default is Day.

Sel ect Mont hText

Shows the HTML text
for the month
selection in the
selector column if the
Sel ecti onvbde

Table 4-1: Properties of the Calendar control

Property

Description

property is set to
DayWeekNMont h.

Sel ect WeekText

Shows the HTML text
for the week selection
in the selector column
if the

Sel ecti onivbde
property is set to
DayWeek or
DayWeekNbnt h.

ShowbDayHeader

Specifies whether or
not to display the
names of the days of
the week.

ShowG& i dLi nes

Specifies a value that
determines whether or
not the days in the
calendar should be
displayed with
gridlines around them.
However, even if the
property specifies to
display lines around
the calendar days, not
all browsers can
display the gridlines.

Titl eFor mat

Specifies the format of
the month name in the
title bar of the

calendar.

TodaysDat e Specifies the current
date.

Vi si bl eDat e Specifies the month to

be displayed in the
calendar. The
property is updated
after the

Vi si bl eMont hChan
ged event is raised.

In addition to the properties in Table 4-1, the Calendar control has certain style objects
associated with it. The style objects are used to set the appearance of the individual

elements, such as the appearance of the day and week values of the control. Some style

objects are described in Table 4-2.
Table 4-2: Style objects

Property Description
DayHeader Styl e Sets the
appearance

of the days of
the current
month.

Table 4-2: Style objects

Property

Description

DayStyl e

Sets the
appearance

of the row
above the
calendar
where the day
names
appear.

Next PrevStyl e

Sets the
appearance
of the
sections at
the left and
right ends of
the title bar.

O her Mont hDay St yl e

Sets the
appearance
of the days
that are not in
the displayed
month.

Sel ect edDay St yl e

Sets the
appearance
of the day
selected by
the user.

Sel ectorStyl e

Sets the style
properties for
the week and
month
selector.

TitleStyle

Sets the
appearance
of the title bar
at the top of
the calendar
containing the
month name
and month
navigation
links. If the
value for
Next Pr evSt
yl e is set, it
overrides the
extreme ends
of the title bar.

TodayDayStyl e

Sets the
appearance
of the current
date.

WeekendDaySt yl e

Sets the

Table 4-2: Style objects

Property Description

appearance
of the
weekend
days.

Events of the Calendar control

The Calendar control supports certain events that make the control interactive on the
Web page. The supported events include the DayRender, Sel ecti onChanged, and
Vi si bl eMont hChanged events. This section covers these events in detail.

DayRender event

The DayRender event is generated when a day cell is rendered. You can trap this event
to modify the format and content of a particular day cell before the cell is rendered. The
event handler for this event is OnDay Render and has the following syntax:

OnDayRender (sender as Object, e as DayRenderEventArgs)
The DayRender Event Ar gs parameter contains data pertaining to this eve nt. This
object has the following properties that can be used to make changes to the appearance
of the day cell:
= Cell:Referstoa Tabl eCel | object that represents a table cell into
which the day is rendered. A Tabl eCel | object has the following
properties:
0 RowSpan: Represents the number of rows in the table
that the cell spans.
0 Col utmSpan: Represents the number of columns in the
table that the cell spans.
o Hori zont al Al i gn: Controls the horizontal alignment of
the cell contents.
o Vertical Ali gn: Controls the \ertical alignment of the
cell contents.
o W ap: Determines whether or not the contents wrap to fit
the contents in the cell.
= Day: Refers to a Cal endar Day object that represents the day being
rendered. A Cal endar Day object has the following properties:

o Dat e: Represents the date, such as 15 July
2000, being rendered.

o0 DayNunber Text : Is a String that in turn
represents the number of the day. For
example, "15" is the DayNunber Text for 15
July 2000.

0 | sOtherMont h: Is a Boolean value that
returns True if the day cell being rendered is
in the Calendar control's currently displayed
month.

0 |sSel ect abl e: Returns a Boolean value
indicating whether or not the day cell being
rendered can be selected.

0 | sSel ect ed: Returns a Boolean value
indicating whether or not the day cell being
rendered is selected.

0 |sToday: Returns a Boolean value
indicating whether or not the day cell being
rendered is today's date.

o | sWeekend: Returns a Boolean value

indicating whether or not the day cell being
rendered is a Saturday or Sunday.

SelectionChanged event
The Sel ect i onChanged event is generated when a user selects a day, week, or month

by clicking the Calendar control. You can handle this event to validate against business
logic the date selected by users. The event handler for this event is
OnSel ect i onChanged and has the following syntax:

OnSelectionChange(sender As Object, e As EventArgs)
The sender parameter points to the control that generated this event, and any event-

specific values are stored in the Event Ar gs object.

MonthChanged event
The Mbnt hChanged event is generated when a user clicks the next or previous month

navigation controls on the title heading of the Calendar control. The event handler for this
event is OnVi si bl eMont hChanged and has the following syntax:

OnVisibleMonthChanged(sender as Object, e as MonthChangedEventArgs)
The Mont hRender Event Ar gs parameter contains data pertaining to this event. This

object has the following properties that can be used to make changes to the appearance
of the month:
= NewDat e: Is a Dat eTi nme object that represents the new
month that is selected.
= PreviousDat e: Is a Dat eTi ne object that represents the

previous month selected.
Rendering a Calendar to client browsers using the Calendar control

The following code uses the Calendar control to render a calendar in the client browsers:
<%@ Page Language="VB" %>
<html>
<head>
<script runat="server">
Sub OnSelectionChanged (sender as Object, e as EventArgs)
IblSelDate.Text = Calendarl.SelectedDate
End Sub
</script>
</head>
<body>
<h3>Calendar control demo</h3>
<form runat="server">
<asp:Calendar id="Calendarl" runat="server"
SelectionMode="DayWeekMonth"
Font-Name="Verdana;Arial" Font-Size="12px"
Height="180px" Width="230px"
TodayDayStyle-Font-Bold="True"
DayHeaderStyle-Font-Bold="True"
OtherMonthDayStyle-ForeColor="gray"
TitleStyle-BackColor="#3366ff"

TitleStyle-ForeColor="white"
TitleStyle-Font-Bold="True"
SelectedDayStyle-BackColor="#ffcc66"
SelectedDayStyle-Font-Bold="True"
NextPrevFormat="ShortMonth"
NextPrevStyle-ForeColor="white"
NextPrevStyle-Font-Size="10px"
SelectorStyle-BackColor="#99ccff"
SelectorStyle-ForeColor="navy"
SelectorStyle-Font-Size="9px"
SelectWeekText = "wk"
SelectMonthText = "month"
OnSelectionChanged="0OnSelectionChanged"
/>

<asp:label style="font-name:Verdana;font-size:12px;forecolor:gray” id="IblSelDate"
runat="server"/>
</form>

</body>

</html>
Figure 4-2 shows the output of the preceding code. When you select a date, the date is
displayed on the label.

A wip=localhosycalendar ssps - Microsolt Intermet Explorer O] =]
File Edii View Favorites Taols Help | o |
e Back + 5 - Q) A | DSesmch [iFavostns ®| | Links »

=

Calendar control deme
Py June 2001 Bl
papsh Sun Mon Tue Wed Thu Fri Sat
uk i 2
@ 3 4 5 6 71 8 2
sy 10 11 l& 13 14 1. 1o
w17 1B 19 20 21 22 23
| 24 25 26 b 28 29 JO
“ i L=
6/27/2001

| . —

@] javaseript:_doPostBackCalendar] F Local intranet 4

Figure 4-2: Sample output of the Calendar control

Using the TreeView Control

The TreeView control is used to present hierarchical data to users in the Windows
Explorer-style format, wherein the items can be expanded and collapsed. This control,
like the other ASP.NET Server controls, is rendered as an HTML 3.2-compatible tree in
older browser versions, such as Microsoft Internet Explorer 3.0. In newer browser
versions, such as Microsoft Internet Explorer 5.5 and higher, this control is rendered by
using the Dynamic HTML (DHTML) behaviors. Hence, compared to the older browser
versions, the user experience is richer in the more recent browser versions.

Unlike the standard ASP.NET controls, TreeView and the other controls discussed in the
sections to follow are not shipped as part of the ASP.NET Framework. These are
additional controls that must be installed separately. Therefore, when you want to use
these controls in an ASP.NET page, you must explicitly import the assemblies containing
these controls. To import the assemblies, use the following code:

<% @import namespace="Microsoft. Web.Ul.WebControls"%>
<% @Register TagPrefix="tp" Namespace = "Microsoft.

Web.Ul.WebControls" Assembly="Microsoft.Web.Ul.WebControls"%>

The i mport directive causes ASP.NET to import the contents of the specified
namespace. The Regi st er directive causes ASP.NET to identify all the controls in the
specified assembly with the tag prefix "tp."

To add a TreeView control to the page, use the following syntax:

<tagprefix:TreeView runat="Server">

<tagprefix:treenode text=".." DefaultStyle=" " HoverStyle=
SelectedStyle=" ">
<tagprefix:treenodetype Type=" " ChildType=" ">
<tagprefix:treenode text=" "/>
<tagprefix:treenode text=" ">
</tagprefix:treenode>

</tagprefix:treenodetype>

The elements used in the preceding code are explained as follows:

=Tr eeVi ew: Defines a TreeView control. It acts as a container for the nodes of
the tree. The TreeView control is made up of various elements, every one
of which is referred to as a node. Some nodes contain other nodes called
child nodes. The container nodes are called parent nodes.

= TreeNode: Represents the node in the TreeView control.

= TreeNodeType: Defines the type of a node. A single TreeView control can
have different types of nodes, such as a folder or any custom type.

Properties of the TreeView control

In addition to the properties that are inherited from the System.Web.UI.Control base
class, the TreeView control has properties that can be used to control the behavior of the
control. Some of these properties are described in Table 4-3.

Table 4-3: Properties of the TreeView control

Property Description

Aut oPost Back Takes a Boolean

value and
indicates whether
or not the control
posts back to the
server on each
client request.

Aut oSel ect Takes a Boolean

value and
indicates whether
or not a tree node
can be selected
by simply pointing
the mouse to the
node, without
having to click the

Table 4-3: Properties of the TreeView control

Property Description

| node.

Defaul tStyle Sets a default

style for the
elements in the
tree.

Expanded| mageURL Sets an image to

be displayed
when a node is
expanded.

Hover Styl e Sets a style, such

as "font-
family:Verdana;fo
nt-
size:12pt;color:bla
ck," for the
elements in the
tree when the
mouse hovers
over them.

I mageURL Sets an image to

be displayed to
represent a node.

| ndent Sets the number

of pixels by which
the child nodes
need to be
indented.

ShowlLi nes Takes a Boolean

value and
indicates whether
or not lines are
used to connect
the nodes in the
tree.

Events of the TreeView control
The events supported by the TreeView control include Col | apse, Expand, and

Sel ect edl ndexChanged. The sections that follow look at each of these events in
detail.

Collapse event

The Col | apse event is generated when a user clicks a tree node to collapse it. You can
trap this event to control the format and decide the contents of a particular node and its
child nodes. The event handler for this event is OnCol | apse and has the following
syntax:

OnCollapse(sender As Object, e As TreeViewClickEventArgs)

As you can see, the event handler takes two arguments. The first argument, As

bj ect, represents the object that generated the event. The second argument is the
object of the TreeViewClickEventArgs class. This object contains the node information
pertaining to this event. A Node object refers to the index of the node that was clicked,
and has the following properties:

= Expandabl e: Sets or retrieves a value that indicates whether or not a
plus-sign image is displayed with the node. A plus-sign image
indicates that the node is expandable.

= Expanded: Indicates whether or not the node is expanded.

= Level: Returns the level of the node; level O refers to the root.

= Text: Returns the text of the selected node.

Expand event
The Expand event is generated when a user clicks a tree node to expand it. You can

trap this event to control the formatting and decide the contents of a particular node and
its child nodes. The event handler for this event is OnExpand and has the following
syntax:

OnExpand(sender As Object, e As TreeViewClickEventArgs)
The second parameter is an object of the Tr eeVi ewCl i ckEvent Ar gs class and
contains the data pertaining to the Expand event.

SelectedIindexChanged event

The Sel ect edl ndex event is generated when a user clicks the TreeView control to
change the active tree node. This causes the TreeView control to move the highlight
from the node that was selected earlier to the newly selected node. You can trap this
event to control the formatting and decide the contents of the selected node. The event
handler for this event is OnSel ect edl ndexChanged and has the following syntax:

OnSelectedindexChanged(sender As Object, e As TreeViewSelectEventArgs)

The second parameter is the Tr eeVi ewSel ect Event Ar gs object and contains the

data pertaining to the Sel ect edl ndexChanged event. This object has the following

properties that can be used to make changes to the appearance of the selected node:
= NewNode: Refers to a Node object that represents the tree node that

has been selected.
= OldNode: Refers to a Node object that represents the tree node that
was previously selected.

Rendering a TreeView control

The following code renders a TreeView control in a page:
<%@ Page Language="VB" %>
<% @import namespace="Microsoft. Web.Ul.WebControls"%>
<% @Register TagPrefix="mytree" Namespace = "Microsoft.
Web.Ul.WebControls" Assembly="Microsoft.Web.Ul.WebControls"%>
<html>
<script language="VB" runat="server">
Sub OnCollapse(sender as Object, e as TreeViewClickEventArgs)
‘append node index to the label control when tree is
‘collapsed
mylabel. Text += "
Collapsed (Node Index =" & e.Node.ToString() +)"
End Sub

Sub OnExpand (sender as Object , e as TreeViewClickEventArgs)

" append node index to label control when tree is

‘expanded

mylabel. Text += "
Expanded (Node Index= " & e.Node.ToString() +)"
End Sub

Sub OnSelectedindexChanged (sender as Object, e as TreeViewSelectEventArgs)
" append node index to label control when a new node is
‘selected in the tree
mylabel. Text += "
Selected " & e.NewNode.ToString() & " (oldNode Index=" +
e.OldNode.ToString()+")"
End Sub
</script>
<head>
</head>

<body>

<h3>TreeView control demo</h3>

<form runat="server">

<! — render tree view control, setup event handlers for collapse, expand and

selectedindexchanged events -->

<mytree:TreeView runat="server" AutoPostBack="true"
DefaultStyle="font-name:Verdana;font-size:12pt;color:black;" SelectedStyle="

font-face:Verdana;font-size:12pt;color:white;" OnCollapse="OnCollapse"
OnExpand="OnExpand"

OnSelectedindexChanged="0OnSelectedindexChanged">
<mytree:treenode text="Asia">
<mytree:treenode text="China"/>
<mytree:treenode text="India"/>
</mytree:treenode>
<mytree:treenode text="Africa">
<mytree:treenode text="Zaire"/>
<mytree:treenode text="Zambia"/>
</mytree:treenode>
<mytree:treenode text="North America">
<mytree:treenode text="Canada"/>
<mytree:treenode text="United States"/>
</mytree:treenode>
</mytree:treeview>

<asp:label id=mylabel runat="server">Event Log: </asp:label>
</form>
</body>

</html>
Figure 4-3 shows the output of the preceding code.

Fle [View Favises Teshs lely =
et = o5 2 0 [EPeeelle et (ffesis 3 e b GE 2B
-d:l'lﬂ!-ﬂ'llll_.'\.\,il 15T il T v g ﬂ o Lrks ™

TreeWiew conbrol demo

4 fiva

2] Do ¥ Lo wiraasn
Figure 4-3: Sample output of a TreeView control

Using the TabStrip and MultiPage Controls

The TabStrip control is used to present tabbed controls, which can be used along with
the MultiPage control to display varied information in a given space. The TabStrip control
renders tabs that users can click to switch between the different tabs. The MultiPage
control is used to display multiple pages of data in a given screen area. This control is
typically used with the TabStrip control.

TabStrip control

You use the following syntax to add a TabStrip control to a page:
<tagprefix:TabStrip runat="Server" TabDefaultStyle=".." TabHoverStyle=
".." TabSelectedStyle=".." SepDefaultStyle="..">

<tagprefix:Tab text=".." >
<tagprefix:Tab text="Nodel.1"/>
<tagprefix:Tab text="Nodel.2">
</tagprefix:Tab>
</tagprefix:TabStrip>

The TabsStrip control uses the following elements to define the tabbed interface to be
rendered:
= TabStri p: Defines a TabStrip control, which acts as a container for the
tabs and tab separators.
= Tab: Defines a tab element in the TabStrip control, which is rendered on
the client browser as tabs on top of the tab strip.
= TabSepar at or : Represents the separator bars between the tabs.
Table 4-4 describes some of the properties of the TabStrip control.

Table 4-4: Properties of the TabStrip control

Property Description

AutoPostBack Specifies
whether or
not the
control

Table 4-4: Properties of the TabStrip control

Property Description

posts back
to the server
on every
client
request.

DefaultStyle Specifies

the default
style of the
TabStrip
control.

Orientation Specifies

the
orientation
of the tabs,
which can
be
horizontal or
vertical.

SelectedIndex Returns the

index of the
selected
tab.

SepDefaultStyle Specifies

the default
style for the
tab
separators.

SepHoverStyle Specifies

the style to
be applied
to the tab
separators
when the
mouse
hovers over
the
separators.

TargetID Specifies

the name of
the
MultiPage
control to
which the
tabs will be
linked
automaticall

y.

The TabStrip control supports the SelectedindexChanged event, which is fired when a
user shifts from one tab to another. This event can be trapped to control the formatting
and decide the contents of a particular tab. The event handler for this event is
OnSelectedindexChanged and has the following syntax:

OnSelectedindexChanged(sender As Object, e as EventArgs)

The second parameter is the EventArgs object and contains data pertaining to this event.
MultiPage control

The MultiPage control is a container control that contains a set of PageView elements,
which are used to render different pages in a given screen space. The PageView
elements contain the visible part of the MultiPage control. The MultiPage control is
typically used with the TabStrip control to give users the ability to navigate from one
page to another.
The following code segment creates a MultiPage control with two PageView elements:
<tagprefix:MultiPage runat="server" selectedindex="1">

<tagprefix:PageView>

<P> Data for page view 1 </P>

</tagprefix:PageView>

<tagprefix:PageView>
<P> Data for page view 2 </P>

</tagprefix:PageView>

</tagprefix:MultiPage>
Just like the TabStrip control, the MultiPage control supports the Selectedindex property,
which indicates the selected PageView.

Using MultiPage and TabStrip controls together

As mentioned, the TabStrip control provides navigation capabilities and the MultiPage
control provides the ability to view multiple pages in the same screen area. The two
controls typically are used in combination.

To actually combine the MultiPage control with the TabStrip control, you need to set the
TargetlD property of the TabStrip control to the ID of the MultiPage control. This enables
the TabStrip control to automatically switch from one PageView element to another when
a user clicks a tab.

The following code renders the TabStrip and MultiPage controls on the page:

<%@ Page Language="VB" %>

<% @import namespace="Microsoft. Web.Ul.WebControls"%>

<% @Register TagPrefix="myts" Namespace = "Microsoft.Web.

Ul.WebControls" Assembly="Microsoft. Web.Ul.WebControls"%>

<html>

<head>

</head>

<body>

<h3>TabStrip and MultiPage control demo</h3>

<! — render the TabStrip control and set the TargetID to point
to the multipage control-->

<form runat="server">

<myts:TabStrip id="ts1" runat="server"
TabDefaultStyle="background-color:lightgrey;font-family:verdana;
font-weight:bold;font -size:8pt;color:blue;width:79;height:21;text-align:center”
TabHoverStyle="background-color:#777777"
TabSelectedStyle="background-color:darkgray ;color:#000000"
SepDefaultStyle="background-color:#FFFFFF;border-color:darkblue;border-width:

3px;border-style:solid;border-top:none;border-left:none;border-right:none" TargetID=

mymultipage">

<myts:Tab Text="Home" />
<myts:TabSeparator/>
<myts:Tab Text="About us" />
<myts:TabSeparator/>
<myts:Tab Text="Products" />

</myts:TabStrip>

<! — render the MultiPage control and notice that the id of the control has been

set as the targetID of the TabStrip control-->

<myts:MultiPage id="mymultipage" runat="server">

<myts:pageview><P><H3 style="font-family:verdana"> Welcome to our Home page!
</H3>

 Click on the tabs on top to switch to other pages in our web
site.</P></myts:pageview>

<myts:pageview><P><H3 style="font-family:verdana"> About Us </H3></P>

</myts:pageview>

<myts:pageview><P><H3 style="font-family:verdana"> Product Information here
</H3>

</P>

</myts:pageview></myts:multipage>
</form>

</body>

</html>
The output of the preceding code is shown in Figure 4-4.

5 hitp2localhosttabetrip. aspx - Micoazoll lvternel Explarer

File Edit View Favorites Taols Help [= |
Bk + <+ 3 [3| DiSesch [ifFavesites *| | Links *
|

TabStrip and MultiPage control demo

Home &p}.ﬁn . Bruducts
Welcome to our Home pagel

Check on the tabs on top to swatch to other pages m our web ate

|

2] javascriptdocument.cirll._s1_Sta ¥ Local intranet

Figure 4-4: Sample output of the TabStrip and MultiPage controls

Using the Toolbar Control

The Toolbar control is used to render a toolbar in the client browsers. At the simplest
level, a toolbar is a collection of graphical buttons. The Toolbar control is typically used
to provide the commonly used functionality to users in a graphical form.

To add the Toolbar control to a page, use the following syntax:
<tagprefix:Toolbar ..>
<tagprefix:ToolbarButton Text=".." ImageUrl=".." />
<tagprefix:ToolbarSeparator />
<tagprefix:ToolbarButton Text=".." ImageUrl=".."/>
<tagprefix:ToolbarButton Text=".." ImageUrl=".."/>

</tagprefix:Toolbar>

As you can see in the preceding syntax, the Toolbar control is a container control that
contains elements to define a toolbar. These elements are described as follows:

=Tool bar But t on: Defines a button on the toolbar.

=Tool bar CheckBut t on: Defines a check button on the toolbar.

=Tool bar CheckG oup: Defines a group of check buttons on the toolbar.

=Tool bar Label : Defines a label to display plain text on the toolbar.

=Tool bar Separ at or : Defines a separator on the toolbar, which is useful in

identifying the separate groups of toolbar buttons.
=Tool bar Text Box: Defines a text box on the toolbar.

Properties of the Toolbar control

In addition to the properties that are inherited from the System.Web.UI.Control base
class, the Toolbar control has additional properties. Table 4-5 describes some of these
properties.

Table 4-5: Properties of the Toolbar control

Property Description

AutoPostBack Specifies

whether or
not the
control
posts back
to the server
on every

Table 4-5: Properties of the Toolbar control

Property Description

client
request.

DefaultStyle Specifies

the default
style of the
toolbar.

HoverStyle Specifies

the style to
be applied
when the
mouse
hovers over
the toolbar.

SelectedStyle Specifies

the style to
be applied
when the
toolbar
items are
selected

Orientation Specifies

the
orientation
of the
toolbar,
which can
be
horizontal or
vertical.

Note Every button on the toolbar has three states — Default, Selected,
and Hover. You can define appropriate CSS styles for each of the
three states. Then, ASP.NET will apply the appropriate style when
rendering the button.

Events of the Toolbar control

The Toolbar control supports the ButtonClick and CheckChange events, which make the
control interactive when rendered on a page. The following sections look at each of the
events in detail.

ButtonClick event
The ButtonClick event is generated when a user clicks a toolbar button. The event
handler for this event is OnButtonClick and has the following syntax:

OnButtonClick(sender As Object, e As EventArgs)

The second parameter is the EventArgs object and contains the data pertaining to this
event. To retrieve the toolbar data in the event handler, the sender variable must be
converted into a variable of type ToolbarButton. To see how the data is converted, see
the example of the toolbar control in the upcoming section "Rendering a toolbar."

CheckChange event

The CheckChange event is generated when the state of a ToolbarCheckButton changes.
This event is trapped to respond to any change in the state of a ToolbarCheckButton.
Here is the event handler for this event:

OnCheckChange(sender As Object, e As EventArgs)

The EventArgs parameter contains data pertaining to this event. To retrieve the toolbar
data in the event handler, the sender variable must be converted into a variable of type
ToolbarButton. The syntax for the same is given as follows:

Dim tb as ToolbarButton
tb=CType(sender,ToolbarButton)

Rendering a toolbar

The following code example renders a toolbar on the page:
<%@ Page Language="VB" %>

<% @import namespace="Microsoft. Web.Ul.WebControls"%>
<% @Register TagPrefix="ie" Namespace = "Microsoft. Web.UI.
WebControls" Assembly="Microsoft. Web.Ul.WebControls"%>
<html>

<script runat="server" language="vVB">
sub OnButtonClick(sender as object, e as EventArgs)
Dim sMsg as String, tb as ToolbarButton
‘convert from Object type to ToolbarButton type
tb=CType(sender,ToolbarButton)
sMsg="
You chose to : " & th.Text & ""
IbIMessage.Text = sMsg
End Sub
</script>

<head>
</head>
<body>
<h3>ToolBar control demo</h3>
<! — display toolbar control, setup event handler for Buttonclick Event-->
<form runat="server">
<ie:Toolbar id="tb2" runat="server" BorderColor="Gray"

Font-Name="Tahoma" Font-Size="8pt" BackColor="#CCCCCC" Width="75%"
OnButtonClick="

OnButtonClick">
<ie:ToolbarButton Text="Manage" ImageUrl="mmc.gif" Tooltip="Manage Server"/>
<ie:ToolbarSeparator />
<ie:ToolbarButton Text="Browse" ImageUrl="web.gif" Tooltip="Browse Info"
selectedstyle="color:red;font-size:12pt;"/>
<ie:ToolbarButton Text="Print" ImageUrl="print.gif* To oltip="Print Document" />
<ie:ToolbarSeparator />
<ie:ToolbarButton Text="Help" ImageUrl="help.gif" Tooltip="Get Help" />
</ie:Toolbar>

<asp:label id=IbIMessage runat="server" style="font-family:verdana"/>
</form>
</body>

</html>
Figure 4-5 shows the output of the preceding code.

5 hittp=ilocalhosttoolbarasps - Microsol Internat... _ O] =]

Eile Edit Miew Favorites Tosls Help [= |
wBack = < - 3 [2} {Semch [iFovosites ™
=]
ToolBar control demo
ﬁﬁﬂnm @.‘!MI Q?nm @m
You chose to | Manage
|
2] javaseript:_doPosth (¥ Local intranet 4

Figure 4-5: Sample output of the Toolbar control

Summary

In this chapter, you learned about the functionality of the Rich Web controls. First, you
learned the properties, methods, and events associated with the AdRotator and
Calendar controls. Then, you learned how to create and use the additional Rich Web
controls, such as TreeView, TabStrip, MultiPage, and Toolbar. You learned how to set
their properties and handle the events raised by them.

chapter 5: Creating and Using Custom Controls

Overview

Visual Studio .NET provides a rich set of standard controls, which are also called intrinsic
controls. These standard controls provide a wide range of functionality and allow you to
design and develop a user-friendly interface for your applications. Additionally, Visual
Studio .NET provides you custom controls that you can use if the existing controls do not
meet your requirements. For example, consider a Web application that needs to have
multiple Web Forms and most of the Web Forms need a calculator. In this case, instead
of adding standard controls to each Web Form for implementing the calculator, you can
create one custom control to represent a calculator and use it across the Web Forms in
your application. Thus, custom controls allow reusability. This chapter describes the
procedure to create and use custom controls.

Introduction to Custom Controls

You can create the following types of custom controls in Visual Studio .NET:
=User control: A Web Forms page that can be used as a control on other Web
Forms pages. Thus, if you already have a Web Forms page and you need
to construct a similar one, you can use the existing page as a user control.
= Composite control: A combination of existing controls that is used as a
single control. You can create a composite control in any .NET

programming language and use it on an ASP.NET page. For example, you
can create a composite control comprising a button and a text box in C#
and use it on an ASP.NET page.

In addition to the custom controls discussed, you can perform the following actions with
controls:
= Extend the functionality of the existing Web Form controls to meet your
requirements. For example, consider a situation in which an existing Web
Forms control meets almost all of your requirements, but you need some
additional features in the control. In such a situation, you can add more
features to your Web Form and customize the control. This can be done by
inheriting from the control and overriding its properties, methods, or events.
= Develop a custom control by inheriting directly from one of the Control base
classes. You'll need to do this when none of the existing Web Forms
controls meets any of your requirements. The benefit of using the existing
classes to create custom controls is that they provide the basic framework
needed by a Web Forms control. This way, you can concentrate more on
programming the features that you want to incorporate.

Before you create your own custom controls, let us examine the base classes used by
the controls.

Basic Structure of Web Forms Controls

This section equips you with the basic understanding of the elements involved in
developing a Web Forms control. We will first discuss the classes that are used to create
Web Forms. This is followed by a discussion of the interfaces that can be implemented in
Web Forms controls.

Classes used for Web Forms controls

Each Web Forms control is a class that inherits from the System.Web.UI. Control class
directly or indirectly. Therefore, in this section, we examine the System.Web.Ul.Control
class and its inherited classes that are used to create a Web Forms control.

The System.Web.Ul.Control class

The System.Web.Ul.Control class defines all the properties, events, and methods that
are common to all the Web Forms controls. You need to inherit your control from this
class in the following cases:

= When your control does not have a user interface

= When your control includes other controls that render their own user

interface

Some of the properties, methods, and events of the Control class are described in Table
5-1, Table 5-2, and Table 5-3 respectively.

Table 5-1: Control properties

Property Description

'D Represents

the control
identifier to
refer to the
server
control in
programs.

Par ent Represents

the parent

Table 5-1: Control properties

Property

Description

control in
the server
control
hierarchy.

Vi si bl e

Indicates
whether or
not a server
control
should be
rendered on
the page.

Table 5-2: Control methods

Method

Description

Di spose

Causes a
server
control to
perform final
cleanup.

Equal s

Used to
check
whether or
not an
object is the
same as the
current
object. This
method is
overloaded.

Fi ndContr ol

Used to
search a
container for
a specified
server
control. This
method is
overloaded.

ToString

Used to
return the
string
representati
on of the
current
object.

Table 5-3: Control events

Event

Description

Init

Is fired
when a
control is
initialized.
This is the

Table 5-3: Control events

Event Description

first step
when a
page needs
to be
displayed in
a browser.

Load Is fired

when the
control is
loaded in a

page.

Unl oad Is fired

when a
control is
unloaded
from the
memory.

The System.Web.Ul.WebControls.WebControl class

The System.Web.Ul.WebControls.WebControl class is the base class for all Web
controls. This class provides properties and methods to implement user interface
functionality. It is inherited from the Control class. Some of the properties that are used
to render additional user interface functionality are For eCol or, BackCol or,

Bor der St yl e, W dt h, and Hei ght . Web controls, such as Label, TextBox, Button,
Table, and Calendar, all inherit from the WebControl class. Therefore, if you have a
control that has a user interface, it should inherit from the WebControl class.

The System.Web.Ul.HtmIControls.HtmIControl class

The HtmiControl class is the base class for all HTML controls in Web Forms. This class
inherits from the Control class. The controls provided by this class map directly to HTML
elements. Therefore, these controls are useful for migrating ASP applications to
ASP.NET.

Interfaces used for Web Forms controls

Several interfaces are available that you can implement depending upon your
requirements. For example, if your control provides data binding, you need to implement
the INamingContainer interface. In this section, we examine the interfaces that you might
need to implement when you create controls.
Note Interfaces are the collection of properties, methods, and events
that are implemented through classes.

INamingContainer interface

This interface is used when you need to create controls that satisfy any of the following
conditions:

= Provides data binding

= |s atemplated control

= Routes events to its child controls

The INamingContainer interface doesn't have methods. When this interface is
implemented by a control, the ASP.NET page framework creates a namespace for the
control and ensures that each child control in the parent control has a unique ID.

IPostBackDataHandler interface

A control should implement the System.Web.Ul.IPostBackDataHandler interface when it
needs to update its state or raise events on the server after examining the postback
data.

For example, the data sent to a TextBox control might result in the text box changing its
text, as determined by its Text property. When the text changes, the text box also raises
a Text Changed event. Thus, this control is examining the data, changing its state, and
raising events.

IPostBackEventHandler interface

The IPostBackEventHandler interface is implemented in a control when you want to
transfer events that are generated on the client side to the server. Events generated on
the client side are postback events, hence the interface name.

An example of implementing this interface is when a user submits a form on the client
side. In this case, the server does not know that the form is submitted unless the
IPostBackEventHandler interface generates the Cl i ck event on the server when the
form is submitted. This ensures that the server is in sync with the events that occur at the
client end.

Creating Custom Controls

In this section, you'll create a custom control that represents a product form. The form
provides text boxes to enter the product ID and product name of a specific product. You
can reuse this control in the pages that need user input for any product. Figure 5-1
displays a sample user control.

File Edit Wiew Fawvories Took Halp -
- = wbow O [A DiSewk [§Freie | JHogy | S b
Mﬂl‘iis:_il'. g i U pesCanool_pputebdl oo aips ﬂ ;;"Erb Lirks
=]
Product_1D |

Prodisct_Mama |

By How |

] Dane ¥ Lacal imiranel
Figure 5-1: A sample user control

Let us now create this sample control.

Creating and using a user control

You can create a user control by creating a Web Forms page and excluding its <HTM_>,
<HEAD>, <BODY>, and <FORM> elements in the page. Let us now create a Web Forms
page and convert it into a user control. The Web Forms page that you convert to a user
control can be designed in either Visual Basic or C#.

Creating a user control

Creating a user control involves designing a Web Forms page to work as a control and
then modifying the extension of the Web Forms file to .ascx. The steps are described in
the sections that follow.

Step 1: Add a Web Form to the existing project

The first step involves adding a Web Form to the existing project. To do so:

1. Select the Add Web Form option from the Project menu. The Add
New Item dialog box appears.

2. Type the name of the Web Form (for example, MyWebForm) in
the Name box.
The Add New Item dialog box already displays a default name for the
Web Form. You can modify it, if necessary.

3. Click Open. This will open a new Web Form.

Note

Step 2: Convert your Web Form to a user control

This step involves converting your Web Form to a user control. You can do so by adding
the controls to the form using the Toolbox and then editing the HTML code of the ASPX
file. In our example of the Web Form displayed in Figure 51, the Toolbox has been used
to add controls to the Web Form. As you can see, the Web Form has two text boxes,
labeled Product_ID and Product_Name. The HTML code is automatically generated
when you add these text boxes and labels.

After creating the visual interface for the user control, you need to edit the HTML file. As
discussed earlier, the user control HTML file cannot contain the HTML tags that include
the <HEAD>, <BODY>, <HTM.>, and <FORM> tags. Therefore, you need to remove these

tags from the HTML file. Additionally, you also need to change the @ Page directives to
@ Cont r ol directives.

After you remove the HTML tags, your HTML file should look like this:
<table height=90 cellspacing=0 cellpadding=0 width=361 border=0
ms_2d_layout="TRUE">
<tr valign=top>
<td width=14 height=15></td>
<td width=188></td>
<td width=159></td></tr>
<tr valign=top>
<td colspan=2 height=9></td>
<td rowspan=2>
<asp:TextBox id=Product_ID runat="server"></asp:TextBox></td></tr>
<tr valign=top>
<td height=37></td>
<td>
<asp:Label id=Labell runat="server" font-bold="True" font-names="Verdana" font-size=
"Smaller">Product_ID</asp:Label></td></tr>
<tr valign=top>
<td colspan=2 height=4></td>
<td rowspan=2>

<asp:TextBox id=Product_Name runat="server" Width="158"
Height="28"></asp:TextBox></td>

</tr>
<tr valign=top>
<td height=25></td>
<td>

<asp:Label id=Label2 runat="server" Width="133" Height="19" font-bold="True" font-
names=

"Verdana" font-size="Smaller">Product_Name</asp:Label></td></tr></table>
Note The table elements will appear only if the layout of the page is
changed to GridLayout.

After editing the code, save and close the file.

Step 3: Change the extension of the file to .ascx

This step involves changing the extension of the file to .ascx. To rename the file, you
need to follow these steps:
1. Right-click the user control Web Form file in the Solution Explorer
window and select Rename from the shortcut menu.
2. Change the extension of the file to .ascx.
Do not leave the user control file open while renaming it. If the user

Note o - .
control file is open, you will not be able to rename the file.

Using a user control in a Web Forms page

After you create a user control, you can use it on another Web Forms page. To do so,
you need to register the control and then add it to your Web Forms page. The steps are
described as follows.

Step 1: Register the user control

This step involves registering the user control that you created. To do so, you'll need to
follow these steps:

1. Open the Web Forms page in which you want to add your user
control. Open the WebForm1l.aspx file that was created by default
when you created the Web application project.

2. Write the following code:

3. <% @ Register TagPrefix="Acme" TagName="Product"
Src="MyWebForm.ascx" %>
This code will register the MyWebForm.ascx file. TagPr ef i x is an alias name that is
used to identify the namespace on the Web Forms page to which it is added. The
TagNane tag contains the alias name for the class that represents the user control. Sr c
is the name of the file that has the user control to be registered. The user control file can
be within the same project or another project.

Step 2: Add the user control to your Web Forms page

This step involves adding the user control to your Web Forms page. To do so, use the
following code:

<Acme:Product id="MyProduct" runat="Server"/>
The code given needs to be placed in the script where you want the control to appear on
the page. In most cases, the code is placed in the <BODY> region of the page within the
<FORM> element. In this code:
= Acme is the TagPr ef i x for your user control.
= MyProduct is the ID of your user control. You'll use this ID to refer to
the control in programs.

Your Web Forms page will display the user control when you run the program.
Developing a composite control

You can create new controls using one or more existing controls. Such controls that
aggregate a number of controls are referred to as composite controls. The primary
difference between composite controls and user controls is that composite controls are
compiled into assemblies and the compiled file is included into the project in which you
want to include the control. In this section, we will create a composite control in C# and
use it on an ASP page.

Concepts involved in creating a composite control

When you create a composite control, you need to do the following:

= Define the class that implements the composite control. The class
needs to inherit from the Control class and, optionally, the
INamingContainer class.

= Optionally override the CreateChildControls method of the Control
class. The CreateChildControls method creates any child controls that
need to be drawn on a page. This method is used in composition-
based rendering, wherein child controls are instantiated and rendered
on the page.

= Optionally implement the Render method of the Control class. You
need to implement this method when you use the rendering logic
instead of composition to render the ASP page. When you render
controls, the performance overhead is less because controls need not
be instantiated. Instead, the page is rendered as defined by the
Render method. The Render method controls the output of the page at
run-time.

Creating the control

You have examined the basic concepts to create a control. Let us now create a
composite control. We will create the control in C#. The same programming logic can be
used in VB.NET as well, except that the syntax will change.

The control that we will create comprises a Calendar control, a TextBox control, a Submit
button, and a Label control. The user is expected to select his or her date of birth from
the calendar, specify their work experience in years, and click the Submit button to
ascertain whether he or she is eligible for a job.

To create the custom control project, create a new Class Library project in C#.

The controls that you need to use on the form are in the System.Web namespace.
Therefore, include a reference to the System.Web.dll file. To include the reference, you
need to perform the following steps:
1. Select the Add Reference option from the Project menu. The Add
Reference dialog box appears.
2.In the Add Reference dialog box, from the .NET tab, select
System.Web.dll and click Select.
3. The component moves to the Selected Components list. Click OK to
add the reference.

After you add a reference to the System.Web.dll file, you can write the code for the
control. To code the control, select the class module from the Solution Explorer. In the
class module, declare the namespaces that are used by the control by specifying the
following statements:

using System;

using System.Web;

using System.Web.Ul,

using System.Web.Ul.WebControls;

Next, declare the namespace for the control and declare a public class in the
namespace. You should also declare the properties that you need to expose for the
control. In the following code, we have declared the namespace, class, and a Text
property for an EmpElg label. Additionally, we have also left placeholders for the

Cr eat eChi | dCont r ol s method and the Cl i ck event of the Submit button.

namespace CalcControl
{
/Il <summary>
/Il This class is used to establish if an applicant is
[lleligible for job
/Il </[summary>
public class CalcClass : Control, INamingContainer
{
private Label EmpElg;
public string Text
{
get
{
EnsureChildControls();
return EmpEIlg.Text;
}

set

{
EnsureChildControls();
EmpElg.Text=value;

}
}

protected override void CreateChildControls()

{

}

protected void Submit_Click(object sender, System.EventArgs e)
{

}

}

The following is the code for the Cr eat eChi | dCont r ol s method. In this code, we are

declaring a few controls for the form and we are also using literal controls to display plain
text on the form.

protected override void CreateChildControls()

{
Controls.Add(new LiteralControl("<h3>Select date of birth : "));
Calendar Call = new Calendar();
/ICall.TodaysDate();

Controls.Add(Call);
Controls.Add(new LiteralControl("<h3>Work Experience (Years) :
Bk
TextBox WorkEx = new TextBox();
WorkEx.Text="0";
Controls.Add(WorkEXx);
Controls.Add(new LiteralControl("</h3>"));
Button Submit = new Button();
Submit.Text = "Submit";
Controls.Add(new LiteralControl("
"));
Controls.Add(Submit);
Submit.Click += new System.EventHandler(this.Submit_Click);
Controls.Add(new LiteralControl("

"));
EmpElg = new Label();
EmpElg.Height = 50;
EmpElg.Width = 500;
EmpElg.Text = "Check your eligibility.";
Controls.Add(EmpEIQ);
}

Finally, the code for the Submit button, which is used to check the eligibility of an
employee, is as follows:

protected void Submit_Click(object sender, System.EventArgs €)

{
EnsureChildControls();

if (Int32.Parse(((TextBox)Controls[3]). Text)>=5)

{
if ((((Calendar)Controls[1]).SelectedDate.Year) <= 1975)
{
EmpEIlg.Text = "You are eligible to apply for a job in our
company!!";
}
else
{
EmpElg.Text = "You are NOT eligible to apply for a job in
our company!!";
}
}
else
{

EmpElg.Text = "You are NOT eligible for applying for a job in
our company!!";

When the user clicks Submit, this code checks whether the work experience of the user
is more than five years. It also checks whether the user is born in or before 1975. When
both the conditions are satisfied, the user is considered eligible for the job.
Note You can find the complete code for creating a composite control
on the companion Web site for this book.

Compile the application to create the DLL file for the composite control. After compiling
the file, you can proceed and include the file on an ASP page and check whether the
control works as desired.

Adding the composite control to a page

After you have compiled the composite control into a DLL, you can include it in a Web
application. The steps to include the control into a Web application are given as follows:
1. Create a new ASP Web application or open an existing project.
2. Add a reference to the custom control that you created in the previous
step. To add a reference, in the Add Reference dialog box, select
the Projects tab and browse to the DLL file of your custom control.
3. In the HTML source file, specify the @ Regi st er directive to register
the control. For example, if the name of the control namespace is
CalcControl and the name of the class library project is
CustomControls, you can register the control by specifying the
following statement:

4. <%@ Register TagPrefix="Custom" Namespace="CalcControl"
Assembly =

"CustomControls" %>
5. Include the control on the page by using the tag name with which the
control was registered. For example, in the preceding case, the tag

name is Custom. Therefore, to include the control in the <BODY>
region of the form, write the following code:

6. <form id="Form1" method="post" runat="server">
7. <Custom:CalcClass id="CalcClass" Text="Select options and
8. click Submit" runat="server" />

</form>

After you have included the control, it appears as displayed in Figure 5-2.

2 g e calhostWebpplication) WebForml. asps - Micresof IMernet Explarer
Fille Edii Wiew Favorlies Tosk Help

& « ob v ([| [CPesensiBe PSewch [iFaveis 8| L L S A B

Adddrass [#] b focahon e ebhopication! AelebF el sage ~| Gs Links *

Select date of birth : wl
£ Segiember 2001

ol L

Suwn Mea Tue Wed Thw Fn Sa
F 3 4] ! g
5 1o 11 12 13 M 1S
16 17 18 18 20 21 22
2T 24 25 P ¥ o2 29
a1 2 4 3 &

Work Experience (Years) 2 [0

Submn

@] Dane LE Local imtranst

Figure 5-2: Composite control on a form
You can check whether the control is functioning correctly by selecting a date less than
1975 and specifying the work experience of more than five years. The output after you
specify the aforesaid values is given in Figure 5-3.

k|

EtipeClecalhost W ebhipplication] WebForm. s - Miciosof Inferned Explarer

File Edit Wiew Favories Toskls Help
Glak v = - D[4| [CPwsndBa P Sewch (iffwotm J| G b2 B

Adddress [B] ri e sbal etabops shon! Aalatl e’ soza =] #Gs Links *
Select dute of birth |
= Howember 15714 =

Work Experlemce (Years) 3

Sm Mon Tue Wed Tha
27 28 29
i 4 3
10 12
19
2k

- =

24
1

ha B2 |:"_' B 1=t |_"‘_’
e B b = B

wREER-E

oy
2 Ff |

Submil =

You are eligihle to apply for a job in oor companmy!! =l
@] CH Loscal imiranst
Figure 5-3: Data validation by the composite control

Adding Properties and Methods

After creating a custom control, you can add properties and methods to it and obtain the
functionality you want in your control.

Properties are specifications that qualify the appearance and behavior of controls. In the
case of standard controls, you can specify the property values either at design time or
run time. At design time, the properties can be specified using the Toolbox. At run time,
the implemented code sets the properties. If a property has a set accessor, the syntax to
set a property would be as follows:

control.property = value

In this syntax:

=control signifies the name of the control.

=pr operty signifies the property that you want to set for the control.

=val ue is the value that you specify for the property.
Methods are functions or procedures that provide a specific functionality to a control.
Each Web Forms control has a set of methods associated with it. You can call a method
of a control by using the following syntax:

control.method

In this syntax, control represents the name of the control and method represents the
method associated with the control.

You can add properties and methods to custom controls also. To add a property to a
user control, you need to write the code in the ASCX file of the control. Consider the
example wherein you created a user control earlier in the chapter. To add properties,
ProductID and ProductName, you need to add the following code in the class that
implements the control:

<script language="C#" runat="server">

public String ProductID

{
get

{

return Product_ID.Text;

}

set

Product_ID.Text = value;

}

public String ProductName

get
{

return Product_Name.Text;

}

set

{

Product_Name.Text = value;

}
}

</script>

In this code, the get and set properties have been used. The get property is used to
retrieve the value associated with the property. The set property is used to assign a
value to a property.

Handling and Exposing Events

Each control has events associated with it. Events are generated as a result of user

interaction or can be raised from other procedures. In Web Forms controls, the events

are raised and handled on the server. An action is requested from the client side to the

server with the help of a Web request. Then, the control raises an event on the server as

a response to the client action. After the page or controls handle the event, the response

is sent back to the client. This results in user experience similar to a desktop application.

Note Only the postback event can be posted to the server. User

interface events that occur on the client side, such as mouse clicks
or key presses, can only be communicated to the server by using
postback events.

You can associate custom events with your controls. Handling user control events is
more or less the same as handling events in any other Web Forms control. You need to
decide whether to use the event handler in the containing Web Forms page or the user
control. Writing event handlers in either of the cases is similar. However, you need to
take some precautions if you decide to include the event handler in the user control. For
example, if you have included the properties for the control in the existing Web Forms
page, the properties will not be accessible from the user control unless you add
functionality within the user control.

Let us create a button and add an event handler to it. Consider the user control that you
created earlier in the chapter. You can add an event in such a way that whenever you
write a value in the Product_ID text box and click a button labeled "Buy Now!," the name
of the product will automatically appear in the Product_Name text box. To add the button
to the control, add the following code:

<asp:Button id=Buy runat="server" Text="Buy Now!"
OnClick="Buy_Click"></asp:Button>

The ID of the Button control is Buy. The button can achieve the desired functionality by
the following code:

<script language="Vb" runat="server" ID=Scriptl>
Sub Buy_Click (Src As Object, E As EventArgs)
If MyProduct.ProductiD="P001" Then
MyProduct.ProductName="Toys"
End If
End Sub

</script>

This code is executed when a user clicks the button "Buy Now!" After a user clicks this
button, the value of the TextBox labeled Product_Name is set to "Toys" if a user enters
the product code as "P001."

Summary

In this chapter, you leamed the basic structure of Web Forms controls and looked at the
classes used for them. You explored the custom controls in detail. First, you learned how
to create and use user controls. Then, you learned how to create and use composite
controls. In this process, you learned how to use events, methods, and properties with
custom controls.

chapter6: Validating User Input

Overview

This chapter covers the validation controls used in ASP.NET. These controls make page
validation much easier and reduce the amount of code that the developer must write to
perform page validation. The ASP.NET team reviewed numerous Web sites to determine
the most common types of validation that were taking place on the Web. Most
developers were reinventing the wheel to perform validation, so the ASP.NET team
decided that Web developers needed a set of validation controls to add to their toolbox.
From the start, these controls were designed to detect the version of the browser when
used in client-side validation and then render the correct version of HTML for that client
browser.

These research efforts lead to the development of the six controls covered in this
chapter. The examples in this chapter will take a look at each control and explain the
most commonly used properties for each control. However, keep in mind that all of the
controls share basic properties, such as font, fore color, back color, and so on, so this
chapter won't discuss those properties in detail. After you have read this chapter, you will
have a firm understanding of validation controls and will be ready to use them in your
own Web applications.

Understanding Validation Controls

Everything in the .NET Framework is a class, and the validation controls are no
exception. All validation controls in the .NET Framework are derived from the
BaseValidator class. This class serves as the base abstract class for the validation
controls and provides the core implementation for all validation controls that derive from
this class. Validation controls always perform validation checking on the server.
Validation controls also have complete client-side implementation that allows browsers
that support DHTML to perform validation on the client. Client-side validation enhances
the validation scheme by checking user input as the user enters data. This allows errors

to be detected on the client before the form is submitted, preventing the round trip
necessary for server-side validation. In addition, more than one validator may be used on
a page to validate different aspects.

Before you look at the validation controls, step back in time before .NET and take a look
at a simplified example of performing validation with ASP. Launch your browser and run
the BeforeDotNet.asp code. A screen similar to Figure 6-1 should be displayed.
el B s = 3]=]

ST i e e, e

To [0 yeow (s o (i el - |
RN s T e BT = R T P e R =
Adernmt b WL o ol P T Tl v 10 Bt e D e s x| o juna e
i |
Humpry Slimids
Frt
|
=

il i st

] Deonedt

Figure 6-1: BeforeDotNet.ASP
The following ASP code generated Figure 6-1, which is one example of how validation
might be performed on the server using "classic" ASP:<%@ Language=VBScript %>

<html>
<head>
<title>When dinosaurs roamed...</title>
<%
'-- perform server side validation
If Request.Form("Submit") <> Empty Then
If Len(Request.Form("First")) = 0 Then
Response.Write("Please enter your first name.")
Else
Response.Write("Hello, " &
CStr(Request.Form("First")))
End If
End If
%>
</head>
<body>
<h3>Hungry Minds</h3><hr>

<form method="post" action="BeforeDotNet.asp" name="0OldStyle">
First

<input name="First" maxlength="15">

<hr>
<input name="Submit" type="submit">

</form>

</body>
</html>

This style of validation has a few drawbacks. First, if you have several more controls on
this page to validate, the validation routine will become quite lengthy and prone to errors.
Second, if you delete or rename your controls on the page, you need to update your
validation routine. Also, you may want to perform several different types of validation on
the same control's value. As you can see, this adds to your validation routine and
requires a fair amount of code to implement. Finally, you have your validation code
mixed with the presentation code. As you will soon see, .NET's validation controls
overcome all of these limitations.

Note You could just as easily have used client-side validation with
JScript to save a round trip to the server. However, it is always
good practice to validate the values again on the server to prevent
any unwanted values from being passed to your server.

Using the RequiredFieldValidator Control

Use the RequiredFieldValidator control when a value is required for an input element on
the Web page. This control checks whether the value of the associated input control is
different from its initial value. You can easily convert the previous sample ASP code into
.NET with the RequiredFieldValidator control. Take a look at the following code fragment:

<l-- Required Field Validator -->
First

<asp:textbox id="First" maxlength="20" runat="Server"/>
<asp:requiredfieldvalidator
id="rfvFirst"
controltovalidate="First"
display="dynamic"
errormessage="Please enter your first name."
runat="Server">
</asp:requiredfieldvalidator>

Launch your browser and navigate to Required.aspx code. A screen similar to Figure 6-2
should be displayed.

B st Voallilohin s - BT o] Bl e

e

(e [#1 Yew (gewites Bk (Sl CE'Y |
ek ® 0 ¢ O L) A Dieenk | vevemes mewy | ¢ JF A4 A B
dekrnmn W8] e Y alivnd Wil (s |0 rderl o

=l
B Wiorking with the Reguired Vadidsior contno!
First
hakaty
=
] Bwei

et

Figure 6-2: Required field validator control example 1

Before entering a First name, click the Validate button. A screen similar to Figure 6-3
should be displayed.

B st Valilofins. - BT o] Wl ey

—

e [81 Yew Mgewites Book (Sl Ia'i""-
B o T . e oy | penn— =

B Weorking with the Required Waddator contnol

First

[|

o] b 7 Rl =

Figure 6-3: Required field validator control example 2
If all went well, you should see the validation message "Please enter your first name." on
the page. Now enter your name and click the Validate button again. This time you should
see the message, "Hello, your name" displayed on the page, as shown in Figure 6-4.

Me [0 View Faesslies Sook el CEY |
semak v - - QL) | Dyveeh (Urernes ey | WS 8 :
B P e ——— - ——— =] o firia ™

=l
B Working with ihe Fequired Vaiudlator control
Fir=t
Faen
|
s
Fallo, Kansn
=
] b Y Rl et

Figure 6-4: Required field validator control example 3
Figure 6-4 looks just like the example for "Classic ASP" in Figure 6-1, but underneath the
covers, ASP.NET has written the validation code for you.
Now that you have looked at a quick example of using .NET validation, Table 6-1 gives
you a more detailed description of the properties for the RequiredFieldValidator control.

Table 6-1: Properties of the RequiredFieldValidator control

Property Definition

ID This

property
gets or
sets the
identifier
for the
control.
This
identifier
is used via
programm
ing to
access
the
control's
properties.
If an
identifier
does not
exist, then
you
cannot
write
handlers
for this
control.

Control ToVal i dat e Gets or

sets the
name of
the control
to
validate.

Di spl ay Gets or

Table 6-1: Properties of the RequiredFieldValidator control

Property Definition

sets the
display
appearanc
e of the
validator
control on
the Web

page.

Err or Message Gets or

sets the
error
message
displayed
for this
control.

RunAt Specifies

that this
control
runs on
the server.

The Cont rol ToVal i dat e and Di spl ay properties from Table 6-1 are explained in
more detail in the following sections.

ControlToValidate property
Set this property's value to the name of the control to validate. If you refer to the code
listing, this property was set to Fi r st to indicate that a value is required for this control.

Display property

You can set this property to one of three values to determine how the error message is
displayed on the page if validation fails:
= Dynam c: The validator is displayed inline on the Web page if validation
fails. The validator only takes up space on the page when the validator is
visible. This allows multiple validators to occupy the same physical
location on the Web page when those validators become visible. To
avoid the Web page layout changing the validator becomes visible, the
HTML element containing the validator must be large enough to
accommodate the size of the validator.
= Static: The validator is displayed inline on the Web page if validation
fails. Also, if the validator is hidden and becomes visible, the page layout
does not change.
= None: The validation contents are not displayed inline on the Web page,
the error message is displayed in the ValidationSummary control.

Using the CompareValidator Control

Use the CompareValidator control to make sure that a value matches a specified value.
This control compares the value of an input control to another input control or a constant
value using a variety of operators and types. You can also use this control to make sure
that your input value is of a specific type: integer, string, and so on. Table 6-2 lists the
commonly used properties for the CompareValidator control.

Table 6-2: Properties of the CompareValidator control

Property Definition

Table 6-2: Properties of the CompareValidator control

Property

Definition

I D

This
property
gets or
sets the
identifier
for the
control.
This
identifier
is used via
programm
ing to
access
the
control's
properties.
If an
identifier
does not
exist, then
you
cannot
write
handlers
for this
control.

Control ToVal i dat e

Gets or
sets the
name of
the control
to
validate.

Cont r ol ToConpar e

or

Val ueToConpar e

Gets or
sets the
identifier
of the
control on
the Web
page to
compare
with.

Gets or
sets a
specific
value that
is used to
compare
against.

Di spl ay

Gets or
sets the
display
appearanc

Table 6-2: Properties of the CompareValidator control

Property Definition

e of the
validator
control on
the Web

page.

Error Message Gets or

sets the
error
message
displayed
for this
control.

RunAt Specifies

that this
control
runs on
the server.

A good example for the CompareValidator control would be to compare passwords the
first time a user creates an account in your Web application. The following code fragment
shows the code for the CompareValidator control:

<!l-- Compare Field Validator -->
Password:

<asp:textbox id="Password" maxlength="16" runat="Server"/>

Confirm:

<asp:textbox id="Confirm" maxlength="16" runat="Server"/>
<asp:comparevalidator
id="cvPasswords"
controltocompare="Password"
controltovalidate="Confirm"
display="dynamic"
errormessage="Passwords do not match, please try again.”
runat="Server">

</asp:comparevalidator>
Launch your browser and navigate to Compare.aspx. Figure 6-5 should be displayed.

e (01 Yew (gewiies Jook (el Ly |
B I I - B L R T T T TR i)

BT T ey L p—— =] o [unia =
ERESEET I orking with the Compane Vatadasor contol
P yword
Cisnliem
L
el
=l
8] Boea 0

Figure 6-5: Compare validator control example 1

Click the Validate button. Why did the CompareValidator control fail to display your error
message? Simple; even though you specified the CompareValidator control, you did not
specify the RequiredValidator control, meaning that neither Password nor Confirm is a
required value. So blank passwords would compare. Keep this in mind when using the
CompareValidator control.

This time enter a value for the Password field, press the Tab key, enter a different value
for Confirm (for testing purposes), and then press the Tab key again. A screen similar to
Figure 6-6 should be displayed, depending on the values that you entered.

e (81 Yew fgeoites Book [selp ey |
wepmi = o o b] A Diseenh | vevemes sy | ¢ o5 oA o B
F T P d e Lok ®

Weorkisg wadly ife Comoare Vs adasor Soninod

Pamsyword
el :_.-_i:.]
Cisnliem

v elideg

|| Wielnkola

) Eama 1 Lt it
Figure 6-6: Compare validator control example 2

This time the validator works as intended and displays the error message that the
Password and Confirm TextBox controls do not match.

Now, enter the same values for the Password and Confirm fields and click the Validate
button. Because the passwords match, the error message should not be displayed and
you should see your message displayed on the page, as in Figure 6-7.

(8 i vabiotiry - ar it bt e EG)|

e [ew Cgeories bk (s Y - |
bk = o o] A Oisesnd tewenes dasy | e b oA B
B T g W Fo 1 P p—— x| o [una™
=
Working with the Compare Vaidstor control
Pasarcnd
e
Confiom
IJ"'.UQ-_]
“Velidot
¥ ord dirkyd,
=
L FRd T

Figure 6-7: Compare validator control example 3
This is just one example of using the CompareValidator control. As shown earlier in
Table 6-2, you could specify the Val ueToConpar e property instead of the
Cont r ol ToConpar e property. Try it! Delete the Cont r ol ToConpar e property, add the
Val ueToConpar e property, and set its value to some test value. Then run the
Compare.aspx sample again. Validation will fail if the value entered in the
Cont r ol ToVal i dat e field does not match the value in the Val ueToConpar e
property.

Note This control is case-sensitive. For instance "RICK = Rick" will not
compare as being equal.

Using the RangeValidator Control

Use the RangeValidator control to determine whether a value falls within the specified
range. It checks whether the value of the associated input control is within some
minimum and maximum, which can be a constant value or the value of another control.
Table 6-3 lists the properties commonly used with the RangeValidator control.

Table 6-3: Properties of the RangeValidator control

Property Definition

'D This
property
gets or
sets the
identifier
for the
control.
This
identifier
is used via
programm
ing to
access
the
control's
properties.
If an
identifier

Table 6-3: Properties of the RangeValidator control

Property

Definition

does not
exist, then
you
cannot
write
handlers
for this
control.

Control ToVal i dat e

Gets or
sets the
name of
the control
to
validate.

Maxi munval ue

Gets or
sets the
maximum
value of
the
validation
range.

M ni munival ue

Gets or
sets the
minimum
value of
the
validation
range.

Maxi mumCont r ol

Gets or
sets the
ID of the
control
that
specifies
the
maximum
value of
the
validation
range.

M ni mumCont r ol

Gets or
sets the
ID of the
control
that
specifies
the
minimum
value of
the
validation
range.

Di spl ay

Gets or

Table 6-3: Properties of the RangeValidator control

Property Definition

sets the
display
appearanc
e of the
validator
control on
the Web

page.

Err or Message Gets or

sets the
error
message
displayed
for this
control.

Type Gets or
sets the
data type
to
determine
how the
values
should be
compared.
For
instance,
string to
string or
int to int.

RunAt Specifies

that this
control
runs on
the server.

Type property
You can set the Type property to one of the following values, which determines the type
of values in the range:

= *Currency: The data type is Currency.

= *Date: The data type is DateTime.

= *Double: The data type is Double.

= *Integer: The data type is Integer.

= *String: The data type is String.

MinimumValue and MaximumValue properties

The RangeValidator control is useful when you need to make sure that a value falls
within a specified range of values. Take a look at the code fragment that follows for the
RangeValidator control:

<l-- Range Validator Control -->

Number of tickets:

<asp:textbox id="Tickets" maxlength="2" columns="2" runat="Server"/>
<asp:rangevalidator

id="rvTickets"

controltovalidate="Tickets"

minimumvalue=1

maximumvalue=4

type="Integer"

display="dynamic"

errormessage="You can only purchase 1 to 4 tickets, please try again."

runat="Server">

</asp:rangevalidator>

Launch your browser and navigate to Range.aspx. A screen similar to Figure 6-8 is
displayed.

(e (81 Yew Fgeosites Book (el] ¢ |
epaic ® o ¢ b] A Ditesnh | Lvevemes _demewy | e b 04 S H
T, Y T PR w| gMGa [Linka ®
=l
Weorking walh e Bange Yandasior cordrod
tagrnkssr of tldosts
Widadsta
=l
] Boan Y el vt

Figure 6-8: Range validator control example 1
As you can see from the code fragment, the M ni nmumval ue property is set to 1 and the
Maxi nunial ue property is set to 4. Now, enter a value less than 1 or greater than 8 in
the Number of tickets field and then press the Tab key. A screen similar to Figure 6-9
should be displayed.

e (01 Yew fgeiies Jook (el ey |
bk = oo < o] [haesnch |jirewemcs jmewy | e b oA A EH
ddiremt @ Wt o alend Hease ptlnds gl e |0 st aam =] o [una®

=l
Weorking wilh the Bange Vaiiastor cordrod
b of tick
a
[t
|
0] Becea L e

Figure 6-9: Range validator control example 2

Because you specified a range of 1 to 8, any other value will fail validation and your error
message will be displayed. Enter a value within the range and then click Validate. A
screen similar to Figure 6-10 is displayed.

Puast ST] Wl i agpher

[Yew Farmhes ook [k Y'Y |
D= B B e i L L e e I =)
edcrmt T i o sl Ny iess Chaglies 10 st ape oy = e [una ™
o |
Weorking with the Range aiidster cordrol
bbb of t
e
“Weladeda
hased 4 ki
zl
9] n [R TP

Figure 6-10: Range validator control example 3

MinimumControl and MaximumControl properties

As mentioned in the previous section, the RangeValidator control is useful when you
need to make sure that a value falls within a specified range of values. You can specify
values for the M ni mumCont r ol and Maxi munmCont r ol properties for the range just as
easily as you did for the M ni munmval ue and Maxi nun¥Val ue properties previously. Try
it! Add two controls to the form and then set the Maxi nmunCont r ol and

M ni runtCont r ol properties to these new controls. Make sure that you remove the

M ni nrunval ue and Maxi nunVal ue properties.

Using the RegularExpressionValidator Control
Use the RegularExpressionValidator control to check a value against a regular
expression. It checks whether the value of the associated input control matches the

pattern of a regular expression. Table 6-4 lists the properties commonly used with the
RegularExpressionValidator control.

Table 6-4: Properties of the RegularExpressionValidator control

Property Definition

ID This

property
gets or
sets the
identifier
for the
control.
This
identifier
is used via
programm
ing to
access
the
control's
properties.
If an
identifier
does not
exist, then
you
cannot
write
handlers
for this
control.

Control ToVal i dat e Gets or

sets the
name of
the control
to
validate.

Val i dati onExpressi on Gets or

sets the
regular
expressio
n that is
used as
the
validation
criteria.

Di spl ay Gets or

sets the
display
appearanc
e of the
validator
control on
the Web

page.

Err or Message Gets or

sets the

Table 6-4: Properties of the RegularExpressionValidator control

Property Definition

error
message
displayed
for this
control.

RunAt Specifies

that this
control
runs on
the server.

This control allows you to check for known sequences in characters, such as phone
numbers, social security numbers, and so on. Take a look at the following code fragment
for the Regular ExpressionValidator control:
<l-- Regular Expression Validator Control -->
Phone:

<asp:textbox id="Phone" maxlength="12" columns="12" runat="Server"/>
<asp:regularexpressionvalidator
id="revPhone"
controltovalidate="Phone"
display="dynamic"
validationexpression="[0-9]{3}\s[0-9]{3}-[0-9]{4}"
errormessage="Phone number format must be xxx xxx-xxxx, please try again.”
runat="Server">

</asp:regularexpressionvalidator>

Note that the string assigned to the Val i dat i onExpr essi on property uses JScript
regular expression syntax. Regular expressions are beyond the scope of this book, but
the following explanation will help. The Val i dat i onExpr essi on property in the
preceding code fragment means the following:
= First sequence
[0-9] : Any digit from O to 9
{3} : Three digits are required for this first group of numbers
\'s: A space is required
= Second sequence
[0- 9] : Any digit from O to 9
{3} : Three digits are required for this first group of numbers
- : A dash is required
= Third sequence
[0- 9] : Any digit from O to 9
{4} : Four digits are required for this first group of numbers
For more help on JScript regular expression, visit the Microsoft MSDN
Note Web site on scripting at http://msdn.microsoft.com/library/en-us/script56/
html/js56reconintroductionToRegularExpressions.asp.
Run the sample for this control by launching your browser and navigating to
Regular.aspx, shown in Figure 6-11.

B st Vallilolin s - MET Gl Bl e ieed Daglaner

e [0 Yew fgewies Jook (sl ey - |
epak = o 0P Q] H Dteenk | jvevermes o deeey | JF A G EH
BT N w1 ey pp— =] o [una®

m Working with the Beoulsr Evpression Vaigator oondrod

Prooire

El
@] B 0 L ad ks
Figure 6-11: Regular expression validator control example 1
Because the format in your Val i dat i onExpr essi on is Xxx XxXxX-Xxxx, enter some other

phone sequence to test the validation control. After you enter the value, press the Tab
key, and Figure 6-12 displays.

o [Yew Fprosites ook [Jeko @ & E
gk v o=+ 0 [T Pk (e (s | e o of B
B T (T Py p— L'l e kB

B Weorking with e Reguisr Expression Vaivgator oondrod

] b Y Rl st =

Figure 6-12: Regular expression validator control example 2
Because the phone number is not in the expected format, validation fails and your error
message is displayed. This time, enter the correct phone number format and then click

the Validate button. The validation message is cleared from the page and your message
is displayed. Your screen should look like Figure 6-13.

Mo G Wew Toewites Jook |l EEY - |
vepak ¢ o o B] A Qs | revemes wamy |y b oA o B
B S T p s E— BT

=
Working with ihe Beguiar Evpression valiaator condrol
Frore
Eeisarie
“eladey
vou can b reached at 555 3551212
=
] b Y Rl it

Figure 6-13: Regular expression validator control example 3

With the RegularExpressionValidator control, you can verify known sequences of
characters without building your own validation routines from scratch. However, you can
create custom validation routines, as well, which is the purpose of the next validation
control in ASP.NET, CustomValidator.

Using the CustomValidator Control

Use the CustomValidator control to perform user-defined custom validation. This control
allows custom code to perform validation on the client and/or server. Table 6-5 lists the
properties commonly used with the CustomValidator control.

Table 6-5: Properties of the CustomValidator control

Property Definition

ID This
property
gets or
sets the
identifier
for the
control.
This
identifier
is used via
programm
ing to
access
the
control's
properties.
If an
identifier
does not
exist, then
you
cannot
write
handlers
for this
control.

Table 6-5: Properties of the CustomValidator control

Property Definition

Control ToVal i dat e Gets or

sets the
name of
the control
to
validate.

ClientValidationFunction Indicates

the client
script
function to
call for
validation.

OnServer Val i dat e Indicates

the name
of the
event to
raise on
the server.

Di spl ay Gets or

sets the
display
appearanc
e of the
validator
control on
the Web

page.

Err or Message Gets or

sets the
error
message
displayed
for this
control.

RunAt Specifies

that this
control
runs on
the server.

Because the client validation function runs on the target browser, the function needs to
be written using a scripting language supported by the browser, such as JavaScript or
VBScript. The CustomValidator control also has an event that can be set for server-side
validation.
Note When using server-side events, remember to always prefix the
event name with the word on. For instance, onSer ver Val i dat e,

which is the required syntax for this event.
Take a look at the code fragment for the CustomValidator control:
<!l-- Custom Validator Control -->
Credit card number:

<asp:textbox id="CardNumber" maxlength="16" columns="16" runat="Server"/>

<asp:customvalidator
id="cvCardNumber"
controltovalidate="CardNumber"
ClientValidationFunction="IsCardValid"
display="dynamic"
errormessage="Invalid credit card number, please try again."
runat="Server">

</asp:customvalidator>

By now, you should be familiar with most of the properties when wiring up the validation
controls. However, for the CustomValidator control, you are interested in the
ClientValidationFuncti on orthe OnServer Val i dat e event. In the example, you
are going to concentrate on the Cl i ent Val i dat i onFuncti on event. Here, this
property points to the | sCar dVal i d function, which must be a valid function defined as
JScript or VBScript on the client. Take a look at the code for this function:

<script language="javascript">
/I--- source is the name of control that is being checked
/I--- value is actual value that is entered into the control
function IsCardValid(source, value) {
if (value != "56555555555555555")
return false;
else

return true;

}

</script>
The Cl i ent Val i dat i onFuncti on event expects two parameters:
= source: The name of the control that is being validated, pointed to by the
ControlToValidate property
=val ue: The actual value entered by the user
Keep in mind that you can use whatever name you prefer; you don't need to use sour ce
and val ue. The Cl i ent Val i dat i onFunct i on event must return a Tr ue or Fal se
condition to indicate whether validation succeeded for failed.
Run the example by launching your browser and navigating to Custom.aspx, shown in

Figure 6-14.

B st Vallilohin s - MT Gl Bl e Doglaner

e [Wew lgewites Jook (el CY |
wepak v 0 c U)W Qsesnh Lrevermes gy | 4 AR i
B T T S — P w—— B

m Wiorking with the CLstom Validator condrol

Crecit card nurmier

] A BT

addres g we e redtaes | ;est Willelaba - |

Figure 6-14: Custom validator control example 1
For this example, the | sCar dVal i d function expects the credit card number to be a
string of all 5s. In a real-world application, you might want to add the logic to validate the
credit card so that you can make sure an individual's credit card humber is valid.
Enter a value that is not valid as per the | sCar dVal i d function and then press the Tab
key; your screen should appear similar to Figure 6-15.

B st Valilofins. - BT osedl Wl e ieed ogliner
e (81 Yew Fgeosites Book (el] - |
-.hl-:l.'r---_i__'j_-] e iiterrmes ey ,_'.-?p__..lJE: -
e e —— | e
=l
B Weorking with the Custom Validator condrod
Credit card number
T
I Wedabeda
|
| Do

Y Rl st
Figure 6-15: Custom validator control example 2

Because the value you entered does not match the value in the | sCar dVal i d function,
the function returns Fal se and your error message is displayed.

Next, enter all 5s and click the Validate button. This time, | sCar dVal i d returns Tr ue
and your message is displayed as shown in Figure 6-16.

(e [Yew fgeoriies Book (i CEY - |
etk = o] A Dvesnd rewrmes ewy | e bl o H
B S —— . T —— BT

=
E Weorking with the Dustom Validator condrod
Cradit card number
| ST
eladay
ad yousr Card rigmblr | S555555555555555
=l
W e Tomper—

Figure 6-16: Custom validator control example 3

As you can see, the CustomValidator control is really the catchall for all the other
validation controls. When one of the other controls does not fit the bill, you can
customize your validation control to roll your own validation.

Using the ValidationSummary Control

Use the ValidationSummary control to capture all the validation errors from the other
controls and display them on the page as alist, a bulleted list, or in single paragraph
format. The errors can be displayed inline and/or in a pop-up message box. Table 6-6
lists the properties commonly used with the ValidationSummary control.

Table 6-6: Properties of the ValidationSummary control

Property Definition

'D This
property
gets or
sets the
identifier
for the
control.
This
identifier
is used via
programm
ing to
access
the
control's
properties.
If an
identifier
does not
exist, then
you
cannot
write
handlers
for this
control.

Di spl ayMode Indicates

Table 6-6: Properties of the ValidationSummary control

Property Definition

the
display
mode on
the page
for the
validation
summary.

Header Text Indicates

the text
heading to
display at
the top of
the
validation
summary.

ShowMessageBox Indicates

whether
the
validation
summary
should be
displayed
in a client
side
message
box.

ShowSumary Indicates

if the
validation
summary
should be
displayed
inline.

RunAt Specifies

that this
control
runs on
the server.

The ValidationSummary control gathers and displays all Er r or Message objects of
validators of the same page. At the same time, any validator can display its own error

message if you put the message in the control's inner content. This control allows you to
group all of your messages in a convenient spot on the page in the style of your
choosing.

Look at the following code for the ValidationSummary control:

<!-- Validation Summary Validator -->

<asp:validationsummary

id="vsAll"

headertext="<i>The following errors occurred, please correct and try
again.</i>
<hr>"

displaymode="list"

runat="Server">

</asp:validationsummary>

Put all of this together and use all the validation controls discussed so far with the
ValidationSummary control by launching your browser and navigating to Summary.aspx,
shown in Figure 6-17.

B fuast Vallilofins. - BT ol Wil el opliener

e [Yew Fgeoites Jooh (el EEy |
bk = o ¢ b 2] R Oiseenk | jrevemes ey o4 o6 oA o B
B T ey T pe——— x| ¢ inla

urgry Misds 11 orkinag ity e Surmrnary dalvaston Conbnal

Fi=i
;._.-r'.a\._-

P ERaWord

Confiem
Furmbenr of tloosks

P
TTRNE:

.'I =ik cand rrTiser

Wihhsty

0] b 7 Rl et =

Figure 6-17: Validation summary control example 1

To demonstrate the ValidationSummary control, enter invalid values for each of the
controls on the page. Keep in mind the validation rules for each control, because you
want to make sure validation fails. Also, keep in mind the empty values are valid. After

you have entered your values, click the Validate button. A screen similar to Figure 6-18
should appear.

(e [ew Cgeories bok (s EE Y - |
bk = o o] A Disesnh tevenes dasy | e b oA B
B T R T L e S gy P —— =] e [una ™

RSB C 11ori i with the Somary Lslidation comtral

Cradit card numcer =l
L FRd TR

Figure 6-18: Validation summary control example 2

As you can see, all the validation messages are displayed at the top of the page instead
of inline after each control. The ValidationSummary control provides you with a clean
way to display error messages and inform the user simultaneously. Whether you use
inline validation or the ValidationSummary control is a matter of preference.

Validation Events

Up to this point, you have looked at the common properties of each control, learned how
to wire them up on the page, and reviewed examples of the code running in the browser.
The .NET Framework also exposes some common events for these controls that give
the developer more options over the controls. Take a look at Table 6-7.

Table 6-7: Public Instance Events

Dat aBi ndi ng The event occurs when the control binds to a data

source.

Init The event occurs when the control is initialized; this is

the first event in the page lifecycle. The control can
perform any initialization steps that are required for the
Web page.

Load The event occurs when the control is first loaded to the
Page object.

Pr eRender This event occurs when the control is about to render
the HTML to the page. Controls should perform any
pre-rendering steps before saving the view state and
before rendering content to the Page object.

Unl oad This event occurs when the control is about to be

unloaded from memory. The control should perform
any cleanup code in this Unload event.

The developer can also wire up these events to further control what happens when the
control is loaded, unloaded, and so on from the page. These events would be used when
the Web developer wants to initialize values before the page is loaded and to perform
any cleanup code before the page is destroyed.

Multiple Validation Controls and Code Behind

In this section we are going to take a quick look at how we can use the Validator controls
in a "Code Behind" Web page. The concept of "Code Behind" is new to .NET allowing us
to separate our presentation HTML from the code logic. Figure 6-19 is displayed when
the "Code Behind" example is executed in the browser.

e [ew Cgeorites Jok (el CEY - |
epam = oG] A Otesnh tewmes dewy | 0o o0d 8
EE T T T ——— x| ot [una ™

Al

1E1]

Y Rl it

Figure 6-19: Validation with code behind example 1

When using the validation controls, keep in mind that you should use the RequiredField
validator along with the other controls to perform validation. As you saw in an earlier
example using the CompareValidator control, blank passwords will match. If you had
also used the RequiredFieldValidator control, the Password and Confirm fields would

need a value, and then those values would be compared before determining whether
validation fails. Keep in mind that you can use more than one validation control with a
specified control on the page.

Also, consider the differences in using client- versus server-side validation. With client-
side validation, the user gets immediate feedback as to whether the value entered is
valid. Using client-side validation also prevents a round trip to the server. However, when
using server-side validation, you can move the code to the server and encapsulate your
logic in a code behind page. For instance, your | sCar dVal i d function could be moved

to a code behind page to separate the presentation code from the business rules for
performing validation.

Using Code

To demonstrate using validation from a code behind page, take a look at the following
code fragment for Codebehind.aspx:

<%@ Page Language="C#" Src="codebehind.cs" Inherits="HungryMinds.Validation"%>

The page directive informs the ASP.NET parser to look in the Sr ¢ attribute for the code
to compile and in the | nheri t s attribute for the code behind class to inherit. In the
preceding example, the Sr c attribute points to the following code behind page listing:

namespace HungryMinds {
using System;
using System.Web.Ul.WebControls;
/I--- we could also wire up the page_load, page_init, etc. events here also
/I--- inherit from the page class
public class Validation : System.Web.Ul.Page {
/I-- we need to reference the controls on the .ASPX page
protected System.Web.Ul.WebControls.TextBox CardNumber;
protected System.Web.Ul.WebControls.Label Message;
/I--- this is our validation function that we set in the onServerValidate
/I--- property of the Custom Validator
protected void IsCardValid(object sender, ServerValidateEventArgs e) {
/I--- do some type of validation and return either true or false
if (e.value != "5555555555555555")
e.IsValid = false;
else
e.IsValid = true;

}

protected void ShowMessage(Object sender, EventArgs e) {
String Msg;
if (Page.IsValid) {
if (CardNumber.Text.Length > 0) {
Msg ="
and your card number is " + CardNumber.Text;
Message.Text = Msg;

}

The first line in your code listing defines the namespace for this class. Next, you import
the required class libraries: System and System.Web.Ul.WebControls. You next define
your class, which is inherited from the ASPX page. This class must be derived from the
Page class in the .NET Framework. The next lines declare references to your controls on
the ASPX page, the TextBox control and the Label control, which are defined in the
System.Web.Ul.WebControls class. You next define the functions used by the ASPX
page. By using this implementation, you are able to separate the presentation code from
the business logic code.

Summary

This chapter has explored each of the validation controls and provided examples of how
to use each one with its commonly used properties. In this chapter, we covered: the
RequiredFieldValidator control (which requires a field on the Web page to have value);
the CompareValidator control (which allows us to compare values in one control to
another control on the page, or a specified minimum and maximum value); the
RangeValidator control (which allows us to compare the value of a control on the Web
page to a range of values); and the RegularExpression Validator control (which we can
use to validate a value against regular expressions). Also, we have the CustomValidator
control, so that if none of the other validation controls fit our needs, then we can write our
own validation routine. Finally, we discussed the ValidationSummary control, which
allows us to accumulate all of the error messages from the other controls and display
them as a list on the Web page.

As you can see, the .NET Framework provides Web developers with a great set of
controls for doing page validation, instead of spending time writing validation code. This
chapter also looked at how to implement code behind validation in ASPX pages to
separate the presentation code from the business logic.

chapter - DEbUQQing ASP.NET Pages

Overview

In the previous chapters, you saw how to design and develop an ASP.NET application
by using Web Forms. After designing and developing the application, it becomes critical
to check it for the desired functionality.

While you are developing the application, the code editor catches most syntax errors.
However, the errors that cannot be caught during application development cause the
application to display error messages at run time. The errors that occur while the
application is running are called run-time errors. On the other hand, if there is a problem
in the programming logic, the application would run without errors, but it will not provide
the desired functionality. Such errors are called logical errors. The process of going
through the code to identify the root cause of an error in an application is called
debugging.

This chapter introduces you to error handling and using the different debugging tools.
You'll also learn the guidelines to writing good ASP.NET code.

Error Handling

ASP.NET provides rich support for handling and tracking errors that might occur while
applications are running. When you run an ASP.NET application, if an error occurs on a
server, an HTML error page is generated and displayed in the browser. While displaying
error messages to users, ASP.NET takes care of the security issues by default, which
makes it a reliable development tool for Web applications. ASP.NET ensures that no
secure information, such as the remote machine compiler messages, configuration
settings, filenames, stack traces, or source code, is revealed on the client

machine. When an error occurs, a generic error message, "Application Error Occurred,”
is displayed to users. To see the error details, one of the following needs to be done:
= Access the page again from the local server.
= Modify the configuration settings of the computer.
= Modify the configuration settings of the application's Web.config file to enable
remote access.

Following is a sample of the Web.config file that you can modify:
<configuration>
<system.web>
<customErrors mode="0Off" />
</system.web>

</configuration>

In this code, the <cust onEr r or s> tag has an attribute node whose value is set to

"Of f". This value indicates that the remote users always see the original error message
that is generated on the server.

Using custom error pages

As mentioned earlier, an HTML error page is displayed to a user in case an error occurs
on a server. These error messages are secure, because they do not leak any secret
information. However, these pages are not pretty to see. You can create custom error
pages that can be displayed in case errors occur. For example, you can create an error
page that displays the company's brand and some error messages that you want to
display. To implement the custom error pages:
1. Create a Web page that you want to display as an error message
page. This can be a page with an .html or .aspx extension.
2. Modify the Web.config file of your application to point to the custom
page in the event of any error. The configuration settings, shown here,
point to a file called MyError.aspx:

3. <configuration>

R

<system.web>

<customErrors mode="RemoteOnly"
defaultRedirect="MyError.aspx"/>

6.
7. </system.web>
</configuration>

The node attribute of the <cust onEr r or s> tag can take three values:
= On: Indicates that the custom error messages are always sent to users
and that the detailed ASP.NET error page is never shown.
= Off: Indicates that only original error messages are sent to users even if
a custom error page is available.
= RemoteOnly: Indicates that the custom error messages are displayed
only to remote users accessing the site. If no custom error page is

available, remote users simply see a message indicating that an error

has occurred.
When you modify the Web.config file to set the def aul t Redi r ect attribute, the user is
directed to the same custom error message irrespective of the type of the error. The type
of the error is identified by the HTTP status code. You can specify specific error
messages, such as "Page not found" or "server crash" for specific status codes, as
shown in the following code:

<configuration>
<system.web>
<customErrors
defaultRedirect="http://hostl/MyError.aspx" mode="RemoteOnly">
<error statusCode="500"
redirect="http://host1l/pages/support.ntml"/>
<error statusCode="403"
redirect="http://hostl/pages/access_denied.html"/>
</customErrors>
</system.web>

</configuration>

In this code, the error tag takes two attributes, st at usCode and r edi r ect . The

st at usCode attribute represents the value of the HTTP status code. The r edi r ect
attribute points to the error message file.

Tracking errors

In an earlier section, you saw how to display custom error messages to users in case
errors occur on a server. In addition to displaying error messages to users, you should
ensure that the administrators and developers are also able to track errors. This would
allow them to identify and solve the problems associated with the code.

You can implement error tracking by handling the Appl i cati on_Error event, an
application-level event that is generated when an exception occurs during the processing
of a Web request. The developers can use this event handler to obtain information, such
as the page URL, the query string arguments, and cookie values. With this information,
developers can write the code to track the problem or notify administrators and
developers about the problem. The errors can be tracked by using the Event Log,
sending e-mail to administrators, or writing to a database etc.

You can write to the NT Event Log by adding code in the Appl i cati on_Error event
handler in the Global.asax file of your application. You can write to the NT Event Log
only after you've imported the System.Diagnostics namespace.

To implement error tracking, create a Visual Basic ASP.NET Web Application project. In
this project, import the System.Diagnostics namespace in the Global.asax file:

Imports System.Diagnostics
Then, write the following code in the event handler for the Appl i cati on_Error event

(in the Global.asax file). This code demonstrates how to write an Event Log to track
errors related to page URL. The Event Log is named MyLog.

Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
' Fires when an error occurs
'Retrieving the request URL

Dim pageUrl, message, logName as String
Dim event_logl as New EventLog

pageUrl = Request.Path

'Creating error message to write to Event Log

message = "Page URL: " & pageUrl

'Specifying the Event Log hame
logName = "MyLog"

'Creating Event Log if it does not exist

If (Not EventLog.SourceExists (logName)) Then
EventLog.CreateEventSource (logName,logName)

End If

"‘Writing to the log
event_logl.Source = logName
event_logl.WriteEntry ("Application error occured.
" + message,EventLogEntryType.Error)
End Sub

The application project contains a default Web Form, WebForm1.aspx. Rename this file
to read "MakeEvent.aspx.” Open the code behind file of this page and write the following
statement to import the System.lO namespace:

Imports System.lO
Finally, in the Page_Load method, write the following code:

Sub Page_Load(Sender As System.Object, e As System.EventArgs) Handles
MyBase.Load

‘Cause the event log entry to be made
throw New FileNotFoundException("test exception™)

End Sub
When the MakeEvent.aspx page is executed, it generates an exception called
Fi | eNot FoundExcept i on. This exception will fire the Appl i cati on_Error eventin
the Global.asax file, which in turn will record a log of this error in the Windows Event Log.
You will be able to see the errors using the Windows Event Log Viewer. To do so:
1. Select Start ® Programs ® Administrative Tools ® Event Viewer.
2. Click the Event Log node to open the log. In this case, the name of the
log is MyLog. You need to select the log file from the
\winnt\system32\config folder. The file will be named MyLog.evt.

Using Debugging Tools

A chef, while demonstrating to his students the preparation of a new dish, makes sure
that all the students write down the instructions or important points in their description
manual so that they can easily refer to their manual if they encounter problems while
preparing the dish on their own.

In the creation process, writing or drawing an outline plays a major role, because in case
of a failure, you do not need to waste your time scratching your head. Instead, you can
refer to the outline to solve the problem. In any kind of development, if the developer

starts logging the steps involved, debugging or finding errors and fixing them becomes
very systematic and easy.

In programming, logging of the process usually refers to the ability of an application to
incorporate the use of debugging, code tracing, performance counters, and event logs. In
this section, you'll learn to use the different debugging tools.

Visual Studio .NET Debugger

Visual Studio has always provided the developer with very powerful GUI debuggers, and
Visual Studio .NET is no exception to this tradition. The debugger built into Visual Studio
.NET is powerful and has a lot of new features compared to the debugger that was
available with Visual Studio 6.0. Features that were previously available to the
developers of Visual Basic only, like the Immediate window, are now common to all the
.NET languages. So, irrespective of the language that is used to create a Web
application, the debugging tools remain the same, thereby delivering a better developer
experience. You can use the Visual Studio .NET debugger to debug applications in one
of the following two ways:

= By using the Debug menu

= By manually attaching the debugger to a running application
The debugger provides many options that allow you to check for any errors by running
through the code step by step, skipping a code routine, or placing a breakpoint. A
breakpoint marks a point in the code at which the application halts and enters a mode
called Break mode. The different options available in this mode help a developer to trace
the source of an error in an application.

Using the Debug menu

To debug an application, select Debug ® Start. This option starts the application and
attaches a debugger to it. The different Debug menu options are described in Table 7-1.

Table 7-1: Debug options

Option Description

Start Used to
start the
application
execution.

Continue Used to
continue the
application
execution
after the
application
enters a
break mode.

Restart Used to
restart the
debugging
process.

Step Into Used to
transfer the
control to a
called
procedure in
the
application.

Step Out Used to

Table 7-1: Debug options

Option

Description

transfer
control from
the called
procedure
(without
proceeding
further) back
to the calling
procedure.

Step Over

Used to skip
a called
procedure.

Run To Cursor

Used to
execute the
code until it
reaches the
line where
the cursor is
placed, or
until a
breakpoint
is reached,
whichever
occurs first.

New Breakpoint

Used to set
a breakpoint
on any line
of code.
Using the
New
Breakpoint
dialog box
(Ctrl+B)
provides a
lot of
options,
such as to
specify
additional
conditions
that must be
met for a
breakpoint
to be hit,
and when
the
breakpoint
will be hit.

An
alternative
way to set a
breakpoint
is to click
the left

Table 7-1: Debug options

Option Description

margin of
the line
where you
want to set
a
breakpoint.

Note The Step Into and Step Over options perform the same operation
until the code reaches a calling statement to call a procedure. The
Step Into option causes you to enter the called procedure and run
through it, whereas the Step Over option causes you to skip any
called procedure.

Let us look at a step-by-step approach to debug an ASP.NET Web page. Consider a
simple Web page that provides users with the functionality of adding two numbers. The
code of this Web page is given as follows:

<%@ Page Language="vb"%>
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE></TITLE>
</HEAD>

<Script runat="server">

Sub DoArithmetic(Src As Object, E As EventArgs)
IbIResult. Text = txtNum1.Text + txtNum2.Text
End Sub

</Script>

<Body>
<Form id="Form1" method="post" runat="server">
<p>
<asp:Label id="IbINumberl" runat="server">Number 1</asp:Label>
<asp:TextBox id="txtNum1" runat="server"></asp:TextBox>
</P>
<p>
<asp:Label id="IbINumber2" runat="server">Number 2</asp:Label>
<asp:TextBox id="txtNum2" runat="server"></asp:TextBox>
</P>
<pP>

<asp:Button id="cmdCalculate" runat="server" Text="Calculate"
onclick="DoArithmetic" />

</P>

<pP>

<asp:Label id="IbIResult" runat="server" Width="270px" Height="31px"></asp:Label>
</P>
</Form>
</Body>
</HTML>

When you browse this Web page in Internet Explorer, and enter two numbers, say 5 and
5, in the two text boxes, and then click the Calculate button, you'll notice that the result
that is displayed is 55 instead of 10.

Let us see how you can use the Visual Studio .NET debugger to debug the preceding
code. Before browsing the page in Internet Explorer, the first thing that you need to do is
to set a breakpoint on the line from where debugging should start. Typically, the line on
which the debugger should break will be the one that the developer suspects as a source
of malfunctioning. In our case, the breakpoint should be on the Sub procedure named
DoAri t hmeti c. Note that a breakpoint can also be conditional; the debugger will break
on the breakpoint only if a given condition evaluates to True or False as defined on the
breakpoint. Figure 7-1 shows the New Breakpoint dialog box.

Function | Fle | Addvess | Data |
Bk ssonttery witwn e pesdgram seachirk ths sdafon n 4 huncisn

Funchio: [Dinduthmase
Line: E Langsge: | 5onpe |
Charactes |'|]

Condbion... I e condiion]

Hit Cimard [E g

||:|r'.|t-|mﬂ wee |

Figure 7-1: The New Breakpoint dialog box
Note You can also add a breakpoint by clicking the left margin of the
line on which you need to set the breakpoint or by pressing the F9
key while the cursor is on the line. Then, to remove a breakpoint,
press F9 or click the left margin of the line at which the breakpoint
was set.

To debug the current page, you need to mark the page as the startup page of the
project. This can be done by right-clicking the ASPX file in the Solution Explorer window
and choosing the Set As Start Page option from the context menu.

After you have set the breakpoint and set the Web page as the startup page of the
project, you can start debugging your page. To start debugging the page, select Start
from the Debug menu. This will start a new instance of Internet Explorer, and load the
current page in it.

When you enter numbers in the Numberl and Number2 text boxes, say 5 and 5,
respectively, and click the Calculate button, the debugger enters Break mode. In this

mode, you can see the line at which you set the breakpoint being highlighted. You can
check the values of the various variables and controls for correctness in Break mode.
You'll now run through the procedure in a stepwise manner to identify the source of the
problem. To do so, select Debug ® Step Into. You'll notice that the next line (this is the
only code line in the procedure) gets highlighted. Select Debug ® Step Into once more
to execute this line of code. At this stage, the next line (End Sub) gets highlighted. This
is the time when you should check the value in each text box and thus conclude the
source of the problem. The Immediate window can be used for ad-hoc querying of
variable and control property values. You can open the Immediate window by selecting
Debug ® Windows ® Immediate. In the Immediate window, type the following
statement:

?IblResult. Text

After typing the preceding statement, press Enter. The Immediate window displays "55."
The Result "55" gives an indication that the result is a string and not a number. This is
enough to identify that the problem was due to the datatype. The numbers entered in the
two text boxes were set in the Text property of the text boxes. In the DoArit hnetic
procedure, when you added the two numbers by accessing the Text property of the text
boxes, the "+" operator worked as the concatenation operator to concatenate two strings
rather than adding two numbers. Therefore, the values entered in the text boxes must be
converted to a numeric datatype before adding them.

After you've found the actual error, you can stop debugging and correct the code. To
stop the debugging process, select Debug ® Stop Debugging.

Next, remove the breakpoint (Press F9 at the line at which the breakpoint was set).
Modify the line in the DoAr i t hrret i ¢ procedure to read:

IbIResult = Cint(txtNum1.Text) + Cint(txtNum2.Text)

After you fix the code and run the application, you'll notice that now the page gives the
correct output.

Attaching a Debugger

In addition to attaching a debugger to an application when you start it, you can attach a
debugger while an application is already running. To do so, complete the following steps:
1. Open the application in Visual Studio .NET.
2. Select Debug ® Processes to open the Processes dialog box.
3. Ensure that the "Show system processes" option is selected.
4. In the Available Processes pane, all the processes are listed. Scroll
through the list to select aspnet_wp.exe.
5. Click Attach to open the Attach To Process dialog box. From the
available choices, select Common Language Runtime and Script.
6. Click OK and then click Close.

After you've attached the debugger to your running application, you can debug the
application to trace the source of error.
Note You can attach a debugger to a running Web page only if it is
running in Internet Explorer. If you are viewing the page within the
IDE, you will not be able to attach a debugger with your page.

The ASP.NET Trace functionality

In ASP.NET, the trace feature ensures that the programmers are able to log their
applications by providing the means to monitor and examine program performance either
during development or after deployment. ASP.NET allows tracing at two levels:

= Page-level tracing

= Application-level tracing
Trace capability of ASP.NET is declared in the TraceContext class. To enable the Trace
Page, the Tr ace directive must be set to True. The Tr ace property is exposed as a

public property within ASP.NET pages. The Tr ace property refers to the TraceContext
of the ASP.NET page.

The TraceContext class is a noninheritable public class of the .NET Framework that is
used for capturing the execution details of a Web request and presenting the data on the
page. For developers to include messages for specific Trace categories, this class can
be a good utility. You need to include the System.Web namespace in your Web project
to be able to use this class.

The class has certain properties and methods that provide the functionality for enabling
the debugging of the ASP.NET pages.

Table 7-2 and Table 7-3 list the properties and methods exposed by the TraceContext
class.

Table 7-2: Properties of the TraceContext class

Property Description

| sEnabl e Indicates
whether
tracing is
enabled for
the current
Web
request.
Allows
browsers to
determine
the state of
tracing for
the current
Web request
for the page
or the
application.
You can use
this property
to check
whether or
not the page
or
application
should
include the
tracing
information
before
writing
anything to
the trace
log. You can
set this
property for
the page by
including a
trace="tr
ue" attribute
inthe @
Page
directive as
the first
element on

Table 7-2: Properties of the TraceContext class

Property Description

the page. To
set this
property for
the entire
application,
use the
application's
Web.config
file.

TraceMbde Indicates the

sequence in
which the
trace
messages
should be
displayed to
the
requesting
browser.
The
sequence of
the trace
messages
can be
sorted
alphabeticall
y or in the
order in
which they
were
processed
by using
user-defined
categories.

Note When the | sEnabl e property is set to True for the entire
application, it is mandatory to exclusively set the property to False
for any page that needs to be restricted from displaying the tracing
information.

Table 7-3: Public instance methods of the TraceContext class

Method Description

Equal s Used to

check
whether or
not the
instance of
an object
equals the
current
object.

Get HashCode Used for

hashing
algorithms
and data

Table 7-3: Public instance methods of the TraceContext class

Method Description

structure,
such as a
hash table.

ToString Used to

return a
string that
represents
the current
object.

Get Type Used to

return the
type of the
object
passed.

Viarn Used to

write the
trace
information
along with
the optional
exception
data in the
Trace log.
The
warnings
that are
written into
the Trace
log appear
as red text.

Wite Used to

write to the
Trace log.

After discussing the TraceContext class properties and methods, let us now understand
the two levels of tracing.

Page-level tracing

ASP.NET makes it easy to debug and test applications by providing a trace capability.
After the trace capability is enabled, ASP.NET provides the following functionalities
automatically:
= Creates and appends a table called the table of performance data to
the end of the ASP.NET page.
= Allows a developer to add custom diagnostic messages in the code
wherever required.

Basically, the following are the two ways to generate trace statements in a page:
= Use the code written within a file.
= Use an HTML editor.

While generating the trace statements, you can include custom trace messages to the
Trace log. Then, with the help of an HTML editor, you can present those messages and
other trace information in a better manner.

You'll now write an ASP.NET page that generates the trace statements. Both Visual
Studio .NET and Notepad can be used for writing the code. In this case, Notepad is used
to create the ASPX file. The steps involved in writing the code for the page are described
as follows:

1. Open Notepad and type the following code:

2. <%@ Page Language="VB" Trace="False"%>

3. <html>

4. <head>

5. <title> Trace Demo </title>

6. </head>

7.

8. <Script runat="server">

9. Public Function Addition(FNum As Integer, SNum As Integer)
As Integer

10. Trace.Write("Inside Addition() FNum: ", FNum.ToString())

11. Trace.Warn("Inside Addition() SNum: ", SNum.ToString())

12. return FNum + SNum

13. End Function

14, </Script>

15.

16. <body>

17. Calling the Addition Function: 10 + 5 = <%=Addition(10,5)%>

18. </body>

</html>

19. Save the file as an ASPX file in a Web directory on the Web server.
In this case, the file is named TraceStat.aspx.

20. Execute the TraceStat.aspx file. Figure 7-2 shows the output as
shown in the browser when the ASP.NET page (TraceStat.aspx) is

executed.
E Trace Demo - Microsel Inteonal Explorer
File Edit View Favorites Tools Help | & |
o v o = (2 2} 3| [CPecorelBar ThSearch [siFmores A B> ™
Addrass [g] ity S oc o Teting TrsceStal sips j ;:H.'-o- Links *
=

Calbrg the Addtion Funcion 10+ 5=15

|
2] Dane ¥ Local intranet -
Figure 7-2: An example of the Trace.Write() method

In this code, the Trace. Wi t e statements generate the trace statements. The

Addi t i on function takes two integer values and returns an integer value as the sum of

the two numbers taken as parameters. In the Cal | i ng statement, the Addi ti on

function is called by using the <%and the %> delimiters used for specifying the ASP

code.

Using the same code that generated the trace statement, you'll now look at the steps
involved in presenting the statements generated in the ASP.NET page itself. The steps
involved are described as follows:
1. Open the file TraceStat.aspx in Notepad and add the following
directive as the first element in the file:
<%@ Page Trace="true" %>

2. Save the file in the same location with the same name.
3. Reexecute the TraceStat.aspx file. Figure 7-3 shows the output as
displayed in the browser when the ASP.NET page (TraceStat.aspx)

is executed.

B Tiomw Dpnon i i omant ol ot [njabi i -

Fis D@ View Favostes Teals |help [|
i A Erewuits et Gfeosm 3 O b Gf =) WS

Addwad LT 1ns baak e Tt T e 10 g d i0u Lrks ®

fesalo] '|.J-|

Temr q.‘ Hrll i ar Pl ':r.'.l-.. "

s qui i a8 Coepond e i i LT A '\.r||I| ol |

{“ch-:-r; T s Firsb5) From Last{s)

1 [r

q:-.-'- .l-'\-1l: [DG0g 141 0000343

¥ e Eogw Tepligads DEIGT o DGR

'r'.- LB |-: Era "“-: K ulil'.IZIIIZ’
B w Gk DiBC4s

-'\r'-.'- |.-'-I-: Ery 'M.l' e ot -Ill'l'.-C1 5

e pa]s Bogin Darage D0

[wgide aditgrd) FRam ik 3,

FEDE P Era Dol [] HOIEITE

Casrd W TR WA | Tl] Vi el G N Wl 3 il e
i bl chdean] il b

Al [Lngad e ey

Figure 7-3: The output with Tracing enabled
In Figure 7-3, the trace information has been appended at the end of the ASP.NET.
Looking at the output, the trace statements are as follows:
= |nside Addition() Fnum:
= |nside Addition() Snum
@Page directives are special instructions that ASP.NET uses when
Note processing a request for an ASP.NET resource. @Page directives can
be used to override or apply configuration settings for an ASP.NET page.
A directive must be the first element on a page.

Application-level tracing

Application-level Tracing is enabled by using the Web.config file. This file is also used to
enable the ASP.NET framework to gather the HTTP request information for the entire
application.

Unlike page-level Trace statements, application-level Tracing does not present the Trace
information in a browser unless specified, but the information can be displayed in a Web-
based Trace viewer application. The Trace viewer displays trace information for a
sequence of requests to the application, thus making it mandatory to store the matrix for
each request in memory until tracing is enabled. This can be done by including a
TraceContext class that participates in the HTTP execution of each request for the
application.

By opening the root Web.config file and looking at the tracing section, the following code
can be seen:
<configuration>

<system.web>

<trace enabled="false" requestLimit="10" pageOutput="false"
traceMode="SortByTime" />

</system.web>

</configuration>
The Trace element has four attributes. These attributes are described in Table 7-4.

Table 7-4: Attributes of the Trace element

Attribute Description

enabl ed Indicates

whether or
not the
application-
level
Tracing is
enabled.
This
attribute can
take one of
the two
values, True
or False. By
default, the
value is set
to False.

requestLimt Takes an

integer
value that
specifies the
total number
of trace
requests to
keep
cached in
memory on
a per-
application
basis. By
default, the
value is set
to 10.

pageQut put Indicates

whether or
not the
Trace
information
would be
presented
on the
ASP.NET
page. This
attribute can
take one of
the two
values, True
or False. By
default the
value is set
to False.

tracehMbde Indicates

Table 7-4: Attributes of the Trace element

Attribute Description

the mode in
which the
Trace
information
is
presented.
The
information
can be
sorted by
time or
category.

Note Sorting by category is used to differentiate between the settings
made by the system and the Trace. Wit e() settings enabled by
the developer. On the other hand, sorting by time sorts the
information by the amount of time spent in the call.

You'll use the same sample code as used for the page-level Tracing to implement the
application-level Tracing. However, you need to remove the @ Page directive to
implement the application-level Tracing. Then, modify the Web.config settings as follows:

<configuration>
<system.web>
<trace
enabled="true"
requestlimitrequestLimit="10"
pageoutputpageOutput="false"
tracemodetraceMode="SortByTime"
/>
</system.web>

</configuration>

Figures 7-4 and 7-5 show the output when the pageQut put attribute in the Web.config
file is set to False and when the attribute is set to True, respectively. Do remember to
remove all tracing directives from the @ Page directives that you may have declared in
the individual ASPX pages. Controlling trace behavior of an ASP.NET Web site becomes
easier using the Web.config file, because it is the only file that is used to enable or
disable the tracing ability of the Web site. For large Web sites, it is recommended that
trace mode be controlled using the Web.config file rather than from the individual pages.

5 Trace Demo - Microsal Inteimner Explonad

File Edit View Favorites Tools Halp -
4= v v (1) (3| [CPecondlBar FhSeach [S)Fsortes | L *
Address [E] it/ oo alrost T eting TuscsSisl sips ﬂ :}fﬂl Links ®

|

Calbrgg the Addtion Funcion 10+5=15

E
2] Done (¥ Local intranet p

Figure 7-4: Output with the pageOutput attribute set to False
[B et Do i e Lo H&O|

e L@ View Fiviites Tidh ol =
S DD A EPewuds Dleeh (feoln 3 e 0 = W
Agtdmaa L8] 101 /bl ik Trote T, a1 =| ¢t Lrka ™
<

Coallrg e Mbditon Function 10 %= 15 7
Amsalon id i NI et Type! 3]

Tiaoe of Faijiingt] b ks Coada el]

Reijiin an Coecodindg i ¥ Ewaponis Cnoedng sruconde [UTF-05

Cangary Massip Frawm First{s} Tram Last{s)

50 P Gege Invi

AR Pl g [me Dotdiki GO00IEE

aF i pa]é Bege Tealgnde (AR e 8, C00K

et Erd Meollinddi 10,0000

A0) Begn Savetaniingn 300036

R Pl Erd BawiiewEtate 0. 00008

s P Bogen Dandee 3 O0CE

Ineide AdTon]) Fhbe 30 3088

e pae Erad Dandr

0 00308

[E=Ta. Manides Kizo Hytos (nchiles Viesiale Bre Hyies [sebeing
" i el e g P

| Coakies Colecion |
=l
] Do L Loge wireeen

Figure 7-5: Output with the pageOutput attribute set to True

Writing Good ASP.NET Code

Good programming practices make it easy to understand, debug, and maintain code.
Poorly written programs lead to confusion while debugging. The developer who has
written the code might find himself in a situation where he cannot tell what the code is
doing. Therefore, every developer should follow good programming practices. The same
applies for an ASP.NET developer. While developing an ASP.NET application, a
developer must keep in mind certain guidelines with respect to form designing, naming
variables and objects, designing and implementing programming logic, and using coding
style.

Form design

The form design should be visually appealing. It should be simple and neat. Although
Web pages use bright colors and lots of images to make them attractive, this type of
design takes a longer time to load the pages. Therefore, while designing pages, you
should keep the following guidelines in mind:

= The controls that need user input should have the correct tab order and

should be grouped and arranged in an order that makes sense while
entering data.
= The controls should be properly aligned.

Variables and objects

While naming variables and objects, keep the following guidelines in mind:

= Use a proper naming notation, such as Hungarian or camel-casing
notation, to name variables and objects. Hungarian notation enables you
to identify the datatype of the variable from the name of the variable. So,
a variable storing the first name of an employee will be declared as
sFirstName. In camel-casing notation, the variable names take the form
sfirstName, with the second part of the variable, which is a noun,
capitalized.

= Name the variables and objects meaningfully. Meaningful names
combined with Hungarian notation make the purpose and type of the
variables clear. This results in a self-documented code, which is easy to
understand and maintain.

= Declare the variables and objects in the beginning of a procedure.
Declaration in the beginning makes the code execution more efficient,
besides making it easy to understand by someone looking at the code
text.

= Always initialize variables to certain default values before using them, to
avoid any type conversion issues.

= Always rely on explicit conversion functions to eliminate confusion.

Programming logic

While implementing the programming logic, you should do a good chunking of the code.
The chunking helps you to maintain the code and speed up debugging. Keep the
following guidelines in mind:
= If you want to implement a programming logic that returns a single result,
use a function.
= |f you need multiple arguments to be passed without expecting a return
value, use a procedure.
= |f you want to create a reusable piece of code, use functions or Sub
procedures or put the code in a separate class (if the code can be
logically grouped).

Coding style

The program should be easy to read and to understand when you need to refer back to
it. Follow these guidelines while coding:
= Always use "Option Explicit" to catch any undeclared or misspelled
variables. Also, the use of "Option Explicit" makes the Web pages run
fast. The "Option Explicit" option forces the explicit declaration of
variables.
= Declare one variable per line. This avoids confusion about datatypes.
= Use comments wherever possible to document a difficult code section.
= Use blank lines in the code for clarity.
= Use proper code block indenting.

Summary

This chapter explored error handling and debugging tools for ASP.NET applications.
First, you learned how to display custom error messages to users. You saw how to log
errors in the NT Event Log. Then, you learned the concept of debugging and its
importance. You learned to use the Visual Studio .NET debugger. You saw the
properties and methods of the TraceContext class and @ Page directive. You also
examined the Web.config file for setting the application-level Tracing. You learned to
enable the Tracing functionality at the page level as well as the application level. Finally,
you learned how to write good ASP.NET code.

rarti: ASP.NET Database Programming

Chapter List

Chapter 8: Introducing ADO.NET

Chapter 9: Understanding Data Binding
Chapter 10: Working with Data Grids

Chapter 11: Using Templates

Chapter 12: Using SQL Server with ASP.NET
Chapter 13: Advanced Data Binding and XML

chapter 8: INtroducing ADO.NET

Overview

As more and more companies are coming up with n-tier client/server and Web-based
database solutions, Microsoft with its Universal Data Access (UDA) model, offers high-
performance access to diverse data and information sources on multiple platforms. Also,
UDA provides an easy-to-use programming interface that works with practically any tool
or language, leveraging the technical skills developers already have.

The Microsoft UDA model is a collection of Data Access Components, which are the key
technologies that enable Universal Data Access. The Data Access Components include
ActiveX Data Objects (ADO), Remote Data Service (RDS), formerly known as Advanced
Data Connector (ADC), Object Linking and Embedding Database (OLE DB), and Open
Database Connectivity (ODBC).

Microsoft is targeting many more such Data Access components that offer easy-to-
maintain solutions to organizations. Such solutions are aimed at allowing organizations
use their own choice of tools, applications, and data sources on the client, middle tier, or
server. One of the emerging components within the UDAs collection is ADO.NET. This
chapter introduces you to ADO.NET.

ADO.NET Basics

Microsoft ADO.NET is the latest improvement after ADO. ADO.NET provides platform
interoperability and scalable data access. In the .NET Framework, data is transmitted in
the Extensible Markup Language (XML) format. Therefore, any application that can read
the XML format can process data. It is not necessary for the receiving component to be
an ADO.NET component at all. The receiving component might be a Microsoft Visual
Studio—based solution or any application running on any other platform.

Although ADO.NET preserves some of the primary concepts from previous ADO models,
it has been chiefly stretched to provide access to structured data from diverse sources.
ADO.NET provides access to diverse data sources by using a consistent and
standardized programming model. ADO.NET is upgraded to offer several advantages
over previous versions of ADO and over other data access components.

ADO.NET builds the foundation of dataaware .NET applications. ADO.NET brings
together all the classes that allow data handling. Such classes represent data container
objects that feature typical database capabilities — indexing, sorting, and views. While
ADO.NET offers a solution for .NET database applications, it presents an overall
structure that is not as database-centric as the ADO model.

The ADO model uses the concept of recordsets, which are the ADO representation of
tables and views from a database. Although these recordsets are very flexible to use and

allow access to data even when disconnected from data sources, they suffer from a
major drawback. In the case of distributed and Web applications, data needs to be
exchanged among different components at different tiers, which might be running on
variety of platforms. Of course, the format of the data being exchanged should be
understood by all components. This transmission of data requires the conversion of data
types of values to some data types that are recognized by the receiving components.
This conversion is called COM marshalling. Thus, the interoperability is limited when
using ADO recordsets. So, the concept of ADO recordsets fails when we look at the
Internet interoperability.

Like ADO, ADO.NET also allows you to access data when disconnected from actual data
sources. However, unlike ADO, ADO.NET uses XML as the data format. Because XML
is a universal data format being used, ADO.NET expands the boundaries of
interoperability to the Internet. In addition, instead of recordsets, ADO.NET uses the
DataSet and DataReader objects to access and manipulate data. You'll learn about
these objects later in the chapter. Thus, ADO.NET is designed to perform better and be
more flexible than ADO. However, to support ADO objects, the corresponding
equivalents exist in ADO.NET.

Note Data container objects are the objects that contain data to be

transmitted to the receiving components.

To take full advantage of ADO.NET, you should put some effort into understanding the
concept itself, rather than simply figuring out the fastest way to port your code. Whatever
.NET programming model you might choose — Windows Forms, Web Forms, or Web
Services — ADO.NET will be there to help you with data access issues. The workings of
ADO.NET are shown in Figure 8-1. Let us now look at the key features offered by
ADO.NET.

[Z;'.-‘-.'.l‘-‘:‘. [Command

Data Tier

Figure 8-1: The workings of ADO.NET

Interoperability

The ADO.NET model is designed to take maximum advantage of the flexibility provided
by the large industry acceptance of XML. ADO.NET uses XML for transmitting datasets
among components and across tiers. Any component that is capable of reading the XML
format can process the data. It is not necessary for the receiving component to be an
ADO.NET component. The component that is sending or transmitting the dataset can
simply transmit the dataset to its destination without bothering with how the receiving
component is implemented. The component asking for the dataset, the destination
component, can be implemented as a Visual Studio application or any other application.
However, the important point to be considered is that the receiving component should be
capable of accepting the XML file formatted as a dataset.

Maintainability

After an application is deployed, there might be a need for changes in the application.
For example, the application might need substantial architectural changes to improve its
performance. As the performance load on a deployed application server grows, system
resources can become inadequate, resulting in higher response times. As a solution to
these problems, the application might need to undergo architectural changes by adding
tiers. Here, the problem is not the multitier application design, but rather the problem lies
in increasing the number of tiers after an application is deployed. This transformation
becomes easier if the original application is implemented in ADO.NET using datasets. In
ADO.NET, the communication between tiers is relatively easy, because the tiers can
transmit data through XML-formatted datasets.

Programmability

The ADO.NET model uses typed programming to manipulate objects. In typed
programming, the programming environment or programming language itself recognizes
the types of things that are important to users. To take full advantage of typed
programming, you must know the things that are of interest to programmers and to end
users. Consider the following code using typed programming in ADO.NET:

If TotalQty > DataSetl.Productinfo("Baby Food").QtyAvailable

This code is equivalent to a line using non-typed programming and is easier to read by
end users. An end user who has little or no programming experience can easily grasp
the meaning of the condition being tested. Also, in non-typed programming, if the
developer makes a spelling mistake by chance (for example, Productinfo is spelled as
Prodcutinfo), a run-time error will get generated. On the other hand, in typed datasets,
errors in the syntax caused by misspellings are detected at compile time rather than at
run time.

Performance

In ADO, while transmitting data across tiers using COM marshalling in the form of
disconnected RecordSets, the values must be converted to data types that are
recognized by COM. This results in poor performance. On the other hand, ADO.NET is
designed to use disconnected data architecture, which in turn is easier to scale because
it reduces the load on database (does not require any data type conversions). Thus, in
the ADO.NET model, everything is handled at the client side, which in turn improves
performance.

Scalability

The Web-based, data-centric applications require multiple users to access data
simultaneously. This increases the demand on data to be accessed, making scalability
one of the most critical features. Applications that use resources, such as database
connections and database locks, cannot support more users to access data
simultaneously, because eventually the user demand for the limited resources will
exceed their supply. Because ADO.NET uses disconnected data access, applications do
not retain database locks or active database connections for long durations. Hence,
ADO.NET accommodates scalability by encouraging programmers to conserve limited
resources, and allows more users to access data simultaneously.

ADO.NET Object Model

The .NET Framework is designed to change dramatically the developer's current style of
developing applications, including the data access features. For the .NET applications,
the primary data access technology to be used would be ADO.NET — the latest addition
to the ADO model.

The ADO.NET Object Model is primarily divided into two levels:
= Connected Layer: Consists of the classes that comprise the Managed
Providers
=Disconnected Layer: Is rooted in the DataSet

This section describes both the Managed Providers and the DataSet.

Managed Providers

Managed Providers are a collection of classes in the .NET Framework that provide a
foundation for the ADO.NET programming model. The .NET Framework allows you to
write language-neutral components, which can be called from any language, such as
C++ or Visual Basic. In the .NET Framework, the OLE DB and ADO layers are merged
into one layer. This results in high performance, and at the same time allows
components to be called from any language. The Managed Data Providers include
classes that can be used for the following:

= Accessing data from SQL Server 7.0 and later

= Accessing the other OLE DB providers
The Managed Provider for ADO.NET is the System.Data.OleDb namespace, which
allows you to access OLE DB data sources. This nhamespace includes classes that are
used to connect to OLE DB data sources and execute database queries to access and
manipulate data. Some of the classes included in the namespace are described in Table
8-1.
Table 8-1: ADO.NET classes for OLE DB data sources

Class Description

OleDbConnection Represents
an open
connection to
a data
source.

OleDbCommand Represents a
SQL query to
be executed
against the
data source.

OleDbDataReader Corresponds
to a forward-
only, read-
only
RecordSet. It
is a highly
optimized
and
nonbuffering
interface for
getting the
results of a
query
executed
against the
data source.

OleDbDataAdapter Represents a
set of data
commands
and a
database

Table 8-1: ADO.NET classes for OLE DB data sources

Class Description

connection
that are used
to fill the
DataSet and
update the
data source.

OleDbParameter Represents a
parameter
that is
passed with
an
OleDbComm
and object.

OleDbError Represents
the errors
that are
generated by
the data
source.

The Managed Provider for the ADO.NET classes to access and manipulate data stored
on a SQL Server is the System.Data.SqIClient namespace. Table 8-2 describes some of
the classes in this namespace.

Table 8-2: ADO.NET classes for SQL Server

Class Description

SqlConnection Represents an
open connection
to a SQL Server
data source.

SqlDataAdapter Represents a set
of data commands
and a database
connection to
populate the
ADO.NET
DataSet object.
The
SQLDataAdapter
class corresponds
to the
OleDbDataAdapte
r class.

SglCommand Represents a T-
SQL statement or
stored procedure
that SQL Server
will execute. The
SglCommand
corresponds to
the
ADOCommand
class.

Table 8-2: ADO.NET classes for SQL Server

Class Description

SqglParameter Used for passing
parameters to the
SglCommand
object. When the
SqlParameter
object of
ADO.NET is used
to pass a
parameter to the
SglCommand
object, the
parameter
represents a T-
SQL statement or
stored procedure.
When
SqlParameter
object is used to
pass a parameter
to the
SglDataSetComm
and object, the
parameter
represents a
column from a
result set.
SqglParameter
corresponds to
the
ADOParameter
class.

SqlError Collects
information about
run-time warnings
and error
conditions that an
ADO.NET
application
encounters.
SqlError
corresponds to
the ADOError
class.

To demonstrate how to open a connection to a SQL Server database and fill the DataSet
(discussed later in this section) with a database query result, consider the following code:

Dim connection As New
SqglConnection("server=localserver;uid=sa;pwd=;database=Sales")

Dim command As New SqglDataAdapter("SELECT * FROM Products Where
ProductiID=@ID", connection)

Dim paraml As New SqglParameter("@ID", SqIDbType.Int)

paraml.Value = 1
command.SelectCommand.Parameters.Add(param1)

Dim dataset As New DataSet()
command.Fill(dataset, "Products")

In this code:

= connecti on is a SglConnection class object that represents a
connection to the SQL Server database.

= command is a SqglDataAdapter class object that represents a set of data
commands and a database connection.

= paraml is a SqlParameter class object that represents the parameter to
be passed in the T-SQL command.

= dat aset is a DataSet class object that represents the DataSet that is
filled by the query results.

DataSet class

The DataSet comprises the Disconnected Layer of ADO.NET. The DataSet consists of a
local buffer of tables and relations. As shown in Figure 8-2, the DataSet object model
consists of Tables, Columns, Relations, Constraints, and Rows. A DataSet contains a
collection of DataTables (the Tables collection). A DataTable represents one table of in-
memory data. A DataTable consists of the following:

| Tabies (Collection) | | Relations (Collecton) |

Talle Relation

| Colurmns [Collection) | | Row's [Collection) |Cl'_‘1|';.ri! nits (Co Ir_tl.luulll

Column Riow Constraint

Figure 8-2: The DataSet object model
= A collection of columns (the Columns collection) that represents the
table's schema.
= A collection of rows (the Rows collection) that represent the data held by
the table.
A DataTable remembers the original state along with the current state, tracking the kinds
of changes that have occurred. The data access classes are included in the
System.Data namespace. Table 8-3 lists some of these classes along with their
descriptions.

Table 8-3: The data access classes of ADO.NET

Class Description

DataSet Represents a
complete collection
of tables,

relationships, and
constraints. Both

Table 8-3: The data access classes of ADO.NET

Class Description

the
System.Data.OleD
b and the
System.Data.SqIClI
ient namespaces
share this object of
ADO.NET, making
it the core
component of the
ADO.NET
architecture.

DataAdapter Represents a
database query or
stored procedure
that is used to
populate the
DataSet object.

DataTable Represents a data
source that stores
data in row and
column format.

DataColumn Represents a
columnin a
DataTable.

DataRow Represents a row

in a DataTable.

Unlike RecordSets, which are equivalent to tables in ADO, DataSets keep track of the
relationships between tables if any. The DataSet is designed with a rich programming
model. The following code creates a new DataTable with the name Productinfo:

Dim dset As DataSet = New DataSet("Productinfo")

Later, you can add columns to the DataTable. The columns are added to the DataTable
by using the Add method on the Columns collection, and the column is assigned a name
and a datatype. Finally, data is added to the table by calling the NewRow method on the
DataTable and storing the column values in each DataRow.

Changes from ADO

ADO.NET is an evolutionary improvement over ADO. Some of the improvements are
described in Table 8-4.

Table 8-4: Feature changes in ADO.NET

Feature ADO ADO.NET

Memory- Uses the RecordSet Uses the DataSet

resident data object, which looks like a object, which

representation single table. contains one or
more tables

represented by
DataTable objects.

Relationship Requires a JOIN query to Provides the
between combine data from DataRelation object

Table 8-4: Feature changes in ADO.NET

Feature

ADO

ADO.NET

multiple tables

multiple tables in a single
result table.

for combining data
from multiple
DataTable objects
without requiring a
JOIN query.

Data navigation

Scans the rows
sequentially.

Uses a navigation
model for
nonsequential
access to rows in a
table. Tracks
relationships to
navigate from rows
in one table to
corresponding rows
in another table.

Disconnected
access

Supports the connected
access, which is
represented by the
Connection object. To
communicate with a
database, ADO first
makes a call to an OLE
DB provider. However,
ADO also supports the
disconnected data access
by the RecordSet object
although it is not designed
for it.

ADO.NET uses
standardized calls
for the
DataSetCommand
object to
communicate with a
database, which in
turn communicates
with the OLE DB
provider.
Sometimes, the
DataSet object
directly
communicates with
the APIs provided
by a database
management
system.

Programmability

Uses the Connection
object to transmit
commands for mapping a
data source that has an
underlying data construct.

Uses the typed
programming
characteristic of
XML. Data is self-
describing because
names for code
items correspond to
the "real-world"
problem solved by
the code. The
underlying data
constructs, such as
tables and rows, do
not appear, making
code easier to read
and write.

Sharing
disconnected
data between
tiers or
components

Uses COM marshalling to
transmit a disconnected
RecordSet. Only those
data types that are
defined by COM

Transmits a DataSet
with an XML file.
The XML format
places no
restrictions on data

Table 8-4: Feature changes in ADO.NET

Feature

ADO

ADO.NET

standards support the
feature to share
disconnected data
between tiers or

types. Therefore,
ADO.NET requires
no data type
conversions,

components. Therefore, resulting in
ADO needs to perform the improved
data type conversions, performance.

which require system
resources, resulting in low
performance.

Transmitting

Problematic, because

Supported because

data through firewalls are typically ADO.NET DataSet
firewalls configured to prevent objects use XML for
system-level requests, representing data.
such as COM Using HTTP as the
marshalling. transport, XML data
can pass through
firewalls.
Scalability Database locks and active Disconnected

database connections for
long durations result in
limited database
resources, allowing fewer
users to access data
simultaneously.

access to database
data without
retaining database
locks or active
database
connections for
lengthy periods
does not limit the
database resources.
This allows more
users to access
data simultaneously.

Communicating with OLEDB Data Sources Using ADO.NET

Every application that needs to retrieve data from a database needs to establish a
connection to the database. In ADO, this was achieved using the Connection object. In
ADO.NET, the classes to be used for establishing the connection depend on the data
source being used. For instance, to connect to SQL Server databases, the classes in the
System.Data.SqlClient namespace are used. To connect to OLE DB data sources, you
need to use classes in the System.Data.OleDb namespace. It must be noted that both
the SQL Server and OLE DB providers are managed providers. These providers act as a
thin layer that connects the application to the database without adding any unnecessary
overhead, such as converting from OLE DB -compatible data types to native SQL Server
data types and vice versa when communicating between the client and the server. The
SQL Server data provider, for example, does not depend on OLE DB/ODBC. Instead, it
uses the Tabular Data Stream (TDS) protocol of SQL Server to natively communicate
with the SQL Server. The use of the TDS provides a tremendous performance boost to
applications.

Let us now look at the classes required to establish a connection to a Microsoft Access
database using the OLE DB -managed data provider.

System.Data.OleDb.OleDbConnection class

This class encapsulates the connection to an OLE DB data source. Applications that
need to use an OLE DB provider to connect to the data source should use this class,
because not all data sources will have managed .NET data providers. When the .NET
Framework is shipped by Microsoft, it provides managed data providers for some of the
popular DBMSs like MS Access and SQL Server. But, the data providers for the other
DBMSs will be developed by the respective vendors. To avoid waiting for the availability
of managed data providers, ADO.NET has the option of connecting to any OLE DB-
compliant data sources. The OLE DB provider makes it easier for the application to be
migrated to ADO.NET. All the features of ADO.NET can be readily used in an application
without having to depend on the availability of a managed .NET data provider.

Here is sample code that connects to an Access database:
<%@ Page Language="VB"%>
<%@ Import Namespace="System.data.oledb"%>
<html>
<head>
<title> ADO.NET Demo </title>
</head>
<Script runat="server">
Public Sub DBConnect()
dim cnAccess as OleDbConnection
‘construct the OleDbConnection object
cnAccess = new OleDbConnection("Provider=Microsoft.
Jet.OLEDB.4.0;Data Source=C:\ADODemo\Employee.mdb")
‘Open the database connection
cnAccess.Open()
Response.Write("Connection established!")
End Sub
</Script>

<body>
<%DBConnect()%>
</body>

</html>
Figure 8-3 shows the output of the page.

S} ADD.MET Demo - Microssfl Isternet Explorer

Fle Edit View Favorites Tools Help [|

2= = o (@3] | (CPeonslbs F5amch (ofFreter | e Lb = 5] 8§

Aidees (2] iz oo shett S0 DE svTonrton’ amp aips | e | Links ™
=1

Comnechon established!

x|
i8] D ¥ Local intranei %
Figure 8-3: Output of the page demonstrating the usage of the OleDbConnection class

System.Data.OleDb.OleDbCommand class

This class encapsulates the commands that need to be sent to the OLE DB data source.
Applications use the OleDbCommand class to create sel ect, i nsert, updat e, and
del et e commands that need to be sent to the data source. Also, this class can be used
to execute stored procedures besides sending input parameters to the stored procedure

and retrieving output parameters from the stored procedure.
Here is sample code that inserts data using an insert command into an Access table:
<%@ Page Language="VB"%>
<%@ Import Namespace="System.Data.OleDb"%>
<html>
<script language="VB" runat=server>
Sub Insert_Click(Src As Object, E As EventArgs)
' Connect to Database
dim cnAccess as New OleDbConnection("Provider=Microsoft.
Jet.OLEDB.4.0;Data Source=C:\ADODemo\Employee.mdb")
cnAccess.Open()

dim sID, sFName, sLName, sAge, sIinsertSQL as string
sID = elD.Text

sFName = FName.Text

sLName = LName.Text

sAge = Age.Text

'‘Make the insert statement
sinsertSQL = "insert into employees values(" & sID & "," &
sFName & ", & sLName & "," & sAge & ")"

‘Make the OleDbCommand object

dim cmdinsert as New OleDbCommand(sinsertSQL,cnAccess)

' This not a query so we do not expect any return data so use
' the ExecuteNonQuery method

cmdinsert.ExecuteNonQuery()

response.write ("Data recorded!")
End Sub

</script>

<body>

<form runat=server>
<h3>Enter Employee Details</h3>
<table>
<tr>
<td>ID:</td>
<td><asp:textbox id="elD" runat="server"/></td>
</tr>
<tr>
<td>First Name:</td>
<td><asp:textbox id="FName" runat="server"/></td>
</tr>
<tr>
<td>Last Name:</td>
<td><asp:textbox id="LName" runat="server"/></td>
</tr>
<tr>
<td>Age:</td>
<td><asp:textbox id="Age" runat="server"/></td>
</tr>
</table>
<asp:button text="Insert" OnClick="Insert_Click" runat=server/>
<p>
<asp:Label id="Msg" ForeColor="red" Font-Name="Verdana" Font-Size=
"10" runat=server />
</form>
</body>

</html>
Figure 8-4 shows the output of the page.

2 hitg:ocalbost ADDExpImsertSample. sspx - Micrasoft Infernet Explores

Fle Edit View Favorites Tools Help [¥ |

Bk e s (2] Y| ([Pecnale D Semh (alFreter 3] e b o) G

Andees [B] i oo st LAED DE s inesds s, aige | e | Links ™
=

Diata recorded!

Enter Employee Details

18]

First Fame: Lim

L|1$| }\l-l".'llf T

Sige 150

Insed
. |
2] D ¥ Local intrarset &

Figure 8-4: Output of the page demonstrating the usage of the OleDbCommand class
System.Data.OleDb.OleDbDataReader class

This class is equivalent to a forward-only, read-only Recordset object in classic ADO.
This class is very useful to all applications that want to retrieve data returned from a
query to the database and want to process one record at a time. A classic example for
this would be to populate a list box with values retrieved from, say, a master table. The
OleDbDataReader is independent of the OLE DB data source from which the data is
retrieved. The process of reading data using the OleDbDataReader object is similar to
reading data from any stream.
The following code retrieves a list of all the employees from an Access database:
<%@ Page Language="VB"%>
<%@ Import Namespace="System.Data.OleDb"%>
<html>
<script language="VB" runat=server>
Sub Page_Load()

' Connect to Database

dim cnAccess as New OleDbConnection("Provider=Microsoft.Jet.
OLEDB.4.0;Data Source=C:\ADODemo\Employee.mdb")

cnAccess.Open()

dim sSelectSQL as string

'Make the select statement

sSelectSQL = "select * from employees"

'‘Make the OleDbCommand object

dim cmdSelect as New OleDbCommand(sSelectSQL,cnAccess)

' This query should return an OleDbDataReader so we use the
' ExecuteReader method
dim drEmp as OleDbDataReader, sbResults as new StringBuilder()
drEmp = cmdSelect.ExecuteReader()
sbResults.Append ("<Table>")
do while drEmp.Read()
sbResults.Append ("<TR><TD>")
sbResults.Append (drEmp.GetInt32(0).ToString())
sbResults.Append ("</TD><TD>")
sbResults.Append (drEmp.GetString(1))
sbResults.Append ("</TD><TD>")
sbResults.Append (drEmp.GetString(2))
sbResults.Append ("</TD><TD>")
sbResults.Append (drEmp.GetInt32(3).ToString())
sbResults.Append ("</TD><TR>")
loop
sbResults.Append ("</Table>")
IbIResult.text = sbResults. ToString()
End Sub
</script>

<body>
<h3>Employee Details</h3>
<p></p>
<asp:label id="IbIResult" runat="server" text=""/>

</body>

</html>
Figure 8-5 shows the output of the page.

A hitp:tocalbostANDExp/SelectSample.aspx - Microsoft Intemet Explorer
File Ecit view Favorites Tools Hedp
7F e MO I i LR e v e e

Arkderiss (8] i/ scabeot A0 E S ek vl e =] e | Links ™

=

Employee Details
IBta (Greg 29

2 Wy Tones
3 Richard Duoez 26
4 Ronald Jackson 35

3Imm Lewns 30

- |
2] Done ¥ Local intrarset ‘
Figure 8-5: Output of the page demonstrating the usage of the OleDbDataReader class

System.Data.OleDb.OleDbDataAdapter class

The data adapter acts as the conduit between the client application and the database
connection, command objects. The data adapter represents the command and
connection that are used to populate the client dataset. In case of a disconnected client,
the data adapter has the responsibility of firing the appropriate i nsert, updat e, or

del et e commands onto the database to synchronize the changes that are recorded in
the client dataset.

The OleDbDataAdapter class has three command properties that are used to update the
database:
= | nsert Command: Represents the query or stored procedure that is used
to insert new records into the data source.
= SelectCommand: Represents a SQL statement used to select records in
the data source.
= DeleteCommand: Represents a SQL statement for deleting records from
the data set.

System.Data.DataSet, System.Data.DataTable, System.Data.DataRow, and
System.Data.DataColumn classes

The DataSet is a generic class provided by the .NET Framework. This class is very
useful on the client side to store data in a manner that is much more functional and
powerful than the ADO Recordset object. Moreover, the data in a DataSet is in XML
format, and therefore is readily accessible and manageable. The XML format makes it
very well suited to Web applications, and makes cross-platform access possible. The
DataSet in memory is quite similar to a full-blown, in-memory DBMS in that it has the
ability to store data from multiple tables and the relationships between them. The tables
are stored in DataTable objects, and DataRelation objects represent the relationship
between tables. The rows and columns in a table are stored in DataRow and
DataColumn objects, respectively.

Let us look at an example that lists all the employees from an Access database by using
a DataSet in a Web page:
<%@ Page Language="VB"%>
<%@ Import Namespace="System.Data"%>
<%@ Import Namespace="System.Data.OleDb"%>
<html>
<script language="VB" runat=server>
Sub Page_Load()
' Connect to Database
dim cnAccess as New OleDbConnection("Provider=Microsoft.
Jet.OLEDB.4.0;Data Source=c:\ADODemo\Employee.mdb")
cnAccess.Open()

dim sSelectSQL as string
' Make the select statement

sSelectSQL = "select * from employees”

‘Make the OleDbCommand object
dim cmdSelect as New OleDbCommand(sSelectSQL,cnAccess)
dim daEmp as new OleDbDataAdapter(cmdSelect)

dim dsEmp as new DataSet

dim sbResults as new StringBuilder()

" Fill the data with the output of the cmdSelect command. Note
' that the dataadapter is associated with the command. We use
' the dataadapter to fill the dataset.
daEmp.Fill(dsEmp, "Employees")
PrintRows(dsEmp)

End Sub

Sub PrintRows(ByVal myDataSet As DataSet)
Dim dtEmp As DataTable
Dim drEmp As DataRow

Dim dcEmp As DataColumn, sbResult as new stringbuilder()
' Iterate through all the DataTables in the DataSet
For Each dtEmp in myDataSet.Tables
sbResult.Append('<Table>")
" Iterate through all the DataRows in the DataTable
For Each drEmp In dtEmp.Rows
sbResult.Append("<TR>")
" Iterate through all the DataColumns in the DataRow
For Each dcEmp in dtEmp.Columns
sbResult.Append("<TD>")
sbResult.Append(drEmp(dcEmp))
sbResult.Append("</TD>")
Next dcEmp
sbResult.Append("</TR>")
Next drEmp
sbResult.Append("</Table>")
Next dtEmp

IbIResult. Text = sbResult.ToString()
End Sub

</script>

<body>
<h3>List of Employees</h3>
<p></p>
<asp:label id="IbIResult" runat="server" text=""
</body>

</html>
Figure 8-6 shows the output of the page.

/>

2 hitp:/iocalbhost ADDExp/SelectSamplel .aspx - Microseft internet Explorer
File Eefit View Favorites Tools Melp
4 == - 1D E] | [Crendbe PSemh [afFaevotes 3] e O SF 2] B

Addeess |E| i oz sl 0 O E rer Bt armipde]t j G | Links ™

||
List of Employees

1Fta (Greg 29
2 My Jener 32
3 Fichard Dukes 26
4 Ronald Jackson 35

-

s Lewns 30

x
] e ¥ Local intraret i

Figure 8-6: Output of the page demonstrating the usage of the DataSet, DataTable,
DataRow, and DataColumn classes

Summary

This chapter introduced you to the new data access technology ADO.NET. First, you
learned the basic features of ADO.NET. Then, you learned some of the most important
ADO.NET objects. Here, you learned the objects to access OLE DB data sources as well
as SQL data sources. To understand the advantages of ADO.NET over ADO, the
features, such as disconnected data access, scalability, and interoperability of ADO and
ADO.NET were compared. Finally, you learned to implement ADO.NET objects, such as
OleDbConnection, OleDbCommand, OleDbDataReader, OleDbDataAdapter, and
DataSet to access and manipulate data from OLE DB data sources.

cnaptero: UNderstanding Data Binding

Overview

ASP.NET provides a rich set of controls that enable you to display information to users
as well as accept information from users. You can display information in controls from a
wide variety of data stores, such as properties, arrays, data structures, or databases.
Some of the data stores are static, whereas others are dynamic. You usually use static
data stores to display information for user reference. In addition to displaying static
information in controls, there are situations that require you to display information
dynamically. For example, you might need to display the discount based on the quantity
purchased for a product. Also, you might need a control to display information from a
database whose data keeps changing constantly. In such situations, ASP.NET provides
a solution by providing a feature that allows data binding to controls.

This chapter introduces you to data binding with the ASP.NET server controls.

Introduction to Data Binding

Data binding means binding controls to information stored in a data store. Here, the term
"data" is used in a very broad sense. When we talk about data binding, it implies binding
any control property to almost any kind of data store. A data store can be as simple as a
public property on a page, or as complex as a database stored on a server. This broad

choice among data stores provides high flexibility, and thus enables you to bind a control
to any data store based on your need.
The Web Forms controls that are bound to a data store access data through the
properties of specific classes, categorized as data classes. Data classes typically include
methods that can be used for updating the underlying data stores. Because the term
"data" is used in a broad sense, the class category "data classes" is also used in a
generic, broad sense. These classes differ depending on the data store. Some data
classes provide more functionality than others — you can use any one of these classes
depending on your need.
You can bind a control to different data stores, such as properties, methods, or
collections. These different data stores can be bound to a control property by using data
binding expressions. While binding, the data is always bound to a particular property of
the control (the property name might differ for various controls). When a data binding
expression is evaluated, the resulting value is loaded in the control's bound property.
You can bind simple controls to public properties. A public property can be of a control
on a page or the page itself.
Note Simple controls are the controls that can bind only to a single
value. Some simple controls include Label, TextBox, and Button
controls.

You can bind complex controls to any structure by using a data class that implements
the ICollection interface, which ensures that the data classes provide the basic
functionality of data access and navigation. For example, you can bind a DropDownList
control to an array by using the ArrayList class, which implements the ICollection
interface.

Note Complex controls are the controls that contain embedded controls.
Some complex controls include DatalList, Repeater, and DataGrid
controls.

When you bind a control property to a data store, the Web Forms Framework cannot
evaluate data binding expressions automatically. To display the evaluated value in the
control's bound property, you need to call the Dat aBi nd() method explicitly. The page
and each control on the page support this method. When you call the Dat aBi nd()
method for a control, it is cascaded to all its child controls. For example, if you call the
Dat aBi nd() method for the page control, the method is automatically called for all the
controls on the page.
The explicit method for data binding enables you to control when to load the bound
controls with data. Therefore, calling the Dat aBi nd() method explicitly should not be
seen as a disadvantage. You can load the bound controls with data in one of the
following situations:
=When you need to display data in the bound controls as soon as the page is

loaded. In such a situation, you can call the Dat aBi nd() method at the

Page_Load stage. You can call the Dat aBi nd() method for the page or

for a specific control, depending on your requirement.

=When data in the dataset is updated and you want to display the updated data

in the bound controls. In such a situation, you need to call the DataBind()

method in the event-handling methods that resulted in the change to the

dataset. Again, you can call the DataBind() method for the page or for

specific controls depending on whether you want to refresh the complete

page or specific controls.

Data Source Binding

You can use the ASP.NET syntax to bind data to the ASP.NET server controls. To bind
these controls to data, you first need to open the ASPX file for the Web Forms page.
Then, you can use the appropriate syntax for data binding for different controls. To bind
a property of a control to some data represented by an expression, use the following tag:

<% # expression %>

When the expression is evaluated, the value is loaded in the control's bound property.
For example, you can bind the Text property of a Label control to a public property
called Pr oduct | D of the page. To do so, use the following code:

<asp:Label ID = "ProdID" runat = "Server" Text =

'<% # ProductID %>' />
In this code, the <% # Product| D % tag is used to bind the Text property of the
Label control to the Pr oduct | D property of the page.

Caution You should be careful while using quotation marks in the
expression. If the expression contains quoted strings, you
should use single quotation marks.

As mentioned earlier, the control property will not display the bound data until the
Dat aBi nd() method is called explicitly. You can call the Dat aBi nd() method for the
page by using the following statement:

Page.DataBind()
Alternatively, you can simply use the following statement to call the Dat aBi nd()
method for the page:

DataBind()
To call the Dat aBi nd() method for a specific control, use the following syntax:

ControllD.DataBind()

In this syntax, Contr ol | D refers to the ID of the control for which you want to call the
Dat aBi nd() method. For example, to call this method for a DataList control whose ID is
Datalistl, use the following statement:

DataListl.DataBind()

The topics that follow implement data binding of control properties to page properties,
control properties, methods, collections, and lists. However, before implementing data
binding, you need to create an ASP.NET Web Application project. You can choose
Visual Basic .NET or C#, depending on your language proficiency. In your Web
application, design a form as shown in Figure 9-1.

B B) e s T vl e Y e i N i - B ol B b) [el

fle Dd View Frvses Tesls liedp [|
- <+ @ Dl Erewde ek (GFees 6 0 2 WS
-d.'l'll-ll-ﬂ'llul_ FRREC I (P P TP JRRr) S d e Lrka ®
|
Crdtsmer egiitratisn Farm
Cunsaes [T [
e I
Gyes |
ey |
Shaic I "]
agvrd |
a |
2] Dnims (¥ Logal v en

Figure 9-1: A sample Customer Registration form
Table 9-1 describes the properties for different controls used in the form.

Table 9-1: Form control properties

Control Type Contains Control ID

Table 9-1: Form control properties

Control Type Contains Control ID

TextBox Customer CustID
ID

TextBox Customer CustName
name

TextBox Customer CustStreet
street

DropDownList Customer CustCity
city

DropDownList Customer CustState
state

Button Submit SubmitButton
button

In addition to the controls that you see in Figure 9-1, add a Label control below the
button. Set the ID of this label to "DisplayLabel." Also, set the Vi si bl e property of this
label to False. You can make it visible through programming, whenever required.

Binding data to page properties
In this section, you'll bind a simple property, Cust oner | D, of the page to the Text
property of the TextBox control with ID CustID. To implement this data binding, follow

these steps:

1. Inthe ASPX file of the Web Forms page, in the <HEAD> element, write
the following code to create a read-only property called Cust oner | D:

©COoONOUAWN

</Script>

<Script Language = "VB" runat = "Server">

ReadOnly Property CustomerID() As String

Get
CustomerID = "C001"
End Get
End Property

10. Edit the ASP code for the TextBox control with ID CustID to include
the data binding expression as follows:

11.

<asp:TextBox ID="CustID" runat="Server" Text=

'<% # CustomerID %>' />
12. Call the DataBind() method in the Page_Load method. This is the
most critical step, because the data-bound TextBox control will not
display data until the DataBind() method is called explicitly. Therefore,
write the following code in the <Script> tag:

13.
14.
15.
16.
17.
End Sub

Sub Page_Load(Sender As System.Object, e
As System.EventArgs) Handles MyBase.Load

If Not IsPostBack Then
Page.DataBind()
End If

When you execute the application, you'll find that the CustID TextBox control displays

the value stored in the property Cust oner | D, as shown in Figure 9-2.

S b e W Tt vl o ¥ b o s - B vl Bt 0 [i

Fle L@ View Favises Teshs lely =
- = DDA CPewads Qleh (Qfectn 3 e 36
-d.'l'lltl-h'lll'_ O T L T —— ﬂ e Lrika =
E |
Custaner Registration Farn
Cumeeres [[eacn
Hame
Taen [
ce [r—
Shate =]
ki |
o |
] Doma (3 Loes! wiramen

Figure 9-2: Output of the application implementing data binding to page properties

Binding data to control properties
In this section, you'll bind the Text property of the Label control with ID DisplayLabel to
the text entered in the TextBox control with ID CustStreet. When a user clicks the Submit
button, the Label control should display the street entered in the CustStreet text box. To
implement this functionality, follow these steps:
1. Inthe <Scri pt > tag, write an event handler for the Cl i ck event of

the Button control whose ID is SubmitButton. This method calls the

Dat aBi nd() method for the Label control with ID DisplayLabel and

set its Vi si bl e property to True, as shown in the following code:

2. Sub SubmitButton_Click(Sender As System.Object, e As
System.EventArgs)

3.

4. 'Calling the DataBind() method for the Label control

5. DisplayLabel.DataBind()

6.

7. 'Setting the Visible property of the Label control to True
8. DisplayLabel.Visible = True

9.

10. End Sub
11. Edit the ASP code for the Label control with ID DisplayLabel to include
the data binding expression. The expression combines a string and
the Text property of the TextBox control with ID CustStreet.
12. <asp:Label ID = "DisplayLabel" runat = "Server" Text =
13. '<% #("The street that you entered

is: " + CustStreet. Text)%>' />
14. Edit the ASP code for the Button control with ID SubmitButton to add
the SubmitButton_Click event handler for the Click event:
15. <asp:Button ID="SubmitButton" runat="Server" Text=

"Submit" OnClick="SubmitButton_Click" />

Figure 9-3 displays the output when you enter the name of the street and click the button
at run time.

B B 1 e e Tl e P e i 1 it - B
Fle L@ View Frvidtes Tl ey

jimal leiasn [opliss

webad * = < O F) 3 EPeoulle ek (G) e b WS
-d:l'll-liﬂ'“u'_."i.-!u T (PR TI AP PR) e —— J s Lrka ®
|
Crszaer eghiration Farm.
Cuneares [T oo
iy Il'r.- 1T
Des i) i
Cey wiird .
Sl | "I
S |
Thes atvees thl Wil derersd a1 1300 50 N
o |
] Dhimsaa

(ELocsl e
Figure 9-3: Output of the application implementing data binding to control properties

Data binding to an ArrayList

As mentioned earlier in the chapter, the controls, such as DropDownList, ListBox, and
DataGrid, can be bound only by using the data classes that implement the ICollection
interface. In this section, you'll bind the ArrayList class to the Dat aSour ce property of

the DropDownList with ID CustState. To implement this data binding, write the following
code in the Page_Load event handler.

Sub Page_Load(Sender As System.Object, e As
System.EventArgs) Handles MyBase.Load
If Not IsPostBack Then
'Creating an object of the ArrayList class

Dim objArrayList as ArrayList= new ArrayList()

'Adding items to the object of the ArrayList class
objArrayList.Add ("New York")

objArrayList.Add ("California™)

objArrayList.Add ("Oregon”)

objArrayList.Add ("lllinois")

objArrayList.Add ("Texas")

objArrayList.Add ("None")

'‘Binding the DropDownList control with ID CustState
to the object of the

ArrayList class

CustState.DataSource = objArrayList

‘Calling the DataBind() method for the Statel Drop Down control

CustState.DataBind()
End If
End Sub

In this code:
= obj ArraylLi st is an object of the ArrayList class.

= The Add() method of the ArrayList class is used to add items to the
object.
= The Dat aSour ce property of the DropDownList control with ID
CustState has been bound to the object of the ArrayList class.
After binding the State DropDownList control to the object of the ArrayList class, you can
bind the Text property of the Label with ID DisplayLabel to the selected item in the
DropDownList control with ID CustState. To do so, edit the ASP code for the Label
control with ID DisplayLabel to include the data binding expression:

<asp: Label ID="DisplayLabel" runat="Server" Text=
'<% #("The street that you entered is: " + CustStreet.Text +

" and the state that you selected is: " + CustState.Selectedltem.Text)%>' />
At run time, when you enter the name of a street, select a state, and click the button, the
label with ID DisplayLabel becomes visible and displays the text as shown in Figure 9-4.

B B o W Tl g P My o - B il b e [el

Be Dl View [rosiss Tesh Halg [i |
elgl * = 0 %[/Y [Ereouis Qe (GFeoss o § D b S
'd.'l'lﬂiﬂ'llll_ Hing el ALy g fasland g ﬂ g#Cn Lrka ®
=]
Cussmer legitratisn Farm

Cruneares [e

e

Dam=

ey

S

“atrrd |

The mivees thal o arbered g 1250 5 Swn aed thee slmie Bad won ki w Oregos

d |
] D (¥ Locs! wirams
Figure 9-4: Output of the application implementing data binding to an ArrayList

Binding methods

Binding methods is similar to binding any other expression. In this section, you'll create a
method to return a string based on the value selected from the DropDownList control
with ID CustState. Then, you'll bind the Text property of the Display Label to this
method. To implement this binding, write the following code in the <Scr i pt > tag to
create a method called St at eVal ue:

Function StateValue() As String

If CustState.Selectedltem.Text="None" Then

StateValue="Not a US resident"
Else

StateValue="Selected state: " + CustState.selectedltem.Text
End If

End Function

The St at eVal ue method returns a string, "Not a US resident", if a user selects
None from the DropDownList control with ID CustState. If the user selects any other
value, the method returns the selected state. Next, you need to bind this method to the
Text property of the Label control with ID DisplayLabel. To do so, edit the ASP code for
this Label control to include the data binding expression:

<asp:Label ID="DisplayLabel" runat="Server" Text='<% #StateValue%>' />

At run time, when you select None from the State DropDownList control and click the
Submit button, the label shows the text "Not a US resident.” Otherwise, if a user selects
a state and clicks the Submit button, the selected state is displayed on the label as
shown in Figure 9-5.

B B) s Tl vl e Y o i I g - B ol B b [el

fle Dd View Favistes Tesls liedp [w |
debah = =« 3 S R [Crewdle ek §feose 3 e b S
-d.'l'lll-l-d'lll_"i.-l-lI‘.-|-|-||'h|_'.-\.-|r||'||.- d i Lk ®
|
Crtsmer egitratisn Farm
Cipeires [T I:':-'I'"!-
Hame rl'r.- v
S EEE—
Cy Forard
Sabrrd |

Seerted mabs CHegen

£ Duesan (¥ Local wiramsn
Figure 9-5: Output of the application implementing data binding to a method

Binding to a DataView

The DataView class represents a custom view of a data table. This class is a member of
the System.Data namespace, and to use this class in your page, you need to import the
System.Data namespace. Before you can implement binding to a data table, add a new
Web Forms page to your ASP.NET Web Application project. In this form, add a DataGrid
control. Then, to implement the functionality of the DataView class in this new form, you'll
need to import the System.Data nhamespace. To do so, write the following statement in
the ASPX file of the new Web Forms page:

<% @import Namespace="System.Data"%>

You can bind a DataView object to a DataGrid control. A DataGrid control displays
information in row and column format. In this section, you'll create an object of the
DataView class. This object represents a data table that displays cities and their
respective states. Then, you'll bind this DataView object to the Dat aSour ce property of
the DataGrid control. To implement this functionality, write the following code in the
Page_Load method:

Sub Page_Load (Sender As System.Object, e As System.EventArgs) Handles
MyBase.Load

If Not IsPostBack Then
'Declaring objects of the DataTable and DataRow classes
Dim DataTablel As DataTable
Dim DataRowl As DataRow

'Initializing the DataTable object
DataTablel = New DataTable()

'Adding columns to the DataTable object
DataTablel.Columns.Add(New DataColumn("City", GetType(string)))
DataTablel.Columns.Add(New DataColumn("State", GetType(string)))

'‘Creating arrays to store cities and their respective states
Dim strCity(5) as String

Dim strState(5) as String

Dim | as Integer

strCity(0)="Chicago"

strCity(1)="Hampstead"

strCity(2)="Houston"

strCity(3)="New York"

strCity(4)="Portland"

strState(0)="1llinois"
strState(1)="New York"
strState(2)="Texas"
strState(3)="New York"
strState(4)="Oregon"

'‘Adding rows in the DataTable object
For 1=0 To 4
DataRowl = DataTablel.NewRow()
DataRow1(0) = strCity(l)
DataRow1(1) = strState(l)
DataTablel.Rows.Add(DataRowl)
Next

'Setting the DataSource property of the DataGrid control to the
'‘DataView representing the DataTable object

DataGridl.DataSource=New DataView(DataTablel)

'Calling the DataBind() method for the DataGrid control

DataGrid1.DataBind()

End If
End Sub
When you execute the application, the output appears as shown in Figure 9-6.

A heipeTocalhosiDataBinding WabF orm?, asps - Microsoft Inemet Explones
File Edit View Favorites Tools Help

ik e S o (DA A [CPumndle PSewh [EiFevies i3] By Lb @

Audtiras [2] hitp hoe.ahhent Dt el MalebF o2 aaget =] #0o | Links *

=l

Customer Care Centers

CEy State
Chicage [=os
Hamp stead Mew York
Houaston Texas
New York Mew Yok
Portlaed Oregon

=l

2] Done (¥ Local intranet v
Figure 9-6: Output of the application implementing data binding to a DataView

Handling PostBack Data

When a form is submitted to a server, the postback event is generated. You might need
to process the form data at the server during the postback. The System.Web.UI
namespace contains an interface called IPostBackDataHandler that you can use for
handling the postback data.
The IPostBackDataHandler interface has two member methods,
Rai sePost Dat aChangedEvent () and LoadPost Dat a() . These methods are
described as follows:
= Rai sePost Dat aChangedEvent : This method draws attention of the control
to inform any listener about the control's state change. In Visual Basic, the
syntax of the method is as follows:
Sub RaisePostDataChangedEvent()
= LoadPostData This method handles the postback data of a specific control by
processing its postback data. The method returns True if the postback
results in state change. On the other hand, if the state does not change
after the postback, the method returns False. The method takes two
arguments:
o post Dat aKey: This is a String argument that represents
the key identifier of the specified control.
o postCol | ecti on: This argument is an object of the
NameValueCollection in the System.Collections
namespace. The argument represents all the incoming
name values. In Visual Basic, the syntax of the method is
given as follows:

o] Function LoadPostData(_
o} ByVal postDataKey As String, ByVal

postCollection As NameValueCollection) As Boolean
After understanding the methods of the IPostBackDataHandler interface, let us see how
the postback data is handled. You can handle the postback data only for those server
controls that implement the IPostBackDataHandler interface. When you submit a Web
Forms page to the server, the Page Framework searches the content that is posted, for
the unique names of the server controls that implement the IPostBackDataHandler

interface. Then, for each control that implements this interface, the LoadPost Dat a
method is invoked. This method returns True if the state of the control changes.
Otherwise, this method returns False. For all the controls for which the LoadPost Dat a
method returns True, the Rai sePost Dat aChangedEvent method is invoked. This
method, then, raises the Change events, if any, for the control.

Summary

This chapter introduced you to the basic concepts of data binding to the Web Forms
server controls. To bind a control property to a data store, you need to use a data
binding expression and then call the Dat aBi nd() method for the control. You learned
how to implement data binding to properties, ArrayList objects, methods, and DataView
objects. Finally, you learned how to handle the postback data.

Chapter 10: Working with Data Grids

Overview

The DataGrid control is a bound data control that displays items from the selected data
source in a grid or spreadsheet-like fashion. This was possible before .NET, but it
required a fair amount of code if you wanted to implement more than a read-only grid.
This new server control, along with the Repeater and DataList controls, makes it a snap
to wire up to a data source and display columnar data using a minimal amount of coding.
New to the DataGrid control is paging. You no longer have to be concerned with writing
code to handle the paging of data in the grid. For anyone who has written this type of
code in the past, this is a welcome relief.

This chapter also takes a look at sorting, editing, and selecting items located in the
DataGrid. Also, since the Dat aSour ce property of the DataGrid control expects the

source of data to be derived from the System.Collections.IEnumerable class, you don't
have to bind to just SQL or ODBC data. You can also use arrays and collections as the
data source for the DataGrid control.

Using a Data Grid Example

Before getting into the details of the various properties and events available to
developers, take a look at a simple example of using the DataGrid control. The following
code shows the minimal amount required to wire up and use the DataGrid control:

<html>
<head>
<title>Hungry Minds Chapter 9...</title>
<script language="C#" runat="server">
void Page_Load(Object sender, EventArgs e) {

//-- create a data source
String[] items = {"Rick", "Billy", "Ed", "Steve"};

/I-- bind the data source
simple.DataSource = items;
simple.DataBind();

}

</script>

</head>

<body>

DataGrid Grid Body Formatting Example...

<hr>

<form method="post" runat="server">

<asp:DataGrid
ID="simple"
BorderColor="#6699cc"
BorderWidth="1"
CellPadding="1"
Font-Name="verdana"
Font-Size="10pt"
HeaderStyle-BackColor="#6699cc"
AutoGenerateColumns="true"
Runat="server">

</asp:DataGrid>
</form>
</body>
</html>

At this point, all you need to focus on are the page load event and the DataGrid control
itself. First, take a look at the line that starts with asp: Dat aG i d located within the
body element. All that has to be done is to specify the ID of the control, set the

Aut oGener at eCol umms property to t r ue, and set the RunAt attribute to server.
Next, in the Page_Load event, the data source is created as a simple one-dimensional
array, and then the Bi ndDat a method of the DataGrid control is called. That's it! The
output in Figure 10-1 is displayed when this ASPX page is executed.

B iy Sl (B ., - Miranall Nobermes!. Explors E
e 081 Yew fgeeites Book fs ey - |
epah w I A Trenesdee Jwed yrevme d e f A ol o H
Bdrmnt |87t s v s 14, ey v

| s |Lnka ™

.'.:I
-
Fhurgry Masda-

DataGrid Grid Body Formatting Example...

=l
8] D

FRd T

Figure 10-1: SimpleDataGrid.aspx, as displayed in Internet Explorer

The following HTML fragment is the source code generated from the DataGrid control
after it is executed on the server and returned to the client browser:

<table cellspacing="0" cellpadding="1" rules="all"
bordercolor="#6699CC" border="1" id="simple" style="border-color:
#6699CC;border-width:1px;border-style:solid;font-family:verdana;
font-size:10pt;border-collapse:collapse;">
<tr style="background-color:#6699CC;">
<td>
ltem
</td>
</tr><tr>
<td>
Rick
</td>
<ftr><tr>
<td>
Billy
</td>
<ftr><tr>
<td>
Ed
</td>
</tr><tr>
<td>
Steve
</td>
</tr>

</table>

For each item in this simple array, the DataGrid control generated a t r and t d tag within
the t abl e tag. This may seem trivial, but it saves you from writing and maintaining a
loop in the script that would need to iterate through each item in the array and generate
the appropriate HTML output. Also, you don't need to be concerned with the number of
items in the array or setting up the table, because the DataGrid controls handle this for
you.

Additional Capabilities when Designing ASPX Pages

Now that you have seen a simple example of using the DataGrid control, you are ready
to learn about some of the other capabilities that are available to you when designing
ASPX pages:

= Controlling the header and footer

= Determining the "look and feel" of the grid

= Controlling the columns in the grid and specifying what type of column you

want to use
=Paging
= Sorting

As you can see, you have quite a bit of flexibility with the DataGrid control — not only
where you get the data, but also how you display that data within your Web pages. Each
of these points will be discussed in the sections that follow, with examples of how they
work.

Header and Footer

To change the style of the header and footer when the grid output is written to the page,
you control the various properties of the Header St yl e and Foot er St yl e. If you want
to set the header background to gray and the header font to Verdana, you only need to
insert the following HeaderStyle code:

<asp:DataGrid

ID="simple"
BorderWidth="1"
CellPadding="1"

HeaderStyle-BackColor="#6699cc"
HeaderStyle-Font-Name="verdana"
HeaderStyle-Font-Size="10pt"
FooterStyle-BackColor="#6699cc"
FooterStyle-Font-Name="verdana"
FooterStyle-Font-Size="10pt"
AutoGenerateColumns="true"
Runat="server">

</asp:DataGrid>

When you launch your browser and navigate to HeaderFooter.aspx, the screen should
look like Figure 10-2.

Wiy wls (Fogder 9 Minrwnanll Wolermesl Papln

Mo M ew Fgealies Book (el FETY - |
wepak * D i A Crerwssdee (serd ureeme o oo At G H
T S W Sy - R —— j (P Linka ¥

|

DataGrid with Header and Foolter Example. ..

itan
Pk
By
Ed
S

o
] v

[sl vt

Figure 10-2: HeaderFooter.aspx, as displayed in Internet Explorer

The table heading should now have a steelblue background with a bold Verdana font.
The same technique is used when formatting the footer for the DataGrid.

Instead of specifying HeaderStyle properties, take a look at the following code from
HeaderFooter.aspx:

FooterStyle-BackColor="#6699cc"

FooterStyle-Font-Name="verdana"

FooterStyle-Font-Size="10pt"

You can also enclose the Header and Footer sections of the DataGrid as elements within
the <ASP: Dat aGri d> tags. You can then specify the properties for each section and

control whether or not to display the header and footer (see Figure 10-3).

B iwmpy Viwls (Fogd e 5

Mo B ew Fgeoslies Jook [ielo Y - |
wepak * D 5 G [Crersssdee [serd yreems o e o At 9 H
L R s [P W e p-ug— | e Lra *

.'.j
-'"
hargry Masdes

DataGrid with Header/Footer Styles Example...

Eem
Fck
Bally
Ed
S

|

Rl bt

Figure 10-3: SimpleStyles.aspx, as displayed in Internet Explorer

The following code shows how to use the DataGrid with the Header St yl e and
Foot er St yl e properties:

] v

<html>
<head>
<title>Hungry Minds Chapter 9...</title>
<script language="C#" runat="server">
void Page_Load(Object sender, EventArgs e) {

String[] items = {"Rick", "Billy", "Ed", "Steve"};

simple.DataSource = items;
simple.DataBind();
}

</script>
</head>
<body>

DataGrid with Header/Footer Styles Example...
<hr>
<form method="post" runat="server">
<asp:DataGrid
ID="simple"
BorderColor="#6699cc"
Borderwidth="1"
CellPadding="1"
AutoGenerateColumns="true"
ShowHeader=True
Runat="server">

<HeaderStyle

BackColor="#6699cc"
Font-Name="verdana">
</HeaderStyle>
<FooterStyle
BackColor="#6699cc"
Font-Name="verdana">
</FooterStyle>
</asp:DataGrid>
<hr>
</form>
</body>

</html>

Remember when using the style sections that they are elements within the DataGrid, not
attributes. When using the Header or Footer style, make sure that you set the
ShowHeader and ShowFoot er properties to t r ue. The Header St yl e property is
inherited from the Cont r ol St yl e property. Why is this important? If you can define
your "look and feel" in the Cont r ol St yl e property and then inherit from it, this will
provide you a common appearance for your page.

Controlling the appearance of the Grid Body

If you want to format the body of the grid so that your Web page has a specific look and
feel, you need to set the properties of the asp: Dat aGri d element. To change how the

grid is displayed, take a look at the following code:
<html>
<head>
<title>Hungry Minds Chapter 9...</title>
<script language="C#" runat="server">
void Page_Load(Object sender, EventArgs e) {

/1-- create a data source
String[] items = {"Rick", "Billy", "Ed", "Steve"};

/I-- bind the data source
simple.DataSource = items;
simple.DataBind();
}

</script>

</head>

<body>

DataGrid Grid Body Formatting Example...

<hr>

<form method="post" runat="server">

<asp:DataGrid

ID="simple"
AutoGenerateColumns="true"
BorderColor="#6699cc"
Borderwidth="2"
GridLines="Both"
CellPadding="2"
CellSpacing="2"
Font-Name="verdana"
Font-Size="10pt"
Runat="server">
</asp:DataGrid>
</form>
</body>
</html>

When you launch your browser and navigate to SimpleBody.aspx, the screen should
look like Figure 10-4.

e B ew Fgeslies Jook el CErY |
wepak * 2 il G [Crersssdee [serd greems e ood At G H
T T T s [yeem P ——— | e |Lnka ™

=

DataGrid Grid Body Formatting Example...

=l
@] b [Ri{ T -

Figure 10-4: SimpleBody.aspx, as displayed in Internet Explorer
The following code is a fragment of the HTML source generated on the server and
returned to the browser when SimpleBody.aspx is executed:
<table cellspacing="2" cellpadding="2" rules="all"
bordercolor="SteelBlue" border="2" id="simple" style="border-color:

SteelBlue;border-width:2px;border-style:solid;font-family:verdana;font-size:8pt;">
<tr>

<td>
Item
</td>
</tr><tr>
<td>
Rick
</td>

<ftr><tr>

<td>
Billy
</td>
</tr><tr>
<td>
Ed
</td>
</tr><tr>
<td>
Steve
</td>
</tr>

</table>

Notice how the property settings are generated into HTML code. The appropriate
attributes of the t abl e element are set and the rest of the properties are transformed
into the st yl e element tag. The point here is that the .NET Framework runtime will
recognize the level of the browser requesting the page and generate the supported level
of HTML required by the browser. This architecture frees the Web page developer to
determine the look and feel of the Web page and not be concerned with the version of
the browser that requested the page.

Using the Columns Property

The discussion up until this point has addressed how to control the appearance of the
grid by setting the various style properties. Also, the examples thus far have let the
DataGrid control determine how the columns are generated and in what order. This
section looks at how to control what columns are displayed and the type of columns
displayed.

When the Aut oGener at e property is set to True, the DataGrid control automatically
reads the fields from the data source and generates a BoundCol umm type for each field.
This is useful if you only want to have a quick display of the data; however, to gain
control over what fields are displayed and what type of column to display, you need to
set the Aut oGener at e property to Fal se. Then, you need to define the type of
columns to display within the Col urms property. The Col umms property is in the
following format:

<columns>

</columns>
This property is contained within the <asp: Dat aGri d> </ asp: Dat aGi d> elements.
The following are the column classes that can be defined in the Col unrms property:
= BoundCol umm: Displays a column bound to a field in a data source; each item
from the data source is displayed in the grid as text. The BoundColumn is
the default column type for the DataGrid control.
= ButtonColumn: Displays a command button for each item in the column; this
control will let you create a column of custom button controls, such as the
OK or Cancel button.
= EditColumn: For each item in the grid, displays a column that contains editing
commands.
= HyperLinkColumn: Each item in the column is displayed as a hyperlink; the
column contents can be bound to a field in a data source or static text.
= TemplateColumn: Each item in the column can be displayed with a specified
template; this will allow you to provide custom controls in the column.

The sections that follow look at the first four column types.

BoundColumn Class

The following code shows the syntax required to use the BoundCol unm column type in
the DataGrid control:

<form method="post" runat="server">
<asp:DataGrid
ID="Custom"
AutoGenerateColumns="false"
ShowHeader="True"
RunAt="server">
<HeaderStyle
BackColor="#6699cc" />
<Columns>
<asp:BoundColumn
HeaderText="String"
DataField="String" />
</Columns>
</asp:DataGrid>

</form>

To use the BoundCol unm type, you first need to set the Aut oGener at e property to
Fal se and then specify asp: BoundCol unn as the type. Next, you need to set the
Header Text , but only if you wish to display a header, and then set the Dat aFi el d
property. The Dat aFi el d must be set to a field defined in the data source. When the
above code is executed in the browser the screen shown in Figure 10-5 is displayed.

B gy Sy (B ies ffa il e Fapllnr e

e [Yew fgrsites ook bl Y |
ek w I 3 [Crenessdes Jseed yrevems F e o) J e o B2
L T - — | G Lk ®
El
DataGrid Example with the Bound Column...
1
"-.-.
i
=
2] B

] L ad kit
Figure 10-5: BoundColumn.aspx, as displayed in Internet Explorer

You can also specify the style formatting and the format for the data field when it is
displayed in the grid. If the data field that you are binding to is a currency or number field,
you can use the Dat aFor mat St ri ng property to set the display format. For instance, in
the BoundColumn2.aspx shown in Figure 10-6, the Header Text and Dat aFi el d

properties have been changed to "I nt eger ", which is the second field defined in your
data source. Also, the Dat aFor mat St ri ng has been added with the following value:

B sy ds (g des 0 A il f e Pl o

B OB e favwites Jook Lielo EEy - |
wepak * o0 3] d [Erenesdee J%esd grewne § O O 0 o H
B T T T T o TS [y i T —" x| os |Lnka ™

|
Huergry Masda

DataGrid Example 2 with the Bound Column...

] Dot et
Figure 10-6: BoundColumn2.aspx, as displayed in Internet Explorer

DataFormatString="{0:d2}"

Execute BoundColumn2.aspx, and this time the Integer data field is displayed with a
leading zero, as shown in Figure 10-6.

Before moving on to the Hyper Li nk column type, one more property is worth
mentioning: the ReadOnl y property of the BoundCol umm type. This is set to False by

default when using the BoundCol unm type; editing of the data is allowed when set to
True.

ButtonColumn Class

The following code shows the syntax required to use the But t onCol unn column type in
the DataGrid control:

<%@ Import NameSpace="System.Web.Ul.WebControls" %>
<%@ Import NameSpace="System.Data" %>
<htmlI>
<head>
<title>Hungry Minds Chapter 9...</title>
<script language="C#" runat="server">

void Page_Load(Object sender, EventArgs e) {

/I-- create a data source
DataTable dt = new DataTable();
DataRow dr;

/I-- randomly generate some test data
dt.Columns.Add(new DataColumn("String", typeof(string)));
dt.Columns.Add(new DataColumn("Integer", typeof(Int32)));

for (Int32 1= 0; i < 10; i++) {
dr = dt.NewRow();
dr[0] = "Button " + i.ToString();
dr[l] =1i;
dt.Rows.Add(dr);

/I-- bind the data source
Custom.DataSource = dft;
Custom.DataBind();
}
</script>
</head>
<body>

DataGrid Example with the Button Column...
<hr>
<form method="post" runat="server">
<asp:DataGrid
ID="Custom"
AutoGenerateColumns="false"
ShowHeader="True"
RunAt="server">
<HeaderStyle
BackColor="#6699cc" />
<columns>
<asp:ButtonColumn
ButtonType="PushButton"
DataTextField="String"
HeaderText="String" />
</columns>
</asp:DataGrid>
</form>
<hr>
</body>

</html>
To use the But t onCol umm type, you first need to set the Aut oGener at e property to
False and then specify asp: But t onCol umm as the type. You can specify the
But t onType property as one of the following:

= PushBut t on: A column of push buttons

= LinkButton: A column of hyperlink-buttons
In the preceding example, you set the property to PushBut t on, set the Header Text if
you wish to display a header, and then set the Dat aFi el d property. The Dat aFi el d

must be set to a field defined in the data source. When the DataGrid is bound to the data
source in the previous example, Figure 10-7 is displayed when executed in the browser.

Wiy wls (Fogder 9 Ml Wolermesl Fapln e

= 5]=]
e OB few Fgeeites Book (o CETY - |
wepak = b o (B L) G Ereresdwe (teed jresme d e G Gd o A E=
Adrens |87 sty sl o g g Clvaen 14, Bl linw sk nsrngm | s Lnka ™

Hurgry Mada-

DataGrid Example with the Button Column...

&

2l

L fRA T
Figure 10-7: ButtonColumn.aspx, as displayed in Internet Explorer
You could just as easily have specified the Li nkBut t on property to display a column of

hyperlinks from your data source. If you click one of the buttons, the form is posted back
to itself. Take a look at the following HTML fragment from ButtonColumn.aspx:

<td>
<input type="submit" name="Custom:ctrl2:ctrl0" value="Button 0" />

</td>

When the But t omCol unm type is rendered on the browser, each t d element in the

t abl e is generated as a Submit button. What if you want to add an event handler for
each button that performs some type of action when the button is clicked? You can do
that by adding the Onl t emCommand event handler to the CommandName property of
the button. The following code demonstrates how to wire up the Onl t emConmand event
for the DataGrid control:

protected void Custom_Click(Object sender, DataGridCommandEventArgs e) { Msg.Text
="You

clicked Integer " + e.ltem.Cells[1].Text; }

<form method="post" runat="server">
<asp:DataGrid
ID="Custom"
AutoGenerateColumns="false"
ShowHeader="True"
OnltemCommand="Custom_Click"
RunAt="server">
<HeaderStyle
BackColor="#6699cc" />
<columns>
<asp:ButtonColumn
ButtonType="PushButton"
Text="Click"

HeaderText="Action"
CommandName="PushButton" />
<asp:BoundColumn
DataField="Integer"
HeaderText="Integer" />
</columns>
</asp:DataGrid>

<asp:Label ID="Msg" text="Click a column button." Runat="server" />

</form>
The script code defines the Cust om Cl i ck event, which is called every time a button
on the grid is clicked. This event takes two arguments: the Sender parameter, which is of
type Object, and the Dat aGr i dCormandEvent Ar gs as the second parameter.
The Dat aGr i dConmandEvent Ar gs argument has the following properties that can be
inspected:

= CommandAr gunent : This property gets the argument passed from the

command.
= CommandName: This property gets the name of the command.
= CommandSource: This property gets the source of the command.

= |tem: This property gets the item that is selected in the DataGrid control.
In the preceding example, the ConmrandNarne is " PushBut t on" and the | t emis a

Dat aGri dl t emthat represents the selected item in the control. It is also used to access
the properties of the selected item.

The second code fragment has the HTML to set up the button to handle the click event.
The only line you are concerned with here is the CommandNane property, which
identifies the button that is clicked and is passed to the Cust onTCl i ck event in the

Dat aGri dConmandAr gs event.

When you launch your browser and execute the ButtonColumn2.aspx page, your page
should look like Figure 10-8.

B sy ds (g des 0 il e Pl o

(e (8 few fgrwites Jook (el Ly |
depak = 0 o 3 L]l [Cremesedes OSead jreeme 3 O L CF ¢ o R/

Skedrns | tal s sl Vi g s, v 14 sl | s 0 e | (G Lk *

gy M

DataGrid Example 2 with the Button Column...

k| o
k] 1
Lok |
Eokek [4
Tikk |-'.
=1
S T
EE

I _

Chzk a colmn baticn

] Dot [et
Figure 10-8: ButtonColumn2.aspx, as displayed in Internet Explorer

Click any one of the buttons, and a message displays in the Label control at the bottom
of the page.

EditColumn Class

Next on the list is the Edi t Col umm class. When used in the DataGrid control, the Web
page developer can perform any type of editing on any data item within the grid. This is a
powerful addition to the Web developer's toolbox. In the past, this type of editing would
require a great deal of code to accomplish. With .NET, you only need to wire up the
Cancel , Edi t, and Updat e events and set the appropriate properties. In this example,
you are going to read in some data from an XML file and then allow the user to edit the

data. Launch your browser and navigate to EditColumn.aspx; your screen should look
like Figure 10-9.

B gy Sy (B les e L e ol e

(e (8 few fgewites Joois |l ey |
depak = 0 - L] A [Ereresdee Osced ireems f ool Fc <R

Bdrmnt |81 i el . Clvastbes 14, B0 sy 8505 | G (Lnda ®

El
F gy Masda-

DataGrid Example with the Edit Column. ..

Fi] LFEF R
= 1 Sieew |[Dcbaber (E16)H BRE-1214
il Bily gy 1

L, gl '.|.||.'

=1 wilian hagat 16D

] B e i
Figure 10-9: EditColumn.aspx, as displayed in Internet Explorer

Before you review the code, walk through editing one of the items in the grid. Click Edit
on any of the rows in the grid. Notice that the other columns change to TextBox controls
so that you can edit the data. Also, the Edit button changes to the Update and Cancel
buttons. At this point, you can change the data in any of the TextBox controls and then
choose to update or cancel the changes. If you have any columns that are ReadOnly,
you can flag that column, and editing will not be allowed on that data item.

Note In this example, you are not going to save the changes back to the
XML file to preserve the integrity of the XML file.

The EditColumn.aspx file is generated by the following code:
<%@ Import Namespace="System.Data" %>
<html>

<head>
<script language="C#" runat="server">
DataSet ds = new DataSet();

void Page_Load(Object sender, EventArgs e) {

ds.ReadXml(Page.MapPath("data.xml"));
if ('lsPostBack)

BindData();

void EditColumn_Edit(Object sender, DataGridCommandEventArgs e) {
EditColumn.EditltemIndex = e.ltem.ltemindex;
BindData();

void EditColumn_Cancel(Object sender, DataGridCommandEventArgs e) {
EditColumn.EditltemIndex = -1,
BindData();

void EditColumn_Update(Object sender, DataGridCommandEventArgs e) {

String Name = e.ltem.Cells[1]. Text;
TextBox Birthday = (TextBox)e.ltem.Cells[2].Controls[0];
TextBox Phone = (TextBox)e.ltem.Cells[3].Controls[0];

ds.Tables[0].DefaultView.RowFilter = "Name=""+ Name + "";
if (ds.Tables[0].DefaultView.Count > 0)

ds.Tables[0].DefaultView.Delete(0);

ds.Tables[0].DefaultView.RowFilter = "*;

DataRow dr;

dr = ds.Tables[0].NewRow();
dr[0] = Name;

dr[1] = Birthday.Text;

dr[2] = Phone.Text;
ds.Tables[0].Rows.Add(dr);

EditColumn.EditltemIndex = -1;
BindData();

void BindData() {
EditColumn.DataSource = ds;
EditColumn.DataBind();
}
</script>
</head>

<body>

DataGrid Example with the Edit Column...

<hr>

<form runat="server">

<asp:DataGrid id="EditColumn" runat="server"
BorderColor="#6699cc"
BorderWidth="1"
CellPadding="1"
Font-Name="verdana"
Font-Size="10pt"
HeaderStyle-BackColor="#6699cc"
OnEditCommand="EditColumn_Edit"
OnCancelCommand="EditColumn_Cancel"
OnUpdateCommand="EditColumn_Update"
AutoGenerateColumns="false">
<Columns>
<asp:EditCommandColumn
ButtonType="LinkButton"
EditText="Edit"
CancelText="Cancel"
UpdateText="Update"
ltemStyle-Wrap="false"
HeaderText="Edit Command Column"
HeaderStyle-Wrap="false"/>
<asp:BoundColumn
HeaderText="Name"
ReadOnly="true"
DataField="Name"/>
<asp:BoundColumn
HeaderText="Birthday"
DataField="BirthDay"/>
<asp:BoundColumn
HeaderText="Phone"
DataField="Phone"/>
</Columns>
</asp:DataGrid>
</form>
</body>

</html>
The presentation code will be discussed first, followed by the event handlers. Like the
other column classes discussed, the Edi t Col unm class is enclosed within the

<col unmms> </ col ums> tags of the DataGrid control. Next, you need to specify which
button type to use; the But t onType property can be set to PushButt on or

Li nkBut t on. The Edi t Text, Cancel Text, and Updat eText properties can be set to
any string value that you choose. These string values are displayed either as hyperlinks
or as push buttons, depending on the setting of the But t onType property. Most of the
other properties for the Edi t Col umm class are for formatting the display output.

Now that the properties are set, turn your attention to wiring up the event handlers for the
Edi t, Cancel , and Updat e buttons. When the user clicks the Edit button on the grid, it
raises the Edi t Command event, which then passes the Dat aGr i dCommandEvent Ar gs
class as a parameter. From there, you can extract which item was selected in the grid
and then set the Edi t | t eml ndex to the selected item. Look at the following line of
code:

EditColumn.EditltemiIndex = e.ltem.ltemindex;

After you set this property, you call the Bi ndDat a method to rebind your data and
display the text boxes for editing.

The Cancel Comrand event is raised when the user decides to cancel the edits and
return the grid to its previous values. Once again, this event takes the

Dat aGri dCommandEvent Ar gs class as a parameter. You only need to set the

Edi t | t em ndex to -1 to flag that you are aborting all edits on the grid.

Most of the code that you need to write is for the Updat eEvent . You need to take
several steps, each of which is described next. First, you need to extract the values from
the grid, as in the following lines of code:

String Name = e.ltem.Cells[1]. Text;
TextBox Birthday = (TextBox)e.ltem.Cells[2].Controls[0];

TextBox Phone = (TextBox)e.ltem.Cells[3].Controls[0];

You extract the name to a string value for a couple of reasons. Because the Name field
is flagged as ReadOnly in the col uims tag, you can't edit this field. In addition, you are
going to use this value as the filter in the data table to find the selected row. The next two
lines of code extract the values from the grid and cast them to TextBox controls. You
need to save these values because you are going to be deleting the selected row from
the grid. In the following lines of code, you filter the data table for the selected row and
then delete it (we are not actually deleting the row from the DataSource):

ds.Tables[0].DefaultView.RowFilter = "Name="" + Name + ",
if (ds.Tables[0].DefaultView.Count > 0)
ds.Tables[0].DefaultView.Delete(0);

ds.Tables[0].DefaultView.RowFilter = ";
Notice that you check to make sure the Count property of the Def aul t Vi ewis greater
than zero before you delete the row. Then, you set the RowFi | t er property back to an
empty string. Finally, you add the new values to a new data row and then add this row to
the data table. Call the Bi ndDat a method to refresh the grid and display your new
values.

Note Since you are not saving the changes back to the XML file, if you

edit the grid again, the original values will be displayed.

HyperLinkColumn Class

The last column class to discuss is the Hyper Li nkCol um class. This column type is
rendered as an anchor tag by the browser. Use the HyperLink control to create a link to
another Web page. The HyperLink control is typically displayed as text specified by the
Text property. It can also be displayed as an image specified by the | nageUr |

property.

The following are the commonly used properties of the HyperLink control:
= Dat aNavi gat eUr | Fi el d: Indicates the field name to set or get from a
data source to bind to the URL

= DataNavigateUrlIFormatString: Indicates the string to get or set that
specifies the display format for the URL
= DataTextField: Indicates the a field from the data source that is used as
the text caption of the hyperlinks
= DataTextFormatString: Indicates the string to get or set that specifies the
display format for the text caption of the hyperlinks
Take a look at the following code in the HyperLink column example:
<%@ Import NameSpace="System.Data" %>
<html>
<head>
<titte>Hungry Minds Chapter 9...</title>

<script language="C#" runat="server">

DataSet ds = new DataSet();

void Page_Load(Object sender, EventArgs e) {

ds.ReadXml(Page.MapPath("data.xml")) ;
BindData();

if (Request.QueryString["birthday"] != null) msg.Text = "Your birthday is
in " + Request.QueryString["Birthday"];
}

void BindData() {
HyperLink.DataSource = ds;
HyperLink.DataBind();
}
</script>
</head>
<body>

DataGrid Example with the HyperLink Column...
<hr>
<form method="post" runat="server">
<asp:DataGrid
ID="HyperLink"
AutoGenerateColumns="false"
ShowHeader="True"
RunAt="server">
<HeaderStyle
BackColor="#6699cc" />

<columns>

<asp:HyperLinkColumn
DataNavigateUrlFormatString="HyperLinkColumn.ASPX?Birthday={0}"
DataNavigateUrlField="Birthday"
DataTextField="Name"
HeaderText="Name" />
</columns>
</asp:DataGrid>
<asp:Label ID="msg" Runat="server" />
</form>
<hr>
</body>

</html>

In the preceding code, the Dat aNavi gat eUr | For mat St ri ng is where you specify
what URL to navigate to when the user selects an item. You can also add parameters to
the query string. Notice that the syntax for specifying the Bi rt hday parameter is
enclosed in parentheses. If you had other arguments to pass on the query string line,
you would use a comma-separated list. The next property is the

Dat aNavi gat eUr | Fi el d, which indicates the specific field in the DataSource to use as
the parameter in the query string. In the preceding example, this field is the Birthday
field. Next is the Dat aText Fi el d property, which is the actual field that is displayed as
the data item in the grid column. This can be any field from the specified DataSource.
Finally, the Header Text property sets the column heading in your grid.

Launch your browser and navigate to HyperLinkColumn.aspx; the screen should look
like Figure 10-10.

B b il (Boglles ., - Murwninll Bibsrmes| Eaplores

e CR ew Fereiiss Booh (e ey - |
deBak ® DA Ereesdee Iwed yrewms F e oS¢ oA B
A e S S ——— | s |Lnia ™

L !
DataGrid Example with the HyperLink Column...

Hens |

|
9] tun [Ry TP

Figure 10-10: HyperLinkColumn.aspx, as displayed in Internet Explorer

Click one of the names in the list, when the form is reloaded we check the

Request . QueryStri ng for the Bi rt hday parameter. If the birthday parameters exist,

the birthday message is displayed in the asp: Label control.

As you can see from the examples, the .NET DataGrid server control brings a lot of
functionality to the table for the Web page developer. Instead of being concerned with
writing the application logic, the Web developer can concentrate on the presentation of
the page. The previous sections have looked at the most commonly used properties of
each of the column controls that can be used in the DataGrid control so that you can get
up to speed quickly using them in your own code. Before you wrap up this chapter on the
DataGrid control, the following sections walk you through a few examples for sorting and
paging data in the grid.

Paging Grid Data

Paging came along with the introduction of the DataGrid control. This simple event
actually involves quite a bit of work behind the scenes. When the user requests the next
page of data, the browser makes a round trip to the server to determine the next page of
data, and then renders the next page of data on the client. With .NET, this is now a trivial
task, requiring only that you set a few properties and wire up one event. If you want to
handle your own paging, you can do that by setting the Cust onPagi ng property.

The following code automatically generates the data items from the data source and then
sets the style of paging:

<%@ Import NameSpace="System.Data" %>
<htmlI>
<head>
<title>Hungry Minds Chapter 9...</title>
<script language="C#" runat="server">

DataSet ds = new DataSet();
void Page_Load(Object sender, EventArgs e) {

if ('IsPostBack)
BindData();

void LoadDataSource() {
ds.ReadXml(Page.MapPath("data.xml")) ;

void BindData() {
LoadDataSource();
Paging.DataSource = ds;
Paging.DataBind();

void PagelndexChanged(Object sender, DataGridPageChangedEventArgs e) {
Paging.CurrentPagelndex = e.NewPagelndex;
BindData();
}
</script>
</head>
<body>

DataGrid Paging Example...

<hr>
<form method="post" runat="server" ID="Form1">
<asp:DataGrid
ID="Paging"
AutoGenerateColumns="true"
OnPagelndexChanged="PagelndexChanged"
ShowHeader="True"
BorderColor="#6699cc"
BorderWidth="1"
CellPadding="1"
Font-Name="verdana"
Font-Size="10pt"
HeaderStyle-BackColor="#6699cc"
AllowPaging="true"
PageSize="4"
PagerStyle-NextPageText="[Next Page]"
PagerStyle-PrevPageText="[Previous Page]"
PagerStyle-HorizontalAlign="center"
RunAt="server">
</asp:DataGrid>
</form>
<hr>
</body>
</html>

Launch your browser and navigate to DataGridPaging.aspx; the screen should look like
Figure 10-11.

B iy Sl (hogies 5

e (8 few fgesites Book fieln CErY |
o 31 3 [Creesdee (Iwed jresmo § e o Fc o a B
er-riﬂwlu-m-] v g g O pagen | ol sngrigemgang o

= |
-
gy Mades

DataGrid Paging Example. ..

|

o] B Y Rl kvt

Figure 10-11: DataGridPaging.aspx, as displayed in Internet Explorer
Select the Next or Previous hyperlink at the bottom of the data grid. The next or previous
page of data is fetched from the data source and displayed in the grid. You can adjust
the number of pages to display, the style of the paging buttons, and determine the
number of pages in your data source. With the Data Grid control, you have complete
control over paging. If you prefer, you can enable the Cust onPagi ng property and
implement your own paging logic.

To enable paging, you must first turn it on by setting the Pagi ng property to Tr ue (by
default, this is turned off). So, if your data source has many rows, it will appear as one
long continuous list of tabular data on your page. Once Pagi ng is setto Tr ue, you can
set the other paging properties to control the display and the type of paging. You also
need to code the Pagel ndexChanged event to handle when the user selects a new
page of data. Typically, in this event, you need to set the Cur r ent Pagel ndex to the
index of the page you want to display, and then call the Dat aBi nd method to rebind the
data to the grid. The Pagel ndexChanged event takes the
Dat aGri dPageChangedEvent Ar gs object as a parameter. This object has the
following properties:

= CommandSour ce: Indicates the source of the command

= NewPagelndex: Gets the index of the page selected by the user from the

page selection element of the control

You can also set the paging mode property Pager Mbde to one of two values:

=Next Pr ev: Displays Previous and Next buttons to access the next and

previous pages

= NumericPages: Displays numbered buttons to access pages directly
By default, when paging is turned on, the Next and Previous links are displayed as less
than (<) and greater than (>) symbols. As in the DataGridPaging.aspx code example, the
links are displayed as " [Next Page]" and "[Previ ous Page]". The
Next PageText and PrevPageText can be set to any string value you choose. If you
set the Pager Mode to Nurer i cPages, the links at the bottom of the grid for paging are
displayed as numbers from 1 to n. Try it! Insert the Pager St yl e-
Mode=" Nuner i cPages" in the DataGrid.

Sorting Grid Data

One last important feature of the DataGrid control is sorting. Just like paging, you only
need to set a few properties and then handle the Sort event.

Launch your browser and navigate to DataGridSorting.aspx; the screen should look like
Figure 10-12.

B iy Sl (g .., - Mirwall Wsbermesi. Eaplores

e (8 few fgeosites Book fieln CErY - |
bk v D @ [Creessdee (Iwed greemo F e o A o o B
L T S A W S E———— = s |Linka ®

DataGrid Sorting Example, .,

o e

]

] b Y Rl vt

Figure 10-12: DataGridSorting.aspx, as displayed in Internet Explorer

Take a look at the following code:
<%@ Import NameSpace="System.Data" %>
<html>

<head>

<title>Hungry Minds Chapter 9...</title>

<script language="C#" runat="server">

String SortOrder;

void Page_Load(Object sender, EventArgs e) {

if ('lsPostBack) {
if (SortOrder == null)
SortOrder = "name";
Paging.DataSource = LoadDataSource();
Paging.DataBind();

ICollection LoadDataSource() {
DataSet ds = new DataSet();
ds.ReadXml(Page.MapPath("data.xml")) ;
if (SortOrder != null)
ds.Tables[0].DefaultView.Sort = SortOrder;
return ds.Tables[0].DefaultView;

void Sort_Grid(Object sender, DataGridSortCommandEventArgs e) {
SortOrder = e.SortExpression.ToString();
SortMsg.Text = "
Grid sort order is " + SortOrder + "";
Paging.DataSource = LoadDataSource();
Paging.DataBind();
}
</script>
</head>
<body>

DataGrid Sorting Example...
<hr>
<form method="post" runat="server" ID="Form1">
<asp:DataGrid
ID="Paging"
AutoGenerateColumns="true"
OnSortCommand="Sort_Grid"
ShowHeader="true"
BorderColor="#6699cc"
Borderwidth="1"
CellPadding="1"

Font-Name="verdana"
Font-Size="10pt"
HeaderStyle-BackColor="#6699cc"
AllowSorting="true"
RunAt="server">
</asp:DataGrid>
<asp:Label ID="SortMsg" Runat="server" />

</form>
<hr>
</body>

</html>
To enable sorting, you set the Al | owSor t i ng property of the DataGrid to Tr ue and set
the OnSor t Comrand to point to the name of your sorting event. When sorting is
enabled, the grid header columns are displayed as "clickable" links, allowing you to sort
by any data column in the grid. In the DataGridSorting.aspx code, the Sort _Gri d takes
either of the following as a parameter:

= CommandSour ce: Gets the source of the command

= SortExpression: Gets the expression used to sort the DataGrid control
In the previous example, you extract the Sor t Expr essi on into your Sor t Or der string
variable and then use this value in your LoadDat aSour ce routine. In the
DataGridSorting.aspx code, you set the Sort property of the Def aul t Vi ewin your data
set and then call the Dat aBi nd method of the DataGrid to sort and redisplay the grid
data.

Summary

This chapter covered how to format the grid using different styles. It also looked at using
the Col umms property of the DataGrid control to display data items as different column
types. In addition, you saw how to enable paging and sorting in the DataGrid. With the
help of the DataGrid and all of its built-in functionality, you can display, page, and sort
your data with a minimal amount of coding.

chapter 11: USING Templates

Overview

ASP.NET provides a rich set of Server controls that you can use in your Web Forms
pages. When you drag Server controls to a Web Forms page, the controls have a default
set of properties and styles already applied to them. These default properties and styles
provide a specific look and layout to the controls. You can customize the look and layout
of the controls by setting properties and styles according to your requirements. However,
there might be situations when you cannot customize the controls by using the properties
and styles. In such situations, ASP.NET allows you to create templates for some Server
controls. Templates are used to customize the look and layout of Server controls
according to your requirements.

This chapter introduces you to templates. You'll also learn how to create templates and
combine them with the Repeater, DataList, and DataGrid controls.

Introduction to Templates

Templates consist of HTML elements, controls, and embedded Server controls that allow
you to customize and manipulate the layout of a particular control. For example, you can
customize the layout of the individual rows, alternating rows, or selected rows of a
DataList or DataGrid ASP.NET Server control by defining different templates. Then, at
run time, instead of the default HTML, the contents of the templates are rendered on the
page.

You can define templates to control the layout of different portions — such as header
item, footer item, edit item, selected item, alternating item, or separator — of a control
according to your requirements. Different types of templates are available depending on
the portion of the control for which the template is defined. For example, the template
defined for the header of a control is called HeaderTemplate. However, not all the Server
controls support templates. The Server controls that support templates are Repeater,
DataList, and DataGrid. Also, not all types of templates are supported by all the controls
that support templates. Table 11-1 lists the different types of templates and the controls
that support them.

Table 11-1: Templates and the supporting controls

Template Description Supported
by

ltemTemplate The set of Repeater,

elements DatalList,

and controls and

that are DataGrid

rendered

once for

each row in

the data

source.
AlternatingltemTemplate The set of Repeater

elements and

and controls DatalList

that are

rendered

once for

every

alternating

row in the

data source.

SelectedltemTemplate The set of DataList
elements
and controls
that are
rendered
when an
item is
selected in
the control.

EditltemTemplate The set of DatalList
elements and

and controls DataGrid
that are
rendered
when an
itemis in
Edit mode.

Table 11-1: Templates and the supporting controls

Template Description Supported
by

HeaderTemplate The set of Repeater,
elements Datalist,
and controls and

that are DataGrid
rendered
once before
all the items
in the
control.

FooterTemplate The set of Repeater,
elements Datalist,
and controls and

that are DataGrid
rendered
once after
all the items
in the
control.

SeparatorTemplate The set of Repeater
elements and

that are DatalList
rendered
between
each row.

PagerTemplate The set of DataGrid
elements
and controls
that are
rendered
while paging
the
information.

Again, you can manipulate the look and layout of individual controls by using styles;
however, you should not confuse styles with templates. Styles are used to specify the
appearance of controls by setting specific properties, such as color, font, and width. On
the other hand, templates are sets of HTML elements and controls that provide a specific
layout to specific portions of a control. You can use styles with the controls that do not
have templates defined for them. Also, you can use styles with the controls that have
templates defined. For such controls, you can use styles to specify the appearance of
the elements that define the template.

Before proceeding to create templates for the Repeater, DatalList, and DataGrid Server
controls, you need to understand the basic features of these controls, described next.

Repeater control

The Repeater control allows you to create custom lists to display data from different data
sources. Unlike other Server controls, such as TextBox and ListBox, the Repeater
control does not have a default look and layout. You need to provide the layout to the
Repeater control by creating templates. Because it is you who provides the layout to the
control, you can create any kind of list for the control, depending on your requirements.

Some of the lists that you can create include tables or grids, comma-separated lists, and
bulleted or numbered lists.

After you drag a Repeater control on a form, you can set the base control properties by
using the Properties window. Then, you need to create templates to provide the layout to
the control. Of all the templates supported by the Repeater control, you must create at
least one template, ItemTemplate, to provide a basic layout to the control. Then, you can
create other templates to enhance the look and layout of the control. To render a
Repeater control on a page, you must bind the control to a data source and create
ltemTemplate.

The Repeater control supports two events:
= |tenCreated: Enables you to customize the way items are created.
One way to customize the item-creation process is to set certain
properties while the items are being created.
= | tenmCommand: Generated when users click one of the buttons included
in the Repeater control items. These buttons could be the usual Button
controls or the LinkButton controls.

DatalList control

The DatalList control enables you to display rows of data from a data source in a list.
Each row of data displayed in the DataList control is an item. To create items, you must
create at least one template, ItemTemplate. By default, the items in a DataList control
are displayed in a single vertical column. However, you can provide a custom layout to
the items in the control by using templates.

In addition to specifying the layout of controls and the data to be displayed in individual
items, the Datalist control enables you to specify how the individual items are laid out
with respect to each other. The options that you can choose from are the following:
= Vertical/horizontal: The default layout is a single vertical column.
However, you can specify more than one column for the control. If you've
specified a multiple-column layout for the control, you can also specify
the ordering of items as vertical or horizontal.
= Number of columns: You can specify the number of columns that the
list will have irrespective of the ordering of items as vertical or horizontal.
In this manner, you can control the rendered width of the Web page.
= Flow/table: You can choose either flow layout or table layout for the
control. The flow layout presents the list items in a format like a word-
processing document, while the table layout presents the list items in an
HTML table.

The DatalList control supports many styles and templates that you can use extensively to
customize the layout of the control. You can use the autoformat feature to customize the
appearance of different elements of the control. In addition to the styles, you can create
the templates to customize the control. For example, you can create EditlitemTemplate to
allow item editing in the control. The DataList control also enables you to have a
multiple-column layout. Also, you can customize the control to allow multiple-item
selection.

In addition to the ItemCreated event, the DatalList control supports five more events that
are generated when buttons are clicked in the list items. The type of the event generated
depends on the CommandName property of the button that is clicked. The DataGrid
control has a generic event called ItemCommand. This event is generated when a user
clicks a button that has no predefined command. Table 11-2 shows the different events
that are generated.

Table 11-2: The DataList events

Command Event

| Edit | EditCommand

| Update | UpdateCommand

Table 11-2: The DatalList events

Command | Event

| Cancel | CancelCommand |
| Delete | DeleteCommand |
Caution The ConmmandNane property of a button is case-sensitive and

takes values in lowercase. Therefore, be sure to assign
lowercase values to the ConmrandNare property.

DataGrid control

The DataGrid Server control is a multicolumn, data-bound grid that enables you to define
different types of columns. These columns not only provide layout to the grid contents,
but also add functionalities to select, edit, sort, and page the data. Also, the DataGrid
control provides functionality for full customization of the output through the use of
specific columns called TemplateColumns.

When you add a DataGrid control to a form, the control will be rendered only if it is bound
to a data source. A data source can be created by using Visual Studio Data Designer or
any database on a server. It can also be a simple structure, such as an array of type
ArrayList. When you bind a DataGrid control to a data source, the columns are
generated automatically based on the fields in the data source. However, you can
specify the columns in different ways. The different types of columns that you can create
are described as follows:
= Bound columns: Used to specify the database fields that need to be
displayed in the columns along with the order, format, and style of the
display.
= Hyperlink column: Used to display information as hyperlinks that users
can click to navigate to different pages. For example, you can display
product names as hyperlinks. When users click these hyperlinks, they
are directed to product details in a separate page.
= Button columns: Used to display buttons for each item in the grid and
add custom functionality to the buttons. For example, you can add a
button labeled Query and associate logic with it. When users click the
button, the logic is executed.
= Edit command columns: Used to allow in-place editing of items. In-
place editing allows users to edit the items in the grid only. To implement
this editing, you need to add a special column in the grid that contains
buttons labeled Edit. When users click this button, the current row is
displayed again with editable fields for all columns. Also, the column with
the Edit button is redisplayed with the Update and Cancel buttons.
For more information on Button columns and Edit command
Cross- columns, refer to Chapter 10 and Chapter 12.
Reference
= Template columns: Used to create a custom layout for a column by
using a combination of HTML text and Server controls. The controls in
the Template column can be bound to display data from a data source.
This column provides you complete flexibility for customization. With the
template columns, you can create custom-editing layout. This approach
enables you to manipulate the columns that can be edited and the way
users can edit data.
The DataGrid control supports multiple events that are raised from the controls in the
grids. In addition to the ItemCreated, ltemCommand, EditCommand, UpdateCommand,
CancelCommand, and DeleteCommand events, the control supports these two events:
= Pagel ndexChanged: Generated when a page selection element is
clicked.
= Sort Command: Generated when a column is sorted.

Comparing the Repeater, DatalList, and DataGrid controls
As mentioned, the Repeater, DataList, and DataGrid controls are used to display data in
the form of lists on the Web Forms pages. All of these controls are bound to some data
source and display each row in the data source as an entry called item.
All three controls must be bound to a data source by the DataSource property so that
they can be rendered on a page. Even if the DataSource property is set, the controls will
not display the data from the data source until the DataBind() method is called for the
control. The DataSource property is set for the control. For the individual controls in the
templates, you can use the container data.
Cross- For more information on data binding, refer to Chapter 9.
Reference
Table 11-3 compares the Repeater, DataList, and DataGrid controls.

Table 11-3: Comparison of the Repeater, DatalList, and DataGrid controls

Feature Repeater DatalList DataGrid
Default layout No default The The
layout default default
layout is a layout is a
single grid layout
vertical
column
layout
Autoformatting No options Provides Provides
for options for options for
autoformat autoformat autoformat
ting ting ting
Item selection and Items are Provides Provides
editing read-only; options for options for
no editable editable
inherent contents contents;
support for and single- also
selecting and supports
and editing multiple- single- and
items item multiple-
selection item
selection
Paging Does not Does not Provides
support support support for
default default paged
paging, paging output
and all
data is
displayed
in a single
list

Creating Templates

You can create templates by using the Web Forms Designer in a WYSIWYG (What You
See Is What You Get) way or by using the ASP.NET syntax in the ASPX file. This
section explores both of these methods.

The method to create templates by using the Web Forms Designer is very convenient to
use:
1. Right-click the control and choose Edit Template from the shortcut menu.
Then, choose the type of template to edit. For example, to edit Item

templates, such as ItemTemplate, AlternatingltemTemplate,
SelecteditemTemplate, or EdititemTemplate of a DataList control,
choose Item Templates. The control appears in the template-editing
mode. Figure 11-1 displays the DataList control in the template-editing
mode for the Item templates.

=
= Datalistl - Item Templates

. . ItemTemplate

. . AlkernatingItemTemplake
.0 m

* ¢ SelectedIternTemplate

EditItemnTemplate

Figure 11-1: The DatalList control in the template-editing mode

2. In the template-editing mode, add the HTML text and drag controls from
the Toolbox onto the template. For example, you can drag Label or
TextBox control to the Item template.

3. Edit the properties of the controls that you have added as you would do
for any other control.

4. After you have added all the controls that you need to the template and
edited their properties and styles, you need to end the template editing.
To do so, right-click the control and choose End Template Editing.

Note The VVIYSIWYG template editing is not supported by the Repeater
control.

You can also create a template by directly editing the ASPX file in the HTML view. For
example, if you want to create ItemTemplate for a DatalList control, type the following
code:

<asp:DatalList ID=DataListl runat="Server">
<ltemTemplate>
</ltemTemplate>

</asp:DataList>

You can then add the controls that you want to include in the Itemtemplate. Also, you
can set the properties for the embedded controls and data-bind them. To do so, add the
code for the embedded elements inside the <I t emTenpl at e> and </ | t eniTenpl at e>
element. For example, to add a Label control to the ItemTemplate in the DataList control,
use the following syntax:

<ltemTemplate>

Name: <asp:Label ID=Labell runat="Server" Text="<%# data binding expression
%>'/>
</ltemTemplate>
In this syntax, dat a bi ndi ng expr essi on represents the data binding expression for
the Label control of the template. The data binding expression is evaluated at run time.

As mentioned earlier, the Server control for which the template is created must be bound
to a data source. Otherwise, it will not be rendered on the page. Then, the controls within

the template can be bound to the container data. The Dat aBi nder . Eval () method
provided by the .NET Framework evaluates the late-bound data binding expression and
eliminates the explicit casting of the bound data to the desired data type .The

Dat aBi nder . Eval () method takes three arguments and has the following syntax:

<% # DataBinder.Eval(NamingContainer,DataFieldName,[FormatString])>

In this syntax:

=Nam ngCont ai ner : Represents the naming container for the data item. The
Page object can be one of the containers for data items. For the Repeater,
DataList, and DataGrid controls, this argument is always
Cont ai ner. Dat al t em

= DataFieldName: Represents the name of the data item field.

= [FormatString]: Represents the format string, which determines the format of
the bound data item. This is an optional argument. If this argument is not
specified, the data item is automatically formatted to a value, which is of
object type.

Combining templates with the Repeater control

The templates that the Repeater control supports include ItemTemplate,
AlternatingltemTemplate, HeaderTemplate, FooterTemplate, and SeparatorTemplate. To
render the Repeater control on a page, you must bind the control to a data source and
create at least ltemTemplate. The controls within the templates can be bound to the
container data.

This section implements creating templates for the Repeater control. First, create an
ASP.NET Web application project. You can create a Visual Basic or C# application. The
example in this section creates a Visual Basic Web application. After you create the
application, add a Repeater control to the form. In the example that follows, the Repeater
control is bound to a Dat aVi ew object, and the individual items are bound to the
individual fields in the data source. To use the Dat a objects, you need to import the
Syst em Dat a namespace. To do so, write the following statement in the HTML view of
the ASPX file of the form:

<%@ Import Namespace="System.Data" %>

You need to create a Dat aVi ew object that represents a data source. The Dat aVi ew
object created here represents a data source that contains products and their quantities.
Write the following code in the <Scri pt > tag to create the Dat aVi ew object and bind
the Repeater control to it:

<Script Language = "VB" runat="Server" ID=Script1>
Sub Page_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles MyBase.Load
If Not IsPostBack Then
Dim DataTablel As DataTable
Dim DataRowl As DataRow
Dim strProd(5) as String
Dim intQty(5) as Integer

Dim | as Integer

strProd(0)="Cinnamon"
strProd(1)="Basil Leaf"
strProd(2)="Anise Seeds"
strProd(3)="Annatto Seeds"
strProd(4)="Asafoetida Powder"

intQty(0)=300
intQty(1)=500
intQty(2)=150
intQty(3)=250
intQty(4)=350

‘create a DataTable

DataTablel = New DataTable

DataTablel.Columns.Add(New DataColumn("ProdName", GetType(String)))
DataTablel.Columns.Add(New DataColumn("ProdQty", GetType(Integer)))

'Create rows and put in sample data
For=0To 4
DataRow1 = DataTablel.NewRow()
DataRow1(0) = strProd(l)
DataRow1(1) = intQty(l)
DataTablel.Rows.Add(DataRow1)
Next

Repeaterl.DataSource = new DataView(DataTablel)
Repeaterl.DataBind()
End If
End Sub
</Script>
After you have created the data source and bound the Repeater control with it, you can

create templates. As mentioned before, you must create at least ItemTemplate to render
the control on the page. Use the following code to create ItemTemplate:

<asp:Repeater ID=Repeaterl runat="Server">

<ltemTemplate>

<tr>

<td>
<%# DataBinder.Eval(Container.Dataltem, "ProdName") %>

</td>
<td> <%# DataBinder.Eval(Container.Dataltem, "ProdQty") %>
</td>

</tr>

</ltemTemplate>

</asp:Repeater>

In the preceding code, the item is bound to the ProdName and ProdQty fields of the data
source. Because the Repeater control has no layout of its own, the bound data appears
in a row, as shown in Figure 11-2.

'all-lr.u.' faspearve A0 Template Trial WebF orm3.aspa - Microsof Inermet Ex.. M= E

File Edit View Favorites Tools Help -

= = = ow G [| P Sewch [g)Favoites | Hilory __'l_-,wd-

Address [EI it A aspuarver 30T emplate T rislfv'ebForml asoo :-l o .'Uﬂh =
=l

Cemamen 300 Bazd Leaf 500 Amge Seeds 150 Annatto Seeds 250 Asafeenida
Fasrder 350

|
&1 Done ¥ Local intranet &
Figure 11-2: Repeater control implementing ItemTemplate

You can create HeaderTemplate to render text or controls before data item fields. The
following code creates a table with two columns with the headings "Product" and
"Quantity":

<HeaderTemplate>
<table border=1>
<tr>
<td>
Product
</td>
<td>
Quantity
</td>
</tr>

</HeaderTemplate>

In the preceding code, the <t abl e> element has not been closed, because the
HeaderTemplate elements are rendered even before the ltemTemplate elements, which
use the <t r > and <t d> elements that need to be displayed within the table. You can
close the <t abl e> element in FooterTemplate as follows:

<FooterTemplate>
</table>
</FooterTemplate>

You can apply special formatting to the alternating items by creating
AlternatingltemTemplate. The following AlternatingltemTemplate sets the background
color of the alternating rows to light blue:

<AlternatingltemTemplate>
<tr>
<td bgcolor="lightblue">
<%# DataBinder.Eval(Container.Dataltem, "ProdName") %>

</td>
<td bgcolor="lightblue">

<%# DataBinder.Eval(Container.Dataltem, "ProdQty") %>
</td>

</tr>

</AlternatingltemTemplate>
After creating all the previous templates, the Repeater control is rendered on the page,
as shown in Figure 11-3.

1 hittp = aspi noir S0 Template Trial WebF orm3asps - Microsof Internet Ex...
File Edii View Favorites Tools Help [= |
e - s A A Psewch [§Favoies o JHsoy | e Lo
Md'l'“![ﬂ_] Tnttpe Y ssperver F8L T emplste T iabw'ebFoomd asgu il f’fﬂ Links *
=
Praduect Caantity
CEmamon 30
Basid Leaf S0
Amige Sewds 150

Armatta Seeds 250

FAsafeetida Powder 350

|

2] Dane ¥ Local intranet P

Figure 11-3: A Repeater control after implementing the templates

Combining templates with the DatalList control

The DatalList control supports two more templates in addition to the templates supported
by the Repeater control:

= SelectedltemTemplate: Enables users to select items

= EditltemTemplate: Enables users to edit items

You must bind the Datalist control to a data source and create at least temTemplate to
render the control on a page. To understand templates with the DataList control, you'll
use the same data source as you used for the Repeater control. First, you need to add a
DatalList control to a form.

Note You can add the DatalList control in the same form, or you can add

another Web form and add the control in the new form.

In the HTML view of the ASPX file, you need to import the Syst em Dat a namespace,
and bind the DatalList control with the Dat aVi ew object in the Page_Load method. After
you've bound the DatalList control to the Dat aVi ew object, you need to create

IltemTemplate and bind to the individual data fields in the data source. You can create a
similar ltemTemplate for the DataList control, as follows:

<ltemTemplate>
<tr>
<td>
<%# DataBinder.Eval(Container.Dataltem, "ProdName") %>
</td>
<td>
<%# DataBinder.Eval(Container.Dataltem, "ProdQty") %>
</td>
</tr>

</ltemTemplate>
By default, the DataList control displays data items in a single vertical column, as shown
in Figure 11-4.

i hitp =t aspesr rve rFA0 T e mplate Trial We b Formd.aspe - BMicrosof Internel Ex... =1 E1

File Edit View Favorites Tools Help -

4 - w0 o () A DSewch [4)Favoies AHeoy | [y L

Address [@) kit / ssprerver 30T emplsteT rislebF o asou »| oG | |Links ®
=l

Cinramean 300

Blanl Leaf S00

Argge Seeds 120

Apnpite Seeds 250
Bezafsetida Powder 350

2] Done ¥ Local intranet
Figure 11-4: A DataList control implementing ItemTemplate

B

You can override the default single vertical column layout. To do so, create
HeaderTemplate, AlternatingltemTemplate, and FooterTemplate in the same way you
created them for the Repeater control. After you create these templates, the DataList
control appears similar to the Repeater control.

Implementing item selection functionality

You can also add the functionality to allow users to select and edit items. To implement

the functionality of item selection, you need to follow these steps:
1. Create SelectedltemTemplate. You can add text, elements, and
controls to be rendered on the page when an item is selected.
2. Add a Button or LinkButton Server control in ItemTemplate. Using the
following code, set the CommandNane property of the Button or
LinkButton control to " sel ect ":

3. <asp:LinkButton ID=LinkButtonl runat="Server" Text="Select"

CommandName="select" />
4. Rebind the list when an item is selected. To do so, create an event
handler for the control's SelectedindexChanged event. The
complete code is given as follows:

5. Private Sub DataListl_SelectedindexChanged(ByVal sender As
6. System.Object, ByVal e As System.EventArgs) Handles
Datalistl.
7. SelectedindexChanged
8. DataListl.DataBind()
End Sub

9. You can unselect an item by setting the control's Selectedindex
property to -1. To do so, you can add a Button control in the
SelecteditemTemplate of the DataList control and set the
CommandName property to unselect. Then, add the event handler
for the temCommand event of the DataList control. The complete
code is given as follows:

10. Private Sub DataListl_ItemCommand(ByVal source

11. As Object, ByVal e As System.Web.Ul.WebControls.

12. DataListCommandEventArgs) Handles DataListl.ltemCommand
13. If e.CommandName = "unselect" Then

14. DatalListl.SelectedIndex = -1

15. End If
16. DataListl.DataBind()
End Sub

Implementing item editing functionality

To implement the functionality of item editing, follow these steps:

1. Add a Button or LinkButton Server control in ItemTemplate. Using the
following code, set the CommandNane property of the Button or
LinkButton control to "edi t " :

2. <asp:LinkButton ID=LinkButton3 runat="Server"
Text="Edit" commandName="edit"/ >

3. Create EdititemTemplate. You can add text, elements, and controls to
be rendered on the page when an item needs to be edited. The
template should contain the controls for all the values that need to
be edited, along with two buttons. Both the buttons are either Button
or LinkButton controls. One button should have the Text property
setto " Updat e" and the CormandNane property setto "updat e" .
This button is used to implement the functionality of saving the
changes to the data source. The other button should have the Text
property setto " Cancel " and the CommandNane property set to
"cancel ". This button is used to implement the functionality of
quitting without saving the changes to the data source. The
following code snippet shows a typical EdititemTemplate that
displays the Update and Cancel buttons and other controls to
display the bound data in Edit mode:

4 <EditltemTemplate>

5 <tr>

6. <td>

7 <asp:LinkButton ID=LinkButtonl runat="Server"
8 Text="Update" CommandName="update" />

9 </td>

10. <td>

11. <asp:LinkButton Id=LinkButton2 runat="Server"
12. Text="Cancel" CommandName="cancel" />

13. </td>

14. <td>

15. <! Other controls go here >

16. </td>

</EdititemTemplate>
17. Create an event handler for the Edi t Conmand event of the control
to implement item editing. In this event handler, set the
Edi t 1 t em ndex property of the control to the index of the item to
be edited. Also, call the Dat aBi nd() method of the control, using
the following code:

18. DataListl.EdititemIndex = e.ltem.ltemIndex

DatalListl.DataBind()
19. Create an event handler for the Updat eConmmand event of the
control to update the data source with the edited values. In the

event handler, after you update the data source, you need to come
out of the Edit mode and bind data to DataList:

20. DataListl.EditltemIndex = -1

DatalListl.DataBind()

21. Create an event handler for the Cancel Cormand event of the
control to cancel the changes in the edited values. In this event
handler, you simply need to come out of the Edit mode and bind
data to DatalList.

Combining templates with the DataGrid control

The DataGrid control usually has bound columns. However, different types of columns,
such as Hyperlink columns, Button columns, and Template columns, can provide
additional functionality. Template columns enable you to create many templates, such as
ItemTemplate, HeaderTemplate, FooterTemplate, and EdititemTemplate. Therefore,
Template columns provide complete flexibility to present data.

You can create different types of columns by using the DataGrid Properties window. In
the Properties window, click the ellipsis in the Columns property to open the Properties
dialog box, as shown in Figure 11-5.

Datalrid] PFropenies

Dm& M Comaps Cobived SOt als B S
5] Colues Cindumen Lint
B, Fagng foplatie Cobrrn Sebactnd Cobrmnt
H il 'ﬂ Do Faskds
= T Button Codamn
m R 5 Hypesilrk Cobaan _I

aul Templsie Cobann

A 31 £

Cobasren Pioperis:

Hesder Test Foater Tt

| |

|deadar |mage: Gioet Ewpres sore

| oK. I Cancel

Figure 11-5: The Properties dialog box
Button columns provide functionality for selecting, editing, and deleting items. You can
create three types of Button columns: Select, Edit, and Delete. If you create the Edit
button column, the Edit button is created in each row. To add the functionality to the Edit
button, create the event handler for the Edi t Cormand event of the DataGrid control in
the same way you created the event handler for the Edi t Command event of the DataList
control. Then, to update the changes in the data source, you need to create the event
handler for the Updat eComrand event. And, to cancel any changes made by users, you
need to create the event handler for the Cancel Command event of the DataGrid control.
Cross- For information on button columns, refer to Chapter 12.
Reference

Template columns provide complete flexibility to give a custom layout to the column.
When you add a Template column, you can specify the header and footer text, and a
header image in the Properties dialog box. You can also specify a sort expression. After
adding a template column, when you switch to the HTML view, the following code
automatically appears in the file:

<asp:TemplateColumn> <asp:/TemplateColumn>

You can create HeaderTemplate, FooterTemplate, ItemTemplate, and EdititemTemplate
in the TemplateColumn element. To display values in the Template column, you must
create at least the ItemTemplate.

You'll implement the same example that you implemented for the Repeater and Datalist
controls. First, you need to add a DataGrid control to the form.
Note You can add the DataGrid control in the same form, or you can
add another Web form and add the control in the new form.

After adding the DataGrid control to the form, follow these steps to add the Template
column:
1. Display the Properties window for the DataGrid control by right-clicking
the control and choosing Properties from the shortcut menu.
2. Display the Properties dialog box by clicking the ellipsis in the
Columns property.
3. Click Columns in the left pane.
4. Select TemplateColumn from the Available Columns list and click the
> button to add TemplateColumn to the Selected Columns list.
5. In the Header Text box, enter Product Category and click OK.
Note You can also specify the header image, footer text, and a sort
expression.
After adding the Template column to the DataGrid control, you can create templates. To
do so, switch to the HTML view of the ASPX file. Because you'll be using the Dat aVi ew
object to bind data to the DataGrid control, import the System.Data namespace in the
page using the following code:

<%@ Import namespace="System.Data" %>

Then, in the Page_Load method, write the code to create the Dat aVi ew object and bind
the DataGrid control with it. To create the Dat aVi ew object, use the same code you
used for the Repeater and DatalList controls.

Finally, create the ItemTemplate in the Template column as follows:

<asp:TemplateColumn HeaderText="Product Category">

<ltemTemplate>
<asp:lmage ID=Imagel runat="Server" ImageUrl="category.tif" />

</ItemTemplate>

<asp:/TemplateColumn>
Note Because the image file Category.tif has been added to the project,

the | mageUr | property is set to the filename instead of the
complete URL.

In the preceding code, an Image control is created as an item in the Template column.

The | mageUr | property of the Image control is set to the image to be displayed in the

column. Figure 11-6 shows the DataGrid control after creating the IltemTemplate for the

Template column.

Fle [Wiew Favsdtos Teals liely =
S R S = E T T e e]
T T e T | g |Lirka ™

e

]
!,..:
s

Sanlled 300

b

Ao Seedy 130

s

-

Aorrodto
sl

faRE oEE ey

i

Azafoohda

.
-
s

] Dot [Loge e
Figure 11-6: DataGrid implementing a Template column

Summary

This chapter introduced you to the ASP.NET Server control templates. First, you learned
the different types of templates that can be created. You identified the Server controls
that support templates. Then, you learned the basic features of the Repeater, DatalList,
and DataGrid controls and identified the templates that each of these controls supports.
Finally, you learned how to create templates for the Repeater, DataList, and DataGrid
controls to customize their look and layout.

Chapter 12: USing SQL Server with ASP.NET

Overview

With more and more applications shifting to the Internet, e-business is booming. To
conduct business on the Internet, Web applications need to access data stored on a
server. Thus, data access is most critical to real-world applications.

Visual Studio .NET provides Web Forms controls, such as the DataGrid control that you
can use to access data from various data sources, such as a SQL server or a Jet
database. This chapter introduces you to the Structured Query Language (SQL), which

is used to access data stored on a SQL server through Web Forms. You'll also learn how
to use ADO Extensions to create and manage different schema objects, such as
databases and tables.

Introduction to Server-Side Data Access from a SQL Server

Server-side data access is critical to all real-world applications. Therefore, these
applications must address server-side data access to implement business solutions. This
section introduces you to the SQL server data access through Web Forms.

Microsoft SQL Server is a Relational Database Management System (RDBMS) that is
used to store and organize related data — the collection of related data is called a
database. Microsoft SQL Server is based on the client/server architecture, in which data
is stored on a centralized computer called a server. Other computers, called clients, can
access the data stored on the server through a network. The client/server architecture
prevents data inconsistency.

You can access data stored on a SQL server through Web Forms. To do so, you can
create Web applications that have data access controls. These data access Web
controls present the data in a consistent manner irrespective of the actual source, such
as Microsoft SQL Server or MS Access. Therefore, while creating a Web application, you
do not need to worry about the format of the data. However, before you can access or
manipulate data from a SQL server, you need to perform the following steps in the
specified sequence:

1. Establish a connection with the SQL Server.

2. Write the actual command to access or manipulate data.

3. Create a result set of the data from the data source with which the
application can work. This result set is called the data set and is
disconnected from the actual source. The application accesses and
updates data in the data set, which is later reconciled with the actual data
source.

To achieve this functionality, you first need to import two namespaces, System.Data and
System.Data.SqlClient, into your Web Forms page. The syntax is given as follows:

<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>

The two namespaces are described as follows:
= System.Data: A collection of classes that are based on the ADO.NET
architecture. The ADO.NET architecture allows for efficient data
management and manipulation from multiple data sources. ADO.NET
provides tools to request and update data in a data set, and reconcile data
in the actual data source. Some of the classes included in this namespace
are described as follows:
o DataSet: Represents the data set cached in memory with
which applications work.
o DataTable: Represents a table of data in a data set.
o DataRow: Represents a row of data in a data table.
o DataColumn: Represents a column of data in a data table.
= System.Data.SqlClient: A collection of classes that are used to access SQL
server data sources. Some of the classes are listed as follows:
0 SqlConnection: Represents a connection with a SQL
server data source. The first step to access data from
a SQL server database is to create an object of this
class.
o0 SqlDataAdapter: Represents a set of data commands
and a database connection that are used to access or
manipulate data. After creating a SglConnection
object, you need to create an object of the
SglDataAdapter class to populate the data set and
update the data source.
0 SqlCommand: Represents the SQL command to
perform data operations in a SQL server data source.

You use the following code to import the two namespaces if you want to use the Visual
Basic code file instead of the ASPX file:

Imports System.Data

Imports System.Data.SqlClient

You can use the different classes to create and manipulate database objects. For

example, the following code illustrates how to create a table called "Products” in a SQL
server database "Sales."

Dim MyCommand As SqlCommand
Dim MyConnection As SglConnection

MyConnection = New SqlConnection("server=localhost;uid=sa;
pwd=;database=Sales")

Dim CreateCmd As String = " Create Table Products (ProductID
VarChar (4) Primary Key, ProductName VarChar (20), UnitPrice Money,
QtyAvailable Integer)”

'Passing the SQL query in the SQLglCommand dbject
MyCommand = New SqlCommand(CreateCmd, MyConnection)
'‘Opening the active connection
MyCommand.Connection.Open()

‘Executing the command

MyCommand.ExecuteNonQuery()

‘Closing the connection

MyCommand.Connection.Close()

Before dehing into the details of implementing the different ADO.NET classes in your
Web applications, let's have a recap session for T-SQL.

Revising T-SQL

A SQL database stores data in tables, which consist of rows and columns. A column
stores the information regarding properties of an item, while a row stores the complete
information of an item. For example, consider a Products table. The columns store
information, such as product identification number, product name, and quantity available.
The rows store information about different products. Each column stores data of a
specific type. Therefore, each column has a specific data type. Table 12-1 describes
some of the SQL data types.

Table 12-1: SQL data types

Data Type Description

Integer Used to
store whole
numbers.

Float Used to
store
decimal
numbers.

Char(n) Used to
store
character
data that
can be
letters,
numbers, or

Table 12-1: SQL data types

Data Type

Description

special
characters
such as #,
%, or $, or a
combination
of letters
and
characters.
Char stores
a single
character of
data. To
store more
than one
character,
you use
Char(n),
where n
refers to the
number of
characters
you want to
store.

VarChar(n)

Used to
store
character
data, where
n refers to
the number
of
characters
you want to
store, but
the length of
the column
depends on
the actual
number of
characters
entered.

DateTime

Used to
store date
and time
data.

Money

Used to
store
monetary
data values.

Each table must have at least one column that uniquely identifies each row in the table.
Such a column is called a primary key. For example, the ProductID column in a Products
table identifies each row uniquely and is therefore a primary key.
Note A primary key must be unique. No two values in a primary key
column can be identical.

The client programs can access data from the tables stored on a SQL server or
communicate with a SQL server by using a form of SQL called Transact SQL (T-SQL).
You can create a table by using the Cr eat e Tabl e statement, shown as follows:

Create Table Products

(

ProductID VarChar (4) Primary Key,
ProductName VarChar (20),
UnitPrice Money,

QtyAvailable Integer
)

The next two sections give a brief overview of the T-SQL statements to retrieve, insert,
modify, and delete data in tables.

Retrieving data from a SQL database
You can retrieve information stored in tables by using the Sel ect statement. The syntax
is as follows:

Select Columnl, Column2,..., ColumnN
From Table

In this statement:
= Col umN: Represents the name of a column in the table from which the
information needs to be retrieved. A comma separates the different
column names.
= Table: Represents the name of the table.

You can also retrieve information from all the columns of a table by using the following
statement:

Select *

From Table

In the preceding statement, * represents all the columns of the table.

If you want to retrieve only specific rows from a table, you need to specify a condition in
the Sel ect statement. You can specify a condition by using the Wher e clause, as
follows:

Select *

From Table

Where ColumnN="Value"

In this statement, only those rows will be retrieved where the column has a specific

value. For example, to retrieve the information from the Products table for a product
called "cinnamon," use the following statement:

Select *
From Products
Where ProductName = "cinnamon"

Inserting, updating, and deleting data in a SQL database

You might need to add a new row to a table in a SQL database. For example, suppose
you need to add to the Products table a new row for a new product. To add a row to a
table, use the following statement:

Insert Into Table

Values (Columnl_Value, Column2_Value, ..., ColumnN_Value)

In this syntax:
= Tabl e: Represents the table in which the row needs to be inserted.
= Values: Takes the column values for the new row as parameters.
= ColumnN_Value: Represents the value to be inserted in the column with
name ColumnN.

The values must be supplied in the same order as the columns in the table. Also, if the
data type of a column is Char, VarChar, or DateTime, you need to specify values in
guotes.

For example, to insert a row in the Products table, write the following statements:
Insert into Products

Values ('P001', 'Baby Food', 2.5, 1200)

Here, it is important to note that for every row that you want to insert in a table, you need
to use a separate i nsert statement. So, to insert another row in the Products table,
write the following statements:

Insert into Products

Values ('P002', ‘Chocolate’, 4.5, 1000)

In addition to adding a row to a table, you might need to modify the value in a specific
column of a row. For example, you might need to modify the price of a specific product in
the Products table. You use the Updat e statement to modify specific column(s) of a
specific row of a table as follows:

Update Table
Set ColumnN="Valuel"

Where ColumnM="Value2"

In this statement, the Set clause is used to set the value of a column named ColumnN
to "Valuel" where the column named ColumnM has a value "Value2". For example, to
update the price of a product whose ID is P001, use the following statement:

Update Products
Set UnitPrice=25

Where ProductID="P001"

You might also need to delete a specific row in a table. For example, you might need to
delete a specific product in the Products table. To do so, you use the Del et e statement
as follows:

Delete From Table

Where ColumnN="Value"

Stored procedures

A stored procedure is a set of SQL statements used to perform specific tasks. A stored
procedure resides on the SQL server and can be executed by any user who has the
appropriate permissions. Because the stored procedures reside on the SQL server, you
do not need to transfer SQL statements to the server each time you want to perform a
task on the server. This reduces the network traffic. When you want to execute a
procedure, you only need to transfer the name of the procedure. However, if the
procedure takes any parameters, you also need to transfer the parameters along with
the procedure name.

You can create a stored procedure by using the Cr eat e Procedur e statement as
follows:

Create Procedure ProcName
As
SQL statements

Return

In this statement:
= ProcNane: Represents the name of the stored procedure.
= SQL statements: Represents the set of SQL statements in the stored
procedure.
= Return: Represents the end of the procedure. Each stored procedure
must end with a Return statement.
After the stored procedure is created, the SQL server scrutinizes it for any errors. The
procedure can be executed by using the Execut e or Exec keyword, as follows:

Execute ProcName

You can also pass parameters or arguments to a stored procedure to perform a specific
task based on the parameter. For example, consider the following procedure that
displays the price of a product whose ID is passed as a parameter:

Create Procedure ProductPrice (@id char (4))
As

Select UnitPrice

From Products Where ProductiID=@id

Return
This procedure takes a parameter, @ d, at the time of execution. To display the price of
the product whose ID is "P001", execute this procedure using the following code:

Execute ProductPrice "P001"

Implementing T-SQL in Web Applications

Many situations require Web applications to retrieve, add, modify, and delete data stored
in a database on a server. For example, consider a Web application that enables users
to register as customers. When a customer fills out the Registration form and submits it,
the customer registration information must be stored in a database on a server so as to
maintain the registered customer's records. After the registration, the customer might
need to change their customer details, such as telephone number or address. Later, the
customer might want to discontinue purchasing from the same store. In such a situation,
the Web application must take care of addition, modification, and deletion of data in the
respective database on a server.

In this section, you'll create a Web application to retrieve, add, modify, and delete data in
a table stored on a SQL server. You can choose to use either Visual Basic or C# to do
so. In the following example, you'll create a Visual Basic Web application project. Figure
12-1 displays the schematic diagram of the tables used to illustrate the server-side data
access from a Web application.

et i i)
Froedtitime

Figure 12-1: A schematic diagram of the Sales database
Before you start implementing T-SQL in your Web application, create the tables as
shown in the preceding schematic diagram. Also, add records in the Products and
Customers tables. You can refer to Figure 12-2 and Figure 12-3 to add records in the
Products and Customers tables.

Figure 12-2: A sample Order form
After creating the ASP.NET Web Application project, design two Web Forms as shown in
Figure 12-2 and Figure 12-3. The Order form will enable customers on the Web to place
orders for products. Refer to Table 12-2 to specify IDs for the controls (that are used in
code examples) on the Order form. In this form, you'll implement the functionality to view
the complete product list or to view the details of a specific product. For this to happen,
you'll access data from the Products table in a database called "Sales" stored on a SQL

server.

] ey
Figure 12-3: A sample Customer form

Table 12-2: IDs of the Controls on the Order Forms

Control ID

Order ID TexBox Order_ID

Table 12-2: IDs of the Controls on the Order Forms

Control ID

Customer ID TextBox Customer_ID

Quantity TextBox Order_Quantity

Order Date TextBox Order_Date

| |

| |

’ Product ID TextBox ‘ Product_ID
| |

| |

|

Data Grid ‘ MyDataGrid

The Customer form will enable users to register themselves as customers. Table 12-3
shows the IDs of the controls (that are used in code examples) on the Customer form.
This form uses the Customers table in the "Sales" database stored on a SQL server.

Table 12-3: IDs of the Controls on the Customer Form

Control ID
Customer ID TextBox Cust_ID
Customer Name TextBox Cust_Name

Address TextBox Cust_Address

State TextBox Cust_State
Zip TextBox Cust_Zip

DataGrid MyDataGrid
Label next to the Add button LbIMessage

| |
| |
l l
‘ City TextBox ‘ Cust_City
| |
| |
| |
| |

The sample forms use a DataGrid control to display records from the tables stored in a
SQL database on a SQL server. A DataGrid control enables a form to display data
bound to a data source.

Accessing data

After designing the forms, you'll add the desired functionality to them. First, you'll add the
functionality to the Order form. The form should enable customers to view the complete
product list by clicking the View Product List button. Also, the form should enable
customers to view the details of a specific product by clicking the View Product Details
button.

To implement this functionality, open the code behind file (with .vb extension) of the
Order form. At the top of the Order form, import the two namespaces as follows:
Imports System.Data

Imports System.Data.SqlClient
Next, in the Cl i ck event of the button labeled View Product List, enter the following
code:

‘Declare the objects of the SglConnection,
'‘SglDataAdapter, and DataSet classes

Dim DS As DataSet
Dim MyConnection As SglConnection
Dim MyCommand As SqlDataAdapter

"Initializing the SglConnection object

MyConnection = New SqlConnection ("server=localhost;
uid=sa;pwd=;database=Sales")

‘Initializing the SqglDataAdapter object with the SQL

‘query to access data from the Products table

MyCommand = New SqlDataAdapter("select * from Products”,

MyConnection)

'Initializing the DataSet object and filling the data

set with the query result

DS = new DataSet()
MyCommand.Fill(DS,"Products")

‘Setting the DataSource property of the DataGrid control

MyDataGrid.DataSource=DS.Tables("Products").DefaultView

‘Binding the DataGrid control with the data

MyDataGrid.DataBind()

In this code, the comments provide explanation for the statements that follow. However,
some statements need more explanation:
= When initializing the SglConnection object, the constructor takes four
parameters:
0 The first parameter, which represents the SQL Server, is
| ocal host, indicating that the server resides on the
local computer. However, if the SQL server resides on a
network, you need to give its complete address.
0 The uid and pwd parameters represent the User ID and
Password on the SQL Server.
0 The database parameter represents the name of the
SQL database that you want to access. In this case, the
database is "Sales."
= When initializing the SglDataAdapter object, the constructor takes two
parameters:
0 The first parameter represents the SQL query. In
this case, the query is used to retrieve all the
records from the Products table.
0 The second parameter represents the
Sqgl Connect i on object.
= The Fi | | method of the SglDataAdapter class is used to fill the
DataSet object with the data. This method takes two parameters:
= The DataSet object
»= The identifier for the Dat aTabl e

= When setting the Dat aSour ce property of the DataGrid control,

the default view of the Products table in the DataSet object is
used.

After you write the respective code, save the project and execute it. When you click the
button with the "View Product List" caption, the product details are displayed in the
DataGrid control.

Now, you'll implement the functionality to display the product details of only that product
whose ID is entered in the Product ID text box. To do so, write the following code in the
Cl i ck event of the button labeled "View Product Details":

Dim DS As DataSet
Dim MyConnection As SglConnection
Dim MyCommand As SqlDataAdapter

‘Initializing a String variable with the SQL query to
be passed as a
'‘parameter for the SqlDataAdapter constructor

Dim SelectCommand As String = "select * from Products
where ProductlD = @prod"

MyConnection = New SqlConnection("server=localhost;
uid=sa;pwd=;database=Sales")

MyCommand = New SqglDataAdapter(SelectCommand, MyConnection)

‘Creating a SQL parameter called @prod whose data
type is VarChar with size 4

MyCommand.SelectCommand.Parameters.Add(New SqglParameter
("@prod", SqIDbType.NVarChar, 4))

‘Setting the SQL parameter @prod with the value of the
text box displaying Product ID

MyCommand.SelectCommand.Parameters("@prod").Value =
Product_ID.Text

DS = New DataSet()
MyCommand.Fill(DS, "Products”)

MyDataGrid.DataSource = DS.Tables("Products").DefaultView
MyDataGrid.DataBind()

After you've written this code, save the project and execute it to check the desired
functionality.

Adding data

You'll implement the functionality to add data in the Customer form shown earlier in
Figure 12-3. The form should enable a user to add the customer registration information
upon clicking the Add button.

To implement this functionality, add the following code at the top of the code behind file
of the Customer form:
Imports System.Data

Imports System.Data.SqlClient
Tip As a good programming practice, the objects that are shared across
the form are declared globally. Also, the code that implements data
binding to the DataGrid control has been segregated in a separate
procedure, which can be called whenever required.

In the Declaration section of the form class, declare the object of the SqlConnection
class as follows:

Dim MyConnection As SglConnection
Next, create a procedure called Bi ndGr i d to bind data from the Customers table to the
DataGrid control. To do so, write the following code in the form class:

Sub BindGrid()
Dim MyCommand As SqlDataAdapter = New
SglDataAdapter("select * from Customers"”, MyConnection)

Dim DS As DataSet = New DataSet()

MyCommand.Fill(DS, "Customers")

MyDataGrid.DataSource = DS.Tables("Customers").DefaultView
MyDataGrid.DataBind()

End Sub
Then, in the Cl i ck event of the Add button, write the following code:

Dim DS As DataSet
Dim MyCommand As SglCommand

'‘Checking for the customer details. If the values are not entered, an
‘error is displayed

If Cust_ID.Text = "™ Or Cust_Name.Text =" or Cust_Address.
Text="" or Cust_City="" or Cust_State="" Then

IbIMessage.Text = "Null values not allowed in these fields "
BindGrid()
End If

'‘Defining the SQL query for inserting data into the Customers table

Dim InsertCmd As String = "insert into Customers values (@CID, @Cname,

@Caddress,@Ccity, @Cstate, @Czip)"

'Passing the SQL query in the SgqlCommand object

MyCommand = New SglCommand(InsertCmd, MyConnection)

'‘Adding the SQL parameters and setting their values

MyCommand.Parameters.Add(New SqglParameter("@ClId", SqlDbType.NVarChar, 4))
MyCommand.Parameters("@Cld").Value = Cust_ID.Text

MyCommand.Parameters.Add(New SqglParameter("@Cname", SqlDbType.NVarChar,
20))

MyCommand.Parameters("@Cname").Value = Cust_Name.Text

MyCommand.Parameters.Add(New SqglParameter("@Caddress”, SqlDbType.NVarChar,
20))

MyCommand.Parameters("@Caddress").Value = Cust_Address.Text

MyCommand.Parameters.Add(New SqlParameter("@Ccity", SqIDbType.NVarChar, 20))
MyCommand.Parameters("@Ccity").Value = Cust_City.Text

MyCommand.Parameters.Add(New SqglParameter("@Cstate", SqIDbType.NVarChar,
20))

MyCommand.Parameters("@Cstate").Value = Cust_State.Text

MyCommand.Parameters.Add(New SqlParameter("@Czip", SqlDbType.NVarChar, 20))
MyCommand.Parameters("@Czip").Value = Cust_Zip.Text

'Opening the connection

MyCommand.Connection.Open()

'‘Executing the command

MyCommand.ExecuteNonQuery()

IbIMessage.Text = "Record Added successfully”

‘Closing the connection

MyCommand.Connection.Close()

‘calling the BindGrid method to reflect the added record in

the DataGrid control

BindGrid()

When you run this application, you'll notice that the customer details are reflected in the
DataGrid control after you enter the data in the respective text boxes and click the Add
button.

Modifying and deleting data
The DataGrid control enables users to modify and delete records. To allow rows to be
edited, the Edi t | t el ndex property of the DataGrid control is used. By default, this
property is set to -1, indicating that no rows are editable.
The DataGrid control has a property called Col utms that you can use to add buttons to
allow user interaction with individual data rows. To add a button column, follow these
steps:

1. Open the Property Window of the DataGrid control.

2. Click the ellipsis in the Columns property to open the
Properties dialog box, as shown in Figure 12-4.

x|

DataGrid] Propenies

Smjﬁ“d N Dieate pobied ot sl 8 o bive
Colurnng
L e
B, Pagng Ay labls cobamn Srdected columny
A Fosnal
] Bonders

=
O Select
] ':T..‘.A‘!.ir |.'w..-|J ,;l

] Dialsta
et

B4 K)

Cpharn propertes
s et Fonates bast
[I
Hipada imagen S0 mprmsison
| Bl | A
| Concel | | Hem |

Figure 12-4: The Properties dialog box
3. In the left pane, click Columns.
4. In the right pane, under the Available Columns list, under
Button Columns, select Edit, Update, Cancel and click the >
button to add this button column to the control.
5. Click OK to close the dialog box.

The DataGrid control can have three types of button columns, described as follows:
= The Select button column renders a Select link button used to
access a specific row.

*» The Edit, Update, Cancel button column renders three link
buttons: Edit, Update, and Cancel. The Edit button is used to
display the row in Edit mode. After the row switches to Edit mode,
the column displays Update and Cancel buttons, which are used
to update or cancel the changes made to the row.

= The Delete button column renders a Delete button that enables
users to delete a specific row.

To add the update functionality, add the Edit, Update, Cancel button column to your
DataGrid control. When the Edit button is clicked, the Edi t Conmmand method of the
DataGrid control is called. The Updat eCommand method is called when the Update
button is clicked. And, when the Cancel button is clicked, the Cancel Conmand method

is called. Therefore, you need to write appropriate code in these methods to implement
the desired functionality.

In the Edi t Command method of the DataGrid control, set the Edi t | t eml ndex property
as follows:

Public Sub MyDataGrid_EditCommand(ByVal source As Object,
ByVal e As System.Web.Ul.WebControls.DataGridCommandEventArgs)
Handles MyDataGrid.EditCommand

'Setting the EditltemIndex property of the DataGrid

control to indicate the row to be edited

MyDataGrid.EditltemIndex = e.ltem.ltemindex

End Sub

In this code:
= The Edi t Command method takes two arguments:
0 source: Represents the object that generates
the event. In this case, the source is the DataGrid
control.
0 e: Represents the object of the
DataGridCommandeventArgs class. This
argument represents the event information of the
source.
= | t emindicates the item that generated the event. In this case, it
is the DataGrid control.
= | tenl ndex represents the row number for the item.
After you've written this code, you need to use the following SQL statement as a String
variable in the Updat eCommand method to modify the customer address based on a
customer ID:

Dim UpdateCmd As String = "Update Customers Set Address =
@Address Where CustomerID = @CID"

MyCommand = New SqlCommand(UpdateCmd, MyConnection)
Now, let us discuss how we can implement data deletion in a SQL table. The first step is
to add a Delete button column to the DataGrid control. Then, in the Del et eCommand

method of the DataGrid control, add the code to delete a customer record. The following
SQL statement needs to be used as a String variable to delete a customer record based
on a customer ID:

'‘Defining the SQL query to delete a record from Customers table

Dim DeleteCmd As String = "Delete from Customers where CustomerID = @CID"

MyCommand = New SqglCommand(DeleteCmd, MyConnection)

After understanding how to update and delete data in a SQL Server database, let us now
see how to use stored procedures through your Web applications.

Using stored procedures

As mentioned earlier, stored procedures perform database operations more efficiently
than the ad hoc SQL queries, because stored procedures are stored on the SQL Server.

You simply need to write the procedure's name and the procedure parameters, if any, to
execute the stored procedure. When using stored procedure, the traffic is less as
compared to passing the complete set of SQL queries to the server. Therefore, the
performance is greatly improved.

If a stored procedure already exists on a SQL Server, use the following syntax to create
the SqglDataAdapter object:

MyCommand = New SqglDataAdapter("Procedure_Name", MyConnection)

MyCommand.SelectCommand.CommandType = CommandType.StoredProcedure

In this syntax:
= MyCommand is the object of the SglDataAdapter class.
= MyConnecti on is the object of the SglConnection class.
= Procedur e_Nane represents the name of the procedure to be
called.
» The second statement specifies that the command passed in
statementl is a stored procedure.

Stored procedures can also take parameters that need to be passed while executing
them. Parameters make the stored procedures more flexible because they return results
based on user input. For example, you can create a stored procedure that takes a
product name as a parameter and displays the product details for the specified product.
To use stored procedures that take parameters, use the following syntax:

MyCommand = New SqlDataAdapter("Procedure_Name", MyConnection)

MyCommand.SelectCommand.CommandType = CommandType.StoredProcedure

‘Adding a SQL parameter with SQL data type

MyCommand.SelectCommand.Parameters.Add(New
SqglParameter("@Parameter_name",

SqglDbType.datatype, size))

'Setting the value of the SQL parameter

MyCommand.SelectCommand.Parameters("@Parameter_name").Value =
TextBox1.Text

In the last statement, the value of the parameter is initialized. Here, the value is initialized
by a value entered in a text box at run time.

Before you can use a stored procedure in your Web application, create a procedure
named "DisplayCustomer." The code for the same is given as follows:

Create Procedure DisplayCustomer (@CustID Varchar(4))
As

Select * from Customers

Where CustomerID=@CustID

Return
Next, you'll extend the functionality of the Customer form shown in Figure 12-3.

Add a button with ID and text as "Query." In the Cl i ck event of this button, write the
following code:

Dim DS As DataSet
Dim MyConnection As SglConnection
Dim MyCommand As SqlDataAdapter

MyConnection = New SglConnection("server=localhost;uid=sa;pwd=;database=Pubs")
‘Calling the DisplayCustomers stored procedure

MyCommand = New SqlDataAdapter("DisplayCustomers", MyConnection)
MyCommand.SelectCommand.CommandType = CommandType.StoredProcedure
'‘Adding the SQL parameter

MyCommand.SelectCommand.Parameters.Add(New SqglParameter("@CustID",
SqlDbType.NVarChar, 4))

‘Specifying the parameter value
MyCommand.SelectCommand.Parameters("@CustlD").Value = Customer_ID.Text

DS = New DataSet()
MyCommand.Fill(DS, "Customers")

MyDataGrid.DataSource = DS.Tables("Customers").DefaultView
MyDataGrid.DataBind()

When you run the application, you can test the code for its functionality. To do so, enter
a customer ID in the Customer ID text box and click the Query button. The DataGrid
control now displays only one record with the specified customer ID.

Using ADO Extensions (ADOX)

Data is stored and maintained in different data sources. Some data source applications
include MS-Access, SQL Server, Oracle, and Sybase. Each data source uses its own
native syntax. Therefore, when you need to manage data stored in data sources from
your applications, you would prefer to use standard objects and syntaxes irrespective of
the data sources. It is inconvenient to use different objects, methods, and syntaxes to
manage different data sources. ADOX provides a set of standard objects that you can
use to manage data stored in different data sources.

ActiveX Data Objects Extensions (ADOX) is an extension of the ADO objects and
programming model that allows creation, modification, and manipulation of schema
objects, such as databases, tables, and columns. ADOX also includes security objects
that enable you to maintain users and groups that access the schema objects. ADOX

security objects can be used to grant and revoke permissions on objects that are
accessed by different users and groups.

ADOX is part of the Microsoft Data Access Components (MDAC) SDK. When you install
Visual Studio .NET, the Windows Component update installs MDAC 2.7. You can visit
the htt p: // www. mi crosof t. conf dat a/ downl oad. ht m site to get the latest

release of MDAC SDK.

Standard ADOX objects

ADOX objects are a set of standard objects that are used to create and manipulate data
stored in different data sources irrespective of their native syntaxes. Table 12-4
describes the ADOX objects.

Table 12-4: ADOX objects

Object Description

Cat al og Represents

the
collections
that
describe the
schema
catalog of a
data source.

Tabl e Represents

atable
stored in a
database.
This object
includes
columns,
indexes,
and keys.

Gol um Represents

a column
that might
be from a
table, index,
or key.

| ndex Represents

a table
index.

Key Represents

a key field:
primary,
foreign, or
unique.

Virew Represents

a view,
which is a
set of
filtered
records from
a table.

Procedure Represents

a stored
procedure in

Table 12-4: ADOX objects

Object Description

| | adatabase.

User Represents

a user who
has access
toa
database.

Group Represents

a group that
has access
toa
database.

The different ADOX objects can be grouped together in ADOX collections. For example,
Tabl es is an ADOX collection that represents all the Tabl e objects in a catalog. The
other ADOX collections are Col umms, | ndexes, Keys, Vi ews, Procedur es, Users,
and Gr oups.

The different ADOX objects share a set of common properties and methods. Table 12-5
describes some of the ADOX properties.

Table 12-5: ADOX properties

Property Description

Act i veConnecti on Represents
the ADO
Connecti o
n object.

Count Represents

the number
of objects in
an ADOX
Collection.

Narme Represents

the name of
an ADOX
object.

Pri mar yKey Used to

indicate
whether or
not the
index
represents a
primary key.

Uni que Used to

indicate
whether or
not the
index
represents a
unique key.

Type (Col'um) Represents

the data
type of a
column.

Table 12-5: ADOX properties

Property

Description

Type (Key)

Represents
the data
type of the
key.

Comand

Represents
the ADO
Conmand
object that is
used to
create or
execute a
procedure.

Table 12-6 describes some of the ADOX methods.
Table 12-6: ADOX methods

Method

Description

Create

Used to
create a
catalog.

Del et e

Used to
delete an
object from
an ADOX
Collection.

Append

This is a
common
method
shared
among
different
objects and
is used to
add a new
ADOX
object to an
ADOX
Collection.
For
example,
when used
with Tables
object, the
method is
used to add
aTabl e
object to a
Tabl es
Collection.

Get Obj ect Owner

Used to get
the name of
the owner of
an object in
a catalog.

Table 12-6: ADOX methods

Method Description

Set Obj ect Onner Used to

specify the
owner of an
object.

Get Per m ssi ons Used to get

the
permissions
for a user or
a group on
an object.

Set Per m ssi ons Used to

specify
permissions
for a user or
a group on
an object.

ChangePassword Used to

change the
password of
a user.

Using ADOX objects

You can use ADOX objects in your Web applications to manage data stored in different
data sources. However, before you can use ADOX objects, you need to establish a
reference to the ADOX type library. The name of the ADOX library is Msadox.dll. To
establish a reference to this type library, select Add Reference from the Project menu.
Then, you can specify the path for the library.

Note ADOX requires an interop assembly. When you add reference for
the ADOX library, a dialog box appears asking you if you want to
generate an interop wrapper. At this stage, click Yes to add the
ADOX reference.

After adding the reference to the type library, you can go ahead and write the code to
create databases, tables, or columns in a table.

To create a database, use the following syntax:
Dim ObjectName as New ADOX.Catalog

ObjectName.Create "Provider = Name of the provider; Data Source = Path of the
database”

In this syntax:
= (Obj ect Nane refers to the instance of the ADOX Cat al og object.
= The Create method takes two parameters:
o Provider: Specifies the name of the database provider.
The different providers include Microsoft OLE DB
Provider for ODBC, Microsoft OLE DB Provider for the
Microsoft Jet Database Engine, Microsoft OLE DB
Provider for Oracle, and Microsoft OLE DB Provider for
SQL Server.
o Data Source: Specifies the path where you want to
create the database.

The following code snippet illustrates how to create a table called "Products” in a
database called "Sales.mdb" stored in MS Access:

Dim tablel as New Table
Dim catalogl as new ADOX.catalog

‘Setting a connection with the Sales database

catalogl.ActiveConnection = "Provider = Microsoft.Jet.
OLEDB.4.0; Data Source = C:\Sales\Sales.mdb"

'Specifying the name of the table
tablel.Name = "Products”

'‘Adding columns in the table. Notice that the column

name along with its data type is specified as arguments to the Append method.

tablel.Columns.Append "ProductID", adVarWChar, 4
tablel.Columns.Append "ProductDescription”, adVarWChar, 20
tablel.Columns.Append "Price", adinteger
tablel.Columns.Append "Quantity", adinteger

‘Adding the table in the Tables collection. Notice that the
Table object is specified as an argument to the Append method.

catalogl.Tables.Append tablel

In addition to managing data with ADOX objects, you can set the security options
associated with different schema objects. Before you can use the ADOX objects to set
user or group permissions, you must open the connection with the system database that
stores all security information. Then, you can use the Get Per m ssi ons and

Set Per mi ssi ons functions to grant and revoke user or group access permissions on
an object.

Summary

This chapter explored the server-side data access by using SQL Server from your Web
applications. First, you learned the SQL basics. You learned how to retrieve, add,
modify, and delete data in SQL tables. You also learned how to create and execute
stored procedures. Then, you learned how to implement the retrieval, addition,
modification, and deletion of server-side data from your Web applications. You also
learned to implement stored procedures in your Web applications. Finally, you learned
how to use ADOX objects to create and manipulate schema objects.

cnapter 13: Advanced Data Binding and XML

Overview

The World Wide Web and its rapid growth in the 1990s revolutionized the methods of
accessing information and conducting commerce. Numerous companies use the Web as
a powerful tool to advertise and sell their products. This has led to an increase in the
number of Web applications and their requirements in terms of payment handling, data
access, and security. As a result, various new technologies have evolved.

One of the most important requirements of Web applications, especially B2B e-
commerce applications, is the ability to interchange data in a standard format that can be
understood by any hardware and software platform. Enterprises having similar business
interests may need to share data, which may be stored on disparate platforms. This
need for a common interface for exchanging data resulted in the evolution of Extensible
Markup Language (XML), which is the latest and the most hyped Web technology.

What is XML? How does it allow data interchange in Web applications? These are the
questions that need to be answered before you look at its use in ASP.NET. In this
chapter, you will learn about XML and its related specifications. You will also learn to use
XML documents in ASP.NET.

Introduction to XML

XML is the World Wide Web Consortium's (W3C) specification for interchanging
structured data in Web applications. An XML document enables you to store data in the
same way a database enables you to store data. However, unlike databases, an XML
document stores data in the form of plain text, which can be understood by any type of
device, whether it is a mainframe computer, a palmtop, or a cell phone. Thus, XML
serves as a standard interface required for interchanging data between various Web
applications.

Note W3C (www.w3c.org) is a consortium that ensures the growth of
the Web by developing common protocols for the Web. It also
ensures that various Web technologies are interoperable. W3C
has more than 500 organizations as its members.

XML is a markup language that enables you to enclose data within tags. So how is it
different from HTML? The difference lies in the fact that HTML has a set of predefined
elements that concentrate on the appearance of the contents within the document. For
example, when you enclose the data within the <I > and </ | > tags, the browser
interprets these tags and displays the content enclosed within the tags in italics. The
browser is not concerned about the contents within the tags.

Conversely, XML concentrates on the content in the document and is not concerned with
how the contents should appear. For example, if you are creating a document that stores
the data about the products offered by your company, you can create a tag called

<Pr oduct Descri pti on> and enclose the description of a product within this tag.
Thus, tags in XML serve the purpose of structuring the content within the XML
document. No presentation or appearance is associated with any of the XML tags. XML
does not provide any predefined set of tags. Rather, it enables you to create your own
tags. In that sense, XML can be called a meta-markup language, which enables you to
create your own markup or vocabulary. In fact, many existing markup languages have
been derived from XML. Some examples of markup languages that are based on XML
are Wireless Markup Language (WML), which is used to create Web applications that
can be accessed using a cell phone, and MathML, which is used to represent
mathematical equations.

An example will help you to understand the difference between XML and HTML.
Consider the following HTML document that displays a list of items and their prices:

<HTML>
<HEAD> <TITLE> Items Data </TITLE> </HEAD>
<BODY>

 Item Name : Chocolate Price: 1

 Item Name: Cadbury Price: 2.5

</BODY>

</HTML>
When you open this HTML document in a browser, such as Internet Explorer 5.0, it will

look like Figure 13-1.

Al liems Data - Microsoft Intemet Exploner
File Edit View Favorites Tools Help [o |
sebo - 5 - D () Y| Dsench ilFmvoses Py | Ly *
Adddrngs [C retuthenencotiterss bird =] Go ||Links *
=l

1. [Item Mame : Chocolate Price : 1
5 &

2 Ttemn Mame | Cadbury Price: 2.5

2] Done L2 My Computer
Figure 13-1: An HTML document

Now, let's create an XML document that represents the same information:
<?xml version="1.0"?>
<ITEMS>
<ITEM>
<NAME> Chocolate </NAME>
<PRICE> 1 </PRICE>
</ITEM>
<ITEM>
<NAME> Cadbury </NAME>
<PRICE> 2.5 </PRICE>
</ITEM>

</ITEMS>
In this code, the first statement, <?xm versi on="1. 0" ?>, is called XML declaration.
It informs the browser that the document being processed is an XML document.

Note XML documents have the extension .xml.

When you open the preceding XML document in Internet Explorer 5.0, it will look like
Figure 13-2.

'Er_-"'hlt'r.llllh whwrwmoolitems. xkml - Micresoll Intermel Explorer M= E

File Edit View Favorites Taols Help [o |
wBack = =+ (@[])| DSemch [i)Fvoster PHsso | [h= *
Addrees 2] C Uretpuhmncotiters wrl =| #Go ||Links *

SNAMEChocolata<MaMEs

FRICE>namic/FRICES
i G bary < TA S
CE>2 . 5</PRICE

|
2] Done = My Computer 4

Figure 13-2: An XML document

As can be seen from the figure, the XML document is displayed in the form of a tree
view, which can be expanded and collapsed. Any XML document that you open in
Internet Explorer 5.0 will be displayed in a similar format.

While creating an XML document, you must remember some basic rules:

= All tags must be closed. In HTML, even if you don't close a tag, it does not
give you any errors. However, in XML, all opening tags must have
corresponding closing tags; otherwise, the browser displays an error
message.

= All empty tags must include a / character before the closing angular bracket
(>). For example, in HTML, you have the tag for inserting an image
in a Web page. This tag does not require any closing tag because the tag
itself contains all the relevant information, such as the image source and its
position. Therefore, is an empty tag. If you want to use an empty tag
called <Image> in XML, you must include a / character before closing the
angular bracket of the tag as follows:

<Image src="tree.gif" />

= All attributes of an element must be enclosed within quotes.

= Tags should not overlap; that is, the innermost tag must be closed before
closing the outer tags. Consider the following code:

<FirstName> James <LastName> Ford </FirstName> </LastName>
This statement would result in an error because the outer tag, <Fi r st Nanme>,
has been closed before the inner tag, <Last Name>.
= Tags are case-sensitive. Therefore, the case of the closing tag should match
the case used in the opening tag.
An XML document that conforms to these rules is called a well-formed XML document.

An Overview of XML-Related Specifications

XML does not exist all by itself. Numerous additional XML -related specifications provide
guidelines for working with XML documents. Before discussing the implementation of
XML in ASP.NET, it is important to understand these XML-related specifications.
Therefore, this section looks at some of the important XML-related W3C specifications.

Document Type Definition

A Document Type Definition (DTD) enables you to specify the structure of the content in
an XML document. Creating a DTD is similar to using a CREATE TABLE statement in
SQL, in which you specify the columns to be included in the table and whether they can
hold null values. In a DTD, you can specify the elements that can be used in an XML
document and specify whether it is mandatory to provide values for the elements.

When you include a DTD in an XML document, software checks the structure of the XML
document against the DTD. This process of checking the structure of the XML document

is called validating. The software that performs the task of validating is called a parser.
The following are the two types of parsers:
= Nonvalidating parser: Checks whether an XML document is well
formed. An example of a nonvalidating parser is the expat parser.
= Validating parser: Checks whether an XML document is well formed
and whether it conforms to the DTD that it uses. The MSXML parser
provided with Microsoft Internet Explorer 5.0 is an example of a
validating parser.
An XML document that conforms to the DTD is called a valid document.

An example of a DTD is given as follows:
<IELEMENT ITEMS (ITEM)+>
<I[ELEMENT ITEM (NAME, PRICE)>
<IELEMENT NAME (#PCDATA)>

<I[ELEMENT PRICE (#PCDATA)>

In this example, we have declared four elements, | TEMS, | TEM NAME, and PRI CE. After

specifying the element name, you specify the type of content of that element. In case of

| TEMS, the content type is (1 TEM +, which means that this element can contain one or

more | TEMelements. Similarly, the | TEMelement contains the elements NAME and

PRI CE, which contain character data. This type of data is represented as (#PCDATA) .
Note DTD files have the extension .dtd.

You can attach this DTD to an XML document by including the following statement after
the processing instruction:

<IDOCTYPE ITEMS SYSTEM "items.dtd">

Consider the following XML document that uses the previous DTD statement:
<?xml version="1.0"?>

<IDOCTYPE ITEMS SYSTEM "ITEMS.DTD">

<ITEMS>

<ITEM>

<NAME> Chocolate </NAME>

</ITEM>

</ITEMS>

When you check this document using a validating parser such as MSXML, it results in an
error message, because the | TEMelement declared in the DTD contains two mandatory
elements, NAME and PRI CE. However, the PRI CE element is missing in the XML
document. Thus, a DTD enables you to implement consistency in the structure of data
contained within XML documents.

XML namespaces

As stated earlier, XML enables you to create your own elements. It also enables you to
use elements that are defined for and used by various software modules. This may lead
to certain problems. For example, in case of a purchase order, you may have an element
called QTY that stores the quantity of a purchase. In some other case, the same element
may be used to store the quantity on hand for a particular item. In such a case, there
may be a collision of elements having the same names. To prevent this from happening,
W3C has recommended the use of XML namespaces.

XML namespaces use Uniform Resource Identifiers (URIs) to differentiate tags used in
different vocabularies. With this approach, each element can be uniquely identified using
the namespace. A namespace can be declared using the xm ns keyword. For example,
a namespace for a purchase order could be defined in the following way:

xmins:PurchaseOrder="http://www.po.com/po"

Now when you use the QTY element, you must prefix it with the alias "PurchaseOrder"
as follows:

<PurchaseOrder:QTY>
When you specify a namespace URI, the parser does not actually search for the URI,

nor does it search for any documents at the specified URI. The URI just serves as a
unique identifier for tags from different vocabularies.

XML schemas

An XML schema provides a way of defining a structure of an XML document. It enables
you to describe the elements and attributes that can be present in an XML document. An
XML schema is similar to a DTD. However, it can be considered a superset of a DTD in
terms of the functionality that it provides. An advantage of using an XML schema is that it
enables you to specify the data types for elements. A DTD, on the other hand, enables
you to specify whether the element can contain character data or other elements, or
whether it is an empty element. It does not enable you to specify whether a particular
element should contain integer, float, or string values. Another difference between an
XML schema and a DTD is that an XML schema follows XML syntax. In other words, it is
an application of XML, whereas a DTD has its own syntax.

The following is an example of an XML schema for the Items.xml document:
<xsd:schema xmins:xsd="http://www.w3.0rg/2001/XMLSchema">

<!I-- Declaring the root element "ITEMS" -->
<xsd:element name="ITEMS" type="ITEMDATA"/>

<!I-- Declaring the complex type "ITEMSDATA" which should contain
one or more "ITEM" elements -->
<xsd:complexType name="ITEMDATA">
<xsd:sequence>
<l-- The "ITEM" element can occur one or more times in
the XML document. This can be specified by using the minOccurs and maxOccurs
attributes -->
<xsd:element name="ITEM" type="DETAILS" minOccurs="0"
maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

<!I-- Declaring the complex type "DETAILS" which is used in the
"ITEM" element. This type contains the elements "NAME" and "PRICE" -->
<xsd:complexType name="DETAILS">
<xsd:sequence>
<xsd:element name="NAME" type="xsd:string"/>
<xsd:element name="PRICE" type="xsd:decimal" />
</xsd:sequence>
</xsd:complexType>

</xsd:schema>
As you can see from this example, you can specify the structure of elements by using an
XML schema. In addition, you can specify whether the element occurs once or more

than once, whether it is optional, and whether it should contain a string or a numeric
value. When you validate an XML document against this schema, the parser will ensure
that all the necessary elements are specified in the XML document. In addition, it will
check whether the value specified in the PRI CE element is a numeric value. If you add a
string instead of a numeric value, the parser will give you an error message. Thus, XML
schemas provide additional control over the contents in an XML document, as compared
to a DTD.
Note XML schema files have the extension .xsd. XML schemas are fully
supported with MSXML 4.0, which is a validating parser from
Microsoft. This parser can be freely downloaded from
http://msdn.microsoft.com.

Extensible Stylesheet Language Transformations (XSL/T)

As discussed earlier, XML does not deal with the presentation of data contained within
an XML document. It concentrates only on the structure and the data contained within
the structure. This separation of the data and its presentation enables you to display the
same data in various formats. However, because an XML document does not contain
any formatting instructions for displaying data, you need some special tool that can
convert an XML document into a user-viewable format.

XSL/Tis a W3C specification for formatting XML documents and displaying them in the
desired format. XSL/T follows XML syntax. You will be looking at the creation of an
XSL/T style sheet later in this chapter in the section "XML Web server control."

XML Document Object Model

The XML Document Object Model (XML DOM) is an in-memory representation of an
XML document. It represents data in the form of hierarchically organized object nodes,
and enables you to programmatically access and manipulate the elements and attributes
present in an XML document. W3C has provided some common DOM interfaces for
accessing XML documents through a program. These standard interfaces have been
implemented in different ways. Microsoft's implementation of XML DOM has the
XMLDocument class, which is at the top of the document object hierarchy. It represents
the complete XML document. Another example is the XMLTransform class, which has a
reference to the XSL/T file that specifies how the XML data is to be transformed. You
can access XML DOM classes and objects from any scripting language as well as from
programming languages such as VB.NET.

Support for XML in ASP.NET

The growing popularity of XML as a common data interchange format between Web
applications has resulted in an increase in the number of software platforms that support
XML, and ASP.NET is no exception. ASP.NET enables you to work with XML by
supporting a number of XML-related classes. Some of the features provided in ASP.NET
for working with XML are as follows:

= System.Xml namespace

= XML server-side control

= Data conversion from a relational to XML format

= Data binding with XML documents

System.Xml namespace

The System.Xml namespace is a collection of classes that are used to process an XML
document. This namespace supports XML-related specifications, such as DTDs, XML
schemas, XML namespaces, XML DOM, and XSL/T. Some of the classes present in the
System.Xml namespace are as follows:

= XmlDocument: Represents a complete XML document.

= XmlDataDocument: Derived from the XmIDocument class and enables
you to store and manipulate XML and relational data into a data set.

= XmlElement: Represents a single element from an XML document.

= XmlAttribute: Represents a single attribute of an element.

= XmlDocumentType: Represents the DTD used by an XML document.

= XmlTextReader: Represents a reader that performs a fast, noncached,
forward-only read operation on an XML document.

= XmlTextWriter: Represents a writer that performs a fast, noncached,
forward-only generation of streams and files that contain XML data.

XML Web server control

The XML Web server control enables you to insert an XML document as a control within
a Web Form. The control has the following properties:
= Docunent Sour ce: Enables you to specify the URL to the XML

document to be displayed in the Web form
= Transf or nSour ce: Enables you to specify the URL to the XSL/T file,

which transforms the XML document into a desired format before it is
displayed in the Web form
= Docunent : Enables you to specify a reference to an object of the

XMLDocument class
= Transf orm Enables you to specify a reference to an object of the

XMLTransform class

All four properties can be changed programmatically by providing an ID to the XML
server-side control. To use the XML server-side control in ASP.NET, you can use the
following syntax:

<asp:xml DocumentSource="XML document" TransformSource=
"XSL/T file" Document="XMLDocument object" Transform="XSLTransform object">
You can also use the toolbox to create an XML Web server control. You can drag the
XML control from the Web Forms tab and then set the DocumentSource,
TransformSource, Document, and Transform properties of the control.
Consider the following XML document:
<?xml version = "1.0"?>
<Products>
<Product>
<Productld> P001 </Productld>
<ProductName> Baby Food </ProductName>
<UnitPrice> 2.5 </UnitPrice>
<QtyAvailable> 1200 </QtyAvailable>
</Product>
<Product>
<Productld> P002 </Productld>
<ProductName> Chocolate </ProductName>
<UnitPrice> 1.5 </UnitPrice>
<QtyAvailable> 1500 </QtyAvailable>
</Product>
</Products>

You can transform this XML document into a desired format by creating a style sheet.
The steps for creating an XSL/T style sheet are as follows:

1

XSL/T follows XML syntax. Therefore, the following is the first line in
the XSL/T file:

<?xml version="1.0"?>

2.

3.

An XSL/T file has stylesheet as its root element. This element also
specifies the namespace for XSL/T:

<xsl:stylesheet version = "1.0" xmlIns:xsl =

"http://www.w3.0rg/1999/XSL/Transform">
The XSL/T processor provided with the MSXML parser supports the URI
"http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf' for XSL/T.

4,

Create a template for displaying your data in the desired format. You
can create a template using the template element. The match attribute
of the template element enables you to specify the element from which
you want the template to be applied. If you want to apply the template
from the root element, you provide the value "/" to the match attribute:

<xsl:template match="/">

5.

6.
7.

Within the template, you can use HTML tags to create an ordered list:

The data from the XML document should be fetched and displayed in
the ordered list. All data from the XML document needs to be
processed. You use the for-each element to perform a task repeatedly.
The select attribute of the for-each element enables you to specify the
element for which the repetitive task needs to be performed. In this
example, each product needs to be processed. The "Product" element
exists within the "Products" element. Therefore, you give the following
statement to process the details of each product:

<xsl:for-each select="Products/Product'>

8.

9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

Next, you need to fetch the values of various elements within the
"Product” element and display the values in the list. You can fetch the
values of elements from an XML document using the value-of element.
The select attribute of the value-of element enables you to specify the
element that needs to be fetched. The following code snippet shows
how values for each product can be fetched and displayed in the list:

<i>

Product Id :

<xsl:value-of select="Productld'/>

<fi>
Product Name :

<xsl:value-of select="ProductName'/>

Unit Price :

<xsl:value-of select="'UnitPrice'/>

Quantity On Hand :

<xsl:value-of select="QtyAvailable'/>

<hr />

In this code, the tag of HTML is used to create a list item. The
 tag
is used to insert a line break. Note that the
 tag has an extra / character
before the closing angular bracket. Because XSL/T follows XML syntax, you
must ensure that all empty elements have the / character.

21.
22.
23.

The last step is to ensure that all the opening tags are closed:
</xsl:for-each>

24, </xsl:template>
</xsl:stylesheet>

The complete XSL/T style sheet will look as follows:
<?xml version="1.0"?>
<xsl:stylesheet version = "1.0" xmIns:xsl =
"http://www.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<QOL>
<xsl:for-each select="Products/Product'>

 <i>
Product Id :
<xsl:value-of select="Productld'/>

<fi>
Product Name :
<xsl:value-of select="ProductName'/>

Unit Price :
<xsl:value-of select="UnitPrice'/>

Quantity On Hand :
<xsl:value-of select="QtyAvailable'/>

<hr />

</xsl:for-each>

</xsl:template>
</xsl:stylesheet>
You can display the formatted XML document in a Web form by typing the following code
in an ASPX file:
<html>
<body>
<asp:xml id="MyXmIDoc" documentsource="products.xml"
transformsource="products.xsl" runat="server">
</asp:xml>
</body>

</html>
When you execute the application, it will give the output shown in Figure 13-3.

'ill'.'ﬂl'.'. et reer -0 pwX ML Doc'WebFerm i aspx - BMicrosof imernet Explorer

File Edit View Favorites Tooks Help | ! |

walback = = = Zh (A S| P Sewch [g)Feeks | AMison | S5 Lk

Aﬂdln::lﬂj T N N E AT] T " — ﬂ oGe | Limks =
=]

1 Prodies Id: Foal
Froduct Mame - Baby Food
ot Prace - 2.5
Cruantity on Hand - 1200

2 FProduce fd: PO02
Product Marse - Chocolate
et Pracee - 1.5
Ouzantity sn Hand - 1500

=l
2] Dong CF Lacal intrans __
Figure 13-3: Output of the application implementing the XML server-side control

Converting Relational Data to XML Format

ASP.NET enables you to easily convert the data from a database into an XML
document. ASP.NET provides the XMLDataDocument class, which enables you to load
relational data as well as data from an XML document into a data set. The data loaded in
XMLDataDocument can then be manipulated using the W3C Document Object Model.

The following example converts the data stored in the "Orders" table of the "Sales"
database on SQL Server 7.0 into an XML document:
<%@ Page ContentType="text/xml" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<%@ Import Namespace="System.Xml" %>
<script language="VB" runat=server>
Sub Page_Load(Sender as Object, E as EventArgs)
Dim SQLcon as New SqlConnection (
"server=localhost;uid=sa;pwd=; database= sales")
Dim Mycommand as New SqlDataAdapter
("SELECT * FROM Orders", SQLCon)
Dim dsOrders As New DataSet()
Mycommand.Fill(dsOrders, "Order")
Dim XmIDoc as XmIDocument = New
XmlDataDocument(dsOrders)
MyXmlIDoc.Document = XmIDoc
Xmldoc.save (“orders.xml")
End Sub
</script>
<asp:xml id="MyXmlIDoc" runat=server/>
In this example, you specify that the contents of the page represent an XML document
by giving the following statement:
<%@ Page ContentType="text/xml" %>

You can also set the Cont ent Type property to HTML to indicate that the page contains
HTML elements. This statement is given to ensure that the contents of the resulting
output are processed properly.

The next step is to import all the necessary namespaces. In addition to including the
System.Data and System.Data.SQL namespaces, you are also required to include the
System.Xml namespace, because it contains all classes required to process an XML
document.

After importing the namespaces, you need to establish a connection with the SQL server
and fetch the required data. This is done using the following code:

Dim SQLcon as New SqlClient.SglConnection (
"server=localhost;uid=sa;pwd=;
database= sales")
Dim SQLcommand as New SqlClient.SqlDataAdapter
("SELECT * FROM
Orders", SQLCon)
Dim dsOrders As New DataSet()
SQLcommand.Fill(dsOrders, "Order")

After you have fetched the data into the data set, you can convert it into an XML
document by using the following statement:

Dim XmIDoc as XmIDocument = New XmlIDataDocument

(dsOrders)

In this statement, the constructor of the XmIDataDocument class is invoked. The
constructor takes the Dat aSet object as a parameter and loads the data set into the
XmiIDataDocument object. The reference to this new instance is stored in an object of
the XmIDocument class.

Finally, you display the resulting XML document in the Web form. This is done by
creating an XML server control with the ID "MyXmlIDoc" and setting the Docunent

property of the control to the XmIDocument object created in the previous step:

MyXmIDoc.Document = XmlIDoc

You can save the resulting XML document in a file by using the Save() method of
XMLDocument. The Save() method takes a string that specifies the name of the file as
a parameter. The following statement illustrates this:

Xmldoc.save ("orders.xml")

When you view the ASPX file in a browser, it will display the output as shown in Figure
13-4.

B i m i i BUSH e TLE Foi i S - M il B i gl

Fle 0 Vies Fowisites Teols el [= |
ek = =8 - 0 [0 N Doy [EiTesie (JHeoy | Y O
Aaddrzon] 5 — T — -) = e Lk ®
|
e T
IC=Pz

(= 1]
mn . T
2000-N5-03TIR=-"WNE

L
POOY
= s
128
2000-05-07F 101l

1|
&] D (ELors e
Figure 13-4: Output of the application that converts relational data into an XML document

Binding server-side controls with data in XML files

ASP.NET enables you to associate server controls with a variety of sources, including
XML files. You can think of an XML file as a special data table that contains data
embedded within the tags that describe the data.

You cannot bind an XML document directly to a server-side control because it contains
data in a plain-text format. You must first load XML data as a data table into a data set.
After loading the data into a data set, you can bind it to a server-side control. In this
section, you will create a file "Products.xml" and bind a DropDownList control to the
"ProductID" tag in the file. When a user selects a product ID from the DropDownList
control, the details about the product will be displayed in a DataGrid control. The
following are the steps involved in creating a Web application that performs the specified
tasks:

1. Type the following contents in a text file and save it as "products.xml":
2 <?xml version = "1.0"?>
3 <Products>
4, <Product>
5. <Productld> P001 </Productld>
6 <ProductName> Baby Food </ProductName>
7 <UnitPrice> 2.5 </UnitPrice>
8. <QtyAvailable> 1200 </QtyAvailable>
9. </Product>
10. <Product>
11. <Productld> P002 </Productld>
12. <ProductName> Chocolate </ProductName>
13. <UnitPrice> 1.5 </UnitPrice>
14, <QtyAvailable> 1500 </QtyAvailable>
15. </Product>
</Products>

16. Create a new Web project and create a Label control in the Design
view of the ASPX file. Change the Text property of the control to
"Select Product Id:".

17. Create a DropDownList control in the Design view of the ASPX file.
Set the values of the different properties of the DropDownList control

as given in Table 13-1.
Table 13-1: DropDownlList control properties

Property

Value

Description

I D

DLProdid

ID for the
control.

Dat aText Fi el d

Productld
(the field
from the
XML
documen

)

Retrieves
the data
source that
provides the
content of
the
DropDownLi
st. In this
case, the
value of the
property is
set to
Productld,
which
means that
the control
will display
the
Productld
from the
data source.

Dat aVal ueFi el d

Productld

Specifies
the value to
be set in the
data set
when the
selection
changes.

Aut oPost Back

True

Specifies
whether the
control
posts back
to the server
each time a
user
interacts
with the
control. In
this case, it
is set to
true, which
means that
every time a
user
interacts
with the
DropDownLi
st, it should
post back to

Table 13-1: DropDownlList control properties

Property

Value

Description

the server.
This is done
so that
whenever
an item is
selected
from the
DropDownLi
st, the
server
retrieves
details of
the
correspondi
ng item.

18. Create a DataGrid control and set the ID property of the control to
DGProdDetails.

19. Type the following lines in the ASPX file for importing the namespaces
System.Data and System.lO:

20. <%@ Import Namespace = "System.Data" %>
<%@ Import Namespace = "System.lO" %>

Any class that implements the ICollection interface can be used as a data
source by controls in a Web form. The ICollection interface provides the basic
functionality required for accessing data. To be able to manage collections,
you must import the System.Data interface. The System.IO interface contains
the classes that are required for reading the XML file into a data set.
21. Write the following code within the Page_Load() function to open the
products.xml file with read access permission:

22. dim ProdFile as new FileStream (server.mappath("products.xml"),

23. FileMode.Open, FileAccess.Read)
The FileStream class is defined in the System.lO namespace and has
functions for reading from and writing to the files. The constructor for the
FileStream class takes three parameters, described in Table 13-2.

Table 13-2: FileStream class constructor parameters

Parameter

Type

Description

Pat h

String

Relative or
absolute
path of the
file that
needs to be
opened

Mode

FileMode

Contains a
constant
that
specifies
how the file
is to be
created or
opened

Access

FileAccess

Contains a
constant

Table 13-2: FileStream class constructor parameters

Parameter Type Description

that
specifies the
way in
which the
file can be
accessed by
the
FileStream
object

In this example, the file is opened with read access.
24. The next step is to fill the data set with XML data. This can be done by
creating an object of DataSet and calling the ReadXml() method of
DataSet:

25. dim dsProductsData as new DataSet

dsProductsData.ReadXml(ProdFile)

The ReadXml () method takes a parameter of classes derived from the
Stream class and fills the Dat aSet object with the XML data. The Dat aSet
object will now hold the XML data in a relational form.

26. After reading the data into the DataSet, you can work with it. In this
application, the DataGrid is not to be displayed unless the user selects
an item from the DropDownList control. You also need to ensure that
the DropDownList control is populated only if the user has visited the
first time. Therefore, you need to check whether the user is visiting the
page for the first time. This can be done by using the IsPostBack()
method provided in ASP.NET. In case the user is visiting the page for
the first time, the DropDownList control needs to be populated with the
product IDs read from the XML document. This can be done by using
the following code:

27. if Not IsPostBack then

28. 'Set the DataSource property of the DropDownList
29. DLProdld.DataSource =

30. dsProductsData.Tables(0).DefaultView
31. ‘Bind the data with the control

DLProdld.DataBind()
In this code, the Dat aSour ce property of the DropDownList is set to the XML
data read in the Dat aSet . Because the Dat aText Fi el d property of the
DropDownList has been set to Productld, this step will result in displaying all
product IDs in the DropDownList.
32. If the user is not visiting the page for the first time, the DataGrid should
be populated with the details about the product selected from the
DropDownList. This can be achieved by using the following code:

33. Else

34. dvProductsView = new DataView(dsProductsData.Tables(0))
35. dvProductsView.RowFilter = "Productld="" +
36. DLProdld.Selecteditem.Text + ™"
37. DGProdDetails.DataSource = dvProductsView
38. DGProdDetails.DataBind()
end if

In this code, a new object dvPr oduct sVi ew of type DataView is created.
The constructor of the DataView class takes a DataTable as a parameter. In

this example, you pass the XML data read in the data set as a parameter.
Next, the RowFi | t er property of the DataView object is set to the product ID

selected from the DropDownList. This limits the results of the DataView to
only the rows that contain the same product ID as the one selected from the
DropDownList. Then, the DataSource property of the DataGrid with the ID
DGPr odDet ai | s is set to the DataView object. Finally, the data from the
DataView is bound to the DataGrid. This code will result in displaying the
details of the product selected from the DropDownList into the DataGrid.

The final code for displaying product IDs in a DropDownList and corresponding details in
a DataGrid is as follows:

<script language="vb" runat="server">
public sub Page _Load (Sender as Object, e as EventArgs)
dim ProdFile as new FileStream (server.mappath("products.xml"),
FileMode.Open, FileAccess.Read)
dim dsProductsData as new DataSet
dsProductsData.ReadXml(ProdFile)

if Not IsPostBack then
DLProdld.DataSource = dsProductsData.Tables(0).DefaultView
DLProdld.DataBind()
else
dim dvProductsView as new DataView(dsProductsData.Tables(0))
dvProductsView.RowFilter = "Productld="+ DLProdid.
Selectedltem.Text + "
DGProdDetails.DataSource = dvProductsView
DGProdDetails.DataBind()
end if
end sub

</script>

When you execute the application, you'll find that the DropDownList control displays the
product IDs stored in the XML document. When you click a particular product ID, it will
display the details about the product in the DataGrid control, as shown in Figure 13-5.

'Ell-lr.p: e pye FUAS Ptk ML WebFoarm1.aspx - Micreeolt Interned Ex... M=) B
File Edit View Favorites Taols Help [= |
Bak * = - O [3| Dsewch [aFrvker PHsey | = LF
Addrans (2] ritg et IS0 PrtMLAW st Fom] g x| o | |Links *

Sedect Froduce fd: =il .-I |
Product Details
Productld Producttiame UntPrce OtyAvmlable
211 Chocolate 1.5 150
-]
2] Dane ¥ Local intranet &

Figure 13-5: Output of the application implementing data binding with an XML file

This is one of the ways of binding XML data with ASP.NET server-side controls. You can
perform many such tasks of opening an XML document, reading each element from the
document, and displaying data from it using ASP.NET.

Summary

In this chapter, you were introduced to XML and its related specifications, such as DTD,
XML Schema, XSL/T, namespaces, and XML DOM. You also learned about the
System.Xml namespace provided in ASP.NET for working with XML documents. Then,
you looked at some simple applications of using XML with ASP.NET. Finally, you learned
about binding ASP.NET server controls to data from an XML document.

rart 11: Advanced ASP.NET

Chapter List
Chapter 14: ASP.NET Application Configuration
Chapter 15: Developing Business Objects
Chapter 16: Building HTTP Handlers
Chapter 17: Understanding Caching
Chapter 18: Building Wireless Applications with ASP.NET Mobile Controls
Chapter 19: ASP.NET Security
Chapter 20: Localizing ASP.NET Applications
Chapter 21: Deploying ASP.NET Applications

cnapter 12: ASP.NET Application Configuration

Overview

After an application is designed and developed, it needs to be deployed on an
application Web Server for launching it as a Web site on the Internet or an intranet. The
deployment process includes installation and configuration of the Web application (Web
site) on an application Web Server. Configuring a Web site requires implementation of
settings according to the server's capabilities and requirements. Configuring a Web site
might also require developers to write code. At a later stage, the site administrator might
need to change the settings of the site or the server on which the site has been deployed
so as to enhance the performance of the site. However, if the change in settings involves
embedding values into code, it becomes very complicated and difficult for both the
developer and the administrator to reconfigure the application.

The application deployment process requires a rich and flexible configuration system.
The configuration system should enable developers to easily associate settings with an
installable application without having to embed values into code. The system should also
enable administrators to easily adjust or customize these values after the deployment of
the application on the application Web Server. The ASP.NET configuration system fulfills
both these requirements.

This chapter explores the ASP.NET configuration concept, the Web.config file, and the
sections in the Web.config file.

ASP.NET Configuration Concepts

ASP.NET is designed to provide developers with rich support for designing, developing,
and deploying Web applications. For application deployment, ASP.NET provides a rich
set of configuration settings. The configuration information for the entire ASP.NET
application is defined and contained in configuration files. These files are written in XML
and are named Web.config.

ASP.NET uses a hierarchical configuration architecture that uses an XML format. In the
hierarchical configuration architecture, whenever a client makes a request for an

ASP.NET application or a specific ASP.NET resource, ASP.NET checks the settings for
the URL requested by the client in a hierarchical fashion. The check is carried out using
the configuration files located in the path for the requested URL. These settings are then
logged or cached by the application Web Server to speed up any future requests for
ASP.NET resources. To understand the hierarchical configuration architecture better,
consider a Web site that has a file structure similar to that shown in Figure 14-1.

D_ N @ Application Root

D . @ SubDiF 1

Sublhr 2

Figure 14-1: File structure of a Web site
In this file structure, suppose that the Application Root directory is the virtual directory
(vdir) mapped for the site. A virtual directory is the main directory for the site, which
contains all the files and subdirectories, including the script pages, HTML pages,
programs, or any graphics for the site. Every site must have a virtual directory; the virtual
directory might contain many subdirectories. The other two subdirectories within the
Application Root directory are not virtual directories. This directory structure allows
administrators to configure the application settings. For example, administrators can
configure the application settings, such that all users are given access to the ASP.NET
resources in the Application Root directory, but only selected users are given access to
the ASP.NET resources in the subdirectories.
Consider a scenario wherein the Web site has only one Web.config file in the SubDirl
directory. Although the Web site has only one Web.config file in the directory structure,
the Web site actually uses two Web.config files, because a file named Machine. config
exists in the %windir%\Microsoft. NET\Framework\v1.0.<buildnumber>\CONFIG
directory. In this path, <buildnumber> represents 2914 for the Beta 2 release of the
Microsoft .NET Framework SDK. In future releases, this build number will change, and
therefore the actual name of the folder might also change. This file is at the highest level
and is called the machine-level configuration file. This machine-level configuration file
comes with the Microsoft .NET Framework and contains the default settings. All
ASP.NET directories and subdirectories inherit settings from this machine-level
configuration file. However, a Web.config file can also be located at the Web site level,
and if it is not overridden at a lower level, it will apply to all ASP.NET resources on the
Web site.

Note A server can host multiple Web sites.

The default settings of the machine-level configuration file allow access to all users. In
this scenario, there is no configuration file in the Application Root directory that modifies
the default behavior of the machine-level configuration file; all users will be given access
to the ASP.NET resources on the site, because the Application Root directory inherits
settings from the machine-level configuration file. The configuration file located in the
SubDirl directory can have settings that specify access only to certain users. In such a
case, all users can access the ASP.NET resources in the Application Root directory, but
only certain users can access the ASP.NET resources in both the subdirectories.

Note The configuration settings for virtual directories are independent of
the physical directory structure, and unless the manner in which
the virtual directories are organized is exclusively specified,
configuration problems might result.

To summarize, the hierarchical configuration architecture provides a flexible and rich
configuration system that enables extensible configuration data to be defined and used
throughout the ASP.NET applications. The configuration system of ASP.NET has the
following benefits in terms of deployment of Web applications:
= The configuration information for the ASP.NET applications is stored in XML-
based configuration files, which makes it easy to read and write.

Administrators and developers can use a standard text editor, XML parser,
or Perl script for any kind of interpretation or updating of the configuration
settings of the application.

= The configuration information files are stored in the same directory tree as the
rest of the application files, thus making the installation of ASP.NET
applications easy.

= The configuration system is highly flexible and allows developers to store
customized configuration criteria and settings in the configuration system.
This extensibility feature can then be used at run time to affect the
processing of the HTTP requests.

= The configuration system allows the automation of any configuration updates
made to the ASP. NET configuration files. The changes made are applied
without requiring any user intervention.

= The configuration information contained in the XML file is applied
hierarchically with regard to the virtual directory structure, which is provided
at the time of site creation on the Application Server. Subdirectories under
the virtual directory inherit or override the configuration settings from their
parent directories. This allows different settings for different applications or
different parts of a single application.

Now that you understand the basic concepts of the ASP.NET configuration, let us now
take a closer look at the structure of the Web.config configuration files.

Web.config Configuration Files

As mentioned earlier, the configuration information for any ASP.NET application is
defined and contained in configuration files named Web.config files. The following code
illustrates the basic structure of an ASP.NET configuration file:

<configuration>
<configSections>

<section name="appSettings" type = "System.Web.
Configuration.NameValueSectionHandler" />

<section name="httpModules" type = "System.Web.
Config.HttpModulesConfigHandler"/>

<section name="httpHandlers" type = " System.Web.
Config.HttpHandlerConfigHandler " />

<section name="sessionState" type = " System.Web.
Config.SessionStateConfigHandler " />

<section name=" globalization " type =" System.Web.
Config.GlobalizationConfigHandler " />

<!I-- Additional configsection declarations go here -->
</configSections>

<appSettings>
<l--custom application settings go here-->

</appSettings>

<system.web>

<compilation defaultLanguage="vb" debug="true">
<!-- all compiltion config is here -->
</compilation>

<customErrors mode="RemoteOnly">
<!-- error config goes here -->
</customErrors>

<authentication mode="Windows">
<!-- authentication settings controlled here -->
</authentication>

<authorization>
<! — Allow/Deny all users , roles-->
</authorization>

<trace enabled="false" requestLimit="10" pageOutput="false"
traceMode="SortByTime" localOnly="true" />
<!-- control trace settings for this web application -->

<sessionState>
<!-- configure session state for this web application -->

</sessionState>

<httpHandlers>
<!--configure HTTP Handlers for this web application-->
</httpHandlers>

<httpModules>
<!--configure HTTP Modules for this web application-->
</httpModules>

<globalization/>

<!-- configure globalization settings -->

</system.web>

</configuration>
Note This code listing is not the full description for the Web.config file;
this code simply displays the basic structure of an ASP.NET
configuration file.

The preceding code displays the structure of a Web.config file presented in the XML
format. As you can see in the code, tags provide structure to the document. In a
Web.config file, all the configuration information for an ASP.NET application must reside
between the <confi gur ati on>and </ confi gur ati on> tags. The file is divided into
three main parts:
= The configuration section handler declaration part contained within the
<confi gSections>and </ confi gSecti ons> tags. This is the root
section, which contains the declaration of all other sections of the
Web.config file.
= The application-specific settings in configuration variables in the appSettings
section.
= The actual configuration sections in the system.web section. All tags defined
in this section control the behavior of the ASP.NET runtime. This section is
a great way to control, change, and manage the behavior of a Web
application.
For each configuration section in the file, there should be one <confi gSecti ons>
declaration. Each individual declaration specifies the configuration section name and the
type of the configuration section handler. The type attribute is used to specify the
configuration section handler class to be associated with the element specified in the
name attribute. If the name of the configuration section is other than the default name, an
entry must be made in <conf i gSect i ons> to reflect the change. For example, if the
Web.config file has session state information defined in a section named anything other
than <sessi onSt at e>, then an entry for this new section must be made in
<confi gSecti ons>.
Note <configSections> entries can be made even if the default section
names are being used. Of course, this is redundant.

ASP.NET Configuration Sections

The Web.config file is used to configure the ASP.NET applications and contains several
configuration section handlers that are used to process the configuration settings. This
section describes these configuration sections in detalil.

<configuration> section
The <conf i gur at i on> section is the root configuration section for all the ASP.NET
configuration files. This is a special tag that encapsulates all other sections in the file.
The syntax is as follows:

<configuration>

</configuration>

<configSections> section

The <conf i gSect i ons> section contains a list of the configuration section handlers
associated with each configuration section. When you want to devise your own section
handlers, you must declare them in the <configSections> section. The syntax is as
follows:

<configSections>
<section name="config section element name" type = "Type"/>

</configSections>
The two attributes Nanme and Type are described as follows:
= Nane: Used to specify the name of the element that will contain the
configuration data.
= Type: Used to specify the configuration section handler class to be
associated with the element specified in the Name attribute.

A configuration section handler must be declared for each configuration
Note section in the file.
An example of using the <conf i gSect i ons> section is as follows:

<configSections>
<httpModules>
<section name="System.Web.Caching.OutputCacheModule" />
<section name="System.Web.SessionState.SessionStateModule" />
</httpModules>

</configSections>
The <ht t pModul es> section has a configuration handler that is set to
System.Web.Caching.OutputCacheModule, and the <sessi onSt at e> section has a

configuration handler that is set to System.Web.SessionState.SessionStateModule
classes.

<appSettings> section

The <appSet ti ngs> section of the Web.config file provides a way to define custom
application settings for an application. The section can have multiple <add>
subelements. The syntax is as follows:

<appSettings>
<add Key="[key]" Value="[value]"/>

</appSettings>

The <add> subelement supports two attributes:
= Key: Specifies the key value in an appsettings hashtable
= Value: Specifies the value in an appsettings hashtable

An example is as follows:

<appSettings>
<add Key="dsn"
Value="localhost;uid=userl;pwd=password"/>

</appSettings>
The Key value is set to dsn, and the Val ue is set to the name of a server, user ID, and
password.

<browserCaps> section
The <br owser Caps> section of the Web.config file enables you to specify the
configuration settings for the browser capabilities component.

Note The HttpBrowserCapabilities class contains all the browser
properties. These properties can be retrieved and set in this
section.

The syntax is as follows:
<browserCaps>
<result type="System.Web.HttpBrowserCapabilities" />
<use var="Environment Variable" />
browser="type"
version=browser version
majorver=0
minorver=0
frames=false/true
tables=false/true

<filter>
<case match="Name of operating systems to match">
platform="Current OS"

</case>

<ffilter>
</browserCaps>

In this syntax:
= The <resul t > tag specifies the class that contains all the browser

capabilities.
= The <use> tag defines the environment variable, such as
HTTP_USER_AGENT, which is to be matched to determine the browser
being used.
= The <filter> tag specifies the operating system on which the browser is
running. This tag can be used to filter the browsers that are running on
specific platforms.
An example is as follows:
<browserCaps>
<result type="System.Web.HttpBrowserCapabilities" />
<use var="HTTP_USER_AGENT" >
browser="Unknown"
version=0.0
majorver=0
minorver=0
frames=false
tables=false />
<filter>
<case match="Windows 95|Win95">
platform=Win95
</case>
<case match="Windows NT|WinNT">
platform=WinNT
</case>
<ffilter>
</browserCaps>

This sets the result type to BrowserCapabilities and also sets certain environmental
variables.

<compilation> section

The <conpi | ati on> section contains all the compilation settings used by ASP.NET.
Some of the settings involve setting a default language and debug option for the
application setting. The section also provides support for the <conpi | er s>,

<assenbl i es>, and <nanmespaces> subelements. The syntax is as follows:
<compilation debug="true/false">
<compilers defaultLanguage="[Lang]">

<compiler

language="[Lang]"

extension="[Ext]"

type="Type[,assemblyName]"/>
</compiler>

<assemblies>
<add assembly="[Assembly] " />
<remove assembly="[Assembly]" />
<clear />

</assemblies>

<namespaces>
<add namespace="[namespace]"/>
<remove hamespace="[namespace]"/>
<clear/>

</namespaces>

</compilation>

The <conpi | at i on> element supports the debug attribute, which can take either a
True or False value, and indicates whether compilation should be retail (False) or debug
(True) binaries. The default value is False. If the value is set to True, the temporary
source file is not immediately deleted from the codegen directory. This is helpful for
debugging compilation and parser errors.

This syntax uses three subelements, <conpi | er s>, <assenbl i es>, and
<nanespaces>. These elements are explained in the following sections.

<compilers> subelement
The <compi | er s> section can contain multiple <conpi | er > subelements, which are
used to create a new compiler definition. The <conpi | er > subelement has three
attributes:
= Language: Provides a list of languages, separated by semicolons, used
in dynamic compilation files. For example, C#; VB; JScript; and PERL.
= Extension: Provides a list of file name extensions, separated by
semicolons, used for dynamic code behind files. For example, .pl; .cls;
and .js.
= Type: Indicates the .NET Framework class, which implements the
ICompiler interface and that should be used to compile all resources that
use either the specified language or the file extension.

<assemblies> subelement
The subelement <assenbl i es> is used to add or remove assembly references that
need to be used during the compilation of a dynamic resource. These assemblies are
also loaded at run time. Therefore, this element allows both early and late binding. This
element has three attributes:
= Add: Used to add an assembly reference to be used during the
compilation of a dynamic resource. ASP.NET will automatically link this
assembly when compiling each code module. The value specified is an
assembly name and not a DLL path. ASP.NET will first perform a lookup
on the supplied assembly name to find the physical location of the DLL.
A developer can optionally specify * to add every assembly within an
application's private assembly cache, which is located in the bin
subdirectory of an application, or in the Microsoft .NET Framework install
directory (%windir%\ComPlus\Version\).

= Remove: Used to remove an assembly reference from the compile
settings. The value must explicitly match a previous "add" directive.
Here, wildcard selections are not supported.

= Clear: Used to remove all assembly references currently contained in or
inherited by a particular Web.config file.

<namespaces> subelement
The <nanmespace> subelement is used to add or remove namespace references for
assemblies that must be made available when compiling Web pages. This element has

three attributes:
= Add: Used to add a namespace reference for the assemblies to be used
during the compilation of an ASP.NET Web page.
= Remove: Used to remove a namespace assembly reference from the
compilation settings. The value must explicitly match a previous "add"
directive.
= Clear: Used to remove all the namespace assembly references currently
contained in or inherited by a particular web.config file.
The following is an example:
<compilation debug="true">
<compilers defaultLanguage="VB">
<compiler language="VB"
extension=".cls"
type="MSVSA.dlI#Microsoft.VB.Compiler" />
<compiler language="c#"
extension=".cs"

type="C#.dlI#Microsoft.C#.Compiler" />

</compilers>

<assemblies>
<add assembly="MyCompany.MyApplication.MyFirstDLL" />
<add assembly="ADODB System.Data.OleDb " />
<add assembly="*" />
</assemblies>
</compilation>
This sets the compilation settings for the application. The debug mode is set to True. The

default language for the application is set to VB and the compilation options are set to
either VB or C#.

<customErrors> section
The <cust onEr r or s> section provides a means for defining custom error messages
for an ASP.NET application. The syntax is as follows:

<customErrors defaultRedirect="[url]* mode="[on/off/remote]">
<error statusCode="[statuscode]" redirect="[url]" />
</customErrors>

In this syntax:

= The def aul t Redi r ect attribute is an optional attribute of the section
and is used to indicate the default URL to which the client browser
should be redirected if an error occurs.
= The mode attribute is used to specify if the status of the custom errors is
enabled, disabled, or only shown to remote machines. This attribute
takes one of three values: On, Off, RemoteOnly. On indicates that the
custom errors are enabled. Off indicates that the custom errors are
disabled. RemoteOnly indicates that the custom errors will be shown only
to remote clients.
The <cust onEr r or s> section supports multiple <er r or > subelements that are used to
define custom errors. Each <er r or > subelement supports two attributes:
= St at uscode: Specifies an error status code that causes a browser to be
directed to an error page, which is not the default error page.
= Type: The URL to which the browser should be redirected in the event an
error occurs.

An example is as follows:
<customErrors defaultRedirect="customerror.htm"
mode="0On">
<error statusCode="500"
redirect="CustominternalError.htm"/>
</customErrors>

The custom error file for the application is set to Customerror.htm, the error code is 500,
and the error-redirection file is set to CustominternalError.htm.

<globalization> section
The <gl obal i zat i on> section is used to configure the globalization settings of the

application. The syntax is as follows:
<globalization
requestEncoding="[any valid encoding string]"
responseEncoding="[any valid encoding string]"
fileEncoding="[any valid encoding string]"
culture="[any valid culture string]"
uiCulture="[any valid culture string]"
/>
The <gl obal i zat i on> element supports the following attributes:
= request Encodi ng: Used to check for the encoding of each incoming
request. The default value for this attribute set in the machine-level
Web.config file is iso-8859-1.
= responseEncoding: Used to check for the content encoding of
responses. The default value for this attribute as set in the machine-level
Web.config file is: is0-8859-1.
= fileEncoding: Used to check for default encoding forASPX, ASMX, and
ASAX file parsing.
= culture: Used to check for the default culture used to process incoming
Web requests. Valid culture strings are specified in the
System.Globalization.Culturelnfo class.

= uiCulture: Used to check for the default cultures that are used to lookup
for resources that need to be used for the current page.

An example is as follows:
<globalization
fileEncoding="utf-8"

requestEncoding="utf8"
responseEncoding="utf-8"

/>
This section sets the fi | eEncodi ng, r equest Encodi ng, and r esponseEncodi ng
attributes to "utf-8".

<httpHandlers> section
The <ht t pHandl er s> section maps the incoming URL requests to the classes that
implement IHttpHandler or IHTTPHandler interfaces. The syntax is as follows:

<httpHandlers>
<add verb="[verb list]"
path="[path/wildcard]"
type="Type[,assemblyName]" />
<remove verb="[verb list]"
path="[path/wildcard]" />
<clear />

</httpHandlers>

The child elements supported by this section are described as follows:
= Add: Used to add a verb/path mapping to an IHttpHandler or
IHttpHandlerFactory interface. The following are the attributes used:

0 Ver b: Specifies the method used for receiving the data.
The verb list can be either a comma-separated list of
HTTP verbs, such as GET, PUT, or POST, or a start-script
mapping, such as *.

o Pat h: The Pat h attribute specifies a path from where the
incoming requests are generated. The path attribute can
contain either a single URL path or a simple wildcard,
such as *.aspx.

0 Type: Composed of an assembly and a class
combination — the two values are separated by a #
character. The assembly DLL is always resolved first
against an application's private "bin" directory, and then
against the system assembly cache.

= Remove: Used to remove a verb/path mapping to an IHTTPHandler or
an IHTTPHandlerFactory interface. The Remove directive should match
the verb/path combination of a previous add directive in order to remove
an entry. The attributes in this element do not support the use of
wildcards.
= Clear: Used for removing all the IHttpHandlerFactory mappings
that are currently configured or inherited by a particular

Web.config file.
If an identical verb/path combination is specified by two or more <add>
Note subelements, the last <add> will override all others.

The following is an example:

<httpHandlers>
<add verb="*" path="FirstApp.Mack" Type="FirstApp.Mack,
FirstApp" />
<add verb="*" path="FirstApp.Gaze" Type=" FirstApp.Gaze,
FirstApp" />

</httpHandlers>

This section sets the verb to use all the methods along with the path and type of files.

<httpModules> section
The <ht t pModul es> section is used for adding, removing, or clearing HTTP modules
in an application. The syntax is as follows:

<httpModules>
<Add Type="Type [,assemblyName]" name="module nhame"/>
<Remove Type="Type [,assemblyName]" name="module name"/>
<Clear />

</httpModules>

The section can be configured using the three following subtag directives:

= Add: Used to add HttpModule classes to an application. This
element takes two attributes: Type and Nane. The Type attribute
is composed of an assembly and class combination. The Nane
attribute specifies the name used in the application to refer to this
assembly. If the Name attribute is omitted, the assembly name is
used to refer to the module.

= Remove: Used to remove an HttpModule class from an
application. This subtag also takes two attributes: Type and
Name.

= Clear: Used to remove all the HttpModules mappings that are
currently configured or inherited by a particular Web.config file
from the application.

An example is as follows:
<httpModules>
<add Type="System.Web.State.CookielessSessionModule" />
<add Type="System.Web.OutputCacheModule" />
<add Type="System.Web.State.SessionStateModule" />
<add Type="FirstClass, FirstAssembly" />
</httpModules>

This sets the types to three different values of the assembly class combination.

Security settings in Web.config files

ASP.NET enables you to manage the entire security configuration from the Web.config
file. The security configuration is implemented by using three sections:

<aut henti cation>, <aut hori zati on>, and <i denti t y>. The syntax for the three
sections is as follows:

<configuration>

<system.web>

<authentication mode="[Windows/Forms/Passport]">
<Forms name="[name]" loginurl="[url]" protection=
"All/None/Encryption/Validation" timeout="30" path="/">
<credentials passwordformat="[Clear/ SHA1/ MD5]">
<user name="[UserName]" password="[password]"/>
</credentials>
</forms>

<passport redirectUrl="url"/>

</authentication>

<authorization>
<allow users="[comma separated list of users]"
roles="[comma separated list of roles]"/>

<deny users="[comma separated list of users]
roles="[comma separated list of roles]"/>

</authorization>

<identity>
<impersonation enable="[true/false]"/>
</identity>

</system.web>

</configuration>

The three security sections have elements for which the values are set by overriding the
section of the machine-level configuration file with a similar section in an application
configuration file placed in the application root. All subdirectories automatically inherit the
settings defined. However, subdirectories can have their own configuration files that
override their parent directory's settings.

The <i dent i t y> section is used to enable or disable impersonation. Impersonation is
the ability of a thread to execute in a security context that is different from the context of
the process that owns the thread. The other two sections are described next in more
detail.

<authentication> section

This element takes an attribute "mode” that controls the default authentication mode for
an application. This attribute can be set to one of the following values:
= W ndows: Uses IIS authentication, which can be Basic,
Digest, or Windows (NTLM) authentication, or a combination
of these.
= Passport: Uses the Passport cookie authentication. To set
this value, the Passport SDK must be installed and the user
must subscribe to the Passport service.
= Forms: Uses the ASP.NET forms-based cookie
authentication.
The <aut hent i cat i on> section also supports one subelement <f or ns>, which
defines cookie authentication settings. This element supports three attributes, which are
described as follows:
= Nane: Specifies the name of the HTTP cookie to be used for
the authentication ticket. By default, the value is set to
ASPXAUTH.
= loginUrl: Defines the URL to which the request is redirected if
it doesn't contain a valid authentication ticket.
= Protection: Specifies the protection technique applied to
safeguard the cookie data. The following are the possible
values for this attribute:
o Al l: The cookie is protected by encrypting
the cookie data as well as by validating the
contents of the cookie using a message
authentication code.
o None: The cookie is not protected. This
value is not recommended due to security

concerns. However, it can be used for the
sites that do not use cookies for security, but
only for personalization of information to
users.
o Encrypti on: The contents of the cookie are
encrypted by using DES encryption.
o Val i dati on: Defines the URL to which the
request is redirected, if it doesn't contain a
valid authentication ticket.
= TimeOut: Specifies the time after which the cookie expires. If
a user wishes to access the site after the timeout has
expired, the user will have to reauthenticate and get a new
cookie.
= Path: Specifies the path of the cookie issued by ASP.NET on
behalf of the Web application represented by the Web.config
file.
= Decryptionkey: Specifies a key to be used for decrypting the
authentication tickets. If login and authentication are
distributed across multiple machines, they all need to share
the same key. The key is stored in cleartext.
The <f or 8> subtag optionally allows users to define name/password credentials
within the <cr edent i al s> subtag. Alternatively, developers can implement their own
custom password scheme wherein validation occurs from external stores, such as
databases. The <cr edent i al s> child element contains an attribute,
passwor df or mat , which defines the encryption format used to store passwords. In
addition to the passwor df or mat attribute, the element supports multiple <user >
subelements. A <user > subelement has the following attributes:
= nane: Indicates the user login name
= password: Indicates the user password

<authorization> section
Authorization for an ASP.NET application can be implemented by using the
<aut hori zat i on> subelement. This element controls client access to the ASP.NET
resources at a given URL. The settings specified in an <aut hori zat i on> element are
inherited by subdirectories hierarchically.
The <aut hori zat i on> element is configured by using two subelements, <al | ow> and
<deny>, which are interpreted and processed in top-down sequential order. The
<al | ow> element enables administrators to explicitly identify a class of users to whom
access should be granted. The <deny> element enables administrators to explicitly
identify a class of users to which access is denied. The <al | ow> and <deny> elements
take the following two attributes:
= User s: Contains a comma-separated list of usernames that

should be granted access. The ? character allows or denies

access to anonymous users, and the * character allows or

denies access to all users.

= Roles: Contains a comma-separated list of roles that should

be granted or revoked access.
While the application is running, the authorization module iterates through the <al | ow>
and <deny> elements to search for the first access rule that is applied for a particular
user. The element decides to grant or reject access to a URL resource depending on
whether the first access rule satisfied is an <al | ow> or a <deny> rule. By default, the
access is rejected if no rule is found. The following is an example:

<configuration>
<system.web>
<authentication mode="Cookie">

<forms name="401kApp" loginUrl="/Firstlogin.aspx"

protection="All">
<credentials passwordformat="SHA1">

<user name="Marie" password="GAF97FSA3223NTT"/>

<user name="Caste" password="DF*"$3GFDX443BSD99"/>

<user name="RockMen" password="IDCIMWAFSLKSTGDLS##"/>
</credentials>
</forms>

</authentication>

<authorization>
<allow roles="Admins", "Managers" />
<allow users=" Caste, "John" />
<deny users="Jane", " RockMen " />

</authorization>

<identity>

<impersonation enable="false"/>
</identity>

</ system.web>

</configuration>

This uses all the attributes to set the security settings for the application.

<processModel> section
The <pr ocessMdel > section is responsible for configuring the ASP.NET process
model settings on an IIS Web server. The process model settings are used for defining

how the threads within a process should work.
Note The <processModel> section can appear only in the machine-level
Web.config file.

The syntax is as follows:

<processModel
enable="[true/false]"
timeout="[mins]"
idleTimeout="[mins]"
shutdownTimeout="[secs]"
requestLimit="[num]"
requestQueueLimit="[num]"
memoryLimit="[percent]"
cpuMask="[num]"
webGarden="[true/false]"
userName="username"
password="password"

/>
The <pr ocessMdel > element supports the following attributes:
= enabl e: Specifies a value that indicates whether or not the
process model is enabled.

timeout: Specifies the number of minutes after which a new
worker process will be launched to take the place of the current
one. The default value is set to infinite.

idleTimeout: Specifies the number of minutes of inactivity after
which the worker process automatically gets shut down. The
default value is set to infinite.

shutdownTimeout: Specifies the time, in hh:mm:ss format, the
worker process is given to shut down by itself. When the timeout
expires, the ASP.NET runtime will kill the worker process
automatically. The default value is set to 5 seconds.
requestLimit; Specifies the number of requests after which a new
worker process will be launched to take the place of the current
one. The default value is set to infinite.

requestQueuelLimit: Specifies the maximum allowed number of
requests in the queue after which the worker process is
considered to be in a "hung" state. Once the requestQueueLimit
is reached, a new process will be launched and the requests will
get reassigned. Then, no further requests will be directed toward
the "hung" worker process. The default value is set to 5000.
memoryLimit: Specifies a maximum allowed memory size for a
worker process. The value is set as a percentage of the total
system memory that the worker process consumes before it is
considered as a misbehaving process. After this limit is crossed,
a new process will be launched and the requests will get
reassigned. The default value is set to 40 percent.

cpuMask: Specifies the processors on which the ASP.NET
worker processes will execute. This attribute is used when the
webGarden attribute is set to True, which indicates that ASP.NET
worker processes will not use all the processors on the system.
When the webGarden attribute is set to False, it means that all
eligible CPUs will be used.

webGarden: This attribute controls the CPU affinity in conjunction
with the cpuMask attribute. The default value is True, which
indicates that the processes should be allocated CPUs by the
operating system; there is no preferential allotment of processors
to the worker processes.

The following is an example:

<processModel
enable="true"
timeout="15"

idleTimeout="25"
shutdownTimeout="0:01:00"
requestLimit="1000"
requestQueueLimit="500"

memoryLimit="20"

webGarden="true"

/>

The processMdel is enabled for the Web server. After every 15 minutes, the server

will launch a new worker thread. After every 25 minutes of idle time, the worker process

will automatically get shut down. The worker process is given 1 minute for a graceful

shutdown before it is terminated. After every 1,000 requests, a new worker thread will be
launched to handle further Web requests. The maximum limit for the worker thread, after
which it will be treated as a misbehaving thread, is set to 500 requests in the queue. The

memory limit is set to 20 percent of the available memory on the system, and the CPU
affinity is set to True.

<sessionState> section
The <sessi onSt at e> section provides a means to configure the session state

HttpModule of the ASP.NET application. The syntax is as follows:
<sessionstate

mode = "mode="0ff|Inproc|StateServer|SqlServer"
cookieless="true|false"

timeout="number of minutes"

connectionString="server name:port number"

sglConnectionString="sql connection string"/>
The <sessi onSt at e> section uses five attributes, which are described as follows:
= Mbde: Indicates where the session state is stored. These are the
possible settings:
o O f: Indicates the session state is disabled for
the Web application.
o0 I nproc: Indicates that session state is stored by
the worker process itself. In case of a crash, the
session state is lost. Also, this model does not
work well in a Web farm due to redirection of
client requests to other Web servers.
0 StateServer: Indicates that the session state
information is stored in a separate ASP.NET
State Service that runs out of process from the
Web server. This model is safe from any crashes
that might occur in the Web server. The session
state will be available no matter what happens to
the Web server. This is an out-of-process state
management model. The Session State service
can be hosted on the same server as the Web
server or it can be configured on a separate
physical machine. In case it is hosted on the
same machine as the Web server, if a serious
failure occurs, such as in the disk subsystem or
CPU or power supply, it will cause the server to
switch off or reboot. In such a case, the session
state is lost. If this service is configured on a
separate physical machine, then this problem can
be avoided. But, there is no way to cluster this
service to protect against failure of the state
server machine.
0 Sql Server: The most reliable model for storing
session state information across Web server
crashes and machine reboots. To improve the
availability of session state information across a
Web farm, the session information can be stored
on a SQL Server database, which itself can be
placed on a cluster.
= Cookieless: Takes one of the values True or False. A True value
indicates that the cookieless sessions should be used to identify
client sessions. On the other hand, a False value indicates that
the cookie-enabled sessions should be used. The default value
for the tag is set to False.
= Timeout: Defines the number of minutes a session can remain
idle. Once this limit has passed, the session is abandoned
automatically. The default value for this attribute is set to 20.
= ConnectionString: Specifies the server name of the remote
session state store for the application, as well as the port on
which the Session State service is listening. The default value is

set to localhost. This attribute is used when the mode is set to
StateServer (the out-of-process state service).
= sqglConnectionString: Specifies the connection string used to
connect to the SQL Server that is running the session state
database.
If you wish to have a remote session state store, you must set the
Note i nproc attribute to False and specify the server name and port number

(usir)g the server _and port attributes) of the machine on which state
services are running.
The following is an example:
<sessionState mode = "InProc"
stateConnectionString = "tcpip=127.0.0.1:42424"
sqlConnectionString="data source=127.0.0.1;user id=sa;password="
cookieless="true"
timeout="5"/>
This states that the application session is managed by using cookieless sessions. The
URL will be encoded by the ASP.NET runtime to include a character string, which is

unique for every client. The session timeout is 5 minutes. Here is a sample Web page
that uses session state to record some information:

<%@ Page Language="vb"%>
<HTML>
<HEAD>
<title></title>
</HEAD>
<script runat="server">
sub Page_Load()
Session("Varl")="This is the value stored in Variable 1"
end sub

Sub Display(Src As Object, E As EventArgs)
IbIResult. Text = Session("Varl")
end sub

</script>

<body>
<form id="Form1" method="post" runat="server">
<pP>
<asp:Button id="cmdDisplay" runat="server" Text="Call
Display" onclick="Display" />
</P>
<pP>
<asp:Label id="IbIResult" runat="server" Width="270px"
Height="31px"></asp:Label>
</P>
</form>

</body>

</HTML>
Figure 14-2 shows the output of this page.
'a hnp:acalbost Toisl'conlExp.aspy - Mictosolt Internet Explarer
File Edit View Favorites Tools Help -
daBack = = = 3 3] | [PenondiBa) Seanch [afFavoites 3 | e b S 2] B8
Address |3_] itz £ Aoc ol Taal 2 oontE wp s ﬂ 6a | Links ®
Call Desplay q

This is the valoe stored in Vaniable 1

E|

2] Dane ¥ Local intranet &
Figure 14-2: Output of the page displaying value of a Session variable

<trace> section
The <t r ace> section allows the configuration of the ASP.NET trace service. The
syntax is as follows:

<trace
enabled="[true/false]"
requestLimit="[Integer]"
pageOutput="[true/false]"

/>
The <t r ace> section can be configured using the following attributes:
= enabl ed: Indicates the status of the trace feature specified for
the application. The default value is set to False.
= requestLimit: Specifies the number of trace requests to store on
the server for the application. The default value for the attribute is
set to 10.
= pageOutput: Indicates whether the trace information for the
application should be displayed at the end of each page or be
accessible only via the trace utility.

An example is as follows:
<trace

enabled="true" requestlimit="20" pageoutput="true"

/>

The section sets the application-level trace to True and the number of trace requests to
be stored to 20. The trace output is set to be displayed on the page.

<webServices> section
The <webSer vi ces> section is used to control the settings of the ASP.NET Web
Services. An example is as follows:

<configuration>
<system.web>

<webServices>

<protocolTypes>
<add type="System.Web.Services.Protocols.
SoapServerProtocol" />
<add type="System.Web.Services.Protocols.
HttpServerProtocol" />
<add type="System.Web.Services.Protocols.
DiscoveryServerProtocol" />

</protocolTypes>

<returnWriterTypes>

<add type="System.Web.Services.Protocols.

XmlIReturnWriter"

/>

</returnWriterTypes>

<parameterReaderTypes>
<add type="System.Web.Services.Protocols.
HtmlIFormParameterReader" />
<add type="System.Web.Services.Protocols.
UrlParameterReader" />
</parameterReaderTypes>

<protocolReflectorTypes>
<add type="System.Web.Services.Description.
SoapProtocolinfoReflector" />
<add type="System.Web.Services.Description.
HttpPostProtocolinfoReflector” />
<add type="System.Web.Services.Description.
HttpGetProtocolinfoReflector” />
</protocolReflectorTypes>

<mimeReflectorTypes>
<add type="System.Web.Services.Description.
XmIMimelnfoReflector" />
<add type="System.Web.Services.Description.
ForminfoReflector" />
</mimeReflectorTypes>

<protocollmporterTypes>
<add type="System.Web.Services.Description.
SoapProtocolinfolmporter” />
<add type="System.Web.Services.Description.
HttpPostProtocollnfolmporter” />

<add type="System.Web.Services.Description.
HttpGetProtocollnfolmporter" />

</protocolimporterTypes>

<mimelmporterTypes>
<add type="System.Weh.Services.Description.
XmIMimelnfolmporter" />
<add type="System.Web.Services.Description.
Forminfolmporter" />

</mimelmporterTypes>

<protocolinfoTypes>
<add type="System.Web.Services.Description.
SoapProtocolinfo" />
<add type="System.Web.Services.Description.
HttpGetProtocolinfo" />
<add type="System.Web.Services.Description.
HttpPostProtocollnfo" />

</protocolinfoTypes>

<mimelnfoTypes>

<add type="System.Web.Services.Description.
HtmIForminfo"/>

<add type="System.Web.Services.Description.
XmIMimelnfo"/>

<add type="System.Web.Services.Description.
AnyMimelnfo"/>

</mimelnfoTypes>

<referenceResolverTypes>
<add type="System.Web.Services.Discovery.
DiscoveryResolver" />

<add type="System.Web.Services.Discovery.
ServiceResolver"

/>

<add type="System.Web.Services.Discovery.
SchemaResolver"

/>

</referenceResolverTypes>

<discoverySearchPatternTypes>
<add type="System.Web.Services.Discovery.

ServiceSearchPattern" />
</discoverySearchPatternTypes>

<soapExtensionTypes>
</soapExtensionTypes>

<soapExtensionReflectorTypes>

</soapExtensionReflectorTypes>

<soapExtensionimporterTypes>

</soapExtensionimporterTypes>

<sdlHelpGenerator href=
"DefaultSdIHelpGenerator.aspx" />
</webServices>
</system.web>
</configuration>

The preceding example used different elements of the <webSer vi ces> section to set
the configuration settings for the ASP.NET Web Services. Some of the settings involve
setting the protocol, return type for the application, help file for the application, and the
search patterns supported by the application.

Summary

This chapter explored the ASP.NET configuration concepts and the Web.config
configuration files used by the ASP.NET configuration system. First, you learned the
advantages offered by the ASP.NET configuration system in the process of deploying
the ASP.NET applications. You saw the structure of the Web.config configuration files.
Then, you learned the structure and implementation of different sections in the
Web.config configuration file.

chapter 15: Developing Business Objects

Overview

Most modern applications are based on the client/server architecture, which divides an
application into two logical parts, the client and the server. The functions performed by
the client and the server can be divided into three categories: user services, business
services, and data services. These services are implemented as logical layers in an
application. The user service layer, also called the presentation layer, performs the task
of providing an interactive user interface. The business service layer enforces the
business rules that define the behavior of an organization. For example, an organization
might decide that the credit limit for its clients should not exceed $2,000. The business
service layer performs such validations pertaining to the business rules of an
organization. The data service layer is responsible for managing and manipulating data.

Based on the methods used for implementing these three layers, client-server
applications are further categorized as single-tier, two-tier, three-tier, and n-tier or

multitier applications. In case of a single-tier or monolithic application, all the functions
relating to the user, business, and data service layers are grouped into one logical
application module, which might be a single executable file. In a two-tier application, the
user and data services are located separately, either on the same machine or on
separate machines. For example, you might have a Visual Basic application, which
provides the user interface, and SQL Server 7.0, which manages data. In such a case,
the business services might be handled by the client or by the server. In a three-tier
application, all the three service layers reside separately, either on the same machine or
on different machines. A multitier or n-tier application is very similar to a three-tier
application. An n-tier application uses business objects for handling business rules and
data access. It has multiple servers handling business services. This application
architecture provides various advantages over other types of application architectures.
Some of the advantages include extensibility, resilience to change, maintainability, and
scalability of the application.

Most Web applications are based on the n-tier architecture. In case of Web applications,
the browser acts as a client, which makes requests to the Web server for some data.
The Web server processes the request and sends the requested data to the browser.
You might implement an extra layer between the browser and the Web server for
performing business rule validations. This layer can be implemented by using business
objects.

In this chapter, you will learn to create and use business objects in ASP.NET. You will
also learn about deploying business objects and working with business object
namespaces in ASP.NET.

Introduction to Business Objects

In an n-tier application, the business services layer can be encapsulated in various
reusable classes, known as business object classes, which can be combined to create
precompiled components. Thus, business objects are reusable and interoperable
components that perform a specific set of functions. Business objects enable you to build
applications that can be easily changed as per the changing requirements of users and
the organization. You can also build new applications based on existing components.
This results in reduced development time and maintenance costs. You can also
substitute the user and the data services layers without having a negative impact on the
working of the business objects.

Business objects can be broadly categorized as follows:

= User interface (Ul)-centric business rule objects: These objects
concentrate on validation of user interface components. For example, you
may create a Ul-centric business rule object to ensure that a text box is not
blank. A Ul-centric business rule object may also perform some
calculations on the data returned from the database.

= Data-centric business rule objects: These objects perform the functions
relating to data access such as locating the source of data, sending the
necessary commands for retrieving data, manipulating data, and sending
the data back and forth between the database and the Ul-centric business
rule objects. Data-centric business rule objects run faster than Ul-centric
business rule objects, because the latter often depends on the former for
completion of data manipulation and integration. For example, you might
create a Ul-centric business rule object that displays the net amount after
calculating the sales tax and the discount based on the product price and
order quantity. This object might depend on a data-centric object, which
establishes a connection to the data server, sends the required commands
to the server, and returns the prices and order quantities of products from
the database to the Ul-centric object. In this case, the Ul-centric object has
to wait until the data-centric object returns the required data for calculating
the net amount.

Creating and Using Business Objects

ASP.NET enables you to easily create your own business objects and use them in Web
applications. In this section, you will look at the process of creating a simple Ul-centric
business object that calculates the sales tax and the discount based on the price of a
product. You will also learn to create a data-centric business rule object for establishing
a connection and sending queries to the database server.

Creating a Ul-centric business rule object

To create a business rule object, follow these steps:

1. Select File ® New ® Project. This invokes the New Project dialog
box. Select Visual Basic Projects from the Project Types list box.
Select Class Library from the Templates list box. Name the project
CalcNetAmt.

2. In the Solution Explorer window, right-click the Class1.vb file and
select Rename from the pop-up menu. Change the name of the
Class1.vb file to CalcNetAmt.vb.

3. Create the function CalcAmt() in the class CalcNetAmt and type the
following code:

4 Public Class CalcNetAmt

5 Public Function CalcAmt(ByVal dPrice As Double) As Double
6. Dim dNetAmt As Double

7 dNetAmt = dPrice * 1.1

8 If (dNetAmt > 100)

9 dNetAmt = dNetAmt * 0.95

10. End If
11. Return dNetAmt
12. End Function

End Class

This function takes the price of a product as a parameter. It calculates the
sales tax as 10 percent of the product price. If the net price after adding the
sales tax is greater than $100, a discount of 5 percent is given on net price.
The function returns the net payable amount for a product.

13. Compile this class by selecting Build ® Build. When you compile the
class, a DLL file is created,; this file can be used by other applications.
Alternatively, you can compile this class by typing the following
statement at the MS-DOS command prompt:

14, vbc /t:library /out:calcnetamt.dll calcnetamt.vb

In this statement, vbc is the Visual Basic compiler. You can use various

command-line options with the compiler. The / t option is used to specify the

type of output file format to be created by the compiler. You can set this

option to exe (console application), library (code library), module (DLL), or

winexe (Windows-based application). In this statement, the /t: | i brary

option instructs the compiler to create a library assembly.

Note Business objects created in .NET are packaged in the form of
assemblies, which store all the information required for deploying
and versioning a component. Assemblies are discussed in detail
later in this chapter.

The / out option specifies the name of the output file to be created. In this case, the
name of the resulting file is Calcnetamt.dll. Finally, you specify the file to be compiled as
Calcnetamt.vb.

Note For more information about the command-line options used with

vbc, type "vbc /?" at the command prompt.

Creating a data-centric business rule object

For creating a data-centric business rule object, the steps will be similar to those in case
of Ul-centric business objects. In this section, we will create a simple reusable data
centric business rule object that establishes a connection with the specified server and
sends the queries to the database server.

For creating the data-centric business rule object, complete the following steps:

1. Select File ® New ® Project.

2. Select Visual Basic Projects from the Project Types list box. Select
Class Library from the Templates list box. Name the project GetData.

3. In the Solution Explorer window, right-click the Classl1.vb file and
select the Rename option from the pop-up menu.

4. Rename the Classl.vb file GetData.vb and type the following code in
the file:

5. Imports System.Data

6. Imports System.Data.SQLClient

7. Public Class DataAccessODbj

8.

9. Dim sConnectionStr As String

10. Dim sQryStr As String

11.

12. Public Property sConnection() As String
13. Set

14, sConnectionStr = value

15. End Set

16. Get

17. Return sConnectionStr

18. End Get

19. End Property

20.

21. Public Property sQry() As String

22. Set

23. sQryStr = value

24, End Set

25. Get

26. Return sQryStr

27. End Get

28. End Property

29.

30. Private Function EstablishConnection() As SQLConnection
31. Dim SQLConObj As New SQLConnection(sConnectionStr)
32. Return SQLConObj

33. End Function

34.

35. Public Function DisplayData() As DataView

36. Dim CmdObj As New SqglDataAdapter(sQryStr,

37. EstablishConnection())

38. Dim dsObj As New DataSet()
39. CmdObj.Fill(dsObj, "DISPLAYDATA") Return dsOb;.
40. Tables(0).DefaultView
41. End Function
End Class

This class establishes a connection with the database server and also uses DataSet and
DataView objects. Therefore, you must import the System.Data and
System.Data.SQLClient namespaces. The DataAccessObj class contains two data
members:
= sConnectionStr: Used for storing connection information such as the
server name, database to be used, and the username and password to
be used for establishing a connection with the database server.
= SQryStr. Used for storing the query to be sent to the database server.
Next, you write the property procedures for returning and setting sConnecti onStr and
sQyStr.
In addition to the property procedures, the DataAccessObj class also includes the
Est abl i shConnecti on() method for establishing a connection with the database
server by using the connection string stored in sConnect i onSt r . This function returns
an object of the type SQLConnection.
Finally, the class has the Get Dat a() method, which sends the command stored in
sQ yStr to the database server by using the connection object returned by the
Est abl i shConnecti on() method. The Get Dat a() method fills a DataSet object with
the data returned by the database server and returns an object of type DataView.

Compile the DataAccessObj class by selecting Build ® Build. Alternatively, you can
compile the class from the MS-DOS command prompt by giving the following statement:

vbc /t:library /out:dataaccess.dll GetData.vb /r:System.dll

/r:System.Data.dll /r:System.XML.dlI|

This statement is similar to the statement we used earlier to compile the Ul-centric data
component. The / r option in the statement specifies the additional libraries to be used
for compiling the application. The statement creates the Dataaccess.dll file, which can be
included in projects to access the functions written in the DataAccessObj class.

Using business objects
In the previous section, you were introduced to the process of creating business objects.
In this section, you will learn to use the business objects in an application with the help of
an example. You will create an application, which will display a list of product IDs from
the Products table in a DropDownList control. When a user selects a product ID from the
DropDownList, the details about the product should be displayed along with the net
amount payable on the product. The application should use the DataAccessObj and
CalcNetAmt business objects created earlier for fetching the required data from the SQL
Server and for calculating the net amount payable. For using these business objects in
your application, follow these steps:
1. Create a new Web application by clicking the File ® New ® Project
option. Select Visual Basic Projects from the Project types list box.
Select ASP.NET Web Application from the Templates list box. Name
the project UseBusinessOb;.
2. Create a DropDownList control in the Design view of the Web Form
and set the properties of the control as given in Table 15-1.

Table 15-1: DropDownlList control properties

‘ Property ‘ Value

| ID | LstProductld

| DataTextField | Product|D

Table 15-1: DropDownlList control properties

‘ Property ‘ Value

| DataVval ueFi el d | Product!D
| Aut oPost Back | True

3. Create Label controls for displaying the name and the unit price of a
product. Specify the ID of these Label controls as LbIProductName
and LblUnitPrice. Also create an additional Label control for displaying
the net amount payable on the product. Specify the ID of this Label
control as LbINetAmt.

4. To use the CalcNetAmt and DataAccessObj business objects, you
must add a reference to them in the project. Right-click the References
tree in the Solution Explorer and select Add Reference from the pop-
up menu. This invokes the Add Reference dialog box, shown in Figure
15-1.

Add Referonce

MET |com | Peamct|

Bressre. I
Conngaresnk Wames: Wi g Path -
B pe iy ol WM T \Maciasndi ME T4 Salact I
adosch Zrom L \WPiogann FilssMicialt N
CRVsPackaged it 10000 ['Progesm Fles\Morosoit Vi
Capetall) nriatns. Copst i g 00 [\Prggras Fled\ Mmool Vi
Copstal soitions RepotSouwce 3100 D Progrsm Fles\Microsoft Vi
Capehall perimans Shaded 100 D \Prsgrais F e\ Menssoll Wi
Capstall) moitions Wish 100 [\Programs FleshMcrosolt Vi
Cpaenlll eriiaona Wirsdowa Foamas 201,00 [\Prrogeams F ke e iasoit Wi
Copeeal riwpenel b 1onn [\Program Filag\Menosolt Vi
Capstalinfol el b 1000 D Progr s Fles\Microsoit Vi
Copetal ol oclal 1000 D \Progeaes Filad\Menssoll Wi _l
gt adFhumrdd el 1nnm T Priiwsrs F e Uliernanit Wi e

M | Toge | Sosce | ; I

Figure 15-1: The Add Reference dialog box

Click the Browse button to invoke the Select Component dialog box. Locate
the folder where you created the CalcNetAmt component. Select
CalcNetAmt.dll and click Open. The Select Component dialog box closes and
the control returns to the Add Reference dialog box. Notice that the dll file that
you selected appears in the Selected Components list view. Add a reference
for the GetData.dll file in a similar way.

5. Import the required namespaces by adding the following statements in

the WebForm1l.aspx file:

6. <%@ Import Namespace=System.Data %>

<%@ Import Namespace=System.Data.SqlClient %>
7. Create an instance of each business object by writing the following
code in the Page_Load() method of theWeb Form:

8. Dim NetAmtObj As New CalcNetAmt.CalcNetAmt()
9. Dim daObj As New GetData.DataAccessObj()
Note You can write this code in the Page_Load() method in the VB file

corresponding to the Web application instead of including it in the
Page_Load() method of the ASPX file. If the VB file corresponding to
the Web application is not visible in the Solution Explorer window, click

10.

11.
12.

the Display All Files icon to display the listing of all files included in the
project.

Set the connection string and the SQL query string of the

DataAccessObj instance by typing the following statements:
daObj.sConnection="Server=localhost;uid=sa;pwd=;

database=NorthWind"

13.

14.

daObj.sQry= "Select ProductID, ProductName, UnitPrice

from Products”

15.

16.
17.
18.
19.
20.

If the user is visiting the Web page for the first time, the DropDownList
control needs to be populated with the product IDs existing in the
Products table. This can be done by invoking the Get Dat a() method
of DataAccessObj. This method returns an object of type DataView
after executing the query. Set the Dat aSour ce property of the

DropDownlList control to the DataView object returned by the
Get Dat a() method by using the following code:

If not IsPostBack then

'Set the DataSource property of the LstProductID

'DropDownList to the DataView object returned by the

'‘GetData() method of DataAccessObj
LstProductID.datasource=daObj.DisplayData()

21.

22.

'‘Bind the data in the DataView to the DropDownList

LstProductID.DataBind()

23.

24,

When a user selects an item from the DropDownList control, the
Aut oPost Back property of the control causes the Web page to be
reloaded. At this point, you need to display the details relating to the
products in the respective Label controls. This can be done by using
the following code:

If not IsPostBack then

25.
26.

27.
28.
29.

Else
‘create a dataview object
Dim dvProductsl as new DataView()

30.

3L
32.
33.
34.

'Call the DisplayData() method of DataAccessObj to
‘return product details and store the resulting
‘DataView object in dvProductsl

dvProductsl = daObj.DisplayData()

35.

36.
37.
38.
39.
40.
41.

'Set the RowFilter property of the dvProductsl

'‘DataView to the product ID selected from the

'DropDownList. This will result in displaying only the

'details about the selected product
dvProducts1l.RowkFilter = "Productld="" + LstProductID.

Selectedltem.Text +

42.

43. 'Store the details of the selected row from the DataView
44, 'into the myrow DataRow object
45, dim myrow as DataRow

46. myrow = dvProductsl.Table.Rows(LstProductID.Selectedindex)
47.
48. 'Set the text of Label controls to the values of 'respective columns

49, LblProductName.Text =
myRow(dvProductsl.Table.Columns(1)).ToString

50. LblUnitPrice.Text =
myRow(dvProductsl.Table.Columns(2)).ToString

51.
52. 'Invoke the CalcAmt() method of the CalcNetAmt object to
53. ‘calculate the net amount payable on the product

54. LbINetAmt. Text = NetAmtObj.CalcAmt(CDbl(IblUnitPrice.Text))

.ToStringEnd If

This code will result in populating the Label controls when you select a
product ID from the DropDownList control. The explanation for each line of
code is included in the comments inserted in the code. The complete code in
the Page_Load() method of the Web Form will look as follows:

<script language=vb runat="server">
sub Page_Load(Sender as Object, e as EventArgs)
Dim NetAmtObj As New CalcNetAmt.CalcNetAmt()
Dim daObj As New GetData.DataAccessObj()
daObj.sConnection =
"Server=localhost;uid=sa;pwd=;database=NorthWind"
daObj.sQry = "Select ProductID, ProductName,
UnitPrice from Products”
If Not IsPostBack Then
LstProductlD.DataSource = daObj.DisplayData
LstProductID.DataBind()
Else
Dim myrow As DataRow
Dim dvProductsl As New DataView()
dvProductsl = daObj.DisplayData
dvProductsl.RowrFilter = "Productld="" +
LstProductlD.Selectedltem.Text + "
myrow =
dvProductsl.Table.Rows(LstProductID.SelectedIndex)
LbIProductName.Text =
myrow(dvProductsl.Table.Columns(1).ToString)
IblUnitPrice.Text =
myrow(dvProductsl.Table.Columns(2).ToString)
LbINetAmt.Text =

NetAmtObj.CalcAmt(CDbl(IblUnitPrice.Text)). ToString
End If
End Sub

</script>

LblProductName, LblUnitPrice, and LbINetAmt are not Textboxes. They are
labels that are being used to display the values retrieved from the database.
55. Run the application by pressing Ctrl + F5. Sample output of the
application is shown in Figure 15-2.

B B Y e By e 1 o LW e F v | ap - Mgl I peri B pp lpaw
Fle L View Favosos Tosks lolg [o |
g e s ([A [Crents e (T 8 e b o] G
BRI L] o A e el Py e | A ;l ~0e Lrks ®
Peolirt Ligamls
—— X -
o
|

4 | Do N Lol bedi s

Figure 15-2: Output of the application implementing business objects

Creating a data access component by using Data controls of ASP.NET

ASP.NET provides you with Data controls that enable you to create data-centric
business rule objects in an easier way without having to type the code manually. In this
section, you will look at the process of creating a simple data-centric business rule object
by using the Data controls provided in ASP.NET. This object will be responsible for
establishing a connection with the database and returning all necessary data.

Creating a data access component

To create a data-centric business object by using Data controls, follow the steps given as
follows:

1. Select File ® New ® Project. In the Project Types list box, select
Visual Basic Projects. In the Templates list box, select ASP.NET
Web application. Change the name of the application to
DataAccessComp and click OK.

2. Select Project ® Add Component to open the Add New Item dialog
box. In the dialog box, change the name of the file to
DataAccess.vb.

3. To create a component by using the Data controls available in
ASP.NET, click the Data tab on the Toolbox. The Data tab expands
to display the Data controls. Point to the OleDbDataAdapter control
and drag it to the component designer. The OleDbDataAdapter
control enables you to create an instance of the OleDbDataAdapter
classm, which represents a set of SQL statements and connection

information required for getting the data from the database. It also
enables you to fill a data set with the data returned by the SQL
statement.
4. When you drag the OleDbDataAdapter control to the component
designer, it invokes the Data Adapter Configuration Wizard, shown
in Figure 15-3.
! Data Adapier Configuration Wizand El

Welcome to the Data Adapter
Configuration Wizard

This wizassd Fesips wou pescify e Conmechon and
dlstaheyps commanch Sl the dels sdspler user o
petech iecoedy and handle changess o the datshsse
‘Wipis Pusead B pecrendie CoRnechon il omnshon amd makos
ahsCitain abonl by poa waant the datatase
Cowrinanch thoted s eeeciibed Yol shlly o
oomnpdele Brip vz and mey depend on the permions
podi e i the datshage

D, M et Ly i

wed | oo | o>] |

i

Figure 15-3: Data Adapter Configuration Wizard

This wizard guides you through various steps for establishing a connection
with the database. The first step in this wizard enables you to choose the
database connection. Select the name of the data server and the database
from the drop-down list. If the name of the desired server does not exist in the
drop-down list, click the New Connection button to open the Data Link
Properties dialog box, shown in Figure 15-4.

B Data Link Propemies

Provider Connachion | Advanced | &1 |

S pescily e Follossng 1o connect by DO Serves data
1. Seback of enbel & DETVET N

[=] Fldmm|
2 Erder miomation o kg on 55 e perver.

™ Uk Wiredowss HT Inisgrated mecuriy

= Uhae 5 specde cie naves s parwod

l,rurqnu|
Papword |
I Blonk pavweed [Allow savaneg paaswond
A0 Gelert e databhane on e terver
| =

" plsch & daisbae b & b detabadn rares

|
I =

Tt Connaschion

|nr;|:.-¢u|u¢.]

Figure 15-4: The Data Link Properties dialog box

Select the Connection tab. Specify the data server name and the logon
information for connecting to the data server. Select the NorthWind database.
Click the Test Connection button to ensure that the connection to the
database server is successfully established. Click the OK button to close the
Data Link Properties dialog box and return to the Data Adapter Configuration
Wizard.

5. The next step of the Data Adapter Configuration Wizard enables you
to specify the query type for fetching the required data. This step
provides three options, as shown in Figure 15-5: Use SQL
Statements; Create New Stored Procedures; and Use Existing
Stored Procedures.

P Data Adapter Confguration Wizand

Choose a Cueny Typa .-.]'EI-.LI.IJ

The cats sdapler wins SOL dlabemenis of slorad procedue:

o ol e dsts scdapler acces the datsbase ™

= Upe SOL stalements

Cpecidy & Selsct ttslprnent b losd dsla, and B wirsed will geresale the Inset, Updsie,
ol Dilete siatemants o rave dats changes

I Crpabe new slored procedses

Specily 4 Select ierant, are the wazind will geneidfe rew Bomd prodedae: b
seled, pderl, st ared Cisin recands

7 WMo mxiztirsg ol ored procedae:

ﬂr:-n;m ety thoeed peocedire for eack operation |pelact. moed. wupdsis snd

|Er#|:ﬂuﬂ=|"n*>| |

i

Figure 15-5: Choose a Query Type window

Select the Use SQL Statements radio button and click the Next button.

6. The next step of the Data Adapter Configuration Wizard enables you
to generate the SQL statement to be used for fetching the data. You
can type the SQL statement in the text area provided to you or
generate it visually by clicking the SQL Builder button. Type the
following SQL statement in the text area:

7. SELECT
Orders.OrderlID,
Customers.CustomerlD,

10. Customers.CompanyName,

11. Products.ProductName,

12. Products.UnitPrice,

13. [Order Details].Quantity

14. FROM

15. Customers INNER

16. JOIN

17. Orders ON

18. Customers.CustomerID = Orders.CustomerID
19. INNER JOIN [Order Details]

20. ON Orders.OrderID = [Order Details].OrderID

21. INNER JOIN Products

22. ON [Order Details].ProductID = Products.

ProductID

This step finishes the process of creating the OleDbDataAdapter control. Click
the Finish button to close the Data Adapter Configuration Wizard dialog box.
At the end of this process, you will see two new objects, OleDbDataAdapterl
and OleDbConnectionl, added to the component tray, as shown in Figure 15-
6.

- Pardccmss ey - Blciman® Visu s Dankc BT |#sdgel - haafcoesn v Mg el
e L@ View Pigscd Dol Delis Deta Tusls Widow Bal§
al= -5 J s C IR U =R T] i = «lafe T
- R
LY O b aBueriia v [Daapel w (V)
» :
: ;
H
D i By el et
ia
b
2
K
E
|
4
- |
L

iCH{A{2 Cwpan 2l
Fawdy

Figure 15-6: Component tray after adding the adoDataSetCommandl and
adoConnectionl objects
23. The next step is to create the DataSet class for storing the data
returned by the SQL statement. For this, right-click the empty area
in the component designer and select the Generate Dataset option.
This results in invoking the Generate Dataset dialog box, shown in

Figure 15-7.

Cenerste & dalavel thet mchade: te specied labdss
Choose 5 detsaet

© e | =]

= Hew [DalaSe

Chase whichs tabdals| bo add o free dsl st
o Cuthowresis (|Dhel) bilhel %daphed

I il Wix cstased In the degigner.

[k | cacd | Hee |

Figure 15-7: Generate Dataset dialog box

Enter the name of the DataSet class as OrderDataSet and click the OK
button. This results in generating the OrderDataSet.xsd file. The file is
included in the Solution Explorer window. This file contains the XML schema

definition for the resulting DataSet. Components in .NET use XML for
ensuring interoperability. The XSD file defines the structure of the data in the
OrderDataSet object. In addition to the XSD file, the Generate Dataset option
also generates the methods required for filling and updating the OrderDataSet
class. The OrderDataSet class can now be used in the Web Form.

Cross- For information on XML and XML schemas, refer to

Reference Chapter 13.

Using the data access component in a Web Form

You will now look at using the OrderDataSet class and the DataAccess class in a Web
Form. You will create a DropDownList control in the Web Form to display all order IDs.
When a user selects an order ID, the details about the order ID should displayed in a
DataGrid control.

1. To use the OrderDataSet class in a Web Form, you need to create an
instance of the OrderDataSet class. Select the DataSet control from
the Data tab of the Toolbox and drag it to the Web Form. This
invokes the Add DataSet dialog box, shown in Figure 15-8.

Chease a hyped of uniyped dalael o add b e dengnes
e Typped dalase
Hare :IT'.‘IHch:tuE.nln- Dedeilatss el ;l

Ciealey an ratarcs of & hped detasst clats slsedy i wour prosscl. Chacds Hh
opetion Bo ek with & datspet that kas 5 bl schema Ses Help o detals on
pensistey ped dabasely.

Ui clasl e

Cinades an rntance o an unhpped dataset clias of
Chessn Bei oplan whien o wael 5 dalibsl wilh nd ifang

Figure 15-8: Add DataSet dialog box

This dialog box has two radio buttons, Typed Dataset and Untyped Dataset.
The Typed Dataset option enables you to create a data set based on an XML
schema definition. You can use the Untyped Dataset option if you do not have
an XML schema definition. In this example, you have already generated the
XML schema called OrderDataSet.xsd. Therefore, select the Typed Dataset
option. In the drop-down list box, locate the name of the OrderDataSet class,
which appears with the prefix of your project name. For example, if your
project name is DataAccessComp, the class appears in the drop-down list as
DataAccessComp.OrderDataSet. Selecting the OrderDataSet class and
clicking the OK button results in the creation of an instance of the
OrderDataSet class. This object has the name OrderDataSet1.

2. The OrderDataSetl object needs to be filled with the required data by
using the connection information and the SQL statement stored in
the OleDbDataAdapter and OleDbConnection objects. To achieve
this functionality, create an instance of the DataAccess component
in the Page_Load() event of the Web application as follows:

Dim ordercomponent as new DataAccess()

This statement creates an instance of the DataAccess class in which you
created the OleDbDataAdapterl and OleDbConnectionl objects and
generated the functions for filling the OrderDataSet.
3.Invoke the Fi I | () method of the OleDbDataAdapter object in the
Page_ Load() method of the Web Form, as follows:

4, If Not IsPostback Then

5.
6.

ordercomponent.OleDbDataAdapterl.Fill(OrderDataSet1)
End If

7. After filling the DataSet, the next step is to create a DataView object.

You can create a DataView object by using the DataView control
provided in ASP.NET. Click the Data tab on the Toolbox. Click and
drag the DataView control to the Web Form. This will create a
DataView object called DataViewl. You can change the name of
this object by using the Properties window. Press F4 to switch to the
properties window and change the ID of the DataView object to
OrderDataViewl. Change the Table property of the DataView object
to OrderDataSet1.customers.

8. The DataView object created in the previous step can now be used to

populate controls in the Web Form. Create a DropDownList control
on the Web Form. Set the properties of the control as shown in
Table 15-2.

Table 15-2: DropDownlList control properties

Dat aSour ce

Or der Dat aVi ewl

| Property ‘ Value

| ID | LstOrderld
| DataTextField | OrderID

| DataVval ueFi el d | OrderlD

| Aut oPost Back | True

| |

9. Modify the Page_Load() method of the Web Form to include

10.

11.
12.

End If

13.

14.

15.

instructions for binding the order ID to the DropDownList control as
follows:

If Not IsPostback Then

ordercomponent.OleDbDataAdapterl.Fill(OrderDataSet1)
LstOrderld.DataBind()

Now, you need to add the functionality for displaying the details of
an order when a user selects a particular order ID from the
DropDownList. For this purpose, create another DataView object by
clicking and dragging the DataView control from the Data tab of the
Toolbox to the Web Form. Set the ID property of the DataView
control to OrderDataView2 and the Tables property to
OrderDataSet1.customers.

Create a DataGrid control on the Web Form for displaying the
details of the selected order ID. Set ID of the DataGrid control to
dgOrderData.

Click the Property Builder link in the Properties window of the
DataGrid. This will invoke the dgOrderData Properties dialog box,

shown in Figure 15-9.

dgOrderlata Properies

A Fosnal D ey

Bowte | B

Erptalingd columng wll bo alomatcaly garmialad from the pelacted daly jouece
At coburmt Can b defined in B Columng page

Header and losler
[Skawa hasschat
I Shew fcler

Bisharatr
|_|5¢I;M1.|;|'I'r|g

I N R I

Figure 15-9: dgOrderData Properties dialog box

Specify the DataSource as OrderDataView2. Click the Columns tab and
specify the columns from the DataView that should appear in the DataGrid.
Ensure that the Create Columns Automatically At Runtime check box is
cleared.
16. If the user is not visiting the Web page for the first time, the
DataGrid should be populated with the details about the orders. This
is done by modifying the Page_Load() method to include the

following statements:

17. If Not IsPostback Then
18. ordercomponent.OleDbDataAdapterl.Fill(OrderDataSet1)
19. LstOrderld.DataBind()
20. Else
21. ordercomponent.OleDbDataAdapterl.Fill(OrderDataSet1)
22. OrderDataView2.RowFilter = "OrderID="" +
23. LstOrderld.SelectedIltem.Text + "™
24, dgOrderData.DataBind()
End If

The highlighted code in this code snippet repopulates OrderDataSetl and
sets the RowFilter of OrderDataView?2 to the item selected from the
DropDownList. This ensures that the details about only the selected order ID
are displayed in the DataGrid control. Finally, the Dat aBi nd() method binds
the DataGrid dgOrderData to the data held in the DataView OrderDataView?2.
When you open this application in the browser, it will initially display a
DropDownList with all the order IDs. When you select a particular order ID,
the browser window will display a DataGrid containing all the details about the
order as shown in Figure 15-10.

T L T T ™m [I5]=]
Fle [View Favosiies Tesks Help
b = = 3D G ([CPenaty e yfeom 3 b G o]

Bl 3ot b o e L AT | e :I oo ek =

=

Seboss Goader 1B [10823 5]

Lhaler Jhenaals

& Do I Lacal ki =
Figure 15-10: Output of the application implementing the data access
component

Thus, ASP.NET enables you to easily create and use business objects in your
applications. In addition, it also provides various data controls for quickly
generating the code for database connectivity. This helps in reducing the
development time.

Deploying Business Objects
Deployment refers to the process of distributing an application or a component for
installation on other machines. The .NET Framework has introduced several new
features to simplify the deployment of business objects. Until now, Microsoft's
Component Object Model (COM) has been used for creating business objects. However,
COM suffers from various problems relating to deployment:
= Registration: When you install a COM component on your machine, the

component makes some entries that store information about the

component in the Windows Registry database. This information includes

the Globally Unique Identifier (GUID) and the Class Identifier (CLSID).

Thus, the process of deploying COM components involves the task of

copying necessary files to the disk and making Registry entries. This

separation of entries to the disk and Registry causes difficulty in the task of

replicating and uninstalling applications. Moreover, the registration of

components complicates the task of deploying an application, because

each client machine must have appropriate entries in the Registry for using

the component.

=Versioning: Often, you have various applications attempting to use the same

COM component. When you install a new application, it may result in

installing the newer version of the component. In this case, the newly

installed application may work well. However, the existing applications that

depend on the older version of the component may stop functioning. These

problems occur because the system does not keep track of the versions of

different components used by different applications. In addition, the

applications do not specify the information about the version of a

component that it uses.
To solve these problems, Microsoft has introduced assemblies in .NET. An assemblyis a
single deployable unit that includes all the information required to deploy a component.
An assembly can be embedded within a single DLL. In such a case, it is called a single-
file assembly. An assembly can also be made up of multiple files. In such a case, the
assembly is called a multifile assembly. Assemblies are used as the basic building
blocks for solving the issues relating to registration and versioning. You can think of an
assembly as a logical DLL. However, a DLL is dependent on the Registry for maintaining
information about it, whereas an assembly maintains all information about itself and does
not depend on any Registry entries. Assemblies have the following features:

=They are self-describing: Assemblies are self-describing deployable units.
.NET stores the metadata about the components in assembly manifests,
which include the identity of the assembly (such as the name and the
version number), security information, information about the dependencies,
and the list of files that constitute the assembly. In .NET, an application is
also made up of assemblies. Therefore, the information about the version
of a component used by an application is also maintained in the assembly.

=They record the version information and enforce it at run time: The
assembly manifest also includes the information about the dependencies
between different assemblies, such as the name of the referenced
assembly and its version number. This version number is used at run time
to ensure that the correct version of the dependency is loaded.

=They provide the ability to work with side-by-side components: This
feature allows multiple versions of a component to be installed and run
simultaneously. The caller of the assembly can specify the version to be
loaded. Thus, the .NET Framework allows multiple versions of a single
component to coexist on a machine. This feature also isolates the
application from the changes made to the system by other applications.

Creating a single-file assembly

You can create a single-file assembly by using command-line compilers such as vbc and
csc. A single-file assembly includes all the information about the component. You can
use the following statement to create an assembly file with the .exe extension.

C#:

csc filename.cs

VB.NET:

vbc filename.vb

These statements create an assembly that has the same name as that of the VB or CS
file and with an .exe extension. To create an assembly file with a different filename, you
can use the / out: option of the compiler command, as follows:

C#.

csc /out:outputfile.exe sourcefile.cs

VB.NET:

vbc /out:outputfile.exe sourcefile.cs

In these examples, the source file must contain a single entry point, such as the Mai n()
function. If you do not have an entry point, the compiler gives you an error message. If
you do not want your source file to contain any entry point and want it to contain only
other classes and methods, you must create a library assembly. A library assembly
contains components that will be accessed by other assemblies. It is very similar to class
libraries.

You can create a library assembly by typing the following command:

C#:
csc /t:library /out:outputfile.dll sourcefile.cs

VB.NET:
vbc /t:library /out:outputfile.dll sourcefile.cs

After you have created assemblies for all the files to be used in a project, you can create
a deployment project.

Creating a multifile assembly

You might be required to create a multifile assembly if you want to use classes written in
different languages. You might also be required to create a multifile assembly if you want
to optimize the process of downloading components. For example, you might want to
combine rarely used components into a single assembly.

When you create a multifile assembly, one of the files in the assembly must contain the
assembly manifest. Let us look at the process of creating a multifile assembly with the
help of an example. Consider the class ConnectDB:

‘ConnectDB.VB

Imports System.Data
Imports System.Data.SQL
Namespace DB

Public Class ConnectDB

Functions for establishing connection

End Class
End Namespace

Consider another class, Calculate, which uses the class ConnectDB to connect to the
sales database and returns the price of a product after calculating the discount:

'‘Calculate.VB

Imports System.Data
Imports System.Data.SQL
Imports DB

Public Class Calculate

Call functions from the ConnectDB class
Calculate the discounted price

End Class

To create an assembly with these two files, you need to follow these steps:

1. Compile all the classes that are created within a namespace, which is
referenced by other modules. In this example, the class ConnectDB is
created within the namespace DB. The DB namespace is accessed in
the Calculate class. Therefore, you first need to build the ConnectDB
class into a module by using the following statement:

vbc /t:module ConnectDB.vb /r:system.dll /r:system.data.dll

When you want to create a module instead of a library assembly or an

executable file, you need to specify the / t : nodul e option, which instructs

the compiler to create a standard DLL file that does not contain the assembly

manifest. The / r option is used to specify references to other libraries. This

statement creates a module called ConnectDB.mcm.

Note The default extension for a module is .mcm. You can change the

default name of the output file generated by the compiler by using the
/ out : option of the compiler.

2. After compiling classes that are included inside namespaces, you
need to compile classes that use other modules. In the example, the
Calculate class references the ConnectDB module and makes calls to
functions written in the ConnectDB class. Therefore, you must compile
the Calculate class file by executing the following statement at the
command prompt:

vbc /addmodule:ConnectDB.mcm /t:module Calculate.vb

In this statement, the / addnmodul e option is included to specify the name of

the module, which is referenced by the file Calculate.vb. When you give this

statement from the command prompt, the compiler creates a module called

Calculate.mcm, which references another module, ConnectDB.mcm.

3. After compiling various classes into modules, you can create a multifile

assembly by using the Al.exe utility. Type the following statement at
the command prompt to create an assembly:

al /out:App.dll /t:lib ConnectDB.mcm Calculate.mcm

In this statement, the / out option specifies the name of the output file to be
produced by Al.exe. The / t option specifies the file format of the output file.
You can set the option to lib (code library), exe (console application), or win
(Windows-based application). Finally, you specify the names of the modules
to be included in the assembly. This statement creates a library assembly
called App.dll. This file contains the assembly manifest, which describes the
types in other modules included in the assembly.

Creating a deployment project

A deployment project enables you to specify the files to be included in the deployment
and the name of the remote machine where the application or component needs to be
deployed. You can create a deployment project by completing the following steps:

. Open the CalcNetAmt project.

2. Select File ® New ® Project. Select Setup and Deployment projects
from the Project Types list box.

3. The Templates list box provides various options, such as Cab Project,
Merge Module Project, Setup Project, Setup Wizard, and Web Setup
Project, for performing different types of installations. Select Setup
Wizard. Click the Add To Solution radio button.

4. The Setup Wizard guides you through various steps of creating a
deployment project. It enables you to specify whether you want to
deploy a client application or Web application, and the files to be
included in the deployment project.

5. The first step in the Setup Wizard is to choose the project type of the
deployment application. This screen provides four options: Create A
Setup For Windows Application, Create A Setup For A Web
Application, Create A Merge Module For Windows Installer, and
Create A Downloadable CAB File. Select Create A Setup For A Web
Application.

6. The next screen asks you to specify the project output groups to be
included in the setup project. Select the Project Output check box.
Project output includes the EXE or DLL files in a project.

7. The last screen asks you to specify any additional files that you want
to be included in the setup project. These files may include the
Readme.txt file or an HTML page containing instructions for
installation. Add the files that you want to be included in the setup
project. Click the Finish button.

8. If you want to change any of the properties of the deployment project
that you have created, right-click the project in the Solution Explorer
window and select Properties from the pop-up menu. This will invoke
the Setup Property Pages dialog box, shown in Figure 15-11.

Setup] Praperty Pages

Configurtion; | ActresiTieteg] =l [-] CorhpaninMaagn
Ao T e (EDEEEN Do
Pk ingen s T =]
Bcokiiapper |-'|-:--r 3
Compreion [D phrmred s spend |
e
- &
™ Putwriioode tignahan
| Erowse |
| e
|
| Cacd | | e |

Figure 15-11: Setup Property Pages dialog box

9. If you forgot to specify some files that are required to deploy the
application in the wizard while creating the setup project, you can add
them by right -clicking the setup project in the Solution Explorer window
and clicking Add ® File.

10. After you have specified all the options and the files to be included in
the deployment project, right-click the project in the Solution Explorer
and click the Build option. This will create a MSI (Windows Installer
Package) file in the Debug folder of your project. You can now use this
file to deploy your components and application.

For a detailed discussion on deploying classes and
assemblies, see Chapter 21.

Cross-
Reference

Working with Business Object Namespaces

Namespaces enable you to organize your classes in a hierarchical manner and organize
all the classes and methods that perform related tasks. You can use namespaces to
organize your business objects as well. For example, you might create a namespace
called SalesData, which might contain all the components that perform the tasks of
inserting, manipulating, and validating the data from the sales database.

You can create a business object namespace by using the Nanmespace keyword, as
follows:

Namespace SalesData
Class AddSalesData

code for adding sales data

End Class

End Namespace

While using this business object in your Web application, you must import the
namespace SalesData by including the following statement in the ASPX file:
<%@ Import Namespace="SalesData" %>

You might alternatively include the following statement in the VB file of the Web project:
Imports salesdata

Cross- For a detailed discussion on creating and using
Reference namespaces, refer to Appendix F.

Summary

In this chapter, you learned about the business objects and the different types of
business objects. You also learned to create Ul-centric business rule objects and data-
centric business rule objects. Next, you learned to use business objects in your
application. Then, you looked at the process of deploying business objects. Finally, you
learned about working with business object namespaces.

cnapter 16: BUIlding HTTP Handlers

Overview

The World Wide Web (WWW) uses the Hypertext Transfer Protocol (HTTP) as the
underlying protocol for communication. It is an application-level protocol that is
responsible for establishing a connection between a client (browser) and a Web server
and transmitting the information requested by the client. In fact, the day-to-day life of a
Web server involves receiving requests from clients and responding to them by using
HTTP.

ASP.NET works by dispatching the client requests to user-defined HTTP handler objects
called HTTP handlers. With ASP.NET, you can create these user-defined HTTP
handlers by implementing a .NET interface named IHttpHandler. After you've created a
user-defined handler, you can bind a specific URL request to the handler for handling
specific requests. For example, you can bind a URL request for a file, with your name as
an extension, to a user-defined handler for processing. However, if a specific URL
request is not mapped to a handler, the default handler of ASP.NET handles it.

In this chapter, you will learn about HTTP runtime provided in ASP.NET, which allows
you to process HTTP requests coming from clients. You will also learn about the
interfaces and classes involved in creating HTTP handlers. Finally, you will learn to
create a custom HTTP handler.

Introduction to HTTP Runtime and HTTP Handlers

When you enter a URL in a browser, the browser builds an HTTP request and sends it to
the address specified in the URL. While building the HTTP request, various methods are
used. These methods indicate the purpose of the request. These methods include the
following:
= Cet : Used when a request for a particular page is made. When a user enters
a link in the Address box of the browser or clicks a hyperlink, the HTTP Get
method is used to build the HTTP request. The Get method is usually used
when the request does not alter the state of a database.
=Head: Used when a user wants to retrieve only the information about the
document and not the document itself.
= Post : Used when a user requests a resource that interacts with a database.

The Web server, which contains the requested page, performs necessary processing
based on the method used for sending the request, and retums the page requested by
the client. In addition to these methods, you can have a lower-level control over the
processing of requests on the Web server. This is possible with the help of application
programming interfaces (APIs), which are covered in the next two sections.

ISAPI and HTTP Runtime

A number of APIs have been developed that enable developers to have lower-level
control over the processing of requests on the Web server. For example, the Internet
Services API (ISAPI) developed for IIS Web Server enables developers to create high-
performance applications. At the same time, it enables developers to have low-level
control over the way requests are processed by IIS.

With ISAPI, you can create your own dynamic link libraries (DLLs) that specify the tasks
that need to be performed when a request is sent to the Web server. The DLLs provided
in ISAPI can be of two types, filters and extensions. Filters enable you to write code that
can receive notifications from the Web server during the processing of a request. Thus,
filters are used to alter the standard behavior of the Web server. You can use filters to
perform tasks such as compressing and encrypting the data to be sent and
authenticating a user. On the other hand, ISAPI extensions accept user requests,
perform tasks such as retrieving data from a database and generating an HTML page,
and send a response to the client.

In ASP.NET Web applications, low-level control over client requests is achieved by using
the HTTP runtime. The HTTP runtime is built on the Common Language Runtime (CLR)
of the .NET Framework, and provides an environment for processing requests. Thus, the
CLR replaces the ISAPI under IIS. The HTTP runtime performs various functions,
including receiving requests from the client, resolving the address specified in the URL,
and sending the request to the appropriate application for further processing of the
request. The HTTP runtime is capable of receiving multiple requests simultaneously. The
applications are run in separate address spaces, thereby improving reliability and
preventing cross-platform chaos. Therefore, the failure of a single Web application does
not affect the working of the HTTP runtime.

Just like the ISAPI extensions and ISAPI filters, the HTTP runtime enables developers to
have lower-level control over processing Web requests. However, unlike ISAPI, for which
developers must know C++, the HTTP runtime is a cleaner model and enables
developers to program in any .NET programming language. Therefore, ASP.NET prefers
the CLR of the .NET Framework to the ISAPI architecture.

Architecture of the HTTP Runtime

The architecture of the HTTP runtime is similar to that of a pipeline. It is comprised of a
number of HTTP modules and handlers. In simple terms, HTTP modules and HTTP
handlers are classes created by developers that implement predefined interfaces of
ASP.NET. When a client makes a request that results in executing a Web application,
the request passes through a pipeline of HTTP modules. HTTP modules enable a Web
application to perform specific tasks, such as encrypting the data, performing custom
authentication for providing access to the application, and managing the state of the
client session and the application. After passing through a series of HTTP modules, the
request is sent to the HTTP handler. An HTTP handler is a replacement for ISAPI
extensions that receive the request, fetch the required data, and send the data in
response to the request sent by the client. ASP.NET provides higher-level programming
models, such as Web services and Web Forms, which are implemented as HTTP
handlers. The pipeline architecture of the HTTP runtime enables you to easily implement
new functionality by adding new HTTP modules and handlers. Figure 16-1 depicts the
pipeline architecture of the HTTP runtime provided in ASP.NET

HTTP Request Response
HTTP

Runtime

I

HTTP
M ocdule

b1

HTTP
M odule

3

3

HTTP
Handler

Figure 16-1: Architecture of the HTTP runtime provided in ASP.NET

ASP.NET provides various interfaces that can be implemented for creating HTTP
modules and HTTP handlers. For example, it provides the IHttpModule interface, which
can be used to create modules that perform tasks related to security and compression.
State management functions are often implemented in HTTP modules so that they can
be easily added or removed from the HTTP runtime pipeline.

In addition to the IHttpModule interface, ASP.NET has the IHttpHandler interface that
can be implemented by developers to create a lower-level HTTP handler that receives
the request and performs various tasks.

As you already know, HTTP is used to process requests for the ASP.NET pages.
Because HTTP is a connectionless protocol, clients connect to servers only for the
duration of HTTP requests. There must be a way in ASP.NET to manage connections
within an application. To do so, ASP.NET generates one HttpContext object and passes
it to HTTP handlers for each request that is serviced.

The HttpContext object provides a way to manage the connections within an application.
This object maintains the information about the current request and also provides access
to the Request, Response, and Server objects corresponding to a particular HTTP
request. The Request object provides access to the values entered by a user while
sending a request to the Web server. For example, you may enter values in an HTML
form and send a request to the Web server to look up the value in a table stored in a
database. This value can be accessed by using the Request object. Similarly, you can
use the Response object to send a response from the Web server to the client. The
Server object provides methods that are used for processing the request. For example,
the Server object has the HtmIDecode method, which decodes the HTTP request sent by
the client by removing the HTML characters from the request. You can use all of these
built-in objects and their methods to perform different tasks in your HTTP handlers.

You learned about the HTTP runtime, HTTP modules, and HTTP handlers provided in
ASP.NET. Now, you will learn to create an HTTP handler.

Interfaces and Classes Used to Create HTTP Handlers

The .NET Framework provides classes that enable you to handle HTTP requests for the
ASP.NET Web pages and services. You can handle HTTP requests by creating a class
that implements the IHttpHandler interface contained in the System.Web namespace.

The System.Web namespace contains classes and interfaces that enable you to handle
the communication between browsers and Web servers. Before you can use a class that
implements the IHttpHandler interface, you need to write the <httpHandlers> section in
the Web.config configuration file to map the class that implements IHttpHandler to a URL
request.

Cross- For more information on the <httpHandlers> section,
Reference refer to Chapter 14.

Before you create an HTTP Handler, let us look at the IHttpHandler and
IHttpHandlerFactory interfaces, and some of the classes contained in the System.Web
namespace.

IHttpHandler interface

The IHttpHandler interface must be implemented to create user-defined HTTP handlers
to process Web requests. Specific instances of the classes that implement the
IHttpHandler interface process the Web requests received by ASP.NET. When you
create a class that implements the IHttpHandler interface, you need to implement a
method and a property of this interface. The method that needs to be implemented is
Pr ocessRequest, and the property that needs to be implemented is | sReusabl e.

ProcessRequest
The Pr ocessRequest method is called whenever an HTTP request is made and has
the following Visual Basic .NET syntax:

Sub ProcessRequest (ByVal context As HttpContext)

End Sub
As you can see in the preceding syntax, the Pr ocessRequest method takes an object

of the HttpContext class (discussed later in this section) as a parameter. You use the
HttpContext object to handle all Web requests.

IsReusable

The | sReusabl e property is an overrideable read-only property that gets a value
indicating whether the instance of the class that implements the IHttpHandler interface
can be recycled and used for other Web requests. The Visual Basic .NET syntax of the
| sReusabl e property is given as follows:

ReadOnly Property IsReusable As Boolean

As you can see in this syntax, the | sReusabl e property gets a Boolean value. If it gets
True, the IHttpHandler instance can be reused for other Web requests. However, if the
property gets False, the IHttpHandler instance cannot be reused for other Web requests.

IHttpHandlerFactory interface

As mentioned earlier, the Web requests received by ASP.NET are processed by specific
IHttpHandler instances. At run time, the Web requests must be resolved to the
IHttpHandler instances. This resolution of the Web requests to the IHttpHandler
instances is done by the IHttpHandlerFactory interface. This interface contains two
methods, Get Handl er and Rel easeHandl er.

GetHandler

The Get Handl er method returns an IHttpHandler object that processes the Web
request from the client. The Visual Basic syntax for the Get Handl er method is given as
follows:

Function GetHandler(ByVal context As HttpContext,
ByVal requesttype As String, ByVal url As String, ByVal
pathtranslated As String) As IHttpHandler

End Function
The return type of the Get Handl er method is IHttpHandler. The different parameters
include:
= cont ext : Represents the object of the HttpContext class that
provides reference to built-in server objects
= requesttype: Represents a string value that refers to the method used
for HTTP data transfer, such as Get and Post
= url: Represents a string value that refers to the URL that is requested
by the client
= pathtranslated: Represents the string value that refers to the physical
path of the application's root directory

ReleaseHandler

The Rel easeHandl er method allows releasing an IHttpHandler instance so that it can
be reused. The Visual Basic syntax for the Rel easeHandl| er method is given as
follows.

Sub ReleaseHandler(ByVal handler As IHttpHandler)

End Sub
In this code, handl er is the IHttpHandler instance that needs to be released.

HttpContext class

The HttpContext class provides reference to the built-in server objects to process Web
requests. Some of the properties that retrieve the built-in server objects are described in
Table 16-1.

Table 16-1: Properties of the HttpContext class

Property Description

Application Gets the

HttpApplicationS
tate object
associated with
the current
HTTP request.

Sessi on Gets the

SessionState
object
associated with
the current
HTTP request.

Request Gets the

HttpRequest
object
associated with
the current
HTTP request.

Response Gets the

HttpResponse
object
associated with
the current
HTTP request.

Server Gets the
HttpServerUtility
object

Table 16-1: Properties of the HttpContext class

Property Description

associated with
the current
HTTP request.
The
HttpServerUtility
class provides
certain utilities
that can be used
while processing
HTTP requests.
For example, the
Machi neName
property of this
class returns the
name of the
server machine.

HttpRequest class

The HttpRequest class enables you to handle communication from a browser to a Web
server. You can use this class to access the data supplied by clients during HTTP
requests. Table 16-2 describes some of the properties of this class.

Table 16-2: Properties of the HttpRequest class

Property Description

Br owser Gets the information

related to the
capabilities of the
browser from which
the HTTP request is
made. This property
returns a reference
to the
HttpBrowserCapabili
ties class, which is
also a member of
the System.Web
namespace.

Request Type Gets the data

transfer method that
is used by the client.

ApplicationPath Gets the virtual

application root path
of the current
application that is
executing on a
server.

Fi | ePat h Gets the virtual path

of the current HTTP
request.

Physi cal Appl i cati onPat h Gets the physical

path of the
application that is
executing on a

Table 16-2: Properties of the HttpRequest class

Property Description

| server.

url Gets the information

related to the URL of
the current HTTP
request.

HttpResponse class

The HttpResponse class enables you to handle communication from a Web server to a
browser. This class is used to send the output from the server to the browser. Table 16-3
describes some of the properties of this class.

Table 16-3: Properties of the HttpResponse class

Property Description

Cont ent Encodi ng Gets or sets

the
character
set of the
output from
the server.

I sCli ent Connect ed Returns a

Boolean
value that
indicates
whether or
not the
client is
connected
to the
server.

Cache Gets the

policy
information,
such as
expiration
time and
privacy for
the current
Web page.

The HttpResponse class provides the Wi t e method to display the output in a browser.
This method takes a String parameter, which indicates the value to be displayed.

Creating HTTP Handlers

After understanding the different classes and interfaces contained in the System.Web
namespace, you can now implement them to handle the communication between a
browser and a Web server.

The general steps to create an HTTP handler class are detailed in the sections that
follow.

Creating a class that implements the IHTTPHandler interface

To create a class that implements the IHTTPHandler interface, complete the following
steps:
1. Create an ASP.NET Web Application project by using either C# or
Visual Basic.NET.
2. Add a class to the project.
3. Inthe class that you added, create a class that implements the
IHttpHandler interface. Also, implement the Pr ocessRequest
method and the | sReusabl e property of the IHttpHandler interface.
4. Build the project to create the DLL file for the handler class.
Note The DLL file is created in the bin directory of your project.

After the DLL file is created, you can use this handler to handle request for any ASP.NET
page.

Using the handler class in a Web application

To use the handler in a Web application, you need to add an entry for the handler class
in the <httpHandlers> section of the Web.config file. To do so, you use the <add> tag.
The syntax is given as follows:

<configuration>
<system.web>
<httpHandlers>
<add verb="[HTTP Verb]" path="[Request Path]"
type="[.NET Class]" />
</httpHandlers>
</system.web>

</configuration>
Note You'll find many more sections and many more <add> tags in the
<httpHandlers> section of the Web.config file.
The <add> tag takes three attributes:
= ver b: Indicates the HTTP verb type that the handler services request.
This attribute takes a string value, such asverb = "Get" orverb =
"Get; Head; Post". If the attribute takes an asterisk (*) as a value, it
instructs the HTTP runtime to match on all HTTP verbs.
= pat h: Indicates the request path, such as /Trial/Sample.aspx, which the
handler is mapped to.
You can also specify any file extension, such as .Rita. But, for this to work,
Tip you must map this file extension in IIS. You can do so in the 1IS Microsoft
Management Console (MMC).
= type: Indicates the name of the .NET class that contains the HTTP
handler code. This attribute takes the value in the following format:
[Namespace].[Class].[Assembly name].

Next, you need to add a reference to the DLL file of the handler class. To do so, select
Add Reference from the Project menu. This opens the Add Reference dialog box. In this
dialog box, click Browse to select the DLL file of the handler.

After you've added the entry for the handler in the Web.config file and added its
reference, when you browse the page (whose path is mentioned in the "pat h" attribute
of the <add> tag), you'll notice that the handler automatically handles this request.

Now that you know the general steps, let's implement them to create a custom HTTP
handler.

Custom HTTP Handler Example

Let us now create a simple HTTP handler that displays a hello message to the user and
accesses the request and response information when an HTTP request is made for a
Web page.

To implement this example, create a Web application project. In this case, the project is
a Visual Basic project named SampleHTTPHandler. Then, add a class to the project. To
do so, select Project ® Add Class. This displays the Add New Item dialog box. In this
dialog box, specify an appropriate name for the class. In this case, the name of the class
is SampleHandler.vb. In case of a Visual C# project, the class would have a .cs
extension. Next, add the following code to the class:

‘Importing the System.Web namespace

Imports System.Web

'‘Creating a namespace
Namespace Acme

' Creating a class that implements the IHttpHandler class

Public Class SampleHandler : Implements IHttpHandler

" Implementing the ProcessRequest method of the IHttpHandler
"interface

Public Sub ProcessRequest(ByVal Context As HttpContext)
Implements IHttpHandler.ProcessRequest

Dim str As String

retrieving the value that is passed to the Name variable

' at the time of request. To do so, you are using the

' Request property of the object of the HttpContext class.
' Notice that the Context object of the HTTPContext class
is passed as an argument.

str = Context.Request.QueryString("Name")

' Using the Write method of the Response method to
' display a hello message

Context.Response.Write("<h1> Hello " + str + "</h1>")

' Using the write method of the Response object to display

' amessage in a browser. Notice that the HTML elements
are also used.
Context.Response.Write("This is an HTTPHandler demo")
Context.Response.Write("<hr align=Ileft width=205>
")

Using the Browser property of the Request object to get

an object of the HttpBrowserCapabilities class
Dim hBrC As HttpBrowserCapabilities = Context.Request.Browser

Displaying the name and version of the browser
Context.response.Write("Browser capabilities:
")
Context.Response.Write("Name =" & HBrC.Browser & "
")

Context.Response.Write("Version=" & HBrC.Version & "
")

Using the PhysicalApplicationPath and the
Applicationpath properties of the Request object to get
the physical path and the virtual path of the

application respectively

Dim pPath As String

Dim vPath As String

pPath = Context.Request.PhysicalApplicationPath
vPath = Context.Request.ApplicationPath

Displaying the virtual and physical path of the
application
Context.Response.Write("
Virtual path of the
application:
")

Context.Response.Write(vPath & "
")

Context.Response.Write("
Physical path of the
application:
")
Context.Response.Write(pPath & "
")

Using the IsClientConnected property of the Response
object to determine whether the client is connected to
the server

Dim connect As Boolean

Dim connectStr As String

connect = Context.Response.lsClientConnected
connectStr = connect. ToString

Context.Response.Write("
Client connection status:
")

Context.Response.Write(connectStr)

End Sub

" Implementing the IsReusable method of the IHttpHandler

interface

Public ReadOnly Property IsReusable() As Boolean Implements
IHttpHandler.IsReusable
Get
Return True
End Get
End Property
End Class

End Namespace

After creating this class, build the project. After the build is complete, a DLL file is
created in the bin directory of the project. Now, the handler is ready, and you can use it
to handle any Web request.

Next, you'll use the handler in a new Web application. To do so, create a Visual Basic
ASP.NET Web Application project named HandlerTesting. In the Web.config file, in the
<httpHandlers> section, add an entry for the handler to map the Web request to the
handler class:

<httpHandlers>

<add verb="*" path="Test.aspx" type="SampleHTTPHandler.Acme.
SampleHandler,SampleHTTPHandler" />
</httpHandlers>

In the preceding code, the path attribute is set to Test.aspx. Therefore, rename the
WebForm1.aspx file to Test.aspx. The next step involves adding a reference to the DLL
of the handler class.

After adding the reference, browse the Test.aspx page by passing your name in the
Nane variable as QueryString. The URL of the page should appear as follows:

...ITest.aspx?Name=Rita
Figure 16-2 displas the output of this page.

3 by Vv By S e g b Tt Tl osgnn 7 H o= Bl . Mcopmll s vt L gl soori

fle [View Favides Tesh liely =

e = s o D N [EPemuils Qe Wfess 3 4 b oF 2

-t LT T PR T O Fa sy — =] s Lrka ™
= |

Hello Rita

This is sa HTTPHaader demo

R papeibaen:
Hoxae = [E
Vernowr=6 Ot

Wirtual path of tho apgbeaticn:
EanpkTerag

Pyvical poth of e sppbraties:

¢ imniptterwaroct S mupleTa mngh

Crmd comesec tiom atatwc

4 |
2] Do (¥ Locel wiaaen

Figure 16-2: Output of the SampleHTTPHandler application

Summary

This chapter introduced you to HTTP handlers. First, you learned about the HTTP
runtime provided in ASP.NET for performing low-level processing on the HTTP request

sent by the client. You also learned about HTTP modules and HTTP handlers. Next, you
learned about various interfaces, classes, and built-in objects provided in ASP.NET for
creating your own HTTP handlers. Finally, you leamed how to create an HTTP handler.

chapter 17 UNderstanding Caching

Overview

Usually, Web sites (Web applications) are accessed by multiple users. On certain days,
a Web site can experience an extremely low load and, as a result, provide faster access.
However, in just a few hours, the load on the site can increase exponentially, resulting in
slow access. Slow access is the most common problem that plagues a Web site when it
is accessed by a large number of users simultaneously. However, load is not the only
reason why a Web site is slow. Other physical aspects affect speed, such as the type of
modem, Internet connection, and telephone line. Therefore, it might not be good
business sense to invest in high-grade hardware that handles the entire load just to
improve the access speed, because the heavy load is only temporary and not constant.
It would be better if access speeds could be improved without investing in high-grade
hardware. In such a scenario, caching provides a solution.

Caching is a technique wherein frequently used data and Web pages are stored
temporarily on local hard disks for later retrieval. This technique improves the access
time when multiple users access a Web site simultaneously or a single user accesses a
Web site multiple times. Caching allows server-side Web applications to scale better,
and improves the overall performance of the Web application. Thus, the ASP.NET code
does not need to be executed every time to process the same request from multiple
clients or from a single client multiple times. This saves on the CPU cycles at the Web
server, resulting in improved response time.

This chapter introduces you to caching. You will also learn the concept of caching page
output and caching page data for optimizing the ASP.NET Web applications.

Introduction to Caching

Caching, as a technique for improving system performance, is not a new concept. It has
been used successfully in various applications, ranging from relational databases such
as Microsoft SQL Server to various operating systems. ASP.NET provides a Web cache
to store Web objects.
A Web cache is a temporary storage of Web objects, such as HTML documents, for later
retrieval. You can specify the cache location to be on the client or on the server. The
different locations where caching can be performed are described as follows:
= Client: To provide improved performance, client applications (like browsers)

perform caching by storing data from the Web in temporary files on the

hard drive or system memory of users' computers. However, these caches

cannot be shared across multiple users. Figure 17-1 demonstates caching

at the client side.

Client Client Client
| Cache | | Cacha | | Cache |
Web server Web server Web sarver

Figure 17-1: Client caching

= Dedicated server: Caching can be performed at the server side so that

caches can be shared across multiple users on a network. Most
administrators use proxy servers, such as Microsoft Proxy Server, to store
frequently used Web pages on the hard disk of the proxy server. The proxy
server fulfills all the requests for the Web page without sending out the
request to the actual Web server over the Internet, resulting in faster

access. Figure 17-2 shows caching at the proxy side.
Client Client Client
| Cache | | Cache | | Cache |

L

Prox

Web server

Figure 17-2: Dedicated server caching

Note

Note

Proxy caches are often located near network gateways to reduce the
bandwidth required over expensive dedicated Internet connections.
These systems serve many users (clients) with cached objects from
many servers.

The Web objects that are requested by one client are stored in a cache,
and can be retrieved later when another client requests the same object.
For even greater performance, many proxy caches are part of cache
hierarchies, in which a cache can enquire neighboring caches for a
requested document, to reduce the need to fetch the object directly.
Such an organization of multiple cache servers is also referred to as a
cache array.

= Reverse proxy: Caches can also be placed directly in front of a particular
Web server, to reduce the number of requests that they receive. This model
allows the proxy server to respond to the frequently received requests and
pass the other requests to the Web server. This form of proxying is called a
reverse proxy, wherein the proxy server is used by the Web server to

speed up request processing. This model is unigue in that it caches objects
for many clients, but usually from a single server. Figure 17-3 shows the
reverse proxy caching.
Client Client Client
| Cache | |_Cache | |_Cache |

~N 17

Prox
Cache

Reverse Proxy

Web server Web server Wab servar

Figure 17-3: Reverse proxy caching

After discussing the various locations where caching can be performed, let us now look
at some of the most significant advantages of Web caching:
= Reduced bandwidth consumption: Because the frequently used data and
Web pages are cached and ASP.NET allows developers to configure the
cache location to be on the client machine, most requests are fulfilled from
the local cache. Therefore, fewer requests and responses need to go over
the network between the client and the server. This results in reduced
bandwidth consumption.
= Reduced server load: Because frequently used data and Web pages are
retrieved from the cache, the server does not need to execute the same
ASP.NET code multiple times to produce the same output. This saves
valuable CPU time at the server end.
= Reduced latency: Because most requests do not need to go to the server for
processing, the access time improves significantly.

Although Web caching provides many advantages, it is one of the most misunderstood
technologies on the Internet. Webmasters, in particular, fear losing control of their sites
because a cache can hide their users from them, making it difficult to see who's using
the sites. In addition, the number of hits is not counted correctly, because the cache
server(s) might fulfill some percentage of client requests. However, careful planning and
proper location of a proxy server cache will help your Web site load faster, and reduce
load on your server and the Internet link. The difference can be dramatic; a site that is
difficult to cache may take several seconds to load. Users will appreciate a fast-loading
site, and will visit it more often.

Another concern related to Web caching is that the caches might serve outdated content.
As you'll see later in the chapter, this issue can be taken care of by configuring your
server to control the expiry time for the cached content. The next section describes
caching in ASP.NET in detail.

Caching in ASP.NET

ASP.NET has introduced various new features to the server-side programming model.
These new features have made it easier to cache application data, and hence enhance
the performance of Web applications. For example, unlike classic ASP, wherein the code

is interpreted, all code in ASP.NET is compiled before execution, resulting in huge
performance gains. After the code for an ASP.NET Web page is compiled, all future
requests for that page are handled by the compiled code without requiring any
recompilation until a change is made to the original ASP.NET page. Also, when a page is
accessed for the first time, the code is compiled depending on user needs. For example,
if there are 10 functions in an ASP.NET Web page, only those functions are compiled
into native machine code, which are needed to respond to a user's request.

It is important to clarify that compilation is a two-stage process in the .NET Framework.
First, the code is compiled into the Microsoft Intermediate Language (MSIL). Then, the
MSIL is compiled into native code during execution. The entire code in an ASP.NET Web
page is compiled into MSIL when the solution is built. However, during execution, only
the portions of the code that are actually needed will be compiled into native code. In
addition, the configuration of an ASP.NET Web site is loaded from the Web.config file
and stored in a memory cache, thereby preventing expensive disk read operations when
a configuration value needs to be retrieved.

Cross- For more information on the Web.config configuration
Reference file, refer to Chapter 14.

ASP.NET provides several caching mechanisms that enhance the performance of Web
applications. One of the caching mechanisms involves compiling the ASP.NET page and
caching the instance on the server. Afterward, the page can be directly retrieved from the
cache. The page in the cache is updated only when a change occurs in the page or
when the caching period expires. Expiring of an object from the cache refers to the
object being removed from the cache. When the cache expiry for an object is reached,
future requests for that object cannot be fulfilled from the cache. In such a situation, the
object needs to be retrieved from the actual Web server, or the code behind file for the
ASP.NET page needs to be executed again. ASP.NET supports two types of expiration
policies, which determine when an object will be expired from the cache. These two
policies are described as follows:
= Absolute expiration: Determines that the expirations occur at a specified
time. Absolute expirations are specified in full-time format (hh:mm:ss). The
object will be expired from the cache at the specified time.
= Relative expiration: Determines that expirations occur after the specified
time window has passed. Relative expiration is specified in seconds. After
the specified number of seconds, the item is automatically expired from the
cache.

The next few sections describe the Cache API and the Cache Performance Monitor
counters.

Cache API

ASP.NET uses the .NET Framework classes to control the caching services. The
caching services are encapsulated in the classes contained in the System.Web.Caching
namespace. For example, the Cache class is used for explicitly managing an application
cache, and the CacheDependency class is used to define and track dependencies of
cache objects. These classes are covered later in the chapter. Some of the classes used
by ASP.NET for managing cache behavior are discussed next.

HttpCachePolicy

The complete implementation of cache policies provided by ASP.NET is encapsulated in
the HttpCachePolicy class. Applications that want more control over the HTTP headers
related to caching can directly use the functionality provided by the HttpCachePolicy
class. This class is used to set the expiration time for cached content in relative or
absolute time. This class contains methods that are used by ASP.NET to enforce any
expiration policies set by the user.

Some of the public properties and methods included in the HttpCachePolicy class are
described as follows:

= VaryByHeader s: This property represents the list of HTTP headers
used to vary the cache output. The ASP.NET cache can maintain
different versions of the same Web page if the HTTP headers received
in the request are different. This property, therefore, is used to control
the HTTP headers that should result in caching multiple versions of
the same Web page.

= VaryByPar ans: This property represents the list of parameters
received in a Get or Post request. ASP.NET maintains multiple
versions of a Web page if the parameter(s) specified in this property
vary.

= Set Cacheability: This is an overloaded method, which sets the
Cache-Control HTTP header. Further, the Cache-Control HTTP
header controls how documents are to be cached on the network.

= Set Expi r es: This method sets the Expires HTTP header to an
absolute date and time.

HttpCacheability

HttpCacheability is an enumeration of all the possible values for the Cache-Control
HTTP header. The Cache-Control HTTP header determines whether or not the output is
cached. It also determines the location, such as the Web server, proxy server, or a client
machine, where the output is cached. The default cache location is the client machine.
The following are the available values in the HttpCacheability enumeration:
= NoCache: Indicates that the output will not be cached at any location.
= Publ i c: Indicates that the output can be cached on the proxy server
as well as on the client side.
= Privat e: Indicates that the output can be cached only on the client
side. This is the default value.
= Server: Indicates that the Web server will cache the output and the
clients and proxy servers will receive a no-cache HTTP header value.

@OutputCache

This page-level directive in an ASP.NET page is used to control the cache duration of
the page output. To control the cache behavior of an ASP.NET page, you can use either
the @OutputCache directive or the HttpCachePolicy class. However, if the ASP.NET
page is parameterized by using QueryString parameters or the Post method, the page
cache needs to be maintained by setting the VaryByParam attribute.

HttpCacheVaryByParams

When the output generated by an ASP.NET page depends on the parameters passed by
using QueryString or the Post method, it requires ASP.NET to maintain multiple versions
of the same page. The HttpCacheVaryByParams class is used to maintain multiple
versions of the same ASP.NET page in the cache. When the VaryByParam attribute is
set with the @OutputCache directive in a page, ASP.NET internally uses the
HttpCacheVaryByParams class. For example, consider that a Web server receives the
following requests:

http://localhost/caching/displaysuppliers.aspx?city=london
http://localhost/caching/displaysuppliers.aspx?city=NY
http://localhost/caching/displaysuppliers.aspx?city=london

http://localhost/caching/displaysuppliers.aspx?city=SJ

If multiple requests for the Displaysuppliers.aspx page with the city parameter, "london,"
are to be cached, the @OutputCache directive must set the VaryByParam to city, as
follows:

<% @OutputCache duration = "60" varybyparam = "city"%>

This statement will cause ASP.NET to cache the requests for the Displaysuppliers.aspx
page and maintain the cache citywide. Then, the cache will contain three versions (one
each for London, New York, and San Jose) of the Displaysuppliers.aspx page.

HttpCacheVaryByHeaders

The HttpCacheVaryByHeaders class is used to cache multiple versions of an ASP.NET
page, depending on a particular HTTP header. Therefore, the cache will have multiple
versions of the ASP.NET Web page — one for each value of the specified HTTP header.
A common use for this class is when you need to generate browser-specific versions of a
Web page and store that page in the cache. In such a situation, all future requests for the
page from a specific section of browsers are fulfilled from the cache and do not require
re-rendering of the page.

If the HTTP header has a value "User-Agent" specifying the name of the browser that
requested an ASP.NET page, and if the page is browser-specific, you can set the
VaryByHeaders property to "User-Agent". This makes ASP.NET maintain a browser-
specific cache. To achieve this, set the @OutputCache directive as follows:

<%@OutputCache Duration = "120" VaryByHeaders = "User-Agent">

If the ASP.NET page is requested multiple times by the same browser, the first request
will cause the ASP.NET page to be rendered and stored in the cache. The subsequent
requests will then be fulfilled from the cache. However, if a different browser requests the
same page, ASP.NET will re-render the page and store this version also in the cache.
This way, the cache will have two versions of the same page.

Cache API Performance Monitor counters

The Performance Monitor counters can be used to determine the efficiency and
performance of ASP.NET applications. To monitor the cache-specific counters in
Performance Monitor, complete the following steps:
1. Select Start ® Programs ® Administrative Tools ® Performance to
start the Performance Monitor.
2. Inthe Performance Monitor window, use the Add counter toolbar icon
to view the list of ASP.NET cache counters.
3. Inthe Add Counters dialog box, from the Performance Object drop-
down list box, select ASP.NET Applications. Now, the various cache-
related counters are displayed in the Counters list box. Figure 17-4
shows the Add Counters dialog box.
[Add Coumters
™ Lips el compuiler Counbas
% Sobel courieis bar cofgeder
[MHOTEBOOK. =l
Pedormance phesct

il

= Al cougber Aliratsnes

F Splect courders bom at ¥ Selact instances bom st
Cache AP Erimes |

Csacirem BUP B F i =
Caacien £F1 Hiky

Lk AP Miiias

Lk AF1 Tusrdred F 308

arives Tkl F v _ﬁl
L

Figure 17-4: The Add Counters dialog box

:

Some of the cache counters are described as follows.
= Cache Total Entries: Represents the total number of items stored in the
ASP.NET cache.
= Cache Total Hits: Represents the total number of items that were
requested by a user and were successfully retrieved from the cache and
returned to the user. This counter presents an overall picture of the
"success" of the ASP.NET caching engine.

= Cache Total Misses Represents the total number of items that were
requested by users and were not retrieved from the cache (failed cache
retrievals).

= Cache Total Hit Ratio: Represents the ratio of total cache hits to total
cache misses for the cache. This counter gives a good overall picture of
what percentage of items is retrieved from the cache.

= Cache Total Turnover Rate: Represents the number of additions and
removals to the total cache per second. If there are excessive additions
and removals happening from the cache, it is an area of concern,
because the CPU is potentially spending a lot of time maintaining the
cache. This counter is useful in determining how effectively the cache is
being used. Large values for this counter indicate inefficient use of the
cache.

= Cache API Entries: Represents the total number of entries made
explicity in the cache by an application by using the Cache API.

= Cache API Hits: Represents the total number of items successfully
found in the cache when accessed only through the external Cache API

= Cache API Misses: Represents the total number of fetch requests made
to the cache that failed. This counter is applicable only to fetch requests
that are made explicitly by using the external Cache API.

= Cache API Hit Ratio: Represents the cache hit-to-miss ratio when
accessed through the Cache API.

= Cache API Turnover Rate: Represents the number of additions and
removals to the cache per second when used via the external Cache
API, excluding the internal Cache APIs used by the ASP.NET
Framework.

After understanding the Cache API and Cache Performance Monitor counters, let us now
discuss page output and page data caching.

Caching Page Output

Most Web sites today use dynamic Web pages, which present information depending on
user preferences. This approach requires a template page, such as an ASPX page, to be
used by Web applications. When a Web page is presented to a user, the data retrieved
from a data store is dynamically merged into the template and displayed to the user.
Although this approach allows the same page to be tailored dynamically to incorporate
user preferences, it has certain problems. These dynamic Web pages are less scalable.
Because the pages are generated each time a request is made, as shown in Figure 17-
5, dynamic Web pages require more server resources. Having a background batch
process that pregenerates the HTML output is one of the ways in which this problem can
be circumvented. However, this approach fails when the number of user requests is
unknown or the number of requests is very large. In such a case, what is needed is a
smart caching solution. ASP.NET provides the output cache feature to solve this problem
of scalability.

ASF Huntime

- —_ ASp
HTTP Reguest —r
B <)

—
e} | P I':"'q'lﬂ":" nsa

Web Server

Figure 17-5: Processing a Web page in classic ASP

Page output caching allows the entire content of a given page to be stored in the cache.
Thus, unlike dynamic Web pages, the cached ASP.NET pages are served statically
directly from the cache, instead of dynamically executing them from a Web server for

each request. Therefore, the page output—caching feature provides a huge performance
enhancement on the server as compared to the dynamic Web page model.

When an ASP.NET page is accessed for the first time, the page is compiled into
Intermediate Language (IL) and then into native code. This native code is cached and all
future requests to the ASP.NET page are processed by this native code for the next
request. This cached page code is updated and rebuilt when the source ASP.NET file is
changed or the cache timeout is reached. Figure 17-6 shows the processing of a Web
page in ASP.NET.

Chenk 2
Figure 17-6: Processing a Web page in ASP.NET

You can mark the output of an ASP.NET Web page for caching by specifying the

@out put Cache page directive at the beginning of the page. This directive takes a
Duration parameter in seconds and causes the ASP.NET cache to store the output of the
page in the cache for the specified number of seconds. For example, to cache the output
of an ASP.NET page for five minutes, add the following @ut put Cache directive at the

beginning of an ASPX file:

<% @OutputCache Duration="300" VaryByParam = "none"%>

When the @ut put Cache directive is specified at the beginning of an ASP.NET page,
the ASP.NET runtime automatically invokes the cache services to store the data output
by the Web page. The page output that includes all data output from the page (including
any data retrieved from a database) is retrieved from this cache for all future requests
made to that Web page. The first user request to the ASP.NET page will generate
HTML; all future requests will then be answered with the HTML present in the cache. For
example, consider an ASP.NET Web page that displays the current time on the server.
The code for the page is given as follows:

<%'Cache the output for 300 seconds irrespective of any
parameters received in any GET or POST requests %>
<%@ OutputCache Duration="300" VaryByParam="none" %>
<html>
<Script Language="VB" runat="Server">
Sub Page_Load(ByVal Src As System.Object, ByVal E As
System.EventArgs) Handles MyBase.Load

'Set the text in the label as the current server time

IblIServerTime.Text = DateTime.Now.ToString("G")

End Sub

</script>

<body>

<h3>Output Cache</h3>

<p>This page was generated at:

<asp:Label ID=IblServerTime runat="Server"/>

</body>

</html>
Figure 17-7 shows the output of this code.

'Ell-lr.p: Noecalhost'caching asps - Microsal Intemet Explones M= E

File Edit View Favorites Tools Help -
eBack v 5 - (D 2 2 DSesmch ijFavodtes _JHistory ¥
Address | 2] hitp:/ localhost/caching axps | 6o ||Links *

=
Chatput Cache

Tha: page was geoerated at TH2001 10:55 16 AM

=l
2] Done | (¥ Local intrane 3
Figure 17-7: A sample output

To test the preceding code, switch to IIS and locate the file that you created. Next, right -
click the file and choose Browse from the context menu. Repeat these steps after a few
seconds, and take note of the time displayed. In this Web page, if the @ut put Cache
directive were not used, the page would have displayed the exact server time on
receiving a client request. However, because the @ut put Cache directive is set to
cache the output data for 300 seconds, the server time displayed will be same for five
minutes — all requests received within five minutes of the first request will display the
same time. After five minutes, when the cache is expired, the first request received will
cause the server to execute the ASP.NET page once again and cache the output data.
It is also possible to specify an absolute expiration time. To do so, you need to call the
Response. Cache. Set Expi r es method and pass the absolute time as an argument.
For example, to specify the absolute expiration time for an ASP.NET page at 9:00 a.m.,
use the following VB code:

Response.Cache.SetExpires (DateTime.Parse ("9:00:00 AM™)
Tip Absolute expiration is very useful for pages that do not change
frequently.

Caution Remember that creating an output cache for an application

should be your final task in application development.
Otherwise, when you debug your pages, instead of getting new
and modified pages, you might get old pages that are stored in
the output cache.

As mentioned earlier, the entire HTML output is cached by default when the

@out put Cache directive is specified. However, if you do not want this default behavior

of caching, you can apply region caching. Region caching, also called fragment caching,

allows specific sections of the output page to be cached instead of the entire page. If an

ASPX file consists of different code sections, you can set different cache settings for

these different code sections. For example, if a Web page reads several database

tables, processes some XML-formatted data, and also displays some customized

content for a user, then the page can be cached in sections. The database table read

sections can be cached for one hour, the XML portion can be cached for 10 minutes, and

the user-specific data might not be cached at all.

This type of fragment caching is achieved by using user controls and setting the

@out put Cache directives in the user control page. When the user control is instantiated

in a container page, the cache settings of the control are applied along with any cache

settings on the container page. Figure 17-8 shows the fragment caching.

Figure 17-8: Fragment caching

If you set the cache time of a page to 60 seconds and that of a contained user control to
300 seconds, the cached output will expire and the content of the page will be refreshed
after every 60 seconds. However, the contained user control will be refreshed
independent of the container page.

Caching Page Data

Storing frequently requested data in memory variables on the server side is a familiar
concept for ASP developers. In classic ASP, two intrinsic objects, the Session object and
the Application object, are used to store application data in memory variables. The
Session and Application objects are available in ASP.NET, but their functionality is not
enhanced much. ASP.NET encapsulates the application data caching in the Cache
class. The following sections cover the Session and Cache objects in detail.

Session object

The Session object is used to store data across multiple requests for each user. When a
session begins, a unique key is assigned to the user. ASP maintains the session state
for each user by providing the client with this unique key. This key is stored in an HTTP
cookie that the client sends to the server on each request. The server can then read the
key from the cookie and rebuild the server session state. But some limitations exist to
using the ASP Session object over the ASP.NET Session object:
= Process dependency: In the case of classical ASP, the ASP Session

object is process-dependent. If an ASP service on a Web server is

restarted, the session state of all the users on that server is lost, and all

these users are assigned new sessions. On the other hand, the

ASP.NET Session object can be stored in the same memory that

ASP.NET uses (in-process), in separate memory from ASP.NET (out-of-
process using Windows NT Service), or in a persistent storage (in SQL
Server). Since the ASP.NET Session object can be stored out-of-
process, it is process-independent. ASP.NET session state can run in a
separate process from the ASP.NET host process. Therefore, the
session state is available irrespective of the ASP.NET process. Of
course, you can still use session state in a process similar to the classic
ASP.

= Server farm support: In a real-world scenario, as the load on a Web
server increases, the Web administrator balances the load across
multiple Web servers by replicating the Web site on multiple servers. The
load balancing can be achieved by using additional hardware, such as
Cisco LocalDirector, or software solutions, such as Windows Load
Balancing Services. In the classic ASP scenario, there is no guarantee
that all requests from a user will always be sent to the same Web server.
In such a case, the different Web servers will treat the incoming requests
from the user as separate sessions. As the user moves from one Web
server to another, the session state is not carried along with the user.
Until the user returns to the same server, the session state cannot be
accessed. This problem can be solved by using network IP—level routing
solutions, which can ensure that the client IPs are routed to the
originating server. However, some Internet service providers (ISPs)
choose to use a proxy load-balancing solution for their clients. On the
other hand, ASP.NET supports server farm configurations. The new out-
of-process model allows all servers in the farm to share a session state
process. You can implement this by changing the ASP.NET configuration
to point to a common server. Now, the session state can be stored out of
process as well as out of system by using the session state service. The
session state can be recorded into a SQL Server database, which can be
on a cluster for the purpose of reliability.

= Cookie-dependent: ASP sessions are cookie-dependent. As already
mentioned, ASP sessions are identified with a unique Session ID cookie
that is sent by a Web server to a Web browser when the session is
established. The browser sends the cookie with every request made to
the Web server. Clients that don't accept HTTP cookies can't take
advantage of session state. Some clients believe that cookies
compromise security and/or privacy and thus disable them, which in turn
disables the session state on the server. ASP.NET sessions, on the
other hand, can be configured to be cookie-independent. ASP.NET
reduces the complexities of cookieless session state to a simple
configuration setting.

State management in classic ASP

In classic ASP, when a client requests ASP scripts from a Web server, a session is
established between the client and the server. During this session establishment, the
Web server generates a Session ID cookie and sends it to the client. The Session ID
cookie is sent to the client in HTTP header. Therefore, to identify its session data in
subsequent requests, the client shares a common key (Session ID cookie) with the
Web server. This state management model works well for the clients that accept HTTP
cookies. However, there are certain clients who think that cookies compromise on
security. This is because the Session ID cookie is the only way a browser request is
identified. Any other HTTP request with a matching cookie is assumed to have come
from the same browser. Thus, a hacker who succeeds in hijacking the cookie could use
a user's active session. Due to these security threats, some clients disable cookies and
thus disable session state on the server. Thus, the ASP scripts do not work well for the
clients who do not accept HTTP cookies.

Cache object

ASP.NET provides a full-featured cache engine that can be utilized by pages to store
and retrieve arbitrary objects across HTTP requests. This is a replacement to the
Session and Application variables that were used in classic ASP. The ASP.NET cache is
private to each application and stores objects in memory. The lifetime of the cache is
equivalent to the lifetime of the application. Therefore, when the application is restarted,
the cache is also re-created.

ASP.NET encapsulates the application data caching in the Cache class. The Cache
class is always associated with an ASP.NET application. When an ASP.NET application
starts, an instance of the Cache class is always created. The Cache object is destroyed
as soon as the ASP.NET application stops. Therefore, the lifetime of this Cache object is
the same as the lifetime of an ASP.NET application.

The ASP.NET cache provides a simple dictionary interface that enables programmers to
easily place objects in the cache and later retrieve them from it. In the simplest case,
placing an item in the cache is just like adding an item to a Session or Application object.
For example, you can add a variable to the Cache object as follows:

Cache("myvar") = 20

Each cache item has a key/value pair. In this code, "myvar” is the key and 20 is the
value. In addition to storing key/value pairs, the Cache object provides additional
functionality to store transient data. To achieve transient data caching, you can use
dependencies, which enable you to invalidate a particular item within the Cache object
depending on the changes to the dependent keys, files, or time. For example, an item
should be removed from the cache when a dependent file changes. The .NET
Framework provides the CacheDependency class that encapsulates the implementation
of cache dependencies. The different dependencies are described in the remaining
sections.

File-based dependency

File-based dependency invalidates a particular Cache item when a file(s) on the disk
changes. For example, consider the following code wherein the product data is loaded
from an XML file:

Dim dom As XmIDocument()
dom.Load(Server.MapPath("product.xml")
Cache("ProductData") = dom

You can add a cache dependency to force ASP.NET to expire the "ProductData" item
from the cache when the Product.xml file changes. To do so, you need to create an
object of the CacheDependency class. If the Product.xml file resides in the same
directory as the requesting application, write the following code:

Dim dependency as new CacheDependency(Server.MapPath("product.xml"))
Cache.Insert("ProductData", dom, dependency)

In this code:
= dependency is an instance of a CacheDependency class
= Thelnsert() method of the Cache class is used to create the
Pr oduct Dat a key that is dependent upon the file from which it
retrieves data

You can also create a cache dependency based on multiple files. In such a case, the
dependency should be built from an array of files or directories. As an example, consider
a case in which an XML document arrives in a directory, immediately after which an item
in the ASP.NET cache needs to be expired. In such a case, you need to add a cache
dependency to the directory.

The following is the complete code of the Web page to demonstrate the implementation
of the CacheDependency class:

<%@ Import Namespace="System.|O" %>

<%@ Import Namespace="System.Data" %>

<Html>

<Script language="VB" runat="server">

Sub Page_Load(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles MyBase.Load
If Not IsPostBack
GetData()
End If
End Sub

Sub GetData()
Dim Source As DataView

Source = Cache("ProductCatalog")
If Source Is Nothing

Dim ds As DataSet

Dim fs As FileStream

Dim reader As StreamReader

'Read the data from the Product. XML file

ds = New DataSet()

fs = New FileStream(Server.MapPath("product.xml"),
FileMode.Open,FileAccess.Read)

reader = New StreamReader(fs)

ds.ReadXmli(reader)

fs.Close()

Source = New DataView(ds.Tables(0))

'‘Cache it for future use and also add product.xml as
a dependency

'‘Any changes to product.xml will cause us to refresh
the cache (build the cache once again)

Cache.Insert("ProductCatalog”, Source, New
CacheDependency(Server.MapPath("product.xml")))

‘Message to indicate that we created the cache
IbIMsg.Text = "Dataset created explicitly”
Else
IbIMsg.Text = "Dataset retrieved from cache”
End If

MyDataGrid.DataSource = Source
MyDataGrid.DataBind()
End Sub

</Script>

<Body>

<Form runat="server">

<H3>File Dependencies</H3>

<ASP:DataGrid id="MyDataGrid" runat="server" Width="650"
BackColor="#cccfff" BorderColor="black" ShowFooter="false"

CellPadding=3 CellSpacing="0" Font-Name="Verdana"
Font-Size="8pt" HeaderStyle-BackColor="lightgreen" />

<Hr>

<pP>

<I><asp:label id="IbIMsg" runat="server"/></I></P>
</Form>

</Body>

</HtmI>

The code of the Product.xml file used in the preceding Web page is given as follows:
<Catalog>
<Product>
<id>1</id>
<name> Oranges </name>
<qty> 120 </qty>
<price>$2.95 </price>
</Product>

<Product>

<id>2</id>
<name> Apples </name>
<qgty> 100 </qty>
<price>$2.65 </price>
</Product>
</Catalog>

The output of the preceding code i |s shown in Figure 17 .

b v sty s P a0D R epesadinoy aripa . M iaialt Bt i [pls

Fis Edu View Fovories Tosh Felp

aeba - :—ﬂ_]g ::h-ul- Divech aifweim 3 b A DB
m:[p e Lo Aoy v ——— '_:f ~'Ga Lmkn =
File Depandencies g
[« T a i =

i [T 130 [T

_! oAy 100 245

=l
[0 U0 1 B Lscal inwanet

Figure 17-9: Output of the CacheDependency Web page

Note If the content of the Product.xml file is updated manually or
otherwise, the Web page will automatically refresh the cache, and
the message "Dataset created explicitly” will be displayed.

Key-based dependency

Key-based dependency invalidates a particular cache item when another cache item
changes. For example, consider an application that adds multiple datasets to the cache,
such as ProductData, SalesData, and MarketingData. If the SalesData and
MarketingData datasets rely upon the ProductData dataset for data validation, you can
use a key-based dependency to invalidate SalesData and MarketingData if the
ProductData item changes. To do so, you need to set up this dependency when you
create the cache entries for SalesData and MarketingData:

Dim dependencyKey(1) As String

dependencyKey(0) = "ProductData"

Dim productDataDependency As new CacheDependency
(nothing, dependencyKey)

Cache.Insert("SalesData", LoadDataSet("Sales"),

productDataDependency)

In this code, productDataDependency is the object of the CacheDependency class. The
dependency key, which is set to ProductData, is passed as a parameter to instantiate the
object. Now, whenever ProductData changes, SalesData will be removed from the
cache. Similarly, you can extend the code to incorporate a dependency on the
MarketingData dataset.

Time-based dependency
Time-based dependency causes an item to expire at a defined time. Again, the Insert()
method of the Cache class is used to create a time-based dependency. Two options are
available for the time-based dependency:
= Absolute: Sets an absolute time for a cache item to expire. This
option is best suited for data that changes on a periodic basis and at a
known time.
= Sliding: Resets the time for the item in the Cache to expire on each
request. Therefore, an item remains in the cache for the specified
time; if no requests are made for that item, it automatically expires
from the cache. If requests for that item are received, the cache
duration is automatically extended. Therefore, this option is useful
when an item in the cache is to be kept alive so long as requests for
that item are coming in from various clients.

For example, to cache the ProductData dataset for a maximum duration of 10 minutes,
you can use the Sliding option:

'set a 10 minute time span
Dim span As New TimeSpan(0,10,0)

'‘Add the return data from the LoadDataSet method into
the 'Cache. The item will be identified as ProductData and will
'be stored in the cache for 10 minutes

Cache.Insert("ProductData", LoadDataSet(), nothing,
nothing, span)
In addition to the dependencies, ASP.NET allows the following:
= Automatic expiration: The cache items that are underused and have
no dependencies are automatically expired.
= Support for callback: The Cache object can be configured to call a

given piece of code that will be executed when an item is removed
from the cache. This gives you an opportunity to update the cache.

For example, you can guarantee that the item (ProductData dataset) is always served
from the cache. To do so, add the following code in the GetData method:

'Declare a callback method for notifying applications when

‘a cached item is removed from the cache

Dim onRemoveltem As New CacheltemRemovedCallback(AddressOf
Me.RemovedCallback)

‘Cache the item. Notice the last parameter, which is the
‘callback method. Also, notice that the priority of the
'item has been kept high and the decay has been set to
'slow
Cache.Insert("ProductData",ds,nothing,DateTime.Now.
AddSeconds(5), TimeSpan.Zero,CacheltemPriority.High,

CacheltemPriorityDecay.Slow,onRemove)

'Removing the item to invoke the callback method

Cache.Remove("ProductData")

Then, create the callback method that should be invoked when the cache item is
removed.

‘Define the callback method
Public Sub RemovedCallback(k as String, v as Object,
r As CacheltemRemovedReason)

'loading the item from cache
GetData()

End Sub

Because the Cache object is maintained by ASP.NET depending on the usage of items,
it is likely that items in the cache are removed if they are not used or are underused.
Hence, you must ensure that the applications that use the Cache object always check for
the presence of an item in the cache before attempting to retrieve the item.

Summary

This chapter introduced you to caching in ASP.NET. First, you learned about the Cache
API provided by the .NET Framework. Then, you saw the different Cache Performance
Monitor counters. Finally, you learned how to use the Cache API for page output and
page data caching.

cnapter 18: BUilding Wireless Applications with
ASP.NET Mobile Controls

Overview

The Internet is constantly evolving, and has moved from the desktop to include the
wireless world. As an extension of ASP.NET, Microsoft has released the Mobile Internet
Toolkit (MIT). MIT is an intelligent solution to produce mobile applications that detect the
browsing device and return the appropriately formatted content. Thus, MIT provides a
single application that adapts to Web-enabled cell phones, pagers, and personal digital
assistants (PDAS).

This chapter provides an overview of the Wireless Application Protocol (WAP) and the
basics of the Wireless Markup Language (WML). After you understand how your data is
transferred to your wireless devices, you will learn about the MIT controls that produce a
single application that is then available to multiple devices.

Introduction to Mobile Development

There are many challenges and obstacles we need to consider when developing mobile
applications. You will start by learning what some of these challenges are, and how you
can deal with them using the MIT.

Challenges to Mobile Development

Many people have become reliant on the information that is available on the Internet.
However, whereas people traditionally have used their desktop computer to access the
Internet, they increasingly are relying upon mobile devices to access the Internet.
Although the technology exists to extend your desktop applications to a mobile
environment, you have to be aware of some of the limitations of mobile devices:
= Smaller screen size: A typical cell phone can only display 15 to 20
characters across and between 4 to 6 lines of text.
= Power: Most mobile devices have limited battery life, memory, and
processing power, and do not carry the same capabilities as your
desktop PC.
= Bandwidth: By nature, wireless applications are more costly to run and,
technically, cannot provide the bandwidth found on a wired network.

Luckily, MIT will handle most of the screen size limitations that you will run into when
developing wireless applications. MIT will dynamically detect the device being used and
provide the appropriate output. However, you still must remember that screen real estate
will be at a premium when developing your applications. Along with real estate,
bandwidth is also at a premium. You must be able to compress your applications into
small chunks of data. Obviously, you won't be sending streaming video down to your cell
phone (at least not yet), but you may be sending images to enhance the user
experience.

In spite of the difficulties previously mentioned, MIT makes it easy to deploy wireless
applications, and it does so intelligently.

Wireless devices and emulators

Over 80 percent of Internet-enabled, wireless devices consist of cell phones and PDAs.
Cell phones have a typical display screen of 15 to 20 characters and between 4 to 6
lines of text. PDAs are a little bit larger, and may be as wide as 20 to 25 characters, and
include up to 6 to 10 lines of text. Testing your applications on wireless devices could get
to be expensive over the process of building your software. Therefore, to test your
applications, this chapter explains how to use two different emulators: a cell phone
emulator by Openwave, and the Pocket PC emulator available from Microsoft.
Openwave is one of the world's largest providers of mobile Internet software. You can
download its cell phone emulator (Openwave SDK) from

http://devel oper. openwave. com . After you've installed the SDK on your system,
it may look similar to Figure 18-1.

J g5 | e | M. | Gjoe.
Figure 18-1: Using the Openwave cell phone emulator
Microsoft provides an emulator for its Windows CE device. This emulator is part of the
Microsoft eMbedded Visual Tools kit. Like the Openwave SDK, both the Openwave SDK
and the PocketPC emulator are standalone Windows applications. Figure 18-2 shows
the opening screen of the Pocket PC emulator.

I]

Tuesday, Movember 20, 2001
day EEE

Tap here to set owner inrmatin:un

Mo upcoming appointrments

Mo unread messages
Mo unsent messages

Mo tasks

Figure 18-2: Using the Pocket PC emulator

WAP, WML, and a deck of cards

The Wireless Application Protocol (WAP) is used to transfer your data to your wireless
devices. WAP was conceived by four companies: Ericsson, Motorola, Nokia, and
Unwired Planet (now Openwave). These four companies founded the WAP Forum
(http:// ww. wapf orum con), which has now grown to over 200 members, including
operators, infrastructure suppliers, software developers, and content providers.

Because WAP is the protocol used to transfer our data, we need another protocol to
format our data. That's where WML, or Wireless Markup Language, comes into play.
WML is used to format pages that are delivered using WAP. WML has its roots in XML,
and is in fact still XML-compliant.

Note Because WML is XML-compliant, it is case-sensitive and must

have a closing tag for every opening tag.

Each WML file is made up of a deck of cards. Just as a traditional "deck of cards"
contains individual playing pieces, a WML deck of cards contains individual screens.
Although a complete deck is normally sent to your mobile device at a time, only one card
can be seen at a time. A card can be thought of as a single page or screen. Thus, by
sending a deck of cards to your mobile device, you are actually sending multiple pages
at a time. As an example, Figure 18-3 displays the layout of a deck of cards that we will
use to select a bicycle.

DECK

Card1

Card 2

Card 3

Card 4

Figure 18-3: WML deck of cards

Building Your First Mobile Application

Now that you understand the foundation of mobile applications, you will build your first
application. Your sample application, about bicycling, will demonstrate various
techniques of displaying data, and receiving input data from the user.

Static pages

Let's take our layout and convert it to an application. However, before we start coding,
we need to make sure our Internet Information Server (II1S) is set up to properly serve
WML pages. To configure 11S 5.0 on Windows 2000 to serve up static WML pages,
follow these steps:

1. Open Control Panel, then Administrative Tools, then IIS administrator.

Right-click your Web site instance and select Properties.

Click the HTTP Headers tab.

Under Mime Types, click File Types.

Under Registered File Types, check to see if .wml is listed.

If .wml is not listed, click New Type to show the File Type dialog box.
Enter ".wml" (without quotes) in the Associated Extension box.

Enter "text/vnd.wap.wml" (without quotes) in the Content Type (MIME)
box. Figure 18-4 shows the File Type dialog box.

File Type |

ONoUR LN

Azzociated extension: I

Content bppe [MIME): lte:-:ta"vnu:l.wap.wml

Q. Cancel

Figure 18-4: Registering .wml as a MIME type
The following code provides an example of a deck of cards. This WML deck contains 3
cards that provide links between each card.
<? xml version="1.0" ?>
<! DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1 //EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card id="firstcard" title="Bike Style">
<p>
Select a Bike Style

Road Bike

Mountain Bike
</p>
</card>

<card id="secondcard" titte="Road Bike">
<p>
You Selected a Road Bike!
</p>

</card>

<card id="thirdcard" title="Mountain Bike">
<p>

You Selected a Mountain Bike!

</p>
</card>
</wml>
Our deck contains three cards. Based upon which bike style you select, you will be taken
to a different card. This example links within the same deck. When this WML file is
downloaded to the device, the entire deck will be resident in memory. Figure 18-5 shows
our newly created WML file.

Be plo Edt gettrgs Locston bep

Gt [Pt st/ Chapden | BVE s vl |

&3 OPENWAVE

Selest a Bike Style
B [Road Bike]
[Hountain Bilke]

.| ﬂPh...”ﬂn_ ¥y3a.. | Pockat...|
Figure 18-5: Bike.wml
Note All WML files must begin with:

<? xml version="1.0" ?>
<! DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1 //[EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

Note Because
 tags normally don't have a closing tag, it is
considered an empty element, and closed with a trailing slash, like

.

Our example currently links cards together. Sometimes we need to link decks together.
The following code demonstrates linking decks together:

[bike.wml]

<? xml version="1.0" ?>

<! DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.1 //EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>
<card id="firstcard" title="Bike Style">
<p>
Select a Bike Style From a Deck

Road Bike

Mountain Bike
</p>
</card>
</wml>

Installing the Mobile Information Toolkit
Currently, MIT is available as an additional download from htt p: // ww. asp. net . The

installation process is straightforward and painless. After you have downloaded the EXE
file, double-click the file to start the Microsoft Installer (or MSI) InstallShield Wizard.

Figure 18-6 displays the start page of the InstallShield Wizard for MIT.
Micrecsoft Mahile Intemead Taolkd 1.0 . InsiallShield Wicand B

Weloome to thie Installshield Wizard for
Microsoft Mobile Intermet Toollkit 1.0

The [alSFeschE) Wizand wil Sbow woll TO modily oF remonae
Wicrosoft Mobde Intemet Tookit 1.0, To conbrus, chck Rext

et> | cacel |

Figure 18-6: Installing MIT
Clicking the Next button provides you with several options, including Mobile QuickStart,
Mobile Internet Designer for Visual Studio .NET, and Documentation, as shown in Figure

18-7. If you have the space available on your system, you should choose to install all the
files.

|',; Macrerigtt Maliils Intemnat Taolk# 1.0 - lnsallshield Wicand

CLISE Oy S

Sedect the program features you want irstaled,

Cick on anicon in e kst below to change how a feature B instaled

WD oo - R
== | Mobde GuickStat

= 2= | Mckle et Deagrer for veual Stucko WET
2| Vil Basic HET Support
o - Visual C8 MET Support

= 2| Dooumeniation This featire requires OKB on
= =] Mobde Intermet Controls Runims Cooums | 00Ur hand drive,
= =] Moble Internet Cesigrer Documentaton

al |

Irstals RSP HET companénis
raquined for suporting mobds
devices,

<gock [Wet> | caod |

Figure 18-7: Configuring MIT installation

Clicking the Next button two more times will finish our installation. Let's build and test our
first MIT form.

Building your first MIT page

MIT is considered an intelligent solution. It will detect what type of device is requesting
data and will return the appropriately formatted data. For example, if a browser is
requesting your mobile page, the respective HTML will be returned. If a cell phone is
requesting your page, the appropriate WML will be returned. This happens because all
mobile pages must inherit from System.Web.Ul.MobileControls.MobilePage.

The object Mobi | ePage is the outermost layer of all the containers in a mobile Web
application. However, unlike a normal ASP.NET page, a Mobi | ePage object can
contain multiple forms, specifically multiple <nmobi | e: f or n>...</ nobi | e: f or > tags.
Each of these <nobi | e: f or n> tags will match with our cards in a deck.

Converting your WML to MIT

Now that you've installed the MIT and understand a little about mobile forms, let's
convert our Bike.wml page to Bike.aspx. In all of the examples, you will be building your
pages in VS.NET. VS.NET enforces the CodeBehind model, separating application logic
and HTML layout in two separate files. The following code is a conversion of our original
WML deck to the MIT:

[bike.aspx]
<%@ Register TagPrefix="mobile" Namespace="System.Web.UI.
MobileControls" Assembly="System.Web.Mobile" %>
<%@ Page Language="vb" AutoEventWireup="false" Codebehind=
"bike.aspx.vb" Inherits="wVB.bike" %>
<body XmlIns:mobile="http://schemas.microsoft.com/Mobile/WebForm">

<mobile:Form id="Form1" runat="server">

<P>Select a Bike Style

<mobile:Link id="Link1" NavigateUrl=#Form2 runat="server">
Road Bike</mobile:Link>

<mobile:Link id="Link2" NavigateUrl=#Form3 runat="server">
Mountain Bike</mobile:Link>

</P>

</mobile:Form>

<mobile:Form id="Form2" runat="server">
<p>
You Selected a Road Bike!
</p>
</mobile:Form>

<mobile:Form id="Form3" runat="server">
<p>
You Selected a Mountain Bike!
</p>

</mobile:Form>

</body>

Notice how our <car d> tags are now replaced with <nmobi | e: For > tags. Also, we
decided to use the <nobi | e: Li nk> tag instead of the <a> tag. Using MIT will enable us
to build a single page, but provide output to multiple devices. For example, Figures 18-8,
18-9, and 18-10 show our page viewed in the Openwave emulator, Pocket PC emulator,
and a browser, respectively.

1 OWil - Openseaye

Ble ffo [k gettings (oosbon Hep
Gt [t sttt/ Chuspd e BVE s i =

-

@ OPENWAVE

Figure 18-8: Bike.aspx displayed on a cell phone

E-:::] Internet Explorer

http:f flocalhostfChapter 18WE/Bike., «||Go

Select a Bike Style
Road Bike

Mountain Bike

| |
Yiew Tools = ot

Figure 18-9: Bike.aspx displayed on a Pocket PC
SRR Y - T g R e

Skt w Bkr Sle

Figure 18-10: Bike.aspx displayed in a browser

Mobile Lists

Now that you've been introduced to some basic mobile controls, you will see how to use
mobile lists. Mobile lists are one of the most powerful, and most popular mobile controls.
They provide an easy way for the user to input data through their mobile device.

Simple lists

Let's take our example one step further and explore some other controls. In the following
example code, we are going to use the <mobile:List> control. This control is much more

flexible than the standard <mobile:Link>tag, because it provides special commands and

formatting features.

[list.aspx]
<mobile:Form id="Form1" runat="server">
<mobile:Label id="Labell" runat="server">
Select a Bike Style</mobile:Label>

<mobile:List id="List1" runat="server"
OnltemCommand="SelectBike">
<ltem Text="Road Bike" Value="Road"></ltem>
<ltem Text="Mountain Bike" Value="Mountain"></ltem>
</mobile:List>
</mobile:Form>
<mobile:Form id="Form2" runat="server">
<pP>
You Selected a Road Bike!
</P>
</mobile: Form>
<mobile:Form id="Form3" runat="server">
<P>
You Selected a Mountain Bike!
</P>
</mobile:Form>
In this code, we use the <npbi | e: Li st > tag to present a few options to our users. By
specifying the action of the Onl t emConmand event, we can determine what mobile form
we want to display. In this case, we are calling the function " Sel ect Bi ke". The
following code shows the code for VB.NET and C#, respectively.
VB.NET:
[list.aspx.vb]
Public Sub SelectBike(ByVal sender As Object, ByVal

e As ListCommandEventArgs)

If e.Listltem.Value = "Road" Then
ActiveForm = Form2

Else
ActiveForm = Form3

End If

End Sub

C#:
[list.aspx.cs]
protected void SelectBike(object sender,

ListCommandEventArgs e)

{
if (e.Listitem.Value=="Road")
{
ActiveForm = Form2;
}
else
{
ActiveForm = Form3;
}
}

In this code, we take advantage of the Li st CommandEvent Ar gs parameter, e. Based

upon the value of the Listltem, we check to see if a "Road" bike or a "Mountain" bike was
selected. If a "Road" bike was selected, we take advantage of setting the ActiveForm to
Form2. If the "Mountain" bike was selected, we set the ActiveForm to Form3. Figure 18-
11 displays the output of our list.

E-:::] Internet Explorer

http:f flocalhostfChapter 18WE/list.as «||Go

Select a Bike Style

Road Bike
Mountain Bike

al |
Yiew Tools &= ot

Figure 18-11: A simple list
Note By default, when a mobile page is first rendered, the first form is
made Active. This can be overridden programmatically by setting
the Act i veFor mproperty to a different Form control, as seen in
the preceding code.

Decorated lists

Lists are much more functional than just displaying data. When the device permits it, list
items can be undecorated, or decorated with bullets or numbers. The following code
shows how to set the Decor at i on property to " Bul | et ed" to produce a bulleted list:

[listdecoration.aspx]
<mobile:Form id="Form1" runat="server">
<mobile:Label id="Labell" runat="server">
Select a Bike Style</mobile:Label>

<mobile:List id="List1" runat="server"
OnltemCommand="SelectBike" Decoration="Bulleted">
<Item Text="Road Bike" Value="Road">
</lItem>
<ltem Text="Mountain Bike"
Value="Mountain"></ltem>

</mobile:List>

</mobile:Form>
If we wanted a numbered list, we would have set Decor ati on=" Nunber ed". Figure
18-12 shows the results.

E}] Internet Explorer

Select a Bike Style

* Mountain Bike

ol |
Yiew Tools <= %] {4}

v .

Figure 18-12: A bulleted mobile list
ListDataBinding
Like any ASP.NET list, mobile lists also support data binding, which we will cover in the
following example. To support data binding, our data source must either implement
I Enuner abl e or I Li st Sour ce. In the following example, we use an arraylist to build
our data source. We could have just as easily used a datareader or datatable as our data
source. The following shows the code required to build our arraylist and bind to our
mobile list in VB.NET and C#, respectively.
VB.NET:
[listdatabinding.aspx.vb]
Private Sub Page_Load(ByVal sender As System.Object,

ByVal e As System.EventArgs) Handles MyBase.Load

If (Not Page.IsPostBack) Then
Dim al As New ArrayList()
al.Add("Road Bike")

al.Add("Mountain Bike")
Listl.DataSource = al
Listl.DataBind()
End If
End Sub

C#:
[listdatabinding.aspx.cs]

private void Page_Load(object sender, System.EventArgs e)

{
if (! Page.lsPostBack) //build datalist
{
ArrayList al = new ArrayList();
al.Add("Road Bike");
al.Add("Mountain Bike");
Listl.DataSource=al,
List1l.DataBind();
}
}

First, we check to see if the page has not been posted back to the server. In VB.NET, we
actually use the word "Not" as the operator. In C#, we use the "I" as the not operator. If
the page has not been posted back, then we build our arraylist. In this example, our
arraylist will consist of two strings: " Rode Bi ke" and " Mbunt ai n Bi ke". Once our
arraylist is built, we use it as the list datasource. We set the list datasource by coding as
follows: Li st 1. Dat aSour ce=al . After we set our datasource, we bind it to the mobile
list, by calling Li st 1. Dat aBi nd() .

Pagination

Often times, we want to send more text to the client or device than what can fit on a
single screen. After all, most cell phones are only around 15 characters wide and have 4
to 6 lines for text. Some devices have more room for display, some have less. So, how
much text should you show at a time and for what device? Fortunately for us, MIT takes
care of this by the way of pagination.

Pagination automatically formats the text to fit the device. By default, pagination is not
turned on, or set to true. To turn pagination on, you set the Pagi nat e property of the

<mobile:form> control to true, as in the following example:
<mobile:form id=form1 Paginate="true">.

In the following example, we are going to link to two separate forms and display a couple
of screens of text. We don't have to worry about where to end one screen and start with
the next because pagination will take care of that for us. The following code shows an
example of this:

[pagination.aspx]
<mobile:Form id="Form1" runat="server">
<mobile:Label id="Label1" runat="server">Select
a Bike Style</mobile: Label>

<mobile:List id="List1" runat="server"

OnltemCommand="SelectBike">

<ltem Text="Road Bike" Value="Road"></ltem>
<ltem Text="Mountain Bike" Value=
"Mountain"></ltem>
</mobile:List>
</mobile:Form>
<mobile:Form id="Form2" runat="server" Paginate="True">
<mobile: TextView>
Road Biking

Road biking is a challenging sport.
There riding on a group ride
can bring your level of riding up a notch.
Especially when riding with experienced riders.
If you want to increase your speed there are
a number of techniques to choose from, including,
aero bars, drafting, intervals, and sprints.
During the winter months it is important to build a good
base for the upcoming summer races. Contact
your local bike shop for classes on spinning during the
off season and group rides during the summer.
</mobile: TextView>
</mobile:Form>
<mobile:Form id="Form3" runat="server" Paginate="True">
<mobile: TextView>
Mountain Biking

Mountain biking is technically challenging.
Although it does not usually offer the speed that road
biking does, it offers its own set of challenges.
When first mountain biking, it's best to find an easy
trail and to
follow someone that is more experienced than you.
As you are trail riding, be careful to watch out for
rocks, dirt, roots,
and tree branches. Any of these items can
be an obstacle in your path and cause bodily injury.
</mobile:TextView>

</mobile:Form>
In the preceding code, we are presenting our users with our standard form to select
either Road Biking or Mountain Biking. When the user makes their selection, the
Sel ect Bi ke function will determine which form to show next. In Figures 18-13, 18-14,
and 18-15, we demonstrate this by first selecting "Road Bike" and then viewing our first

page of text and then clicking to our next page of text. Pagination occurs automatically
because we set Pagi nat e="Tr ue" in our <nobi | e: f or > tags.

1 (Wi - Openseaye

Ble jofo Edt Jertings |ocshion eip
Gt [t /o et ol BV pagiale]

Select a Dike Style

ibRoad Bike

Z Moumcain Bilke

Figure 18-13: Selecting road bike

1 Wi - Openseaye

Ble jofo Edt Jertings Locshion Help
Gt [t /o et ol BN pagriale]

Figure 18-14: Viewing your first page of text

Ble jofo Gt Jettrgs Leostion Hep
1632 [t oot Chasien | BVE Fpageain v |

G} OPENWAVE

Comntackt your local
bike shop for clasaes
on apineing during
the off season and
growp rcides during
the summer.

IWstwork: duv-slsble |
Figure 18-15: Viewing your next page of text

Making phone calls

Because most mobile devices are cell phones, this chapter would not be complete
without discussing how to make phone calls from your mobile application. MIT handles
this easily, by making the control <mobile:PhoneCall> available to us.

The <mpbi | e: PhoneCal | > tag is an easy-to-use tag that presents the user with an
option to place a call. If the device does not support phone calls, such as a Pocket PC,
then the user can be provided with an optional link. The following code shows how to
create a mobile form to make a phone call:

[phonecall.aspx]
<mobile:Form id="Form1" runat="server">

<mobile:PhoneCall PhoneNumber="636-555-1213"
AlternateUrl="details.aspx?id=0" AlternateFormat="{0}">Home
</mobile:PhoneCall>

<mobile:PhoneCall PhoneNumber="619-555-1214"
AlternateUrl="details.aspx?id=1" AlternateFormat="{0}">Kirk
Physh</mobile:PhoneCall>

<mobile:PhoneCall PhoneNumber="812-555-1215"
AlternateUrl="details.aspx?id=2" AlternateFormat="{0}">Lee
Sifu</mobile:PhoneCall>

<mobile:PhoneCall PhoneNumber="812-555-1216"
AlternateUrl="details.aspx?id=3" AlternateFormat="{0}">Shellie

Sommers</mobile:PhoneCall>

</mobile:Form>
In the preceding code, we are taking advantage various attributes of the
<mobi | e: PhoneCal | > tag:

= PhoneNumber is the phone number we want the cell phone to dial when
the user picks that selection.

= AlternateUrl isthe link that devices that are not phone call-enabled
present to the user.

= Alternat eFormat is the way the string will be displayed to the user,

when using a device that is not phone call-enabled.

Collecting User Data

Up until this point, we've mainly been reading about how to present data to users. We've
covered links, lists, bulleted lists, pagination, and dealing with phone numbers. But what
about when we want to collect information from users? The remainder of this chapter
deals with various input controls, from selection lists, to textboxes, to passwords, to data
validation.

Selection lists

A selection list is very similar to a regular mobile control list. However, selection lists
have the additional functionality of being a radio button list, drop-down list, list box, or a
multiple selection list box. All of this functionality is available to the user simply by setting
the Sel ect Type property of the <nobi | e: Sel ecti onLi st > tag. The following shows
how to use the SelectionList, when the Type property is set to MultiSelectListBox:

[listselect.aspx]
<mobile:Form id="Form1" runat="server">
<mobile:Label id="Labell" runat="server">
Select a Bike Style</mobile:Label>
<mobile:SelectionList id="SelectList1"
Runat="server" SelectType="MultiSelectListBox">
<ltem Text="Road Bike" Value="Road"></Iltem>
<ltem Text="Mountain Bike" Value="Mountain"></ltem>
</mobile:SelectionList>
<mobile:Command id="Command1" onclick=
"Command1_Click" Runat="server">Go</mobile:Command>
</mobile:Form>
<mobile:Form id="Form2" runat="server">
You Selected
<mobile:Label id="IbIResults" Runat="server"></mobile:Label> bike(s).

</mobile:Form>
In this code, we are presenting the user with the option to select more than one bike. In
this instance, we are using the MultiSelectListBox. Again, because MIT can detect what
type of device is requesting the content, it will provide a different user experience.
Figures 18-16 and 18-17 show how this page looks, both on the Pocket PC emulator and
on the Openwave emulator.

E-:::] Internet Explorer

|http:IIIDEthDStIChapterIBHEfIiStSEI v”ﬂ

Select a Bike Style

Mountain Bike

| |
Yiew Tools = ot

Figure 18-16: Listselect.aspx on the Pocket PC emulator

Fle lnfo Edt Setirgs Locstion Help

Gt [Pt e athet/ Chagdsn | BVE ptsienl. |

@ OPENWAVE

Select a Dike Style
iokRond Bike

g —
Figure 18-17: Listselect.aspx on the Openwave emulator

The code running behind these mobile forms is simple. We simply loop through each of
the items in the SelectionList. If we find that an item was selected, we increment the
counter for the number of items selected. The following shows this code in VB.NET and
CH#.
VB.NET:
[listselect.aspx.vb]
Public Sub Command1_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles Command1.Click
Dim count As Integer = 0
Dim item As MobileListltem
For Each item In SelectListl.ltems
If item.Selected Then
count = count + 1
End If
Next
IbIResults. Text = count. ToString()
ActiveForm = Form2

End Sub

C#:
[listselect.aspx.cs]
protected void Commandl_Click(object
sender, System.EventArgs e)
{
int count =0;
foreach(MobileListltem item in
SelectListl.ltems)

{
if (item.Selected)
{
count++;
}
}

IbIResults. Text = count.ToString();
ActiveForm = Form2;

}

Mobile TextBoxes

Entering text on a cell phone is one of the hardest challenges you may encounter. When
building user interfac es for mobile devices, you have to remember that the user doesn't
always have a full keyboard to use. Not only that, but the user may not even have keys
available for certain symbols. For example, entering a » or a ~ isn't always available, and
when it is, you may have to go through a cryptic set of keys to find these characters. The
bottom line is that, if possible, you should always use or present lists as an option to the
user, and only ask for typed input when needed. When you do need the user to actually
enter text (for example, a name, address, credit card, or pin number), the

<mobile:TextBox> handles this easily.

In the following code, we have an example to ask the user for their name. Once the user
enters their name, they click the <mobile:Command> object. We take their name and

write it out to Form2.
[textbox.aspx]

<mobile:Form id="Form1" runat="server">

Enter Your Name:

<mobile:TextBox id="txtName" Runat=

"server"></mobile: TextBox>

<mobile:Command id="cmdGo" Runat=

"server">Go</mobile:Command>

</mobile:Form>

<mobile:Form ID="Form2" Runat="server">

Hi

<mobile:Label id="IbIName" Runat="server"></mobile:Label>

How are you doing today?

</mobile:Form>

The following code shows how to do this in VB.NET and C#, respectively. Figures 18-18
and 18-19 show our results in the cell phone and PocketPC, respectively.
VB.NET:
[textbox.aspx.vb]
Private Sub cmdGo_Click(ByVal sender As System.Object, ByVal
e As System.EventArgs) Handles cmdGo.Click

IbIName.Text = txtName.Text & ","

ActiveForm = Form2

End Sub

C#:
[textbox.aspx.cs]
private void cmdGo_Click(object sender, System.EventArgs e)
{
IbIName.Text = txtName.Text + ",";
ActiveForm = Formz2;

}
BLTES
Ble fo Edt Seftigs Locabon Heb

s |t £ et Chapden| BV M boce: 52 w |

stwork Avalsbls |
Figure 18-18: A TextBox on a cell phone

E;ﬂ Internet Explorer

bttp: fflocalhost fChapter LEWE texth v|

Enter Your Name: |Shelie Sommers

Go

1 |
view Tools <= 7] {3}

Figure 18-19: A TextBox on a Pocket PC

Using passwords or numbers
In some instances, we need to allow the user to enter a pin number or a password. MIT
understands that, more often than usual, you may only want the user to enter numbers,
and that any passwords must be masked. Setting the Passwor d property of the
<nobi | e: Text Box> tag to true will mask the input, while setting the Nuner i ¢ property
to true will allow only numbers to be entered. We need to specify which property, in this
case the password and numeric properties, we are talking about.

Note The Nuner i ¢ property only works on devices that support a

numeric mode. Cell phones will automatically place the keypad in
numeric mode when they recognize the numeric properties.
Browsers, however, do not.
The following displays our code to set a TextBox to password mode:
[password.aspx]
<mobile:Form id="Form1" runat="server">
Enter Your Password or Pin Number:
<mobile:TextBox id="txtPassword" Password=
"True" Runat="server"></mobile: TextBox>
<mobile:Command id="cmdGo" Runat="server">
Go</mobile:Command>
</mobile:Form>
<mobile:Form ID="Form2" Runat="server">
<mobile:Label id="IbIResult" Runat="server">
</mobile:Label>
</mobile:Form>

Validating input

Some of the most powerful features of ASP.NET are the validation controls. MIT also
has its own set of validation controls; however, these validation controls are much more
limited, due in part to the limitations of the mobile devices we are sending content to. In
fact, validation controls can only validate <mobile:TextBox> and <mobile: SelectionList>
controls.

Validation controls themselves come in four different flavors:
= RangeValidator: Validates that another control's value falls within a
certain range.
= RegularExpressionValiator: Validates another control's value against a
regular expression.
= RequiredFieldValidator: Makes sure the user enters a value for a
control.
= ValidationSummary: Displays a summary of all validation errors that
occur on a form. When using the ValidationSummary control, usually a
separate form is built to display all the errors.
In the following code, we require a user to enter their name in our textbox. We do this by
setting the Cont r ol ToVal i dat e property to "t xt Nane" , which is the name of our

TextBox. If the user doesn't enter a value, we obviously want to write out an error
message. The error message we chose to show is "Please Enter Your Name" and is
specified with the Er r or Message property.

[validate.aspx]
<mobile:Form id="Form1" runat="server">
Enter Your Name:
<mobile:TextBox id="txtName" Runat="server"></mobile:TextBox>
<mobile:Command id="cmdGo" Runat="server">Go</mobile:Command>
<mobile:RequiredFieldValidator id=
"RequiredFieldValidatorl" runat="server" ErrorMessage="Please Enter Your Name"
Display="Dynamic" ControlToValidate="txtName"></mobile:RequiredFieldValidator>
</mobile:Form>
<mobile:Form ID="Form2" Runat="server">
Hi
<mobile:Label id="IbIName" Runat="server"></mobile:Label>
How are you doing today?

</mobile:Form>

Summary

We've looked at various controls and aspects of designing mobile applications. We've
looked at the simple labels and then moved on to simple lists. We've looked at
decorating those by making the lists bulleted or numeric. We've also looked at other
ways of presenting data to users, from pagination to selection lists. Finally, we've
accepted data via the TextBox, and looked at ways of validating user input.

Developing applications for the mobile Web is a tedious process that requires a lot of
forethought. We must take into account various limitations such as screen size, low
bandwidth, low power, and, last but not least, the vast array of mobile devices that may
be using our Web site. The Mobile Internet Toolkit (MIT) takes all of these considerations
into account and provides a tool that works wonders. At the time of this writing, MIT
supports over 50 different mobile devices, with many more being added. What would
have taken us weeks to develop has been cut down to days or even hours.

Chapter 19: ASPNET Secu r|ty

Overview

The reasons to secure a Web site are well known and thus do not require a detailed
discussion. A few of the reasons for securing a Web site include transfer of sensitive
data over the Internet, exchange of sensitive data between Web applications, and risks
of hack attacks.

Security is a critical issue for both Web application developers and administrators alike. It
is undoubtedly one of the most confusing areas, and hence requires careful planning and
designing. Web site developers and administrators must have a clear understanding of
the various options, such as authentication, for securing their sites.

This chapter explores the diferent types of security implementations that can be used to
secure an ASP.NET Web site. You'll also learn how the Microsoft .NET Framework
assists in securing Web sites.

Introduction to ASP.NET Security

Security, in the context of an ASP.NET application, involves three fundamental
operations. These operations are carried out during the lifetime of each secure ASP.NET
Web application and are described as follows:
= Authentication: This is the process of validating the identity of a user, to
allow or deny a request. Typically, authentication is a process of accepting
the username and password from a user, and validating the
username/password combination in a security database. In addition to this
typical case, the authentication process can be more sophisticated. After
the identity is verified and validated, the user is considered to be legitimate,
and the resource request is fulfilled. Future requests from the same user,
ideally, are not subject to the authentication process, until the user logs out
of the Web application.
= Authorization: This is the process of ensuring that users with valid identity
are allowed to access only those resources for which they have been
assigned access rights. In other words, authorization is a check that is
performed at every stage of the request-processing cycle on the Web
server. This check ensures that access is given only to the allowed
resources.
= Impersonation: This process enables an application to assume the identity of
the caller, and in turn make requests to the other resources. Access to
resources will be granted or denied based on the identity that is being
impersonated. If the identity being impersonated has permissions to a
resource, the application that impersonates the identity will also have the
access permission to that resource.

Before delving deeper into the security system that is available with ASP.NET, let us
review the security system that is made available to the Web sites by the underlying Web
server. For the ASP.NET applications, the underlying Web server is Microsoft Internet
Information Services (1IS). Therefore, every ASP.NET Web application can continue to
leverage the security options provided by the IIS server. Let us now look at the security
provided by the IIS server.

IIS security

Securing a Web application involves different aspects. The best place to start securing a
Web application is by looking at the security methods provided by the Web server that

hosts the Web application. The IS server has built-in support for authentication and
authorization of user requests.

Authentication

The IS server has built-in support for authenticating clients who request the Web content
stored in an IIS Web site. Three different types of authentication can be implemented by
using the IIS server:
= Anonymous Authentication: Allows all users to browse the Web site
without prompting for a username and password. The access to the
Web site resources is impersonated by the IIS server by using the
IUSR_machinename account.
= Basic Authentication: Requires the users to enter a
username/password combination for accessing the Web site. The
major downside to this method of authentication is that the password
is sent over the network in an unencrypted form, making it possible for
unauthorized users to snoop the network packets and retrieve the
password information easily.
= |ntegrated Windows Authentication: Requires the users to be valid
Windows users in addition to fulfilling the basic authentication. In this
mode, IIS will verify the username and password with a Windows
Domain Controller. The access to the Web site is allowed only if the
domain controller validates the username and password.
= Digest Authentication: Is similar to the basic authentication.
However, this authentication uses a different way of transmitting the
authentication credentials. This authentication sends a hash value
over the network rather than the password. The hash value cannot be
decrypted and hence the original text cannot be deciphered.

Authorization

The IS server can be configured to control the resources that can be accessed by users.
You can control the access permissions on an |IS Web site by marking the allowed
operations on the Web site. The different permission levels include the following:
= Read: Allows users to retrieve and read the content stored in the
virtual directory. This permission is assigned to most virtual directories.
= Write: Allows users to retrieve and modify the content stored in the
virtual directory. If a Web site is open to receiving content over the
HTTP protocol, the virtual directory used to store the received files
must have the write permission. A typical example of this would be a
virtual directory that stores the files that are uploaded as attachments
to e-mail messages.
= Script source access: Allows users to view the source code of any
server-side program.
= Directory browsing: Allows users to view the contents of the entire
virtual directory. This is similar to viewing an FTP folder.
= Log visits: Keeps track of the number of users who visit the site, and
records information about \arious details, such as the IP address of
the client and the resources that are requested for.
= |ndex: Uses Microsoft Index Server to index the virtual directory. The
contents of the directory can be retrieved in a search result using the
Index Server.

In addition to the 1IS permission levels, NTFS permissions can also be used to secure
the files and directories on a Web server. The following are the different access
permissions that can be assigned to users and groups for the files and directories on the
server:
= Full Control: Allows users to have complete control on files and/or
directories.

= Modify: Allows users to modify the contents of files and/or directories.
However, users will not be able to delete files and/or directories.

= Read & Execute: Allows users to read the contents of the existing
files and/or directories and execute any application stored in that
folder. However, users will not be able to modify the contents of the
files and/or directories.

= List Folder Contents: Allows users to view the contents of the folder.
However, users will neither be able to read the contents of any file in
the folder nor modify any contents.

= Write: Allows users to make changes to files and/or directories.

= No Access: Does not allow any access to files and/or directories.

Authentication in Web applications

Various ways exist to authenticate user access to Web applications. In intranet
applications, it is possible to use Integrated Windows Authentication to authenticate user
access and implement access control. But, in most of the Internet applications, it is not
possible to use Windows authentication as it puts various restrictions. The following are
two of these restrictions:
= Number of user accounts: Although Windows Active Directory can
scale up to a large number of user accounts, managing all the user
accounts for Internet applications (that involve millions of user accounts)
can be a big management challenge, if not a nightmare. Therefore, most
Web administrators and developers prefer an authentication mechanism
that is based on databases, such as SQL databases.
= Licensing issues: If millions of users were to be authenticated against
an Active Directory database, the Web site would need to procure user
licenses for all the users. Thus, to say the least, it can prove to be an
expensive proposition.

In classic ASP, authentication issues were addressed by security implementations that
relied on cookies or client IP. This approach, typically, meant writing a lot of code and
proved to be an unnecessary overhead for developers. The approach is very different
from implementing security in Windows applications. In Windows, applications are
developed in a way that maximizes the leverage on the services provided by the
operating system. With ASP.NET, however, the days of writing tedious user validation
code are gone. Developers can rely on the underlying Microsoft .NET Framework to
provide security. They just need to focus on solving business problems and
implementing the functionality in the Web site. Let us now explore the various
authentication models that are supported by ASP.NET.

ASP.NET authentication options

The security section of the Web.config file contains the information related to the level
and type of authentication services that would be provided for a Web application. The
Web.config file is an XML file and is located in the root directory of a Web application.
Various configuration options for an ASP.NET Web application can be controlled and
configured from this XML file.

Cross- For more information on the security section of the
Reference Web.config file, refer to Chapter 14.

The system.web section of the Web.config file is used to control the various aspects of
security that are provided to the Web application. An ASP.NET Web application can be
provided with one of the following types of security:
= Windows: The application is secured by using Integrated Windows
Authentication. In this method, access to a Web application is allowed
only to those users who are able to verify their Windows credentials.
Credentials can be verified against the Windows authentication
database (SAM) or against Active Directory.

= Passport: The application is secured by using Microsoft Passport
authentication. Passport is a single-sign-on technology developed by
Microsoft for use on the Web. For more information on using Microsoft
Passport, visit ht t p: / / www. passport. com busi ness/ .
= Forms: The application is secured by using a custom authentication
model with cookie support.
= None: The application is not secured; access to the application does
not require authentication.
The system.web section has an <aut hent i cat i on> element that is used to specify the
security settings. The following is the syntax of the <aut henti cat i on> element:

<authentication mode="Windows|Forms|Passport|None">
<forms name="name" loginUrl="url"
protection="All|[None|Encryption|Validation"

timeout="30" path="/" >

<credentials passwordFormat="Clear|SHA1|MD5">
<user name="username" password="password" />

</credentials>

</forms>
<passport redirectUrl="internal"/>

</authentication>
The various attributes of the <aut hent i cati on> element are described as follows:
= Mode: Indicates the authentication mode to be used for the ASP.NET
Web application.
= Forms: Indicates the Forms-based authentication that is used. The
different suboptions that are used include the following:

o0 Name: Specifies the name of the cookie that will be
issued when a user is authenticated. This is the cookie
that the ASP.NET application will check before
processing requests from the client. If this cookie is
found and is determined to be valid, ASP.NET will
process the client request.

o LoginURL: Specifies the URL of the Web page to which
a client will be redirected if the client is not
authenticated.

o Protection: Specifies the level of protection that is
applied to the cookie. The default value is All, which
causes the cookie to be encrypted by using the 3DES
algorithm. It also validates the cookie contents to
ensure that the cookie is not tampered with. The other
options include None, Encryption, and Validation. The
None option specifies that the cookie is not encrypted
or validated. This is as good as a honsecure cookie
access. Therefore, use this value only if the Web site
has very low security requirements. The Encryption
option specifies that the cookie contents are encrypted
by using the 3DES algorithm, but contents of the
cookie are not validated. Therefore, the contents of the
cookie can be altered by someone during
transmission. The Validation option specifies that the
cookie is not encrypted. However, the cookie contents
are validated to ensure that the cookie cannot be
altered during data transmission.

o Timeout: Indicates the time after which the cookie will
expire. If the site is visited before the timeout, the
timeout value is refreshed. This is called sliding
expiration. For example, if the timeout is 30 minutes
and the user requests another document from the Web
site after 10 minutes of inactivity, the timeout will occur
if the user remains inactive for another 30 minutes.

o Path: Sets a path for the cookie. The path allows a Web
page to share cookie information with other pages
within the same domain. If the path is set to
/mywebapp, all pages in /mywebapp and all pages in
subfolders of /mywebapp can access the cookie.

= Credentials: Allows the application to specify the username and
password combinations that are valid.

o PasswordFormat: Specifies the encryption
format that is used for storing passwords.
The available options include Clear, MD5,
and SHAL. The Clear option indicates that
no encryption is used. The MD5 option
indicates that the MD5 algorithm is used.
The SHAL option indicates that the SHAL
algorithm is used.

= User: Defines the username and password combinations that
are valid.

o Name: Defines the username.

0 Password: Defines the password of the
user.

= Passport: Specifies the configuration information if the
authentication mode is set to Passport.

0 RedirectURL: Specifies the URL to which
the client will be redirected when a page
requires Passport authentication, but the
user has not logged on with a Passport.

Forms-based Authentication

ASP.NET includes a built-in feature, called forms-based authentication, which can be
used to implement customized logic for authenticating users and authentication handlers
without having to worry about session management using cookies. In forms-based
authentication, when a user is determined to be unauthenticated, the user is
automatically redirected to the login page. Some of the benefits of the forms-based
authentication are the following:
= Developers can configure forms-based authentication for various parts of the
Web site differently, because the Web.config file is a hierarchical XML
document.
= Administrators and developers can change the authentication scheme quickly
and easily in the Web.config file.
= Administration is centralized because all the authentication entries are in one
place — the Web.config file.

You can enable forms-based authentication for a Web application by setting the
Authentication mode property to "Forms" in the Web.config file. The following is a sample
code in the Web.config file used to enable forms-based authentication:

<configuration>

<system.web>

<authentication mode="Forms">

<!I-- Assign a cookie named B2CBuySiteAuthCookie
when user is authenticated. The page used for validating user
credentials is userauth.aspx. Make sure the cookie is encrypted
and validated by setting the protection to All, the cookie will
timeout after 10 minutes -->

<forms name=".B2CBuySiteAuthCookie" loginUrl=

"userauth.aspx" protection="All" timeout="10" />

</authentication>

<authorization>

<!-- anonymous users will be denied access.

This is needed to force forms-authentication -->

<deny users="?"/>

</authorization>

</system.web>

</configuration>

In this code:
= The authentication mode is forms-based authentication.
= The Userauth.aspx file is the Web page that is used for authenticating user
credentials.
= The cookie protection level is set to Al | . This value causes the ASP.NET

runtime to not only encrypt the cookie contents, but also validate the cookie
contents to ensure that the contents have not been modified on the
network.
You can also add authorization support to sections of an ASP.NET Web application. To
do so, you need to add the <| ocat i on> element in the Web.config file. Consider the

following sample code that uses the <l ocat i on> element:
<I-- Require Authentication for Shopping Cart -->
<location path="Default.aspx">
<system.web>
<authorization>
<deny users="?" />
<allow users="Jack,Joe"/>
</authorization>
</system.web>
</location>
In this code, when an unauthenticated user attempts to access the Default.aspx page,

ASP.NET will automatically redirect the request to the userauth.aspx page. After the user
provides the valid credentials, the user is redirected to the Cart.aspx page.

The usernames specified can be certain specific usernames. In addition, you can use
some special characters to represent usernames:

=*: Refers to all users

= ?: Refers to all unauthenticated, anonymous users

In the previous sample code, only Jack and Joe will be allowed to access the
Default.aspx page, and no unauthenticated, anonymous user will be allowed to access
the Default.aspx page.

After you add the necessary code in the Web.config file for the forms-based
authentication, you need to set the security configuration of the IIS virtual directory to
"Allow Anonymous Access".

Let us now implement the forms-based authentication for an ASP.NET Web application.
Complete the following steps:
1. Set the Authentication mode to "Forms" in the Web.config file. This file
should be present in the same directory as the ASP.NET Web

application.
2 <configuration>
3 <system.web>
4,
5. <authentication mode="Forms">
6 <!I-- Assign a cookie named B2CBuySiteAuthCookie
7 when user is authenticated. The page used for validating
8. user credentials is userauth.aspx. Make sure the cookie
9. is encrypted and validated by setting the protection to
10. All, the cookie will timeout after 10 minutes -->
11.
12. <forms name=".B2CBuySiteAuthCookie" loginUrl=
13. "userauth.aspx" protection="All" timeout="10" />
14.
15. </authentication>
16.
17. <authorization>
18. <!I-- anonymous users will be denied access.
19. This is needed to force forms-authentication -->
20.
21. <deny users="?"/>
22.
23. </authorization>
24,
25. </system.web>
</configuration>

26. The next step is to create the login page that will accept and validate
user credentials before assigning the client a session cookie. The login
page will then redirect the user back to the page requested by the client.
Write the following code in "Userauth.aspx" file:

27. <%@ Import Namespace="System.Web.Security " %>
28. <html>

29. <script language="VB" runat=server>

30. ' Verify credentials

31. Sub Login_Click(Src As Object, E As EventArgs)

32. ' Do complex hashing and look up other data sources to
33. ' determine validity ;)

34.

35. If UserName.Value = "john" And UserPass.Value = "secret"

36.

37. ‘Credentials are ok, redirect back to the page that forced
38. 'authentication, pass the user name and don't persist the cookie
39. FormsAuthentication.RedirectFromLoginPage(UserName.Value,F
alse)
40.
41. Else
42.
43. Msg.Text = "Invalid user name or password: Please try again”
44,
45, End If
46. End Sub
47. </script>
48.
49, <body>
50. <form runat=server>
51. <h3>Please Sign-In</h3>
52. <table>
53. <tr>
54. <td>Login Name:</td>
55. <td><input id="UserName" type="text" runat=server/></td>
56. </tr>
57. <tr>
58. <td>Password:</td>
59. <td><input id="UserPass" type=password runat=server/></td>
60. </tr>
61. </table>
62. <asp:button text="Login" OnClick="Login_Click" runat=server/>
63. <asp:Label id="Msg" ForeColor="red" Font-Name="Verdana"
64. Font-Size="10" runat=server />
65. </form>
66. </body>
</html>
67. Finally, create the Default.aspx file with the following code:
68. <%@ Import Namespace="System.Web.Security " %>
69.
70. <html>
71. <script language="VB" runat=server>
72. Sub Page_Load(Src As Object, E As EventArgs)
73.
74. '‘Use the User object to retrieve information about the current
‘user

75. Welcome.Text = "Hello, " + User.ldentity.Name

76.

77. End Sub

78.

79. Sub Signout_Click(Src As Object, E As EventArgs)

80. " logout from the web application and display login screen

81.

82. FormsAuthentication.SignOut()

83. Response.Redirect("userauth.aspx")

84.

85. End Sub

86. </script>

87.

88. <body>

89. <h3>Using Forms
Authentication</h3>

90. <form runat=server>

91. <h3><asp:label id="Welcome" runat=server/></h3>

92. <asp:button text="Signout" OnClick="Signout_Click"
runat=server/>

93. </form>

94. </body>

</html>

Figure 19-1 and Figure 19-2 show the output of the preceding code. When a user

requests the Default.aspx page, the ASP.NET run time checks for the presence of the
specified cookie. If the cookie is not found, the user is prompted to sign on the form
represented by the Userauth.aspx page. Once the user credentials are verified,
ASP.NET makes the Default.aspx page accessible to the user by redirecting the browser
to the Default.aspx page.

'Elllrp:'-'lu calhostTormssacue, net e ra uih, azps ? Retumm U=, M= B
File Edit View Favorites Tools Help -
Hack = o=) 1) ¢} D Semch [iFavortes | AHisory =
Address (2] hitp:/Mocathoa notd b aspetRintun | & Go
=l
Please Sign-In
Login Mame: [jokn
Password l——
o]
) |
2] Doane ¥ Local intranet %

Figure 19-1: The Userauth.aspx page

'ﬂltlrp iMucalhostTormesecune netDelaull. azpy - Microssl Intemnet ... W= E

Flle Edit View Faworites Tooks Help -
Back v < o« () 2] 3| [CPemndba) 5emch [ifFavokes 4 =
Address |&]HI;\.I'.ﬂpl:.gl'\n;J‘.l'lmn:;ﬂu!r\ql.l'l,'lu'.yla,'.mc ﬂ ﬁﬁn Links *
=l
Using Forms Authentication
Hello, john
Signou
x|
2] Done ¥ Local intranet 5

Figure 19-2: The Default.aspx page

Integrating Security Methods

In certain cases, Web applications might need to be integrated with the security provided
by Windows. One such case would be an intranet Web application that provides different
levels of access to users depending on the Windows credentials. In this case, the Web
applications can be secured by using Windows authentication.

Configuring Windows authentication for a Web application is quite simple. To do so, the
Authentication mode must be set to "Windows" in the Web.config file. Consider the
following sample code:

<configuration>
<system.web>
<authentication mode="Windows" />
</system.web>

</configuration>

In addition to this setting, you also need to set Integrated authentication in the virtual
directory by using the IIS administration tool for Integrated Windows Authentication to
work properly. To enable Integrated Windows Authentication for a Web application,
complete the following steps:
1. Start the IIS administration tool and open the Properties dialog box for
the Web application.
2. Select the Directory Security tab and click the Edit button to view or
change the authentication methods. The Authentication Methods dialog
box displays, as shown in Figure 19-3.
[%]

furthentication Eethods

1™ Bnorgmous access

K uset narrauipas st reguaed 1o actatt the tedourcs
dnounl uisd fon snonpmous Sooess: E
Suthenboaled soce

[Fioa e Fiollgwang sutheniie.stor mathad, wiss rame ard paswsond se
evqnad whery

+ ot i o deabisd. of

* aceass i seaiiched uing NTFS soceds contsol bty

™ B suthenieaiion [pattwond o senl n cloa led]

Selecl & el domaec k
™ Digmst suhvantic ation o Windows: doman senvs
[¥ Irdegrated Windowes sutirentic shon
oK | cawed | W |
Figure 19-3: Setting Integrated Windows Authentication for a virtual directory

in 1S
3. Check the Integrated Windows Authentication check box to enable

Integrated Windows Authentication.

You will now modify the earlier example to implement Integrated Windows

Authentication.

=

Modify the code in the Web.config file to set the Authentication mode

property to "W ndows" as follows:

N R~WN

©

10.

<configuration>

<system.web>

<authentication mode="Windows"/>
<authorization>

<!-- anonymous users will be denied access -->
<deny users="?"/>

</authorization>

</system.web>

</configuration>

11. Modify the page that would determine the identity of the user. In this
case, modify the Default.aspx page:

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
3L

</html>

<%@ Import Namespace="System.Web.Security " %>

<html>
<script language="VB" runat=server>
Sub Page_Load(Src As Object, E As EventArgs)

'‘Use the User object to retrieve info about the current user
Welcome.Text = "Hello, " + User.ldentity.Name

End Sub
</script>

<body>

<h3>Using Integrated Windows
Authentication</h3>

<form runat=server>

<h3><asp:label id="Welcome" runat=server/></h3>
</form>

</body>

Figure 19-4 shows the output of this code.

5 witpzilscalhostescure nevcheckauaspy - Microsal Internen ... = E

File Edit View Favortes Tools Halp -
“Back = o=) 1) 4} DSemch iFavortes | #Hidory =
Address (@] hitp: /Mocathon/secui notd D ofaull asps =] &G0

Using Integrated Windows Authentication

Hello, CorpDomain'Joln

=l
@] Done ¥ Local intranet

Figure 19-4: The Default.aspx page using Integrated Windows Authentication

Role-based Security

The Microsoft .NET Framework security design provides support for authorization and
also role-based security. As mentioned earlier, ASP.NET stores information about the
current user in the User object. The User object is available in the context of the HTTP
request that is received by the ASP.NET Web application. The information in this User
object can be readily used for authorization decisions based on either the user identity or
role membership.

A role is a named set of users that have the same privileges with respect to security. For
example, sales agent and sales manager are two different roles. Each role has the same
security privileges. A user can be a member of one or more roles. Applications can
readily use role membership to determine whether or not a user is authorized to perform
a requested action. Roles are like groups in the sense that multiple users can belong to a
role and a user can also belong to multiple roles. Although roles are logically equivalent
to security groups, there is a major difference. Roles are always specific to an
application, whereas typically groups are not specific to any application — they are
defined at the operating system level.

Roles are often used in Web applications to enforce security authorization policy. For
example, an online banking application may impose a limit of $100,000, which cannot be
exceeded by a teller in a single debit or credit transaction — only a manager can conduct
this transaction. In such a situation, you can configure the application to allow the tellers
to process transactions that are less than $100,000 and managers to process
transactions that exceed $100,000.

Microsoft, first, introduced support for defining application roles in Microsoft Transaction
Server and extended this further with the release of COM+ 1.0 in Windows 2000. With
the launch of the Microsoft .NET Framework, the support for role-based security has
been extended further. The .NET Framework provides role-based security support that is
flexible and extensible enough to meet the needs of a wide spectrum of applications.
Role-based security is particularly well suited for use in ASP.NET Web applications,
which are processed primarily on a server.

The .NET implementation of role-based security is similar to the COM+ 1.0
implementation. However, there are certain differences. Table 19-1 describes some of
the differences.

Table 19-1: Role-based security in COM+ 1.0 vs. role-based security in .NET
Framework

COM+ 1.0 .NET
Framework

Table 19-1: Role-based security in COM+ 1.0 vs. role-based security in .NET

Framework

COM+ 1.0

.NET
Framework

Only configured applications can use role-based security;
COM+ will not maintain role information for nonconfigured
applications.

The run time
attaches an
IPrincipal
object to the
call context,
which is
always
available to
the current
thread. The
IPrincipal
object
contains a
reference to
an identity
object as well
as the roles to
which the
identity
belongs. This
information
can be readily
used inside
application
code to
determine
authorization.

Role membership is mapped to Windows user accounts;
only valid Windows users can be added into application
roles.

Users don't
necessarily
need to be
associated
with Windows
user
accounts. If a
need exists,
applications
can use
Windows user
accounts.
However,
applications
can also
define custom
user lists and
credentials.

Relies on Windows accounts/
security to identify users.

Does not rely
on Windows
accounts/sec
urity to
identify users.

Roles are managed for each application.

Application-
specific roles

Table 19-1: Role-based security in COM+ 1.0 vs. role-based security in .NET
Framework

COM+ 1.0 .NET
Framework

can be
defined. The
run time
provides
support to
enable
administrators
to create and
manage the
mapping of
Windows user
accounts to
application
roles.

Let us now implement the role-based security in the teller/manager transaction limit
example discussed earlier. This example allows all the users with the role "Tellers" to
access the Web site. The Web.config file allows all members of the Tellers role to access
the Web site. The Tellers role is a group created in the Windows Active Directory. This
simplifies administration greatly because the authorization of Web users is done against
the Active Directory. Also, in the Web.config, we are blocking all the anonymous users
from accessing the Web site.
Modify the Web.config file as follows:
<configuration>
<system.web>
<authentication mode="Windows"/>
<authorization>
<!I-- Tellers & anonymous users will be denied access -->

<allow roles="Tellers"/>

<deny users="?"/>
</authorization>

</system.web>
</configuration>

Modify the Default.aspx file as follows:

<%@ Import Namespace="System.Web.Security " %>

<html>
<script language="VB" runat=server>
Sub Page_Load(Src As Object, E As EventArgs)
‘Use the User object to retrieve information
about the current user
Welcome.Text = "Hello, " + User.ldentity.Name
End Sub
</script>

<body>
<h3>Using Integrated Windows
Authentication</h3>
<form runat=server>
<h3><asp:label id="Welcome" runat=server/></h3>

</form>
</body>
</html>
Figure 19-5 shows the output of this code.
A Role-based secutity - Microsal Intemen Explores
File Edit View Favorites Tools Help [& |
seBack = < - 3 A 4 DiSemch [ijFoveites | fHitey | e *
_.l

Using Integrated Windows Authentication

Hello, Tellerl

i
Figure 19-5: Output after implementing role-based security (Tellerl is part of the Tellers role)

Summary

In this chapter, you learned about the various aspects of security in ASP.NET
applications. You learned about authentication services provided by ASP.NET and the
various authentication mechanisms. Then, you learned how to enable forms-based
authentication and integrated Windows-based authentication for ASP.NET Web
applications. Finally, you learned how to implement role-based security in ASP.NET
applications.

chapter 20: LOCalizing ASP.NET Applications

Overview

People all over the world speak different languages and follow different conventions and
cultures. There are cases wherein people in different regions speak the same language,
but the conventions and cultures vary according to the regions. For example, people in
France, Canada, and Belgium speak French, but currencies differ in these regions. Also,
there are cases wherein people living in the same region speak multiple languages.
Therefore, a region or a language solely does not identify a locale. A locale is a
combination of a language and region. For example, English/US is a locale that indicates
the culture specific to the English language spoken in United States. In Belgium, three
languages — French, Dutch, and German are spoken. Therefore, there are three
locales, French/Belgium, Dutch/Belgium, and German/Belgium associated with the
region, Belgium.

When speaking in terms of applications, a locale refers to the user preferences, such as
the user interface language, fonts, date/time format, and language rules for checking
spelling and grammar. These different locales must be taken care of when developing

applications for the international audience. Consider an application that has been
developed for the English audience. Later, you realize that the German audience also
requires the same application. Because the application was not developed with different
locales in mind, you need to modify the application and recompile it for the German
audience. This is not cost effective and might lead to inconsistencies in the two versions
of the application. To solve this problem, ASP.NET provides a functional model for the
development process of international applications, wherein you can create applications
that can incorporate any locale required.

This chapter introduces you to localization. You'll learn how to set cultures and regions
for specific locales, and use resource files.

Introduction to Localization
ASP.NET enables you to create applications that are international-ready. These
applications can be used in any locale without being modified and recompiled. The
process of creating international applications is called internationalization. When you
create international applications, you should consider the following factors:

= The language to be used to design the user interface

= The locale-specific settings, such as currency formats, date/time formats, and

number formats

Internationalization is further divided into three subparts: globalization, localizability, and
localization. The process of designing and implementing applications that include generic
coding and design considerations so that they can adapt themselves according to the
locale they are used in is called globalization.
Localizability is an intermediate phase between globalization and localization.
Localizability is a quality-assurance phase, which verifies that a globalized application is
ready for localization by separating the resources (that require localization) from the rest
of the application. Proper localizability results in a source code that you will not need to
modify during localization.
After globalization, the process of working with resources, such as string and image
representations for specific locales, is called localization. Localization consists primarily
of translating the user interface.
Conceptually, a globalized application can be divided into two parts, a data block, and a
code block. The data block part consists of all user interface resources and is locale-
dependent. On the other hand, the code block part consists of the application code that
can work with the data blocks irrespective of locales. Thus, localization involves working
with the data blocks for specific locales.

Data can be represented in a number of ways identified as character sets. For
localization, you should have a basic understanding of the different character sets.

Character sets
A character set is a set of characters grouped together from different languages. Each
character that you input from your keyboard has a code associated with it called a
character code. A character code is a unique number that is stored by a computer when
you input the character. Thus, a character code is an internal representation of a
character in a specific language. Internal tables called code pages, which can include
numbers, punctuation marks, and other glyphs, are maintained that are used by
operating systems to map keys on keyboards to the characters to be displayed. Some of
the different character sets are described as follows:
= American National Standards Institute (ANSI): Consists of 256
characters and punctuation codes. Each character is represented as a
single byte. This set is sufficient for English applications. However, for
most other languages, the ANSI character set is not adequate.
= Double Byte Character Set (DBCS): A combination of the standard
ASCII character set and alphabets from East Asian languages. An ASCII
character is represented as a single byte whereas East Asian characters
are represented as 2 bytes.

= Unicode: Includes characters from almost all major languages that are
spoken today. Therefore, multiple code pages are not required to map
characters from different languages. Unicode thus provides a single
universal code page that includes characters from almost all languages.
Unicode enables you to easily transfer data between different locales. In
Unicode, each character is represented as 2 bytes. However, two basic
problems are associated with Unicode. First, Unicode increases the file
size because it has a large character set. Second, most systems do not
support Unicode, which results in problems when Unicode characters are
identified on a network. To address these problems, Unicode
Transformation Formats (UTFs) can be used. UTFs use a technique
wherein the Unicode characters are encoded as byte values so that they
can be understood by systems that do not support Unicode. The most
commonly used UTF is UTF-8, which encodes Unicode characters to
single-byte characters.

Configuration settings

ASP.NET provides configuration settings that enable you to access locale-specific
properties for the entire application. These settings are included in the

<gl obal i zati on> section of the Web.config configuration file of each ASP.NET
application. The following code shows the configuration settings included in the
<gl obal i zat i on> section:

<globalization
requestEncoding="any valid encoding string"
responseEncoding="any valid encoding string"
fileEncoding="any valid encoding string"
culture="any valid culture string"
uiCulture="any valid culture string"

/>
In the <gl obal i zat i on> section:
= request Encodi ng represents the way the request data is encoded.
= responseEncoding represents the way the response data is encoded.
The default request encoding and response encoding is specified in the
Note <gl obal i zat i on> tag included in the Machine.config file, which is
created when the .NET Framework is installed. For English-language
systems, the default is is0-8859-1. If request encoding or response
encoding is not specified in the Machine.config or Web.config file, the
encoding defaults to the computer's Regional Options locale setting.
= fileEncoding represents the way the ASPX, ASMX, and ASAX files are
encoded.
= culture represents the default culture used to process the Web requests.
= uiCulture represents the default culture used to search for resources.
For more information on configuration settings, refer to
Cross- Chapter 14.
Reference
You can specify the configuration settings in the <gl obal i zat i on> section in the
Web.config file to control the globalization settings for the entire application. This makes
it easy to develop and administer Web applications. However, you can specify the
configuration settings at the page level also to set the configuration settings for a specific
page. For example, the following Page directive specifies r esponseEncodi ng for the

page:
<% @Page ... responseEncoding="UTF-8"%>
The page-level settings override the settings specified in the Web.config file. Most of the

time, it is beneficial to use this page-level setting even if the same settings have been
specified in the <gl obal i zat i on> section, because if the ASPX file is moved to a

server that does not use the same settings as your application, the page-level settings
will ensure that the correct encoding is done.

Setting Culture and Region

In addition to the configuration settings, you can use the classes provided by the .NET
Framework to create international applications. These classes are contained in the
System.Globalization namespace. In addition to these classes, you can use the Thread
class of the System.Threading namespace to control the locale-specific settings for each
executing instance of an application. The Thread class represents the threads that
execute within the runtime. Let us now look at the System.Globalization namespace in
detail.

System.Globalization namespace

The System.Globalization namespace contains classes that enable your applications to
determine the locale at run time. This gives you the flexibility of creating applications that
can automatically adapt themselves to the locale in which they run. The classes of the
System.Globalization namespace define culture-related information, such as the
language, the country/region, the calendars in use, the format patterns for dates,
currency, and numbers, and the sort order for strings. The following sections describe
the Culturelnfo and Regioninfo classes of this namespace.

Culturelnfo class
The Culturelnfo class represents the information that is specific to the user language,
country, region, and culture. The name of the culture follows the <l anguagecode2>-
<count ry/ regi oncode2> format. The | anguagecode?2 represents a lowercase two-
letter code for the language, whereas count ry/ r egi oncode2 represents an
uppercase two-letter code for the country or region. For example, if the name of the
language is English and the country/region in which the language English is spoken is
United States, the name of the culture is en-US. A culture associated with a language
and not with a country or region is called a neutral culture. On the other hand, a culture
associated with both the language and the country or region is called a specific culture.
For example, en is a neutral culture, whereas en-US is a specific culture.
Note In addition to the culture-specific culture names, such as en-US,
an invariant culture exists, represented by iv. An invariant culture
is culture-insensitive and returns results that are independent of a
specific culture. An invariant culture is associated with the English
language but not with any country/region. It can be used in almost
any method in the Globalization namespace that requires a
culture, except for sorting.
Some culture names have prefixes to specify the scripts for the cultures. For example,
the prefix "Cy-" represents the "Cyrillic" script, and the prefix "Lt-" represents the "Latin"
script. Therefore, the culture name "Cy-sr-SP" represents "Serbian (Cyrillic)-Serbia," and
the culture name "Lt-sr-SP" represents "Serbian (Latin)-Serbia." Similarly, some cultures
have suffixes to specify the sort order. For example, the suffix "-In" represents the
International sort, and the suffix "-Ts" represents the Traditional sort. Table 20-1 lists
some of the specific cultures.

Table 20-1: Some specific culture names

Culture Name Description
ar-AE Arabic-
U.A.E
ar-EG Arabic-
Egypt
ar-kKW Arabic-
Kuwait

Table 20-1: Some specific culture names

Culture Name Description
bg-BG Bulgarian-
Bulgaria
cs-CZ Czech-
Czech
Republic
de-DE German-
Germany
el-GR Greek-
Greece
en-uUs English-
United
States
en-NZ English-New
Zealand
es-ES Spanish-
Spain
fa-IR Farsi-lran
fr-FR French
France
fr-BE French
Belgium
hi-IN Hindi-India
hu-HU Hungarian-
Hungary
id-1D Indonesian-
Indonesia
ja-JP Japanese-
Japan
ru-RU Russian-
Russia
sa-IN Sanskrit-
India
th-TH Thai-
Thailand
ur-PK Urdu-Islamic
Republic of
Pakistan
zh-CHT or zh-CHS Chinese
(Traditional)
or Chinese
(Simplified)
Note Each culture has a specific identifier associated with it. For

example, the culture "en-US" has an identifier, 0x0409. To see the
complete list of culture names and the corresponding culture

identifiers, refer to the .NE T documentation.

When you create an object of the Culturelnfo class, the Culturelnfo constructor is called
automatically. The Culturelnfo constructor takes either the culture name or the culture
identifier as an argument. Use the following Visual Basic syntax to create a Culturelnfo
object:

Dim cult as Culturelnfo

cult = new Culturelnfo (culture name/culture identifier)

If you want to set the Culturelnfo object to a "German-Germany" culture, use the
following code:

Dim cult as Culturelnfo
cult = new Culturelnfo ("de-DE")

or:
Dim cultldentifier As Integer

cultldentifier = &H407

Dim cult As New Culturelnfo(cultldentifier)

where, "de-DE" is the culture name and "0x0407" is the culture identifier for the
"German-Germany" culture.

If you do not create an object of the Culturelnfo class, you can access the culture-
specific information directly from the Culturelnfo class. The Culturelnfo class represents
the information specific to the culture used by the system. Some of the properties of the
Culturelnfo class that can be used to access the culture-specific information are
described in Table 20-2.

Table 20-2: Properties of the Culturelnfo class

Property Description

Nane Returns the name of the
culture in the

<l anguagecode2>-
<count ry/regi oncod
e2> format.

Di spl ayNanme Returns the full name of
the culture in .NET
Framework language in
the <l anguage>-
<country/regi on>
format.

Nat i veNane Returns the full name of
the culture in the user
interface language in the
<l anguage>-
<country/regi on>
format.

Engl i shNanme Returns the full name of
the culture in English in
the <l anguage>-
<country/regi on>
format.

CurrentCul ture Returns the Culturelnfo

instance that represents
the current culture for
the current thread.

Table 20-2: Properties of the Culturelnfo class

Property Description

CurrentU Cul ture Returns the Culturelnfo

instance that represents
the current culture for
the culture-specific
resources.

LCI D Returns the culture

identifier of the
Culturelnfo instance.

Regioninfo class

The Regioninfo class represents the information specific to a country/region. Unlike the
Culturelnfo class, the Regioninfo class information does not depend on the user's
language or culture. The two-letter codes supported by the Regioninfo class to represent
countries or regions are described in Table 20-3.

Table 20-3: Region names

Two-Letter Code Country/Region
AE United Arab
Emirates
| AU | Australia
| AT | Austria
| BG | Bulgaria
| BR | Brazil
| CA | Canada
| CH | Switzerland
| Cz | Czech-Republic
| DE | Germany
| EG | Egypt
| ES | Spain
| GB | United Kingdom
| GR | Greece
| HU | Hungary
| IN | India
| JP | Japan
| LB | Lebanon
| MX | Mexico
| NZ | New Zealand
| PK | Pakistan
| RU | Russia
| SG | Singapore

Table 20-3: Region names

Two-Letter Code

Country/Region

|
TR |
|

‘ Turkey

’ us United States

‘ ZA | South Africa
Note The Regioninfo names are not case-sensitive. To see the

complete list of region names, refer to the .NET documentation.
When you create an object of the Regioninfo class for a specific region, you need to
pass the region name or the culture identifier as an argument to the Regioninfo
constructor. Table 20-4 describes some of the properties of the Regioninfo class.

Table 20-4: Properties of the RegionInfo class

Property

Description

Cur rent Regi on

Returns the
Regioninfo
instance
that
represents
the
country/regi
on for the
current
thread.

Nane

Returns the
two-letter
code for the
country/regi
on of the
Regioninfo
instance.

Engl i shNane

Returns the
complete
name of the
country/regi
onin
English.

Di spl ayName

Returns the
complete
name of the
country/regi
on in the
.NET
Framework
language.

CurrencySynbol

Returns the
currency
symbol
associated
with the
country/regi
on.

I sMetric

Indicates

Table 20-4: Properties of the Regioninfo class

Property

Description

whether or
not the
metric
system of
measureme
nt is used by
the
country/regi
on.

Implementing the classes

After understanding the classes involved in creating international applications, you can
now implement these classes. In the example discussed here, users are prompted for a
culture name. When a user enters a culture name, such as en-US or de-DE, the page
displays the name of the culture in English. Also, the native name is displayed. To

implement this example, create a Visual Basic Web Application and create a
SampleCulture.aspx file that has the following code:

<%@ Page Language="vb" AutoEventWireup="false" Codebehind=
"SampleCulture.aspx.vb" Inherits="ResourceApplication.WebForm1"%>
<%@Import Namespace="System.Globalization"%>
<% @ Import Namespace="System.Threading"%>
<IDOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<title></title>
<meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
<meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
<meta name="vs_defaultClientScript" content="JavaScript">
<meta name="vs_targetSchema" content=
"http://schemas.microsoft.com/intellisense/ie5">
<script language="VB" runat="server">

Dim cult as Culturelnfo

Sub Page_Load(ByVal sender as System.Object,ByVal args
as System.EventArgs) Handles MyBase.Load

If(IsPostBack) Then
Try
'‘Creating an instance of the Culturelnfo class
by passing the value entered by a user in a text box
cult = new Culturelnfo(InputCulture.Text)
Catch
cult = Nothing
End Try

Else
'initializing the Culturelnfo instance to the

‘current culture
cult = Culturelnfo.CurrentCulture

End If
End Sub

Sub DisplayButton_Click (ByVal sender as System.object,

ByVal e as System.EventArgs)

If Not(cult is nothing) then
'Setting the CurrentCulture property of the current

'thread to the instance of the Culturelnfo class
Thread.CurrentThread.CurrentCulture=cult

End If

'Set the text on a label to display the English name
‘and native name of the culture. The Thread class is
‘also used to display the English name and native name

‘of the current culture.
CulturelnfoLabel. Text= "The English name is: " & Cult.

EnglishName.ToString & " (" & Thread.CurrentThread.CurrentCulture.
EnglishName.ToString & ")" & " The native name is : " & cult.NativeName.
ToString & " (" & Thread.CurrentThread.CurrentCulture.NativeName.ToString & ")"

End Sub

</script>
</HEAD>

<body MS_POSITIONING="GridLayout">
<form id="Form1" method="post" runat="server">

<i>This is a culture demo</i>

Enter the name of the culture

<asp:TextBox id="InputCulture" style="Z-INDEX: 101; LEFT:
228px; POSITION: absolute; TOP: 53px" runat="server"></asp:TextBox>

<asp:Button id="DisplayButton" onClick="DisplayButton_Click"
style="Z-INDEX: 102; LEFT: 407px; POSITION: absolute; TOP: 52px" runat="server"

Text="Display"></asp:Button>
<asp:Label id="CultureIlnfoLabel" style="Z-INDEX: 103; LEFT: 20px;
POSITION: absolute; TOP: 109px" runat="server">Culture Information</asp:Label>

</form>

</body>

</HTML>
When a user executes this code and enters "de-DE" in the text box and clicks the button,
the English name and native name of the culture are displayed, as shown in Figure 20-1

B by Vv By Pl i o ot W L e], e - M) sl bt et [i

fle [View Favises Tesh liedy -
= S M o= T R L e M N R
ki 1] 110 bl it P ins U o e e i =] e Lirka ®
= |
Thia is & colimne diewms
Erstew thet mamme of the palnme oo [E Dy
Tt Ergheh oo 12 Gemmas { Geonaay) | Genzar. [Gemaay)) The nadee azne w - Deech, (DatacilaeS) (Dnaeck
Toetacidandi |
|
] Doma ¥ Locsl wirssen

Figure 20-1: Sample output of the SampleCulture.aspx file

Using Resource Files

As mentioned earlier, a global ASP.NET application can be divided into two separate
parts: data block and code block. These separate parts enable you to create localized
versions of the applications without modifying the executable content. To produce the
localized versions of a global ASP.NET application, you simply need to create localized
versions of the data files. These files are called resource files, and must be persisted in a
binary resource file format at run time. At run time, the appropriate resources are loaded
depending on the culture settings provided by the browser.

When you make an application, it is a part of an assembly called the main assembly. If
any change is made to this main assembly, you need to recompile the application.
Because you might need to add the resources to provide support for more cultures, it is
advisable to keep only the default set of resources in the main assembly. The other sets
of resources can be kept in separate assemblies called satellite assemblies, which
contain only resources. Therefore, changes made to these assemblies do not require
you to recompile the application.

The first step to create the resource files is to identify the resources specific to different
cultures and include them in files. For each culture, you need to include resources in a
separate file. You can create a text file to do so. The text file stores a key/value pair for
each resource. For example to store a value "Welcome" as a resource, you need to
assign it to a key:

;A keylvalue pair
welcomeMessage = "Welcome"

In this sample code:
= The text following the semicolon represents a comment.
=wel comeMessage is a key.
=\\&| cone is the value assigned to the wel coneMessage key.
The keys are case-sensitive. While retrieving values from their
Note respective keys, if the proper case is not used, the values cannot be
retrieved.

You can also include the identified resources in a ResX format, which is an XML format.
In addition to the string resources, this format can also contain embedded objects. A
typical ResX format is given as follows:

[Header]

[Entries: Strings]

key=value

[Entries: Objects]

The files containing resource entries must follow a specific naming convention.
Otherwise, the system won't be able to find the resources at run time. For the default
culture, the file should be named as Strings.txt or Strings.ResX. For any other culture,
the filename must be of the form Strings.culture-name.txt or Strings.culture-name.ResX.
For example, if the culture is "fr-FR", the file should be named as Strings.fr-FR.txt or
Strings.fr-FR.ResX. Also, it is good practice to categorize these files in subdirectories
under the application directory.

After you include all the resources in a file (text or ResX format), you need to convert it to
a format that the .NET runtime can understand. To do so, you can use the Resource File
Generator (ResGen.exe utility) utility. The syntax is shown as follows:

resgen [/compile] filename.extension [outputFilename.extension]

In this syntax:
=fil enane. ext ensi on represents a file that includes all the resource
entries. The extension can be one of the following:

0 .txt: Represents a text file to be converted to a
RESOURCES or RESX file. This file can contain only string
resources.

0 .resx: Represents an XML-based resource file to be
converted to a RESOURCES or TXT file.

0 .resources: Represents a resource file to be converted to a
RESX or TXT file.

=out put Fi | enane. ext ensi on represents the RESOURCES file that is
generated after conversion.

When converting from a TXT or RESX file, this parameter is optional. The TXT
and RESKX files are converted to files with the .resources extension. If you do not
specify this parameter, the output file is named after the text file or the RESX file
in the same directory where the input file exists.

When converting from a RESOURCES file, this parameter is mandatory.
= [/conpile] is used to specify multiple RESX or TXT files to convert
to a RESOURCES file in a single bulk operation. This is optional.
This utility can also be used to decompile. However, when you
Note decompile the RESOURCES file, the comments are lost.

The .NET Framework provides a set of classes that work with the resource files to
produce localized versions of a global ASP.NET application. The classes are
encapsulated in the System.Resources namespace.

System.Resources namespace

The .NET Framework provides a class library that uses these resource files to retrieve
resources for different languages at run time. The classes that allow developers to
create, store, and manage various culture-specific resources used in an application are
included in the System.Resources namespace. Some of the classes of this namespace
are described as follows:

= ResourceManager: Represents a set of all the resources to be
used in an application at the time of execution. This class
provides many constructors that you can use to create its objects.
The choice of the constructors depends on the need and the
scenario in which you want to use resources. For example, when
you need to retrieve resources from an assembly, you can use
the constructor that takes three parameters: baseNane,
Assenbl y, and Type.
= Dim rm as ResourceManager
rm = New ResourceManager(baseName, Assembly, Type)
In the preceding syntax, baseName represents the root name of the resource.
Assembly represents the main assembly for the resources. Type represents the
ResourceSet (covered next). If "Nothing" is used, the default run-time
ResourceSet is used.

Note The satellite assemblies are compiled into DLLs and are referenced by
the main assembly. However, you do not need any specific code for this
reference. This is done by the ResourceManager.

On the other hand, if you need to retrieve resources from a directory instead of
an assembly, you can use the CreateFileBasedResourceManager function of
the ResourceManager class. This function takes three parameters: baseName,
resourceDir, and type.
Dim rm as ResourceManager
rm = ResourceManager.CreateFileBasedResourceManager(baseName,
resourceDir, type)
In the preceding syntax, baseName represents the root name of the resource,
resourceDir represents the directory to search for the resources, and type
represents the ResourceSet (covered next). If "Nothing" is used, the default run-
time ResourceSet is used.
= ResourceSet: Represents the set of resources for a specific
culture. The resources for every culture have an associated
ResourceSet.
= ResourceWriter: Used to write the resources in a run-time binary
resource file format. To create a resource file, you need to create
a ResourceWriter object with an appropriate flename, such as
CustomApplication.resource. Then, you need to call the
AddResource (key, string) method to add each resource.
Thus, to add N resources, you need to call the AddResour ce
method N times. Finally, you need to call Wi t eFi | e to write the
resources. To use the resources, you can then create an object of
ResourceManager and call the get Stri ng(key) or
get String(key, culture).
Instead of the ResourceWriter class, you can use the ResGen utility to
Note create resources in a run-time binary resource file format.
= ResourceReader: Used to read resources in a run-time binary
resource file format. To create a ResourceReader, you need to
pass the filename in the constructor.

Creating a resource-aware application

Let us now create an ASP.NET application that is aware of resources. Here, you'll create
resources for two cultures, en-US and fr-FR. The application loads the resources
depending on the selected culture while the application runs. Not only this, the
application displays the localized information in a highly graphic manner. An output of
this application is displayed in Figure 20-2. Notice that the output displays the localized
information in French.

Fle [View Favedies Teak Help

B et L~ W= T e L e |
e P T T Tar S p—— | b || Lirka ™
A |
This ke 0 resmmes dems
Ll
|
i F LT Fren
Voars Infrmaden Paisalont
Homn Cemand
Age 35
- |
] Doy 3 Loce! wiramen

Figure 20-2: Sample output of a resource-aware application

To create this application, complete the following steps:

1.

13.

Create a directory named ResourceApplication. This directory
is the application's main directory. Create a virtual directory in
the Default Web site on your Web server. Specify the alias as
ResourceDemo and the path of the content as the path of the
ResourceApplication directory.

In the ResourceApplication directory, create a subdirectory
called Resources. This directory will include all the resource
files.

Create a default Strings.txt file in the Resources directory. This

file contains the resources as key/value pairs. The code is
shown as follows:

[strings]
;prompts

NameStr = What is your name?

AgeStr = What is your age?

OutputStr = Your information is:

;outputs
OuputNameStr = Name:

OutputAgeStr = Age:

14.

Convert this text file to a RESOURCES file. To do so, use the
ResGen utility with the following:

ResGen Strings.txt

15.

16.
17.
18.

Create the resource files for other cultures that your system
supports. For example, to create a resource file for the culture
fr-FR, create the Strings.fr-FR.txt file that includes all the
resources. Then, use the ResGen utility to convert the file to
the Strings.fr-FR.resources file. The sample code for the
Strings.fr-FR.txt file is given as follows:

[strings]

;prompts

19. NameStr = Comment vous appellez-vous?

20. AgeStr = Quel age avez-vous?
21.

22. OutputStr = Votre information:
23.

24. ;outputs

25. OuputNameStr = Nom:

outputAgeStr = Age:
Note You can also create the resource files for other cultures later to add
support for more cultures, without recompiling the application.
26. In the application's main directory, ResourceApplication, create
the ResourceSample.aspx file. The code is given as follows:

27. <%@ Import Namespace="System" %>

28. <%@ Import Namespace="System.|O" %>

29. <%@Import Namespace="System.Globalization"%>

30. <%@ Import Namespace="System.Resources" %>

31. <%@Import Namespace="System.Th reading"%>

32.

33. <script runat="Server" Language="VB" >

34.

35. '‘Declaring shared public objects

36. Public Shared rm As ResourceManager

37. Public Shared cinfo As Culturelnfo

38.

39. Sub Page_Init(ByVal sender As System.Object,

40. ByVal args As System.EventArgs) Handles
MyBase.lInit

41.

42. ‘Create an instance of the ResourceManager class

43. rm =
ResourceManager.CreateFileBasedResourceManager("strin
gs",

44, Server.MapPath("resources") +
Path.DirectorySeparatorChar, _

45. Nothing)

46.

47. CultureList.ltems.Clear()

48. 'Adding the names of cultures to the drop down list

49. CultureList.ltems.Add("Select your language™)

50. CultureList.ltems.Add("fr-FR")

51. CultureList.ltems.Add("en-US")

52.

53. End Sub

54.

55. Sub Proceed_Click(src As Object, E As EventArgs)

56.
57.
58.

59.
60.
61.

62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.

82.
83.
84.
85.
86.
87.
88.

89.
90.
91.
92.
93.
94.
95.

'Create an instance of the Culturelnfo class
cinfo = New

Culturelnfo(CultureList.Selectedltem.Text)

cinfo)

'Setting text on the Name label from the resource file

EnterNamelabel. Text = rm.GetString("NameStr",

'Setting the Visible property of the Name label to true
EnterNamelabel.Visible = true

'‘Disable the Culture label, Culture list, and the
'Proceed button

Culturelabel.Enabled = false
CultureList.Enabled = false
Proceed.Enabled = false

'Setting the Visible property of the Name Next button
‘and Name text box to true so that the user can enter
'his/her name

NameNextButton.Visible = true
EnterNametextbox.Visible = true

EnterNametextbox.Text =

End Sub

Sub NameNextButton_Click(src As Object, E As
EventArgs)

Name

'setting text on the Age label from the resource file
‘and setting its Visible property to true
EnterAgelabel. Text = rm.GetString("AgeStr", cinfo)
EnterAgelabel.Visible = true

'‘Disabling the Name label, Name text box, and the

‘Next button
EnterNamelabel.Enabled = false
EnterNametextbox.Enabled = false
NameNextButton.Enabled = false

'Setting the Visible property of the Age text box to
'true so that a user can enter his/her age

96. EnterAgetextbox.Visible = true

97. EnterAgetextbox.Text = "

98.

99. 'Setting the Visible property of the Finish button to
100. ‘true and enabling it. Clicking on the Finish button
101. ‘completes the data entry.

102. Finishbutton.Visible = true

103. Finishbutton.Enabled = true

104.

105. End Sub

106.

107. Sub Finishbutton_Click(src As Object, E As EventArgs)
108.

109. Dim age As Int32 =0

110. ‘Converting the value entered in the Age text to Int32.

111. age = Convert.Tolnt32(EnterAgetextbox.Text)

112.

113. 'Setting the output values from the resource file on

114. ‘the Output label, Output Name label, and the Output

115. '‘Age label.

116.

117. Outputlabel. Text = rm.GetString("OutputStr", cinfo) &

118. "<hr align=left width=130>"

119. outputlabel.Visible = True

120.

121. OutputNamelabel. Text =
rm.GetString("OuputNameStr”, cinfo) & "

122. " & EnterNametextbox. Text. Trim()

123. outputNamelabel.Visible = True

124.

125. OutputAgelabel. Text = rm.GetString("OutputAgeStr",
cinfo) & "

126. " & EnterAgetextbox.Text. Trim()

127. outputAgelabel.Visible = True

128.

129. 'Setting the Visible property of the Output label to

130. ‘true.

131. Outputlabel.Visible = true

132. EnterAgelabel.Enabled=false

133. EnterAgetextbox.enabled=false

134.

135. 'Setting the Visible property of the Restart button to

136. ‘true. Clicking this button refreshes the page.

137. Restartbutton.Visible = true
138.

139. End Sub

140.

141. Sub Restartbutton_Click(src As Object, E As
EventArgs)

142.

143. ‘Enabling the culture list and setting the selected

144. ‘index to 0.

145. CultureList.Enabled = true

146. CultureList.Selectedindex = 0

147.

148. ‘Enabling the Proceed button.

149. Proceed.Enabled = true

150.

151. ‘Enabling the Finsh button but setting its Visible

152. ‘property to false

153. Finishbutton.Enabled = true

154. Finishbutton.Visible = false

155.

156. 'Enabling the Name label, Name text box, and the
Name

157. ‘Next button. Also, setting their Visible property to

158. false.

159. EnterNamelabel.Enabled = true

160. EnterNamelabel.Visible = false

161. EnterNametextbox.Enabled = true

162. EnterNametextbox.Visible = false

163. EnterNametextbox.Text = "

164. NameNextbutton.Enabled = true

165. NameNextbutton.Visible = false

166.

167. ‘Enabling the Age label and Age text box and setting

168. ‘their Visible property to false. Also, the Visible

169. ‘property of the Output, Output Name, and Output
Age

170. 'labels and Restart button is set to false.

171

172. Culturelabel.Enabled = true

173. EnterAgelabel.Enabled = true

174. EnterAgelabel.Visible = false

175. EnterAgetextbox.Enabled = true

176. EnterAgetextbox.Visible = false

177. EnterAgetextbox.Text ="

178. Outputlabel.Visible = false

179. OutputNamelabel.Visible = false

180. OutputAgelabel.Visible = false

181. Restartbutton.Visible = false

182. End Sub

183.

184. Sub ProceedEnabled(src As Object, E As EventArgs)
185. If CultureList.SelectedIindex > 0 Then

186. Proceed.Enabled = true

187. End If

188. End Sub

189. </script>

190.

191. <html>

192. <head></head>

193.

194. <body bgcolor="#99cccc">

195.

196. <form runat="server">

197. <p>

198.

199. <table>

200. <tr><td>This is a resource demo<hr>
201. <fd></tr> </tr>

202. </table>

203.

204. <table width=600>

205. <tr><td width=450><asp:label id="Culturelabel"
206. Text="Please select your culture:"

207. visible=true runat=server/></td>
208. <td ><asp:DropDownList id="CultureList"

209. AutoPostBack=true
OnSelectedindexChanged="ProceedEnabled"

210. runat="server"/></td>

211. <td width=40><asp:button width="90px"
Text="Proceed"

212. Enabled=false id="Proceed" onclick="Proceed_Click"
runat="server"/></td>

213. </tr>

214.

215. <tr><td><asp:label id="EnterNamelabel"
visible=false

216. runat=server/></td>

217. <td><asp:textbox width="100px"
id="EnterNametextbox"

218. visible=false runat="server"/></td>

219. <td><asp:button width="90px" Text="Next"
visible=false

220. id="NameNextbutton" onclick="NameNextbutton_Click"
runat="server"/></td>

221. <ftr>

222.

223. <tr><td><asp:label id="EnterAgelabel"
visible=false

224, runat=server/></td>

225. <td><asp:textbox width="100px"
id="EnterAgetextbox"

226. visible=false runat="server"/></td>

227. <td width=80><asp:button width="90px"
Text="Finish"

228. Enabled=false id="FinishButton"
onclick="FinishButton_Click" runat="server"/></td>

229. </tr>

230.

231. <tr><td colspan=2><asp:label id="Outputlabel"
visible=false

232. runat=server/></td>

233. <td><asp:button width="90px" Text="Restart"
visible=false

234. id="Restartbutton" onclick="Restartbutton_Click"
runat="server"/></td>

235. </tr>

236.

237. <tr><td><asp:label id="OutputNamelabel"
visible=false runat=

238. server/></td>

239.

240. </tr>

241.

242, <tr><td><asp:label id="OutputAgelabel" visible=false
runat=server/></td>

243. </tr>

244,

245, </table>

246.

247. </form>
248. </body>

249, </html|>
This program prompts users for their name and age. After a user clicks the Finish button,
the information is displayed. The text is adjusted according to the culture selected by the

user. The output of this program is shown in Figure 20-2, which is displayed at the
beginning of this section.

Summary

In this chapter, you learned the concepts related to international applications. First, you
learned the configuration settings for global applications in the Web.config file. Next, you
learned about the Culturelnfo and Regioninfo classes and their implementation to access
culture-specific information. Then, you learned the different classes in the
System.Resources namespace. Finally, you learned how to create resource files and
implement them to create localized versions of global applications.

chapter 21: Deploying ASP.NET Applications

Overview

After a Web application is developed, it needs to be deployed to make it available as a
Web site. A Web application may be made up of a number of files and components.
These components may be developed by the application developer or by a third party.
Therefore, while deploying a Web application, you must determine the files to be
included in the deployment. In addition, you must determine the method to be used for
deploying an application. In this chapter, you will learn about creating deployment
projects, specifying configuration settings, and deploying classes and assemblies in
ASP.NET.

Introduction to Deployment Projects

Deployment is the process of packaging all files that make up an application and
distributing them for the purpose of installation on other computers. Deploying an
ASP.NET application can be as easy as copying the application files to the machine on
which the application needs to be deployed. When you deploy an application by copying
files, no Registry entries are made. To deploy more complex applications, which may
comprise various components, you may create deployment projects in Visual Studio
.NET.

A deployment project enables you to specify the files to be included in the deployment,
the method by which the application files will be deployed, and the location where the
application is to be deployed. In this section, you will look at the different types of
deployment projects, the process of creating a deployment project, adding files to the
deployment project, and building the deployment project.

Choosing the type of deployment projects

Visual Studio .NET provides different types of deployment projects. The choice of a
particular type of deployment project depends upon the application or the component
that you want to deploy and the mode of deployment. For example, you may want to
deploy an application in the form of a collection of cabinet (CAB) files for downloading
the application.

The different types of deployment projects provided in Visual Studio .NET are as follows:
= Merge module project: Creates a single package that contains all files,
resources, Registry entries, and the setup logic necessary for deploying
the package. A merge module is similar to a dynamic link library (DLL),
which allows multiple applications to share code. The only difference in
this case is that a merge module allows sharing of the setup code. A

merge module project file has the extension .msm. You cannot use a
merge module file by itself. You must merge the resulting .msm file with
another deployment project, which creates a Windows Installer (MSI) file.
You can use a merge module project when you want to deploy a component that
will be shared by multiple applications, because a merge module project
identifies all the dependencies for a component and ensures that the correct
versions of the components are installed. Thus, problems relating to versioning
can be avoided with merge module projects. When a new version of a
component needs to be deployed, you simply create a new merge module
project that contains the dependencies for the new version of the component.
= Setup project: Enables you to create a Windows Installer (MSI) file for
deploying an application. The resulting MSI file contains the application,
dependencies, information about the Registry entries to be made, and
installation instructions. A setup project can be used for deploying
standard Windows-based applications. When you execute the resulting
MSiI file, all files related to the application are copied to the Program Files
directory on the target computer.

While selecting between a merge module project and a setup project, you must
consider the target audience. If the application is intended for use by an end
user, you should package all the files for the application in an MSI file. On the
other hand, DLLs, controls, and resources that are intended for use by
developers should be packaged in a merge module, which can then be
packaged by the developer in an MSI file for distribution to the end user.
= Web setup project: Is similar to a setup project. This type of project also
results in the creation of an MSI file, which can be used for deploying an
application. When you execute the MSI file, all files that make up the
application are copied to the virtual root directory on the Web server.
This type of project should be used for installing a Web application on a
Web server.
= Cab project: Enables you to generate CAB files of a specific size. These
CAB files can be used to download components to a Web browser. You
can create a cabinet project if you want your component to run on the
client instead of the Web server.

You can determine the type of deployment project to be created based on the guidelines
given here.

In addition to these types of projects, Visual Studio .NET also provides the Setup Wizard,
which creates a basic setup project. It guides you through the steps of creating a
deployment project. During each step, the wizard collects information, such as the files to
be included in the deployment project.

Creating a deployment project

After determining the type of deployment project, you can create it by following these
steps:

1. Open the project that needs to be deployed.

2. Select File ® New ® Project.

3. Select Setup And Deployment Projects from the Project Types pane.

4. Select the type of deployment project that you want to create from the
Templates pane.

5. Change the name of the deployment project to Setupl. Click the Add

To Solution radio button.

6. If you select the Setup Wizard, it takes you through the various steps.
Each step prompts you to enter the required information, such as the
type of project (whether you want to create an MSI file or CAB files),
the type of application (Windows application, Web application, merge
module for Windows Installer, or downloaded CAB file), and the files to
be included in the project.

If you select one of the project types instead of the wizard, it opens the File
System Editor, shown in Figure 21-1.

o Seup! . MG el Daeeel g et I polon panere | Sesiiged . File Syvimre (Setvg 7]
He [Wew Piged ikl Delsg Teib Wedie lelp

al= [y =N |) o+ S T e
Bl 5wiFu iFernl i File Eoprbam [atapt] | 7 -
0[S T e b e P
=)] kol # il C 0 = e) Dl i iindls Cicha Pkl [™™
; o] e s e Pk o s gy s ey [FT
-
W] = 4l] =
T O] Oeaigant <)
Foudy

Figure 21-1: File System Editor

Working with editors in a deployment project

While creating a deployment project, you might want to specify the files to be included in
a project and the Registry entries to be made when the application is deployed. You
might also want to customize the user interface provided at the time of installing an
application. You can easily accomplish these tasks by using one of the editors provided
in a deployment project. These editors are discussed in the next sections.

File System Editor

The File System Editor enables you to add or remove various files, components, and
project output in the deployment project. The File System Editor displays the folders that
correspond to the folder structure on the target computer.

Adding and removing folders

You can add your own folders to the deployment project by using the File System Editor.

To add a folder, follow these steps:
1. If the File System Editor is not open, open it by clicking the File
System Editor button in the Solution Explorer, as shown in Figure

21-2.

Soltion Explorer - Setupl

e Al e |
“File System Edit-rf"":"'"'""“'
4 o

Figure 21-2: File System Editor button in Solution Explorer
2. Select the File System On Target Machine node and select
Action ® Add Special Folder ® Custom Folder.
3. Type the name of the folder to be created on the target computer.

To remove a folder from the File System Editor of the deployment project, click the folder
and select Edit ® Delete.

Adding and removing files

You may want to include files such as Readme.txt, a rich text file containing the license
agreement, and some GIF files in a deployment project. You can include these files by
following these steps:
1. Select the folder in which the file is to be included.
2. Select Action ® Add ® File. This invokes the Add Files dialog
box.

Note You can also select the Project ® Add to add files, project outputs,
and components to the deployment project. However, this will result in
adding the item to the application folder instead of the folder of the
target computer.

3. Browse to the folder in which the file is stored and select the file.

Note You can also add an assembly file by using this procedure.

To remove a file from the File System Editor, select the file and select Edit ® Delete.

Adding and removing project outputs

You can add or remove project outputs from a deployment project. Project outputs may

include the EXE and DLL files that are created when you build a project and the source

code of the project.

Note To be able to add the project outputs of one or more projects, you

must include the projects in the solution of the deployment project.
You can do this by right-clicking the solution in Solution Explorer,
selecting Add, and clicking Existing Project. Repeat this process
for each project that you want to include in the deployment.

The steps for adding project outputs of one or more projects are as follows:
1. Inthe File System Editor, select the target folder in which the
project outputs are to be included.
2. Click Action ® Add ® Project Output. This invokes the Add
Project Output Group dialog box, shown in Figure 21-3.

Add Project Output Group

]|

Project:

I |JzeBuzineszz0hj

Primary output
Localized resources
Drebug Symbols
Content Files
Source Filez

[

I

Configuration:

Dezcription:

[(active)

4l

Containg the DLL ar EXE built by the project.

I

N IO

Help

Cancel |

Figure 21-3: Add Project Output Group dialog box

3. Select the project from the Project drop-down list.

4, Select the project output group from the list box below the Project
drop-down list. These groups include Primary Output, Localized
Resources, Debug Symbols, Content Files, and Source Files.
When you select a group, the description for the group is
displayed in the Description text box. Each of the project output
group is described as follows:

Cross-

Primary Output: Contains the DLL or EXE built
by the project.
Localized Resources: Contains satellite
assemblies for each culture's resources. This
group is useful to deploy localized applications.
To learn more about localization, refer to

Chapter 20.

Reference

5. Click OK.

Debug Symbols: Contains the debugging files
for the project.

Content Files: Contains all the content files in the
project.

Source Files: Contains all source files in the
project.

To remove a project output from the deployment project, select the project output group
to be deleted and click Edit ® Delete.

Registry Editor

You may want to access the Registry and set values of existing Registry keys or add
new Registry keys to the target computer. The Registry Editor enables you to add your
own Registry keys and their values to a deployment project. When you execute the
deployment project, the Registry keys are added to the Registry of the target computer.
When you open the Registry Editor, it displays a standard set of keys, which correspond
to the keys in the Windows Registry of the target computer. Figure 21-4 depicts the

Registry Editor.

L Sastmp! - M) Dusgred g mimt I pogliog paryert | Begion) - Fieg lony Setuog 71

He L8 Wew Posfeal Dild Debsg Tesb Acken Wedew lels

< f1=F | e - e a5
2!l Regete flenel]| 10 o |[SalvionEapl. B X
== = =F- ok -
e T —
Pl i——
kg
LIl
T f
Fauly

Figure 21-4: Registry Editor
Adding and removing a Registry key

To add a Registry key to the deployment project, follow these steps:
1. Open the Registry Editor by clicking the Registry Editor button in
Solution Explorer of the deployment project, as shown in Figure
21-5.

Solwtion Explarer - Setupi
F] LT

.,;,_é Sl Ulanl ity [popeeiz]

® imiw Eurmh

Figure 21-5: Registry Editor button in Solution Explorer

2. Click one of the top-level key nodes: HKEY_CLASSES_ROOT,
HKEY_CURRENT_USER, HKEY_LOCAL_MACHINE,
HKEY_USERS, or User/Machine Hive.

3. Select Action ® New Key. This adds the new key under the top-
level key node that you selected. The new key has a default
name. Change the name of the key by typing the new name or by
changing the Name property from the Properties window.

You can remove a Registry key from the Registry Editor of the deployment project simply
by clicking the key and pressing the Delete key on the keyboard.

Adding and removing Registry values

You can add values to the existing or newly added keys by using the Registry Editor.
When you install the application, the Registry key value will be written to the Registry of

the target computer. You can assign a string, binary value, or DWORD value to a
Registry key. To assign a value to a Registry key, follow these steps:
1. Select the key to which the value is to be assigned.
2. Select Action ® New. Click the String Value, Binary Value, or
DWORD value option based on the type of value that you want to
assign to the Registry key.
3. Press F4 to switch to the Properties window and type the value
for the Registry key in the Value property.

You can delete a Registry key value by selecting the value from the Values pane of the
Registry Editor and selecting Edit ® Delete.

Importing an existing Registry

The Registry Editor also enables you to import a complete Registry, thereby saving the
time and effort required to create the same keys and values in a deployment project. You
can import an existing Registry by following these steps:
1. Select the Registry On Target Machine node in the Registry
Editor.
2. Select Action ® Import. This invokes the Import Registry File
dialog box. Browse to the folder that contains the Registry file
(REG) to be imported to the deployment project and click the
Open button.

File Types Editor

The File Types Editor enables you to associate file types and extensions with your
application.

Note An example of a file type is Microsoft Word Document. The
extension associated with it is .doc. Windows also associates an
executable file with a file type. For example, when you double-click
a Microsoft Word document, Windows launches the Microsoft
Word (Winword.exe) application. You can view the available file
types and their associations by using Windows Explorer (selecting
the View ® Folder option and pressing the File Types tab).

You can also specify the actions allowed on each file type by using the File Types Editor.
When you deploy your application, the file types created in the deployment project will
appear in the File Types list in Windows Explorer. Figure 21-6 depicts the File Types
Editor.

L Semp! MO w1 Desvel ng et | polon panvernl |Sedige) . File Types (Seg Tl
He L[8 Wew Posfeal Dild Debsg Tesb Acien Wedew lels

&= [Ey =y) " <« f1=05 | 4 tenin =g o i 5

T G g | ko ooy T 11| Fa a1l Wia Typmefiakpd]| 4 © o [GolvionEapl . B X

[T s gy - |

= e T —

3 a L meEw e By

E i LR
e 1§

D0 Ouipt f
Fauly

Figure 21-6: File Types Editor

Adding and removing a file type

To add a file type to the deployment project, follow these steps:
1. Open the File Type Editor in the deployment project by clicking
the File Types Editor button in Solution Explorer, as shown in

Figure 21-7.

lution Explarer - Satupl

ca i iy G B o S

= - e -
ad gh File Types Editor] ™"

Figure 21-7: File Types Editor button in Solution Explorer

2. In the File Types Editor, select the File Types On Target Machine
node.

3. Select Action ® Add File Type. This will add the file type to the
File Types On Target Machine node. You can change the name
of the newly added file type by typing the new name as soon as
the file type is added or by using the Properties window.

4. To associate file extensions with the file types, click the file type
with which a file extension is to be associated. In the Properties
window, select the Extensions property and specify the file
extensions to be associated with the file type.
You must enter the extension without a period (.). You may associate
one or more extensions with a file type. You must separate the list of
extensions with semicolons (;).

5. To associate an executable file with a file type, select the file
type. From the Properties window, select the Commands property
and click the ellipsis (...) button. This invokes the Select Item In
Project dialog box, shown in Figure 21-8.

Note

Select iem in Project

Lok inc | 3 Fio Systemcn Target Machre =] 1]
s
TS|
S|
Soure pathc |
Filss ol byper | Esecutable Fies [exe] =]
[Coced | Hew |

Figure 21-8: Select Item In Project dialog box

Click the Add File button and select an executable file to be associated with
the file type.

To remove a file type created earlier in a deployment project, click the file type in the File
Types Editor and select Edit ® Delete.

Adding actions

You can add actions to a file type by using the File Types Editor. You can also specify
the tasks that can be performed by a user with the files of the specified file type. An
action appears in the shortcut menu when a user right-clicks the file of the specified file
type. You can associate actions with a file type by following these steps:

1. Select the file type to which an action is to be added. Select
Action ® Add Action. This results in adding a New Document
Action node in the File Types Editor. Specify the name of the
newly added action. The name of the action appears in the
shortcut menu when you right-click a file.

2. Select the Verb property from the properties window and type the
verb. This verb will be used in the application code to specify the
tasks to be performed when the action is selected from the
shortcut menu.

You can also specify a particular action to be the default action for a file type. The default
action occurs when a user double-clicks a file of the specified file type. You specify an
action to be the default action by selecting an action node from the File Types Editor and
selecting Action ® Set As Default.

User Interface Editor

When you create a deployment project, it automatically creates some dialog boxes that
are displayed during the installation of the application on the target computer. The User
Interface Editor displays the dialog box names and enables you to specify the properties
of the dialog boxes, such as the message to be displayed in a dialog box and the name
of the dialog box. In addition, the User Interface Editor enables you to add your own
dialog boxes.

The User Interface Editor is divided into two sections, Install and Administrative Install.
The Install section contains the dialog boxes that are displayed to the users when they
start installation. The Administrative Install section contains the dialog boxes that are
displayed when a network administrator moves the installer to a network location, to
make it available for installation over a network.

Each section has some predefined dialog boxes, which are categorized as follows:
= Start dialog boxes: Displayed to the user before the actual
installation process begins. Examples of dialog boxes in this category
are the Welcome screen, the dialog box that accepts customer
information such as the username and company name, and the dialog
box that enables a user to specify the directory in which the files are to
be copied.
= Progress dialog boxes: Used as a means of providing visual
feedback to the user about the progress of the installation process. It
typically depicts the progress in terms of the percentage of completion
of the process.
= End dialog boxes: Used to inform the user about the success or
failure of the installation process. They also include the dialog boxes
that enable you to launch the newly installed application or to restart
the computer.
Figure 21-9 depicts the User Interface Editor.

L Semp! MO w1 Desvel ng et | pvlon panernl |Sedige) . e Iweslace [Sen

He [8 Ve Posfeol Dild Delsg Tesbh Wediw lelp
[Fl =N | g s« Lla | 5 enan - O o L i -t
fFpemt o by b by [labur 11 | Fim ta] W boterfanw flokpd] | 9 ¢ || SalionEspl . B X

s @ g
q
H
&
3
f L
g L
-]
L.

A0 tugn 7
Feady

Figure 21-9: User Interface Editor

Adding installation dialog boxes

You can add your own installation dialog boxes by using the User Interface Editor. The
procedure for creating custom dialog boxes is as follows:
1. Open the User Interface Editor by clicking the User Interface
Editor button in the Solution Explorer window, as shown in Figure
21-10.

Soltion Explarer - Setipl

533@12"

< Sohden U fgar interface Editor|
Yooy

| S

Figure 21-10: User Interface Editor button in Solution Explorer
2. In the User Interface Editor, click the Start, Progress, or End node
to add a dialog box of a particular type.
3. Select Action ® Add Dialog. This will invoke the Add Dialog
dialog box, shown in Figure 21-11. Select the dialog box that you
wish to add.

T
E 5 5 5§ B

RadeButions RadeBullord RsckoBution: Chech b Chaskisson
| buitiora) |3 buittowrcr] |4 Beiss] 141 L]

B E 5 5 =

Chasckibssons Cusiomer Tewdhowns [Textbowas [B] Tesdboess [C]

[[=] Iraboiraatacn
= = = = n
J— - - e
Lm=nes Fipad Ma Fiesgitten Uge S plath
fupeemeant

] cwew | omwe |
Figure 21-11: Add Dialog dialog box

For example, you may select to add the License Agreement dialog box. You
can select the License Agreement dialog box from the Add Dialog dialog box.
You can specify the text to be displayed in the license agreement in a file and
save the file in Rich Text Format (RTF). To associate the file with the License
Agreement dialog box, you need to add the file to the deployment project by
using the File System Editor. After the file is included in the deployment
project, you can associate it with the License Agreement dialog box by using
the Properties window and specifying the name of the RTF file in the
LicenceFile property. When you run the setup, it will display the standard
License Agreement dialog box with the text from the RTF file.

Changing the sequence of dialog boxes

After adding the necessary dialog boxes, you might want to change the sequence in
which they appear during the installation process. You can change the sequence of the
dialog boxes by selecting the dialog box and selecting the Move Up or Move Down
option from the Action menu.

Removing dialog boxes

To remove a dialog box from the deployment project, select the dialog box and press the
Delete key. Alternatively, you may select Edit ® Delete.

Custom Actions Editor

You might want to perform some tasks on the target computer as soon as the installation
process is complete. For example, you might want to execute a program that starts a
Web service as soon as the process of installation is complete. Another example is when
you want to create a database on the target computer during installation. The Custom
Actions Editor enables you to specify such additional actions to be performed after the
completion of the installation process. The actions that you want to perform must be
compiled into a DLL or EXE file and added to the deployment project by using the File
System Editor.

Figure 21-12 shows the Custom Actions Editor in a deployment project.

Satmp! - el

e L[d Worw Posjeid Dokl Delsy [eaks Acisn Wiedew lels

T i il I ol panvr e | Bk - Cosaan Aolpve (SHugT|

=)= FEg R T = L AT (M o | et
Wl]| F & e e | ol Mty [Eobegll] | 4 = SobwlonEspl. B X
» o Ia
2, L3 el 5 Srdrer 1l e
s S
; =" PR P ——
T 1 Fickar b i
= T Lirosizl
je—] N
A0 Guips &
Faaly

Figure 21-12: Custom Actions Editor

The Custom Actions Editor displays four folders: Install, Commit, Rollback, and Uninstall.
Each folder corresponds to a phase in the installation process. The folder in which you
created a particular custom action determines the sequence in which that custom action

is performed.

Adding a custom action

To add a custom action to the deployment project, follow these steps:
1. Open the Custom Actions Editor in the deployment project by
clicking the Custom Actions Editor button in Solution Explorer, as

shown in Figure 21-13.

Solwtion Explarer - Setupi

Le . R | [

3 Sabulwwy Vg issing' [@i cmisis|
. U self usiry Cusstonm Actions Editor

Figure 21-13: Custom Actions Editor button in Solution Explorer
2. Select Action ® Add Custom Action. This invokes the Select Item

In Project dialog box.
3. From the Select Item In Project dialog box, select the DLL or EXE

file that contains the custom action to be performed during or
after installation.

After you have added all custom actions, you can change the sequence of their
execution by selecting the Move Up or Move Down option from the Action menu.

Removing a custom action

To remove a custom action, select the custom action in the Custom Actions Editor and
press the Delete key. Alternatively, you can select Edit ® Delete.

Launch Conditions Editor

Your application may be dependent on several factors, such as availability of files, the
version of the operating system on the target machine, and Registry keys. Therefore,
you might want to ensure that the version of the operating system on the target computer
is appropriate for running your application or search the target computer for the
existence of a particular file or a key in the Registry. You can perform these tasks by
using the Launch Conditions Editor. Figure 21-14 depicts the Launch Conditions Editor in
a deployment project.

< Sasmmp! - Micrwnl) Dusvel s mint [olos parverst [Sesiogn] - Lausih Coschtsas (5 sug)

Fle L[8 W Posfedd Diild Debsg Tedbs Acien Wisdew el

& FR=R-] P SR = B L] L S L Sl
| IR p—— sty L waltop Lol Cometions [letgd] | 4 © TalvionEspl. B X
- == o i i - ek~
- Hufeeti ey R merad
E St]

Y T

ol A0 Ouipnt 2

Fawly

Figure 21-14: Launch Conditions Editor

Adding and removing a file search

You can search for a file to ensure that it exists at a specific location on the target
computer by using the Launch Conditions Editor. To add a search for a file, follow these

steps:
1. Click the Launch Conditions Editor button in Solution Explorer, as

shown in Figure 21-15.

lition Explaier - Satip
U T = I

e R e TP T Ty

S eascaciel
Launch Conditiarns Editar|

T

Figure 21-15: Launch Conditions Editor button in Solution Explorer
2. Click the Search Target Machine node.
3. Click the Add File Search option from the Action menu.

4. Select the FileName property from the Properties window. Set
this property to the name of the file that you want to search on the
target computer. In addition to the filename, you can specify the
folder and attributes such as the file size and version to be
searched on the target computer.

You can remove a file search by clicking the file search and selecting Edit ® Delete.

Adding and removing a Registry search

To search for the existence of a specific Registry key or value, you can add a Registry
search in the Launch Conditions Editor by using the following procedure:

1. Select the Search Target Machine node in the Launch Conditions
Editor.

2. Select Action ® Add Registry Search.

3. Select the Properties window. If you want to search for a Registry
key on the target computer, set the Root and RegKey property
values to the key that you want to search. If you want to search
for a particular value in the Registry of the target computer,
specify the value to be searched in the Value property.

To remove a Registry search, select the Registry search node from the Launch
Conditions Editor and select Edit ® Delete.

Adding and removing a component search

At times, you may want to search for a particular component on a machine. For example,
if your application uses XML, you might want to ensure that the Microsoft XML parser
MSXML 3.0 exists on the computer. The MSXML parser is implemented as a DLL. To
search for components, you can add a component search by using the Launch
Conditions Editor. The steps for adding a component search are as follows:
1. Select the Search Target Machine node in the Launch Conditions
Editor.
2. Select Action ® Add Windows Installer Search. This adds a
Search For Component node to the Launch Condition Editor.
3. Select the Properties window and specify the GUID of the
component that you want to search on the target computer in the
ComponentID property.

To remove a component search, select the component search node from the Launch
Conditions Editor and select Edit ® Delete.

Adding a launch condition

You can also ensure that certain conditions are evaluated before the installation process
begins by using the Launch Conditions Editor. For example, if you want to ensure that
Windows 2000 is installed on the target computer, you can add a launch condition,
VersionNT>=500. When you add a condition, the installer evaluates it. If the condition is
true, the process of installation continues; otherwise, it is rolled back. To add a launch
condition, follow these steps:
1. Select the Launch Condition node in the Launch Conditions
Editor.
2. Select Action ® Add Launch Condition. This will add a new
launch condition. Change the name of the launch condition.
3. Select the Properties window and set the value of the Condition
property to the condition that you want to check on the target
computer.

You can use the editors to perform a variety of tasks; these editors help you to simplify
the process of adding files, checking for various conditions, and adding Registry entries.

Building a deployment project

After you have specified the various files to be included in the deployment project, user
interface screens, launch conditions, and custom actions, you can build the deployment
project by selecting Build ® Build. When you build the deployment project, it results in
creation of the CAB, MSM, or MSI file, depending on the type of the deployment project.
You can use the resulting file to install your application on the target computer.

ASP.NET Configuration System

When you install a new application, you may be required to configure it. For example,
you may need to provide information about the amount of memory to be used by the
application. In addition, you may need to specify application-specific information, such as
the path for the data source. A configuration system provides all this information for an
application, which may be used at the time of or after the deployment of the application.

A Web application should provide a flexible configuration system that allows
configuration settings to be easily applied to the application. It should also facilitate easy
customization of configuration settings after the deployment of the application so that
changes in the configuration settings can be applied to the application without having to
recompile the entire code. In addition, the configuration system should provide a rich set
of configuration settings to enable different types of Web clients to work with the
applications.

The configuration system provided in ASP.NET meets all of these requirements. It
provides a flexible configuration system, as well as a rich set of initial configuration
settings. A thorough understanding of the configuration system helps you to easily
specify the settings for the target computer. You can also easily change the settings after
the application is deployed.

In ASP.NET, the configuration file Web.config stores the information about browser
capabilities, compilation, custom error messages, security, and globalization. The
Web.config file stores the configuration information in an XML format; therefore, it can be
easily read and modified by developers by using any standard text editor. Developers
can also use scripting languages such as Perl and VBScript to navigate, interpret, and
modify the configuration settings specified in the file.

The Web.config file can have various configuration sections for specifying configuration
settings. These sections have already been covered in Chapter 14. A recapitulation of
the different sections is summarized in Table 21-1.

Table 21-1: Configuration sections in ASP.NET

Section Configuration Section Description
Handler in ASP.NET

Enables you
to specify
custom
configuration
settings for
your
application.
You can use
one or more
<add>
elements in
this section to
add a new
key and
specify the

AppSettings System.Configuration.
NameValueFileSectionHandler

Table 21-1: Configuration sections in ASP.NET

Section Configuration Section Description
Handler in ASP.NET

values for the
same.

Authentication System.Web.Configuration. Enables you
AuthenticationConfigHandler to specify the
default
authentication
mode, and
specify cookie
authentication
settings.

Authorization System.Web.Configuration. Controls client
AuthorizationConfigHandler access to the
ASP.NET
resources at a
given URL.

BrowserCaps System.Web.Configuration. Controls the
HTTPCapabilitiesSectionHandler settings of the
HttpBrowser
Capabilities
component,
which enables
you to gather
the
information
about the
browser
running on the
client.

Compilation System.Web.Configuration. Contains the
CompilationConfigHandler compilation
settings that
are used by
ASP.NET for
compiling a
Web
application.

CustomErrors System.Web.Configuration. Enables you
CustomErrorsConfigHandler to specify the
page to which
the
application
should be
redirected in
the event of

an error.
Globalization System.Web.Configuration. Specifies the
GlobalizationConfigHandler globalization
settings for an
application.
HttpHandlers System.Web.Configuration. Maps the

HTTPHandlersConfigHandler incoming URL

Table 21-1: Configuration sections in ASP.NET

Section Configura